WorldWideScience

Sample records for nonlinear transverse beam

  1. Nonlinear transverse vibrations of elastic beams under tension

    International Nuclear Information System (INIS)

    Ichikawa, Y.H.; Konno, Kimiaki; Wadati, Miki.

    1980-02-01

    Nonlinear transverse vibrations of elastic beams under end-thrust have been examined with full account of the rigorous nonlinear relation of curvature and deformation of elastic beams. When the beams are subject to tension, the derived equation is shown to be reduced to one of the new integrable evolution equations discovered by us. (author)

  2. Correction of nonlinear distortion in high-transverse-emittance ratio-beam production with linear accelerator

    Directory of Open Access Journals (Sweden)

    Shaoheng Wang

    2008-05-01

    Full Text Available Derbenev proposed producing a high quality flat beam of high-transverse-emittance ratio (HTER with a linear accelerator. Kim also discussed the round-to-flat transformation of angular-momentum-dominated beam. Fermilab/NICADD Photoinjector Laboratory has performed many experiments on HTER beam production. Experiments and simulations, collectively, showed an S-shaped transverse distribution in the flat beam. In this paper, the source of this emittance deterioration in the transformation is identified as the nonlinear rf cavity focusing force; and a solution is proposed.

  3. Phase mixing of transverse oscillations in the linear and nonlinear regimes for IFR relativistic electron beam propagation

    International Nuclear Information System (INIS)

    Shokair, I.R.

    1991-01-01

    Phase mixing of transverse oscillations changes the nature of the ion hose instability from an absolute to a convective instability. The stronger the phase mixing, the faster an electron beam reaches equilibrium with the guiding ion channel. This is important for long distance propagation of relativistic electron beams where it is desired that transverse oscillations phase mix within a few betatron wavelengths of injection and subsequently an equilibrium is reached with no further beam emittance growth. In the linear regime phase mixing is well understood and results in asymptotic decay of transverse oscillations as 1/Z 2 for a Gaussian beam and channel system, Z being the axial distance measured in betatron wavelengths. In the nonlinear regime (which is likely mode of propagation for long pulse beams) results of the spread mass model indicate that phase mixing is considerably weaker than in the regime. In this paper we consider this problem of phase mixing in the nonlinear regime. Results of the spread mass model will be shown along with a simple analysis of phase mixing for multiple oscillator models. Particle simulations also indicate that phase mixing is weaker in nonlinear regime than in the linear regime. These results will also be shown. 3 refs., 4 figs

  4. Transverse beam dynamics in non-linear Fixed Field Alternating Gradient accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Haj, Tahar M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-02

    In this paper, we present some aspects of the transverse beam dynamics in Fixed Field Ring Accelerators (FFRA): we start from the basic principles in order to derive the linearized transverse particle equations of motion for FFRA, essentially FFAGs and cyclotrons are considered here. This is a simple extension of a previous work valid for linear lattices that we generalized by including the bending terms to ensure its correctness for FFAG lattice. The space charge term (contribution of the internal coulombian forces of the beam) is contained as well, although it is not discussed here. The emphasis is on the scaling FFAG type: a collaboration work is undertaken in view of better understanding the properties of the 150 MeV scaling FFAG at KURRI in Japan, and progress towards high intensity operation. Some results of the benchmarking work between different codes are presented. Analysis of certain type of field imperfections revealed some interesting features about this machine that explain some of the experimental results and generalize the concept of a scaling FFAG to a non-scaling one for which the tune variations obey a well-defined law.

  5. Noninterceptive transverse beam diagnostics

    International Nuclear Information System (INIS)

    Chamberlin, D.D.; Minerbo, G.N.; Teel, L.E. Jr.; Gilpatrick, J.D.

    1981-01-01

    The transverse emittance properties of a high-current linear accelerator may be measured by using TV cameras sensitive to the visible radiation emitted following beam interactions with residual gas. This paper describes the TV system being used to measure emittances for the Fusion Materials Irradiation Test (FMIT) project

  6. Transverse equilibria in linear collider beam-beam collisions

    International Nuclear Information System (INIS)

    Rosenzweig, J.B.; Chen, Pisin

    1991-01-01

    It has been observed in simulations of the beam-beam interaction in linear colliders that a near equilibrium pinched state of the colliding beams develops when the disruption parameter is large (D much-gt 1). In this state the beam transverse density distributions are peaked at center, with long tails. The authors present here an analytical model of the equilibrium approached by the beams, that of a generalized Bennett pinch which develops through collisionless damping due to the strong nonlinearity of the beam-beam interaction. In order to calculate the equilibrium pinched beam size, an estimation of the rms emittance growth is made which takes into account the partial adiabaticity of the collision. This pinched beam size is used to derive the luminosity enhancement factors whose scaling is in agreement with the simulation results for both D and thermal factor A = σ z /β * large, and explains the previously noted cubic relationship between round and flat beam enhancement factors

  7. Investigation and optimization of transverse non-linear beam dynamics in the high-energy storage ring HESR

    Energy Technology Data Exchange (ETDEWEB)

    Welsch, Dominic Markus

    2010-03-10

    The High-Energy Storage Ring (HESR) is part of the upcoming Facility for Antiproton and Ion Research (FAIR) which is planned as a major extension to the present facility of the Helmholtzzentrum fuer Schwerionenforschung (GSI) in Darmstadt. The HESR will provide antiprotons in the momentum range from 1.5 to 15 GeV/c for the internal target experiment PANDA. The demanding requirements of PANDA in terms of beam quality and luminosity together with a limited production rate of antiprotons call for a long beam life time and a minimum of beam loss. Therefore, an effective closed orbit correction and a sufficiently large dynamic aperture of the HESR are crucial. With this thesis I present my work on both of these topics. The expected misalignments of beam guiding magnets have been estimated and used to simulate the closed orbit in the HESR. A closed orbit correction scheme has been developed for different ion optical settings of the HESR and numerical simulations have been performed to validate the scheme. The proposed closed orbit correction method which uses the orbit response matrix has been benchmarked at the Cooler Synchrotron COSY of the Forschungszentrum Juelich. A chromaticity correction scheme for the HESR consisting of sextupole magnets has been developed to reduce tune spread and thus to minimize the emittance growth caused by betatron resonances. The chromaticity correction scheme has been optimized through dynamic aperture calculations. The estimated field errors of the HESR dipole and quadrupole magnets have been included in the non-linear beam dynamics studies. Investigations concerning their optimization have been carried out. The ion optical settings of the HESR have been improved using dynamic aperture calculations and the technique of frequency map analysis. The related diffusion coefficient was also used to predict long-term stability based on short-term particle tracking. With a reasonable reduction of the quadrupole magnets field errors and a

  8. Nonlinear beam mechanics

    NARCIS (Netherlands)

    Westra, H.J.R.

    2012-01-01

    In this Thesis, nonlinear dynamics and nonlinear interactions are studied from a micromechanical point of view. Single and doubly clamped beams are used as model systems where nonlinearity plays an important role. The nonlinearity also gives rise to rich dynamic behavior with phenomena like

  9. Experimental studies of nonlinear beam dynamics

    International Nuclear Information System (INIS)

    Caussyn, D.D.; Ball, M.; Brabson, B.; Collins, J.; Curtis, S.A.; Derenchuck, V.; DuPlantis, D.; East, G.; Ellison, M.; Ellison, T.; Friesel, D.; Hamilton, B.; Jones, W.P.; Lamble, W.; Lee, S.Y.; Li, D.; Minty, M.G.; Sloan, T.; Xu, G.; Chao, A.W.; Ng, K.Y.; Tepikian, S.

    1992-01-01

    The nonlinear beam dynamics of transverse betatron oscillations were studied experimentally at the Indiana University Cyclotron Facility cooler ring. Motion in one dimension was measured for betatron tunes near the third, fourth, fifth, and seventh integer resonances. This motion is described by coupling between the transverse modes of motion and nonlinear field errors. The Hamiltonian for nonlinear particle motion near the third- and fourth-integer-resonance conditions has been deduced

  10. Nonlinear beam dynamics experimental program at SPEAR

    International Nuclear Information System (INIS)

    Tran, P.; Pellegrini, C.; Cornacchia, M.; Lee, M.; Corbett, W.

    1995-01-01

    Since nonlinear effects can impose strict performance limitations on modern colliders and storage rings, future performance improvements depend on further understanding of nonlinear beam dynamics. Experimental studies of nonlinear beam motion in three-dimensional space have begun in SPEAR using turn-by-turn transverse and longitudinal phase-space monitors. This paper presents preliminary results from an on-going experiment in SPEAR

  11. Nonlinear theory of transverse-multimode plasma accelerators

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Panin, V.A.; Plotnikov, A.P.

    1991-01-01

    The excitation of the higher transverse modes in a plasma-filled waveguide by a high-power electron beam is considered. General nonlinear equations are obtained which treat the excitation of the higher transverse plasma waves by a high-current relativistic beam. Results are presented of the numerical solutions of these equations. In the case of ultrarelativistic beams analytical expressions are found for the maximum amplitudes of the excited modes and the Q of the amplification. Numerical estimates are presented for realistic parameters

  12. A Hardware transverse beam frequency response simulator

    International Nuclear Information System (INIS)

    Ning, J.; Tan, C.Y.

    2005-01-01

    We built an electronic instrument that can mimic the transverse beam frequency response. The instrument consists of (1) a time delay circuit with an analog-to-digital converter (ADC) which contains a first-in-first-out random assess memory (FIFO RAM) and a digital-to-analog converter (DAC); (2) a variable phase shifter circuit which is based on an all pass filter with a bandwidth of 25kHz to 30kHz and (3) a commutating filter which is a nonlinear band pass filter. With this instrument, we can dynamically adjust the betatron tune, the synchrotron tune, and the chromaticity. Using this instrument, we are able to test other beam systems without using actual beam

  13. Introduction to Transverse Beam Dynamics

    CERN Document Server

    Holzer, B.J.

    2014-01-01

    In this chapter we give an introduction to the transverse dynamics of the particles in a synchrotron or storage ring. The emphasis is more on qualitative understanding rather than on mathematical correctness, and a number of simulations are used to demonstrate the physical behaviour of the particles. Starting from the basic principles of how to design the geometry of the ring, we review the transverse motion of the particles, motivate the equation of motion, and show the solutions for typical storage ring elements. Following the usual treatment in the literature, we present a second way to describe the particle beam, using the concept of the emittance of the particle ensemble and the beta function, which reflects the overall focusing properties of the ring. The adiabatic shrinking due to Liouville's theorem is discussed as well as dispersive effects in the most simple case.

  14. Introduction to Transverse Beam Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Holzer, B J [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    In this chapter we give an introduction to the transverse dynamics of the particles in a synchrotron or storage ring. The emphasis is more on qualitative understanding rather than on mathematical correctness, and a number of simulations are used to demonstrate the physical behaviour of the particles. Starting from the basic principles of how to design the geometry of the ring, we review the transverse motion of the particles, motivate the equation of motion, and show the solutions for typical storage ring elements. Following the usual treatment in the literature, we present a second way to describe the particle beam, using the concept of the emittance of the particle ensemble and the beta function, which reflects the overall focusing properties of the ring. The adiabatic shrinking due to Liouville's theorem is discussed as well as dispersive effects in the most simple case.

  15. Stationary nonlinear Airy beams

    International Nuclear Information System (INIS)

    Lotti, A.; Faccio, D.; Couairon, A.; Papazoglou, D. G.; Panagiotopoulos, P.; Tzortzakis, S.; Abdollahpour, D.

    2011-01-01

    We demonstrate the existence of an additional class of stationary accelerating Airy wave forms that exist in the presence of third-order (Kerr) nonlinearity and nonlinear losses. Numerical simulations and experiments, in agreement with the analytical model, highlight how these stationary solutions sustain the nonlinear evolution of Airy beams. The generic nature of the Airy solution allows extension of these results to other settings, and a variety of applications are suggested.

  16. Analysis of beam envelope by transverse space charge effect

    International Nuclear Information System (INIS)

    Toyama, Shin'ichi

    1997-09-01

    It is important for high current accelerators to estimate the contribution of the space charge effect to keep the beam off its beak up. The application of an envelope equation is examined in previous report in which the beam is just coasting beam (non accelerating). The analysis of space charge effect is necessary for the comparison in coming accelerator test in PNC. In order to evaluate the beam behavior in high current, the beam dynamics and beam parameters which are input to the equation for the evaluation are developed and make it ready to estimate the beam transverse dynamics by the space charge. The estimate needs to have enough accuracy for advanced code calculation. After the preparation of the analytic expression of transverse motion, the non-linear differential equation of beam dynamics is solved by a numerical method on a personal computer. The beam envelope from the equation is estimated by means of the beam emittance, current and energy. The result from the analysis shows that the transverse beam broadening is scarecely small around the beam current value of PNC design. The contribution to the beam broadening of PNC linac comes from its beam emittance. The beam broadening in 100 MeV case is almost negligible in the view of transverse space charge effect. Therefore, the electron beam is stable up to 10 A order in PNC linac design. Of course, the problem for RF supply is out of consideration here. It is important to estimate other longitudinal effect such as beam bunch effect which is lasting unevaluated. (author)

  17. Transverse Schottky spectra and beam transfer functions of coasting ion beams with space charge

    International Nuclear Information System (INIS)

    Paret, Stefan

    2010-01-01

    A study of the transverse dynamics of coasting ion beams with moderate space charge is presented in this work. From the dispersion relation with linear space charge, an analytic model describing the impact of space charge on transverse beam transfer functions (BTFs) and the stability limits of a beam is derived. The dielectric function obtained in this way is employed to describe the transverse Schottky spectra with linear space charge as well. The difference between the action of space charge and impedances is highlighted. The setup and the results of an experiment performed in the heavy ion synchrotron SIS-18 at GSI to detect space-charge effects at different beam intensities are explicated. The measured transverse Schottky spectra and BTFs are compared with the linear space-charge model. The stability diagrams constructed from the BTFs are presented. The space-charge parameters evaluated from the Schottky and BTF measurements are compared with estimations based on measured beam parameters. The impact of collective effects on the Schottky and BTF diagnostics is also investigated through numerical simulations. For this purpose the self-field of beams with linear and non-linear transverse density-distributions is computed on a twodimensional grid. The noise of the random particle distribution causes fluctuations of the dipole moment of the beam which produce the Schottky spectrum. BTFs are simulated by exciting the beam with transverse kicks. The simulation results are used to verify the space-charge model. (orig.)

  18. Transverse Schottky spectra and beam transfer functions of coasting ion beams with space charge

    Energy Technology Data Exchange (ETDEWEB)

    Paret, Stefan

    2010-02-22

    A study of the transverse dynamics of coasting ion beams with moderate space charge is presented in this work. From the dispersion relation with linear space charge, an analytic model describing the impact of space charge on transverse beam transfer functions (BTFs) and the stability limits of a beam is derived. The dielectric function obtained in this way is employed to describe the transverse Schottky spectra with linear space charge as well. The difference between the action of space charge and impedances is highlighted. The setup and the results of an experiment performed in the heavy ion synchrotron SIS-18 at GSI to detect space-charge effects at different beam intensities are explicated. The measured transverse Schottky spectra and BTFs are compared with the linear space-charge model. The stability diagrams constructed from the BTFs are presented. The space-charge parameters evaluated from the Schottky and BTF measurements are compared with estimations based on measured beam parameters. The impact of collective effects on the Schottky and BTF diagnostics is also investigated through numerical simulations. For this purpose the self-field of beams with linear and non-linear transverse density-distributions is computed on a twodimensional grid. The noise of the random particle distribution causes fluctuations of the dipole moment of the beam which produce the Schottky spectrum. BTFs are simulated by exciting the beam with transverse kicks. The simulation results are used to verify the space-charge model. (orig.)

  19. Transverse effects in nonlinear optics: Toward the photon superfluid

    Science.gov (United States)

    McCormick, Colin Fraser

    Nonlinear optics displays a wealth of transverse effects. These effects are particularly rich in the presence of an optical cavity. Many considerations suggest that in a Kerr nonlinear cavity a new state of light known as a "photon superfluid" can form, with strong analogies to atomic superfluids. The conditions for the formation of the photon superfluid include requirements on the cavity, input light fields and the nonlinear medium as well as various timescales. The most favorable candidate nonlinear medium for observing the photon super-fluid is an atomic vapor. With a strong and fast Kerr effect, atomic vapors also have the advantage of a Kerr coefficient that is tunable in both magnitude and sign. A series of z-scan experiments in far-detuned atomic rubidium vapor is reported, measuring the Kerr coefficient and determining its functional dependence on detuning to be that of a Doppler-broadened two-level model with adiabatic following of the electric field by the atom pseudomoment. Saturation effects are found to be important. Z-scan measurements for detunings within the Doppler profile are shown to agree well with numerical simulations based on the Doppler-broadened model. Agreement between absorptive and refractive non-linear coefficients is evidence of the Kramers-Kronig relations at work, even in this nonlinear system. The formation of the photon superfluid is discussed and the calculation of a new process, nearly collinear four-wave mixing, is presented. This process is essentially an inverse beam filamentation that is likely to be the underlying physical mechanism for transverse cooling and condensation of photons in a nonlinear optical cavity. Nearly collinear four-wave mixing may also be related to phenomena in general nonlinear physics, including modulation instability and Fermi-Pasta-Ulam recurrence.

  20. Characterization and monitoring of transverse beam tails

    International Nuclear Information System (INIS)

    Seeman, J.T.; Decker, F.J.; Hsu, I.; Young, C.

    1991-05-01

    Low emittance electron beams accelerated to high energy in a linac experience transverse effects (wakefield, filamentation, optics) which produce non-Gaussian projected transverse beam distributions. Characterizations of the beam shapes are difficult because the shapes are asymmetric and change with betatron phase. In this note several methods to describe beam distributions are discussed including an accelerator physics model of these tails. The uses of these characterizations in monitoring the beam emittances in the SLC are described in this paper. First, two dimensional distributions from profile monitor screens are reviewed showing correlated tails. Second, a fitting technique for non-Gaussian one dimensional distributions is used to extract the core from the tail areas. Finally, a model for tail propagation in the linac is given. 3 refs., 6 figs

  1. Spatial Control of Photoemitted Electron Beams using a Micro-Lens-Array Transverse-Shaping Technique

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Northern Illinois U.; Qiang, G. [Tsinghua U., Beijing, Dept. Eng. Phys.; Ha, G. [POSTECH; Wisniewski, E. [Argonne (main); Piot, P. [NIU, DeKalb; Power, J. G. [Argonne (main); Gai, W. [Argonne (main)

    2017-07-24

    A common issue encountered in photoemission electron sources used in electron accelerators is the transverse inhomogeneity of the laser distribution resulting from the laser-amplification process and often use of frequency up conversion in nonlinear crystals. A inhomogeneous laser distribution on the photocathode produces charged beams with lower beam quality. In this paper, we explore the possible use of microlens arrays (fly-eye light condensers) to dramatically improve the transverse uniformity of the drive laser pulse on UV photocathodes. We also demonstrate the use of such microlens arrays to generate transversely-modulated electron beams and present a possible application to diagnose the properties of a magnetized beam.

  2. Transverse electron beam diagnostics at REGAE

    Energy Technology Data Exchange (ETDEWEB)

    Bayesteh, Shima

    2014-12-15

    The use of high-intensity electron and X-ray pulsed sources allows for the direct observation of atomic motions as they occur. While the production of such high coherent, brilliant, short X-ray pulses requires large-scale and costly accelerator facilities, it is feasible to employ a high-intensity source of electrons by exploiting a more compact design. The Relativistic Electron Gun for Atomic Exploration (REGAE) facility is a small linear accelerator at DESY, Hamburg, equipped with a photocathode radio frequency (RF) gun that produces relativistic ultra-short (<100 fs), low charge (<1 pC) electron bunches of high coherence. By means of time-resolved diffraction experiments, such an electron source can probe ultrafast laser-induced atomic structural changes that occur with a temporal resolution of ∝100 fs. A comprehensive characterization of the electron beam, for every pulse, is of fundamental importance to study the atomic motions with the desired resolution and quality. This thesis reports on the transversal diagnostics of the electron beam with an emphasis on a scintillator-based beam profile monitor. The diagnostics is capable of evaluating the beam parameters such as charge, energy, energy spread and transverse profile, at very low charges and on a shot-to-shot basis. A full characterization of the scintillator's emission, the optical setup and the detector (camera) of the profile monitor is presented, from which an absolute charge calibration of the system is derived. The profile monitor is specially developed to accommodate more applications, such as dark current suppression, overlapping the electron probe and the laser pump within 1 ns accuracy, as well as charge and transverse emittance measurements. For the determination of the transverse emittance two techniques were applied. The first one introduces a new method that exploits a diffraction pattern to measure the emittance, while the second one is based on a version of the Pepper-pot technique. A

  3. Transverse electron beam diagnostics at REGAE

    International Nuclear Information System (INIS)

    Bayesteh, Shima

    2014-12-01

    The use of high-intensity electron and X-ray pulsed sources allows for the direct observation of atomic motions as they occur. While the production of such high coherent, brilliant, short X-ray pulses requires large-scale and costly accelerator facilities, it is feasible to employ a high-intensity source of electrons by exploiting a more compact design. The Relativistic Electron Gun for Atomic Exploration (REGAE) facility is a small linear accelerator at DESY, Hamburg, equipped with a photocathode radio frequency (RF) gun that produces relativistic ultra-short (<100 fs), low charge (<1 pC) electron bunches of high coherence. By means of time-resolved diffraction experiments, such an electron source can probe ultrafast laser-induced atomic structural changes that occur with a temporal resolution of ∝100 fs. A comprehensive characterization of the electron beam, for every pulse, is of fundamental importance to study the atomic motions with the desired resolution and quality. This thesis reports on the transversal diagnostics of the electron beam with an emphasis on a scintillator-based beam profile monitor. The diagnostics is capable of evaluating the beam parameters such as charge, energy, energy spread and transverse profile, at very low charges and on a shot-to-shot basis. A full characterization of the scintillator's emission, the optical setup and the detector (camera) of the profile monitor is presented, from which an absolute charge calibration of the system is derived. The profile monitor is specially developed to accommodate more applications, such as dark current suppression, overlapping the electron probe and the laser pump within 1 ns accuracy, as well as charge and transverse emittance measurements. For the determination of the transverse emittance two techniques were applied. The first one introduces a new method that exploits a diffraction pattern to measure the emittance, while the second one is based on a version of the Pepper-pot technique. A

  4. Nonlinear beam expander for ESNIT

    International Nuclear Information System (INIS)

    Rusthoi, D.P.; Blind, B.; Garnett, R.W.; Hanna, D.S.; Jason, A.J.; Kraus, R.H. Jr.; Neri, F.

    1994-01-01

    We describe the design of a beam-redistribution and expansion system for the Japanese Atomic Energy Research Institute (JAERI) Energy Selective Neutron Irradiation Test Facility (ESNIT). The system tailors the beam exiting a deuteron accelerator at energies from 20 to 35 MeV for deposition on a lithium neutron-production target. A uniform beam-intensity distribution in a well-defined irradiation area is inquired at the target and is achieved by the use of nonlinear elements. The design of the high-energy beam transport (HEBT) for ESNIT includes a 90 degree achromatic bend, a matching section with an energy-compacting cavity, a nonlinear beam expander, a target imager, a shielding dipole, and an rf-cavity system to add energy spread to the beam before it impinges on the target. The system meets performance requirements at multiple energies and currents, and for different spot sizes on target

  5. Measurement and interpretation of transverse beam instabilities in the CERN large hadron collider (LHC) and extrapolations to HL-LHC

    CERN Document Server

    AUTHOR|(CDS)2067185; Arduini, Gianluigi; Barranco Navarro, Laura; Buffat, Xavier; Carver, Lee Robert; Iadarola, Giovanni; Li, Kevin Shing Bruce; Pieloni, Tatiana; Romano, Annalisa; Rumolo, Giovanni; Salvant, Benoit; Schenk, Michael; Tambasco, Claudia; Biancacci, Nicolo

    2016-01-01

    Since the first transverse instability observed in 2010, many studies have been performed on both measurement and simulation sides and several lessons have been learned. In a machine like the LHC, not only all the mechanisms have to be understood separately, but the possible interplays between the different phenomena need to be analysed in detail, including the beam-coupling impedance (with in particular all the necessary collimators to protect the machine but also new equipment such as crab cavities for HL-LHC), linear and nonlinear chromaticity, Landau octupoles (and other intrinsic nonlinearities), transverse damper, space charge, beam-beam (long-range and head-on), electron cloud, linear coupling strength, tune separation between the transverse planes, tune split between the two beams, transverse beam separation between the two beams, etc. This paper reviews all the transverse beam instabilities observed and simulated so far, the mitigation measures which have been put in place, the remaining questions an...

  6. Possibilities for reduction of transverse projected emittances by partial removal of transverse to longitudinal beam correlations

    International Nuclear Information System (INIS)

    Balandin, V.; Decking, W.; Golubeva, N.

    2014-09-01

    We show that if in the particle beam there are linear correlations between energy of particles and their transverse positions and momenta (linear beam dispersions), then the transverse projected emittances always can be reduced by letting the beam to pass through magnetostatic system with specially chosen nonzero lattice dispersions. The maximum possible reduction of the transverse projected emittances occurs when all beam dispersions are zeroed, and the values of the lattice dispersions required for that are completely defined by the values of the beam dispersions and the beam rms energy spread and are independent from any other second-order central beam moments. Besides that, we prove that, alternatively, one can also use the lattice dispersions to remove linear correlations between longitudinal positions of particles and their transverse coordinates (linear beam tilts), but in this situation solution for the lattice dispersions is nonunique and the reduction of the transverse projected emittances is not guaranteed.

  7. Stochastic nonlinear beam equations

    Czech Academy of Sciences Publication Activity Database

    Brzezniak, Z.; Maslowski, Bohdan; Seidler, Jan

    2005-01-01

    Roč. 132, č. 1 (2005), s. 119-149 ISSN 0178-8051 R&D Projects: GA ČR(CZ) GA201/01/1197 Institutional research plan: CEZ:AV0Z10190503 Keywords : stochastic beam equation * stability Subject RIV: BA - General Mathematics Impact factor: 0.896, year: 2005

  8. Electron beam based transversal profile measurements of intense ion beams

    International Nuclear Information System (INIS)

    El Moussati, Said

    2014-01-01

    A non-invasive diagnostic method for the experimental determination of the transverse profile of an intense ion beam has been developed and investigated theoretically as well as experimentally within the framework of the present work. The method is based on the deflection of electrons when passing the electromagnetic field of an ion beam. To achieve this an electron beam is employed with a specifically prepared transversal profile. This distinguish this method from similar ones which use thin electron beams for scanning the electromagnetic field [Roy et al. 2005; Blockland10]. The diagnostic method presented in this work will be subsequently called ''Electron-Beam-Imaging'' (EBI). First of all the influence of the electromagnetic field of the ion beam on the electrons has been theoretically analyzed. It was found that the magnetic field causes only a shift of the electrons along the ion beam axis, while the electric field only causes a shift in a plane transverse to the ion beam. Moreover, in the non-relativistic case the magnetic force is significantly smaller than the Coulomb one and the electrons suffer due to the magnetic field just a shift and continue to move parallel to their initial trajectory. Under the influence of the electric field, the electrons move away from the ion beam axis, their resulting trajectory shows a specific angle compared to the original direction. This deflection angle practically depends just on the electric field of the ion beam. Thus the magnetic field has been neglected when analysing the experimental data. The theoretical model provides a relationship between the deflection angle of the electrons and the charge distribution in the cross section of the ion beam. The model however only can be applied for small deflection angles. This implies a relationship between the line-charge density of the ion beam and the initial kinetic energy of the electrons. Numerical investigations have been carried out to clarify the

  9. Differential quadrature method of nonlinear bending of functionally graded beam

    Science.gov (United States)

    Gangnian, Xu; Liansheng, Ma; Wang, Youzhi; Quan, Yuan; Weijie, You

    2018-02-01

    Using the third-order shear deflection beam theory (TBT), nonlinear bending of functionally graded (FG) beams composed with various amounts of ceramic and metal is analyzed utilizing the differential quadrature method (DQM). The properties of beam material are supposed to accord with the power law index along to thickness. First, according to the principle of stationary potential energy, the partial differential control formulae of the FG beams subjected to a distributed lateral force are derived. To obtain numerical results of the nonlinear bending, non-dimensional boundary conditions and control formulae are dispersed by applying the DQM. To verify the present solution, several examples are analyzed for nonlinear bending of homogeneous beams with various edges. A minute parametric research is in progress about the effect of the law index, transverse shear deformation, distributed lateral force and boundary conditions.

  10. Nonlinear diffraction from a virtual beam

    DEFF Research Database (Denmark)

    Saltiel, Solomon M.; Neshev, Dragomir N.; Krolikowski, Wieslaw

    2010-01-01

    We observe experimentally a novel type of nonlinear diffraction in the process of two-wave mixing on a nonlinear quadratic grating.We demonstrate that when the nonlinear grating is illuminated simultaneously by two noncollinear beams, a second-harmonic diffraction pattern is generated by a virtual...... beam propagating along the bisector of the two pump beams. The observed iffraction phenomena is a purely nonlinear effect that has no analogue in linear diffraction...

  11. Nonlinear optical beam manipulation, beam combining, and atmospheric propagation

    International Nuclear Information System (INIS)

    Fischer, R.A.

    1988-01-01

    These proceedings collect papers on optics: Topics include: diffraction properties of laser speckle, coherent beam combination by plasma modes, nonlinear responses, deformable mirrors, imaging radiometers, electron beam propagation in inhomogeneous media, and stability of laser beams in a structured environment

  12. Nonlinear Analysis of Cable Vibration of a Multispan Cable-Stayed Bridge under Transverse Excitation

    Directory of Open Access Journals (Sweden)

    Kun Lin

    2014-01-01

    Full Text Available The nonlinear vibrations of cable in a multispan cable-stayed bridge subjected to transverse excitation are investigated. The MECS (multielements cable system model, where multielements per cable stay are used, is built up and used to analyze the model properties of the multispan cable-stayed bridges. Then, a simplified two-degrees-of-freedom (2-DOFs model, where the tower or the deck is reduced to a beam, is proposed to analyze the nonlinear dynamic behaviors of the beam and cable. The results of MECS model analysis show that the main tower in the multispan cable-stayed bridge is prone to the transverse vibration, and the local vibration of cables only has a little impact on the frequency values of the global modes. The results of simplified model analysis show that the energy can be transformed between the modes of the beam and cable when the nature frequencies of them are very close. On the other hand, with the transverse excitation changing, the cable can exhibit richer quasi-periodic or chaotic motions due to the nonlinear terms caused by the coupled mode between the beam and cable.

  13. Chaotic behavior in a relativistic electron beam interacting with a transverse slow electromagnetic wave

    International Nuclear Information System (INIS)

    Serbeto, A.; Alves, M.V.

    1993-01-01

    Using a nonlinear set of equations which describes the excitation of a purely transverse slow electromagnetic wave by a relativistic electron beam, it is shown that the system runs from chaotic behavior to a regular stable state due to crisis phenomenon and from stabilized soliton and repeated stabilized explosive solutions to a temporal chaos. These behaviors suggest that the primary mechanism for the saturation of the explosive instability is not only the cubic nonlinear frequency shift as pointed out by many authors until now. The inclusion of the velocity perturbation in the beam charge initial equilibrium state leads the system to these strange behaviors. (author)

  14. Generalized Kapchinskij-Vladimirskij Distribution and Envelope Equation for High-intensity Beams in a Coupled Transverse Focusing Lattice

    International Nuclear Information System (INIS)

    Qin, Hong; Chung, Moses; Davidson, Ronald C.

    2009-01-01

    In an uncoupled lattice, the Kapchinskij-Vladimirskij (KV) distribution function first analyzed in 1959 is the only known exact solution of the nonlinear Vlasov-Maxwell equations for high- intensity beams including self-fields in a self-consistent manner. The KV solution is generalized here to high-intensity beams in a coupled transverse lattice using the recently developed generalized Courant-Snyder invariant for coupled transverse dynamics. This solution projects to a rotating, pulsating elliptical beam in transverse configuration space, determined by the generalized matrix envelope equation.

  15. Optimized simultaneous transverse and longitudinal focusing of intense ion beam pulses for warm dense matter applications

    International Nuclear Information System (INIS)

    Sefkow, Adam B.; Davidson, Ronald C.; Kaganovich, Igor D.; Gilson, Erik P.; Roy, Prabir K.; Seidl, Peter A.; Yu, Simon S.; Welch, Dale R.; Rose, David V.; Barnard, John J.

    2007-01-01

    Intense, space-charge-dominated ion beam pulses for warm dense matter and heavy ion fusion applications must undergo simultaneous transverse and longitudinal bunch compression in order to meet the requisite beam intensities desired at the target. The longitudinal compression of an ion bunch is achieved by imposing an initial axial velocity tilt on the drifting beam and subsequently neutralizing its space-charge and current in a drift region filled with high-density plasma. The Neutralized Drift Compression Experiment (NDCX) at Lawrence Berkeley National Laboratory has measured a sixty-fold longitudinal current compression of an intense ion beam with pulse duration of a few nanoseconds, in agreement with simulations and theory. A strong solenoid is modeled near the end of the drift region in order to transversely focus the beam to a sub-millimeter spot size coincident with the longitudinal focal plane. The charge and current neutralization provided by the background plasma is critical in determining the total achievable transverse and longitudinal compression of the beam pulse. Numerical simulations show that the current density of an NDCX ion beam can be compressed over a few meters by factors greater than 10 5 with peak beam density in excess of 10 14 cm -3 . The peak beam density sets a lower bound on the local plasma density required near the focal plane for optimal beam compression, since the simulations show stagnation of the compression when n beam >n plasma . Beam-plasma interactions can also have a deleterious effect on the compression physics and lead to the formation of nonlinear wave excitations in the plasma. Simulations that optimize designs for the simultaneous transverse and longitudinal focusing of an NDCX ion beam for future warm dense matter experiments are discussed

  16. Nonlinear transport of accelerator beam phase space

    International Nuclear Information System (INIS)

    Xie Xi; Xia Jiawen

    1995-01-01

    Based on the any order analytical solution of accelerator beam dynamics, the general theory for nonlinear transport of accelerator beam phase space is developed by inverse transformation method. The method is general by itself, and hence can also be applied to the nonlinear transport of various dynamic systems in physics, chemistry and biology

  17. Nonlinear wave-beam kinetic equilibrium in decelerating systems

    International Nuclear Information System (INIS)

    Grishin, V.K.; Shaposhnikova, E.N.

    1981-01-01

    The equilibrium state of the wave-beam system arising during the interaction of a particle beam and excited electromagnetic wave has been investigated on the basis of the analysis of the exact polution of a non-linear self-consistent linear equation using the complete system of conservation laws. A waveguide with a dielectric filler, into which a monoenergetic particle beam magnetized in a transverse plane is continuously injected, is used as a model of an decelerating system. A dispersion equation describing the system state and expression for the evaluation of efficiency of the beam energy conversion to the field energy have been obtained. It is concluded that larae fields and high efficiency of energy conversion are achieved during the marked beam reconstruction. States with different values of current and beam velocity but similar amplitudes of a longitudinal field are possible in the system considered [ru

  18. Boundary controllability for a nonlinear beam equation

    Directory of Open Access Journals (Sweden)

    Xiao-Min Cao

    2015-09-01

    Full Text Available This article concerns a nonlinear system modeling the bending vibrations of a nonlinear beam of length $L>0$. First, we derive the existence of long time solutions near an equilibrium. Then we prove that the nonlinear beam is locally exact controllable around the equilibrium in $H^4(0,L$ and with control functions in $H^2(0,T$. The approach we used are open mapping theorem, local controllability established by linearization, and the induction.

  19. Experimental evidence of adiabatic splitting of charged particle beams using stable islands of transverse phase space

    Directory of Open Access Journals (Sweden)

    S. Gilardoni

    2006-10-01

    Full Text Available Recently, a novel technique to perform multiturn extraction from a circular particle accelerator was proposed. It is based on beam splitting and trapping, induced by a slow crossing of a nonlinear resonance, inside stable islands of transverse phase space. Experiments at the CERN Proton Synchrotron started in 2002 and evidence of beam splitting was obtained by summer 2004. In this paper, the measurement results achieved with both a low- and a high-intensity, single-bunch proton beam are presented.

  20. Dynamic beam cleaning by a nonlinear resonance

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A W; Month, M [Brookhaven National Lab., Upton, N.Y. (USA)

    1976-03-15

    The general framework for the dynamic cleaning of a stored proton beam by passing the beam through a nonlinear resonance is developed. The limitations and advantages of this technique are discussed. The method is contrasted with physical beam scraping, which is currently in use at the CERN ISR.

  1. Transverse beam cavity interaction. Pt. 1

    International Nuclear Information System (INIS)

    Weiland, T.

    1982-03-01

    The transverse interaction between a bunch of charged particles and cylindrically symmetric accelerating structures is studied in three steps. The particle motion is influenced by short range forces and long range forces. The short range forces are calculated by solving Maxwell's equations in the time domain including the presence of free moving charges passing an arbitrarily shaped structure off axis. The long range forces are dominated by resonant modes in cavities. These forces are computed in frequency domain by evaluating eigenmodes and eigenfrequencies. Since only high energy particles are considered, the particle motion, which is affected by both forces, can be studied seperately using simple models and computer simulations. (orig.)

  2. Nonlinear analysis of a relativistic beam-plasma cyclotron instability

    Science.gov (United States)

    Sprangle, P.; Vlahos, L.

    1986-01-01

    A self-consistent set of nonlinear and relativistic wave-particle equations are derived for a magnetized beam-plasma system interacting with electromagnetic cyclotron waves. In particular, the high-frequency cyclotron mode interacting with a streaming and gyrating electron beam within a background plasma is considered in some detail. This interaction mode may possibly find application as a high-power source of coherent short-wavelength radiation for laboratory devices. The background plasma, although passive, plays a central role in this mechanism by modifying the dielectric properties in which the magnetized electron beam propagates. For a particular choice of the transverse beam velocity (i.e., the speed of light divided by the relativistic mass factor), the interaction frequency equals the nonrelativistic electron cyclotron frequency times the relativistic mass factor. For this choice of transverse beam velocity the detrimental effects of a longitudinal beam velocity spread is virtually removed. Power conversion efficiencies in excess of 18 percent are both analytically calculated and obtained through numerical simulations of the wave-particle equations. The quality of the electron beam, degree of energy and pitch angle spread, and its effect on the beam-plasma cyclotron instability is studied.

  3. Analysis of transverse RMS emittance growth of a beam induced by spherical and chromatic aberration in a solenoidal field

    Energy Technology Data Exchange (ETDEWEB)

    Dash, Radhakanta, E-mail: radhakanta.physics@gmail.com [Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094 (India); Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Nayak, Biswaranjan [Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094 (India); Sharma, Archana; Mittal, Kailash C. [Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094 (India); Accelerator and Pulse Power Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2016-01-21

    In a medium energy beam transport line transverse rms emittance growth associated with spherical aberration is analysed. An analytical expression is derived for beam optics in a solenoid field considering terms up to the third order in the radial displacement. Two important phenomena: effect of spherical aberrations in axial-symmetric focusing lens and influence of nonlinear space charge forces on beam emittance growth are discussed for different beam distributions. In the second part nonlinear effect associated with chromatic aberration that describes the growth of emittance and distortion of phase space area is discussed.

  4. Operation of the PEP transverse beam feedback

    International Nuclear Information System (INIS)

    Olson, C.W.; Paterson, J.M.; Pellegrin, J.L.; Rees, J.R.

    1981-02-01

    The PEP Storage Ring has been equipped with a wide band beam feedback system capable of damping the vertical and horizontal motion of six bunches. The oscillation detection is done at a symmetry point on the Storage Ring and feedback is applied at the same location one orbital period later. The signal is synchronously gated and the system appears as twelve independent feedback loops, operating on the two coordinates of each of the six bunches. Two beam deflection electrodes are driven each by a low-Q push-pull amplifier which is tuned at the 72nd harmonic of the revolution frequency and suppressed-carrier modulation is generated by a sequence of the detected bunch oscillations. The design parameters are reviewed as well as the salient features of the hardware, and the impact of this system on the machine operation is evaluated in the light of experimental results

  5. Transverse particle dynamics in a Bessel beam

    Czech Academy of Sciences Publication Activity Database

    Milne, G.; Dholakia, K.; McGloin, D.; Volke-Sepulveda, K.; Zemánek, Pavel

    2007-01-01

    Roč. 15, č. 21 (2007), s. 13972-13987 ISSN 1094-4087 R&D Projects: GA MŠk(CZ) LC06007; GA MPO(CZ) FT-TA2/059 EU Projects: European Commission(XE) 508952 - ATOM3D Institutional research plan: CEZ:AV0Z20650511 Keywords : optical tweezers or optical manipulation * laser trapping * laser beam shaping Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.709, year: 2007

  6. Statistical signal processing techniques for coherent transversal beam dynamics in synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Alhumaidi, Mouhammad

    2015-03-04

    identifying and analyzing the betatron oscillation sourced from the kick based on its mixing and temporal patterns. The accelerator magnets can generate unwanted spurious linear and non-linear fields due to fabrication errors or aging. These error fields in the magnets can excite undesired resonances leading together with the space charge tune spread to long term beam losses and reducing dynamic aperture. Therefore, the knowledge of the linear and non-linear magnets errors in circular accelerator optics is very crucial for controlling and compensating resonances and their consequent beam losses and beam quality deterioration. This is indispensable, especially for high beam intensity machines. Fortunately, the relationship between the beam offset oscillation signals recorded at the BPMs is a manifestation of the accelerator optics, and can therefore be exploited in the determination of the optics linear and non-linear components. Thus, beam transversal oscillations can be excited deliberately for purposes of diagnostics operation of particle accelerators. In this thesis, we propose a novel method for detecting and estimating the optics lattice non-linear components located in-between the locations of two BPMs by analyzing the beam offset oscillation signals of a BPMs-triple containing these two BPMs. Depending on the non-linear components in-between the locations of the BPMs-triple, the relationship between the beam offsets follows a multivariate polynomial accordingly. After calculating the covariance matrix of the polynomial terms, the Generalized Total Least Squares method is used to find the model parameters, and thus the non-linear components. A bootstrap technique is used to detect the existing polynomial model orders by means of multiple hypothesis testing, and determine confidence intervals for the model parameters.

  7. Non-linear Evolution of the Transverse Instability of Plane-Envelope Solitons

    DEFF Research Database (Denmark)

    Janssen, Peter A. E. M.; Juul Rasmussen, Jens

    1983-01-01

    The nonlinear evolution of the transverse instability of plane envelope soliton solutions of the nonlinear Schrödinger equation is investigated. For the case where the spatial derivatives in the two‐dimensional nonlinear Schrödinger equation are elliptic a critical transverse wavenumber is found...

  8. Beam excitation and damping with the transverse feedback system

    International Nuclear Information System (INIS)

    Pellegrin, J.L.; Rees, J.R.

    1979-08-01

    The questions often come up, ''What is the strength if the beam excitation system? How much damping can the transverse feedback provide?'' The design is now advanced enough to answer these questions; also, laboratory tests of some components have been conducted and we know what can be expected of the hardware. This paper discusses these questions

  9. Buckling of thin-walled beams under concentrated transverse loading

    NARCIS (Netherlands)

    Menken, C.M.; Erp, van G.M.; Krupta, V.; Drdacky, M.

    1991-01-01

    The transversely loaded thin-walled beam under a non-uniform bending moment forms an example of the detrimental influence that a local effect may have on the overall behaviour. The local effect is the plate buckling in the region of maximum bending moment. The overall behaviour is the

  10. Numerical investigation of a plasma beam entering transverse magnetic fields

    International Nuclear Information System (INIS)

    Koga, J.; Geary, J.L.; Tajima, T.; Rostoker, N.

    1988-11-01

    We study plasma beam injection into transverse magnetic fields using both electrostatic and electromagnetic particle-in-cell (PIC) codes. In the case of small beam momentum or energy (low drift kinetic /beta/) we study both large and small ion gyroradius beams. Large ion gyroradius beams with a large dielectric constant /epsilon/ /muchreverse arrowgt/ (M/m)/sup /1/2// are found to propagate across the magnetic field via E /times/ B drifts at nearly the initial injection velocity, where /epsilon/ = 1 + (/omega//sup pi//sup 2/)/(/Omega//sub i//sup 2/) and (M/m) is the ion to electron mass ratio. Beam degradation and undulations are observed in agreement with previous experimental and analytical results. When /epsilon/ is on the order of (M/m)/sup /1/2//, the plasma beam propagates across field lines at only half its initial velocity and loses its coherent structure. When /epsilon/ is much less than (M/m)/sup /1/2//, the beam particles decouple at the magnetic field boundary, scattering the electrons and slightly deflecting the ions. For small ion gyroradius beam injection a flute type instability is observed at the beam magnetic fields interface. In the case of large beam momentum or energy (high drift kinetic /beta/) we observe good penetration of a plasma beam which shields the magnetic field from the interior of the beam (diagmagnetism). 25 refs., 13 figs., 1 tab

  11. Transverse Periodic Beam Loading Effects in a Storage Ring

    International Nuclear Information System (INIS)

    Thompson, J.R.; Byrd, J.M.

    2009-01-01

    Uneven beam fill patterns in storage rings, such as gaps in the fill patterns, leads to periodic, or transient loading of the modes of the RF cavities. We show that an analogous effect can occur in the loading of a dipole cavity mode when the beam passes off the electrical center of the cavity mode. Although this effect is small, it results in a variation of the transverse offset of the beam along the bunch train. For ultralow emittance beams, such as optimized third generation light sources and damping rings, this effect results in a larger projected emittance of the beam compared with the single bunch emittance. The effect is particularly strong for the case when a strong dipole mode has been purposely added to the ring, such as a deflecting, or 'crab' cavity. We derive an approximate analytic solution for the variation of the beam-induced deflecting voltage along the bunch train.

  12. Beam dynamics studies for transverse electromagnetic mode type rf deflectors

    Directory of Open Access Journals (Sweden)

    Shahid Ahmed

    2012-02-01

    Full Text Available We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM type rf deflectors: normal and superconducting. The compact size of these cavities as compared to the conventional TM_{110} type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and superconducting structures show very small emittance dilution due to the vertical kick of the beam.

  13. SPS transverse beam scraping and LHC injection losses

    CERN Document Server

    Drosdal, L; Bartmann, W; Bracco, C; Cornelis, K; Goddard, B; Meddahi, M; Veyrunes, E

    2012-01-01

    Machine protection sets strict requirements for the quality of the injected beam, in particular in the transverse plane. Losses at aperture restrictions and protection elements have to be kept at a minimum. Particles in the beam tails are lost at the tight transfer line collimators and can trigger the LHC beam abort system. These particles have to be removed by scrapers in the vertical and horizontal plane in the SPS. Scraping has become vital for high intensity LHC operation. This paper shows the dependence of injection quality on the SPS scraping and discusses an improved scraper setting up strategy for better reproducibility with the current scraper system.

  14. Beam dynamics studies for transverse electromagnetic mode type rf deflectors

    International Nuclear Information System (INIS)

    Ahmed, Shahid; Krafft, Geoffrey A.; Deitrick, Kirsten; De Silva, Subashini U.; Delayen, Jean R.; Spata, Michael; Tiefenback, Michael; Hofler, Alicia; Beard, Kevin

    2012-01-01

    We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM) type RF deflectors: normal- and super-conducting. The compact size of these cavities as compared to the conventional TM 110 type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and super-conducting structures show very small emittance dilution due to the vertical kick of the beam.

  15. Tomography of the electron beam transverse phase space at PITZ

    Energy Technology Data Exchange (ETDEWEB)

    Asova, Galina

    2013-09-15

    The operation of a Free Elector Laser, FEL, requires high energy, high peak current electron beams with small transverse emittance. In the contemporary FELs, the electron beam is passed through a periodic magnetic structure - an undulator - which modifies the straight beam trajectory into a sinusoidal one, where FEL light is generated at each bend. According to the energy, the transverse emittance and the peak current of the beam and the parameters of the undulator, FEL radiation with wavelength in the range of nano- to micrometers can be generated. Studies and development of FELs are done all over the world. The Free electron LASer in Hamburg, FLASH, and the international European X-ray FEL, XFEL, in Hamburg, Germany, are two leading projects of the Deutsches Elektronen SYnchrotron, DESY. Part of the research program on FELs in DESY is realized in Zeuthen within the project Photo-Injector Test Facility at DESY in Zeuthen, PITZ. PITZ is an international collaboration including Germany, Russia, Italy, France, Bulgaria, Thailand, United Kingdom. The Institute of Nuclear Research and Nuclear Energy, INRNE, at the Bulgarian Academy of Sciences participates from bulgarian side. PITZ studies and optimizes the photo-injectors for FLASH and the XFEL. The research program emphasizes on detailed measurements of the transverse phase-space density distribution. Until 2010 the single slit scan technique has been used to measure the beam transverse distributions. At the end of 2010 a module for tomographic diagnostics has been installed which extends the possibilities of PITZ to measure simultaneously the two transverse planes of a single micropulse with improved signal-to-noise ratio. The difficult conditions of low emittance for high bunch charge and low energy make the operation of the module challenging. This thesis presents the design considerations for the tomography module, a number of reconstruction algorithms and their applicability to limited data sets, the influence

  16. Tomography of the electron beam transverse phase space at PITZ

    International Nuclear Information System (INIS)

    Asova, Galina

    2013-09-01

    The operation of a Free Elector Laser, FEL, requires high energy, high peak current electron beams with small transverse emittance. In the contemporary FELs, the electron beam is passed through a periodic magnetic structure - an undulator - which modifies the straight beam trajectory into a sinusoidal one, where FEL light is generated at each bend. According to the energy, the transverse emittance and the peak current of the beam and the parameters of the undulator, FEL radiation with wavelength in the range of nano- to micrometers can be generated. Studies and development of FELs are done all over the world. The Free electron LASer in Hamburg, FLASH, and the international European X-ray FEL, XFEL, in Hamburg, Germany, are two leading projects of the Deutsches Elektronen SYnchrotron, DESY. Part of the research program on FELs in DESY is realized in Zeuthen within the project Photo-Injector Test Facility at DESY in Zeuthen, PITZ. PITZ is an international collaboration including Germany, Russia, Italy, France, Bulgaria, Thailand, United Kingdom. The Institute of Nuclear Research and Nuclear Energy, INRNE, at the Bulgarian Academy of Sciences participates from bulgarian side. PITZ studies and optimizes the photo-injectors for FLASH and the XFEL. The research program emphasizes on detailed measurements of the transverse phase-space density distribution. Until 2010 the single slit scan technique has been used to measure the beam transverse distributions. At the end of 2010 a module for tomographic diagnostics has been installed which extends the possibilities of PITZ to measure simultaneously the two transverse planes of a single micropulse with improved signal-to-noise ratio. The difficult conditions of low emittance for high bunch charge and low energy make the operation of the module challenging. This thesis presents the design considerations for the tomography module, a number of reconstruction algorithms and their applicability to limited data sets, the influence

  17. Beam Stability and Nonlinear Dynamics. Proceedings

    International Nuclear Information System (INIS)

    Parsa, Z.

    1997-01-01

    These proceedings represent papers presented at the Beam Stability and Nonlinear Dynamics symposium held in Santa Barbara in December 1996. The symposium was sponsored by the National Science Foundation as part of the United States long term accelerator research. The focus of this symposium was on nonlinear dynamics and beam stability. The topics included single-particle and many-particle dynamics, and stability in large circular accelerators such as the Large Hadron Collider(LHC). Other subjects covered were spin dynamics, nonlinear aberration correction, collective effects in the LHC, sawtooth instability and Landau damping in the presence of strong nonlinearity. There were presentations concerning plasma physics including the effect of beam echo. There are 17 papers altogether in these proceedings and 8 of them have been abstracted for the Energy Science and Technology database

  18. Transverse beam emittance optimization for the injection into BESSY II

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Felix [Helmholtz Zentrum Berlin, Institut Beschleunigerphysik (Germany); Humboldt-Universitaet zu Berlin, Institut fuer Physik (Germany)

    2016-07-01

    For top up injection into the storage ring BESSY II an average injection efficiency of at least 90% is required. In low alpha mode the injection efficiency does not meet the requirements. Future BESSY II features will include shorter bunches in the storage ring (VSR) and user transparent injection with a non linear kicker. These will raise the demands on the quality of the injected beam even further. This work investigates the development of transverse emittance over the acceleration cycle in the synchrotron and the possibility of transverse emittance exchange by a sequence of skew quadrupoles in the transfer line. Results of emittance measurements and emittance exchange simulations will be given.

  19. Transverse combining of nonrelativistic beams in a multiple beam induction linac

    International Nuclear Information System (INIS)

    Celata, C.M.; Faltens, A.; Judd, D.L.; Smith, L.; Tiefenback, M.G.

    1987-01-01

    Emittance growth of beams during transverse combining has been studied computationally and experimentally for Heavy Ion Fusion applications, and the theory and results are presented. A hardware design is also discussed

  20. Beam stability in synchrotrons with digital transverse feedback systems in dependence on beam tunes

    International Nuclear Information System (INIS)

    Zhabitskij, V.M.

    2011-01-01

    The beam stability problem in synchrotrons with a digital transverse feedback system (TFS) is studied. The TFS damper kicker (DK) corrects the transverse momentum of a bunch in proportion to its displacement from the closed orbit measured at the location of the beam position monitor (BPM). It is shown that the area and configuration of the beam stability separatrix depend on the beam tune, the feedback gain, the phase balance between the phase advance from BPM to DK and the phase response of the feedback chain at the betatron frequency

  1. Transverse combining of four beams in MBE-4

    International Nuclear Information System (INIS)

    Celata, C.M.; Chupp, W.; Faltens, A.; Fawley, W.M.; Ghiorso, W.; Hahn, K.D.; Henestroza, E.; Judd, D.; Peters, C.; Seidl, P.A.

    1996-01-01

    Transverse beam combining is a cost-saving option employed in many designs for induction linac heavy ion fusion drivers. The resultant transverse emittance increase, due predominantly to anharmonic space charge forces, must be kept minimal so that the beam remains focusable at the target. A prototype combining experiment has been built using the MBE-4 experimental apparatus. Four new sources produce up to 6.7 mA Cs + beams at 200 keV. The ion sources are angled toward each other so that the beams converge. Focusing upstream of the merge consists of four quadrupoles and a final combined-function element (quadrupole and dipole). All lattice elements are electrostatic. Owing to the small distance between beams at the last element (about 3-4 mm), the electrodes here are a cage of small rods, each at different voltage. The beams emerge into the 30-period transport lattice of MBE-4 where emittance growth due to merging, as well as the subsequent evolution of the distribution function, can be diagnosed. The combiner design, simulation predictions and preliminary results from the experiment are presented. (orig.)

  2. Transverse wakefield effects in the two-beam accelerator

    International Nuclear Information System (INIS)

    Selph, F.; Sessler, A.

    1986-01-01

    Transverse wakefield effects in the high-gradient accelerating structure of the two-beam accelerator (TBA) are analyzed theoretically using three different models. The first is a very simple two-particle model, the second is for a beam with uniform charge distribution, constant betatron wavelength, and a linear wake approximation. Both of these models give analytic scaling laws. The third model has a Gaussian beam (represented by 11 superparticles), energy variation across the bunch, acceleration, variation of betatron focusing with energy, and variation of the wakefield from linearity. The three models are compared, and the third model is used to explore the wakefield effects when accelerator parameters such as energy, energy spread, injection energy, accelerating gradient, and betatron wavelength are varied. Also explored are the sensitivity of the beam to the wakefield profile to the longitudinal charge distribution. Finally, in consideration of wakefield effects, possible parameters of a TBA are presented. (orig./HSI)

  3. Study on reinforced concrete beams with helical transverse reinforcement

    Science.gov (United States)

    Kaarthik Krishna, N.; Sandeep, S.; Mini, K. M.

    2018-02-01

    In a Reinforced Concrete (R.C) structure, major reinforcement is used for taking up tensile stresses acting on the structure due to applied loading. The present paper reports the behavior of reinforced concrete beams with helical reinforcement (transverse reinforcement) subjected to monotonous loading by 3-point flexure test. The results were compared with identically similar reinforced concrete beams with rectangular stirrups. During the test crack evolution, load carrying capacity and deflection of the beams were monitored, analyzed and compared. Test results indicate that the use of helical reinforcement provides enhanced load carrying capacity and a lower deflection proving to be more ductile, clearly indicating the advantage in carrying horizontal loads. An analysis was also carried out using ANSYS software in order to compare the test results of both the beams.

  4. Transverse combining of 4 beams in MBE-4

    International Nuclear Information System (INIS)

    Celata, C.M.; Chupp, W.; Faltens, A.; Fawley, W.M.; Ghiorso, W.; Hahn, K.D.; Henestroza, E.; Peters, C.; Seidl, P.

    1995-05-01

    Transverse beam combining is a cost-saving optio employed in many designs for induction linac heavy ion fusion drivers. But resultant transverse emittance increase, due predominantly to anharmonic space charoe forces, must be kept minimal so as not to sacrifice focusability at the target. A prototype combining experiment has been built, using the MBE-4 experiment. Four sources produce four 4 mA Cs + beams at 200 keV. The ion sources are angled toward each other, so that beams converge. Focusing upstream of the merge consists of 4 quadrupoles and a final combined-function element (quadrupole ampersand dipole). All lattice elements are electrostatic. Due to the small distance between beams at the last element (∼ 2 mm), the electrodes here are a cage of small wires, each at different voltage. The beams emerge into the 30 period transport lattice of MBE-4 where emittance growth due to merging, as well as the subsequent evolution of the distribution function, can be diagnosed. The combiner design, simulation predictions, and preliminary results from the experiment are presented

  5. The effect of nonlinear forces on coherently oscillating space-charge-dominated beams

    International Nuclear Information System (INIS)

    Celata, C.M.

    1987-03-01

    A particle-in-cell computer simulation code has been used to study the transverse dynamics of nonrelativistic misaligned space-charge-dominated coasting beams in an alternating gradient focusing channel. In the presence of nonlinear forces due to dodecapole or octupole imperfections of the focusing fields or to image forces, the transverse rms emittance grows in a beat pattern. Analysis indicates that this emittance dilution is due to the driving of coherent modes of the beam near their resonant frequencies by the nonlinear force. The effects of the dodecapole and images forces can be made to effectively cancel for some boundary conditions, but the mechanism is not understood at this time

  6. Implications of the Electrostatic Approximation in the Beam Frame on the Nonlinear Vlasov-Maxwell Equations for Intense Beam Propagation

    International Nuclear Information System (INIS)

    Davidson, Ronald C.; Lee, W. Wei-li; Hong Qin; Startsev, Edward

    2001-01-01

    This paper develops a clear procedure for solving the nonlinear Vlasov-Maxwell equations for a one-component intense charged particle beam or finite-length charge bunch propagating through a cylindrical conducting pipe (radius r = r(subscript)w = const.), and confined by an applied focusing force. In particular, the nonlinear Vlasov-Maxwell equations are Lorentz-transformed to the beam frame ('primed' variables) moving with axial velocity relative to the laboratory. In the beam frame, the particle motions are nonrelativistic for the applications of practical interest, already a major simplification. Then, in the beam frame, we make the electrostatic approximation which fully incorporates beam space-charge effects, but neglects any fast electromagnetic processes with transverse polarization (e.g., light waves). The resulting Vlasov-Maxwell equations are then Lorentz-transformed back to the laboratory frame, and properties of the self-generated fields and resulting nonlinear Vlasov-Maxwell equations in the laboratory frame are discussed

  7. Beams on nonlinear elastic foundation

    International Nuclear Information System (INIS)

    Lukkassen, Dag; Meidell, Annette

    2014-01-01

    In order to determination vertical deflections and rail bending moments the Winkler model (1867) is often used. This linear model neglects several conditions. For example, by using experimental results, it has been observed that there is a substantial increase in the maximum rail deflection and rail bending moment when considering the nonlinearity of the track support system. A deeper mathematical analysis of the models is necessary in order to obtain better methods for more accurate numerical solutions in the determination of deflections and rail bending moments. This paper is intended to be a small step in this direction

  8. Laser acceleration and nonlinear beam dynamics

    International Nuclear Information System (INIS)

    Pellegrini, C.

    1991-01-01

    This research contract covers the period April 1990, September 1991. The work to be done under the contract was theoretical research in the areas of nonlinear beam dynamics and laser acceleration. In this final report we will discuss the motivation for this work and the results obtained

  9. Beam structure and transverse emittance studies of high-energy ion beams

    International Nuclear Information System (INIS)

    Saadatmand, K.; Johnson, K.F.; Schneider, J.D.

    1991-01-01

    A visual diagnostic technique has been developed to monitor and study ion beam structure shape and size along a transport line. In this technique, a commercially available fluorescent screen is utilized in conjunction with a video camera. This visual representation of the beam structure is digitized and enhanced through use of false-color coding and displayed on a TV monitor for on-line viewing. Digitized information is stored for further off-line processing (e.g., extraction of beam profiles). An optional wire grid placed upstream of the fluor screen adds the capability of transverse emittance (or angular spread) measurement to this technique. This diagnostic allows real-time observation of the beam response to parameter changes (e.g., evolution of the beam structure, shifts in the beam intensity at various spatial locations within the beam perimeter, and shifts in the beam center and position). 3 refs., 5 figs

  10. Transverse-structure electrostatic charged particle beam lens

    Science.gov (United States)

    Moran, M.J.

    1998-10-13

    Electrostatic particle-beam lenses using a concentric co-planar array of independently biased rings can be advantageous for some applications. Traditional electrostatic lenses often consist of axial series of biased rings, apertures, or tubes. The science of lens design has devoted much attention to finding axial arrangements that compensate for the substantial optical aberrations of the individual elements. Thus, as with multi-element lenses for light, a multi-element charged-particle lens can have optical behavior that is far superior to that of the individual elements. Transverse multiple-concentric-ring lenses achieve high performance, while also having advantages in terms of compactness and optical versatility. 7 figs.

  11. Laser beam propagation in nonlinear optical media

    CERN Document Server

    Guha, Shekhar

    2013-01-01

    ""This is very unique and promises to be an extremely useful guide to a host of workers in the field. They have given a generalized presentation likely to cover most if not all situations to be encountered in the laboratory, yet also highlight several specific examples that clearly illustrate the methods. They have provided an admirable contribution to the community. If someone makes their living by designing lasers, optical parametric oscillators or other devices employing nonlinear crystals, or designing experiments incorporating laser beam propagation through linear or nonlinear media, then

  12. Digital transverse beam dampers from the Brookhaven AGS

    International Nuclear Information System (INIS)

    Smith, G.A.; Castillo, V.; Roser, T.; Van Asselt, W.; Witkover, R.; Wong, V.

    1995-01-01

    A wide band, digital damper system has been developed and is in use at the Brookhaven Alternating Gradient Synchrotron (AGS). The system consists of vertical and horizontal capacitive pickups, analog and digital processing electronics, four 500 Watt wide band power amplifiers, and two pairs of strip line beam kickers. The system is currently used to damp transverse coherent instabilities and injection errors, in both planes, for protons and all species of heavy ions. This paper discusses the system design and operation, particularly with regard to stabilization of the high intensity proton beam. The analog and digital signal processing techniques used to achieve optimum results are discussed. Operational data showing the effect of the damping are presented

  13. Transverse centroid oscillations in solenoidially focused beam transport lattices

    International Nuclear Information System (INIS)

    Lund, Steven M.; Wootton, Christopher J.; Lee, Edward P.

    2009-01-01

    Transverse centroid oscillations are analyzed for a beam in a solenoid transport lattice. Linear equations of motion are derived that describe small-amplitude centroid oscillations induced by displacement and rotational misalignments of the focusing solenoids in the transport lattice, dipole steering elements, and initial centroid offset errors. These equations are analyzed in a local rotating Larmor frame to derive complex-variable 'alignment functions' and 'bending functions' that efficiently describe the characteristics of the centroid oscillations induced by both mechanical misalignments of the solenoids and dipole steering elements. The alignment and bending functions depend only on the properties of the ideal lattice in the absence of errors and steering, and have associated expansion amplitudes set by the misalignments and steering fields, respectively. Applications of this formulation are presented for statistical analysis of centroid oscillations, calculation of actual lattice misalignments from centroid measurements, and optimal beam steering.

  14. Periodic solutions of nonlinear vibrating beams

    Directory of Open Access Journals (Sweden)

    J. Berkovits

    2003-01-01

    Full Text Available The aim of this paper is to prove new existence and multiplicity results for periodic semilinear beam equation with a nonlinear time-independent perturbation in case the period is not prescribed. Since the spectrum of the linear part varies with the period, the solvability of the equation depends crucially on the period which can be chosen as a free parameter. Since the period of the external forcing is generally unknown a priori, we consider the following natural problem. For a given time-independent nonlinearity, find periods T for which the equation is solvable for any T-periodic forcing. We will also deal with the existence of multiple solutions when the nonlinearity interacts with the spectrum of the linear part. We show that under certain conditions multiple solutions do exist for any small forcing term with suitable period T. The results are obtained via generalized Leray-Schauder degree and reductions to invariant subspaces.

  15. Design of an elliptical solenoid magnet for transverse beam matching to the spiral inflector

    International Nuclear Information System (INIS)

    Goswami, A.; Sing Babu, P.; Pandit, V.S.

    2013-01-01

    In this work, we present the design study of an elliptical solenoid magnet to be used for transverse beam matching at the input of a spiral inflector for efficient transmission. We have studied the dependence of axial field and gradients in the transverse directions of the elliptical solenoid magnet with ellipticity of the aperture. Using the beam envelope equations we have studied the feasibility of using an elliptical solenoid for transverse beam matching to the acceptance of a spiral inflector. (author)

  16. Beam monitors and transverse feedback system of TRISTAN Main Ring

    International Nuclear Information System (INIS)

    Ieiri, T.; Ishii, H.; Kishiro, J.; Mizumachi, Y.; Mori, K.; Nakajima, K.; Ogata, A.; Shintake, T.; Tejima, M.

    1987-01-01

    The construction of 30 GeV TRISTAN Main Ring (MR) started in 1983 soon after the commissioning of 8 GeV Accumulation Ring (AR). The authors prepared 392 position monitors, 6 synchrotron radiation monitors, 9 screen monitors, 2 DCCT's, 3 scrapers, 12 bunch monitors, transverse feedback systems for two beams and DC separators. Since the required monitoring devices of AR and MR are almost the same, the experiences in AR were very useful in the design of MR monitors. However, machine parameters of two rings are very different and the authors had to review the performance of each item. From the monitor point of view the most important is the difference of revolution frequency; 794.6 kHz for AR and 99.33 kHz for MR. This means that average beam current of MR is 1/8 as small as AR current with the same bunch number and intensity. Therefore, the sensitivity of each monitor must be better in MR. The second difference is that MR should be used as a collider from the beginning. Therefore they must prepare for multi-beam and multi-bunch operation

  17. Beam-beam interaction and Pacman effects in the SSC with random nonlinear multipoles

    International Nuclear Information System (INIS)

    Goderre, G.P.; Ohnuma, S.

    1988-01-01

    In order to find the combined effects of beam-beam interaction (head-on and long-range) and random nonlinear multipoles in dipole magnets, transverse tunes and smears have been calculated as a function of oscillation amplitudes. Two types of particles, ''regular'' and ''Pacman,'' have been investigated using a modified version of tracking code TEAPOT. Regular particles experience beam-beam interactions in all four interaction regions (IR's), both head-on and long range, while pacman particles interact with bunches of the other beam in one medium-beta and one low-beta IR's only. The model for the beam-beam interaction is of weak-strong type and the strong beam is assumed to have a round Gaussian charge distribution. Furthermore, it is assumed that the vertical closed orbit deviation arising from the finite crossing angle of 70 μrad is perfectly compensated for regular particles. The same compensation applied to pacman particles creates a closed orbit distortion. Linear tunes are adjusted for regular particles to the design values but there are no nonlinear corrections except for chromaticity correcting sextupoles in two families. Results obtained in this study do not show any reduction of dynamic or linear aperture for pacman particles but some doubts exist regarding the validity of defining the linear aperture from the smear alone. Preliminary results are given for regular particles when (Δp/p) is modulated by the synchrotron oscillation. For these, fifty oscillations corresponding to 26,350 revolutions have been tracked. A very slow increase in the horizontal amplitude, /approximately/4 /times/ 10/sup /minus/4//oscillation (relative), is a possibility but this should be confirmed by trackings of larger number of revolutions. 11 refs., 18 figs., 2 tabs

  18. Transverse beam diagnostics for the XUV seeding experiment at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Boedewadt, Joern

    2011-12-15

    High-gain free-electron lasers (FEL) offer intense, transversely coherent, and ultra short radiation pulses in the extreme ultraviolet, the soft- and the hard-X-ray spectral range. Undulator radiation from spontaneous emission is amplified. Due to the stochastic emission process, the radiation exhibits a low temporal coherence, and the structure of the amplified radiation in the temporal and in the spectral domain shows large shot-to-shot fluctuations. In order to improve the temporal coherence, an external radiation pulse is used to induce (or seed) the FEL process. With this, only a defined wavelength range within the FEL bandwidth is amplified provided that the irradiance of the external radiation exceeds the noise level of the FEL amplifier. In addition to the improved longitudinal coherence, a seeded FEL provides the possibility to perform pump-probe experiments with an expected temporal resolution of the order of the pulse durations. In order to experimentally proof this statement, a test experiment for direct HHG-seeding at wavelength below 40 nm was installed at the free-electron laser facility FLASH at DESY. Crucial for the seeded operation of an FEL is the six-dimensional laser-electron overlap of the seed laser pulses with the electron bunches. Hence, dedicated diagnostics to measure and mechanisms to control the overlap are essential. Within this thesis, a transport beamline for the seed laser beam and the transverse diagnostics for seed laser- and the electron-beam were developed and commissioned. Results of the performance of the seed injection beamline are presented, and first measurements of the seeded operation of the FEL are analyzed and evaluated. (orig.)

  19. Nonlinear dynamic of interaction of the relativistic electron beam with plasma

    International Nuclear Information System (INIS)

    Dorofeenko, V.G.; Krasovitskii, V.B.; Osmolovsky, S.I.

    1994-01-01

    Quasi-transverse instability of thin relativistic electron beam in a dense plasma is studied numerically and analytically in a broad range of the frequency of the beam modulation and external longitudinal magnetic field. It is shown that the nonlinear stage of solution depends on the increment of the instability. It is permitted to classify possible nonlinear solutions and also to determine optimal regimes of the modulation for transport of beam along magnetic field in a plasma without substantial radial divergence. Numerical calculations show, that injection of the bunches with parameters, corresponding nonlinear regime of the beam's instability, in neutrally-charged plasma permits to output on the stationary regime without loss of particles

  20. Beam stability & nonlinear dynamics. Formal report

    Energy Technology Data Exchange (ETDEWEB)

    Parsa, Z. [ed.

    1996-12-31

    his Report includes copies of transparencies and notes from the presentations made at the Symposium on Beam Stability and Nonlinear Dynamics, December 3-5, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report.

  1. Beam stability ampersand nonlinear dynamics. Formal report

    International Nuclear Information System (INIS)

    Parsa, Z.

    1996-01-01

    This report includes copies of transparencies and notes from the presentations made at the Symposium on Beam Stability and Nonlinear Dynamics, December 3-5, 1996 at the Institute for Theoretical Physics, University of California, Santa Barbara California, that was made available by the authors. Editing, reduction and changes to the authors contributions were made only to fulfill the printing and publication requirements. We would like to take this opportunity and thank the speakers for their informative presentations and for providing copies of their transparencies and notes for inclusion in this Report

  2. Analysis of beam transverse instability in electron linac

    International Nuclear Information System (INIS)

    Mondrus, I.N.; Shenderovich, A.M.

    1990-01-01

    Dispersion equations describing transverse beam instability in a single resonator section and in an accelerator comprising a sequence of resonator sections are derived. It is shown that close to parametric resonance of any multiplicity a reduction of cumulative instability incoherent takes place between nonsymmetric defocusing wave frequency and the frequency of accelerator cluster transport. Under exact resonance the increment equals to zero and under misalignment due to resonance depending on its sign and disturbance frequency an instability of either fast or slow wave takes place. It is shown that this effect leads to beam instability suppression of sections with the opposite sign of misalignment due to resonance are located in turn. The results obtained show that application of a parametric resonance through reducing slight the single section absolute instability threshold current, allows one to effectively suppress cumulative instability. The requirement to the accuracy of tuning to a resonance of identical sections is substantially reduced under the alternation of sections with different sign misalignment due to resonance and can be easily realized in practice

  3. Transverse velocity modulator and generator schemes based on non-collinear radiation and electron beams

    CERN Document Server

    Varfolomeev, A A

    2000-01-01

    New non-collinear schemes are suggested for transverse velocity modulation of electron beams and for the generation of coherent spontaneous radiation by these transversely modulated beams. It is shown that due to the non-collinearity some orders of magnitude enhancement can be achieved for the coherent spontaneous radiation (CSR) power at both the fundamental and harmonic frequencies.

  4. Efficient sub-Doppler transverse laser cooling of an indium atomic beam

    International Nuclear Information System (INIS)

    Kim, Jae-Ihn

    2009-01-01

    Laser cooled atomic gases and atomic beams are widely studied samples in experimental research in atomic and optical physics. For the application of ultra cold gases as model systems for e.g. quantum many particle systems, the atomic species is not very important. Thus this field is dominated by alkaline, earthalkaline elements which are easily accessible with conventional laser sources and have convenient closed cooling transition. On the other hand, laser cooled atoms may also be interesting for technological applications, for instance for the creation of novel materials by atomic nanofabrication (ANF). There it will be important to use technologically relevant materials. As an example, using group III atoms of the periodical table in ANF may open a route to generate fully 3D structured composite materials. The minimal requirement in such an ANF experiment is the collimation of an atomic beam which is accessible by one dimensional laser cooling. In this dissertation, I describe transverse laser cooling of an Indium atomic beam. For efficient laser cooling on a cycling transition, I have built a tunable, continuous-wave coherent ultraviolet source at 326 nm based on frequency tripling. For this purpose, two independent high power Yb-doped fiber amplifiers for the generation of the fundamental radiation at λ ω = 977 nm have been constructed. I have observed sub-Doppler transverse laser cooling of an Indium atomic beam on a cycling transition of In by introducing a polarization gradient in the linear-perpendicular-linear configuration. The transverse velocity spread of a laser-cooled In atomic beam at full width at half maximum was achieved to be 13.5±3.8 cm/s yielding a full divergence of only 0.48 ± 0.13 mrad. In addition, nonlinear spectroscopy of a 3-level, Λ-type level system driven by a pump and a probe beam has been investigated in order to understand the absorption line shapes used as a frequency reference in a previous two-color spectroscopy experiment

  5. Efficient sub-Doppler transverse laser cooling of an indium atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Ihn

    2009-07-23

    Laser cooled atomic gases and atomic beams are widely studied samples in experimental research in atomic and optical physics. For the application of ultra cold gases as model systems for e.g. quantum many particle systems, the atomic species is not very important. Thus this field is dominated by alkaline, earthalkaline elements which are easily accessible with conventional laser sources and have convenient closed cooling transition. On the other hand, laser cooled atoms may also be interesting for technological applications, for instance for the creation of novel materials by atomic nanofabrication (ANF). There it will be important to use technologically relevant materials. As an example, using group III atoms of the periodical table in ANF may open a route to generate fully 3D structured composite materials. The minimal requirement in such an ANF experiment is the collimation of an atomic beam which is accessible by one dimensional laser cooling. In this dissertation, I describe transverse laser cooling of an Indium atomic beam. For efficient laser cooling on a cycling transition, I have built a tunable, continuous-wave coherent ultraviolet source at 326 nm based on frequency tripling. For this purpose, two independent high power Yb-doped fiber amplifiers for the generation of the fundamental radiation at {lambda}{sub {omega}} = 977 nm have been constructed. I have observed sub-Doppler transverse laser cooling of an Indium atomic beam on a cycling transition of In by introducing a polarization gradient in the linear-perpendicular-linear configuration. The transverse velocity spread of a laser-cooled In atomic beam at full width at half maximum was achieved to be 13.5{+-}3.8 cm/s yielding a full divergence of only 0.48 {+-} 0.13 mrad. In addition, nonlinear spectroscopy of a 3-level, {lambda}-type level system driven by a pump and a probe beam has been investigated in order to understand the absorption line shapes used as a frequency reference in a previous two

  6. Overview of magnetic nonlinear beam dynamics in the RHIC

    International Nuclear Information System (INIS)

    Luo, Y.; Bai, M.; Beebe-Wang, J.; Bengtsson, J.; Calaga, R.; Fischer, W.; Jain, A.; Pilat, F.; Ptitsyn, V.; Malitsky, N.; Robert-Demolaize, G.; Satogata, T.; Tepikian, S.; Tomas, R.; Trbojevic, D.

    2009-01-01

    In this article we review our studies of nonlinear beam dynamics due to the nonlinear magnetic field errors in the Relativistic Heavy Ion Collider (RHIC). Nonlinear magnetic field errors, including magnetic field errors in interaction regions (IRs), chromatic sextupoles, and sextupole components from arc main dipoles are discussed. Their effects on beam dynamics and beam dynamic aperture are evaluated. The online methods to measure and correct the IR nonlinear field errors, second order chromaticities, and horizontal third order resonance are presented. The overall strategy for nonlinear corrections in RHIC is discussed

  7. Geometrically Nonlinear Static Analysis of Edge Cracked Timoshenko Beams Composed of Functionally Graded Material

    Directory of Open Access Journals (Sweden)

    Şeref Doğuşcan Akbaş

    2013-01-01

    Full Text Available Geometrically nonlinear static analysis of edge cracked cantilever Timoshenko beams composed of functionally graded material (FGM subjected to a nonfollower transversal point load at the free end of the beam is studied with large displacements and large rotations. Material properties of the beam change in the height direction according to exponential distributions. The cracked beam is modeled as an assembly of two subbeams connected through a massless elastic rotational spring. In the study, the finite element of the beam is constructed by using the total Lagrangian Timoshenko beam element approximation. The nonlinear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The convergence study is performed for various numbers of finite elements. In the study, the effects of the location of crack, the depth of the crack, and various material distributions on the nonlinear static response of the FGM beam are investigated in detail. Also, the difference between the geometrically linear and nonlinear analysis of edge cracked FGM beam is investigated in detail.

  8. Non-uniformly polarized beams across their transverse profiles: an introductory study for undergraduate optics courses

    International Nuclear Information System (INIS)

    Piquero, Gemma; Vargas-Balbuena, Javier

    2004-01-01

    We provide a simple theoretical study of beams non-uniformly polarized across their transverse sections which can be introduced in undergraduate optics courses. In order to generate such beams we propose to use a slightly convergent (or divergent) linearly and uniformly polarized beam impinging on an anisotropic uniaxial material with the beam propagation direction along the optic axis. Analytical expressions for the Jones vector, Stokes parameters, ellipticity and azimuth at each point of the transverse section, perpendicular to the propagation direction, are obtained at the output of this system. By means of these parameters a detailed description of the state of polarization across the transverse profile is given

  9. Transverse beam splitting made operational: Key features of the multiturn extraction at the CERN Proton Synchrotron

    Directory of Open Access Journals (Sweden)

    A. Huschauer

    2017-06-01

    Full Text Available Following a successful commissioning period, the multiturn extraction (MTE at the CERN Proton Synchrotron (PS has been applied for the fixed-target physics programme at the Super Proton Synchrotron (SPS since September 2015. This exceptional extraction technique was proposed to replace the long-serving continuous transfer (CT extraction, which has the drawback of inducing high activation in the ring. MTE exploits the principles of nonlinear beam dynamics to perform loss-free beam splitting in the horizontal phase space. Over multiple turns, the resulting beamlets are then transferred to the downstream accelerator. The operational deployment of MTE was rendered possible by the full understanding and mitigation of different hardware limitations and by redesigning the extraction trajectories and nonlinear optics, which was required due to the installation of a dummy septum to reduce the activation of the magnetic extraction septum. This paper focuses on these key features including the use of the transverse damper and the septum shadowing, which allowed a transition from the MTE study to a mature operational extraction scheme.

  10. Influence of transverse diffusion within the proton beam fast-ignitor scenario

    International Nuclear Information System (INIS)

    Barriga-Carrasco, Manuel D.; Maynard, Gilles; Kurilenkov, Yuri K.

    2004-01-01

    Fast ignition of an inertial confinement fusion target by an energetic proton beam is here re-examined. We put special emphasis on the role of the transverse dispersion of the beam induced during its travel between the proton source and the compressed deuterium-tritium (DT) fuel. The theoretical model and the computer code used in our calculations are presented. Different beam initial energy distributions are analyzed. We found that the beam exhibits small collective effects while multiple scattering collisions provide a substantial transverse dispersion of the beam. Therefore, the nuclear dispersion imposes severe restrictions on the schemes for fast ignitor even considering an ideal monoenergetic and noncorrelated proton beam

  11. Application of Chebyshev Formalism to Identify Nonlinear Magnetic Field Components in Beam Transport Systems

    Energy Technology Data Exchange (ETDEWEB)

    Spata, Michael [Old Dominion Univ., Norfolk, VA (United States)

    2012-08-01

    An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a beam-based technique for characterizing the extent of the nonlinearity of the magnetic fields of a beam transport system. Horizontally and vertically oriented pairs of air-core kicker magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the beam orbit relative to the unperturbed reference orbit. Fourier decomposition of the position data at eight different points along the beamline was then used to measure the amplitude of these frequencies. For a purely linear transport system one expects to find solely the frequencies that were applied to the kickers with amplitudes that depend on the phase advance of the lattice. In the presence of nonlinear fields one expects to also find harmonics of the driving frequencies that depend on the order of the nonlinearity. Chebyshev polynomials and their unique properties allow one to directly quantify the magnitude of the nonlinearity with the minimum error. A calibration standard was developed using one of the sextupole magnets in a CEBAF beamline. The technique was then applied to a pair of Arc 1 dipoles and then to the magnets in the Transport Recombiner beamline to measure their multipole content as a function of transverse position within the magnets.

  12. Nonlinear dynamic behavior of an assembly of tubes under transverse fluid flow

    International Nuclear Information System (INIS)

    Beaufils, B.; Axisa, F.; Antunes, J.

    1989-01-01

    The mechanical vibrations induced by a transverse fluid flow passing through an assembly of cylindrical tubes is investigated. Studies on the numerical modeling of such phenomena are presented. The purpose of the work is to allow the evaluation of the risks induced by the vibrations in industrial heat exchangers. The methods for the analysis of nonlinear problems and numerical calculations of the nonlinear dynamic behavior are performed [fr

  13. Transverse Feedback for Electron-Cooled DC-Beam at COSY

    International Nuclear Information System (INIS)

    Kamerdzhiev, V.; Dietrich, J.

    2004-01-01

    At the cooler synchrotron COSY, high beam quality is achieved by means of beam cooling. In the case of intense electron-cooled beams, fast particle losses due to transverse coherent beam oscillations are regularly observed. To damp the instabilities a transverse feedback system was installed and successfully commissioned. Commissioning of the feedback system resulted in a significant increase of the e-cooled beam intensity by single injection and when cooling and stacking of repeated injections is applied. External experiments profit from the small diameter beams and the reduced halo. A transverse damping system utilizing a pick-up, signal processing electronics, power amplifiers, and a stripline deflector is introduced. Beam current and Schottky spectra measurements with the vertical feedback system turned on and off are presented

  14. Transverse spin in the scattering of focused radially and azimuthally polarized vector beams

    Science.gov (United States)

    Singh, Ankit Kumar; Saha, Sudipta; Gupta, Subhasish Dutta; Ghosh, Nirmalya

    2018-04-01

    We study the effect of focusing of the radially and azimuthally polarized vector beams on the spin angular momentum (SAM) density and Poynting vector of scattered waves from a Mie particle. Remarkably, the study reveals that the SAM density of the scattered field is solely transverse in nature for radially and azimuthally polarized incident vector beams; however, the Poynting vector shows the usual longitudinal character. We also demonstrate that the transverse SAM density can further be tuned with wavelength and focusing of the incident beam by exploiting the interference of different scattering modes. These results may stimulate further experimental techniques to detect the transverse spin and Belinfante's spin-momentum densities.

  15. Nonlinear space charge effect of bunched beam in linac

    International Nuclear Information System (INIS)

    Chen Yinbao

    1992-02-01

    The nonlinear space charge effect due to the nonuniform particle density distribution in bunched beam of a linac is discussed. The formulae of nonlinear space charge effect and nonlinear focusing forces were derived for the bunched beam with Kapchinskij-Vladimirskij (K-V) distribution, waterbag (WB) distribution, parabolic (PA) distribution, and Gauss (GA) distribution in both of the space charge disk model and space charge cylinder model in the waveguide of a linac

  16. Nonlinear wave beams in a piezo semiconducting layer

    International Nuclear Information System (INIS)

    Bagdoev, A.G.; Shekoyan, A.V.; Danoyan, Z.N.

    1997-01-01

    The propagation of quasi-monochromatic nonlinear wave in a piezo semiconducting layer taking into account electron-concentration nonlinearity is considered. For such medium the evolution equations for incoming and reflected waves are derived. Nonlinear Schroedinger equations and solutions for narrow beams are obtained. It is shown that symmetry of incoming and reflected waves does not take place. The focusing of beams is investigated.18 refs

  17. Nonlinear vibrations of an inclined beam subjected to a moving load

    International Nuclear Information System (INIS)

    Mamandi, A; Kargarnovin, M H; Younesian, D

    2009-01-01

    In this paper, the nonlinear dynamic responses of an inclined pinned-pinned Euler-Bernoulli beam with a constant cross section and finite length subjected to a concentrated vertical force traveling with constant velocity is investigated by using the mode summation method. Frequency analysis of the PDE's governing equations of motion for steady-state response is studied by applying multiple scales method. The nonlinear dynamic deflections of the beam are obtained by solving two coupled nonlinear PDE's governing equations of planar motion for both longitudinal and transverse oscillations of the beam. The dynamic magnification factor and normalized time histories of mid-point of the beam are obtained for various load velocity ratios and the numerical results are compared with those obtained from traditional linear solution. It is found that quadratic nonlinearity renders the softening effect on the dynamic response of the beam under the act of traveling load. Also stability analysis of the steady-state response for the modes equations having quadratic nonlinearity is carried out and it is observed from the amplitude response curves that for the case of internal-external primary resonance, both saturation phenomenon and jump phenomenon are predicted for the longitudinal excitation.

  18. Transverse Beam Halo Measurements at High Intensity Neutrino Source (HINS) using Vibrating Wire Monitor

    Energy Technology Data Exchange (ETDEWEB)

    Chung, M.; Hanna, B.; Scarpine, V.; Shiltsev, V.; Steimel, J.; Artinian, S.; Arutunian, S.

    2015-02-26

    The measurement and control of beam halos will be critical for the applications of future high-intensity hadron linacs. In particular, beam profile monitors require a very high dynamic range when used for the transverse beam halo measurements. In this study, the Vibrating Wire Monitor (VWM) with aperture 60 mm was installed at the High Intensity Neutrino Source (HINS) front-end to measure the transverse beam halo. A vibrating wire is excited at its resonance frequency with the help of a magnetic feedback loop, and the vibrating and sensitive wires are connected through a balanced arm. The sensitive wire is moved into the beam halo region by a stepper motor controlled translational stage. We study the feasibility of the vibrating wire for the transverse beam halo measurements in the low-energy front-end of the proton linac.

  19. Transverse characterization of focused Bessel beams with angular momentum applied to study degree of coherence

    International Nuclear Information System (INIS)

    He, Xi; Wu, Fengtie; Chen, Ziyang; Pu, Jixiong; Chavez-Cerda, Sabino

    2016-01-01

    The transverse focusing properties at the ‘pseudo-focal’ plane of coherent Bessel beams with angular momentum are analyzed in detail. The transverse magnification of the central dark region of Bessel beams at this pseudo-focal plane is derived for the first time by calculating the ratio of the magnitude of the transverse components of the corresponding wave vectors before and after the focusing lens. We test our results experimentally with coherent laser Bessel beams and excellent agreement is observed. Then, an LED light source is used to generate Bessel beams. By modifying the coherence of the LED light source, we observe that by reducing coherence a smaller and shallower central dark region of Bessel beams with angular momentum is produced at the pseudo-focal plane. This technique can be used as a method to characterize the degree of coherence of vortex beams. (paper)

  20. Propagation of hypergeometric Gaussian beams in strongly nonlocal nonlinear media

    Science.gov (United States)

    Tang, Bin; Bian, Lirong; Zhou, Xin; Chen, Kai

    2018-01-01

    Optical vortex beams have attracted lots of interest due to its potential application in image processing, optical trapping and optical communications, etc. In this work, we theoretically and numerically investigated the propagation properties of hypergeometric Gaussian (HyGG) beams in strongly nonlocal nonlinear media. Based on the Snyder-Mitchell model, analytical expressions for propagation of the HyGG beams in strongly nonlocal nonlinear media were obtained. The influence of input power and optical parameters on the evolutions of the beam width and radius of curvature is illustrated, respectively. The results show that the beam width and radius of curvature of the HyGG beams remain invariant, like a soliton when the input power is equal to the critical power. Otherwise, it varies periodically like a breather, which is the result of competition between the beam diffraction and nonlinearity of the medium.

  1. Nonlinear effects in the propagation of shortwave transverse sound in pure superconductors

    International Nuclear Information System (INIS)

    Gal'perin, Y.

    1982-01-01

    Various mechanisms are analyzed which lead to nonlinear phenomena (e.g., the dependence of the absorption coefficient and of the velocity of sound on its intensity) in the propagation of transverse shortwave sound in pure superconductors (the wavelength of the sound being much less than the mean free path of the quasiparticles). It is shown that the basic mechanism, over a wide range of superconductor parameters and of the sound intensity, is the so-called momentum nonlinearity. The latter is due to the distortion (induced by the sound wave) of the quasimomentum distribution of resonant electrons interacting with the wave. The dependences of the absorption coefficient and of the sound velocity on its intensity and on the temperature are analyzed in the vicinity of the superconducting transition point. The feasibility of an experimental study of nonlinear acoustic phenomena in the case of transverse sound is considered

  2. Beam stability in synchrotrons with digital filters in the feedback loop of a transverse damper

    International Nuclear Information System (INIS)

    Zhabitskij, V.M.

    2009-01-01

    The stability of an ion beam in synchrotrons with digital filters in the feedback loop of a transverse damper is treated. Solving the characteristic equation allows one to calculate the achievable damping rates as a function of instability growth rate, feedback gain and parameters of the signal processing. A transverse feedback system (TFS) is required in synchrotrons to stabilize the high intensity ion beams against transverse instabilities and to damp the beam injection errors. The TFS damper kicker (DK) corrects the transverse momentum of a bunch in proportion to its displacement from the closed orbit at the location of the beam position monitor (BPM). The digital signal processing unit in the feedback loop between BPM and DK ensures a condition to achieve optimal damping. Damping rates of the feedback systems with digital notch, Hilbert and all-pass filters are analyzed in comparison with those in an ideal feedback system

  3. Subdiffraction focusing of scanning beams by a negative-refraction layer combined with a nonlinear layer.

    Science.gov (United States)

    Husakou, A; Herrmann, J

    2006-11-13

    We evaluate the possibility to focus scanning light beams below the diffraction limit by using the combination of a nonlinear material with a Kerr-type nonlinearity or two-photon absorption to create seed evanescent components of the beam and a negative-refraction material to enhance them. Superfocusing to spots with a FWHM in the range of 0.2 lambda is theoretically predicted both in the context of the effective-medium theory and by the direct numerical solution of Maxwell equations for an inhomogeneous pho-tonic crystal. The evolution of the transverse spectrum and the dependence of superfocusing on the parameters of the negative-refraction material are also studied. We show that the use of a Kerr-type nonlinear layer for the creation of seed evanescent components yields focused spots with a higher intensity compared with those obtained by the application of a saturable absorber.

  4. Stability of the particle transverse motion in an electron linear accelerator with beam recirculation

    International Nuclear Information System (INIS)

    Volodin, V.A.

    1979-01-01

    Conditions, under which beam transverse instabilities appear in the electron linear accelerator (ELA) with a double particle acceleration due to excitation of asymmetric stray waves in the accelerating waveguide, and their peculiarities have been investigated. It is shown that in the ELA with beam recirculation the conditions under which the beam transverse instability appears can be determined with the help of the ''interaction function'' which depends on both the accelerating structure and the focusing in the beam transport channel. Comparison is made with characteristics of this phenomenon in conventional ELA, and possible reasons for the decrease of a starting current in ELA with recirculation are shown

  5. EXPLORING TRANSVERSE BEAM STABILITY IN THE SNS IN THE PRESENCE OF SPACE CHARGE.

    Energy Technology Data Exchange (ETDEWEB)

    FEDOTOV,A.V.; BLASKIEWICZ,M.; WEI,J.; DANILOV,V.; HOLMES,J.; SHISHLO,A.

    2002-06-03

    The highest possible intensity in the machine is typically determined by the onset of coherent beam instabilities. Understanding the contribution of various effects to the damping and growth of such instabilities in the regime of strong space charge is thus of crucial importance. In this paper we explore transverse beam stability by numerical simulations using recently implemented models of transverse impedance and three-dimensional space charge. Results are discussed with application to the SNS accumulators.

  6. ZGS beam transport for transverse or longitudinally polarized protons

    International Nuclear Information System (INIS)

    Colton, E.; Auer, I.P.; Beretvas, A.

    1977-01-01

    A combination of dipole magnets and a superconducting solenoid is utilized to transform the spin direction of transversely polarized protons from the Argonne ZGS for use in proton-proton scattering experiments

  7. On nonlinear development of beam instability

    International Nuclear Information System (INIS)

    Popel', S.I.; Tsytovich, V.N.

    1990-01-01

    Radiation-resonance interactions are taken into account in the problem of dynamics of an electron beam inb plasma. The beam characteristics to be taken into account are determined. Stabilization conditions for beam instability are established

  8. Application of a transverse phase-space measurement technique for high-brightness, H- beams to the GTA H- beam

    International Nuclear Information System (INIS)

    Johnson, K.F.; Garcia, R.C.; Rusthoi, D.P.; Sander, O.R.; Sandoval, D.P.; Shinas, M.A.; Smith, M.; Yuan, V.W.; Connolly, R.C.

    1995-01-01

    The Ground Test Accelerator (GTA) had the objective Of Producing a high-brightness, high-current H-beam. The major components were a 35 keV injector, a Radio Frequency Quadrupole (RFQ), an intertank matching section (IMS), and a drift tube linac (DTL), consisting of 10 modules. A technique for measuring the transverse phase-space of high-power density beams has been developed and tested. This diagnostic has been applied to the GTA H-beam. Experimental results are compared to the slit and collector technique for transverse phase-space measurements and to simulations

  9. Homogeneous shear turbulence – bypass concept via interplay of linear transient growth and nonlinear transverse cascade

    International Nuclear Information System (INIS)

    Mamatsashvili, George; Dong, Siwei; Jiménez, Javier; Khujadze, George; Chagelishvili, George; Foysi, Holger

    2016-01-01

    We performed direct numerical simulations of homogeneous shear turbulence to study the mechanism of the self-sustenance of subcritical turbulence in spectrally stable (constant) shear flows. For this purpose, we analyzed the turbulence dynamics in Fourier/wavenumber/spectral space based on the simulation data for the domain aspect ratio 1 : 1 : 1. Specifically, we examined the interplay of linear transient growth of Fourier harmonics and nonlinear processes. The transient growth of harmonics is strongly anisotropic in spectral space. This, in turn, leads to anisotropy of nonlinear processes in spectral space and, as a result, the main nonlinear process appears to be not a direct/inverse, but rather a transverse/angular redistribution of harmonics in Fourier space referred to as the nonlinear transverse cascade. It is demonstrated that the turbulence is sustained by the interplay of the linear transient, or nonmodal growth and the transverse cascade. This course of events reliably exemplifies the wellknown bypass scenario of subcritical turbulence in spectrally stable shear flows. These processes mainly operate at large length scales, comparable to the box size. Consequently, the central, small wavenumber area of Fourier space (the size of which is determined below) is crucial in the self-sustenance and is labeled the vital area. Outside the vital area, the transient growth and the transverse cascade are of secondary importance - Fourier harmonics are transferred to dissipative scales by the nonlinear direct cascade. The number of harmonics actively participating in the self-sustaining process (i.e., the harmonics whose energies grow more than 10% of the maximum spectral energy at least once during evolution) is quite large - it is equal to 36 for the considered box aspect ratio - and obviously cannot be described by low-order models. (paper)

  10. Transverse confinement of an ion beam in a purely electrostatic configuration

    International Nuclear Information System (INIS)

    Correa, J.R.; Ordonez, C.A.; Weathers, D.L.

    2005-01-01

    The transverse confinement of an ion beam in a purely electrostatic configuration is studied. Analytical expressions for the electric potential of three different electrode configurations are found. Each configuration may be described as consisting of many closely spaced Einzel lenses, such that the focusing periodicity length is much smaller than the transverse size of the beam. Classical trajectory computer simulations are used to obtain a map of the phase space co-ordinates for which transverse electrostatic confinement occurs with one of the configurations. The results indicate that confinement should occur for a large range of conditions. It is speculated that the configurations studied can be used for transverse confinement of ion beams in either electrostatic ion traps or electrostatic ion storage rings

  11. On the dynamics of Airy beams in nonlinear media with nonlinear losses.

    Science.gov (United States)

    Ruiz-Jiménez, Carlos; Nóbrega, K Z; Porras, Miguel A

    2015-04-06

    We investigate on the nonlinear dynamics of Airy beams in a regime where nonlinear losses due to multi-photon absorption are significant. We identify the nonlinear Airy beam (NAB) that preserves the amplitude of the inward Hänkel component as an attractor of the dynamics. This attractor governs also the dynamics of finite-power (apodized) Airy beams, irrespective of the location of the entrance plane in the medium with respect to the Airy waist plane. A soft (linear) input long before the waist, however, strongly speeds up NAB formation and its persistence as a quasi-stationary beam in comparison to an abrupt input at the Airy waist plane, and promotes the formation of a new type of highly dissipative, fully nonlinear Airy beam not described so far.

  12. Optical method for mapping the transverse phase space of a charged particle beam

    International Nuclear Information System (INIS)

    Fiorito, R.B.; Shkvarunets, A.G.; O'Shea, P.G.

    2002-01-01

    We are developing an all optical method to map the transverse phase space map of a charged particle beam. Our technique employs OTR interferometry (OTRI) in combination with a scanning pinhole to make local orthogonal (x,y) divergence and trajectory angle measurements as function of position within the transverse profile of the beam. The localized data allows a reconstruction of the horizontal and vertical phase spaces of the beam. We have also demonstrated how single and multiple pinholes can in principle be used to make such measurements simultaneously

  13. Employing Beam-Gas Interaction Vertices for Transverse Profile Measurements

    CERN Document Server

    Rihl, Mariana; Baglin, Vincent; Barschel, Colin; Bay, Aurelio; Blanc, Frederic; Bravin, Enrico; Bregliozzi, Giuseppe; Chritin, Nicolas; Dehning, Bernd; Ferro-Luzzi, Massimiliano; Gaspar, Clara; Gianì, Sebastiana; Giovannozzi, Massimo; Greim, Roman; Haefeli, Guido; Hopchev, Plamen; Jacobsson, Richard; Jensen, Lars; Jones, Owain Rhodri; Jurado, Nicolas; Kain, Verena; Karpinski, Waclaw; Kirn, Thomas; Kuhn, Maria; Luthi, Berengere; Magagnin, Paolo; Matev, Rosen; Nakada, Tatsuya; Neufeld, Niko; Panman, Jaap; Rakotomiaramanana, Barinjaka; Salustino Guimaraes, Valdir; Salvant, Benoit; Schael, Stefan; Schneider, Olivier; Schwering, Georg; Tobin, Mark; Veness, Raymond; Veyrat, Quentin; Vlachos, Sotiris; Wlochal, Michael; Xu, Zhirui; von Dratzig, Arndt

    2016-01-01

    Interactions of high-energy beam particles with residual gas offer a unique opportunity to measure the beam profile in a non-intrusive fashion. Such a method was successfully pioneered* at the LHCb experiment using a silicon microstrip vertex detector. During the recent Large Hadron Collider shutdown at CERN, a demonstrator Beam-Gas Vertexing system based on eight scintillating-fibre modules was designed**, constructed and installed on Ring 2 to be operated as a pure beam diagnostics device. The detector signals are read out and collected with LHCb-type front-end electronics and a DAQ system consisting of a CPU farm. Tracks and vertices will be reconstructed to obtain a beam profile in real time. Here, first commissioning results are reported. The advantages and potential for future applications of this technique are discussed.

  14. Beam emittance growth caused by transverse deflecting fields in a linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A W; Richter, B; Yao, C Y [Stanford Linear Accelerator Center, CA (USA)

    1980-12-01

    The effect of the beam-generated transverse deflecting fields on the emittance of an intense bunch of particles in a high-energy linear accelerator is analyzed in this paper. The equation of motion is solved by a perturbation method for cases of a coasting beam and a uniformly accelerated beam. The results are applied to obtain some design tolerance specifications for the recently proposed SLAC Single Pass Collider.

  15. Analytical treatment of the nonlinear electron cloud effect and the combined effects with beam-beam and space charge nonlinear forces in storage rings

    International Nuclear Information System (INIS)

    Gao Jie

    2009-01-01

    In this paper we treat first some nonlinear beam dynamics problems in storage rings, such as beam dynamic apertures due to magnetic multipoles, wiggles, beam-beam effects, nonlinear space charge effect, and then nonlinear electron cloud effect combined with beam-beam and space charge effects, analytically. This analytical treatment is applied to BEPC II. The corresponding analytical expressions developed in this paper are useful both in understanding the physics behind these problems and also in making practical quick hand estimations. (author)

  16. Solution of Contact Problems for Nonlinear Gao Beam and Obstacle

    Directory of Open Access Journals (Sweden)

    J. Machalová

    2015-01-01

    Full Text Available Contact problem for a large deformed beam with an elastic obstacle is formulated, analyzed, and numerically solved. The beam model is governed by a nonlinear fourth-order differential equation developed by Gao, while the obstacle is considered as the elastic foundation of Winkler’s type in some distance under the beam. The problem is static without a friction and modeled either using Signorini conditions or by means of normal compliance contact conditions. The problems are then reformulated as optimal control problems which is useful both for theoretical aspects and for solution methods. Discretization is based on using the mixed finite element method with independent discretization and interpolations for foundation and beam elements. Numerical examples demonstrate usefulness of the presented solution method. Results for the nonlinear Gao beam are compared with results for the classical Euler-Bernoulli beam model.

  17. An experimental investigation into nonlinear dynamics of a magneto-rheological elastomer sandwich beam

    International Nuclear Information System (INIS)

    Yildirim, Tanju; Ghayesh, Mergen H; Li, Weihua; Alici, Gursel

    2016-01-01

    An experimental investigation has been carried out on the nonlinear dynamics of a clamped–clamped Magneto-Rheological Elastomer (MRE) sandwich beam with a point mass when subjected to a point excitation. Three sets of experiments have been conducted namely for (i) an aluminium beam, (ii) a MRE sandwich beam in the absence of a magnetic field and (iii) a MRE sandwich beam in the presence of a magnetic field. An electrodynamic shaker was used to excite each system and the corresponding displacement of the point mass was measured: for the third experiment (iii), an array of magnets has been placed at various distances away from the centre of the point mass to investigate the effect of changing stiffness and damping properties on the nonlinear dynamical behaviour. An interesting feature for the third group is the beam point mass displacement was no longer symmetric as the stiffness and damping of the system are increased when moving towards the magnets. Both the first and second groups exhibited distinct nonlinear behaviour; however, for the third group this work shows that for a low magnetic field the sandwich beam exhibits two distinct resonance peaks, one occurring above and the other below the fundamental natural frequency of the transverse motion, with the right one larger. For a larger magnetic field, these peaks even out until the magnetic force was large enough that the hardening-type nonlinear behaviour changes to a softening-type; a significant qualitative change in the nonlinear dynamical behaviour of the system, due to the presence of the magnetic field, was observed. (paper)

  18. Coherent Nonlinear Longitudinal Phenomena in Unbunched Synchrotron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Spentzouris, Linda Klamp [Northwestern U.

    1996-12-01

    Coherent nonlinear longitudinal phenomena are studied in proton and antiproton synchrotron beams. Theoretical development done in the eld of plasma physics for resonant wave-wave coupling is applied to the case of a particle beam. Results are given from experiments done to investigate the nature of the weakly nonlinear three-wave coupling processes known as parametric coupling and echoes. Storage ring impedances are shown to amplify the parametric coupling process, underlining the possibility that machine impedances might be extracted from coupling events instigated by external excitation. Echo amplitudes are demonstrated to be sensitive to diusion processes, such as intrabeam scattering, which degrade a beam. The result of a fast diusion rate measurement using echo amplitudes is presented. In addition to the wave-wave interactions, observations of moderately nonlinear waveparticle interactions are also included. The manifestations of these interactions that are documented include nonlinear Landau damping, higher harmonic generation, and signs of the possible formation of solitons.

  19. Some nonlinear problems in the manipulation of beams

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1990-01-01

    An overview is given of nonlinear problems that arise in the manipulation of beams. Beams can be made of material particles or photons, can be intense or dilute, can be energetic or not, and they can be propagating in vacuum or in a medium. The nonlinear aspects of the motion are different in each case, and this diversity of behavior is categorized. Many examples are given, which serves to illustrate the categorization and, furthermore, display the richness of behavior encountered in the physics of beams. 25 refs., 5 figs

  20. Nonlinear interaction of colliding beams in particle storage rings

    International Nuclear Information System (INIS)

    Herrera, J.C.; Month, M.

    1979-01-01

    When two beams of high energy particles moving in opposite directions are brought into collision, a large amount of energy is available for the production of new particles. However to obtain a sufficiently high event rate for rare processes, such as the production of the intermediate vector boson (Z 0 and W +- ), large beam currents are also required. Under this circumstance, the high charge density of one beam results in a classical electromagnetic interaction on the particles in the other beam. This very nonlinear space charge force, caled the beam-beam force, limits the total circulating charge and, thereby, the ultimate performance of the colliding ring system. The basic nature of the beam-beam force is discussed, indicating how it is quite different in the case of continuous beams, which cross each other at an angle as compared to the case of bunched beams which collide head-on. Some experimental observations on the beam-beam interaction in proton-proton and electron-positron beams are then reviewed and interpreted. An important aspect of the beam-beam problem in storage rings is to determine at what point in the analysis of the particle dynamics is it relevant to bring in the concepts of stochasticity, slow diffusion, and resonance overlap. These ideas are briefly discussed

  1. Transverse Vibration of Axially Moving Functionally Graded Materials Based on Timoshenko Beam Theory

    Directory of Open Access Journals (Sweden)

    Suihan Sui

    2015-01-01

    Full Text Available The transverse free vibration of an axially moving beam made of functionally graded materials (FGM is investigated using a Timoshenko beam theory. Natural frequencies, vibration modes, and critical speeds of such axially moving systems are determined and discussed in detail. The material properties are assumed to vary continuously through the thickness of the beam according to a power law distribution. Hamilton’s principle is employed to derive the governing equation and a complex mode approach is utilized to obtain the transverse dynamical behaviors including the vibration modes and natural frequencies. Effects of the axially moving speed and the power-law exponent on the dynamic responses are examined. Some numerical examples are presented to reveal the differences of natural frequencies for Timoshenko beam model and Euler beam model. Moreover, the critical speed is determined numerically to indicate its variation with respect to the power-law exponent, axial initial stress, and length to thickness ratio.

  2. Controlled Transverse Blow-up of Highenergy Proton Beams for Aperture Measurements and Loss Maps

    CERN Document Server

    Hӧfle, W; Redaelli, S; Schmidt, R; Valuch, D; Wollmann, D; Zerlauth, M

    2012-01-01

    A technique was developed to blow-up transversely in a controlled way high energy proton beams in the LHC. The technique is based on band limited white noise excitation that is injected into the transverse damper feedback loop. The injected signal can be gated to selectively blow-up individual trains of bunches. The speed of transverse blow-up can be precisely controlled. This opens the possibility to perform safely and efficiently aperture measurements and loss maps with high intensity bunch trains well above stored beam energies that are considered to be safe. In particular, lengthy procedures for measurements at top energy, otherwise requiring multiple fills of individual bunches, can be avoided. In this paper, the method is presented and results from beam measurements are discussed and compared with alternative blowup methods.

  3. Transverse instabilities of relativistic particle beams in accelerators and storage rings. I

    International Nuclear Information System (INIS)

    Zotter, B.

    1977-01-01

    This paper deals with transverse instabilities in coasting beams. A short description is given of the mechanism which leads to transverse instabilities, due essentially to the reaction of the electromagnetic fields caused by an oscillating beam on the particle motion. The methods used to calculate the electromagnetic fields are described and one of them is used to calculate the dispersion relation coefficients as well as the transverse coupling impedance, of a cylindrical beam in a concentric vacuum chamber with finite wall resistivity. In the last sections the dispersion relation is derived from the equation of motion of a single particle. The concept of the stability diagram is introduced and the stability criterion is discussed from several points of view. (Auth.)

  4. Optical Beams in Nonlocal Nonlinear Media

    DEFF Research Database (Denmark)

    Królikowski, W.; Bang, Ole; Wyller, J.

    2003-01-01

    We discuss propagation of optical beams in nonlocal Kerr-like media with the nonlocality of general form. We study the effect of nonlocality on modulational instability of the plane wave fronts, collapse of finite beams and formation of spatial solitons....

  5. Modify beam transversal test to evaluate hemiparkinsonian rats

    International Nuclear Information System (INIS)

    Blanco Lezcano, Lissette; Lorigados Pedre, Lourdes del C; Fernandez Verdecia, Caridad I; Serrano Sanchez, Teresa; Pavon Fuentes, Nancy; Turner, Liliana Francis

    2010-01-01

    The nigrostriatal degeneration underlying Parkinson's disease (PD) is commonly studied in experimental animals by injection of the neurotoxin 6-hydroxydopamine. the present study describes a modified version of a beam traversal test which allows the quantification of the motor deficit through the time spent to arrive to the platform once all four paws of the animals are in contact with the beam (escape latency, el), the time spent before falling (tumbled down latency, TDL) and the number of errors (NE) committed for the animals in each beam. The shape and the diameter of the cross section of the beams were modified from rectangular and circular cross section with 2.5 cm of diameter to the same shape with 1 cm of diameter, which induced a high difficulty to the execution of the test. Three groups of Wistar rats were examined: untreated (n=15), lesioned with 6-hydroxydopamine (n=14), and sham-operated (n=14). All variables studied showed significant differences between control and hemiparkinsonian rats. The EL and the NE were increased and the TDL was decreased in hemiparkinsonian rats for all beams in comparison with control rats. In TDL the significant differences between groups were more evident (p<0.001) for the beams with high cross section irrespective of the shape of the cross section. BTT is a convenient sensorimotor test that does not need to be trained extensively, and require adverse motivation or food deprivation and appears to be very useful in evaluating the motor deficits in established unilateral model of PD and also other experimental models.

  6. Transverse beam profile measurements with slit scanner and Faraday cup at REX-ISOLDE

    CERN Document Server

    Cantero, E D; Lanaia, D; Sosa, A; Voulot, D

    2014-01-01

    The transverse profiles for the HIE-ISOLDE beams will be measured using a system composed of a scanning slit and a Faraday cup. A validation test of the proposed device was performed using the REX-ISOLDE stable beam and a prototype diagnostic box designed for HIE-ISOLDE. The slit used for this test was very thin (0.2 mm width), but still fairly good profiles could be obtained for beams with total current of around 20 pA (typical beam intensity during normal set-up procedures for REX-ISOLDE).

  7. Electron-beam generation, transport, and transverse oscillation experiments using the REX injector

    International Nuclear Information System (INIS)

    Carlson, R.L.; Allison, P.W.; Kauppila, T.J.; Moir, D.C.; Ridlon, R.N.

    1991-01-01

    The REX machine at LANL is being used as a prototype to generate a 4-MV, 4.5-kA, 55-ns flat-top electron beam as a source for injection into a linear induction accelerator of the 16-MeV Dual-Axis Radiographic Hydrotest facility. The pulsed-power sources drives a planar velvet cathode producing a beam that is accelerated through a foilless anode aperture and transported by an air core magnetic lens for injection into the first of 48 linear induction cells. Extensive measurements of the time-resolved (<1-ns) properties of the beam using a streak camera and high-speed electronic diagnostics have been made. These parameters include beam current, voltage, current density, emittance, and transverse beam motion. The effective cathode temperature is 117 eV, corresponding to a Lapostolle emittance of 0.96 mm-rad. Transverse oscillations of the transported beam have been observed via a differenced B technique to be about ±100 μm at 245 MHz. This beam motion has been correlated via detailed rf measurements of asymmetric transverse cavity modes in the A-K gap. 7 refs., 6 figs

  8. Electron-beam generation, transport, and transverse oscillation experiments using the REX injector

    International Nuclear Information System (INIS)

    Carlson, R.L.; Allison, P.W.; Kauppila, T.J.; Moir, D.C.; Ridlon, R.N.

    1991-01-01

    The REX machine at LANL is being used as a prototype to generate a 4-MV, 4.5-kA, 55-ns flat-top electron beam as a source for injection into a linear induction accelerator of the 16-MeV Dual Axis Radiographic Hydrotest facility. The pulsed-power source drives a planar velvet cathode producing a beam that is accelerated through a foilless anode aperture and transported by an air core magnetic lens for injection into the first 48 linear induction cells. Extensive measurements of the time-resolved (<1-ns) properties of the beam using a streak camera and high-speed electronic diagnostics have been made. These parameters include beam current, voltage, current density, emittance, and transverse beam motion. The effective cathode temperature is 117 eV, corresponding to a Lapostolle emittance of 0.96 mm-rad. Transverse oscillations of the transported beam have been observed via a differenced B-dot technique to be about ±100 μ at 245 MHz. This beam motion has been correlated via detailed rf measurements of asymmetric transverse cavity modes in the A-K gap

  9. Plans for longitudinal and transverse neutralized beam compression experiments, and initial results from solenoid transport experiments

    International Nuclear Information System (INIS)

    Seidl, P.A.; Armijo, J.; Baca, D.; Bieniosek, F.M.; Coleman, J.; Davidson, R.C.; Efthimion, P.C.; Friedman, A.; Gilson, E.P.; Grote, D.; Haber, I.; Henestroza, E.; Kaganovich, I.; Leitner, M.; Logan, B.G.; Molvik, A.W.; Rose, D.V.; Roy, P.K.; Sefkow, A.B.; Sharp, W.M.; Vay, J.L.; Waldron, W.L.; Welch, D.R.; Yu, S.S.

    2007-01-01

    This paper presents plans for neutralized drift compression experiments, precursors to future target heating experiments. The target-physics objective is to study warm dense matter (WDM) using short-duration (∼1 ns) ion beams that enter the targets at energies just above that at which dE/dx is maximal. High intensity on target is to be achieved by a combination of longitudinal compression and transverse focusing. This work will build upon recent success in longitudinal compression, where the ion beam was compressed lengthwise by a factor of more than 50 by first applying a linear head-to-tail velocity tilt to the beam, and then allowing the beam to drift through a dense, neutralizing background plasma. Studies on a novel pulse line ion accelerator were also carried out. It is planned to demonstrate simultaneous transverse focusing and longitudinal compression in a series of future experiments, thereby achieving conditions suitable for future WDM target experiments. Future experiments may use solenoids for transverse focusing of un-neutralized ion beams during acceleration. Recent results are reported in the transport of a high-perveance heavy ion beam in a solenoid transport channel. The principal objectives of this solenoid transport experiment are to match and transport a space-charge-dominated ion beam, and to study associated electron-cloud and gas effects that may limit the beam quality in a solenoid transport system. Ideally, the beam will establish a Brillouin-flow condition (rotation at one-half the cyclotron frequency). Other mechanisms that potentially degrade beam quality are being studied, such as focusing-field aberrations, beam halo, and separation of lattice focusing elements

  10. Temporal nonlinear beam dynamics in infiltrated photonic crystal fibers

    DEFF Research Database (Denmark)

    Bennet, Francis; Rosberg, Christian Romer; Neshev, Dragomir N.

    Liquid-infiltrated photonic crystal fibers (PCFs) offer a new way of studying light propagation in periodic and discrete systems. A wide range of available fiber structures combined with the ease of infiltration opens up a range of novel experimental opportunities for optical detection and bio...... the evolution of the fiber output beam in the few micro or milliseconds after the beam is turned on. The characterization of the temporal behavior of the thermal nonlinear response provides important information about the nonlocality associated with heat diffusion inside the fiber, thus enabling studies of long...... and technological potential of liquid-infiltrated PCFs it is important to understand the temporal dynamics of nonlinear beam propagation in such structures. In this work we consider thermally induced spatial nonlinear effects in infiltrated photonic crystal fibers. We experimentally study the temporal dynamics...

  11. Laboratory beam-plasma interactions: linear and nonlinear

    International Nuclear Information System (INIS)

    Christiansen, P.J.; Jain, V.K.; Bond, J.W.

    1982-01-01

    The present investigation is concerned with the configuration of a cool plasma (often magnetized axially) penetrated by an injected electron beam. The attempt is made to demonstrate that despite unavoidable scaling limitations, laboratory experiments can illuminate, in a controlled fashion, details of beam plasma interaction processes in a way which will never be possible in the space plasma physics. In view of the increasing interest in high frequency instabilities in the auroral zone, the possibilities for interesting cross fertilizations of the two fields appear to be extensive. The linear theory is considered along with low frequency couplings and indirect effects. Attention is given to the evidence for the existence of exponentially growing instabilities in beam plasma interactions. The consequences of such instabilities are also explored and some processes of nonlinear processes are discussed, taking into account quasi-linear effects, trapping effects, nonlinear effects, trapping effects, nonlinear wave-wave interactions, and self-modulation and cavitation. 80 references

  12. Composite Beam Theory with Material Nonlinearities and Progressive Damage

    Science.gov (United States)

    Jiang, Fang

    Beam has historically found its broad applications. Nowadays, many engineering constructions still rely on this type of structure which could be made of anisotropic and heterogeneous materials. These applications motivate the development of beam theory in which the impact of material nonlinearities and damage on the global constitutive behavior has been a focus in recent years. Reliable predictions of these nonlinear beam responses depend on not only the quality of the material description but also a comprehensively generalized multiscale methodology which fills the theoretical gaps between the scales in an efficient yet high-fidelity manner. The conventional beam modeling methodologies which are built upon ad hoc assumptions are in lack of such reliability in need. Therefore, the focus of this dissertation is to create a reliable yet efficient method and the corresponding tool for composite beam modeling. A nonlinear beam theory is developed based on the Mechanics of Structure Genome (MSG) using the variational asymptotic method (VAM). The three-dimensional (3D) nonlinear continuum problem is rigorously reduced to a one-dimensional (1D) beam model and a two-dimensional (2D) cross-sectional analysis featuring both geometric and material nonlinearities by exploiting the small geometric parameter which is an inherent geometric characteristic of the beam. The 2D nonlinear cross-sectional analysis utilizes the 3D material models to homogenize the beam cross-sectional constitutive responses considering the nonlinear elasticity and progressive damage. The results from such a homogenization are inputs as constitutive laws into the global nonlinear 1D beam analysis. The theoretical foundation is formulated without unnecessary kinematic assumptions. Curvilinear coordinates and vector calculus are utilized to build the 3D deformation gradient tensor, of which the components are formulated in terms of cross-sectional coordinates, generalized beam strains, unknown warping

  13. A multislit transverse-emittance diagnostic for space-charge-dominated electron beams

    International Nuclear Information System (INIS)

    Piot, P.; Song, J.; Li, R.

    1997-01-01

    Jefferson Lab is developing a 10 MeV injector to provide an electron beam for a high-power free-electron laser (FEL). To characterize the transverse phase space of the space-charged-dominated beam produced by this injector, the authors designed an interceptive multislit emittance diagnostic. It incorporates an algorithm for phase-space reconstruction and subsequent calculation of the Twiss parameters and emittance for both transverse directions at an update rate exceeding 1 Hz, a speed that will facilitate the transverse-phase-space matching between the injector and the FEL's accelerator that is critical for proper operation. This paper describes issues pertaining to the diagnostic's design. It also discusses the acquisition system, as well as the software algorithm and its implementation in the FEL control system. First results obtained from testing this diagnostic in Jefferson Lab's Injector Test Stand are also included

  14. Spatiotemporal light-beam compression from nonlinear mode coupling

    Science.gov (United States)

    Krupa, Katarzyna; Tonello, Alessandro; Couderc, Vincent; Barthélémy, Alain; Millot, Guy; Modotto, Daniele; Wabnitz, Stefan

    2018-04-01

    We experimentally demonstrate simultaneous spatial and temporal compression in the propagation of light pulses in multimode nonlinear optical fibers. We reveal that the spatial beam self-cleaning recently discovered in graded-index multimode fibers is accompanied by significant temporal reshaping and up to fourfold shortening of the injected subnanosecond laser pulses. Since the nonlinear coupling among the modes strongly depends on the instantaneous power, we explore the entire range of the nonlinear dynamics with a single optical pulse, where the optical power is continuously varied across the pulse profile.

  15. Differential equation of transverse vibrations of a beam with local stroke change of stiffness

    Directory of Open Access Journals (Sweden)

    Stanisław Kasprzyk

    2007-01-01

    Full Text Available The aim of this paper is to derive a differential equation of transverse vibrations of a beam with a local, stroke change of stiffness, and to solve it. The presented method is based on the theory of distributions.

  16. General description of transverse mode Bessel beams and construction of basis Bessel fields

    Science.gov (United States)

    Wang, Jia Jie; Wriedt, Thomas; Lock, James A.; Jiao, Yong Chang

    2017-07-01

    Based on an analysis of polarized Bessel beams using the Hertz vector potentials and the angular spectrum representation (ASR), a general description of transverse mode Bessel beams is proposed. As opposed to the cases of linearly and circularly polarized Bessel beams, the magnetic and electric fields of a Bessel beam in a transverse mode are orthogonal to each other. Both sets of fields together form a complete set of basis Bessel fields, in terms of which an arbitrary Bessel beam can be regarded as a linear combination. The completeness of the basis Bessel fields is analyzed from the perspectives of waveguide theory and vector wave functions. Decompositions of linearly polarized, circularly polarized, and circularly symmetric n-order Bessel beams in terms of basis Bessel fields are given. The results presented in this paper provide a fresh perspective on the description of Bessel beams, which are useful in casting insights into the experimental generation of Bessel beams and the interpretation of light scattering-related problems in practice.

  17. Effect of the transverse parasitic mode on beam performance for the ADS driver linac in China

    International Nuclear Information System (INIS)

    Cheng Peng; Pei Shilun; Wang Jiuqing; Li Zhihui

    2015-01-01

    The ADS (Accelerator Driven subcritical System) driver linac in China is designed to run in CW (Continuous Wave) mode with 10 mA designed beam current. In this scenario, the beam-induced parasitic modes in the ADS driver linac may make the beam unstable or deteriorate the beam performance. To evaluate the parasitic mode effect on the beam dynamics systematically, simulation studies using the ROOT-based numerical code SMD have been conducted. The longitudinal beam instability induced by the HOMs (High Order Modes) and SOMs (Same Order Modes) has little effect on the longitudinal beam performance for the current ADS driver linac design based on the 10 MeV/325 MHz injector I from previous studies. Here the transverse parasitic mode (i.e., dipole HOM) effect on the transverse beam performance at the ADS driver linac exit is investigated. To more reasonably quantify the dipole mode effect, the multi-bunch effective emittance is introduced in this paper. (authors)

  18. Transverse energy circulation and the edge diffraction of an optical vortex beam.

    Science.gov (United States)

    Bekshaev, Aleksandr Ya; Mohammed, Kadhim A; Kurka, Ivan A

    2014-04-01

    Edge diffraction of a circular Laguerre-Gaussian beam represents an example of the optical vortex symmetry breakdown in which the hidden "vortex" energy circulation is partially transformed into the visible "asymmetry" form. The diffracted beam evolution is studied in terms of the irradiance moments and the moment-based parameters. In spite of the limited applicability of the moment-based formalism, we show that the "vortex" and "asymmetry" parts of the orbital angular momentum can still be reasonably defined for the hard-edge diffracted beams and retain their physical role of quantifying the corresponding forms of the transverse energy circulation.

  19. Source-to-target simulation of simultaneous longitudinal and transverse focusing of heavy ion beams

    Directory of Open Access Journals (Sweden)

    D. R. Welch

    2008-06-01

    Full Text Available Longitudinal bunching factors in excess of 70 of a 300-keV, 27-mA K^{+} ion beam have been demonstrated in the neutralized drift compression experiment [P. K. Roy et al., Phys. Rev. Lett. 95, 234801 (2005PRLTAO0031-900710.1103/PhysRevLett.95.234801] in rough agreement with particle-in-cell source-to-target simulations. A key aspect of these experiments is that a preformed plasma provides charge neutralization of the ion beam in the last one meter drift region where the beam perveance becomes large. The simulations utilize the measured ion source temperature, diode voltage, and induction-bunching-module voltage waveforms in order to determine the initial beam longitudinal phase space which is critical to accurate modeling of the longitudinal compression. To enable simultaneous longitudinal and transverse compression, numerical simulations were used in the design of the solenoidal focusing system that compensated for the impact of the applied velocity tilt on the transverse phase space of the beam. Complete source-to-target simulations, that include detailed modeling of the diode, magnetic transport, induction bunching module, and plasma neutralized transport, were critical to understanding the interplay between the various accelerator components in the experiment. Here, we compare simulation results with the experiment and discuss the contributions to longitudinal and transverse emittance that limit the final compression.

  20. Transverse Space-Charge Field-Induced Plasma Dynamics for Ultraintense Electron-Beam Characterization

    Directory of Open Access Journals (Sweden)

    R. Tarkeshian

    2018-05-01

    Full Text Available Similarly to laser or x-ray beams, the interaction of sufficiently intense particle beams with neutral gases will result in the creation of plasma. In contrast to photon-based ionization, the strong unipolar field of a particle beam can generate a plasma where the electron population receives a large initial momentum kick and escapes, leaving behind unshielded ions. Measuring the properties of the ensuing Coulomb exploding ions—such as their kinetic energy distribution, yield, and spatial distribution—can provide information about the peak electric fields that are achieved in the electron beams. Particle-in-cell simulations and analytical models are presented for high-brightness electron beams of a few femtoseconds or even hundreds of attoseconds, and transverse beam sizes on the micron scale, as generated by today’s free electron lasers. Different density regimes for the utilization as a potential diagnostics are explored, and the fundamental differences in plasma dynamical behavior for e-beam or photon-based ionization are highlighted. By measuring the dynamics of field-induced ions for different gas and beam densities, a lower bound on the beam charge density can be obtained in a single shot and in a noninvasive way. The exponential dependency of the ionization yield on the beam properties can provide unprecedented spatial and temporal resolution, at the submicrometer and subfemtosecond scales, respectively, offering a practical and powerful approach to characterizing beams from accelerators at the frontiers of performance.

  1. Dynamics analysis of microsphere in a dual-beam fiber-optic trap with transverse offset.

    Science.gov (United States)

    Chen, Xinlin; Xiao, Guangzong; Luo, Hui; Xiong, Wei; Yang, Kaiyong

    2016-04-04

    A comprehensive dynamics analysis of microsphere has been presented in a dual-beam fiber-optic trap with transverse offset. As the offset distance between two counterpropagating beams increases, the motion type of the microsphere starts with capture, then spiral motion, then orbital rotation, and ends with escape. We analyze the transformation process and mechanism of the four motion types based on ray optics approximation. Dynamic simulations show that the existence of critical offset distances at which different motion types transform. The result is an important step toward explaining physical phenomena in a dual-beam fiber-optic trap with transverse offset, and is generally applicable to achieving controllable motions of microspheres in integrated systems, such as microfluidic systems and lab-on-a-chip systems.

  2. CSR Effects in a Bunch Compressor influence of the Beam Frame Transverse Force

    CERN Document Server

    Bassi, G

    2005-01-01

    We study the influence of coherent synchrotron radiation (CSR) on particle bunches traveling on arbitrary planar orbits between parallel conducting plates (shielding) with a Vlasov approach. [1] The fields excited by the bunch are computed in the lab frame using a formula simpler than that based on retarded potentials. The Vlasov equation is solved in the beam frame interaction picture. In recent numerical investigations we solved the Vlasov equation for a bunch compressor using the Liouville-Maxwell approximation (LMA), where the bunch density is evolved under the fields produced by the unperturbed density (subject to external fields only), neglecting the beam frame transverse force. [2] Here we report on the influence of the beam frame transverse force on the equations of motion.

  3. Transverse beam stability measurement and analysis for the SNS accumulator ring

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zaipeng [University of Wisconsin-Madison, Madison, WI 53706-1691 (United States); Deibele, Craig, E-mail: deibele@ornl.gov [Oak Ridge National Laboratory, PO BOX 2008 MS6483, Oak Ridge, TN 37831-6461 (United States); Schulte, Michael J.; Hu, Yu-Hen [University of Wisconsin-Madison, Madison, WI 53706-1691 (United States)

    2015-07-11

    A field-programmable gate array (FPGA)-based transverse feedback damper system was implemented in the Spallation Neutron Source (SNS) accumulator ring with the intention to stabilize the electron–proton (e–p) instability in the frequency range of 1–300 MHz. The transverse feedback damper could also be used as a diagnostic tool by measuring the beam transfer function (BTF). An analysis of the BTF measurements provides the stability diagram for the production beam at SNS. This paper describes the feedback damper system and its setup as the BTF diagnostic tool. Experimental BTF results are presented and beam stability is analyzed by use of the BTF measurements for the SNS accumulator ring.

  4. Transverse beam stability measurement and analysis for the SNS accumulator ring

    International Nuclear Information System (INIS)

    Xie, Zaipeng; Deibele, Craig; Schulte, Michael J.; Hu, Yu-Hen

    2015-01-01

    A field-programmable gate array (FPGA)-based transverse feedback damper system was implemented in the Spallation Neutron Source (SNS) accumulator ring with the intention to stabilize the electron–proton (e–p) instability in the frequency range of 1–300 MHz. The transverse feedback damper could also be used as a diagnostic tool by measuring the beam transfer function (BTF). An analysis of the BTF measurements provides the stability diagram for the production beam at SNS. This paper describes the feedback damper system and its setup as the BTF diagnostic tool. Experimental BTF results are presented and beam stability is analyzed by use of the BTF measurements for the SNS accumulator ring

  5. Geometric nonlinear effects on the planar dynamics of a pivoted flexible beam encountering a point-surface impact

    International Nuclear Information System (INIS)

    Li Qing; Wang Tianshu; Ma Xingrui

    2009-01-01

    Flexible-body modeling with geometric nonlinearities remains a hot topic of research by applications in multibody system dynamics undergoing large overall motions. However, the geometric nonlinear effects on the impact dynamics of flexible multibody systems have attracted significantly less attention. In this paper, a point-surface impact problem between a rigid ball and a pivoted flexible beam is investigated. The Hertzian contact law is used to describe the impact process, and the dynamic equations are formulated in the floating frame of reference using the assumed mode method. The two important geometric nonlinear effects of the flexible beam are taken into account, i.e., the longitudinal foreshortening effect due to the transverse deformation, and the stress stiffness effect due to the axial force. The simulation results show that good consistency can be obtained with the nonlinear finite element program ABAQUS/Explicit if proper geometric nonlinearities are included in the floating frame formulation. Specifically, only the foreshortening effect should be considered in a pure transverse impact for efficiency, while the stress stiffness effect should be further considered in an oblique case with much more computational effort. It also implies that the geometric nonlinear effects should be considered properly in the impact dynamic analysis of more general flexible multibody systems

  6. Nonlinear analysis of shear deformable beam-columns partially ...

    African Journals Online (AJOL)

    In this paper, a boundary element method is developed for the nonlinear analysis of shear deformable beam-columns of arbitrary doubly symmetric simply or multiply connected constant cross section, partially supported on tensionless Winkler foundation, undergoing moderate large deflections under general boundary ...

  7. Bending of a nonlinear beam reposing on an unilateral foundation

    Directory of Open Access Journals (Sweden)

    Machalová J.

    2011-06-01

    Full Text Available This article is going to deal with bending of a nonlinear beam whose mathematical model was proposed by D. Y. Gao in (Gao, D. Y., Nonlinear elastic beam theory with application in contact problems and variational approaches,Mech. Research Communication, 23 (1 1996. The model is based on the Euler-Bernoulli hypothesis and under assumption of nonzero lateral stress component enables moderately large deflections but with small strains. This is here extended by the unilateralWinkler foundation. The attribution unilateral means that the foundation is not connected with the beam. For this problem we demonstrate a mathematical formulation resulting from its natural decomposition which leads to a saddle-point problem with a proper Lagrangian. Next we are concerned with methods of solution for our problem by means of the finite element method as the paper (Gao, D. Y., Nonlinear elastic beam theory with application in contact problems and variational approaches, Mech. Research Communication, 23 (1 1996 has no mention of it. The main alternatives are here the solution of a system of nonlinear nondifferentiable equations or finding of a saddle point through the use of the augmented Lagrangian method. This is illustrated by an example in the final part of the article.

  8. Laser beam propagation in non-linearly absorbing media

    CSIR Research Space (South Africa)

    Forbes, A

    2006-08-01

    Full Text Available Many analytical techniques exist to explore the propagation of certain laser beams in free space, or in a linearly absorbing medium. When the medium is nonlinearly absorbing the propagation must be described by an iterative process using the well...

  9. Transverse phase space mapping of relativistic electron beams using optical transition radiation

    Directory of Open Access Journals (Sweden)

    G. P. Le Sage

    1999-12-01

    Full Text Available Optical transition radiation (OTR has proven to be a versatile and effective diagnostic for measuring the profile, divergence, and emittance of relativistic electron beams with a wide range of parameters. Diagnosis of the divergence of modern high brightness beams is especially well suited to OTR interference (OTRI techniques, where multiple dielectric or metal foils are used to generate a spatially coherent interference pattern. Theoretical analysis of measured OTR and OTRI patterns allows precise measurement of electron beam emittance characteristics. Here we describe an extension of this technique to allow mapping of divergence characteristics as a function of transverse coordinates within a measured beam. We present the first experimental analysis of the transverse phase space of an electron beam using all optical techniques. Comparing an optically masked portion of the beam to the entire beam, we measure different angular spread and average direction of the particles. Direct measurement of the phase-space ellipse tilt angle has been demonstrated using this optical masking technique.

  10. Transverse Laser Beam Shaping in High Brightness Electron Gun at ATF

    CERN Document Server

    Roychowdhury, S

    2005-01-01

    The brightness of electron beams from a photo injector is influenced by the transverse and longitudinal distribution of the laser beam illuminating the cathode. Previous studies at Brookhaven Accelerator Test Facility have shown that formation of an ideal e-beam with lowest transverse emittance requires uniform circular distribution of the emitted electrons. The use of the uniformly distributed power of the laser beam may not lead to that of the emitted electrons because of the non-uniform quantum efficiency. A proper shaping of the laser beam can compensate for this non-uniformity. In this paper we describe the use of digital light processing (DLP) technique based on digital mirror device (DMD) for spatial modulation of the laser beam, for measurements of the quantum efficiency map, and for creating the desirable e-beam density profiles. A DMD is aμelectronic mechanical system (MEMS) comprising of millions of highly reflectiveμmirrors controlled by underlying electronics. We present exper...

  11. Nonlinear Vibrations of Cantilever Timoshenko Beams: A Homotopy Analysis

    Directory of Open Access Journals (Sweden)

    Shahram Shahlaei-Far

    Full Text Available Abstract This study analyzes the fourth-order nonlinear free vibration of a Timoshenko beam. We discretize the governing differential equation by Galerkin's procedure and then apply the homotopy analysis method (HAM to the obtained ordinary differential equation of the generalized coordinate. We derive novel analytical solutions for the nonlinear natural frequency and displacement to investigate the effects of rotary inertia, shear deformation, pre-tensile loads and slenderness ratios on the beam. In comparison to results achieved by perturbation techniques, this study demonstrates that a first-order approximation of HAM leads to highly accurate solutions, valid for a wide range of amplitude vibrations, of a high-order strongly nonlinear problem.

  12. A Simple Model for Nonlinear Confocal Ultrasonic Beams

    Science.gov (United States)

    Zhang, Dong; Zhou, Lin; Si, Li-Sheng; Gong, Xiu-Fen

    2007-01-01

    A confocally and coaxially arranged pair of focused transmitter and receiver represents one of the best geometries for medical ultrasonic imaging and non-invasive detection. We develop a simple theoretical model for describing the nonlinear propagation of a confocal ultrasonic beam in biological tissues. On the basis of the parabolic approximation and quasi-linear approximation, the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation is solved by using the angular spectrum approach. Gaussian superposition technique is applied to simplify the solution, and an analytical solution for the second harmonics in the confocal ultrasonic beam is presented. Measurements are performed to examine the validity of the theoretical model. This model provides a preliminary model for acoustic nonlinear microscopy.

  13. Transverse wakefield of waveguide damped structures and beam dynamics

    International Nuclear Information System (INIS)

    Lin, X.

    1995-08-01

    In the design of new high energy particle colliders with higher luminosity one is naturally led to consider multi-bunch operation. However, the passage of a leading bunch through an accelerator cavity Generates a wakefield that may have a deleterious effect on the motion of the subsequent bunches. Therefore, the suppression of the wakefield is an essential requirement for beam stability. One solution to this problem, which has been studied extensively is to drain the wakefield energy out of the cavity by means of waveguides coupled with the cavity and fed into matched terminations. Waveguide dimensions are chosen to yield a cutoff frequency well above the frequency of the accelerating mode so that the latter is undamped. This paper presents a thorough investigation of the wakefield for this configuration. The effectiveness of waveguide damping has typically been assessed by evaluating the resultant Q ext of higher order cavity modes to determine their exponential damping rate. We have developed an efficient method to calculate Q ext of the damped modes from popular computer simulation codes such as MAFIA. This method has been successively applied to the B-factory RF cavity We have also found another type of wakefield, associated with waveguide cut-off, which decays as t -3/2 rather than in the well-known exponentially damped manner. Accordingly, we called it the persistent Wakefield. A similar phenomenon with essentially the same physical origin but occurring in the decay of unstable quantum states, has received extensive study. Then we have developed various methods of calculating this persistent wakefield, including mode matching and computer simulation. Based on a circuit model we estimate the limit that waveguide damping can reach to reduce the wakefield

  14. Laboratory beam-plasma interactions linear and nonlinear

    International Nuclear Information System (INIS)

    Christiansen, P.J.; Bond, J.W.; Jain, V.K.

    1982-01-01

    This chapter attempts to demonstrate that despite unavoidable scaling limitations, laboratory experiments can uncover details of beam plasma interaction processes which could never be revealed through space plasma physics. Topics covered include linear theory, low frequency couplings, indirect effects, nonlinear effects, quasi-linear effects, trapping effects, nonlinear wave-wave interactions, and self modulation and cavitation. Unstable electrostatic waves arising from an exchange of energy with the ''free energy'' beam features are considered as kinetic and as hydrodynamic, or fluid, instabilities. The consequences of such instabilities (e.g. when the waves have grown to a finite level) are examined and some studies are reviewed which have attempted to understand how the free energy originally available in the beam is redistributed to produce a final state of equilibrium turbulence

  15. Transverse-to-longitudinal Emittance-exchange with an Energy Chirped Beam

    Energy Technology Data Exchange (ETDEWEB)

    Thangaraj, J.; Ruan, J.; Johnson, A.S.; Thurman-Keup, R.; Lumpkin, A.H.; Santucci, J.; Sun, Y.-E; Maxwell, T.; Edwards, H.; /Fermilab

    2012-05-01

    Emittance exchange has been proposed to increase the performance of free electron lasers by tailoring the phase space of an electron beam. The principle of emittance exchange - where the transverse phase space of the electron beam is exchanged with the longitudinal phase space - has been demonstrated recently at the A0 photoinjector. The experiment used a low charge bunch (250 pC) with no energy chirp. Theory predicts an improvement in the emittance exchange scheme when the incoming beam has an energy chirp imparted on it. The energy chirp helps to overcome the thick lens effect of the deflecting mode cavity and other second order effects that might lead to an incomplete emittance exchange at higher charges. In this work, we report experimental and simulation results from operating the emittance exchange beam line using an energy chirped beam with higher charge (500 pC) at different RF-chirp settings.

  16. Behavior of Uniform Anisotropic Beams of Rectangular Section under Transverse Impact of a Mass

    Directory of Open Access Journals (Sweden)

    Lu Chun

    1997-01-01

    Full Text Available A numerical method is presented to investigate the dynamic response of uniform orthotropic beams subjected to an impact of a mass. Higher order shear deformation and rotary inertia are included in the analysis of the beams. The impactor and laminated composite beam are treated as a system. The nonlinear differential governing equations of motion are then derived based on the Lagrange principle and modified nonlinear contact law, and solved numerically. The solution procedure is applicable to arbitrary boundary conditions. Numerical results are compared with those available in the literature to demonstrate the validity of the method, and very good agreement is achieved. The effects of boundary conditions on the contact force, contact duration, stress distributions, and beam deflection are discussed.

  17. A high repetition rate transverse beam profile diagnostic for laser-plasma proton sources

    Science.gov (United States)

    Dover, Nicholas; Nishiuchi, Mamiko; Sakaki, Hironao; Kando, Masaki; Nishitani, Keita

    2016-10-01

    The recently upgraded J-KAREN-P laser can provide PW peak power and intensities approaching 1022 Wcm-2 at 0.1 Hz. Scaling of sheath acceleration to such high intensities predicts generation of protons to near 100 MeV, but changes in electron heating mechanisms may affect the emitted proton beam properties, such as divergence and pointing. High repetition rate simultaneous measurement of the transverse proton distribution and energy spectrum are therefore key to understanding and optimising the source. Recently plastic scintillators have been used to measure online proton beam transverse profiles, removing the need for time consuming post-processing. We are therefore developing a scintillator based transverse proton beam profile diagnostic for use in ion acceleration experiments using the J-KAREN-P laser. Differential filtering provides a coarse energy spectrum measurement, and time-gating allows differentiation of protons from other radiation. We will discuss the design and implementation of the diagnostic, as well as proof-of-principle results from initial experiments on the J-KAREN-P system demonstrating the measurement of sheath accelerated proton beams up to 20 MeV.

  18. Transverse to longitudinal phase space coupling in an electron beam for suppression of microbunching instability

    Directory of Open Access Journals (Sweden)

    Dazhang Huang

    2016-10-01

    Full Text Available The microbunching instability developed during the beam compression process in the linear accelerator (LINAC of a free-electron laser (FEL facility has always been a problem that degrades the lasing performance, and even no FEL is able to be produced if the beam quality is destroyed too much by the instability. A common way to suppress the microbunching instability is to introduce extra uncorrelated energy spread by the laser heater that heats the beam through the interaction between the electron and laser beam, as what has been successfully implemented in the Linac Coherent Light Source and Fermi@Elettra. In this paper, a simple and effective scheme is proposed to suppress the microbunching instability by adding two transverse gradient undulators (TGU before and after the magnetic bunch compressor. The additional uncorrelated energy spread and the density mixing from the transverse spread brought up by the first TGU results in significant suppression of the instability. Meanwhile, the extra slice energy spread and the transverse emittance can also be effectively recovered by the second TGU. The magnitude of the suppression can be easily controlled by varying the strength of the magnetic fields of the TGUs. Theoretical analysis and numerical simulations demonstrate the capability of the proposed technique in the LINAC of an x-ray free-electron laser facility.

  19. Nonlinear Response of Cantilever Beams to Combination and Subcombination Resonances

    Directory of Open Access Journals (Sweden)

    Ali H. Nayfeh

    1998-01-01

    Full Text Available The nonlinear planar response of cantilever metallic beams to combination parametric and external subcombination resonances is investigated, taking into account the effects of cubic geometric and inertia nonlinearities. The beams considered here are assumed to have large length-to-width aspect ratios and thin rectangular cross sections. Hence, the effects of shear deformations and rotatory inertia are neglected. For the case of combination parametric resonance, a two-mode Galerkin discretization along with Hamilton’s extended principle is used to obtain two second-order nonlinear ordinary-differential equations of motion and associated boundary conditions. Then, the method of multiple scales is applied to obtain a set of four first-order nonlinear ordinary-differential equations governing the modulation of the amplitudes and phases of the two excited modes. For the case of subcombination resonance, the method of multiple scales is applied directly to the Lagrangian and virtual-work term. Then using Hamilton’s extended principle, we obtain a set of four first-order nonlinear ordinary-differential equations governing the amplitudes and phases of the two excited modes. In both cases, the modulation equations are used to generate frequency- and force-response curves. We found that the trivial solution exhibits a jump as it undergoes a subcritical pitchfork bifurcation. Similarly, the nontrivial solutions also exhibit jumps as they undergo saddle-node bifurcations.

  20. CP-sensitive observables in chargino production with transversebeam polarization

    International Nuclear Information System (INIS)

    Bartl, A.; Hohenwarter-Sodek, K.; Kernreiter, T.; Rud, H.

    2004-01-01

    We consider the process e + e - →χ + i χ - j at a linear collider with transverse e ± beam polarization. We investigate the influence of the CP phases on azimuthal asymmetries in e + e - →χ + i χ - j with subsequent two-body decays χ - j →ν l l - and χ - j →W - χ 0 1 . We show that triple product correlations involving the transverse e ± beam polarization vanish if at least one subsequent chargino decay is not observed. We derive this result within the minimal supersymmetric standard model (MSSM) with complex parameters; however, it holds also in the general MSSM with SUSY flavor violation. (orig.)

  1. Geometrical theory of nonlinear phase distortion of intense laser beams

    International Nuclear Information System (INIS)

    Glaze, J.A.; Hunt, J.T.; Speck, D.R.

    1975-01-01

    Phase distortion arising from whole beam self-focusing of intense laser pulses with arbitrary spatial profiles is treated in the limit of geometrical optics. The constant shape approximation is used to obtain the phase and angular distribution of the geometrical rays in the near field. Conditions for the validity of this approximation are discussed. Geometrical focusing of the aberrated beam is treated for the special case of a beam with axial symmetry. Equations are derived that show both the shift of the focus and the distortion of the intensity distribution that are caused by the nonlinear index of refraction of the optical medium. An illustrative example treats the case of beam distortion in a Nd:Glass amplifier

  2. Analytical modeling of large amplitude free vibration of non-uniform beams carrying a both transversely and axially eccentric tip mass

    Science.gov (United States)

    Malaeke, Hasan; Moeenfard, Hamid

    2016-03-01

    The objective of this paper is to study large amplitude flexural-extensional free vibration of non-uniform cantilever beams carrying a both transversely and axially eccentric tip mass. The effects of variable axial force is also taken into account. Hamilton's principle is utilized to obtain the partial differential equations governing the nonlinear vibration of the system as well as the corresponding boundary conditions. A numerical finite difference scheme is proposed to find the natural frequencies and mode shapes of the system which is validated specifically for a beam with linearly varying cross section. Using a single mode approximation in conjunction with the Lagrange method, the governing equations are reduced to a set of two nonlinear ordinary differential equations in terms of end displacement components of the beam which are coupled due to the presence of the transverse eccentricity. These temporal coupled equations are then solved analytically using the multiple time scales perturbation technique. The obtained analytical results are compared with the numerical ones and excellent agreement is observed. The qualitative and quantitative knowledge resulting from this research is expected to enable the study of the effects of eccentric tip mass and non-uniformity on the large amplitude flexural-extensional vibration of beams for improved dynamic performance.

  3. The super collider transverse feedback system for suppression of the emittance growth and beam instabilities

    International Nuclear Information System (INIS)

    Lebedev, V.A.

    1993-01-01

    A super collider transverse feedback system designed to suppress injection errors, emittance growth due to external noises, and beam instabilities is considered. It is supposed that the feedback system should consist of two circuits: an injection damper operating just after injection and a super damper. To damp the emittance growth, the superdamper has to operate with the ultimate decrement close to the revolution frequency. The physics of such a feedback system and its main limitations are discussed. 9 refs.; 21 figs.; 1 tab

  4. Effect of Magnetic Twist on Nonlinear Transverse Kink Oscillations of Line-tied Magnetic Flux Tubes

    Science.gov (United States)

    Terradas, J.; Magyar, N.; Van Doorsselaere, T.

    2018-01-01

    Magnetic twist is thought to play an important role in many structures of the solar atmosphere. One of the effects of twist is to modify the properties of the eigenmodes of magnetic tubes. In the linear regime standing kink solutions are characterized by a change in polarization of the transverse displacement along the twisted tube. In the nonlinear regime, magnetic twist affects the development of shear instabilities that appear at the tube boundary when it is oscillating laterally. These Kelvin–Helmholtz instabilities (KHI) are produced either by the jump in the azimuthal component of the velocity at the edge of the sharp boundary between the internal and external part of the tube or by the continuous small length scales produced by phase mixing when there is a smooth inhomogeneous layer. In this work the effect of twist is consistently investigated by solving the time-dependent problem including the process of energy transfer to the inhomogeneous layer. It is found that twist always delays the appearance of the shear instability, but for tubes with thin inhomogeneous layers the effect is relatively small for moderate values of twist. On the contrary, for tubes with thick layers, the effect of twist is much stronger. This can have some important implications regarding observations of transverse kink modes and the KHI itself.

  5. Turn-by-Turn Imaging of the Transverse Beam Profile in PEP-II

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Alan A.; Petree, Mark; /SLAC

    2006-12-18

    During injection or instability, the transverse profile of an individual bunch in a storage ring can change significantly in a few turns. However, most synchrotron-light imaging techniques are not designed for this time scale. We have developed a novel diagnostic that enhances the utility of a fast gated camera by adding, inexpensively, some features of a dual-axis streak camera, in order to watch the turn-by-turn evolution of the transverse profile, in both x and y. The beam's elliptical profile is reshaped using cylindrical lenses to form a tall and narrow ellipse--essentially the projection of the full ellipse onto one transverse axis. We do this projection twice, by splitting the beam into two paths at different heights, and rotating the ellipse by 90{sup o} on one path. A rapidly rotating mirror scans these vertical ''pencils'' of light horizontally across the photocathode of the camera, which is gated for 3 ns on every Nth ring turn. A single readout of the camera captures 100 images, looking like a stroboscopic photograph of a moving object. We have observed the capture of injected charge into a bunch and the rapid change of beam size at the onset of a fast instability.

  6. Electron beam based transversal profile measurements of intense ion beams; Elektronenstrahl-Diagnostik zur Bestimmung vom transversalen Profil intensiver Ionenstrahlen

    Energy Technology Data Exchange (ETDEWEB)

    El Moussati, Said

    2014-11-03

    A non-invasive diagnostic method for the experimental determination of the transverse profile of an intense ion beam has been developed and investigated theoretically as well as experimentally within the framework of the present work. The method is based on the deflection of electrons when passing the electromagnetic field of an ion beam. To achieve this an electron beam is employed with a specifically prepared transversal profile. This distinguish this method from similar ones which use thin electron beams for scanning the electromagnetic field [Roy et al. 2005; Blockland10]. The diagnostic method presented in this work will be subsequently called ''Electron-Beam-Imaging'' (EBI). First of all the influence of the electromagnetic field of the ion beam on the electrons has been theoretically analyzed. It was found that the magnetic field causes only a shift of the electrons along the ion beam axis, while the electric field only causes a shift in a plane transverse to the ion beam. Moreover, in the non-relativistic case the magnetic force is significantly smaller than the Coulomb one and the electrons suffer due to the magnetic field just a shift and continue to move parallel to their initial trajectory. Under the influence of the electric field, the electrons move away from the ion beam axis, their resulting trajectory shows a specific angle compared to the original direction. This deflection angle practically depends just on the electric field of the ion beam. Thus the magnetic field has been neglected when analysing the experimental data. The theoretical model provides a relationship between the deflection angle of the electrons and the charge distribution in the cross section of the ion beam. The model however only can be applied for small deflection angles. This implies a relationship between the line-charge density of the ion beam and the initial kinetic energy of the electrons. Numerical investigations have been carried out to clarify the

  7. Applications of electron lenses: scraping of high-power beams, beam-beam compensation, and nonlinear optics

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio

    2014-09-11

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Hollow electron beam collimation and halo control were studied as an option to complement the collimation system for the upgrades of the Large Hadron Collider (LHC) at CERN; a conceptual design was recently completed. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles. At Fermilab, we are planning to install an electron lens in the Integrable Optics Test Accelerator (IOTA, a 40-m ring for 150-MeV electrons) as one of the proof-of-principle implementations of nonlinear integrable optics to achieve large tune spreads and more stable beams without loss of dynamic aperture.

  8. Loss of Energy Concentration in Nonlinear Evolution Beam Equations

    Science.gov (United States)

    Garrione, Maurizio; Gazzola, Filippo

    2017-12-01

    Motivated by the oscillations that were seen at the Tacoma Narrows Bridge, we introduce the notion of solutions with a prevailing mode for the nonlinear evolution beam equation u_{tt} + u_{xxxx} + f(u)= g(x, t) in bounded space-time intervals. We give a new definition of instability for these particular solutions, based on the loss of energy concentration on their prevailing mode. We distinguish between two different forms of energy transfer, one physiological (unavoidable and depending on the nonlinearity) and one due to the insurgence of instability. We then prove a theoretical result allowing to reduce the study of this kind of infinite-dimensional stability to that of a finite-dimensional approximation. With this background, we study the occurrence of instability for three different kinds of nonlinearities f and for some forcing terms g, highlighting some of their structural properties and performing some numerical simulations.

  9. Simple computer model for the nonlinear beam--beam interaction in ISABELLE

    International Nuclear Information System (INIS)

    Herrera, J.C.; Month, M.; Peierls, R.F.

    1979-03-01

    The beam--beam interaction for two counter-rotating continuous proton beams crossing at an angle can be simulated by a 1-dimensional nonlinear force. The model is applicable to ISABELLE as well as to the ISR. Since the interaction length is short compared with the length of the beam orbit, the interaction region is taken to be a point. The problem is then treated as a mapping with the remainder of the system taken to be a rotation of phase given by the betatron tune of the storage ring. The evolution of the mean square amplitude of a given distribution of particles is shown for different beam--beam strengths. The effect of round-off error with resulting loss of accuracy for particle trajectories is discussed. 3 figures

  10. On the weakly nonlinear, transversal vibrations of a conveyor belt with a low and time-varying velocity

    NARCIS (Netherlands)

    Suweken, G.; van Horssen, W.T.

    2002-01-01

    In this paper the weakly nonlinear, transversal vibrations of a conveyor belt will be considered. The belt is assumed to move with a low and time-varying speed. Using Kirchhoff's approach a single equation of motion will be derived from a coupled system of partial differential equations describing

  11. A nonlinear beam model to describe the postbuckling of wide neo-Hookean beams

    Science.gov (United States)

    Lubbers, Luuk A.; van Hecke, Martin; Coulais, Corentin

    2017-09-01

    Wide beams can exhibit subcritical buckling, i.e. the slope of the force-displacement curve can become negative in the postbuckling regime. In this paper, we capture this intriguing behaviour by constructing a 1D nonlinear beam model, where the central ingredient is the nonlinearity in the stress-strain relation of the beams constitutive material. First, we present experimental and numerical evidence of a transition to subcritical buckling for wide neo-Hookean hyperelastic beams, when their width-to-length ratio exceeds a critical value of 12%. Second, we construct an effective 1D energy density by combining the Mindlin-Reissner kinematics with a nonlinearity in the stress-strain relation. Finally, we establish and solve the governing beam equations to analytically determine the slope of the force-displacement curve in the postbuckling regime. We find, without any adjustable parameters, excellent agreement between the 1D theory, experiments and simulations. Our work extends the understanding of the postbuckling of structures made of wide elastic beams and opens up avenues for the reverse-engineering of instabilities in soft and metamaterials.

  12. Study on the Unsteady Creep of Composite Beams with an Irregular Laminar Fibrous Structure Made from Nonlinear Hereditary Materials

    Science.gov (United States)

    Yankovskii, A. P.

    2017-09-01

    The creep of homogenous and hybrid composite beams of an irregular laminar fibrous structure is investigated. The beams consist of thin walls and flanges (load-carrying layers). The walls may be reinforced longitudinally or crosswise in the plane, and the load-carrying layers are reinforced in the longitudinal direction. The mechanical behavior of phase materials is described by the Rabotnov nonlinear hereditary theory of creep taking into account their possible different resistance to tension and compression. On the basis of hypotheses of the Timoshenko theory, with using the method of time steps, a problem is formulated for the inelastic bending deformation of such beams with account of the weakened resistance of their walls to the transverse shear. It is shown that, at discrete instants of time, the mechanical behavior of such structures can formally be described by the governing relations for composite beams made of nonlinear elastic anisotropic materials with a known initial stress state. The method of successive iterations, similar to the method of variable parameters of elasticity, is used to linearize the boundary-value problem at each instant of time. The bending deformation is investigated for homogeneous and reinforced cantilever and simply supported beams in creep under the action of a uniformly distributed transverse load. The cross sections of the beams considered are I-shaped. It is found that the use of the classical theory for such beams leads to the prediction of indefensibly underestimated flexibility, especially in long-term loading. It is shown that, in beams with reinforced load-carrying layers, the creep mainly develops due to the shear strains of walls. It is found that, in short- and long-term loadings of composite beams, the reinforcement structures rational by the criterion of minimum flexibility are different.

  13. Theoretical and numerical studies on the transport of transverse beam quality in plasma-based accelerators

    International Nuclear Information System (INIS)

    Mehrling, Timon Johannes

    2014-11-01

    This work examines effects, which impact the transverse quality of electron-beams in plasma-based accelerators, by means of theoretical and numerical methods. Plasma-based acceleration is a promising candidate for future particle accelerator technologies. In plasma-based acceleration, highly intense laser beams or high-current relativistic particle beams are focused into a plasma to excite plasma-waves with extreme transverse and longitudinal electric fields. The amplitude of these fields exceed with 10-100 GV/m the ones in today's radio-frequency accelerators by several orders of magnitude, hence, in principle allowing for accordingly shorter and cheaper accelerators based on plasma. Despite the tremendous progress in the recent decade, beams from plasma accelerators are not yet achieving the quality as demanded for pivotal applications of relativistic electron-beams, e.g. free-electron lasers (FELs).Studies within this work examine how the quality can be optimized in the production of the beams and preserved during the acceleration and transport to the interaction region. Such studies cannot be approached purely analytical but necessitate numerical methods, such as the Particle-In-Cell (PIC) method, which can model kinetic, electrodynamic and relativistic plasma phenomena. However, this method is computationally too expensive for parameter-scans in three-dimensional geometries. Hence, a quasi-static PIC code was developed in connection with this work, which is significantly more effective than the full PIC method for a class of problems in plasma-based acceleration.The evolution of the emittance of beams which are injected into plasma modules was studied in this work by means of theoretical and the above numerical methods. It was shown that the beam parameters need to be matched accurately into the focusing plasma-channel in order to allow for beam-quality preservation. This suggested that new extraction and injection-techniques are required in staged plasma

  14. Quasi-periodic solutions of nonlinear beam equations with quintic quasi-periodic nonlinearities

    Directory of Open Access Journals (Sweden)

    Qiuju Tuo

    2015-01-01

    Full Text Available In this article, we consider the one-dimensional nonlinear beam equations with quasi-periodic quintic nonlinearities $$ u_{tt}+u_{xxxx}+(B+ \\varepsilon\\phi(tu^5=0 $$ under periodic boundary conditions, where B is a positive constant, $\\varepsilon$ is a small positive parameter, $\\phi(t$ is a real analytic quasi-periodic function in t with frequency vector $\\omega=(\\omega_1,\\omega_2,\\dots,\\omega_m$. It is proved that the above equation admits many quasi-periodic solutions by KAM theory and partial Birkhoff normal form.

  15. Nonlinear coherent beam-beam oscillations in the rigid bunch model

    International Nuclear Information System (INIS)

    Dikansky, N.; Pestrikov, D.

    1990-01-01

    Within the framework of the rigid bunch model coherent oscillations of strong-strong colliding bunches are described by equations which are specific for the weak-strong beam case. In this paper some predictions of the model for properties of nonlinear coherent oscillations as well as for associated limitations of the luminosity are discussed. 14 refs.; 6 figs

  16. Reversible beam heater for suppression of microbunching instability by transverse gradient undulators

    Science.gov (United States)

    Liu, Tao; Qin, Weilun; Wang, Dong; Huang, Zhirong

    2017-08-01

    The microbunching instability driven by beam collective effects in a linear accelerator of a free-electron laser (FEL) facility significantly degrades the electron beam quality and FEL performance. A conventional method to suppress this instability is to introduce an additional uncorrelated energy spread by laser-electron interaction, which has been successfully operated in the Linac Coherent Light Source and Fermi@Elettra, etc. Some other ideas are recently proposed to suppress the instability without increasing energy spread, which could benefit the seeded FEL schemes. In this paper, we propose a reversible electron beam heater using two transverse gradient undulators to suppress the microbunching instability. This scheme introduces both an energy spread increase and a transverse-to-longitudinal phase space coupling, which suppress the microbunching instabilities driven by both longitudinal space charge and coherent synchrotron radiation before and within the system. Finally the induced energy spread increase and emittance growth are reversed. Theoretical analysis and numerical simulations are presented to verify the feasibility of the scheme and indicate the capability to improve the seeded FEL radiation performance.

  17. Single-particle And Collective Effects Of Cubic Nonlinearity In The Beam Dynamics Of Proton Synchrotrons

    CERN Document Server

    Tran Hy, J

    1998-01-01

    This thesis describes some new studies of the effects of cubic nonlinearities arising from image-charge forces and octupole magnets on the transverse beam dynamics of proton synchrotrons and storage rings, and also a study of the damping of coherent oscillations using a feed-back damper. In the latter case, various corrective algorithms were modeled using linear one-turn maps. Kicks of fixed amplitude but appropriate sign were shown to provide linear damping and no coherent tune shift, though the rate predicted analytically was somewhat higher than that observed in simulations. This algorithm gave much faster damping (for equal power) than conventional proportional kicks, which damp exponentially. Two single-particle effects of the image-change force were investigated: distortion of the momentum dispersion function and amplitude dependence of the betatron tunes (resulting in tune spread). The former is calculated using transfer maps and the method of undetermined coefficients, the latter by solving the cubic ...

  18. Beam-induced depolarisation at the HERMES transversely polarised hydrogen target

    International Nuclear Information System (INIS)

    Tait, P.

    2006-01-01

    This thesis describes the polarised hydrogen target of the HERMES experiment at DESY in Hamburg. The HERMES target is based on hyperfine-splitting of hydrogen in an external magnetic field and provides nuclear-polarised hydrogen for the HERMES experiment. Particular emphasis is placed on the phenomenon of beam-induced depolarisation. The HERA electron beam consists of short bunches which produce a high-frequency magnetic field. A Fourier analysis of these bunches leads to a series of harmonics, based on the fundamental frequency of roughly 10.4 MHz, which can cause a transition between hyperfine states of the target atoms. Only through careful setting of the external magnetic field is it possible to avoid these transitions and the resulting depolarisation of the target gas. Measurements of these resonances were made during the first HERMES run 1995-2000. The target region was modified in 2001 to allow HERMES to use hydrogen polarised perpendicularly to the direction of the electron beam. This modification gave HERMES access to the so-called 'Transversity' distribution for the first time, but also allows additional resonances in the target, which were previously forbidden by selection rules. The measurement and minimisation of these 'Sigma resonances' are presented. A distinctive feature of the HERMES experiment is its novel storage cell which allows target atoms to make multiple passes of the HERA beam. An exact description of beam-induced depolarisation must therefore consider the geometry of the storage cell and the distribution of the magnetic field throughout the cell. Calculations of the depolarisation can be made by solving the time-dependent Schroedinger equation using first-order perturbation theory. A simple analytical model and a molecular-flow Monte-Carlo are used to predict the exact shape of the resonances. The first measurements of the resonances with a transverse magnetic holding field are presented and compared with the simulations. (orig.)

  19. NONLINEAR EVOLUTION OF BEAM-PLASMA INSTABILITY IN INHOMOGENEOUS MEDIUM

    International Nuclear Information System (INIS)

    Ziebell, L. F.; Pavan, J.; Yoon, P. H.; Gaelzer, R.

    2011-01-01

    The problem of electron-beam propagation in inhomogeneous solar wind is intimately related to the solar type II and/or type III radio bursts. Many scientists have addressed this issue in the past by means of quasi-linear theory, but in order to fully characterize the nonlinear dynamics, one must employ weak-turbulence theory. Available numerical solutions of the weak-turbulence theory either rely on only one nonlinear process (either decay or scattering), or when both nonlinear terms are included, the inhomogeneity effect is generally ignored. The present paper reports the full solution of weak-turbulence theory that includes both decay and scattering processes, and also incorporating the effects of density gradient. It is found that the quasi-linear effect sufficiently accounts for the primary Langmuir waves, but to properly characterize the back-scattered Langmuir wave, which is important for eventual radiation generation, it is found that both nonlinear decay and scattering processes make comparable contributions. Such a finding may be important in the quantitative analysis of the plasma emission process with application to solar type II and/or type III radio bursts.

  20. Emittance growth of an electron beam in a periodic channel due to transfer of longitudinal energy to transverse energy

    International Nuclear Information System (INIS)

    Carlsten, B.E.

    1998-01-01

    Most discussions about emittance growth and halo production for an intense electron beam in a periodic focusing channel assume that the total transverse energy is constant (or, in other words, that the transverse and longitudinal Hamiltonians are separable). Previous analyses that include variations in the total transverse energy are typically based on a transverse-longitudinal coupling that is either from two-dimensional space-charge modes or particle-particle Coulomb collisions. With the space-charge modes, the energy exchange between the transverse and longitudinal directions is periodic, and of constant magnitude. The total energy transfer for the case of the Coulomb collisions is negligible. This limited increase of energy in the transverse direction from these other effects will limit the amount of transverse emittance growth possible. In this paper, the authors investigate a mechanism in which there is a continual transfer of energy from the longitudinal direction to the transverse direction, leading to essentially unlimited potential transverse emittance growth. This mechanism is caused by an asymmetry of the beam's betatron motion within the periodic focusing elements. This analysis is based on thermodynamic principles. This mechanism exists for both solenoids and quadrupole focusing, although only solenoid focusing is studied here

  1. Dynamic Response of a Beam Resting on a Nonlinear Foundation to a Moving Load: Coiflet-Based Solution

    Directory of Open Access Journals (Sweden)

    Piotr Koziol

    2012-01-01

    Full Text Available This paper presents a new semi-analytical solution for the Timoshenko beam subjected to a moving load in case of a nonlinear medium underneath. The finite series of distributed moving loads harmonically varying in time is considered as a representation of a moving train. The solution for vibrations is obtained by using the Adomian's decomposition combined with the Fourier transform and a wavelet-based procedure for its computation. The adapted approximating method uses wavelet filters of Coiflet type that appeared a very effective tool for vibration analysis in a few earlier papers. The developed approach provides solutions for both transverse displacement and angular rotation of the beam, which allows parametric analysis of the investigated dynamic system to be conducted in an efficient manner. The aim of this article is to present an effective method of approximation for the analysis of complex dynamic nonlinear models related to the moving load problems.

  2. A determination of αstrong with transversally polarized beams at LEP1

    International Nuclear Information System (INIS)

    Djouadi, A.; Verzegnassi, C.

    1989-12-01

    We propose a new and rather unbiased way of determining the value of the strong coupling constant α, if transversally polarized electron-positron beams were available at LEP1. The ratio of azimuthal asymmetries for the production of hadrons to muons in e + e - annihilation is independent of any cut-off procedure and is very sensitive to the value of α s . Moreover we show that on top of Z resonance, it is free from any ambiguity stemming from Standard Model unknown parameters or the possible presence of New Physics

  3. Transverse modes of a bunched beam with space charge dominated impedance

    Directory of Open Access Journals (Sweden)

    V. Balbekov

    2009-12-01

    Full Text Available Transverse coherent oscillations of a bunched beam in a ring accelerator are considered with space charge dominated impedance, taking into account linear synchrotron oscillations. A general equation of the bunch eigenmodes is derived, its exact analytical solution is presented for boxcar bunch, and numerical solutions are found for several realistic models. Both low and high synchrotron frequency approximations are considered and compared, fields of their applicability are determined, and some estimations are developed in the intermediate region. It is shown that most of the bunch eigenmodes are stabilized by Landau damping due to the space charge produced tune spread.

  4. Errors in measuring transverse and energy jitter by beam position monitors

    Energy Technology Data Exchange (ETDEWEB)

    Balandin, V.; Decking, W.; Golubeva, N.

    2010-02-15

    The problem of errors, arising due to finite BPMresolution, in the difference orbit parameters, which are found as a least squares fit to the BPM data, is one of the standard and important problems of accelerator physics. Even so for the case of transversely uncoupled motion the covariance matrix of reconstruction errors can be calculated ''by hand'', the direct usage of obtained solution, as a tool for designing of a ''good measurement system'', does not look to be fairly straightforward. It seems that a better understanding of the nature of the problem is still desirable. We make a step in this direction introducing dynamic into this problem, which at the first glance seems to be static. We consider a virtual beam consisting of virtual particles obtained as a result of application of reconstruction procedure to ''all possible values'' of BPM reading errors. This beam propagates along the beam line according to the same rules as any real beam and has all beam dynamical characteristics, such as emittances, energy spread, dispersions, betatron functions and etc. All these values become the properties of the BPM measurement system. One can compare two BPM systems comparing their error emittances and rms error energy spreads, or, for a given measurement system, one can achieve needed balance between coordinate and momentum reconstruction errors by matching the error betatron functions in the point of interest to the desired values. (orig.)

  5. Errors in measuring transverse and energy jitter by beam position monitors

    International Nuclear Information System (INIS)

    Balandin, V.; Decking, W.; Golubeva, N.

    2010-02-01

    The problem of errors, arising due to finite BPMresolution, in the difference orbit parameters, which are found as a least squares fit to the BPM data, is one of the standard and important problems of accelerator physics. Even so for the case of transversely uncoupled motion the covariance matrix of reconstruction errors can be calculated ''by hand'', the direct usage of obtained solution, as a tool for designing of a ''good measurement system'', does not look to be fairly straightforward. It seems that a better understanding of the nature of the problem is still desirable. We make a step in this direction introducing dynamic into this problem, which at the first glance seems to be static. We consider a virtual beam consisting of virtual particles obtained as a result of application of reconstruction procedure to ''all possible values'' of BPM reading errors. This beam propagates along the beam line according to the same rules as any real beam and has all beam dynamical characteristics, such as emittances, energy spread, dispersions, betatron functions and etc. All these values become the properties of the BPM measurement system. One can compare two BPM systems comparing their error emittances and rms error energy spreads, or, for a given measurement system, one can achieve needed balance between coordinate and momentum reconstruction errors by matching the error betatron functions in the point of interest to the desired values. (orig.)

  6. Global dynamics and control of a comprehensive nonlinear beam equation

    International Nuclear Information System (INIS)

    You Yuncheng; Taboada, M.

    1994-01-01

    A nonlinear hinged extensible elastic beam equation with the structural damping and Balakrishnan-Taylor damping of full exponent is studied as a general model for large space structures. It is proved that there exists an absorbing set in the energy space and that there exist inertial manifolds whose exponential attracting rates however are nonuniform. The control spillover problem associated with the stabilization of this equation is resolved by constructing a linear finite-dimensional feedback control based on the existence of inertial manifolds of the uncontrolled equation. Moreover, the results obtained are robust with respect to uncertainty in the structural parameters. (author). 5 refs

  7. Nonlinear behaviors of a bounded electron beam-plasma system

    International Nuclear Information System (INIS)

    Iizuka, Satoru; Saeki, Koichi; Sato, Noriyoshi; Hatta, Yoshisuke

    1985-01-01

    Nonlinear developments of a bounded electron beam-plasma system including stationary electrons are investigated experimentally. A stable double layer is formed as a result of ion trapping in a growing negative potential dip induced by the Pierce instability above the current regime of the Buneman instability. In the in-between regime of the Buneman and Pierce instabilities, energetic ions are observed. This effective ion heating is caused by ion detrapping due to double-layer disruption, being consistent with computer simulation. (author)

  8. Transverse resonance-radiation pressure on atomic beams and the influence of fluctuations

    International Nuclear Information System (INIS)

    Bjorkholm, J.E.; Freeman, R.R.; Ashkin, A.; Pearson, D.B.

    1979-01-01

    We have experimentally demonstrated that a beam of neutral sodium atoms can be focused to a spot diameter of approx. 50 μ using the transverse dipole resonance-radiation pressure exerted by a 40 mW laser beam. Simple analysis shows that in some cases the spot sizes are limited by the random fluctuations of the spontaneous radiation pressure; with 1 W of laser power, spot sizes less than 10 μ should be attainable. The effects of heating by spontaneous scattering can have important detrimental effects in other applications of resonance - radiation pressure on atoms, such as the slowing or guiding of atoms. Consideration of heating effects is of paramount importance in the design of optical traps for neutral atoms. (KBE)

  9. The improved design method of shear strength of reinforced concrete beams without transverse reinforcement

    Directory of Open Access Journals (Sweden)

    Vegera Pavlo

    2017-12-01

    Full Text Available In this article, results of experimental testing of reinforced concrete beams without transverse shear reinforcement are given. Three prototypes for improved testing methods were tested. The testing variable parameter was the shear span to the effective depth ratio. In the result of the tests we noticed that bearing capacity of RC beams is increased with the decreasing shear span to the effective depth ratio. The design method according to current codes was applied to test samples and it showed a significant discrepancy results. Than we proposed the improved design method using the adjusted value of shear strength of concrete CRd,c. The results obtained by the improved design method showed satisfactory reproducibility.

  10. Estimation of blood velocity vectors using transverse ultrasound beam focusing and cross-correlation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Lacasa, Isabel Rodriguez

    1999-01-01

    program. Simulations are shown for a parabolic velocity profile for flow-to-beam angles of 30, 45, 60, and 90 degrees using a 64 elements linear array with a center frequency of 3 MHz, a pitch of 0.3 mm, and an element height of 5 mm. The peak velocity in the parabolic flow was 0.5 m/s, and the pulse...... repetition frequency was 3.5 kHz. Using four pulse-echo lines, the parabolic flow profile was found with a standard deviation of 0.028 m/s at 60 degrees and 0.092 m/s at 90 degrees (transverse to the ultrasound beam), corresponding to accuracies of 5.6% and 18.4%. Using ten lines gave standard deviations...

  11. Experimental characterization of X-ray transverse coherence in the presence of beam transport optics

    DEFF Research Database (Denmark)

    Chubar, O.; Fluerasu, A.; Chu, Y.S.

    2013-01-01

    A simple Boron fiber based interference scheme [1] and other similar schemes are currently routinely used for X-ray coherence estimation at 3rd generation synchrotron radiation sources. If such a scheme is applied after a perfect monochromator and without any focusing / transport optics...... in the optical path, the interpretation of the measured interference pattern is relatively straightforward and can be done in terms of the basic parameters of the source [2]. However, if the interference scheme is used after some focusing optics, e.g. close to the X-ray beam waist, the visibility of fringes can...... be significantly affected by the new shape of the focused beam phase-space. At the same time, optical element imperfections still have a negative impact on the transverse coherence. In such situations, which are frequently encountered in experiments at beamlines, the quantitative interpretation of a measured...

  12. Lie Algebraic Treatment of Linear and Nonlinear Beam Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Alex J. Dragt; Filippo Neri; Govindan Rangarajan; David Douglas; Liam M. Healy; Robert D. Ryne

    1988-12-01

    The purpose of this paper is to present a summary of new methods, employing Lie algebraic tools, for characterizing beam dynamics in charged-particle optical systems. These methods are applicable to accelerator design, charged-particle beam transport, electron microscopes, and also light optics. The new methods represent the action of each separate element of a compound optical system, including all departures from paraxial optics, by a certain operator. The operators for the various elements can then be concatenated, following well-defined rules, to obtain a resultant operator that characterizes the entire system. This paper deals mostly with accelerator design and charged-particle beam transport. The application of Lie algebraic methods to light optics and electron microscopes is described elsewhere (1, see also 44). To keep its scope within reasonable bounds, they restrict their treatment of accelerator design and charged-particle beam transport primarily to the use of Lie algebraic methods for the description of particle orbits in terms of transfer maps. There are other Lie algebraic or related approaches to accelerator problems that the reader may find of interest (2). For a general discussion of linear and nonlinear problems in accelerator physics see (3).

  13. Effects of the combined action of axial and transversal loads on the failure time of a wooden beam under fire

    International Nuclear Information System (INIS)

    Nubissie, A.; Kingne Talla, E.; Woafo, P.

    2012-01-01

    Highlights: ► A wooden beam submitted to fire and axial and transversal loads is considered. ► The failure time is found to increase with the intensity of the loads. ► Implication for safety consideration is indicated. -- Abstract: This paper presents the variations of the failure time of a wooden beam (Baillonella toxisperma also called Moabi) in fire subjected to the combined effect of axial and transversal loads. Using the recommendation of the structural Eurocodes that the failure can occur when the deflection attains 1/300 of the length of the beam or when the bending moment attains the resistant moment, the partial differential equation describing the beam dynamics is solved numerically and the failure time calculated. It is found that the failure time decreases when either the axial or transversal loads increases.

  14. Advances in nonlinear vibration analysis of structures. Part-I. Beams

    Indian Academy of Sciences (India)

    Unknown

    element analysis of nonlinear beams under static and dynamic loads. ... linearization, substitution of inplane boundary conditions at element level rather .... Modelling the nonlinear vibration problems using finite elements, albeit with a couple.

  15. Fast Transverse Beam Instability Caused by Electron Cloud Trapped in Combined Function Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Sergey [Univ. of Chicago, IL (United States)

    2017-03-01

    Electron cloud instabilities affect the performance of many circular high-intensity particle accelerators. They usually have a fast growth rate and might lead to an increase of the transverse emittance and beam loss. A peculiar example of such an instability is observed in the Fermilab Recycler proton storage ring. Although this instability might pose a challenge for future intensity upgrades, its nature had not been completely understood. The phenomena has been studied experimentally by comparing the dynamics of stable and unstable beam, numerically by simulating the build-up of the electron cloud and its interaction with the beam, and analytically by constructing a model of an electron cloud driven instability with the electrons trapped in combined function dipoles. Stabilization of the beam by a clearing bunch reveals that the instability is caused by the electron cloud, trapped in beam optics magnets. Measurements of microwave propagation confirm the presence of the cloud in the combined function dipoles. Numerical simulations show that up to 10$^{-2}$ of the particles can be trapped by their magnetic field. Since the process of electron cloud build-up is exponential, once trapped this amount of electrons significantly increases the density of the cloud on the next revolution. In a combined function dipole this multi-turn accumulation allows the electron cloud reaching final intensities orders of magnitude greater than in a pure dipole. The estimated fast instability growth rate of about 30 revolutions and low mode frequency of 0.4 MHz are consistent with experimental observations and agree with the simulations. The created instability model allows investigating the beam stability for the future intensity upgrades.

  16. Natural Frequencies and Mode Shapes of a Nonlinear, Uniform Cantilevered Beam

    National Research Council Canada - National Science Library

    Marquez-Chisolm, Daniel J

    2006-01-01

    A series of experiments in 1975, referred to as the Princeton Beam Experiments, were performed to measure natural frequencies and create a nonlinear elastic deformation model to improve helicopter main beam designs...

  17. Theoretical and experimental nonlinear dynamics of a clamped-clamped beam MEMS resonator

    NARCIS (Netherlands)

    Mestrom, R.M.C.; Fey, R.H.B.; Nijmeijer, H.

    2008-01-01

    Microelectromechanical resonators feature nonlineardynamic responses. A first-principles based modeling approach is proposed for a clamped-clamped beam resonator. Starting from the partial differential equation for the beam including geometric and electrostatic nonlinear effects, a reduced-order

  18. Nonlinear dynamics for charges particle beams with a curved axis in the matrix - recursive model

    Energy Technology Data Exchange (ETDEWEB)

    Dymnikov, A D [University of St Petersburg, (Russian Federation). Institute of Computational Mathematics and Control Process

    1994-12-31

    In this paper a new matrix and recursive approach has been outlined for treating nonlinear optics of charged particle beams. This approach is a new analytical and computational tool for designers of optimal beam control systems. 9 refs.

  19. Nonlinear dynamics for charges particle beams with a curved axis in the matrix - recursive model

    Energy Technology Data Exchange (ETDEWEB)

    Dymnikov, A.D. [University of St Petersburg, (Russian Federation). Institute of Computational Mathematics and Control Process

    1993-12-31

    In this paper a new matrix and recursive approach has been outlined for treating nonlinear optics of charged particle beams. This approach is a new analytical and computational tool for designers of optimal beam control systems. 9 refs.

  20. Nonlinear dynamics for charges particle beams with a curved axis in the matrix - recursive model

    International Nuclear Information System (INIS)

    Dymnikov, A.D.

    1993-01-01

    In this paper a new matrix and recursive approach has been outlined for treating nonlinear optics of charged particle beams. This approach is a new analytical and computational tool for designers of optimal beam control systems. 9 refs

  1. Nonlinear saturation controller for vibration supersession of a nonlinear composite beam

    Energy Technology Data Exchange (ETDEWEB)

    Hamed, Y. S. [Menofia University, Menouf (Egypt); Amer, Y. A. [Zagazig University, Zagazig (Egypt)

    2014-08-15

    In this paper, a study for nonlinear saturation controller (NSC) is presented that used to suppress the vibration amplitude of a structural dynamic model simulating nonlinear composite beam at simultaneous sub-harmonic and internal resonance excitation. The absorber exploits the saturation phenomenon that is known to occur in dynamical systems with quadratic non-linearities of the feedback gain and a two-to-one internal resonance. The analytical solution for the system and the nonlinear saturation controller are obtained using method of multiple time scales perturbation up to the second order approximation. All possible resonance cases were extracted at this approximation order and studied numerically. The stability of the system at the worst resonance case (Ω = 2ω{sub s} and ω{sub s} =2ω{sub C}) is investigated using both frequency response equations and phase-plane trajectories. The effects of different parameters on the system and the controller are studied numerically. The effect of some types of controller on the system is investigated numerically. The simulation results are achieved using Matlab and Maple programs.

  2. Nonlinear discrete-time multirate adaptive control of non-linear vibrations of smart beams

    Science.gov (United States)

    Georgiou, Georgios; Foutsitzi, Georgia A.; Stavroulakis, Georgios E.

    2018-06-01

    The nonlinear adaptive digital control of a smart piezoelectric beam is considered. It is shown that in the case of a sampled-data context, a multirate control strategy provides an appropriate framework in order to achieve vibration regulation, ensuring the stability of the whole control system. Under parametric uncertainties in the model parameters (damping ratios, frequencies, levels of non linearities and cross coupling, control input parameters), the scheme is completed with an adaptation law deduced from hyperstability concepts. This results in the asymptotic satisfaction of the control objectives at the sampling instants. Simulation results are presented.

  3. Localization of Transversal Cracks in Sandwich Beams and Evaluation of Their Severity

    Directory of Open Access Journals (Sweden)

    G. R. Gillich

    2014-01-01

    Full Text Available An algorithm to assess transversal cracks in composite structures based on natural frequency changes due to damage is proposed. The damage assessment is performed in two steps; first the crack location is found, and afterwards an evaluation of its severity is performed. The technique is based on a mathematical relation that provides the exact solution for the frequency changes of bending vibration modes, considering two terms. The first term is related to the strain energy stored in the beam, while the second term considers the increase of flexibility due to damage. Thus, it is possible to separate the problems of localization and severity assessment, which makes the localization process independent of the beams cross-section shape and boundary conditions. In fact, the process consists of comparing vectors representing the measured frequency shifts with patterns constructed using the mode shape curvatures of the undamaged beam. Once the damage is localized, the evaluation of its severity is made taking into account the global rigidity reduction. The damage identification algorithm was validated by experiments performed on numerous sandwich panel specimens.

  4. Problems in nonlinear acoustics: Pulsed finite amplitude sound beams, nonlinear acoustic wave propagation in a liquid layer, nonlinear effects in asymmetric cylindrical sound beams, effects of absorption on the interaction of sound beams, and parametric receiving arrays

    Science.gov (United States)

    Hamilton, Mark F.

    1990-12-01

    This report discusses five projects all of which involve basic theoretical research in nonlinear acoustics: (1) pulsed finite amplitude sound beams are studied with a recently developed time domain computer algorithm that solves the KZK nonlinear parabolic wave equation; (2) nonlinear acoustic wave propagation in a liquid layer is a study of harmonic generation and acoustic soliton information in a liquid between a rigid and a free surface; (3) nonlinear effects in asymmetric cylindrical sound beams is a study of source asymmetries and scattering of sound by sound at high intensity; (4) effects of absorption on the interaction of sound beams is a completed study of the role of absorption in second harmonic generation and scattering of sound by sound; and (5) parametric receiving arrays is a completed study of parametric reception in a reverberant environment.

  5. Dynamics of homogeneous shear turbulence: A key role of the nonlinear transverse cascade in the bypass concept

    Science.gov (United States)

    Mamatsashvili, G.; Khujadze, G.; Chagelishvili, G.; Dong, S.; Jiménez, J.; Foysi, H.

    2016-08-01

    To understand the mechanism of the self-sustenance of subcritical turbulence in spectrally stable (constant) shear flows, we performed direct numerical simulations of homogeneous shear turbulence for different aspect ratios of the flow domain with subsequent analysis of the dynamical processes in spectral or Fourier space. There are no exponentially growing modes in such flows and the turbulence is energetically supported only by the linear growth of Fourier harmonics of perturbations due to the shear flow non-normality. This non-normality-induced growth, also known as nonmodal growth, is anisotropic in spectral space, which, in turn, leads to anisotropy of nonlinear processes in this space. As a result, a transverse (angular) redistribution of harmonics in Fourier space is the main nonlinear process in these flows, rather than direct or inverse cascades. We refer to this type of nonlinear redistribution as the nonlinear transverse cascade. It is demonstrated that the turbulence is sustained by a subtle interplay between the linear nonmodal growth and the nonlinear transverse cascade. This course of events reliably exemplifies a well-known bypass scenario of subcritical turbulence in spectrally stable shear flows. These two basic processes mainly operate at large length scales, comparable to the domain size. Therefore, this central, small wave number area of Fourier space is crucial in the self-sustenance; we defined its size and labeled it as the vital area of turbulence. Outside the vital area, the nonmodal growth and the transverse cascade are of secondary importance: Fourier harmonics are transferred to dissipative scales by the nonlinear direct cascade. Although the cascades and the self-sustaining process of turbulence are qualitatively the same at different aspect ratios, the number of harmonics actively participating in this process (i.e., the harmonics whose energies grow more than 10% of the maximum spectral energy at least once during evolution) varies

  6. Dynamics of homogeneous shear turbulence: A key role of the nonlinear transverse cascade in the bypass concept.

    Science.gov (United States)

    Mamatsashvili, G; Khujadze, G; Chagelishvili, G; Dong, S; Jiménez, J; Foysi, H

    2016-08-01

    To understand the mechanism of the self-sustenance of subcritical turbulence in spectrally stable (constant) shear flows, we performed direct numerical simulations of homogeneous shear turbulence for different aspect ratios of the flow domain with subsequent analysis of the dynamical processes in spectral or Fourier space. There are no exponentially growing modes in such flows and the turbulence is energetically supported only by the linear growth of Fourier harmonics of perturbations due to the shear flow non-normality. This non-normality-induced growth, also known as nonmodal growth, is anisotropic in spectral space, which, in turn, leads to anisotropy of nonlinear processes in this space. As a result, a transverse (angular) redistribution of harmonics in Fourier space is the main nonlinear process in these flows, rather than direct or inverse cascades. We refer to this type of nonlinear redistribution as the nonlinear transverse cascade. It is demonstrated that the turbulence is sustained by a subtle interplay between the linear nonmodal growth and the nonlinear transverse cascade. This course of events reliably exemplifies a well-known bypass scenario of subcritical turbulence in spectrally stable shear flows. These two basic processes mainly operate at large length scales, comparable to the domain size. Therefore, this central, small wave number area of Fourier space is crucial in the self-sustenance; we defined its size and labeled it as the vital area of turbulence. Outside the vital area, the nonmodal growth and the transverse cascade are of secondary importance: Fourier harmonics are transferred to dissipative scales by the nonlinear direct cascade. Although the cascades and the self-sustaining process of turbulence are qualitatively the same at different aspect ratios, the number of harmonics actively participating in this process (i.e., the harmonics whose energies grow more than 10% of the maximum spectral energy at least once during evolution) varies

  7. Optics Studies for the CERN Proton Synchrotron Machine Linear and Nonlinear Modelling using Beam Based Measurements

    CERN Document Server

    Cappi, R; Martini, M; Métral, Elias; Métral, G; Steerenberg, R; Müller, A S

    2003-01-01

    The CERN Proton Synchrotron machine is built using combined function magnets. The control of the linear tune as well as the chromaticity in both planes is achieved by means of special coils added to the main magnets, namely two pole-face-windings and one figure-of-eight loop. As a result, the overall magnetic field configuration is rather complex not to mention the saturation effects induced at top-energy. For these reasons a linear model of the PS main magnet does not provide sufficient precision to model particle dynamics. On the other hand, a sophisticated optical model is the key element for the foreseen intensity upgrade and, in particular, for the novel extraction mode based on adiabatic capture of beam particles inside stable islands in transverse phase space. A solution was found by performing accurate measurement of the nonlinear tune as a function of both amplitude and momentum offset so to extract both linear and nonlinear properties of the lattice. In this paper the measurement results are present...

  8. Transverse emittance measurement of high-current single pulse beams using pepper-pot method

    International Nuclear Information System (INIS)

    Ke Jianlin; Zhou Changgeng; Qiu Rui

    2013-01-01

    A pepper pot-imaging plate system has been developed and used to measure the 4-D transverse emittance of a vacuum arc ion source. Single beam pulses of tens to hundreds milliamperes were extracted from the plasma with 64 kV high voltage. An imaging plate was laid after the pepper pot to visualize the ion beamlets passing though the holes on the pepper pot. An application program was developed to show the phase-space distribution and calculate the ellipse and RMS emittances. The normalized RMS emittances are about 6.41 π·mm·mrad in x-direction and 4.61 π·mm·mrad in y-direction. It is shown that the emittance of the vacuum arc ion source is much larger than that of other types of ion sources, which is mainly attributed to the high current and the convex meniscus of this source. (authors)

  9. Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    David Armstrong; Francois Arvieux; Razmik Asaturyan; Todd Averett; Stephanie Bailey; Guillaume Batigne; Douglas Beck; Elizabeth Beise; Jay Benesch; Louis Bimbot; James Birchall; Angela Biselli; Peter Bosted; Elodie Boukobza; Herbert Breuer; Roger Carlini; Robert Carr; Nicholas Chant; Yu-Chiu Chao; Swapan Chattopadhyay; Russell Clark; Silviu Covrig; Anthony Cowley; Daniel Dale; Charles Davis; Willie Falk; John Finn; Tony Forest; Gregg Franklin; Christophe Furget; David Gaskell; Joseph Grames; Keith Griffioen; Klaus Grimm; Benoit Guillon; Hayko Guler; Lars Hannelius; Richard HASTY; Alice Hawthorne Allen; Tanja Horn; Kathleen Johnston; Mark Jones; Peter Kammel; Reza Kazimi; Paul King; Ameya Kolarkar; Elie Korkmaz; Wolfgang Korsch; Serge Kox; Joachim Kuhn; Jeff Lachniet; Lawrence Lee; Jason Lenoble; Eric Liatard; Jianglai Liu; Berenice Loupias; Allison Lung; Dominique Marchand; Jeffery Martin; Kenneth McFarlane; David McKee; Robert McKeown; Fernand Merchez; Hamlet Mkrtchyan; Bryan Moffit; M. Morlet; Itaru Nakagawa; Kazutaka Nakahara; Retief Neveling; Silvia Niccolai; S. Ong; Shelley Page; Vassilios Papavassiliou; Stephen Pate; Sarah Phillips; Mark Pitt; Benard Poelker; Tracy Porcelli; Gilles Quemener; Brian Quinn; William Ramsay; Aamer Rauf; Jean-Sebastien Real; Julie Roche; Philip Roos; Gary Rutledge; Jeffery Secrest; Neven Simicevic; Gregory Smith; Damon Spayde; Samuel Stepanyan; Marcy Stutzman; Vince Sulkosky; Vincent Sulkosky; Vince Sulkosky; Vincent Sulkosky; Vardan Tadevosyan; Raphael Tieulent; Jacques Van de Wiele; Willem van Oers; Eric Voutier; William Vulcan; Glen Warren; Steven Wells; Steven Williamson; Stephen Wood; Chen Yan; Junho Yun; Valdis Zeps

    2007-08-01

    We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 values of 0.15 and 0.25 (GeV/c)^2 with results of A_n = -4.06 +- 0.99(stat) +- 0.63(syst) and A_n = -4.82 +- 1.87(stat) +- 0.98(syst) ppm. These results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the two-photon exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.

  10. First observations of intensity-dependent effects for transversely split beams during multiturn extraction studies at the CERN Proton Synchrotron

    Directory of Open Access Journals (Sweden)

    Simone Gilardoni

    2013-05-01

    Full Text Available During the commissioning of the CERN Proton Synchrotron multiturn extraction, tests with different beam intensities were performed in order to probe the behavior of resonance crossing in the presence of possible space charge effects. The initial beam intensity before transverse splitting was varied and the properties of the five beamlets obtained by crossing the fourth-order horizontal resonance were studied. A clear dependence of the beamlets’ parameters on the total beam intensity was found, which is the first direct observation of intensity-dependent effects for such a peculiar beam type. The experimental results are presented and discussed in detail in this paper.

  11. Axial and transverse acoustic radiation forces on a fluid sphere placed arbitrarily in Bessel beam standing wave tweezers

    International Nuclear Information System (INIS)

    Mitri, F.G.

    2014-01-01

    The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study. -- Highlights: •The axial and transverse forces on a fluid sphere in acoustical Bessel beams tweezers are evaluated. •The attraction or repulsion to an equilibrium position in the standing wave field is examined. •Potential applications are in particle manipulation using standing waves

  12. Axial and transverse acoustic radiation forces on a fluid sphere placed arbitrarily in Bessel beam standing wave tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Mitri, F.G., E-mail: mitri@chevron.com

    2014-03-15

    The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the sphere’s radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study. -- Highlights: •The axial and transverse forces on a fluid sphere in acoustical Bessel beams tweezers are evaluated. •The attraction or repulsion to an equilibrium position in the standing wave field is examined. •Potential applications are in particle manipulation using standing waves.

  13. Nonlinear features of the energy beam-driven instability

    International Nuclear Information System (INIS)

    Lesur, M.; Idomura, Y.; Garbet, X.

    2009-01-01

    Full text: A concern with ignited fusion plasmas is that, as a result of the instabilities they trigger, the high-energy particles eject themselves before they could give their energy to the core to sustain the reaction. Similarities between this class of instabilities and the so-called Berk-Breizman problem motivate us to study a single-mode instability driven by an energetic particle beam. For this purpose, a one dimensional Vlasov simulation is extended to include a Krook collision operator and external damping processes. The code is benchmarked with previous work. The fully nonlinear behavior is recovered in the whole parameter space characterized by an effective relaxation rate ν a and an external damping rate γ d . Steady state, periodic and chaotic behaviors are observed in nonlinear solutions. In the regime above marginal stability where both ν a and γ d are smaller than the linear drive γ L , we observe a good agreement of steady saturation levels between the simulation and theory. Near marginal stability, the role of the normalized relaxation rate ν a /(γ L -γ d ), which is a key parameter to predict the behavior of the solution, is investigated for an initial distribution with relatively small γ L , which correspond to the situation considered in the theory. In the low relaxation rate regime, frequency sweeping events are observed, and the time-evolution of such event is investigated. (author)

  14. Luminosity, Beamstrahlung energy loss and beam-beam deflections for e+e- and e-e- collisions at the ILC with 500 GeV and varying transverse beam sizes

    International Nuclear Information System (INIS)

    Alabau Pons, M.; Bambade, P.; Faus-Golfe, A.

    2006-01-01

    At the interaction point of the International Linear Collider, beam-beam effects due to the strong electromagnetic fields that the bunches experience during collisions cause a mutual focusing, called pinch effect, which enhances the luminosity in the case of e + e - collisions. The opposite is true for e - e - collisions. In this case the luminosity is reduced by mutual defocusing, or anti-pinching. The resulting Beamstrahlung energy loss and beam-beam deflection angles as function of the vertical transverse offset are also different for both modes of operation. The dependence of these quantities with transverse beam sizes are presented for the case of e - e - collisions

  15. Two-dimensional nonlinear dynamics of an axially moving viscoelastic beam with time-dependent axial speed

    International Nuclear Information System (INIS)

    Ghayesh, Mergen H.; Amabili, Marco; Farokhi, Hamed

    2013-01-01

    In the present study, the coupled nonlinear dynamics of an axially moving viscoelastic beam with time-dependent axial speed is investigated employing a numerical technique. The equations of motion for both the transverse and longitudinal motions are obtained using Newton’s second law of motion and the constitutive relations. A two-parameter rheological model of the Kelvin–Voigt energy dissipation mechanism is employed in the modelling of the viscoelastic beam material, in which the material time derivative is used in the viscoelastic constitutive relation. The Galerkin method is then applied to the coupled nonlinear equations, which are in the form of partial differential equations, resulting in a set of nonlinear ordinary differential equations (ODEs) with time-dependent coefficients due to the axial acceleration. A change of variables is then introduced to this set of ODEs to transform them into a set of first-order ordinary differential equations. A variable step-size modified Rosenbrock method is used to conduct direct time integration upon this new set of first-order nonlinear ODEs. The mean axial speed and the amplitude of the speed variations, which are taken as bifurcation parameters, are varied, resulting in the bifurcation diagrams of Poincaré maps of the system. The dynamical characteristics of the system are examined more precisely via plotting time histories, phase-plane portraits, Poincaré sections, and fast Fourier transforms (FFTs)

  16. First-principles simulation and comparison with beam tests for transverse instabilities and damper performance in the Fermilab Main Injector

    International Nuclear Information System (INIS)

    Nicklaus, Dennis; Foster, G.William; Kashikhin, Vladimir

    2005-01-01

    An end-to-end performance calculation and comparison with beam tests was performed for the bunch-by-bunch digital transverse damper in the Fermilab Main Injector. Time dependent magnetic wakefields responsible for ''Resistive Wall'' transverse instabilities in the Main Injector were calculated with OPERA-2D using the actual beam pipe and dipole magnet lamination geometry. The leading order dipole component was parameterized and used as input to a bunch-by-bunch simulation which included the filling pattern and injection errors experienced in high-intensity operation of the Main Injector. The instability growth times, and the spreading of the disturbance due to newly misinjected batches was compared between simulations and beam data collected by the damper system. Further simulation models the effects of the damper system on the beam

  17. A Leonard-Sanders-Budiansky-Koiter-Type Nonlinear Shell Theory with a Hierarchy of Transverse-Shearing Deformations

    Science.gov (United States)

    Nemeth, Michael P.

    2013-01-01

    A detailed exposition on a refined nonlinear shell theory suitable for nonlinear buckling analyses of laminated-composite shell structures is presented. This shell theory includes the classical nonlinear shell theory attributed to Leonard, Sanders, Koiter, and Budiansky as an explicit proper subset. This approach is used in order to leverage the exisiting experience base and to make the theory attractive to industry. In addition, the formalism of general tensors is avoided in order to expose the details needed to fully understand and use the theory. The shell theory is based on "small" strains and "moderate" rotations, and no shell-thinness approximations are used. As a result, the strain-displacement relations are exact within the presumptions of "small" strains and "moderate" rotations. The effects of transverse-shearing deformations are included in the theory by using analyst-defined functions to describe the through-the-thickness distributions of transverse-shearing strains. Constitutive equations for laminated-composite shells are derived without using any shell-thinness approximations, and simplified forms and special cases are presented.

  18. Kinetic description of intense nonneutral beam propagation through a periodic solenoidal focusing field based on the nonlinear Vlasov-Maxwell equations

    International Nuclear Information System (INIS)

    Davidson, R.C.; Chen, C.

    1997-08-01

    A kinetic description of intense nonneutral beam propagation through a periodic solenoidal focusing field B sol (rvec x) is developed. The analysis is carried out for a thin beam with characteristic beam radius r b much-lt S, and directed axial momentum γ b mβ b c (in the z-direction) large compared with the transverse momentum and axial momentum spread of the beam particles. Making use of the nonlinear Vlasov-Maxwell equations for general distribution function f b (rvec x,rvec p,t) and self-consistent electrostatic field consistent with the thin-beam approximation, the kinetic model is used to investigate detailed beam equilibrium properties for a variety of distribution functions. Examples are presented both for the case of a uniform solenoidal focusing field B z (z) = B 0 = const. and for the case of a periodic solenoidal focusing field B z (z + S) = B z (z). The nonlinear Vlasov-Maxwell equations are simplified in the thin-beam approximation, and an alternative Hamiltonian formulation is developed that is particularly well-suited to intense beam propagation in periodic focusing systems. Based on the present analysis, the Vlasov-Maxwell description of intense nonneutral beam propagation through a periodic solenoidal focusing field rvec B sol (rvec x) is found to be remarkably tractable and rich in physics content. The Vlasov-Maxwell formalism developed here can be extended in a straightforward manner to investigate detailed stability behavior for perturbations about specific choices of beam equilibria

  19. Monte Carlo characterization of clinical electron beams in transverse magnetic fields

    International Nuclear Information System (INIS)

    Lee, Michael C.; Ma, Chang-Ming

    2000-01-01

    Monte Carlo simulations were employed to study the characteristics of the electron beams of a clinical linear accelerator in the presence of 1.5 and 3.0 T transverse magnetic fields and to assess the possibility of using magnetic fields in conjunction with modulated electron radiation therapy (MERT). The starting depth of the magnetic field was varied over several centimetres. It was found that peak doses of as much as 2.7 times the surface dose could be achieved with a 1.5 T magnetic field. The magnetic field was shown to reduce the 80% and 20% dose drop-off distance by 50% to 80%. The distance between the 80% dose levels of the pseudo-Bragg peak induced by the magnetic field was found to be extremely narrow, generally less than 1 cm. However, by modulating the energy and intensity of the electron fields while simultaneously moving the magnetic field, a homogeneous dose distribution with low surface dose and a sharp dose fall-off was generated. Heterogeneities are shown to change the effective range of the electron beams, but not eliminate the advantages of a sharp depth-dose drop-off or high peak-to-surface dose ratio. This suggests the applicability of MERT with magnetic fields in heterogeneous media. The results of this study demonstrate the ability to use magnetic fields in MERT to produce highly desirable dose distributions. (author)

  20. Transverse beam containment in the ANL 4-GeV microtron

    International Nuclear Information System (INIS)

    Colton, E.

    1983-01-01

    Optical systems have been designed to contain the electrons during the acceleration from 0.185 to 4.0 GeV. These systems are located in the dispersive straight sections and maintain a matched dispersion-free beam with β* = 15.0 m in the linac centers, and transverse beam waists in the centers of the dispersive straight sections. A thin-lens code has been developed to design the multi-energy system. Three versions of the focussing systems have been evolved: (i) two quadruople triplets for E less than or equal to 1.62 GeV; (ii) a single triplet for 1.655 less than or equal to E 2.215 GeV, and (iii) a pentaquad system for E greater than or equal to 2.250 GeV. For case (i) we step the exit edges for the 60 0 bending magnets so as to simulate a zero degree edge - this reduces vertical defocussing effects to an acceptable value. At the higher energies the exit edge angles are -60 0 . The entrance angles are 15 0 on the linac sides of the dipoles. Energy behavior of the Twiss parameters and quadrupole strengths are presented

  1. Transverse acceptance calculation for continuous ion beam injection into the electron beam ion trap charge breeder of the ReA post-accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kittimanapun, K., E-mail: kritsadak@slri.or.th [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States); Synchrotron Light Research Institute (SLRI), 111 University Avenue, Muang District, Nakhon Ratchasima, 30000 (Thailand); Baumann, T.M.; Lapierre, A.; Schwarz, S. [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States); Bollen, G. [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University (MSU), 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States); Facility for Rare Isotope Beams (FRIB), Michigan State University, 640 S. Shaw Lane, East Lansing, Michigan 48824 (United States)

    2015-11-11

    The ReA post-accelerator at the National Superconducting Cyclotron Laboratory (NSCL) employs an electron beam ion trap (EBIT) as a charge breeder. A Monte-Carlo simulation code was developed to calculate the transverse acceptance phase space of the EBIT for continuously injected ion beams and to determine the capture efficiency in dependence of the transverse beam emittance. For this purpose, the code records the position and time of changes in charge state of injected ions, leading either to capture or loss of ions. To benchmark and validate the code, calculated capture efficiencies were compared with results from a geometrical model and measurements. The results of the code agree with the experimental findings within a few 10%. The code predicts a maximum total capture efficiency of 50% for EBIT parameters readily achievable and an efficiency of up to 80% for an electron beam current density of 1900 A/cm{sup 2}.

  2. Problems in nonlinear acoustics: Scattering of sound by sound, parametric receiving arrays, nonlinear effects in asymmetric sound beams and pulsed finite amplitude sound beams

    Science.gov (United States)

    Hamilton, Mark F.

    1989-08-01

    Four projects are discussed in this annual summary report, all of which involve basic research in nonlinear acoustics: Scattering of Sound by Sound, a theoretical study of two nonconlinear Gaussian beams which interact to produce sum and difference frequency sound; Parametric Receiving Arrays, a theoretical study of parametric reception in a reverberant environment; Nonlinear Effects in Asymmetric Sound Beams, a numerical study of two dimensional finite amplitude sound fields; and Pulsed Finite Amplitude Sound Beams, a numerical time domain solution of the KZK equation.

  3. Size-dependent nonlinear bending of micro/nano-beams made of nanoporous biomaterials including a refined truncated cube cell

    Science.gov (United States)

    Sahmani, S.; Aghdam, M. M.

    2017-12-01

    Morphology and pore size plays an essential role in the mechanical properties as well as the associated biological capability of a porous structure made of biomaterials. The objective of the current study is to predict the Young's modulus and Poisson's ratio of nanoporous biomaterials including refined truncated cube cells based on a hyperbolic shear deformable beam model. Analytical relationships for the mechanical properties of nanoporous biomaterials are given as a function of the refined cell's dimensions. After that, the size dependency in the nonlinear bending behavior of micro/nano-beams made of such nanoporous biomaterials is analyzed using the nonlocal strain gradient elasticity theory. It is assumed that the micro/nano-beam has one movable end under axial compression in conjunction with a uniform distributed lateral load. The Galerkin method together with an improved perturbation technique is employed to propose explicit analytical expression for nonlocal strain gradient load-deflection curves of the micro/nano-beams made of nanoporous biomaterials subjected to uniform transverse distributed load. It is found that through increment of the pore size, the micro/nano-beam will undergo much more deflection corresponding to a specific distributed load due to the reduction in the stiffness of nanoporous biomaterial. This pattern is more prominent for lower value of applied axial compressive load at the free end of micro/nano-beam.

  4. Transverse Field Dispersion in the Generalized Nonlinear Schrödinger Equation: Four Wave Mixing in a Higher Order Mode Fiber

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Cheng, Ji; Xu, Chris

    2013-01-01

    An improved version of the generalized nonlinear Schrödinger equation is derived, which takes into account the correct dispersion of the transverse field distribution. The new improved version of the generalized nonlinear Schrödinger equation is verified to give the same results as the standard...

  5. The effect of transverse shear on the face sheets failure modes of sandwich beams loaded in three points bending

    OpenAIRE

    BOUROUIS FAIROUZ; MILI FAYCAL

    2012-01-01

    Sandwich beams loaded in three points bending may fail in several ways including tension or compression failure of facings. In this paper , The effect of the transverse shear on the face yielding and face wrinkling failure modes of sandwich beams loaded in three points bending have been studied, the beams were made of various composites materials carbon/epoxy, kevlar/epoxy, glass/epoxy at sequence [+θ/-θ]3s, [0°/90°]3s. . The stresses in the face were calculated using maximum stress criterion...

  6. Localized Effects in the Nonlinear Behavior of Sandwich Panels with a Transversely Flexible Core

    DEFF Research Database (Denmark)

    Frostig, Y.; Thomsen, Ole Thybo

    2005-01-01

    This paper presents the results of an investigation of the role of localized effects within the geometrically nonlinear domain on structural sandwich panels with a "compliant" core. Special emphasis is focused on the nonlinear response near concentrated loads and stiffened core regions. The adopted...... nonlinear analysis approach incorporates the effects of the vertical flexibility of the core, and it is based on the approach of the High-order Sandwich Panel Theory (HSAPT). The results demonstrate that the effects of localized loads, when taken into the geometrically nonlinear domain, change the response...... of the panel from a strength problem controlled by stress constraints into a stability problem with unstable limit point behavior when force-controlled loads are applied. The stability problem emerge as the nonlinear response develops with the formation of a small number of buckling waves in the compressed...

  7. Laser based stripping system for measurement of the transverse emittance of H-beams at the CERN Linac4

    CERN Document Server

    Hofmann, T; Raich, U; Roncarolo, F; Cheymol, B

    2013-01-01

    The new LINAC4 at CERN will accelerate H- particles to 160 MeV and allow high brightness proton beam transfers to the Proton Synchrotron Booster, via a charge-exchange injection scheme. This paper describes the conceptual design of a laser system proposed for transverse profile and emittance measurements based on photon detachment of electrons from the H- ions. The binding energy of the outer electron is only 0.75 eV and can easily be stripped with a laser beam. Measuring the electron signal as function of the laser position allows the transverse beam profile to be reconstructed. A downstream dipole can also be used to separate the laser neutralized H0 atoms from the main H- beam. By imaging these H0 atoms as a function of laser position the transverse emittance can be reconstructed in the same way as in traditional slit-and-grid systems. By properly dimensioning the laser power and spot size, this method results in negligible beam losses and is therefore non-destructive. In addition, the absence of material ...

  8. Corrosion characteristics of a 4-year naturally corroded reinforced concrete beam with load-induced transverse cracks

    International Nuclear Information System (INIS)

    Fu, Chuanqing; Jin, Nanguo; Ye, Hailong; Jin, Xianyu; Dai, Wei

    2017-01-01

    Highlights: • A comprehensive study of corrosion characteristics of a naturally corroded RC beam. • New insights on the role of cracks in corrosion propagation of steel in concrete. • EMPA and 3D laser scanning provide quantitative analysis of corroded rebar. - Abstract: This work studies the corrosion characteristics of reinforcement in a 4-year naturally corroded concrete beam after accelerated chloride penetration. The results show that the presence of transverse cracks in the tension surface of reinforced concrete beam can globally exacerbate the loss of cross-sectional area of rebar. However, there is no strong correlation between the width of transverse cracks, with the width of longitudinal cracks and loss of cross-sectional area of corroded rebar at a specific location. The self-healing of cracks and sacrificing roles of stirrups at crack tips seem to reduce the impacts of cracks on the corrosion propagation.

  9. Head-On Beam-Beam Interactions in High-Energy Hadron Colliders. GPU-Powered Modelling of Nonlinear Effects

    CERN Document Server

    AUTHOR|(CDS)2160109; Støvneng, Jon Andreas

    2017-08-15

    The performance of high-energy circular hadron colliders, as the Large Hadron Collider, is limited by beam-beam interactions. The strength of the beam-beam interactions will be higher after the upgrade to the High-Luminosity Large Hadron Collider, and also in the next generation of machines, as the Future Circular Hadron Collider. The strongly nonlinear force between the two opposing beams causes diverging Hamiltonians and drives resonances, which can lead to a reduction of the lifetime of the beams. The nonlinearity makes the effect of the force difficult to study analytically, even at first order. Numerical models are therefore needed to evaluate the overall effect of different configurations of the machines. For this thesis, a new code named CABIN (Cuda-Accelerated Beam-beam Interaction) has been developed to study the limitations caused by the impact of strong beam-beam interactions. In particular, the evolution of the beam emittance and beam intensity has been monitored to study the impact quantitatively...

  10. Nonlinear beam dynamics of accelerators and storage rings. Progress report, June 1985-April 1986

    International Nuclear Information System (INIS)

    Helleman, R.H.G.

    1986-01-01

    Research has concentrated on the stability problems and resonances involved in the two-dimensional beam-beam effect. Of course, the results are applicable also to coupled nonlinear two-dimensional (x,y) accelerator lattices. From a nonlinear dynamics point of view this means that we investigated how to extend existing methods that worked satisfactorily for the one-dimensional beam-beam effect to the higher dimensional world of two-dimensional nonlinear lattices. This requires study of four coupled nonlinear lattice equations (for x, y, p/sub x/,p/sub y/), i.e., study of four-dimensional conservative nonlinear maps. Until our investigation this year, such maps had not yet been studied in nonlinear dynamics. One of the main results is the conclusion that the very successful ''residue'' method to determine stability (of whole regions of orbits) for the one-dimensional beam-beam effect cannot, in its present form, be used for the two- or three-dimensional case. The second main result is that we have been successful in demonstrating and unraveling the complete Period Doubling structure of the resonances in these four-dimensional maps (two-dimensional beam-beam effect), including the most minute resonances. This is essential for an understanding of such maps. In addition, it is the ''self-similarity'' of these resonances which inspires, and guides, most of our efforts in redesigning the residue criterion mentioned above

  11. Methods of measuring of the ion beam transversal emittance in the injection channel of the cyclotron DC-72

    CERN Document Server

    Kazarinov, N; Kalagin, I V; Kazacha, V I

    2002-01-01

    The methods of measuring of the transversal emittance of ion beams in the cyclotron DC-72 injection channel with the help of the 'pepper-pot' and gradient means are discussed in this work. Two ways for the reconstruction of the ion beam transversal emittance are proposed for the 'pepper-pot' method. The first one can be used for beams having the uniform distribution of particles in the phase space. At that the values of the Twiss matrix and the full beam emittance are reconstructed according to the measurement results with the help of the phase ellipse fitting by the least-squares method. The corresponding FORTRAN code was created. On simulation the beam emittance was reconstructed with accuracy of 5%. The second method of the beam emittance reconstruction can be used in the common case at the arbitrary particle distribution in the phase space. It is based on calculation of the mean-square parameters of the beam according to the measurement results in the plane of the 'pepper-pot' mask. The mean-square emitta...

  12. Mathematical and Numerical Methods for Non-linear Beam Dynamics

    International Nuclear Information System (INIS)

    Herr, W

    2014-01-01

    Non-linear effects in accelerator physics are important for both successful operation of accelerators and during the design stage. Since both of these aspects are closely related, they will be treated together in this overview. Some of the most important aspects are well described by methods established in other areas of physics and mathematics. The treatment will be focused on the problems in accelerators used for particle physics experiments. Although the main emphasis will be on accelerator physics issues, some of the aspects of more general interest will be discussed. In particular, we demonstrate that in recent years a framework has been built to handle the complex problems in a consistent form, technically superior and conceptually simpler than the traditional techniques. The need to understand the stability of particle beams has substantially contributed to the development of new techniques and is an important source of examples which can be verified experimentally. Unfortunately, the documentation of these developments is often poor or even unpublished, in many cases only available as lectures or conference proceedings

  13. Observation of Nonlinear Self-Trapping of Broad Beams in Defocusing Waveguide Arrays

    International Nuclear Information System (INIS)

    Bennet, Francis H.; Haslinger, Franz; Neshev, Dragomir N.; Kivshar, Yuri S.; Alexander, Tristram J.; Mitchell, Arnan

    2011-01-01

    We demonstrate experimentally the localization of broad optical beams in periodic arrays of optical waveguides with defocusing nonlinearity. This observation in optics is linked to nonlinear self-trapping of Bose-Einstein-condensed atoms in stationary periodic potentials being associated with the generation of truncated nonlinear Bloch states, existing in the gaps of the linear transmission spectrum. We reveal that unlike gap solitons, these novel localized states can have an arbitrary width defined solely by the size of the input beam while independent of nonlinearity.

  14. Nonlinear propagation of an elliptically shaped Gaussian laser beam in an overdense plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nayyar, V P; Soni, V S [Punjabi Univ., Patiala (India). Dept. of Physics

    1979-04-01

    The self-focusing and self defocusing of an elliptically shaped high power laser beam in an extradense plasma is discussed. On account of the ponderomotive force induced by the spatial variation of irradiance in the transverse plane, an electron density gradient is created in the overdense plasma where the beam can penetrate. Self-focusing of the beam in the x and y directions for different critical powers has been extensively studied.

  15. Single Shot Measurements of the 4-Dimensional Transverse Phase Space Distribution of Intense Ion Beams at the UNILAC at GSI

    CERN Document Server

    Groening, L

    2003-01-01

    The UNILAC is used as an injector for the synchrotron SIS. It is designed to fill the synchrotron up to its space charge limit. The upper limit for the useful beam emittance of the UNILAC is given by the finite acceptance of the SIS during the injection process. In order to remain within this acceptance the emittance growth during beam acceleration and transportation due to space charge effects must be minimized by applying an appropriate beam focusing. Therefore, the influence of the magnetic focusing strength on the beam emittance growth was investigated experimentally for different beam currents. Measurements of transverse phase space distributions were performed before and after the Alvarez accelerator with a periodic focusing channel, respectively. In order to perform such a wide parameter scan within a reasonable time with respect to machine stability, the pepper pot technique was applied. The pepper pot method allows for single-pulse measurements. For comparison several measurements using the slit-grid...

  16. Analytical theory and nonlinear δf perturbative simulations of temperature anisotropy instability in intense charged particle beams

    Directory of Open Access Journals (Sweden)

    Edward A. Startsev

    2003-08-01

    Full Text Available In plasmas with strongly anisotropic distribution functions (T_{∥b}/T_{⊥b}≪1 a Harris-like collective instability may develop if there is sufficient coupling between the transverse and longitudinal degrees of freedom. Such anisotropies develop naturally in accelerators and may lead to a deterioration of beam quality. This paper extends previous numerical studies [E. A. Startsev, R. C. Davidson, and H. Qin, Phys. Plasmas 9, 3138 (2002] of the stability properties of intense non-neutral charged particle beams with large temperature anisotropy (T_{⊥b}≫T_{∥b} to allow for nonaxisymmetric perturbations with ∂/∂θ≠0. The most unstable modes are identified, and their eigenfrequencies, radial mode structure, and nonlinear dynamics are determined. The simulation results clearly show that moderately intense beams with s_{b}=ω[over ^]_{pb}^{2}/2γ_{b}^{2}ω_{β⊥}^{2}≳0.5 are linearly unstable to short-wavelength perturbations with k_{z}^{2}r_{b}^{2}≳1, provided the ratio of longitudinal and transverse temperatures is smaller than some threshold value. Here, ω[over ^]_{pb}^{2}=4πn[over ^]_{b}e_{b}^{2}/γ_{b}m_{b} is the relativistic plasma frequency squared, and ω_{β⊥} is the betatron frequency associated with the applied smooth-focusing field. A theoretical model is developed based on the Vlasov-Maxwell equations which describes the essential features of the linear stages of instability. Both the simulations and the analytical theory predict that the dipole mode (azimuthal mode number m=1 is the most unstable mode. In the nonlinear stage, tails develop in the longitudinal momentum distribution function, and the kinetic instability saturates due to resonant wave-particle interactions.

  17. Nonlinear Phenomena in the Single-Mode Dynamics in an AFM Cantilever Beam

    KAUST Repository

    Ruzziconi, Laura; Lenci, Stefano; Younis, Mohammad I.

    2016-01-01

    This study deals with the nonlinear dynamics arising in an atomic force microscope cantilever beam. After analyzing the static behavior, a single degree of freedom Galerkin reduced order model is introduced, which describes the overall scenario

  18. Nonlinear δf Simulation Studies of Intense Charged Particle Beams with Large Temperature Anisotropy

    International Nuclear Information System (INIS)

    Startsev, Edward A.; Davidson, Ronald C.; Qin, Hong

    2002-01-01

    In this paper, a 3-D nonlinear perturbative particle simulation code (BEST) [H. Qin, R.C. Davidson and W.W. Lee, Physical Review Special Topics on Accelerators and Beams 3 (2000) 084401] is used to systematically study the stability properties of intense nonneutral charged particle beams with large temperature anisotropy (T perpendicularb >> T parallelb ). The most unstable modes are identified, and their eigenfrequencies, radial mode structure, and nonlinear dynamics are determined for axisymmetric perturbations with ∂/∂θ = 0

  19. Test beam demonstration of silicon microstrip modules with transverse momentum discrimination for the future CMS tracking detector

    Science.gov (United States)

    Adam, W.; Bergauer, T.; Brondolin, E.; Dragicevic, M.; Friedl, M.; Frühwirth, R.; Hoch, M.; Hrubec, J.; König, A.; Steininger, H.; Treberspurg, W.; Waltenberger, W.; Alderweireldt, S.; Beaumont, W.; Janssen, X.; Lauwers, J.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Beghin, D.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Postiau, N.; Randle-Conde, A.; Seva, T.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Wang, Q.; Yang, Y.; Zenoni, F.; Zhang, F.; Abu Zeid, S.; Blekman, F.; De Bruyn, I.; De Clercq, J.; D'Hondt, J.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Van Mulders, P.; Van Parijs, I.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Delaere, C.; Delcourt, M.; De Visscher, S.; Francois, B.; Giammanco, A.; Jafari, A.; Cabrera Jamoulle, J.; De Favereau De Jeneret, J.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Michotte, D.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Szilasi, N.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Härkönen, J.; Lampén, T.; Luukka, P.; Peltola, T.; Tuominen, E.; Tuovinen, E.; Eerola, P.; Baulieu, G.; Boudoul, G.; Caponetto, L.; Combaret, C.; Contardo, D.; Dupasquier, T.; Gallbit, G.; Lumb, N.; Mirabito, L.; Perries, S.; Vander Donckt, M.; Viret, S.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bonnin, C.; Brom, J.-M.; Chabert, E.; Chanon, N.; Charles, L.; Conte, E.; Fontaine, J.-Ch.; Gross, L.; Hosselet, J.; Jansova, M.; Tromson, D.; Autermann, C.; Feld, L.; Karpinski, W.; Kiesel, K. M.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Pierschel, G.; Preuten, M.; Rauch, M.; Schael, S.; Schomakers, C.; Schulz, J.; Schwering, G.; Wlochal, M.; Zhukov, V.; Pistone, C.; Fluegge, G.; Kuensken, A.; Pooth, O.; Stahl, A.; Aldaya, M.; Asawatangtrakuldee, C.; Beernaert, K.; Bertsche, D.; Contreras-Campana, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Gallo, E.; Garay Garcia, J.; Hansen, K.; Haranko, M.; Harb, A.; Hauk, J.; Keaveney, J.; Kalogeropoulos, A.; Kleinwort, C.; Lohmann, W.; Mankel, R.; Maser, H.; Mittag, G.; Muhl, C.; Mussgiller, A.; Pitzl, D.; Reichelt, O.; Savitskyi, M.; Schuetze, P.; Walsh, R.; Zuber, A.; Biskop, H.; Buhmann, P.; Centis-Vignali, M.; Garutti, E.; Haller, J.; Hoffmann, M.; Klanner, R.; Matysek, M.; Perieanu, A.; Scharf, Ch.; Schleper, P.; Schmidt, A.; Schwandt, J.; Sonneveld, J.; Steinbrück, G.; Vormwald, B.; Wellhausen, J.; Abbas, M.; Amstutz, C.; Barvich, T.; Barth, Ch.; Boegelspacher, F.; De Boer, W.; Butz, E.; Casele, M.; Colombo, F.; Dierlamm, A.; Freund, B.; Hartmann, F.; Heindl, S.; Husemann, U.; Kornmeyer, A.; Kudella, S.; Muller, Th.; Printz, M.; Simonis, H. J.; Steck, P.; Weber, M.; Weiler, Th.; Anagnostou, G.; Asenov, P.; Assiouras, P.; Daskalakis, G.; Kyriakis, A.; Loukas, D.; Paspalaki, L.; Siklér, F.; Veszprémi, V.; Bhardwaj, A.; Dalal, R.; Jain, G.; Ranjan, K.; Dutta, S.; Chowdhury, S. Roy; Bakhshiansohl, H.; Behnamian, H.; Khakzad, M.; Naseri, M.; Cariola, P.; Creanza, D.; De Palma, M.; De Robertis, G.; Fiore, L.; Franco, M.; Loddo, F.; Sala, G.; Silvestris, L.; Maggi, G.; My, S.; Selvaggi, G.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Saizu, M. A.; Tricomi, A.; Tuve, C.; Barbagli, G.; Brianzi, M.; Ciaranfi, R.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Latino, G.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Scarlini, E.; Sguazzoni, G.; Strom, D.; Viliani, L.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Pedrini, D.; Azzi, P.; Bacchetta, N.; Bisello, D.; Dall'Osso, M.; Pozzobon, N.; Tosi, M.; De Canio, F.; Gaioni, L.; Manghisoni, M.; Nodari, B.; Riceputi, E.; Re, V.; Traversi, G.; Comotti, D.; Ratti, L.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Checcucci, B.; Ciangottini, D.; Fanò, L.; Gentsos, C.; Ionica, M.; Leonardi, R.; Manoni, E.; Mantovani, G.; Marconi, S.; Mariani, V.; Menichelli, M.; Modak, A.; Morozzi, A.; Moscatelli, F.; Passeri, D.; Placidi, P.; Postolache, V.; Rossi, A.; Saha, A.; Santocchia, A.; Storchi, L.; Spiga, D.; Androsov, K.; Azzurri, P.; Arezzini, S.; Bagliesi, G.; Basti, A.; Boccali, T.; Borrello, L.; Bosi, F.; Castaldi, R.; Ciampa, A.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Magazzu, G.; Martini, L.; Mazzoni, E.; Messineo, A.; Moggi, A.; Morsani, F.; Palla, F.; Palmonari, F.; Raffaelli, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Bellan, R.; Costa, M.; Covarelli, R.; Da Rocha Rolo, M.; Demaria, N.; Rivetti, A.; Dellacasa, G.; Mazza, G.; Migliore, E.; Monteil, E.; Pacher, L.; Ravera, F.; Solano, A.; Fernandez, M.; Gomez, G.; Jaramillo Echeverria, R.; Moya, D.; Gonzalez Sanchez, F. J.; Vila, I.; Virto, A. L.; Abbaneo, D.; Ahmed, I.; Albert, E.; Auzinger, G.; Berruti, G.; Bianchi, G.; Blanchot, G.; Bonnaud, J.; Caratelli, A.; Ceresa, D.; Christiansen, J.; Cichy, K.; Daguin, J.; D'Auria, A.; Detraz, S.; Deyrail, D.; Dondelewski, O.; Faccio, F.; Frank, N.; Gadek, T.; Gill, K.; Honma, A.; Hugo, G.; Jara Casas, L. M.; Kaplon, J.; Kornmayer, A.; Kottelat, L.; Kovacs, M.; Krammer, M.; Lenoir, P.; Mannelli, M.; Marchioro, A.; Marconi, S.; Mersi, S.; Martina, S.; Michelis, S.; Moll, M.; Onnela, A.; Orfanelli, S.; Pavis, S.; Peisert, A.; Pernot, J.-F.; Petagna, P.; Petrucciani, G.; Postema, H.; Rose, P.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Vichoudis, P.; Verlaat, B.; Zwalinski, L.; Bachmair, F.; Becker, R.; di Calafiori, D.; Casal, B.; Berger, P.; Djambazov, L.; Donega, M.; Grab, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M.; Perozzi, L.; Roeser, U.; Starodumov, A.; Tavolaro, V.; Wallny, R.; Zhu, D.; Amsler, C.; Bösiger, K.; Caminada, L.; Canelli, F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hreus, T.; Kilminster, B.; Lange, C.; Maier, R.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Taroni, S.; Yang, Y.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Kaestli, H.-C.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Streuli, S.; Chen, P.-H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Lu, R.-S.; Moya, M.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Jacob, J.; Seif El Nasr-Storey, S.; Cole, J.; Hoad, C.; Hobson, P.; Morton, A.; Reid, I. D.; Auzinger, G.; Bainbridge, R.; Dauncey, P.; Fulcher, J.; Hall, G.; James, T.; Magnan, A.-M.; Pesaresi, M.; Raymond, D. M.; Uchida, K.; Braga, D.; Coughlan, J. A.; Harder, K.; Jones, L.; Ilic, J.; Murray, P.; Prydderch, M.; Tomalin, I. R.; Garabedian, A.; Heintz, U.; Narain, M.; Nelson, J.; Sagir, S.; Speer, T.; Swanson, J.; Tersegno, D.; Watson-Daniels, J.; Chertok, M.; Conway, J.; Conway, R.; Flores, C.; Lander, R.; Pellett, D.; Ricci-Tam, F.; Squires, M.; Thomson, J.; Yohay, R.; Burt, K.; Ellison, J.; Hanson, G.; Olmedo, M.; Si, W.; Yates, B. R.; Gerosa, R.; Sharma, V.; Vartak, A.; Yagil, A.; Zevi Della Porta, G.; Dutta, V.; Gouskos, L.; Incandela, J.; Kyre, S.; Mullin, S.; Qu, H.; White, D.; Dominguez, A.; Bartek, R.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Apresyan, A.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chramowicz, J.; Christian, D.; Cooper, W. E.; Deptuch, G.; Derylo, G.; Gingu, C.; Grünendahl, S.; Hasegawa, S.; Hoff, J.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Kahlid, F.; Lei, C. M.; Lipton, R.; Lopes De Sá, R.; Liu, T.; Los, S.; Matulik, M.; Merkel, P.; Nahn, S.; Prosser, A.; Rivera, R.; Schneider, B.; Sellberg, G.; Shenai, A.; Spiegel, L.; Tran, N.; Uplegger, L.; Voirin, E.; Berry, D. R.; Chen, X.; Ennesser, L.; Evdokimov, A.; Evdokimov, O.; Gerber, C. E.; Hofman, D. J.; Makauda, S.; Mills, C.; Sandoval Gonzalez, I. D.; Alimena, J.; Antonelli, L. J.; Francis, B.; Hart, A.; Hill, C. S.; Parashar, N.; Stupak, J.; Bortoletto, D.; Bubna, M.; Hinton, N.; Jones, M.; Miller, D. H.; Shi, X.; Tan, P.; Baringer, P.; Bean, A.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Wilson, G.; Ivanov, A.; Mendis, R.; Mitchell, T.; Skhirtladze, N.; Taylor, R.; Anderson, I.; Fehling, D.; Gritsan, A.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Acosta, J. G.; Cremaldi, L. M.; Oliveros, S.; Perera, L.; Summers, D.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Monroy, J.; Siado, J.; Hahn, K.; Sevova, S.; Sung, K.; Trovato, M.; Bartz, E.; Gershtein, Y.; Halkiadakis, E.; Kyriacou, S.; Lath, A.; Nash, K.; Osherson, M.; Schnetzer, S.; Stone, R.; Walker, M.; Malik, S.; Norberg, S.; Ramirez Vargas, J. E.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kharchilava, A.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; McDermott, K.; Mirman, N.; Rinkevicius, A.; Ryd, A.; Salvati, E.; Skinnari, L.; Soffi, L.; Tao, Z.; Thom, J.; Tucker, J.; Zientek, M.; Akgün, B.; Ecklund, K. M.; Kilpatrick, M.; Nussbaum, T.; Zabel, J.; Betchart, B.; Covarelli, R.; Demina, R.; Hindrichs, O.; Petrillo, G.; Eusebi, R.; Patel, R.; Perloff, A.; Ulmer, K. A.; Delannoy, A. G.; D'Angelo, P.; Johns, W.

    2018-03-01

    A new CMS Tracker is under development for operation at the High Luminosity LHC from 2026 onwards. It includes an outer tracker based on dedicated modules that will reconstruct short track segments, called stubs, using spatially coincident clusters in two closely spaced silicon sensor layers. These modules allow the rejection of low transverse momentum track hits and reduce the data volume before transmission to the first level trigger. The inclusion of tracking information in the trigger decision is essential to limit the first level trigger accept rate. A customized front-end readout chip, the CMS Binary Chip (CBC), containing stub finding logic has been designed for this purpose. A prototype module, equipped with the CBC chip, has been constructed and operated for the first time in a 4 GeemVem/emc positron beam at DESY. The behaviour of the stub finding was studied for different angles of beam incidence on a module, which allows an estimate of the sensitivity to transverse momentum within the future CMS detector. A sharp transverse momentum threshold around 2 emVem/emc was demonstrated, which meets the requirement to reject a large fraction of low momentum tracks present in the LHC environment on-detector. This is the first realistic demonstration of a silicon tracking module that is able to select data, based on the particle's transverse momentum, for use in a first level trigger at the LHC . The results from this test are described here.

  20. A fast wire scanner, used to measure the transverse density distribution of beams circulating in an accelerator or storage ring.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Fast wire scanners are used to measure the transverse density distribution of beams circulating in an accelerator or storage ring. In order to minimize blow-up of the beam through multiple Coulomb scattering, the wires are very thin (in the version shown here it is actually a twisted strand of carbon fibres with a total diameter of about 25 microns) and are swept through the beam at high speed (a linear motor, not mounted here, accelerates the wires to up to 20 m/s). One measures either the secondary emission current from the wire, or the signal from a scintillator/photomultiplier combination downstream from the wire scanner receiving the shower from nuclear reactions of beam particles with the wire nuclei. There are four such fast wire scanners in the 26 GeV PS and eight in the 1.4 GeV Booster.

  1. Analysis of Beams with Transversal Gradations of the Young's Modulus and Variable Depths by the Meshless Method

    Directory of Open Access Journals (Sweden)

    Sátor Ladislav

    2014-03-01

    Full Text Available A numerical analysis based on the meshless local Petrov- Galerkin (MLPG method is proposed for a functionally graded material FGM (FGMfunctionally graded material beam. The planar bending of the beam is considered with a transversal gradation of Young's modulus and a variable depth of the beam. The collocation formulation is constructed from the equilibrium equations for the mechanical fields. Dirac's delta function is employed as a test function in the derivation of a strong formulation. The Moving Least Squares (MLS approximation technique is applied for an approximation of the spatial variations of all the physical quantities. An investigation of the accuracy, the convergence of the accuracy, the computational efficiency and the effect of the level of the gradation of Young's modulus on the behaviour of coupled mechanical fields is presented in various boundary value problems for a rectangular beam with a functionally graded Young's modulus.

  2. The stability of the damper system for the coherent transverse oscillations of the beam in a synchrotron

    International Nuclear Information System (INIS)

    Zhabitskij, V.M.; Korenev, I.L.; Yudin, L.A.

    1991-01-01

    The investigation of the direct alternating kicker current perturbation influence of the particle motion in synchrotron with the beam coherent transverse oscillation damper in feedback are obtained. It has been shown that for a some pick-up and kicker placements are impossible due to this reason. The resonance conditions and their dependences on feedback gain-transfer characteristic have been found. The numerical results are given for the damper systems in UNK-1 and LHC. 6 refs.; 5 figs

  3. The Mechanics of a Cantilever Beam with an Embedded Horizontal Crack Subjected to an End Transverse Force, Part A: Modelling

    Directory of Open Access Journals (Sweden)

    Panos G. Charalambides

    2016-05-01

    Full Text Available This study addresses the mechanics of a cracked cantilever beam subjected to a transverse force applied at it’s free end. In this Part A of a two Part series of papers, emphasis is placed on the development of a four-beam model for a beam with a fully embedded horizontal sharp crack. The beam aspect ratio, crack length and crack centre location appear as general model parameters. Rotary springs are introduced at the crack tip cross sections as needed to account for the changes in the structural compliance due to the presence of the sharp crack and augmented load transfer through the near-tip transition regions. Guided by recent finite element findings reported elsewhere, the four-beam model is advanced by recognizing two key observations, (a the free surface and neutral axis curvatures of the cracked beam at the crack center location match the curvature of a healthy beam (an identical beam without a crack under the same loading conditions, (b the neutral axis rotations (slope of the cracked beam in the region between the applied load and the nearest crack tip matches the corresponding slope of the healthy beam. The above observations led to the development of close form solutions for the resultant forces (axial and shear and moment acting in the beams above and below the crack. Axial force and bending moment predictions are found to be in excellent agreement with 2D finite element results for all normalized crack depths considered. Shear force estimates dominating the beams above and below the crack as well as transition region length estimates are also obtained. The model developed in this study is then used along with 2D finite elements in conducting parametric studies aimed at both validating the model and establishing the mechanics of the cracked system under consideration. The latter studies are reported in the companion paper Part B-Results and Discussion.

  4. The mechanical properties of high speed GTAW weld and factors of nonlinear multiple regression model under external transverse magnetic field

    Science.gov (United States)

    Lu, Lin; Chang, Yunlong; Li, Yingmin; He, Youyou

    2013-05-01

    A transverse magnetic field was introduced to the arc plasma in the process of welding stainless steel tubes by high-speed Tungsten Inert Gas Arc Welding (TIG for short) without filler wire. The influence of external magnetic field on welding quality was investigated. 9 sets of parameters were designed by the means of orthogonal experiment. The welding joint tensile strength and form factor of weld were regarded as the main standards of welding quality. A binary quadratic nonlinear regression equation was established with the conditions of magnetic induction and flow rate of Ar gas. The residual standard deviation was calculated to adjust the accuracy of regression model. The results showed that, the regression model was correct and effective in calculating the tensile strength and aspect ratio of weld. Two 3D regression models were designed respectively, and then the impact law of magnetic induction on welding quality was researched.

  5. Nonlinear interaction of strong microwave beam with the ionosphere MINIX rocket experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, N.; Matsumoto, H.; Miyatake, S.; Kimura, I.; Nagatomo, M.; Obayashi, T.

    1986-01-01

    A rocket-borne experiment called MINIX was carried out to investigate the nonlinear interaction of a strong microwave energy beam with the ionosphere. The MINIX stands for Microwave-Ionosphere Nonlinear Interaction Experiment and was carried out on August 29, 1983. The objectives of the MINIX is to study possible impacts of the SPS microwave energy beam on the ionosphere such as the Ohmic heating and plasma wave excitation. The experiment showed that the microwave with f = 2.45 GHz nonlinearly excites various electrostatic plasma waves, though no Ohmic heating effects were detected. 4 figures.

  6. Nonlinear interaction of strong microwave beam with the ionosphere MINIX rocket experiment

    Science.gov (United States)

    Kaya, N.; Matsumoto, H.; Miyatake, S.; Kimura, I.; Nagatomo, M.

    A rocket-borne experiment called 'MINIX' was carried out to investigate the nonlinear interaction of a strong microwave energy beam with the ionosphere. The MINIX stands for Microwave-Ionosphere Nonlinear Interaction eXperiment and was carried out on August 29, 1983. The objective of the MINIX is to study possible impacts of the SPS microwave energy beam on the ionosphere, such as the ohmic heating and plasma wave excitation. The experiment showed that the microwave with f = 2.45 GHz nonlinearly excites various electrostatic plasma waves, though no ohmic heating effects were detected.

  7. Nonlinear interaction of strong microwave beam with the ionosphere MINIX rocket experiment

    International Nuclear Information System (INIS)

    Kaya, N.; Matsumoto, H.; Miyatake, S.; Kimura, I.; Nagatomo, M.; Obayashi, T.

    1986-01-01

    A rocket-borne experiment called MINIX was carried out to investigate the nonlinear interaction of a strong microwave energy beam with the ionosphere. The MINIX stands for Microwave-Ionosphere Nonlinear Interaction Experiment and was carried out on August 29, 1983. The objectives of the MINIX is to study possible impacts of the SPS microwave energy beam on the ionosphere such as the Ohmic heating and plasma wave excitation. The experiment showed that the microwave with f = 2.45 GHz nonlinearly excites various electrostatic plasma waves, though no Ohmic heating effects were detected. 4 figures

  8. A simple numerical model of a geometrically nonlinear Timoshenko beam

    NARCIS (Netherlands)

    Keijdener, C.; Metrikine, A.

    2015-01-01

    In the original problem for which this model was developed, onedimensional flexible objects interact through a non-linear contact model. Due to the non-linear nature of the contact model, a numerical time-domain approach was adopted. One of the goals was to see if the coupling between axial and

  9. Nonlinear beam clean-up using resonantly enhanced sum-frequency mixing

    DEFF Research Database (Denmark)

    Karamehmedovic, Emir; Pedersen, Christian; Jensen, Ole Bjarlin

    2009-01-01

    We investigate the possibility of improving the beam quality and obtaining high conversion efficiency in nonlinear sum-frequency generation. A 765 nm beam from an external cavity tapered diode laser is single-passed through a nonlinear crystal situated in the high intracavity field of a 1342 nm N......:YVO4 laser, generating a SFG beam at 488 nm. The ECDL have MH^2=1.9 and MV^2=2.4 and the solid-state laser has M^2...

  10. Nonlinear propagation of phase-conjugate focused sound beams in water

    Science.gov (United States)

    Brysev, A. P.; Krutyansky, L. M.; Preobrazhensky, V. L.; Pyl'nov, Yu. V.; Cunningham, K. B.; Hamilton, M. F.

    2000-07-01

    Nonlinear propagation of phase-conjugate, focused, ultrasound beams is studied. Measurements are presented of harmonic amplitudes along the axis and in the focal plane of the conjugate beam, and of the waveform and spectrum at the focus. A maximum peak pressure of 3.9 MPa was recorded in the conjugate beam. The measurements are compared with simulations based on the KZK equation, and satisfactory agreement is obtained.

  11. Application of Metal-Semiconductor-Metal (MSM) Photodetectors for Transverse and Longitudinal Intra-Bunch Beam Diagnostics

    CERN Document Server

    Steinhagen, R J; Boland, M J; Lucas, T G; Rassool, R P

    2013-01-01

    The performance reach of modern accelerators is often governed by the ability to reliably measure and control the beam stability. In high-brightness lepton and high-energy hadron accelerators, the use of optical diagnostic techniques is becoming more widespread as the required bandwidth, resolution and high RF beam power level involved limit the use of traditional electro-magnetic RF pick-up based methods. This contribution discusses the use of fibre-coupled ultra-fast Metal-Semiconductor-Metal Photodetectors (MSM-PD) as an alternative, dependablemeans to measure signals derived from electro-optical and synchrotron-light based diagnostics systems. It describes the beam studies performed at CERN’s CLIC Test Facility (CTF3) and the Australian Synchrotron to assess the feasibility of this technology as a robust, wide-band and sensitive technique for measuring transverse intra-bunch and bunch-by-bunch beam oscillations, longitudinal beam profiles, un-bunched beam population and beam-halo profiles. The amplifica...

  12. Luminosity, Beamstrahlung energy loss and beam-beam deflections for e{sup +}e{sup -} and e{sup -}e{sup -} collisions at the ILC with 500 GeV and varying transverse beam sizes

    Energy Technology Data Exchange (ETDEWEB)

    Alabau Pons, M. [Laboratoire de l' Accelerateur Lineaire, IN2P3-CNRS et Universite de Paris-Sud XI, Bat. 200, B.P. 34, 91898 Orsay Cedex (France)]|[IFIC, Edificio Institutos de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Bambade, P. [Laboratoire de l' Accelerateur Lineaire, IN2P3-CNRS et Universite de Paris-Sud XI, Bat. 200, B.P. 34, 91898 Orsay Cedex (France); Faus-Golfe, A. [IFIC, Edificio Institutos de Paterna, Aptdo. 22085, 46071 Valencia (Spain)

    2006-01-15

    At the interaction point of the International Linear Collider, beam-beam effects due to the strong electromagnetic fields that the bunches experience during collisions cause a mutual focusing, called pinch effect, which enhances the luminosity in the case of e{sup +}e{sup -} collisions. The opposite is true for e{sup -}e{sup -} collisions. In this case the luminosity is reduced by mutual defocusing, or anti-pinching. The resulting Beamstrahlung energy loss and beam-beam deflection angles as function of the vertical transverse offset are also different for both modes of operation. The dependence of these quantities with transverse beam sizes are presented for the case of e{sup -}e{sup -} collisions.

  13. Vectorial control of nonlinear emission via chiral butterfly nanoantennas: generation of pure high order nonlinear vortex beams.

    Science.gov (United States)

    Lesina, Antonino Cala'; Berini, Pierre; Ramunno, Lora

    2017-02-06

    We report on a chiral gap-nanostructure, which we term a "butterfly nanoantenna," that offers full vectorial control over nonlinear emission. The field enhancement in its gap occurs for only one circular polarization but for every incident linear polarization. As the polarization, phase and amplitude of the linear field in the gap are highly controlled, the linear field can drive nonlinear emitters within the gap, which behave as an idealized Huygens source. A general framework is thereby proposed wherein the butterfly nanoantennas can be arranged in a metasurface, and the nonlinear Huygens sources exploited to produce a highly structured far-field optical beam. Nonlinearity allows us to shape the light at shorter wavelengths, not accessible by linear plasmonics, and resulting in high purity beams. The chirality of the butterfly allows us to create orbital angular momentum states using a linearly polarized excitation. A third harmonic Laguerre-Gauss beam carrying an optical orbital angular momentum of 41 is demonstrated as an example, through large-scale simulations on a high-performance computing platform of the full plasmonic metasurface with an area large enough to contain up to 3600 nanoantennas.

  14. Cumulative effect of structural nonlinearities: chaotic dynamics of cantilever beam system with impacts

    International Nuclear Information System (INIS)

    Emans, Joseph; Wiercigroch, Marian; Krivtsov, Anton M.

    2005-01-01

    The nonlinear analysis of a common beam system was performed, and the method for such, outlined and presented. Nonlinear terms for the governing dynamic equations were extracted and the behaviour of the system was investigated. The analysis was carried out with and without physically realistic parameters, to show the characteristics of the system, and the physically realistic responses. Also, the response as part of a more complex system was considered, in order to investigate the cumulative effects of nonlinearities. Chaos, as well as periodic motion was found readily for the physically unrealistic parameters. In addition, nonlinear behaviour such as co-existence of attractors was found even at modest oscillation levels during investigations with realistic parameters. When considered as part of a more complex system with further nonlinearities, comparisons with linear beam theory show the classical approach to be lacking in accuracy of qualitative predictions, even at weak oscillations

  15. Study of beam transverse properties of a thermionic electron gun for application to a compact THz free electron laser

    International Nuclear Information System (INIS)

    Hu, Tongning; Qin, Bin; Tan, Ping; Chen, Qushan; Yang, Lei; Pei, Yuanji; Li, Ji

    2014-01-01

    A novel thermionic electron gun adopted for use in a high power THz free electron laser (FEL) is proposed in this paper. By optimization of the structural and radiofrequency (RF) parameters, the physical design of the gun is performed using dynamic calculations. Velocity bunching is used to minimize the bunch's energy spread, and the dynamic calculation results indicate that high quality beams can be provided. The transverse properties of the beams generated by the gun are also analyzed. The novel RF focusing effects of the resonance cavity are investigated precisely and are used to establish emittance compensation, which enables the injector length to be reduced. In addition, the causes of the extrema of the beam radius and the normalized transverse emittance are analyzed and interpreted, respectively, and slice simulations are performed to illustrate how the RF focusing varies along the bunch length and to determine the effects of that variation on the emittance compensation. Finally, by observation of the variations of the beam properties in the drift tube behind the electron gun, prospective assembly scenarios for the complete THz-FEL injector are discussed, and a joint-debugging process for the injector is implemented

  16. Beam density equalization in a channel with nonlinear optics

    International Nuclear Information System (INIS)

    Batygin, Yu.K.; Kushin, V.V.; Nesterov, N.A.; Plotnikov, S.V.

    1993-01-01

    Simulation of beam density equalization in 2.85 m length transport channel covering two quadrupole lenses and two octupole lenses was carried out to obtain irradiation homogeneous field of track membrane materials. 0.3 MeV/nucleon energy and 1/8 electron-charge-mass ratio ion beam was supplied to the system inlet. Equalization of beam density function equal to about 80% was obtained. 4 refs., 1 fig

  17. Isogeometric analysis of free-form Timoshenko curved beams including the nonlinear effects of large deformations

    Science.gov (United States)

    Hosseini, Seyed Farhad; Hashemian, Ali; Moetakef-Imani, Behnam; Hadidimoud, Saied

    2018-03-01

    In the present paper, the isogeometric analysis (IGA) of free-form planar curved beams is formulated based on the nonlinear Timoshenko beam theory to investigate the large deformation of beams with variable curvature. Based on the isoparametric concept, the shape functions of the field variables (displacement and rotation) in a finite element analysis are considered to be the same as the non-uniform rational basis spline (NURBS) basis functions defining the geometry. The validity of the presented formulation is tested in five case studies covering a wide range of engineering curved structures including from straight and constant curvature to variable curvature beams. The nonlinear deformation results obtained by the presented method are compared to well-established benchmark examples and also compared to the results of linear and nonlinear finite element analyses. As the nonlinear load-deflection behavior of Timoshenko beams is the main topic of this article, the results strongly show the applicability of the IGA method to the large deformation analysis of free-form curved beams. Finally, it is interesting to notice that, until very recently, the large deformations analysis of free-form Timoshenko curved beams has not been considered in IGA by researchers.

  18. Comparison of the effect of annular and solid electron beams on linear and nonlinear traveling wave tube

    Directory of Open Access Journals (Sweden)

    F. Sheykhe

    Full Text Available The present paper, compares the effect of the annular and solid electron beam on the efficiency of linear and nonlinear TWTs. To do this, first we introduce four different geometric structure of the beam-helix. Then, we calculate the output power of each structure, in linear and nonlinear modes, at different frequencies using the numerical solution of the mathematical equations of the multi-frequency Eulerian model. Now, plot the output power in terms of distance for each structure at different frequencies and compare them. In a linear tube, the effect of annular beams on the output power is better than the solid beam, while this affects the frequency in nonlinear tubes. It is shown that in linear regime the power increase linearly with frequency but for nonlinear regimes is nonlinear. Keywords: Annular beam, Solid beam, Circuit power, Nonlinear, Traveling wave tube, Helix

  19. Nonlinearities in the response of beam position monitors

    International Nuclear Information System (INIS)

    Assmann, R.; Dehning, B.; Matheson, J.; Prochnow, J.

    2000-01-01

    At the LEP e + /e - collider at CERN, Geneva, a Spectrometer is used to determine the beam energy with a relative accuracy of 10 -4 .The Spectrometer measures the change in bending angle in a dipole magnet, the beam trajectory being obtained using beam position monitors (BPMs), which must have an accuracy close to 1 μm in order to achieve the desired precision. The BPMs used feature an aluminum block with an elliptical aperture and capacitive pickup electrodes. The response depends on the electrode geometry and also on the shape of the monitor aperture. In addition, the size of the beam itself contributes if the beam is off-center. The beam size varies according to the beta and dispersion functions at the Spectrometer, so that each BPM may exhibit a systematic shift of the measured beam position. We have investigated the implications of such shifts on the performance of the Spectrometer. We present analytical results, a computer model of the BPM response, and comparison with measurements. The model suggests strategies such as beam-based alignment to minimize the systematic effects arising from the BPMs

  20. Nonlinear dynamic response of cantilever beam tip during atomic force microscopy (AFM) nanolithography of copper surface

    International Nuclear Information System (INIS)

    Yeh, Y-L; Jang, M-J; Wang, C-C; Lin, Y-P; Chen, K-S

    2008-01-01

    This paper investigates the nonlinear dynamic response of an atomic force microscope (AFM) cantilever beam tip during the nanolithography of a copper (Cu) surface using a high-depth feed. The dynamic motion of the tip is modeled using a combined approach based on Newton's law and empirical observations. The cutting force is determined from experimental observations of the piling height on the Cu surface and the rotation angle of the cantilever beam tip. It is found that the piling height increases linearly with the cantilever beam carrier velocity. Furthermore, the cantilever beam tip is found to execute a saw tooth motion. Both this motion and the shear cutting force are nonlinear. The elastic modulus in the y direction is variable. Finally, the velocity of the cantilever beam tip as it traverses the specimen surface has a discrete characteristic rather than a smooth, continuous profile

  1. In-Plane Vibrations of Circular Curved Beams with a Transverse Open Crack

    OpenAIRE

    Öz, H. R.; Daş, M. T.

    2006-01-01

    In this study, the in plane vibrations of cracked circular curved beams is investigated. The beam is an Euler-Bernoulli beam. Only bending and extension effects are included. The curvature is in a single plane. In plane vibrations is analyzed using FEM. In the analysis, elongation, bending and rotary inertia effects are included. Four degrees of freedom for in-plane vibrations is assumed. Natural frequencies of the beam with a crack in different locations and depths are calculated using FEM. ...

  2. Nonlinear delta f Simulations of Collective Effects in Intense Charged Particle Beams

    CERN Document Server

    Hong Qi

    2003-01-01

    A nonlinear delta(f) particle simulation method based on the Vlasov-Maxwell equations has been recently developed to study collective processes in high-intensity beams, where space-charge and magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Implemented in the Beam Equilibrium, Stability and Transport (BEST) code [H. Qin, R.C. Davidson, and W.W. Lee, Physical Review -- Special Topics on Accelerator and Beams 3 (2000) 084401; 3 (2000) 109901.], the nonlinear delta(f) method provides a low-noise and self-consistent tool for simulating collective interactions and nonlinear dynamics of high-intensity beams in modern and next-generation accelerators and storage rings, such as the Spallation Neutron Source and heavy ion fusion drivers. A wide range of linear eigenmodes of high-intensity charged-particle beams can be systematically studied using the BEST code. Simulation results for the electron-proton two-stream instability in the Proton Storage Ring experiment [R. Macek, ...

  3. A Hybrid Interpolation Method for Geometric Nonlinear Spatial Beam Elements with Explicit Nodal Force

    Directory of Open Access Journals (Sweden)

    Huiqing Fang

    2016-01-01

    Full Text Available Based on geometrically exact beam theory, a hybrid interpolation is proposed for geometric nonlinear spatial Euler-Bernoulli beam elements. First, the Hermitian interpolation of the beam centerline was used for calculating nodal curvatures for two ends. Then, internal curvatures of the beam were interpolated with a second interpolation. At this point, C1 continuity was satisfied and nodal strain measures could be consistently derived from nodal displacement and rotation parameters. The explicit expression of nodal force without integration, as a function of global parameters, was founded by using the hybrid interpolation. Furthermore, the proposed beam element can be degenerated into linear beam element under the condition of small deformation. Objectivity of strain measures and patch tests are also discussed. Finally, four numerical examples are discussed to prove the validity and effectivity of the proposed beam element.

  4. Transmission characteristics of Bessel-Gaussian vortex beams propagating along both longitudinal and transverse directions in a subway tunnel

    Science.gov (United States)

    Wang, Xiaohui; Song, Yingxiong

    2018-02-01

    By exploiting the non-Kolmogorov model and Rytov approximation theory, a propagation model of Bessel-Gaussian vortex beams (BGVB) propagating in a subway tunnel is derived. Based on the propagation model, a model of orbital angular momentum (OAM) mode probability distribution is established to evaluate the propagation performance when the beam propagates along both longitudinal and transverse directions in the subway tunnel. By numerical simulations and experimental verifications, the influences of the various parameters of BGVB and turbulence on the OAM mode probability distribution are evaluated, and the results of simulations are consistent with the experimental statistics. The results verify that the middle area of turbulence is more beneficial for the vortex beam propagation than the edge; when the BGVB propagates along the longitudinal direction in the subway tunnel, the effects of turbulence on the OAM mode probability distribution can be decreased by selecting a larger anisotropy parameter, smaller coherence length, larger non-Kolmogorov power spectrum coefficient, smaller topological charge number, deeper subway tunnel, lower train speed, and longer wavelength. When the BGVB propagates along the transverse direction, the influences can be also mitigated by adopting a larger topological charge number, less non-Kolmogorov power spectrum coefficient, smaller refractive structure index, shorter wavelength, and shorter propagation distance.

  5. Quasi-ideal dynamics of vortex solitons embedded in flattop nonlinear Bessel beams.

    Science.gov (United States)

    Porras, Miguel A; Ramos, Francisco

    2017-09-01

    The applications of vortex solitons are severely limited by the diffraction and self-defocusing spreading of the background beam where they are nested. Nonlinear Bessel beams in self-defocusing media are nondiffracting, flattop beams where the nested vortex solitons can survive for propagation distances that are one order of magnitude larger than in the Gaussian or super-Gaussian beams. The dynamics of the vortex solitons is studied numerically and found to approach that in the ideal, uniform background, preventing vortex spiraling and decay, which eases vortex steering for applications.

  6. Relativistic electron beam acceleration by cascading nonlinear Landau damping of electromagnetic waves in a plasma

    International Nuclear Information System (INIS)

    Sugaya, R.; Ue, A.; Maehara, T.; Sugawa, M.

    1996-01-01

    Acceleration and heating of a relativistic electron beam by cascading nonlinear Landau damping involving three or four intense electromagnetic waves in a plasma are studied theoretically based on kinetic wave equations and transport equations derived from relativistic Vlasov endash Maxwell equations. Three or four electromagnetic waves excite successively two or three nonresonant beat-wave-driven relativistic electron plasma waves with a phase velocity near the speed of light [v p =c(1-γ -2 p ) 1/2 , γ p =ω/ω pe ]. Three beat waves interact nonlinearly with the electron beam and accelerate it to a highly relativistic energy γ p m e c 2 more effectively than by the usual nonlinear Landau damping of two electromagnetic waves. It is proved that the electron beam can be accelerated to more highly relativistic energy in the plasma whose electron density decreases temporally with an appropriate rate because of the temporal increase of γ p . copyright 1996 American Institute of Physics

  7. An efficient and accurate method for calculating nonlinear diffraction beam fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyun Jo; Cho, Sung Jong; Nam, Ki Woong; Lee, Jang Hyun [Division of Mechanical and Automotive Engineering, Wonkwang University, Iksan (Korea, Republic of)

    2016-04-15

    This study develops an efficient and accurate method for calculating nonlinear diffraction beam fields propagating in fluids or solids. The Westervelt equation and quasilinear theory, from which the integral solutions for the fundamental and second harmonics can be obtained, are first considered. A computationally efficient method is then developed using a multi-Gaussian beam (MGB) model that easily separates the diffraction effects from the plane wave solution. The MGB models provide accurate beam fields when compared with the integral solutions for a number of transmitter-receiver geometries. These models can also serve as fast, powerful modeling tools for many nonlinear acoustics applications, especially in making diffraction corrections for the nonlinearity parameter determination, because of their computational efficiency and accuracy.

  8. Nonlinear model of a rotating hub-beams structure: Equations of motion

    Science.gov (United States)

    Warminski, Jerzy

    2018-01-01

    Dynamics of a rotating structure composed of a rigid hub and flexible beams is presented in the paper. A nonlinear model of a beam takes into account bending, extension and nonlinear curvature. The influence of geometric nonlinearity and nonconstant angular velocity on dynamics of the rotating structure is presented. The exact equations of motion and associated boundary conditions are derived on the basis of the Hamilton's principle. The simplification of the exact nonlinear mathematical model is proposed taking into account the second order approximation. The reduced partial differential equations of motion together with associated boundary conditions can be used to study natural or forced vibrations of a rotating structure considering constant or nonconstant angular speed of a rigid hub and an arbitrary number of flexible blades.

  9. Nonlinear features identified by Volterra series for damage detection in a buckled beam

    Directory of Open Access Journals (Sweden)

    Shiki S. B.

    2014-01-01

    Full Text Available The present paper proposes a new index for damage detection based on nonlinear features extracted from prediction errors computed by multiple convolutions using the discrete-time Volterra series. A reference Volterra model is identified with data in the healthy condition and used for monitoring the system operating with linear or nonlinear behavior. When the system has some structural change, possibly associated with damage, the index metrics computed could give an alert to separate the linear and nonlinear contributions, besides provide a diagnostic about the structural state. To show the applicability of the method, an experimental test is performed using nonlinear vibration signals measured in a clamped buckled beam subject to different levels of force applied and with simulated damages through discontinuities inserted in the beam surface.

  10. Diffraction corrections for second harmonic beam fields and effects on the nonlinearity parameter evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyun Jo; Cho, Sung Jong; Nam, Ki Woong; Lee, Jang Hyun [Division of Mechanical and Automotive Engineering, Wonkwang University, Iksan (Korea, Republic of)

    2016-04-15

    The nonlinearity parameter is frequently measured as a sensitive indicator in damaged material characterization or tissue harmonic imaging. Several previous studies have employed the plane wave solution, and ignored the effects of beam diffraction when measuring the non-linearity parameter β. This paper presents a multi-Gaussian beam approach to explicitly derive diffraction corrections for fundamental and second harmonics under quasilinear and paraxial approximation. Their effects on the nonlinearity parameter estimation demonstrate complicated dependence of β on the transmitter-receiver geometries, frequency, and propagation distance. The diffraction effects on the non-linearity parameter estimation are important even in the nearfield region. Experiments are performed to show that improved β values can be obtained by considering the diffraction effects.

  11. Measurement of azimuthal asymmetries with respect of both beam charge and transverse target polarization in exclusive electroproduction of real photons

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [DESY Hamburg (Germany); Akopov, N.; Akopov, Z. [Yerevan Physics Institute (AR)] (and others)

    2008-02-15

    Azimuthal asymmetries in exclusive electroproduction of real photons are measured for the first time with respect to transverse target polarisation, providing new constraints on Generalized Parton Distributions. From the same data set on a hydrogen target, new results for the beam-charge asymmetry are also extracted with better precision than those previously reported. By comparing model calculations with measured asymmetries attributed to the interference between the deeply virtual Compton scattering and Bethe-Heitler processes, a model-dependent constraint is obtained on the total angular momenta carried by up and down quarks in the nucleon. (orig.)

  12. Numerical analysis for the stick-slip vibration of a transversely moving beam in contact with a frictional wall

    Science.gov (United States)

    Won, Hong-In; Chung, Jintai

    2018-04-01

    This paper presents a numerical analysis for the stick-slip vibration of a transversely moving beam, considering both stick-slip transition and friction force discontinuity. The dynamic state of the beam was separated into the stick state and the slip state, and boundary conditions were defined for both. By applying the finite element method, two matrix-vector equations were derived: one for stick state and the other for slip state. However, the equations have different degrees of freedom depending on whether the end of a beam sticks or slips, so we encountered difficulties in time integration. To overcome the difficulties, we proposed a new numerical technique to alternatively use the matrix-vector equations with different matrix sizes. In addition, to eliminate spurious high-frequency responses, we applied the generalized-α time integration method with appropriate value of high-frequency numerical dissipation. Finally, the dynamic responses of stick-slip vibration were analyzed in time and frequency domains: the dynamic behavior of the beam was explained to facilitate understanding of the stick-slip motion, and frequency characteristics of the stick-slip vibration were investigated in relation to the natural frequencies of the beam. The effects of the axial load and the moving speed upon the dynamic response were also examined.

  13. Transverse emittance-preserving arc compressor for high-brightness electron beam-based light sources and colliders

    Science.gov (United States)

    Di Mitri, S.; Cornacchia, M.

    2015-03-01

    Bunch length magnetic compression is used in high-brightness linacs driving free-electron lasers (FELs) and particle colliders to increase the peak current of the injected beam. To date, it is performed in dedicated insertions made of few degrees bending magnets and the compression factor is limited by the degradation of the beam transverse emittance owing to emission of coherent synchrotron radiation (CSR). We reformulate the known concept of CSR-driven optics balance for the general case of varying bunch length and demonstrate, through analytical and numerical results, that a 500 pC charge beam can be time-compressed in a periodic 180 deg arc at 2.4 GeV beam energy and lower, by a factor of up to 45, reaching peak currents of up to 2 kA and with a normalized emittance growth at the 0.1 μ \\text{m} rad level. The proposed solution offers new schemes of beam longitudinal gymnastics; an application to an energy recovery linac driving FEL is discussed.

  14. Nonlinear effects in the radiation force generated by amplitude-modulated focused beams

    Science.gov (United States)

    González, Nuria; Jiménez, Noé; Redondo, Javier; Roig, Bernardino; Picó, Rubén; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.; Camarena, Francisco

    2012-10-01

    Harmonic Motion Imaging (HMI) uses an amplitude-modulated (AM) beam to induce an oscillatory radiation force before, during and after ablation. In this paper, the findings from a numerical analysis of the effects related with the nonlinear propagation of AM focused ultrasonic beams in water on the radiation force and the location of its maxima will be presented. The numerical modeling is performed using the KZK nonlinear parabolic equation. The radiation force is generated by a focused transducer with a gain of 18, a carrier frequency of 1 MHz and a modulation frequency of 25 kHz. The modulated excitation generates a spatially-invariant force proportional to the intensity. Regarding the nonlinear wave propagation, the force is no longer proportional to the intensity, reaching a factor of eight between the nonlinear and linear estimations. Also, a 9 mm shift in the on-axis force peak occurs when the initial pressure increased from 1 to 300 kPa. This spatial shift, due to the nonlinear effects, becomes dynamic in AM focused beams, as the different signal periods have different amplitudes. This study shows that both the value and the spatial position of the force peak are affected by the nonlinear propagation of the ultrasonic waves.

  15. Propagation of optical vortex beams and nucleation of vortex-antivortex pairs in disordered nonlinear photonic lattices

    International Nuclear Information System (INIS)

    Cho, Yeong-Kwon; Kim, Ki-Hong

    2014-01-01

    The propagation of optical vortex beams through disordered nonlinear photonic lattices is numerically studied. The vortex beams are generated by using a superposition of several Gaussian laser beams arranged in a radially-symmetric manner. The paraxial nonlinear Schroedinger equation describing the longitudinal propagation of the beam array through nonlinear triangular photonic lattices with two-dimensional disorder is solved numerically by using the split-step Fourier method. We find that due to the spatial disorder, the vortex beam is destabilized after propagating a finite distance and new vortex-antivortex pairs are nucleated at the positions of perfect destructive interference. We also find that in the presence of a self-focusing nonlinearity, the vortex-antivortex pair nucleation is suppressed and the vortex beam becomes more stable, while a self-defocusing nonlinearity enhances the vortex-antivortex pair nucleation.

  16. Transversal effects of the space charge in an electrified particle beam (the proton synchrotron Saturne) (1963)

    International Nuclear Information System (INIS)

    Faure, J.; Gouttefangeas, M.; Levy-Mandel, R.; Vienet, R.; Lago, B.; Loeb, J.

    1963-01-01

    This is a study of the repulsive electrostatic forces existing inside a proton beam focused by the magnetic field of a circular accelerator. The general equation that rules the variation of beam density versus time can be rewritten by a fairly simple reasoning, A numerical method to solve this equation is then developed. The next step is then to find an optimum beam, a gaussian distribution of density being proposed allowing to find an analytical solution to the problem. (authors) [fr

  17. NONLINEAR ANALYSIS OF CFRP- PRESTRESSED CONCRETE BEAMS SUBJECTED TO INCREMENTAL STATIC LOADING BY FINITE ELEMENTS

    Directory of Open Access Journals (Sweden)

    Husain M. Husain

    2013-05-01

    Full Text Available In this work a program is developed to carry out the nonlinear analysis (material nonlinearity of prestressed concrete beams using tendons of carbon fiber reinforced polymer (CFRP instead of steel. The properties of this material include high strength, light weight, and insusceptibility to corrosion and magnetism. This material is still under investigation, therefore it needs continuous work to make it beneficial in concrete design. Four beams which are tested experimentally by Yan et al. are examined by the developed computer program to reach a certain analytical approach of the design and analysis of such beams because there is no available restrictions or recommendations covering this material in the codes. The program uses the finite element analysis by dividing the beams into isoparametric 20-noded brick elements. The results obtained are good in comparison with experimental results.

  18. Relativistic and nonlinear radiation interaction between laser beams and plasmas

    International Nuclear Information System (INIS)

    Kane, E.L.; Hora, H.

    1981-01-01

    Starting from a combination of Maxwell's laws for the electromagnetic field and the conservation equations for a fully ionized plasma, the appropriate equations describing electrodynamic laser propagation and plasma dynamic particle motion are developed and solved. Calculations for multiply ionized transient conditions are carried out to yield electric field amplitudes, radial electron number density distributions and the progress of formation of a self-focused beam filament as a function of the target plasma density distribution and the laser pulse power-time history, among other parameters. Separate solutions emphasizing field-induced plasma motion on the one hand and significant beam contraction on the other are illustrated

  19. Analytic approximations to nonlinear boundary value problems modeling beam-type nano-electromechanical systems

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Li [Dalian Univ. of Technology, Dalian City (China). State Key Lab. of Structural Analysis for Industrial Equipment; Liang, Songxin; Li, Yawei [Dalian Univ. of Technology, Dalian City (China). School of Mathematical Sciences; Jeffrey, David J. [Univ. of Western Ontario, London (Canada). Dept. of Applied Mathematics

    2017-06-01

    Nonlinear boundary value problems arise frequently in physical and mechanical sciences. An effective analytic approach with two parameters is first proposed for solving nonlinear boundary value problems. It is demonstrated that solutions given by the two-parameter method are more accurate than solutions given by the Adomian decomposition method (ADM). It is further demonstrated that solutions given by the ADM can also be recovered from the solutions given by the two-parameter method. The effectiveness of this method is demonstrated by solving some nonlinear boundary value problems modeling beam-type nano-electromechanical systems.

  20. On the Possibility of Using Nonlinear Elements for Landau Damping in High-Intensity Beams

    Energy Technology Data Exchange (ETDEWEB)

    Alexahin, Y. [Fermilab; Gianfelice-Wendt, E. [Fermilab; Lebedev, V. [Fermilab; Valishev, A. [Fermilab

    2016-09-30

    Direct space-charge force shifts incoherent tunes downwards from the coherent ones breaking the Landau mechanism of coherent oscillations damping at high beam intensity. To restore it nonlinear elements can be employed which move back tunes of large amplitude particles. In the present report we consider the possibility of creating a “nonlinear integrable optics” insertion in the Fermilab Recycler to host either octupoles or hollow electron lens for this purpose. For comparison we also consider the classic scheme with distributed octupole families. It is shown that for the Proton Improvement Plan II (PIP II) parameters the required nonlinear tune shift can be created without destroying the dynamic aperture.

  1. The effect of nonlinear propagation on heating of tissue: A numerical model of diagnostic ultrasound beams

    Science.gov (United States)

    Cahill, Mark D.; Humphrey, Victor F.; Doody, Claire

    2000-07-01

    Thermal safety indices for diagnostic ultrasound beams are calculated under the assumption that the sound propagates under linear conditions. A non-axisymmetric finite difference model is used to solve the KZK equation, and so to model the beam of a diagnostic scanner in pulsed Doppler mode. Beams from both a uniform focused rectangular source and a linear array are considered. Calculations are performed in water, and in attenuating media with tissue-like characteristics. Attenuating media are found to exhibit significant nonlinear effects for finite-amplitude beams. The resulting loss of intensity by the beam is then used as the source term in a model of tissue heating to estimate the maximum temperature rises. These are compared with the thermal indices, derived from the properties of the water-propagated beams.

  2. Propagation of dark stripe beams in nonlinear media: Snake instability and creation of optical vortices

    DEFF Research Database (Denmark)

    Mamaev, A.V.; Saffman, M.; Zozulya, A.A.

    1996-01-01

    We analyze the evolution of (1+1) dimensional dark stripe beams in bulk media with a photorefractive nonlinear response. These beams, including solitary wave solutions, are shown to be unstable with respect to symmetry breaking and formation of structure along the initially homogeneous coordinate....... Experimental results show the complete sequence of events starting from self-focusing of the stripe, its bending due to the snake instability, and subsequent decay into a set of optical vortices....

  3. Relationship between the maxillary transverse dimension and palatally displaced canines: A cone-beam computed tomographic study.

    Science.gov (United States)

    Hong, Wei-Hsin; Radfar, Rebecca; Chung, Chun-Hsi

    2015-05-01

    To examine the relationship between palatally displaced maxillary canines (PDC) and the maxillary transverse dimension using cone-beam computed tomography (CBCT). Thirty-three patients (11 males and 22 females, mean age 18.2 years) with PDC were matched to 66 patients (22 males and 44 females, mean age 18.1 years) without PDC (control) by gender, age, and posterior occlusion. A CBCT image was taken on all the patients prior to any orthodontic treatment. For each patient the maxillary basal bone widths and interdental widths at the maxillary first molars and first and second premolars were measured on axial and coronal sections of CBCT images. In addition, the presence of permanent tooth agenesis and the widths of maxillary incisors were recorded. Similar maxillary transverse dimensions, both skeletally and dentally, were found between the PDC and control groups. In the PDC group, the number of patients with permanent tooth agenesis was six times higher than in the control group. In addition, the maxillary lateral incisors on PDC-affected sides were smaller than those of control group (P transverse dimension, both skeletally and dentally, had no effect on the occurrence of PDC. The higher prevalence of permanent tooth agenesis was found in the PDC group. Moreover, the mean mesiodistal width of maxillary lateral incisors in the PDC group was significantly smaller than in the control group (P < .05).

  4. Study of nonlinear interaction between bunched beam and intermediate cavities in a relativistic klystron amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y. [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Science and Technology on High Power Microwave Laboratory, Mianyang 621900 (China); Xu, Z.; Li, Z. H. [Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900 (China); Tang, C. X. [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2012-07-15

    In intermediate cavities of a relativistic klystron amplifier (RKA) driven by intense relativistic electron beam, the equivalent circuit model, which is widely adopted to investigate the interaction between bunched beam and the intermediate cavity in a conventional klystron design, is invalid due to the high gap voltage and the nonlinear beam loading in a RKA. According to Maxwell equations and Lorentz equation, the self-consistent equations for beam-wave interaction in the intermediate cavity are introduced to study the nonlinear interaction between bunched beam and the intermediate cavity in a RKA. Based on the equations, the effects of modulation depth and modulation frequency of the beam on the gap voltage amplitude and its phase are obtained. It is shown that the gap voltage is significantly lower than that estimated by the equivalent circuit model when the beam modulation is high. And the bandwidth becomes wider as the beam modulation depth increases. An S-band high gain relativistic klystron amplifier is designed based on the result. And the corresponding experiment is carried out on the linear transformer driver accelerator. The peak output power has achieved 1.2 GW with an efficiency of 28.6% and a gain of 46 dB in the corresponding experiment.

  5. Study of nonlinear interaction between bunched beam and intermediate cavities in a relativistic klystron amplifier

    Science.gov (United States)

    Wu, Y.; Xu, Z.; Li, Z. H.; Tang, C. X.

    2012-07-01

    In intermediate cavities of a relativistic klystron amplifier (RKA) driven by intense relativistic electron beam, the equivalent circuit model, which is widely adopted to investigate the interaction between bunched beam and the intermediate cavity in a conventional klystron design, is invalid due to the high gap voltage and the nonlinear beam loading in a RKA. According to Maxwell equations and Lorentz equation, the self-consistent equations for beam-wave interaction in the intermediate cavity are introduced to study the nonlinear interaction between bunched beam and the intermediate cavity in a RKA. Based on the equations, the effects of modulation depth and modulation frequency of the beam on the gap voltage amplitude and its phase are obtained. It is shown that the gap voltage is significantly lower than that estimated by the equivalent circuit model when the beam modulation is high. And the bandwidth becomes wider as the beam modulation depth increases. An S-band high gain relativistic klystron amplifier is designed based on the result. And the corresponding experiment is carried out on the linear transformer driver accelerator. The peak output power has achieved 1.2 GW with an efficiency of 28.6% and a gain of 46 dB in the corresponding experiment.

  6. Nonlinear hybrid simulation of internal kink with beam ion effects in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wei; Sheng, Zheng-Mao [Department of Physics, Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Fu, G. Y.; Tobias, Benjamin [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Zeeland, Michael Van [General Atomics, San Diego, California 92186-5608 (United States); Wang, Feng [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China)

    2015-04-15

    In DIII-D sawteething plasmas, long-lived (1,1) kink modes are often observed between sawtooth crashes. The saturated kink modes have two distinct frequencies. The mode with higher frequency transits to a fishbone-like mode with sufficient on-axis neutral beam power. In this work, hybrid simulations with the global kinetic-magnetohydrodynamic (MHD) hybrid code M3D-K have been carried out to investigate the linear stability and nonlinear dynamics of the n = 1 mode with effects of energetic beam ions for a typical DIII-D discharge where both saturated kink mode and fishbone were observed. Linear simulation results show that the n = 1 internal kink mode is unstable in MHD limit. However, with kinetic effects of beam ions, a fishbone-like mode is excited with mode frequency about a few kHz depending on beam pressure profile. The mode frequency is higher at higher beam power and/or narrower radial profile consistent with the experimental observation. Nonlinear simulations have been performed to investigate mode saturation as well as energetic particle transport. The nonlinear MHD simulations show that the unstable kink mode becomes a saturated kink mode after a sawtooth crash. With beam ion effects, the fishbone-like mode can also transit to a saturated kink mode with a small but finite mode frequency. These results are consistent with the experimental observation of saturated kink mode between sawtooth crashes.

  7. On the Transverse motions under heavy loads of thin beams with ...

    African Journals Online (AJOL)

    In this paper, the effect of variable axial force on the dynamic response of elastic beam resting on elastic foundation and subjected to concentrated moving loads is investigated. The fourth order partial differential equation with variable and singular coefficients governing the motion of the elastic thin beam is solved using the ...

  8. The effect of laser beam size in a zig-zag collimator on transverse ...

    Indian Academy of Sciences (India)

    The effect of size of a cooling laser beam in a zig-zag atomic beam collimator on trans- ... resolution spectroscopy, many-body physics, precision measurements, atom lithogra- ..... torr) at a distance of 180 cm from the Kr gas inlet chamber.

  9. Suggestions for new transverse oscillations damping systems in large synchrotrons and colliders

    International Nuclear Information System (INIS)

    Ivanov, I.N.; Melnikov, V.A.

    1994-01-01

    Due to the high requirements on beam quality, modern synchrotrons and colliders require special systems for transverse oscillation damping (TDS). New system for the correction of injection errors and multibunch instabilities is proposed. The special beam monitor on the basis of the axial-slotted lines is developed for the transverse beam velocity measuring. The special nonlinear regime of damping is suggested to decrease the operating time of TDS. 2 refs., 4 figs., 2 tabs

  10. Beam-Based Nonlinear Optics Corrections in Colliders

    CERN Document Server

    Pilat, Fulvia Caterina; Malitsky, Nikolay; Ptitsyn, Vadim

    2005-01-01

    A method has been developed to measure and correct operationally the non-linear effects of the final focusing magnets in colliders, which gives access to the effects of multi-pole errors by applying closed orbit bumps, and analyzing the resulting tune and orbit shifts. This technique has been tested and used during 3 years of RHIC (the Relativistic Heavy Ion Collider at BNL) operations. I will discuss here the theoretical basis of the method, the experimental set-up, the correction results, the present understanding of the machine model, the potential and limitations of the method itself as compared with other non linear correction techniques.

  11. Invariant measures for stochastic nonlinear beam and wave equations

    Czech Academy of Sciences Publication Activity Database

    Brzezniak, Z.; Ondreját, Martin; Seidler, Jan

    2016-01-01

    Roč. 260, č. 5 (2016), s. 4157-4179 ISSN 0022-0396 R&D Projects: GA ČR GAP201/10/0752 Institutional support: RVO:67985556 Keywords : stochastic partial differential equation * stochastic beam equation * stochastic wave equation * invariant measure Subject RIV: BA - General Mathematics Impact factor: 1.988, year: 2016 http://library.utia.cas.cz/separaty/2016/SI/ondrejat-0453412.pdf

  12. Numerical methods for axisymmetric and 3D nonlinear beams

    Science.gov (United States)

    Pinton, Gianmarco F.; Trahey, Gregg E.

    2005-04-01

    Time domain algorithms that solve the Khokhlov--Zabolotzskaya--Kuznetsov (KZK) equation are described and implemented. This equation represents the propagation of finite amplitude sound beams in a homogenous thermoviscous fluid for axisymmetric and fully three dimensional geometries. In the numerical solution each of the terms is considered separately and the numerical methods are compared with known solutions. First and second order operator splitting are used to combine the separate terms in the KZK equation and their convergence is examined.

  13. Nonlinear Delta-f Particle Simulations of Collective Effects in High-Intensity Bunched Beams

    CERN Document Server

    Qin, Hong; Hudson, Stuart R; Startsev, Edward

    2005-01-01

    The collective effects in high-intensity 3D bunched beams are described self-consistently by the nonlinear Vlasov-Maxwell equations.* The nonlinear delta-f method,** a particle simulation method for solving the nonlinear Vlasov-Maxwell equations, is being used to study the collective effects in high-intensity 3D bunched beams. The delta-f method, as a nonlinear perturbative scheme, splits the distribution function into equilibrium and perturbed parts. The perturbed distribution function is represented as a weighted summation over discrete particles, where the particle orbits are advanced by equations of motion in the focusing field and self-consistent fields, and the particle weights are advanced by the coupling between the perturbed fields and the zero-order distribution function. The nonlinear delta-f method exhibits minimal noise and accuracy problems in comparison with standard particle-in-cell simulations. A self-consistent 3D kinetic equilibrium is first established for high intensity bunched beams. The...

  14. Oscillations of a Beam on a Non-Linear Elastic Foundation under Periodic Loads

    Directory of Open Access Journals (Sweden)

    Donald Mark Santee

    2006-01-01

    Full Text Available The complexity of the response of a beam resting on a nonlinear elastic foundation makes the design of this structural element rather challenging. Particularly because, apparently, there is no algebraic relation for its load bearing capacity as a function of the problem parameters. Such an algebraic relation would be desirable for design purposes. Our aim is to obtain this relation explicitly. Initially, a mathematical model of a flexible beam resting on a non-linear elastic foundation is presented, and its non-linear vibrations and instabilities are investigated using several numerical methods. At a second stage, a parametric study is carried out, using analytical and semi-analytical perturbation methods. So, the influence of the various physical and geometrical parameters of the mathematical model on the non-linear response of the beam is evaluated, in particular, the relation between the natural frequency and the vibration amplitude and the first period doubling and saddle-node bifurcations. These two instability phenomena are the two basic mechanisms associated with the loss of stability of the beam. Finally Melnikov's method is used to determine an algebraic expression for the boundary that separates a safe from an unsafe region in the force parameters space. It is shown that this can be used as a basis for a reliable engineering design criterion.

  15. Nonlinear Charge and Current Neutralization of an Ion Beam Pulse in a Pre-formed Plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Shvets, Gennady; Startsev, Edward; Davidson, Ronald C.

    2001-01-01

    The propagation of a high-current finite-length ion beam in a cold pre-formed plasma is investigated. The outcome of the calculation is the quantitative prediction of the degree of charge and current neutralization of the ion beam pulse by the background plasma. The electric magnetic fields generated by the ion beam are studied analytically for the nonlinear case where the plasma density is comparable in size with the beam density. Particle-in-cell simulations and fluid calculations of current and charge neutralization have been performed for parameters relevant to heavy ion fusion assuming long, dense beams with el >> V(subscript b)/omega(subscript b), where V(subscript b) is the beam velocity and omega subscript b is the electron plasma frequency evaluated with the ion beam density. An important conclusion is that for long, nonrelativistic ion beams, charge neutralization is, for all practical purposes, complete even for very tenuous background plasmas. As a result, the self-magnetic force dominates the electric force and the beam ions are always pinched during beam propagation in a background plasma

  16. Nonlinear Charge and Current Neutralization of an Ion Beam Pulse in a Pre-formed Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Igor D. Kaganovich; Gennady Shvets; Edward Startsev; Ronald C. Davidson

    2001-01-30

    The propagation of a high-current finite-length ion beam in a cold pre-formed plasma is investigated. The outcome of the calculation is the quantitative prediction of the degree of charge and current neutralization of the ion beam pulse by the background plasma. The electric magnetic fields generated by the ion beam are studied analytically for the nonlinear case where the plasma density is comparable in size with the beam density. Particle-in-cell simulations and fluid calculations of current and charge neutralization have been performed for parameters relevant to heavy ion fusion assuming long, dense beams with el >> V(subscript b)/omega(subscript b), where V(subscript b) is the beam velocity and omega subscript b is the electron plasma frequency evaluated with the ion beam density. An important conclusion is that for long, nonrelativistic ion beams, charge neutralization is, for all practical purposes, complete even for very tenuous background plasmas. As a result, the self-magnetic force dominates the electric force and the beam ions are always pinched during beam propagation in a background plasma.

  17. Non-Linear Beam Transport System for the LENS 7 MeV Proton Beam

    CERN Document Server

    Jones, William P; Derenchuk, Vladimir Peter; Rinckel, Thomas; Solberg, Keith

    2005-01-01

    A beam transport system has been designed to carry a high-intensity low-emittance proton beam from the exit of the RFQ-DTL acceleration system of the Indiana University Low Energy Neutron System (LENS)* to the neutron production target. The goal of the design was to provide a beam of uniform density over a 3cm by 3cm area at the target. Two octupole magnets** are employed in the beam line to provide the necessary beam phase space manipulations to achieve this goal. First order calculations were done using TRANSPORT and second order calculations have been performed using TURTLE. Second order simulations have been done using both a Gaussian beam distribution and a particle set generated by calculations of beam transport through the RFQ-DTL using PARMILA. Comparison of the design characteristics with initial measurements from the LENS commissioning process will be made.

  18. Attractor of Beam Equation with Structural Damping under Nonlinear Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Danxia Wang

    2015-01-01

    Full Text Available Simultaneously, considering the viscous effect of material, damping of medium, and rotational inertia, we study a kind of more general Kirchhoff-type extensible beam equation utt-uxxtt+uxxxx-σ(∫0l‍(ux2dxuxx-ϕ(∫0l‍(ux2dxuxxt=q(x, in  [0,L]×R+ with the structural damping and the rotational inertia term. Little attention is paid to the longtime behavior of the beam equation under nonlinear boundary conditions. In this paper, under nonlinear boundary conditions, we prove not only the existence and uniqueness of global solutions by prior estimates combined with some inequality skills, but also the existence of a global attractor by the existence of an absorbing set and asymptotic compactness of corresponding solution semigroup. In addition, the same results also can be proved under the other nonlinear boundary conditions.

  19. Nonlinear analysis of the progressive collapse of reinforced concrete plane frames using a multilayered beam formulation

    Directory of Open Access Journals (Sweden)

    C. E. M. Oliveira

    Full Text Available This work investigates the response of two reinforced concrete (RC plane frames after the loss of a column and their potential resistance for progressive collapse. Nonlinear dynamic analysis is performed using a multilayered Euler/Bernoulli beam element, including elasto-viscoplastic effects. The material nonlinearity is represented using one-dimensional constitutive laws in the material layers, while geometrical nonlinearities are incorporated within a corotational beam formulation. The frames were designed in accordance with the minimum requirements proposed by the reinforced concrete design/building codes of Europe (fib [1-2], Eurocode 2 [3] and Brazil (NBR 6118 [4]. The load combinations considered for PC analysis follow the prescriptions of DoD [5]. The work verifies if the minimum requirements of the considered codes are sufficient for enforcing structural safety and robustness, and also points out the major differences in terms of progressive collapse potential of the corresponding designed structures.

  20. Mimicking the cochlear amplifier in a cantilever beam using nonlinear velocity feedback control

    International Nuclear Information System (INIS)

    Joyce, Bryan S; Tarazaga, Pablo A

    2014-01-01

    The mammalian cochlea exhibits a nonlinear amplification which allows mammals to detect a large range of sound pressure levels while maintaining high frequency sensitivity. This work seeks to mimic the cochlea’s nonlinear amplification in a mechanical system. A nonlinear, velocity-based feedback control law is applied to a cantilever beam with piezoelectric actuators. The control law reduces the linear viscous damping of the system while introducing a cubic damping term. The result is a system which is positioned close to a Hopf bifurcation. Modelling and experimental results show that the beam with this control law undergoes a one-third amplitude scaling near the resonance frequency and an amplitude-dependent bandwidth. Both behaviors are characteristic of data obtained from the mammalian cochlea. This work could provide insight on the biological cochlea while producing bio-inspired sensors with a large dynamic range and sharp frequency sensitivity. (papers)

  1. Mimicking the cochlear amplifier in a cantilever beam using nonlinear velocity feedback control

    Science.gov (United States)

    Joyce, Bryan S.; Tarazaga, Pablo A.

    2014-07-01

    The mammalian cochlea exhibits a nonlinear amplification which allows mammals to detect a large range of sound pressure levels while maintaining high frequency sensitivity. This work seeks to mimic the cochlea’s nonlinear amplification in a mechanical system. A nonlinear, velocity-based feedback control law is applied to a cantilever beam with piezoelectric actuators. The control law reduces the linear viscous damping of the system while introducing a cubic damping term. The result is a system which is positioned close to a Hopf bifurcation. Modelling and experimental results show that the beam with this control law undergoes a one-third amplitude scaling near the resonance frequency and an amplitude-dependent bandwidth. Both behaviors are characteristic of data obtained from the mammalian cochlea. This work could provide insight on the biological cochlea while producing bio-inspired sensors with a large dynamic range and sharp frequency sensitivity.

  2. Simulation of transverse beam splitting using time-dependent dipolar or quadrupolar kicks

    CERN Document Server

    Capoani, Federico

    2017-01-01

    Two simple systems with high relevance for accelerator physics have been studied in detail in the context of this Summer Student Project. These systems describe the motion under the influence of detuning with amplitude due to non-linear magnets and an external, time-dependent force of dipolar or quadrupolar nature.Two simple systems with high relevance for accelerator physics have been studied in detail in the context of this Summer Student Project. These systems describe the motion under the influence of detuning with amplitude due to non-linear magnets and an external, time-dependent force of dipolar or quadrupolar nature.

  3. Transverse resistive wall instability of an off-axis ribbon beam in a circular chamber

    International Nuclear Information System (INIS)

    Courant, E.D.; Month, M.

    1978-06-01

    High energy proton storage rings are designed to make maximal use of the available vacuum chamber aperture. This is dictated primarily by economic considerations. The accumulation of current in a typical high energy ring creates a rather unusual beam configuration: in particular, a ribbon beam in a circular chamber set well off the central axis. The result is an enhanced resistive wall instability. This could be anticipated from the strong dependence of the current threshold on the chamber radius for a centered beam. For an off-centered beam, one might expect that the relevant replacement for the radius would be the distance of closest approach. The case of a wide ribbon-type beam is treated. The current threshold is obtained as a solution to a coupled oscillator eigenvalue problem. When the beam is small as occurs near the beginning of current stack formation, the problem is reduced to a dispersion relation. Results are expressed in terms of ISABELLE parameters. Some conclusions relevant to the ISABELLE design are presented

  4. Mechanical nonlinearity elimination with a micromechanical clamped-free semicircular beams resonator

    Science.gov (United States)

    Chen, Dongyang; Chen, Xuying; Wang, Yong; Liu, Xinxin; Guan, Yangyang; Xie, Jin

    2018-04-01

    This paper reports a micro-machined clamped-free semicircular beam resonator aiming to eliminate the nonlinearity that widely exists in traditional mechanical resonators. Cubic coefficients over vibration displacement due to axial extension of the beams are analyzed through theoretical modelling, and the corresponding frequency effect is demonstrated. With the device working in the elastic vibration mode, the cubic coefficients are eliminated by using a free end to release the nonlinear extension of beams and thus the inside axial stress. The amplitude-frequency (A-f) effect is overcome in a large region of source power, and the coefficient of frequency softening is linearized in a large region of polarization voltage. As a result, the resonator can be driven at larger vibration amplitude to achieve a high signal to noise ratio and power handling performance.

  5. Approximations for Large Deflection of a Cantilever Beam under a Terminal Follower Force and Nonlinear Pendulum

    Directory of Open Access Journals (Sweden)

    H. Vázquez-Leal

    2013-01-01

    Full Text Available In theoretical mechanics field, solution methods for nonlinear differential equations are very important because many problems are modelled using such equations. In particular, large deflection of a cantilever beam under a terminal follower force and nonlinear pendulum problem can be described by the same nonlinear differential equation. Therefore, in this work, we propose some approximate solutions for both problems using nonlinearities distribution homotopy perturbation method, homotopy perturbation method, and combinations with Laplace-Padé posttreatment. We will show the high accuracy of the proposed cantilever solutions, which are in good agreement with other reported solutions. Finally, for the pendulum case, the proposed approximation was useful to predict, accurately, the period for an angle up to 179.99999999∘ yielding a relative error of 0.01222747.

  6. In-plane and out-of-plane nonlinear dynamics of an axially moving beam

    International Nuclear Information System (INIS)

    Farokhi, Hamed; Ghayesh, Mergen H.; Amabili, Marco

    2013-01-01

    In the present study, the nonlinear forced dynamics of an axially moving beam is investigated numerically taking into account the in-plane and out-of-plane motions. The nonlinear partial differential equations governing the motion of the system are derived via Hamilton’s principle. The Galerkin scheme is then introduced to these partial differential equations yielding a set of second-order nonlinear ordinary differential equations with coupled terms. This set is transformed into a new set of first-order nonlinear ordinary differential equations by means of a change of variables. A direct time integration technique is conducted upon the new set of equations resulting in the bifurcation diagrams of Poincaré maps of the system. The dynamical characteristics of the system are investigated for different system parameters and presented through use of time histories, phase-plane portraits, Poincaré sections, and fast Fourier transforms

  7. Nonlinear Analysis of External Prestressed Reinforced Concrete Beams with BFRP and CFRP

    Directory of Open Access Journals (Sweden)

    Haleem K. Hussain

    2017-05-01

    Full Text Available The traditional strengthening methods for concrete structure (girders, beams, columns…. consuming time and could be an economical, a new modern repair methods using the Carbon Fiber Reinforced Polymers (CFRP and Basalt Fiber Reinforced Polymer (BFRP as a laminate strips or bars,and considered a competitive solution that will increase the life-cycle of repaired structures. This study investigated the strengthen reinforced concrete girder. Nonlinear analysis have been adopted to the models using FEM analysis (ANSYS to simulate the theoretical results compared with experimental results.Using finite element packages, more efficient and better analyses can be made to fully understand the response of individual structural components and their contribution to a structure as a whole.Three type of material are used in this study as an external prestressed wire (steel, CFRP and BFRP. The prestressed beam is modeled as simply supported beam with two concentrated point load. The results showed that all tested strengthening beam increased the load carryingcapacity of the beams depend on prestressing force. Obtained Result was compared for different type of beam.This study also was enlarged to include using CFRP and BFRPbarwhich are light weight and moredurable, lead to ease of handling and maintenance. The research conducted analytical work to evaluate the effectiveness of concrete beams reinforced normally by the use of CFRP and BFRP bars. The results showed a significant gain in the beam’s ultimate capacities using CFRP bars comparing with beam reinforced with BFRP bar and reference beam

  8. Coupled transverse and torsional vibrations in a mechanical system with two identical beams

    Science.gov (United States)

    Vlase, S.; Marin, M.; Scutaru, M. L.; Munteanu, R.

    2017-06-01

    The paper aims to study a plane system with bars, with certain symmetries. Such problems can be encountered frequently in industry and civil engineering. Considerations related to the economy of the design process, constructive simplicity, cost and logistics make the use of identical parts a frequent procedure. The paper aims to determine the properties of the eigenvalues and eigenmodes for transverse and torsional vibrations of a mechanical system where two of the three component bars are identical. The determination of these properties allows the calculus effort and the computation time and thus increases the accuracy of the results in such matters.

  9. Emittance control of a beam by shaping the transverse charge distribution, using a tomography diagnostic

    International Nuclear Information System (INIS)

    Yakimenko, V.; Babzien, M.; Ben-Zvi, I.; Malone, R.; Wang, X.J.

    1998-06-01

    A high-brightness beam is very important for many applications. A diagnostic that measures the multi-dimensional phase-space density-distribution of the electron bunch is a must for obtaining such beams. Measurement of a slice emittance has been achieved. Tomographic reconstruction of phase space was suggested and implemented using a single quadrupole scan. In the present work the authors give special attention to the accuracy of the phase space reconstruction and present an analysis using a transport line with nine focusing magnets and techniques to control the optical functions and phases. This diagnostic, coupled with control of the radial charge distribution of presents an opportunity to improve the beam brightness. Combining the slice emittance and tomography diagnostics lead to an unprecedented visualization of phase space distributions in 5 dimensional phase-space and an opportunity to perform high-order emittance corrections

  10. Longitudinal and transverse space charge limitations on transport of maximum power beams

    International Nuclear Information System (INIS)

    Khoe, T.K.; Martin, R.L.

    1977-01-01

    The maximum transportable beam power is a critical issue in selecting the most favorable approach to generating ignition pulses for inertial fusion with high energy accelerators. Maschke and Courant have put forward expressions for the limits on transport power for quadrupole and solenoidal channels. Included in a more general way is the self consistent effect of space charge defocusing on the power limit. The results show that no limits on transmitted power exist in principal. In general, quadrupole transport magnets appear superior to solenoids except for transport of very low energy and highly charged particles. Longitudinal space charge effects are very significant for transport of intense beams

  11. A self-consistent nonlinear theory of resistive-wall instability in a relativistic electron beam

    International Nuclear Information System (INIS)

    Uhm, H.S.

    1994-01-01

    A self-consistent nonlinear theory of resistive-wall instability is developed for a relativistic electron beam propagating through a grounded cylindrical resistive tube. The theory is based on the assumption that the frequency of the resistive-wall instability is lower than the cutoff frequency of the waveguide. The theory is concentrated on study of the beam current modulation directly related to the resistive-wall klystron, in which a relativistic electron beam is modulated at the first cavity and propagates downstream through the resistive wall. Because of the self-excitation of the space charge waves by the resistive-wall instability, a highly nonlinear current modulation of the electron beam is accomplished as the beam propagates downstream. A partial integrodifferential equation is obtained in terms of the initial energy modulation (ε), the self-field effects (h), and the resistive-wall effects (κ). Analytically investigating the partial integrodifferential equation, a scaling law of the propagation distance z m at which the maximum current modulation occurs is obtained. It is found in general that the self-field effects dominate over the resistive-wall effects at the beginning of the propagation. As the beam propagates farther downstream, the resistive-wall effects dominate. Because of a relatively large growth rate of the instability, the required tube length of the klystron is short for most applications

  12. Reproducing the nonlinear dynamic behavior of a structured beam with a generalized continuum model

    Science.gov (United States)

    Vila, J.; Fernández-Sáez, J.; Zaera, R.

    2018-04-01

    In this paper we study the coupled axial-transverse nonlinear vibrations of a kind of one dimensional structured solids by application of the so called Inertia Gradient Nonlinear continuum model. To show the accuracy of this axiomatic model, previously proposed by the authors, its predictions are compared with numeric results from a previously defined finite discrete chain of lumped masses and springs, for several number of particles. A continualization of the discrete model equations based on Taylor series allowed us to set equivalent values of the mechanical properties in both discrete and axiomatic continuum models. Contrary to the classical continuum model, the inertia gradient nonlinear continuum model used herein is able to capture scale effects, which arise for modes in which the wavelength is comparable to the characteristic distance of the structured solid. The main conclusion of the work is that the proposed generalized continuum model captures the scale effects in both linear and nonlinear regimes, reproducing the behavior of the 1D nonlinear discrete model adequately.

  13. Giant nonlinear interaction between two optical beams via a quantum dot embedded in a photonic wire

    Science.gov (United States)

    Nguyen, H. A.; Grange, T.; Reznychenko, B.; Yeo, I.; de Assis, P.-L.; Tumanov, D.; Fratini, F.; Malik, N. S.; Dupuy, E.; Gregersen, N.; Auffèves, A.; Gérard, J.-M.; Claudon, J.; Poizat, J.-Ph.

    2018-05-01

    Optical nonlinearities usually appear for large intensities, but discrete transitions allow for giant nonlinearities operating at the single-photon level. This has been demonstrated in the last decade for a single optical mode with cold atomic gases, or single two-level systems coupled to light via a tailored photonic environment. Here, we demonstrate a two-mode giant nonlinearity with a single semiconductor quantum dot (QD) embedded in a photonic wire antenna. We exploit two detuned optical transitions associated with the exciton-biexciton QD level scheme. Owing to the broadband waveguide antenna, the two transitions are efficiently interfaced with two free-space laser beams. The reflection of one laser beam is then controlled by the other beam, with a threshold power as low as 10 photons per exciton lifetime (1.6 nW ). Such a two-color nonlinearity opens appealing perspectives for the realization of ultralow-power logical gates and optical quantum gates, and could also be implemented in an integrated photonic circuit based on planar waveguides.

  14. Differential Polarization Nonlinear Optical Microscopy with Adaptive Optics Controlled Multiplexed Beams

    Directory of Open Access Journals (Sweden)

    Virginijus Barzda

    2013-09-01

    Full Text Available Differential polarization nonlinear optical microscopy has the potential to become an indispensable tool for structural investigations of ordered biological assemblies and microcrystalline aggregates. Their microscopic organization can be probed through fast and sensitive measurements of nonlinear optical signal anisotropy, which can be achieved with microscopic spatial resolution by using time-multiplexed pulsed laser beams with perpendicular polarization orientations and photon-counting detection electronics for signal demultiplexing. In addition, deformable membrane mirrors can be used to correct for optical aberrations in the microscope and simultaneously optimize beam overlap using a genetic algorithm. The beam overlap can be achieved with better accuracy than diffraction limited point-spread function, which allows to perform polarization-resolved measurements on the pixel-by-pixel basis. We describe a newly developed differential polarization microscope and present applications of the differential microscopy technique for structural studies of collagen and cellulose. Both, second harmonic generation, and fluorescence-detected nonlinear absorption anisotropy are used in these investigations. It is shown that the orientation and structural properties of the fibers in biological tissue can be deduced and that the orientation of fluorescent molecules (Congo Red, which label the fibers, can be determined. Differential polarization microscopy sidesteps common issues such as photobleaching and sample movement. Due to tens of megahertz alternating polarization of excitation pulses fast data acquisition can be conveniently applied to measure changes in the nonlinear signal anisotropy in dynamically changing in vivo structures.

  15. Finite Element Model for Nonlinear Analysis of Reinforced Concrete Beams and Plane Frames

    Directory of Open Access Journals (Sweden)

    R.S.B. STRAMANDINOLI

    Full Text Available Abstract In this work, a two-dimensional finite element (FE model for physical and geometric nonlinear analysis of reinforced concrete beams and plane frames, developed by the authors, is presented. The FE model is based on the Euler-Bernoulli Beam Theory, in which shear deformations are neglected. The bar elements have three nodes with a total of seven degrees of freedom. Three Gauss-points are utilized for the element integration, with the element section discretized into layers at each Gauss point (Fiber Model. It is assumed that concrete and reinforcing bars are perfectly bonded, and each section layer is assumed to be under a uniaxial stress-state. Nonlinear constitutive laws are utilized for both concrete and reinforcing steel layers, and a refined tension-stiffening model, developed by the authors, is included. The Total Lagrangean Formulation is adopted for geometric nonlinear consideration and several methods can be utilized to achieve equilibrium convergence of the nonlinear equations. The developed model is implemented into a computer program named ANEST/CA, which is validated by comparison with some tests on RC beams and plane frames, showing an excellent correlation between numerical and experimental results.

  16. Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: from linear to nonlinear regimes.

    Science.gov (United States)

    Zhang, Lifu; Li, Chuxin; Zhong, Haizhe; Xu, Changwen; Lei, Dajun; Li, Ying; Fan, Dianyuan

    2016-06-27

    We have investigated the propagation dynamics of super-Gaussian optical beams in fractional Schrödinger equation. We have identified the difference between the propagation dynamics of super-Gaussian beams and that of Gaussian beams. We show that, the linear propagation dynamics of the super-Gaussian beams with order m > 1 undergo an initial compression phase before they split into two sub-beams. The sub-beams with saddle shape separate each other and their interval increases linearly with propagation distance. In the nonlinear regime, the super-Gaussian beams evolve to become a single soliton, breathing soliton or soliton pair depending on the order of super-Gaussian beams, nonlinearity, as well as the Lévy index. In two dimensions, the linear evolution of super-Gaussian beams is similar to that for one dimension case, but the initial compression of the input super-Gaussian beams and the diffraction of the splitting beams are much stronger than that for one dimension case. While the nonlinear propagation of the super-Gaussian beams becomes much more unstable compared with that for the case of one dimension. Our results show the nonlinear effects can be tuned by varying the Lévy index in the fractional Schrödinger equation for a fixed input power.

  17. Transverse vibrations of shear-deformable beams using a general higher order theory

    Science.gov (United States)

    Kosmatka, J. B.

    1993-01-01

    A general higher order theory is developed to study the static and vibrational behavior of beam structures having an arbitrary cross section that utilizes both out-of-plane shear-dependent warping and in-plane (anticlastic) deformations. The equations of motion are derived via Hamilton's principle, where the full 3D constitutive relations are used. A simplified version of the general higher-order theory is also presented for beams having an arbitrary cross section that includes out-of-plane shear deformation but assumes that stresses within the cross section and in-plane deformations are negligible. This simplified model, which is accurate for long to moderately short wavelengths, offers substantial improvements over existing higher order theories that are limited to beams with thin rectangular cross sections. The current approach will be very useful in the study of thin-wall closed-cell beams such as airfoil-type sections where the magnitude of shear-related cross-sectional warping is significant.

  18. A New Approach for Severity Estimation of Transversal Cracks in Multi-layered Beams

    Directory of Open Access Journals (Sweden)

    Gilbert-Rainer Gillich

    Full Text Available Abstract Nowadays, the damage severity evaluation in mechanical structures is mostly performed by analyzing the natural frequency shift. The non-isotropic materials, as the multi-layered ones, are wide-spread in industrial applications, due to their interesting physic-mechanical properties. Thus, a deeper approach of multi-layered beams becomes an important request in the research domain. This paper introduces a damage severity estimator by expressing the crack evolution as a function of stored energy. It is well known that the energy stored in a beam without damage is greater than the energy of that damaged beam. As a consequence, the beam deflection can be related to the stored energy. In this regard, the possibility to split the damage localization and the damage severity assessment has been proven, and also the graphical evolution of the natural frequency shift has been achieved as a function of the crack depth. The results achieved by the finite element method (FEM and experimental tests are given in tables and graphics. For the first five vibration modes, a comparison was made between frequencies accomplished by analytical, numerical and experimental analyses, in order to give more credibility to the accuracy of the research data presented in this paper.

  19. Analysis of residual stresses on the transverse beam of a casting stand by means of drilling method

    Directory of Open Access Journals (Sweden)

    P. Frankovský

    2014-10-01

    Full Text Available The presented paper demonstrates the application of drilling method in the analysis of residual stresses on the transverse beam of a casting stand. In the initial stage of the analysis the determination of strains was done for individual steps of drilling in the area which was determined by means of numerical analysis. The drilling was carried out gradually by 0,5 mm up to the depth of 5 mm, while the diameter of the drilled hole was 3,2 mm. During the analysis we used the drilling device RS-200, strain indicator P3 and SGD 1-RY21-3/120. The paper presents the development of residual stresses throughout the depth of the drilled hole which were determined according to standard ASTM E837-01, by means of integral method, power series method and by means of Power Series method.

  20. Recent advance to 3 × 10(-5) rad near diffraction-limited beam divergence of dye laser with transverse-discharge flash-lamp pumping.

    Science.gov (United States)

    Trusov, K K

    1994-02-20

    A new experimental setup of a Rhodamine 6G dye laser with a transverse-discharge flash-lamp-pumping system is presented. It differs from a previous setup [Sov. J. Quantum Electron. 16, 468-471 (1989)] in that it has a larger laser beam aperture (32 mm) and higher pumping energy (1 kJ), which made it possible to test the scalability and reach near diffraction-limited laser beam divergence of 3 × 10(-5) rad FWHM at beam energy 1.4 J. The effect of spectral dispersion in the active medium and of other optical elements on the beam divergence is also discussed.

  1. Nonlinear free vibration control of beams using acceleration delayed-feedback control

    International Nuclear Information System (INIS)

    Alhazza, Khaled A; Alajmi, Mohammed; Masoud, Ziyad N

    2008-01-01

    A single-mode delayed-feedback control strategy is developed to reduce the free vibrations of a flexible beam using a piezoelectric actuator. A nonlinear variational model of the beam based on the von Kàrmàn nonlinear type deformations is considered. Using Galerkin's method, the resulting governing partial differential equations of motion are reduced to a system of nonlinear ordinary differential equations. A linear model using the first mode is derived and is used to characterize the damping produced by the controller as a function of the controller's gain and delay. Three-dimensional figures showing the damping magnitude as a function of the controller gain and delay are presented. The characteristic damping of the controller as predicted by the linear model is compared to that calculated using direct long-time integration of a three-mode nonlinear model. Optimal values of the controller gain and delay using both methods are obtained, simulated and compared. To validate the single-mode approximation, numerical simulations are performed using a three-mode full nonlinear model. Results of the simulations demonstrate an excellent controller performance in mitigating the first-mode vibration

  2. Nonlinear finite element modeling of concrete deep beams with openings strengthened with externally-bonded composites

    International Nuclear Information System (INIS)

    Hawileh, Rami A.; El-Maaddawy, Tamer A.; Naser, Mohannad Z.

    2012-01-01

    Highlights: ► A 3D nonlinear FE model is developed of RC deep beams with web openings. ► We used cohesion elements to simulate bond. ► The developed FE model is suitable for analysis of such complex structures. -- Abstract: This paper aims to develop 3D nonlinear finite element (FE) models for reinforced concrete (RC) deep beams containing web openings and strengthened in shear with carbon fiber reinforced polymer (CFRP) composite sheets. The web openings interrupted the natural load path either fully or partially. The FE models adopted realistic materials constitutive laws that account for the nonlinear behavior of materials. In the FE models, solid elements for concrete, multi-layer shell elements for CFRP and link elements for steel reinforcement were used to simulate the physical models. Special interface elements were implemented in the FE models to simulate the interfacial bond behavior between the concrete and CFRP composites. A comparison between the FE results and experimental data published in the literature demonstrated the validity of the computational models in capturing the structural response for both unstrengthened and CFRP-strengthened deep beams with openings. The developed FE models can serve as a numerical platform for performance prediction of RC deep beams with openings strengthened in shear with CFRP composites.

  3. Numerical investigation of beam-driven PWFA in quasi-nonlinear regime

    International Nuclear Information System (INIS)

    Londrillo, P.; Gatti, C.; Ferrario, M.

    2014-01-01

    In beam-driven Plasma Based Wakefield Acceleration (PWFA), the quasi-nonlinear model has been designed to combine high efficient ‘blowout’ regimes, where cold and overdense driving electron beams form a totally rarefied plasma channel, with low charge beam distribution assuring the excited wakefield preserves relevant linear properties. This scheme can have applications in experimental facilities, like SPARC 150 MeV linac at LNF-INFN laboratories, where low-emittance, low-charge narrow electron beams can be produced to be injected on a preformed plasma channel. Here we present a preliminary numerical investigation of this configuration, using the fully 3D ALaDyn PIC code, as a preparatory work to design optimal conditions for the COMB experimental set-up. Specific numerical tools, having computational and diagnostic advantages in PWFA conditions and checks of the numerical outcomes with analytical results, are also presented and discussed

  4. Instability and dynamics of two nonlinearly coupled intense laser beams in a quantum plasma

    International Nuclear Information System (INIS)

    Wang Yunliang; Shukla, P. K.; Eliasson, B.

    2013-01-01

    We consider nonlinear interactions between two relativistically strong laser beams and a quantum plasma composed of degenerate electron fluids and immobile ions. The collective behavior of degenerate electrons is modeled by quantum hydrodynamic equations composed of the electron continuity, quantum electron momentum (QEM) equation, as well as the Poisson and Maxwell equations. The QEM equation accounts the quantum statistical electron pressure, the quantum electron recoil due to electron tunneling through the quantum Bohm potential, electron-exchange, and electron-correlation effects caused by electron spin, and relativistic ponderomotive forces (RPFs) of two circularly polarized electromagnetic (CPEM) beams. The dynamics of the latter are governed by nonlinear wave equations that include nonlinear currents arising from the relativistic electron mass increase in the CPEM wave fields, as well as from the beating of the electron quiver velocity and electron density variations reinforced by the RPFs of the two CPEM waves. Furthermore, nonlinear electron density variations associated with the driven (by the RPFs) quantum electron plasma oscillations obey a coupled nonlinear Schrödinger and Poisson equations. The nonlinearly coupled equations for our purposes are then used to obtain a general dispersion relation (GDR) for studying the parametric instabilities and the localization of CPEM wave packets in a quantum plasma. Numerical analyses of the GDR reveal that the growth rate of a fastest growing parametrically unstable mode is in agreement with the result that has been deduced from numerical simulations of the governing nonlinear equations. Explicit numerical results for two-dimensional (2D) localized CPEM wave packets at nanoscales are also presented. Possible applications of our investigation to intense laser-solid density compressed plasma experiments are highlighted.

  5. Compensating the electron beam energy spread by the natural transverse gradient of laser undulator in all-optical x-ray light sources.

    Science.gov (United States)

    Zhang, Tong; Feng, Chao; Deng, Haixiao; Wang, Dong; Dai, Zhimin; Zhao, Zhentang

    2014-06-02

    All-optical ideas provide a potential to dramatically cut off the size and cost of x-ray light sources to the university-laboratory scale, with the combination of the laser-plasma accelerator and the laser undulator. However, the large longitudinal energy spread of the electron beam from laser-plasma accelerator may hinder the way to high brightness of these all-optical light sources. In this paper, the beam energy spread effect is proposed to be significantly compensated by the natural transverse gradient of a laser undulator when properly transverse-dispersing the electron beam. Theoretical analysis and numerical simulations on conventional laser-Compton scattering sources and high-gain all-optical x-ray free-electron lasers with the electron beams from laser-plasma accelerators are presented.

  6. MEASUREMENT OF THE TRANSVERSE BEAM DYNAMICS IN A TESLA-TYPE SUPERCONDUCTING CAVITY

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [NICADD, DeKalb; Eddy, N. [Fermilab; Edstrom, D. [Fermilab; Lunin, A. [Fermilab; Piot, P. [NICADD, DeKalb; Ruan, J. [Fermilab; Solyak, N. [Fermilab

    2016-09-26

    Superconducting linacs are capable of producing intense, ultra-stable, high-quality electron beams that have widespread applications in Science and Industry. Many project are based on the 1.3-GHz TESLA-type superconducting cavity. In this paper we provide an update on a recent experiment aimed at measuring the transfer matrix of a TESLA cavity at the Fermilab Accelerator Science and Technology (FAST) facility. The results are discussed and compared with analytical and numerical simulations.

  7. Deflection and Supporting Force Analysis of a Slender Beam under Combined Transverse and Tensile Axial Loads

    Science.gov (United States)

    2016-05-01

    force at propped end of beam wall thickness of static pressure pipe applied axial tension force applied cable tension force (...as being encastre, while the opposite end where the cable tension force is being applied was restrained using a roller-type constraint, which...structural configuration shown in Figure 1, whereby the tension loads that exist in the multiple supporting cables have been resolved into a single

  8. The transverse and longitudinal beam characteristics of the PHIN photo-injector at CERN

    CERN Document Server

    Mete, Ö; Dabrowski, A; Divall, M; Döbert, S; Egger, D; Elsener, K; Fedosseev, V; Lefèvre, T; Petrarca, M

    2010-01-01

    A new photo-injector, capable to deliver a long pulse train with a high charge per bunch for CTF3, has been designed and installed by a collaboration between LAL, CCLRC and CERN within the framework of the second Joint Research Activity PHIN of the European CARE program. The demonstration of the high charge and the stability along the pulse train are the important goals for CTF3 and the CLIC drive beam. The nominal beam for CTF3 has an average current of 3.5 A, a 1.5 GHz bunch repetation frequency and a pulse length of 1.27 μs (1908 bunches). The existing CTF3 injector consists of a thermionic gun and a subharmonic bunching system. The PHIN photo-injector is being tested in a dedicated test-stand at CERN to replace the existing CTF3 injector that is producing unwanted satellite bunches during the bunching process. A phase-coding scheme is planned to be implemented to the PHIN laser system providing the required beam temporal structure by CTF3. RF photo-injectors are high-brightness, low-emittance electron so...

  9. Instruments and techniques for analysing the time-resolved transverse phase space distribution of high-brightness electron beams

    International Nuclear Information System (INIS)

    Rudolph, Jeniffa

    2012-01-01

    This thesis deals with the instruments and techniques used to characterise the transverse phase space distribution of high-brightness electron beams. In particular, methods are considered allowing to measure the emittance as a function of the longitudinal coordinate within the bunch (slice emittance) with a resolution in the ps to sub-ps range. The main objective of this work is the analysis of techniques applicable for the time-resolved phase space characterisation for future high-brightness electron beam sources and single-pass accelerators based on these. The competence built up by understanding and comparing different techniques is to be used for the design and operation of slice diagnostic systems for the Berlin Energy Recovery Linac Project (BERLinPro). In the framework of the thesis, two methods applicable for slice emittance measurements are considered, namely the zero-phasing technique and the use of a transverse deflector. These methods combine the conventional quadrupole scan technique with a transfer of the longitudinal distribution into a transverse distribution. Measurements were performed within different collaborative projects. The experimental setup, the measurement itself and the data analysis are discussed as well as measurement results and simulations. In addition, the phase space tomography technique is introduced. In contrast to quadrupole scan-based techniques, tomography is model-independent and can reconstruct the phase space distribution from simple projected measurements. The developed image reconstruction routine based on the Maximum Entropy algorithm is introduced. The quality of the reconstruction is tested using different model distributions, simulated data and measurement data. The results of the tests are presented. The adequacy of the investigated techniques, the experimental procedures as well as the developed data analysis tools could be verified. The experimental and practical experience gathered during this work, the

  10. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S. Y. [Indiana Univ., Bloomington, IN (United States)

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  11. MEASUREMENT OF TRANSVERSE ECHOES IN RHIC

    International Nuclear Information System (INIS)

    FISCHER, W.; SATOGATA, T.; TOMAS, R.

    2005-01-01

    Beam echoes are a very sensitive method to measure diffusion, and longitudinal echo measurements were performed in a number of machines. In RHIC, for the first time, a transverse beam echo was observed after applying a dipole kick followed by a quadrupole .kick. After application of the dipole kick, the dipole moment decohered completely due to lattice nonlinearities. When a quadrupole kick is applied at time τ after the dipole kick, the beam re-cohered at time 2τ thus showing an echo response. We describe the experimental setup and measurement results. In the measurements the dipole and quadrupole kick amplitudes, amplitude dependent tune shift, and the time between dipole and quadrupole kick were varied. In addition, measurements were taken with gold bunches of different intensities. These should exhibit different transverse diffusion rates due to intra-beam scattering

  12. Efficient model for low-energy transverse beam dynamics in a nine-cell 1.3 GHz cavity

    International Nuclear Information System (INIS)

    Hellert, Thorsten; Dohlus, Martin; Decking, Winfried

    2017-10-01

    FLASH and the European XFEL are SASE-FEL user facilities, at which superconducting TESLA cavities are operated in a pulsed mode to accelerate long bunch-trains. Several cavities are powered by one klystron. While the low-level rf system is able to stabilize the vector sum of the accelerating gradient of one rf station sufficiently, the rf parameters of individual cavities vary within the bunch-train. In correlation with misalignments, intrabunch-train trajectory variations are induced. An efficient model is developed to describe the effect at low beam energy, using numerically adjusted transfer matrices and discrete coupler kick coefficients, respectively. Comparison with start-to-end tracking and dedicated experiments at the FLASH injector will be shown. The short computation time of the derived model allows for comprehensive numerical studies on the impact of misalignments and variable rf parameters on the transverse intrabunch-train beam stability at the injector module. Results from both, statistical multibunch performance studies and the deduction of misalignments from multibunch experiments are presented.

  13. Efficient model for low-energy transverse beam dynamics in a nine-cell 1.3 GHz cavity

    Energy Technology Data Exchange (ETDEWEB)

    Hellert, Thorsten; Dohlus, Martin; Decking, Winfried

    2017-10-15

    FLASH and the European XFEL are SASE-FEL user facilities, at which superconducting TESLA cavities are operated in a pulsed mode to accelerate long bunch-trains. Several cavities are powered by one klystron. While the low-level rf system is able to stabilize the vector sum of the accelerating gradient of one rf station sufficiently, the rf parameters of individual cavities vary within the bunch-train. In correlation with misalignments, intrabunch-train trajectory variations are induced. An efficient model is developed to describe the effect at low beam energy, using numerically adjusted transfer matrices and discrete coupler kick coefficients, respectively. Comparison with start-to-end tracking and dedicated experiments at the FLASH injector will be shown. The short computation time of the derived model allows for comprehensive numerical studies on the impact of misalignments and variable rf parameters on the transverse intrabunch-train beam stability at the injector module. Results from both, statistical multibunch performance studies and the deduction of misalignments from multibunch experiments are presented.

  14. Nonlinear focal shift beyond the geometrical focus in moderately focused acoustic beams.

    Science.gov (United States)

    Camarena, Francisco; Adrián-Martínez, Silvia; Jiménez, Noé; Sánchez-Morcillo, Víctor

    2013-08-01

    The phenomenon of the displacement of the position along the axis of the pressure, intensity, and radiation force maxima of focused acoustic beams under increasing driving voltages (nonlinear focal shift) is studied for the case of a moderately focused beam. The theoretical and experimental results show the existence of this shift along the axis when the initial pressure in the transducer increases until the acoustic field reaches the fully developed nonlinear regime of propagation. Experimental data show that at high amplitudes and for moderate focusing, the position of the on-axis pressure maximum and radiation force maximum can surpass the geometrical focal length. On the contrary, the on-axis pressure minimum approaches the transducer under increasing driving voltages, increasing the distance between the positive and negative peak pressure in the beam. These results are in agreement with numerical KZK model predictions and the existed data of other authors and can be explained according to the effect of self-refraction characteristic of the nonlinear regime of propagation.

  15. Nonlinear static analysis of steel frames with semi rigid beam to column connections using cruciform element

    Directory of Open Access Journals (Sweden)

    Vahid Reza Afkhami

    2017-12-01

    Full Text Available In the steel frames, beam-column connections are traditionally assumed to be rigid or pinned, but in the steel frames, most types of beam-column connections are semi-rigid. Recent studies and some new codes, especially EC3 and EC4, include methods and formulas to estimate the resistance and stiffness of the panel zone. Because of weaknesses of EC3 and EC4 in some cases, Bayo et al.  proposed a new component-based method (cruciform element method to model internal and external semi-rigid connections that revived and modified EC methods. The nonlinear modelling of structures plays an important role in the analysis and design of structures and nonlinear static analysis is a rather simple and efficient technique for analysis of structures. This paper presents nonlinear static (pushover analysis technique by new nonlinearity factor and Bayo et al. model of two types of semi-rigid connections, end plate connection and top and seat angles connection. Two types of lateral loading, uniform and triangular distributions are considered.  Results show that the frames with top and seat angles connection have fewer initial stiffness than frames with semi-rigid connection and P-Δ effect more decreases base shear capacity in the case of top and seat angles connection. P-Δ effect in decrease of base shear capacity increases with the increase of number of stories.

  16. Simulation of Transverse Multi-Bunch Instabilities of Proton Beams in LHC

    CERN Document Server

    Koschik, Alexander; Zotter, Bruno

    The CERN Large Hadron Collider (LHC) is designed for highest luminosity and therefore requires operation with a large number of bunches and high intensities. Its performance could be limited by the electromagnetic interaction between the charged particle beam and its surroundings which cause collective instabilities. This thesis describes methods of simulating and analyzing multi-bunch instabilities in circular accelerators and storage rings. The simulation models as well as analyzing tools presented here, also facilitate the interpretation of measurements in multi-bunch machines. The 3-dimensional, multi-bunch tracking program MultiTRISIM was developed, based on its single-bunch predecessor TRISIM3D. It allows the exploration of longrange effects in round or flat vacuum chambers for equidistant or uneven filling schemes. Previous computer simulations of collective effects concentrated mainly on instabilities of single or few bunches in electron storage rings. There, the strong radiation damping reduces the r...

  17. Transverse and Longitudinal Beam Collimation in a High-Energy Proton Collider (LHC)

    CERN Document Server

    Catalan-Lasheras, N

    1998-01-01

    In the Large Hadron Collider (LHC), particles from the beam halo might potentially impinge on the vacuum chamber, effecting harmful transitions of the superconducting magnets ("quenches"). This can be prevented by the collimation system which confines the particle losses to special, non superconducting sections of the machine. Due to the high energy and intensity of the LHC, any removal system must attain an unprecedented efficiency. The cleaning system was designed on the basis of purely geometric and optical models which neglect non linear effects and assume perfectly absorbing materials. In a second step, true scattering in matter is considered. A series of machine developments (MD) were carried out in 1996-7 with the principal aim of validating the design assumptions. A collimation system comparable to that of the LHC was employed. The predictions of the numerical model used to compute the LHC collimation system efficiency were compared with the data acquired during the measurement sessions. The experimen...

  18. Nonlinear analysis of reinforced concrete beam with/without tension stiffening effect

    International Nuclear Information System (INIS)

    Dede, T.; Ayvaz, Y.

    2009-01-01

    The aim of this paper is to do materially nonlinear failure analysis of RC beam by using finite element method. In the finite element modeling, two different approaches and different tension stress-strain models with/without tension stiffening effect are used by considering two different mesh sizes. In the first approach, the material matrices of concrete and reinforcement are constructed separately, and then superimposed to obtain the element stiffness matrix. In the second approach, the reinforcement is assumed to be uniformly distributed throughout the beam. So, the beam is modeled as a single composite element with increasing the modulus of elasticity of concrete by considering the reinforcement ratio. For these two approaches, elastic-perfectly plastic stress-strain relationship is used for concrete in compression. For the concrete in tension, a stress-strain relationship with/without tension stiffening is used. It is concluded that the approaches and the models considered in this study can be effectively used in the materially nonlinear analysis of RC beams.

  19. Nonlinear two-stream interaction between a cold, relativistic electron beam and a collisional plasma-Astron experiment

    International Nuclear Information System (INIS)

    Newberger, B.S.; Thode, L.E.

    1979-05-01

    Experiments on the two-stream instability of a relativistic electron beam propagating through a neutral gas, carried out with the Lawrence Livermore Laboratory Astron beam, have been analyzed using a nonlinear saturation model for a cold beam. The behavior of the observed microwave emission due to the instability is in good agreement with that of the beam energy loss. Collisions on the plasma electrons weaken the nonlinear state of the instability but do not stabilize the mode. The beam essentially acts as if it were cold, a result substantiated by linear theory for waves propagating along the beam. In order to predict the effect of both beam momentum scatter and plasma electron collisions on the stability of the mode in future experiments a full two-dimensional linear theory must be developed

  20. Stabilization of exact nonlinear Timoshenko beams in space by boundary feedback

    Science.gov (United States)

    Do, K. D.

    2018-05-01

    Boundary feedback controllers are designed to stabilize Timoshenko beams with large translational and rotational motions in space under external disturbances. The exact nonlinear partial differential equations governing motion of the beams are derived and used in the control design. The designed controllers guarantee globally practically asymptotically (and locally practically exponentially) stability of the beam motions at the reference state. The control design, well-posedness and stability analysis are based on various relationships between the earth-fixed and body-fixed coordinates, Sobolev embeddings, and a Lyapunov-type theorem developed to study well-posedness and stability for a class of evolution systems in Hilbert space. Simulation results are included to illustrate the effectiveness of the proposed control design.

  1. Laser damage metrology in biaxial nonlinear crystals using different test beams

    Science.gov (United States)

    Hildenbrand, Anne; Wagner, Frank R.; Akhouayri, Hassan; Natoli, Jean-Yves; Commandre, Mireille

    2008-01-01

    Laser damage measurements in nonlinear optical crystals, in particular in biaxial crystals, may be influenced by several effects proper to these materials or greatly enhanced in these materials. Before discussion of these effects, we address the topic of error bar determination for probability measurements. Error bars for the damage probabilities are important because nonlinear crystals are often small and expensive, thus only few sites are used for a single damage probability measurement. We present the mathematical basics and a flow diagram for the numerical calculation of error bars for probability measurements that correspond to a chosen confidence level. Effects that possibly modify the maximum intensity in a biaxial nonlinear crystal are: focusing aberration, walk-off and self-focusing. Depending on focusing conditions, propagation direction, polarization of the light and the position of the focus point in the crystal, strong aberrations may change the beam profile and drastically decrease the maximum intensity in the crystal. A correction factor for this effect is proposed, but quantitative corrections are not possible without taking into account the experimental beam profile after the focusing lens. The characteristics of walk-off and self-focusing have quickly been reviewed for the sake of completeness of this article. Finally, parasitic second harmonic generation may influence the laser damage behavior of crystals. The important point for laser damage measurements is that the amount of externally observed SHG after the crystal does not correspond to the maximum amount of second harmonic light inside the crystal.

  2. Modulation Instability of Copropagating Optical Beams in Fractional Coupled Nonlinear Schrödinger Equations

    Science.gov (United States)

    Zhang, Jinggui

    2018-06-01

    In this paper, we investigate the dynamical behaviors of the modulation instability (MI) of copropagating optical beams in fractional coupled nonlinear Schrödinger equations (NLSE) with the aim of revealing some novel properties different from those in the conventional coupled NLSE. By applying the standard linear stability method, we first derive an expression for the gain resulting from the instability induced by cross-phase modulation (CPM) in the presence of the Lévy indexes related to fractional effects. It is found that the modulation instability of copropagating optical beams still occurs even in the fractional NLSE with self-defocusing nonlinearity. Then, the analysis of our results further reveals that such Lévy indexes increase the fastest growth frequency and the bandwidth of conventional instability not only for the self-focusing case but also for the self-defocusing case, but do not influence the corresponding maximum gain. Numerical simulations are performed to confirm theoretical predictions. These findings suggest that the novel fractional physical settings may open up new possibilities for the manipulation of MI and nonlinear waves.

  3. Geometrically nonlinear resonance of higher-order shear deformable functionally graded carbon-nanotube-reinforced composite annular sector plates excited by harmonic transverse loading

    Science.gov (United States)

    Gholami, Raheb; Ansari, Reza

    2018-02-01

    This article presents an attempt to study the nonlinear resonance of functionally graded carbon-nanotube-reinforced composite (FG-CNTRC) annular sector plates excited by a uniformly distributed harmonic transverse load. To this purpose, first, the extended rule of mixture including the efficiency parameters is employed to approximately obtain the effective material properties of FG-CNTRC annular sector plates. Then, the focus is on presenting the weak form of discretized mathematical formulation of governing equations based on the variational differential quadrature (VDQ) method and Hamilton's principle. The geometric nonlinearity and shear deformation effects are considered based on the von Kármán assumptions and Reddy's third-order shear deformation plate theory, respectively. The discretization process is performed via the generalized differential quadrature (GDQ) method together with numerical differential and integral operators. Then, an efficient multi-step numerical scheme is used to obtain the nonlinear dynamic behavior of the FG-CNTRC annular sector plates near their primary resonance as the frequency-response curve. The accuracy of the present results is first verified and then a parametric study is presented to show the impacts of CNT volume fraction, CNT distribution pattern, geometry of annular sector plate and sector angle on the nonlinear frequency-response curve of FG-CNTRC annular sector plates with different edge supports.

  4. Nonlinear interaction of a parallel-flow relativistic electron beam with a plasma

    International Nuclear Information System (INIS)

    Jungwirth, K.; Koerbel, S.; Simon, P.; Vrba, P.

    1975-01-01

    Nonlinear evolution of single-mode high-frequency instabilities (ω approximately ksub(parallel)vsub(b)) excited by a parallel-flow high-current relativistic electron beam in a magnetized plasma is investigated. Fairly general dimensionless equations are derived. They describe both the temporal and the spatial evolution of amplitude and phase of the fundamental wave. Numerically, the special case of excitation of the linearly most unstable mode is solved in detail assuming that the wave energy dissipation is negligible. Then the strength of interaction and the relativistic properties of the beam are fully respected by a single parameter lambda. The value of lambda ensuring the optimum efficiency of the wave excitation as well as the efficiency of the self-acceleration of some beam electrons at higher values of lambda>1 are determined in the case of a fully compensated relativistic beam. Finally, the effect of the return current dissipation is also included (phenomenologically) into the theoretical model, its role for the beam-plasma interaction being checked numerically. (J.U.)

  5. Higher order mode spectra and the dependence of localized dipole modes on the transverse beam position in third harmonic superconducting cavities at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pei [Manchester Univ. (United Kingdom); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Baboi, Nicoleta [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Jones, Roger M. [The Cockcroft Institute, Daresbury (United Kingdom)

    2012-06-15

    An electron beam entering an accelerating cavity excites a wakefield. This wakefield can be decomposed into a series of multi-poles or modes. The dominant component of the transverse wakefield is dipole. This report summarizes the higher order mode (HOM) signals of the third harmonic cavities of FLASH measured at various stages: transmission measurements in the single cavity test stand at Fermilab, at CMTB (Cryo- Module Test Bench) and at FLASH, and beam-excited measurements at FLASH. Modes in the first two dipole bands and the fifth dipole band have been identified using a global Lorentzian fit technique. The beam-pipe modes at approximately 4 GHz and some modes in the fifth dipole band have been observed as localized modes, while the first two dipole bands, containing some strong coupling cavity modes, propagate. This report also presents the dependence of the localized dipole modes on the transverse beam position. Linear dependence for various modes has been observed. This makes them suitable for beam position diagnostics. These modes, together with some propagating, strong coupling modes, have been considered in the design of a dedicated electronics for beam diagnostics with HOMs for the third harmonic cavities.

  6. The nonlinear theory of slow-wave electron cyclotron masers with inclusion of the beam velocity spread

    International Nuclear Information System (INIS)

    Kong, Ling-Bao; Wang, Hong-Yu; Hou, Zhi-Ling; Jin, Hai-Bo; Du, Chao-Hai

    2013-01-01

    The nonlinear theory of slow-wave electron cyclotron masers (ECM) with an initially straight electron beam is developed. The evolution equation of the nonlinear beam electron energy is derived. The numerical studies of the slow-wave ECM efficiency with inclusion of Gaussian beam velocity spread are presented. It is shown that the velocity spread reduces the interaction efficiency. -- Highlights: •The theory of slow-wave electron cyclotron masers is considered. •The calculation of efficiency under the resonance condition is presented. •The efficiency under Gaussian velocity spreads has been obtained

  7. The nonlinear theory of slow-wave electron cyclotron masers with inclusion of the beam velocity spread

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Ling-Bao, E-mail: konglingbao@gmail.com [School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemicals Assessment, Beijing University of Chemical Technology, Beijing 100029 (China); Wang, Hong-Yu [School of Physics, Anshan Normal University, Anshan 114005 (China); Hou, Zhi-Ling, E-mail: houzl@mail.buct.edu.cn [School of Science, Beijing University of Chemical Technology, Beijing 100029 (China); Beijing Key Laboratory of Environmentally Harmful Chemicals Assessment, Beijing University of Chemical Technology, Beijing 100029 (China); Jin, Hai-Bo [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Du, Chao-Hai [Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-12-15

    The nonlinear theory of slow-wave electron cyclotron masers (ECM) with an initially straight electron beam is developed. The evolution equation of the nonlinear beam electron energy is derived. The numerical studies of the slow-wave ECM efficiency with inclusion of Gaussian beam velocity spread are presented. It is shown that the velocity spread reduces the interaction efficiency. -- Highlights: •The theory of slow-wave electron cyclotron masers is considered. •The calculation of efficiency under the resonance condition is presented. •The efficiency under Gaussian velocity spreads has been obtained.

  8. Derivation of nonlinear wave equations for ultrasound beam in nonuniform bubbly liquids

    Science.gov (United States)

    Kanagawa, Tetsuya; Yano, Takeru; Kawahara, Junya; Kobayashi, Kazumichi; Watanabe, Masao; Fujikawa, Shigeo

    2012-09-01

    Weakly nonlinear propagation of diffracted ultrasound beams in a nonuniform bubbly liquid is theoretically studied based on the method of multiple scales with the set of scaling relations of some physical parameters. It is assumed that the spatial distribution of the number density of bubbles in an initial state at rest is a slowly varying function of space coordinates and the amplitude of its variation is small compared with a mean number density. As a result, a Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation with dispersion and nonuniform effects for a low frequency case and a nonlinear Schrödinger (NLS) equation with dissipation, diffraction, and nonuniform effects for a high frequency case, are derived from the basic equations of bubbly flows.

  9. Second order nonlinear optical properties of zinc oxide films deposited by low temperature dual ion beam sputtering

    International Nuclear Information System (INIS)

    Larciprete, M.C.; Passeri, D.; Michelotti, F.; Paoloni, S.; Sibilia, C.; Bertolotti, M.; Belardini, A.; Sarto, F.; Somma, F.; Lo Mastro, S.

    2005-01-01

    We investigated second order optical nonlinearity of zinc oxide thin films, grown on glass substrates by the dual ion beam sputtering technique under different deposition conditions. Linear optical characterization of the films was carried out by spectrophotometric optical transmittance and reflectance measurements, giving the complex refractive index dispersion. Resistivity of the films was determined using the four-point probe sheet resistance method. Second harmonic generation measurements were performed by means of the Maker fringes technique where the fundamental beam was originated by nanosecond laser at λ=1064 nm. We found a relatively high nonlinear optical response, and evidence of a dependence of the nonlinear coefficient on the deposition parameters for each sample. Moreover, the crystalline properties of the films were investigated by x-ray diffraction measurements and correlation with second order nonlinearity were analyzed. Finally, we investigated the influence of the oxygen flow rate during the deposition process on both the second order nonlinearity and the structural properties of the samples

  10. Property investigations of proton-proton reaction in dependence of the transverse momentum of a single particle for a beam momentum of 24 GeV/c

    International Nuclear Information System (INIS)

    Geist, W.M.

    1976-01-01

    This study is based on data produced in an experiment for the investigation of proton-proton reactions at a beam momentum of 24 GeV/c. In particular, the dependence of final state properties on the transverse momentum of a chosen secondary particle (trigger particle) is considered. The study has four parts: First, experimental procedures of selection, cleaning and correction of the data are developed and applied for exclusive and inclusive reactions. Then the description of a model with minimum correlation between two particles is given. In the third section, the mean charged multiplicities of inclusive reactions are measured and interpreted as a function of the transverse momentum of the trigger particle. A complete event structure for quasi-inclusive reactions is given in the last section. Much emphasis is placed on the investigation of events comprising the production of a particle with high transverse momentum (more than 1 GeV/c). (orig./WL) [de

  11. Quasi-periodic solutions of nonlinear beam equation with prescribed frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jing [College of Information Technology, Jilin Agricultural University, Changchun 130118 (China); Gao, Yixian, E-mail: gaoyx643@nenu.edu.cn; Li, Yong [School of Mathematics and Statistics, and Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun 130024 (China)

    2015-05-15

    Consider the one dimensional nonlinear beam equation u{sub tt} + u{sub xxxx} + mu + u{sup 3} = 0 under Dirichlet boundary conditions. We show that for any m > 0 but a set of small Lebesgue measure, the above equation admits a family of small-amplitude quasi-periodic solutions with n-dimensional Diophantine frequencies. These Diophantine frequencies are the small dilation of a prescribed Diophantine vector. The proofs are based on an infinite dimensional Kolmogorov-Arnold-Moser iteration procedure and a partial Birkhoff normal form. .

  12. Quasi-periodic solutions of nonlinear beam equation with prescribed frequencies

    International Nuclear Information System (INIS)

    Chang, Jing; Gao, Yixian; Li, Yong

    2015-01-01

    Consider the one dimensional nonlinear beam equation u tt + u xxxx + mu + u 3 = 0 under Dirichlet boundary conditions. We show that for any m > 0 but a set of small Lebesgue measure, the above equation admits a family of small-amplitude quasi-periodic solutions with n-dimensional Diophantine frequencies. These Diophantine frequencies are the small dilation of a prescribed Diophantine vector. The proofs are based on an infinite dimensional Kolmogorov-Arnold-Moser iteration procedure and a partial Birkhoff normal form. 

  13. Progresses in the studies of adiabatic splitting of charged particle beams by crossing nonlinear resonances

    Directory of Open Access Journals (Sweden)

    A. Franchi

    2009-01-01

    Full Text Available The multiturn extraction from a circular particle accelerator is performed by trapping the beam inside stable islands of the horizontal phase space. In general, by crossing a resonance of order n, n+1 beamlets are created whenever the resonance is stable, whereas if the resonance is unstable the beam is split in n parts. Islands are generated by nonlinear magnetic fields, whereas the trapping is realized by means of a given tune variation so to cross adiabatically a resonance. Experiments at the CERN Proton Synchrotron carried out in 2007 gave the evidence of protons trapped in stable islands while crossing the one-third and one-fifth resonances. Dedicated experiments were also carried out to study the trapping process and its reversibility properties. The results of these measurement campaigns are presented and discussed in this paper.

  14. Progresses in the Studies of Adiabatic Splitting of Charged Particles Beams by Crossing Nonlinear Resonances

    CERN Document Server

    Franchi, A; Giovannozzi, M; CERN. Geneva. BE Department

    2009-01-01

    The multi-turn extraction from a circular particle accelerator is performed by trapping the beam inside stable islands of the horizontal phase space. In general, by crossing a resonance of order n, n+1 beamlets are created whenever the resonance is stable, whereas if the resonance is unstable the beam is split in n parts. Islands are generated by non-linear magnetic fields, whereas the trapping is realized by means of a given tune variation so to cross adiabatically a resonance. Experiments at the CERN Proton Synchrotron carried out in 2007 gave the evidence of protons trapped in stable islands while crossing the one-third and one-fifth resonances. Dedicated experiments were also carried out to study the trapping process and its reversibility properties. The results of these measurement campaigns are presented and discussed in this paper.

  15. Nonlinear effects in optical pumping of a cold and slow atomic beam

    KAUST Repository

    Porfido, N.

    2015-10-12

    By photoionizing hyperfine (HF) levels of the Cs state 62P3/2 in a slow and cold atom beam, we find how their population depends on the excitation laser power. The long time (around 180μs) spent by the slow atoms inside the resonant laser beam is large enough to enable exploration of a unique atom-light interaction regime heavily affected by time-dependent optical pumping. We demonstrate that, under such conditions, the onset of nonlinear effects in the population dynamics and optical pumping occurs at excitation laser intensities much smaller than the conventional respective saturation values. The evolution of population within the HF structure is calculated by numerical integration of the multilevel optical Bloch equations. The agreement between numerical results and experiment outcomes is excellent. All main features in the experimental findings are explained by the occurrence of “dark” and “bright” resonances leading to power-dependent branching coefficients.

  16. Electron beam instabilities in unmagnetized plasmas via the Stieltjes transform (linear theory and nonlinear mode coupling)

    International Nuclear Information System (INIS)

    Krishan, S.

    2007-01-01

    The Stieltjes transform has been used in place of a more common Laplace transform to determine the time evolution of the self-consistent field (SCF) of an unmagnetized semi-infinite plasma, where the plasma electrons together with a primary and a low-density secondary electron beam move perpendicular to the boundary surface. The secondary beam is produced when the primary beam strikes the grid. Such a plasma system has been investigated by Griskey and Stanzel [M. C. Grisky and R. L. Stenzel, Phys. Rev. Lett. 82, 556 (1999)]. The physical phenomenon, observed in their experiment, has been named by them as ''secondary beam instability.'' The character of the instability observed in the experiment is not the same as predicted by the conventional treatments--the field amplitude does not grow with time. In the frequency spectrum, the theory predicts peak values in the amplitude of SCF at the plasma frequency of plasma and secondary beam electrons, decreasing above and below it. The Stieltjes transform for functions, growing exponentially in the long time limit, does not exist, while the Laplace transform technique gives only exponentially growing solutions. Therefore, it should be interesting to know the kind of solutions that an otherwise physically unstable plasma will yield. In the high-frequency limit, the plasma has been found to respond to any arbitrary frequency of the initial field differentiated only by the strength of the resulting SCF. The condition required for exponential growth in the conventional treatments, and the condition for maximum amplitude (with respect to frequency) in the present treatment, have been found to be the same. Nonlinear mode coupling between the modes excited by the plasma electrons and the low-density secondary beam gives rise to two frequency-dependent peaks in the field amplitude, symmetrically located about the much stronger peak due to the plasma electrons, as predicted by the experiment

  17. Hydrophone area-averaging correction factors in nonlinearly generated ultrasonic beams

    International Nuclear Information System (INIS)

    Cooling, M P; Humphrey, V F; Wilkens, V

    2011-01-01

    The nonlinear propagation of an ultrasonic wave can be used to produce a wavefield rich in higher frequency components that is ideally suited to the calibration, or inter-calibration, of hydrophones. These techniques usually use a tone-burst signal, limiting the measurements to harmonics of the fundamental calibration frequency. Alternatively, using a short pulse enables calibration at a continuous spectrum of frequencies. Such a technique is used at PTB in conjunction with an optical measurement technique to calibrate devices. Experimental findings indicate that the area-averaging correction factor for a hydrophone in such a field demonstrates a complex behaviour, most notably varying periodically between frequencies that are harmonics of the centre frequency of the original pulse and frequencies that lie midway between these harmonics. The beam characteristics of such nonlinearly generated fields have been investigated using a finite difference solution to the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for a focused field. The simulation results are used to calculate the hydrophone area-averaging correction factors for 0.2 mm and 0.5 mm devices. The results clearly demonstrate a number of significant features observed in the experimental investigations, including the variation with frequency, drive level and hydrophone element size. An explanation for these effects is also proposed.

  18. Hydrophone area-averaging correction factors in nonlinearly generated ultrasonic beams

    Science.gov (United States)

    Cooling, M. P.; Humphrey, V. F.; Wilkens, V.

    2011-02-01

    The nonlinear propagation of an ultrasonic wave can be used to produce a wavefield rich in higher frequency components that is ideally suited to the calibration, or inter-calibration, of hydrophones. These techniques usually use a tone-burst signal, limiting the measurements to harmonics of the fundamental calibration frequency. Alternatively, using a short pulse enables calibration at a continuous spectrum of frequencies. Such a technique is used at PTB in conjunction with an optical measurement technique to calibrate devices. Experimental findings indicate that the area-averaging correction factor for a hydrophone in such a field demonstrates a complex behaviour, most notably varying periodically between frequencies that are harmonics of the centre frequency of the original pulse and frequencies that lie midway between these harmonics. The beam characteristics of such nonlinearly generated fields have been investigated using a finite difference solution to the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for a focused field. The simulation results are used to calculate the hydrophone area-averaging correction factors for 0.2 mm and 0.5 mm devices. The results clearly demonstrate a number of significant features observed in the experimental investigations, including the variation with frequency, drive level and hydrophone element size. An explanation for these effects is also proposed.

  19. Investigation of focused and unfocused transducer beam patterns in moderately nonlinear absorbing media

    Science.gov (United States)

    Kharin, Nikolay A.

    2001-05-01

    The novel solution of the KZK equation for acoustic pressure of the second harmonic in slightly focused beam of a circular transducer was obtained in a closed form for moderately nonlinear absorbing media (Gol'dberg numbers ~ 1). The solution is based on the method of slowly changing wave profile in combination with the method of successive approximations. Two pairs of transducers (Valpey-Fisher Corp.) Were compared to investigate the influence of focusing on the applicability of the moderate nonlinearity approach. The first pair was of 0.25' diameter and the second was of 0.5' diameter. Both pairs has one transducer with flat surface and the other geometrically focused at 4'. The central frequency for all transducers was 5 MHz. Measurements were undertaken in the blood-mimicking solution of water and glycerine. The results demonstrated that for slightly focused transducers with circular apertures, the moderate nonlinearity approach is still valid, as it was proved for flat sources with the same source level, despite the higher pressures in the focal region. The peak pressure for the weakly focused system occurs at a shorter range than focal length.

  20. GPU-Powered Modelling of Nonlinear Effects due to Head-On Beam-Beam Interactions in High-Energy Hadron Colliders.

    CERN Document Server

    Furuseth, Sondre

    2017-01-01

    The performance of high-energy circular hadron colliders, as the Large Hadron Collider, is limited by beam-beam interactions. The strongly nonlinear force between the two opposing beams causes diverging Hamiltonians and resonances, which can lead to a reduction of the lifetime of the beams. The nonlinearity makes the effect of the force difficult to study analytically, even at first order. Numerical models are therefore needed to evaluate the overall effect of different configurations of the machines. This report discusses results from an implementation of the weak-strong model, studying the effects of head-on beam-beam interactions. The assumptions has been shown to be valid for configurations where the growth and losses of the beam are small. The tracking has been done using an original code which applies graphic cards to reduce the computation time. The bunches in the beams have been modelled cylindrically symmetrical, based on a Gaussian distribution in three dimensions. This choice fits well with bunches...

  1. APPLICATION OF FINITE ELEMENT METHOD TAKING INTO ACCOUNT PHYSICAL AND GEOMETRIC NONLINEARITY FOR THE CALCULATION OF PRESTRESSED REINFORCED CONCRETE BEAMS

    Directory of Open Access Journals (Sweden)

    Vladimir P. Agapov

    2017-01-01

    Full Text Available Abstract. Objectives Modern building codes prescribe the calculation of building structures taking into account the nonlinearity of deformation. To achieve this goal, the task is to develop a methodology for calculating prestressed reinforced concrete beams, taking into account physical and geometric nonlinearity. Methods The methodology is based on nonlinear calculation algorithms implemented and tested in the computation complex PRINS (a program for calculating engineering constructions for other types of construction. As a tool for solving this problem, the finite element method is used. Non-linear calculation of constructions is carried out by the PRINS computational complex using the stepwise iterative method. In this case, an equation is constructed and solved at the loading step, using modified Lagrangian coordinates. Results The basic formulas necessary for both the formation and the solution of a system of nonlinear algebraic equations by the stepwise iteration method are given, taking into account the loading, unloading and possible additional loading. A method for simulating prestressing is described by setting the temperature action on the reinforcement and stressing steel rod. Different approaches to accounting for physical and geometric nonlinearity of reinforced concrete beam rods are considered. A calculation example of a flat beam is given, in which the behaviour of the beam is analysed at various stages of its loading up to destruction. Conclusion A program is developed for the calculation of flat and spatially reinforced concrete beams taking into account the nonlinearity of deformation. The program is adapted to the computational complex PRINS and as part of this complex is available to a wide range of engineering, scientific and technical specialists. 

  2. The existence of periodic solutions for nonlinear beam equations on Td by a para-differential method

    Science.gov (United States)

    Chen, Bochao; Li, Yong; Gao, Yixian

    2018-05-01

    This paper focuses on the construction of periodic solutions of nonlinear beam equations on the $d$-dimensional tori. For a large set of frequencies, we demonstrate that an equivalent form of the nonlinear equations can be obtained by a para-differential conjugation. Given the non-resonant conditions on each finite dimensional subspaces, it is shown that the periodic solutions can be constructed for the block diagonal equation by a classical iteration scheme.

  3. A Lattice-Boltzmann model to simulate diffractive nonlinear ultrasound beam propagation in a dissipative fluid medium

    Science.gov (United States)

    Abdi, Mohamad; Hajihasani, Mojtaba; Gharibzadeh, Shahriar; Tavakkoli, Jahan

    2012-12-01

    Ultrasound waves have been widely used in diagnostic and therapeutic medical applications. Accurate and effective simulation of ultrasound beam propagation and its interaction with tissue has been proved to be important. The nonlinear nature of the ultrasound beam propagation, especially in the therapeutic regime, plays an important role in the mechanisms of interaction with tissue. There are three main approaches in current computational fluid dynamics (CFD) methods to model and simulate nonlinear ultrasound beams: macroscopic, mesoscopic and microscopic approaches. In this work, a mesoscopic CFD method based on the Lattice-Boltzmann model (LBM) was investigated. In the developed method, the Boltzmann equation is evolved to simulate the flow of a Newtonian fluid with the collision model instead of solving the Navier-Stokes, continuity and state equations which are used in conventional CFD methods. The LBM has some prominent advantages over conventional CFD methods, including: (1) its parallel computational nature; (2) taking microscopic boundaries into account; and (3) capability of simulating in porous and inhomogeneous media. In our proposed method, the propagating medium is discretized with a square grid in 2 dimensions with 9 velocity vectors for each node. Using the developed model, the nonlinear distortion and shock front development of a finiteamplitude diffractive ultrasonic beam in a dissipative fluid medium was computed and validated against the published data. The results confirm that the LBM is an accurate and effective approach to model and simulate nonlinearity in finite-amplitude ultrasound beams with Mach numbers of up to 0.01 which, among others, falls within the range of therapeutic ultrasound regime such as high intensity focused ultrasound (HIFU) beams. A comparison between the HIFU nonlinear beam simulations using the proposed model and pseudospectral methods in a 2D geometry is presented.

  4. Multi-cracks identification based on the nonlinear vibration response of beams subjected to moving harmonic load

    Directory of Open Access Journals (Sweden)

    Chouiyakh H.

    2016-01-01

    Full Text Available The aim of this work is to investigate the nonlinear forced vibration of beams containing an arbitrary number of cracks and to perform a multi-crack identification procedure based on the obtained signals. Cracks are assumed to be open and modelled trough rotational springs linking two adjacent sub-beams. Forced vibration analysis is performed by a developed time differential quadrature method. The obtained nonlinear vibration responses are analyzed by Huang Hilbert Transform. The instantaneous frequency is used as damage index tool for cracks detection.

  5. Nonlinear electron-acoustic rogue waves in electron-beam plasma system with non-thermal hot electrons

    Science.gov (United States)

    Elwakil, S. A.; El-hanbaly, A. M.; Elgarayh, A.; El-Shewy, E. K.; Kassem, A. I.

    2014-11-01

    The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, non-thermal hot electrons obeying a non-thermal distribution, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles on the electron beam and energetic population parameter are discussed. The results of the present investigation may be applicable in auroral zone plasma.

  6. Transverse Localization of Light

    NARCIS (Netherlands)

    Raedt, Hans De; Lagendijk, Ad; Vries, Pedro de

    1989-01-01

    We study the propagation of light through a semi-infinite medium with transverse disorder (that is, disorder in two directions only). We show that such a system exhibits strong two-dimensional localization by demonstrating that on propagation a beam expands until the transverse localization length

  7. Excitation of transverse dipole and quadrupole modes in a pure ion plasma in a linear Paul trap to study collective processes in intense beams

    Energy Technology Data Exchange (ETDEWEB)

    Gilson, Erik P.; Davidson, Ronald C.; Efthimion, Philip C.; Majeski, Richard; Startsev, Edward A.; Wang, Hua [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Koppell, Stewart [University of Texas at Austin, Austin, Texas 78712 (United States); Talley, Matthew [Brigham Young University, Provo, Utah 84602 (United States)

    2013-05-15

    Transverse dipole and quadrupole modes have been excited in a one-component cesium ion plasma trapped in the Paul Trap Simulator Experiment (PTSX) in order to characterize their properties and understand the effect of their excitation on equivalent long-distance beam propagation. The PTSX device is a compact laboratory Paul trap that simulates the transverse dynamics of a long, intense charge bunch propagating through an alternating-gradient transport system by putting the physicist in the beam's frame of reference. A pair of arbitrary function generators was used to apply trapping voltage waveform perturbations with a range of frequencies and, by changing which electrodes were driven with the perturbation, with either a dipole or quadrupole spatial structure. The results presented in this paper explore the dependence of the perturbation voltage's effect on the perturbation duration and amplitude. Perturbations were also applied that simulate the effect of random lattice errors that exist in an accelerator with quadrupole magnets that are misaligned or have variance in their field strength. The experimental results quantify the growth in the equivalent transverse beam emittance that occurs due to the applied noise and demonstrate that the random lattice errors interact with the trapped plasma through the plasma's internal collective modes. Coherent periodic perturbations were applied to simulate the effects of magnet errors in circular machines such as storage rings. The trapped one component plasma is strongly affected when the perturbation frequency is commensurate with a plasma mode frequency. The experimental results, which help to understand the physics of quiescent intense beam propagation over large distances, are compared with analytic models.

  8. Non-linear transverse dynamics for storage rings with application to the low-energy antiproton ring (LEAR) at CERN

    International Nuclear Information System (INIS)

    Bengtsson, J.

    1988-01-01

    A tensor equation has been used to derive the equations of motion for the curvilinear coordinate system customary used for accelerators. A Hamiltonian formalism, expanded to third order in the canonical variables, describing the transverse motion in an acceleration has also been developed. Time-dependent perturbation theory has been applied and computerized using a computer algebra system. In particular, the perturbations due to magnetic sextupoles have been calculated to second power in the sextupole strength. The frequency spectra for the betatron motion close to a single resonance has been calculated by using time-independent perturbation theory. It has been shown that information about excited resonances and the type of driving field can be derived from the spectra. In particular, it is possible to obtain the amplitude and the phase of a given resonance. The results have been used to study the perturbations in the Low Energy Antiproton Ring, LEAR at CERN. (With 67 refs.) (author)

  9. Non-linear transverse dynamics for storage rings with applications to the low-energy antiproton ring (LEAR) at CERN

    International Nuclear Information System (INIS)

    Bengtsson, J.

    1988-01-01

    A tensor equation has been used to derive the equations of motion for the curvilinear coordinate system customarily used for particle accelerators. A Hamiltonian formalism, expanded to third order in the canonical variables, has also been developed to describe the transverse motion in an accelerator. Time-dependent perturbation theory has been applied and computerized using a computer-algebra system. In particular, the perturbations due to magnetic sextupoles have been calculated to second power in the sextupole strength. The frequency spectra for the horizontal and the vertical betatron motion close to a single resonance have been calculated using time-independent perturbation theory. It has been shown that information about excited resonances and the type of driving field can be derived from the spectra. In particular, it is possible to obtain the amplitude and the phase of a given resonance. The results have been used to study the perturbations in the Low Energy Antiproton Ring (LEAR) at CERN. (orig.)

  10. Femtosecond single-beam direct laser poling of stable and efficient second-order nonlinear optical properties in glass

    International Nuclear Information System (INIS)

    Papon, G.; Marquestaut, N.; Royon, A.; Canioni, L.; Petit, Y.; Dussauze, M.; Rodriguez, V.; Cardinal, T.

    2014-01-01

    We depict a new approach for the localized creation in three dimensions (3D) of a highly demanded nonlinear optical function for integrated optics, namely second harmonic generation. We report on the nonlinear optical characteristics induced by single-beam femtosecond direct laser writing in a tailored silver-containing phosphate glass. The original spatial distribution of the nonlinear pattern, composed of four lines after one single laser writing translation, is observed and modeled with success, demonstrating the electric field induced origin of the second harmonic generation. These efficient second-order nonlinear structures (with χ eff (2)  ∼ 0.6 pm V −1 ) with sub-micron scale are impressively stable under thermal constraint up to glass transition temperature, which makes them very promising for new photonic applications, especially when 3D nonlinear architectures are desired

  11. Transverse betatron tune measurements

    International Nuclear Information System (INIS)

    Serio, M.

    1989-01-01

    In this paper the concept of the betatron tune and the techniques to measure it are discussed. The smooth approximation is introduced along with the terminology of betatron oscillations, phase advance and tune. Single particle and beam spectra in the presence of synchro-betatron oscillations are treated with emphasis on the consequences of sampling the beam position. After a general presentation of various kinds of beam position monitors and transverse kickers, the time domain and frequency domain analysis of the beam response to a transverse excitation are discussed and several methods and applications of the tune measurements are listed

  12. THREE-BEAM INSTABILITY IN THE LHC*

    CERN Document Server

    Burov, A

    2013-01-01

    In the LHC, a transverse instability is regularly observed at 4TeV right after the beta-squeeze, when the beams are separated by about their ten transverse rms sizes [1-3], and only one of the two beams is seen as oscillating. So far only a single hypothesis is consistent with all the observations and basic concepts, one about a third beam - an electron cloud, generated by the two proton beams in the high-beta areas of the interaction regions. The instability results from a combined action of the cloud nonlinear focusing and impedance.

  13. The role of nonlinear torsional contributions on the stability of flexural-torsional oscillations of open-cross section beams

    Science.gov (United States)

    Di Egidio, Angelo; Contento, Alessandro; Vestroni, Fabrizio

    2015-12-01

    An open-cross section thin-walled beam model, already developed by the authors, has been conveniently simplified while maintaining the capacity of accounting for the significant nonlinear warping effects. For a technical range of geometrical and mechanical characteristics of the beam, the response is characterized by the torsional curvature prevailing over the flexural ones. A Galerkin discretization is performed by using a suitable expansion of displacements based on shape functions. The attention is focused on the dynamic response of the beam to a harmonic force, applied at the free end of the cantilever beam. The excitation is directed along the symmetry axis of the beam section. The stability of the one-component oscillations has been investigated using the analytical model, showing the importance of the internal resonances due to the nonlinear warping coupling terms. Comparison with the results provided by a computational finite element model has been performed. The good agreement among the results of the analytical and the computational models confirms the effectiveness of the simplified model of a nonlinear open-cross section thin-walled beam and overall the important role of the warping and of the torsional elongation in the study of the one-component dynamic oscillations and their stability.

  14. Beam interaction of a pulsed, nonlinear in-vacuum injection magnet

    International Nuclear Information System (INIS)

    Rast, Helge

    2013-01-01

    Theme of this thesis is the study of the interaction of the injection magnet designed for BESSY II with the electron beam. The main topic of this thesis lies in the numerical and measurement-technical study of the loss factor, the wake potential, and the wake impedance of the nonlinear kicker magnet with the aim of an optimization of the magnet design, so that a stable operation of the kicker in the BESSY II storage ring is made possible. A further main topic of this thesis is a study on the matching of the injection scheme with a single kicker to the conditions of the DELTA storage ring, which is operated by the TU Dortmund.

  15. High Power Amplifiers Chain nonlinearity influence on the accelerating beam stability in free electron laser (FLASH)

    CERN Document Server

    Cichalewski, w

    2010-01-01

    The high power amplifiers transfer characteristics nonlinearities can have a negative influence on the overall system performance. This is also true for the TESLA superconducting cavities accelerating field parameters control systems. This Low Level Radio Frequency control systems uses microwave high power amplifiers (like 10 MW klystrons) as actuators in the mentioned feedback loops. The amplitude compression and phase deviations phenomena introduced to the control signals can reduce the feedback performance and cause electron beam energy instabilities. The transfer characteristics deviations in the Free Electron Laser in Hamburg experiment have been investigated. The outcome of this study together with the description of the developed linearization method based on the digital predistortion approach have been described in this paper. Additionally, the results from the linearization tool performance tests in the FLASH's RF systems have been placed.

  16. Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy.

    Science.gov (United States)

    Akemann, Walther; Léger, Jean-François; Ventalon, Cathie; Mathieu, Benjamin; Dieudonné, Stéphane; Bourdieu, Laurent

    2015-11-02

    Acousto-optic deflection (AOD) devices offer unprecedented fast control of the entire spatial structure of light beams, most notably their phase. AOD light modulation of ultra-short laser pulses, however, is not straightforward to implement because of intrinsic chromatic dispersion and non-stationarity of acousto-optic diffraction. While schemes exist to compensate chromatic dispersion, non-stationarity remains an obstacle. In this work we demonstrate an efficient AOD light modulator for stable phase modulation using time-locked generation of frequency-modulated acoustic waves at the full repetition rate of a high power laser pulse amplifier of 80 kHz. We establish the non-local relationship between the optical phase and the generating acoustic frequency function and verify the system for temporal stability, phase accuracy and generation of non-linear two-dimensional phase functions.

  17. A study of graphite-epoxy laminate failures due to high transverse shear strains using the multi-span-beam shear test procedure

    Science.gov (United States)

    Jegley, Dawn C.

    1989-01-01

    The multi-span-beam shear test procedure is used to study failure mechanisms in graphite-epoxy laminates due to high transverse shear strains induced by severe local bending deformations in test specimens. Results of a series of tests on specimens with a variety of stacking sequences, including some with adhesive interleaving, are presented. These results indicate that laminates with stacking sequences with several + or - 45 and 90 deg plies next to each other are more susceptible to failures due to high transverse shear strains than laminates with + or - 45 and 0 deg plies next to each other or with + or - 45 deg plies next to layers of adhesive interleaving. Results of these tests are compared with analytical results based on finite elements.

  18. Nonlinear Forced Vibration of a Viscoelastic Buckled Beam with 2 : 1 Internal Resonance

    Directory of Open Access Journals (Sweden)

    Liu-Yang Xiong

    2014-01-01

    Full Text Available Nonlinear dynamics of a viscoelastic buckled beam subjected to primary resonance in the presence of internal resonance is investigated for the first time. For appropriate choice of system parameters, the natural frequency of the second mode is approximately twice that of the first providing the condition for 2 : 1 internal resonance. The ordinary differential equations of the two mode shapes are established using the Galerkin method. The problem is replaced by two coupled second-order differential equations with quadratic and cubic nonlinearities. The multiple scales method is applied to derive the modulation-phase equations. Steady-state solutions of the system as well as their stability are examined. The frequency-amplitude curves exhibit the steady-state response in the directly excited and indirectly excited modes due to modal interaction. The double-jump, the saturation phenomenon, and the nonperiodic region phenomena are observed illustrating the influence of internal resonance. The validity range of the analytical approximations is assessed by comparing the analytical approximate results with a numerical solution by the Runge-Kutta method. The unstable regions in the internal resonance are explored via numerical simulations.

  19. Nonlinear bound on unstable field energy in relativistic electron beams and plasmas

    International Nuclear Information System (INIS)

    Davidson, R.C.; Yoon, P.H.

    1989-01-01

    This paper makes use of Fowler's method [J. Math Phys. 4, 559 (1963)] to determine the nonlinear thermodynamic bound on field energy in unstable plasmas or electron beams in which the electrons are relativistic. Treating the electrons as the only active plasma component, the nonlinear Vlasov--Maxwell equations and the associated global conservation constraints are used to calculate the lowest upper bound on the field energy [ΔE-script/sub F/]/sub max/ that can evolve for the general initial electron distribution function f/sub b//sub / 0 equivalentf/sub b/(x,p,0). The results are applied to three choices of the initial distribution function f/sub b//sub / 0 . Two of the distribution functions have an inverted population in momentum p/sub perpendicular/ perpendicular to the magnetic field B 0 e/sub z/, and the third distribution function reduces to a bi-Maxwellian in the nonrelativistic limit. The lowest upper bound on the efficiency of radiation generation, eta/sub max/ = [ΔE-script/sub F/]/sub max//[V -1 ∫ d 3 x∫ d 3 p(γ-1)mc 2 f/sub b//sub / 0 ], is calculated numerically over a wide range of system parameters for varying degrees of initial anisotropy

  20. Analysis of transverse vibration and stability issues of discrete-continuous elastic systems with nonlinearly variable parameters

    Directory of Open Access Journals (Sweden)

    Jaroszewicz Jerzy

    2018-01-01

    Full Text Available The work is devoted to methods of analysis of vibrations and stability of discrete-continuous, multi-parameter models of beams, shafts, rotors, vanes, converting to homogeneous and one-dimensional. The properties of Cauchy's influence function and the characteristic series method were used to solve the boundary problem. It has been shown that the methods are an effective tool for solving boundary problems described by ordinary fourth-and second-order differential equations with variable parameters. Particular attention should be paid to the solution of the border problem of two-parameter elastic systems with variable distribution of parameters. Universal beam-specific equations with typical support conditions including vertical support, which do not depend on beam shape and axial load type, are recorded. The shape and type of load are considered in the form of an impact function that corresponds to any change in cross-section of the support and continuous axial load, so that the functions describing the stiffness, the mass and the continuous load are complete. As a result of the solution of the boundary vibration problem of freely bent support and any change in its cross-section, loaded with any longitudinal load, arranged on the resilient substrate, strict relations between the own frequency parameters and the load parameters were derived. Using the methods, simple calculations were made, easy to use in engineering practice and conditions of use were given. Experimental studies have confirmed the high accuracy of theoretical calculations using the proposed methods and formulas.

  1. Modulation of controlled-not gate using light beams carrying orbital angular momentum in a nonlinear atomic vapor

    Science.gov (United States)

    Zhang, Yan; Li, YuanYuan; Zhang, YunZhe

    2018-03-01

    We propose and experimentally demonstrate a controlled-not gate with light beams carrying orbital angular momentum (OAM) through a degenerate four-wave mixing process via a photonic band gap structure satisfying the phase-matching condition. By employing the different topological charges of a Laguerre-Gaussian beam as a qubit in this nonlinear process, the controlled-not gate with OAM can be realized. Moreover, we investigate the evolution of the controlled-not gate, which can be modulated by the frequency and the power of the incident beam, i.e., under electromagnetically induced transparency conditions. The study results are useful for applications in quantum communication and information storage.

  2. Numerical simulation of nonlinear beam-plasma interaction for the application to solar radio burst

    International Nuclear Information System (INIS)

    Takakura, T.

    1981-01-01

    By the use of semi-analytical method the numerical simulations for the nonlinear scattering of axially symmetric plasma waves into plasma waves and radio waves have been made. The initial electron beam has a finite length and one-dimensional velocity distribution of power law. Induced back-scattering of plasma waves by thermal ions is strong even for a solar electron stream of rather low flux, say 2x10 11 cm -2 above 5 keV at fsub(p) of 40 MHz, which is enough to emit the observed type III bursts as the second harmonic. The ratio between the energy densities of plasma waves and thermal electrons (nkT) is of the order of 10 -6 , which may be a few orders lower than the threshold value for a caviton collapse of the plasma waves to occur. The second harmonic radio emission as attributed to the coalescence of two plasma waves, i.e. one excited by electron beam and one back-scattered by ions, is several orders higher than the fundamental radio emission caused by the scattering of plasma waves by thermal ions. (Auth.)

  3. Effects of magnetic non-linearities on a stored proton beam and their implications for superconducting storage rings

    International Nuclear Information System (INIS)

    Cornacchia, M.; Evans, L.

    1985-06-01

    A nonlinear lens may be used to study the effect of high-order multipolar field imperfections on a stored proton beam. Such a nonlinear lens is particulary suitable to simulate field imperfections of the types encountered in coil dominated superconducting magnets. We have studied experimentally at the SPS the effect of high order (5th and 8th) single isolated resonances driven by the nonlinear lens. The width of these resonances is of the order one expects to be caused by field errors in superconducting magnets of the SSC type. The experiment shows that, in absence of tune modulation, these resonances are harmless. Slow crossings of the resonance, on the other hand, have destructive effects on the beam, much more so than fast crossings caused by synchrotron oscillations. In the design of future storage rings, sources of low-frequency tune modulation should be avoided as a way to reduce the harmful effects of high order multipolar field imperfection

  4. Nonlinear earthquake analysis of reinforced concrete frames with fiber and Bernoulli-Euler beam-column element.

    Science.gov (United States)

    Karaton, Muhammet

    2014-01-01

    A beam-column element based on the Euler-Bernoulli beam theory is researched for nonlinear dynamic analysis of reinforced concrete (RC) structural element. Stiffness matrix of this element is obtained by using rigidity method. A solution technique that included nonlinear dynamic substructure procedure is developed for dynamic analyses of RC frames. A predicted-corrected form of the Bossak-α method is applied for dynamic integration scheme. A comparison of experimental data of a RC column element with numerical results, obtained from proposed solution technique, is studied for verification the numerical solutions. Furthermore, nonlinear cyclic analysis results of a portal reinforced concrete frame are achieved for comparing the proposed solution technique with Fibre element, based on flexibility method. However, seismic damage analyses of an 8-story RC frame structure with soft-story are investigated for cases of lumped/distributed mass and load. Damage region, propagation, and intensities according to both approaches are researched.

  5. [Study of the influence of uniform transverse magnetic field on the dose distribution of high energy electron beam using Monte Carlo method].

    Science.gov (United States)

    You, Shihu; Xu, Yun; Wu, Zhangwen; Hou, Qing; Guo, Chengjun

    2014-12-01

    In the present work, Monte Carlo simulations were employed to study the characteristics of the dose distribution of high energy electron beam in the presence of uniform transverse magnetic field. The simulations carried out the transport processes of the 30 MeV electron beam in the homogeneous water phantom with different magnetic field. It was found that the dose distribution of the 30 MeV electron beam had changed significantly because of the magnetic field. The result showed that the range of the electron beam was decreased obviously and it formed a very high dose peak at the end of the range, and the ratio of maximum dose to the dose of the surface was greatly increased. The results of this study demonstrated that we could change the depth dose distribution of electron beam which is analogous to the heavy ion by modulating the energy of the electron and magnetic field. It means that using magnetic fields in conjunction with electron radiation therapy has great application prospect, but it also has brought new challenges for the research of dose algorithm.

  6. Imperfection Sensitivity of Nonlinear Vibration of Curved Single-Walled Carbon Nanotubes Based on Nonlocal Timoshenko Beam Theory

    Directory of Open Access Journals (Sweden)

    Iman Eshraghi

    2016-09-01

    Full Text Available Imperfection sensitivity of large amplitude vibration of curved single-walled carbon nanotubes (SWCNTs is considered in this study. The SWCNT is modeled as a Timoshenko nano-beam and its curved shape is included as an initial geometric imperfection term in the displacement field. Geometric nonlinearities of von Kármán type and nonlocal elasticity theory of Eringen are employed to derive governing equations of motion. Spatial discretization of governing equations and associated boundary conditions is performed using differential quadrature (DQ method and the corresponding nonlinear eigenvalue problem is iteratively solved. Effects of amplitude and location of the geometric imperfection, and the nonlocal small-scale parameter on the nonlinear frequency for various boundary conditions are investigated. The results show that the geometric imperfection and non-locality play a significant role in the nonlinear vibration characteristics of curved SWCNTs.

  7. Non-linear beam dynamics tests in the LHC: LHC dynamic aperture MD on Beam 2 (24th of June 2012)

    CERN Document Server

    Maclean, E H; Persson, T H B; Redaelli, S; Schmidt, F; Tomas, R; Uythoven, J

    2013-01-01

    This MD note summarizes measurements performed on LHC Beam 2 during the non-linear machine development (MD) of 24 June 2012. The aim of the measurement was to observe the dynamic aperture of LHC Beam 2, and obtain turn-by-turn (TbT) betatron oscillation data, enabling the study of amplitude detuning and resonance driving terms (RDTs). The regular injections required by the MD also represented an opportunity to test a new coupling feedback routine based on the analysis of injection oscillation data. Initial measurements were performed on the nominal state of the LHC at injection. On completion of this study the Landau octupoles were turned off and corrections for higher-order chromaticities were implemented to reduce the non-linearity of the machine as far as possible. A second set of measurements were then performed. All studies were performed using the LHC aperture kicker (MKA).

  8. Operation of the transverse feedback system at the CERN SPS

    International Nuclear Information System (INIS)

    Bossart, R.; Louwerse, R.; Mourier, J.; Vos, L.

    1987-01-01

    To prevent transverse instabilities at high beam intensity in the SPS, the transverse feedback system for damping the betatron oscillations has been upgraded for larger damping decrements and for increased system's bandwidth. The feedback loop now contains a digital delay line cancellor, so that the damper works with a velocity feedback Δx/Δt, unaffected by the closed orbit position x at the pick-up station. The digital processing of the feedback signal facilitates nonlinear feedback techniques such as antidamping and ''band-bang'' feedback. The ''bang-bang'' feedback provides the maximum possible damping rate of the injection oscillations in the SPS-collider, in order to minimize the emittance increase caused by filamentation. The antidamping nonlinearity provides small continuous beam oscillations of 50 μm amplitude for tracking the machine tune Q with a phase locked loop

  9. Nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials incorporating nonlocality and strain gradient size dependency

    Science.gov (United States)

    Sahmani, S.; Aghdam, M. M.

    2018-03-01

    A wide range of biological applications such as drug delivery, biosensors and hemodialysis can be provided by nanoporous biomaterials due to their uniform pore size as well as considerable pore density. In the current study, the size dependency in the nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials is anticipated. To accomplish this end, a refined truncated cube is introduced to model the lattice structure of nanoporous biomaterial. Accordingly, analytical expressions for the mechanical properties of material are derived as functions of pore size. After that, based upon a nonlocal strain gradient beam model, the size-dependent nonlinear Duffing type equation of motion is constructed. The Galerkin technique together with the multiple time-scales method is employed to obtain the nonlocal strain gradient frequency-response and amplitude-response related to the nonlinear primary resonance of a micro/nano-beam made of the nanoporous biomaterial with different pore sizes. It is indicated that the nonlocality causes to decrease the response amplitudes associated with the both bifurcation points of the jump phenomenon, while the strain gradient size dependency causes to increase them. Also, it is found that increasing the pore size leads to enhance the nonlinearity, so the maximum deflection of response occurs at higher excitation frequency.

  10. Time Domain Modeling and Simulation of Nonlinear Slender Viscoelastic Beams Associating Cosserat Theory and a Fractional Derivative Model

    Directory of Open Access Journals (Sweden)

    Adailton S. Borges

    Full Text Available Abstract A broad class of engineering systems can be satisfactory modeled under the assumptions of small deformations and linear material properties. However, many mechanical systems used in modern applications, like structural elements typical of aerospace and petroleum industries, have been characterized by increased slenderness and high static and dynamic loads. In such situations, it becomes indispensable to consider the nonlinear geometric effects and/or material nonlinear behavior. At the same time, in many cases involving dynamic loads, there comes the need for attenuation of vibration levels. In this context, this paper describes the development and validation of numerical models of viscoelastic slender beam-like structures undergoing large displacements. The numerical approach is based on the combination of the nonlinear Cosserat beam theory and a viscoelastic model based on Fractional Derivatives. Such combination enables to derive nonlinear equations of motion that, upon finite element discretization, can be used for predicting the dynamic behavior of the structure in the time domain, accounting for geometric nonlinearity and viscoelastic damping. The modeling methodology is illustrated and validated by numerical simulations, the results of which are compared to others available in the literature.

  11. NONLINEAR FINITE ELEMENT ANALYSIS OF NONSEISMICALLY DETAILED INTERIOR RC BEAM-COLUMN CONNECTION UNDER REVERSED CYCLIC LOAD

    Directory of Open Access Journals (Sweden)

    Teeraphot Supaviriyakit

    2017-11-01

    Full Text Available This paper presents a nonlinear finite element analysis of non-seismically detailed RC beam column connections under reversed cyclic load. The test of half-scale nonductile reinforced concrete beam-column joints was conducted. The tested specimens represented those of the actual mid-rise reinforced concrete frame buildings designed according to the non-seismic provisions of the ACI building code.  The test results show that specimens representing small and medium column tributary area failed in brittle joint shear while specimen representing large column tributary area failed by ductile flexure though no ductile reinforcement details were provided. The nonlinear finite element analysis was applied to simulate the behavior of the specimens. The finite element analysis employs the smeared crack approach for modeling beam, column and joint, and employs the discrete crack approach for modeling the interface between beam and joint face. The nonlinear constitutive models of reinforced concrete elements consist of coupled tension-compression model to model normal force orthogonal and parallel to the crack and shear transfer model to capture the shear sliding mechanism. The FEM shows good comparison with test results in terms of load-displacement relations, hysteretic loops, cracking process and the failure mode of the tested specimens. The finite element analysis clarifies that the joint shear failure was caused by the collapse of principal diagonal concrete strut.

  12. Graphical user interface based computer simulation of self-similar modes of a paraxial slow self-focusing laser beam for saturating plasma nonlinearities

    International Nuclear Information System (INIS)

    Batra, Karuna; Mitra, Sugata; Subbarao, D.; Sharma, R.P.; Uma, R.

    2005-01-01

    The task for the present study is to make an investigation of self-similarity in a self-focusing laser beam both theoretically and numerically using graphical user interface based interactive computer simulation model in MATLAB (matrix laboratory) software in the presence of saturating ponderomotive force based and relativistic electron quiver based plasma nonlinearities. The corresponding eigenvalue problem is solved analytically using the standard eikonal formalism and the underlying dynamics of self-focusing is dictated by the corrected paraxial theory for slow self-focusing. The results are also compared with computer simulation of self-focusing by the direct fast Fourier transform based spectral methods. It is found that the self-similar solution obtained analytically oscillates around the true numerical solution equating it at regular intervals. The simulation results are the main ones although a feasible semianalytical theory under many assumptions is given to understand the process. The self-similar profiles are called as self-organized profiles (not in a strict sense), which are found to be close to Laguerre-Gaussian curves for all the modes, the shape being conserved. This terminology is chosen because it has already been shown from a phase space analysis that the width of an initially Gaussian beam undergoes periodic oscillations that are damped when any absorption is added in the model, i.e., the beam width converges to a constant value. The research paper also tabulates the specific values of the normalized phase shift for solutions decaying to zero at large transverse distances for first three modes which can, however, be extended to higher order modes

  13. Effect of quadrupole focusing-field fluctuation on the transverse stability of intense hadron beams in storage rings

    Science.gov (United States)

    Ito, Kiyokazu; Matsuba, Masanori; Okamoto, Hiromi

    2018-02-01

    A systematic experimental study is performed to clarify the parameter dependence of the noise-induced beam instability previously demonstrated by a Princeton group [M. Chung et al., Phys. Rev. Lett. 102, 145003 (2009)]. Because of the weakness of the driving force, the instability develops very slowly, which substantially limits the application of conventional experimental and numerical techniques. In the present study, a novel tabletop apparatus called "S-POD" (Simulator of Particle Orbit Dynamics) is employed to explore the long-term collective behavior of intense hadron beams. S-POD provides a many-body Coulomb system physically equivalent to a relativistic charged-particle beam and thus enables us to conduct various beam-dynamics experiments without the use of large-scale machines. It is reconfirmed that random noise on the linear beam-focusing potential can be a source of slow beam quality degradation. Experimental observations are explained well by a simple perturbation theory that predicts the existence of a series of dangerous noise frequency bands overlooked in the previous study. Those additional instability bands newly identified with S-POD are more important practically because the driving noise frequencies can be very low. The dependence of the instability on the noise level, operating tune, and beam intensity is examined and found consistent with theoretical predictions.

  14. Maxillary Transverse Comparison of Skeletal Class I and Class III Patient Populations Using Cone Beam Computed Tomography

    Science.gov (United States)

    2012-04-13

    dental compensations 5. Have fully erupted canines (no...expansion. Compendium 1996;17:170-178. 2. Basaran G, Hamamci N, Hamamci O. Comparison of Dental Arch Widths in Different Types of Malocclusions . World... Dental and Alveolar Arch Widths in Normal Occlusion and Class III Malocclusion . Angle Orthod 2005; 75:809- 813.   36. Vanarsdall, Transverse dimension and long-term stability, Semin Orthod 1999;5:171–180.

  15. Nonlinear fracture mechanics investigation on the ductility of reinforced concrete beams

    Directory of Open Access Journals (Sweden)

    A. Carpinteri

    Full Text Available In the present paper, a numerical algorithm based on the finite element method is proposed for the prediction of the mechanical response of reinforced concrete (RC beams under bending loading. The main novelty of such an approach is the introduction of the Overlapping Crack Model, based on nonlinear fracture mechanics concepts, to describe concrete crushing. According to this model, the concrete dam- age in compression is represented by means of a fictitious interpenetration. The larger is the interpenetration, the lower are the transferred forces across the damaged zone. The well-known Cohesive Crack Model in tension and an elastic-perfectly plastic stress versus crack opening displacement relationship describing the steel reinforcement behavior are also integrated into the numerical algorithm. The application of the proposed Cohesive-Overlapping Crack Model to the assessment of the minimum reinforcement amount neces- sary to prevent unstable tensile crack propagation and to the evaluation of the rotational capacity of plastic hinges, permits to predict the size-scale effects evidenced by several experimental programs available in the literature. According to the obtained numerical results, new practical design formulae and diagrams are proposed for the improvement of the current code provisions which usually disregard the size effects.

  16. Statistical study of the non-linear propagation of a partially coherent laser beam

    International Nuclear Information System (INIS)

    Ayanides, J.P.

    2001-01-01

    This research thesis is related to the LMJ project (Laser MegaJoule) and thus to the study and development of thermonuclear fusion. It reports the study of the propagation of a partially-coherent laser beam by using a statistical modelling in order to obtain mean values for the field, and thus bypassing a complex and costly calculation of deterministic quantities. Random fluctuations of the propagated field are supposed to comply with a Gaussian statistics; the laser central wavelength is supposed to be small with respect with fluctuation magnitude; a scale factor is introduced to clearly distinguish the scale of the random and fast variations of the field fluctuations, and the scale of the slow deterministic variations of the field envelopes. The author reports the study of propagation through a purely linear media and through a non-dispersive media, and then through slow non-dispersive and non-linear media (in which the reaction time is large with respect to grain correlation duration, but small with respect to the variation scale of the field macroscopic envelope), and thirdly through an instantaneous dispersive and non linear media (which instantaneously reacts to the field) [fr

  17. Two Methods For Simulating the Strong-Strong Beam-Beam Interaction in Hadron Colliders

    International Nuclear Information System (INIS)

    Warnock, Robert L.

    2002-01-01

    We present and compare the method of weighted macro particle tracking and the Perron-Frobenius operator technique for simulating the time evolution of two beams coupled via the collective beam-beam interaction in 2-D and 4-D (transverse) phase space. The coherent dipole modes, with and without lattice nonlinearities and external excitation, are studied by means of the Vlasov-Poisson system

  18. Dynamic pull-in instability of geometrically nonlinear actuated micro-beams based on the modified couple stress theory

    Directory of Open Access Journals (Sweden)

    Hamid M. Sedighi

    Full Text Available This paper investigates the dynamic pull-in instability of vibrating micro-beams undergoing large deflection under electrosatically actuation. The governing equation of motion is derived based on the modified couple stress theory. Homotopy Perturbation Method is employed to produce the high accuracy approximate solution as well as the second-order frequency- amplitude relationship. The nonlinear governing equation of micro beam vibrations predeformed by an electric field includes both even and odd nonlinearities. The influences of basic non-dimensional parameters on the pull-in instability as well as the natural frequency are studied. It is demonstrated that two terms in series expansions are sufficient to produce high accuracy solution of the micro-structure. The accuracy of proposed asymptotic approach is validated via numerical results. The phase portrait of the system exhibits periodic and homoclinic orbits.

  19. High current beam transport with multiple beam arrays

    International Nuclear Information System (INIS)

    Kim, C.H.

    1985-05-01

    Highlights of recent experimental and theoretical research progress on the high current beam transport of single and multiple beams by the Heavy Ion Fusion Accelerator Research (HIFAR) group at the Lawrence Berkeley Laboratory (LBL) are presented. In the single beam transport experiment (SBTE), stability boundaries and the emittance growth of a space charge dominated beam in a long quadrupole transport channel were measured and compared with theory and computer simulations. Also, a multiple beam ion induction linac (MBE-4) is being constructed at LBL which will permit study of multiple beam transport arrays, and acceleration and bunch length compression of individually focused beamlets. Various design considerations of MBE-4 regarding scaling laws, nonlinear effects, misalignments, and transverse and longitudinal space charge effects are summarized. Some aspects of longitudinal beam dynamics including schemes to generate the accelerating voltage waveforms and to amplify beam current are also discussed

  20. Nonlinear Phenomena in the Single-Mode Dynamics in an AFM Cantilever Beam

    KAUST Repository

    Ruzziconi, Laura

    2016-12-05

    This study deals with the nonlinear dynamics arising in an atomic force microscope cantilever beam. After analyzing the static behavior, a single degree of freedom Galerkin reduced order model is introduced, which describes the overall scenario of the structure response in a neighborhood of the primary resonance. Extensive numerical simulations are performed when both the forcing amplitude and frequency are varied, ranging from low up to elevated excitations. The coexistence of competing attractors with different characteristics is analyzed. Both the non-resonant and the resonant behavior are observed, as well as ranges of inevitable escape. Versatility of behavior is highlighted, which may be attractive in applications. Special attention is devoted to the effects of the tip-sample separation distance, since this aspect is of fundamental importance to understand the operation of an AFM. We explore the metamorphoses of the multistability region when the tip-sample separation distance is varied. To have a complete description of the AFM response, comprehensive behavior charts are introduced to detect the theoretical boundaries of appearance and disappearance of the main attractors. Also, extensive numerical simulations investigate the AFM response when both the forcing amplitude and the tip-sample separation distance are considered as control parameters. The main features are analyzed in detail and the obtained results are interpreted in terms of oscillations of the cantilever-tip ensemble. However, we note that all the aforementioned results represent the limit when disturbances are absent, which never occurs in practice. Here comes the importance of overcoming local investigations and exploring dynamics from a global perspective, by introducing dynamical integrity concepts. To extend the AFM results to the practical case where disturbances exist, we develop a dynamical integrity analysis. After performing a systematic basin of attraction analysis, integrity

  1. Remarks on the derivation of the governing equations for the dynamics of a nonlinear beam to a non ideal shaft coupling

    Energy Technology Data Exchange (ETDEWEB)

    Fenili, André; Lopes Rebello da Fonseca Brasil, Reyolando Manoel [Universidade Federal do ABC (UFABC), Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS) / Aerospace Engineering Santo André, São Paulo (Brazil); Balthazar, José M., E-mail: jmbaltha@gmail.com [Universidade Federal do ABC (UFABC), Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS) / Aerospace Engineering Santo André, São Paulo, Brazil and Universidade Estadual Paulista, Faculdade de Engenharia Mec and #x00E (Brazil); Francisco, Cayo Prado Fernandes [Universidade Federal do ABC (UFABC), Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS) / Aerospace Engineering Santo André, São Paulo, Brazil and Instituto de Aeronáutica e Espaço, Departamento de (Brazil)

    2014-12-10

    We derive nonlinear governing equations without assuming that the beam is inextensible. The derivation couples the equations that govern a weak electric motor, which is used to rotate the base of the beam, to those that govern the motion of the beam. The system is considered non-ideal in the sense that the response of the motor to an applied voltage and the motion of the beam must be obtained interactively. The moment that the motor exerts on the base of the beam cannot be determined without solving for the motion of the beam.

  2. Remarks on the derivation of the governing equations for the dynamics of a nonlinear beam to a non ideal shaft coupling

    International Nuclear Information System (INIS)

    Fenili, André; Lopes Rebello da Fonseca Brasil, Reyolando Manoel; Balthazar, José M.; Francisco, Cayo Prado Fernandes

    2014-01-01

    We derive nonlinear governing equations without assuming that the beam is inextensible. The derivation couples the equations that govern a weak electric motor, which is used to rotate the base of the beam, to those that govern the motion of the beam. The system is considered non-ideal in the sense that the response of the motor to an applied voltage and the motion of the beam must be obtained interactively. The moment that the motor exerts on the base of the beam cannot be determined without solving for the motion of the beam

  3. First observation of meridional focusing of an x-ray beam using diffraction by a crystal with a transverse groove

    Czech Academy of Sciences Publication Activity Database

    Hrdý, Jaromír; Franc, František; Artemiev, Nikolai; Hrdá, Jaromíra; Ziegler, E.; Bigault, Th.; Freud, A. K.

    2001-01-01

    Roč. 8, - (2001), s. 1203-1206 ISSN 0909-0495 R&D Projects: GA AV ČR IAA1010104; GA MPO PZ-CH/22 Institutional research plan: CEZ:AV0Z1010914 Keywords : x-ray beam Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.519, year: 2001

  4. Seismic Performance of RC Beam-Column Connections with Continuous Rectangular Spiral Transverse Reinforcements for Low Ductility Classes

    Directory of Open Access Journals (Sweden)

    Mohammadamin Azimi

    2014-01-01

    Full Text Available The seismic performance of RC columns could be significantly improved by continuous spiral reinforcement as a result of its adequate ductility and energy dissipation capacity. Due to post-earthquake brittle failure observations in beam-column connections, the seismic behaviour of such connections could greatly be improved by simultaneous application of this method in both beams and columns. In this study, a new proposed detail for beam to column connection introduced as “twisted opposing rectangular spiral” was experimentally and numerically investigated and its seismic performance was compared against normal rectangular spiral and conventional shear reinforcement systems. In this study, three full scale beam to column connections were first designed in conformance with Eurocode (EC2-04 for low ductility class connections and then tested by quasistatic cyclic loading recommended by ACI Building Code (ACI 318-02. Next, the experimental results were validated by numerical methods. Finally, the results revealed that the new proposed connection could improve the ultimate lateral resistance, ductility, and energy dissipation capacity.

  5. On the use of the autocorrelation and covariance methods for feedforward control of transverse angle and position jitter in linear particle beam accelerators

    International Nuclear Information System (INIS)

    Barr, D.S.

    1994-01-01

    It is desired to design a predictive feedforward transverse jitter control system to control both angle and position jitter in pulsed linear accelerators. Such a system will increase the accuracy and bandwidth of correction over that of currently available feedback correction systems. Intrapulse correction is performed. An offline process actually ''learns'' the properties of the jitter, and uses these properties to apply correction to the beam. The correction weights calculated offline are downloaded to a real-time analog correction system between macropulses. Jitter data were taken at the Los Alamos National Laboratory (LANL) Ground Test Accelerator (GTA) telescope experiment at Argonne National Laboratory (ANL). The experiment consisted of the LANL telescope connected to the ANL ZGS proton source and linac. A simulation of the correction system using this data was shown to decrease the average rms jitter by a factor of two over that of a comparable standard feedback correction system. The system also improved the correction bandwidth

  6. On the use of the autocorrelation and covariance methods for feedforward control of transverse angle and position jitter in linear particle beam accelerators

    International Nuclear Information System (INIS)

    Barr, D.S.

    1993-01-01

    It is desired to design a predictive feedforward transverse jitter control system to control both angle and position jitter in pulsed linear accelerators. Such a system will increase the accuracy and bandwidth of correction over that of currently available feedback correction systems. Intrapulse correction is performed. An offline process actually open-quotes learnsclose quotes the properties of the jitter, and uses these properties to apply correction to the beam. The correction weights calculated offline are downloaded to a real-time analog correction system between macropulses. Jitter data were taken at the Los Alamos National Laboratory (LANL) Ground Test Accelerator (GTA) telescope experiment at Argonne National Laboratory (ANL). The experiment consisted of the LANL telescope connected to the ANL ZGS proton source and linac. A simulation of the correction system using this data was shown to decrease the average rms jitter by a factor of two over that of a comparable standard feedback correction system. The system also improved the correction bandwidth

  7. Engineering, design and prototype tests of a 3.9 GHz transverse-mode superconducting cavity for a radiofrequency-separated kaon beam

    International Nuclear Information System (INIS)

    Mark S. Champion et al.

    2001-01-01

    A research and development program is underway to construct superconducting cavities to be used for radiofrequency separation of a Kaon beam at Fermilab. The design calls for installation of twelve 13-cell cavities operating in the 3.9 GHz transverse mode with a deflection gradient of 5 MV/m. They present the mechanical, cryogenic and vacuum design of the cavity, cryomodule, rf power coupler, cold tuner and supporting hardware. The electromagnetic design of the cavity is presented in a companion paper by Wanzenberg and McAshan. The warm tuning system (for field flatness) and the vertical test system is presented along with test results of bench measurements and cold tests on single-cell and five-cell prototypes

  8. On Interactions of Oscillation Modes for a Weakly Non-Linear Undamped Elastic Beam with AN External Force

    Science.gov (United States)

    BOERTJENS, G. J.; VAN HORSSEN, W. T.

    2000-08-01

    In this paper an initial-boundary value problem for the vertical displacement of a weakly non-linear elastic beam with an harmonic excitation in the horizontal direction at the ends of the beam is studied. The initial-boundary value problem can be regarded as a simple model describing oscillations of flexible structures like suspension bridges or iced overhead transmission lines. Using a two-time-scales perturbation method an approximation of the solution of the initial-boundary value problem is constructed. Interactions between different oscillation modes of the beam are studied. It is shown that for certain external excitations, depending on the phase of an oscillation mode, the amplitude of specific oscillation modes changes.

  9. On the use of iterative techniques for feedforward control of transverse angle and position jitter in linear particle beam accelerators

    International Nuclear Information System (INIS)

    Barr, D.S.

    1995-01-01

    It is possible to use feedforward predictive control for transverse position and trajectory-angle jitter correction. The control procedure is straightforward, but creation of the predictive filter is not as obvious. The two process tested were the least mean squares (LMS) and Kalman filter methods. The controller parameters calculated offline are downloaded to a real-time analog correction system between macropulses. These techniques worked well for both interpulse (pulse-to-pulse) correction and intrapulse (within a pulse) correction with the Kalman filter method being the clear winner. A simulation based on interpulse data taken at the Stanford Linear Collider showed an improvement factor of almost three in the average rms jitter over standard feedback techniques for the Kalman filter. An improvement factor of over three was found for the Kalman filter on intrapulse data taken at the Los Alamos Meson Physics Facility. The feedforward systems also improved the correction bandwidth. copyright 1995 American Institute of Physics

  10. On the use of iterative techniques for feedforward control of transverse angle and position jitter in linear particle beam accelerators

    International Nuclear Information System (INIS)

    Barr, D.S.

    1994-01-01

    It is possible to use feedforward predictive control for transverse position and trajectory-angle jitter correction. The control procedure is straightforward, but creation of the predictive filter is not as obvious. The two processes tested were the least mean squares (LMS) and Kalman inter methods. The controller parameters calculated offline are downloaded to a real-time analog correction system between macropulses. These techniques worked well for both interpulse (pulse-to-pulse) correction and intrapulse (within a pulse) correction with the Kalman filter method being the clear winner. A simulation based on interpulse data taken at the Stanford Linear Collider showed an improvement factor of almost three in the average rms jitter over standard feedback techniques for the Kalman filter. An improvement factor of over three was found for the Kalman filter on intrapulse data taken at the Los Alamos Meson Physics Facility. The feedforward systems also improved the correction bandwidth

  11. Nonlinear aeroelastic modelling for wind turbine blades based on blade element momentum theory and geometrically exact beam theory

    International Nuclear Information System (INIS)

    Wang, Lin; Liu, Xiongwei; Renevier, Nathalie; Stables, Matthew; Hall, George M.

    2014-01-01

    Due to the increasing size and flexibility of large wind turbine blades, accurate and reliable aeroelastic modelling is playing an important role for the design of large wind turbines. Most existing aeroelastic models are linear models based on assumption of small blade deflections. This assumption is not valid anymore for very flexible blade design because such blades often experience large deflections. In this paper, a novel nonlinear aeroelastic model for large wind turbine blades has been developed by combining BEM (blade element momentum) theory and mixed-form formulation of GEBT (geometrically exact beam theory). The nonlinear aeroelastic model takes account of large blade deflections and thus greatly improves the accuracy of aeroelastic analysis of wind turbine blades. The nonlinear aeroelastic model is implemented in COMSOL Multiphysics and validated with a series of benchmark calculation tests. The results show that good agreement is achieved when compared with experimental data, and its capability of handling large deflections is demonstrated. Finally the nonlinear aeroelastic model is applied to aeroelastic modelling of the parked WindPACT 1.5 MW baseline wind turbine, and reduced flapwise deflection from the nonlinear aeroelastic model is observed compared to the linear aeroelastic code FAST (Fatigue, Aerodynamics, Structures, and Turbulence). - Highlights: • A novel nonlinear aeroelastic model for wind turbine blades is developed. • The model takes account of large blade deflections and geometric nonlinearities. • The model is reliable and efficient for aeroelastic modelling of wind turbine blades. • The accuracy of the model is verified by a series of benchmark calculation tests. • The model provides more realistic aeroelastic modelling than FAST (Fatigue, Aerodynamics, Structures, and Turbulence)

  12. Numerical study on the selective excitation of Helmholtz-Gauss beams in end-pumped solid-state digital lasers with the control of the laser gain transverse position provided by off-axis end pumping

    Science.gov (United States)

    Tsai, Ko-Fan; Chu, Shu-Chun

    2018-03-01

    This study proposes a complete and unified method for selective excitation of any specified nearly nondiffracting Helmholtz-Gauss (HzG) beam in end-pumped solid-state digital lasers. Four types of the HzG beams: cosine-Gauss beams, Bessel-Gauss beams, Mathieu-Gauss beams, and, in particular, parabolic-Gauss beams are successfully demonstrated to be generated with the proposed methods. To the best of the authors’ knowledge, parabolic-Gauss beams have not yet been directly generated from any kind of laser system. The numerical results of this study show that one can successfully achieve any lasing HzG beams directly from the solid-state digital lasers with only added control of the laser gain transverse position provided by off-axis end pumping. This study also presents a practical digital laser set-up for easily manipulating off-axis pumping in order to achieve the control of the laser gain transverse gain position in digital lasers. The reported results in this study provide advancement of digital lasers in dynamically generating nondiffracting beams. The control of the digital laser cavity gain position creates the possibility of achieving real-time selection of more laser modes in digital lasers, and it is worth further investigation in the future.

  13. Natural Frequencies and Mode Shapes of a Nonlinear, Uniform Cantilevered Beam

    National Research Council Canada - National Science Library

    Marquez-Chisolm, Daniel J

    2006-01-01

    .... These experiments used a homogeneous 7075 aluminum beam and have been referenced as a baseline for the past thirty years to validate computer models and theories in an effort to build beams capable...

  14. Beam stabilization in the two-dimensional nonlinear Schrodinger equation with an attractive potential by beam splitting and radiation

    DEFF Research Database (Denmark)

    leMesurier, B.J.; Christiansen, Peter Leth; Gaididei, Yuri Borisovich

    2004-01-01

    The effect of attractive linear potentials on self-focusing in-waves modeled by a nonlinear Schrodinger equation is considered. It is shown that the attractive potential can prevent both singular collapse and dispersion that are generic in the cubic Schrodinger equation in the critical dimension 2...... losses, and known stable periodic behavior of certain solutions in the presence of attractive potentials....

  15. Nonlinear control of turbulence and velocity space diffusion in beam plasma systems. Final report

    International Nuclear Information System (INIS)

    Walsh, J.E.

    1975-01-01

    Results of low energy electron beam-plasma heating experiments are discussed. A figure of merit which can be used to compare different beam heating experiments is presented. Some general observations about the possibility of useful beam plasma heating are mentioned. (U.S.)

  16. Solitons in PT-symmetric potential with competing nonlinearity

    International Nuclear Information System (INIS)

    Khare, Avinash; Al-Marzoug, S.M.; Bahlouli, Hocine

    2012-01-01

    We investigate the effect of competing nonlinearities on beam dynamics in PT-symmetric potentials. In particular, we consider the stationary nonlinear Schrödinger equation (NLSE) in one dimension with competing cubic and generalized nonlinearity in the presence of a PT-symmetric potential. Closed form solutions for localized states are obtained. These solitons are shown to be stable over a wide range of potential parameters. The transverse power flow associated with these complex solitons is also examined. -- Highlights: ► Effect of competing nonlinearities on beam dynamics in PT-symmetric potentials. ► Closed form solutions for localized states are. ► The transverse power flow associated with these complex solitons is also examined.

  17. Landau Damping of Beam Instabilities by Electron Lenses

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V. [Fermilab; Alexahin, Yuri; Burov, A. [Fermilab; Valishev, A. [Fermilab

    2017-06-26

    Modern and future particle accelerators employ increasingly higher intensity and brighter beams of charged particles and become operationally limited by coherent beam instabilities. Usual methods to control the instabilities, such as octupole magnets, beam feedback dampers and use of chromatic effects, become less effective and insufficient. We show that, in contrast, Lorentz forces of a low-energy, a magnetically stabilized electron beam, or "electron lens", easily introduces transverse nonlinear focusing sufficient for Landau damping of transverse beam instabilities in accelerators. It is also important that, unlike other nonlinear elements, the electron lens provides the frequency spread mainly at the beam core, thus allowing much higher frequency spread without lifetime degradation. For the parameters of the Future Circular Collider, a single conventional electron lens a few meters long would provide stabilization superior to tens of thousands of superconducting octupole magnets.

  18. Two types of nonlinear wave equations for diffractive beams in bubbly liquids with nonuniform bubble number density.

    Science.gov (United States)

    Kanagawa, Tetsuya

    2015-05-01

    This paper theoretically treats the weakly nonlinear propagation of diffracted sound beams in nonuniform bubbly liquids. The spatial distribution of the number density of the bubbles, initially in a quiescent state, is assumed to be a slowly varying function of the spatial coordinates; the amplitude of variation is assumed to be small compared to the mean number density. A previous derivation method of nonlinear wave equations for plane progressive waves in uniform bubbly liquids [Kanagawa, Yano, Watanabe, and Fujikawa (2010). J. Fluid Sci. Technol. 5(3), 351-369] is extended to handle quasi-plane beams in weakly nonuniform bubbly liquids. The diffraction effect is incorporated by adding a relation that scales the circular sound source diameter to the wavelength into the original set of scaling relations composed of nondimensional physical parameters. A set of basic equations for bubbly flows is composed of the averaged equations of mass and momentum, the Keller equation for bubble wall, and supplementary equations. As a result, two types of evolution equations, a nonlinear Schrödinger equation including dissipation, diffraction, and nonuniform effects for high-frequency short-wavelength case, and a Khokhlov-Zabolotskaya-Kuznetsov equation including dispersion and nonuniform effects for low-frequency long-wavelength case, are derived from the basic set.

  19. The importance of non-linearities in modern proton synchrotrons

    International Nuclear Information System (INIS)

    Wilson, E.J.N.

    1977-01-01

    The paper outlines the physics and mathematics of non-linear field errors in the quide fields of accelerators, with particular reference to large accelerators such as the SPS. These non-linearities give rise to closed orbital distortions and non-linear resonances or stopbands. Both of these effects are briefly discussed and the use of resonances for slow beam extraction is also described. Another problem considered is that of chromaticity of the particle beam. The use of sextupoles to correct chromaticity and the Landau damping of beam instabilities using octupoles are also discussed. In the final section the application of Hamiltonian mechanics to non-linearities is demonstrated. The author concludes that the effect of non-linearities on particle dynamics may place a more severe limit on intensity and storage time in large rings than any other effect in transverse phase space. (B.D.)

  20. Nonlinear Dynamics of High-Brightness Electron Beams and Beam-Plasma Interactions: Theories, Simulations, and Experiments

    International Nuclear Information System (INIS)

    Bohn, C.L.; Piot, P.; Erdelyi, B.

    2008-01-01

    According to its original Statement of Work (SOW), the overarching objective of this project is: 'To enhance substantially the understanding of the fundamental dynamics of nonequilibrium high-brightness beams with space charge.' Our work and results over the past three and half years have been both intense and fruitful. Inasmuch as this project is inextricably linked to a larger, growing research program - that of the Beam Physics and Astrophysics Group (BPAG) - the progress that it has made possible cannot easily be separated from the global picture. Thus, this summary report includes major sections on 'global' developments and on those that can be regarded as specific to this project.

  1. Self-Focusing of Quadruple Gaussian Laser Beam in an Inhomogenous Magnetized Plasma with Ponderomotive Non-Linearity: Effect of Linear Absorption

    International Nuclear Information System (INIS)

    Aggarwal, Munish; Vij, Shivani; Kant, Niti

    2015-01-01

    The propagation of quadruple Gaussian laser beam in a plasma characterized by axial inhomogeneity and nonlinearity due to ponderomotive force in the paraxial ray approximation is investigated. An appropriate expression for the nonlinear dielectric constant has been developed in the presence of external magnetic field, with linear absorption and due to saturation effects for arbitrary large intensity. The effects of different types of plasma axial inhomogeneities on self-focusing of laser beam have been studied with the typical laser and plasma parameters. Self-focusing of quadruple Gaussian laser beam in the presence of externally applied magnetic field and saturating parameter is found significantly improved in the case of extraordinary mode. Our results reveal that initially converging beam shows oscillatory convergence whereas initially diverging beam shows oscillatory divergence. The beam is more focussed at lower intensity in both cases viz. extraordinary and ordinary mode. (paper)

  2. Effect of asymmetrical transfer coefficients of a non-polarizing beam splitter on the nonlinear error of the polarization interferometer

    Science.gov (United States)

    Zhao, Chen-Guang; Tan, Jiu-Bin; Liu, Tao

    2010-09-01

    The mechanism of a non-polarizing beam splitter (NPBS) with asymmetrical transfer coefficients causing the rotation of polarization direction is explained in principle, and the measurement nonlinear error caused by NPBS is analyzed based on Jones matrix theory. Theoretical calculations show that the nonlinear error changes periodically, and the error period and peak values increase with the deviation between transmissivities of p-polarization and s-polarization states. When the transmissivity of p-polarization is 53% and that of s-polarization is 48%, the maximum error reaches 2.7 nm. The imperfection of NPBS is one of the main error sources in simultaneous phase-shifting polarization interferometer, and its influence can not be neglected in the nanoscale ultra-precision measurement.

  3. Extension of non-linear beam models with deformable cross sections

    Science.gov (United States)

    Sokolov, I.; Krylov, S.; Harari, I.

    2015-12-01

    Geometrically exact beam theory is extended to allow distortion of the cross section. We present an appropriate set of cross-section basis functions and provide physical insight to the cross-sectional distortion from linear elastostatics. The beam formulation in terms of material (back-rotated) beam internal force resultants and work-conjugate kinematic quantities emerges naturally from the material description of virtual work of constrained finite elasticity. The inclusion of cross-sectional deformation allows straightforward application of three-dimensional constitutive laws in the beam formulation. Beam counterparts of applied loads are expressed in terms of the original three-dimensional data. Special attention is paid to the treatment of the applied stress, keeping in mind applications such as hydrogel actuators under environmental stimuli or devices made of electroactive polymers. Numerical comparisons show the ability of the beam model to reproduce finite elasticity results with good efficiency.

  4. Nonlinear propagation of ion-acoustic solitary waves in relativistic ion-beam plasma with negative ions

    International Nuclear Information System (INIS)

    Singh, Kh.I.; Das, G.C.

    1993-01-01

    Soliton propagations are studied in a relativistic multicomponent ion-beam plasma through the derivation of Korteweg-deVries (K-dV) and modified K-dV (mK-dV) equations. A generalization of the mK-dV equation involving higher order nonlinearities gives a transitive link between the K-dV and mK-dV equations for isothermal plasma, and the validity of this generalized equation throughout the whole range of negative ion concentrations is investigated through the derivation of Sagdeev potential. Parallel discussion of various K-dV solitons enlightening the experimental implications is also made. (author). 22 refs

  5. Contribution of Higher-Order Dispersion to Nonlinear Electron-Acoustic Solitary Waves in a Relativistic Electron Beam Plasma System

    International Nuclear Information System (INIS)

    Zahran, M.A.; El-Shewy, E.K.

    2008-01-01

    The nonlinear properties of solitary wave structures are reported in an unmagnetized collisionless plasma comprising of cold relativistic electron fluid, Maxwellian hot electrons, relativistic electron beam, and stationary ions. The Korteweg--de Vries (KdV) equation has been derived using a reductive perturbation theory. As the wave amplitude increases, the width and velocity of the soliton deviate from the prediction of the KdV equation i.e. the breakdown of the KdV approximation. On the other hand, to overcome this weakness we extend our analysis to obtain the KdV equation with fifth-order dispersion term. The solution of the resulting equation has been obtained

  6. Beam propagation

    International Nuclear Information System (INIS)

    Hermansson, B.R.

    1989-01-01

    The main part of this thesis consists of 15 published papers, in which the numerical Beam Propagating Method (BPM) is investigated, verified and used in a number of applications. In the introduction a derivation of the nonlinear Schroedinger equation is presented to connect the beginning of the soliton papers with Maxwell's equations including a nonlinear polarization. This thesis focuses on the wide use of the BPM for numerical simulations of propagating light and particle beams through different types of structures such as waveguides, fibers, tapers, Y-junctions, laser arrays and crystalline solids. We verify the BPM in the above listed problems against other numerical methods for example the Finite-element Method, perturbation methods and Runge-Kutta integration. Further, the BPM is shown to be a simple and effective way to numerically set up the Green's function in matrix form for periodic structures. The Green's function matrix can then be diagonalized with matrix methods yielding the eigensolutions of the structure. The BPM inherent transverse periodicity can be untied, if desired, by for example including an absorptive refractive index at the computational window edges. The interaction of two first-order soliton pulses is strongly dependent on the phase relationship between the individual solitons. When optical phase shift keying is used in coherent one-carrier wavelength communication, the fiber attenuation will suppress or delay the nonlinear instability. (orig.)

  7. Assessment of Two Analytical Methods in Solving the Linear and Nonlinear Elastic Beam Deformation Problems

    DEFF Research Database (Denmark)

    Barari, Amin; Ganjavi, B.; Jeloudar, M. Ghanbari

    2010-01-01

    and fluid mechanics. Design/methodology/approach – Two new but powerful analytical methods, namely, He's VIM and HPM, are introduced to solve some boundary value problems in structural engineering and fluid mechanics. Findings – Analytical solutions often fit under classical perturbation methods. However......, as with other analytical techniques, certain limitations restrict the wide application of perturbation methods, most important of which is the dependence of these methods on the existence of a small parameter in the equation. Disappointingly, the majority of nonlinear problems have no small parameter at all......Purpose – In the last two decades with the rapid development of nonlinear science, there has appeared ever-increasing interest of scientists and engineers in the analytical techniques for nonlinear problems. This paper considers linear and nonlinear systems that are not only regarded as general...

  8. Robust energy harvesting from walking vibrations by means of nonlinear cantilever beams

    Science.gov (United States)

    Kluger, Jocelyn M.; Sapsis, Themistoklis P.; Slocum, Alexander H.

    2015-04-01

    In the present work we examine how mechanical nonlinearity can be appropriately utilized to achieve strong robustness of performance in an energy harvesting setting. More specifically, for energy harvesting applications, a great challenge is the uncertain character of the excitation. The combination of this uncertainty with the narrow range of good performance for linear oscillators creates the need for more robust designs that adapt to a wider range of excitation signals. A typical application of this kind is energy harvesting from walking vibrations. Depending on the particular characteristics of the person that walks as well as on the pace of walking, the excitation signal obtains completely different forms. In the present work we study a nonlinear spring mechanism that is composed of a cantilever wrapping around a curved surface as it deflects. While for the free cantilever, the force acting on the free tip depends linearly on the tip displacement, the utilization of a contact surface with the appropriate distribution of curvature leads to essentially nonlinear dependence between the tip displacement and the acting force. The studied nonlinear mechanism has favorable mechanical properties such as low frictional losses, minimal moving parts, and a rugged design that can withstand excessive loads. Through numerical simulations we illustrate that by utilizing this essentially nonlinear element in a 2 degrees-of-freedom (DOF) system, we obtain strongly nonlinear energy transfers between the modes of the system. We illustrate that this nonlinear behavior is associated with strong robustness over three radically different excitation signals that correspond to different walking paces. To validate the strong robustness properties of the 2DOF nonlinear system, we perform a direct parameter optimization for 1DOF and 2DOF linear systems as well as for a class of 1DOF and 2DOF systems with nonlinear springs similar to that of the cubic spring that are physically realized

  9. Nonlinear dynamics of contact interaction of a size-dependent plate supported by a size-dependent beam

    Science.gov (United States)

    Awrejcewicz, J.; Krysko, V. A.; Yakovleva, T. V.; Pavlov, S. P.; Krysko, V. A.

    2018-05-01

    A mathematical model of complex vibrations exhibited by contact dynamics of size-dependent beam-plate constructions was derived by taking the account of constraints between these structural members. The governing equations were yielded by variational principles based on the moment theory of elasticity. The centre of the investigated plate was supported by a beam. The plate and the beam satisfied the Kirchhoff/Euler-Bernoulli hypotheses. The derived partial differential equations (PDEs) were reduced to the Cauchy problems by the Faedo-Galerkin method in higher approximations, whereas the Cauchy problem was solved using a few Runge-Kutta methods. Reliability of results was validated by comparing the solutions obtained by qualitatively different methods. Complex vibrations were investigated with the help of methods of nonlinear dynamics such as vibration signals, phase portraits, Fourier power spectra, wavelet analysis, and estimation of the largest Lyapunov exponents based on the Rosenstein, Kantz, and Wolf methods. The effect of size-dependent parameters of the beam and plate on their contact interaction was investigated. It was detected and illustrated that the first contact between the size-dependent structural members implies chaotic vibrations. In addition, problems of chaotic synchronization between a nanoplate and a nanobeam were addressed.

  10. Comparisons of measurements and numerical simulations of a nonlinear beam subjected to a multi-harmonic non-ideal input signal

    International Nuclear Information System (INIS)

    Claeys, M.; Sinou, J.J.; Lambelin, J.P.; Alcoverro, B.

    2014-01-01

    This study presents a direct comparison of measured and predicted nonlinear vibrations of a clamped-clamped steel beam. A multi-harmonic comparison of simulations with measurements is performed at the vicinity of the primary resonance. First of all, a nonlinear analytical model of the beam is developed taking into account non-ideal boundary conditions. The Harmonic Balance Method is implemented to estimate the nonlinear behavior of the clamped-clamped beam. This nonlinear method enables to simulate the vibration stationary response of a nonlinear system projected on several harmonics. This study then proposes a method to compare numerical simulations with measurements on all these harmonics. A signal analysis tool is developed to extract the system harmonics' frequency responses from a temporal signal of a swept sine experiment. An evolutionary updating algorithm (Covariance Matrix Adaptation Evolution Strategy), coupled with highly selective filters is used to identify both fundamental frequency and harmonics' amplitude in the temporal signal, at every moment. This tool enables to extract the harmonic amplitudes of the output signal as well as the input signal. The input of the Harmonic Balance Method can then be either an ideal mono-harmonic signal or a multi-harmonic experimental input signal. Finally, the present work focuses on the comparison of experimental and simulated results. From experimental output harmonics and numerical simulations, it is shown that it is possible to distinguish the nonlinearities of the clamped-clamped beam and the effect of the non-ideal input signal. (authors)

  11. Bifurcation and chaos of an axially accelerating viscoelastic beam

    International Nuclear Information System (INIS)

    Yang Xiaodong; Chen Liqun

    2005-01-01

    This paper investigates bifurcation and chaos of an axially accelerating viscoelastic beam. The Kelvin-Voigt model is adopted to constitute the material of the beam. Lagrangian strain is used to account for the beam's geometric nonlinearity. The nonlinear partial-differential equation governing transverse motion of the beam is derived from the Newton second law. The Galerkin method is applied to truncate the governing equation into a set of ordinary differential equations. By use of the Poincare map, the dynamical behavior is identified based on the numerical solutions of the ordinary differential equations. The bifurcation diagrams are presented in the case that the mean axial speed, the amplitude of speed fluctuation and the dynamic viscoelasticity is respectively varied while other parameters are fixed. The Lyapunov exponent is calculated to identify chaos. From numerical simulations, it is indicated that the periodic, quasi-periodic and chaotic motions occur in the transverse vibrations of the axially accelerating viscoelastic beam

  12. Nonlinear plasma waves excitation by intense ion beams in background plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2004-01-01

    Plasma neutralization of an intense ion pulse is of interest for many applications, including plasma lenses, heavy ion fusion, cosmic ray propagation, etc. An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration τ b is much longer than the electron plasma period 2π/ω p , where ω p =(4πe 2 n p /m) 1/2 is the electron plasma frequency, and n p is the background plasma density. In the opposite limit, the beam pulse excites large-amplitude plasma waves. If the beam density is larger than the background plasma density, the plasma waves break. Theoretical predictions are compared with the results of calculations utilizing a particle-in-cell (PIC) code. The cold electron fluid results agree well with the PIC simulations for ion beam propagation through a background plasma. The reduced fluid description derived in this paper can provide an important benchmark for numerical codes and yield scaling relations for different beam and plasma parameters. The visualization of numerical simulation data shows complex collective phenomena during beam entry and exit from the plasma

  13. Nonlinear Plasma Waves Excitation by Intense Ion Beams in Background Plasma

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.

    2004-01-01

    Plasma neutralization of an intense ion pulse is of interest for many applications, including plasma lenses, heavy ion fusion, cosmic ray propagation, etc. An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration τ b is much longer than the electron plasma period 2π/ω p , where ω p = (4πe 2 n p /m) 1/2 is the electron plasma frequency and n p is the background plasma density. In the opposite limit, the beam pulse excites large-amplitude plasma waves. If the beam density is larger than the background plasma density, the plasma waves break. Theoretical predictions are compared with the results of calculations utilizing a particle-in-cell (PIC) code. The cold electron fluid results agree well with the PIC simulations for ion beam propagation through a background plasma. The reduced fluid description derived in this paper can provide an important benchmark for numerical codes and yield scaling relations for different beam and plasma parameters. The visualization of numerical simulation data shows complex collective phenomena during beam entry and exit from the plasma

  14. Beam Stability in the Drive-Beam Decelerator of CLIC Using Structures of High-Order Symmetry

    CERN Document Server

    Millich, Antonio; Schulte, Daniel

    1999-01-01

    The RF power necessary to accelerate the main beam of the Compact Linear Collider (CLIC) is produced by decelerating a high-current drive beam in Power Extraction and Transfer Structures (PETS). The reference structure is not cylindrically symmetric but has longitudinal waveguides carved into the inner surface. This gives rise to a transverse component of the main longitudinal mode which can not be damped, in contrast to the transverse dipole wake- field. The field is non-linear and couples the motion of the particles in the two planes. Limits of the stability of the decelerated beam are investigated for different structures.

  15. Catalystlike effect of orbital angular momentum on the conversion of transverse to three-dimensional spin states within tightly focused radially polarized beams

    Science.gov (United States)

    Han, Lei; Liu, Sheng; Li, Peng; Zhang, Yi; Cheng, Huachao; Zhao, Jianlin

    2018-05-01

    We report on the catalystlike effect of orbital angular momentum (OAM) on local spin-state conversion within the tightly focused radially polarized beams associated with optical spin-orbit interaction. It is theoretically demonstrated that the incident OAM can lead to a conversion of purely transverse spin state to a three-dimensional spin state on the focal plane. This conversion can be conveniently manipulated by altering the sign and value of the OAM. By comparing the total OAM and spin angular momentum (SAM) on the incident plane to those on the focal plane, it is indicated that the incident OAM have no participation in the angular momentum intertransfer, and just play a role as a catalyst of local SAM conversion. Such an effect of OAM sheds new light on the optical spin-orbit interaction in tight-focusing processes. The resultant three-dimensional spin states may provide more degrees of freedom in optical manipulation and spin-dependent directive coupling.

  16. Walking solitons in quadratic nonlinear media

    OpenAIRE

    Torner Sabata, Lluís; Mazilu, D; Mihalache, Dumitru

    1996-01-01

    We study self-action of light in parametric wave interactions in nonlinear quadratic media. We show the existence of stationary solitons in the presence of Poynting vector beam walk-off or different group velocities between the waves. We discover that the new solitons constitute a two-parameter family, and they exist for different wave intensities and transverse velocities. We discuss the properties of the walking solitons and their experimental implications. Peer Reviewed

  17. Transverse spin physics

    CERN Document Server

    Barone, Vicenzo

    2001-01-01

    This book is devoted to the theory and phenomenology of transverse-spin effects in high-energy hadronic physics. Contrary to common past belief, it is now rather clear that such effects are far from irrelevant. A decade or so of intense theoretical work has shed much light on the subject and brought to surface an entire class of new phenomena, which now await thorough experimental investigation. Over the next few years a number of experiments world-wide (at BNL, CERN, DESY and JLAB) will run with transversely polarised beams and targets, providing data that will enrich our knowledge of the tra

  18. Application of ADM Using Laplace Transform to Approximate Solutions of Nonlinear Deformation for Cantilever Beam

    Directory of Open Access Journals (Sweden)

    Ratchata Theinchai

    2016-01-01

    Full Text Available We investigate semianalytical solutions of Euler-Bernoulli beam equation by using Laplace transform and Adomian decomposition method (LADM. The deformation of a uniform flexible cantilever beam is formulated to initial value problems. We separate the problems into 2 cases: integer order for small deformation and fractional order for large deformation. The numerical results show the approximated solutions of deflection curve, moment diagram, and shear diagram of the presented method.

  19. Application of ADM Using Laplace Transform to Approximate Solutions of Nonlinear Deformation for Cantilever Beam

    OpenAIRE

    Theinchai, Ratchata; Chankan, Siriwan; Yukunthorn, Weera

    2016-01-01

    We investigate semianalytical solutions of Euler-Bernoulli beam equation by using Laplace transform and Adomian decomposition method (LADM). The deformation of a uniform flexible cantilever beam is formulated to initial value problems. We separate the problems into 2 cases: integer order for small deformation and fractional order for large deformation. The numerical results show the approximated solutions of deflection curve, moment diagram, and shear diagram of the presented method.

  20. Nonlinear behavior of capacitive micro-beams based on strain gradient theory

    International Nuclear Information System (INIS)

    Fathalilou, Mohammad; Sadeghi, Morteza; Rezazadeh, Ghader

    2014-01-01

    This paper studies the size dependent behavior of materials in MEMS structures. This behavior becomes noticeable for a structure when the characteristic size such as thickness or diameter is close to its internal length-scale parameter and is insignificant for the high ratio of the characteristic size to the length-scale parameter, which is the case of the silicon base micro-beams. However, in some types of micro-beams like gold or nickel bases, the size dependent effect cannot be overlooked. In such cases, ignoring this behavior in modeling will lead to incorrect results. Some previous researchers have applied classic beam theory on their models and imposed a considerable hypothetical value of residual stress to match their theoretical results with the experimental ones. The equilibrium positions or fixed points of the gold and nickel micro-beams are obtained and shown that for a given DC voltage, there is a considerable difference between the obtained fixed points using classic beam theory, modified couple stress theory, and modified strain gradient theory. In addition, it is shown that the calculated static and dynamic pull-in voltages using higher order theories are much closer to the experimental results and are higher several times than those obtained by classic beam theory.

  1. Nonlinear finite element analysis of reinforced and prestressed concrete shells with edge beams

    International Nuclear Information System (INIS)

    Srinivasa Rao, P.; Duraiswamy, S.

    1994-01-01

    The structural design of reinforced and prestressed concrete shells demands the application of nonlinear finite element analysis (NFEM) procedures to ensure safety and serviceability. In this paper the details of a comprehensive NFEM program developed are presented. The application of the program is highlighted by solving two numerical problems and comparing the results with experimental results. (author). 20 refs., 15 figs

  2. Giant nonlinear interaction between two optical beams via a quantum dot embedded in a photonic wire

    DEFF Research Database (Denmark)

    Nguyen, H.A.; Grange, T.; Reznychenko, B.

    2018-01-01

    a tailored photonic environment. Here, we demonstrate a two-mode giant nonlinearity with a single semiconductor quantum dot (QD) embedded in a photonic wire antenna. We exploit two detuned optical transitions associated with the exciton-biexciton QD level scheme. Owing to the broadband waveguide antenna...

  3. A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler-Bernoulli beams

    Science.gov (United States)

    Andreaus, Ugo; Spagnuolo, Mario; Lekszycki, Tomasz; Eugster, Simon R.

    2018-04-01

    We present a finite element discrete model for pantographic lattices, based on a continuous Euler-Bernoulli beam for modeling the fibers composing the pantographic sheet. This model takes into account large displacements, rotations and deformations; the Euler-Bernoulli beam is described by using nonlinear interpolation functions, a Green-Lagrange strain for elongation and a curvature depending on elongation. On the basis of the introduced discrete model of a pantographic lattice, we perform some numerical simulations. We then compare the obtained results to an experimental BIAS extension test on a pantograph printed with polyamide PA2200. The pantographic structures involved in the numerical as well as in the experimental investigations are not proper fabrics: They are composed by just a few fibers for theoretically allowing the use of the Euler-Bernoulli beam theory in the description of the fibers. We compare the experiments to numerical simulations in which we allow the fibers to elastically slide one with respect to the other in correspondence of the interconnecting pivot. We present as result a very good agreement between the numerical simulation, based on the introduced model, and the experimental measures.

  4. Linear and nonlinear ion beam instabilities in a double plasma device

    International Nuclear Information System (INIS)

    Lee, S.G.; Diebold, D.; Hershkowitz, N.

    1994-01-01

    Ion beam instabilities in the double plasma device DOLI-1 were found to be quite sensitive to the difference between the source and target chamber plasma potentials when those potentials were within an electron temperature T e /e or so of each other. When the target chamber plasma potential of DOLI-1 was ≤ T e /e more positive than the source chamber plasma potential, a global ion beam-ion beam instability was observed. On the other hand, when the maximum target potential was between approximately 0.5 T e /e and 2.0 T e /e below the source potential, an ion-ion beam instability and a soliton associated with it were observed. This soliton is unique in that it is not launched but rather is self generated by the plasma and beam. When the target potential was less than source potential by more than two or so T e /e, the plasma was quite quiescent, which allowed small amplitude wave packet launched by Langmuir probe to be detected

  5. MULTI-OBJECTIVE ONLINE OPTIMIZATION OF BEAM LIFETIME AT APS

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yipeng

    2017-06-25

    In this paper, online optimization of beam lifetime at the APS (Advanced Photon Source) storage ring is presented. A general genetic algorithm (GA) is developed and employed for some online optimizations in the APS storage ring. Sextupole magnets in 40 sectors of the APS storage ring are employed as variables for the online nonlinear beam dynamics optimization. The algorithm employs several optimization objectives and is designed to run with topup mode or beam current decay mode. Up to 50\\% improvement of beam lifetime is demonstrated, without affecting the transverse beam sizes and other relevant parameters. In some cases, the top-up injection efficiency is also improved.

  6. Transverse effects in UV FELs

    International Nuclear Information System (INIS)

    Small, D.W.; Wong, R.K.; Colson, W.B.

    1995-01-01

    In an ultraviolet Free Electron Laser (UV FEL), the electron beam size can be approximately the same as the optical mode size. The performance of a UV FEL is studied including the effect of emittance, betatron focusing, and external focusing of the electron beam on the transverse optical mode. The results are applied to the Industrial Laser Consortium's UV FEL

  7. Nonlinear micromechanics-based finite element analysis of the interfacial behaviour of FRP-strengthened reinforced concrete beams

    Science.gov (United States)

    Abd El Baky, Hussien

    This research work is devoted to theoretical and numerical studies on the flexural behaviour of FRP-strengthened concrete beams. The objectives of this research are to extend and generalize the results of simple experiments, to recommend new design guidelines based on accurate numerical tools, and to enhance our comprehension of the bond performance of such beams. These numerical tools can be exploited to bridge the existing gaps in the development of analysis and modelling approaches that can predict the behaviour of FRP-strengthened concrete beams. The research effort here begins with the formulation of a concrete model and development of FRP/concrete interface constitutive laws, followed by finite element simulations for beams strengthened in flexure. Finally, a statistical analysis is carried out taking the advantage of the aforesaid numerical tools to propose design guidelines. In this dissertation, an alternative incremental formulation of the M4 microplane model is proposed to overcome the computational complexities associated with the original formulation. Through a number of numerical applications, this incremental formulation is shown to be equivalent to the original M4 model. To assess the computational efficiency of the incremental formulation, the "arc-length" numerical technique is also considered and implemented in the original Bazant et al. [2000] M4 formulation. Finally, the M4 microplane concrete model is coded in FORTRAN and implemented as a user-defined subroutine into the commercial software package ADINA, Version 8.4. Then this subroutine is used with the finite element package to analyze various applications involving FRP strengthening. In the first application a nonlinear micromechanics-based finite element analysis is performed to investigate the interfacial behaviour of FRP/concrete joints subjected to direct shear loadings. The intention of this part is to develop a reliable bond--slip model for the FRP/concrete interface. The bond

  8. Gap Dependent Bifurcation Behavior of a Nano-Beam Subjected to a Nonlinear Electrostatic Pressure

    Directory of Open Access Journals (Sweden)

    Mohammad Fathalilou

    Full Text Available This paper presents a study on the gap dependent bifurcation behavior of an electro statically-actuated nano-beam. The sizedependent behavior of the beam was taken into account by applying the couple stress theory. Two small and large gap distance regimes have been considered in which the intermolecular vdW and Casimir forces are dominant, respectively. It has been shown that changing the gap size can affect the fundamental frequency of the beam. The bifurcation diagrams for small gap distance revealed that by changing the gap size, the number and type of the fixed points can change. However, for large gap regime, where the Casimir force is the dominant intermolecular force, changing the gap size does not affect the quality of the bifurcation behavior.

  9. Nonlinear analysis of flexible beams undergoing large rotations Via symbolic computations

    Directory of Open Access Journals (Sweden)

    Yuan Xiaofeng

    2001-01-01

    Full Text Available In this paper, a two-stage approach is presented for analyzing flexible beams undergoing large rotations. In the first stage, the symbolic forms of equations of motion and the Jacobian matrix are generated by means of MATLAB and written into a MATLAB script file automatically, where the flexible beams are described by the unified formulation presented in our previous paper. In the second stage, the derived equations of motion are solved by means of implicit numerical methods. Several comparison computations are performed. The two-stage approach proves to be much more efficient than pure numerical one.

  10. Nonlinear analysis and analog simulation of a piezoelectric buckled beam with fractional derivative

    Science.gov (United States)

    Mokem Fokou, I. S.; Buckjohn, C. Nono Dueyou; Siewe Siewe, M.; Tchawoua, C.

    2017-08-01

    In this article, an analog circuit for implementing fractional-order derivative and a harmonic balance method for a vibration energy harvesting system under pure sinusoidal vibration source is proposed in order to predict the system response. The objective of this paper is to discuss the performance of the system with fractional derivative and nonlinear damping (μb). Bifurcation diagram, phase portrait and power spectral density (PSD) are provided to deeply characterize the dynamics of the system. These results are corroborated by the 0-1 test. The appearance of the chaotic vibrations reduces the instantaneous voltage. The pre-experimental investigation is carried out through appropriate software electronic circuit (Multisim). The corresponding electronic circuit is designed, exhibiting periodic and chaotic behavior, in accord with numerical simulations. The impact of fractional derivative and nonlinear damping is presented with detail on the output voltage and power of the system. The agreement between numerical and analytical results justifies the efficiency of the analytical technique used. In addition, by combining the harmonic excitation with the random force, the stochastic resonance phenomenon occurs and improves the harvested energy. It emerges from these results that the order of fractional derivative μ and nonlinear damping μb play an important role in the response of the system.

  11. Transverse tails and higher order moments

    International Nuclear Information System (INIS)

    Spence, W.L.; Decker, F.J.; Woodley, M.D.

    1993-05-01

    The tails that may be engendered in a beam's transverse phase space distribution by, e.g., intrabunch wakefields and nonlinear magnetic fields, are all important diagnostic and object of tuning in linear colliders. Wire scanners or phosphorescent screen monitors yield one dimensional projected spatial profiles of such beams that are generically asymmetric around their centroids, and therefore require characterization by the third moment left-angle x 3 right-angle in addition to the conventional mean-square or second moment. A set of measurements spread over sufficient phase advance then allows the complete set left-angle x 3 right-angle, left-angle xx' 2 right-angle, left-angle x' 3 right-angle, and left-angle x 2 x'right-angle to be deduced -- the natural extension of the well-known ''emittance measurement'' treatment of second moments. The four third moments may be usefully decomposed into parts rotating in phase space at the β-tron frequency and at its third harmonic, each specified by a phase-advance-invariant amplitude and a phase. They provide a framework for the analysis and tuning of transverse wakefield tails

  12. ALICE EMCal Reconstructable Energy Non-Linearity From Test Beam Monte Carlo

    CERN Document Server

    Carter, Thomas Michael

    2017-01-01

    Calorimeters play many important roles in modern high energy physics detectors, such as event selection, triggering, and precision energy measurements. EMCal, in the case of the ALICE experiment provides triggering on high energy jets, improves jet quenching study measurement bias and jet energy resolution, and improves electron and photon measurements [3]. With the EMCal detector in the ALICE experiment taking on so many important roles, it is important to fully understand, characterize and model its interactions with particles. In 2010 SPS and PS electron test beam measurements were performed on an EMCal mini-module [2]. Alongside this, the test beam setup and geometry was recreated in Geant4 by Nico [1]. Figure 1 shows the reconstructable energy linearity for the SPS test beam data and that obtained from the test beam monte carlo, indicating the amount of energy deposit as hits in the EMCal module. It can be seen that for energies above ∼ 100 GeV there is a significant drop in the reconstructableenergym...

  13. Evaluation of the Transverse Craniofacial Morphology of Adolescents With Repaired Unilateral Cleft Lip and Palate Using Cone-Beam Computed Tomography.

    Science.gov (United States)

    Buyuk, Suleyman Kutalmiş; Celikoglu, Mevlut; Benkli, Yasin Atakan; Sekerci, Ahmet Ercan

    2016-10-01

    The aim of the study was to evaluate the transverse craniofacial morphology of the adolescent patients affected by unilateral cleft lip and palate (UCLP) and to compare the findings with age- and sex-matched control group without any cleft using their cone-beam computed tomography (CBCT) images. The study sample (n = 56 patients; mean age: 14.35 ± 3.06 years) consisted of 26 UCLP (n = 26 patients; 10 women and 16 men; mean age: 13.70 ± 2.94 years) and 30 control (n = 30 patients; 19 women and 11 men; mean age: 14.90 ± 3.10 years) subjects. Twenty-five conventional skeletal and dental tissue landmarks were identified. Twenty widely used frontal cephalometric variables (14 linear distances, 3 angles, and 3 ratios) were measured. The data were analyzed using the independent t-test between the groups. Patients affected by UCLP had statistically significantly smaller interorbital width (89.83 ± 4.16 mm), maxillary width (58.02 ± 5.77 mm), maxillary intermolar width (52.83 ± 4.83 mm), and upper face height (57.64 ± 4.57 mm) (P cleft width had significant effect on Cr-ANS (r = 0.446, P = 0.022) and the ANS-isf (r = 0.459, P = 0.018) measurements. The UCLP group showed statistically significantly smaller values for interorbital width, maxillary width, maxillary intermolar width, and upper face height than the noncleft controls.

  14. A non-linear procedure for the numerical analysis of crack development in beams failing in shear

    Directory of Open Access Journals (Sweden)

    P. Bernardi

    2016-01-01

    Full Text Available In this work, a consistent formulation for the representation of concrete behavior before and after cracking has been implemented into a non-linear model for the analysis of reinforced concrete structures, named 2D-PARC. Several researches have indeed pointed out that the adoption of an effective modeling for concrete, combined with an accurate failure criterion, is crucial for the correct prediction of the structural behavior, not only in terms of failure load, but also with reference to a realistic representation of crack initiation and development. This last aspect is particularly relevant at serviceability conditions in order to verify the fulfillment of structural requirements provided by Design Codes, which limit the maximum crack width due to appearance and durability issues. In more details, a constitutive model originally proposed by Ottosen and based on non-linear elasticity has been here incorporated into 2D-PARC in order to improve the numerical efficiency of the adopted algorithm, providing at the same time an accurate prediction of the structural response. The effectiveness of this procedure has been verified against significant experimental results available in the technical literature and relative to reinforced concrete beams without stirrups failing in shear, which represent a problem of great theoretical and practical importance in the field of structural engineering. Numerical results have been compared to experimental evidences not only in terms of global structural response (i.e. applied load vs. midspan deflection, but also in terms of crack pattern evolution and maximum crack widths.

  15. Experimental investigations and evaluation of strength and deflections of reinforced concrete beam-column joints using nonlinear static analysis

    International Nuclear Information System (INIS)

    Sharma, Akanshu; Reddy, G.R.; Vaze, K.K.; Ghosh, A.K.; Kushwaha, H.S.

    2009-07-01

    It is now a well-known fact that beam-column connections are one of the most vulnerable zones of a reinforced concrete framed structure subjected to seismic loads. Under dynamic reversing loading, as in case of earthquakes, the inelastic hysteretic behavior of the members joining at these joints provides major contribution towards absorbing the external energy. The energy absorption capacity of a joint mainly depends on the ductility, i.e. capacity to undergo large displacements beyond yield, without significant strength degradation, of the members and the joint itself. Even if the members possess sufficient ductile behavior, the overall ductility of the joint is not warranted, until and unless the joint core itself has capacity to withstand large joint shear forces. Else, the joint core itself fails prematurely and leads to poor performance of the sub-assemblage. Another major objective of this program was to develop a simple yet effective analysis procedure that can closely predict the load-displacement behavior of the joints. Nonlinear dynamic analysis, although effective, is highly time consuming and complex. Resorting to such complex analysis is not encouraging to the practicing civil engineers or even researchers. However, as more and more emphasis is laid on nonlinear analysis and performance based design, nonlinear static pushover analysis is one such tool that is simple and effective and many researchers and engineers are getting encouraged to follow this analytical method. This report includes complete details of all the joints tested and their analysis. It gives complete theoretical formulations and assumptions used in the analysis. In the end, all the results are summarized and observations, conclusions and recommendations are made regarding the effect of various parameters on ductility of a joint. (author)

  16. COMPARISON OF NONLINEAR DYNAMICS OPTIMIZATION METHODS FOR APS-U

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.; Borland, Michael

    2017-06-25

    Many different objectives and genetic algorithms have been proposed for storage ring nonlinear dynamics performance optimization. These optimization objectives include nonlinear chromaticities and driving/detuning terms, on-momentum and off-momentum dynamic acceptance, chromatic detuning, local momentum acceptance, variation of transverse invariant, Touschek lifetime, etc. In this paper, the effectiveness of several different optimization methods and objectives are compared for the nonlinear beam dynamics optimization of the Advanced Photon Source upgrade (APS-U) lattice. The optimized solutions from these different methods are preliminarily compared in terms of the dynamic acceptance, local momentum acceptance, chromatic detuning, and other performance measures.

  17. Electromagnetic radiation and nonlinear energy flow in an electron beam-plasma system

    Science.gov (United States)

    Whelan, D. A.; Stenzel, R. L.

    1985-01-01

    It is shown that the unstable electron-plasma waves of a beam-plasma system can generate electromagnetic radiation in a uniform plasma. The generation mechanism is a scattering of the unstable electron plasma waves off ion-acoustic waves, producing electromagnetic waves whose frequency is near the local plasma frequency. The wave vector and frequency matching conditions of the three-wave mode coupling are experimentally verified. The electromagnetic radiation is observed to be polarized with the electric field parallel to the beam direction, and its source region is shown to be localized to the unstable plasma wave region. The frequency spectrum shows negligible intensity near the second harmonic of the plasma frequency. These results suggest that the observed electromagnetic radiation of type III solar bursts may be generated near the local plasma frequency and observed downstream where the wave frequency is near the harmonic of the plasma frequency.

  18. Uniform Decay for Solutions of an Axially Moving Viscoelastic Beam

    Energy Technology Data Exchange (ETDEWEB)

    Kelleche, Abdelkarim, E-mail: kellecheabdelkarim@gmail.com [Université des Sciences et de la Technologie Houari Boumediene, Faculté des Mathématiques (Algeria); Tatar, Nasser-eddine, E-mail: tatarn@Kfupm.edu.sa [King Fahd University of Petroleum and Minerals, Department of Mathematics and Statistics (Saudi Arabia)

    2017-06-15

    The paper deals with an axially moving viscoelastic structure modeled as an Euler–Bernoulli beam. The aim is to suppress the transversal displacement (transversal vibrations) that occur during the axial motion of the beam. It is assumed that the beam is moving with a constant axial speed and it is subject to a nonlinear force at the right boundary. We prove that when the axial speed of the beam is smaller than a critical value, the dissipation produced by the viscoelastic material is sufficient to suppress the transversal vibrations. It is shown that the rate of decay of the energy depends on the kernel which arise in the viscoelastic term. We consider a general kernel and notice that solutions cannot decay faster than the kernel.

  19. Beam-beam interaction working group summary

    International Nuclear Information System (INIS)

    Siemann, R.H.

    1995-01-01

    The limit in hadron colliders is understood phenomenologically. The beam-beam interaction produces nonlinear resonances and makes the transverse tunes amplitude dependent. Tune spreads result from the latter, and as long as these tune spreads do not overlap low order resonances, the lifetime and performance is acceptable. Experience is that tenth and sometimes twelfth order resonances must be avoided, and the hadron collider limit corresponds roughly to the space available between resonances of that and lower order when operating near the coupling resonance. The beam-beam interaction in e + e - colliders is not understood well. This affects the performance of existing colliders and could lead to surprises in new ones. For example. a substantial amount of operator tuning is usually required to reach the performance limit given above, and this tuning has to be repeated after each major shutdown. The usual interpretation is that colliding beam performance is sensitive to small lattice errors, and these are being reduced during tuning. It is natural to ask what these errors are, how can a lattice be characterized to minimize tuning time, and what aspects of a lattice should receive particular attention when a new collider is being designed. The answers to this type of question are not known, and developing ideas for calculations, simulations and experiments that could illuminate the details of the beam-beam interaction was the primary working group activity

  20. NON-LINEAR ANALYSIS OF AN EXPERIMENTAL JOINT OF COLUMN AND BEAMS OF ARMED CONCRETE-STEEL COLUMN FOR FRAME

    Directory of Open Access Journals (Sweden)

    Nelson López

    2017-12-01

    Full Text Available In this research, the nonlinear behavior of a real-scale experimental joint (node is studied, consisting of three reinforced concrete elements, one column and two beams joined to a structural steel column at the upper level. In the numerical analysis the model of the union was analyzed in the inelastic range, this model was elaborated with the finite element program based on fibers, SeismoStruct to analyze as a function of time, the traction and compression efforts in the confined area and not confined area of the concrete column and in the longitudinal reinforcement steel, as well as verification of the design of the base plate that joins the two columns. The results showed that tensile stresses in the unconfined zone surpassed the concrete breaking point, with cracking occurring just below the lower edge of the beams; in the confined area the traction efforts were much lower, with cracks occurring later than in the non-confined area. The concrete column-steel column joint behaved as a rigid node, so the elastic design was consistent with the calculation methodology of base plates for steel columns.

  1. Self consistent hydrodynamic description of the plasma wake field excitation induced by a relativistic charged-particle beam in an unmagnetized plasma

    Science.gov (United States)

    Jovanović, Dušan; Fedele, Renato; De Nicola, Sergio; Akhter, Tamina; Belić, Milivoj

    2017-12-01

    A self-consistent nonlinear hydrodynamic theory is presented of the propagation of a long and thin relativistic electron beam, for a typical plasma wake field acceleration configuration in an unmagnetized and overdense plasma. The random component of the trajectories of the beam particles as well as of their velocity spread is modelled by an anisotropic temperature, allowing the beam dynamics to be approximated as a 3D adiabatic expansion/compression. It is shown that even in the absence of the nonlinear plasma wake force, the localisation of the beam in the transverse direction can be achieved owing to the nonlinearity associated with the adiabatic compression/rarefaction and a coherent stationary state is constructed. Numerical calculations reveal the possibility of the beam focussing and defocussing, but the lifetime of the beam can be significantly extended by the appropriate adjustments, so that transverse oscillations are observed, similar to those predicted within the thermal wave and Vlasov kinetic models.

  2. Dynamic modelling and control of a rotating Euler-Bernoulli beam

    Science.gov (United States)

    Yang, J. B.; Jiang, L. J.; Chen, D. CH.

    2004-07-01

    Flexible motion of a uniform Euler-Bernoulli beam attached to a rotating rigid hub is investigated. Fully coupled non-linear integro-differential equations, describing axial, transverse and rotational motions of the beam, are derived by using the extended Hamilton's principle. The centrifugal stiffening effect is included in the derivation. A finite-dimensional model, including couplings of axial and transverse vibrations, and of elastic deformations and rigid motions, is obtained by the finite element method. By neglecting the axial motion, a simplified modelling, suitable for studying the transverse vibration and control of a beam with large angle and high-speed rotation, is presented. And suppressions of transverse vibrations of a rotating beam are simulated with the model by combining positive position feedback and momentum exchange feedback control laws. It is indicated that an improved performance for vibration control can be achieved with the method.

  3. Experimental study of transmission of a pulsed focused beam through a skull phantom in nonlinear regime

    Energy Technology Data Exchange (ETDEWEB)

    Tsysar, S. A., E-mail: sergey@acs366.phys.msu.ru; Nikolaeva, A. V.; Khokhlova, V. A.; Yuldashev, P. V. [Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Svet, V. D. [Andreyev Acoustics Institute, 4, Shvernik Street, Moscow 117036 (Russian Federation); Sapozhnikov, O. A. [Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA 98105 (United States)

    2015-10-28

    In the paper the use of receiving and radiating system, which allows to determine the parameters of bone by nonlinear pulse-echo technique and to image of brain structures through the skull bones, was proposed. Accuracy of the skull bone characterization is due to higher measured harmonic and is significantly better than in linear case. In the experimental part focused piezoelectric transducer with diameter 100 mm, focal distance 100 mm, the frequency of 1.092 MHz was used. It was shown that skull bone profiling can be performed with the use of 3rd harmonic since 1st harmonic can be used for visualization of the underlying objects. The use of wideband systems for both skull profiling and brain visualization is restricted by skull attenuation and resulting low effective sensitivity.

  4. Experimental study of transmission of a pulsed focused beam through a skull phantom in nonlinear regime

    International Nuclear Information System (INIS)

    Tsysar, S. A.; Nikolaeva, A. V.; Khokhlova, V. A.; Yuldashev, P. V.; Svet, V. D.; Sapozhnikov, O. A.

    2015-01-01

    In the paper the use of receiving and radiating system, which allows to determine the parameters of bone by nonlinear pulse-echo technique and to image of brain structures through the skull bones, was proposed. Accuracy of the skull bone characterization is due to higher measured harmonic and is significantly better than in linear case. In the experimental part focused piezoelectric transducer with diameter 100 mm, focal distance 100 mm, the frequency of 1.092 MHz was used. It was shown that skull bone profiling can be performed with the use of 3rd harmonic since 1st harmonic can be used for visualization of the underlying objects. The use of wideband systems for both skull profiling and brain visualization is restricted by skull attenuation and resulting low effective sensitivity

  5. Nonlinear thermally induced distortions of a laser beam in a cryogenic disk amplifier

    International Nuclear Information System (INIS)

    Vyatkin, A G; Khazanov, Efim A

    2009-01-01

    Taking into account the temperature dependences of the heat conductivity, the refractive index, and the thermal expansion coefficient, we calculated the temperature, elastic stresses, a thermally induced lens and depolarisation of a beam in a cryogenic disk amplifier (an Yb:YAG disk placed between a copper cylinder and a sapphire disk cooled by liquid nitrogen). When the active element (the thickness is 0.6 mm, the orientation is [001], the atomic concentration of Yb is 10%) is pumped by radiation from a diode laser (the beam diameter is 6 mm), the temperature does not exceed 140 K for the heat release power of 100 W. In this case, elastic stresses in the active element are six times lower than the maximum permissible value. The focal distance of the thermally induced lens is 5.5 m and the depolarisation rate is 0.038% per two passes through the active element. Although the heat conductivity of the active element rapidly decreases with temperature, the thermal load can be increased by 1.5-2 times when the dimensions of the active element remain constant. (active media)

  6. Possible parametric instabilities of beat waves in a transversely magnetized plasma

    International Nuclear Information System (INIS)

    Salimullah, M.

    1988-05-01

    The effect of an external magnetic field on the various possible parametric instabilities of the longitudinal beat wave at the difference frequency of two incident laser beams in a hot plasma has been thoeretically investigated. The kinetic equation is employed to obtain the nonlinear response of the magnetized electrons due to the nonlinear coupling of the beat wave with the low-frequency electrostatic plasma modes. It is noted that the growth rates of the three-wave and the four-wave parametric instabilities can be influenced by the external transverse magnetic field. (author). 20 refs, 3 figs

  7. Nonlinear optics principles and applications

    CERN Document Server

    Rottwitt, Karsten

    2014-01-01

    IntroductionReview of linear opticsInduced polarizationHarmonic oscillator modelLocal field correctionsEstimated nonlinear responseSummaryTime-domain material responseThe polarization time-response functionThe Born-Oppenheimer approximationRaman scattering response function of silicaSummaryMaterial response in the frequency domain, susceptibility tensorsThe susceptibility tensorThe induced polarization in the frequency domainSum of monochromatic fieldsThe prefactor to the induced polarizationThird-order polarization in the Born-Oppenheimer approximation in the frequency domainKramers-Kronig relationsSummarySymmetries in nonlinear opticsSpatial symmetriesSecond-order materialsThird-order nonlinear materialsCyclic coordinate-systemContracted notation for second-order susceptibility tensorsSummaryThe nonlinear wave equationMono and quasi-monochromatic beamsPlane waves - the transverse problemWaveguidesVectorial approachNonlinear birefringenceSummarySecond-order nonlinear effectsGeneral theoryCoupled wave theoryP...

  8. High Energy Laser Beam Propagation in the Atmosphere: The Integral Invariants of the Nonlinear Parabolic Equation and the Method of Moments

    Science.gov (United States)

    Manning, Robert M.

    2012-01-01

    The method of moments is used to define and derive expressions for laser beam deflection and beam radius broadening for high-energy propagation through the Earth s atmosphere. These expressions are augmented with the integral invariants of the corresponding nonlinear parabolic equation that describes the electric field of high-energy laser beam to propagation to yield universal equations for the aforementioned quantities; the beam deflection is a linear function of the propagation distance whereas the beam broadening is a quadratic function of distance. The coefficients of these expressions are then derived from a thin screen approximation solution of the nonlinear parabolic equation to give corresponding analytical expressions for a target located outside the Earth s atmospheric layer. These equations, which are graphically presented for a host of propagation scenarios, as well as the thin screen model, are easily amenable to the phase expansions of the wave front for the specification and design of adaptive optics algorithms to correct for the inherent phase aberrations. This work finds application in, for example, the analysis of beamed energy propulsion for space-based vehicles.

  9. Nonlinear free vibration analysis of elastically supported carbon nanotube-reinforced composite beam with the thermal environment in non-deterministic framework

    Directory of Open Access Journals (Sweden)

    Chaudhari Virendra Kumar

    2017-01-01

    Full Text Available This paper deals with the investigation of nonlinear free vibration behavior of elastically supported carbon nanotube reinforced composite (CNTRC beam subjected to thermal loading with random system properties. Material properties of each constituent’s material, volume fraction exponent and foundation parameters are considered as uncorrelated Gaussian random input variables. The beam is supported by a Pasternak foundation with Winkler cubic nonlinearity. The higher order shear deformation theory (HSDT with von-Karman non-linearity is used to formulate the governing equation using Hamilton principle. Convergence and validation study is carried out through the comparison with the available results in the literature for authenticity and accuracy of the present approach used in the analysis. First order perturbation technique (FOPT,Second order perturbation technique (SOPT and Monte Carlo simulation (MCS methods are employed to investigate the effect of geometric configuration, volume fraction exponent, foundation parameters, distribution of reinforcement and thermal loading on nonlinear vibration characteristics CNTRC beam.The present work signifies the accurate analysis of vibrational behaviour influences by different random variables. Results are presented in terms of mean, variance (COV and probability density function (PDF for various aforementioned parameters.

  10. Non-linear temperature-dependent curvature of a phase change composite bimorph beam

    Science.gov (United States)

    Blonder, Greg

    2017-06-01

    Bimorph films curl in response to temperature. The degree of curvature typically varies in proportion to the difference in thermal expansion of the individual layers, and linearly with temperature. In many applications, such as controlling a thermostat, this gentle linear behavior is acceptable. In other cases, such as opening or closing a valve or latching a deployable column into place, an abrupt motion at a fixed temperature is preferred. To achieve this non-linear motion, we describe the fabrication and performance of a new bilayer structure we call a ‘phase change composite bimorph (PCBM)’. In a PCBM, one layer in the bimorph is a composite containing small inclusions of phase change materials. When the inclusions melt, their large (generally positive and  >1%) expansion coefficient induces a strong, reversible step function jump in bimorph curvature. The measured jump amplitude and thermal response is consistent with theory, and can be harnessed by a new class of actuators and sensors.

  11. Nonlinear rolling of a biased ship in a regular beam wave under external and parametric excitations

    Energy Technology Data Exchange (ETDEWEB)

    El-Bassiouny, A.F. [Mathematics Dept., Benha Univ., Benha (Egypt)

    2007-10-15

    We consider a nonlinear oscillator simultaneously excited by external and parametric functions. The oscillator has a bias parameter that breaks the symmetry of the motion. The example that we use to illustrate the problem is the rolling oscillation of a biased ship in longitudinal waves, but many mechanical systems display similar features. The analysis took into consideration linear, quadratic, cubic, quintic, and seven terms in the polynomial expansion of the relative roll angle. The damping moment consists of the linear term associated with radiation and viscous damping and a cubic term due to frictional resistance and eddies behind bilge keels and hard bilge corners. Two methods (the averaging and the multiple time scales) are used to investigate the first-order approximate analytical solution. The modulation equations of the amplitudes and phases are obtained. These equations are used to obtain the stationary state. The stability of the proposed solution is determined applying Liapunov's first method. Effects of different parameters on the system behaviour are investigated numerically. Results are presented graphically and discussed. The results obtained by two methods are in excellent agreement. (orig.)

  12. Distributed ion pump related transverse instability in CESR

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J T; Holmquist, T [Cornell Univ., Ithaca, NY (United States). Lab. of Nuclear Studies

    1996-08-01

    An anomalous damping or growth of transverse coupled bunch modes is observed in the Cornell Electron Storage Ring (CESR). The growth rates and tune shifts of these modes are a highly nonlinear function of current. Unlike an instability produced by the coupling impedance of the vacuum chamber, the magnitude of the growth rate first increases, then declines, as the beam current is increased. The effect is known to be related to the operation of the distributed ion pumps, as it disappears when the pumps are not powered. We review the observations of this effect, and show that it can be explained by the presence of electrons trapped in the CESR chamber by the field of the dipole magnets and the electrostatic leakage field of the distributed ion pumps. Photoelectrons are introduced into the chamber by synchrotron radiation and can be captured in or ejected from the chamber by the passage of the beam. The transverse position of the beam thus modulates the trapped photoelectron charge density, which in turn deflects the beam, creating growth or damping and a tune shift for each coupled bunch mode. Predictions of the dependence of growth rate and tune shift on bunch current and bunch pattern by a numerical model of this process are in approximate agreement with observations. (author)

  13. Transverse myelitis

    International Nuclear Information System (INIS)

    Black, M.J.; Motaghedi, B.; Robitaille, Y.

    1980-01-01

    Transverse myelitis is a known complication of radiation treatment for carcinoma of the heat and neck. In a five year period, 1970 to 1975, 120 patients with head and neck cancer received radiation as part of their treatment in this hospital. A review of the records of these patients showed only two cases of myelitis, an incidence of about 2%. This paper reviews the clinical syndrome; treatment and preventive measures are discussed and a survey of the literature is presented

  14. A Symplectic Beam-Beam Interaction with Energy Change

    International Nuclear Information System (INIS)

    Moshammer, Herbert

    2003-01-01

    The performance of many colliding storage rings is limited by the beam-beam interaction. A particle feels a nonlinear force produced by the encountering bunch at the collision. This beam-beam force acts mainly in the transverse directions so that the longitudinal effects have scarcely been studied, except for the cases of a collision with a crossing angle. Recently, however, high luminosity machines are being considered where the beams are focused extensively at the interaction point (IP) so that the beam sizes can vary significantly within the bunch length. Krishnagopal and Siemann have shown that they should not neglect the bunch length effect in this case. The transverse kick depends on the longitudinal position as well as on the transverse position. If they include this effect, however, from the action-reaction principle, they should expect, at the same time, an energy change which depends on the transverse coordinates. Such an effect is reasonably understood from the fact that the beam-beam force is partly due to the electric field, which can change the energy. The action-reaction principle comes from the symplecticity of the reaction: the electromagnetic influence on a particle is described by a Hamiltonian. The symplecticity is one of the most fundamental requirements when studying the beam dynamics. A nonsymplectic approximation can easily lead to unphysical results. In this paper, they propose a simple, approximately but symplectic mapping for the beam-beam interaction which includes the energy change as well as the bunch-length effect. In the next section, they propose the mapping in a Hamiltonian form, which directly assures its symplecticity. Then in section 3, they study the nature of the mapping by interpreting its consequences. The mapping itself is quite general and can be applied to any distribution function. They show in Section 4 how it appears when the distribution function is a Gaussian in transverse directions. The mapping is applied to the

  15. Metodologia para o cálculo dos módulos de elasticidade longitudinal e transversal em vigas de madeira de dimensões estruturais Methodology used to determine the shear and longitudinal modulus of elasticity in timber beams

    Directory of Open Access Journals (Sweden)

    André Luis Christoforo

    2013-04-01

    Full Text Available Este trabalhou objetiva apresentar uma metodologia analítica para o cálculo dos módulos de elasticidade longitudinal (E e transversal (G em vigas de madeira de dimensões estruturais, segundo o emprego das teorias de vigas de Euler Bernoulli e Timoshenko, sendo utilizado o ensaio de flexão estática a três pontos. As madeiras testadas foram o Pinus elliottii e a Corymbia citriodora. Os resultados encontrados relevaram ser o módulo de elasticidade longitudinal 18,70 vezes superior ao módulo transversal do Pinus elliottii e 21,2 superior ao módulo transversal do Corymbia citriodora, sendo estes compatíveis quando comparada a relação entre E e G estabelecida pela norma Brasileira ABNT NBR 7190:1997 (Projeto de Estruturas de Madeira, que define ser o módulo de elasticidade longitudinal vinte vezes superior ao transversal.This paper proposed a test method to obtain the shear (G and longitudinal (E modulus of elasticity in timber beams with structural dimensions, based on the static three-points bending tests and the Euler Bernoulli and Timoshenko beams theories. The woods tested were the Corymbia citriodora and Pinus elliottii. The results revealed that the longitudinal modulus of elasticity of Pinus elliottii is 18.70 greater than the shear modulus, and 21.16 greater than the shear modulus of Corymbia citriodora, being consistent this results when compared to the proposed by the Brazilian standard ABNT NBR 7190:1997 (Design of Wood Structures, being the longitudinal modulus of elasticity twenty times greater than the shear modulus.

  16. Nonlinear transient responses of beams and rings to impulse loading or fragment impact

    International Nuclear Information System (INIS)

    Witmer, E.A.; Stagliano, T.R.; Rodal, J.J.A.

    1977-01-01

    Nuclear power plant protective structures may be subjected to various external missiles such as aircraft and tornado-generated missiles: telephone poles, planks, pipes, rods, automobiles, and other blown vehicles. Also, 'internally-generated missiles' such as fragments from powerplant rotors and aircraft engine rotors may impact protective structures. The present paper is concerned with a very limited part of the cited fragment threat; namely, fragments from high speed rotating machinery such as (1) aircraft engine rotors and (2) stationary power plant turbine rotors. Further, it is assumed that the structures intended to contain or control these fragments consist of initially-isotopic elastic-plastic metals. Certain potential containment/control (C/C) structures behave in a planar (or two-dimensional) fashion while other fragment-attacked C/C structures will undergo general three-dimensional deformations. Predictions for only the former category of fragment-attacked structures are discussed in the present paper. Pertinent experimental data discussed on fragment-attacked structures include (a) steel-sphere impact data involving beam targets and (b) engine rotor fragment impact against a steel containment ring. In all of these cases large-deflection, elastic-plastic transient structural responses occur. (Auth.)

  17. Nonlinear transient responses of beams and rings to impulse loading or fragment impact

    International Nuclear Information System (INIS)

    Witmer, E.A.; Stagliano, T.R.; Rodal, J.J.A.

    1977-01-01

    The present paper is concerned with a very limited part of the cited fragment threat; namely, fragments from high speed rotating machinery such as (1) aircraft engine rotors and (2) stationary power plant turbine rotors. Further, it is assumed that the structures intended to contain or control these fragments consist of initially-isotropic elastic-plastic metals. Certain potential containment/control (C/C) structures behave in a planar (or two-dimensional) fashion while other fragment-attacked C/C structures will undergo general three-dimensional deformations. Predictions for only the former category of fragment-attacked structures are discussed in the present paper. Pertinent experimental data discussed here on fragment-attacked structures include (a) steel-sphere impact data involving beam targets and (b) engine rotor fragment impact against a steel containment ring. In all of these cases large-deflection, elastic-plastic transient structural response occur. The governing equations employed are presented in the present analysis to predict the responses of protective (metal) structures to engine-rotor-fragment impact. The protective structure is intended either to contain or to deflect the attacking fragments away from important regions; large-deflection, elasic-plastic structural response is expected because these protective structures must have the least feasible weight. Concise geometric and assumed-displacement-field descriptions of the several types of finite elements to be utilized in subsequent examples are given, together with several categories of strain displacement relations. Both low- and higher-order elements are discussed

  18. Double lens device for tunable harmonic generation of laser beams in KBBF/RBBF crystals or other non-linear optic materials

    Science.gov (United States)

    Kaminski, Adam

    2017-08-22

    A method and apparatus to generate harmonically related laser wavelengths includes a pair of lenses at opposing faces of a non-linear optical material. The lenses are configured to promote incoming and outgoing beams to be normal to each outer lens surface over a range of acceptance angles of the incoming laser beam. This reduces reflection loss for higher efficiency operation. Additionally, the lenses allow a wider range of wavelengths for lasers for more universal application. Examples of the lenses include plano-cylindrical and plano-spherical form factors.

  19. Geometrically exact nonlinear analysis of pre-twisted composite rotor blades

    Directory of Open Access Journals (Sweden)

    Li'na SHANG

    2018-02-01

    Full Text Available Modeling of pre-twisted composite rotor blades is very complicated not only because of the geometric non-linearity, but also because of the cross-sectional warping and the transverse shear deformation caused by the anisotropic material properties. In this paper, the geometrically exact nonlinear modeling of a generalized Timoshenko beam with arbitrary cross-sectional shape, generally anisotropic material behavior and large deflections has been presented based on Hodges’ method. The concept of decomposition of rotation tensor was used to express the strain in the beam. The variational asymptotic method was used to determine the arbitrary warping of the beam cross section. The generalized Timoshenko strain energy was derived from the equilibrium equations and the second-order asymptotically correct strain energy. The geometrically exact nonlinear equations of motion were established by Hamilton’s principle. The established modeling was used for the static and dynamic analysis of pre-twisted composite rotor blades, and the analytical results were validated based on experimental data. The influences of the transverse shear deformation on the pre-twisted composite rotor blade were investigated. The results indicate that the influences of the transverse shear deformation on the static deformation and the natural frequencies of the pre-twisted composite rotor blade are related to the length to chord ratio of the blade. Keywords: Geometrically exact, Nonlinear, Pre-twisted composite blade, Transverse shear deformation, Variational asymptotic, Warping

  20. NON-LINEAR MODELING OF THE RHIC INTERACTION REGIONS

    International Nuclear Information System (INIS)

    TOMAS, R.; FISCHER, W.; JAIN, A.; LUO, Y.; PILAT, F.

    2004-01-01

    For RHIC's collision lattices the dominant sources of transverse non-linearities are located in the interaction regions. The field quality is available for most of the magnets in the interaction regions from the magnetic measurements, or from extrapolations of these measurements. We discuss the implementation of these measurements in the MADX models of the Blue and the Yellow rings and their impact on beam stability

  1. Effects of two-scale transverse crack systems on the non-linear behaviour of a 2D SiC-SiC composite

    Energy Technology Data Exchange (ETDEWEB)

    Morvan, J.-M.; Baste, S. [Bordeaux-1 Univ., 33 - Talence (France). Lab. de Mecanique Physique

    1998-07-31

    By using both an ultrasonic device and an extensometer, it is possible to know which stiffness coefficients change during the damage process of a material and which part of the global strain is either elastic or inelastic. The influence of the two damage mechanisms is described for a woven 2D SiC-SiC composite. It appears that the two scales of this composite have a great influence on its behaviour. Two elementary mechanisms occur at both scales of the material: at the mesostructure level consisting of the bundles as well as of the inter-bundle matrix and at the microstructure level made from both the fibres and the intra-bundle matrix. The inelastic strains are sensitive to this two-scale effect: an increment of strain at constant stress that comes to saturation corresponding to the inter-bundle damage process and a strain which needs an increase in stress as cracking occurs at the fibres scale. With the help of a model that predicts the compliance changes caused by a crack system in a solid, it is possible to predict the crack density variation at both scales as well as the geometry of the various crack systems during monotonous loading. Furthermore, when the crack opening is taken into account, it appears that the inelastic strain is governed by the transverse crack density. (orig.) 12 refs.

  2. Stability of anisotropic beams with space charge

    International Nuclear Information System (INIS)

    Hofmann, I.

    1997-07-01

    We calculate coherent frequencies and stability properties of anisotropic or ''non-equipartitioned'' beams with different focusing constants and emittances in the two transverse directions. Based on the self-consistent Vlasov-Poisson equations the dispersion relations of transverse multipole oscillations with quadrupolar, sextupolar and octupolar symmetry are solved numerically. The eigenfrequencies give the coherent space charge tune shift for linear or nonlinear resonances in circular accelerators. We find that for sufficiently large energy anisotropy some of the eigenmodes become unstable in the space-charge-dominated regime. The properties of these anisotropy instabilities are used to show that ''non-equipartitioned'' beams can be tolerated in high-current linear accelerators. It is only in beams with strongly space-charge-depressed betatron tunes where harmful instabilities leading to emittance exchange should be expected. (orig.)

  3. Second-harmonic generation in shear wave beams with different polarizations

    Science.gov (United States)

    Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-10-01

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  4. Second-harmonic generation in shear wave beams with different polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Spratt, Kyle S., E-mail: sprattkyle@gmail.com; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F. [Applied Research Laboratories, The University of Texas at Austin, P. O. Box 8029, Austin, Texas 78713–8029, US (United States)

    2015-10-28

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.

  5. Second-harmonic generation in shear wave beams with different polarizations

    International Nuclear Information System (INIS)

    Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.

    2015-01-01

    A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic

  6. Longitudinal and transverse wake potentials in SLAC

    International Nuclear Information System (INIS)

    Bane, K.; Wilson, P.

    1980-01-01

    In a machine with short bunches of high peak currents, such as the SLAC collider, one needs to know the longitudinal wake potential, for the higher mode losses, and the transverse wake potential, since, for bunches passing slightly off axis, the induced transverse forces will tend to cause beam break up. The longitudinal and transverse wakes of the SLAC structure presented here, were calculated by computer using the modal method, and including an analytic extension for higher modes. (Auth.)

  7. Beam transfer functions for relativistic proton bunches with beam–beam interaction

    Energy Technology Data Exchange (ETDEWEB)

    Görgen, P., E-mail: goergen@temf.tu-darmstadt.de [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstr. 8 64289 Darmstadt (Germany); Boine-Frankenheim, O. [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstr. 8 64289 Darmstadt (Germany); Fischer, W. [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2015-03-21

    We present a method for the recovery of the transverse tune spread directly from the beam transfer function (BTF). The model is applicable for coasting beams and bunched beams at high energy with a tune spread from transverse nonlinearities induced by the beam–beam effect or by an electron lens. Other sources of tune spread can be added. A method for the recovery of the incoherent tune spread without prior knowledge of the nonlinearity is presented. The approach is based on the analytic model for BTFs of coasting beams, which agrees very well with simulations results for bunched beams at relativistic energies with typically low synchrotron tune. A priori the presented tune spread recovery method is usable only in the absence of coherent modes, but additional simulation data shows its applicability even in the presence of coherent beam–beam modes. Finally agreement of both the analytic and simulation models with measurement data obtained at RHIC is presented. The proposed method successfully recovers the tune spread from analytic, simulated and measured BTF.

  8. Three-dimensional analysis of nonlinear plasma oscillation

    International Nuclear Information System (INIS)

    Miano, G.

    1990-01-01

    In an underdense plasma a large-amplitude plasma oscillation may be produced by the beating of two external and colinear electromagnetic waves with a frequency difference approximately equal to the plasma frequency - plasma beat wave (PBW) resonant mechanism. The plasma oscillations are driven by the ponderomotive force arising from the beating of the two imposed electromagnetic waves. In this paper two pump electromagnetic waves with arbitrary transverse profiles have been considered. The plasma is described by using the three dimensinal weakly relativistic fluid equations. The nonlinear plasma oscillation dynamics is studied by using the eulerian description, the averaging and the multiple time scale methods. Unlike the linear theory a strong cross field coupling between longitudinal ans transverse electric field components of the plasma oscillation comes out, resulting in a nonlinear phase change and energy transfer between the two components. Unlike the one-dimensional nonlinear theory, the nonlinear frequency shift is caused by relativistic effects as well as by convective effects and electromagnetic field generated from the three dimensional plasma oscillation. The large amplitude plasma oscillation dynamics produced by a bunched relativistic electron beam with arbitrary transverse profile - plasma wave field (PWF) - or by a high power single frequency short electromagnetic pulse with arbitrary transverse profile - electromagnetic plasma wake field (EPWF) - may be described by means of the present theory. (orig.)

  9. Statistical methods for transverse beam position diagnostics with higher order modes in third harmonic 3.9 GHz superconducting accelerating cavities at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pei, E-mail: pei.zhang@desy.de [School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22607 Hamburg (Germany); Cockcroft Institute of Science and Technology, Daresbury WA4 4AD (United Kingdom); Baboi, Nicoleta [Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22607 Hamburg (Germany); Jones, Roger M. [School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Cockcroft Institute of Science and Technology, Daresbury WA4 4AD (United Kingdom)

    2014-01-11

    Beam-excited higher order modes (HOMs) can be used to provide beam diagnostics. Here we focus on 3.9 GHz superconducting accelerating cavities. In particular we study dipole mode excitation and its application to beam position determinations. In order to extract beam position information, linear regression can be used. Due to a large number of sampling points in the waveforms, statistical methods are used to effectively reduce the dimension of the system, such as singular value decomposition (SVD) and k-means clustering. These are compared with the direct linear regression (DLR) on the entire waveforms. A cross-validation technique is used to study the sample independent precisions of the position predictions given by these three methods. A RMS prediction error in the beam position of approximately 50 μm can be achieved by DLR and SVD, while k-means clustering suggests 70 μm.

  10. Statistical methods for transverse beam position diagnostics with higher order modes in third harmonic 3.9 GHz superconducting accelerating cavities at FLASH

    CERN Document Server

    Zhang, P; Jones, R M

    2014-01-01

    Beam-excited higher order modes (HOM) can be used to provide beam diagnostics. Here we focus on 3.9 GHz superconducting accelerating cavities. In particular we study dipole mode excitation and its application to beam position determinations. In order to extract beam position information, linear regression can be used. Due to a large number of sampling points in the waveforms, statistical methods are used to effectively reduce the dimension of the system, such as singular value decomposition (SVD) and k-means clustering. These are compared with the direct linear regression (DLR) on the entire waveforms. A cross-validation technique is used to study the sample independent precisions of the position predictions given by these three methods. A RMS prediction error in the beam position of approximately 50 micron can be achieved by DLR and SVD, while k-means clustering suggests 70 micron.

  11. Transverse Matching Progress Of The SNS Superconducting Linac

    International Nuclear Information System (INIS)

    Zhang, Yan; Cousineau, Sarah M.; Liu, Yun

    2011-01-01

    Experience using laser-wire beam profile measurement to perform transverse beam matching in the SNS superconducting linac is discussed. As the SNS beam power is ramped up to 1 MW, transverse beam matching becomes a concern to control beam loss and residual activation in the linac. In our experiments, however, beam loss is not very sensitive to the matching condition. In addition, we have encountered difficulties in performing a satisfactory transverse matching with the envelope model currently available in the XAL software framework. Offline data analysis from multi-particle tracking simulation shows that the accuracy of the current online model may not be sufficient for modeling the SC linac.

  12. Temperature dependence of acoustic harmonics generated by nonlinear ultrasound beam propagation in ex vivo tissue and tissue-mimicking phantoms.

    Science.gov (United States)

    Maraghechi, Borna; Kolios, Michael C; Tavakkoli, Jahan

    2015-01-01

    Hyperthermia is a cancer treatment technique that could be delivered as a stand-alone modality or in conjunction with chemotherapy or radiation therapy. Noninvasive and real-time temperature monitoring of the heated tissue improves the efficacy and safety of the treatment. A temperature-sensitive acoustic parameter is required for ultrasound-based thermometry. In this paper the amplitude and the energy of the acoustic harmonics of the ultrasound backscattered signal are proposed as suitable parameters for noninvasive ultrasound thermometry. A commercial high frequency ultrasound imaging system was used to generate and detect acoustic harmonics in tissue-mimicking gel phantoms and ex vivo bovine muscle tissues. The pressure amplitude and the energy content of the backscattered fundamental frequency (p1 and E1), the second (p2 and E2) and the third (p3 and E3) harmonics were detected in pulse-echo mode. Temperature was increased from 26° to 46 °C uniformly through both samples. The amplitude and the energy content of the harmonics and their ratio were measured and analysed as a function of temperature. The average p1, p2 and p3 increased by 69%, 100% and 283%, respectively as the temperature was elevated from 26° to 46 °C in tissue samples. In the same experiment the average E1, E2 and E3 increased by 163%, 281% and 2257%, respectively. A similar trend was observed in tissue-mimicking gel phantoms. The findings suggest that the harmonics generated due to nonlinear ultrasound beam propagation are highly sensitive to temperature and could potentially be used for noninvasive ultrasound tissue thermometry.

  13. Nonlinear dynamics and chaotization of oscillations of a virtual cathode in an annular electron beam in a uniform external magnetic field

    International Nuclear Information System (INIS)

    Kurkin, S. A.; Koronovski, A. A.; Hramov, A. E.

    2009-01-01

    Results are presented from a numerical study of the effect of an external magnetic field on the conditions and mechanisms for the formation of a virtual cathode in a relativistic electron beam. Characteristic features of the nonlinear dynamics of an electron beam with a virtual cathode are considered when the external magnetic field is varied. Various mechanisms are investigated by which the virtual cathode oscillations become chaotic and their spectrum becomes a multifrequency spectrum, thereby complicating the dynamics of the vircator system. A general mechanism for chaotization of the oscillations of a virtual cathode in a vircator system is revealed: the electron structures that form in an electron beam interact by means of a common space charge field to give rise to additional internal feedback. That the oscillations of a virtual cathode change from the chaotic to the periodic regime is due to the suppression of the mechanism for forming secondary electron structures.

  14. Tomographic reconstruction of transverse phase space from turn-by-turn profile data

    CERN Document Server

    Hancock, S; Lindroos, M

    1999-01-01

    Tomographic methods have the potential for useful application in beam diagnostics. The tomographic reconstruction of transverse phase space density from turn-by-turn profile data has been studied with particular attention to the effects of dispersion and chromaticity. It is shown that the modified Algebraic Reconstruction Technique (ART) that deals successfully with the problem of non-linear motion in the longitudinal plane cannot, in general, be extended to cover the transverse case. Instead, an approach is proposed in which the effect of dispersion is deconvoluted from the measured profiles before the phase space picture is reconstructed using either the modified ART algorithm or the inverse Radon Transform. This requires an accurate knowledge of the momentum distribution of the beam and the modified ART reconstruction of longitudinal phase space density yields just such information. The method has been tested extensively with simulated data.

  15. Beam-beam phenomenology

    International Nuclear Information System (INIS)

    Teng, L.C.

    1980-01-01

    In colliding beam storage rings the beam collision regions are generally so short that the beam-beam interaction can be considered as a series of evenly spaced non-linear kicks superimposed on otherwise stable linear oscillations. Most of the numerical studies on computers were carried out in just this manner. But for some reason this model has not been extensively employed in analytical studies. This is perhaps because all analytical work has so far been done by mathematicians pursuing general transcendental features of non-linear mechanics for whom this specific model of the specific system of colliding beams is too parochial and too repugnantly physical. Be that as it may, this model is of direct interest to accelerator physicists and is amenable to (1) further simplification, (2) physical approximation, and (3) solution by analogy to known phenomena

  16. Mechanical design and fabrication of the transverse field focusing (TFF) matching/pumping section for negative ion based neutral beam systems

    International Nuclear Information System (INIS)

    Purgalis, P.; Anderson, O.A.; Koehler, G.W.; Maruyama, Y.; Matuk, C.A.; Owren, H.M.; Paterson, J.A.; Wandesforde, A.H.

    1985-11-01

    A negative ion based neutral beam injection system is under development as proof-of-principle demonstration of a radiation-hardened beamline. The beamline consists of a source, a pre-accelerator, a matching/pumping (M/P) section, and an accelerator. The function of the M/P section is to provide vacuum pumping, to remove electrons, to provide beam edge confinement, to compress the beam thickness to match the requirements of the accelerator, and to transport the 1A, 80 keV, 25 cm high H - ribbon beam to the accelerator entrance. Details of the design and fabrication of the M/P section are presented. The M/P section has eight separate, high voltage electrodes forming an ''S'' shaped beam path. Electrons are removed by the electron trap in this path. Beam edge confinement and thickness compression is accomplished by the curvature and face contour of the electrodes. Design heat loads are described. Electrode fabrication is discussed, and the cryopumps used are described

  17. Strength of the Three Layer Beam with Two Binding Layers

    Directory of Open Access Journals (Sweden)

    Smyczyński M. J.

    2016-09-01

    Full Text Available The paper is devoted to the strength analysis of a simply supported three layer beam. The sandwich beam consists of: two metal facings, the metal foam core and two binding layers between the faces and the core. In consequence, the beam is a five layer beam. The main goal of the study is to elaborate a mathematical model of this beam, analytical description and a solution of the three-point bending problem. The beam is subjected to a transverse load. The nonlinear hypothesis of the deformation of the cross section of the beam is formulated. Based on the principle of the stationary potential energy the system of four equations of equilibrium is derived. Then deflections and stresses are determined. The influence of the binding layers is considered. The results of the solutions of the bending problem analysis are shown in the tables and figures. The analytical model is verified numerically using the finite element analysis, as well as experimentally.

  18. Homotopy analysis approach for nonlinear piezoelectric vibration energy harvesting

    Directory of Open Access Journals (Sweden)

    Shahlaei-Far Shahram

    2016-01-01

    Full Text Available Piezoelectric energy harvesting from a vertical geometrically nonlinear cantilever beam with a tip mass subject to transverse harmonic base excitations is analyzed. One piezoelectric patch is placed on the slender beam to convert the tension and compression into electrical voltage. Applying the homotopy analysis method to the coupled electromechanical governing equations, we derive analytical solutions for the horizontal displacement of the tip mass and consequently the output voltage from the piezoelectric patch. Analytical approximation for the frequency response and phase of the geometrically forced nonlinear vibration system are also obtained. The research aims at a rigorous analytical perspective on a nonlinear problem which has previously been solely investigated by numerical and experimental methods.

  19. Decreasing the LHC impedance with a nonlinear collimation system

    CERN Document Server

    Resta-López, J; Zimmermann, F

    2007-01-01

    A two-stage nonlinear collimation system based on a pair of skew sextupoles is presented for the LHC.We show the details of the optics design and study the halo cleaning efficiency of such a system. This nonlinear collimation system would allow opening up collimator gaps, and thereby reduce the collimator impedance, which presently limits the LHC beam intensity. Assuming the nominal LHC beam at 7 TeV, the transverse coherent tune shifts of rigid-dipole coupled-bunch modes are computed for both the baseline linear collimation system and the proposed nonlinear one. In either case, the tune shifts of the most unstable modes are compared with the stability diagrams for Landau damping.

  20. Nonlinear finite element analysis of a test on the mechanical mechanism of the half-steel-concrete composite beam in HTR-PM

    International Nuclear Information System (INIS)

    Sun Feng; Pan Rong

    2014-01-01

    According to a large-span half-steel-concrete (HSC) composited beam in the composited roof in the HTR-PM, a 1:3 scale specimen is investigated by the static load test. By analyzing the loading, deflection, strain and fracture development of the specimen in the process, studying the mechanical characteristics and failure pattern of such components. The ANSYS finite element software is utilized in this paper to analyze the nonlinearity behavior of the HSC beam specimen, and through comparing the experimental results and the numerical simulation, it can be illustrated that the finite element model can simulate the HSC beam accurately. From the test results, it can be concluded that by means of appropriate shear connection and anchorage length, steel plate and concrete can work together very well and the HSC beam has good load carrying capacity and ductility. These conclusions can serve as a preliminary design reference for the large span half-steel-concrete composite beam in NPP. (author)