Reduced Complexity Volterra Models for Nonlinear System Identification
Directory of Open Access Journals (Sweden)
Hacıoğlu Rıfat
2001-01-01
Full Text Available A broad class of nonlinear systems and filters can be modeled by the Volterra series representation. However, its practical use in nonlinear system identification is sometimes limited due to the large number of parameters associated with the Volterra filter′s structure. The parametric complexity also complicates design procedures based upon such a model. This limitation for system identification is addressed in this paper using a Fixed Pole Expansion Technique (FPET within the Volterra model structure. The FPET approach employs orthonormal basis functions derived from fixed (real or complex pole locations to expand the Volterra kernels and reduce the number of estimated parameters. That the performance of FPET can considerably reduce the number of estimated parameters is demonstrated by a digital satellite channel example in which we use the proposed method to identify the channel dynamics. Furthermore, a gradient-descent procedure that adaptively selects the pole locations in the FPET structure is developed in the paper.
International Nuclear Information System (INIS)
Liu Chunliang; Xie Xi; Chen Yinbao
1991-01-01
The universal nonlinear dynamic system equation is equivalent to its nonlinear Volterra's integral equation, and any order approximate analytical solution of the nonlinear Volterra's integral equation is obtained by exact analytical method, thus giving another derivation procedure as well as another computation algorithm for the solution of the universal nonlinear dynamic system equation
Lotka-Volterra representation of general nonlinear systems.
Hernández-Bermejo, B; Fairén, V
1997-02-01
In this article we elaborate on the structure of the generalized Lotka-Volterra (GLV) form for nonlinear differential equations. We discuss here the algebraic properties of the GLV family, such as the invariance under quasimonomial transformations and the underlying structure of classes of equivalence. Each class possesses a unique representative under the classical quadratic Lotka-Volterra form. We show how other standard modeling forms of biological interest, such as S-systems or mass-action systems, are naturally embedded into the GLV form, which thus provides a formal framework for their comparison and for the establishment of transformation rules. We also focus on the issue of recasting of general nonlinear systems into the GLV format. We present a procedure for doing so and point at possible sources of ambiguity that could make the resulting Lotka-Volterra system dependent on the path followed. We then provide some general theorems that define the operational and algorithmic framework in which this is not the case.
Numerical Solution of Nonlinear Volterra Integral Equations System Using Simpson’s 3/8 Rule
Directory of Open Access Journals (Sweden)
Adem Kılıçman
2012-01-01
Full Text Available The Simpson’s 3/8 rule is used to solve the nonlinear Volterra integral equations system. Using this rule the system is converted to a nonlinear block system and then by solving this nonlinear system we find approximate solution of nonlinear Volterra integral equations system. One of the advantages of the proposed method is its simplicity in application. Further, we investigate the convergence of the proposed method and it is shown that its convergence is of order O(h4. Numerical examples are given to show abilities of the proposed method for solving linear as well as nonlinear systems. Our results show that the proposed method is simple and effective.
Neural network modeling of nonlinear systems based on Volterra series extension of a linear model
Soloway, Donald I.; Bialasiewicz, Jan T.
1992-01-01
A Volterra series approach was applied to the identification of nonlinear systems which are described by a neural network model. A procedure is outlined by which a mathematical model can be developed from experimental data obtained from the network structure. Applications of the results to the control of robotic systems are discussed.
Directory of Open Access Journals (Sweden)
Berenguer MI
2010-01-01
Full Text Available This paper deals with obtaining a numerical method in order to approximate the solution of the nonlinear Volterra integro-differential equation. We define, following a fixed-point approach, a sequence of functions which approximate the solution of this type of equation, due to some properties of certain biorthogonal systems for the Banach spaces and .
Nonlinear System Identification via Basis Functions Based Time Domain Volterra Model
Directory of Open Access Journals (Sweden)
Yazid Edwar
2014-07-01
Full Text Available This paper proposes basis functions based time domain Volterra model for nonlinear system identification. The Volterra kernels are expanded by using complex exponential basis functions and estimated via genetic algorithm (GA. The accuracy and practicability of the proposed method are then assessed experimentally from a scaled 1:100 model of a prototype truss spar platform. Identification results in time and frequency domain are presented and coherent functions are performed to check the quality of the identification results. It is shown that results between experimental data and proposed method are in good agreement.
Cheng, C. M.; Peng, Z. K.; Zhang, W. M.; Meng, G.
2017-03-01
Nonlinear problems have drawn great interest and extensive attention from engineers, physicists and mathematicians and many other scientists because most real systems are inherently nonlinear in nature. To model and analyze nonlinear systems, many mathematical theories and methods have been developed, including Volterra series. In this paper, the basic definition of the Volterra series is recapitulated, together with some frequency domain concepts which are derived from the Volterra series, including the general frequency response function (GFRF), the nonlinear output frequency response function (NOFRF), output frequency response function (OFRF) and associated frequency response function (AFRF). The relationship between the Volterra series and other nonlinear system models and nonlinear problem solving methods are discussed, including the Taylor series, Wiener series, NARMAX model, Hammerstein model, Wiener model, Wiener-Hammerstein model, harmonic balance method, perturbation method and Adomian decomposition. The challenging problems and their state of arts in the series convergence study and the kernel identification study are comprehensively introduced. In addition, a detailed review is then given on the applications of Volterra series in mechanical engineering, aeroelasticity problem, control engineering, electronic and electrical engineering.
International Nuclear Information System (INIS)
Dehghan, Mehdi; Shakourifar, Mohammad; Hamidi, Asgar
2009-01-01
The purpose of this study is to implement Adomian-Pade (Modified Adomian-Pade) technique, which is a combination of Adomian decomposition method (Modified Adomian decomposition method) and Pade approximation, for solving linear and nonlinear systems of Volterra functional equations. The results obtained by using Adomian-Pade (Modified Adomian-Pade) technique, are compared to those obtained by using Adomian decomposition method (Modified Adomian decomposition method) alone. The numerical results, demonstrate that ADM-PADE (MADM-PADE) technique, gives the approximate solution with faster convergence rate and higher accuracy than using the standard ADM (MADM).
elative controllability of nonlinear neutral Volterra Integrodiferential ...
African Journals Online (AJOL)
In this paper we established sufficient conditions for the relative controllability of the nonlinear neutral volterra integro-differential systems with distributed delays in the control. The results were established using the Schauder's fixed point theorem which is an extension of known results. Journal of the Nigerian Association of ...
Automatic Control Systems Modeling by Volterra Polynomials
Directory of Open Access Journals (Sweden)
S. V. Solodusha
2012-01-01
Full Text Available The problem of the existence of the solutions of polynomial Volterra integral equations of the first kind of the second degree is considered. An algorithm of the numerical solution of one class of Volterra nonlinear systems of the first kind is developed. Numerical results for test examples are presented.
On generalized Volterra systems
Charalambides, S. A.; Damianou, P. A.; Evripidou, C. A.
2015-01-01
We construct a large family of evidently integrable Hamiltonian systems which are generalizations of the KM system. The algorithm uses the root system of a complex simple Lie algebra. The Hamiltonian vector field is homogeneous cubic but in a number of cases a simple change of variables transforms such a system to a quadratic Lotka-Volterra system. We present in detail all such systems in the cases of A3, A4 and we also give some examples from higher dimensions. We classify all possible Lotka-Volterra systems that arise via this algorithm in the An case.
The inverse problem of determining several coefficients in a nonlinear Lotka–Volterra system
International Nuclear Information System (INIS)
Roques, Lionel; Cristofol, Michel
2012-01-01
In this paper, we prove a uniqueness result in the inverse problem of determining several non-constant coefficients of a system of two parabolic equations, which corresponds to a Lotka–Volterra competition model. Our result gives a sufficient condition for the uniqueness of the determination of four coefficients of the system. This sufficient condition only involves pointwise measurements of the solution (u, v) of the system and of the spatial derivative ∂u/∂x or ∂v/∂x of one component at a single point x 0 , during a time interval (0, ε). Our results are illustrated by numerical computations. (paper)
Liu, Na; Ju, Cheng
2018-02-01
Nyquist-SCM signal after fiber transmission, direct detection (DD), and analog down-conversion suffers from linear ISI, nonlinear ISI, and I/Q imbalance, simultaneously. Theoretical analysis based on widely linear (WL) and Volterra series is given to explain the relationship and interaction of these three interferences. A blind equalization algorithm, cascaded WL and Volterra equalizer, is designed to mitigate these three interferences. Furthermore, the feasibility of the proposed cascaded algorithm is experimentally demonstrated based on a 40-Gbps data rate 16-quadrature amplitude modulation (QAM) virtual single sideband (VSSB) Nyquist-SCM DD system over 100-km standard single mode fiber (SSMF) transmission. In addition, the performances of conventional strictly linear equalizer, WL equalizer, Volterra equalizer, and cascaded WL and Volterra equalizer are experimentally evaluated, respectively.
Directory of Open Access Journals (Sweden)
Zongyan Li
2016-01-01
Full Text Available This paper describes an improved global harmony search (IGHS algorithm for identifying the nonlinear discrete-time systems based on second-order Volterra model. The IGHS is an improved version of the novel global harmony search (NGHS algorithm, and it makes two significant improvements on the NGHS. First, the genetic mutation operation is modified by combining normal distribution and Cauchy distribution, which enables the IGHS to fully explore and exploit the solution space. Second, an opposition-based learning (OBL is introduced and modified to improve the quality of harmony vectors. The IGHS algorithm is implemented on two numerical examples, and they are nonlinear discrete-time rational system and the real heat exchanger, respectively. The results of the IGHS are compared with those of the other three methods, and it has been verified to be more effective than the other three methods on solving the above two problems with different input signals and system memory sizes.
Integrability of some generalized Lotka - Volterra systems
Energy Technology Data Exchange (ETDEWEB)
Bountis, T.C.; Bier, M.; Hijmans, J.
1983-08-08
Several integrable systems of nonlinear ordinary differential equations of the Lotka-Volterra type are identified by the Painleve property and completely integrated. One such integrable case of N first order ode's is found, with N - 2 free parameters and N arbitrary. The concept of integrability of a general dynamical system, not necessarily derived from a hamiltonian, is also discussed.
A Volterra series approach to the approximation of stochastic nonlinear dynamics
Wouw, van de N.; Nijmeijer, H.; Campen, van D.H.
2002-01-01
A response approximation method for stochastically excited, nonlinear, dynamic systems is presented. Herein, the output of the nonlinear system isapproximated by a finite-order Volterra series. The original nonlinear system is replaced by a bilinear system in order to determine the kernels of this
The Volterra's integral equation theory for accelerator single-freedom nonlinear components
International Nuclear Information System (INIS)
Wang Sheng; Xie Xi
1996-01-01
The Volterra's integral equation equivalent to the dynamic equation of accelerator single-freedom nonlinear components is given, starting from which the transport operator of accelerator single-freedom nonlinear components and its inverse transport operator are obtained. Therefore, another algorithm for the expert system of the beam transport operator of accelerator single-freedom nonlinear components is developed
On the integrability of some generalized Lotka-Volterra systems
Bier, M.; Hijmans, J.; Bountis, T. C.
1983-08-01
Several integrable systems of nonlinear ordinary differential equations of the Lotka-Volterra type are identified by the Painleveproperty and completely integrated. One such integrable case of N first order ode's is found, with N-2 free parameters and N arbitrary. The concept of integrability of a general dynamical system, not necessarily derived from a Hamiltonian, is also discussed.
Jing, Xingjian
2015-01-01
This book is a systematic summary of some new advances in the area of nonlinear analysis and design in the frequency domain, focusing on the application oriented theory and methods based on the GFRF concept, which is mainly done by the author in the past 8 years. The main results are formulated uniformly with a parametric characteristic approach, which provides a convenient and novel insight into nonlinear influence on system output response in terms of characteristic parameters and thus facilitate nonlinear analysis and design in the frequency domain. The book starts with a brief introduction to the background of nonlinear analysis in the frequency domain, followed by recursive algorithms for computation of GFRFs for different parametric models, and nonlinear output frequency properties. Thereafter the parametric characteristic analysis method is introduced, which leads to the new understanding and formulation of the GFRFs, and nonlinear characteristic output spectrum (nCOS) and the nCOS based analysis a...
Asymptotic Behavior of Solutions for Nonlinear Volterra Discrete Equations
Directory of Open Access Journals (Sweden)
E. Messina
2008-01-01
Full Text Available We consider nonlinear difference equations of unbounded order of the form xi=bi−∑j=0iai,jfi−j(xj, i=0,1,2,…, where fj(x (j=0,…,i are suitable functions. We establish sufficient conditions for the boundedness and the convergence of xi as i→+∞. Some of these conditions are interesting mainly for studying stability of numerical methods for Volterra integral equations.
Nonlinear features identified by Volterra series for damage detection in a buckled beam
Directory of Open Access Journals (Sweden)
Shiki S. B.
2014-01-01
Full Text Available The present paper proposes a new index for damage detection based on nonlinear features extracted from prediction errors computed by multiple convolutions using the discrete-time Volterra series. A reference Volterra model is identified with data in the healthy condition and used for monitoring the system operating with linear or nonlinear behavior. When the system has some structural change, possibly associated with damage, the index metrics computed could give an alert to separate the linear and nonlinear contributions, besides provide a diagnostic about the structural state. To show the applicability of the method, an experimental test is performed using nonlinear vibration signals measured in a clamped buckled beam subject to different levels of force applied and with simulated damages through discontinuities inserted in the beam surface.
Integrable deformations of Lotka-Volterra systems
International Nuclear Information System (INIS)
Ballesteros, Angel; Blasco, Alfonso; Musso, Fabio
2011-01-01
The Hamiltonian structure of a class of three-dimensional (3D) Lotka-Volterra (LV) equations is revisited from a novel point of view by showing that the quadratic Poisson structure underlying its integrability structure is just a real three-dimensional Poisson-Lie group. As a consequence, the Poisson coalgebra map Δ (2) that is given by the group multiplication provides the keystone for the explicit construction of a new family of 3N-dimensional integrable systems that, under certain constraints, contain N sets of deformed versions of the 3D LV equations. Moreover, by considering the most generic Poisson-Lie structure on this group, a new two-parametric integrable perturbation of the 3D LV system through polynomial and rational perturbation terms is explicitly found. -- Highlights: → A new Poisson-Lie approach to the integrability of Lotka-Volterra system is given. → New integrable deformations of the 3D Lotka-Volterra system are obtained. → Integrable Lotka-Volterra-type equations in 3N dimensions are deduced.
On chaos in Lotka–Volterra systems: an analytical approach
International Nuclear Information System (INIS)
Kozlov, Vladimir; Vakulenko, Sergey
2013-01-01
In this paper, we study Lotka–Volterra systems with N species and n resources. We show that the long time dynamics of these systems may be complicated. Depending on parameter choice, they can generate all types of hyperbolic dynamics, in particular, chaotic ones. Moreover, Lotka–Volterra systems can generate Lorenz dynamics. We state the conditions on the strong persistence of Lotka–Volterra systems when the number of resources is less than the number of species. (paper)
International Nuclear Information System (INIS)
Mesgarani, H; Parmour, P; Aghazadeh, N
2010-01-01
In this paper, we apply Aitken extrapolation and epsilon algorithm as acceleration technique for the solution of a weakly singular nonlinear Volterra integral equation of the second kind. In this paper, based on Tao and Yong (2006 J. Math. Anal. Appl. 324 225-37.) the integral equation is solved by Navot's quadrature formula. Also, Tao and Yong (2006) for the first time applied Richardson extrapolation to accelerating convergence for the weakly singular nonlinear Volterra integral equations of the second kind. To our knowledge, this paper may be the first attempt to apply Aitken extrapolation and epsilon algorithm for the weakly singular nonlinear Volterra integral equations of the second kind.
Nonlinear degradation of a visible-light communication link: A Volterra-series approach
Kamalakis, Thomas; Dede, Georgia
2018-06-01
Visible light communications can be used to provide illumination and data communication at the same time. In this paper, a reverse-engineering approach is presented for assessing the impact of nonlinear signal distortion in visible light communication links. The approach is based on the Volterra series expansion and has the advantage of accurately accounting for memory effects in contrast to the static nonlinear models that are popular in the literature. Volterra kernels describe the end-to-end system response and can be inferred from measurements. Consequently, this approach does not rely on any particular physical models and assumptions regarding the individual link components. We provide the necessary framework for estimating the nonlinear distortion on the symbol estimates of a discrete multitone modulated link. Various design aspects such as waveform clipping and predistortion are also incorporated in the analysis. Using this framework, the nonlinear signal-to-interference is calculated for the system at hand. It is shown that at high signal amplitudes, the nonlinear signal-to-interference can be less than 25 dB.
Aeroelastic System Development Using Proper Orthogonal Decomposition and Volterra Theory
Lucia, David J.; Beran, Philip S.; Silva, Walter A.
2003-01-01
This research combines Volterra theory and proper orthogonal decomposition (POD) into a hybrid methodology for reduced-order modeling of aeroelastic systems. The out-come of the method is a set of linear ordinary differential equations (ODEs) describing the modal amplitudes associated with both the structural modes and the POD basis functions for the uid. For this research, the structural modes are sine waves of varying frequency, and the Volterra-POD approach is applied to the fluid dynamics equations. The structural modes are treated as forcing terms which are impulsed as part of the uid model realization. Using this approach, structural and uid operators are coupled into a single aeroelastic operator. This coupling converts a free boundary uid problem into an initial value problem, while preserving the parameter (or parameters) of interest for sensitivity analysis. The approach is applied to an elastic panel in supersonic cross ow. The hybrid Volterra-POD approach provides a low-order uid model in state-space form. The linear uid model is tightly coupled with a nonlinear panel model using an implicit integration scheme. The resulting aeroelastic model provides correct limit-cycle oscillation prediction over a wide range of panel dynamic pressure values. Time integration of the reduced-order aeroelastic model is four orders of magnitude faster than the high-order solution procedure developed for this research using traditional uid and structural solvers.
Calculation of Volterra kernels for solutions of nonlinear differential equations
van Hemmen, JL; Kistler, WM; Thomas, EGF
2000-01-01
We consider vector-valued autonomous differential equations of the form x' = f(x) + phi with analytic f and investigate the nonanticipative solution operator phi bar right arrow A(phi) in terms of its Volterra series. We show that Volterra kernels of order > 1 occurring in the series expansion of
International Nuclear Information System (INIS)
Biazar, J.; Eslami, M.; Aminikhah, H.
2009-01-01
In this article, an application of He's homotopy perturbation method is applied to solve systems of Volterra integral equations of the first kind. Some non-linear examples are prepared to illustrate the efficiency and simplicity of the method. Applying the method for linear systems is so easily that it does not worth to have any example.
International Nuclear Information System (INIS)
Biazar, J.; Ghazvini, H.
2009-01-01
In this paper, the He's homotopy perturbation method is applied to solve systems of Volterra integral equations of the second kind. Some examples are presented to illustrate the ability of the method for linear and non-linear such systems. The results reveal that the method is very effective and simple.
Security analysis of chaotic communication systems based on Volterra-Wiener-Korenberg model
International Nuclear Information System (INIS)
Lei Min; Meng Guang; Feng Zhengjin
2006-01-01
Pseudo-randomicity is an important cryptological characteristic for proof of encryption algorithms. This paper proposes a nonlinear detecting method based on Volterra-Wiener-Korenberg model and suggests an autocorrelation function to analyze the pseudo-randomicity of chaotic secure systems under different sampling interval. The results show that: (1) the increase of the order of the chaotic transmitter will not necessarily result in a high degree of security; (2) chaotic secure systems have higher and stronger pseudo-randomicity at sparse sampling interval due to the similarity of chaotic time series to the noise; (3) Volterra-Wiener-Korenberg method can also give a further appropriate sparse sampling interval for improving the security of chaotic secure communication systems. For unmasking chaotic communication systems, the Volterra-Wiener-Korenberg technique can be applied to analyze the chaotic time series with surrogate data
Xu, Run; Ma, Xiangting
2017-01-01
In this paper, we establish some new retarded nonlinear Volterra-Fredholm type integral inequalities with maxima in two independent variables, and we present the applications to research the boundedness of solutions to retarded nonlinear Volterra-Fredholm type integral equations.
Valenza, Gaetano; Citi, Luca; Barbieri, Riccardo
2013-01-01
We report an exemplary study of instantaneous assessment of cardiovascular dynamics performed using point-process nonlinear models based on Laguerre expansion of the linear and nonlinear Wiener-Volterra kernels. As quantifiers, instantaneous measures such as high order spectral features and Lyapunov exponents can be estimated from a quadratic and cubic autoregressive formulation of the model first order moment, respectively. Here, these measures are evaluated on heartbeat series coming from 16 healthy subjects and 14 patients with Congestive Hearth Failure (CHF). Data were gathered from the on-line repository PhysioBank, which has been taken as landmark for testing nonlinear indices. Results show that the proposed nonlinear Laguerre-Volterra point-process methods are able to track the nonlinear and complex cardiovascular dynamics, distinguishing significantly between CHF and healthy heartbeat series.
Nonlinear Delay Discrete Inequalities and Their Applications to Volterra Type Difference Equations
Directory of Open Access Journals (Sweden)
Yu Wu
2010-01-01
Full Text Available Delay discrete inequalities with more than one nonlinear term are discussed, which generalize some known results and can be used in the analysis of various problems in the theory of certain classes of discrete equations. Application examples to show boundedness and uniqueness of solutions of a Volterra type difference equation are also given.
Representation of neural networks as Lotka-Volterra systems
International Nuclear Information System (INIS)
Moreau, Yves; Vandewalle, Joos; Louies, Stephane; Brenig, Leon
1999-01-01
We study changes of coordinates that allow the representation of the ordinary differential equations describing continuous-time recurrent neural networks into differential equations describing predator-prey models--also called Lotka-Volterra systems. We transform the equations for the neural network first into quasi-monomial form, where we express the vector field of the dynamical system as a linear combination of products of powers of the variables. In practice, this transformation is possible only if the activation function is the hyperbolic tangent or the logistic sigmoied. From this quasi-monomial form, we can directly transform the system further into Lotka-Volterra equations. The resulting Lotka-Volterra system is of higher dimension than the original system, but the behavior of its first variables is equivalent to the behavior of the original neural network
Institute of Scientific and Technical Information of China (English)
LI Shoufu
2005-01-01
A series of stability, contractivity and asymptotic stability results of the solutions to nonlinear stiff Volterra functional differential equations (VFDEs) in Banach spaces is obtained, which provides the unified theoretical foundation for the stability analysis of solutions to nonlinear stiff problems in ordinary differential equations(ODEs), delay differential equations(DDEs), integro-differential equations(IDEs) and VFDEs of other type which appear in practice.
The influence of noise on nonlinear time series detection based on Volterra-Wiener-Korenberg model
Energy Technology Data Exchange (ETDEWEB)
Lei Min [State Key Laboratory of Vibration, Shock and Noise, Shanghai Jiao Tong University, Shanghai 200030 (China)], E-mail: leimin@sjtu.edu.cn; Meng Guang [State Key Laboratory of Vibration, Shock and Noise, Shanghai Jiao Tong University, Shanghai 200030 (China)
2008-04-15
This paper studies the influence of noises on Volterra-Wiener-Korenberg (VWK) nonlinear test model. Our numerical results reveal that different types of noises lead to different behavior of VWK model detection. For dynamic noise, it is difficult to distinguish chaos from nonchaotic but nonlinear determinism. For time series, measure noise has no impact on chaos determinism detection. This paper also discusses various behavior of VWK model detection with surrogate data for different noises.
A novel nonlinear adaptive filter using a pipelined second-order Volterra recurrent neural network.
Zhao, Haiquan; Zhang, Jiashu
2009-12-01
To enhance the performance and overcome the heavy computational complexity of recurrent neural networks (RNN), a novel nonlinear adaptive filter based on a pipelined second-order Volterra recurrent neural network (PSOVRNN) is proposed in this paper. A modified real-time recurrent learning (RTRL) algorithm of the proposed filter is derived in much more detail. The PSOVRNN comprises of a number of simple small-scale second-order Volterra recurrent neural network (SOVRNN) modules. In contrast to the standard RNN, these modules of a PSOVRNN can be performed simultaneously in a pipelined parallelism fashion, which can lead to a significant improvement in its total computational efficiency. Moreover, since each module of the PSOVRNN is a SOVRNN in which nonlinearity is introduced by the recursive second-order Volterra (RSOV) expansion, its performance can be further improved. Computer simulations have demonstrated that the PSOVRNN performs better than the pipelined recurrent neural network (PRNN) and RNN for nonlinear colored signals prediction and nonlinear channel equalization. However, the superiority of the PSOVRNN over the PRNN is at the cost of increasing computational complexity due to the introduced nonlinear expansion of each module.
Directory of Open Access Journals (Sweden)
Behzad Ghanbari
2014-01-01
Full Text Available We aim to study the convergence of the homotopy analysis method (HAM in short for solving special nonlinear Volterra-Fredholm integrodifferential equations. The sufficient condition for the convergence of the method is briefly addressed. Some illustrative examples are also presented to demonstrate the validity and applicability of the technique. Comparison of the obtained results HAM with exact solution shows that the method is reliable and capable of providing analytic treatment for solving such equations.
Lie and conditional symmetries of the three-component diffusive Lotka–Volterra system
International Nuclear Information System (INIS)
Cherniha, Roman; Davydovych, Vasyl’
2013-01-01
Lie and Q-conditional symmetries of the classical three-component diffusive Lotka–Volterra system in the case of one space variable are studied. The group-classification problems for finding Lie symmetries and Q-conditional symmetries of the first type are completely solved. Notably, non-Lie symmetries (Q-conditional symmetry operators) for a multi-component nonlinear reaction–diffusion system are constructed for the first time. The results are compared with those derived for the two-component diffusive Lotka–Volterra system. The conditional symmetry obtained for the non-Lie reduction of the three-component system used for modeling competition between three species in population dynamics is applied and the relevant exact solutions are found. Particularly, the exact solution describing different scenarios of competition between three species is constructed. (paper)
Positive periodic solutions of delayed periodic Lotka-Volterra systems
International Nuclear Information System (INIS)
Lin Wei; Chen Tianping
2005-01-01
In this Letter, for a general class of delayed periodic Lotka-Volterra systems, we prove some new results on the existence of positive periodic solutions by Schauder's fixed point theorem. The global asymptotical stability of positive periodic solutions is discussed further, and conditions for exponential convergence are given. The conditions we obtained are weaker than the previously known ones and can be easily reduced to several special cases
Generalized Lotka—Volterra systems connected with simple Lie algebras
International Nuclear Information System (INIS)
Charalambides, Stelios A; Damianou, Pantelis A; Evripidou, Charalambos A
2015-01-01
We devise a new method for producing Hamiltonian systems by constructing the corresponding Lax pairs. This is achieved by considering a larger subset of the positive roots than the simple roots of the root system of a simple Lie algebra. We classify all subsets of the positive roots of the root system of type A n for which the corresponding Hamiltonian systems are transformed, via a simple change of variables, to Lotka-Volterra systems. For some special cases of subsets of the positive roots of the root system of type A n , we produce new integrable Hamiltonian systems. (paper)
Generalized Lotka—Volterra systems connected with simple Lie algebras
Charalambides, Stelios A.; Damianou, Pantelis A.; Evripidou, Charalambos A.
2015-06-01
We devise a new method for producing Hamiltonian systems by constructing the corresponding Lax pairs. This is achieved by considering a larger subset of the positive roots than the simple roots of the root system of a simple Lie algebra. We classify all subsets of the positive roots of the root system of type An for which the corresponding Hamiltonian systems are transformed, via a simple change of variables, to Lotka-Volterra systems. For some special cases of subsets of the positive roots of the root system of type An, we produce new integrable Hamiltonian systems.
Volterra model and quark hadronization into multicomponent hadron system
International Nuclear Information System (INIS)
Darbaidze, Ya.Z.; Rostovtsev, V.A.
1989-01-01
The examples of the multiparticle process characteristic dependence on the number of a low correlated components are considered. The possibility for reducing the differential equation system, which was obtained earlier, to a dissipative type Volterra model of competing biological species for the same food is discussed. An algorithm for the analytical computation of the high order differential equation as a resultant of the of the arising system is given. The examples of linearization and solution of these equations describing the associated multiplicities of charge particles are represented. 25 refs.; 1 tab
Volterra Series Based Distortion Effect
DEFF Research Database (Denmark)
Agerkvist, Finn T.
2010-01-01
A large part of the characteristic sound of the electric guitar comes from nonlinearities in the signal path. Such nonlinearities may come from the input- or output-stage of the amplier, which is often equipped with vacuum tubes or a dedicated distortion pedal. In this paper the Volterra series...... expansion for non linear systems is investigated with respect to generating good distortion. The Volterra series allows for unlimited adjustment of the level and frequency dependency of each distortion component. Subjectively relevant ways of linking the dierent orders are discussed....
On various integrable discretizations of a general two-component Volterra system
International Nuclear Information System (INIS)
Babalic, Corina N; Carstea, A S
2013-01-01
We present two integrable discretizations of a general differential–difference bicomponent Volterra system. The results are obtained by discretizing directly the corresponding Hirota bilinear equations in two different ways. Multisoliton solutions are presented together with a new discrete form of Lotka–Volterra equation obtained by an alternative bilinearization. (paper)
Directory of Open Access Journals (Sweden)
Omar Abu Arqub
2012-01-01
Full Text Available This paper investigates the numerical solution of nonlinear Fredholm-Volterra integro-differential equations using reproducing kernel Hilbert space method. The solution ( is represented in the form of series in the reproducing kernel space. In the mean time, the n-term approximate solution ( is obtained and it is proved to converge to the exact solution (. Furthermore, the proposed method has an advantage that it is possible to pick any point in the interval of integration and as well the approximate solution and its derivative will be applicable. Numerical examples are included to demonstrate the accuracy and applicability of the presented technique. The results reveal that the method is very effective and simple.
Hu, Eric Y; Bouteiller, Jean-Marie C; Song, Dong; Baudry, Michel; Berger, Theodore W
2015-01-01
Chemical synapses are comprised of a wide collection of intricate signaling pathways involving complex dynamics. These mechanisms are often reduced to simple spikes or exponential representations in order to enable computer simulations at higher spatial levels of complexity. However, these representations cannot capture important nonlinear dynamics found in synaptic transmission. Here, we propose an input-output (IO) synapse model capable of generating complex nonlinear dynamics while maintaining low computational complexity. This IO synapse model is an extension of a detailed mechanistic glutamatergic synapse model capable of capturing the input-output relationships of the mechanistic model using the Volterra functional power series. We demonstrate that the IO synapse model is able to successfully track the nonlinear dynamics of the synapse up to the third order with high accuracy. We also evaluate the accuracy of the IO synapse model at different input frequencies and compared its performance with that of kinetic models in compartmental neuron models. Our results demonstrate that the IO synapse model is capable of efficiently replicating complex nonlinear dynamics that were represented in the original mechanistic model and provide a method to replicate complex and diverse synaptic transmission within neuron network simulations.
Lie Point Symmetries and Exact Solutions of the Coupled Volterra System
International Nuclear Information System (INIS)
Ping, Liu; Sen-Yue, Lou
2010-01-01
The coupled Volterra system, an integrable discrete form of a coupled Korteweg–de Vries (KdV) system applied widely in fluids, Bose–Einstein condensation and atmospheric dynamics, is studied with the help of the Lie point symmetries. Two types of delayed differential reduction systems are derived from the coupled Volterra system by means of the symmetry reduction approach and symbolic computation. Cnoidal wave and solitary wave solutions for a delayed differential reduction system and the coupled Volterra system are proposed, respectively. (general)
International Nuclear Information System (INIS)
Itoh, Yoshiaki
2009-01-01
The combinatorial method is useful to obtain conserved quantities for some nonlinear integrable systems, as an alternative to the Lax representation method. Here we extend the combinatorial method and introduce an elementary geometry to show the vanishing of the Poisson brackets of the Hamiltonian structure for a Lotka-Volterra system of competing species. We associate a set of points on a circle with a set of species of the Lotka-Volterra system, where the dominance relations between points are given by the dominance relations between the species. We associate each term of the conserved quantities with a subset of points on the circle, which simplifies to show the vanishing of the Poisson brackets
The cyclicity of period annulus of a quadratic reversible Lotka–Volterra system
International Nuclear Information System (INIS)
Li, Chengzhi; Llibre, Jaume
2009-01-01
We prove that by perturbing the periodic annulus of the quadratic polynomial reversible Lotka–Volterra differential system, inside the class of all quadratic polynomial differential systems we can obtain at most two limit cycles
Stationary Response of Lotka—Volterra System with Real Noises
International Nuclear Information System (INIS)
Qi Lu-Yuan; Xu Wei; Gao Wei-Ting
2013-01-01
A stochastic version of Lotka—Volterra model subjected to real noises is proposed and investigated. The approximate stationary probability densities for both predator and prey are obtained analytically. The original system is firstly transformed to a pair of Itô stochastic differential equations. The Itô formula is then carried out to obtain the Itô stochastic differential equation for the period orbit function. The orbit function is considered as slowly varying process under reasonable assumptions. By applying the stochastic averaging method to the orbit function in one period, the averaged Itô stochastic differential equation of the motion orbit and the corresponding Fokker—Planck equation are derived. The probability density functions of the two species are thus formulated. Finally, a classical real noise model is given as an example to show the proposed approximate method. The accuracy of the proposed procedure is verified by Monte Carlo simulation. (interdisciplinary physics and related areas of science and technology)
An equivalent condition for stability properties of Lotka-Volterra systems
International Nuclear Information System (INIS)
Chu Tianguang
2007-01-01
We give a solvable Lie algebraic condition for the equivalence of four typical stability notions (asymptotic stability, D-stability, total stability, and Volterra-Lyapunov stability) concerning Lotka-Volterra systems. Our approach makes use of the decomposition of the interaction matrix into symmetric and skew-symmetric parts, which may be related to the cooperative and competitive interaction pattern of a Lotka-Volterra system. The present result covers a known condition and can yield a larger set of interaction matrices for equivalence of the stability properties
Lie Symmetry of the Diffusive Lotka–Volterra System with Time-Dependent Coefficients
Directory of Open Access Journals (Sweden)
Vasyl’ Davydovych
2018-02-01
Full Text Available Lie symmetry classification of the diffusive Lotka–Volterra system with time-dependent coefficients in the case of a single space variable is studied. A set of such symmetries in an explicit form is constructed. A nontrivial ansatz reducing the Lotka–Volterra system with correctly-specified coefficients to the system of ordinary differential equations (ODEs and an example of the exact solution with a biological interpretation are found.
DEFF Research Database (Denmark)
Chon, K H; Holstein-Rathlou, N H; Marsh, D J
1998-01-01
kernel estimation method based on Laguerre expansions. The results for the two types of artificial neural networks and the Volterra models are comparable in terms of normalized mean square error (NMSE) of the respective output prediction for independent testing data. However, the Volterra models obtained...
HOC Based Blind Identification of Hydroturbine Shaft Volterra System
Directory of Open Access Journals (Sweden)
Bing Bai
2017-01-01
Full Text Available In order to identify the quadratic Volterra system simplified from the hydroturbine shaft system, a blind identification method based on the third-order cumulants and a reversely recursive method are proposed. The input sequence of the system under consideration is an unobservable independent identically distributed (i.i.d., zero-mean and non-Gaussian stationary signal, and the observed signals are the superposition of the system output signal and Gaussian noise. To calculate the third-order moment of the output signal, a computer loop judgment method is put forward to determine the coefficient. When using optimization method to identify the time domain kernels, we combined the traditional optimization algorithm (direct search method with genetic algorithm (GA and constituted the hybrid genetic algorithm (HGA. Finally, according to the prototype observation signal and the time domain kernel parameters obtained from identification, the input signal of the system can be gained recursively. To test the proposed method, three numerical experiments and engineering application have been carried out. The results show that the method is applicable to the blind identification of the hydroturbine shaft system and has strong universality; the input signal obtained by the reversely recursive method can be approximately taken as the random excitation acted on the runner of the hydroturbine shaft system.
Lotka-Volterra system in a random environment
Dimentberg, Mikhail F.
2002-03-01
Classical Lotka-Volterra (LV) model for oscillatory behavior of population sizes of two interacting species (predator-prey or parasite-host pairs) is conservative. This may imply unrealistically high sensitivity of the system's behavior to environmental variations. Thus, a generalized LV model is considered with the equation for preys' reproduction containing the following additional terms: quadratic ``damping'' term that accounts for interspecies competition, and term with white-noise random variations of the preys' reproduction factor that simulates the environmental variations. An exact solution is obtained for the corresponding Fokker-Planck-Kolmogorov equation for stationary probability densities (PDF's) of the population sizes. It shows that both population sizes are independent γ-distributed stationary random processes. Increasing level of the environmental variations does not lead to extinction of the populations. However it may lead to an intermittent behavior, whereby one or both population sizes experience very rare and violent short pulses or outbreaks while remaining on a very low level most of the time. This intermittency is described analytically by direct use of the solutions for the PDF's as well as by applying theory of excursions of random functions and by predicting PDF of peaks in the predators' population size.
Tang, Xianhua; Cao, Daomin; Zou, Xingfu
We consider a periodic Lotka-Volterra competition system without instantaneous negative feedbacks (i.e., pure-delay systems) x(t)=x(t)[r(t)-∑j=1na(t)x(t-τ(t))], i=1,2,…,n. We establish some 3/2-type criteria for global attractivity of a positive periodic solution of the system, which generalize the well-known Wright's 3/2 criteria for the autonomous delay logistic equation, and thereby, address the open problem proposed by both Kuang [Y. Kuang, Global stability in delayed nonautonomous Lotka-Volterra type systems without saturated equilibria, Differential Integral Equations 9 (1996) 557-567] and Teng [Z. Teng, Nonautonomous Lotka-Volterra systems with delays, J. Differential Equations 179 (2002) 538-561].
Energy Technology Data Exchange (ETDEWEB)
Zhang Yu, E-mail: yuzhang@xmu.edu.cn [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen Fujian 361005 (China); Sprecher, Alicia J. [Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-7375 (United States); Zhao Zongxi [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen Fujian 361005 (China); Jiang, Jack J. [Department of Surgery, Division of Otolaryngology - Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-7375 (United States)
2011-09-15
Highlights: > The VWK method effectively detects the nonlinearity of a discrete map. > The method describes the chaotic time series of a biomechanical vocal fold model. > Nonlinearity in laryngeal pathology is detected from short and noisy time series. - Abstract: In this paper, we apply the Volterra-Wiener-Korenberg (VWK) model method to detect nonlinearity in disordered voice productions. The VWK method effectively describes the nonlinearity of a third-order nonlinear map. It allows for the analysis of short and noisy data sets. The extracted VWK model parameters show an agreement with the original nonlinear map parameters. Furthermore, the VWK mode method is applied to successfully assess the nonlinearity of a biomechanical voice production model simulating irregular vibratory dynamics of vocal folds with a unilateral vocal polyp. Finally, we show the clinical applicability of this nonlinear detection method to analyze the electroglottographic data generated by 14 patients with vocal nodules or polyps. The VWK model method shows potential in describing the nonlinearity inherent in disordered voice productions from short and noisy time series that are common in the clinical setting.
International Nuclear Information System (INIS)
Zhang Yu; Sprecher, Alicia J.; Zhao Zongxi; Jiang, Jack J.
2011-01-01
Highlights: → The VWK method effectively detects the nonlinearity of a discrete map. → The method describes the chaotic time series of a biomechanical vocal fold model. → Nonlinearity in laryngeal pathology is detected from short and noisy time series. - Abstract: In this paper, we apply the Volterra-Wiener-Korenberg (VWK) model method to detect nonlinearity in disordered voice productions. The VWK method effectively describes the nonlinearity of a third-order nonlinear map. It allows for the analysis of short and noisy data sets. The extracted VWK model parameters show an agreement with the original nonlinear map parameters. Furthermore, the VWK mode method is applied to successfully assess the nonlinearity of a biomechanical voice production model simulating irregular vibratory dynamics of vocal folds with a unilateral vocal polyp. Finally, we show the clinical applicability of this nonlinear detection method to analyze the electroglottographic data generated by 14 patients with vocal nodules or polyps. The VWK model method shows potential in describing the nonlinearity inherent in disordered voice productions from short and noisy time series that are common in the clinical setting.
International Nuclear Information System (INIS)
Dubovik, V.M.; Galperin, A.G.; Richvitsky, V.S.; Slepnyov, S.K.
2000-01-01
A study of a certain subset of Volterra equations has revealed that some statements about time-independent constants of motion, Hamiltonian functions, and Poisson structure matrices appearing in the Lotka-Volterra equations, either regarded as proven or of the sort that could be proven, are not valid, in fact. Particular cases are given as examples to explain the reasons for the occurring phenomena
Hamiltonian structure and Darboux theorem for families of generalized Lotka-Volterra systems
Hernández-Bermejo, Benito; Fairén, Víctor
1998-11-01
This work is devoted to the establishment of a Poisson structure for a format of equations known as generalized Lotka-Volterra systems. These equations, which include the classical Lotka-Volterra systems as a particular case, have been deeply studied in the literature. They have been shown to constitute a whole hierarchy of systems, the characterization of which is made in the context of simple algebra. Our main result is to show that this algebraic structure is completely translatable into the Poisson domain. Important Poisson structures features, such as the symplectic foliation and the Darboux canonical representation, rise as a result of rather simple matrix manipulations.
Composite spectral functions for solving Volterra's population model
International Nuclear Information System (INIS)
Ramezani, M.; Razzaghi, M.; Dehghan, M.
2007-01-01
An approximate method for solving Volterra's population model for population growth of a species in a closed system is proposed. Volterra's model is a nonlinear integro-differential equation, where the integral term represents the effect of toxin. The approach is based upon composite spectral functions approximations. The properties of composite spectral functions consisting of few terms of orthogonal functions are presented and are utilized to reduce the solution of the Volterra's model to the solution of a system of algebraic equations. The method is easy to implement and yields very accurate result
Global asymptotic stability for a nonautonomous Lotka-Volterra competition system
TANIGUCHI, Kunihiko
2014-01-01
We consider nonautonomous N-dimensional generalized Lotka-Volterra competition systems. Under certain conditions we show that there exists a unique solution u* whose components are bounded above and below by positive constants on R, and u* attracts any solution. If such system is periodic, so is u*.
International Nuclear Information System (INIS)
Sun Wen; Chen Shihua; Hong Zhiming; Wang Changping
2007-01-01
A two-species periodic competition Lotka-Volterra system with time delay and diffusion is investigated. Some sufficient conditions of the existence of positive periodic solution are established for the system by using the continuation theorem of coincidence degree theory
International Nuclear Information System (INIS)
Nakahara, Yasuaki; Ise, Takeharu; Kobayashi, Kensuke; Itoh, Yasuyuki
1975-12-01
A new method has been developed for numerical solution of a class of nonlinear Volterra integro-differential equations with quadratic nonlinearity. After dividing the domain of the variable into subintervals, piecewise approximations are applied in the subintervals. The equation is first integrated over a subinterval to obtain the piecewise equation, to which six approximate treatments are applied, i.e. fully explicit, fully implicit, Crank-Nicolson, linear interpolation, quadratic and cubic spline. The numerical solution at each time step is obtained directly as a positive root of the resulting algebraic quadratic equation. The point reactor kinetics with a ramp reactivity insertion, linear temperature feedback and delayed neutrons can be described by one of this type of nonlinear Volterra integro-differential equations. The algorithm is applied to the Argonne benchmark problem and a model problem for a fast reactor without delayed neutrons. The fully implicit method has been found to be unconditionally stable in the sense that it always gives the positive real roots. The cubic spline method is divergent, and the other four methods are intermediate in between. From the estimation of the stability, convergency, accuracy and CPU time, it is concluded that the Crank-Nicolson method is best, then the linear interpolation method comes closely next to it. Discussions are also made on the possibility of applying the algorithm to the fusion reactor kinetics in the form of a nonlinear partial differential equation. (auth.)
Qualitative aspects of Volterra integro-dynamic system on time scales
Directory of Open Access Journals (Sweden)
Vasile Lupulescu
2013-01-01
Full Text Available This paper deals with the resolvent, asymptotic stability and boundedness of the solution of time-varying Volterra integro-dynamic system on time scales in which the coefficient matrix is not necessarily stable. We generalize at time scale some known properties about asymptotic behavior and boundedness from the continuous case. Some new results for discrete case are obtained.
Directory of Open Access Journals (Sweden)
Xinggui Liu
2011-01-01
Full Text Available In this paper, by using Mawhin's continuation theorem of coincidence degree theory, we establish the existence of at least four positive periodic solutions for a discrete time Lotka-Volterra competitive system with harvesting terms. An example is given to illustrate the effectiveness of our results.
International Nuclear Information System (INIS)
Cai, Zuowei; Huang, Lihong
2013-01-01
Highlights: • A more practical form of harvesting management policy (DHP) has been proposed. • We analyze the periodic dynamics of a class of discontinuous and delayed Lotka–Volterra competition systems. • We present a new method to obtain the existence of positive periodic solutions via differential inclusions. • The global convergence in measure of harvesting solution is discussed. -- Abstract: This paper considers a general class of delayed Lotka–Volterra competition systems where the harvesting policies are modeled by discontinuous functions or by non-Lipschitz functions. By means of differential inclusions theory, cone expansion and compression fixed point theorem of multi-valued maps and nonsmooth analysis theory with generalized Lyapunov approach, a series of useful criteria on existence, uniqueness and global asymptotic stability of the positive periodic solution is established for the delayed Lotka–Volterra competition systems with discontinuous right-hand sides. Moreover, the global convergence in measure of harvesting solution is discussed. Our results improve and extend previous works on periodic dynamics of delayed Lotka–Volterra competition systems with not only continuous or even Lipschitz continuous but also discontinuous harvesting functions. Finally, we give some corollaries and numerical examples to show the applicability and effectiveness of the proposed criteria
A Two-Species Cooperative Lotka-Volterra System of Degenerate Parabolic Equations
Sun, Jiebao; Zhang, Dazhi; Wu, Boying
2011-01-01
We consider a cooperating two-species Lotka-Volterra model of degenerate parabolic equations. We are interested in the coexistence of the species in a bounded domain. We establish the existence of global generalized solutions of the initial boundary value problem by means of parabolic regularization and also consider the existence of the nontrivial time-periodic solution for this system.
Stability and Hopf bifurcations in a competitive Lotka-Volterra system with two delays
International Nuclear Information System (INIS)
Song Yongli; Han Maoan; Peng Yahong
2004-01-01
We consider a Lotka-Volterra competition system with two delays. We first investigate the stability of the positive equilibrium and the existence of Hopf bifurcations, and then using the normal form theory and center manifold argument, derive the explicit formulas which determine the stability, direction and other properties of bifurcating periodic solutions
Palmero, Faustino; Lemos, M; Sánchez-Rey, Bernardo; Casado-Pascual, Jesús
2018-01-01
This book presents an overview of the most recent advances in nonlinear science. It provides a unified view of nonlinear properties in many different systems and highlights many new developments. While volume 1 concentrates on mathematical theory and computational techniques and challenges, which are essential for the study of nonlinear science, this second volume deals with nonlinear excitations in several fields. These excitations can be localized and transport energy and matter in the form of breathers, solitons, kinks or quodons with very different characteristics, which are discussed in the book. They can also transport electric charge, in which case they are known as polarobreathers or solectrons. Nonlinear excitations can influence function and structure in biology, as for example, protein folding. In crystals and other condensed matter, they can modify transport properties, reaction kinetics and interact with defects. There are also engineering applications in electric lattices, Josephson junction a...
Directory of Open Access Journals (Sweden)
Haiyan Yuan
2013-01-01
Full Text Available This paper introduces the stability and convergence of two-step Runge-Kutta methods with compound quadrature formula for solving nonlinear Volterra delay integro-differential equations. First, the definitions of (k,l-algebraically stable and asymptotically stable are introduced; then the asymptotical stability of a (k,l-algebraically stable two-step Runge-Kutta method with 0
Some stability and boundedness criteria for a class of Volterra integro-differential systems
Directory of Open Access Journals (Sweden)
Jito Vanualailai
2002-01-01
Full Text Available Using Lyapunov and Lyapunov-like functionals, we study the stability and boundedness of the solutions of a system of Volterra integrodifferential equations. Our results, also extending some of the more well-known criteria, give new sufficient conditions for stability of the zero solution of the nonperturbed system, and prove that the same conditions for the perturbed system yield boundedness when the perturbation is $L^2$.
The persistence in a Lotka-Volterra competition systems with impulsive
International Nuclear Information System (INIS)
Zhen Jin; Han Maoan; Li Guihua
2005-01-01
In this paper, a nonautonomous two-dimensional competitive Lotka-Volterra system with impulsive is considered. we study the persistence and extinction, giving two inequalities involving averages of the growth rates and impulsive value, which guarantees persistence of the system. An extension of the principle of competition exclusion is obtained in this paper. Moreover, several examples are also worked out, they show that the impulsive can change the persistence of the system
The discrete hungry Lotka Volterra system and a new algorithm for computing matrix eigenvalues
Fukuda, Akiko; Ishiwata, Emiko; Iwasaki, Masashi; Nakamura, Yoshimasa
2009-01-01
The discrete hungry Lotka-Volterra (dhLV) system is a generalization of the discrete Lotka-Volterra (dLV) system which stands for a prey-predator model in mathematical biology. In this paper, we show that (1) some invariants exist which are expressed by dhLV variables and are independent from the discrete time and (2) a dhLV variable converges to some positive constant or zero as the discrete time becomes sufficiently large. Some characteristic polynomial is then factorized with the help of the dhLV system. The asymptotic behaviour of the dhLV system enables us to design an algorithm for computing complex eigenvalues of a certain band matrix.
The discrete hungry Lotka–Volterra system and a new algorithm for computing matrix eigenvalues
International Nuclear Information System (INIS)
Fukuda, Akiko; Ishiwata, Emiko; Iwasaki, Masashi; Nakamura, Yoshimasa
2009-01-01
The discrete hungry Lotka–Volterra (dhLV) system is a generalization of the discrete Lotka–Volterra (dLV) system which stands for a prey–predator model in mathematical biology. In this paper, we show that (1) some invariants exist which are expressed by dhLV variables and are independent from the discrete time and (2) a dhLV variable converges to some positive constant or zero as the discrete time becomes sufficiently large. Some characteristic polynomial is then factorized with the help of the dhLV system. The asymptotic behaviour of the dhLV system enables us to design an algorithm for computing complex eigenvalues of a certain band matrix
Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems
Energy Technology Data Exchange (ETDEWEB)
Szederkenyi, Gabor; Hangos, Katalin M
2004-04-26
We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.
Existence of Generalized Homoclinic Solutions of Lotka-Volterra System under a Small Perturbation
Mi, Yuzhen
2016-01-01
This paper investigates Lotka-Volterra system under a small perturbation vxx=-μ(1-a2u-v)v+ϵf(ϵ,v,vx,u,ux), uxx=-(1-u-a1v)u+ϵg(ϵ,v,vx,u,ux). By the Fourier series expansion technique method, the fixed point theorem, the perturbation theorem, and the reversibility, we prove that near μ=0 the system has a generalized homoclinic solution exponentially approaching a periodic solution.
Existence of Generalized Homoclinic Solutions of Lotka-Volterra System under a Small Perturbation
Directory of Open Access Journals (Sweden)
Yuzhen Mi
2016-01-01
Full Text Available This paper investigates Lotka-Volterra system under a small perturbation vxx=-μ(1-a2u-vv+ϵf(ϵ,v,vx,u,ux, uxx=-(1-u-a1vu+ϵg(ϵ,v,vx,u,ux. By the Fourier series expansion technique method, the fixed point theorem, the perturbation theorem, and the reversibility, we prove that near μ=0 the system has a generalized homoclinic solution exponentially approaching a periodic solution.
Global asymptotic behavior in a Lotka–Volterra competition system with spatio-temporal delays
International Nuclear Information System (INIS)
Zhang, Jia-Fang; Chen, Heshan
2014-01-01
This paper is concerned with a Lotka–Volterra competition system with spatio-temporal delays. By using the linearization method, we show the local asymptotic behavior of the nonnegative steady-state solutions. Especially, the global asymptotic stability of the positive steady-state solution is investigated by the method of upper and lower solutions. The result of global asymptotic stability implies that the system has no nonconstant positive steady-state solution
Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems
Szederkényi, Gábor; Hangos, Katalin M.
2004-04-01
We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.
Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems
International Nuclear Information System (INIS)
Szederkenyi, Gabor; Hangos, Katalin M.
2004-01-01
We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities
Cross-diffusional effect in a telegraph reaction diffusion Lotka-Volterra two competitive system
International Nuclear Information System (INIS)
Abdusalam, H.A; Fahmy, E.S.
2003-01-01
It is known now that, telegraph equation is more suitable than ordinary diffusion equation in modelling reaction diffusion in several branches of sciences. Telegraph reaction diffusion Lotka-Volterra two competitive system is considered. We observed that this system can give rise to diffusive instability only in the presence of cross-diffusion. Local and global stability analysis in the cross-diffusional effect are studied by considering suitable Lyapunov functional
Yin, Fancheng; Yu, Xiaoyan
2015-01-01
This paper is concerned with the existence of stationary distribution and extinction for multispecies stochastic Lotka-Volterra predator-prey system. The contributions of this paper are as follows. (a) By using Lyapunov methods, the sufficient conditions on existence of stationary distribution and extinction are established. (b) By using the space decomposition technique and the continuity of probability, weaker conditions on extinction of the system are obtained. Finally, a numer...
Sharp conditions for global stability of Lotka-Volterra systems with distributed delays
Faria, Teresa
We give a criterion for the global attractivity of a positive equilibrium of n-dimensional non-autonomous Lotka-Volterra systems with distributed delays. For a class of autonomous Lotka-Volterra systems, we show that such a criterion is sharp, in the sense that it provides necessary and sufficient conditions for the global asymptotic stability independently of the choice of the delay functions. The global attractivity of positive equilibria is established by imposing a diagonal dominance of the instantaneous negative feedback terms, and relies on auxiliary results showing the boundedness of all positive solutions. The paper improves and generalizes known results in the literature, namely by considering systems with distributed delays rather than discrete delays.
Dynamical behaviors determined by the Lyapunov function in competitive Lotka-Volterra systems
Tang, Ying; Yuan, Ruoshi; Ma, Yian
2013-01-01
Dynamical behaviors of the competitive Lotka-Volterra system even for 3 species are not fully understood. In this paper, we study this problem from the perspective of the Lyapunov function. We construct explicitly the Lyapunov function using three examples of the competitive Lotka-Volterra system for the whole state space: (1) the general 2-species case, (2) a 3-species model, and (3) the model of May-Leonard. The basins of attraction for these examples are demonstrated, including cases with bistability and cyclical behavior. The first two examples are the generalized gradient system, where the energy dissipation may not follow the gradient of the Lyapunov function. In addition, under a new type of stochastic interpretation, the Lyapunov function also leads to the Boltzmann-Gibbs distribution on the final steady state when multiplicative noise is added.
Geometry of carrying simplices of 3-species competitive Lotka–Volterra systems
International Nuclear Information System (INIS)
Baigent, Stephen
2013-01-01
We investigate the existence, uniqueness and Gaussian curvature of the invariant carrying simplices of 3 species autonomous totally competitive Lotka–Volterra systems. Explicit examples are given where the carrying simplex is convex or concave, but also where the curvature is not single-signed. Our method monitors the curvature of an evolving surface that converges uniformly to the carrying simplex, and generally relies on establishing that the Gaussian image of the evolving surface is confined to an invariant cone. We also discuss the relationship between the curvature of the carrying simplex near an interior fixed point and its Split Lyapunov stability. Finally we comment on extensions to general Lotka–Volterra systems that are not competitive. (paper)
Analytic solutions of a class of nonlinearly dynamic systems
International Nuclear Information System (INIS)
Wang, M-C; Zhao, X-S; Liu, X
2008-01-01
In this paper, the homotopy perturbation method (HPM) is applied to solve a coupled system of two nonlinear differential with first-order similar model of Lotka-Volterra and a Bratus equation with a source term. The analytic approximate solutions are derived. Furthermore, the analytic approximate solutions obtained by the HPM with the exact solutions reveals that the present method works efficiently
Algebraic features of some generalizations of the Lotka-Volterra system
Bibik, Yu. V.; Sarancha, D. A.
2010-10-01
For generalizations of the Lotka-Volterra system, an integration method is proposed based on the nontrivial algebraic structure of these generalizations. The method makes use of an auxiliary first-order differential equation derived from the phase curve equation with the help of this algebraic structure. Based on this equation, a Hamiltonian approach can be developed and canonical variables (moreover, action-angle variables) can be constructed.
Prediction of rotor blade-vortex interaction using Volterra integrals
Energy Technology Data Exchange (ETDEWEB)
Wong, A.; Nitzsche, F. [Carleton Univ., Dept. of Mechanical and Aerospace Engineering, Ottawa, Ontario (Canada)]. E-mail: Fred_Nitzsche@carleton.ca; Khalid, M. [National Research Council Canada, Inst. for Aerospace Research, Ottawa, Ontario (Canada)
2004-07-01
The theory of Volterra integral equations for nonlinear system is applied to the prediction of the nonlinear aerodynamic response of an NACA 0012 airfoil experiencing blade-vortex interaction. The phenomenon is first modeled in two-dimensions using an Euler/Navier-Stoke code, and the resulting unsteady aerodynamic flow field sequences are appropriately combined to form a training dataset. The Volterra kernels are identified in the time-domain characteristics of the selected data, which is in turn used to predict the nonlinear aerodynamic response of the airfoil. The Volterra kernel based data is then compared against a standard airfoil response. The predicted lift time histories of the airfoil are shown to be in good agreement with the aerodynamic data. (author)
Prediction of rotor blade-vortex interaction using Volterra integrals
International Nuclear Information System (INIS)
Wong, A.; Nitzsche, F.; Khalid, M.
2004-01-01
The theory of Volterra integral equations for nonlinear system is applied to the prediction of the nonlinear aerodynamic response of an NACA 0012 airfoil experiencing blade-vortex interaction. The phenomenon is first modeled in two-dimensions using an Euler/Navier-Stoke code, and the resulting unsteady aerodynamic flow field sequences are appropriately combined to form a training dataset. The Volterra kernels are identified in the time-domain characteristics of the selected data, which is in turn used to predict the nonlinear aerodynamic response of the airfoil. The Volterra kernel based data is then compared against a standard airfoil response. The predicted lift time histories of the airfoil are shown to be in good agreement with the aerodynamic data. (author)
Efficient multidimensional regularization for Volterra series estimation
Birpoutsoukis, Georgios; Csurcsia, Péter Zoltán; Schoukens, Johan
2018-05-01
This paper presents an efficient nonparametric time domain nonlinear system identification method. It is shown how truncated Volterra series models can be efficiently estimated without the need of long, transient-free measurements. The method is a novel extension of the regularization methods that have been developed for impulse response estimates of linear time invariant systems. To avoid the excessive memory needs in case of long measurements or large number of estimated parameters, a practical gradient-based estimation method is also provided, leading to the same numerical results as the proposed Volterra estimation method. Moreover, the transient effects in the simulated output are removed by a special regularization method based on the novel ideas of transient removal for Linear Time-Varying (LTV) systems. Combining the proposed methodologies, the nonparametric Volterra models of the cascaded water tanks benchmark are presented in this paper. The results for different scenarios varying from a simple Finite Impulse Response (FIR) model to a 3rd degree Volterra series with and without transient removal are compared and studied. It is clear that the obtained models capture the system dynamics when tested on a validation dataset, and their performance is comparable with the white-box (physical) models.
Entire solutions of a diffusive and competitive Lotka–Volterra type system with nonlocal delays
International Nuclear Information System (INIS)
Wang, Mingxin; Lv, Guangying
2010-01-01
This paper is concerned with the entire solution of a diffusive and competitive Lotka–Volterra type system with nonlocal delays. The existence of the entire solution is proved by transforming the system with nonlocal delays to a four-dimensional system without delay and using the comparing argument and the sub-super-solution method. Here an entire solution means a classical solution defined for all space and time variables, which behaves as two wave fronts coming from both sides of the x-axis
Faria, Teresa; Oliveira, José J.
This paper addresses the local and global stability of n-dimensional Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. Necessary and sufficient conditions for local stability independent of the choice of the delay functions are given, by imposing a weak nondelayed diagonal dominance which cancels the delayed competition effect. The global asymptotic stability of positive equilibria is established under conditions slightly stronger than the ones required for the linear stability. For the case of monotone interactions, however, sharper conditions are presented. This paper generalizes known results for discrete delays to systems with distributed delays. Several applications illustrate the results.
Linearizability conditions for Lotka-Volterra planar complex cubic systems
International Nuclear Information System (INIS)
Gine, Jaume; Romanovski, Valery G
2009-01-01
In this paper, we investigate the linearizability problem for the two-dimensional planar complex system x-dot=x(1-a 10 x-a 01 y-a 20 x 2 -a 11 xy-a 02 y 2 ), y-dot=(1-b 10 x-b 01 y-b 20 x 2 -b 11 xy-b 02 y 2 ). The necessary and sufficient conditions for the linearizability of this system are found. From them the conditions for isochronicity of the corresponding real system can be derived
Profitless delays for extinction in nonautonomous Lotka-Volterra system
Liu, Shengqiang; Chen, Lansun
2001-12-01
We study the delayed periodic n-species Lotka-Voterra systems where the growth rate of each species is not always positive. The sufficient conditions for the extinction that are independent of the delays are obtained. Some known results are improved and generalized. Our results suggest that under some conditions, the introduction and the variance of the time delays can be both harmless and profitless. Discussion about the effect of time delays on the extinction of the system is also advanced.
National Research Council Canada - National Science Library
Drazin, P. G
1992-01-01
This book is an introduction to the theories of bifurcation and chaos. It treats the solution of nonlinear equations, especially difference and ordinary differential equations, as a parameter varies...
Volterra Filtering for ADC Error Correction
Directory of Open Access Journals (Sweden)
J. Saliga
2001-09-01
Full Text Available Dynamic non-linearity of analog-to-digital converters (ADCcontributes significantly to the distortion of digitized signals. Thispaper introduces a new effective method for compensation such adistortion based on application of Volterra filtering. Considering ana-priori error model of ADC allows finding an efficient inverseVolterra model for error correction. Efficiency of proposed method isdemonstrated on experimental results.
Spatial organization in cyclic Lotka-Volterra systems
International Nuclear Information System (INIS)
Frachebourg, L.; Krapivsky, P.L.; Ben-Naim, E.
1996-01-01
We study the evolution of a system of N interacting species which mimics the dynamics of a cyclic food chain. On a one-dimensional lattice with N α , where α=3/4 (1/2) and 1/3 for N=3 with sequential (parallel) dynamics and N=4, respectively. The domain distribution also exhibits a self-similar spatial structure which is characterized by an additional length scale, left-angle L(t)right-angle ∼t β , with β=1 and 2/3 for N=3 and 4, respectively. For N≥5, the system quickly reaches a frozen state with noninteracting neighboring species. We investigate the time distribution of the number of mutations of a site using scaling arguments as well as an exact solution for N=3. Some relevant extensions are also analyzed. copyright 1996 The American Physical Society
Energy Technology Data Exchange (ETDEWEB)
Jin Zhen E-mail: jinzhn@263.net; Ma Zhien; Maoan Han
2004-10-01
In this paper, we study the existence of positive periodic solutions of periodic n-species Lotka-Volterra competition systems with impulses. By using the method coincidence degree theorem, a set of easily verifiable sufficient conditions are obtained for the existence of at least one strictly positive periodic solutions. Some known results are improved and generalized.
International Nuclear Information System (INIS)
Jin Zhen; Ma Zhien; Maoan Han
2004-01-01
In this paper, we study the existence of positive periodic solutions of periodic n-species Lotka-Volterra competition systems with impulses. By using the method coincidence degree theorem, a set of easily verifiable sufficient conditions are obtained for the existence of at least one strictly positive periodic solutions. Some known results are improved and generalized
Dynamic behaviors of the periodic Lotka-Volterra competing system with impulsive perturbations
International Nuclear Information System (INIS)
Liu Bing; Teng Zhidong; Liu Wanbo
2007-01-01
In this paper, we investigate a classical periodic Lotka-Volterra competing system with impulsive perturbations. The conditions for the linear stability of trivial periodic solution and semi-trivial periodic solutions are given by applying Floquet theory of linear periodic impulsive equation, and we also give the conditions for the global stability of these solutions as a consequence of some abstract monotone iterative schemes introduced in this paper, which will be also used to get some sufficient conditions for persistence. By using the method of coincidence degree, the conditions for the existence of at least one strictly positive (componentwise) periodic solution are derived. The theoretical results are confirmed by a specific example and numerical simulations. It shows that the dynamic behaviors of the system we consider are quite different from the corresponding system without pulses
The diffusive Lotka-Volterra predator-prey system with delay.
Al Noufaey, K S; Marchant, T R; Edwards, M P
2015-12-01
Semi-analytical solutions for the diffusive Lotka-Volterra predator-prey system with delay are considered in one and two-dimensional domains. The Galerkin method is applied, which approximates the spatial structure of both the predator and prey populations. This approach is used to obtain a lower-order, ordinary differential delay equation model for the system of governing delay partial differential equations. Steady-state and transient solutions and the region of parameter space, in which Hopf bifurcations occur, are all found. In some cases simple linear expressions are found as approximations, to describe steady-state solutions and the Hopf parameter regions. An asymptotic analysis for the periodic solution near the Hopf bifurcation point is performed for the one-dimensional domain. An excellent agreement is shown in comparisons between semi-analytical and numerical solutions of the governing equations. Copyright © 2015 Elsevier Inc. All rights reserved.
Bifurcation analysis in the diffusive Lotka-Volterra system: An application to market economy
International Nuclear Information System (INIS)
Wijeratne, A.W.; Yi Fengqi; Wei Junjie
2009-01-01
A diffusive Lotka-Volterra system is formulated in this paper that represents the dynamics of market share at duopoly. A case in Sri Lankan mobile telecom market was considered that conceptualized the model in interest. Detailed Hopf bifurcation, transcritical and pitchfork bifurcation analysis were performed. The distribution of roots of the characteristic equation suggests that a stable coexistence equilibrium can be achieved by increasing the innovation while minimizing competition by each competitor while regulating existing policies and introducing new ones for product differentiation and value addition. The avenue is open for future research that may use real time information in order to formulate mathematically sound tools for decision making in competitive business environments.
Bifurcation analysis in the diffusive Lotka-Volterra system: An application to market economy
Energy Technology Data Exchange (ETDEWEB)
Wijeratne, A.W. [Department of Mathematics, Harbin Institute of Technology, Harbin 150001 (China); Department of Agri-Business Management, Sabaragamuwa University of Sri Lanka, Belihuloya 70140 (Sri Lanka); Yi Fengqi [Department of Mathematics, Harbin Institute of Technology, Harbin 150001 (China); Wei Junjie [Department of Mathematics, Harbin Institute of Technology, Harbin 150001 (China)], E-mail: weijj@hit.edu.cn
2009-04-30
A diffusive Lotka-Volterra system is formulated in this paper that represents the dynamics of market share at duopoly. A case in Sri Lankan mobile telecom market was considered that conceptualized the model in interest. Detailed Hopf bifurcation, transcritical and pitchfork bifurcation analysis were performed. The distribution of roots of the characteristic equation suggests that a stable coexistence equilibrium can be achieved by increasing the innovation while minimizing competition by each competitor while regulating existing policies and introducing new ones for product differentiation and value addition. The avenue is open for future research that may use real time information in order to formulate mathematically sound tools for decision making in competitive business environments.
General two-species interacting Lotka-Volterra system: Population dynamics and wave propagation
Zhu, Haoqi; Wang, Mao-Xiang; Lai, Pik-Yin
2018-05-01
The population dynamics of two interacting species modeled by the Lotka-Volterra (LV) model with general parameters that can promote or suppress the other species is studied. It is found that the properties of the two species' isoclines determine the interaction of species, leading to six regimes in the phase diagram of interspecies interaction; i.e., there are six different interspecific relationships described by the LV model. Four regimes allow for nontrivial species coexistence, among which it is found that three of them are stable, namely, weak competition, mutualism, and predator-prey scenarios can lead to win-win coexistence situations. The Lyapunov function for general nontrivial two-species coexistence is also constructed. Furthermore, in the presence of spatial diffusion of the species, the dynamics can lead to steady wavefront propagation and can alter the population map. Propagating wavefront solutions in one dimension are investigated analytically and by numerical solutions. The steady wavefront speeds are obtained analytically via nonlinear dynamics analysis and verified by numerical solutions. In addition to the inter- and intraspecific interaction parameters, the intrinsic speed parameters of each species play a decisive role in species populations and wave properties. In some regimes, both species can copropagate with the same wave speeds in a finite range of parameters. Our results are further discussed in the light of possible biological relevance and ecological implications.
Higher order criterion for the nonexistence of formal first integral for nonlinear systems
Directory of Open Access Journals (Sweden)
Zhiguo Xu
2017-11-01
Full Text Available The main purpose of this article is to find a criterion for the nonexistence of formal first integrals for nonlinear systems under general resonance. An algorithm illustrates an application to a class of generalized Lokta-Volterra systems. Our result generalize the classical Poincare's nonintegrability theorem and the existing results in the literature.
Bountis, Tassos; Vanhaecke, Pol
2017-12-01
The comment made after the proof of Proposition 3.3, in our paper [T. Bountis, P. Vanhaecke, Lotka-Volterra systems satisfying a strong Pailevé property, Phys. Lett. A 380 (47) (2016) 3977-3982], saying that the proposition can be generalized when linear terms are added to the Lotka-Volterra systems considered in the paper, is wrong. In general such deformed systems are not even Hamiltonian.
Stability properties of a general class of nonlinear dynamical systems
Gléria, I. M.; Figueiredo, A.; Rocha Filho, T. M.
2001-05-01
We establish sufficient conditions for the boundedness of the trajectories and the stability of the fixed points in a class of general nonlinear systems, the so-called quasi-polynomial vector fields, with the help of a natural embedding of such systems in a family of generalized Lotka-Volterra (LV) equations. A purely algebraic procedure is developed to determine such conditions. We apply our method to obtain new results for LV systems, by a reparametrization in time variable, and to study general nonlinear vector fields, originally far from the LV format.
Stability properties of a general class of nonlinear dynamical systems
Energy Technology Data Exchange (ETDEWEB)
Gleria, I.M. [Filho Instituto de Fisica, Universidade de Brasilia, Campus Universitario Darcy Ribeiro, Brasilia (Brazil). E-mail: iram@ucb.br; Figueiredo, A. [Filho Instituto de Fisica, Universidade de Brasilia, Campus Universitario Darcy Ribeiro, Brasilia (Brazil). E-mail: annibal@helium.fis.unb.br; Rocha, T.M. [Filho Instituto de Fisica, Universidade de Brasilia, Campus Universitario Darcy Ribeiro, Brasilia (Brazil). E-mail: marciano@helium.fis.unb.br
2001-05-04
We establish sufficient conditions for the boundedness of the trajectories and the stability of the fixed points in a class of general nonlinear systems, the so-called quasi-polynomial vector fields, with the help of a natural embedding of such systems in a family of generalized Lotka-Volterra (LV) equations. A purely algebraic procedure is developed to determine such conditions. We apply our method to obtain new results for LV systems, by a reparametrization in time variable, and to study general nonlinear vector fields, originally far from the LV format. (author)
Global analysis of an impulsive delayed Lotka-Volterra competition system
Xia, Yonghui
2011-03-01
In this paper, a retarded impulsive n-species Lotka-Volterra competition system with feedback controls is studied. Some sufficient conditions are obtained to guarantee the global exponential stability and global asymptotic stability of a unique equilibrium for such a high-dimensional biological system. The problem considered in this paper is in many aspects more general and incorporates as special cases various problems which have been extensively studied in the literature. Moreover, applying the obtained results to some special cases, I derive some new criteria which generalize and greatly improve some well known results. A method is proposed to investigate biological systems subjected to the effect of both impulses and delays. The method is based on Banach fixed point theory and matrix's spectral theory as well as Lyapunov function. Moreover, some novel analytic techniques are employed to study GAS and GES. It is believed that the method can be extended to other high-dimensional biological systems and complex neural networks. Finally, two examples show the feasibility of the results.
Positive periodic solutions of periodic neutral Lotka-Volterra system with distributed delays
International Nuclear Information System (INIS)
Li Yongkun
2008-01-01
By using a fixed point theorem of strict-set-contraction, some criteria are established for the existence of positive periodic solutions of the following periodic neutral Lotka-Volterra system with distributed delays (dx i (t))/(dt) =x i (t)[a i (t)-Σ j=1 n b ij (t)∫ -T ij 0 K ij (θ)x j ( t+θ)dθ-Σ j=1 n c ij (t)∫ -T ij 0 K ij (θ) x j ' (t+θ)dθ],i=1,2,...,n, where a i ,b ij ,c ij element of C(R,R + ) (i, j = 1, 2, ..., n) are ω-periodic functions, T ij ,T ij element of (0,∞) (i, j = 1, 2, ..., n) and K ij ,K ij element of (R,R + ) satisfying ∫ -T ij 0 K ij (θ)dθ=1,∫ -T ij 0 K ij (θ)dθ=1, i, j = 1, 2, ..., n
Nonpolynomial vector fields under the Lotka-Volterra normal form
Hernández-Bermejo, Benito; Fairén, Víctor
1995-02-01
We carry out the generalization of the Lotka-Volterra embedding to flows not explicitly recognizable under the generalized Lotka-Volterra format. The procedure introduces appropriate auxiliary variables, and it is shown how, to a great extent, the final Lotka-Volterra system is independent of their specific definition. Conservation of the topological equivalence during the process is also demonstrated.
Competitive or weak cooperative stochastic Lotka-Volterra systems conditioned on non-extinction.
Cattiaux, Patrick; Méléard, Sylvie
2010-06-01
We are interested in the long time behavior of a two-type density-dependent biological population conditioned on non-extinction, in both cases of competition or weak cooperation between the two species. This population is described by a stochastic Lotka-Volterra system, obtained as limit of renormalized interacting birth and death processes. The weak cooperation assumption allows the system not to blow up. We study the existence and uniqueness of a quasi-stationary distribution, that is convergence to equilibrium conditioned on non-extinction. To this aim we generalize in two-dimensions spectral tools developed for one-dimensional generalized Feller diffusion processes. The existence proof of a quasi-stationary distribution is reduced to the one for a d-dimensional Kolmogorov diffusion process under a symmetry assumption. The symmetry we need is satisfied under a local balance condition relying the ecological rates. A novelty is the outlined relation between the uniqueness of the quasi-stationary distribution and the ultracontractivity of the killed semi-group. By a comparison between the killing rates for the populations of each type and the one of the global population, we show that the quasi-stationary distribution can be either supported by individuals of one (the strongest one) type or supported by individuals of the two types. We thus highlight two different long time behaviors depending on the parameters of the model: either the model exhibits an intermediary time scale for which only one type (the dominant trait) is surviving, or there is a positive probability to have coexistence of the two species.
Gravel, Simon; Thibault, Pierre
In this paper, we consider normalizability, integrability and linearizability properties of the Lotka-Volterra system in the neighborhood of a singular point with eigenvalues 1 and - λ. The results are obtained by generalizing and expanding two methods already known: the power expansion of the first integral or of the linearizing transformation and the transformation of the saddle into a node. With these methods we find conditions that are valid for λ∈ R+ or λ∈ Q. These conditions will allow us to find all the integrable and linearizable systems for λ= {p}/{2} and {2}/{p} with p∈ N+.
Fan, M; Wang, K; Jiang, D
1999-08-01
In this paper, we study the existence and global attractivity of positive periodic solutions of periodic n-species Lotka-Volterra competition systems. By using the method of coincidence degree and Lyapunov functional, a set of easily verifiable sufficient conditions are derived for the existence of at least one strictly positive (componentwise) periodic solution of periodic n-species Lotka-Volterra competition systems with several deviating arguments and the existence of a unique globally asymptotically stable periodic solution with strictly positive components of periodic n-species Lotka-Volterra competition system with several delays. Some new results are obtained. As an application, we also examine some special cases of the system we considered, which have been studied extensively in the literature. Some known results are improved and generalized.
Fault Detection for Shipboard Monitoring – Volterra Kernel and Hammerstein Model Approaches
DEFF Research Database (Denmark)
Lajic, Zoran; Blanke, Mogens; Nielsen, Ulrik Dam
2009-01-01
In this paper nonlinear fault detection for in-service monitoring and decision support systems for ships will be presented. The ship is described as a nonlinear system, and the stochastic wave elevation and the associated ship responses are conveniently modelled in frequency domain. The transform....... The transformation from time domain to frequency domain has been conducted by use of Volterra theory. The paper takes as an example fault detection of a containership on which a decision support system has been installed....
Turing pattern dynamics and adaptive discretization for a superdiffusive Lotka-Volterra system
Bendahmane , Mostafa; Ruiz-Baier , Ricardo; Tian , Canrong
2016-01-01
International audience; We focus our attention on the effects of introducing the fractional-in-space operator into a Lotka-Volterra competitive model describing population superdiffusion. First, we address the weak solvability of the coupled problem employing the Faedo-Galerkin method and compactness arguments. In addition, we are interested in how cross superdiffusion influences the formation of spatial patterns: a linear stability analysis has been carried out, showing that cross superdiffu...
Exactly and completely integrable nonlinear dynamical systems
International Nuclear Information System (INIS)
Leznov, A.N.; Savel'ev, M.V.
1987-01-01
The survey is devoted to a consitent exposition of the group-algebraic methods for the integration of systems of nonlinear partial differential equations possessing a nontrivial internal symmetry algebra. Samples of exactly and completely integrable wave and evolution equations are considered in detail, including generalized (periodic and finite nonperiodic Toda lattice, nonlinear Schroedinger, Korteweg-de Vries, Lotka-Volterra equations, etc.) For exactly integrable systems the general solutions of the Cauchy and Goursat problems are given in an explicit form, while for completely integrable systems an effective method for the construction of their soliton solutions is developed. Application of the developed methods to a differential geometry problem of classification of the integrable manifolds embeddings is discussed. For exactly integrable systems the supersymmetric extensions are constructed. By the example of the generalized Toda lattice a quantization scheme is developed. It includes an explicit derivation of the corresponding Heisenberg operators and their desription in terms of the quantum algebras of the Hopf type. Among multidimensional systems the four-dimensional self-dual Yang-Mills equations are investigated most attentively with a goal of constructing their general solutions
Lugiato, Luigi; Brambilla, Massimo
2015-01-01
Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.
Nonmonotonic Behavior of Supermultiplet Pattern Formation in a Noisy Lotka-Volterra System
International Nuclear Information System (INIS)
Fiasconaro, A.; Valenti, D.; Spagnolo, B.
2004-01-01
The noise-induced pattern formation in a population dynamical model of three interacting species in the coexistence regime is investigated. A coupled map lattice of Lotka-Volterra equations in the presence of multiplicative noise is used to analyze the spatiotemporal evolution. The spatial correlation of the species concentration as a function of time and of the noise intensity is investigated. A nonmonotonic behavior of the area of the patterns as a function of both noise intensity and evolution time is found. (author)
International Nuclear Information System (INIS)
Liu Xianning; Chen Lansun
2003-01-01
This paper develops the Holling type II Lotka-Volterra predator-prey system, which may inherently oscillate, by introducing periodic constant impulsive immigration of predator. Condition for the system to be extinct is given and permanence condition is established via the method of comparison involving multiple Liapunov functions. Further influences of the impulsive perturbations on the inherent oscillation are studied numerically, which shows that with the increasing of the amount of the immigration, the system experiences process of quasi-periodic oscillating→cycles→periodic doubling cascade→chaos→periodic halfing cascade→cycles, which is characterized by (1) quasi-periodic oscillating, (2) period doubling, (3) period halfing, (4) non-unique dynamics, meaning that several attractors coexist
On vector analogs of the modified Volterra lattice
Energy Technology Data Exchange (ETDEWEB)
Adler, V E; Postnikov, V V [L D Landau Institute for Theoretical Physics, 1a Semenov pr, 142432 Chernogolovka (Russian Federation); Sochi Branch of Peoples' Friendship University of Russia, 32 Kuibyshev str, 354000 Sochi (Russian Federation)], E-mail: adler@itp.ac.ru, E-mail: postnikovvv@rambler.ru
2008-11-14
The zero curvature representations, Baecklund transformations, nonlinear superposition principle and the simplest explicit solutions of soliton and breather type are presented for two vector generalizations of modified Volterra lattice. The relations with some other integrable equations are established.
Balancing for nonlinear systems
Scherpen, J.M.A.
1993-01-01
We present a method of balancing for nonlinear systems which is an extension of balancing for linear systems in the sense that it is based on the input and output energy of a system. It is a local result, but gives 'broader' results than we obtain by just linearizing the system. Furthermore, the
Laamiri, Imen; Khouaja, Anis; Messaoud, Hassani
2015-03-01
In this paper we provide a convergence analysis of the alternating RGLS (Recursive Generalized Least Square) algorithm used for the identification of the reduced complexity Volterra model describing stochastic non-linear systems. The reduced Volterra model used is the 3rd order SVD-PARAFC-Volterra model provided using the Singular Value Decomposition (SVD) and the Parallel Factor (PARAFAC) tensor decomposition of the quadratic and the cubic kernels respectively of the classical Volterra model. The Alternating RGLS (ARGLS) algorithm consists on the execution of the classical RGLS algorithm in alternating way. The ARGLS convergence was proved using the Ordinary Differential Equation (ODE) method. It is noted that the algorithm convergence canno׳t be ensured when the disturbance acting on the system to be identified has specific features. The ARGLS algorithm is tested in simulations on a numerical example by satisfying the determined convergence conditions. To raise the elegies of the proposed algorithm, we proceed to its comparison with the classical Alternating Recursive Least Squares (ARLS) presented in the literature. The comparison has been built on a non-linear satellite channel and a benchmark system CSTR (Continuous Stirred Tank Reactor). Moreover the efficiency of the proposed identification approach is proved on an experimental Communicating Two Tank system (CTTS). Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Silva, Walter A.
1993-01-01
A methodology for modeling nonlinear unsteady aerodynamic responses, for subsequent use in aeroservoelastic analysis and design, using the Volterra-Wiener theory of nonlinear systems is presented. The methodology is extended to predict nonlinear unsteady aerodynamic responses of arbitrary frequency. The Volterra-Wiener theory uses multidimensional convolution integrals to predict the response of nonlinear systems to arbitrary inputs. The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code is used to generate linear and nonlinear unit impulse responses that correspond to each of the integrals for a rectangular wing with a NACA 0012 section with pitch and plunge degrees of freedom. The computed kernels then are used to predict linear and nonlinear unsteady aerodynamic responses via convolution and compared to responses obtained using the CAP-TSD code directly. The results indicate that the approach can be used to predict linear unsteady aerodynamic responses exactly for any input amplitude or frequency at a significant cost savings. Convolution of the nonlinear terms results in nonlinear unsteady aerodynamic responses that compare reasonably well with those computed using the CAP-TSD code directly but at significant computational cost savings.
Nonlinear signal processing using neural networks: Prediction and system modelling
Energy Technology Data Exchange (ETDEWEB)
Lapedes, A.; Farber, R.
1987-06-01
The backpropagation learning algorithm for neural networks is developed into a formalism for nonlinear signal processing. We illustrate the method by selecting two common topics in signal processing, prediction and system modelling, and show that nonlinear applications can be handled extremely well by using neural networks. The formalism is a natural, nonlinear extension of the linear Least Mean Squares algorithm commonly used in adaptive signal processing. Simulations are presented that document the additional performance achieved by using nonlinear neural networks. First, we demonstrate that the formalism may be used to predict points in a highly chaotic time series with orders of magnitude increase in accuracy over conventional methods including the Linear Predictive Method and the Gabor-Volterra-Weiner Polynomial Method. Deterministic chaos is thought to be involved in many physical situations including the onset of turbulence in fluids, chemical reactions and plasma physics. Secondly, we demonstrate the use of the formalism in nonlinear system modelling by providing a graphic example in which it is clear that the neural network has accurately modelled the nonlinear transfer function. It is interesting to note that the formalism provides explicit, analytic, global, approximations to the nonlinear maps underlying the various time series. Furthermore, the neural net seems to be extremely parsimonious in its requirements for data points from the time series. We show that the neural net is able to perform well because it globally approximates the relevant maps by performing a kind of generalized mode decomposition of the maps. 24 refs., 13 figs.
International Nuclear Information System (INIS)
Jang, T. S.; Kwon, S. H.; Han, S. L.
2009-01-01
A novel procedure is proposed to identify the functional form of nonlinear restoring forces in the nonlinear oscillatory motion of a conservative system. Although the problem of identification has a unique solution, formulation results in a Volterra-type of integral equation of the 'first' kind: the solution lacks stability because the integral equation is the 'first' kind. Thus, the new problem at hand is ill-posed. Inevitable small errors during the identification procedure can make the prediction of nonlinear restoring forces useless. We overcome the difficulty by using a stabilization technique of Landweber's regularization in this study. The capability of the proposed procedure is investigated through numerical examples
Oscillations in nonlinear systems
Hale, Jack K
2015-01-01
By focusing on ordinary differential equations that contain a small parameter, this concise graduate-level introduction to the theory of nonlinear oscillations provides a unified approach to obtaining periodic solutions to nonautonomous and autonomous differential equations. It also indicates key relationships with other related procedures and probes the consequences of the methods of averaging and integral manifolds.Part I of the text features introductory material, including discussions of matrices, linear systems of differential equations, and stability of solutions of nonlinear systems. Pa
Beretta, E; Capasso, V; Rinaldi, F
1988-01-01
The paper contains an extension of the general ODE system proposed in previous papers by the same authors, to include distributed time delays in the interaction terms. The new system describes a large class of Lotka-Volterra like population models and epidemic models with continuous time delays. Sufficient conditions for the boundedness of solutions and for the global asymptotic stability of nontrivial equilibrium solutions are given. A detailed analysis of the epidemic system is given with respect to the conditions for global stability. For a relevant subclass of these systems an existence criterion for steady states is also given.
DEFF Research Database (Denmark)
Jørgensen, Michael Finn
1995-01-01
It is generally very difficult to solve nonlinear systems, and such systems often possess chaotic solutions. In the rare event that a system is completely solvable, it is said to integrable. Such systems never have chaotic solutions. Using the Inverse Scattering Transform Method (ISTM) two...... particular configurations of the Discrete Self-Trapping (DST) system are shown to be completely solvable. One of these systems includes the Toda lattice in a certain limit. An explicit integration is carried through for this Near-Toda lattice. The Near-Toda lattice is then generalized to include singular...
Lotka-Volterra systems in environments with randomly disordered temporal periodicity
Naess, Arvid; Dimentberg, Michael F.; Gaidai, Oleg
2008-08-01
A generalized Lotka-Volterra model for a pair of interacting populations of predators and prey is studied. The model accounts for the prey’s interspecies competition and therefore is asymptotically stable, whereas its oscillatory behavior is induced by temporal variations in environmental conditions simulated by those in the prey’s reproduction rate. Two models of the variations are considered, each of them combining randomness with “hidden” periodicity. The stationary joint probability density function (PDF) of the number of predators and prey is calculated numerically by the path integration (PI) method based on the use of characteristic functions and the fast Fourier transform. The numerical results match those for the asymptotic case of white-noise variations for which an analytical solution is available. Several examples are studied, with calculations of important characteristics of oscillations, for example the expected rate of up-crossings given the level of the predator number. The calculated PDFs may be of predominantly random (unimodal) or predominantly periodic nature (bimodal). Thus, the PI method has been demonstrated to be a powerful tool for studies of the dynamics of predator-prey pairs. The method captures the random oscillations as observed in nature, taking into account potential periodicity in the environmental conditions.
H∞ Balancing for Nonlinear Systems
Scherpen, Jacquelien M.A.
1996-01-01
In previously obtained balancing methods for nonlinear systems a past and a future energy function are used to bring the nonlinear system in balanced form. By considering a different pair of past and future energy functions that are related to the H∞ control problem for nonlinear systems we define
Cross-talk dynamics of optical solitons in a broadband Kerr nonlinear system with weak cubic loss
International Nuclear Information System (INIS)
Peleg, Avner; Nguyen, Quan M.; Chung, Yeojin
2010-01-01
We study the dynamics of fast soliton collisions in a Kerr nonlinear optical waveguide with weak cubic loss. We obtain analytic expressions for the amplitude and frequency shifts in a single two-soliton collision and show that the impact of a fast three-soliton collision is given by the sum of the two-soliton interactions. Our analytic predictions are confirmed by numerical simulations with the perturbed nonlinear Schroedinger (NLS) equation. Furthermore, we show that the deterministic collision-induced dynamics of soliton amplitudes in a broadband waveguide system with N frequency channels is described by a Lotka-Volterra model for N competing species. For a two-channel system we find that stable transmission with equal prescribed amplitudes can be achieved by a proper choice of linear amplifier gain. The predictions of the Lotka-Volterra model are confirmed by numerical solution of a perturbed coupled-NLS model.
Solvability of Urysohn and Urysohn-Volterra equations with hysteresis in weighted spaces
International Nuclear Information System (INIS)
Darwish Mohamed Abdalla
2005-09-01
The existence of solutions to nonlinear integral equations of the second kind with hysteresis, of Urysohn-Volterra and Urysohn types has been established. We develop the solvability theory of Urysohn-Volterra equation with hysteresis in weighted spaces proposed by the author [M.A. Darwish, On solvability of Urysohn-Volterra equations with hysteresis in weighted spaces, J. Integral Equations and Application, 14(2) (2002), 151-163]. (author)
FRF decoupling of nonlinear systems
Kalaycıoğlu, Taner; Özgüven, H. Nevzat
2018-03-01
Structural decoupling problem, i.e. predicting dynamic behavior of a particular substructure from the knowledge of the dynamics of the coupled structure and the other substructure, has been well investigated for three decades and led to several decoupling methods. In spite of the inherent nonlinearities in a structural system in various forms such as clearances, friction and nonlinear stiffness, all decoupling studies are for linear systems. In this study, decoupling problem for nonlinear systems is addressed for the first time. A method, named as FRF Decoupling Method for Nonlinear Systems (FDM-NS), is proposed for calculating FRFs of a substructure decoupled from a coupled nonlinear structure where nonlinearity can be modeled as a single nonlinear element. Depending on where nonlinear element is, i.e., either in the known or unknown subsystem, or at the connection point, the formulation differs. The method requires relative displacement information between two end points of the nonlinear element, in addition to point and transfer FRFs at some points of the known subsystem. However, it is not necessary to excite the system from the unknown subsystem even when the nonlinear element is in that subsystem. The validation of FDM-NS is demonstrated with two different case studies using nonlinear lumped parameter systems. Finally, a nonlinear experimental test structure is used in order to show the real-life application and accuracy of FDM-NS.
Optimal control of stochastic difference Volterra equations an introduction
Shaikhet, Leonid
2015-01-01
This book showcases a subclass of hereditary systems, that is, systems with behaviour depending not only on their current state but also on their past history; it is an introduction to the mathematical theory of optimal control for stochastic difference Volterra equations of neutral type. As such, it will be of much interest to researchers interested in modelling processes in physics, mechanics, automatic regulation, economics and finance, biology, sociology and medicine for all of which such equations are very popular tools. The text deals with problems of optimal control such as meeting given performance criteria, and stabilization, extending them to neutral stochastic difference Volterra equations. In particular, it contrasts the difference analogues of solutions to optimal control and optimal estimation problems for stochastic integral Volterra equations with optimal solutions for corresponding problems in stochastic difference Volterra equations. Optimal Control of Stochastic Difference Volterra Equation...
Novel procedure for characterizing nonlinear systems with memory: 2017 update
Nuttall, Albert H.; Katz, Richard A.; Hughes, Derke R.; Koch, Robert M.
2017-05-01
The present article discusses novel improvements in nonlinear signal processing made by the prime algorithm developer, Dr. Albert H. Nuttall and co-authors, a consortium of research scientists from the Naval Undersea Warfare Center Division, Newport, RI. The algorithm, called the Nuttall-Wiener-Volterra or 'NWV' algorithm is named for its principal contributors [1], [2],[ 3] . The NWV algorithm significantly reduces the computational workload for characterizing nonlinear systems with memory. Following this formulation, two measurement waveforms are required in order to characterize a specified nonlinear system under consideration: (1) an excitation input waveform, x(t) (the transmitted signal); and, (2) a response output waveform, z(t) (the received signal). Given these two measurement waveforms for a given propagation channel, a 'kernel' or 'channel response', h= [h0,h1,h2,h3] between the two measurement points, is computed via a least squares approach that optimizes modeled kernel values by performing a best fit between measured response z(t) and a modeled response y(t). New techniques significantly diminish the exponential growth of the number of computed kernel coefficients at second and third order and alleviate the Curse of Dimensionality (COD) in order to realize practical nonlinear solutions of scientific and engineering interest.
Balancing for Unstable Nonlinear Systems
Scherpen, J.M.A.
1993-01-01
A previously obtained method of balancing for stable nonlinear systems is extended to unstable nonlinear systems. The similarity invariants obtained by the concept of LQG balancing for an unstable linear system can also be obtained by considering a past and future energy function of the system. By
Volterra, Fascism, and France.
Capristo, Annalisa
2015-12-01
My contribution focuses on two aspects strictly related each other. On one hand, the progressive marginalization of Volterra from Italian scientific and political life after the rise of Fascism - because of his public anti-Fascist stance, both as a senator and as a professor - until his definitive exclusion on racial grounds in 1938. On the other hand, the reactions of his French colleagues and friends to this ostracism, and the support he received from them. As it emerges from several sources (Volterra's correspondence, institutional documentation, conference proceedings, etc.), it was mainly thanks to their support that he was able to escape the complete isolation and the "civil death" to which the regime condemned many of its adversaries.
Hamiltonian structure of the Lotka-Volterra equations
Nutku, Y.
1990-03-01
The Lotka-Volterra equations governing predator-prey relations are shown to admit Hamiltonian structure with respect to a generalized Poisson bracket. These equations provide an example of a system for which the naive criterion for the existence of Hamiltonian structure fails. We show further that there is a three-component generalization of the Lotka-Volterra equations which is a bi-Hamiltonian system.
Convergence to equilibrium in competitive Lotka–Volterra and chemostat systems
Champagnat, Nicolas
2010-12-01
We study a generalized system of ODE\\'s modeling a finite number of biological populations in a competitive interaction. We adapt the techniques in Jabin and Raoul [8] and Champagnat and Jabin (2010) [2] to prove the convergence to a unique stable equilibrium. © 2010 Académie des sciences.
Convergence to equilibrium in competitive Lotka–Volterra and chemostat systems
Champagnat, Nicolas; Jabin, Pierre-Emmanuel; Raoul, Gaë l
2010-01-01
We study a generalized system of ODE's modeling a finite number of biological populations in a competitive interaction. We adapt the techniques in Jabin and Raoul [8] and Champagnat and Jabin (2010) [2] to prove the convergence to a unique stable equilibrium. © 2010 Académie des sciences.
A Two-Species Cooperative Lotka-Volterra System of Degenerate Parabolic Equations
Directory of Open Access Journals (Sweden)
Jiebao Sun
2011-01-01
parabolic equations. We are interested in the coexistence of the species in a bounded domain. We establish the existence of global generalized solutions of the initial boundary value problem by means of parabolic regularization and also consider the existence of the nontrivial time-periodic solution for this system.
Non-classical relaxation cycle of a three-dimensional system of Lotka-Volterra equations
International Nuclear Information System (INIS)
Kolesov, Yu S
2000-01-01
A mathematical model of the well-known Belousov's reaction is the object of study. It is reasonable to assume that one coefficient in the corresponding system of differential equations is large, while the other parameters are finite. Non-standard tools taking account of the peculiarities of the problem bring one to a theorem on the existence of a relaxation cycle, allowing at the same time to reveal its characteristic features
Multi-Hamiltonian structure of Lotka-Volterra and quantum Volterra models
International Nuclear Information System (INIS)
Cronstroem, C.; Noga, M.
1995-01-01
We consider evolution equations of the Lotka-Volterra type, and elucidate especially their formulation as canonical Hamiltonian systems. The general conditions under which these equations admit several conserved quantities (multi-Hamiltonians) are analysed. A special case, which is related to the Liouville model on a lattice, is considered in detail, both as a classical and as a quantum system. (orig.)
[Generalization of the Lotka-Volterra equation].
Nazarenko, V G
1976-01-01
A complete qualitative study of Lotka--Volterra model with cooperative interactions in the system predator-prey is carried out. The model is as follows: (see abstract). The character of all possible stationary states is investigated in the first quadrant of the phase plane of the model variables depending on the system parameters. It is shown that for the generalized model considered unstable and stable limit cycles only of the infinite amplitude are possible in the first quadrant.
Nonlinear robust hierarchical control for nonlinear uncertain systems
Directory of Open Access Journals (Sweden)
Leonessa Alexander
1999-01-01
Full Text Available A nonlinear robust control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving nominal system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear system over a prescribed range of system uncertainty by robustly stabilizing a collection of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller architecture is designed based on a generalized (lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized nominal system equilibria. The proposed framework robustly stabilizes a compact positively invariant set of a given nonlinear uncertain dynamical system with structured parametric uncertainty. Finally, the efficacy of the proposed approach is demonstrated on a jet engine propulsion control problem with uncertain pressure-flow map data.
Nonlinear transport of dynamic system phase space
International Nuclear Information System (INIS)
Xie Xi; Xia Jiawen
1993-01-01
The inverse transform of any order solution of the differential equation of general nonlinear dynamic systems is derived, realizing theoretically the nonlinear transport for the phase space of nonlinear dynamic systems. The result is applicable to general nonlinear dynamic systems, with the transport of accelerator beam phase space as a typical example
Nonlinear Response of Strong Nonlinear System Arisen in Polymer Cushion
Directory of Open Access Journals (Sweden)
Jun Wang
2013-01-01
Full Text Available A dynamic model is proposed for a polymer foam-based nonlinear cushioning system. An accurate analytical solution for the nonlinear free vibration of the system is derived by applying He's variational iteration method, and conditions for resonance are obtained, which should be avoided in the cushioning design.
Nonlinear dynamics in biological systems
Carballido-Landeira, Jorge
2016-01-01
This book presents recent research results relating to applications of nonlinear dynamics, focusing specifically on four topics of wide interest: heart dynamics, DNA/RNA, cell mobility, and proteins. The book derives from the First BCAM Workshop on Nonlinear Dynamics in Biological Systems, held in June 2014 at the Basque Center of Applied Mathematics (BCAM). At this international meeting, researchers from different but complementary backgrounds, including molecular dynamics, physical chemistry, bio-informatics and biophysics, presented their most recent results and discussed the future direction of their studies using theoretical, mathematical modeling and experimental approaches. Such was the level of interest stimulated that the decision was taken to produce this publication, with the organizers of the event acting as editors. All of the contributing authors are researchers working on diverse biological problems that can be approached using nonlinear dynamics. The book will appeal especially to applied math...
Frequency response functions for nonlinear convergent systems
Pavlov, A.V.; Wouw, van de N.; Nijmeijer, H.
2007-01-01
Convergent systems constitute a practically important class of nonlinear systems that extends the class of asymptotically stable linear time-invariant systems. In this note, we extend frequency response functions defined for linear systems to nonlinear convergent systems. Such nonlinear frequency
Complex motions and chaos in nonlinear systems
Machado, José; Zhang, Jiazhong
2016-01-01
This book brings together 10 chapters on a new stream of research examining complex phenomena in nonlinear systems—including engineering, physics, and social science. Complex Motions and Chaos in Nonlinear Systems provides readers a particular vantage of the nature and nonlinear phenomena in nonlinear dynamics that can develop the corresponding mathematical theory and apply nonlinear design to practical engineering as well as the study of other complex phenomena including those investigated within social science.
Nonlinear time heteronymous damping in nonlinear parametric planetary systems
Czech Academy of Sciences Publication Activity Database
Hortel, Milan; Škuderová, Alena
2014-01-01
Roč. 225, č. 7 (2014), s. 2059-2073 ISSN 0001-5970 Institutional support: RVO:61388998 Keywords : nonlinear dynamics * planetary systems * heteronymous damping Subject RIV: JT - Propulsion, Motors ; Fuels Impact factor: 1.465, year: 2014
Nonlinear Relaxation in Population Dynamics
Cirone, Markus A.; de Pasquale, Ferdinando; Spagnolo, Bernardo
We analyze the nonlinear relaxation of a complex ecosystem composed of many interacting species. The ecological system is described by generalized Lotka-Volterra equations with a multiplicative noise. The transient dynamics is studied in the framework of the mean field theory and with random interaction between the species. We focus on the statistical properties of the asymptotic behaviour of the time integral of the ith population and on the distribution of the population and of the local field.
Nonlinearity of colloid systems oxyhydrate systems
Sucharev, Yuri I
2008-01-01
The present monograph is the first systematic study of the non-linear characteristic of gel oxy-hydrate systems involving d- and f- elements. These are the oxyhydrates of rare-earth elements and oxides - hydroxides of d- elements (zirconium, niobium, titanium, etc.) The non-linearity of these gel systems introduces fundamental peculiarities into their structure and, consequently, their properties. The polymer-conformational diversity of energetically congenial gel fragments, which continu-ously transform under the effect of, for instance, system dissipation heat, is central to the au-thor's hy
Turing patterns in a modified Lotka-Volterra model
International Nuclear Information System (INIS)
McGehee, Edward A.; Peacock-Lopez, Enrique
2005-01-01
In this Letter we consider a modified Lotka-Volterra model widely known as the Bazykin model, which is the MacArthur-Rosenzweig (MR) model that includes a prey-dependent response function and is modified with the inclusion of intraspecies interactions. We show that a quadratic intra-prey interaction term, which is the most realistic nonlinearity, yields sufficient conditions for Turing patterns. For the Bazykin model we find the Turing region in parameter space and Turing patterns in one dimension
Identification of Nonlinear Dynamic Systems Possessing Some Non-linearities
Directory of Open Access Journals (Sweden)
Y. N. Pavlov
2015-01-01
Full Text Available The subject of this work is the problem of identification of nonlinear dynamic systems based on the experimental data obtained by applying test signals to the system. The goal is to determinate coefficients of differential equations of systems by experimental frequency hodographs and separate similar, but different, in essence, forces: dissipative forces with the square of the first derivative in the motion equations and dissipative force from the action of dry friction. There was a proposal to use the harmonic linearization method to approximate each of the nonlinearity of "quadratic friction" and "dry friction" by linear friction with the appropriate harmonic linearization coefficient.Assume that a frequency transfer function of the identified system has a known form. Assume as well that there are disturbances while obtaining frequency characteristics of the realworld system. As a result, the points of experimentally obtained hodograph move randomly. Searching for solution of the identification problem was in the hodograph class, specified by the system model, which has the form of the frequency transfer function the same as the form of the frequency transfer function of the system identified. Minimizing a proximity criterion (measure of the experimentally obtained system hodograph and the system hodograph model for all the experimental points described and previously published by one of the authors allowed searching for the unknown coefficients of the frequenc ransfer function of the system model. The paper shows the possibility to identify a nonlinear dynamic system with multiple nonlinearities, obtained on the experimental samples of the frequency system hodograph. The proposed algorithm allows to select the nonlinearity of the type "quadratic friction" and "dry friction", i.e. also in the case where the nonlinearity is dependent on the same dynamic parameter, in particular, on the derivative of the system output value. For the dynamic
Invariants for the generalized Lotka-Volterra equations
Cairó, Laurent; Feix, Marc R.; Goedert, Joao
A generalisation of Lotka-Volterra System is given when self limiting terms are introduced in the model. We use a modification of the Carleman embedding method to find invariants for this system of equations. The position and stability of the equilibrium point and the regression of system under invariant conditions are studied.
DEFF Research Database (Denmark)
Chon, K H; Cohen, R J; Holstein-Rathlou, N H
1997-01-01
A linear and nonlinear autoregressive moving average (ARMA) identification algorithm is developed for modeling time series data. The algorithm uses Laguerre expansion of kernals (LEK) to estimate Volterra-Wiener kernals. However, instead of estimating linear and nonlinear system dynamics via moving...... average models, as is the case for the Volterra-Wiener analysis, we propose an ARMA model-based approach. The proposed algorithm is essentially the same as LEK, but this algorithm is extended to include past values of the output as well. Thus, all of the advantages associated with using the Laguerre...
Cherniha, Roman
2017-01-01
This book presents several fundamental results in solving nonlinear reaction-diffusion equations and systems using symmetry-based methods. Reaction-diffusion systems are fundamental modeling tools for mathematical biology with applications to ecology, population dynamics, pattern formation, morphogenesis, enzymatic reactions and chemotaxis. The book discusses the properties of nonlinear reaction-diffusion systems, which are relevant for biological applications, from the symmetry point of view, providing rigorous definitions and constructive algorithms to search for conditional symmetry (a nontrivial generalization of the well-known Lie symmetry) of nonlinear reaction-diffusion systems. In order to present applications to population dynamics, it focuses mainly on two- and three-component diffusive Lotka-Volterra systems. While it is primarily a valuable guide for researchers working with reaction-diffusion systems and those developing the theoretical aspects of conditional symmetry conception,...
Empirical Differential Balancing for Nonlinear Systems
Kawano, Yu; Scherpen, Jacquelien M.A.; Dochain, Denis; Henrion, Didier; Peaucelle, Dimitri
In this paper, we consider empirical balancing of nonlinear systems by using its prolonged system, which consists of the original nonlinear system and its variational system. For the prolonged system, we define differential reachability and observability Gramians, which are matrix valued functions
SOLVING FRACTIONAL-ORDER COMPETITIVE LOTKA-VOLTERRA MODEL BY NSFD SCHEMES
Directory of Open Access Journals (Sweden)
S.ZIBAEI
2016-12-01
Full Text Available In this paper, we introduce fractional-order into a model competitive Lotka- Volterra prey-predator system. We will discuss the stability analysis of this fractional system. The non-standard nite difference (NSFD scheme is implemented to study the dynamic behaviors in the fractional-order Lotka-Volterra system. Proposed non-standard numerical scheme is compared with the forward Euler and fourth order Runge-Kutta methods. Numerical results show that the NSFD approach is easy and accurate for implementing when applied to fractional-order Lotka-Volterra model.
Singularly perturbed volterra integro-differential equations | Bijura ...
African Journals Online (AJOL)
Several investigations have been made on singularly perturbed integral equations. This paper aims at presenting an algorithm for the construction of asymptotic solutions and then provide a proof asymptotic correctness to singularly perturbed systems of Volterra integro-differential equations. Mathematics Subject
A Lotka-Volterra competition model with seasonal succession.
Hsu, Sze-Bi; Zhao, Xiao-Qiang
2012-01-01
A complete classification for the global dynamics of a Lotka-Volterra two species competition model with seasonal succession is obtained via the stability analysis of equilibria and the theory of monotone dynamical systems. The effects of two death rates in the bad season and the proportion of the good season on the competition outcomes are also discussed. © Springer-Verlag 2011
Nonlinear Waves in Complex Systems
DEFF Research Database (Denmark)
2007-01-01
The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations, it is the ......The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations...
Discontinuity and complexity in nonlinear physical systems
Baleanu, Dumitru; Luo, Albert
2014-01-01
This unique book explores recent developments in experimental research in this broad field, organized in four distinct sections. Part I introduces the reader to the fractional dynamics and Lie group analysis for nonlinear partial differential equations. Part II covers chaos and complexity in nonlinear Hamiltonian systems, important to understand the resonance interactions in nonlinear dynamical systems, such as Tsunami waves and wildfire propagations; as well as Lev flights in chaotic trajectories, dynamical system synchronization and DNA information complexity analysis. Part III examines chaos and periodic motions in discontinuous dynamical systems, extensively present in a range of systems, including piecewise linear systems, vibro-impact systems and drilling systems in engineering. And in Part IV, engineering and financial nonlinearity are discussed. The mechanism of shock wave with saddle-node bifurcation and rotating disk stability will be presented, and the financial nonlinear models will be discussed....
Stability analysis of nonlinear systems with slope restricted nonlinearities.
Liu, Xian; Du, Jiajia; Gao, Qing
2014-01-01
The problem of absolute stability of Lur'e systems with sector and slope restricted nonlinearities is revisited. Novel time-domain and frequency-domain criteria are established by using the Lyapunov method and the well-known Kalman-Yakubovich-Popov (KYP) lemma. The criteria strengthen some existing results. Simulations are given to illustrate the efficiency of the results.
Stability Analysis of Nonlinear Systems with Slope Restricted Nonlinearities
Directory of Open Access Journals (Sweden)
Xian Liu
2014-01-01
Full Text Available The problem of absolute stability of Lur’e systems with sector and slope restricted nonlinearities is revisited. Novel time-domain and frequency-domain criteria are established by using the Lyapunov method and the well-known Kalman-Yakubovich-Popov (KYP lemma. The criteria strengthen some existing results. Simulations are given to illustrate the efficiency of the results.
A Nonlinear Hyperbolic Volterra Equation in Viscoelasticity.
1980-06-01
states that k(t) e L (0,-) if -nd only if (3.7) P(Z) def .’’(3.7) P(z) d ;’(0) + ’(0)a’(z) = X( 0 ) + (0)za(z) does not vanish on the half plane Rez ; 0...For w(t,x) e X(M,T), (2.5) and the Poincare inequality yield (2.6) w 2 (t,x) + w2x(t,x) + w 2(t,x) ( M , 0 4 t ( T, 0 4 x ( I x tx xx We now consider...2.6), the Poincare inequality and Schwarz’s inequality, every term on the right-hand side of (2.12), (2.15), and (2.16) can be majorized by one of p
Extinction in neutrally stable stochastic Lotka-Volterra models
Dobrinevski, Alexander; Frey, Erwin
2012-05-01
Populations of competing biological species exhibit a fascinating interplay between the nonlinear dynamics of evolutionary selection forces and random fluctuations arising from the stochastic nature of the interactions. The processes leading to extinction of species, whose understanding is a key component in the study of evolution and biodiversity, are influenced by both of these factors. Here, we investigate a class of stochastic population dynamics models based on generalized Lotka-Volterra systems. In the case of neutral stability of the underlying deterministic model, the impact of intrinsic noise on the survival of species is dramatic: It destroys coexistence of interacting species on a time scale proportional to the population size. We introduce a new method based on stochastic averaging which allows one to understand this extinction process quantitatively by reduction to a lower-dimensional effective dynamics. This is performed analytically for two highly symmetrical models and can be generalized numerically to more complex situations. The extinction probability distributions and other quantities of interest we obtain show excellent agreement with simulations.
On the Restriction of the Location of Stable Points for Generalized Lotka-Volterra
Livesay, Michael Richard
2017-01-01
We develop tools to determine which fixed points in a generalized Lotka-Volterra system are stable, under certain non-degeneracy conditions. We characterize which faces of the boundary of the domain of the Lotka-Volterra system could contain a stable fixed point. Under various relaxed conditions, we show that whenever a face of the boundary contains a stable point there are no other stable points in any strictly larger face of the boundary.
Positive real balancing for nonlinear systems
Ionescu, Tudor C.; Scherpen, Jacquelien M.A.; Ciuprina, G; Ioan, D
2007-01-01
We extend the positive real balancing procedure for passive linear systems to the nonlinear systems case. We show that, just like in the linear case, model reduction based on this technique preserves passivity.
A Historical Gem from Vito Volterra.
Dunham, William
1990-01-01
Presented is the theorem proposed by Volterra based on the idea that there is no function continuous at each rational point and discontinuous at each irrational point. Discussed are the two conclusions that were drawn by Volterra based on his solution to this problem. (KR)
On Stabilization of Nonautonomous Nonlinear Systems
International Nuclear Information System (INIS)
Bogdanov, A. Yu.
2008-01-01
The procedures to obtain the sufficient conditions of asymptotic stability for nonlinear nonstationary continuous-time systems are discussed. We consider different types of the following general controlled system: x = X(t,x,u) = F(t,x)+B(t,x)u, x(t 0 ) = x 0 . (*) The basis of investigation is limiting equations, limiting Lyapunov functions, etc. The improved concept of observability of the pair of functional matrices is presented. By these results the problem of synthesis of asymptotically stable control nonlinear nonautonomous systems (with linear parts) involving the quadratic time-dependent Lyapunov functions is solved as well as stabilizing a given unstable system with nonlinear control law.
Fluctuations in Nonlinear Systems: A Short Review
International Nuclear Information System (INIS)
Rubia, F.J. de la; Buceta, J.; Cabrera, J.L.; Olarrea, J.; Parrondo, J.M.R.
2003-01-01
We review some results that illustrate the constructive role of noise in nonlinear systems. Several phenomena are briefly discussed: optimal localization of orbits in a system with limit cycle behavior and perturbed by colored noise; stochastic branch selection at secondary bifurcations; noise- induced order/disorder transitions and pattern formation in spatially extended systems. In all cases the presence of noise is crucial, and the results reinforce the modern view of the importance of noise in the evolution of nonlinear systems. (author)
Advances and applications in nonlinear control systems
Volos, Christos
2016-01-01
The book reports on the latest advances and applications of nonlinear control systems. It consists of 30 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought out in the broad areas of nonlinear control systems such as robotics, nonlinear circuits, power systems, memristors, underwater vehicles, chemical processes, observer design, output regulation, backstepping control, sliding mode control, time-delayed control, variables structure control, robust adaptive control, fuzzy logic control, chaos, hyperchaos, jerk systems, hyperjerk systems, chaos control, chaos synchronization, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in nonlinear control systems. This book will serve as a reference book for graduate students and researchers with a basic knowledge of electrical and control systems engineering. The resulting design proce...
New stability and boundedness results to Volterra integro-differential equations with delay
Directory of Open Access Journals (Sweden)
Cemil Tunç
2016-04-01
Full Text Available In this paper, we consider a certain non-linear Volterra integro-differential equations with delay. We study stability and boundedness of solutions. The technique of proof involves defining suitable Lyapunov functionals. Our results improve and extend the results obtained in literature.
Volterra series based predistortion for broadband RF power amplifiers with memory effects
Institute of Scientific and Technical Information of China (English)
Jin Zhe; Song Zhihuan; He Jiaming
2008-01-01
RF power amplifiers(PAs)are usually considered as memoryless devices in most existing predistortion techniques.However,in broadband communication systems,such as WCDMA,the PA memory effects are significant,and memoryless predistortion cannot linearize the PAs effectively.After analyzing the PA memory effects,a novel predistortion method based on the simplified Volterra series is proposed to linearize broadband RF PAs with memory effects.The indirect learning architecture is adopted to design the predistortion scheme and the recursive least squares algorithm with forgetting factor is applied to identify the parameters of the predistorter.Simulation results show that the proposed predistortion method can compensate the nonlinear distortion and memory effects of broadband RF PAs effectively.
Boundary Controllability of Nonlinear Fractional Integrodifferential Systems
Directory of Open Access Journals (Sweden)
Ahmed HamdyM
2010-01-01
Full Text Available Sufficient conditions for boundary controllability of nonlinear fractional integrodifferential systems in Banach space are established. The results are obtained by using fixed point theorems. We also give an application for integropartial differential equations of fractional order.
Nonlinear PDEs a dynamical systems approach
Schneider, Guido
2017-01-01
This is an introductory textbook about nonlinear dynamics of PDEs, with a focus on problems over unbounded domains and modulation equations. The presentation is example-oriented, and new mathematical tools are developed step by step, giving insight into some important classes of nonlinear PDEs and nonlinear dynamics phenomena which may occur in PDEs. The book consists of four parts. Parts I and II are introductions to finite- and infinite-dimensional dynamics defined by ODEs and by PDEs over bounded domains, respectively, including the basics of bifurcation and attractor theory. Part III introduces PDEs on the real line, including the Korteweg-de Vries equation, the Nonlinear Schrödinger equation and the Ginzburg-Landau equation. These examples often occur as simplest possible models, namely as amplitude or modulation equations, for some real world phenomena such as nonlinear waves and pattern formation. Part IV explores in more detail the connections between such complicated physical systems and the reduced...
Universal formats for nonlinear ordinary differential systems
International Nuclear Information System (INIS)
Kerner, E.H.
1981-01-01
It is shown that very general nonlinear ordinary differential systems (embracing all that arise in practice) may, first, be brought down to polynomial systems (where the nonlinearities occur only as polynomials in the dependent variables) by introducing suitable new variables into the original system; second, that polynomial systems are reducible to ''Riccati systems,'' where the nonlinearities are quadratic at most; third, that Riccati systems may be brought to elemental universal formats containing purely quadratic terms with simple arrays of coefficients that are all zero or unity. The elemental systems have representations as novel types of matrix Riccati equations. Different starting systems and their associated Riccati systems differ from one another, at the final elemental level, in order and in initial data, but not in format
Nonlinear and Complex Dynamics in Real Systems
William Barnett; Apostolos Serletis; Demitre Serletis
2005-01-01
This paper was produced for the El-Naschie Symposium on Nonlinear Dynamics in Shanghai in December 2005. In this paper we provide a review of the literature with respect to fluctuations in real systems and chaos. In doing so, we contrast the order and organization hypothesis of real systems with nonlinear chaotic dynamics and discuss some techniques used in distinguishing between stochastic and deterministic behavior. Moreover, we look at the issue of where and when the ideas of chaos could p...
Numerical Study of Two-Dimensional Volterra Integral Equations by RDTM and Comparison with DTM
Directory of Open Access Journals (Sweden)
Reza Abazari
2013-01-01
Full Text Available The two-dimensional Volterra integral equations are solved using more recent semianalytic method, the reduced differential transform method (the so-called RDTM, and compared with the differential transform method (DTM. The concepts of DTM and RDTM are briefly explained, and their application to the two-dimensional Volterra integral equations is studied. The results obtained by DTM and RDTM together are compared with exact solution. As an important result, it is depicted that the RDTM results are more accurate in comparison with those obtained by DTM applied to the same Volterra integral equations. The numerical results reveal that the RDTM is very effective, convenient, and quite accurate compared to the other kind of nonlinear integral equations. It is predicted that the RDTM can be found widely applicable in engineering sciences.
A slow pushed front in a Lotka–Volterra competition model
International Nuclear Information System (INIS)
Holzer, Matt; Scheel, Arnd
2012-01-01
We study invasion speeds in the Lotka–Volterra competition model when the rate of diffusion of one species is small. Our main result is the construction of the selected front and a rigorous asymptotic approximation of its propagation speed, valid to second order. We use techniques from geometric singular perturbation theory and geometric desingularization. The main challenge arises from the slow passage through a saddle-node bifurcation. From a perspective of linear versus nonlinear speed selection, this front provides an interesting example as the propagation speed is slower than the linear spreading speed. However, our front shares many characteristics with pushed fronts that arise when the influence of nonlinearity leads to faster than linear speeds of propagation. We show that this is a result of the linear spreading speed arising as a simple pole of the resolvent instead of as a branch pole. Using the pointwise Green's function, we show that this pole poses no a priori obstacle to marginal stability of the nonlinear travelling front, thus explaining how nonlinear systems can exhibit slower spreading that their linearization in a robust fashion
Adaptive PI Controller for a Nonlinear System
Directory of Open Access Journals (Sweden)
D. Rathikarani
2009-10-01
Full Text Available Most of the industrial processes are inherently nonlinear in their behaviour. Designs of controllers for these nonlinear processes are difficult, as they do not follow superposition theorem. Adaptive controller can change its behaviour in response to changes in the dynamics of the process and disturbances. Hence adaptive controller can be used to control nonlinear processes. Direct Model Reference Adaptive Control is a technique, in which a reference model involving the desired performances is specified. In the present work, a DMRAC is designed and implemented to achieve satisfactory control of a nonlinear system in all its local linear operating regions. The closed loop system is made BIBO stable by proper control techniques. The controller is designed through simulation in Matlab platform and is validated in real time by conducting experiments on the laboratory Air Flow Control System using the dSPACE interface.
Wilson, William G; Lundberg, Per
2004-09-22
Theoretical interest in the distributions of species abundances observed in ecological communities has focused recently on the results of models that assume all species are identical in their interactions with one another, and rely upon immigration and speciation to promote coexistence. Here we examine a one-trophic level system with generalized species interactions, including species-specific intraspecific and interspecific interaction strengths, and density-independent immigration from a regional species pool. Comparisons between results from numerical integrations and an approximate analytic calculation for random communities demonstrate good agreement, and both approaches yield abundance distributions of nearly arbitrary shape, including bimodality for intermediate immigration rates.
Lattice defects as Lotka-Volterra societies
Energy Technology Data Exchange (ETDEWEB)
Yost, F.G.
1995-07-01
Since the early part of this century the Lotka-Volterra or predator-prey equations have been known to simulate the stability, instability, and persistent oscillations observed in many biological and ecological societies. These equations have been modified in many ways and have been used to model phenomena as varied as childhood epidemics, enzyme reactions, and conventional warfare. In the work to be described, similarities are drawn between various lattice defects and Lotka-Volterra (LV) societies. Indeed, grain boundaries are known to ``consume`` dislocations, inclusions ``infect`` grain boundaries, and dislocations ``annihilate`` dislocations. Several specific cases of lattice defect interaction kinetics models are drawn from the materials science literature to make these comparisons. Each model will be interpreted as if it were a description of a biological system. Various approaches to the modification of this class of interaction kinetics will be presented and discussed. The earliest example is the Damask-Dienes treatment of vacancy-divacancy annealing kinetics. This historical model will be modified to include the effects of an intermediate species and the results will be compared with the original model. The second example to be examined is the Clark-Alden model for deformation-enhanced grain growth. Dislocation kinetics will be added to this model and results will be discussed considering the original model. The third example to be presented is the Ananthakrishna-Sahoo model of the Portevin-Le Chatelier effect that was offered in 1985 as an extension of the classical Cottrell atmosphere explanation. Their treatment will be modified by inclusion of random interference from a pesky but peripheral species and by allowing a rate constant to be a function of time.
Nonlinear dynamical system approaches towards neural prosthesis
International Nuclear Information System (INIS)
Torikai, Hiroyuki; Hashimoto, Sho
2011-01-01
An asynchronous discrete-state spiking neurons is a wired system of shift registers that can mimic nonlinear dynamics of an ODE-based neuron model. The control parameter of the neuron is the wiring pattern among the registers and thus they are suitable for on-chip learning. In this paper an asynchronous discrete-state spiking neuron is introduced and its typical nonlinear phenomena are demonstrated. Also, a learning algorithm for a set of neurons is presented and it is demonstrated that the algorithm enables the set of neurons to reconstruct nonlinear dynamics of another set of neurons with unknown parameter values. The learning function is validated by FPGA experiments.
Augmented nonlinear differentiator design and application to nonlinear uncertain systems.
Shao, Xingling; Liu, Jun; Li, Jie; Cao, Huiliang; Shen, Chong; Zhang, Xiaoming
2017-03-01
In this paper, an augmented nonlinear differentiator (AND) based on sigmoid function is developed to calculate the noise-less time derivative under noisy measurement condition. The essential philosophy of proposed AND in achieving high attenuation of noise effect is established by expanding the signal dynamics with extra state variable representing the integrated noisy measurement, then with the integral of measurement as input, the augmented differentiator is formulated to improve the estimation quality. The prominent advantages of the present differentiation technique are: (i) better noise suppression ability can be achieved without appreciable delay; (ii) the improved methodology can be readily extended to construct augmented high-order differentiator to obtain multiple derivatives. In addition, the convergence property and robustness performance against noises are investigated via singular perturbation theory and describing function method, respectively. Also, comparison with several classical differentiators is given to illustrate the superiority of AND in noise suppression. Finally, the robust control problems of nonlinear uncertain systems, including a numerical example and a mass spring system, are addressed to demonstrate the effectiveness of AND in precisely estimating the disturbance and providing the unavailable differential estimate to implement output feedback based controller. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Controller Design of Complex System Based on Nonlinear Strength
Directory of Open Access Journals (Sweden)
Rongjun Mu
2015-01-01
Full Text Available This paper presents a new idea of controller design for complex systems. The nonlinearity index method was first developed for error propagation of nonlinear system. The nonlinearity indices access the boundary between the strong and the weak nonlinearities of the system model. The algorithm of nonlinearity index according to engineering application is first proposed in this paper. Applying this method on nonlinear systems is an effective way to measure the nonlinear strength of dynamics model over the full flight envelope. The nonlinearity indices access the boundary between the strong and the weak nonlinearities of system model. According to the different nonlinear strength of dynamical model, the control system is designed. The simulation time of dynamical complex system is selected by the maximum value of dynamic nonlinearity indices. Take a missile as example; dynamical system and control characteristic of missile are simulated. The simulation results show that the method is correct and appropriate.
Parametric Identification of Nonlinear Dynamical Systems
Feeny, Brian
2002-01-01
In this project, we looked at the application of harmonic balancing as a tool for identifying parameters (HBID) in a nonlinear dynamical systems with chaotic responses. The main idea is to balance the harmonics of periodic orbits extracted from measurements of each coordinate during a chaotic response. The periodic orbits are taken to be approximate solutions to the differential equations that model the system, the form of the differential equations being known, but with unknown parameters to be identified. Below we summarize the main points addressed in this work. The details of the work are attached as drafts of papers, and a thesis, in the appendix. Our study involved the following three parts: (1) Application of the harmonic balance to a simulation case in which the differential equation model has known form for its nonlinear terms, in contrast to a differential equation model which has either power series or interpolating functions to represent the nonlinear terms. We chose a pendulum, which has sinusoidal nonlinearities; (2) Application of the harmonic balance to an experimental system with known nonlinear forms. We chose a double pendulum, for which chaotic response were easily generated. Thus we confronted a two-degree-of-freedom system, which brought forth challenging issues; (3) A study of alternative reconstruction methods. The reconstruction of the phase space is necessary for the extraction of periodic orbits from the chaotic responses, which is needed in this work. Also, characterization of a nonlinear system is done in the reconstructed phase space. Such characterizations are needed to compare models with experiments. Finally, some nonlinear prediction methods can be applied in the reconstructed phase space. We developed two reconstruction methods that may be considered if the common method (method of delays) is not applicable.
A study of discrete nonlinear systems
International Nuclear Information System (INIS)
Dhillon, H.S.
2001-04-01
An investigation of various spatially discrete time-independent nonlinear models was undertaken. These models are generically applicable to many different physical systems including electron-phonon interactions in solids, magnetic multilayers, layered superconductors and classical lattice systems. To characterise the possible magnetic structures created on magnetic multilayers a model has been formulated and studied. The Euler-Lagrange equation for this model is a discrete version of the Sine-Gordon equation. Solutions of this equation are generated by applying the methods of Chaotic Dynamics - treating the space variable associated with the layer number as a discrete time variable. The states found indicate periodic, quasiperiodic and chaotic structures. Analytic solutions to the discrete nonlinear Schroedinger Equation (DNSE) with cubic nonlinearity are presented in the strong coupling limit. Using these as a starting point, a procedure is developed to determine the wave function and the energy eigenvalue for moderate coupling. The energy eigenvalues of the different structures of the wave function are found to be in excellent agreement with the exact strong coupling result. The solutions to the DNSE indicate commensurate and incommensurate spatial structures associated with different localisation patterns of the wave function. The states which arise may be fractal, periodic, quasiperiodic or chaotic. This work is then extended to solve a first order discrete nonlinear equation. The exact solutions for both the first and second order discrete nonlinear equations with cubic nonlinearity suggests that this method of studying discrete nonlinear equations may be applied to solve discrete equations with any order difference and cubic nonlinearity. (author)
Resonant driving of a nonlinear Hamiltonian system
International Nuclear Information System (INIS)
Palmisano, Carlo; Gervino, Gianpiero; Balma, Massimo; Devona, Dorina; Wimberger, Sandro
2013-01-01
As a proof of principle, we show how a classical nonlinear Hamiltonian system can be driven resonantly over reasonably long times by appropriately shaped pulses. To keep the parameter space reasonably small, we limit ourselves to a driving force which consists of periodic pulses additionally modulated by a sinusoidal function. The main observables are the average increase of kinetic energy and of the action variable (of the non-driven system) with time. Applications of our scheme aim for driving high frequencies of a nonlinear system with a fixed modulation signal.
Controlling chaotic systems via nonlinear feedback control
International Nuclear Information System (INIS)
Park, Ju H.
2005-01-01
In this article, a new method to control chaotic systems is proposed. Using Lyapunov method, we design a nonlinear feedback controller to make the controlled system be stabilized. A numerical example is given to illuminate the design procedure and advantage of the result derived
A hierarchy of systems of nonlinear equations
International Nuclear Information System (INIS)
Falkensteiner, P.; Grosse, H.
1985-01-01
Imposing isospectral invariance for the one-dimensional Dirac operator yields an infinite hierarchy of systems of chiral invariant nonlinear partial differential equations. The same system is obtained through a Lax pair construction and finally a formulation in terms of Kac-Moody generators is given. (Author)
Fault detection for nonlinear systems - A standard problem approach
DEFF Research Database (Denmark)
Stoustrup, Jakob; Niemann, Hans Henrik
1998-01-01
The paper describes a general method for designing (nonlinear) fault detection and isolation (FDI) systems for nonlinear processes. For a rich class of nonlinear systems, a nonlinear FDI system can be designed using convex optimization procedures. The proposed method is a natural extension...
Network science, nonlinear science and infrastructure systems
2007-01-01
Network Science, Nonlinear Science and Infrastructure Systems has been written by leading scholars in these areas. Its express purpose is to develop common theoretical underpinnings to better solve modern infrastructural problems. It is felt by many who work in these fields that many modern communication problems, ranging from transportation networks to telecommunications, Internet, supply chains, etc., are fundamentally infrastructure problems. Moreover, these infrastructure problems would benefit greatly from a confluence of theoretical and methodological work done with the areas of Network Science, Dynamical Systems and Nonlinear Science. This book is dedicated to the formulation of infrastructural tools that will better solve these types of infrastructural problems. .
Nonlinear dynamics of fractional order Duffing system
International Nuclear Information System (INIS)
Li, Zengshan; Chen, Diyi; Zhu, Jianwei; Liu, Yongjian
2015-01-01
In this paper, we analyze the nonlinear dynamics of fractional order Duffing system. First, we present the fractional order Duffing system and the numerical algorithm. Second, nonlinear dynamic behaviors of Duffing system with a fixed fractional order is studied by using bifurcation diagrams, phase portraits, Poincare maps and time domain waveforms. The fractional order Duffing system shows some interesting dynamical behaviors. Third, a series of Duffing systems with different fractional orders are analyzed by using bifurcation diagrams. The impacts of fractional orders on the tendency of dynamical motion, the periodic windows in chaos, the bifurcation points and the distance between the first and the last bifurcation points are respectively studied, in which some basic laws are discovered and summarized. This paper reflects that the integer order system and the fractional order one have close relationship and an integer order system is a special case of fractional order ones.
Continuous Multistep Methods for Volterra Integro-Differential
African Journals Online (AJOL)
Kamoh et al.
DIFFERENTIAL EQUATIONS OF THE SECOND ORDER. 1Kamoh N.M. ... methods, Volterra integro-differential equation, Convergent, ...... Research of a Multistep Method Applied to Numerical Solution of. Volterra ... Congress on Engineering.
Phase Control in Nonlinear Systems
Zambrano, Samuel; Seoane, Jesús M.; Mariño, Inés P.; Sanjuán, Miguel A. F.; Meucci, Riccardo
The following sections are included: * Introduction * Phase Control of Chaos * Description of the model * Numerical exploration of phase control of chaos * Experimental evidence of phase control of chaos * Phase Control of Intermittency in Dynamical Systems * Crisis-induced intermittency and its control * Experimental setup and implementation of the phase control scheme * Phase control of the laser in the pre-crisis regime * Phase control of the intermittency after the crisis * Phase control of the intermittency in the quadratic map * Phase Control of Escapes in Open Dynamical Systems * Control of open dynamical systems * Model description * Numerical simulations and heuristic arguments * Experimental implementation in an electronic circuit * Conclusions and Discussions * Acknowledgments * References
Workshop on Nonlinear Phenomena in Complex Systems
1989-01-01
This book contains a thorough treatment of neural networks, cellular-automata and synergetics, in an attempt to provide three different approaches to nonlinear phenomena in complex systems. These topics are of major interest to physicists active in the fields of statistical mechanics and dynamical systems. They have been developed with a high degree of sophistication and include the refinements necessary to work with the complexity of real systems as well as the more recent research developments in these areas.
Periodic Solutions for Highly Nonlinear Oscillation Systems
DEFF Research Database (Denmark)
Ghadimi, M; Barari, Amin; Kaliji, H.D
2012-01-01
In this paper, Frequency-Amplitude Formulation is used to analyze the periodic behavior of tapered beam as well as two complex nonlinear systems. Many engineering structures, such as offshore foundations, oil platform supports, tower structures and moving arms, are modeled as tapered beams...
Exploring Nonlinearities in Financial Systemic Risk
Wolski, M.
2013-01-01
We propose a new methodology of assessing the effects of individual institution's risk on the others and on the system as a whole. We build upon the Conditional Value-at-Risk approach, however, we introduce the explicit Granger causal linkages and we account for possible nonlinearities in the
Experimental chaos in nonlinear vibration isolation system
International Nuclear Information System (INIS)
Lou Jingjun; Zhu Shijian; He Lin; He Qiwei
2009-01-01
The chaotic vibration isolation method was studied thoroughly from an experimental perspective. The nonlinear load-deflection characteristic of the conical coil spring used in the experiment was surveyed. Chaos and subharmonic responses including period-2 and period-6 motions were observed. The line spectrum reduction and the drop of the acceleration vibration level in chaotic state and that in non-chaotic state were compared, respectively. It was concluded from the experiment that the nonlinear vibration isolation system in chaotic state has strong ability in line spectrum reduction.
Nonlinear distortion in wireless systems modeling and simulation with Matlab
Gharaibeh, Khaled M
2011-01-01
This book covers the principles of modeling and simulation of nonlinear distortion in wireless communication systems with MATLAB simulations and techniques In this book, the author describes the principles of modeling and simulation of nonlinear distortion in single and multichannel wireless communication systems using both deterministic and stochastic signals. Models and simulation methods of nonlinear amplifiers explain in detail how to analyze and evaluate the performance of data communication links under nonlinear amplification. The book addresses the analysis of nonlinear systems
On filtering over Îto-Volterra observations
Directory of Open Access Journals (Sweden)
Michael V. Basin
2000-01-01
Full Text Available In this paper, the Kalman-Bucy filter is designed for an Îto-Volterra process over Ito-Volterra observations that cannot be reduced to the case of a differential observation equation. The Kalman-Bucy filter is then designed for an Ito-Volterra process over discontinuous Ito-Volterra observations. Based on the obtained results, the filtering problem over discrete observations with delays is solved. Proofs of the theorems substantiating the filtering algorithms are given.
NONLINEAR TIDES IN CLOSE BINARY SYSTEMS
International Nuclear Information System (INIS)
Weinberg, Nevin N.; Arras, Phil; Quataert, Eliot; Burkart, Josh
2012-01-01
We study the excitation and damping of tides in close binary systems, accounting for the leading-order nonlinear corrections to linear tidal theory. These nonlinear corrections include two distinct physical effects: three-mode nonlinear interactions, i.e., the redistribution of energy among stellar modes of oscillation, and nonlinear excitation of stellar normal modes by the time-varying gravitational potential of the companion. This paper, the first in a series, presents the formalism for studying nonlinear tides and studies the nonlinear stability of the linear tidal flow. Although the formalism we present is applicable to binaries containing stars, planets, and/or compact objects, we focus on non-rotating solar-type stars with stellar or planetary companions. Our primary results include the following: (1) The linear tidal solution almost universally used in studies of binary evolution is unstable over much of the parameter space in which it is employed. More specifically, resonantly excited internal gravity waves in solar-type stars are nonlinearly unstable to parametric resonance for companion masses M' ∼> 10-100 M ⊕ at orbital periods P ≈ 1-10 days. The nearly static 'equilibrium' tidal distortion is, however, stable to parametric resonance except for solar binaries with P ∼ 3 [P/10 days] for a solar-type star) and drives them as a single coherent unit with growth rates that are a factor of ≈N faster than the standard three-wave parametric instability. These are local instabilities viewed through the lens of global analysis; the coherent global growth rate follows local rates in the regions where the shear is strongest. In solar-type stars, the dynamical tide is unstable to this collective version of the parametric instability for even sub-Jupiter companion masses with P ∼< a month. (4) Independent of the parametric instability, the dynamical and equilibrium tides excite a wide range of stellar p-modes and g-modes by nonlinear inhomogeneous forcing
Quasipolynomial generalization of Lotka-Volterra mappings
International Nuclear Information System (INIS)
Hernandez-Bermejo, Benito; Brenig, Leon
2002-01-01
In recent years, it has been shown that Lotka-Volterra mappings constitute a valuable tool from both the theoretical and the applied points of view, with developments in very diverse fields such as physics, population dynamics, chemistry and economy. The purpose of this work is to demonstrate that many of the most important ideas and algebraic methods that constitute the basis of the quasipolynomial formalism (originally conceived for the analysis of ordinary differential equations) can be extended into the mapping domain. The extension of the formalism into the discrete-time context is remarkable as far as the quasipolynomial methodology had never been shown to be applicable beyond the differential case. It will be demonstrated that Lotka-Volterra mappings play a central role in the quasipolynomial formalism for the discrete-time case. Moreover, the extension of the formalism into the discrete-time domain allows a significant generalization of Lotka-Volterra mappings as well as a whole transfer of algebraic methods into the discrete-time context. The result is a novel and more general conceptual framework for the understanding of Lotka-Volterra mappings as well as a new range of possibilities that become open not only for the theoretical analysis of Lotka-Volterra mappings and their generalizations, but also for the development of new applications. (author)
Quasipolynomial generalization of Lotka-Volterra mappings
Hernández-Bermejo, Benito; Brenig, Léon
2002-07-01
In recent years, it has been shown that Lotka-Volterra mappings constitute a valuable tool from both the theoretical and the applied points of view, with developments in very diverse fields such as physics, population dynamics, chemistry and economy. The purpose of this work is to demonstrate that many of the most important ideas and algebraic methods that constitute the basis of the quasipolynomial formalism (originally conceived for the analysis of ordinary differential equations) can be extended into the mapping domain. The extension of the formalism into the discrete-time context is remarkable as far as the quasipolynomial methodology had never been shown to be applicable beyond the differential case. It will be demonstrated that Lotka-Volterra mappings play a central role in the quasipolynomial formalism for the discrete-time case. Moreover, the extension of the formalism into the discrete-time domain allows a significant generalization of Lotka-Volterra mappings as well as a whole transfer of algebraic methods into the discrete-time context. The result is a novel and more general conceptual framework for the understanding of Lotka-Volterra mappings as well as a new range of possibilities that become open not only for the theoretical analysis of Lotka-Volterra mappings and their generalizations, but also for the development of new applications.
Analysis of nonlinear systems using ARMA [autoregressive moving average] models
International Nuclear Information System (INIS)
Hunter, N.F. Jr.
1990-01-01
While many vibration systems exhibit primarily linear behavior, a significant percentage of the systems encountered in vibration and model testing are mildly to severely nonlinear. Analysis methods for such nonlinear systems are not yet well developed and the response of such systems is not accurately predicted by linear models. Nonlinear ARMA (autoregressive moving average) models are one method for the analysis and response prediction of nonlinear vibratory systems. In this paper we review the background of linear and nonlinear ARMA models, and illustrate the application of these models to nonlinear vibration systems. We conclude by summarizing the advantages and disadvantages of ARMA models and emphasizing prospects for future development. 14 refs., 11 figs
Indirect learning control for nonlinear dynamical systems
Ryu, Yeong Soon; Longman, Richard W.
1993-01-01
In a previous paper, learning control algorithms were developed based on adaptive control ideas for linear time variant systems. The learning control methods were shown to have certain advantages over their adaptive control counterparts, such as the ability to produce zero tracking error in time varying systems, and the ability to eliminate repetitive disturbances. In recent years, certain adaptive control algorithms have been developed for multi-body dynamic systems such as robots, with global guaranteed convergence to zero tracking error for the nonlinear system euations. In this paper we study the relationship between such adaptive control methods designed for this specific class of nonlinear systems, and the learning control problem for such systems, seeking to converge to zero tracking error in following a specific command repeatedly, starting from the same initial conditions each time. The extension of these methods from the adaptive control problem to the learning control problem is seen to be trivial. The advantages and disadvantages of using learning control based on such adaptive control concepts for nonlinear systems, and the use of other currently available learning control algorithms are discussed.
Structural stability of nonlinear population dynamics.
Cenci, Simone; Saavedra, Serguei
2018-01-01
In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.
Structural stability of nonlinear population dynamics
Cenci, Simone; Saavedra, Serguei
2018-01-01
In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.
Spectral decomposition of nonlinear systems with memory
Svenkeson, Adam; Glaz, Bryan; Stanton, Samuel; West, Bruce J.
2016-02-01
We present an alternative approach to the analysis of nonlinear systems with long-term memory that is based on the Koopman operator and a Lévy transformation in time. Memory effects are considered to be the result of interactions between a system and its surrounding environment. The analysis leads to the decomposition of a nonlinear system with memory into modes whose temporal behavior is anomalous and lacks a characteristic scale. On average, the time evolution of a mode follows a Mittag-Leffler function, and the system can be described using the fractional calculus. The general theory is demonstrated on the fractional linear harmonic oscillator and the fractional nonlinear logistic equation. When analyzing data from an ill-defined (black-box) system, the spectral decomposition in terms of Mittag-Leffler functions that we propose may uncover inherent memory effects through identification of a small set of dynamically relevant structures that would otherwise be obscured by conventional spectral methods. Consequently, the theoretical concepts we present may be useful for developing more general methods for numerical modeling that are able to determine whether observables of a dynamical system are better represented by memoryless operators, or operators with long-term memory in time, when model details are unknown.
Three-dimensional discrete-time Lotka-Volterra models with an application to industrial clusters
Bischi, G. I.; Tramontana, F.
2010-10-01
We consider a three-dimensional discrete dynamical system that describes an application to economics of a generalization of the Lotka-Volterra prey-predator model. The dynamic model proposed is used to describe the interactions among industrial clusters (or districts), following a suggestion given by [23]. After studying some local and global properties and bifurcations in bidimensional Lotka-Volterra maps, by numerical explorations we show how some of them can be extended to their three-dimensional counterparts, even if their analytic and geometric characterization becomes much more difficult and challenging. We also show a global bifurcation of the three-dimensional system that has no two-dimensional analogue. Besides the particular economic application considered, the study of the discrete version of Lotka-Volterra dynamical systems turns out to be a quite rich and interesting topic by itself, i.e. from a purely mathematical point of view.
Directory of Open Access Journals (Sweden)
Cemil Tunç
2017-10-01
Full Text Available In this article, the authors obtain some clear assumptions for the asymptotic stability (AS and boundedness (B of solutions of non-linear retarded Volterra integro-differential equations (VIDEs of first order by constructing a new Lyapunov functional (LF. The results obtained are new and differ from those found in the literature, and they also contain and improve a result found in the literature under more less restrictive conditions. We establish an example and give a discussion to indicate the applicability of the weaker conditions obtained. We also employ MATLAB-Simulink to display the behaviors of the orbits of the (VIDEs considered. Keywords: Nonlinear, Volterra integro-differential equations, First order, Asymptotic stability, Boundedness, Lyapunov functional, MSC: 34D05, 34K20, 45J05
Nambu-Poisson reformulation of the finite dimensional dynamical systems
International Nuclear Information System (INIS)
Baleanu, D.; Makhaldiani, N.
1998-01-01
A system of nonlinear ordinary differential equations which in a particular case reduces to Volterra's system is introduced. We found in two simplest cases the complete sets of the integrals of motion using Nambu-Poisson reformulation of the Hamiltonian dynamics. In these cases we have solved the systems by quadratures
Nonlinear dynamic macromodeling techniques for audio systems
Ogrodzki, Jan; Bieńkowski, Piotr
2015-09-01
This paper develops a modelling method and a models identification technique for the nonlinear dynamic audio systems. Identification is performed by means of a behavioral approach based on a polynomial approximation. This approach makes use of Discrete Fourier Transform and Harmonic Balance Method. A model of an audio system is first created and identified and then it is simulated in real time using an algorithm of low computational complexity. The algorithm consists in real time emulation of the system response rather than in simulation of the system itself. The proposed software is written in Python language using object oriented programming techniques. The code is optimized for a multithreads environment.
The Jungle Universe: coupled cosmological models in a Lotka-Volterra framework
Perez, Jérôme; Füzfa, André; Carletti, Timoteo; Mélot, Laurence; Guedezounme, Lazare
2014-06-01
In this paper, we exploit the fact that the dynamics of homogeneous and isotropic Friedmann-Lemaître universes is a special case of generalized Lotka-Volterra system where the competitive species are the barotropic fluids filling the Universe. Without coupling between those fluids, Lotka-Volterra formulation offers a pedagogical and simple way to interpret usual Friedmann-Lemaître cosmological dynamics. A natural and physical coupling between cosmological fluids is proposed which preserves the structure of the dynamical equations. Using the standard tools of Lotka-Volterra dynamics, we obtain the general Lyapunov function of the system when one of the fluids is coupled to dark energy. This provides in a rigorous form a generic asymptotic behavior for cosmic expansion in presence of coupled species, beyond the standard de Sitter, Einstein-de Sitter and Milne cosmologies. Finally, we conjecture that chaos can appear for at least four interacting fluids.
Model reduction of systems with localized nonlinearities.
Energy Technology Data Exchange (ETDEWEB)
Segalman, Daniel Joseph
2006-03-01
An LDRD funded approach to development of reduced order models for systems with local nonlinearities is presented. This method is particularly useful for problems of structural dynamics, but has potential application in other fields. The key elements of this approach are (1) employment of eigen modes of a reference linear system, (2) incorporation of basis functions with an appropriate discontinuity at the location of the nonlinearity. Galerkin solution using the above combination of basis functions appears to capture the dynamics of the system with a small basis set. For problems involving small amplitude dynamics, the addition of discontinuous (joint) modes appears to capture the nonlinear mechanics correctly while preserving the modal form of the predictions. For problems involving large amplitude dynamics of realistic joint models (macro-slip), the use of appropriate joint modes along with sufficient basis eigen modes to capture the frequencies of the system greatly enhances convergence, though the modal nature the result is lost. Also observed is that when joint modes are used in conjunction with a small number of elastic eigen modes in problems of macro-slip of realistic joint models, the resulting predictions are very similar to those of the full solution when seen through a low pass filter. This has significance both in terms of greatly reducing the number of degrees of freedom of the problem and in terms of facilitating the use of much larger time steps.
Controllability of nonlinear delay oscillating systems
Directory of Open Access Journals (Sweden)
Chengbin Liang
2017-05-01
Full Text Available In this paper, we study the controllability of a system governed by second order delay differential equations. We introduce a delay Gramian matrix involving the delayed matrix sine, which is used to establish sufficient and necessary conditions of controllability for the linear problem. In addition, we also construct a specific control function for controllability. For the nonlinear problem, we construct a control function and transfer the controllability problem to a fixed point problem for a suitable operator. We give a sufficient condition to guarantee the nonlinear delay system is controllable. Two examples are given to illustrate our theoretical results by calculating a specific control function and inverse of a delay Gramian matrix.
Collective Dynamics of Nonlinear and Disordered Systems
Radons, G; Just, W
2005-01-01
Phase transitions in disordered systems and related dynamical phenomena are a topic of intrinsically high interest in theoretical and experimental physics. This book presents a unified view, adopting concepts from each of the disjoint fields of disordered systems and nonlinear dynamics. Special attention is paid to the glass transition, from both experimental and theoretical viewpoints, to modern concepts of pattern formation, and to the application of the concepts of dynamical systems for understanding equilibrium and nonequilibrium properties of fluids and solids. The content is accessible to graduate students, but will also be of benefit to specialists, since the presentation extends as far as the topics of ongoing research work.
The period function of the generalized Lotka-Volterra centers
Villadelprat, J.
2008-05-01
The present paper deals with the period function of the quadratic centers. In the literature different terminologies are used to classify these centers, but essentially there are four families: Hamiltonian, reversible , codimension four Q4 and generalized Lotka-Volterra systems . Chicone [C. Chicone, Review in MathSciNet, Ref. 94h:58072] conjectured that the reversible centers have at most two critical periods, and that the centers of the three other families have a monotonic period function. With regard to the second part of this conjecture, only the monotonicity of the Hamiltonian and Q4 families [W.A. Coppel, L. Gavrilov, The period function of a Hamiltonian quadratic system, Differential Integral Equations 6 (1993) 1357-1365; Y. Zhao, The monotonicity of period function for codimension four quadratic system Q4, J. Differential Equations 185 (2002) 370-387] has been proved. Concerning the family, no substantial progress has been made since the middle 80s, when several authors showed independently the monotonicity of the classical Lotka-Volterra centers [F. Rothe, The periods of the Volterra-Lokta system, J. Reine Angew. Math. 355 (1985) 129-138; R. Schaaf, Global behaviour of solution branches for some Neumann problems depending on one or several parameters, J. Reine Angew. Math. 346 (1984) 1-31; J. Waldvogel, The period in the Lotka-Volterra system is monotonic, J. Math. Anal. Appl. 114 (1986) 178-184]. By means of the first period constant one can easily conclude that the period function of the centers in the family is monotone increasing near the inner boundary of its period annulus (i.e., the center itself). Thus, according to Chicone's conjecture, it should be also monotone increasing near the outer boundary, which in the Poincaré disc is a polycycle. In this paper we show that this is true. In addition we prove that, except for a zero measure subset of the parameter plane, there is no bifurcation of critical periods from the outer boundary. Finally we
Solution of linear and nonlinear matrix systems. Application to a nonlinear diffusion equation
International Nuclear Information System (INIS)
Bonnet, M.; Meurant, G.
1978-01-01
Different methods of solution of linear and nonlinear algebraic systems are applied to the nonlinear system obtained by discretizing a nonlinear diffusion equation. For linear systems, methods in general use of alternating directions type or Gauss Seidel's methods are compared to more recent ones of the type of generalized conjugate gradient; the superiority of the latter is shown by numerical examples. For nonlinear systems, a method on nonlinear conjugate gradient is studied as also Newton's method and some of its variants. It should be noted, however that Newton's method is found to be more efficient when coupled with a good method for solution of the linear system. To conclude, such methods are used to solve a nonlinear diffusion problem and the numerical results obtained are to be compared [fr
Solution of linear and nonlinear matrix systems. Application to a nonlinear diffusion equation
International Nuclear Information System (INIS)
Bonnet, M.; Meurant, G.
1978-01-01
The object of this study is to compare different methods of solving linear and nonlinear algebraic systems and to apply them to the nonlinear system obtained by discretizing a nonlinear diffusion equation. For linear systems the conventional methods of alternating direction type or Gauss Seidel's methods are compared to more recent ones of the type of generalized conjugate gradient; the superiority of the latter is shown by numerical examples. For nonlinear systems, a method of nonlinear conjugate gradient is studied together with Newton's method and some of its variants. It should be noted, however, that Newton's method is found to be more efficient when coupled with a good method for solving the linear system. As a conclusion, these methods are used to solve a nonlinear diffusion problem and the numerical results obtained are compared [fr
On a Volterra Stieltjes integral equation
Directory of Open Access Journals (Sweden)
P. T. Vaz
1990-01-01
Full Text Available The paper deals with a study of linear Volterra integral equations involving Lebesgue-Stieltjes integrals in two independent variables. The authors prove an existence theorem using the Banach fixed-point principle. An explicit example is also considered.
Topological equivalence of nonlinear autonomous dynamical systems
International Nuclear Information System (INIS)
Nguyen Huynh Phan; Tran Van Nhung
1995-12-01
We show in this paper that the autonomous nonlinear dynamical system Σ(A,B,F): x' = Ax+Bu+F(x) is topologically equivalent to the linear dynamical system Σ(A,B,O): x' = Ax+Bu if the projection of A on the complement in R n of the controllable vectorial subspace is hyperbolic and if lipschitz constant of F is sufficiently small ( * ) and F(x) = 0 when parallel x parallel is sufficiently large ( ** ). In particular, if Σ(A,B,O) is controllable, it is topologically equivalent to Σ(A,B,F) when it is only that F satisfy ( ** ). (author). 18 refs
Nonlinear system theory: another look at dependence.
Wu, Wei Biao
2005-10-04
Based on the nonlinear system theory, we introduce previously undescribed dependence measures for stationary causal processes. Our physical and predictive dependence measures quantify the degree of dependence of outputs on inputs in physical systems. The proposed dependence measures provide a natural framework for a limit theory for stationary processes. In particular, under conditions with quite simple forms, we present limit theorems for partial sums, empirical processes, and kernel density estimates. The conditions are mild and easily verifiable because they are directly related to the data-generating mechanisms.
Tracking Control for Switched Cascade Nonlinear Systems
Directory of Open Access Journals (Sweden)
Xiaoxiao Dong
2015-01-01
Full Text Available The issue of H∞ output tracking for switched cascade nonlinear systems is discussed in this paper, where not all the linear parts of subsystems are stabilizable. The conditions of the solvability for the issue are given by virtue of the structural characteristics of the systems and the average dwell time method, in which the total activation time for stabilizable subsystems is longer than that for the unstabilizable subsystems. At last, a simulation example is used to demonstrate the validity and advantages of the proposed approach.
Coexistence and Survival in Conservative Lotka-Volterra Networks
Knebel, Johannes; Krüger, Torben; Weber, Markus F.; Frey, Erwin
2013-04-01
Analyzing coexistence and survival scenarios of Lotka-Volterra (LV) networks in which the total biomass is conserved is of vital importance for the characterization of long-term dynamics of ecological communities. Here, we introduce a classification scheme for coexistence scenarios in these conservative LV models and quantify the extinction process by employing the Pfaffian of the network’s interaction matrix. We illustrate our findings on global stability properties for general systems of four and five species and find a generalized scaling law for the extinction time.
String networks in ZN Lotka–Volterra competition models
International Nuclear Information System (INIS)
Avelino, P.P.; Bazeia, D.; Menezes, J.; Oliveira, B.F. de
2014-01-01
In this Letter we give specific examples of Z N Lotka–Volterra competition models leading to the formation of string networks. We show that, in order to promote coexistence, the species may arrange themselves around regions with a high number density of empty sites generated by predator–prey interactions between competing species. These configurations extend into the third dimension giving rise to string networks. We investigate the corresponding dynamics using both stochastic and mean field theory simulations, showing that the coarsening of these string networks follows a scaling law which is analogous to that found in other physical systems in condensed matter and cosmology
Dynamics of Nonlinear Time-Delay Systems
Lakshmanan, Muthusamy
2010-01-01
Synchronization of chaotic systems, a patently nonlinear phenomenon, has emerged as a highly active interdisciplinary research topic at the interface of physics, biology, applied mathematics and engineering sciences. In this connection, time-delay systems described by delay differential equations have developed as particularly suitable tools for modeling specific dynamical systems. Indeed, time-delay is ubiquitous in many physical systems, for example due to finite switching speeds of amplifiers in electronic circuits, finite lengths of vehicles in traffic flows, finite signal propagation times in biological networks and circuits, and quite generally whenever memory effects are relevant. This monograph presents the basics of chaotic time-delay systems and their synchronization with an emphasis on the effects of time-delay feedback which give rise to new collective dynamics. Special attention is devoted to scalar chaotic/hyperchaotic time-delay systems, and some higher order models, occurring in different bran...
Control of self-organizing nonlinear systems
Klapp, Sabine; Hövel, Philipp
2016-01-01
The book summarizes the state-of-the-art of research on control of self-organizing nonlinear systems with contributions from leading international experts in the field. The first focus concerns recent methodological developments including control of networks and of noisy and time-delayed systems. As a second focus, the book features emerging concepts of application including control of quantum systems, soft condensed matter, and biological systems. Special topics reflecting the active research in the field are the analysis and control of chimera states in classical networks and in quantum systems, the mathematical treatment of multiscale systems, the control of colloidal and quantum transport, the control of epidemics and of neural network dynamics.
Is DNA a nonlinear dynamical system where solitary conformational ...
Indian Academy of Sciences (India)
Unknown
DNA is considered as a nonlinear dynamical system in which solitary conformational waves can be excited. The ... nonlinear differential equations and their soliton-like solu- .... structure and dynamics can be added till the most accurate.
Seismic analysis of a nonlinear airlock system
International Nuclear Information System (INIS)
Huang, S.N.
1983-01-01
The containment equipment airlock door of the Fast Flux Test Facility utilizes screw-type actuators as a push-pull mechanism for closing and opening operations. Special design features were used to protect these actuators from pressure differential loading. These made the door behave as a nonlinear system during a seismic event. Seismic analyses, utilizing the time history method, were conducted to determine the seismic loads on these scew-type actuators. Several sizes of actuators were examined. Procedures for determining the final optimum design are discussed in detail
An efficient control algorithm for nonlinear systems
International Nuclear Information System (INIS)
Sinha, S.
1990-12-01
We suggest a scheme to step up the efficiency of a recently proposed adaptive control algorithm, which is remarkably effective for regulating nonlinear systems. The technique involves monitoring of the ''stiffness of control'' to get maximum gain while maintaining a predetermined accuracy. The success of the procedure is demonstrated for the case of the logistic map, where we show that the improvement in performance is often factors of tens, and for small control stiffness, even factors of hundreds. (author). 4 refs, 1 fig., 1 tab
On Newton-Kantorovich Method for Solving the Nonlinear Operator Equation
Directory of Open Access Journals (Sweden)
Hameed Husam Hameed
2015-01-01
Full Text Available We develop the Newton-Kantorovich method to solve the system of 2×2 nonlinear Volterra integral equations where the unknown function is in logarithmic form. A new majorant function is introduced which leads to the increment of the convergence interval. The existence and uniqueness of approximate solution are proved and a numerical example is provided to show the validation of the method.
Impulse position control algorithms for nonlinear systems
Energy Technology Data Exchange (ETDEWEB)
Sesekin, A. N., E-mail: sesekin@list.ru [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002 (Russian Federation); Institute of Mathematics and Mechanics, Ural Division of Russian Academy of Sciences, 16 S. Kovalevskaya, Ekaterinburg, 620990 (Russian Federation); Nepp, A. N., E-mail: anepp@urfu.ru [Ural Federal University, 19 S. Mira, Ekaterinburg, 620002 (Russian Federation)
2015-11-30
The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of such regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.
Impulse position control algorithms for nonlinear systems
Sesekin, A. N.; Nepp, A. N.
2015-11-01
The article is devoted to the formalization and description of impulse-sliding regime in nonlinear dynamical systems that arise in the application of impulse position controls of a special kind. The concept of trajectory impulse-sliding regime formalized as some limiting network element Euler polygons generated by a discrete approximation of the impulse position control This paper differs from the previously published papers in that it uses a definition of solutions of systems with impulse controls, it based on the closure of the set of smooth solutions in the space of functions of bounded variation. The need for the study of such regimes is the fact that they often arise when parry disturbances acting on technical or economic control system.
MPPT for Photovoltaic System Using Nonlinear Controller
Directory of Open Access Journals (Sweden)
Ramsha Iftikhar
2018-01-01
Full Text Available Photovoltaic (PV system generates energy that varies with the variation in environmental conditions such as temperature and solar radiation. To cope up with the ever increasing demand of energy, the PV system must operate at maximum power point (MPP, which changes with load as well as weather conditions. This paper proposes a nonlinear backstepping controller to harvest maximum power from a PV array using DC-DC buck converter. A regression plane is formulated after collecting the data of the PV array from its characteristic curves to provide the reference voltage to track MPP. Asymptotic stability of the system is proved using Lyapunov stability criteria. The simulation results validate the rapid tracking and efficient performance of the controller. For further validation of the results, it also provides a comparison of the proposed controller with conventional perturb and observe (P&O and fuzzy logic-based controller (FLBC under abrupt changes in environmental conditions.
Deterministic nonlinear systems a short course
Anishchenko, Vadim S; Strelkova, Galina I
2014-01-01
This text is a short yet complete course on nonlinear dynamics of deterministic systems. Conceived as a modular set of 15 concise lectures it reflects the many years of teaching experience by the authors. The lectures treat in turn the fundamental aspects of the theory of dynamical systems, aspects of stability and bifurcations, the theory of deterministic chaos and attractor dimensions, as well as the elements of the theory of Poincare recurrences.Particular attention is paid to the analysis of the generation of periodic, quasiperiodic and chaotic self-sustained oscillations and to the issue of synchronization in such systems. This book is aimed at graduate students and non-specialist researchers with a background in physics, applied mathematics and engineering wishing to enter this exciting field of research.
Bifurcation methods of dynamical systems for handling nonlinear ...
Indian Academy of Sciences (India)
physics pp. 863–868. Bifurcation methods of dynamical systems for handling nonlinear wave equations. DAHE FENG and JIBIN LI. Center for Nonlinear Science Studies, School of Science, Kunming University of Science and Technology .... (b) It can be shown from (15) and (18) that the balance between the weak nonlinear.
Numerical solutions of stochastic Lotka-Volterra equations via operational matrices
Directory of Open Access Journals (Sweden)
F. Hosseini Shekarabi
2016-03-01
Full Text Available In this paper, an efficient and convenient method for numerical solutions of stochastic Lotka-Volterra dynamical system is proposed. Here, we consider block pulse functions and their operational matrices of integration. Illustrative example is included to demonstrate the procedure and accuracy of the operational matrices based on block pulse functions.
Nonlinear dynamic analysis of flexible multibody systems
Bauchau, Olivier A.; Kang, Nam Kook
1991-01-01
Two approaches are developed to analyze the dynamic behavior of flexible multibody systems. In the first approach each body is modeled with a modal methodology in a local non-inertial frame of reference, whereas in the second approach, each body is modeled with a finite element methodology in the inertial frame. In both cases, the interaction among the various elastic bodies is represented by constraint equations. The two approaches were compared for accuracy and efficiency: the first approach is preferable when the nonlinearities are not too strong but it becomes cumbersome and expensive to use when many modes must be used. The second approach is more general and easier to implement but could result in high computation costs for a large system. The constraints should be enforced in a time derivative fashion for better accuracy and stability.
Periodicity of a class of nonlinear fuzzy systems with delays
International Nuclear Information System (INIS)
Yu Jiali; Yi Zhang; Zhang Lei
2009-01-01
The well known Takagi-Sugeno (T-S) model gives an effective method to combine some simple local systems with their linguistic description to represent complex nonlinear dynamic systems. By using the T-S method, a class of local nonlinear systems having nice dynamic properties can be employed to represent some global complex nonlinear systems. This paper proposes to study the periodicity of a class of global nonlinear fuzzy systems with delays by using T-S method. Conditions for guaranteeing periodicity are derived. Examples are employed to illustrate the theory.
Applications of Nonlinear Dynamics Model and Design of Complex Systems
In, Visarath; Palacios, Antonio
2009-01-01
This edited book is aimed at interdisciplinary, device-oriented, applications of nonlinear science theory and methods in complex systems. In particular, applications directed to nonlinear phenomena with space and time characteristics. Examples include: complex networks of magnetic sensor systems, coupled nano-mechanical oscillators, nano-detectors, microscale devices, stochastic resonance in multi-dimensional chaotic systems, biosensors, and stochastic signal quantization. "applications of nonlinear dynamics: model and design of complex systems" brings together the work of scientists and engineers that are applying ideas and methods from nonlinear dynamics to design and fabricate complex systems.
Euclidean null controllability of nonlinear infinite delay systems with ...
African Journals Online (AJOL)
Sufficient conditions for the Euclidean null controllability of non-linear delay systems with time varying multiple delays in the control and implicit derivative are derived. If the uncontrolled system is uniformly asymptotically stable and if the control system is controllable, then the non-linear infinite delay system is Euclidean null ...
Expert system for accelerator single-freedom nonlinear components
International Nuclear Information System (INIS)
Wang Sheng; Xie Xi; Liu Chunliang
1995-01-01
An expert system by Arity Prolog is developed for accelerator single-freedom nonlinear components. It automatically yields any order approximate analytical solutions for various accelerator single-freedom nonlinear components. As an example, the eighth order approximate analytical solution is derived by this expert system for a general accelerator single-freedom nonlinear component, showing that the design of the expert system is successful
Distributed Fault Detection for a Class of Nonlinear Stochastic Systems
Directory of Open Access Journals (Sweden)
Bingyong Yan
2014-01-01
Full Text Available A novel distributed fault detection strategy for a class of nonlinear stochastic systems is presented. Different from the existing design procedures for fault detection, a novel fault detection observer, which consists of a nonlinear fault detection filter and a consensus filter, is proposed to detect the nonlinear stochastic systems faults. Firstly, the outputs of the nonlinear stochastic systems act as inputs of a consensus filter. Secondly, a nonlinear fault detection filter is constructed to provide estimation of unmeasurable system states and residual signals using outputs of the consensus filter. Stability analysis of the consensus filter is rigorously investigated. Meanwhile, the design procedures of the nonlinear fault detection filter are given in terms of linear matrix inequalities (LMIs. Taking the influence of the system stochastic noises into consideration, an outstanding feature of the proposed scheme is that false alarms can be reduced dramatically. Finally, simulation results are provided to show the feasibility and effectiveness of the proposed fault detection approach.
Computational Models for Nonlinear Aeroelastic Systems, Phase II
National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate new and efficient computational methods of modeling nonlinear aeroelastic systems. The...
Nonlinear PI control of chaotic systems using singular perturbation theory
International Nuclear Information System (INIS)
Wang Jiang; Wang Jing; Li Huiyan
2005-01-01
In this paper, we develop the nonlinear PI controllers for a class of chaotic systems based on singular perturbation theory. The original system is decomposed into two reduced order systems, to which the nonlinear uncertain terms belongs. In order to alleviate the deterioration of these nonlinear uncertainties, the nonlinear PI controllers are applied to each subsystem and combined to construct the composite controller for the full order system. The effectiveness and feasibility of the proposed control scheme is demonstrated through numerical simulations on the chaotic Chua's circuit
Model Updating Nonlinear System Identification Toolbox, Phase II
National Aeronautics and Space Administration — ZONA Technology (ZONA) proposes to develop an enhanced model updating nonlinear system identification (MUNSID) methodology that utilizes flight data with...
Bifurcations and Patterns in Nonlinear Dissipative Systems
Energy Technology Data Exchange (ETDEWEB)
Guenter Ahlers
2005-05-27
This project consists of experimental investigations of heat transport, pattern formation, and bifurcation phenomena in non-linear non-equilibrium fluid-mechanical systems. These issues are studies in Rayleigh-B\\'enard convection, using both pure and multicomponent fluids. They are of fundamental scientific interest, but also play an important role in engineering, materials science, ecology, meteorology, geophysics, and astrophysics. For instance, various forms of convection are important in such diverse phenomena as crystal growth from a melt with or without impurities, energy production in solar ponds, flow in the earth's mantle and outer core, geo-thermal stratifications, and various oceanographic and atmospheric phenomena. Our work utilizes computer-enhanced shadowgraph imaging of flow patterns, sophisticated digital image analysis, and high-resolution heat transport measurements.
Nonlinear problems in fluid dynamics and inverse scattering: Nonlinear waves and inverse scattering
Ablowitz, Mark J.
1994-12-01
Research investigations involving the fundamental understanding and applications of nonlinear wave motion and related studies of inverse scattering and numerical computation have been carried out and a number of significant results have been obtained. A class of nonlinear wave equations which can be solved by the inverse scattering transform (IST) have been studied, including the Kadaomtsev-Petviashvili (KP) equation, the Davey-Stewartson equation, and the 2+1 Toda system. The solutions obtained by IST correspond to the Cauchy initial value problem with decaying initial data. We have also solved two important systems via the IST method: a 'Volterra' system in 2+1 dimensions and a new one dimensional nonlinear equation which we refer to as the Toda differential-delay equation. Research in computational chaos in moderate to long time numerical simulations continues.
Nonlinear analysis of a reaction-diffusion system: Amplitude equations
Energy Technology Data Exchange (ETDEWEB)
Zemskov, E. P., E-mail: zemskov@ccas.ru [Russian Academy of Sciences, Dorodnicyn Computing Center (Russian Federation)
2012-10-15
A reaction-diffusion system with a nonlinear diffusion term is considered. Based on nonlinear analysis, the amplitude equations are obtained in the cases of the Hopf and Turing instabilities in the system. Turing pattern-forming regions in the parameter space are determined for supercritical and subcritical instabilities in a two-component reaction-diffusion system.
Adaptive projective synchronization of different chaotic systems with nonlinearity inputs
International Nuclear Information System (INIS)
Niu Yu-Jun; Pei Bing-Nan; Wang Xing-Yuan
2012-01-01
We investigate the projective synchronization of different chaotic systems with nonlinearity inputs. Based on the adaptive technique, sliding mode control method and pole assignment technique, a novel adaptive projective synchronization scheme is proposed to ensure the drive system and the response system with nonlinearity inputs can be rapidly synchronized up to the given scaling factor. (general)
Nonlinear dynamics of quadratically cubic systems
International Nuclear Information System (INIS)
Rudenko, O V
2013-01-01
We propose a modified form of the well-known nonlinear dynamic equations with quadratic relations used to model a cubic nonlinearity. We show that such quadratically cubic equations sometimes allow exact solutions and sometimes make the original problem easier to analyze qualitatively. Occasionally, exact solutions provide a useful tool for studying new phenomena. Examples considered include nonlinear ordinary differential equations and Hopf, Burgers, Korteweg–de Vries, and nonlinear Schrödinger partial differential equations. Some problems are solved exactly in the space–time and spectral representations. Unsolved problems potentially solvable by the proposed approach are listed. (methodological notes)
Spatial nonlinearities: Cascading effects in the earth system
Peters, Debra P.C.; Pielke, R.A.; Bestelmeyer, B.T.; Allen, Craig D.; Munson-McGee, Stuart; Havstad, K. M.; Canadell, Josep G.; Pataki, Diane E.; Pitelka, Louis F.
2006-01-01
Nonlinear behavior is prevalent in all aspects of the Earth System, including ecological responses to global change (Gallagher and Appenzeller 1999; Steffen et al. 2004). Nonlinear behavior refers to a large, discontinuous change in response to a small change in a driving variable (Rial et al. 2004). In contrast to linear systems where responses are smooth, well-behaved, continuous functions, nonlinear systems often undergo sharp or discontinuous transitions resulting from the crossing of thresholds. These nonlinear responses can result in surprising behavior that makes forecasting difficult (Kaplan and Glass 1995). Given that many system dynamics are nonlinear, it is imperative that conceptual and quantitative tools be developed to increase our understanding of the processes leading to nonlinear behavior in order to determine if forecasting can be improved under future environmental changes (Clark et al. 2001).
From Hamiltonian chaos to complex systems a nonlinear physics approach
Leonetti, Marc
2013-01-01
From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach collects contributions on recent developments in non-linear dynamics and statistical physics with an emphasis on complex systems. This book provides a wide range of state-of-the-art research in these fields. The unifying aspect of this book is a demonstration of how similar tools coming from dynamical systems, nonlinear physics, and statistical dynamics can lead to a large panorama of research in various fields of physics and beyond, most notably with the perspective of application in complex systems. This book also: Illustrates the broad research influence of tools coming from dynamical systems, nonlinear physics, and statistical dynamics Adopts a pedagogic approach to facilitate understanding by non-specialists and students Presents applications in complex systems Includes 150 illustrations From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach is an ideal book for graduate students and researchers working in applied...
Frequency domain performance analysis of nonlinearly controlled motion systems
Pavlov, A.V.; Wouw, van de N.; Pogromski, A.Y.; Heertjes, M.F.; Nijmeijer, H.
2007-01-01
At the heart of the performance analysis of linear motion control systems lie essential frequency domain characteristics such as sensitivity and complementary sensitivity functions. For a class of nonlinear motion control systems called convergent systems, generalized versions of these sensitivity
Noninteracting control of nonlinear systems based on relaxed control
Jayawardhana, B.
2010-01-01
In this paper, we propose methodology to solve noninteracting control problem for general nonlinear systems based on the relaxed control technique proposed by Artstein. For a class of nonlinear systems which cannot be stabilized by smooth feedback, a state-feedback relaxed control can be designed to
New developments in state estimation for Nonlinear Systems
DEFF Research Database (Denmark)
Nørgård, Peter Magnus; Poulsen, Niels Kjølstad; Ravn, Ole
2000-01-01
Based on an interpolation formula, accurate state estimators for nonlinear systems can be derived. The estimators do not require derivative information which makes them simple to implement.; State estimators for nonlinear systems are derived based on polynomial approximations obtained with a mult......-known estimators, such as the extended Kalman filter (EKF) and its higher-order relatives, in most practical applications....
Model reduction of nonlinear systems subject to input disturbances
Ndoye, Ibrahima; Laleg-Kirati, Taous-Meriem
2017-01-01
The method of convex optimization is used as a tool for model reduction of a class of nonlinear systems in the presence of disturbances. It is shown that under some conditions the nonlinear disturbed system can be approximated by a reduced order
Model reduction of nonlinear systems subject to input disturbances
Ndoye, Ibrahima
2017-07-10
The method of convex optimization is used as a tool for model reduction of a class of nonlinear systems in the presence of disturbances. It is shown that under some conditions the nonlinear disturbed system can be approximated by a reduced order nonlinear system with similar disturbance-output properties to the original plant. The proposed model reduction strategy preserves the nonlinearity and the input disturbance nature of the model. It guarantees a sufficiently small error between the outputs of the original and the reduced-order systems, and also maintains the properties of input-to-state stability. The matrices of the reduced order system are given in terms of a set of linear matrix inequalities (LMIs). The paper concludes with a demonstration of the proposed approach on model reduction of a nonlinear electronic circuit with additive disturbances.
Observers for Systems with Nonlinearities Satisfying an Incremental Quadratic Inequality
Acikmese, Ahmet Behcet; Corless, Martin
2004-01-01
We consider the problem of state estimation for nonlinear time-varying systems whose nonlinearities satisfy an incremental quadratic inequality. These observer results unifies earlier results in the literature; and extend it to some additional classes of nonlinearities. Observers are presented which guarantee that the state estimation error exponentially converges to zero. Observer design involves solving linear matrix inequalities for the observer gain matrices. Results are illustrated by application to a simple model of an underwater.
Useful tools for non-linear systems: Several non-linear integral inequalities
Czech Academy of Sciences Publication Activity Database
Agahi, H.; Mohammadpour, A.; Mesiar, Radko; Vaezpour, M. S.
2013-01-01
Roč. 49, č. 1 (2013), s. 73-80 ISSN 0950-7051 R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : Monotone measure * Comonotone functions * Integral inequalities * Universal integral Subject RIV: BA - General Mathematics Impact factor: 3.058, year: 2013 http://library.utia.cas.cz/separaty/2013/E/mesiar-useful tools for non-linear systems several non-linear integral inequalities.pdf
On the existence of solutions for Volterra integral inclusions in Banach spaces
Directory of Open Access Journals (Sweden)
Evgenios P. Avgerinos
1993-01-01
Full Text Available In this paper we examine a class of nonlinear integral inclusions defined in a separable Banach space. For this class of inclusions of Volterra type we establish two existence results, one for inclusions with a convex-valued orientor field and the other for inclusions with nonconvex-valued orientor field. We present conditions guaranteeing that the multivalued map that represents the right-hand side of the inclusion is α-condensing using for the proof of our results a known fixed point theorem for α-condensing maps.
Energy flow theory of nonlinear dynamical systems with applications
Xing, Jing Tang
2015-01-01
This monograph develops a generalised energy flow theory to investigate non-linear dynamical systems governed by ordinary differential equations in phase space and often met in various science and engineering fields. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos are tack-led and the corresponding energy flow behaviors are revealed using the proposed energy flow approach. As examples, the common interested nonlinear dynamical systems, such as, Duffing’s oscillator, Van der Pol’s equation, Lorenz attractor, Rössler one and SD oscillator, etc, are discussed. This monograph lights a new energy flow research direction for nonlinear dynamics. A generalised Matlab code with User Manuel is provided for readers to conduct the energy flow analysis of their nonlinear dynamical systems. Throughout the monograph the author continuously returns to some examples in each chapter to illustrate the applications of the discussed theory and approaches. The book can be used as ...
Nonlinear von Neumann equations for quantum dissipative systems
International Nuclear Information System (INIS)
Messer, J.; Baumgartner, B.
1978-01-01
For pure states nonlinear Schroedinger equations, the so-called Schroedinger-Langevin equations are well-known to model quantum dissipative systems of the Langevin type. For mixtures it is shown that these wave equations do not extend to master equations, but to corresponding nonlinear von Neumann equations. Solutions for the damped harmonic oscillator are discussed. (Auth.)
Nonlinear von Neumann equations for quantum dissipative systems
International Nuclear Information System (INIS)
Messer, J.; Baumgartner, B.
For pure states nonlinear Schroedinger equations, the so-called Schroedinger-Langevin equations are well-known to model quantum dissipative systems of the Langevin type. For mixtures it is shown that these wave equations do not extend to master equations, but to corresponding nonlinear von Neumann equations. Solutions for the damped harmonic oscillator are discussed. (Author)
XXIII International Conference on Nonlinear Dynamics of Electronic Systems
Stoop, Ruedi; Stramaglia, Sebastiano
2017-01-01
This book collects contributions to the XXIII international conference “Nonlinear dynamics of electronic systems”. Topics range from non-linearity in electronic circuits to synchronisation effects in complex networks to biological systems, neural dynamics and the complex organisation of the brain. Resting on a solid mathematical basis, these investigations address highly interdisciplinary problems in physics, engineering, biology and biochemistry.
Filtered-X Affine Projection Algorithms for Active Noise Control Using Volterra Filters
Directory of Open Access Journals (Sweden)
Sicuranza Giovanni L
2004-01-01
Full Text Available We consider the use of adaptive Volterra filters, implemented in the form of multichannel filter banks, as nonlinear active noise controllers. In particular, we discuss the derivation of filtered-X affine projection algorithms for homogeneous quadratic filters. According to the multichannel approach, it is then easy to pass from these algorithms to those of a generic Volterra filter. It is shown in the paper that the AP technique offers better convergence and tracking capabilities than the classical LMS and NLMS algorithms usually applied in nonlinear active noise controllers, with a limited complexity increase. This paper extends in two ways the content of a previous contribution published in Proc. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP '03, Grado, Italy, June 2003. First of all, a general adaptation algorithm valid for any order of affine projections is presented. Secondly, a more complete set of experiments is reported. In particular, the effects of using multichannel filter banks with a reduced number of channels are investigated and relevant results are shown.
Advanced nonlinear engine speed control systems
DEFF Research Database (Denmark)
Vesterholm, Thomas; Hendricks, Elbert
1994-01-01
Several subsidiary control problems have turned out to be important for improving driveability and fuel consumption in modern spark ignition (SI) engine cars. Among these are idle speed control and cruise control. In this paper the idle speed and cruise control problems will be treated as one......: accurately tracking of a desired engine speed in the presence of model uncertainties and severe load disturbances. This is accomplished by using advanced nonlinear control techniques such as input/output-linearization and sliding mode control. These techniques take advantage of a nonlinear model...... of the engine dynamics, a mean value engine model....
Analytical Evaluation of the Nonlinear Vibration of Coupled Oscillator Systems
DEFF Research Database (Denmark)
Bayat, M.; Shahidi, M.; Barari, Amin
2011-01-01
approximations to the achieved nonlinear differential oscillation equations where the displacement of the two-mass system can be obtained directly from the linear second-order differential equation using the first order of the current approach. Compared with exact solutions, just one iteration leads us to high......We consider periodic solutions for nonlinear free vibration of conservative, coupled mass-spring systems with linear and nonlinear stiffnesses. Two practical cases of these systems are explained and introduced. An analytical technique called energy balance method (EBM) was applied to calculate...
Discrete-time inverse optimal control for nonlinear systems
Sanchez, Edgar N
2013-01-01
Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). Th
Applications of equivalent linearization approaches to nonlinear piping systems
International Nuclear Information System (INIS)
Park, Y.; Hofmayer, C.; Chokshi, N.
1997-01-01
The piping systems in nuclear power plants, even with conventional snubber supports, are highly complex nonlinear structures under severe earthquake loadings mainly due to various mechanical gaps in support structures. Some type of nonlinear analysis is necessary to accurately predict the piping responses under earthquake loadings. The application of equivalent linearization approaches (ELA) to seismic analyses of nonlinear piping systems is presented. Two types of ELA's are studied; i.e., one based on the response spectrum method and the other based on the linear random vibration theory. The test results of main steam and feedwater piping systems supported by snubbers and energy absorbers are used to evaluate the numerical accuracy and limitations
Analysis and design of robust decentralized controllers for nonlinear systems
Energy Technology Data Exchange (ETDEWEB)
Schoenwald, D.A.
1993-07-01
Decentralized control strategies for nonlinear systems are achieved via feedback linearization techniques. New results on optimization and parameter robustness of non-linear systems are also developed. In addition, parametric uncertainty in large-scale systems is handled by sensitivity analysis and optimal control methods in a completely decentralized framework. This idea is applied to alleviate uncertainty in friction parameters for the gimbal joints on Space Station Freedom. As an example of decentralized nonlinear control, singular perturbation methods and distributed vibration damping are merged into a control strategy for a two-link flexible manipulator.
Hadron–Quark Combustion as a Nonlinear, Dynamical System
Directory of Open Access Journals (Sweden)
Amir Ouyed
2018-03-01
Full Text Available The hadron–quark combustion front is a system that couples various processes, such as chemical reactions, hydrodynamics, diffusion, and neutrino transport. Previous numerical work has shown that this system is very nonlinear, and can be very sensitive to some of these processes. In these proceedings, we contextualize the hadron–quark combustion as a nonlinear system, subject to dramatic feedback triggered by leptonic weak decays and neutrino transport.
Hadron–Quark Combustion as a Nonlinear, Dynamical System
Ouyed, Amir; Ouyed, Rachid; Jaikumar, Prashanth
2018-03-01
The hadron-quark combustion front is a system that couples various processes, such as chemical reactions, hydrodynamics, diffusion, and neutrino transport. Previous numerical work has shown that this system is very nonlinear, and can be very sensitive to some of these processes. In these proceedings, we contextualize the hadron-quark combustion as a nonlinear system, subject to dramatic feedback triggered by leptonic weak decays and neutrino transport.
Passivity Based Stabilization of Non-minimum Phase Nonlinear Systems
Czech Academy of Sciences Publication Activity Database
Travieso-Torres, J.C.; Duarte-Mermoud, M.A.; Zagalak, Petr
2009-01-01
Roč. 45, č. 3 (2009), s. 417-426 ISSN 0023-5954 R&D Projects: GA ČR(CZ) GA102/07/1596 Institutional research plan: CEZ:AV0Z10750506 Keywords : nonlinear systems * stabilisation * passivity * state feedback Subject RIV: BC - Control Systems Theory Impact factor: 0.445, year: 2009 http://library.utia.cas.cz/separaty/2009/AS/zagalak-passivity based stabilization of non-minimum phase nonlinear systems.pdf
Nonlinear propagation in fusion laser systems
International Nuclear Information System (INIS)
Bliss, E.S.; Glass, A.J.; Glaze, J.A.
1977-11-01
This report was assembled to provide a brief review of the historical development of the study of self-focusing and nonlinear light propagation and its impact on the design of large, Nd-glass lasers for fusion research. No claim to completeness is made, but we feel that the enclosed summary does not miss many of the major developments in the field
Point source identification in nonlinear advection–diffusion–reaction systems
International Nuclear Information System (INIS)
Mamonov, A V; Tsai, Y-H R
2013-01-01
We consider a problem of identification of point sources in time-dependent advection–diffusion systems with a nonlinear reaction term. The linear counterpart of the problem in question can be reduced to solving a system of nonlinear algebraic equations via the use of adjoint equations. We extend this approach by constructing an algorithm that solves the problem iteratively to account for the nonlinearity of the reaction term. We study the question of improving the quality of source identification by adding more measurements adaptively using the solution obtained previously with a smaller number of measurements. (paper)
Perturbation Theory for Open Two-Level Nonlinear Quantum Systems
International Nuclear Information System (INIS)
Zhang Zhijie; Jiang Dongguang; Wang Wei
2011-01-01
Perturbation theory is an important tool in quantum mechanics. In this paper, we extend the traditional perturbation theory to open nonlinear two-level systems, treating decoherence parameter γ as a perturbation. By this virtue, we give a perturbative solution to the master equation, which describes a nonlinear open quantum system. The results show that for small decoherence rate γ, the ratio of the nonlinear rate C to the tunneling coefficient V (i.e., r = C/V) determines the validity of the perturbation theory. For small ratio r, the perturbation theory is valid, otherwise it yields wrong results. (general)
Non-reciprocity in nonlinear elastodynamics
Blanchard, Antoine; Sapsis, Themistoklis P.; Vakakis, Alexander F.
2018-01-01
Reciprocity is a fundamental property of linear time-invariant (LTI) acoustic waveguides governed by self-adjoint operators with symmetric Green's functions. The break of reciprocity in LTI elastodynamics is only possible through the break of time reversal symmetry on the micro-level, and this can be achieved by imposing external biases, adding nonlinearities or allowing for time-varying system properties. We present a Volterra-series based asymptotic analysis for studying spatial non-reciprocity in a class of one-dimensional (1D), time-invariant elastic systems with weak stiffness nonlinearities. We show that nonlinearity is neither necessary nor sufficient for breaking reciprocity in this class of systems; rather, it depends on the boundary conditions, the symmetries of the governing linear and nonlinear operators, and the choice of the spatial points where the non-reciprocity criterion is tested. Extension of the analysis to higher dimensions and time-varying systems is straightforward from a mathematical point of view (but not in terms of new non-reciprocal physical phenomena), whereas the connection of non-reciprocity and time irreversibility can be studied as well. Finally, we show that suitably defined non-reciprocity measures enable optimization, and can provide physical understanding of the nonlinear effects in the dynamics, enabling one to establish regimes of "maximum nonlinearity." We highlight the theoretical developments by means of a numerical example.
Model Updating Nonlinear System Identification Toolbox, Phase I
National Aeronautics and Space Administration — ZONA Technology proposes to develop an enhanced model updating nonlinear system identification (MUNSID) methodology by adopting the flight data with state-of-the-art...
Stabilization and Control Models of Systems With Hysteresis Nonlinearities
Directory of Open Access Journals (Sweden)
Mihail E. Semenov
2012-05-01
Full Text Available Mechanical and economic systems with hysteresis nonlinearities are studied in article. Dissipativity condition of inverted pendulum under the hysteresis control is obtained. The solution of the optimal production strategy problem was found where price has hysteresis behaviour.
Geometric Theory of Reduction of Nonlinear Control Systems
Elkin, V. I.
2018-02-01
The foundations of a differential geometric theory of nonlinear control systems are described on the basis of categorical concepts (isomorphism, factorization, restrictions) by analogy with classical mathematical theories (of linear spaces, groups, etc.).
Computational Models for Nonlinear Aeroelastic Systems, Phase I
National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate a new and efficient computational method of modeling nonlinear aeroelastic systems. The...
Distributed Adaptive Neural Control for Stochastic Nonlinear Multiagent Systems.
Wang, Fang; Chen, Bing; Lin, Chong; Li, Xuehua
2016-11-14
In this paper, a consensus tracking problem of nonlinear multiagent systems is investigated under a directed communication topology. All the followers are modeled by stochastic nonlinear systems in nonstrict feedback form, where nonlinearities and stochastic disturbance terms are totally unknown. Based on the structural characteristic of neural networks (in Lemma 4), a novel distributed adaptive neural control scheme is put forward. The raised control method not only effectively handles unknown nonlinearities in nonstrict feedback systems, but also copes with the interactions among agents and coupling terms. Based on the stochastic Lyapunov functional method, it is indicated that all the signals of the closed-loop system are bounded in probability and all followers' outputs are convergent to a neighborhood of the output of leader. At last, the efficiency of the control method is testified by a numerical example.
Self-sustained solitons in systems with nonlinear damping
International Nuclear Information System (INIS)
Gonzalez, J.A.
1993-05-01
The existence and stability of kinks in systems with nonlinear damping are investigated. We discuss the mechanism of a bifurcation after which the kink becomes a non-stationary state. (author). 9 refs
Optimal beamforming in MIMO systems with HPA nonlinearity
Qi, Jian
2010-09-01
In this paper, multiple-input multiple-output (MIMO) transmit beamforming (TB) systems under the consideration of nonlinear high-power amplifiers (HPAs) are investigated. The optimal beamforming scheme, with the optimal beamforming weight vector and combining vector, is proposed for MIMO systems with HPA nonlinearity. The performance of the proposed MIMO beamforming scheme in the presence of HPA nonlinearity is evaluated in terms of average symbol error probability (SEP), outage probability and system capacity, considering transmission over uncorrelated quasi-static frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects of several system parameters, namely, parameters of nonlinear HPA, numbers of transmit and receive antennas, and modulation order of phase-shift keying (PSK), on performance. ©2010 IEEE.
Robust receding horizon control for networked and distributed nonlinear systems
Li, Huiping
2017-01-01
This book offers a comprehensive, easy-to-understand overview of receding-horizon control for nonlinear networks. It presents novel general strategies that can simultaneously handle general nonlinear dynamics, system constraints, and disturbances arising in networked and large-scale systems and which can be widely applied. These receding-horizon-control-based strategies can achieve sub-optimal control performance while ensuring closed-loop stability: a feature attractive to engineers. The authors address the problems of networked and distributed control step-by-step, gradually increasing the level of challenge presented. The book first introduces the state-feedback control problems of nonlinear networked systems and then studies output feedback control problems. For large-scale nonlinear systems, disturbance is considered first, then communication delay separately, and lastly the simultaneous combination of delays and disturbances. Each chapter of this easy-to-follow book not only proposes and analyzes novel ...
Optimal beamforming in MIMO systems with HPA nonlinearity
Qi, Jian; Aissa, Sonia
2010-01-01
In this paper, multiple-input multiple-output (MIMO) transmit beamforming (TB) systems under the consideration of nonlinear high-power amplifiers (HPAs) are investigated. The optimal beamforming scheme, with the optimal beamforming weight vector and combining vector, is proposed for MIMO systems with HPA nonlinearity. The performance of the proposed MIMO beamforming scheme in the presence of HPA nonlinearity is evaluated in terms of average symbol error probability (SEP), outage probability and system capacity, considering transmission over uncorrelated quasi-static frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects of several system parameters, namely, parameters of nonlinear HPA, numbers of transmit and receive antennas, and modulation order of phase-shift keying (PSK), on performance. ©2010 IEEE.
The nonlinear dynamics of a coupled fission system
International Nuclear Information System (INIS)
Bilanovic, Z.; Harms, A.A.
1993-01-01
The dynamic properties of a nonlinear and in situ vibrationally perturbed nuclear-to-thermal coupled neutron multiplying medium are examined. Some unique self-organizational temporal patterns appear in such fission systems and suggest a complex underlying dynamic. (Author)
Robust stabilization of nonlinear systems: The LMI approach
Directory of Open Access Journals (Sweden)
iljak D. D.
2000-01-01
Full Text Available This paper presents a new approach to robust quadratic stabilization of nonlinear systems within the framework of Linear Matrix Inequalities (LMI. The systems are composed of a linear constant part perturbed by an additive nonlinearity which depends discontinuously on both time and state. The only information about the nonlinearity is that it satisfies a quadratic constraint. Our major objective is to show how linear constant feedback laws can be formulated to stabilize this type of systems and, at the same time, maximize the bounds on the nonlinearity which the system can tolerate without going unstable. We shall broaden the new setting to include design of decentralized control laws for robust stabilization of interconnected systems. Again, the LMI methods will be used to maximize the class of uncertain interconnections which leave the overall system connectively stable. It is useful to learn that the proposed LMI formulation “recognizes” the matching conditions by returning a feedback gain matrix for any prescribed bound on the interconnection terms. More importantly, the new formulation provides a suitable setting for robust stabilization of nonlinear systems where the nonlinear perturbations satisfy the generalized matching conditions.
Nonlinear physical systems spectral analysis, stability and bifurcations
Kirillov, Oleg N
2013-01-01
Bringing together 18 chapters written by leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics, this book presents state-of-the-art approaches to a wide spectrum of new and challenging stability problems.Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations focuses on problems of spectral analysis, stability and bifurcations arising in the nonlinear partial differential equations of modern physics. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynam
Nonlinear dynamics of a coherent polariton-biexciton system
International Nuclear Information System (INIS)
Nguyen Trung Dan; Vo Tinh
1994-08-01
The nonlinear dynamics of a coherent interacting polariton-biexciton system in optically excited semiconductors is investigated. We consider the case when two macroscopically coherent modes - a lower branch polariton and a biexciton existing simultaneously in a direct-gap semiconductor. The conditions for exhibiting optical bistability in stationary regime are obtained. Numerical simulation for the nonlinear dynamics equations of the system is also carried out. (author). 16 refs, 4 figs
The human body metabolism process mathematical simulation based on Lotka-Volterra model
Oliynyk, Andriy; Oliynyk, Eugene; Pyptiuk, Olexandr; DzierŻak, RóŻa; Szatkowska, Małgorzata; Uvaysova, Svetlana; Kozbekova, Ainur
2017-08-01
The mathematical model of metabolism process in human organism based on Lotka-Volterra model has beeng proposed, considering healing regime, nutrition system, features of insulin and sugar fragmentation process in the organism. The numerical algorithm of the model using IV-order Runge-Kutta method has been realized. After the result of calculations the conclusions have been made, recommendations about using the modeling results have been showed, the vectors of the following researches are defined.
Nonlinear State Space Modeling and System Identification for Electrohydraulic Control
Directory of Open Access Journals (Sweden)
Jun Yan
2013-01-01
Full Text Available The paper deals with nonlinear modeling and identification of an electrohydraulic control system for improving its tracking performance. We build the nonlinear state space model for analyzing the highly nonlinear system and then develop a Hammerstein-Wiener (H-W model which consists of a static input nonlinear block with two-segment polynomial nonlinearities, a linear time-invariant dynamic block, and a static output nonlinear block with single polynomial nonlinearity to describe it. We simplify the H-W model into a linear-in-parameters structure by using the key term separation principle and then use a modified recursive least square method with iterative estimation of internal variables to identify all the unknown parameters simultaneously. It is found that the proposed H-W model approximates the actual system better than the independent Hammerstein, Wiener, and ARX models. The prediction error of the H-W model is about 13%, 54%, and 58% less than the Hammerstein, Wiener, and ARX models, respectively.
MINPACK-1, Subroutine Library for Nonlinear Equation System
International Nuclear Information System (INIS)
Garbow, Burton S.
1984-01-01
1 - Description of problem or function: MINPACK1 is a package of FORTRAN subprograms for the numerical solution of systems of non- linear equations and nonlinear least-squares problems. The individual programs are: Identification/Description: - CHKDER: Check gradients for consistency with functions, - DOGLEG: Determine combination of Gauss-Newton and gradient directions, - DPMPAR: Provide double precision machine parameters, - ENORM: Calculate Euclidean norm of vector, - FDJAC1: Calculate difference approximation to Jacobian (nonlinear equations), - FDJAC2: Calculate difference approximation to Jacobian (least squares), - HYBRD: Solve system of nonlinear equations (approximate Jacobian), - HYBRD1: Easy-to-use driver for HYBRD, - HYBRJ: Solve system of nonlinear equations (analytic Jacobian), - HYBRJ1: Easy-to-use driver for HYBRJ, - LMDER: Solve nonlinear least squares problem (analytic Jacobian), - LMDER1: Easy-to-use driver for LMDER, - LMDIF: Solve nonlinear least squares problem (approximate Jacobian), - LMDIF1: Easy-to-use driver for LMDIF, - LMPAR: Determine Levenberg-Marquardt parameter - LMSTR: Solve nonlinear least squares problem (analytic Jacobian, storage conserving), - LMSTR1: Easy-to-use driver for LMSTR, - QFORM: Accumulate orthogonal matrix from QR factorization QRFAC Compute QR factorization of rectangular matrix, - QRSOLV: Complete solution of least squares problem, - RWUPDT: Update QR factorization after row addition, - R1MPYQ: Apply orthogonal transformations from QR factorization, - R1UPDT: Update QR factorization after rank-1 addition, - SPMPAR: Provide single precision machine parameters. 4. Method of solution - MINPACK1 uses the modified Powell hybrid method and the Levenberg-Marquardt algorithm
A deep belief network with PLSR for nonlinear system modeling.
Qiao, Junfei; Wang, Gongming; Li, Wenjing; Li, Xiaoli
2017-10-31
Nonlinear system modeling plays an important role in practical engineering, and deep learning-based deep belief network (DBN) is now popular in nonlinear system modeling and identification because of the strong learning ability. However, the existing weights optimization for DBN is based on gradient, which always leads to a local optimum and a poor training result. In this paper, a DBN with partial least square regression (PLSR-DBN) is proposed for nonlinear system modeling, which focuses on the problem of weights optimization for DBN using PLSR. Firstly, unsupervised contrastive divergence (CD) algorithm is used in weights initialization. Secondly, initial weights derived from CD algorithm are optimized through layer-by-layer PLSR modeling from top layer to bottom layer. Instead of gradient method, PLSR-DBN can determine the optimal weights using several PLSR models, so that a better performance of PLSR-DBN is achieved. Then, the analysis of convergence is theoretically given to guarantee the effectiveness of the proposed PLSR-DBN model. Finally, the proposed PLSR-DBN is tested on two benchmark nonlinear systems and an actual wastewater treatment system as well as a handwritten digit recognition (nonlinear mapping and modeling) with high-dimension input data. The experiment results show that the proposed PLSR-DBN has better performances of time and accuracy on nonlinear system modeling than that of other methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nonlinear systems techniques for dynamical analysis and control
Lefeber, Erjen; Arteaga, Ines
2017-01-01
This treatment of modern topics related to the control of nonlinear systems is a collection of contributions celebrating the work of Professor Henk Nijmeijer and honoring his 60th birthday. It addresses several topics that have been the core of Professor Nijmeijer’s work, namely: the control of nonlinear systems, geometric control theory, synchronization, coordinated control, convergent systems and the control of underactuated systems. The book presents recent advances in these areas, contributed by leading international researchers in systems and control. In addition to the theoretical questions treated in the text, particular attention is paid to a number of applications including (mobile) robotics, marine vehicles, neural dynamics and mechanical systems generally. This volume provides a broad picture of the analysis and control of nonlinear systems for scientists and engineers with an interest in the interdisciplinary field of systems and control theory. The reader will benefit from the expert participan...
Structure Learning in Stochastic Non-linear Dynamical Systems
Morris, R. D.; Smelyanskiy, V. N.; Luchinsky, D. G.
2005-12-01
A great many systems can be modeled in the non-linear dynamical systems framework, as x˙ = f(x) + ξ(t), where f(x) is the potential function for the system, and ξ(t) is the driving noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications, for example in predator-prey systems, where the very structure of the coupling between predator-prey pairs can have great ecological significance.
Ndoye, Ibrahima; Voos, Holger; Laleg-Kirati, Taous-Meriem; Darouach, Mohamed
2014-01-01
In this paper, an adaptive observer design with parameter identification for a nonlinear system with external perturbations and unknown parameters is proposed. The states of the nonlinear system are estimated by a nonlinear observer and the unknown
Global stability and pattern formation in a nonlocal diffusive Lotka-Volterra competition model
Ni, Wenjie; Shi, Junping; Wang, Mingxin
2018-06-01
A diffusive Lotka-Volterra competition model with nonlocal intraspecific and interspecific competition between species is formulated and analyzed. The nonlocal competition strength is assumed to be determined by a diffusion kernel function to model the movement pattern of the biological species. It is shown that when there is no nonlocal intraspecific competition, the dynamics properties of nonlocal diffusive competition problem are similar to those of classical diffusive Lotka-Volterra competition model regardless of the strength of nonlocal interspecific competition. Global stability of nonnegative constant equilibria are proved using Lyapunov or upper-lower solution methods. On the other hand, strong nonlocal intraspecific competition increases the system spatiotemporal dynamic complexity. For the weak competition case, the nonlocal diffusive competition model may possess nonconstant positive equilibria for some suitably large nonlocal intraspecific competition coefficients.
Numerical treatments for solving nonlinear mixed integral equation
Directory of Open Access Journals (Sweden)
M.A. Abdou
2016-12-01
Full Text Available We consider a mixed type of nonlinear integral equation (MNLIE of the second kind in the space C[0,T]×L2(Ω,T<1. The Volterra integral terms (VITs are considered in time with continuous kernels, while the Fredholm integral term (FIT is considered in position with singular general kernel. Using the quadratic method and separation of variables method, we obtain a nonlinear system of Fredholm integral equations (NLSFIEs with singular kernel. A Toeplitz matrix method, in each case, is then used to obtain a nonlinear algebraic system. Numerical results are calculated when the kernels take a logarithmic form or Carleman function. Moreover, the error estimates, in each case, are then computed.
Ecological communities with Lotka-Volterra dynamics
Bunin, Guy
2017-04-01
Ecological communities in heterogeneous environments assemble through the combined effect of species interaction and migration. Understanding the effect of these processes on the community properties is central to ecology. Here we study these processes for a single community subject to migration from a pool of species, with population dynamics described by the generalized Lotka-Volterra equations. We derive exact results for the phase diagram describing the dynamical behaviors, and for the diversity and species abundance distributions. A phase transition is found from a phase where a unique globally attractive fixed point exists to a phase where multiple dynamical attractors exist, leading to history-dependent community properties. The model is shown to possess a symmetry that also establishes a connection with other well-known models.
Directory of Open Access Journals (Sweden)
S.H. Chen
1996-01-01
Full Text Available A modified Lindstedt–Poincaré method is presented for extending the range of the validity of perturbation expansion to strongly nonlinear oscillations of a system with quadratic and cubic nonlinearities. Different parameter transformations are introduced to deal with equations with different nonlinear characteristics. All examples show that the efficiency and accuracy of the present method are very good.
Parameter and Structure Inference for Nonlinear Dynamical Systems
Morris, Robin D.; Smelyanskiy, Vadim N.; Millonas, Mark
2006-01-01
A great many systems can be modeled in the non-linear dynamical systems framework, as x = f(x) + xi(t), where f() is the potential function for the system, and xi is the excitation noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications.
Nonlinear Predictive Sliding Mode Control for Active Suspension System
Directory of Open Access Journals (Sweden)
Dazhuang Wang
2018-01-01
Full Text Available An active suspension system is important in meeting the requirements of the ride comfort and handling stability for vehicles. In this work, a nonlinear model of active suspension system and a corresponding nonlinear robust predictive sliding mode control are established for the control problem of active suspension. Firstly, a seven-degree-of-freedom active suspension model is established considering the nonlinear effects of springs and dampers; and secondly, the dynamic model is expanded in the time domain, and the corresponding predictive sliding mode control is established. The uncertainties in the controller are approximated by the fuzzy logic system, and the adaptive controller reduces the approximation error to increase the robustness of the control system. Finally, the simulation results show that the ride comfort and handling stability performance of the active suspension system is better than that of the passive suspension system and the Skyhook active suspension. Thus, the system can obviously improve the shock absorption performance of vehicles.
On Weakly Singular Versions of Discrete Nonlinear Inequalities and Applications
Directory of Open Access Journals (Sweden)
Kelong Cheng
2014-01-01
Full Text Available Some new weakly singular versions of discrete nonlinear inequalities are established, which generalize some existing weakly singular inequalities and can be used in the analysis of nonlinear Volterra type difference equations with weakly singular kernels. A few applications to the upper bound and the uniqueness of solutions of nonlinear difference equations are also involved.
A new extended H∞ filter for discrete nonlinear systems
Institute of Scientific and Technical Information of China (English)
张永安; 周荻; 段广仁
2004-01-01
Nonlinear estimation problem is investigated in this paper. By extension of a linear H∞ estimation with corrector-predictor form to nonlinear cases, a new extended H∞ filter is proposed for time-varying discretetime nonlinear systems. The new filter has a simple observer structure based on a local linearization model, and can be viewed as a general case of the extended Kalman filter (EKF). An example demonstrates that the new filter with a suitable-chosen prescribed H∞ bound performs better than the EKF.
Integrability of a system of two nonlinear Schroedinger equations
International Nuclear Information System (INIS)
Zhukhunashvili, V.Z.
1989-01-01
In recent years the inverse scattering method has achieved significant successes in the integration of nonlinear models that arise in different branches of physics. However, its region of applicability is still restricted, i.e., not all nonlinear models can be integrated. In view of the great mathematical difficulties that arise in integration, it is clearly worth testing a model for integrability before turning to integration. Such a possibility is provided by the Zakharov-Schulman method. The question of the integrability of a system of two nonlinear Schroedinger equations is resolved. It is shown that the previously known cases exhaust all integrable variants
Stability properties of nonlinear dynamical systems and evolutionary stable states
Energy Technology Data Exchange (ETDEWEB)
Gleria, Iram, E-mail: iram@fis.ufal.br [Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió-AL (Brazil); Brenig, Leon [Faculté des Sciences, Université Libre de Bruxelles, 1050 Brussels (Belgium); Rocha Filho, Tarcísio M.; Figueiredo, Annibal [Instituto de Física and International Center for Condensed Matter Physics, Universidade de Brasília, 70919-970 Brasília-DF (Brazil)
2017-03-18
Highlights: • We address the problem of equilibrium stability in a general class of non-linear systems. • We link Evolutionary Stable States (ESS) to stable fixed points of square quasi-polynomial (QP) systems. • We show that an interior ES point may be related to stable interior fixed points of QP systems. - Abstract: In this paper we address the problem of stability in a general class of non-linear systems. We establish a link between the concepts of asymptotic stable interior fixed points of square Quasi-Polynomial systems and evolutionary stable states, a property of some payoff matrices arising from evolutionary games.
Stability Analysis of Fractional-Order Nonlinear Systems with Delay
Directory of Open Access Journals (Sweden)
Yu Wang
2014-01-01
Full Text Available Stability analysis of fractional-order nonlinear systems with delay is studied. We propose the definition of Mittag-Leffler stability of time-delay system and introduce the fractional Lyapunov direct method by using properties of Mittag-Leffler function and Laplace transform. Then some new sufficient conditions ensuring asymptotical stability of fractional-order nonlinear system with delay are proposed firstly. And the application of Riemann-Liouville fractional-order systems is extended by the fractional comparison principle and the Caputo fractional-order systems. Numerical simulations of an example demonstrate the universality and the effectiveness of the proposed method.
Nonlinear Damping Identification in Nonlinear Dynamic System Based on Stochastic Inverse Approach
Directory of Open Access Journals (Sweden)
S. L. Han
2012-01-01
Full Text Available The nonlinear model is crucial to prepare, supervise, and analyze mechanical system. In this paper, a new nonparametric and output-only identification procedure for nonlinear damping is studied. By introducing the concept of the stochastic state space, we formulate a stochastic inverse problem for a nonlinear damping. The solution of the stochastic inverse problem is designed as probabilistic expression via the hierarchical Bayesian formulation by considering various uncertainties such as the information insufficiency in parameter of interests or errors in measurement. The probability space is estimated using Markov chain Monte Carlo (MCMC. The applicability of the proposed method is demonstrated through numerical experiment and particular application to a realistic problem related to ship roll motion.
Fault detection and fault-tolerant control for nonlinear systems
Li, Linlin
2016-01-01
Linlin Li addresses the analysis and design issues of observer-based FD and FTC for nonlinear systems. The author analyses the existence conditions for the nonlinear observer-based FD systems to gain a deeper insight into the construction of FD systems. Aided by the T-S fuzzy technique, she recommends different design schemes, among them the L_inf/L_2 type of FD systems. The derived FD and FTC approaches are verified by two benchmark processes. Contents Overview of FD and FTC Technology Configuration of Nonlinear Observer-Based FD Systems Design of L2 nonlinear Observer-Based FD Systems Design of Weighted Fuzzy Observer-Based FD Systems FTC Configurations for Nonlinear Systems< Application to Benchmark Processes Target Groups Researchers and students in the field of engineering with a focus on fault diagnosis and fault-tolerant control fields The Author Dr. Linlin Li completed her dissertation under the supervision of Prof. Steven X. Ding at the Faculty of Engineering, University of Duisburg-Essen, Germany...
Mathematical Systems Theory : from Behaviors to Nonlinear Control
Julius, A; Pasumarthy, Ramkrishna; Rapisarda, Paolo; Scherpen, Jacquelien
2015-01-01
This treatment of modern topics related to mathematical systems theory forms the proceedings of a workshop, Mathematical Systems Theory: From Behaviors to Nonlinear Control, held at the University of Groningen in July 2015. The workshop celebrated the work of Professors Arjan van der Schaft and Harry Trentelman, honouring their 60th Birthdays. The first volume of this two-volume work covers a variety of topics related to nonlinear and hybrid control systems. After giving a detailed account of the state of the art in the related topic, each chapter presents new results and discusses new directions. As such, this volume provides a broad picture of the theory of nonlinear and hybrid control systems for scientists and engineers with an interest in the interdisciplinary field of systems and control theory. The reader will benefit from the expert participants’ ideas on exciting new approaches to control and system theory and their predictions of future directions for the subject that were discussed at the worksho...
On nonequilibrium many-body systems III: nonlinear transport theory
International Nuclear Information System (INIS)
Luzzi, R.; Vasconcellos, A.R.; Algarte, A.C.S.
1986-01-01
A nonlinear transport theory for many-body systems arbitrarily away from equilibrium, based on the nonequilibrium statistical operator (NSO) method, is presented. Nonlinear transport equations for a basis set of dynamical quantities are derived using two equivalent treatments that may be considered far reaching generalizations of the Hilbert-Chapman-Enskog method and Mori's generalized Langevin equations method. The first case is considered in some detail and the general characteristics of the theory are discussed. (Author) [pt
Zhao, Peng; Fan, Engui
2015-04-01
In this paper, a new type of integrable differential-difference hierarchy, namely, the generalized relativistic Lotka-Volterra (GRLV) hierarchy, is introduced. This hierarchy is closely related to Lotka-Volterra lattice and relativistic Lotka-Volterra lattice, which allows us to provide a unified and effective way to obtain some exact solutions for both the Lotka-Volterra hierarchy and the relativistic Lotka-Volterra hierarchy. In particular, we shall construct algebro-geometric quasiperiodic solutions for the LV hierarchy and the RLV hierarchy in a unified manner on the basis of the finite gap integration theory.
Chaos synchronization of a new chaotic system via nonlinear control
International Nuclear Information System (INIS)
Zhang Qunjiao; Lu Junan
2008-01-01
This paper investigates chaos synchronization of a new chaotic system [Lue J, Chen G, Cheng D. A new chaotic system and beyond: the generalized Lorenz-like system. Int J Bifurcat Chaos 2004;14:1507-37]. Two kinds of novel nonlinear controllers are designed based on the Lyapunov stability theory. It can be viewed as an improvement to the existing results of reference [Park JH. Chaos synchronization of a chaotic system via nonlinear control. Chaos, Solitons and Fractals 2005;25:579-84] because we use less controllers but realize a global and exponential asymptotical synchronization. Numerical simulations are provided to show the effectiveness and advantage of this method
Robust Nonlinear Control with Compensation Operator for a Peltier System
Directory of Open Access Journals (Sweden)
Sheng-Jun Wen
2014-01-01
Full Text Available Robust nonlinear control with compensation operator is presented for a Peltier actuated system, where the compensation operator is designed by using a predictive model on heat radiation. For the Peltier system, the heat radiation is related to the fourth power of temperature. So, the heat radiation is affected evidently by the temperature when it is high and temperature difference between the system and environment is large. A new nonlinear model with the heat radiation is set up for the system according to some thermal conduction laws. To ensure robust stability of the nonlinear system, operator based robust right coprime factorization design is considered. Also, a compensation operator based on a predictive model is proposed to cancel effect of the heat radiation, where the predictive model is set up by using radial basis kernel function based SVM (support vector machine method. Finally, simulation results are given to show the effectiveness of the proposed scheme.
Nonlinear control for a class of hydraulic servo system.
Yu, Hong; Feng, Zheng-jin; Wang, Xu-yong
2004-11-01
The dynamics of hydraulic systems are highly nonlinear and the system may be subjected to non-smooth and discontinuous nonlinearities due to directional change of valve opening, friction, etc. Aside from the nonlinear nature of hydraulic dynamics, hydraulic servo systems also have large extent of model uncertainties. To address these challenging issues, a robust state-feedback controller is designed by employing backstepping design technique such that the system output tracks a given signal arbitrarily well, and all signals in the closed-loop system remain bounded. Moreover, a relevant disturbance attenuation inequality is satisfied by the closed-loop signals. Compared with previously proposed robust controllers, this paper's robust controller based on backstepping recursive design method is easier to design, and is more suitable for implementation.
Rigorous Verification for the Solution of Nonlinear Interval System ...
African Journals Online (AJOL)
We survey a general method for solving nonlinear interval systems of equations. In particular, we paid special attention to the computational aspects of linear interval systems since the bulk of computations are done during the stage of computing outer estimation of the including linear interval systems. The height of our ...
Synchronization of two different chaotic systems via nonlinear ...
African Journals Online (AJOL)
ADOWIE PERE
ABSTRACT: This work reports the synchronization of a pair of four chaotic systems via nonlinear control technique. This method has been found to be easy to implement and effective especially on two different chaotic systems. We paired four chaotic systems out of which one is new and we have six possible pairs.
Dichotomy of nonlinear systems: Application to chaos control of nonlinear electronic circuit
International Nuclear Information System (INIS)
Wang Jinzhi; Duan Zhisheng; Huang Lin
2006-01-01
In this Letter a new method of chaos control for Chua's circuit and the modified canonical Chua's electrical circuit is proposed by using the results of dichotomy in nonlinear systems. A linear feedback control based on linear matrix inequality (LMI) is given such that chaos oscillation or hyperchaos phenomenon of circuit systems injected control signal disappear. Numerical simulations are presented to illustrate the efficiency of the proposed method
A nonlinear complementarity approach for the national energy modeling system
International Nuclear Information System (INIS)
Gabriel, S.A.; Kydes, A.S.
1995-01-01
The National Energy Modeling System (NEMS) is a large-scale mathematical model that computes equilibrium fuel prices and quantities in the U.S. energy sector. At present, to generate these equilibrium values, NEMS sequentially solves a collection of linear programs and nonlinear equations. The NEMS solution procedure then incorporates the solutions of these linear programs and nonlinear equations in a nonlinear Gauss-Seidel approach. The authors describe how the current version of NEMS can be formulated as a particular nonlinear complementarity problem (NCP), thereby possibly avoiding current convergence problems. In addition, they show that the NCP format is equally valid for a more general form of NEMS. They also describe several promising approaches for solving the NCP form of NEMS based on recent Newton type methods for general NCPs. These approaches share the feature of needing to solve their direction-finding subproblems only approximately. Hence, they can effectively exploit the sparsity inherent in the NEMS NCP
International Nuclear Information System (INIS)
Li Yingli; Xu Daolin; Fu Yiming; Zhou Jiaxi
2012-01-01
In this paper, the average method is adopted to analysis dynamic characteristics of nonlinear vibration isolation floating raft system with feedback control. The analytic results show that the purposes of reducing amplitude of oscillation and complicating the motion can be achieved by adjusting properly the system parameters, exciting frequency and control gain. The conclusions can provide some available evidences for the design and improvement of both the passive and active control of the vibration isolation systems. By altering the exciting frequency and control gain, complex motion of the system can be obtained. Numerical simulations show the system exhibits period vibration, double period vibration and quasi-period motion.
Incremental passivity and output regulation for switched nonlinear systems
Pang, Hongbo; Zhao, Jun
2017-10-01
This paper studies incremental passivity and global output regulation for switched nonlinear systems, whose subsystems are not required to be incrementally passive. A concept of incremental passivity for switched systems is put forward. First, a switched system is rendered incrementally passive by the design of a state-dependent switching law. Second, the feedback incremental passification is achieved by the design of a state-dependent switching law and a set of state feedback controllers. Finally, we show that once the incremental passivity for switched nonlinear systems is assured, the output regulation problem is solved by the design of global nonlinear regulator controllers comprising two components: the steady-state control and the linear output feedback stabilising controllers, even though the problem for none of subsystems is solvable. Two examples are presented to illustrate the effectiveness of the proposed approach.
Decreasing the LHC impedance with a nonlinear collimation system
Resta-López, J; Zimmermann, F
2007-01-01
A two-stage nonlinear collimation system based on a pair of skew sextupoles is presented for the LHC.We show the details of the optics design and study the halo cleaning efficiency of such a system. This nonlinear collimation system would allow opening up collimator gaps, and thereby reduce the collimator impedance, which presently limits the LHC beam intensity. Assuming the nominal LHC beam at 7 TeV, the transverse coherent tune shifts of rigid-dipole coupled-bunch modes are computed for both the baseline linear collimation system and the proposed nonlinear one. In either case, the tune shifts of the most unstable modes are compared with the stability diagrams for Landau damping.
Nonlinear dynamical system identification using unscented Kalman filter
Rehman, M. Javvad ur; Dass, Sarat Chandra; Asirvadam, Vijanth Sagayan
2016-11-01
Kalman Filter is the most suitable choice for linear state space and Gaussian error distribution from decades. In general practical systems are not linear and Gaussian so these assumptions give inconsistent results. System Identification for nonlinear dynamical systems is a difficult task to perform. Usually, Extended Kalman Filter (EKF) is used to deal with non-linearity in which Jacobian method is used for linearizing the system dynamics, But it has been observed that in highly non-linear environment performance of EKF is poor. Unscented Kalman Filter (UKF) is proposed here as a better option because instead of analytical linearization of state space, UKF performs statistical linearization by using sigma point calculated from deterministic samples. Formation of the posterior distribution is based on the propagation of mean and covariance through sigma points.
Ding, Bo; Fang, Huajing
2017-05-01
This paper is concerned with the fault prediction for the nonlinear stochastic system with incipient faults. Based on the particle filter and the reasonable assumption about the incipient faults, the modified fault estimation algorithm is proposed, and the system state is estimated simultaneously. According to the modified fault estimation, an intuitive fault detection strategy is introduced. Once each of the incipient fault is detected, the parameters of which are identified by a nonlinear regression method. Then, based on the estimated parameters, the future fault signal can be predicted. Finally, the effectiveness of the proposed method is verified by the simulations of the Three-tank system. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Seismic testing and analysis of a prototypic nonlinear piping system
International Nuclear Information System (INIS)
Barta, D.A.; Anderson, M.J.; Severud, L.K.
1982-11-01
A series of seismic tests and analyses of a nonlinear Fast Flux Test Facility (FFTF) prototypic piping system are described, and measured responses are compared with analytical predictions. The test loop was representative of a typical LMFBR insulated small bore piping system and it was supported from a rigid test frame by prototypic dead weight supports, mechanical snubbers and pipe clamps. Various piping support configurations were tested and analyzed to evaluate the effects of free play and other nonlinear stiffness characteristics on the piping system response
Gutierrez, Alberto, Jr.
1995-01-01
This dissertation evaluates receiver-based methods for mitigating the effects due to nonlinear bandlimited signal distortion present in high data rate satellite channels. The effects of the nonlinear bandlimited distortion is illustrated for digitally modulated signals. A lucid development of the low-pass Volterra discrete time model for a nonlinear communication channel is presented. In addition, finite-state machine models are explicitly developed for a nonlinear bandlimited satellite channel. A nonlinear fixed equalizer based on Volterra series has previously been studied for compensation of noiseless signal distortion due to a nonlinear satellite channel. This dissertation studies adaptive Volterra equalizers on a downlink-limited nonlinear bandlimited satellite channel. We employ as figure of merits performance in the mean-square error and probability of error senses. In addition, a receiver consisting of a fractionally-spaced equalizer (FSE) followed by a Volterra equalizer (FSE-Volterra) is found to give improvement beyond that gained by the Volterra equalizer. Significant probability of error performance improvement is found for multilevel modulation schemes. Also, it is found that probability of error improvement is more significant for modulation schemes, constant amplitude and multilevel, which require higher signal to noise ratios (i.e., higher modulation orders) for reliable operation. The maximum likelihood sequence detection (MLSD) receiver for a nonlinear satellite channel, a bank of matched filters followed by a Viterbi detector, serves as a probability of error lower bound for the Volterra and FSE-Volterra equalizers. However, this receiver has not been evaluated for a specific satellite channel. In this work, an MLSD receiver is evaluated for a specific downlink-limited satellite channel. Because of the bank of matched filters, the MLSD receiver may be high in complexity. Consequently, the probability of error performance of a more practical
Measurement Model Nonlinearity in Estimation of Dynamical Systems
Majji, Manoranjan; Junkins, J. L.; Turner, J. D.
2012-06-01
The role of nonlinearity of the measurement model and its interactions with the uncertainty of measurements and geometry of the problem is studied in this paper. An examination of the transformations of the probability density function in various coordinate systems is presented for several astrodynamics applications. Smooth and analytic nonlinear functions are considered for the studies on the exact transformation of uncertainty. Special emphasis is given to understanding the role of change of variables in the calculus of random variables. The transformation of probability density functions through mappings is shown to provide insight in to understanding the evolution of uncertainty in nonlinear systems. Examples are presented to highlight salient aspects of the discussion. A sequential orbit determination problem is analyzed, where the transformation formula provides useful insights for making the choice of coordinates for estimation of dynamic systems.
Model Reduction of Nonlinear Aeroelastic Systems Experiencing Hopf Bifurcation
Abdelkefi, Abdessattar
2013-06-18
In this paper, we employ the normal form to derive a reduced - order model that reproduces nonlinear dynamical behavior of aeroelastic systems that undergo Hopf bifurcation. As an example, we consider a rigid two - dimensional airfoil that is supported by nonlinear springs in the pitch and plunge directions and subjected to nonlinear aerodynamic loads. We apply the center manifold theorem on the governing equations to derive its normal form that constitutes a simplified representation of the aeroelastic sys tem near flutter onset (manifestation of Hopf bifurcation). Then, we use the normal form to identify a self - excited oscillator governed by a time - delay ordinary differential equation that approximates the dynamical behavior while reducing the dimension of the original system. Results obtained from this oscillator show a great capability to predict properly limit cycle oscillations that take place beyond and above flutter as compared with the original aeroelastic system.
Distributed control design for nonlinear output agreement in convergent systems
Weitenberg, Erik; De Persis, Claudio
2015-01-01
This work studies the problem of output agreement in homogeneous networks of nonlinear dynamical systems under time-varying disturbances using controllers placed at the nodes of the networks. For the class of contractive systems, necessary and sufficient conditions for output agreement are derived,
Linear time heteronymous damping in nonlinear parametric systems
Czech Academy of Sciences Publication Activity Database
Hortel, Milan; Škuderová, Alena; Houfek, Martin
2016-01-01
Roč. 40, 23-24 (2016), s. 10038-10051 ISSN 0307-904X Institutional support: RVO:61388998 Keywords : nonlinear dynamics of systems * parametric systems * time heteronymous damping * gears Subject RIV: JT - Propulsion, Motors ; Fuels Impact factor: 2.350, year: 2016
Nonlinear observer based phase synchronization of chaotic systems
International Nuclear Information System (INIS)
Meng Juan; Wang Xingyuan
2007-01-01
This Letter analyzes the phase synchronization problem of autonomous chaotic systems. Based on the nonlinear state observer algorithm and the pole placement technique, a phase synchronization scheme is designed. The phase synchronization of a new chaotic system is achieved by using this observer controller. Numerical simulations further demonstrate the effectiveness of the proposed phase synchronization scheme
On Similarity Invariance of Balancing for Nonlinear Systems
Scherpen, Jacquelien M.A.
1995-01-01
A previously obtained balancing method for nonlinear systems is investigated on similarity in variance by generalization of the observations on the similarity invariance of the linear balanced realization theory. For linear systems it is well known that the Hankel singular values are similarity
Networked Predictive Control for Nonlinear Systems With Arbitrary Region Quantizers.
Yang, Hongjiu; Xu, Yang; Xia, Yuanqing; Zhang, Jinhui
2017-04-06
In this paper, networked predictive control is investigated for planar nonlinear systems with quantization by an extended state observer (ESO). The ESO is used not only to deal with nonlinear terms but also to generate predictive states for dealing with network-induced delays. Two arbitrary region quantizers are applied to take effective values of signals in forward channel and feedback channel, respectively. Based on a "zoom" strategy, sufficient conditions are given to guarantee stabilization of the closed-loop networked control system with quantization. A simulation example is proposed to exhibit advantages and availability of the results.
Convergence criteria for systems of nonlinear elliptic partial differential equations
International Nuclear Information System (INIS)
Sharma, R.K.
1986-01-01
This thesis deals with convergence criteria for a special system of nonlinear elliptic partial differential equations. A fixed-point algorithm is used, which iteratively solves one linearized elliptic partial differential equation at a time. Conditions are established that help foresee the convergence of the algorithm. Under reasonable hypotheses it is proved that the algorithm converges for such nonlinear elliptic systems. Extensive experimental results are reported and they show the algorithm converges in a wide variety of cases and the convergence is well correlated with the theoretical conditions introduced in this thesis
Nonlocal Symmetries to Systems of Nonlinear Diffusion Equations
International Nuclear Information System (INIS)
Qu Changzheng; Kang Jing
2008-01-01
In this paper, we study potential symmetries to certain systems of nonlinear diffusion equations. Those systems have physical applications in soil science, mathematical biology, and invariant curve flows in R 3 . Lie point symmetries of the potential system, which cannot be projected to vector fields of the given dependent and independent variables, yield potential symmetries. The class of the system that admits potential symmetries is expanded.
Chaos synchronizations of chaotic systems via active nonlinear control
International Nuclear Information System (INIS)
Huang, J; Xiao, T J
2008-01-01
This paper not only investigates the chaos synchronization between two LCC chaotic systems, but also discusses the chaos synchronization between LCC system and Genesio system. Some novel active nonlinear controllers are designed to achieve synchronizations between drive and response systems effectively. Moreover, the sufficient conditions of synchronizations are derived by using Lyapunov stability theorem. Numerical simulations are presented to verify the theoretical analysis, which shows that the synchronization schemes are global effective
Accelerator-feasible N-body nonlinear integrable system
Directory of Open Access Journals (Sweden)
V. Danilov
2014-12-01
Full Text Available Nonlinear N-body integrable Hamiltonian systems, where N is an arbitrary number, have attracted the attention of mathematical physicists for the last several decades, following the discovery of some number of these systems. This paper presents a new integrable system, which can be realized in facilities such as particle accelerators. This feature makes it more attractive than many of the previous such systems with singular or unphysical forces.
Nonlinear dynamics non-integrable systems and chaotic dynamics
Borisov, Alexander
2017-01-01
This monograph reviews advanced topics in the area of nonlinear dynamics. Starting with theory of integrable systems – including methods to find and verify integrability – the remainder of the book is devoted to non-integrable systems with an emphasis on dynamical chaos. Topics include structural stability, mechanisms of emergence of irreversible behaviour in deterministic systems as well as chaotisation occurring in dissipative systems.
Asymptotic stabilization of nonlinear systems using state feedback
International Nuclear Information System (INIS)
D'Attellis, Carlos
1990-01-01
This paper studies the design of state-feedback controllers for the stabilization of single-input single-output nonlinear systems x = f(x) + g(x)u, y = h(x). Two approaches for the stabilization problem are given; the asymptotic stability is achieved by means of: a) nonlinear state feedback: two nonlinear feedbacks are used; the first separates the system in a controllable linear part and in the zeros-dynamic part. The second feedback generates an asymptotically stable equilibrium on the manifold where this dynamics evolves; b) nonlinear dynamic feedback: conditions are established under which the system can follow the output of a completely controllable bilinear system which uses bounded controls. This fact enables the system to reach, using bounded controls too, a desired output value in finite time. As this value corresponds to a state that lays in the attraction basin of a stable equilibrium with the same output, the system evolves to that point. The two methods are illustrated by examples. (Author) [es
Jump resonant frequency islands in nonlinear feedback control systems
Koenigsberg, W. D.; Dunn, J. C.
1975-01-01
A new type of jump resonance is predicted and observed in certain nonlinear feedback control systems. The new jump resonance characteristic is described as a 'frequency island' due to the fact that a portion of the input-output transfer characteristic is disjoint from the main body. The presence of such frequency islands was predicted by using a sinusoidal describing function characterization of the dynamics of an inertial gyro employing nonlinear ternary rebalance logic. While the general conditions under which such islands are possible has not been examined, a numerical approach is presented which can aid in establishing their presence. The existence of the frequency islands predicted for the ternary rebalanced gyro was confirmed by simulating the nonlinear system and measuring the transfer function.
Methodology for global nonlinear analysis of nuclear systems
International Nuclear Information System (INIS)
Cacuci, D.G.; Cacuci, G.L.
1987-01-01
This paper outlines a general method for globally computing the crucial features of nonlinear problems: bifurcations, limit points, saddle points, extrema (maxima and minima); our method also yields the local sensitivities (i.e., first order derivatives) of the system's state variables (e.g., fluxes, power, temperatures, flows) at any point in the system's phase space. We also present an application of this method to the nonlinear BWR model discussed in Refs. 8 and 11. The most significant novel feature of our method is the recasting of a general mathematical problem comprising three aspects: (1) nonlinear constrained optimization, (2) sensitivity analysis, into a fixed point problem of the form F[u(s), λ(s)] = 0 whose global zeros and singular points are related to the special features (i.e., extrema, bifurcations, etc.) of the original problem
Exact solutions for a system of nonlinear plasma fluid equations
International Nuclear Information System (INIS)
Prahovic, M.G.; Hazeltine, R.D.; Morrison, P.J.
1991-04-01
A method is presented for constructing exact solutions to a system of nonlinear plasma fluid equations that combines the physics of reduced magnetohydrodynamics and the electrostatic drift-wave description of the Charney-Hasegawa-Mima equation. The system has nonlinearities that take the form of Poisson brackets involving the fluid field variables. The method relies on modifying a class of simple equilibrium solutions, but no approximations are made. A distinguishing feature is that the original nonlinear problem is reduced to the solution of two linear partial differential equations, one fourth-order and the other first-order. The first-order equation has Hamiltonian characteristics and is easily integrated, supplying information about the general structure of solutions. 6 refs
Stable power laws in variable economies; Lotka-Volterra implies Pareto-Zipf
Solomon, S.; Richmond, P.
2002-05-01
In recent years we have found that logistic systems of the Generalized Lotka-Volterra type (GLV) describing statistical systems of auto-catalytic elements posses power law distributions of the Pareto-Zipf type. In particular, when applied to economic systems, GLV leads to power laws in the relative individual wealth distribution and in market returns. These power laws and their exponent α are invariant to arbitrary variations in the total wealth of the system and to other endogenously and exogenously induced variations.
Directory of Open Access Journals (Sweden)
Chuanjing Hou
2015-01-01
Full Text Available An adaptive failure compensation scheme using output feedback is proposed for a class of nonlinear systems with nonlinearities depending on the unmeasured states of systems. Adaptive high-gain K-filters are presented to suppress the nonlinearities while the proposed backstepping adaptive high-gain controller guarantees the stability of the closed-loop system and small tracking errors. Simulation results verify that the adaptive failure compensation scheme is effective.
Hou, Chuanjing; Hu, Lisheng; Zhang, Yingwei
2015-01-01
An adaptive failure compensation scheme using output feedback is proposed for a class of nonlinear systems with nonlinearities depending on the unmeasured states of systems. Adaptive high-gain K-filters are presented to suppress the nonlinearities while the proposed backstepping adaptive high-gain controller guarantees the stability of the closed-loop system and small tracking errors. Simulation results verify that the adaptive failure compensation scheme is effective.
The coupled nonlinear dynamics of a lift system
Energy Technology Data Exchange (ETDEWEB)
Crespo, Rafael Sánchez, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk; Kaczmarczyk, Stefan, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk; Picton, Phil, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk; Su, Huijuan, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk [The University of Northampton, School of Science and Technology, Avenue Campus, St George' s Avenue, Northampton (United Kingdom)
2014-12-10
Coupled lateral and longitudinal vibrations of suspension and compensating ropes in a high-rise lift system are often induced by the building motions due to wind or seismic excitations. When the frequencies of the building become near the natural frequencies of the ropes, large resonance motions of the system may result. This leads to adverse coupled dynamic phenomena involving nonplanar motions of the ropes, impact loads between the ropes and the shaft walls, as well as vertical vibrations of the car, counterweight and compensating sheave. Such an adverse dynamic behaviour of the system endangers the safety of the installation. This paper presents two mathematical models describing the nonlinear responses of a suspension/ compensating rope system coupled with the elevator car / compensating sheave motions. The models accommodate the nonlinear couplings between the lateral and longitudinal modes, with and without longitudinal inertia of the ropes. The partial differential nonlinear equations of motion are derived using Hamilton Principle. Then, the Galerkin method is used to discretise the equations of motion and to develop a nonlinear ordinary differential equation model. Approximate numerical solutions are determined and the behaviour of the system is analysed.
Directory of Open Access Journals (Sweden)
Imran Talib
2015-12-01
Full Text Available In this article, study the existence of solutions for the second-order nonlinear coupled system of ordinary differential equations $$\\displaylines{ u''(t=f(t,v(t,\\quad t\\in [0,1],\\cr v''(t=g(t,u(t,\\quad t\\in [0,1], }$$ with nonlinear coupled boundary conditions $$\\displaylines{ \\phi(u(0,v(0,u(1,v(1,u'(0,v'(0=(0,0, \\cr \\psi(u(0,v(0,u(1,v(1,u'(1,v'(1=(0,0, }$$ where $f,g:[0,1]\\times \\mathbb{R}\\to \\mathbb{R}$ and $\\phi,\\psi:\\mathbb{R}^6\\to \\mathbb{R}^2$ are continuous functions. Our main tools are coupled lower and upper solutions, Arzela-Ascoli theorem, and Schauder's fixed point theorem.
Tracking Control of Nonlinear Mechanical Systems
Lefeber, A.A.J.
2000-01-01
The subject of this thesis is the design of tracking controllers for certain classes of mechanical systems. The thesis consists of two parts. In the first part an accurate mathematical model of the mechanical system under consideration is assumed to be given. The goal is to follow a certain
Stabilization of switched nonlinear systems with unstable modes
Yang, Hao; Cocquempot, Vincent
2014-01-01
This book provides its reader with a good understanding of the stabilization of switched nonlinear systems (SNS), systems that are of practical use in diverse situations: design of fault-tolerant systems in space- and aircraft; traffic control; and heat propagation control of semiconductor power chips. The practical background is emphasized throughout the book; interesting practical examples frequently illustrate the theoretical results with aircraft and spacecraft given particular prominence. Stabilization of Switched Nonlinear Systems with Unstable Modes treats several different subclasses of SNS according to the characteristics of the individual system (time-varying and distributed parameters, for example), the state composition of individual modes and the degree and distribution of instability in its various modes. Achievement and maintenance of stability across the system as a whole is bolstered by trading off between individual modes which may be either stable or unstable, or by exploiting areas of part...
Linearly and nonlinearly bidirectionally coupled synchronization of hyperchaotic systems
International Nuclear Information System (INIS)
Zhou Jin; Lu Junan; Wu Xiaoqun
2007-01-01
To date, there have been many results about unidirectionally coupled synchronization of chaotic systems. However, much less work is reported on bidirectionally-coupled synchronization. In this paper, we investigate the synchronization of two bidirectionally coupled Chen hyperchaotic systems, which are coupled linearly and nonlinearly respectively. Firstly, linearly coupled synchronization of two hyperchaotic Chen systems is investigated, and a theorem on how to choose the coupling coefficients are developed to guarantee the global asymptotical synchronization of two coupled hyperchaotic systems. Analysis shows that the choice of the coupling coefficients relies on the bound of the chaotic system. Secondly, the nonlinearly coupled synchronization is studied; a sufficient condition for the locally asymptotical synchronization is derived, which is independent of the bound of the hyperchaotic system. Finally, numerical simulations are included to verify the effectiveness and feasibility of the developed theorems
PWL approximation of nonlinear dynamical systems, part I: structural stability
International Nuclear Information System (INIS)
Storace, M; De Feo, O
2005-01-01
This paper and its companion address the problem of the approximation/identification of nonlinear dynamical systems depending on parameters, with a view to their circuit implementation. The proposed method is based on a piecewise-linear approximation technique. In particular, this paper describes the approximation method and applies it to some particularly significant dynamical systems (topological normal forms). The structural stability of the PWL approximations of such systems is investigated through a bifurcation analysis (via continuation methods)
Reproduction of Economic Interests as a Nonlinear Dynamical System
Smiesova Viktoria L.
2017-01-01
The aim of the article is to define the system characteristics of reproduction of economic interests of actors, substantiate the possibility of its evolutionary and revolutionary development and the nonlinearity of its development in dynamics. The article justifies the main characteristics of the system of reproduction of economic interests. It is proved that in this system stability and variability are complementarily combined as integrated mechanisms of its development in statics and dynami...
Chaos synchronization of a chaotic system via nonlinear control
International Nuclear Information System (INIS)
Park, Ju H.
2005-01-01
In this letter, the problem of chaos synchronization of a chaotic system which is proposed by Lue et al. [Int J Bifurcat Chaos 2004;14:1507] is considered. A novel nonlinear controller is designed based on the Lyapunov stability theory. The proposed controller ensures that the states of the controlled chaotic slave system asymptotically synchronizes the states of the master system. A numerical example is given to illuminate the design procedure and advantage of the result derived
Integrable systems with quadratic nonlinearity in Fourier space
International Nuclear Information System (INIS)
Marikhin, V.G.
2003-01-01
The Lax pair representation in Fourier space is used to obtain a list of integrable scalar evolutionary equations with quadratic nonlinearity. The known systems of this type such as KdV, intermediate long-wave equation (ILW), Camassa-Holm and Degasperis-Procesi systems are represented in this list. Some new systems are obtained as well. Two-dimensional and discrete generalizations are discussed
Nonlinear control system analysis and design with Maple
Jager, de A.G.; Houstis, E.N.; Rice, J.R.
1992-01-01
For the analysis and design of nonlinear control systems non-numerical methods are available. The required analytical computations are mostly too tedious to be done error free in a reasonable time by hand, so the use of symbolic computation programs can be of advantage. To show that the symbolic
Relative controllability of nonlinear systems with delays in state and ...
African Journals Online (AJOL)
In this work, sufficient conditions are developed for the relative controllability of perturbed nonlinear systems with time varying multiple delays in control with the perturbation function having implicit derivative with delays depending on both state and control variable, using Darbo's fixed points theorem. Journal of the Nigerian ...
Accelerating Inexact Newton Schemes for Large Systems of Nonlinear Equations
Fokkema, D.R.; Sleijpen, G.L.G.; Vorst, H.A. van der
Classical iteration methods for linear systems, such as Jacobi iteration, can be accelerated considerably by Krylov subspace methods like GMRES. In this paper, we describe how inexact Newton methods for nonlinear problems can be accelerated in a similar way and how this leads to a general
Nonlinear dynamics of a parametrically driven sine-Gordon system
DEFF Research Database (Denmark)
Grønbech-Jensen, Niels; Kivshar, Yuri S.; Samuelsen, Mogens Rugholm
1993-01-01
We consider a sine-Gordon system, driven by an ac parametric force in the presence of loss. It is demonstrated that a breather can be maintained in a steady state at half of the external frequency. In the small-amplitude limit the effect is described by an effective nonlinear Schrodinger equation...
Relative controllability of nonlinear neutral systems with distributed ...
African Journals Online (AJOL)
In this paper we study the relative controllability of nonlinear neutral system with distributed and multiple lumped time varying delays in control. Using Schauder's fixed point theorem sufficient conditions for relative controllability in a given time interval are formulated and proved. Journal of the Nigerian Association of ...
Attractors for a class of doubly nonlinear parabolic systems
Directory of Open Access Journals (Sweden)
Hamid El Ouardi
2006-03-01
Full Text Available In this paper, we establish the existence and boundedness of solutions of a doubly nonlinear parabolic system. We also obtain the existence of a global attractor and the regularity property for this attractor in $\\left[ L^{\\infty }(\\Omega \\right] ^{2}$ and ${\\prod_{i=1}^{2}}{B_{\\infty }^{1+\\sigma_{i},p_{i}}( \\Omega } $.
Preliminary Test for Nonlinear Input Output Relations in SISO Systems
DEFF Research Database (Denmark)
Knudsen, Torben
2000-01-01
This paper discusses and develops preliminary statistical tests for detecting nonlinearities in the deterministic part of SISO systems with noise. The most referenced method is unreliable for common noise processes as e.g.\\ colored. Therefore two new methods based on superposition and sinus input...
Photon nonlinear mixing in subcarrier multiplexed quantum key distribution systems.
Capmany, José
2009-04-13
We provide, for the first time to our knowledge, an analysis of the influence of nonlinear photon mixing on the end to end quantum bit error rate (QBER) performance of subcarrier multiplexed quantum key distribution systems. The results show that negligible impact is to be expected for modulation indexes in the range of 2%.
Turing instability in reaction-diffusion systems with nonlinear diffusion
Energy Technology Data Exchange (ETDEWEB)
Zemskov, E. P., E-mail: zemskov@ccas.ru [Russian Academy of Sciences, Dorodnicyn Computing Center (Russian Federation)
2013-10-15
The Turing instability is studied in two-component reaction-diffusion systems with nonlinear diffusion terms, and the regions in parametric space where Turing patterns can form are determined. The boundaries between super- and subcritical bifurcations are found. Calculations are performed for one-dimensional brusselator and oregonator models.
Robust stabilization of nonlinear systems by quantized and ternary control
Persis, Claudio De
2009-01-01
Results on the problem of stabilizing a nonlinear continuous-time minimum-phase system by a finite number of control or measurement values are presented. The basic tool is a discontinuous version of the so-called semi-global backstepping lemma. We derive robust practical stabilizability results by
Chaotic behaviour of nonlinear coupled reaction–diffusion system in ...
Indian Academy of Sciences (India)
chaos in four-dimensional space by the generalized definitions of spatial ... according to nonlinear noise in the real physical world, f(φ(x),ψ(x)) and g(φ(x) ... tion in ecological system, where φm,n(s) is the host density in generations s and s + 1,.
Nonlinear Vibration of Oscillation Systems using Frequency-Amplitude Formulation
Directory of Open Access Journals (Sweden)
A. Fereidoon
2012-01-01
Full Text Available In this paper we study the periodic solutions of free vibration of mechanical systems with third and fifth-order nonlinearity for two examples using He's Frequency-Amplitude Formulation (HFAF.The effectiveness and convenience of the method is illustrated in these examples. It will be shown that the solutions obtained with current method have a fabulous conformity with those achieved from time marching solution. HFAF is easy with powerful concepts and the high accuracy, so it can be found widely applicable in vibrations, especially strong nonlinearity oscillatory problems.
Modelling and control of a nonlinear magnetostrictive actuator system
Ramli, M. H. M.; Majeed, A. P. P. Abdul; Anuar, M. A. M.; Mohamed, Z.
2018-04-01
This paper explores the implementation of a feedforward control method to a nonlinear control system, in particular, Magnetostrictive Actuators (MA) that has excellent properties of energy conversion between the mechanical and magnetic form through magnetostriction effects which could be used in actuating and sensing application. MA is known to exhibit hysteresis behaviour and it is rate dependent (the level of hysteresis depends closely on the rate of input excitation frequency). This is, nonetheless, an undesirable behaviour and has to be eliminated in realising high precision application. The MA is modelled by a phenomenological modelling approach via Prandtl-Ishlinskii (P-I) operator to characterise the hysteresis nonlinearities. A feedforward control strategy is designed and implemented to linearize and eliminate the hysteresis by model inversion. The results show that the P-I operator has the capability to model the hysteretic nonlinearity of MA with an acceptable accuracy. Furthermore, the proposed control scheme has demonstrated to be effective in providing superior trajectory tracking.
Lie Symmetries and Solitons in Nonlinear Systems with Spatially Inhomogeneous Nonlinearities
International Nuclear Information System (INIS)
Belmonte-Beitia, Juan; Perez-Garcia, Victor M.; Vekslerchik, Vadym; Torres, Pedro J.
2007-01-01
Using Lie group theory and canonical transformations, we construct explicit solutions of nonlinear Schroedinger equations with spatially inhomogeneous nonlinearities. We present the general theory, use it to show that localized nonlinearities can support bound states with an arbitrary number solitons, and discuss other applications of interest to the field of nonlinear matter waves
An introduction to complex systems society, ecology, and nonlinear dynamics
Fieguth, Paul
2017-01-01
This undergraduate text explores a variety of large-scale phenomena - global warming, ice ages, water, poverty - and uses these case studies as a motivation to explore nonlinear dynamics, power-law statistics, and complex systems. Although the detailed mathematical descriptions of these topics can be challenging, the consequences of a system being nonlinear, power-law, or complex are in fact quite accessible. This book blends a tutorial approach to the mathematical aspects of complex systems together with a complementary narrative on the global/ecological/societal implications of such systems. Nearly all engineering undergraduate courses focus on mathematics and systems which are small scale, linear, and Gaussian. Unfortunately there is not a single large-scale ecological or social phenomenon that is scalar, linear, and Gaussian. This book offers students insights to better understand the large-scale problems facing the world and to realize that these cannot be solved by a single, narrow academic field or per...
Nonlinear Dynamics, Chaotic and Complex Systems
Infeld, E.; Zelazny, R.; Galkowski, A.
2011-04-01
Part I. Dynamic Systems Bifurcation Theory and Chaos: 1. Chaos in random dynamical systems V. M. Gunldach; 2. Controlling chaos using embedded unstable periodic orbits: the problem of optimal periodic orbits B. R. Hunt and E. Ott; 3. Chaotic tracer dynamics in open hydrodynamical flows G. Karolyi, A. Pentek, T. Tel and Z. Toroczkai; 4. Homoclinic chaos L. P. Shilnikov; Part II. Spatially Extended Systems: 5. Hydrodynamics of relativistic probability flows I. Bialynicki-Birula; 6. Waves in ionic reaction-diffusion-migration systems P. Hasal, V. Nevoral, I. Schreiber, H. Sevcikova, D. Snita, and M. Marek; 7. Anomalous scaling in turbulence: a field theoretical approach V. Lvov and I. Procaccia; 8. Abelian sandpile cellular automata M. Markosova; 9. Transport in an incompletely chaotic magnetic field F. Spineanu; Part III. Dynamical Chaos Quantum Physics and Foundations Of Statistical Mechanics: 10. Non-equilibrium statistical mechanics and ergodic theory L. A. Bunimovich; 11. Pseudochaos in statistical physics B. Chirikov; 12. Foundations of non-equilibrium statistical mechanics J. P. Dougherty; 13. Thermomechanical particle simulations W. G. Hoover, H. A. Posch, C. H. Dellago, O. Kum, C. G. Hoover, A. J. De Groot and B. L. Holian; 14. Quantum dynamics on a Markov background and irreversibility B. Pavlov; 15. Time chaos and the laws of nature I. Prigogine and D. J. Driebe; 16. Evolutionary Q and cognitive systems: dynamic entropies and predictability of evolutionary processes W. Ebeling; 17. Spatiotemporal chaos information processing in neural networks H. Szu; 18. Phase transitions and learning in neural networks C. Van den Broeck; 19. Synthesis of chaos A. Vanecek and S. Celikovsky; 20. Computational complexity of continuous problems H. Wozniakowski; Part IV. Complex Systems As An Interface Between Natural Sciences and Environmental Social and Economic Sciences: 21. Stochastic differential geometry in finance studies V. G. Makhankov; Part V. Conference Banquet
On the power amplifier nonlinearity in MIMO transmit beamforming systems
Qi, Jian
2012-03-01
In this paper, single-carrier multiple-input multiple-output (MIMO) transmit beamforming (TB) systems in the presence of high-power amplifier (HPA) nonlinearity are investigated. Specifically, due to the suboptimality of the conventional maximal ratio transmission/maximal ratio combining (MRT/MRC) under HPA nonlinearity, we propose the optimal TB scheme with the optimal beamforming weight vector and combining vector, for MIMO systems with nonlinear HPAs. Moreover, an alternative suboptimal but much simpler TB scheme, namely, quantized equal gain transmission (QEGT), is proposed. The latter profits from the property that the elements of the beamforming weight vector have the same constant modulus. The performance of the proposed optimal TB scheme and QEGT/MRC technique in the presence of the HPA nonlinearity is evaluated in terms of the average symbol error probability and mutual information with the Gaussian input, considering the transmission over uncorrelated quasi-static frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects on the performance of several system parameters, namely, the HPA parameters, numbers of antennas, quadrature amplitude modulation modulation order, number of pilot symbols, and cardinality of the beamforming weight vector codebook for QEGT. © 2012 IEEE.
Upport vector machines for nonlinear kernel ARMA system identification.
Martínez-Ramón, Manel; Rojo-Alvarez, José Luis; Camps-Valls, Gustavo; Muñioz-Marí, Jordi; Navia-Vázquez, Angel; Soria-Olivas, Emilio; Figueiras-Vidal, Aníbal R
2006-11-01
Nonlinear system identification based on support vector machines (SVM) has been usually addressed by means of the standard SVM regression (SVR), which can be seen as an implicit nonlinear autoregressive and moving average (ARMA) model in some reproducing kernel Hilbert space (RKHS). The proposal of this letter is twofold. First, the explicit consideration of an ARMA model in an RKHS (SVM-ARMA2K) is proposed. We show that stating the ARMA equations in an RKHS leads to solving the regularized normal equations in that RKHS, in terms of the autocorrelation and cross correlation of the (nonlinearly) transformed input and output discrete time processes. Second, a general class of SVM-based system identification nonlinear models is presented, based on the use of composite Mercer's kernels. This general class can improve model flexibility by emphasizing the input-output cross information (SVM-ARMA4K), which leads to straightforward and natural combinations of implicit and explicit ARMA models (SVR-ARMA2K and SVR-ARMA4K). Capabilities of these different SVM-based system identification schemes are illustrated with two benchmark problems.
On the power amplifier nonlinearity in MIMO transmit beamforming systems
Qi, Jian; Aissa, Sonia
2012-01-01
In this paper, single-carrier multiple-input multiple-output (MIMO) transmit beamforming (TB) systems in the presence of high-power amplifier (HPA) nonlinearity are investigated. Specifically, due to the suboptimality of the conventional maximal ratio transmission/maximal ratio combining (MRT/MRC) under HPA nonlinearity, we propose the optimal TB scheme with the optimal beamforming weight vector and combining vector, for MIMO systems with nonlinear HPAs. Moreover, an alternative suboptimal but much simpler TB scheme, namely, quantized equal gain transmission (QEGT), is proposed. The latter profits from the property that the elements of the beamforming weight vector have the same constant modulus. The performance of the proposed optimal TB scheme and QEGT/MRC technique in the presence of the HPA nonlinearity is evaluated in terms of the average symbol error probability and mutual information with the Gaussian input, considering the transmission over uncorrelated quasi-static frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects on the performance of several system parameters, namely, the HPA parameters, numbers of antennas, quadrature amplitude modulation modulation order, number of pilot symbols, and cardinality of the beamforming weight vector codebook for QEGT. © 2012 IEEE.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises.
Deng, Mao-Lin; Zhu, Wei-Qiu
2016-08-01
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises
International Nuclear Information System (INIS)
Deng, Mao-Lin; Zhu, Wei-Qiu
2016-01-01
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
Response of MDOF strongly nonlinear systems to fractional Gaussian noises
Energy Technology Data Exchange (ETDEWEB)
Deng, Mao-Lin; Zhu, Wei-Qiu, E-mail: wqzhu@zju.edu.cn [Department of Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027 (China)
2016-08-15
In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.
Coupled diffusion systems with localized nonlinear reactions
DEFF Research Database (Denmark)
Pedersen, M.; Lin, Zhigui
2001-01-01
This paper deals with the blowup rate and profile near the blowup time for the system of diffusion equations uit - Î´ui = ui+1Pi(x0, t), (i = 1,...,k, uk+1 := uu) in Î© Ã— (0, T) with boundary conditions ui = 0 on âˆ‚Î© Ã— [0, T). We show that the solution has a global blowup. The exact rate...
Nonlinear integrodifferential equations as discrete systems
Tamizhmani, K. M.; Satsuma, J.; Grammaticos, B.; Ramani, A.
1999-06-01
We analyse a class of integrodifferential equations of the `intermediate long wave' (ILW) type. We show that these equations can be formally interpreted as discrete, differential-difference systems. This allows us to link equations of this type with previous results of ours involving differential-delay equations and, on the basis of this, propose new integrable equations of ILW type. Finally, we extend this approach to pure difference equations and propose ILW forms for the discrete lattice KdV equation.
Probabilistic DHP adaptive critic for nonlinear stochastic control systems.
Herzallah, Randa
2013-06-01
Following the recently developed algorithms for fully probabilistic control design for general dynamic stochastic systems (Herzallah & Káarnáy, 2011; Kárný, 1996), this paper presents the solution to the probabilistic dual heuristic programming (DHP) adaptive critic method (Herzallah & Káarnáy, 2011) and randomized control algorithm for stochastic nonlinear dynamical systems. The purpose of the randomized control input design is to make the joint probability density function of the closed loop system as close as possible to a predetermined ideal joint probability density function. This paper completes the previous work (Herzallah & Káarnáy, 2011; Kárný, 1996) by formulating and solving the fully probabilistic control design problem on the more general case of nonlinear stochastic discrete time systems. A simulated example is used to demonstrate the use of the algorithm and encouraging results have been obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.
The matrix realization of affine Jacobi varieties and the extended Lotka-Volterra lattice
International Nuclear Information System (INIS)
Inoue, Rei
2004-01-01
We study completely integrable Hamiltonian systems whose monodromy matrices are related to the representatives for the set of gauge equivalence classes M F of polynomial matrices. Let X be the algebraic curve given by the common characteristic equation for M F . We construct the isomorphism from the set of representatives to an affine part of the Jacobi variety of X. This variety corresponds to the invariant manifold of the system, where the Hamiltonian flow is linearized. As an application, we discuss the algebraic complete integrability of the extended Lotka-Volterra lattice with a periodic boundary condition
PWL approximation of nonlinear dynamical systems, part II: identification issues
International Nuclear Information System (INIS)
De Feo, O; Storace, M
2005-01-01
This paper and its companion address the problem of the approximation/identification of nonlinear dynamical systems depending on parameters, with a view to their circuit implementation. The proposed method is based on a piecewise-linear approximation technique. In particular, this paper describes a black-box identification method based on state space reconstruction and PWL approximation, and applies it to some particularly significant dynamical systems (two topological normal forms and the Colpitts oscillator)
Global Linear Representations of Nonlinear Systems and the Adjoint Map
Banks, S.P.
1988-01-01
In this paper we shall study the global linearization of nonlinear systems on a manifold by two methods. The first consists of an expansion of the vector field in the space of square integrable vector fields. In the second method we use the adjoint representation of the Lie algebra vector fields to obtain an infinite-dimensional matrix representation of the system. A connection between the two approaches will be developed.
Nonlinear degenerate cross-diffusion systems with nonlocal interaction
Di Francesco, M.; Esposito, A.; Fagioli, S.
2017-01-01
We investigate a class of systems of partial differential equations with nonlinear cross-diffusion and nonlocal interactions, which are of interest in several contexts in social sciences, finance, biology, and real world applications. Assuming a uniform "coerciveness" assumption on the diffusion part, which allows to consider a large class of systems with degenerate cross-diffusion (i.e. of porous medium type) and relaxes sets of assumptions previously considered in the literature, we prove g...
Nonlinear damping based semi-active building isolation system
Ho, Carmen; Zhu, Yunpeng; Lang, Zi-Qiang; Billings, Stephen A.; Kohiyama, Masayuki; Wakayama, Shizuka
2018-06-01
Many buildings in Japan currently have a base-isolation system with a low stiffness that is designed to shift the natural frequency of the building below the frequencies of the ground motion due to earthquakes. However, the ground motion observed during the 2011 Tohoku earthquake contained strong long-period waves that lasted for a record length of 3 min. To provide a novel and better solution against the long-period waves while maintaining the performance of the standard isolation range, the exploitation of the characteristics of nonlinear damping is proposed in this paper. This is motivated by previous studies of the authors, which have demonstrated that nonlinear damping can achieve desired performance over both low and high frequency regions and the optimal nonlinear damping force can be realized by closed loop controlled semi-active dampers. Simulation results have shown strong vibration isolation performance on a building model with identified parameters and have indicated that nonlinear damping can achieve low acceleration transmissibilities round the structural natural frequency as well as the higher ground motion frequencies that have been frequently observed during most earthquakes in Japan. In addition, physical building model based laboratory experiments are also conducted, The results demonstrate the advantages of the proposed nonlinear damping technologies over both traditional linear damping and more advanced Linear-Quadratic Gaussian (LQG) feedback control which have been used in practice to address building isolation system design and implementation problems. In comparison with the tuned-mass damper and other active control methods, the proposed solution offers a more pragmatic, low-cost, robust and effective alternative that can be readily installed into the base-isolation system of most buildings.
On the asymptotic stability of nonlinear mechanical switched systems
Platonov, A. V.
2018-05-01
Some classes of switched mechanical systems with dissipative and potential forces are considered. The case, where either dissipative or potential forces are essentially nonlinear, is studied. It is assumed that the zero equilibrium position of the system is asymptotically stable at least for one operating mode. We will look for sufficient conditions which guarantee the preservation of asymptotic stability of the equilibrium position under the switching of modes. The Lyapunov direct method is used. A Lyapunov function for considered system is constructed, which satisfies the differential inequality of special form for every operating mode. This inequality is nonlinear for the chosen mode with asymptotically stable equilibrium position, and it is linear for the rest modes. The correlations between the intervals of activity of the pointed mode and the intervals of activity of the rest modes are obtained which guarantee the required properties.
Soliton dynamics in periodic system with different nonlinear media
International Nuclear Information System (INIS)
Zabolotskij, A.A.
2001-01-01
To analyze pulse dynamics in the optical system consisting of periodic sequence of nonlinear media one uses a composition model covering a model of resonance interaction of light ultrashort pulse with energy transition of medium with regard to pumping of the upper level and quasi-integrable model describing propagation of light field in another medium with cubic nonlinearity and dispersion. One additionally takes account of losses and other types of interaction in the from of perturbation members. On the basis of the method of scattering back problem and perturbation theory one developed a simple method to study peculiarities of soliton evolution in such periodic system. Due to its application one managed to describe different modes of soliton evolution in such a system including chaotic dynamics [ru
Nonlinear system identification of smart structures under high impact loads
International Nuclear Information System (INIS)
Sarp Arsava, Kemal; Kim, Yeesock; El-Korchi, Tahar; Park, Hyo Seon
2013-01-01
The main purpose of this paper is to develop numerical models for the prediction and analysis of the highly nonlinear behavior of integrated structure control systems subjected to high impact loading. A time-delayed adaptive neuro-fuzzy inference system (TANFIS) is proposed for modeling of the complex nonlinear behavior of smart structures equipped with magnetorheological (MR) dampers under high impact forces. Experimental studies are performed to generate sets of input and output data for training and validation of the TANFIS models. The high impact load and current signals are used as the input disturbance and control signals while the displacement and acceleration responses from the structure–MR damper system are used as the output signals. The benchmark adaptive neuro-fuzzy inference system (ANFIS) is used as a baseline. Comparisons of the trained TANFIS models with experimental results demonstrate that the TANFIS modeling framework is an effective way to capture nonlinear behavior of integrated structure–MR damper systems under high impact loading. In addition, the performance of the TANFIS model is much better than that of ANFIS in both the training and the validation processes. (paper)
Nonlinear system identification of smart structures under high impact loads
Sarp Arsava, Kemal; Kim, Yeesock; El-Korchi, Tahar; Park, Hyo Seon
2013-05-01
The main purpose of this paper is to develop numerical models for the prediction and analysis of the highly nonlinear behavior of integrated structure control systems subjected to high impact loading. A time-delayed adaptive neuro-fuzzy inference system (TANFIS) is proposed for modeling of the complex nonlinear behavior of smart structures equipped with magnetorheological (MR) dampers under high impact forces. Experimental studies are performed to generate sets of input and output data for training and validation of the TANFIS models. The high impact load and current signals are used as the input disturbance and control signals while the displacement and acceleration responses from the structure-MR damper system are used as the output signals. The benchmark adaptive neuro-fuzzy inference system (ANFIS) is used as a baseline. Comparisons of the trained TANFIS models with experimental results demonstrate that the TANFIS modeling framework is an effective way to capture nonlinear behavior of integrated structure-MR damper systems under high impact loading. In addition, the performance of the TANFIS model is much better than that of ANFIS in both the training and the validation processes.
Nonlinear noninteger order circuits and systems an introduction
Arena, P; Fortuna, L; Porto, D
2001-01-01
In this book, the reader will find a theoretical introduction to noninteger order systems, as well as several applications showing their features and peculiarities. The main definitions and results of research on noninteger order systems and modelling of physical noninteger phenomena are reported together with problems of their approximation. Control applications, noninteger order CNNs and circuit realizations of noninteger order systems are also presented.The book is intended for students and researchers involved in the simulation and control of nonlinear noninteger order systems, with partic
Spatio-temporal modeling of nonlinear distributed parameter systems
Li, Han-Xiong
2011-01-01
The purpose of this volume is to provide a brief review of the previous work on model reduction and identifi cation of distributed parameter systems (DPS), and develop new spatio-temporal models and their relevant identifi cation approaches. In this book, a systematic overview and classifi cation on the modeling of DPS is presented fi rst, which includes model reduction, parameter estimation and system identifi cation. Next, a class of block-oriented nonlinear systems in traditional lumped parameter systems (LPS) is extended to DPS, which results in the spatio-temporal Wiener and Hammerstein s
On the orthogonalised reverse path method for nonlinear system identification
Muhamad, P.; Sims, N. D.; Worden, K.
2012-09-01
The problem of obtaining the underlying linear dynamic compliance matrix in the presence of nonlinearities in a general multi-degree-of-freedom (MDOF) system can be solved using the conditioned reverse path (CRP) method introduced by Richards and Singh (1998 Journal of Sound and Vibration, 213(4): pp. 673-708). The CRP method also provides a means of identifying the coefficients of any nonlinear terms which can be specified a priori in the candidate equations of motion. Although the CRP has proved extremely useful in the context of nonlinear system identification, it has a number of small issues associated with it. One of these issues is the fact that the nonlinear coefficients are actually returned in the form of spectra which need to be averaged over frequency in order to generate parameter estimates. The parameter spectra are typically polluted by artefacts from the identification of the underlying linear system which manifest themselves at the resonance and anti-resonance frequencies. A further problem is associated with the fact that the parameter estimates are extracted in a recursive fashion which leads to an accumulation of errors. The first minor objective of this paper is to suggest ways to alleviate these problems without major modification to the algorithm. The results are demonstrated on numerically-simulated responses from MDOF systems. In the second part of the paper, a more radical suggestion is made, to replace the conditioned spectral analysis (which is the basis of the CRP method) with an alternative time domain decorrelation method. The suggested approach - the orthogonalised reverse path (ORP) method - is illustrated here using data from simulated single-degree-of-freedom (SDOF) and MDOF systems.
Lp-valued stochastic convolution integral driven by Volterra noise
Czech Academy of Sciences Publication Activity Database
Čoupek, P.; Maslowski, B.; Ondreját, Martin
2018-01-01
Roč. 18, č. 6 (2018), č. článku 1850048. ISSN 0219-4937 R&D Projects: GA ČR(CZ) GA15-08819S Institutional support: RVO:67985556 Keywords : Volterra process * Rosenblatt process * hypercontractivity Subject RIV: BA - General Mathematics Impact factor: 0.820, year: 2016
Continuous multistep methods for volterra integro-differential ...
African Journals Online (AJOL)
A new class of numerical methods for Volterra integro-differential equations of the second order is developed. The methods are based on interpolation and collocation of the shifted Legendre polynomial as basis function with Trapezoidal quadrature rules. The convergence analysis revealed that the methods are consistent ...
Evolution of Black-Box Models Based on Volterra Series
Directory of Open Access Journals (Sweden)
Daniel D. Silveira
2015-01-01
Full Text Available This paper presents a historical review of the many behavioral models actually used to model radio frequency power amplifiers and a new classification of these behavioral models. It also discusses the evolution of these models, from a single polynomial to multirate Volterra models, presenting equations and estimation methods. New trends in RF power amplifier behavioral modeling are suggested.
Transcendental smallness in singularly perturbed equations of volterra type
International Nuclear Information System (INIS)
Bijura, Angelina M.
2003-11-01
The application of different limit processes to a physical problem is an important tool in layer type techniques. Hence the study of initial layer correction functions is of central importance for understanding layer-type problems. It is shown that for singularly perturbed problems of Volterra type, the concept of transcendental smallness is an asymptotic one. Transcendentally small terms may be numerically important. (author)
Initial layer theory and model equations of Volterra type
International Nuclear Information System (INIS)
Bijura, Angelina M.
2003-10-01
It is demonstrated here that there exist initial layers to singularly perturbed Volterra equations whose thicknesses are not of order of magnitude of 0(ε), ε → 0. It is also shown that the initial layer theory is extremely useful because it allows one to construct the approximate solution to an equation, which is almost identical to the exact solution. (author)
Energy Technology Data Exchange (ETDEWEB)
Kanjilal, Oindrila, E-mail: oindrila@civil.iisc.ernet.in; Manohar, C.S., E-mail: manohar@civil.iisc.ernet.in
2017-07-15
The study considers the problem of simulation based time variant reliability analysis of nonlinear randomly excited dynamical systems. Attention is focused on importance sampling strategies based on the application of Girsanov's transformation method. Controls which minimize the distance function, as in the first order reliability method (FORM), are shown to minimize a bound on the sampling variance of the estimator for the probability of failure. Two schemes based on the application of calculus of variations for selecting control signals are proposed: the first obtains the control force as the solution of a two-point nonlinear boundary value problem, and, the second explores the application of the Volterra series in characterizing the controls. The relative merits of these schemes, vis-à-vis the method based on ideas from the FORM, are discussed. Illustrative examples, involving archetypal single degree of freedom (dof) nonlinear oscillators, and a multi-degree of freedom nonlinear dynamical system, are presented. The credentials of the proposed procedures are established by comparing the solutions with pertinent results from direct Monte Carlo simulations. - Highlights: • The distance minimizing control forces minimize a bound on the sampling variance. • Establishing Girsanov controls via solution of a two-point boundary value problem. • Girsanov controls via Volterra's series representation for the transfer functions.
Finite-Time Attractivity for Diagonally Dominant Systems with Off-Diagonal Delays
Directory of Open Access Journals (Sweden)
T. S. Doan
2012-01-01
Full Text Available We introduce a notion of attractivity for delay equations which are defined on bounded time intervals. Our main result shows that linear delay equations are finite-time attractive, provided that the delay is only in the coupling terms between different components, and the system is diagonally dominant. We apply this result to a nonlinear Lotka-Volterra system and show that the delay is harmless and does not destroy finite-time attractivity.
A differential-difference hierarchy associated with relativistic Toda and Volterra hierarchies
International Nuclear Information System (INIS)
Fan Engui; Dai Huihui
2008-01-01
By embedding a free function into a compatible zero curvature equation, we enlarge the original differential-difference hierarchy into a new hierarchy with the free function which still admits zero curvature representation. The new hierarchy not only includes the original hierarchy, but also the well-known relativistic Toda hierarchy and the Volterra hierarchy as special reductions by properly choosing the free function. Infinitely many conservation laws and Darboux transformation for a representative differential-difference system are constructed based on its Lax representation. The exact solutions follow by applying the Darboux transformation
String networks in Z{sub N} Lotka–Volterra competition models
Energy Technology Data Exchange (ETDEWEB)
Avelino, P.P., E-mail: Pedro.Avelino@astro.up.pt [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Bazeia, D. [Instituto de Física, Universidade de São Paulo, 05314-970 São Paulo, SP (Brazil); Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil); Menezes, J. [Centro de Física do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, Caixa Postal 1524, 59072-970 Natal, RN (Brazil); Oliveira, B.F. de [Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, PR (Brazil)
2014-01-17
In this Letter we give specific examples of Z{sub N} Lotka–Volterra competition models leading to the formation of string networks. We show that, in order to promote coexistence, the species may arrange themselves around regions with a high number density of empty sites generated by predator–prey interactions between competing species. These configurations extend into the third dimension giving rise to string networks. We investigate the corresponding dynamics using both stochastic and mean field theory simulations, showing that the coarsening of these string networks follows a scaling law which is analogous to that found in other physical systems in condensed matter and cosmology.
Dynamics of a Lotka-Volterra type model with applications to marine phage population dynamics
International Nuclear Information System (INIS)
Gavin, C; Pokrovskii, A; Prentice, M; Sobolev, V
2006-01-01
The famous Lotka-Volterra equations play a fundamental role in the mathematical modeling of various ecological and chemical systems. A new modification of these equations has been recently suggested to model the structure of marine phage populations, which are the most abundant biological entities in the biosphere. The purpose of the paper is: (i) to make some methodical remarks concerning this modification; (ii) to discuss new types of canards which arise naturally in this context; (iii) to present results of some numerical experiments
Nonlinear dynamic analysis of nuclear reactor primary coolant systems
International Nuclear Information System (INIS)
Saffell, B.F. Jr.; Macek, R.W.; Thompson, T.R.; Lippert, R.F.
1979-01-01
The ADINA computer code is utilized to perform mechanical response analysis of pressurized reactor primary coolant systems subjected to postulated loss-of-coolant accident (LOCA) loadings. Specifically, three plant analyses are performed utilizing the geometric and material nonlinear analysis capabilities of ADINA. Each reactor system finite element model represents the reactor vessel and internals, piping, major components, and component supports in a single coupled model. Material and geometric nonlinear capabilities of the beam and truss elements are employed in the formulation of each finite element model. Loadings applied to each plant for LOCA dynamic analysis include steady-state pressure, dead weight, strain energy release, transient piping hydraulic forces, and reactor vessel cavity pressurization. Representative results are presented with some suggestions for consideration in future ADINA code development
Nonlinear transport properties of non-ideal systems
International Nuclear Information System (INIS)
Pavlov, G A
2009-01-01
The theory of nonlinear transport is elaborated to determine the Burnett transport properties of non-ideal multi-element plasma and neutral systems. The procedure for the comparison of the phenomenological conservation equations of a continuous dense medium and the microscopic equations for dynamical variable operators is used for the definition of these properties. The Mori algorithm is developed to derive the equations of motion of dynamical value operators of a non-ideal system in the form of the generalized nonlinear Langevin equations. In consequence, the microscopic expressions of transport coefficients corresponding to second-order thermal disturbances (temperature, mass velocity, etc) have been found in the long wavelength and low frequency limits
Information theory and stochastics for multiscale nonlinear systems
Majda, Andrew J; Grote, Marcus J
2005-01-01
This book introduces mathematicians to the fascinating emerging mathematical interplay between ideas from stochastics and information theory and important practical issues in studying complex multiscale nonlinear systems. It emphasizes the serendipity between modern applied mathematics and applications where rigorous analysis, the development of qualitative and/or asymptotic models, and numerical modeling all interact to explain complex phenomena. After a brief introduction to the emerging issues in multiscale modeling, the book has three main chapters. The first chapter is an introduction to information theory with novel applications to statistical mechanics, predictability, and Jupiter's Red Spot for geophysical flows. The second chapter discusses new mathematical issues regarding fluctuation-dissipation theorems for complex nonlinear systems including information flow, various approximations, and illustrates applications to various mathematical models. The third chapter discusses stochastic modeling of com...
Extinction in Two-Species Nonlinear Discrete Competitive System
Directory of Open Access Journals (Sweden)
Liqiong Pu
2016-01-01
Full Text Available We propose a nonlinear discrete system of two species with the effect of toxic substances. By constructing a suitable Lyapunov-type function, we obtain the sufficient conditions which guarantee that one of the components will be driven to extinction while the other will be globally attractive with any positive solution of a discrete equation. Two examples together with their numerical simulations illustrate the feasibility of our main results. The results not only improve but also complement some known results.
On a mixed problem for a coupled nonlinear system
Directory of Open Access Journals (Sweden)
Marcondes R. Clark
1997-03-01
Full Text Available In this article we prove the existence and uniqueness of solutions to the mixed problem associated with the nonlinear system $$ u_{tt}-M(int_Omega |abla u|^2dxDelta u+|u|^ ho u+heta =f $$ $$ heta _t -Delta heta +u_{t}=g $$ where $M$ is a positive real function, and $f$ and $g$ are known real functions.
Nonlinear Fourier transform for dual-polarization optical communication system
Gaiarin, Simone
2018-01-01
New services and applications are causing an exponential increase in the internet traffic. In a few years, the current fiber-optic communication system infrastructure will not be able to meet this demand because fiber nonlinearity dramatically limits the information transmission rate. Eigenvalue communication is considered an emerging paradigm in fiber-optic communications that could potentially overcome these limitations. It relies on a mathematical technique called “inverse scattering trans...
Nonlinear normal vibration modes in the dynamics of nonlinear elastic systems
International Nuclear Information System (INIS)
Mikhlin, Yu V; Perepelkin, N V; Klimenko, A A; Harutyunyan, E
2012-01-01
Nonlinear normal modes (NNMs) are a generalization of the linear normal vibrations. By the Kauderer-Rosenberg concept in the regime of the NNM all position coordinates are single-values functions of some selected position coordinate. By the Shaw-Pierre concept, the NNM is such a regime when all generalized coordinates and velocities are univalent functions of a couple of dominant (active) phase variables. The NNMs approach is used in some applied problems. In particular, the Kauderer-Rosenberg NNMs are analyzed in the dynamics of some pendulum systems. The NNMs of forced vibrations are investigated in a rotor system with an isotropic-elastic shaft. A combination of the Shaw-Pierre NNMs and the Rauscher method is used to construct the forced NNMs and the frequency responses in the rotor dynamics.
Synchronization in Complex Networks of Nonlinear Dynamical Systems
Wu, Chai Wah
2007-01-01
This book brings together two emerging research areas: synchronization in coupled nonlinear systems and complex networks, and study conditions under which a complex network of dynamical systems synchronizes. While there are many texts that study synchronization in chaotic systems or properties of complex networks, there are few texts that consider the intersection of these two very active and interdisciplinary research areas. The main theme of this book is that synchronization conditions can be related to graph theoretical properties of the underlying coupling topology. The book introduces ide
Chaotic dynamics and chaos control in nonlinear laser systems
International Nuclear Information System (INIS)
Fang Jinqing; Yao Weiguang
2001-01-01
Chaotic dynamics and chaos control have become a great challenge in nonlinear laser systems and its advances are reviewed mainly based on the ring cavity laser systems. The principle and stability conditions for time-delay feedback control are analyzed and applied to chaos control in the laser systems. Other advanced methods of chaos control, such as weak spatial perturbation and occasional proportional feedback technique, are discussed. Prospects of chaos control for application (such as improvement of laser power and performance, synchronized chaos secure communication and information processing) are pointed out finally
On the stability of non-linear systems
International Nuclear Information System (INIS)
Guelman, M.
1968-09-01
A study is made of the absolute stability of nonlinear systems, using Liapounov's second method and taking into account the results obtained from V.M. Popov's work. The results already established are first presented, in particular concerning the frequency domain criterions for absolute stability of automatic control systems containing one single non linearity. The results have been extended to show the existence of a limiting parabola. New use is then made of the methods studied for deriving absolute stability criterions for a system containing a different type of non linearity. Finally, the results obtained are considered from the point of view of Aizerman's conjecture. (author) [fr
Boundary control of nonlinear coupled heat systems using backstepping
Bendevis, Paul
2016-10-20
A state feedback boundary controller is designed for a 2D coupled PDE system modelling heat transfer in a membrane distillation system for water desalination. Fluid is separated into two compartments with nonlinear coupling at a membrane boundary. The controller sets the temperature on one boundary in order to track a temperature difference across the membrane boundary. The control objective is achieved by an extension of backstepping methods to these coupled equations. Stability of the target system via Lyapunov like methods, and the invertibility of the integral transformation are used to show the stability of the tracking error.
van der Schaft, Arjan
1995-01-01
The approach to robust stabilization of linear systems using normalized left coprime factorizations with H∞ bounded uncertainty is generalized to nonlinear systems. A nonlinear perturbation model is derived, based on the concept of a stable kernel representation of nonlinear systems. The robust
Computer Simulation of Hydraulic Systems with Typical Nonlinear Characteristics
Directory of Open Access Journals (Sweden)
D. N. Popov
2017-01-01
Full Text Available The task was to synthesise an adjustable hydraulic system structure, the mathematical model of which takes into account its inherent nonlinearity. Its solution suggests using a successive computer simulations starting with a structure of the linearized stable hydraulic system, which is then complicated by including the essentially non-linear elements. The hydraulic system thus obtained may be unable to meet the Lyapunov stability criterion and be unstable. This can be eliminated through correcting elements. Control of correction results is provided according to the form of transition processes due to stepwise variation of the control signal.Computer simulation of a throttle-controlled electrohydraulic servo drive with the rotary output element illustrates the proposed method application. A constant pressure power source provides fluid feed for the drive under pressure.For drive simulation the following models were involved: the linear model, the model taking into consideration a non-linearity of the flow-dynamic characteristics of a spool-type valve, and the non-linear models that take into account the dry friction in the spool-type valve, the backlash in the steering angle sensor of the motor shaft.The paper shows possibility of damping oscillation caused by variable hydrodynamic forces through introducing a correction device.The list of references attached contains 16 sources, which were used to justify and explain certain factors of the automatic control theory and the fluid mechanics of unsteady flows.The article presents 6 block-diagrams of the electrohydraulic servo drive and their appropriate transition processes, which have been studied.
Global chaos synchronization of new chaotic systems via nonlinear control
International Nuclear Information System (INIS)
Chen, H.-K.
2005-01-01
Nonlinear control is an effective method for making two identical chaotic systems or two different chaotic systems be synchronized. However, this method assumes that the Lyapunov function of error dynamic (e) of synchronization is always formed as V (e) = 1/2e T e. In this paper, modification based on Lyapunov stability theory to design a controller is proposed in order to overcome this limitation. The method has been applied successfully to make two identical new systems and two different chaotic systems (new system and Lorenz system) globally asymptotically synchronized. Since the Lyapunov exponents are not required for the calculation, this method is effective and convenient to synchronize two identical systems and two different chaotic systems. Numerical simulations are also given to validate the proposed synchronization approach
Fractional-Order Nonlinear Systems Modeling, Analysis and Simulation
Petráš, Ivo
2011-01-01
"Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation" presents a study of fractional-order chaotic systems accompanied by Matlab programs for simulating their state space trajectories, which are shown in the illustrations in the book. Description of the chaotic systems is clearly presented and their analysis and numerical solution are done in an easy-to-follow manner. Simulink models for the selected fractional-order systems are also presented. The readers will understand the fundamentals of the fractional calculus, how real dynamical systems can be described using fractional derivatives and fractional differential equations, how such equations can be solved, and how to simulate and explore chaotic systems of fractional order. The book addresses to mathematicians, physicists, engineers, and other scientists interested in chaos phenomena or in fractional-order systems. It can be used in courses on dynamical systems, control theory, and applied mathematics at graduate or postgraduate level. ...
Nonlinear dynamical systems for theory and research in ergonomics.
Guastello, Stephen J
2017-02-01
Nonlinear dynamical systems (NDS) theory offers new constructs, methods and explanations for phenomena that have in turn produced new paradigms of thinking within several disciplines of the behavioural sciences. This article explores the recent developments of NDS as a paradigm in ergonomics. The exposition includes its basic axioms, the primary constructs from elementary dynamics and so-called complexity theory, an overview of its methods, and growing areas of application within ergonomics. The applications considered here include: psychophysics, iconic displays, control theory, cognitive workload and fatigue, occupational accidents, resilience of systems, team coordination and synchronisation in systems. Although these applications make use of different subsets of NDS constructs, several of them share the general principles of the complex adaptive system. Practitioner Summary: Nonlinear dynamical systems theory reframes problems in ergonomics that involve complex systems as they change over time. The leading applications to date include psychophysics, control theory, cognitive workload and fatigue, biomechanics, occupational accidents, resilience of systems, team coordination and synchronisation of system components.
Directory of Open Access Journals (Sweden)
Farshid Mirzaee
2014-06-01
Full Text Available In this paper, we present a numerical method for solving two-dimensional Fredholm–Volterra integral equations (F-VIE. The method reduces the solution of these integral equations to the solution of a linear system of algebraic equations. The existence and uniqueness of the solution and error analysis of proposed method are discussed. The method is computationally very simple and attractive. Finally, numerical examples illustrate the efficiency and accuracy of the method.
Neural networks for feedback feedforward nonlinear control systems.
Parisini, T; Zoppoli, R
1994-01-01
This paper deals with the problem of designing feedback feedforward control strategies to drive the state of a dynamic system (in general, nonlinear) so as to track any desired trajectory joining the points of given compact sets, while minimizing a certain cost function (in general, nonquadratic). Due to the generality of the problem, conventional methods are difficult to apply. Thus, an approximate solution is sought by constraining control strategies to take on the structure of multilayer feedforward neural networks. After discussing the approximation properties of neural control strategies, a particular neural architecture is presented, which is based on what has been called the "linear-structure preserving principle". The original functional problem is then reduced to a nonlinear programming one, and backpropagation is applied to derive the optimal values of the synaptic weights. Recursive equations to compute the gradient components are presented, which generalize the classical adjoint system equations of N-stage optimal control theory. Simulation results related to nonlinear nonquadratic problems show the effectiveness of the proposed method.
Fuzzy model-based servo and model following control for nonlinear systems.
Ohtake, Hiroshi; Tanaka, Kazuo; Wang, Hua O
2009-12-01
This correspondence presents servo and nonlinear model following controls for a class of nonlinear systems using the Takagi-Sugeno fuzzy model-based control approach. First, the construction method of the augmented fuzzy system for continuous-time nonlinear systems is proposed by differentiating the original nonlinear system. Second, the dynamic fuzzy servo controller and the dynamic fuzzy model following controller, which can make outputs of the nonlinear system converge to target points and to outputs of the reference system, respectively, are introduced. Finally, the servo and model following controller design conditions are given in terms of linear matrix inequalities. Design examples illustrate the utility of this approach.
System Reduction in Nonlinear Multibody Dynamics of Wind Turbines
DEFF Research Database (Denmark)
Holm-Jørgensen, Kristian; Nielsen, Søren R.K.; Rubak, Rune
2007-01-01
In this paper the system reduction in nonlinear multibody dynamics of wind turbines is investigated for various updating schemes of the moving frame of reference. In one case, the moving frame of reference is updated to a stiff body, relative to which the elastic deformations are fixed at one end....... In the other case, the stiff body motion is defined as the chord line connecting the end points of the beam, and the elastic deformations are simply supported at the end points. The system reduction is performed by discretizing the spatial motion into a set of rigid body modes and linear elastic eigenmodes...
Prediction-Based Control for Nonlinear Systems with Input Delay
Directory of Open Access Journals (Sweden)
I. Estrada-Sánchez
2017-01-01
Full Text Available This work has two primary objectives. First, it presents a state prediction strategy for a class of nonlinear Lipschitz systems subject to constant time delay in the input signal. As a result of a suitable change of variable, the state predictor asymptotically provides the value of the state τ units of time ahead. Second, it proposes a solution to the stabilization and trajectory tracking problems for the considered class of systems using predicted states. The predictor-controller convergence is proved by considering a complete Lyapunov functional. The proposed predictor-based controller strategy is evaluated using numerical simulations.
Robust Stabilization of Nonlinear Systems with Uncertain Varying Control Coefficient
Directory of Open Access Journals (Sweden)
Zaiyue Yang
2014-01-01
Full Text Available This paper investigates the stabilization problem for a class of nonlinear systems, whose control coefficient is uncertain and varies continuously in value and sign. The study emphasizes the development of a robust control that consists of a modified Nussbaum function to tackle the uncertain varying control coefficient. By such a method, the finite-time escape phenomenon has been prevented when the control coefficient is crossing zero and varying its sign. The proposed control guarantees the asymptotic stabilization of the system and boundedness of all closed-loop signals. The control performance is illustrated by a numerical simulation.
Nonlinear dynamics of global atmospheric and earth system processes
Zhang, Taiping; Verbitsky, Mikhail; Saltzman, Barry; Mann, Michael E.; Park, Jeffrey; Lall, Upmanu
1995-01-01
During the grant period, the authors continued ongoing studies aimed at enhancing their understanding of the operation of the atmosphere as a complex nonlinear system interacting with the hydrosphere, biosphere, and cryosphere in response to external radiative forcing. Five papers were completed with support from the grant, representing contributions in three main areas of study: (1) theoretical studies of the interactive atmospheric response to changed biospheric boundary conditions measurable from satellites; (2) statistical-observational studies of global-scale temperature variability on interannual to century time scales; and (3) dynamics of long-term earth system changes associated with ice sheet surges.
Nonlinear Dynamics of Controlled Synchronizations of Manipulator System
Directory of Open Access Journals (Sweden)
Qingkai Han
2014-01-01
Full Text Available The nonlinear dynamics of the manipulator system which is controlled to achieve the synchronization motions is investigated in the paper. Firstly, the control strategies and modeling approaches of the manipulator system are given, in which the synchronization goal is defined by both synchronization errors and its derivatives. The synchronization controllers applied on the manipulator system include neuron synchronization controller, improved OPCL synchronization controller, and MRAC-PD synchronization controller. Then, an improved adaptive synchronized control strategy is proposed in order to estimate online the unknown structure parameters and state variables of the manipulator system and to realize the needed synchronous compensation. Furthermore, a robust adaptive synchronization controller is also researched to guarantee the dynamic stability of the system. Finally, the stability of motion synchronizations of the manipulator system possessing nonlinear component is discussed, together with the effect of control parameters and joint friction and others. Some typical motions such as motion bifurcations and the loss of synchronization of it are obtained and illustrated as periodic, multiperiodic, and/or chaotic motion patterns.
Nonlinear H-infinity control, Hamiltonian systems and Hamilton-Jacobi equations
Aliyu, MDS
2011-01-01
A comprehensive overview of nonlinear Haeu control theory for both continuous-time and discrete-time systems, Nonlinear Haeu-Control, Hamiltonian Systems and Hamilton-Jacobi Equations covers topics as diverse as singular nonlinear Haeu-control, nonlinear Haeu -filtering, mixed H2/ Haeu-nonlinear control and filtering, nonlinear Haeu-almost-disturbance-decoupling, and algorithms for solving the ubiquitous Hamilton-Jacobi-Isaacs equations. The link between the subject and analytical mechanics as well as the theory of partial differential equations is also elegantly summarized in a single chapter
Observer-based Fault Detection and Isolation for Nonlinear Systems
DEFF Research Database (Denmark)
Lootsma, T.F.
With the rise in automation the increase in fault detectionand isolation & reconfiguration is inevitable. Interest in fault detection and isolation (FDI) for nonlinear systems has grown significantly in recent years. The design of FDI is motivated by the need for knowledge about occurring faults...... in fault-tolerant control systems (FTC systems). The idea of FTC systems is to detect, isolate, and handle faults in such a way that the systems can still perform in a required manner. One prefers reduced performance after occurrence of a fault to the shut down of (sub-) systems. Hence, the idea of fault......-output decoupling is described. It is a new idea based on the solution of the input-output decoupling problem. The idea is to include FDI considerations already during the control design....
Develop advanced nonlinear signal analysis topographical mapping system
1994-01-01
The Space Shuttle Main Engine (SSME) has been undergoing extensive flight certification and developmental testing, which involves some 250 health monitoring measurements. Under the severe temperature, pressure, and dynamic environments sustained during operation, numerous major component failures have occurred, resulting in extensive engine hardware damage and scheduling losses. To enhance SSME safety and reliability, detailed analysis and evaluation of the measurements signal are mandatory to assess its dynamic characteristics and operational condition. Efficient and reliable signal detection techniques will reduce catastrophic system failure risks and expedite the evaluation of both flight and ground test data, and thereby reduce launch turn-around time. The basic objective of this contract are threefold: (1) develop and validate a hierarchy of innovative signal analysis techniques for nonlinear and nonstationary time-frequency analysis. Performance evaluation will be carried out through detailed analysis of extensive SSME static firing and flight data. These techniques will be incorporated into a fully automated system; (2) develop an advanced nonlinear signal analysis topographical mapping system (ATMS) to generate a Compressed SSME TOPO Data Base (CSTDB). This ATMS system will convert tremendous amount of complex vibration signals from the entire SSME test history into a bank of succinct image-like patterns while retaining all respective phase information. High compression ratio can be achieved to allow minimal storage requirement, while providing fast signature retrieval, pattern comparison, and identification capabilities; and (3) integrate the nonlinear correlation techniques into the CSTDB data base with compatible TOPO input data format. Such integrated ATMS system will provide the large test archives necessary for quick signature comparison. This study will provide timely assessment of SSME component operational status, identify probable causes of
Observers for a class of systems with nonlinearities satisfying an incremental quadratic inequality
Acikmese, Ahmet Behcet; Martin, Corless
2004-01-01
We consider the problem of state estimation from nonlinear time-varying system whose nonlinearities satisfy an incremental quadratic inequality. Observers are presented which guarantee that the state estimation error exponentially converges to zero.
Yang, Y.; Solis Escalante, T.; van der Helm, F.C.T.; Schouten, A.C.
2016-01-01
Objective: This paper introduces a generalized coherence framework for detecting and characterizing nonlinear interactions in the nervous system, namely cross-spectral coherence (CSC). CSC can detect different types of nonlinear interactions including harmonic and intermodulation coupling as present
Linear and nonlinear dynamic systems in financial time series prediction
Directory of Open Access Journals (Sweden)
Salim Lahmiri
2012-10-01
Full Text Available Autoregressive moving average (ARMA process and dynamic neural networks namely the nonlinear autoregressive moving average with exogenous inputs (NARX are compared by evaluating their ability to predict financial time series; for instance the S&P500 returns. Two classes of ARMA are considered. The first one is the standard ARMA model which is a linear static system. The second one uses Kalman filter (KF to estimate and predict ARMA coefficients. This model is a linear dynamic system. The forecasting ability of each system is evaluated by means of mean absolute error (MAE and mean absolute deviation (MAD statistics. Simulation results indicate that the ARMA-KF system performs better than the standard ARMA alone. Thus, introducing dynamics into the ARMA process improves the forecasting accuracy. In addition, the ARMA-KF outperformed the NARX. This result may suggest that the linear component found in the S&P500 return series is more dominant than the nonlinear part. In sum, we conclude that introducing dynamics into the ARMA process provides an effective system for S&P500 time series prediction.
Raju, Thokala Soloman; Pal, Ritu
2018-05-01
We derive the analytical rogue wave solutions for the generalized inhomogeneous nonlinear Schrödinger-Maxwell-Bloch (GINLS-MB) equation describing the pulse propagation in erbium-doped fibre system. Then by suitably choosing the inhomogeneous parameters, we delineate the tunneling properties of rogue waves through dispersion and nonlinearity barriers or wells. Finally, we demonstrate the propagating characteristics of optical solitons by considering their tunneling through periodic barriers by the proper choice of external potential.
Nonlinear wave-beam kinetic equilibrium in decelerating systems
International Nuclear Information System (INIS)
Grishin, V.K.; Shaposhnikova, E.N.
1981-01-01
The equilibrium state of the wave-beam system arising during the interaction of a particle beam and excited electromagnetic wave has been investigated on the basis of the analysis of the exact polution of a non-linear self-consistent linear equation using the complete system of conservation laws. A waveguide with a dielectric filler, into which a monoenergetic particle beam magnetized in a transverse plane is continuously injected, is used as a model of an decelerating system. A dispersion equation describing the system state and expression for the evaluation of efficiency of the beam energy conversion to the field energy have been obtained. It is concluded that larae fields and high efficiency of energy conversion are achieved during the marked beam reconstruction. States with different values of current and beam velocity but similar amplitudes of a longitudinal field are possible in the system considered [ru
Linear theory for filtering nonlinear multiscale systems with model error.
Berry, Tyrus; Harlim, John
2014-07-08
In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online , as part of a filtering
Parameter and state estimation in nonlinear dynamical systems
Creveling, Daniel R.
This thesis is concerned with the problem of state and parameter estimation in nonlinear systems. The need to evaluate unknown parameters in models of nonlinear physical, biophysical and engineering systems occurs throughout the development of phenomenological or reduced models of dynamics. When verifying and validating these models, it is important to incorporate information from observations in an efficient manner. Using the idea of synchronization of nonlinear dynamical systems, this thesis develops a framework for presenting data to a candidate model of a physical process in a way that makes efficient use of the measured data while allowing for estimation of the unknown parameters in the model. The approach presented here builds on existing work that uses synchronization as a tool for parameter estimation. Some critical issues of stability in that work are addressed and a practical framework is developed for overcoming these difficulties. The central issue is the choice of coupling strength between the model and data. If the coupling is too strong, the model will reproduce the measured data regardless of the adequacy of the model or correctness of the parameters. If the coupling is too weak, nonlinearities in the dynamics could lead to complex dynamics rendering any cost function comparing the model to the data inadequate for the determination of model parameters. Two methods are introduced which seek to balance the need for coupling with the desire to allow the model to evolve in its natural manner without coupling. One method, 'balanced' synchronization, adds to the synchronization cost function a requirement that the conditional Lyapunov exponents of the model system, conditioned on being driven by the data, remain negative but small in magnitude. Another method allows the coupling between the data and the model to vary in time according to a specific form of differential equation. The coupling dynamics is damped to allow for a tendency toward zero coupling
On Madelung systems in nonlinear optics: A reciprocal invariance
Rogers, Colin; Malomed, Boris
2018-05-01
The role of the de Broglie-Bohm potential, originally established as central to Bohmian quantum mechanics, is examined for two canonical Madelung systems in nonlinear optics. In a seminal case, a Madelung system derived by Wagner et al. via the paraxial approximation and in which the de Broglie-Bohm potential is present is shown to admit a multi-parameter class of what are here introduced as "q-gaussons." In the limit, as the Tsallis parameter q → 1, the q-gaussons are shown to lead to standard gausson solitons, as admitted by the logarithmic nonlinear Schrödinger equation encapsulating the Madelung system. The q-gaussons are obtained for optical media with dual power-law refractive index. In the second case, a Madelung system originally derived via an eikonal approximation in the context of laser beam propagation and in which the de Broglie Bohm term is neglected is shown to admit invariance under a novel class of two-parameter class of reciprocal transformations. Model optical laws analogous to the celebrated Kármán-Tsien law of classical gas dynamics are introduced.
Nonlinear Time-Reversal in a Wave Chaotic System
Frazier, Matthew; Taddese, Biniyam; Ott, Edward; Antonsen, Thomas; Anlage, Steven
2012-02-01
Time reversal mirrors are particularly simple to implement in wave chaotic systems and form the basis for a new class of sensors [1-3]. These sensors work by applying the quantum mechanical concepts of Loschmidt echo and fidelity decay to classical waves. The sensors make explicit use of time-reversal invariance and spatial reciprocity in a wave chaotic system to remotely measure the presence of small perturbations to the system. The underlying ray chaos increases the sensitivity to small perturbations throughout the volume explored by the waves. We extend our time-reversal mirror to include a discrete element with a nonlinear dynamical response. The initially injected pulse interacts with the nonlinear element, generating new frequency components originating at the element. By selectively filtering for and applying the time-reversal mirror to the new frequency components, we focus a pulse only onto the element, without knowledge of its location. Furthermore, we demonstrate transmission of arbitrary patterns of pulses to the element, creating a targeted communication channel to the exclusion of 'eavesdroppers' at other locations in the system. [1] Appl. Phys. Lett. 95, 114103 (2009) [2] J. Appl. Phys. 108, 1 (2010) [3] Acta Physica Polonica A 112, 569 (2007)
Jump phenomena. [large amplitude responses of nonlinear systems
Reiss, E. L.
1980-01-01
The paper considers jump phenomena composed of large amplitude responses of nonlinear systems caused by small amplitude disturbances. Physical problems where large jumps in the solution amplitude are important features of the response are described, including snap buckling of elastic shells, chemical reactions leading to combustion and explosion, and long-term climatic changes of the earth's atmosphere. A new method of rational functions was then developed which consists of representing the solutions of the jump problems as rational functions of the small disturbance parameter; this method can solve jump problems explicitly.
Adaptive Fractional Fuzzy Sliding Mode Control for Multivariable Nonlinear Systems
Directory of Open Access Journals (Sweden)
Junhai Luo
2014-01-01
Full Text Available This paper presents a robust adaptive fuzzy sliding mode control method for a class of uncertain nonlinear systems. The fractional order calculus is employed in the parameter updating stage. The underlying stability analysis as well as parameter update law design is carried out by Lyapunov based technique. In the simulation, two examples including a comparison with the traditional integer order counterpart are given to show the effectiveness of the proposed method. The main contribution of this paper consists in the control performance is better for the fractional order updating law than that of traditional integer order.
A universal approach to the study of nonlinear systems
Hwa, Rudolph C.
2004-07-01
A large variety of nonlinear systems have been treated by a common approach that emphasizes the fluctuation of spatial patterns. By using the same method of analysis it is possible to discuss the chaotic behaviors of quark jets and logistic map in the same language. Critical behaviors of quark-hadron phase transition in heavy-ion collisions and of photon production at the threshold of lasing can also be described by a common scaling behavior. The universal approach also makes possible an insight into the recently discovered phenomenon of wind reversal in cryogenic turbulence as a manifestation of self-organized criticality.
Foundations of Complex Systems Nonlinear Dynamics, Statistical Physics, and Prediction
Nicolis, Gregoire
2007-01-01
Complexity is emerging as a post-Newtonian paradigm for approaching a large body of phenomena of concern at the crossroads of physical, engineering, environmental, life and human sciences from a unifying point of view. This book outlines the foundations of modern complexity research as it arose from the cross-fertilization of ideas and tools from nonlinear science, statistical physics and numerical simulation. It is shown how these developments lead to an understanding, both qualitative and quantitative, of the complex systems encountered in nature and in everyday experience and, conversely, h
Nonlinear behaviors of a bounded electron beam-plasma system
International Nuclear Information System (INIS)
Iizuka, Satoru; Saeki, Koichi; Sato, Noriyoshi; Hatta, Yoshisuke
1985-01-01
Nonlinear developments of a bounded electron beam-plasma system including stationary electrons are investigated experimentally. A stable double layer is formed as a result of ion trapping in a growing negative potential dip induced by the Pierce instability above the current regime of the Buneman instability. In the in-between regime of the Buneman and Pierce instabilities, energetic ions are observed. This effective ion heating is caused by ion detrapping due to double-layer disruption, being consistent with computer simulation. (author)
Switching Fuzzy Guaranteed Cost Control for Nonlinear Networked Control Systems
Directory of Open Access Journals (Sweden)
Linqin Cai
2014-01-01
Full Text Available This paper deals with the problem of guaranteed cost control for a class of nonlinear networked control systems (NCSs with time-varying delay. A guaranteed cost controller design method is proposed to achieve the desired control performance based on the switched T-S fuzzy model. The switching mechanism is introduced to handle the uncertainties of NCSs. Based on Lyapunov functional approach, some sufficient conditions for the existence of state feedback robust guaranteed cost controller are presented. Simulation results show that the proposed method is effective to guarantee system’s global asymptotic stability and quality of service (QoS.
Hitting probabilities for nonlinear systems of stochastic waves
Dalang, Robert C
2015-01-01
The authors consider a d-dimensional random field u = \\{u(t,x)\\} that solves a non-linear system of stochastic wave equations in spatial dimensions k \\in \\{1,2,3\\}, driven by a spatially homogeneous Gaussian noise that is white in time. They mainly consider the case where the spatial covariance is given by a Riesz kernel with exponent \\beta. Using Malliavin calculus, they establish upper and lower bounds on the probabilities that the random field visits a deterministic subset of \\mathbb{R}^d, in terms, respectively, of Hausdorff measure and Newtonian capacity of this set. The dimension that ap
Information Dynamics of a Nonlinear Stochastic Nanopore System
Directory of Open Access Journals (Sweden)
Claire Gilpin
2018-03-01
Full Text Available Nanopores have become a subject of interest in the scientific community due to their potential uses in nanometer-scale laboratory and research applications, including infectious disease diagnostics and DNA sequencing. Additionally, they display behavioral similarity to molecular and cellular scale physiological processes. Recent advances in information theory have made it possible to probe the information dynamics of nonlinear stochastic dynamical systems, such as autonomously fluctuating nanopore systems, which has enhanced our understanding of the physical systems they model. We present the results of local (LER and specific entropy rate (SER computations from a simulation study of an autonomously fluctuating nanopore system. We learn that both metrics show increases that correspond to fluctuations in the nanopore current, indicating fundamental changes in information generation surrounding these fluctuations.
Output controllability of nonlinear systems with bounded control
International Nuclear Information System (INIS)
Garcia, Rafael; D'Attellis, Carlos
1990-01-01
The control problem treated in this paper is the output controllability of a nonlinear system in the form: x = f(x) + g(x)u(t); y = h(x), using bounded controls. The approach to the problem consists of a modification in the system using dynamic feedback in such a way that the input/output behaviour of the closed loop matches the input/output behaviour of a completely output-controllable system with bounded controls. Sufficient conditions are also put forward on the system so that a compact set in the output space may be reached in finite time using uniformally bounded controls, and a result on output regulation in finite time with asymptotic state stabilization is obtained. (Author)
Discrete-Time Nonlinear Control of VSC-HVDC System
Directory of Open Access Journals (Sweden)
TianTian Qian
2015-01-01
Full Text Available Because VSC-HVDC is a kind of strong nonlinear, coupling, and multi-input multioutput (MIMO system, its control problem is always attracting much attention from scholars. And a lot of papers have done research on its control strategy in the continuous-time domain. But the control system is implemented through the computer discrete sampling in practical engineering. It is necessary to study the mathematical model and control algorithm in the discrete-time domain. The discrete mathematical model based on output feedback linearization and discrete sliding mode control algorithm is proposed in this paper. And to ensure the effectiveness of the control system in the quasi sliding mode state, the fast output sampling method is used in the output feedback. The results from simulation experiment in MATLAB/SIMULINK prove that the proposed discrete control algorithm can make the VSC-HVDC system have good static, dynamic, and robust characteristics in discrete-time domain.
A phenomenological Hamiltonian for the Lotka-Volterra problem
International Nuclear Information System (INIS)
Georgian, T.; Findley, G.L.
1996-01-01
We have presented a Hamiltonian theory of phenomenological chemical kinetics. In the present paper, we extend this treatment to the Lotka-Volterra model of sustained oscillations. Our approach begins with the usual definition of an intrinsic reaction coordinate space (x 1 ,x 2 ) for the Lotka-Volterra problem, which leads to the rate equations x 1 =ax 1 -bx 1 x 2 , x 2 =-cx 2 +bx 1 x 2 , with a,b and c being real constants. We thereafter present a Hamiltonian function H(x,y)[y 1 = x 1 and y 2 = x 2 ] and an associated holonomic constraint, which give rise to the above rates as half of Hamilton's equations. We provide trajectories by numerical integration (4th order Runge-Kutta) and show that H(x,y) is a constant of the motion. Finally, issues involved in developing an analytic solution to this problem are discussed
Stochastic Erosion of Fractal Structure in Nonlinear Dynamical Systems
Agarwal, S.; Wettlaufer, J. S.
2014-12-01
We analyze the effects of stochastic noise on the Lorenz-63 model in the chaotic regime to demonstrate a set of general issues arising in the interpretation of data from nonlinear dynamical systems typical in geophysics. The model is forced using both additive and multiplicative, white and colored noise and it is shown that, through a suitable choice of the noise intensity, both additive and multiplicative noise can produce similar dynamics. We use a recently developed measure, histogram distance, to show the similarity between the dynamics produced by additive and multiplicative forcing. This phenomenon, in a nonlinear fractal structure with chaotic dynamics can be explained by understanding how noise affects the Unstable Periodic Orbits (UPOs) of the system. For delta-correlated noise, the UPOs erode the fractal structure. In the presence of memory in the noise forcing, the time scale of the noise starts to interact with the period of some UPO and, depending on the noise intensity, stochastic resonance may be observed. This also explains the mixing in dissipative dynamical systems in presence of white noise; as the fractal structure is smoothed, the decay of correlations is enhanced, and hence the rate of mixing increases with noise intensity.
Practical application of equivalent linearization approaches to nonlinear piping systems
International Nuclear Information System (INIS)
Park, Y.J.; Hofmayer, C.H.
1995-01-01
The use of mechanical energy absorbers as an alternative to conventional hydraulic and mechanical snubbers for piping supports has attracted a wide interest among researchers and practitioners in the nuclear industry. The basic design concept of energy absorbers (EA) is to dissipate the vibration energy of piping systems through nonlinear hysteretic actions of EA exclamation point s under design seismic loads. Therefore, some type of nonlinear analysis needs to be performed in the seismic design of piping systems with EA supports. The equivalent linearization approach (ELA) can be a practical analysis tool for this purpose, particularly when the response approach (RSA) is also incorporated in the analysis formulations. In this paper, the following ELA/RSA methods are presented and compared to each other regarding their practice and numerical accuracy: Response approach using the square root of sum of squares (SRSS) approximation (denoted RS in this paper). Classical ELA based on modal combinations and linear random vibration theory (denoted CELA in this paper). Stochastic ELA based on direct solution of response covariance matrix (denoted SELA in this paper). New algorithms to convert response spectra to the equivalent power spectral density (PSD) functions are presented for both the above CELA and SELA methods. The numerical accuracy of the three EL are studied through a parametric error analysis. Finally, the practicality of the presented analysis is demonstrated in two application examples for piping systems with EA supports
Data-Driven H∞ Control for Nonlinear Distributed Parameter Systems.
Luo, Biao; Huang, Tingwen; Wu, Huai-Ning; Yang, Xiong
2015-11-01
The data-driven H∞ control problem of nonlinear distributed parameter systems is considered in this paper. An off-policy learning method is developed to learn the H∞ control policy from real system data rather than the mathematical model. First, Karhunen-Loève decomposition is used to compute the empirical eigenfunctions, which are then employed to derive a reduced-order model (ROM) of slow subsystem based on the singular perturbation theory. The H∞ control problem is reformulated based on the ROM, which can be transformed to solve the Hamilton-Jacobi-Isaacs (HJI) equation, theoretically. To learn the solution of the HJI equation from real system data, a data-driven off-policy learning approach is proposed based on the simultaneous policy update algorithm and its convergence is proved. For implementation purpose, a neural network (NN)- based action-critic structure is developed, where a critic NN and two action NNs are employed to approximate the value function, control, and disturbance policies, respectively. Subsequently, a least-square NN weight-tuning rule is derived with the method of weighted residuals. Finally, the developed data-driven off-policy learning approach is applied to a nonlinear diffusion-reaction process, and the obtained results demonstrate its effectiveness.
A simple spatiotemporal chaotic Lotka-Volterra model
International Nuclear Information System (INIS)
Sprott, J.C.; Wildenberg, J.C.; Azizi, Yousef
2005-01-01
A mathematically simple example of a high-dimensional (many-species) Lotka-Volterra model that exhibits spatiotemporal chaos in one spatial dimension is described. The model consists of a closed ring of identical agents, each competing for fixed finite resources with two of its four nearest neighbors. The model is prototypical of more complicated models in its quasiperiodic route to chaos (including attracting 3-tori), bifurcations, spontaneous symmetry breaking, and spatial pattern formation
Maghareh, Amin; Silva, Christian E.; Dyke, Shirley J.
2018-05-01
Hydraulic actuators play a key role in experimental structural dynamics. In a previous study, a physics-based model for a servo-hydraulic actuator coupled with a nonlinear physical system was developed. Later, this dynamical model was transformed into controllable canonical form for position tracking control purposes. For this study, a nonlinear device is designed and fabricated to exhibit various nonlinear force-displacement profiles depending on the initial condition and the type of materials used as replaceable coupons. Using this nonlinear system, the controllable canonical dynamical model is experimentally validated for a servo-hydraulic actuator coupled with a nonlinear physical system.
Considering system non-linearity in transmission pricing
International Nuclear Information System (INIS)
Oloomi-Buygi, M.; Salehizadeh, M. Reza
2008-01-01
In this paper a new approach for transmission pricing is presented. The contribution of a contract on power flow of a transmission line is used as extent-of-use criterion for transmission pricing. In order to determine the contribution of each contract on power flow of each transmission line, first the contribution of each contract on each voltage angle is determined, which is called voltage angle decomposition. To this end, DC power flow is used to compute a primary solution for voltage angle decomposition. To consider the impacts of system non-linearity on voltage angle decomposition, a method is presented to determine the share of different terms of sine argument in sine value. Then the primary solution is corrected in different iterations of decoupled Newton-Raphson power flow using the presented sharing method. The presented approach is applied to a 4-bus test system and IEEE 30-bus test system and the results are analyzed. (author)
Event-Triggered Fault Detection of Nonlinear Networked Systems.
Li, Hongyi; Chen, Ziran; Wu, Ligang; Lam, Hak-Keung; Du, Haiping
2017-04-01
This paper investigates the problem of fault detection for nonlinear discrete-time networked systems under an event-triggered scheme. A polynomial fuzzy fault detection filter is designed to generate a residual signal and detect faults in the system. A novel polynomial event-triggered scheme is proposed to determine the transmission of the signal. A fault detection filter is designed to guarantee that the residual system is asymptotically stable and satisfies the desired performance. Polynomial approximated membership functions obtained by Taylor series are employed for filtering analysis. Furthermore, sufficient conditions are represented in terms of sum of squares (SOSs) and can be solved by SOS tools in MATLAB environment. A numerical example is provided to demonstrate the effectiveness of the proposed results.
THz impulse radar for biomedical sensing: nonlinear system behavior
Brown, E. R.; Sung, Shijun; Grundfest, W. S.; Taylor, Z. D.
2014-03-01
The THz impulse radar is an "RF-inspired" sensor system that has performed remarkably well since its initial development nearly six years ago. It was developed for ex vivo skin-burn imaging, and has since shown great promise in the sensitive detection of hydration levels in soft tissues of several types, such as in vivo corneal and burn samples. An intriguing aspect of the impulse radar is its hybrid architecture which combines the high-peak-power of photoconductive switches with the high-responsivity and -bandwidth (RF and video) of Schottky-diode rectifiers. The result is a very sensitive sensor system in which the post-detection signal-to-noise ratio depends super-linearly on average signal power up to a point where the diode is "turned on" in the forward direction, and then behaves quasi-linearly beyond that point. This paper reports the first nonlinear systems analysis done on the impulse radar using MATLAB.
Nonlinear Impairment Compensation Using Expectation Maximization for PDM 16-QAM Systems
DEFF Research Database (Denmark)
Zibar, Darko; Winther, Ole; Franceschi, Niccolo
2012-01-01
We show experimentally that by using non-linear signal processing based algorithm, expectation maximization, nonlinear system tolerance can be increased by 2 dB. Expectation maximization is also effective in combating I/Q modulator nonlinearities and laser linewidth....
Comparison of a nonlinear dynamic model of a piping system to test data
International Nuclear Information System (INIS)
Blakely, K.D.; Howard, G.E.; Walton, W.B.; Johnson, B.A.; Chitty, D.E.
1983-01-01
Response of a nonlinear finite element model of the Heissdampfreaktor recirculation piping loop (URL) was compared to measured data, representing the physical benchmarking of a nonlinear model. Analysis-test comparisons of piping response are presented for snapback tests that induced extreme nonlinear behavior of the URL system. Nonlinearities in the system are due to twelve swaybraces (pipe supports) that possessed nonlinear force-deflection characteristics. These nonlinearities distorted system damping estimates made by using the half-power bandwidth method on Fourier transforms of measured accelerations, with the severity of distortion increasing with increasing degree of nonlinearity. Time domain methods, which are not so severely affected by the presence of nonlinearities, were used to compute system damping ratios. Nonlinear dynamic analyses were accurately and efficiently performed using the pseudo-force technique and the finite element program MSC/NASTRAN. Measured damping was incorporated into the model for snapback simulations. Acceleration time histories, acceleration Fourier transforms, and swaybrace force time histories of the nonlinear model, plus several linear models, were compared to test measurements. The nonlinear model predicted three-fourths of the measured peak accelerations to within 50%, half of the accelerations to within 25%, and one-fifth of the accelerations to within 10%. This nonlinear model predicted accelerations (in the time and frequency domains) and swaybrace forces much better than did any of the linear models, demonstrating the increased accuracy resulting from properly simulating nonlinear support behavior. In addition, earthquake response comparisons were made between the experimentally validated nonlinear model and a linear model. Significantly lower element stresses were predicted for the nonlinear model, indicating the potential usefulness of nonlinear simulations in piping design assessments. (orig.)
Rigatos, Gerasimos G
2015-01-01
This monograph presents recent advances in differential flatness theory and analyzes its use for nonlinear control and estimation. It shows how differential flatness theory can provide solutions to complicated control problems, such as those appearing in highly nonlinear multivariable systems and distributed-parameter systems. Furthermore, it shows that differential flatness theory makes it possible to perform filtering and state estimation for a wide class of nonlinear dynamical systems and provides several descriptive test cases. The book focuses on the design of nonlinear adaptive controllers and nonlinear filters, using exact linearization based on differential flatness theory. The adaptive controllers obtained can be applied to a wide class of nonlinear systems with unknown dynamics, and assure reliable functioning of the control loop under uncertainty and varying operating conditions. The filters obtained outperform other nonlinear filters in terms of accuracy of estimation and computation speed. The bo...
Bio-inspired spiking neural network for nonlinear systems control.
Pérez, Javier; Cabrera, Juan A; Castillo, Juan J; Velasco, Juan M
2018-08-01
Spiking neural networks (SNN) are the third generation of artificial neural networks. SNN are the closest approximation to biological neural networks. SNNs make use of temporal spike trains to command inputs and outputs, allowing a faster and more complex computation. As demonstrated by biological organisms, they are a potentially good approach to designing controllers for highly nonlinear dynamic systems in which the performance of controllers developed by conventional techniques is not satisfactory or difficult to implement. SNN-based controllers exploit their ability for online learning and self-adaptation to evolve when transferred from simulations to the real world. SNN's inherent binary and temporary way of information codification facilitates their hardware implementation compared to analog neurons. Biological neural networks often require a lower number of neurons compared to other controllers based on artificial neural networks. In this work, these neuronal systems are imitated to perform the control of non-linear dynamic systems. For this purpose, a control structure based on spiking neural networks has been designed. Particular attention has been paid to optimizing the structure and size of the neural network. The proposed structure is able to control dynamic systems with a reduced number of neurons and connections. A supervised learning process using evolutionary algorithms has been carried out to perform controller training. The efficiency of the proposed network has been verified in two examples of dynamic systems control. Simulations show that the proposed control based on SNN exhibits superior performance compared to other approaches based on Neural Networks and SNNs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Conservation laws for certain time fractional nonlinear systems of partial differential equations
Singla, Komal; Gupta, R. K.
2017-12-01
In this study, an extension of the concept of nonlinear self-adjointness and Noether operators is proposed for calculating conserved vectors of the time fractional nonlinear systems of partial differential equations. In our recent work (J Math Phys 2016; 57: 101504), by proposing the symmetry approach for time fractional systems, the Lie symmetries for some fractional nonlinear systems have been derived. In this paper, the obtained infinitesimal generators are used to find conservation laws for the corresponding fractional systems.
Effects of error feedback on a nonlinear bistable system with stochastic resonance
International Nuclear Information System (INIS)
Li Jian-Long; Zhou Hui
2012-01-01
In this paper, we discuss the effects of error feedback on the output of a nonlinear bistable system with stochastic resonance. The bit error rate is employed to quantify the performance of the system. The theoretical analysis and the numerical simulation are presented. By investigating the performances of the nonlinear systems with different strengths of error feedback, we argue that the presented system may provide guidance for practical nonlinear signal processing
Modeling of Macroeconomics by a Novel Discrete Nonlinear Fractional Dynamical System
Directory of Open Access Journals (Sweden)
Zhenhua Hu
2013-01-01
Full Text Available We propose a new nonlinear economic system with fractional derivative. According to the Jumarie’s definition of fractional derivative, we obtain a discrete fractional nonlinear economic system. Three variables, the gross domestic production, inflation, and unemployment rate, are considered by this nonlinear system. Based on the concrete macroeconomic data of USA, the coefficients of this nonlinear system are estimated by the method of least squares. The application of discrete fractional economic model with linear and nonlinear structure is shown to illustrate the efficiency of modeling the macroeconomic data with discrete fractional dynamical system. The empirical study suggests that the nonlinear discrete fractional dynamical system can describe the actual economic data accurately and predict the future behavior more reasonably than the linear dynamic system. The method proposed in this paper can be applied to investigate other macroeconomic variables of more states.
One-Time Pad as a nonlinear dynamical system
Nagaraj, Nithin
2012-11-01
The One-Time Pad (OTP) is the only known unbreakable cipher, proved mathematically by Shannon in 1949. In spite of several practical drawbacks of using the OTP, it continues to be used in quantum cryptography, DNA cryptography and even in classical cryptography when the highest form of security is desired (other popular algorithms like RSA, ECC, AES are not even proven to be computationally secure). In this work, we prove that the OTP encryption and decryption is equivalent to finding the initial condition on a pair of binary maps (Bernoulli shift). The binary map belongs to a family of 1D nonlinear chaotic and ergodic dynamical systems known as Generalized Luröth Series (GLS). Having established these interesting connections, we construct other perfect secrecy systems on the GLS that are equivalent to the One-Time Pad, generalizing for larger alphabets. We further show that OTP encryption is related to Randomized Arithmetic Coding - a scheme for joint compression and encryption.
A Highly Accurate Approach for Aeroelastic System with Hysteresis Nonlinearity
Directory of Open Access Journals (Sweden)
C. C. Cui
2017-01-01
Full Text Available We propose an accurate approach, based on the precise integration method, to solve the aeroelastic system of an airfoil with a pitch hysteresis. A major procedure for achieving high precision is to design a predictor-corrector algorithm. This algorithm enables accurate determination of switching points resulting from the hysteresis. Numerical examples show that the results obtained by the presented method are in excellent agreement with exact solutions. In addition, the high accuracy can be maintained as the time step increases in a reasonable range. It is also found that the Runge-Kutta method may sometimes provide quite different and even fallacious results, though the step length is much less than that adopted in the presented method. With such high computational accuracy, the presented method could be applicable in dynamical systems with hysteresis nonlinearities.
Non-linear and adaptive control of a refrigeration system
DEFF Research Database (Denmark)
Rasmussen, Henrik; Larsen, Lars F. S.
2011-01-01
are capable of adapting to variety of systems. This paper proposes a novel method for superheat and capacity control of refrigeration systems; namely by controlling the superheat by the compressor speed and capacity by the refrigerant flow. A new low order nonlinear model of the evaporator is developed......In a refrigeration process heat is absorbed in an evaporator by evaporating a flow of liquid refrigerant at low pressure and temperature. Controlling the evaporator inlet valve and the compressor in such a way that a high degree of liquid filling in the evaporator is obtained at all compressor...... capacities ensures a high energy efficiency. The level of liquid filling is indirectly measured by the superheat. Introduction of variable speed compressors and electronic expansion valves enables the use of more sophisticated control algorithms, giving a higher degree of performance and just as important...
On modulated complex non-linear dynamical systems
International Nuclear Information System (INIS)
Mahmoud, G.M.; Mohamed, A.A.; Rauh, A.
1999-01-01
This paper is concerned with the development of an approximate analytical method to investigate periodic solutions and their stability in the case of modulated non-linear dynamical systems whose equation of motion is describe. Such differential equations appear, for example, in problems of colliding particle beams in high-energy accelerators or one-mass systems with two or more degrees of freedom, e.g. rotors. The significance of periodic solutions lies on the fact that all non-periodic responses, if convergent, would approach to periodic solutions at the steady-state conditions. The example shows a good agreement between numerical and analytical results for small values of ε. The effect of the periodic modulation on the stability of the 2π-periodic solutions is discussed
Thermal conductivity in one-dimensional nonlinear systems
Politi, Antonio; Giardinà, Cristian; Livi, Roberto; Vassalli, Massimo
2000-03-01
Thermal conducitivity of one-dimensional nonlinear systems typically diverges in the thermodynamic limit, whenever the momentum is conserved (i.e. in the absence of interactions with an external substrate). Evidence comes from detailed studies of Fermi-Pasta-Ulam and diatomic Toda chains. Here, we discuss the first example of a one-dimensional system obeying Fourier law : a chain of coupled rotators. Numerical estimates of the thermal conductivity obtained by simulating a chain in contact with two thermal baths at different temperatures are found to be consistent with those ones based on linear response theory. The dynamics of the Fourier modes provides direct evidence of energy diffusion. The finiteness of the conductivity is traced back to the occurrence of phase-jumps. Our conclusions are confirmed by the analysis of two variants of the rotator model.
Nonlinear wave propagation in discrete and continuous systems
Rothos, V. M.
2016-09-01
In this review we try to capture some of the recent excitement induced by a large volume of theoretical and computational studies addressing nonlinear Schrödinger models (discrete and continuous) and the localized structures that they support. We focus on some prototypical structures, namely the breather solutions and solitary waves. In particular, we investigate the bifurcation of travelling wave solution in Discrete NLS system applying dynamical systems methods. Next, we examine the combined effects of cubic and quintic terms of the long range type in the dynamics of a double well potential. The relevant bifurcations, the stability of the branches and their dynamical implications are examined both in the reduced (ODE) and in the full (PDE) setting. We also offer an outlook on interesting possibilities for future work on this theme.
Nonlinear Quantum Metrology of Many-Body Open Systems
Beau, M.; del Campo, A.
2017-07-01
We introduce general bounds for the parameter estimation error in nonlinear quantum metrology of many-body open systems in the Markovian limit. Given a k -body Hamiltonian and p -body Lindblad operators, the estimation error of a Hamiltonian parameter using a Greenberger-Horne-Zeilinger state as a probe is shown to scale as N-[k -(p /2 )], surpassing the shot-noise limit for 2 k >p +1 . Metrology equivalence between initial product states and maximally entangled states is established for p ≥1 . We further show that one can estimate the system-environment coupling parameter with precision N-(p /2 ), while many-body decoherence enhances the precision to N-k in the noise-amplitude estimation of a fluctuating k -body Hamiltonian. For the long-range Ising model, we show that the precision of this parameter beats the shot-noise limit when the range of interactions is below a threshold value.
Nonlinear stochastic systems with incomplete information filtering and control
Shen, Bo; Shu, Huisheng
2013-01-01
Nonlinear Stochastic Processes addresses the frequently-encountered problem of incomplete information. The causes of this problem considered here include: missing measurements; sensor delays and saturation; quantization effects; and signal sampling. Divided into three parts, the text begins with a focus on H∞ filtering and control problems associated with general classes of nonlinear stochastic discrete-time systems. Filtering problems are considered in the second part, and in the third the theory and techniques previously developed are applied to the solution of issues arising in complex networks with the design of sampled-data-based controllers and filters. Among its highlights, the text provides: · a unified framework for handling filtering and control problems in complex communication networks with limited bandwidth; · new concepts such as random sensor and signal saturations for more realistic modeling; and · demonstration of the use of techniques such...
Perturbation methods and closure approximations in nonlinear systems
International Nuclear Information System (INIS)
Dubin, D.H.E.
1984-01-01
In the first section of this thesis, Hamiltonian theories of guiding center and gyro-center motion are developed using modern symplectic methods and Lie transformations. Littlejohn's techniques, combined with the theory of resonant interaction and island overlap, are used to explore the problem of adiabatic invariance and onset of stochasticity. As an example, the breakdown of invariance due to resonance between drift motion and gyromotion in a tokamak is considered. A Hamiltonian is developed for motion in a straight magnetic field with electrostatic perturbations in the gyrokinetic ordering, from which nonlinear gyrokinetic equations are constructed which have the property of phase-space preservation, useful for computer simulation. Energy invariants are found and various limits of the equations are considered. In the second section, statistical closure theories are applied to simple dynamical systems. The logistic map is used as an example because of its universal properties and simple quadratic nonlinearity. The first closure considered is the direct interaction approximation of Kraichnan, which is found to fail when applied to the logistic map because it cannot approximate the bounded support of the map's equilibrium distribution. By imposing a periodically constraint on a Langevin form of the DIA a new stable closure is developed
Nonlinear observer designs for fuel cell power systems
Gorgun, Haluk
A fuel cell is an electrochemical device that combines hydrogen and oxygen, with the aid of electro-catalysts, to produce electricity. A fuel cell consists of a negatively charged anode, a positively charged cathode and an electrolyte, which transports protons or ions. A low temperature fuel cell has an electrical potential of about 0.7 Volt when generating a current density of 300--500 mA/cm2. Practical fuel cell power systems will require a combination of several cells in series (a stack) to satisfy the voltage requirements of specific applications. Fuel cells are suitable for a potentially wide variety of applications, from stationary power generation in the range of hundreds of megawatts to portable electronics in the range of a couple of watts. Efficient operation of a fuel cell system requires advanced feedback control designs. Reliable measurements from the system are necessary to implement such designs. However, most of the commercially available sensors do not operate properly in the reformate and humidified gas streams in fuel cell systems. Sensors working varying degrees of success are too big and costly, and sensors that are potentially low cost are not reliable or do not have the required life time [28]. Observer designs would eliminate sensor needs for measurements, and make feedback control implementable. Since the fuel cell system dynamics are highly nonlinear, observer design is not an easy task. In this study we aim to develop nonlinear observer design methods applicable to fuel cell systems. In part I of the thesis we design an observer to estimate the hydrogen partial pressure in the anode channel. We treat inlet partial pressure as an unknown slowly varying parameter and develop an adaptive observer that employs a nonlinear voltage injection term. However in this design Fuel Processing System (FPS) dynamics are not modelled, and their effect on the anode dynamics are treated as plant uncertainty. In part II of the thesis we study the FPS
Directory of Open Access Journals (Sweden)
Md. Nur Alam
2016-06-01
Full Text Available In this article, we apply the exp(-Φ(ξ-expansion method to construct many families of exact solutions of nonlinear evolution equations (NLEEs via the nonlinear diffusive predator–prey system and the Bogoyavlenskii equations. These equations can be transformed to nonlinear ordinary differential equations. As a result, some new exact solutions are obtained through the hyperbolic function, the trigonometric function, the exponential functions and the rational forms. If the parameters take specific values, then the solitary waves are derived from the traveling waves. Also, we draw 2D and 3D graphics of exact solutions for the special diffusive predator–prey system and the Bogoyavlenskii equations by the help of programming language Maple.
Directory of Open Access Journals (Sweden)
Mingzhu Song
2016-01-01
Full Text Available We address the problem of globally asymptotic stability for a class of stochastic nonlinear systems with time-varying delays. By the backstepping method and Lyapunov theory, we design a linear output feedback controller recursively based on the observable linearization for a class of stochastic nonlinear systems with time-varying delays to guarantee that the closed-loop system is globally asymptotically stable in probability. In particular, we extend the deterministic nonlinear system to stochastic nonlinear systems with time-varying delays. Finally, an example and its simulations are given to illustrate the theoretical results.
Dispersion and nonlinear effects in OFDM-RoF system
Alhasson, Bader H.; Bloul, Albe M.; Matin, M.
2010-08-01
The radio-over-fiber (RoF) network has been a proven technology to be the best candidate for the wireless-access technology, and the orthogonal frequency division multiplexing (OFDM) technique has been established as the core technology in the physical layer of next generation wireless communication system, as a result OFDM-RoF has drawn attentions worldwide and raised many new research topics recently. At the present time, the trend of information industry is towards mobile, wireless, digital and broadband. The next generation network (NGN) has motivated researchers to study higher-speed wider-band multimedia communication to transmit (voice, data, and all sorts of media such as video) at a higher speed. The NGN would offer services that would necessitate broadband networks with bandwidth higher than 2Mbit/s per radio channel. Many new services emerged, such as Internet Protocol TV (IPTV), High Definition TV (HDTV), mobile multimedia and video stream media. Both speed and capacity have been the key objectives in transmission. In the meantime, the demand for transmission bandwidth increased at a very quick pace. The coming of 4G and 5G era will provide faster data transmission and higher bit rate and bandwidth. Taking advantages of both optical communication and wireless communication, OFDM Radio over Fiber (OFDM-RoF) system is characterized by its high speed, large capacity and high spectral efficiency. However, up to the present there are some problems to be solved, such as dispersion and nonlinearity effects. In this paper we will study the dispersion and nonlinearity effects and their elimination in OFDM-radio-over-fiber system.
A general sensitivity theory for simulations of nonlinear systems
International Nuclear Information System (INIS)
Kenton, M.A.
1981-01-01
A general sensitivity theory is developed for nonlinear lumped-parameter system simulations. The point-of-departure is general perturbation theory, which has long been used for linear systems in nuclear engineering and reactor physics. The theory allows the sensitivity of particular figures-of-merit of the system behavior to be calculated with respect to any parameter.An explicit procedure is derived for applying the theory to physical systems undergoing sudden events (e.g., reactor scrams, tank ruptures). A related problem, treating figures-of-merit defined as functions of extremal values of system variables occurring at sudden events, is handled by the same procedure. The general calculational scheme for applying the theory to numerical codes is discussed. It is shown that codes which use pre-packaged implicit integration subroutines can be augmented to include sensitivity theory: a companion set of subroutines to solve the sensitivity problem is listed. This combined system analysis code is applied to a simple model for loss of post-accident heat removal in a liquid metal-cooled fast breeder reactor. The uses of the theory for answering more general sensitivity questions are discussed. One application of the theory is to systematically determine whether specific physical processes in a model contribute significantly to the figures-of-merit. Another application of the theory is for selecting parameter values which enable a model to match experimentally observed behavior
Cracking chaos-based encryption systems ruled by nonlinear time delay differential equations
International Nuclear Information System (INIS)
Udaltsov, Vladimir S.; Goedgebuer, Jean-Pierre; Larger, Laurent; Cuenot, Jean-Baptiste; Levy, Pascal; Rhodes, William T.
2003-01-01
We report that signal encoding with high-dimensional chaos produced by delayed feedback systems with a strong nonlinearity can be broken. We describe the procedure and illustrate the method with chaotic waveforms obtained from a strongly nonlinear optical system that we used previously to demonstrate signal encryption/decryption with chaos in wavelength. The method can be extended to any systems ruled by nonlinear time-delayed differential equations
Mittag-Leffler Stability Theorem for Fractional Nonlinear Systems with Delay
Directory of Open Access Journals (Sweden)
S. J. Sadati
2010-01-01
Full Text Available Fractional calculus started to play an important role for analysis of the evolution of the nonlinear dynamical systems which are important in various branches of science and engineering. In this line of taught in this paper we studied the stability of fractional order nonlinear time-delay systems for Caputo's derivative, and we proved two theorems for Mittag-Leffler stability of the fractional nonlinear time delay systems.
Winnerless competition principle and prediction of the transient dynamics in a Lotka-Volterra model
Afraimovich, Valentin; Tristan, Irma; Huerta, Ramon; Rabinovich, Mikhail I.
2008-12-01
Predicting the evolution of multispecies ecological systems is an intriguing problem. A sufficiently complex model with the necessary predicting power requires solutions that are structurally stable. Small variations of the system parameters should not qualitatively perturb its solutions. When one is interested in just asymptotic results of evolution (as time goes to infinity), then the problem has a straightforward mathematical image involving simple attractors (fixed points or limit cycles) of a dynamical system. However, for an accurate prediction of evolution, the analysis of transient solutions is critical. In this paper, in the framework of the traditional Lotka-Volterra model (generalized in some sense), we show that the transient solution representing multispecies sequential competition can be reproducible and predictable with high probability.
On solutions of neutral stochastic delay Volterra equations with singular kernels
Directory of Open Access Journals (Sweden)
Xiaotai Wu
2012-08-01
Full Text Available In this paper, existence, uniqueness and continuity of the adapted solutions for neutral stochastic delay Volterra equations with singular kernels are discussed. In addition, continuous dependence on the initial date is also investigated. Finally, stochastic Volterra equation with the kernel of fractional Brownian motion is studied to illustrate the effectiveness of our results.
Generalized symmetries and conserved quantities of the Lotka-Volterra model
Baumann, G.; Freyberger, M.
1991-07-01
We examine the generalized symmetries of the Lotka-Volterra model to find the parameter values at which one time-dependent integral of motion exists. In this case the integral can be read off from the symmetries themselves. We also demonstrate the connection to a Hamiltonian structure of the Lotka-Volterra model.
Nonlinear analysis of a rotor-bearing system using describing functions
Maraini, Daniel; Nataraj, C.
2018-04-01
This paper presents a technique for modelling the nonlinear behavior of a rotor-bearing system with Hertzian contact, clearance, and rotating unbalance. The rotor-bearing system is separated into linear and nonlinear components, and the nonlinear bearing force is replaced with an equivalent describing function gain. The describing function captures the relationship between the amplitude of the fundamental input to the nonlinearity and the fundamental output. The frequency response is constructed for various values of the clearance parameter, and the results show the presence of a jump resonance in bearings with both clearance and preload. Nonlinear hardening type behavior is observed in the case with clearance and softening behavior is observed for the case with preload. Numerical integration is also carried out on the nonlinear equations of motion showing strong agreement with the approximate solution. This work could easily be extended to include additional nonlinearities that arise from defects, providing a powerful diagnostic tool.
Exploring lipids with nonlinear optical microscopy in multiple biological systems
Alfonso-Garcia, Alba
Lipids are crucial biomolecules for the well being of humans. Altered lipid metabolism may give rise to a variety of diseases that affect organs from the cardiovascular to the central nervous system. A deeper understanding of lipid metabolic processes would spur medical research towards developing precise diagnostic tools, treatment methods, and preventive strategies for reducing the impact of lipid diseases. Lipid visualization remains a complex task because of the perturbative effect exerted by traditional biochemical assays and most fluorescence markers. Coherent Raman scattering (CRS) microscopy enables interrogation of biological samples with minimum disturbance, and is particularly well suited for label-free visualization of lipids, providing chemical specificity without compromising on spatial resolution. Hyperspectral imaging yields large datasets that benefit from tailored multivariate analysis. In this thesis, CRS microscopy was combined with Raman spectroscopy and other label-free nonlinear optical techniques to analyze lipid metabolism in multiple biological systems. We used nonlinear Raman techniques to characterize Meibum secretions in the progression of dry eye disease, where the lipid and protein contributions change in ratio and phase segregation. We employed similar tools to examine lipid droplets in mice livers aboard a spaceflight mission, which lose their retinol content contributing to the onset of nonalcoholic fatty-liver disease. We also focused on atherosclerosis, a disease that revolves around lipid-rich plaques in arterial walls. We examined the lipid content of macrophages, whose variable phenotype gives rise to contrasting healing and inflammatory activities. We also proposed new label-free markers, based on lifetime imaging, for macrophage phenotype, and to detect products of lipid oxidation. Cholesterol was also detected in hepatitis C virus infected cells, and in specific strains of age-related macular degeneration diseased cells by
On nonlinear control design for autonomous chaotic systems of integer and fractional orders
International Nuclear Information System (INIS)
Ahmad, Wajdi M.; Harb, Ahmad M.
2003-01-01
In this paper, we address the problem of chaos control for autonomous nonlinear chaotic systems. We use the recursive 'backstepping' method of nonlinear control design to derive the nonlinear controllers. The controller effect is to stabilize the output chaotic trajectory by driving it to the nearest equilibrium point in the basin of attraction. We study two nonlinear chaotic systems: an electronic chaotic oscillator model, and a mechanical chaotic 'jerk' model. We demonstrate the robustness of the derived controllers against system order reduction arising from the use of fractional integrators in the system models. Our results are validated via numerical simulations
Fault Diagnosis of Nonlinear Systems Using Structured Augmented State Models
Institute of Scientific and Technical Information of China (English)
Jochen Aβfalg; Frank Allg(o)wer
2007-01-01
This paper presents an internal model approach for modeling and diagnostic functionality design for nonlinear systems operating subject to single- and multiple-faults. We therefore provide the framework of structured augmented state models. Fault characteristics are considered to be generated by dynamical exosystems that are switched via equality constraints to overcome the augmented state observability limiting the number of diagnosable faults. Based on the proposed model, the fault diagnosis problem is specified as an optimal hybrid augmented state estimation problem. Sub-optimal solutions are motivated and exemplified for the fault diagnosis of the well-known three-tank benchmark. As the considered class of fault diagnosis problems is large, the suggested approach is not only of theoretical interest but also of high practical relevance.
Online prediction and control in nonlinear stochastic systems
DEFF Research Database (Denmark)
Nielsen, Torben Skov
2002-01-01
speed and the relationship between (primarily) wind speed and wind power (the power curve). In paper G the model parameters are estimated using a RLS algorithm and any systematic time-variation of the model parameters is disregarded. Two di erent parameterizations of the power curve is considered...... are estimated using the algorithm proposed in paper C. The power curve and the diurnal variation of wind speed is estimated separately using the local polynomial regression procedure described in paper A . In paper J the parameters of the prediction model is assumed to be smooth functions of wind direction (and......The present thesis consists of a summary report and ten research papers. The subject of the thesis is on-line prediction and control of non-linear and non-stationary systems based on stochastic modelling. The thesis consists of three parts where the rst part deals with on-line estimation in linear...
Distributed Synchronization Control of Multiagent Systems With Unknown Nonlinearities.
Su, Shize; Lin, Zongli; Garcia, Alfredo
2016-01-01
This paper revisits the distributed adaptive control problem for synchronization of multiagent systems where the dynamics of the agents are nonlinear, nonidentical, unknown, and subject to external disturbances. Two communication topologies, represented, respectively, by a fixed strongly-connected directed graph and by a switching connected undirected graph, are considered. Under both of these communication topologies, we use distributed neural networks to approximate the uncertain dynamics. Decentralized adaptive control protocols are then constructed to solve the cooperative tracker problem, the problem of synchronization of all follower agents to a leader agent. In particular, we show that, under the proposed decentralized control protocols, the synchronization errors are ultimately bounded, and their ultimate bounds can be reduced arbitrarily by choosing the control parameter appropriately. Simulation study verifies the effectiveness of our proposed protocols.
Nonlinear transport behavior of low dimensional electron systems
Zhang, Jingqiao
The nonlinear behavior of low-dimensional electron systems attracts a great deal of attention for its fundamental interest as well as for potentially important applications in nanoelectronics. In response to microwave radiation and dc bias, strongly nonlinear electron transport that gives rise to unusual electron states has been reported in two-dimensional systems of electrons in high magnetic fields. There has also been great interest in the nonlinear response of quantum ballistic constrictions, where the effects of quantum interference, spatial dispersion and electron-electron interactions play crucial roles. In this thesis, experimental results of the research of low dimensional electron gas systems are presented. The first nonlinear phenomena were observed in samples of highly mobile two dimensional electrons in GaAs heavily doped quantum wells at different magnitudes of DC and AC (10 KHz to 20 GHz) excitations. We found that in the DC excitation regime the differential resistance oscillates with the DC current and external magnetic field, similar behavior was observed earlier in AlGaAs/GaAs heterostructures [C.L. Yang et al. ]. At external AC excitations the resistance is found to be also oscillating as a function of the magnetic field. However the form of the oscillations is considerably different from the DC case. We show that at frequencies below 100 KHz the difference is a result of a specific average of the DC differential resistance during the period of the external AC excitations. Secondly, in similar samples, strong suppression of the resistance by the electric field is observed in magnetic fields at which the Landau quantization of electron motion occurs. The phenomenon survives at high temperatures at which the Shubnikov de Haas oscillations are absent. The scale of the electric fields essential for the effect, is found to be proportional to temperature in the low temperature limit. We suggest that the strong reduction of the longitudinal resistance
Reproduction of Economic Interests as a Nonlinear Dynamical System
Directory of Open Access Journals (Sweden)
Smiesova Viktoria L.
2017-12-01
Full Text Available The aim of the article is to define the system characteristics of reproduction of economic interests of actors, substantiate the possibility of its evolutionary and revolutionary development and the nonlinearity of its development in dynamics. The article justifies the main characteristics of the system of reproduction of economic interests. It is proved that in this system stability and variability are complementarily combined as integrated mechanisms of its development in statics and dynamics, assurance of its self-organization and self-restoration, quantitative and qualitative transformation. In its static state, there prevail characteristics of steadiness and leaning towards stability and constancy. In the dynamic state, the main characteristic is variability of the system of reproduction of economic interests, which determines / reacts to the processes of transformation and development of its constituent subsystems, potential opportunities, preferences and economic behavior of actors (changes in the endogenous environment, institutions and establishments, constraints and stabilizers (changes in the exogenous environment. The model of dynamic development of the system for reproduction of economic interests is proposed, the phases of its evolutionary and revolutionary development are substantiated.