WorldWideScience

Sample records for nonlinear thomson scattering

  1. Pulsed Laser Nonlinear Thomson Scattering for General Scattering Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Geoffrey Krafft; A. Doyuran; James Rosenzweig

    2005-05-01

    In a recent paper it has been shown that single electron Thomson backscatter calculations can be performed including the effects of pulsed high intensity lasers. In this paper we present a more detailed treatment of the problem and present results for more general scattering geometries. In particular, we present new results for 90 degree Thomson scattering. Such geometries have been increasingly studied as X-ray sources of short-pulse radiation. Also, we present a clearer physical basis for these different cases.

  2. Peak intensity measurement of relativistic lasers via nonlinear Thomson scattering

    CERN Document Server

    Har-Shemesh, Omri

    2011-01-01

    The measurement of peak laser intensities exceeding $10^{20}\\;\\text{W/cm$^2$}$ is in general a very challenging task. We suggest a simple method to accurately measure such high intensities up to about $10^{23}\\,\\text{W/cm$^2$}$, by colliding a beam of ultrarelativistic electrons with the laser pulse. The method exploits the specific features of the angular distribution of the radiation emitted by ultrarelativistic electrons via nonlinear Thomson scattering. Initial electron energies well within the reach of laser wake-field accelerators are required, allowing in principle for an all-optical setup. Accuracies of the order of 10% are envisaged.

  3. Generation of Attosecond X-Ray Pulse through Coherent Relativistic Nonlinear Thomson Scattering

    CERN Document Server

    Lee, K; Jeong, Y U; Lee, B C; Park, S H

    2005-01-01

    In contrast to some recent experimental results, which state that the Nonlinear Thomson Scattered (NTS) radiation is incoherent, a coherent condition under which the scattered radiation of an incident laser pulse by a bunch of electrons can be coherently superposed has been investigated. The Coherent Relativistic Nonlinear Thomson Scattered (C-RNTS) radiation makes it possible utilizing the ultra-short pulse nature of NTS radiation with a bunch of electrons, such as plasma or electron beams. A numerical simulation shows that a 25 attosecond X-ray pulse can be generated by irradiating an ultra-intense laser pulse of 4x10(19) W/cm2 on an ultra-thin solid target of 50 nm thickness, which is commercially available. The coherent condition can be easily extended to an electron beam from accelerators. Different from the solid target, much narrower electron beam is required for the generation of an attosecond pulse. Instead, this condition could be applied for the generation of intense Compton scattered X-rays with a...

  4. Nonlinear effects in Thomson backscattering

    Science.gov (United States)

    Maroli, C.; Petrillo, V.; Tomassini, P.; Serafini, L.

    2013-03-01

    We analyze the nonlinear classical effects of the X/γ radiation produced by Thomson/Compton sources. We confirm the development of spectral fringes of the radiation on axis, which comports broadening, shift, and deformation of the spectrum. For the nominal parameters of the SPARC-LAB Thomson scattering and of the European Proposal for the gamma source ELI-NP, however, the radiation, when collected in the suitable acceptance angle, does not reveal many differences from that predicted by the linear model and the nonlinear redshift is subdominant with respect to the quantum recoil. An experiment aimed to the study of the nonlinearities is proposed on the SPARC-LAB source.

  5. Dynamic Thomson Scattering from Nonlinear Electron Plasma Waves in a Raman Plasma Amplifier

    Science.gov (United States)

    Davies, A.; Katz, J.; Bucht, S.; Haberberger, D.; Bromage, J.; Zuegel, J. D.; Froula, D. H.; Trines, R.; Bingham, R.; Sadler, J.; Norreys, P. A.

    2016-10-01

    Electron plasma waves (EPW's) can be used to transfer significant energy from a long-pulse laser to a short-pulse seed laser through the Raman scattering instability. Successful implementation of Raman amplification could open an avenue to producing high-intensity pulses beyond the capabilities of current laser technology ( 1022 W / cm 2). This three-wave interaction takes advantage of the plasma's ability to sustain large-amplitude plasma waves. Having complete knowledge of the EPW amplitude is essential to establishing optimal parameters for high-efficiency Raman amplification. A dynamic Thomson-scattering diagnostic is being developed to spatially and temporally resolve the amplitude of the driven and thermal EPW's. By imaging the scattered probe light onto a novel pulse-front tilt compensated streaked optical spectrometer, the diffraction efficiency of this plasma wave can be measured as a function of space and time. These data will be used in conjunction with particle-in-cell simulations to determine the EPW's spatial and temporal profile. This will allow the effect of the EPW profile on Raman scattering to be experimentally determined. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  6. Thomson scattering from laser plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J D; Alley, W E; De Groot, J S; Estabrook, K G; Glenzer, S H; Hammer, J H; Jadaud, J P; MacGowan, B J; Rozmus, W; Suter, L J; Williams, E A

    1999-01-12

    Thomson scattering has recently been introduced as a fundamental diagnostic of plasma conditions and basic physical processes in dense, inertial confinement fusion plasmas. Experiments at the Nova laser facility [E. M. Campbell et al., Laser Part. Beams 9, 209 (1991)] have demonstrated accurate temporally and spatially resolved characterization of densities, electron temperatures, and average ionization levels by simultaneously observing Thomson scattered light from ion acoustic and electron plasma (Langmuir) fluctuations. In addition, observations of fast and slow ion acous- tic waves in two-ion species plasmas have also allowed an independent measurement of the ion temperature. These results have motivated the application of Thomson scattering in closed-geometry inertial confinement fusion hohlraums to benchmark integrated radiation-hydrodynamic modeling of fusion plasmas. For this purpose a high energy 4{omega} probe laser was implemented recently allowing ultraviolet Thomson scattering at various locations in high-density gas-filled hohlraum plasmas. In partic- ular, the observation of steep electron temperature gradients indicates that electron thermal transport is inhibited in these gas-filled hohlraums. Hydrodynamic calcula- tions which include an exact treatment of large-scale magnetic fields are in agreement with these findings. Moreover, the Thomson scattering data clearly indicate axial stagnation in these hohlraums by showing a fast rise of the ion temperature. Its timing is in good agreement with calculations indicating that the stagnating plasma will not deteriorate the implosion of the fusion capsules in ignition experiments.

  7. Calculation of the nonlinear relativistic Thomson scattering fields and Its application to electron distribution function diagnostic

    Science.gov (United States)

    Guasp, J.; Pastor, I.; Álvarez-Estrada, R. F.; Castejón, F.

    2015-02-01

    Analytical results obtained recently of the ab-initio classical incoherent Thomson Scattering (TS) spectrum from a single-electron (Alvarez-Estrada et al 2012 Phys. Plasmas 19 062302) have been numerically implemented in a paralelized code to efficiently compute the TS emission from a given electron distribution function, irrespective of its characteristics and/or the intensity of the incoming radiation. These analytical results display certain differences, when compared with other authors, in the general case of incoming linearly and circularly polarized radiation and electrons with arbitrary initial directions. We regard such discrepancies and the ubiquitous interest in TS as motivations for this work. Here, we implement some analytical advances (like generalized Bessel functions for incoming linearly polarized radiation) in TS. The bulk of this work reports on the efficient computation of TS spectra (based upon our analytical approach), for an electron population having an essentially arbitrary distribution function and for both incoming linearly and circularly polarized radiation. A detailed comparison between the present approach and a previous Monte Carlo one (Pastor et al 2011 Nuclear Fusion 51 043011), dealing with the ab-initio computation of TS spectra, is reported. Both approaches are shown to fully agree with each other. As key computational improvements, the analytical technique yields a × 30 to × 100 gain in computation time and is a very flexible tool to compute the scattered spectrum and eventually the scattered electromagnetic fields in the time domain. The latter are computed explicitly here for the first time, as far as we know. Scaling laws for the power integrated over frequency versus initial kinetic energy are studied for the case of isotropic and monoenergetic electron distribution functions and their potential application as diagnostic tools for high-energy populations is briefly discussed. Finally, we discuss the application of these

  8. Nonlinear coherent Thomson scattering from relativistic electron sheets as a means to produce isolated ultrabright attosecond x-ray pulses

    Directory of Open Access Journals (Sweden)

    H.-C. Wu (武慧春

    2011-07-01

    Full Text Available A new way to generate intense attosecond x-ray pulses is discussed. It relies on coherent Thomson scattering (CTS from relativistic electron sheets. A double layer technique is used to generate planar solid-density sheets of monochromatic high-γ electrons with zero transverse momentum such that coherently backscattered light is frequency upshifted by factors up to 4γ^{2}. Here previous work [H.-C. Wu et al., Phys. Rev. Lett. 104, 234801 (2010PRLTAO0031-900710.1103/PhysRevLett.104.234801] is extended to the regime of high-intensity probe light with normalized amplitude a_{0}>1 leading to nonlinear CTS effects such as pulse contraction and steepening. The results are derived both by particle-in-cell (PIC simulation in a boosted frame and by analytic theory. PIC simulation shows that powerful x-ray pulses (1 keV, 10   gigawatt can be generated. They call for experimental verification. Required prerequisites such as manufacture of nanometer-thick target foils is ready and ultrahigh contrast laser pulses should be within reach in the near future.

  9. Quantum theory of Thomson scattering

    Science.gov (United States)

    Crowley, B. J. B.; Gregori, G.

    2014-12-01

    The general theory of the scattering of electromagnetic radiation in atomic plasmas and metals, in the non-relativistic regime, in which account is taken of the Kramers-Heisenberg polarization terms in the Hamiltonian, is described from a quantum mechanical viewpoint. As well as deriving the general formula for the double differential Thomson scattering cross section in an isotropic finite temperature multi-component system, this work also considers closely related phenomena such as absorption, refraction, Raman scattering, resonant (Rayleigh) scattering and Bragg scattering, and derives many essential relationships between these quantities. In particular, the work introduces the concept of scattering strength and the strength-density field which replaces the normal particle density field in the standard treatment of scattering by a collection of similar particles and it is the decomposition of the strength-density correlation function into more familiar-looking components that leads to the final result. Comparisons are made with previous work, in particular that of Chihara [1].

  10. Oscillations in the spectrum of nonlinear Thomson-backscattered radiation

    Directory of Open Access Journals (Sweden)

    C. A. Brau

    2004-02-01

    Full Text Available When an electron beam collides with a high-intensity laser beam, the spectrum of the nonlinear Thomson scattering in the backward direction shows strong oscillations like those in the spectrum of an optical klystron. Laser gain on the backward Thomson scattering is estimated using the Madey theorem, and the results suggest that Thomson-backscatter free-electron lasers are possible at wavelengths extending to the far uv using a terawatt laser beam from a chirped-pulse amplifier and a high-brightness electron beam from a needle cathode.

  11. Alpha particle collective Thomson scattering in TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Machuzak, J.S.; Woskov, P.P.; Rhee, D.Y.; Gilmore, J. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Plasma Fusion Center; Bretz, N.L.; Park, H.K. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Aamodt, R.E.; Cheung, P.Y.; Russell, D.A. [Lodestar Research Corp., Boulder, CO (United States); Bindslev, H. [JET Joint Undertaking, Abingdon (United Kingdom)

    1993-11-01

    A collective Thomson scattering diagnostic is being implemented on TFTR to measure alpha particle, energetic and thermal ion densities and velocity distributions. A 60 GHz, 0.1-1 kW gyrotron will be used as the transmitter source, and the scattering geometry will be perpendicular to the magnetic field in the extraordinary mode polarization. An enhanced scattered signal is anticipated from fluctuations in the lower hybrid frequency range with this scattering geometry. Millimeter wave collective Thomson scattering diagnostics have the advantage of larger scattering angles to decrease the amount of stray light, and long, high power, modulated pulses to obtain improved signal to noise through synchronous detection techniques.

  12. Thomson-scattering systems on TMX

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, R.K.; Clauser, J.F.; Frank, A.M.; Goerz, D.A.; Lang, D.D.

    1982-01-30

    This report summarizes the criteria and designs that were used for the two TMX Thomson-scattering systems. It describes the optical, mechanical, electronic, and computer analysis features of these installations. A brief discussion of general Thomson-scattering principles and sensitivity limits is given. Also included are some plasma electron temperature and density measurements from TMX that were obtained through the use of these systems.

  13. Thomson Scattering in the Solar Corona

    CERN Document Server

    Inhester, Bernd

    2015-01-01

    The fundaments of the application of Thomson scattering to the analysis of coronagraph images has been laid decades ago. Even though the basic formulation is undebated, a discussion has grown in recent years about the spatial distribution of Thomson scatter sensitivity in space. These notes are an attempt to clarify the understanding about this topic. We reformulate the classical calculations in a more transparent way using modern SI-compatible quantities and extend the scattering calculations to the case of relativistic electrons. Many mathematical and some basic physical ingredients are made explicit in several chapters of the appendix.

  14. Double pulse Thomson scattering system at RTP

    NARCIS (Netherlands)

    Beurskens, M. N. A.; Barth, C. J.; Chu, C.C.; Donne, A. J. H.; Herranz, J. A.; Cardozo, N. J. L.; van der Meiden, H. J.; Pijper, F.J.

    1997-01-01

    In this article a double pulse multiposition Thomson scattering diagnostic, under construction at RTP, is discussed. Light from a double pulsed ruby laser (pulse separation: 10-800 mu s, max. 2x12.5 J) is scattered by the free electrons of the tokamak plasma and relayed to a Littrow polychromator fo

  15. Theory of Thomson scattering in inhomogeneous media

    CERN Document Server

    Kozlowski, P M; Gericke, D O; Regan, S P; Gregori, G

    2016-01-01

    Thomson scattering of laser light is one of the most fundamental diagnostics of plasma density, temperature and magnetic fields. It relies on the assumption that the properties in the probed volume are homogeneous and constant during the probing time. On the other hand, laboratory plasmas are seldom uniform and homogeneous on the temporal and spatial dimensions over which data is collected. This is partic- ularly true for laser-produced high-energy-density matter, which often exhibits steep gradients in temperature, density and pressure, on a scale determined by the laser focus. Here, we discuss the modification of the cross section for Thomson scattering in fully-ionized media exhibiting steep spatial inhomogeneities and/or fast temporal fluctuations. We show that the predicted Thomson scattering spectra are greatly altered compared to the uniform case, and may even lead to violations of detailed balance. Therefore, careful interpretation of the spectra is necessary for spatially or temporally inhomogeneous ...

  16. Theory of Thomson scattering in inhomogeneous media

    Science.gov (United States)

    Kozlowski, P. M.; Crowley, B. J. B.; Gericke, D. O.; Regan, S. P.; Gregori, G.

    2016-04-01

    Thomson scattering of laser light is one of the most fundamental diagnostics of plasma density, temperature and magnetic fields. It relies on the assumption that the properties in the probed volume are homogeneous and constant during the probing time. On the other hand, laboratory plasmas are seldom uniform and homogeneous on the temporal and spatial dimensions over which data is collected. This is particularly true for laser-produced high-energy-density matter, which often exhibits steep gradients in temperature, density and pressure, on a scale determined by the laser focus. Here, we discuss the modification of the cross section for Thomson scattering in fully-ionized media exhibiting steep spatial inhomogeneities and/or fast temporal fluctuations. We show that the predicted Thomson scattering spectra are greatly altered compared to the uniform case, and may lead to violations of detailed balance. Therefore, careful interpretation of the spectra is necessary for spatially or temporally inhomogeneous systems.

  17. LIDAR Thomson scattering for advanced tokamaks. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Molvik, A.W.; Lerche, R.A.; Nilson, D.G. [and others

    1996-03-18

    The LIDAR Thomson Scattering for Advanced Tokamaks project made a valuable contribution by combining LLNL expertise from the MFE Program: tokamak design and diagnostics, and the ICF Program and Physics Dept.: short-pulse lasers and fast streak cameras. This multidisciplinary group evaluated issues involved in achieving a factor of 20 higher high spatial resolution (to as small as 2-3 mm) from the present state of the art in LIDAR Thomson scattering, and developed conceptual designs to apply LIDAR Thomson scattering to three tokamaks: Upgraded divertor measurements in the existing DIII-D tokamak; Both core and divertor LIDAR Thomson scattering in the proposed (now cancelled) TPX; and core, edge, and divertor LIDAR Thomson scattering on the presently planned International Tokamak Experimental Reactor, ITER. Other issues were evaluated in addition to the time response required for a few millimeter spatial resolution. These include the optimum wavelength, 100 Hz operation of the laser and detectors, minimizing stray light - always the Achilles heel of Thomson scattering, and time dispersion in optics that could prevent good spatial resolution. Innovative features of our work included: custom short pulsed laser concepts to meet specific requirements, use of a prism spectrometer to maintain a constant optical path length for high temporal and spatial resolution, the concept of a laser focus outside the plasma to ionize gas and form an external fiducial to use in locating the plasma edge as well as to spread the laser energy over a large enough area of the inner wall to avoid laser ablation of wall material, an improved concept for cleaning windows between shots by means of laser ablation, and the identification of a new physics issue - nonlinear effects near a laser focus which could perturb the plasma density and temperature that are to be measured.

  18. The Thomson Scattering System at DANTE

    DEFF Research Database (Denmark)

    Gadeberg, M.

    This report describes the construction and operation of the 90 deg Thomson Scattering diagnostic at DANTE. The system is based on a double-pulse ruby laser and a three channel spectrometer. Two single point measurements can be made during each plasma discharge.......This report describes the construction and operation of the 90 deg Thomson Scattering diagnostic at DANTE. The system is based on a double-pulse ruby laser and a three channel spectrometer. Two single point measurements can be made during each plasma discharge....

  19. A high-energy, high-flux source of gamma-rays from all-optical non-linear Thomson scattering

    Science.gov (United States)

    Corvan, D. J.; Zepf, M.; Sarri, G.

    2016-09-01

    γ-Ray sources are among the most fundamental experimental tools currently available to modern physics. As well as the obvious benefits to fundamental research, an ultra-bright source of γ-rays could form the foundation of scanning of shipping containers for special nuclear materials and provide the bases for new types of cancer therapy. However, for these applications to prove viable, γ-ray sources must become compact and relatively cheap to manufacture. In recent years, advances in laser technology have formed the cornerstone of optical sources of high energy electrons which already have been used to generate synchrotron radiation on a compact scale. Exploiting the scattering induced by a second laser, one can further enhance the energy and number of photons produced provided the problems of synchronisation and compact γ-ray detection are solved. Here, we report on the work that has been done in developing an all-optical and hence, compact non-linear Thomson scattering source, including the new methods of synchronisation and compact γ-ray detection. We present evidence of the generation of multi-MeV (maximum 16-18 MeV) and ultra-high brilliance (exceeding 1020 photons s-1mm-2mrad-2 0.1% BW at 15 MeV) γ-ray beams. These characteristics are appealing for the paramount practical applications mentioned above.

  20. A high-energy, high-flux source of gamma-rays from all-optical non-linear Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Corvan, D.J., E-mail: dcorvan01@qub.ac.uk; Zepf, M.; Sarri, G.

    2016-09-01

    γ-Ray sources are among the most fundamental experimental tools currently available to modern physics. As well as the obvious benefits to fundamental research, an ultra-bright source of γ-rays could form the foundation of scanning of shipping containers for special nuclear materials and provide the bases for new types of cancer therapy. However, for these applications to prove viable, γ-ray sources must become compact and relatively cheap to manufacture. In recent years, advances in laser technology have formed the cornerstone of optical sources of high energy electrons which already have been used to generate synchrotron radiation on a compact scale. Exploiting the scattering induced by a second laser, one can further enhance the energy and number of photons produced provided the problems of synchronisation and compact γ-ray detection are solved. Here, we report on the work that has been done in developing an all-optical and hence, compact non-linear Thomson scattering source, including the new methods of synchronisation and compact γ-ray detection. We present evidence of the generation of multi-MeV (maximum 16–18 MeV) and ultra-high brilliance (exceeding 10{sup 20} photons s{sup −1}mm{sup −2}mrad{sup −2} 0.1% BW at 15 MeV) γ-ray beams. These characteristics are appealing for the paramount practical applications mentioned above. - Highlights: • How synchrotron radiation can be produced in an all optical setting using laser-plasmas. • Generating high-energy, high-flux gamma ray beams. • Presenting results from a recent NLTS experimental campaign. • Reveal insight into the experimental techniques employed.

  1. Thomson scattering off a pair (electron-positron) plasma

    Institute of Scientific and Technical Information of China (English)

    Zheng Jian

    2006-01-01

    Thomson scattering off a pair (electron-positron) plasma is theoretically investigated in the collisionless and collisional limits respectively. Our calculations show that the power spectrum of the Thomson scattering offa collisionless pair plasma is just proportional to the velocity distribution function of the particles in the plasma. Collective modes in the plasma do not have any effects on the Thomson scattering spectrum because of the correlation between the negatively- and positively-charged particles. In the collisional limit, the power spectrum of the Thomson scattering presents three spikes: two peaks correspond to two contra-propagating sound waves and one peak corresponds to an entropy wave.

  2. MFTF Thomson scattering: a system study

    Energy Technology Data Exchange (ETDEWEB)

    Frank, A.M.

    1980-09-11

    This report documents the design effort for a Thomson scattering diagnostic system for MFTF. The principal problem is obtaining enough photons, in the presence of a poorly known background, to make satisfactory measurements. No currently available laser will yield enough photons to do this. Design concepts for imaging and detection are discussed. The ability of components to survive in the high-radiation environment of MFTF is identified as an important problem. The transition to MFTF-B makes many of the problems identified here more serious.

  3. Operation of the NSTX Thomson Scattering System

    Energy Technology Data Exchange (ETDEWEB)

    LeBlanc, B.P.; Bell, R.E.; Johnson, D.W.; Hoffman, D.E.; Long, D.C.; and Palladino, R.W.

    2002-09-03

    The NSTX multi-point Thomson scattering system has been in operation for nearly two years and provides routine Te(R,t) and ne(R,t) measurements. The laser beams from two 30-Hz Nd:YAG lasers are imaged by a spherical mirror onto 36 fiber-optics bundles. In the present configuration, the output ends of 20 of these bundles are instrumented with filter polychromators and avalanche photodiode detectors. In this paper, we discuss the laser implementation and the installed collection optics. We follow with examples of raw and analyzed data. We close with some comments about calibration.

  4. Thomson Scattering Process in Laser-Produced Plasmas

    Institute of Scientific and Technical Information of China (English)

    YU Quan-Zhi; JIANG Xiao-Hua; LI Wen-Hong; LIU Shen-Ye; ZHENG Zhi-Jian; ZHANG Jie; LI Yu-Tong; ZHENG Jun; YAN Fei; LU Xin; WANG Zhe-Bin; ZHENG Jian; YU Chang-Xuan

    2005-01-01

    @@ We present the evolutions of the electron temperature and plasma expansion velocity with Thomson scattering experiment. The observed time-resolved ion-acoustic image is reproduced by a numerical code which couples the Thomson scattering theory with the output parameters of the one-dimensional hydrocode MEDUSA.

  5. Thomson scattering of polarized photons in an intense laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Byung Yunn

    2006-02-21

    We present a theoretical analysis of the Thomson scattering of linearly and circularly polarized photons from a pulsed laser by electrons. The analytical expression for the photon distribution functions presented in this paper should be useful to designers of Thomson scattering experiments.

  6. A compact multichannel spectrometer for Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R. [Department of Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)

    2012-10-15

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T{sub e} < 100 eV are achieved by a 2971 l/mm VPH grating and measurements T{sub e} > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated ({approx}2 ns) ICCD camera for detection. A Gen III image intensifier provides {approx}45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  7. A compact multichannel spectrometer for Thomson scattering.

    Science.gov (United States)

    Schoenbeck, N L; Schlossberg, D J; Dowd, A S; Fonck, R J; Winz, G R

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T(e) VPH grating and measurements T(e) > 100 eV by a 2072 l∕mm VPH grating. The spectrometer uses a fast-gated (~2 ns) ICCD camera for detection. A Gen III image intensifier provides ~45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  8. Thomson Scattering at FLASH - Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Toleikis, S; Bornath, T; Cao, L; Doppner, T; Dusterer, S; Faustlin, R; Forster, E; Fortmann, C; Glenzer, S H; Gode, S; Gregori, G; Holl, A; Irsig, R; Laarmann, T; Lee, H J; Meiwes-Broer, K H; Przystawik, A; Radcliffe, P; Redmer, R; Reinholz, H; Ropke, G; Thiele, R; Tiggesbaumker, J; Truong, N X; Tschentscher, T; Uschmann, I; Zastrau, U

    2007-11-28

    The basic idea is to implement Thomson scattering with free electron laser (FEL) radiation at near-solid density plasmas as a diagnostic method which allows the determination of plasma temperatures and densities in the warm dense matter (WDM) regime (free electron density of n{sub e} = 10{sup 21}-10{sup 26} cm{sup -3} with temperatures of several eV). The WDM regime [1] at near-solid density (n{sub e} = 10{sup 21}-10{sup 22} cm{sup -3}) is of special interest because, it is where the transition from an ideal plasma to a degenerate, strongly coupled plasma occurs. A systematic understanding of this largely unknown WDM domain is crucial for the modeling and understanding of contemporary plasma experiments, like laser shock-wave or Z-pinch experiments as well as for inertial confinement fusion (ICF) experiments as the plasma evolution follows its path through this domain.

  9. Experimental challenges of Traveling-wave Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Debus, Alexander; Steiniger, Klaus; Siebold, Mathias; Jochmann, Axel; Irman, Arie; Bussmann, Michael; Schramm, Ulrich; Cowan, Thomas; Sauerbrey, Roland [Forschungzentrum Dresden-Rossendorf, Institute for Radiation Physics, 01328 Dresden (Germany)

    2011-07-01

    Traveling-wave Thomson scattering is a novel interaction design that allows circumventing the Rayleigh limit in optical undulators, which is interesting for possible realizations of Thomson scattering sources with photon yields per pulse that are 2-3 orders of magnitudes beyond current designs. Here we present details on how a Traveling-wave setup has to be implemented in experiment. An emphasis is put on the use of varied-line spacing (VLS) gratings for spatio-temporal beam shaping at large interaction angles to achieve optimal overlap. At the FZD we are using the high-power laser system DRACO (250TW) to realize a Thomson source with electrons from the linear accelerator ELBE or laser-plasma accelerated electrons. We present the current status and further progress towards a head-on Thomson source and a Traveling-Wave Thomson scattering source aiming for high photon yields per pulse.

  10. Dense Matter Characterization by X-ray Thomson Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Landen, O L; Glenzer, S H; Edwards, M J; Lee, R W; Collins, G W; Cauble, R C; Hsing, W W; Hammel, B A

    2000-12-29

    We discuss the extension of the powerful technique of Thomson scattering to the x-ray regime for providing an independent measure of plasma parameters for dense plasmas. By spectrally-resolving the scattering, the coherent (Rayleigh) unshifted scattering component can be separated from the incoherent Thomson component, which is both Compton and Doppler shifted. The free electron density and temperature can then be inferred from the spectral shape of the high frequency Thomson scattering component. In addition, as the plasma temperature is decreased, the electron velocity distribution as measured by incoherent Thomson scattering will make a transition from the traditional Gaussian Boltzmann distribution to a density-dependent parabolic Fermi distribution to. We also present a discussion for a proof-of-principle experiment appropriate for a high energy laser facility.

  11. Thomson Scattering Measurements of Plasma Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Holl, A; Redmer, R; Tschentscher, T; Toleikis, S; Forster, E; Cao, L; Glenzer, S H; Neumayer, P

    2006-03-29

    The authors propose to investigate the dynamics of plasmas in the warm dense matter (WDM) regime on ultra-short time scales. Accessible plasma conditions are in the density range of n = 10{sup 20} - 10{sup 23} cm{sup -3} and at moderate temperatures of T = 1 - 20 eV. These plasmas are of importance for laboratory astrophysics, high energy density science and inertial confinement fusion. They are characterized by a coupling parameter of {Lambda} {approx}> 1, where electromagnetic interactions are of the same order as the kinetic energy. The high density of the plasma makes it opaque to radiation in the visible range and, as a consequence, UV up to x-ray radiation can be used to probe such systems. Therefore a wide range in the temperature-density plane of WDM is presently unexplored and only the VUV-FEL opens for the first time the opportunity for its detailed investigation. In equilibrium, the macroscopic state of the plasma is completely characterized by its density and temperature. In pump-probe experiments however, the plasma is initially in a nonequilibrium state and relaxes towards equilibrium within the relaxation time {tau}{sub R}. For t > {tau}{sub R}, the plasma is in an equilibrium state and expands hydrodynamically on a time scale {tau}{sub H}. The proposed experiment measures the time-resolved Thomson scattering signal with the VUV-FEL radiation characterizing the plasma in equilibrium and nonequilibrium states. Both regimes are extremely interesting and will provide new insight into the following phenomena: (1) details of nonequilibrium correlations, (2) relaxation phenomena, (3) hydrodynamic expansion, (4) recombination kinetics. The time-resolved Thomson scattering signal is obtained in a pump-probe experiment by varying the delay between pump and probe. The final stage of the relaxation process (t {approx} {tau}{sub R}) is of special interest since the plasma components (electrons and ion species) can be assumed to be in quasi-equilibrium. This

  12. Thomson scattering upgrade on Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Leroux, F., E-mail: fabrice.leroux@cea.f [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Manenc, L.; Moreau, M. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)

    2010-07-15

    The Thomson scattering diagnostic supplies the electron temperature and density of Tore Supra plasmas from the spectrum analysis of scattered light of a very short laser pulse. A new spectrometer has been realized to improve the signal to noise ratio. In order to obtain an efficient noise reduction, a real time calculation is necessary. The current analogue integration of the signal is inadequate. A fast digitalization must be used with a sampling rate of 1 GSamples/s, a bandwidth of 150 MHz and a 12 bits dynamic range. In a first step, fast analogue data acquisition boards for 4 channels were added in 2009 to the VME acquisition system in place. A MATACQ (Matrix for acquisition) board was chosen for sampling analogue data up to 2 GSamples/s over 4 channels with a large bandwidth of 300 MHz and a 14 bits dynamic range. This solution offers a low cost acquisition system that is not available in any other commercial board with this dynamic range. The first results will be obtained on calibration period with a light emitted diode before the summer 2009. This article will present the new data acquisition system and the coming first results.

  13. Scattering of strong electromagnetic wave by relativistic electrons: Thomson and Compton regimes

    Science.gov (United States)

    Potylitsyn, A. P.; Kolchuzhkin, A. M.

    2017-04-01

    The processes of the nonlinear Compton and the nonlinear Thomson scattering in a field of intense plane electromagnetic wave in terms of photon yield have been considered. The quantum consideration of the Compton scattering process allows us to calculate the probability of a few successive collisions k of an electron with laser photons accompanied by the absorption of n photons (nonlinear regime) when the number of collisions and the number of absorbed photons are of random quantities. The photon spectrum of the nonlinear Thomson scattering process was obtained from the classical formula for intensity using the Planck's law. The conditions for which the difference between the classical and the quantum regimes is manifested was obtained. Such a condition is determined by a discrete quantum radiation mechanism, namely, by the mean number of photons k bar emitted by an electron passing through the laser pulse.

  14. Plasma Jet Interaction with Thomson Scattering Probe Laser

    Science.gov (United States)

    Byvank, Tom; Banasek, Jacob; Potter, William; Kusse, Bruce

    2016-10-01

    Thomson scattering systems can diagnose plasma temperatures and velocities. When probing a plasma jet with the Thomson scattering laser, we observe a laser-plasma interaction that inputs energy into the plasma jet. The absorbed energy causes a bubble of low density ( 5*1017 cm-2) in the jet (unperturbed 1018 cm-2). A pulsed power machine (1 MA peak current, 100 ns rise time) with a radial foil (15 μm thick Al) configuration generates the plasma jet. We compare the effects of using 10 J and 1 J laser energies, for which the 10 J laser is a larger perturbation. We discuss how the interaction affects the Thomson scattering temperature and velocity measurements. Work supported by National Nuclear Security Administration (NNSA) Stewardship Sciences Academic Programs under Department of Energy (DOE) Cooperative Agreement DE-NA0001836 and National Science Foundation (NSF) Grant PHY-1102471.

  15. Thomson scattering from laser induced plasma in air

    Energy Technology Data Exchange (ETDEWEB)

    Dzierzega, K; Mendys, A [Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Krakow (Poland); Pellerin, S; Thouin, E [GREMI - site de Bourges, Universite d' Orleans, rue Gaston Berger BP 4043, 18028 Bourges (France); Travaille, G; Bousquet, B; Canioni, L [Centre de Physique Moleculaire Optique et Hertzienne, Universite Bordeaux I, 351 Cours de la Liberation, 33405 Talence CEDEX (France); Pokrzywka, B, E-mail: krzysztof.dzierzega@uj.edu.p [Mt. Suhora Observatory, Pedagogical University of Cracow, ul. Podchorazych 2, 30-084 Krakow (Poland)

    2010-05-01

    The laser induced plasma in air produced by 6 ns, 532 nm Nd:YAG pulses with 25 mJ energy was studied using the Thomson scattering method and plasma imaging techniques. Plasma images and Thomson scattered spectra were registered at delay times ranging from 150 ns to 1 {mu}s after the breakdown pulses. The electron density and temperature, as determined in the core of the plasma plume, were found to decrease from 7.4 x 10{sup 17} cm{sup -3} to about 1.03 x 10{sup 17} cm{sup -3} and from 100 900 K to 22 700 K. The highly elevated electron temperatures are the result of plasma heating by the second, probe pulse in the Thomson scattering experiments.

  16. The LIDAR Thomson Scattering Diagnostic on JET

    DEFF Research Database (Denmark)

    Salzmann, H.; Bundgaard, J.; Gadd, A.

    1988-01-01

    By combining the time‐of‐flight or LIDAR principle with a Thomson backscatter diagnostic, spatial profiles of the electron temperature and density are measured in a magnetically confined fusion plasma. This technique was realized for the first time on the JET tokamak. A ruby laser (3‐J pulse energy...

  17. A polarization-based Thomson scattering technique for burning plasmas

    CERN Document Server

    Parke, E; Hartog, D J Den

    2013-01-01

    The traditional Thomson scattering diagnostic is based on measurement of the wavelength spectrum of scattered light, where electron temperature measurements are inferred from thermal broadening of the scattered laser light. At sufficiently high temperatures, especially those predicted for ITER and other burning plasmas, relativistic effects cause a change in the polarization state of the scattered photons. The resulting depolarization of the scattered light is temperature dependent and has been proposed elsewhere as a potential alternative to the traditional spectral decomposition technique. Following similar work, we analytically calculate the degree of polarization for incoherent Thomson scattering. For the first time, we obtain exact results valid for the full range of incident laser polarization states and electron temperatures. While previous work focused only on linear polarization, we show that circularly polarized incident light optimizes the degree of depolarization for a wide range of temperatures r...

  18. Warm, Dense Plasma Characterization by X-ray Thomson Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Landen, O L; Glenzer, S H; Cauble, R C; Lee, R W; Edwards, J E; Degroot, J S

    2000-07-18

    We describe how the powerful technique of spectrally resolved Thomson scattering can be extended to the x-ray regime, for direct measurements of the ionization state, density, temperature, and the microscopic behavior of dense cool plasmas. Such a direct measurement of microscopic parameters of solid density plasmas could eventually be used to properly interpret laboratory measurements of material properties such as thermal and electrical conductivity, EUS and opacity. In addition, x-ray Thomson scattering will provide new information on the characteristics of rarely and hitherto difficult to diagnose Fermi degenerate and strongly coupled plasmas.

  19. Improvement in data processing of Thomson scattering diagnostic on HL-2A tokamak

    Science.gov (United States)

    Liu, C. H.; Wang, Y. Q.; Feng, Z.; Huang, Y.

    2015-12-01

    There are two types of digitizers to acquire the values of Thomson scattering signals in HL-2A tokamak. One is charge-sensitive analogue-to-digital converters (Q-ADCs) which simply integrates the signal over a gate interval, and the other is transient recorders with 12 bits resolution and 1 GHz sampling rate at each channel. Because the Thomson scattering diagnostic is prone to electrical noisy environment, in which Q-switched Nd:YAG lasers and polychromators are located closely to the HL-2A device, the high speed transient digitizers are found helpful to reduce noise overlapped in Thomson scattering signals. After triggered by the front of TTL pulse generated by laser light, data acquisition is fulfilled from -250 ns to 250 ns, so that the temporal evolution of Thomson scattering signals is obtained. A Gaussian function is utilized to fit the pulse shape of the digitized scattering signal by nonlinear least square methods. By pulse fitting and data processing, the influence of background perturbations is substantially reduced.

  20. Gated integrator PXI-DAQ system for Thomson scattering diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Kiran, E-mail: kkpatel@ipr.res.in; Pillai, Vishal; Singh, Neha; Thomas, Jinto; Kumar, Ajai

    2017-06-15

    Gated Integrator (GI) PXI based data acquisition (DAQ) system has been designed and developed for the ease of acquiring fast Thomson Scattered signals (∼50 ns pulse width). The DAQ system consists of in-house designed and developed GI modules and PXI-1405 chassis with several PXI-DAQ modules. The performance of the developed system has been validated during the SST-1 campaigns. The dynamic range of the GI module depends on the integrating capacitor (C{sub i}) and the modules have been calibrated using 12 pF and 27 pF integrating capacitors. The developed GI module based data acquisition system consists of sixty four channels for simultaneous sampling using eight PXI based digitization modules having eight channels per module. The error estimation and functional tests of this unit are carried out using standard source and also with the fast detectors used for Thomson scattering diagnostics. User friendly Graphical User Interface (GUI) has been developed using LabVIEW on Windows platform to control and acquire the Thomson scattering signal. A robust, easy to operate and maintain with low power consumption, having higher dynamic range with very good sensitivity and cost effective DAQ system is developed and tested for the SST-1 Thomson scattering diagnostics.

  1. Thomson scattering at Pilot-PSI and Magnum-PSI

    NARCIS (Netherlands)

    van Rooij, G. J.; van der Meiden, H. J.; Hoen, Mhjt; Koppers, W. R.; Shumack, A. E.; Vijvers, W. A. J.; Westerhout, J.; Wright, G. M.; Rapp, J.

    2009-01-01

    A robust and sensitive Thomson scattering (TS) system has been developed for the high density low temperature plasma in the linear plasma generator Pilot-PSI, which routinely and reproducibly measures electron density and temperature profiles along a detection chord of 25 mm with a spatial

  2. Collective Thomson Scattering from Laser-Produced Plasmas

    Institute of Scientific and Technical Information of China (English)

    白波; 郑坚; 俞昌旋; 刘万东; 蒋小华; 袁晓东; 郑志坚; 徐冰; 向勇; 赵春茁

    2001-01-01

    Time-resolved Thomson scattering was successfully performed to diagnose the parameters (ZTe, Ue and Ui) of laser-produced gold plasma. The results show that the collisionless dynamic form factor is accurate enough to be used for reducing the plasma parameters from the experimental data.

  3. Collective Thomson scattering measurements with high frequency resolution at TEXTOR

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Nielsen, Stefan Kragh; Korsholm, Søren Bang

    2010-01-01

    We discuss the development and first results of a receiver system for the collective Thomson scattering (CTS) diagnostic at TEXTOR with frequency resolution in the megahertz range or better. The improved frequency resolution expands the diagnostic range and utility of CTS measurements in general...

  4. Collective Thomson scattering capabilities to diagnose fusion plasmas

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Bindslev, Henrik; Furtula, Vedran

    2010-01-01

    Collective Thomson scattering (CTS) is a versatile technique for diagnosing fusion plasmas. In particular, experiments on diagnosing the ion temperature and fast ion velocity distribution have been executed on a number of fusion devices. In this article the main aim is to describe the technique...

  5. Calculation of Thomson scattering spectral fits for interpenetrating flows

    Science.gov (United States)

    Swadling, G. F.; Lebedev, S. V.; Harvey-Thompson, A. J.; Rozmus, W.; Burdiak, G. C.; Suttle, L.; Patankar, S.; Smith, R. A.; Bennett, M.; Hall, G. N.; Suzuki-Vidal, F.; Yuan, J.

    2014-12-01

    Collective mode optical Thomson scattering has been used to investigate the interactions of radially convergent ablation flows in Tungsten wire arrays. These experiments were carried out at the Magpie pulsed power facility at Imperial College, London. Analysis of the scattered spectra has provided direct evidence of ablation stream interpenetration on the array axis, and has also revealed a previously unobserved axial deflection of the ablation streams towards the anode as they approach the axis. It is has been suggested that this deflection is caused by the presence of a static magnetic field, advected with the ablation streams, stagnated and accrued around the axis. Analysis of the Thomson scattering spectra involved the calculation and fitting of the multi-component, non-relativistic, Maxwellian spectral density function S (k, ω). The method used to calculate the fits of the data are discussed in detail.

  6. Calculation of Thomson scattering spectral fits for interpenetrating flows

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F., E-mail: george.swadling@imperial.ac.uk; Lebedev, S. V., E-mail: george.swadling@imperial.ac.uk; Burdiak, G. C.; Suttle, L.; Patankar, S.; Smith, R. A.; Bennett, M.; Suzuki-Vidal, F. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2JI (Canada); Hall, G. N. [Blackett Laboratory, Imperial College, London, United Kingdom SW7 2BW and Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Yuan, J. [Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAE, Mianyang 621900 (China)

    2014-12-15

    Collective mode optical Thomson scattering has been used to investigate the interactions of radially convergent ablation flows in Tungsten wire arrays. These experiments were carried out at the Magpie pulsed power facility at Imperial College, London. Analysis of the scattered spectra has provided direct evidence of ablation stream interpenetration on the array axis, and has also revealed a previously unobserved axial deflection of the ablation streams towards the anode as they approach the axis. It is has been suggested that this deflection is caused by the presence of a static magnetic field, advected with the ablation streams, stagnated and accrued around the axis. Analysis of the Thomson scattering spectra involved the calculation and fitting of the multi-component, non-relativistic, Maxwellian spectral density function S (k, ω). The method used to calculate the fits of the data are discussed in detail.

  7. Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Gamboa, E.J. [University of Michigan; Huntington, C.M. [University of Michigan; Trantham, M.R. [University of Michigan; Keiter, P.A [University of Michigan; Drake, R.P. [University of Michigan; Montgomery, David [Los Alamos National Laboratory; Benage, John F. [Los Alamos National Laboratory; Letzring, Samuel A. [Los Alamos National Laboratory

    2012-05-04

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

  8. Upgraded divertor Thomson scattering system on DIII-D

    Science.gov (United States)

    Glass, F.; Carlstrom, T. N.; Du, D.; McLean, A. G.; Taussig, D. A.; Boivin, R. L.

    2016-11-01

    A design to extend the unique divertor Thomson scattering system on DIII-D to allow measurements of electron temperature and density in high triangularity plasmas is presented. Access to this region is selectable on a shot-by-shot basis by redirecting the laser beam of the existing divertor Thomson system inboard — beneath the lower floor using a moveable, high-damage threshold, in-vacuum mirror — and then redirecting again vertically. The currently measured divertor region remains available with this mirror retracted. Scattered light is collected from viewchords near the divertor floor using in-vacuum, high temperature optical elements and relayed through the port window, before being coupled into optical fiber bundles. At higher elevations from the floor, measurements are made by dynamically re-focusing the existing divertor system collection optics. Nd:YAG laser timing, analysis of the scattered light spectrum via polychromators, data acquisition, and calibration are all handled by existing systems or methods of the current multi-pulse Thomson scattering system. Existing filtered polychromators with 7 spectral channels are employed to provide maximum measurement breadth (Te in the range of 0.5 eV-2 keV, ne in the range of 5 × 1018-1 × 1021 m3) for both low Te in detachment and high Te measurement up beyond the separatrix.

  9. Upgraded divertor Thomson scattering system on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Glass, F., E-mail: glassf@fusion.gat.com; Carlstrom, T. N.; Du, D.; Taussig, D. A.; Boivin, R. L. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); McLean, A. G. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)

    2016-11-15

    A design to extend the unique divertor Thomson scattering system on DIII-D to allow measurements of electron temperature and density in high triangularity plasmas is presented. Access to this region is selectable on a shot-by-shot basis by redirecting the laser beam of the existing divertor Thomson system inboard — beneath the lower floor using a moveable, high-damage threshold, in-vacuum mirror — and then redirecting again vertically. The currently measured divertor region remains available with this mirror retracted. Scattered light is collected from viewchords near the divertor floor using in-vacuum, high temperature optical elements and relayed through the port window, before being coupled into optical fiber bundles. At higher elevations from the floor, measurements are made by dynamically re-focusing the existing divertor system collection optics. Nd:YAG laser timing, analysis of the scattered light spectrum via polychromators, data acquisition, and calibration are all handled by existing systems or methods of the current multi-pulse Thomson scattering system. Existing filtered polychromators with 7 spectral channels are employed to provide maximum measurement breadth (T{sub e} in the range of 0.5 eV–2 keV, n{sub e} in the range of 5 × 10{sup 18}–1 × 10{sup 21} m{sup 3}) for both low T{sub e} in detachment and high T{sub e} measurement up beyond the separatrix.

  10. Thomson scattering diagnostic for the measurement of ion species fraction

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J S; Park, H S; Amendt, A; Divol, L; Kugland, N L; Rozmus, W; Glenzer, S H

    2012-05-01

    Simultaneous Thomson scattering measurements of collective electron-plasma and ion-acoustic fluctuations have been utilized to determine ion species fraction from laser produced CH plasmas. The CH{sub 2} foil is heated with 10 laser beams, 500 J per beam, at the Omega Laser facility. Thomson scattering measurements are made 4 mm from the foil surface using a 30 J 2{omega} probe laser with a 1 ns pulse length. Using a series of target shots the plasma evolution is measured from 2.5 ns to 9 ns after the rise of the heater beams. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the two-ion species theoretical form factor for the ion feature such that the ion temperature, plasma flow velocity and ion species fraction are determined. The ion species fraction is determined to an accuracy of {+-}0.06 in species fraction.

  11. Warm dense matter and Thomson scattering at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Faeustlin, Roland Rainer

    2010-05-15

    X-ray free electron lasers are powerful tools to investigate moderately to strongly correlated solid density low temperature plasmas, named warm dense matter. These plasmas are of most interest for astrophysics and laser plasma interaction, particularly inertial confinement fusion. This work utilizes the ultrashort soft x-ray pulse duration and high brilliance of the free electron laser in Hamburg, FLASH, to generate warm dense matter and to study its ultrafast processes. The techniques applied are absorption measurement, emission spectroscopy and Thomson scattering. Radiative hydrodynamics and Thomson scattering simulations are used to investigate the impact of temperature and density gradients in the sample and to fit the experimental data. The measurements result in a comprehensive picture of soft x-ray matter interaction related to warm dense matter and yield insight into ultrafast equilibration and relaxation mechanisms, in particular impact ionization and radiative recombination. (orig.)

  12. Corotational Tomography of Heliospheric Features Using Global Thomson Scattering Data

    Science.gov (United States)

    Jackson, Bernard V.; Hick, P. Paul

    2002-12-01

    The Air Force/NASA Solar Mass Ejection Imager (SMEI) will provide two-dimensional images of the sky in visible light with high (0.1%) photometric precision, and unprecedented sky coverage and cadence. To optimize the information available from these images they must be interpreted in three dimensions. We have developed a Computer Assisted Tomography (CAT) technique that fits a three-dimensional kinematic heliospheric model to remotely-sensed Thomson scattering observations. This technique is designed specifically to determine the corotating background solar wind component from data provided by instruments like SMEI. Here, we present results from this technique applied to the Helios spacecraft photometer observations. The tomography program iterates to a least-squares solution of observed brightnesses using solar rotation, spacecraft motion and solar wind outflow to provide perspective views of each point in space covered by the observations. The corotational tomography described here is essentially the same as used by Jackson et al. (1998) for the analysis of interplanetary scintillation (IPS) observations. While IPS observations are related indirectly to the solar wind density through an assumed (and uncertain) relationship between small-scale density fluctuations and density, Thomson scattering physics is more straightforward, i.e., the observed brightness depends linearly on the solar wind density everywhere in the heliosphere. Consequently, Thomson scattering tomography can use a more direct density-convergence criterion to match observed Helios photometer brightness to brightness calculated from the model density. The general similarities between results based on IPS and Thomson scattering tomography validate both techniques and confirm that both observe the same type of solar wind structures. We show results for Carrington rotation 1653 near solar minimum. We find that longitudinally segmented dense structures corotate with the Sun and emanate from near the

  13. Fast ion collective Thomson scattering diagnostic for ITER: Design elements

    DEFF Research Database (Denmark)

    Tsakadze, Erekle; Bindslev, Henrik; Korsholm, Søren Bang

    2008-01-01

    The proposed fast ion collective Thomson scattering (CTS) diagnostic system for ITER provides the unique capability of measuring the temporally and spatially resolved velocity distribution of the confined fast ions and fusion alpha particles in a burning ITER plasma. The present paper describes t...... in the studies, and new HFS receiver mock-up measurements are presented as well as neutron flux calculations of the influence of the increased slot height....

  14. Enhancing detection sensitivity of SST-1 Thomson scattering experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhari, Vishnu; Patel, Kiran; Thomas, Jinto; Kumar, Ajai, E-mail: ajai@ipr.res.in

    2016-10-15

    Thomson Scattering System (TSS) is the main diagnostic to extract electron temperature and density of steady state superconducting (SST-1) tokamak plasma. Silicon avalanche photo diode is used with low noise and fast signal conditioning electronics (SCE) to detect incoming Thomson scattered laser photons. A stringent requirement for the measurement is to detect high speed and low level light signal (detection of 100 numbers of Thomson scattered photons for 50 ns pulse width at input of active area of detector) in the presence of wide band electro-magnetic interference (EMI) noise. The electronics and instruments for different sub-systems kept in laboratory contribute to the radiated and conductive noise in a complex manner to the experiment, which can degrade the resultant signal to noise ratio (SNR <1). In general a repeated trial method with flexible grounding scheme are used to improve system signal to noise ratio, which is time consuming and less efficient. In the present work a simple, robust, cost-effective instrumentation system is used for the measurement and monitoring with improved ground scheme and shielding method to minimize noise, isolating the internal sub-system generated noise and external interference which leads to an improved SNR.

  15. ITER Fast Ion Collective Thomson Scattering

    DEFF Research Database (Denmark)

    Bindslev, Henrik; Larsen, Axel Wright; Meo, Fernando;

    2005-01-01

    velocities with good spatial and temporal resolution. The present report, which is a continuation of this work, presents a detailed CATIA design of the two antennae systems, modified and extended calculations on beam overlap and scattering, measurements and calculations of the beam transmission through...

  16. Laser Thomson scattering in a pulsed atmospheric arc discharge

    Science.gov (United States)

    Sommers, Bradley; Adams, Steven

    2015-09-01

    Laser scattering measurements, including Rayleigh, Raman, and Thomson scattering have been performed on an atmospheric pulsed arc discharge. Such laser scattering techniques offer a non-invasive diagnostic to measure gas temperature, electron temperature, and electron density in atmospheric plasma sources, particularly those with feature sizes approaching 1 mm. The pulsed discharge is ignited in a pin to pin electrode geometry using a 6 kV pulse with 10 ns duration. The electrodes are housed in a glass vacuum chamber filled with argon gas. The laser signal is produced by a Nd:Yag laser supply, repetitively pulsed at 10 Hz and frequency quadrupled to operate at 266 nm. The scattered laser signal is imaged onto a triple grating spectrometer, which is used to suppress the Rayleigh scatter signal in order to measure the low amplitude Thomson and Raman signals. Preliminary results include measurements of electron temperature and electron density in the plasma column taken during the evolution of the discharge. The laser system is also used to measure the Rayleigh scattering signal, which provides space and time resolved measurements of gas temperature in the arc discharge.

  17. APD detector electronics for the NSTX Thomson scattering system

    Energy Technology Data Exchange (ETDEWEB)

    D.W. Johnson; B.P. LeBlanc; D.L. Long; G. Renda

    2000-08-07

    An electronics system has been installed and tested for the readout of APD detectors for the NSTX Thomson scattering system. Similar to previous designs, it features preamps with a fast and a slow output. The fast output uses pulse shaping to optimize sensitivity for the 8 nsec scattered light pulse while rejecting noise in the intrinsic plasma background. A low readout noise of {approximately}25 photoelectrons is achieved at an APD gain of 75. The design incorporates a number of features to provide flexibility for various modes of calibration.

  18. Development of prototype polychromator system for KSTAR Thomson scattering diagnostic

    Science.gov (United States)

    Lee, J. H.; Lee, S. H.; Son, S. H.; Ko, W. H.; Seo, D. C.; Yamada, I.; Her, K. H.; Jeon, J. S.; Bog, M. G.

    2015-12-01

    A polychromator is widely used by the Thomson scattering system for measuring the electron temperature and density. This type of spectrometer includes optic elements such as band-pass filters, focusing lens, collimating lens, and avalanche photodiodes (APDs). The characteristics of band-pass filters in the polychromator are determined by the measuring range of the Thomson system. KSTAR edge polychromators were developed by co-works at NIFS in Japan, and the KSTAR core polychromators were developed by NFRI in Korea. The power supply system of these polychromators is connected only to one power supply module and can manually control the APD's voltage at the front side of the power supply by using a potentiometer. In this paper, a prototype polychromator is introduced at the KSTAR. The prototype polychromator system has a built-in power supply unit that includes high voltage for the APD and ± 5 V for an op-amp IC. The high voltage for the APD is finely controlled and monitored using a PC with the LabView software. One out of the six band pass-filters has a center wavelength of 523.5 nm with 2-nm bandwidth, which can measure Zeff, and the other five band-pass filters can simultaneously measure the Thomson signal. In addition, we will show the test result of this prototype polychromator system during the KSTAR experiment campaign (2015).

  19. Thomson scattering diagnostic on the Compact Toroidal Hybrid Experiment

    Science.gov (United States)

    Traverso, Peter; Maurer, D. A.; Ennis, D. A.; Hartwell, G. J.

    2016-10-01

    A Thomson scattering system is being commissioned for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH), a five-field period current-carrying torsatron. The system takes a single point measurement at the magnetic axis to both calibrate the two- color soft x-ray Te system and serve as an additional diagnostic for the V3FIT 3D equilibrium reconstruction code. A single point measurement will reduce the uncertainty in the reconstructed peak pressure by an order of magnitude for both current-carrying plasmas and future gyrotron-heated stellarator plasmas. The beam, generated by a frequency doubled Continuum 2 J, Nd:YaG laser, is passed vertically through an entrance Brewster window and a two-aperture optical baffle system to minimize stray light. The beam line propagates 8 m to the CTH device mid-plane with the beam diameter < 3 mm inside the plasma volume. Thomson scattered light is collected by two adjacent f/2 plano-convex condenser lenses and focused onto a custom fiber bundle. The fiber is then re-bundled and routed to a Holospec f/1.8 spectrograph to collect the red-shifted scattered light from 535-565 nm. The system has been designed to measure plasmas with core Te of 100 to 200 eV and densities of 5 ×1018 to 5 ×1019 m-3. Work supported by USDOE Grant DE-FG02-00ER54610.

  20. HT-7 Multipoint Nd Laser Thomson Scattering Apparatus

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A compact, low cost, multipoint Thomson scattering diagnostic system for HT-7 superconducting tokamak has been in operation since 1999. Its capability of measuring electron temperatures is in the range of 200 eV to 2 keV at a density of a few times 1012 cm-3, with a spatial resolution of 2.4 cm for 5 spatial points and a temporal resolution of 1 ms~1 s for 8 time points. The main components of the diagnostic system include a 20~25 J Nd:glass laser with 35 ns pulse width (8 pulses per burst), a KDP frequency-doubling unit, spherical mirrors of multipass input optical system, a wide-angle collection objective, a bandpass glass filter for reducing the stray light to zero, a f/2.5 polychromator, a fiberglass collimator, a photomultiplier's box with electronic preamplifier, high gain and high signal/noise ratio, CAMAC data acquisition and so on.The multipass optical system has been successful at increasing the quantity of scattered photons by passing the probing laser beam 10 times through the plasma under investigation. The HT7 Thomson scattering diagnostic has provided successfully the information on two-dimensional electron temperature in the plasma of HT-7 tokamak with LHCD and IBW.

  1. On the calibration of polarimetric Thomson scattering by Raman polarimetry

    Science.gov (United States)

    Giudicotti, L.; Pasqualotto, R.

    2015-12-01

    Polarimetric Thomson scattering (TS) is an alternative method for the analysis of Thomson scattering spectra in which the plasma temperature T e is determined from the depolarization of the TS radiation. This is a relativistic effect and therefore the technique is suitable only for very hot plasmas (T e  >  10 keV) such as those of ITER. The practical implementation of polarimetric TS requires a method to calibrate the polarimetric response of the collection optics carrying the TS light to the detection system, and in particular to measure the additional depolarization of the TS radiation introduced by the plasma-exposed first mirror. Rotational Raman scattering of laser light from diatomic gases such as H2, D2, N2 and O2 can provide a radiation source of predictable intensity and polarization state from a well-defined volume inside the vacuum vessel and is therefore suitable for these calibrations. In this paper we discuss Raman polarimetry as a technique for the calibration of a hypothetical polarimetric TS system operating in the same conditions of the ITER core TS system and suggest two calibration methods for the measurement of the additional depolarization introduced by the plasma-exposed first mirror, and in general for calibrating the polarimetric response of the detection system.

  2. Imaging Thomson scattering measurements of radiatively heated Xe

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, B; Meinecke, J; Kuschel, S; Ross, J S; Divol, L; Glenzer, S H; Tynan, G R

    2012-05-01

    Uniform density and temperature Xe plasmas have been produced over >4 mm scale-lengths using x-rays generated in a cylindrical Pb cavity. The cavity is 750 {micro}m in depth and diameter, and is heated by a 300 J, 2 ns square, 1054 nm laser pulse focused to a spot size of 200 {micro}m at the cavity entrance. The plasma is characterized by simultaneous imaging Thomson scattering measurements from both the electron and ion scattering features. The electron feature measurement determines the spatial electron density and temperature profile, and using these parameters as constraints in the ion feature analysis allows an accurate determination of the charge state of the Xe ions. The Thomson scattering probe beam is 40 J, 200 ps, and 527 nm, and is focused to a 100 {micro}m spot size at the entrance of the Pb cavity. Each system has a spatial resolution of 25 {micro}m, a temporal resolution of 200 ps (as determined by the probe duration), and a spectral resolution of 2 nm for the electron feature system and 0.025 nm for the ion feature system. The experiment is performed in a Xe filled target chamber at a neutral pressure of 3-10 Torr, and the x-rays produced in the Pb ionize and heat the Xe to a charge state of 20 {+-} 4 at up to 200 eV electron temperatures.

  3. Polychromator for the edge Thomson scattering system in ITER.

    Science.gov (United States)

    Yatsuka, E; Hatae, T; Fujie, D; Kurokawa, A; Kusama, Y

    2012-10-01

    A new type polychromator has been designed for the edge Thomson scattering system in ITER. Signal light is parallelly dispersed into two parts at the first interference filter. Spectral transmissivities for some spectral channels may enhance better than the conventional type polychromator. In the new type polychromator, the misalignment due to the machine accuracy is expected to be within the margin of APD area. In order to calibrate the spectral transmissivity using the dual-laser injection method during the plasma discharge, it is preferred that the spectral channels are separated at the geometric mean of the injected two wavelengths.

  4. Collective Thomson scattering data analysis for Wendelstein 7-X

    DEFF Research Database (Denmark)

    Abramovic, I.; Pavone, A.; Svensson, J.

    2017-01-01

    Collective Thomson scattering (CTS) diagnostic is being installed on the Wendelstein 7-X stellarator to measure the bulk ion temperature in the upcoming experimental campaign. In order to prepare for the data analysis, a forward model of the diagnostic (eCTS) has been developed and integrated...... into the Bayesian data analysis framework Minerva. Synthetic spectra have been calculated with the forward model and inverted using Minerva in order to demonstrate the feasibility to measure the ion temperature in the presence of nuisance parameters that also influence CTS spectra. In this paper we report...... on the results of this anlysis and discuss the main sources of uncertainty in the CTS data analysis....

  5. Observation of Thomson Scattering off Entropy Waves in a Laser-Produced Plasma

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jian; BAI Bo; LIU Wan-Dong; YU Chang-Xuan; JIANG Xiao-Hua; YUAN Xiao-Dong; LI Wen-Hong; ZHENG Zhi-Jian

    2001-01-01

    A new feature in the Thomson scattering spectrum is observed from a laser-produced aluminium plasma, which may be the Thomson scattering off entropy waves in the plasma. Such a feature is only observable when the energy of the heater beam is low enough.

  6. Structures in T-e profiles: High resolution Thomson scattering in the Rijnhuizen tokamak project

    NARCIS (Netherlands)

    Beurskens, M. N. A.; Barth, C. J.; Cardozo, N. J. L.; van der Meiden, H. J.; R. T. P. Team,

    1999-01-01

    In the Rijnhuizen tokamak project, the double pulse multiposition Thomson scattering diagnostic is in full operation. Its high spatial resolution enables the measurement of small scale structures in T-e, n(e), and p(e). Thomson scattering profiles during an ordinary sawtooth crash show the displacem

  7. Multipoint Thomson scattering diagnostic for the ETE tokamak

    Science.gov (United States)

    Berni, L. A.; Alonso, M. P.; Oliveira, R. M.

    2004-10-01

    To measure the electron temperature and plasma density profiles on the Experimento Tokamak Esférico tokamak a multiplexed Thomson scattering diagnostic was implemented. The diagnostic is based on a 10 J ruby laser and a single five spectral channel filter polychromator. A collection lens with f/6.3 relay the scattered light from 23 spatial points to optical fibers. The fibers have a monotonous increasing length and are inserted into the polychromator. Between the collection lens and each fiber optic we have a microlens to match the numerical aperture and to enlarge the plasma observation volume. This work describes the project, the simulations, and the preliminary results obtained with the first four optical fibers.

  8. The Thomson scattering system at Wendelstein 7-X

    Science.gov (United States)

    Pasch, E.; Beurskens, M. N. A.; Bozhenkov, S. A.; Fuchert, G.; Knauer, J.; Wolf, R. C.

    2016-11-01

    This paper describes the design of the Thomson scattering system at the Wendelstein 7-X stellarator. For the first operation campaign we installed a 10 spatial channel system to cover a radial half profile of the plasma cross section. The start-up system is based on one Nd:YAG laser with 10 Hz repetition frequency, one observation optics, five fiber bundles with one delay line each, and five interference filter polychromators with five spectral channels and silicon avalanche diodes as detectors. High dynamic range analog to digital converters with 14 bit, 1 GS/s are used to digitize the signals. The spectral calibration of the system was done using a pulsed super continuum laser together with a monochromator. For density calibration we used Raman scattering in nitrogen gas. Peaked temperature profiles and flat density profiles are observed in helium and hydrogen discharges.

  9. Design of Thomson scattering diagnostic system on J-TEXT

    Science.gov (United States)

    Zhou, Yinan; Gao, Li; Huang, Jiefeng; Qiu, Qingshuang; Zhuang, Ge

    2016-11-01

    An infrared multi-channel Thomson scattering diagnostic system is designed from the viewpoint of development of the proposed system on the Joint Texas Experimental Tokamak (J-TEXT). A 3 J/50 Hz Nd:YAG laser, which is injected vertically into plasma in the direction from top to bottom, serves as the power source of the system. The scattering light is then collected horizontally and is transmitted to an interference-filter avalanche photodiode based polychromater for spectrum analysis. The system covers the half plasma cross section, providing 14 spatial points with 2 cm resolution. The proposed system can thus satisfy the requirements of the J-TEXT at present and in the near future. A detailed description of the system design is presented in this paper.

  10. Design of Thomson scattering diagnostic system on J-TEXT.

    Science.gov (United States)

    Zhou, Yinan; Gao, Li; Huang, Jiefeng; Qiu, Qingshuang; Zhuang, Ge

    2016-11-01

    An infrared multi-channel Thomson scattering diagnostic system is designed from the viewpoint of development of the proposed system on the Joint Texas Experimental Tokamak (J-TEXT). A 3 J/50 Hz Nd:YAG laser, which is injected vertically into plasma in the direction from top to bottom, serves as the power source of the system. The scattering light is then collected horizontally and is transmitted to an interference-filter avalanche photodiode based polychromater for spectrum analysis. The system covers the half plasma cross section, providing 14 spatial points with 2 cm resolution. The proposed system can thus satisfy the requirements of the J-TEXT at present and in the near future. A detailed description of the system design is presented in this paper.

  11. Thomson Scattering Diagnostic Data Acquisition Systems for Modern Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ivanenko, S.V.; Khilchenko, A.D. [Budker Institute of Nuclear Physics and Novosibirsk State University, Novosibirsk (Russian Federation); Ovchar, V.K.; Zubarev, P.V.; Kvashnin, A.N.; Puryga, E.A.; Ivanova, A.A.; Kotelnikov, A.I. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

    2015-07-01

    Uniquely designed complex data acquisition system for Thomson scattering diagnostic was developed. It allows recording short duration (3-5 ns) scattered pulses with 2 GHz sampling rate and 10-bit total resolution in oscilloscope mode. The system consists up to 48 photo detector modules with 0- 200 MHz bandwidth, 1-48 simultaneously sampling ADC modules and synchronization subsystem. The photo detector modules are based on avalanche photodiodes (APD) and ultra-low noise trans-impedance amplifiers. ADC modules include fast analog to digital converters and digital units based on the FPGA (Field- Programmable Gate Array) for data processing and storage. The synchronization subsystem is used to form triggering pulses and to organize the simultaneously mode of ADC modules operation. (authors)

  12. TFTR 60 GHz alpha particle collective Thomson Scattering diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Machuzak, J.S.; Woskov, P.P.; Gilmore, J. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Bretz, N.L.; Park, H.K. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Aamodt, R.E.; Cheung, P.Y.; Russell, D.A. [Lodestar Research Corp., Boulder, CO (United States); Bindslev, H. [JET Joint Undertaking, Abingdon (United Kingdom)

    1995-03-01

    A 60 GHz gyrotron collective Thomson Scattering alpha particle diagnostic has been implemented for the D-T period on TFM. Gyrotron power of 0.1-1 kW in pulses of up to 1 second can be launched in X-mode. Efficient corrugated waveguides are used with antennaes and vacuum windows of the TFTR Microwave Scattering system. A multichannel synchronous detector receiver system and spectrum analyzer acquire the scattered signals. A 200 Megasample/sec digitizer is used to resolve fine structure in the frequency spectrum. By scattering nearly perpendicular to the magnetic field, this experiment will take advantage of an enhancement of the scattered signal which results from the interaction of the alpha particles with plasma resonances in the lower hybrid frequency range. Significant enhancements are expected, which will make these measurements possible with gyrotron power less than 1 kW, while maintaining an acceptable signal to noise ratio. We hope to extract alpha particle density and velocity distribution functions from the data. The D and T fuel densities and temperatures may also be obtainable by measurement of the respective ion cyclotron harmonic frequencies.

  13. Thomson scattering measurements from asymmetric interpenetrating plasma flows

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J. S., E-mail: ross36@llnl.gov; Moody, J. D.; Fiuza, F.; Ryutov, D.; Divol, L.; Huntington, C. M.; Park, H.-S. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-11-15

    Imaging Thomson scattering measurements of collective ion-acoustic fluctuations have been utilized to determine ion temperature and density from laser produced counter-streaming asymmetric flows. Two foils are heated with 8 laser beams each, 500 J per beam, at the Omega Laser facility. Measurements are made 4 mm from the foil surface using a 60 J 2ω probe laser with a 200 ps pulse length. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the multi-ion species, asymmetric flows theoretical form factor for the ion feature such that the ion temperatures, ion densities, and flow velocities for each plasma flow are determined.

  14. Thomson scattering in high-intensity chirped laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Holkundkar, Amol R., E-mail: amol.holkundkar@pilani.bits-pilani.ac.in [Department of Physics, Birla Institute of Technology and Science, Pilani, Rajasthan 333031 (India); Harvey, Chris, E-mail: christopher.harvey@chalmers.se; Marklund, Mattias, E-mail: mattias.marklund@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden)

    2015-10-15

    We consider the Thomson scattering of an electron in an ultra-intense laser pulse. It is well known that at high laser intensities, the frequency and brilliance of the emitted radiation will be greatly reduced due to the electron losing energy before it reaches the peak field. In this work, we investigate the use of a small frequency chirp in the laser pulse in order to mitigate this effect of radiation reaction. It is found that the introduction of a negative chirp means the electron enters a high frequency region of the field while it still has a large proportion of its original energy. This results in a significant enhancement of the frequency and intensity of the emitted radiation as compared to the case without chirping.

  15. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Follett, R. K., E-mail: rfollett@lle.rochester.edu; Delettrez, J. A.; Edgell, D. H.; Henchen, R. J.; Katz, J.; Myatt, J. F.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)

    2016-11-15

    Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 10{sup 21} cm{sup −3}, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.

  16. Plasma characterization using ultraviolet Thomson scattering from ion-acoustic and electron plasma waves (invited)

    Science.gov (United States)

    Follett, R. K.; Delettrez, J. A.; Edgell, D. H.; Henchen, R. J.; Katz, J.; Myatt, J. F.; Froula, D. H.

    2016-11-01

    Collective Thomson scattering is a technique for measuring the plasma conditions in laser-plasma experiments. Simultaneous measurements of ion-acoustic and electron plasma-wave spectra were obtained using a 263.25-nm Thomson-scattering probe beam. A fully reflective collection system was used to record light scattered from electron plasma waves at electron densities greater than 1021 cm-3, which produced scattering peaks near 200 nm. An accurate analysis of the experimental Thomson-scattering spectra required accounting for plasma gradients, instrument sensitivity, optical effects, and background radiation. Practical techniques for including these effects when fitting Thomson-scattering spectra are presented and applied to the measured spectra to show the improvements in plasma characterization.

  17. Conceptual design of a polarimetric Thomson scattering diagnostic in ITER

    Science.gov (United States)

    Giudicotti, L.; Bassan, M.; Orsitto, F. P.; Pasqualotto, R.; Kempenaars, M.; Flanagan, J.

    2016-01-01

    Polarimetric Thomson scattering (TS) is a novel diagnostic technique proposed as an alternative to conventional (spectral) TS, for the measurement of the electron temperature Te and density ne in very hot fusion plasmas. Contrary to spectral TS, which is based on the reconstruction of the Doppler broadened frequency spectrum, in polarimetric TS Te is determined from the depolarization of the scattered radiation. The technique is suitable for ITER, where it is expected to be competitive with conventional spectral TS for measurements in the highest Te range, specially in backward-like conditions with the scattering angle 90° ll θ measured Te and ne that can be obtained with a simple, two-channel polarimeter, and taking into account that only a fraction of the TS wavelength spectrum is detected. In both cases the expected performances are compared with those of the conventional spectral core TS diagnostic to determine the plasma conditions in which the polarimetric technique is more advantageous. A measurement of the depolarization effect of the TS radiation using the JET High Resolution TS system of JET is also discussed.

  18. Design of C-2W Thomson Scattering System

    Science.gov (United States)

    Zhai, Kan; Schindler, Tania; Zhang, Helen; Walters, Kurt; Thompson, Matthew; TAE Team

    2016-10-01

    A suite of multi-point Thomson scattering systems is now being designed and built in parallel with the construction of the C-2W FRC experimental device, which is expected to have a wide range of electron temperature Te and density ne from edge to center region at different operational phases. The suite consists of two sub-systems that measure Te and ne profiles at the C-2W central plane and at the jet region. A high-repetition rate Nd:YAG laser is planned for the central plane subsystem for time-resolved profile measurement at 1 kHz. The central plane and jet region subsystems have their own specially-designed collection optics that image 16 and 5 radial points along the laser-beam path onto corresponding surfaces of fiber bundles, which will then relay the collected laser light into dispersing polychromators. The polychromators are designed with five spectral channels with four channels optimized and dedicated to Te measurement and one channel dedicated to Rayleigh scattering calibration for ne measurement. Detail system design and layout of lasers, beam transportation and stray light control, collection optics and fiber optics, dispersion and detection system and its spectral calibration setup will be presented.

  19. Fast Ion Dynamics in ASDEX Upgrade and TEXTOR Measured by Collective Thomson Scattering

    DEFF Research Database (Denmark)

    Moseev, Dmitry

    Fast ions are an essential ingredient in burning nuclear fusion plasmas: they are responsible for heating the bulk plasma, carry a significant amount of plasma current and moreover interact with various magnetohydrodynamic (MHD) instabilities. The collective Thomson scattering (CTS) diagnostic...

  20. Status of the JET LIDAR Thomson Scattering diagnostic

    CERN Document Server

    Maslov, M; Kempenaars, M; Flanagan, J; contributors, JET EFDA

    2013-01-01

    The LIDAR Thomson scattering concept was proposed in 1983 and then implemented for the first time on the JET tokamak in 1987. A number of modifications were performed and published in 1995, but since then no major changes were made for almost 15 years. In 2010 a refurbishment of the diagnostic was started, with as main goals to improve its performance and to test the potential of new detectors which are considered as candidates for ITER. During the subsequent years a wide range of activities was performed aimed at increasing the diagnostic's light throughput, improvement of signal to noise ratio and amendment of the calibration procedures. Previously used MA-2 detectors were replaced by fast GaAsP detectors with much higher average QE. After all the changes were implemented, a significant improvement of the measured data was achieved. Statistical errors of measured temperature and density were reduced by a factor of 2 or more, depending on plasma conditions, and comfortably surpassed the values requested for ...

  1. Focussing effects in laser-electron Thomson scattering

    CERN Document Server

    Harvey, C; Holkundkar, A R

    2016-01-01

    We study the effects of laser pulse focussing on the spectral properties of Thomson scattered radiation. Modelling the laser as a paraxial beam we find that, in all but the most extreme cases of focussing, the temporal envelope has a much bigger effect on the spectrum than the focussing itself. For the case of ultra-short pulses where the paraxial model is no longer valid, we adopt a sub-cycle vector beam description of the field. It is found that the emission harmonics are blue shifted and broaden out in frequency space as the pulse becomes shorter. Additionally the carrier envelope phase becomes important, resulting in an angular asymmetry in the spectrum. We then use the same model to study the effects of focussing beyond the limit where the paraxial expansion is valid. It is found that fields focussed to sub-wavelength spot sizes produce spectra that are qualitatively similar to those from sub-cycle pulses due to the shortening of the pulse with focussing. Finally, we study high-intensity fields and find ...

  2. Chevron beam dump for ITER edge Thomson scattering system.

    Science.gov (United States)

    Yatsuka, E; Hatae, T; Vayakis, G; Bassan, M; Itami, K

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  3. Thomson scattering at Pilot-PSI and Magnum-PSI

    Science.gov (United States)

    van Rooij, G. J.; van der Meiden, H. J.; 't Hoen, M. H. J.; Koppers, W. R.; Shumack, A. E.; Vijvers, W. A. J.; Westerhout, J.; Wright, G. M.; Rapp, J.

    2009-12-01

    A robust and sensitive Thomson scattering (TS) system has been developed for the high density low temperature plasma in the linear plasma generator Pilot-PSI, which routinely and reproducibly measures electron density and temperature profiles along a detection chord of 25 mm with a spatial resolution of 0.6 mm. The capabilities of the system are illustrated in this paper by a selection of new results from the research program at Pilot-PSI. TS data are presented that demonstrate the present plasma density record in Pilot-PSI: 5 × 1021 m-3 at a temperature of 3 eV. TS measurements in front of the target are combined with ion saturation current data to determine plasma velocities of 4-5 km s-1, which shows that heat convection is dominating over conduction. Single shot operation of TS is also possible, which is demonstrated by measurements revealing a rotating filamentary return current channel to the source anode. Finally, the TS system upgrade that will provide real time feedback of electron density and temperature in the larger plasma generator Magnum-PSI is discussed.

  4. Two-wavelength LIDAR Thomson scattering for ITER core plasma

    Science.gov (United States)

    Nielsen, P.; Gowers, C.; Salzmann, H.

    2017-07-01

    Our proposal for a LIDAR Thomson scattering system to measure Te and ne profiles in the ITER core plasma, is based on experience with the LIDAR system on JET, which is still operational after 30 years. The design uses currently available technology and complies with the measurement requirements given by ITER. In addition, it offers the following advantages over the conventional imaging approach currently being adopted by ITER: 1) No gas fill of the vessel required for absolute calibration. 2) Easier alignment. 3) Measurements over almost the complete plasma diameter. 4) Two mirrors only as front optics. For a given laser wavelength the dynamic range of the Te measurements is mainly limited by the collection optics' transmission roll-off in the blue and the range of spectral sensitivity of the required fast photomultipliers. With the originally proposed Ti:Sapphire laser, measurements of the envisaged maximum temperature of 40 keV are marginally possible. Here we present encouraging simulation results on the use of other laser systems and on the use of two lasers with different wavelength. Alternating two wavelengths was proposed already in 1997 as a method for calibrating the transmission of the collection system. In the present analysis, the two laser pulses are injected simultaneously. We find that the use of Nd:YAG lasers operated at fundamental and second harmonic, respectively, yields excellent results and preserves the spectral recalibration feature.

  5. Chevron beam dump for ITER edge Thomson scattering system

    Science.gov (United States)

    Yatsuka, E.; Hatae, T.; Vayakis, G.; Bassan, M.; Itami, K.

    2013-10-01

    This paper contains the design of the beam dump for the ITER edge Thomson scattering system and mainly concerns its lifetime under the harsh thermal and electromagnetic loads as well as tight space allocation. The lifetime was estimated from the multi-pulse laser-induced damage threshold. In order to extend its lifetime, the structure of the beam dump was optimized. A number of bent sheets aligned parallel in the beam dump form a shape called a chevron which enables it to avoid the concentration of the incident laser pulse energy. The chevron beam dump is expected to withstand thermal loads due to nuclear heating, radiation from the plasma, and numerous incident laser pulses throughout the entire ITER project with a reasonable margin for the peak factor of the beam profile. Structural analysis was also carried out in case of electromagnetic loads during a disruption. Moreover, detailed issues for more accurate assessments of the beam dump's lifetime are clarified. Variation of the bi-directional reflection distribution function (BRDF) due to erosion by or contamination of neutral particles derived from the plasma is one of the most critical issues that needs to be resolved. In this paper, the BRDF was assumed, and the total amount of stray light and the absorbed laser energy profile on the beam dump were evaluated.

  6. The upgraded Collective Thomson Scattering diagnostics of FTU

    Energy Technology Data Exchange (ETDEWEB)

    Bin, W., E-mail: wbin@ifp.cnr.it [Istituto di Fisica del Plasma – CNR, Milano (Italy); Bruschi, A. [Istituto di Fisica del Plasma – CNR, Milano (Italy); D’Arcangelo, O. [ENEA Unità Tecnica Fusione, C.R. Frascati, Frascati, Roma (Italy); Grosso, G. [Istituto di Fisica del Plasma – CNR, Milano (Italy); Lubiako, L. [Institute of Applied Physics – RAS, Nizhny Novgorod (Russian Federation); Tartari, U.; Figini, L.; Garavaglia, S. [Istituto di Fisica del Plasma – CNR, Milano (Italy); Grossetti, G. [Institute for Applied Materials – KIT, Karlsruhe (Germany); Moro, A. [Istituto di Fisica del Plasma – CNR, Milano (Italy); Orsitto, F.; Centioli, C. [ENEA Unità Tecnica Fusione, C.R. Frascati, Frascati, Roma (Italy); Galperti, C.; Granucci, G.; Mellera, V.; Minelli, D.; Nardone, A.; Simonetto, A. [Istituto di Fisica del Plasma – CNR, Milano (Italy); Vellucci, M. [ENEA Unità Tecnica Fusione, C.R. Frascati, Frascati, Roma (Italy)

    2015-10-15

    Highlights: • The new 140 GHz CTS diagnostics recently installed on the FTU device is presented. • The CTS transmission line is described in detail. • The potential of the new CTS configuration is shown with the aid of simulations. • The radiometric and data acquisition systems are described. • The new code TCSC is described for the first time. - Abstract: The 140 GHz Collective Thomson Scattering (CTS) diagnostics installed on the Frascati Tokamak Upgrade (FTU) has been upgraded. The new system now is ready both to detect the thermal CTS radiation (for the first time with the probe frequency below the 1st harmonic electron cyclotron resonance) and to study the impact of possible parametric decay instability (PDI) processes on the received signals. The EC front-steering antenna and transmission system have been complemented with a receiving line that matches a quasi-optical line feeding the homodyne multi-channel radiometer. The scattering volume can be placed in a wide range of locations by means of fast poloidal and toroidal rotations of the two plasma-facing mirrors that have an up–down symmetry with respect to the equatorial plane of the torus. The data acquisition system has been improved adding a new digitizer, with a bandwidth of 5 GHz and a maximum sampling rate of 12.5 GS/s. The possibility of directly sampling and Fourier transforming the down-converted signals greatly improves the suitability of the new diagnostics to carry out thermal ion temperature measurements and to study the competing PDI processes whenever present.

  7. On velocity space interrogation regions of fast-ion collective Thomson scattering at ITER

    DEFF Research Database (Denmark)

    Salewski, Mirko; Nielsen, Stefan Kragh; Bindslev, Henrik;

    2011-01-01

    The collective Thomson scattering (CTS) diagnostic proposed for ITER is designed to measure projected 1D fast-ion velocity distribution functions at several spatial locations simultaneously. The frequency shift of scattered radiation and the scattering geometry place fast ions that caused the col...

  8. Fast ion millimeter wave collective Thomson scattering diagnostics on TEXTOR and ASDEX upgrades

    DEFF Research Database (Denmark)

    Michelsen, S.; Korsholm, Søren Bang; Bindslev, H.

    2004-01-01

    Collective Thomson scattering (CTS) diagnostic systems for measuring fast ions in TEXTOR and ASDEX Upgrade are described in this article. Both systems use millimeter waves generated by gyrotrons as probing radiation and the scattered radiation is detected with heterodyne receivers having 40...

  9. Resolving the bulk ion region of millimeter-wave collective Thomson scattering spectra at ASDEX Upgrade

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Nielsen, Stefan Kragh; Jacobsen, Asger Schou

    2014-01-01

    Collective Thomson scattering (CTS) measurements provide information about the composition and velocity distribution of confined ion populations in fusion plasmas. The bulk ion part of the CTS spectrum is dominated by scattering off fluctuations driven by the motion of thermalized ion populations...

  10. Fast-ion dynamics in the TEXTOR tokamak measured by collective Thomson scattering

    DEFF Research Database (Denmark)

    Bindslev, H.; Nielsen, S.K.; Porte, L.;

    2006-01-01

    Here we present the first measurements by collective Thomson scattering of the evolution of fast-ion populations in a magnetically confined fusion plasma. 150 kW and 110 Ghz radiation from a gyrotron were scattered in the TEXTOR tokamak plasma with energetic ions generated by neutral beam injecti...

  11. The spectrometer of the High-Resolution Multi position Thomson Scattering Diagnostic for TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Herranz, J.; Barth, C.J.; Castejon, F.; Lopez-Sanchez, A.; Mirones, E.; Pastor, I.; Perez, D.; Rodriguez, C.

    2001-07-01

    Since 1998, a high-resolution multiposition thompson scattering system is in operation at the stellarator TJ-II, combining high accuracy and excellent spatial resolution. A description of the diagnostic spectrometer is presented. The main characteristics of the spectrometer that allow YJ-II Thomson scattering diagnostic to have high spatial and spectral resolution are described in this paper. (Author)

  12. Non-Maxwellian Electron Velocity Distributions Observed with Thomson Scattering in the Tortur Tokamak

    NARCIS (Netherlands)

    van Lammeren, A. C. A. P.; Barth, C. J.; Vanest, Q. C.; Schüller, F. C.

    1992-01-01

    The Thomson scattering spectrum represents the projection of the three-dimensional electron velocity distribution on the scattering vector. From this the local electron temperature and density can be derived. To determine the three-dimensional electron velocity distribution it is necessary to have s

  13. Iterative noise removal from temperature and density profiles in the TJ-II Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Farias, G., E-mail: gonzalo.farias@ucv.cl [Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Valparaíso (Chile); Dormido-Canto, S., E-mail: sebas@dia.uned.es [Departamento de Informática y Automática, UNED, 28040 Madrid (Spain); Vega, J., E-mail: jesus.vega@ciemat.es [Asociación EURATOM/CIEMAT para Fusión, Avd. Complutense 22, 28040 Madrid (Spain); Santos, M., E-mail: msantos@ucm.es [Departamento de Arquitectura de Computadores y Automática, Universidad Complutense de Madrid, 28040 Madrid (Spain); Pastor, I., E-mail: ignacio.pastor@ciemat.es [Asociación EURATOM/CIEMAT para Fusión, Avd. Complutense 22, 28040 Madrid (Spain); Fingerhuth, S., E-mail: sebastian.fingerhuth@ucv.cl [Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Valparaíso (Chile); Ascencio, J., E-mail: j_ascencio21@hotmail.com [Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147, Valparaíso (Chile)

    2014-05-15

    TJ-II Thomson Scattering diagnostic provides temperature and density profiles of plasma. The CCD camera acquires images that are corrupted with some kind of noise called stray-light. This noise degrades both image contrast and measurement accuracy, which could produce unreliable profiles of the diagnostic. So far, several approaches have been applied in order to decrease the noise in the TJ-II Thomson scattering images. Since the presence of the noise is not global but located in some particular regions of the image, advanced processing techniques are needed. However such methods require of manual fine-tuning of parameters to reach a good performance. In this contribution, an iterative image processing approach is applied in order to reduce the stray light effects in the images of the TJ-II Thomson scattering diagnostic. The proposed solution describes how the noise can be iteratively reduced in the images when a key parameter is automatically adjusted during the iterative process.

  14. Advanced Thomson scattering system for high-flux linear plasma generator

    Energy Technology Data Exchange (ETDEWEB)

    Meiden, H. J. van der; Lof, A. R.; Berg, M. A. van den; Brons, S.; Eck, H. J. N. van; Koelman, P. M. J.; Koppers, W. R.; Kruijt, O. G.; Oyevaar, T.; Prins, P. R.; Rapp, J.; Scholten, J.; Smeets, P. H. M.; Star, G. van der; Zeijlmans van Emmichoven, P. A. [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Donne, A. J. H.; Schram, D. C. [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM, Trilateral Euregio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Eindhoven University of Technology, Eindhoven (Netherlands); Naumenko, N. N. [IPh NASB, Minsk (Belarus); Tugarinov, S. N. [SRC TRINITI, Troitsk, Moscow Reg. (Russian Federation)

    2012-12-15

    An advanced Thomson scattering system has been built for a linear plasma generator for plasma surface interaction studies. The Thomson scattering system is based on a Nd:YAG laser operating at the second harmonic and a detection branch featuring a high etendue (f /3) transmission grating spectrometer equipped with an intensified charged coupled device camera. The system is able to measure electron density (n{sub e}) and temperature (T{sub e}) profiles close to the output of the plasma source and, at a distance of 1.25 m, just in front of a target. The detection system enables to measure 50 spatial channels of about 2 mm each, along a laser chord of 95 mm. By summing a total of 30 laser pulses (0.6 J, 10 Hz), an observational error of 3% in n{sub e} and 6% in T{sub e} (at n{sub e}= 9.4 Multiplication-Sign 10{sup 18} m{sup -3}) can be obtained. Single pulse Thomson scattering measurements can be performed with the same accuracy for n{sub e} > 2.8 Multiplication-Sign 10{sup 20} m{sup -3}. The minimum measurable density and temperature are n{sub e} < 1 Multiplication-Sign 10{sup 17} m{sup -3} and T{sub e} < 0.07 eV, respectively. In addition, using the Rayleigh peak, superimposed on the Thomson scattered spectrum, the neutral density (n{sub 0}) of the plasma can be measured with an accuracy of 25% (at n{sub 0}= 1 Multiplication-Sign 10{sup 20} m{sup -3}). In this report, the performance of the Thomson scattering system will be shown along with unprecedented accurate Thomson-Rayleigh scattering measurements on a low-temperature argon plasma expansion into a low-pressure background.

  15. Nonlinear scattering in plasmonic nanostructures

    Science.gov (United States)

    Chu, Shi-Wei

    2016-09-01

    Nonlinear phenomena provide novel light manipulation capabilities and innovative applications. Recently, we discovered nonlinear saturation on single-particle scattering of gold nanospheres by continuous-wave laser excitation and innovatively applied to improve microscopic resolution down to λ/8. However, the nonlinearity was limited to the green-orange plasmonic band of gold nanosphere, and the underlying mechanism has not yet been fully understood. In this work, we demonstrated that nonlinear scattering exists for various material/geometry combinations, thus expanding the applicable wavelength range. For near-infrared, gold nanorod is used, while for blue-violet, silver nanospheres are adopted. In terms of mechanism, the nonlinearity may originate from interband/intraband absorption, hot electron, or hot lattice, which are spectrally mixed in the case of gold nanosphere. For gold nanorod and silver nanosphere, nonlinear scattering occurs at plasmonic resonances, which are spectrally far from interband/intraband absorptions, so they are excluded. We found that the nonlinear index is much larger than possible contributions from hot electrons in literature. Therefore, we conclude that hot lattice is the major mechanism. In addition, we propose that similar to z-scan, which is the standard method to characterize nonlinearity of a thin sample, laser scanning microscopy should be adopted as the standard method to characterize nonlinearity from a nanostructure. Our work not only provides the physical mechanism of the nonlinear scattering, but also paves the way toward multi-color superresolution imaging based on non-bleaching plasmonic scattering.

  16. Simulated performance of the optical Thomson scattering diagnostic designed for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J. S., E-mail: ross36@llnl.gov; Datte, P.; Divol, L.; Galbraith, J.; Hatch, B.; Landen, O.; Manuel, A. M.; Molander, W.; Moody, J. D.; Swadling, G. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Froula, D. H.; Katz, J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kilkenny, J. [General Atomics, San Diego, California 92186 (United States); Montgomery, D. S. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Weaver, J. [Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-11-15

    An optical Thomson scattering diagnostic has been designed for the National Ignition Facility to characterize under-dense plasmas. We report on the design of the system and the expected performance for different target configurations. The diagnostic is designed to spatially and temporally resolve the Thomson scattered light from laser driven targets. The diagnostic will collect scattered light from a 50 × 50 × 200 μm volume. The optical design allows operation with different probe laser wavelengths. A deep-UV probe beam (λ{sub 0} = 210 nm) will be used to Thomson scatter from electron plasma densities of ∼5 × 10{sup 20} cm{sup −3} while a 3ω probe will be used for plasma densities of ∼1 × 10{sup 19} cm{sup −3}. The diagnostic package contains two spectrometers: the first to resolve Thomson scattering from ion acoustic wave fluctuations and the second to resolve scattering from electron plasma wave fluctuations. Expected signal levels relative to background will be presented for typical target configurations (hohlraums and a planar foil).

  17. A high spatial resolution double-pulse Thomson scattering diagnostic; description, assessment of accuracy and examples of applications

    NARCIS (Netherlands)

    Beurskens, M. N. A.; Barth, C. J.; Cardozo, N. J. L.; van der Meiden, H. J.

    1999-01-01

    A high spatial resolution (3 mm full width half maximum, i.e. 2% of the minor radius) double-pulse multiposition Thomson scattering system was in operation at the Rijnhuizen tokamak project RTP from March 1996 until September 1998. It upgrades the previously installed single-pulse Thomson scattering

  18. First results from the Thomson scattering diagnostic on Proto-MPEX

    Energy Technology Data Exchange (ETDEWEB)

    Biewer, Theodore M [ORNL; Meitner, Steven J [ORNL; Rapp, Juergen [ORNL

    2016-01-01

    A Thomson scattering diagnostic has been successfully implemented on the prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory. The diagnostic collects the light scattered by plasma electrons and spectroscopically resolves the Doppler shift imparted to the light by the velocity of the electrons. The spread in velocities is proportional to the electron temperature, while the total number of photons is proportional to the electron density. Thomson scattering is a technique used on many devices to measure the electron temperature (Te) and electron density (ne) of the plasma. A challenging aspect of the technique is to discriminate the small number of Thomson scattered photons against the large peak of background photons from the high-power laser used to probe the plasma. A variety of methods are used to mitigate the background photons in Proto-MPEX, including Brewster angled windows, viewing dumps, and light baffles. With these methods, first results were measured from Argon plasmas in Proto-MPEX, indicating Te ~ 2 eV and ne ~ 1x1019 m-3. The configuration of the Proto-MPEX Thomson scattering diagnostic will be described and plans for improvement will be given.

  19. Double-confocal resonator for X-ray generation via intracavity Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Xie, M. [Lawrence Berkeley Lab., CA (United States)

    1995-12-31

    There has been a growing interest in developing compact X-ray sources through Thomson scattering of a laser beam by a relativistic electron beam. For higher X-ray flux it is desirable to have the scattering to occur inside an optical resonator where the laser power is higher. In this paper I propose a double-confocal resonator design optimized for head-on Thomson scattering inside an FEL oscillator and analyze its performance taking into account the diffraction and FEL gain. A double confocal resonator is equivalent to two confocal resonators in series. Such a resonator has several advantages: it couples electron beam through and X-ray out of the cavity with holes on cavity mirrors, thus allowing the system to be compact; it supports the FEL mode with minimal diffraction loss through the holes; it provides a laser focus in the forward direction for a better mode overlap with the electron beam; and it provides a focus at the same location in the backward direction for higher Thomson scattering efficiency; in addition, the mode size at the focal point and hence the Rayleigh range can be adjusted simply through intracavity apertures; furthermore, it gives a large mode size at the mirrors to reduce power loading. Simulations as well as analytical results will be presented. Also other configurations of intracavity Thomson scattering where the double-confocal resonator could be useful will be discussed.

  20. Antenna design for fast ion collective Thomson scattering diagnostic for the international thermonuclear experimental reactor

    DEFF Research Database (Denmark)

    Leipold, Frank; Furtula, Vedran; Salewski, Mirko

    2009-01-01

    Fast ion physics will play an important role for the international thermonuclear experimental reactor (ITER), where confined alpha particles will affect and be affected by plasma dynamics and thereby have impacts on the overall confinement. A fast ion collective Thomson scattering (CTS) diagnostic...

  1. Collective Thomson scattering of a high power electron cyclotron resonance heating beam in LHD

    DEFF Research Database (Denmark)

    Kubo, S.; Nishiura, M.; Tanaka, K.

    2010-01-01

    Collective Thomson scattering (CTS) system has been constructed at LHD making use of the high power ECRH system in LHD. The necessary features for CTS, high power probing beams and receiving beams, both with well defined Gaussian profile and with the fine controllability, are endowed in the ECRH...

  2. Commissioning activities and first results from the collective Thomson scattering diagnostic on ASDEX Upgrade (invited)

    DEFF Research Database (Denmark)

    Meo, Fernando; Bindslev, Henrik; Korsholm, Søren Bang

    2008-01-01

    The collective Thomson scattering (CTS) diagnostic installed on ASDEX Upgrade uses millimeter waves generated by the newly installed 1 MW dual frequency gyrotron as probing radiation at 105 GHz. It measures backscattered radiation with a heterodyne receiver having 50 channels (between 100 and 110...

  3. Temporally resolved plasma composition measurements by collective Thomson scattering in TEXTOR

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Korsholm, Søren Bang; Nielsen, Stefan Kragh

    2012-01-01

    Fusion plasma composition measurements by collective Thomson scattering (CTS) were demonstrated in recent proof-of-principle measurements in TEXTOR [S. B. Korsholm et al., Phys. Rev. Lett. 106, 165004 (2011)]. Such measurements rely on the ability to resolve and interpret ion cyclotron structure...

  4. Design and performance of the collective Thomson scattering receiver at ASDEX Upgrade

    DEFF Research Database (Denmark)

    Furtula, Vedran; Salewski, Mirko; Leipold, Frank

    2012-01-01

    Here we present the design of the fast-ion collective Thomson scattering receiver for millimeter wave radiation installed at ASDEX Upgrade, a tokamak for fusion plasma experiments. The receiver can detect spectral power densities of a few eV against the electron cyclotron emission background...

  5. The prospect for fuel ion ratio measurements in ITER by collective Thomson scattering

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Korsholm, Søren Bang; Nielsen, Stefan Kragh

    2012-01-01

    We show that collective Thomson scattering (CTS) holds the potential to become a new diagnostic principle for measurements of the fuel ion ratio, nT/nD, in ITER. Fuel ion ratio measurements will be important for plasma control and machine protection in ITER. Measurements of ion cyclotron structures...

  6. Recent development of collective Thomson scattering for magnetically confined fusion plasmas

    Science.gov (United States)

    Nielsen, S. K.; Michelsen, P. K.; Hansen, S. K.; Korsholm, S. B.; Leipold, F.; Rasmussen, J.; Salewski, M.; Schubert, M.; Stejner, M.; Stober, J.; Wagner, D.; The ASDEX Upgrade Team

    2017-02-01

    Here we review recent experimental developments within the field of collective Thomson scattering with a focus on the progress made on the devices TEXTOR and ASDEX Upgrade. We discuss recently discovered possibilities and limitations of the diagnostic technique. Diagnostic applications with respect to ion measurements are demonstrated. Examples include measurements of the ion temperature, energetic ion distribution function, and the ion composition.

  7. Recent development of collective Thomson scattering for magnetically confined fusion plasmas

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Michelsen, Poul; Hansen, S.K.;

    2017-01-01

    Here we review recent experimental developments within the field of collective Thomson scattering with a focus on the progress made on the devices TEXTOR and ASDEX Upgrade. We discuss recently discovered possibilities and limitations of the diagnostic technique. Diagnostic applications with respect...

  8. Collective Thomson scattering system for determination of ion properties in a high flux plasma beam

    NARCIS (Netherlands)

    van der Meiden, H. J.; Vernimmen, J. W. M.; Bystrov, K.; Jesko, K.; Kantor, M. Y.; De Temmerman, G.; Morgan, T. W.

    2016-01-01

    A collective Thomson scattering system has been developed for measuring ion temperature, plasma velocity and impurity concentration in the high density magnetized Magnum-PSI plasma beam, allowing for measurements at low temperature (<5 eV) and high electron density >4 × 1020 m−3, while

  9. Comparison of fast ion collective Thomson scattering measurements at ASDEX Upgrade with numerical simulations

    DEFF Research Database (Denmark)

    Salewski, Mirko; Meo, Fernando; Stejner Pedersen, Morten

    2010-01-01

    Collective Thomson scattering (CTS) experiments were carried out at ASDEX Upgrade to measure the one-dimensional velocity distribution functions of fast ion populations. These measurements are compared with simulations using the codes TRANSP/NUBEAM and ASCOT for two different neutral beam injection...

  10. Dynamics of fast ions during sawtooth oscillations in the TEXTOR tokamak measured by collective Thomson scattering

    NARCIS (Netherlands)

    Nielsen, S.K.; Salewski, M.; Bindslev, H.; Burger, A.; Furtula, V.; Kantor, M.; Korsholm, S. B.; Koslowski, H. R.; Kramer-Flecken, A.; Leipold, F.; Meo, F.; Michelsen, P. K.; Moseev, D.; Oosterbeek, J. W.; Stejner, M.; Westerhof, E.

    2011-01-01

    Experimental investigations of sawteeth interaction with fast ions measured by collective Thomson scattering on TEXTOR are presented. Time-resolved measurements of localized 1D fast-ion distribution functions allow us to study fast-ion dynamics during several sawtooth cycles. Sawtooth oscillations

  11. Measurements of Intrinsic Ion Bernstein Waves in a Tokamak by Collective Thomson Scattering

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Stejner Pedersen, Morten; Bindslev, Henrik;

    2011-01-01

    In this Letter we report measurements of collective Thomson scattering (CTS) spectra with clear signatures of ion Bernstein waves and ion cyclotron motion in tokamak plasmas. The measured spectra are in accordance with theoretical predictions and show clear sensitivity to variation in the density...

  12. Investigations of laser-induced plasma in argon by Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mendys, A., E-mail: agata.mendys@uj.edu.pl [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Dzierzega, K.; Grabiec, M. [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagiellonski, ulica Reymonta 4, 30-059 Krakow (Poland); Pellerin, S. [GREMI - site de Bourges, Universite d' Orleans, CNRS, rue Gaston Berger BP 4043, 18028 Bourges (France); Pokrzywka, B. [Obserwatorium Astronomiczne na Suhorze, Uniwersytet Pedagogiczny, ulica Podchorazych 2, 30-084 Krakow (Poland); Travaille, G.; Bousquet, B. [Centre de Physique Moleculaire Optique et Hertzienne, Universite Bordeaux 1, 351 Cours de la Liberation, 33405 Talence CEDEX (France)

    2011-09-15

    The Thomson scattering method was applied to quantify the electron number density and temperature of a laser spark formed in argon. The laser spark was generated by focusing a 15 mJ beam from the second harmonic ({lambda}{sub L} = 532 nm) of a nanosecond Nd:YAG laser with an 80 mm focal length lens. Images of the spark emission were obtained for times between 1 ns and 20 {mu}s after the laser pulse in order to characterize its spatial evolution. The electron density and temperature for the core of the plasma plume at different instants of its evolution were determined from the Thomson scattered spectra of another nanosecond Nd:YAG laser (532 nm, 10 to 60 mJ/pulse). In the time interval between 400 ns and 10 {mu}s between the laser induced plasma and Thomson scattering probe pulses, we found n{sub e} and T{sub e} to decrease from 4.3 Multiplication-Sign 10{sup 23} m{sup -3} to 2.4 Multiplication-Sign 10{sup 22} m{sup -3} and from 50 700 K to 11 100 K, respectively. Special care was paid to the plasma disturbance by the probe laser pulse in Thomson scattering experiments due to absorption of laser photons by electrons through the inverse bremsstrahlung process.

  13. Dynamics of fast ions during sawtooth oscillations in the TEXTOR tokamak measured by collective Thomson scattering

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Salewski, Mirko; Bindslev, Henrik

    2011-01-01

    Experimental investigations of sawteeth interaction with fast ions measured by collective Thomson scattering on TEXTOR are presented. Time-resolved measurements of localized 1D fast-ion distribution functions allow us to study fast-ion dynamics during several sawtooth cycles. Sawtooth oscillation...

  14. Preliminary project of s Thomson scattering system for the ETE tokamak; Projeto preliminar de um sistema de espalhamento Thomson para o Tokamak ETE

    Energy Technology Data Exchange (ETDEWEB)

    Berni, Luiz Angelo

    1997-12-31

    This report presents the preliminary project of the injection and laser light block system for the Thomson (ET) scattering diagnostic to be implanted at the ETE spheric tokamak of the Instituto Nacional de Pesquisas Espaciais (INPE/LAP). Also, a scanning system for the optics of scattered light 4 refs., 26 figs.

  15. Soft X-Ray Thomson Scattering in Warm Dense Hydrogen at FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Faustlin, R R; Toleikis, S; Bornath, T; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gode, S; Gregori, G; Irsig, R; Laarmann, T; Lee, H J; Li, B; Meiwes-Broer, K; Mithen, J; Przystawik, A; Redlin, H; Redmer, R; Reinholz, H; Ropke, G; Tavella, F; Thiele, R; Tiggesbaumker, J; Uschmann, I; Zastrau, U; Tschentscher, T

    2009-07-15

    We present collective Thomson scattering with soft x-ray free electron laser radiation as a method to track the evolution of warm dense matter plasmas with {approx}200 fs time resolution. In a pump-probe scheme an 800 nm laser heats a 20 {micro}m hydrogen droplet to the plasma state. After a variable time delay in the order of ps the plasma is probed by an x-ray ultra violet (XUV) pulse which scatters from the target and is recorded spectrally. Alternatively, in a self-Thomson scattering experiment, a single XUV pulse heats the target while a portion of its photons are being scattered probing the target. From such inelastic x-ray scattering spectra free electron temperature and density can be inferred giving insight on relaxation time scales in plasmas as well as the equation of state. We prove the feasibility of this method in the XUV range utilizing the free electron laser facility in Hamburg, FLASH. We recorded Thomson scattering spectra for hydrogen plasma, both in the self-scattering and in the pump-probe mode using optical laser heating.

  16. Observation of Nonlinear Compton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kotseroglou, T.

    2003-12-19

    This experiment tests Quantum Electrodynamics in the strong field regime. Nonlinear Compton scattering has been observed during the interaction of a 46.6 GeV electron beam with a 10{sup 18} W/cm{sup 2} laser beam. The strength of the field achieved was measured by the parameter {eta} = e{var_epsilon}{sub rms}/{omega}mc = 0.6. Data were collected with infrared and green laser photons and circularly polarized laser light. The timing stabilization achieved between the picosecond laser and electron pulses has {sigma}{sub rms} = 2 ps. A strong signal of electrons that absorbed up to 4 infrared photons (or up to 3 green photons) at the same point in space and time, while emitting a single gamma ray, was observed. The energy spectra of the scattered electrons and the nonlinear dependence of the electron yield on the field strength agreed with the simulation over 3 orders of magnitude. The detector could not resolve the nonlinear Compton scattering from the multiple single Compton scattering which produced rates of scattered electrons of the same order of magnitude. Nevertheless, a simulation has studied this difference and concluded that the scattered electron rates observed could not be accounted for only by multiple ordinary Compton scattering; nonlinear Compton scattering processes are dominant for n {ge} 3.

  17. Stray light analysis for the Thomson scattering diagnostic of the ETE Tokamak

    Science.gov (United States)

    Berni, L. A.; Albuquerque, B. F. C.

    2010-12-01

    Thomson scattering is a well-established diagnostic for measuring local electron temperature and density in fusion plasma, but this technique is particularly difficult to implement due to stray light that can easily mask the scattered signal from plasma. To mitigate this problem in the multipoint Thomson scattering system implemented at the ETE (Experimento Tokamak Esférico) a detailed stray light analysis was performed. The diagnostic system was simulated in ZEMAX software and scattering profiles of the mechanical parts were measured in the laboratory in order to have near realistic results. From simulation, it was possible to identify the main points that contribute to the stray signals and changes in the dump were implemented reducing the stray light signals up to 60 times.

  18. Stray light analysis for the Thomson scattering diagnostic of the ETE Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Berni, L. A. [Instituto Nacional de Pesquisas Espaciais (INPE), Laboratorio Associado de Sensores e Materiais (LAS), 12.227-010 Sao Jose dos Campos, SP (Brazil); Albuquerque, B. F. C. [Instituto Nacional de Pesquisas Espaciais (INPE), Engenharia e Tecnologia Espaciais, Divisao de Eletronica Aeroespacial, 12.227-010 Sao Jose dos Campos, SP (Brazil)

    2010-12-15

    Thomson scattering is a well-established diagnostic for measuring local electron temperature and density in fusion plasma, but this technique is particularly difficult to implement due to stray light that can easily mask the scattered signal from plasma. To mitigate this problem in the multipoint Thomson scattering system implemented at the ETE (Experimento Tokamak Esferico) a detailed stray light analysis was performed. The diagnostic system was simulated in ZEMAX software and scattering profiles of the mechanical parts were measured in the laboratory in order to have near realistic results. From simulation, it was possible to identify the main points that contribute to the stray signals and changes in the dump were implemented reducing the stray light signals up to 60 times.

  19. Control and automation of the Pegasus multi-point Thomson scattering system.

    Science.gov (United States)

    Bodner, G M; Bongard, M W; Fonck, R J; Reusch, J A; Rodriguez Sanchez, C; Schlossberg, D J

    2016-11-01

    A new control system for the Pegasus Thomson scattering diagnostic has recently been deployed to automate the laser operation, data collection process, and interface with the system-wide Pegasus control code. Automation has been extended to areas outside of data collection, such as manipulation of beamline cameras and remotely controlled turning mirror actuators to enable intra-shot beam alignment. Additionally, the system has been upgraded with a set of fast (∼1 ms) mechanical shutters to mitigate contamination from background light. Modification and automation of the Thomson system have improved both data quality and diagnostic reliability.

  20. Tokamak Plasmas : Electron temperature $(T_{e})$ measurements by Thomson scattering system

    Indian Academy of Sciences (India)

    R Rajesh; B Ramesh Kumar; S K Varshney; Manoj Kumar; Chhaya Chavda; Aruna Thakkar; N C Patel; Ajai Kumar; Aditya Team

    2000-11-01

    Thomson scattering technique based on high power laser has already proved its superoirity in measuring the electron temperature (e) and density (e) in fusion plasma devices like tokamaks. The method is a direct and unambiguous one, widely used for the localised and simultaneous measurements of the above parameters. In Thomson scattering experiment, the light scattered by the plasma electrons is used for the measurements. The plasma electron temperature is measured from the Doppler shifted scattered spectrum and density from the total scattered intensity. A single point Thomson scattering system involving a -switched ruby laser and PMTs as the detector is deployed in ADITYA tokamak to give the plasma electron parameters. The system is capable of providing the parameters e from 30 eV to 1 keV and e from 5 × 1012 cm-3-5× 1013 cm-3. The system is also able to give the parameter profile from the plasma center ( = 0 cm) to a vertical position of = +22 cm to = -14 cm, with a spatial resolution of 1 cm on shot to shot basis. This paper discusses the initial measurements of the plasma temperature from ADITYA.

  1. Spectral characterization of Compact Toroidal Hybrid plasmas in preparation for Thomson scattering measurements

    Science.gov (United States)

    Goforth, M. M.; Loch, S. D.; Maurer, D. A.; Pearce, A. J.; Traverso, P. J.

    2014-10-01

    A Thomson scattering system is in development for the Compact Toroidal Hybrid (CTH) experiment to provide localized, internal electron temperature and density measurements. Thomson scattering yields accurate information on the internal plasma electron pressure profile, which will aid in the equilibrium reconstruction of CTH plasmas using the V3FIT code. The expected Thomson scattered signal is approximately 1015 times less than the incident laser light, and can be overwhelmed by stray laser light, background plasma emission, and intrinsic detector noise. Background plasma emission measurements in the visible spectral region near the planned laser wavelength of 532 nm are underway using a Holospec f/1.8 spectrometer and an And or iStar image intensified CCD camera to quantify line and continuum background levels. In addition, impurity line identification and plans for a separate line-of-sight averaged impurity temperature and density measurement capability employing the Thomson spectrometer are in progress. This work is supported by US DOE Grant DE-FG-02-00ER54610 and by the Auburn University Undergraduate Research Fellowship.

  2. A high-power spatial filter for Thomson scattering stray light reduction

    Science.gov (United States)

    Levesque, J. P.; Litzner, K. D.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.

    2011-03-01

    The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.

  3. Coherent and incoherent Thomson scattering on an argon/hydrogen microwave plasma torch with transient behaviour

    Science.gov (United States)

    Obrusník, A.; Synek, P.; Hübner, S.; van der Mullen, J. J. A. M.; Zajíčková, L.; Nijdam, S.

    2016-10-01

    A new method of processing time-integrated coherent Thomson scattering spectra is presented, which provides not only the electron density and temperature but also information about the transient behaviour of the plasma. Therefore, it is an alternative to single-shot Thomson scattering measurements as long as the scattering is coherent. The method is applied to a microwave plasma torch operating in argon or a mixture of argon with hydrogen at atmospheric pressure. Electron densities up to 8\\cdot {{10}21} m-3 (ionization degree above 10-3) were observed, which is more than two times higher than presented in earlier works on comparable discharges. Additionally, a parametric study with respect to the argon/hydrogen ratio and the input power was carried out and the results are discussed together with earlier Stark broadening measurements on the same plasma.

  4. Implementation of a high throughput spectrograph for Thomson scattering measurements on the Compact Toriodal Hybrid

    Science.gov (United States)

    Goforth, Matthew; Traverso, Peter; Maurer, David

    2013-10-01

    To better understand the equilibrium and stability of Compact Toroidal Hybrid (CTH) plasmas, a multipoint Thomson scattering system is under development at Auburn University. Thomson scattering will be performed at 532 nm using a frequency doubled Continuum PL DLS Nd:YAG laser. The Thomson scattered light will be measured using a high throughput HoloSpec f/1.8i imaging spectrograph with in-line interference filter for spectral discrimination of stray laser light. An image intensified charge coupled device (ICCD) camera employing a Gen III photocathode with quantum efficiency of approximately 50% near the frequency doubled laser line is planned as the detection element for the scattered light. Bench and CTH impurity line emission measurements will be presented quantifying spectrometer and ICCD performance and suitability for scattering measurements over the visible spectral region near 532 nm. This work has been supported by US Department of Energy Grant No. DE-FG02-00ER54610 and the Auburn University Undergraduate Research Fellowship Program.

  5. Dielectric effects on Thomson scattering in a relativistic magnetized plasma

    DEFF Research Database (Denmark)

    Bindslev, H.

    1991-01-01

    the absorption is small. Symmetry between variables relating to incident and scattered fields is demonstrated and shown to be in agreement with the reciprocity relation. Earlier results are confirmed in the cold plasma limit. Significant relativistic effects, of practical importance to the scattering......The effects of the dielectric properties of a relativistic magnetized plasma on the scattering of electromagnetic radiation by fluctuations in electron density are investigated. The origin of the density fluctuations is not considered. Expressions for the scattering cross-section and the scattered...... power accepted by the receiving antenna are derived for a plasma with spatial dispersion. The resulting expressions allow thermal motion to be included in the description of the plasma and remain valid for frequencies of the probing radiation in the region of omega(p) and omega(ce), provided...

  6. Electron kinetic effects on interferometry, polarimetry and Thomson scattering measurements in burning plasmas (invited).

    Science.gov (United States)

    Mirnov, V V; Brower, D L; Den Hartog, D J; Ding, W X; Duff, J; Parke, E

    2014-11-01

    At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP), and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. The precision of the previous lowest order linear in τ = Te/mec(2) model may be insufficient; we present a more precise model with τ(2)-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH, and RF current drive effects. The classical problem of the degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of Te measurement relevant to ITER operational scenarios.

  7. Electron kinetic effects on interferometry, polarimetry and Thomson scattering measurements in burning plasmas (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Mirnov, V. V.; Hartog, D. J. Den; Duff, J.; Parke, E. [Physics Department, University of Wisconsin - Madison and the Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, Madison, Wisconsin 53706 (United States); Brower, D. L.; Ding, W. X. [Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2014-11-15

    At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP), and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. The precision of the previous lowest order linear in τ = T{sub e}/m{sub e}c{sup 2} model may be insufficient; we present a more precise model with τ{sup 2}-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH, and RF current drive effects. The classical problem of the degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of T{sub e} measurement relevant to ITER operational scenarios.

  8. Electron beam final focus system for Thomson scattering at ELBE

    Science.gov (United States)

    Krämer, J. M.; Budde, M.; Bødker, F.; Irman, A.; Jochmann, A.; Kristensen, J. P.; Lehnert, U.; Michel, P.; Schramm, U.

    2016-09-01

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and divergences of about 10 mrad using the FFS.

  9. Electron beam final focus system for Thomson scattering at ELBE

    Energy Technology Data Exchange (ETDEWEB)

    Krämer, J.M., E-mail: jmkr@danfysik.dk [Danfysik A/S, Gregersensvej 8, 2630 Taastrup (Denmark); Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328 Dresden (Germany); Technische Universität Dresden, 01069 Dresden (Germany); Budde, M.; Bødker, F. [Danfysik A/S, Gregersensvej 8, 2630 Taastrup (Denmark); Irman, A.; Jochmann, A. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328 Dresden (Germany); Kristensen, J.P. [Danfysik A/S, Gregersensvej 8, 2630 Taastrup (Denmark); Lehnert, U.; Michel, P. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328 Dresden (Germany); Schramm, U. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, Bautzner Landstrasse 400, 01328 Dresden (Germany); Technische Universität Dresden, 01069 Dresden (Germany)

    2016-09-11

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and divergences of about 10 mrad using the FFS.

  10. Electron beam final focus system for Thomson scattering at ELBE

    CERN Document Server

    Krämer, J.M.; Bødker, F.; Irman, A.; .Jochmann A.; Kristensen, J.P.; Lehnert U., HZDR; Michel, P.; Schrammb, U.; 10.1016/j.nima.2015.10.067

    2016-01-01

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and diverg...

  11. Electron Beam Final Focus System For Thomson Scattering At Elbe

    CERN Document Server

    Krämer, J.M.; Bødkera, F.; Irman, A.; Jochmann, A.; Kristensena, J.P.; Lehnert, U.; Michel, P.; Schramm, U.; 10.1016/j.nima.2015.10.067

    2016-01-01

    The design of an electron beam final focus system (FFS) aiming for high-flux laser-Thomson backscattering X-ray sources at ELBE is presented. A telescope system consisting of four permanent magnet based quadrupoles was found to have significantly less chromatic aberrations than a quadrupole doublet or triplet as commonly used. Focusing properties like the position of the focal plane and the spot size are retained for electron beam energies between 20 and 30 MeV by adjusting the position of the quadrupoles individually on a motorized stage. The desired ultra-short electron bunches require an increased relative energy spread up to a few percent and, thus, second order chromatic effects must be taken into account. We also present the design and test results of the permanent magnet quadrupoles. Adjustable shunts allow for correction of the field strength and compensation of deviations in the permanent magnet material. For a beam emittance of 13 mm mrad, we predict focal spot sizes of about 40 μm (rms) and diverg...

  12. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST

    Science.gov (United States)

    Xiao, Shumei; Zang, Qing; Han, Xiaofeng; Wang, Tengfei; Yu, Jin; Zhao, Junyu

    2016-07-01

    Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump system can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases.

  13. Modular Python-based Code for Thomson Scattering System on NSTX-U

    Science.gov (United States)

    Horowitz, Benjamin; Diallo, Ahmed; Feibush, Eliot; Leblanc, Benoit

    2013-10-01

    Fast accurate and reliable measurements of electron temperature and density profiles within magnetically confined plasmas are essential for full operation of fusion devices. We detail the design and implementation of a modular Pythonbased code for the Thomson Scattering diagnostic system of NSTX-U which offers improvements in speed by making full use of the Python's architecture, open-source module packages, and ability to be parallelized across many processors. SciPy's weave package allows the implementation of C/C++ code within our program to clear up bottlenecks in data fitting while not loosing the flexibility and clarity of Python, while Numpy and MatplotLib allow calculations and plotting of the processed data. Using the standard MDSplus input, we create a flexible and expandable algorithm structure which can be implemented on any fusion device utilizing polychromator-based Thomson scattering diagnostic system. Supported by DOE SULI Fellowship at Princeton Plasma Physics Lab.

  14. Material Assessment for ITER’s Collective Thomson Scattering first mirror

    DEFF Research Database (Denmark)

    Santos, R.; Policarpo, H.; Gonçalves, B.

    2015-01-01

    ITER’s Collective Thomson Scattering (CTS) system is a diagnostic instrument that will measure the plasma density and velocity through Thomson scattering of microwave radiation. Some of the key components of the CTS are quasioptical mirrors used to produce astigmatic beam patterns, which have....... In this work, three different materials (molybdenum (Mo), stainless steel 316L (SS-316L) and tungsten (W)) are considered for the first mirror of the CTS. The objective is to assess the suitability of these materials for this mirror and to provide a first ranking, considering the neutron radiation loads...... Element Analysis (FEA) of the mirror over a 400s discharge (reasonable number for computational tests, since an ITER discharge will be between 200 s and 1000 s) , with and without mirror cooling, is performed. The results obtained in this preliminary analysis show that of the tested materials Mo and W...

  15. A new dump system design for stray light reduction of Thomson scattering diagnostic system on EAST.

    Science.gov (United States)

    Xiao, Shumei; Zang, Qing; Han, Xiaofeng; Wang, Tengfei; Yu, Jin; Zhao, Junyu

    2016-07-01

    Thomson scattering (TS) diagnostic is an important diagnostic for measuring electron temperature and density during plasma discharge. However, the measurement of Thomson scattering signal is disturbed by the stray light easily. The stray light sources in the Experimental Advanced Superconducting Tokamak (EAST) TS diagnostic system were analyzed by a simulation model of the diagnostic system, and simulation results show that the dump system is the primary stray light source. Based on the optics theory and the simulation analysis, a novel dump system including an improved beam trap was proposed and installed. The measurement results indicate that the new dump system can reduce more than 60% of the stray light for the diagnostic system, and the influence of stray light on the error of measured density decreases.

  16. Velocity-space tomography of fusion plasmas by collective Thomson scattering of gyrotron radiation

    DEFF Research Database (Denmark)

    Salewski, Mirko; Jacobsen, A.S.; Jensen, Thomas;

    2016-01-01

    We propose a diagnostic capable of measuring 2D fast-ion velocity distribution functions 푓2퐷푣 in the MeV-range in magnetized fusion plasmas. Today velocity-space tomography based on fast-ion D훼 spectroscopy is regularly used to measure 푓2퐷푣 for ion energies below 100 keV. Unfortunately, the signal......-tonoise ratio becomes fairly low for MeV-range ions. Ions at any energy can be detected well by collective Thomson scattering of mm-wave radiation from a high-power gyrotron. We demonstrate how collective Thomson scattering can be used to measure 푓2퐷푣 in the MeV-range in reactor relevant plasmas...

  17. 4{omega} Thomson scattering probe for high-density plasma characterization at Titan

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J. S.; Pollock, B. B. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Department of Mechanical and Aerospace Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0411 (United States); Kline, J. L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Yang, S.; Henesian, M.; Weiland, T.; Price, D.; Glenzer, S. H. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2010-10-15

    In preparation for the upcoming experiments on the Titan laser at the Jupiter Laser Facility, a new Thomson scattering system has been designed and implemented. This system allows electron temperature and density measurements in a high-density regime (n{sub e}>10{sup 21} cm{sup -3}). A 263 nm probe has been demonstrated to produce a total energy of 15 J at 4{omega}(263 nm) in a 1 ns square pulse with a focal spot size of 100 {mu}m. This probe has been used for imaging Thomson scattering of the ion feature. The goal of this study is to investigate the heating of a preformed plasma by a short-pulse heater beam.

  18. Development of a YAG laser system for the edge Thomson scattering system in ITER.

    Science.gov (United States)

    Hatae, T; Yatsuka, E; Hayashi, T; Yoshida, H; Ono, T; Kusama, Y

    2012-10-01

    A prototype YAG laser system for the edge Thomson scattering system in ITER has been newly developed. Performance of the laser amplifier was improved by using flow tubes made of samarium-doped glass; the small signal gain reached 20 at its maximum. As a result, an output energy of 7.66 J at 100 Hz was successfully achieved, and the performance exceeded the target performance (5 J, 100 Hz).

  19. Fast ion dynamics in ASDEX upgrade and TEXTOR measured by collective Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Moseev, D.

    2011-11-15

    Fast ions are an essential ingredient in burning nuclear fusion plasmas: they are responsible for heating the bulk plasma, carry a significant amount of plasma current and moreover interact with various magnetohydrodynamic (MHD) instabilities. The collective Thomson scattering (CTS) diagnostic is sensitive to the projection of fast ion velocity distribution function. This thesis is mainly devoted to investigations of fast ion physics in tokamak plasmas by means of CTS. (Author)

  20. Thomson scattering in the EXTRAP-T2 reversed-field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Welander, A.

    1996-11-01

    A Thomson scattering system has been installed on the EXTRAP-T2 RFP experiment. The system measures the electron density and temperature in three radial points using three spectral channels. A description of the system, the calibration techniques and examples of data obtained are given. The error bars for the electron temperature measurements are estimated to be < 10% for typical T2-plasmas. 4 refs.

  1. Edge and core Thomson scattering systems and their calibration on the ASDEX Upgrade tokamak.

    Science.gov (United States)

    Kurzan, B; Murmann, H D

    2011-10-01

    A new 10 channel Thomson scattering (TS) system was installed on the ASDEX Upgrade tokamak to measure radial profiles of electron density and temperature at the plasma edge with high radial resolution. Together with the already existing TS system, which is now used for the core plasma, electron density and temperature profiles extending from the edge to the core are now obtained in a single discharge. The TS systems are relatively calibrated by an optical parametric oscillator.

  2. Edge and core Thomson scattering systems and their calibration on the ASDEX Upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Kurzan, B.; Murmann, H. D. [Max-Planck Institut fuer Plasmaphysik, EURATOM Association Boltzmannstr.2, 85748 Garching (Germany)

    2011-10-15

    A new 10 channel Thomson scattering (TS) system was installed on the ASDEX Upgrade tokamak to measure radial profiles of electron density and temperature at the plasma edge with high radial resolution. Together with the already existing TS system, which is now used for the core plasma, electron density and temperature profiles extending from the edge to the core are now obtained in a single discharge. The TS systems are relatively calibrated by an optical parametric oscillator.

  3. The preliminary design of the optical Thomson scattering diagnostic for the National Ignition Facility

    Science.gov (United States)

    Datte, P.; Ross, J. S.; Froula, D.; Galbraith, J.; Glenzer, S.; Hatch, B.; Kilkenny, J.; Landen, O.; Manuel, A. M.; Molander, W.; Montgomery, D.; Moody, J.; Swadling, G.; Weaver, J.; Vergel de Dios, G.; Vitalich, M.

    2016-05-01

    The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion programs. We report on the preliminary design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community's understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beamsplitter and gratings before the shot. A deep-UV probe beam (λ0 between 185-215 nm) will optimally collect Thomson scattered light from plasma densities of 5 x 1020 electrons/cm3 while a 3ω probe will optimally collect Thomson scattered light from plasma densities of 1 x 1019 electrons/cm3. We report the phase I design of a two phase design strategy. Phase I includes the OTS recording system to measure background levels at NIF and phase II will include the integration of a probe laser.

  4. Interaction of relativistic electrons with an intense laser pulse: High-order harmonic generation based on Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Szabolcs [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Department of Theoretical Physics, University of Szeged, Tisza L. krt. 84-86, H-6720 Szeged (Hungary); Varró, Sándor [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Wigner Research Center for Physics, SZFI, PO Box 49, H-1525 Budapest (Hungary); Czirják, Attila [ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged (Hungary); Department of Theoretical Physics, University of Szeged, Tisza L. krt. 84-86, H-6720 Szeged (Hungary)

    2016-02-15

    We investigate nonlinear Thomson scattering as a source of high-order harmonic radiation with the potential to enable attosecond light pulse generation. We present a new analytic solution of the electron’s relativistic equations of motion in the case of a short laser pulse with a sine-squared envelope. Based on the single electron emission, we compute and analyze the radiated amplitude and phase spectrum for a realistic electron bunch, with special attention to the correct initial values. These results show that the radiation spectrum of an electron bunch in head-on collision with a sufficiently strong laser pulse of sine-squared envelope has a smooth frequency dependence to allow for the synthesis of attosecond light pulses.

  5. Investigation of first mirror heating for the collective Thomson scattering diagnostic in ITER

    DEFF Research Database (Denmark)

    Salewski, Mirko; Meo, Fernando; Bindslev, Henrik

    2008-01-01

    Collective Thomson scattering (CTS) has the capabilities to measure phase space densities of fast ion populations in ITER resolved in configuration space, in velocity space, and in time. In the CTS system proposed for ITER, probing radiation at 60 GHz generated by two 1 MW gyrotrons is scattered...... in the plasma and collected by arrays of receivers. The transmission lines from the gyrotrons to the plasma and from the plasma to the receivers contain several quasioptical mirrors among other components. These are designed to produce astigmatic beam patterns in the plasma where the beam shapes will have...

  6. ITER fast ion collective Thomson scattering. Conceptual design of 60 GHz system

    DEFF Research Database (Denmark)

    Meo, Fernando; Bindslev, Henrik; Korsholm, Søren Bang

    The collective Thomson scattering diagnostic for ITER at the 60 GHz range is capable of measuring the fast ion distribution parallel and perpendicular to the magnetic field at different radial locations simultaneously. The design is robust technologically with no moveable components near the plasma...... describes the two systems and their main components. Section 3 clarifies the impact of design parameters such as beam widths and scattering angle on the CTS measurements. With this in hand, the ITER measurement requirements are translated into constraints on the CTS system designs. An important result...

  7. Investigation of first mirror heating for the collective Thomson scattering diagnostic in ITER

    DEFF Research Database (Denmark)

    Salewski, Mirko; Meo, Fernando; Bindslev, Henrik;

    2008-01-01

    Collective Thomson scattering (CTS) has the capabilities to measure phase space densities of fast ion populations in ITER resolved in configuration space, in velocity space, and in time. In the CTS system proposed for ITER, probing radiation at 60 GHz generated by two 1 MW gyrotrons is scattered...... modeling of a first mirror on the high field side indicates that the mirror curvature may warp due to heating. This may alter the beam quality, and therefore, thermal effects have to be accounted for during the design of the mirror. The modeling further demonstrates that thin mirrors are superior to thick...

  8. LIGHT SOURCE: TW Laser system for Thomson scattering X-ray light source at Tsinghua University

    Science.gov (United States)

    Yan, Li-Xm; Du, Ying-Chao; Du, Qiang; Li, Ren-Kai; Hua, Jian-Fei; Huang, Wen-Hui; Tang, Chuan-Xiang

    2009-06-01

    A TW (Tera Watt) laser system based on Ti:sapphire mainly for the Tsinghua Thomson scattering X-ray light source (TTX) is being built. Both UV (ultraviolet) laser pulse for driving the photocathode radio-frequency (RF) gun and the IR (infrared) laser pulse as the electron-beam-scattered-light are provided by the system. Efforts have also been made in laser pulse shaping and laser beam transport to optimize the high-brightness electron beam production by the photocathode RF gun.

  9. CO2 laser collective Thomson scattering diagnostics on the HT-7 tokamak

    Institute of Scientific and Technical Information of China (English)

    李亚东; 李建刚; 毛剑珊

    2004-01-01

    A CW CO2 laser collective Thomson scattering diagnostics was developed to measure plasma density fluctuations on the HT-7 tokamak. The design and construction of CO2 laser scattering apparatus is described. The laser source is a continuous-wave CO2 laser with a cavity length of 1.9 m and a power output of about 10 W at 10.6 μm. The k-resolution of the system is △k ≈ 3.2 cm-1. The preliminary data from the diagnostic is presented.

  10. TW Laser system for Thomson scattering X-ray light source at Tsinghua University

    Institute of Scientific and Technical Information of China (English)

    YAN Li-Xin; DU Ying-Chao; DU Qiang; LI Ren-Kai; HUA Jian-Fei; HUANG Wen-Hui; TANG Chuan-Xiang

    2009-01-01

    A TW(Tera Watt)laser system based on Ti:sapphire mainly for the Tsinghua Thomson scattering X-ray light source(TTX)is being built.Both UV(ultraviolet)laser pulse for driving the photocathode radiofrequency(RF)gun and the IR(infrared)laser pulse as the electron-beam-scattered-light are provided by the system.Efforts have also been made in laser pulse shaping and laser beam transport to optimize the high-brightness electron beam production by the photocathode RF gun.

  11. Data Processing and Acquisition System for the HT-7 Multipulse Thomson Scattering Diagnostic

    Institute of Scientific and Technical Information of China (English)

    陈卓天; 赵君煜; 方自深; 李亚东; 杨利

    2003-01-01

    This article describes the data processing and acquisition system for the HT-7 mul-tipulse Thomson scattering diagnostic. An eight-pulse laser is used in the Thomson scatteringsystem to obtain electron temperature profiles at eight different times throughout an entire plasmadischarge. The major components of the diagnostic system consist of a multipulse Nd-glass laser,system. The data processing software along with LeCroy 2250L will perform the data acquisition.In order to simplify the operation and extend the capability of its compatibility with other mathsoftwares, the processing software has been improved by the authors. The new software based onthe VC++ easily utilizes some math softwares to calculate the electron temperature. The newsoftware is simpler and more operational than the old one.

  12. Demonstration of X-ray Thomson Scattering on Shenguang-Ⅱ Laser Facility

    Institute of Scientific and Technical Information of China (English)

    胡广月; 张小丁; 郑坚; 雷安乐; 沈百飞; 徐至展; 张继彦; 杨家敏; 杨国洪; 韦敏习; 李军; 丁永坤

    2012-01-01

    X-ray Thomson scattering technique for diagnosing dense plasma was demonstrated on Shenguang-Ⅱ laser facility. Laser plasma x-ray source of titanium He-a lines (-4.75 keV), generated by laser beam (1.5 kJ/527 nm/2 ns) heated titanium thin foil, was used as x-ray probe beam. The x-ray probe was then scattered by cold CH foam column of 1 g/cm^3 density. The scattered radiation at 90° was diffracted by polyethylene terephthalate (PET) crystal and recorded on x-ray charge-coupled device. Well-defined scattering spectra were obtained with good signal to noise ratio.

  13. Thomson scattering from near-solid density plasmas using soft x-ray free electron lasers

    CERN Document Server

    Höll, A

    2006-01-01

    We propose a collective Thomson scattering experiment at the VUV free electron laser facility at DESY (FLASH) which aims to diagnose warm dense matter at near-solid density. The plasma region of interest marks the transition from an ideal plasma to a correlated and degenerate many-particle system and is of current interest, e.g. in ICF experiments or laboratory astrophysics. Plasma diagnostic of such plasmas is a longstanding issue. The collective electron plasma mode (plasmon) is revealed in a pump-probe scattering experiment using the high-brilliant radiation to probe the plasma. The distinctive scattering features allow to infer basic plasma properties. For plasmas in thermal equilibrium the electron density and temperature is determined from scattering off the plasmon mode.

  14. Thomson scattering from near-solid density plasmas using soft x-ray free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Holl, A; Bornath, T; Cao, L; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gregori, G; Laarmann, T; Meiwes-Broer, K H; Przystawik, A; Radcliffe, P; Redmer, R; Reinholz, H; Ropke, G; Thiele, R; Tiggesbaumker, J; Toleikis, S; Truong, N X; Tschentscher, T; Uschmann, I; Zastrau, U

    2006-11-21

    We propose a collective Thomson scattering experiment at the VUV free electron laser facility at DESY (FLASH) which aims to diagnose warm dense matter at near-solid density. The plasma region of interest marks the transition from an ideal plasma to a correlated and degenerate many-particle system and is of current interest, e.g. in ICF experiments or laboratory astrophysics. Plasma diagnostic of such plasmas is a longstanding issue. The collective electron plasma mode (plasmon) is revealed in a pump-probe scattering experiment using the high-brilliant radiation to probe the plasma. The distinctive scattering features allow to infer basic plasma properties. For plasmas in thermal equilibrium the electron density and temperature is determined from scattering off the plasmon mode.

  15. Thomson scattering analysis of large scale fluctuations in the ASDEX Upgrade edge

    Energy Technology Data Exchange (ETDEWEB)

    Kurzan, B; Horton, L D; Murmann, H; Neuhauser, J; Suttrop, W [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85748 Garching (Germany)

    2007-06-15

    Large scale fluctuations in between edge localized modes (ELMs) are the main source for the scatter in plasma edge H mode profiles of electron density and temperature, as measured by high precision, high resolution Thomson scattering. These large scale fluctuations are also observed with electron cyclotron emission. They are quantitatively analysed by 2D poloidal snapshots of electron density and temperature, based on a 5 x 10 matrix of scattering volumes provided by the Thomson scattering system. Fluctuations with a quasi-periodic structure are found in a 2D snapshot with a frequency of about 61%. When interpreted as field-aligned helical structures toroidal quasi-mode numbers of 6-48 are found. The amplitudes of the fluctuations decrease with increasing quasi-mode number and edge profile gradient lengths. The amplitudes of the large scale structures in the steep gradient region are anti-correlated with the divertor D{sub {alpha}}-intensity. The particle loss during an ELM is at least to a significant fraction due to the electron density 'blobs' observed in the scrape-off layer. The large scale fluctuations also perturb the measurement of 1D radial profiles. In the middle of the steep gradient region the perturbations are symmetric, but asymmetric both further inside (more minima) and further outside (more maxima)

  16. Design and implementation of a Thomson scattering diagnostic for the Compact Toroidal Hybrid

    Science.gov (United States)

    Traverso, P. J.; Maurer, D. A.; Hartwell, G. J.; Knowlton, S. F.; Archmiller, M. C.; Goforth, M. M.

    2013-10-01

    The Compact Toroidal Hybrid (CTH) experiment is investigating the avoidance of disruptions in ohmically driven torsaton plasmas as the ratio of vacuum transform to the total transform is changed. To better characterize these plasmas under this wide range of magnetic configurations, a new Thomson scattering diagnostic is being implemented to measure electron temperature and density profiles. These important internal profile measurements will be incorporated into the V3FIT code to enable better 3D equilibrium reconstruction. The Thomson scattering system uses a frequency doubled Continuum PL DLS 2 J Nd:YaG laser. The incident beam is passed vertically through an entrance Brewster window and a baffle system to minimize stray laser light. The beam exits through another Brewster window to an external beam dump. Polarization optics are planned to maximize the scattered light directed to the collection system for the specific scattering geometry of CTH. This work is supported by the USDoE under grant DE-FG02-00ER54610.

  17. Polarization of x-gamma radiation produced by a Thomson and Compton inverse scattering

    Science.gov (United States)

    Petrillo, V.; Bacci, A.; Curatolo, C.; Drebot, I.; Giribono, A.; Maroli, C.; Rossi, A. R.; Serafini, L.; Tomassini, P.; Vaccarezza, C.; Variola, A.

    2015-11-01

    A systematic study of the polarization of x-gamma rays produced in Thomson and Compton scattering is presented, in both classical and quantum schemes. Numerical results and analytical considerations let us to establish the polarization level as a function of acceptance, bandwidth and energy. Few sources have been considered: the SPARC_LAB Thomson device, as an example of a x-ray Thomson source, ELI-NP, operating in the gamma range. Then, the typical parameters of a beam produced by a plasma accelerator has been analyzed. In the first case, with bandwidths up to 10%, a contained reduction (<10 % ) in the average polarization occurs. In the last case, for the nominal ELI-NP relative bandwidth of 5 ×1 0-3 , the polarization is always close to 1. For applications requiring larger bandwidth, however, a degradation of the polarization up to 30% must be taken into account. In addition, an all optical gamma source based on a plasma accelerated electron beam cannot guarantee narrow bandwidth and high polarization operational conditions required in nuclear photonics experiments.

  18. Measurements of ion temperature and plasma hydrogenic composition by collective Thomson scattering in neutral beam heated discharges at TEXTOR

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Salewski, Mirko; Korsholm, Søren Bang

    2013-01-01

    A method is developed to perform plasma composition and ion temperature measurements across the plasma minor radius in TEXTOR based on ion cyclotron structures in collective Thomson scattering spectra. By gradually moving the scattering volume, we obtain measurements across the outer midplane...

  19. A parallelized Python based Multi-Point Thomson Scattering analysis in NSTX-U

    Science.gov (United States)

    Miller, Jared; Diallo, Ahmed; Leblanc, Benoit

    2014-10-01

    Multi-Point Thomson Scattering (MPTS) is a reliable and accurate method of finding the temperature, density, and pressure of a magnetically confined plasma. Nd:YAG (1064 nm) lasers are fired into the plasma with a frequency of 60 Hz, and the light is Doppler shifted by Thomson scattering. Polychromators on the midplane of the tokamak pick up the light at various radii/scattering angles, and the avalanche photodiode's voltages are added to an MDSplus tree for later analysis. This project ports and optimizes the prior serial IDL MPTS code into a well-documented Python package that runs in parallel. Since there are 30 polychromators in the current NSTX setup (12 more will be added when NSTX-U is completed), using parallelism offers vast savings in performance. NumPy and SciPy further accelerate numerical calculations and matrix operations, Matplotlib and PyQt make an intuitive GUI with plots of the output, and Multiprocessing parallelizes the computationally intensive calculations. The Python package was designed with portability and flexibility in mind so it can be adapted for use in any polychromator-based MPTS system.

  20. Classical Heat-Flux Measurements in Coronal Plasmas from Collective Thomson-Scattering Spectra

    Science.gov (United States)

    Henchen, R. J.; Hu, S. X.; Katz, J.; Froula, D. H.; Rozmus, W.

    2016-10-01

    Collective Thomson scattering was used to measure heat flux in coronal plasmas. The relative amplitude of the Thomson-scattered power into the up- and downshifted electron plasma wave features was used to determine the flux of electrons moving along the temperature gradient at three to four times the electron thermal velocity. Simultaneously, the ion-acoustic wave features were measured. Their relative amplitude was used to measure the flux of the return-current electrons. The frequencies of these ion-acoustic and electron plasma wave features provide local measurements of the electron temperature and density. These spectra were obtained at five locations along the temperature gradient in a laser-produced blowoff plasma. These measurements of plasma parameters are used to infer the Spitzer-Härm flux (qSH = - κ∇Te ) and are in good agreement with the values of the heat flux measured from the scattering-feature asymmetries. Additional experiments probed plasma waves perpendicular to the temperature gradient. The data show small effects resulting from heat flux compared to probing waves along the temperature gradient. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  1. Design and implementation of a Thomson scattering diagnostic for the Compact Toroidal Hybrid Experiment

    Science.gov (United States)

    Traverso, P. J.; Maurer, D. A.; Ennis, D. A.; Hartwell, G. J.; Goforth, M. M.; Loch, S. D.; Pearce, A. J.; Cianciosa, M. R.

    2014-10-01

    A Thomson scattering system using standard commercially available components has been designed for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH). The initial system takes a single point measurement and will be used to assess options for an upgrade to a multi-point system providing electron temperature and density profiles. This single point measurement will reduce the uncertainty in the reconstructed peak pressure by an order of magnitude for both ohmically driven, current-carrying plasmas and future gyrotron-heated stellarator plasmas. A principle design goal is to minimize stray laser light, geometrically on the machine side and spectrally on the collection side, to allow measurements of both full and half Thomson scattered spectral profiles. The beam, generated by a frequency doubled Continuum 2 J Nd:YaG laser, is passed vertically through an entrance Brewster window and an aperturing baffle system to minimize stray light. Light collection, spectral processing, and signal detection are accomplished with an f / # ~ 1 aspheric lens, a Holospec f/1.8 spectrometer, and an Andor iStar DH740-18U-C3 image intensified camera. The estimated number of scattered photons per channel will be of the order of 5 ×103 with a signal to noise ratio of S / N = 19 This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  2. Principles of fuel ion ratio measurements in fusion plasmas by collective Thomson scattering

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Nielsen, Stefan Kragh; Bindslev, Henrik;

    2011-01-01

    ratio. Measurements of the fuel ion ratio will be important for plasma control and machine protection in future experiments with burning fusion plasmas. Here we examine the theoretical basis for fuel ion ratio measurements by CTS. We show that the sensitivity to plasma composition is enhanced......For certain scattering geometries collective Thomson scattering (CTS) measurements are sensitive to the composition of magnetically confined fusion plasmas. CTS therefore holds the potential to become a new diagnostic for measurements of the fuel ion ratio—i.e. the tritium to deuterium density...... by the signatures of ion cyclotron motion and ion Bernstein waves which appear for scattering geometries with resolved wave vectors near perpendicular to the magnetic field. We investigate the origin and properties of these features in CTS spectra and give estimates of their relative importance for fuel ion ratio...

  3. Collective Thomson scattering for ion temperature and velocity measurements on Magnum-PSI: a feasibility study

    Science.gov (United States)

    van der Meiden, H. J.

    2010-04-01

    In this paper, collective Thomson scattering (CTS) is proposed for measuring the ion temperature and axial/rotational velocity of a plasma jet in the linear plasma generator Magnum-PSI, where ITER-relevant plasma conditions will be simulated. CTS is feasible at Magnum-PSI, because high electron densities (ne) can be obtained at low electron temperatures, which means that small Debye lengths are achievable. Calculations show that CTS is possible at the fundamental wavelength (1064 nm) of a Nd : YAG laser. At this wavelength, a scattering angle of 17-35° is sufficiently small to achieve a scattering parameter 1 1.5 × 1021 m-3. The design considerations of the CTS diagnostic are described in this paper.

  4. X-ray Thomson scattering measurements from hohlraum-driven spheres on the OMEGA laser

    Science.gov (United States)

    Saunders, A. M.; Jenei, A.; Döppner, T.; Falcone, R. W.; Kraus, D.; Kritcher, A.; Landen, O. L.; Nilsen, J.; Swift, D.

    2016-11-01

    X-ray Thomson scattering (XRTS) is a powerful diagnostic for probing warm and hot dense matter. We present the design and results of the first XRTS experiments with hohlraum-driven CH2 targets on the OMEGA laser facility at the Laboratory for Laser Energetics in Rochester, NY. X-rays seen directly from the XRTS x-ray source overshadow the elastic scattering signal from the target capsule but can be controlled in future experiments. From the inelastic scattering signal, an average plasma temperature is inferred that is in reasonable agreement with the temperatures predicted by simulations. Knowledge gained in this experiment shows a promising future for further XRTS measurements on indirectly driven OMEGA targets.

  5. Elevation angle alignment of quasi optical receiver mirrors of collective Thomson scattering diagnostic by sawtooth measurements

    DEFF Research Database (Denmark)

    Moseev, D.; Meo, Fernando; Korsholm, Søren Bang;

    2012-01-01

    Localized measurements of the fast ion velocity distribution function and the plasma composition measurements are of significant interest for the fusion community. Collective Thomson scattering (CTS) diagnostics allow such measurements with spatial and temporal resolution. Localized measurements...... require a good alignment of the optical path in the transmission line. Monitoring the alignment during the experiment greatly benefits the confidence in the CTS measurements. An in situ technique for the assessment of the elevation angle alignment of the receiver is developed. Using the CTS diagnostic...

  6. Time evolution analysis of the electron distribution in Thomson/Compton back-scattering

    Energy Technology Data Exchange (ETDEWEB)

    Petrillo, V.; Bacci, A.; Curatolo, C.; Maroli, C.; Serafini, L.; Rossi, A. R. [INFN-Universitá degli Studi Milano, Via Celoria, 16 20133 Milano (Italy)

    2013-07-28

    We present the time evolution of the energy distribution of a relativistic electron beam after the Compton back-scattering with a counter-propagating laser field, performed in the framework of the Quantum Electrodynamics, by means of the code CAIN. As the correct angular distribution of the spontaneous emission is accounted, the main effect is the formation of few stripes, followed by the diffusion of the more energetic particles toward lower values in the longitudinal phase space. The Chapman-Kolmogorov master equation gives results in striking agreement with the numerical ones. An experiment on the Thomson source at SPARC-LAB is proposed.

  7. Time evolution analysis of the electron distribution in Thomson/Compton back-scattering

    Science.gov (United States)

    Petrillo, V.; Bacci, A.; Curatolo, C.; Maroli, C.; Serafini, L.; Rossi, A. R.

    2013-07-01

    We present the time evolution of the energy distribution of a relativistic electron beam after the Compton back-scattering with a counter-propagating laser field, performed in the framework of the Quantum Electrodynamics, by means of the code CAIN. As the correct angular distribution of the spontaneous emission is accounted, the main effect is the formation of few stripes, followed by the diffusion of the more energetic particles toward lower values in the longitudinal phase space. The Chapman-Kolmogorov master equation gives results in striking agreement with the numerical ones. An experiment on the Thomson source at SPARC-LAB is proposed.

  8. Thomson scattering measurement of a shock in laser-produced counter-streaming plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Morita, T.; Kuramitsu, Y.; Moritaka, T. [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Sakawa, Y.; Takabe, H. [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Graduate School of Science, Osaka University, 1-1 Machikane-yama, Toyonaka, Osaka 560-0043 (Japan); Tomita, K.; Nakayama, K.; Inoue, K.; Uchino, K. [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1, Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Ide, T.; Tsubouchi, K. [Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Nishio, K.; Ide, H.; Kuwada, M. [Graduate School of Science, Osaka University, 1-1 Machikane-yama, Toyonaka, Osaka 560-0043 (Japan)

    2013-09-15

    We report the first direct measurement of temporally and spatially resolved plasma temperatures at a shock as well as its spatial structure and propagation in laser-produced counter-streaming plasmas. Two shocks are formed in counter-streaming collisionless plasmas early in time, and they propagate opposite directions. This indicates the existence of counter-streaming collisionless flows to keep exciting the shocks, even though the collisional effects increase later in time. The shock images are observed with optical diagnostics, and the upstream and downstream plasma parameters of one of the shocks are measured using Thomson scattering technique.

  9. Ultrashort hard x-ray pulses generated by 90 degrees Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Chin, A.H. [Univ. of California, Berkeley, CA (United States); Schoenlein, R.W.; Glover, T.E. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Ultrashort x-ray pulses permit observation of fast structural dynamics in a variety of condensed matter systems. The authors have generated 300 femtosecond, 30 keV x-ray pulses by 90 degrees Thomson scattering between femtosecond laser pulses and relativistic electrons. The x-ray and laser pulses are synchronized on a femtosecond time scale, an important prerequisite for ultrafast pump-probe spectroscopy. Analysis of the x-ray beam properties also allows for electron bunch characterization on a femtosecond time scale.

  10. A simulation study of Tsinghua Thomson scattering X-ray source

    Institute of Scientific and Technical Information of China (English)

    TANG Chuan-Xiang; LI Ren-Kai; HUANG Wen-Hui; CHEN Huai-Bi; DU Ying-Chao; DU Qiang; DU Tai-Bin; HE Xiao-Zhong; HUA Jian-Fei; LIN Yu-Zhen; QIAN Hou-Jun; SHI Jia-Ru; XIANG Dao; YAN Li-Xin; Yu Pei-Cheng

    2009-01-01

    Thomson scattering X-ray sources are compact and afrordable facifities that produce short duration,high brightness X-ray pulses enabling new experimental capacities in ultra-fast science studies,and also medical and industrial applications.Such a facility has been built at the Accelerator Laboratory of Tsinghua University,and upgrade is in progress.In this paper,we present a proposed layout of the upgrade with design parameters by simulation,aiming at high X-ray pulses flux and brightness,and also enabling advanced dynamics studies and applications of the electron beam.Design and construction status of main subsystems are also presented.

  11. Fast integrator based data acquisition system for the SST-1 Thomson scattering system

    Science.gov (United States)

    Patel, Kiran; Kumar, Ajai

    2010-04-01

    An operational transconductance amplifier based fast charge-integrating module (FCIM) is designed and developed for an easy acquisition of fast Thomson scattered and background signal. FCIM based data acquisition technique can be used for the measurement of charge pulses of <20 ns duration. The response of the module is tested using a standard pulsed charge-generating module. The measuring charge range of the module depends on the integrating capacitor. Comparison of the performance of FCIM to commercially available module shows that it has better dynamic range with higher sensitivity and less measurement error. The module is quite cost effective and has many new features.

  12. Fast integrator based data acquisition system for the SST-1 Thomson scattering system

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Kiran; Kumar, Ajai [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

    2010-04-15

    An operational transconductance amplifier based fast charge-integrating module (FCIM) is designed and developed for an easy acquisition of fast Thomson scattered and background signal. FCIM based data acquisition technique can be used for the measurement of charge pulses of <20 ns duration. The response of the module is tested using a standard pulsed charge-generating module. The measuring charge range of the module depends on the integrating capacitor. Comparison of the performance of FCIM to commercially available module shows that it has better dynamic range with higher sensitivity and less measurement error. The module is quite cost effective and has many new features.

  13. Design of collection optics and polychromators for a JT-60SA Thomson scattering system.

    Science.gov (United States)

    Tojo, H; Hatae, T; Sakuma, T; Hamano, T; Itami, K; Aida, Y; Suitoh, S; Fujie, D

    2010-10-01

    This paper presents designs of collection optics for a JT-60SA Thomson scattering system. By using tangential (to the toroidal direction) YAG laser injection, three collection optics without strong chromatic aberration generated by the wide viewing angle and small design volume were found to measure almost all the radial space. For edge plasma measurements, the authors optimized the channel number and wavelength ranges of band-pass filters in a polychromator to reduce the relative error in T(e) by considering all spatial channels and a double-pass laser system with different geometric parameters.

  14. LIGHT SOURCE: A simulation study of Tsinghua Thomson scattering X-ray source

    Science.gov (United States)

    Tang, Chuan-Xiang; Li, Ren-Kai; Huang, Wen-Hui; Chen, Huai-Bi; Du, Ying-Chao; Du, Qiang; Du, Tai-Bin; He, Xiao-Zhong; Hua, Jian-Fei; Lin, Yu-Zhen; Qian, Hou-Jun; Shi, Jia-Ru; Xiang, Dao; Yan, Li-Xin; Yu, Pei-Cheng

    2009-06-01

    Thomson scattering X-ray sources are compact and affordable facilities that produce short duration, high brightness X-ray pulses enabling new experimental capacities in ultra-fast science studies, and also medical and industrial applications. Such a facility has been built at the Accelerator Laboratory of Tsinghua University, and upgrade is in progress. In this paper, we present a proposed layout of the upgrade with design parameters by simulation, aiming at high X-ray pulses flux and brightness, and also enabling advanced dynamics studies and applications of the electron beam. Design and construction status of main subsystems are also presented.

  15. Fitting of the Thomson scattering density and temperature profiles on the COMPASS tokamak

    Science.gov (United States)

    Stefanikova, E.; Peterka, M.; Bohm, P.; Bilkova, P.; Aftanas, M.; Sos, M.; Urban, J.; Hron, M.; Panek, R.

    2016-11-01

    A new technique for fitting the full radial profiles of electron density and temperature obtained by the Thomson scattering diagnostic in H-mode discharges on the COMPASS tokamak is described. The technique combines the conventionally used modified hyperbolic tangent function for the edge transport barrier (pedestal) fitting and a modification of a Gaussian function for fitting the core plasma. Low number of parameters of this combined function and their straightforward interpretability and controllability provide a robust method for obtaining physically reasonable profile fits. Deconvolution with the diagnostic instrument function is applied on the profile fit, taking into account the dependence on the actual magnetic configuration.

  16. The Design of the Polychromator for Thomson Scattering Measurements on HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    杨利; 赵君煜; 方自深

    2004-01-01

    A five-channel polychromator, utilizing high performance interference filters, has been completed for Thomson scattering measurements on HT-7 tokamak. For our instrument, the range of electron temperature varies from 50 eV to 1.5 keV. According to this, the bandpass of the different interference filters are chosen. Unique features of the polychromator are high throughput,easy alignment, flexibility and compact size when compared with other alternatives. In this article,both the method of designing and the measured transmission curves for the polychromator are given.

  17. The effect of bound states on X-ray Thomson scattering for partially ionized plasmas

    OpenAIRE

    Nilsen, J.; Johnson, W.R.; Cheng, K. T.

    2012-01-01

    X-ray Thomson scattering is being developed as a method to measure the temperature, electron density, and ionization state of high energy density plasmas such as those used in inertial confinement fusion. X-ray laser sources have always been of interest because of the need to have a bright monochromatic x-ray source to overcome plasma emission and eliminate other lines in the background that complicate the analysis. With the advent of the xray free electron laser (X-FEL) at the SLAC Linac Coh...

  18. Impact of beam ions on α-particle measurements by collective Thomson scattering in ITER

    DEFF Research Database (Denmark)

    Egedal, J.; Bindslev, H.; Budny, R.V.

    2005-01-01

    Collective Thomson scattering (CTS) has been proposed as a viable diagnostic for characterizing fusion born a-distributions in ITER. However, the velocities of the planned 1 MeV deuterium heating beam ions in 1TER are similar to that of fusion born a-particles and may therefore mask...... the measurements of the fusion products. We apply a new technique for calculating the orbit averaged source, (S), of beam ions for various ITER scenarios. With the known (S) Fokker-Planck modelling is applied to characterize the beam ions during the slowing down process. Theoretical CTS signals for both beam ions...

  19. Signal processing of Thomson scattering data in a noisy environment in ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Kurzan, B; Jakobi, M; Murmann, H [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2004-01-01

    For the Thomson scattering diagnostic in the ASDEX Upgrade tokamak, new transient recorders for acquiring the time evolution of the scattering pulses are used. Instead of integrating over the scattering pulse, as performed by the usually applied charge-sensitive analogue-to-digital converters (ADCs), a non-Gaussian pulse shape is fitted to the measured scattering signal. Both in this fitting procedure and in determination of the electron density and temperature from the scattering signals, correlated noise is taken into account. The number of outliers due to perturbations of the scattering signal is substantially reduced and the resulting electron density and temperature values are of higher accuracy than those that were obtained with the evaluation method based on charge-sensitive ADCs. The minimum electron density, detectable with a signal-to-noise ratio of 1, is now at n{sub e} = 0.75 x 10{sup 18} m{sup -3}, which is a factor of 3 lower than that obtained with the evaluation based on the integration over the scattering pulse.

  20. Development of laser beam injection system for the Edge Thomson Scattering (ETS) in ITER

    Science.gov (United States)

    Yatsuka, E.; Hatae, T.; Suitoh, S.; Ohara, M.; Hagita, K.; Inoue, K.; Bassan, M.; Walsh, M.; Itami, K.

    2016-01-01

    This paper focuses on the design and development of the laser injection system for the ITER Edge Thomson Scattering system (ETS). The ITER ETS achieves a temporal resolution of 100 Hz by firing two 50 Hz laser beams alternatively. The use of dual lasers enables us to perform the Thomson scattering measurements at a temporal resolution of 50 Hz in case that one of the laser systems stops functioning. A new type of beam combiner was developed to obtain a single beam that is collinear and fixed linearly polarized from two laser beams using a motor-driven rotating half-wave plate. The rotating half-wave plate method does not induce misalignment even if the rotating mechanism malfunctions. The combined beam is relayed from the diagnostic hall to the plasma using mirror optics and is absorbed at the beam dump integrated on the inner blanket. The beam alignment system was designed to direct the laser beam onto the center of the beam dump head. The beam position at the beam dump is monitored by four alignment laser beams which propagate parallel to the diagnostic Nd:YAG laser beam and imaging systems installed outside the diagnostic port.

  1. Detecting non-maxwellian electron velocity distributions at JET by high resolution Thomson scattering.

    Science.gov (United States)

    Beausang, K V; Prunty, S L; Scannell, R; Beurskens, M N; Walsh, M J; de la Luna, E

    2011-03-01

    The present work is motivated by a long standing discrepancy between the electron temperature measurements of Thomson scattering (TS) and electron cyclotron emission (ECE) diagnostics for plasmas with strong auxiliary heating observed at both JET and TFTR above 6–7 keV, where in some cases the ECE electron temperature measurements can be 15%–20% higher than the TS measurements. Recent analysis based on ECE results at JET has shown evidence of distortions to the Maxwellian electron velocity distribution and a correlation with the TS and ECE discrepancies has been suggested. In this paper, a technique to determine the presence of non-Maxwellian behavior using TS diagnostics is outlined. The difficulties and limitations of modern TS system designs to determine the electron velocity distribution are also discussed. It is demonstrated that small deviations such as those suggested by previous ECE analysis could be potentially detected, depending on the spectral layout of the TS polychromators. The spectral layout of the JET high resolution Thomson scattering system is such that it could be used to determine these deviations between 1 and 6 keV, and the results presented here indicate that no evidence of non-Maxwellian behavior is observed in this range. In this paper, a modification to the current polychromator design is proposed, allowing non-Maxwellian distortions to be detected up to at least 10 keV.

  2. Detecting non-Maxwellian electron velocity distributions at JET by high resolution Thomson scattering

    Science.gov (United States)

    Beausang, K. V.; Prunty, S. L.; Scannell, R.; Beurskens, M. N.; Walsh, M. J.; de La Luna, E.; Jet Efda Contributors

    2011-03-01

    The present work is motivated by a long standing discrepancy between the electron temperature measurements of Thomson scattering (TS) and electron cyclotron emission (ECE) diagnostics for plasmas with strong auxiliary heating observed at both JET and TFTR above 6-7 keV, where in some cases the ECE electron temperature measurements can be 15%-20% higher than the TS measurements. Recent analysis based on ECE results at JET has shown evidence of distortions to the Maxwellian electron velocity distribution and a correlation with the TS and ECE discrepancies has been suggested. In this paper, a technique to determine the presence of non-Maxwellian behavior using TS diagnostics is outlined. The difficulties and limitations of modern TS system designs to determine the electron velocity distribution are also discussed. It is demonstrated that small deviations such as those suggested by previous ECE analysis could be potentially detected, depending on the spectral layout of the TS polychromators. The spectral layout of the JET high resolution Thomson scattering system is such that it could be used to determine these deviations between 1 and 6 keV, and the results presented here indicate that no evidence of non-Maxwellian behavior is observed in this range. In this paper, a modification to the current polychromator design is proposed, allowing non-Maxwellian distortions to be detected up to at least 10 keV

  3. Conceptual Design Studies of the KSTAR Bay-Nm Cassette and Thomson Scattering Optics

    Energy Technology Data Exchange (ETDEWEB)

    Feder, R.; Ellis, R.; Johnson, D.; Park, H.; Lee, H. G.

    2005-09-26

    A Multi-Channel Thomson Scattering System viewing the edge and core of the KSTAR plasma will be installed at the mid-plane port Bay-N. An engineering design study was undertaken at PPPL in collaboration with the Korea Basic Science Institute (KBSI) to determine the optimal optics and cassette design. Design criteria included environmental, mechanical and optical factors. All of the optical design options have common design features; the Thomson Scattering laser, an in-vacuum shutter, a quartz heat shield and primary vacuum window, a set of optical elements and a fiber optic bundle. Neutron radiation damage was a major factor in the choice of competing lens-based and mirror-based optical designs. Both the mirror based design and the lens design are constrained by physical limits of the Bay-N cassette and interference with the Bay-N micro-wave launcher. The cassette will contain the optics and a rail system for maintenance of the optics.

  4. Computer data-acquisition and control system for Thomson-scattering measurements

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, K.A.; Foskett, R.D.; Kindsfather, R.R.; Lazarus, E.A.; Thomas, C.E.

    1983-03-01

    The Thomson-Scattering Diagnostic System (SCATPAK II) used to measure the electron temperature and density in the Impurity Study Experiment is interfaced to a Perkin-Elmer 8/32 computer that operates under the OS/32 operating system. The calibration, alignment, and operation of this diagnostic are all under computer control. Data acquired from 106 photomultiplier tubes installed on 15 spectrometers are transmitted to the computer by eighteen 12-channel, analog-to-digital integrators along a CAMAC serial highway. With each laser pulse, 212 channels of data are acquired: 106 channels of signal plus background and 106 channels of background only. Extensive use of CAMAC instrumentation enables large amounts of data to be acquired and control processes to be performed in a time-dependent environment. The Thomson-scattering computer system currently operates in three modes: user interaction and control, data acquisition and transmission, and data analysis. This paper discusses the development and implementation of this system as well as data storage and retrieval.

  5. Material Assessment for ITER's Collective Thomson Scattering first mirror

    Energy Technology Data Exchange (ETDEWEB)

    Santos, R.; Policarpo, H.; Goncalves, B.; Varela, P. [Instituto de Plasmas e Fusao Nuclear, Instituto Superior Tecnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Nonboel, E.; Klinkby, E.; Lauritzen, B. [Center for Nuclear Technologies, Technical University of Denmark (Denmark); Romanets, Y.; Luis, R.; Vaz, P. [Centro de Ciencias e Tecnologias Nucleares, Instituto Superior Tecnico, Universidade de Lisboa (Portugal)

    2015-07-01

    The International Thermonuclear Energy Reactor (ITER) Collective Thomson Scattering (CTS) system is a diagnostic instrument that measures plasma density and velocity through Thomson scattering of microwave radiation. Some of the key components of the CTS are quasi-optical mirrors that are used to produce astigmatic beam patterns, which have impact on the strength and spatial resolution of the diagnostic signal. The mirrors are exposed to neutron radiation, which may alter the quality of the signal received. In this work, three different materials (molybdenum (Mo), stainless steel 316 (SS-316) and tungsten (W)) are considered for the first mirror of the CTS. The objective is to access which of the material studied are best suited for this mirror, considering different neutron radiation loads simulated scenarios defined by ITER, based on the resultant stresses and temperature distributions. For it, the neutron irradiation, and subsequent heat-load on the mirrors are simulated using the Monte Carlo N-Particle (MCNP) code. Based on the MCNP heat-load results, transient thermal-structural Finite Element Analysis (FEA) of the mirror over a 400 s discharge, with and without cooling on the rear side, are conducted using in commercial FEA software ANSYS. Results show that of the tested materials Mo and W are the most suitable material for this application. Even though, this study does not yet consider the variation of the material properties with temperature, it presents a quick initial satisfactory assessment that may be considered in subsequent and more complex analysis. (authors)

  6. Conceptual design of the collection optics for the edge Thomson scattering system in ITER.

    Science.gov (United States)

    Yatsuka, E; Hatae, T; Suitoh, S; Aida, Y; Kusama, Y

    2010-10-01

    Neutron and gamma-ray irradiation complicates the design of the edge Thomson scattering (TS) system in ITER. The TS light is relayed through the relaying optics with labyrinth and fiber coupling optics. Electron density of 2×10(19) m(-3) is sufficient to measure T(e) and n(e) within a 10% and 5% margin of error, respectively, with a spatial resolution of 5 mm. This system can cover from 0.85 to 1 of the normalized minor radius. The time resolution is 10 ms, which is determined by the repetition rate of the laser device. A super-Gaussian is the ideal laser profile for the laser injection optics to avoid a breakdown of the filling gas used in density calibration through Raman scattering.

  7. Measurements of plasma composition in the TEXTOR tokamak by collective Thomson scattering

    DEFF Research Database (Denmark)

    Stejner Pedersen, Morten; Korsholm, Søren Bang; Nielsen, Stefan Kragh;

    2012-01-01

    with wave vector components nearly perpendicular to the magnetic field. Under such conditions the sensitivity of the CTS spectrum to plasma composition is enhanced by the spectral signatures of the ion cyclotron motion and of weakly damped ion Bernstein waves. Recent experiments on TEXTOR demonstrated......We demonstrate the use of collective Thomson scattering (CTS) for spatially localized measurements of the isotopic composition of magnetically confined fusion plasmas. The experiments were conducted in the TEXTOR tokamak by scattering millimeter-wave probe radiation off plasma fluctuations...... the ability to resolve these signatures in the CTS spectrum as well as their sensitivity to the ion species mix in the plasma. This paper shows that the plasma composition can be inferred from the measurements through forward modeling of the CTS spectrum. We demonstrate that spectra measured in plasmas...

  8. Resolving the bulk ion region of millimeter-wave collective Thomson scattering spectra at ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Stejner, M., E-mail: mspe@fysik.dtu.dk; Nielsen, S.; Jacobsen, A. S.; Korsholm, S. B.; Leipold, F.; Meo, F.; Michelsen, P. K.; Rasmussen, J.; Salewski, M. [Department of Physics, Association EURATOM-DTU, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark); Moseev, D. [Max-Planck-Institut für Plasmaphysik, EURATOM-Association, Boltzmannstr. 2, 85748 Garching (Germany); Association Euratom-FOM Institute DIFFER, 3430 BE Nieuwegein (Netherlands); Schubert, M.; Stober, J.; Wagner, D. H. [Max-Planck-Institut für Plasmaphysik, EURATOM-Association, Boltzmannstr. 2, 85748 Garching (Germany)

    2014-09-15

    Collective Thomson scattering (CTS) measurements provide information about the composition and velocity distribution of confined ion populations in fusion plasmas. The bulk ion part of the CTS spectrum is dominated by scattering off fluctuations driven by the motion of thermalized ion populations. It thus contains information about the ion temperature, rotation velocity, and plasma composition. To resolve the bulk ion region and access this information, we installed a fast acquisition system capable of sampling rates up to 12.5 GS/s in the CTS system at ASDEX Upgrade. CTS spectra with frequency resolution in the range of 1 MHz are then obtained through direct digitization and Fourier analysis of the CTS signal. We here describe the design, calibration, and operation of the fast receiver system and give examples of measured bulk ion CTS spectra showing the effects of changing ion temperature, rotation velocity, and plasma composition.

  9. Impact of ICRH on the measurement of fusion alphas by collective Thomson scattering in ITER

    DEFF Research Database (Denmark)

    Salewski, Mirko; Eriksson, L.-G.; Bindslev, Henrik

    2009-01-01

    Collective Thomson scattering (CTS) has been proposed for measuring the phase space distributions of confined fast ion populations in ITER plasmas. This study determines the impact of fast ions accelerated by ion cyclotron resonance heating (ICRH) on the ability of CTS to diagnose fusion alphas......, corresponding to an off-axis resonance. The sensitivities of the results to the He-3 concentration (0.1-4%) and the heating power (20-40 MW) are considered. Fusion born alphas dominate the total CTS signal for large Doppler shifts of the scattered radiation. The tritons generate a negligible fraction...... perpendicular velocities, it may be difficult to draw conclusions about the physics of alpha particles alone by CTS. With this exception, the CTS diagnostic can reveal the physics of the fusion alphas in ITER even under the presence of fast ions due to ICRH....

  10. Development of the so-called third stage laser Thomson scattering diagnostics of plasmas

    Science.gov (United States)

    Muraoka, Katsunori; Yamagata, Yukihiko; Hisano, Taishi; Uchino, Kiichirou; Miyazaki, Koichi

    2003-10-01

    In the recent review article,^1) we indicated that the incoherent laser Thomson scattering (LTS) diagnostics of plasmas for measurements of electron densities and temperatures (or more generally EEDFs) be classified as having evolved from the first stage where a whole Thomson spectrum be obtained during a single laser pulse from plasmas having electron density of above 10^18 m-3, through the second stage where data accumulation be prerequisite for ne below 10^18 m-3, and to the third stage where a strong suppression of stray light in addition to the data accumulation be necessary to measure at an extremely small size of less than 100 μm near to material surfaces. The third stage LTS was first demonstrated for a PDP (plasma display panel)-like discharge three years ago employing a triple grating polychromator. In order to further expand its applicable ranges, we are pursuing a more general approach by taking into account such factors as laser divergence, stray light suppression and other aspects. The present status is presented. 1) K. Muraoka, K. Uchino, Y. Yamagata, Y. Noguchi, M. Mansour, P. Suanpoot, S. Narishige, and M. Noguchi, Plasma Sources Sci. Technol. 11 (2002) A143.

  11. Progress on the multipulse Thomson Scattering diagnostic on DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Stockdale, R.E.; Carlstrom, T.N.; Hsieh, C.L.; Makariou, C.C.

    1994-05-01

    The DIII-D Thomson scattering diagnostic, operational since 1990, uses 8 Nd: YAG 20 Hz lasers to measure electron temperature and density profiles (40 spatial points) throughout the plasma discharge. Recent progress has enabled a new set of operating modes to better fullfill varying plasma physics requirements. Custom circuitry for laser control (programmable with los precision) has successfully replaced a previous scheme which used real-time 68030 software. Two new modes of operation have been demonstrated. Burst Mode is useful to study a transient plasma event: a series of laser pulses axe fired at a rate {le}10 kHz after an external asynchronous event trigger. Burst Mode is also useful to synchronize the Thomson lasers with other systems, such as an asynchronous Michelson ECE diagnostic scanning near 40 Hz. Group Mode allows a programmed set of lasers to fire simultaneously into the same (65 nanosecond) data acquisition gate. Improved signal/noise then yields smaller statistical errors in the profile results. This provides profile data for lower density plasmas, such as those anticipated during fast wave current drive experiments. Plans for a new CCD-based laser alignment system for position monitoring and feedback control will also be presented.

  12. Benchmark and combined velocity-space tomography of fast-ion D-alpha spectroscopy and collective Thomson scattering measurements

    DEFF Research Database (Denmark)

    Jacobsen, Asger Schou; Salewski, Mirko; Geiger, B.

    2016-01-01

    We demonstrate the combination of fast-ion D-alpha spectroscopy (FIDA) and collective Thomson scattering (CTS) measurements to determine a common best estimate of the fastion velocity distribution function by velocity-space tomography. We further demonstrate a benchmark of FIDA tomography and CTS...

  13. Experimental and simulated fast ion velocity distributions on collective Thomson scattering diagnostic in the Large Helical Device

    DEFF Research Database (Denmark)

    Nishiura, M.; Kubo, S.; Tanaka, K.

    2012-01-01

    We have developed a collective Thomson scattering diagnostic system in the LHD. The CTS spectrum spread is observed in the frequency region corresponding to the bulk and fast ions during NB injection. The NB originated fast ions are evaluated by the MORH code for understanding the measured CTS sp...

  14. Fast-ion redistribution due to sawtooth crash in the TEXTOR tokamak measured by collective Thomson scattering

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Bindslev, Henrik; Salewski, Mirko;

    2010-01-01

    Here we present collective Thomson scattering measurements of 1D fast-ion velocity distribution functions in neutral beam heated TEXTOR plasmas with sawtooth oscillations. Up to 50% of the fast ions in the centre are redistributed as a consequence of a sawtooth crash. We resolve various directions...

  15. Spectrum response and analysis of 77 GHz band collective Thomson scattering diagnostic for bulk and fast ions in LHD plasmas

    DEFF Research Database (Denmark)

    Nishiura, M.; Kubo, S.; Tanaka, K.

    2014-01-01

    A collective Thomson scattering (CTS) diagnostic was developed and used to measure the bulk and fast ions originating from 180 keV neutral beams in the Large Helical Device (LHD). Electromagnetic waves from a gyrotron at 77 GHz with 1 MW power output function as both the probe and electron cyclot...

  16. The progress in development of edge tangential Thomson scattering system on HL-2A tokamak

    Science.gov (United States)

    Liu, C. H.; Huang, Y.; Wang, Y. Q.; Feng, Z.; Hou, Z. P.; Fu, B. Z.

    2016-11-01

    The edge tangential Thomson scattering system (ETTSS) was developed for the first time on a HL-2A tokamak. A Nd:YAG laser with a 1064 nm wavelength, 4 J energy, and 30 Hz repetition rate is employed on the ETTSS. The laser beam injects the plasma in the tangential direction on the mid-plane of the machine, and the angles between the laser injection direction and the scattered light collection direction are in the range from 157.5° to 162.8°. The scattered light collection optics with 0.21-0.47 magnification is utilized to collect the scattered light of measurement range from R = 1900 mm to 2100 mm (the normalized radius is from r/a = 0.625 to 1.125). Spatial resolution of the preliminary design could be up to Δr/a = 0.016. The measurement requirements could be achieved: 10 eV < Te < 1.5 keV, and 0.5 × 1019 m-3 < ne < 3 × 1019 m-3 with errors less than 15% and 10%, respectively.

  17. Conditions for the Observation of Two Ion-Acoustic Waves via Thomson Scattering

    Institute of Scientific and Technical Information of China (English)

    郑坚; 胡广月; 王哲斌; 俞昌旋; 刘万东

    2003-01-01

    Observation of two ion-acoustic waves via Thomson scattering can provide precise measurements of plasma parameters. The conditions for the observation of two ion-acoustic modes in a two-ion plasmaare discussed.The ratio of electron temperature Te to ion temperature Ti is the critical parameter for the presence of two ion-acoustic modes, which should be in the range of 4/ZL(<~)Te/Ti(<~)2AH/ZHAL, where ZL,H are the charge states of light and heavy ions, and AL,H are the atomic numbers of light and heavy ions, respectively. As the temperature ratio varies in this range, the concentration of heavy ions must increase with the ratio Te/Ti so that the two ion-acoustic modes can have the same fluctuation levels.

  18. Question of Acceleration of Universe Examined Within the Framework of Thomson Scattering.

    Science.gov (United States)

    Choudhury, D. C.; Kraft, David W.

    2003-04-01

    Recent observations of Type Ia supernovae appear to suggest that the universe is accelerating. These results are not only surprising but beyond the realm of any standard model of modern cosmology. Most of the new ideas proposed for understanding the acceleration include a new type of matter (dark energy or axions) or Einstein's cosmological constant. Although such attempts are reasonably successful in fitting the observed data, there is as yet no direct evidence to support the existence of such matter or energy. The present work examines whether the question of acceleration can be resolved within the limits of the established laws of physics. For this purpose we have calculated the contributions of Thomson scattering to the dimming of supernovae within the framework of Friedmann-Robertson-Walker cosmology for the special case of flat universe, also consistent with the prediction of the inflationary model. The results and conclusion of our investigation will be presented.

  19. Development of Thomson scattering system on Shenguang-III prototype laser facility

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Tao [CAS Key Laboratory of Geospace Environment and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Li, Zhichao; Jiang, Xiaohua; Ding, Yongkun, E-mail: ding-yk@vip.sina.com; Yang, Dong; Wang, Zhebin; Wang, Fang; Li, Ping; Liu, Shenye; Jiang, Shaoen [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900 (China); Hu, Guangyue; Zhao, Bin [CAS Key Laboratory of Geospace Environment and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zheng, Jian, E-mail: jzheng@ustc.edu.cn [CAS Key Laboratory of Geospace Environment and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-02-15

    A Thomson scattering diagnostic system, using a 263 nm laser as the probe beam, is designed and implemented on Shenguang-III prototype laser facility. The probe beam is provided by an additional beam line completed recently. The diagnostic system allows simultaneous measurements of both ion feature and red-shifted electron feature from plasmas in a high-temperature (≥2 keV) and high-density (≥10{sup 21} cm{sup −3}) regime. Delicate design is made to satisfy the requirements for successful detection of the electron feature. High-quality ion feature spectra have already been diagnosed via this system in recent experiments with gas-filled hohlraums.

  20. Laser Thomson scattering diagnostics of non-equilibrium high pressure plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, K.; Uchino, K.; Bowden, M.D.; Noguchi, Y. [Kyushu Univ., Fukuoka (Japan). Interdisciplinary Graduate School of Engineering Sciences

    2001-07-01

    For various applications of non-equilibrium high pressure plasmas, knowledge of electron properties, such as electron density, electron temperature and/or electron energy distribution function (eedf), is prerequisite for any rational approach to understanding physical and chemical processes occurring in the plasmas. For this purpose, laser Thomson scattering has been successfully applied for the first time to measure the electron properties in plasmas for excimer laser pumping and in microdischarges. Although this diagnostic technique is well established for measurements in high temperature plasmas, its applications to these glow discharge plasmas have had various inherent difficulties, such as a presence of high density neutral particles (>10{sup 21} m{sup -3}) in the excimer laser pumping discharges and an extremely small plasma size (<0.1 mm) and the presence of nearby walls for microdischarges. These difficulties have been overcome and clear signals have been obtained. The measured results are presented and their implications in the respective discharge phenomena are discussed.

  1. Recent results of collective Thomson scattering on TEXTOR and plans for CTS on ITER

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Bindslev, Henrik; Furtula, Vedran;

    Moving towards the era of burning fusion plasmas, a better knowledge of the physics of highly energetic particles, such as fusion born alpha particles, becomes essential. Diagnosing the fast ions in a fusion plasma is a challenging task, but the technique of collective Thomson scattering (CTS......) provides the possibility of revealing the velocity distribution of the confined fast ions along a given direction – resolved both in time and space. Recently, the ITER baseline design has been expanded to include the enabling of the front end of a fast ion CTS diagnostic system resolving dynamics...... perpendicular to the magnetic field. The feasibility study and conceptual design of this diagnostic was provided by the CTS group at Risø DTU. The development of the ITER CTS diagnostic builds on the experiences and expertise gained from the construction and current operation of the CTS diagnostic systems...

  2. Improved Collective Thomson Scattering measurements of fast ions at ASDEX Upgrade

    DEFF Research Database (Denmark)

    Rasmussen, Jesper; Nielsen, Stefan Kragh; Stejner Pedersen, Morten;

    2014-01-01

    Scattering (CTS) is well suited for reactor conditions and offers such an opportunity by providing measurements of the confined fast-ion distribution function resolved in space, time and 1D velocity space. We currently operate a CTS system at ASDEX Upgrade using a gyrotron which generates probing radiation......Understanding the behaviour of the confined fast ions is important in both current and future fusion experiments. These ions play a key role in heating the plasma and will be crucial for achieving conditions for burning plasma in next-step fusion devices. Microwave-based Collective Thomson...... at 105 GHz. A new setup using two independent receiver systems has enabled improved subtraction of the background signal, and hence the first accurate characterization of fast-ion properties. Here we review this new dual-receiver CTS setup and present results on fast-ion measurements based...

  3. Data-driven sensitivity inference for Thomson scattering electron density measurement systems

    Science.gov (United States)

    Fujii, Keisuke; Yamada, Ichihiro; Hasuo, Masahiro

    2017-01-01

    We developed a method to infer the calibration parameters of multichannel measurement systems, such as channel variations of sensitivity and noise amplitude, from experimental data. We regard such uncertainties of the calibration parameters as dependent noise. The statistical properties of the dependent noise and that of the latent functions were modeled and implemented in the Gaussian process kernel. Based on their statistical difference, both parameters were inferred from the data. We applied this method to the electron density measurement system by Thomson scattering for the Large Helical Device plasma, which is equipped with 141 spatial channels. Based on the 210 sets of experimental data, we evaluated the correction factor of the sensitivity and noise amplitude for each channel. The correction factor varies by ≈10%, and the random noise amplitude is ≈2%, i.e., the measurement accuracy increases by a factor of 5 after this sensitivity correction. The certainty improvement in the spatial derivative inference was demonstrated.

  4. Investigation of the local thermodynamic equilibrium of laser-induced aluminum plasma by Thomson scattering technique

    Energy Technology Data Exchange (ETDEWEB)

    Mendys, A., E-mail: agata.mendys@uj.edu.pl [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagielloński, ul. Reymonta 4, 30-059 Kraków (Poland); Kański, M. [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagielloński, ul. Reymonta 4, 30-059 Kraków (Poland); Farah-Sougueh, A. [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagielloński, ul. Reymonta 4, 30-059 Kraków (Poland); GREMI — site de Bourges, Université d' Orléans, CNRS, rue Gaston Berger BP 4043, 18028 Bourges (France); Pellerin, S. [GREMI — site de Bourges, Université d' Orléans, CNRS, rue Gaston Berger BP 4043, 18028 Bourges (France); Pokrzywka, B. [Obserwatorium Astronomiczne na Suhorze, Uniwersytet Pedagogiczny, ul. Podchorażych 2, 30-084 Kraków (Poland); Dzierżęga, K. [Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet Jagielloński, ul. Reymonta 4, 30-059 Kraków (Poland)

    2014-06-01

    A laser Thomson scattering method was applied to investigate the local Saha–Boltzmann equilibrium in aluminum laser-induced plasma. Plasma was created in ambient air using 4.5 ns pulses from a Nd:YAG laser at 532 nm, focused on an Al target. Spatially resolved measurements, performed for the time interval between 600 ns and 3 μs, show electron density and temperature to decrease from 3.4 × 10{sup 23} m{sup −3} to 0.5 × 10{sup 23} m{sup −3} and from 61,000 K to 13,000 K in the plasma core. The existence of local thermodynamic equilibria in the plasma was verified by comparing the rates of the collisional to radiative processes (the McWhirter criterion), as well as relaxation times and diffusion lengths of different plasma species, with the appropriate rate of electron density evolution and its gradients at given, experimentally determined, electron temperatures. We found these criteria to be much easier to satisfy for metallic plasma species than for nitrogen. The criteria are also easier to satisfy in the plasma core of higher electron density. - Highlights: • Laser Thomson scattering method was applied to investigate aluminum laser-induced plasma. • Spatio-temporal evolution of electron temperature and density was determined. • Three criteria for existence of local thermodynamic equilibrium were verified. • Criteria are much easier to satisfy for metallic plasma species than for nitrogen. • Criteria are easier to satisfy at earlier times and in the plasma core.

  5. Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter.

    Science.gov (United States)

    Johnson, W R; Nilsen, J

    2016-03-01

    The influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity and also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.

  6. Customizable electron beams from optically controlled laser plasma acceleration for γ-ray sources based on inverse Thomson scattering

    Science.gov (United States)

    Kalmykov, S. Y.; Davoine, X.; Ghebregziabher, I.; Shadwick, B. A.

    2016-09-01

    Laser wakefield acceleration of electrons in the blowout regime can be controlled by tailoring the laser pulse phase and the plasma target. The 100 nm-scale bandwidth and negative frequency chirp of the optical driver compensate for the nonlinear frequency red-shift imparted by wakefield excitation. This mitigates pulse self-steepening and suppresses continuous injection. The plasma channel suppresses diffraction of the pulse leading edge, further reducing self-steepening, making injection even quieter. Besides, the channel destabilizes the pulse tail confined within the accelerator cavity (the electron density "bubble"), causing oscillations in the bubble size. The resulting periodic injection generates background-free comb-like beams - sequences of synchronized, low phase-space volume bunches. Controlling the number of bunches, their energy, and energy spacing by varying the channel radius and the pulse length (as permitted by the large bandwidth) enables the design of a tunable, all-optical source of polychromatic, pulsed γ-rays using the mechanism of inverse Thomson scattering. Such source may radiate ~107 quasi-monochromatic 10 MeV-scale photons per shot into a microsteradian-scale observation angle. The photon energy is distributed among several distinct bands, each having sub-25% energy spread dictated by the mrad-scale divergence of electron beam.

  7. Diagnosing Pulsed Power Produced Plasmas with X-ray Thomson Scattering at the Nevada Terawatt Facility

    Science.gov (United States)

    Valenzuela, J. C.; Krauland, C.; Mariscal, D.; Krasheninnikov, I.; Beg, F. N.; Wiewior, P.; Covington, A.; Presura, R.; Ma, T.; Niemann, C.; Mabey, P.; Gregori, G.

    2015-11-01

    We present experimental results on X-ray Thomson scattering (XRTS) at the Nevada Terawatt Facility (NTF) to study current driven plasmas. Using the Leopard laser, ~ 30 J and pulse width of 0.8 ns, we generated He- α emission (4.75 keV) from a thin Ti foil. Initial parameter scans showed that the optimum intensity is ~ 1015W/cm2 with a foil thickness of 2 μm for forward X-ray production. Bandwidth measurements of the source, using a HAPG crystal in the Von Hamos configuration, were found to be ΔE/E ~ 0.01. Giving the scattering angle of our experimental setup of 129 degrees and X-ray probing energy, the non-collective regime was accessed. The ZEBRA load was a 3 mm wide, 500 μm thick, and 10 mm long graphite foil, placed at one of the six current return posts. Estimates of the plasma temperature, density and ionization state were made by fitting the scattering spectra with dynamic structure factor calculations based on the random phase approximation for the treatment of charged particle coupling. The work was partially funded by the Department of Energy grant number DE-NA0001995.

  8. Demonstration of imaging X-ray Thomson scattering on OMEGA EP

    Science.gov (United States)

    Belancourt, Patrick X.; Theobald, Wolfgang; Keiter, Paul A.; Collins, Tim J. B.; Bonino, Mark J.; Kozlowski, Pawel M.; Regan, Sean P.; Drake, R. Paul

    2016-11-01

    Foams are a common material for high-energy-density physics experiments because of low, tunable densities, and being machinable. Simulating these experiments can be difficult because the equation of state is largely unknown for shocked foams. The focus of this experiment was to develop an x-ray scattering platform for measuring the equation of state of shocked foams on OMEGA EP. The foam used in this experiment is resorcinol formaldehyde with an initial density of 0.34 g/cm3. One long-pulse (10 ns) beam drives a shock into the foam, while the remaining three UV beams with a 2 ns square pulse irradiate a nickel foil to create the x-ray backlighter. The primary diagnostic for this platform, the imaging x-ray Thomson spectrometer, spectrally resolves the scattered x-ray beam while imaging in one spatial dimension. Ray tracing analysis of the density profile gives a compression of 3 ± 1 with a shock speed of 39 ± 6 km/s. Analysis of the scattered x-ray spectra gives an upper bound temperature of 20 eV.

  9. Development of a Thomson scattering diagnostic for the Caltech jet-target experiment

    Science.gov (United States)

    Seo, Byong Hoon; Greig, Amelia; Bellan, Paul

    2016-10-01

    A Thomson scattering diagnostic is being developed for studying the Caltech jet-target impact experiment. This experiment has a high-speed MHD-driven jet impact a dense, high-mass target cloud. The compression of the jet upon impact simulates the compression of an imploding liner. A preliminary bench top system consisting of a low power laser, lenses, a beam rotator, a monochromator, and a PMT is being used for measuring the Rayleigh and eventually Raman scattering signals from atmospheric pressure N2 and O2. The laser is modulated at 500 Hz to 1 kHz and lock-in techniques are used to recover the low-amplitude signal. For the actual pulsed plasma experiment, the low-power laser will be replaced by a high power Nd:YAG laser. The detector will consist of a double monochromator consisting of two single monochromators separated by a mask in the focal plane to block Rayleigh scattered light; detection will be by an intensified, gated camera. The diagnostic will be used to study the compression and heating that occurs when the jet plasma collides with a dense, high mass target cloud. Supported by USDOE Grant DE-AR0000565.

  10. First results of electron temperature measurements by the use of multi-pass Thomson scattering system in GAMMA 10

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, M., E-mail: yosikawa@prc.tsukuba.ac.jp; Nagasu, K.; Shimamura, Y.; Shima, Y.; Kohagura, J.; Sakamoto, M.; Nakashima, Y.; Imai, T.; Ichimura, M. [Plasma Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Yasuhara, R.; Yamada, I.; Funaba, H.; Kawahata, K. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan); Minami, T. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2014-11-15

    A multi-pass Thomson scattering (TS) has the advantage of enhancing scattered signals. We constructed a multi-pass TS system for a polarisation-based system and an image relaying system modelled on the GAMMA 10 TS system. We undertook Raman scattering experiments both for the multi-pass setting and for checking the optical components. Moreover, we applied the system to the electron temperature measurements in the GAMMA 10 plasma for the first time. The integrated scattering signal was magnified by approximately three times by using the multi-pass TS system with four passes. The electron temperature measurement accuracy is improved by using this multi-pass system.

  11. The upgrade of the Thomson scattering system for measurement on the C-2/C-2U devices

    Science.gov (United States)

    Zhai, K.; Schindler, T.; Kinley, J.; Deng, B.; Thompson, M. C.

    2016-11-01

    The C-2/C-2U Thomson scattering system has been substantially upgraded during the latter phase of C-2/C-2U program. A Rayleigh channel has been added to each of the three polychromators of the C-2/C-2U Thomson scattering system. Onsite spectral calibration has been applied to avoid the issue of different channel responses at different spots on the photomultiplier tube surface. With the added Rayleigh channel, the absolute intensity response of the system is calibrated with Rayleigh scattering in argon gas from 0.1 to 4 Torr, where the Rayleigh scattering signal is comparable to the Thomson scattering signal at electron densities from 1 × 1013 to 4 × 1014 cm-3. A new signal processing algorithm, using a maximum likelihood method and including detailed analysis of different noise contributions within the system, has been developed to obtain electron temperature and density profiles. The system setup, spectral and intensity calibration procedure and its outcome, data analysis, and the results of electron temperature/density profile measurements will be presented.

  12. Measurements of Relativistic Effects in Collective Thomson Scattering at Electron Temperatures less than 1 keV

    Energy Technology Data Exchange (ETDEWEB)

    Ross, James Steven [Univ. of California, San Diego, CA (United States)

    2010-01-01

    Simultaneous scattering from electron-plasma waves and ion-acoustic waves is used to measure local laser-produced plasma parameters with high spatiotemporal resolution including electron temperature and density, average charge state, plasma flow velocity, and ion temperature. In addition, the first measurements of relativistic modifications in the collective Thomson scattering spectrum from thermal electron-plasma fluctuations are presented [1]. Due to the high phase velocity of electron-plasma fluctuations, relativistic effects are important even at low electron temperatures (Te < 1 keV). These effects have been observed experimentally and agree well with a relativistic treatment of the Thomson scattering form factor [2]. The results are important for the interpretation of scattering measurements from laser produced plasmas. Thomson scattering measurements are used to characterize the hydrodynamics of a gas jet plasma which is the foundation for a broad series of laser-plasma interaction studies [3, 4, 5, 6]. The temporal evolution of the electron temperature, density and ion temperature are measured. The measured electron density evolution shows excellent agreement with a simple adiabatic expansion model. The effects of high temperatures on coupling to hohlraum targets is discussed [7]. A peak electron temperature of 12 keV at a density of 4.7 × 1020cm-3 are measured 200 μm outside the laser entrance hole using a two-color Thomson scattering method we developed in gas jet plasmas [8]. These measurements are used to assess laser-plasma interactions that reduce laser hohlraum coupling and can significantly reduce the hohlraum radiation temperature.

  13. Upgrades to improve the usability, reliability, and spectral range of the MST Thomson scattering diagnostic

    Science.gov (United States)

    Kubala, S. Z.; Borchardt, M. T.; Den Hartog, D. J.; Holly, D. J.; Jacobson, C. M.; Morton, L. A.; Young, W. C.

    2016-11-01

    The Thomson scattering diagnostic on MST records both equilibrium and fluctuating electron temperature with a range capability of 10 eV-5 keV. Standard operation with two modified commercial Nd:YAG lasers allows measurements at rates of 1 kHz-25 kHz. Several subsystems of the diagnostic are being improved. The power supplies for the avalanche photodiode detectors (APDs) that record the scattered light are being replaced to improve usability, reliability, and maintainability. Each of the 144 APDs will have an individual rack mounted switching supply, with bias voltage adjustable to match the APD. Long-wavelength filters (1140 nm center, 80 nm bandwidth) have been added to the polychromators to improve capability to resolve non-Maxwellian distributions and to enable directed electron flow measurements. A supercontinuum (SC) pulsed white light source has replaced the tungsten halogen lamp previously used for spectral calibration of the polychromators. The SC source combines substantial brightness produced in nanosecond pulses with a spectrum that covers the entire range of the polychromators.

  14. Design of the Collective Thomson scattering (CTS) system by using 170-GHz gyrotron in the KSTAR

    Science.gov (United States)

    Park, Min; Kim, Sun-Ho; Kim, Sung-Kyu; Lee, Kyu-Dong; Wang, Son-Jong

    2014-10-01

    The physics of energetic ions is one of the primary subjects to be understood toward the realization of a nuclear fusion power plant. Collective Thomson scattering (CTS) offers the possibility to diagnose the fast ions and the alpha particles in burning plasmas. Spatially- and temporally-resolved one-dimensional velocity distributions of the fast ions can be obtained from the scattered radiation with fewer geometric constraints by utilizing millimeter waves from a high-power gyrotron as a probe beam. We studied the feasibility of CTS fast-ion measurements in the KSTAR by calculating the spectral density functions. Based on that, we suggest a design for the CTS system that uses the currently-operating 170-GHz gyrotron for electron cyclotron heating (ECH) and electron cyclotron current drive (ECCD) in the KSTAR. The CTS system is presented as two subsystems: the antenna system and the heterodyne receiver system. The design procedure for an off-axis ellipsoidal mirror is described, and the CTS system requirements are discussed.

  15. The design of the optical Thomson scattering diagnostic for the National Ignition Facility

    Science.gov (United States)

    Datte, P. S.; Ross, J. S.; Froula, D. H.; Daub, K. D.; Galbraith, J.; Glenzer, S.; Hatch, B.; Katz, J.; Kilkenny, J.; Landen, O.; Manha, D.; Manuel, A. M.; Molander, W.; Montgomery, D.; Moody, J.; Swadling, G. F.; Weaver, J.

    2016-11-01

    The National Ignition Facility (NIF) is a 192 laser beam facility designed to support the Stockpile Stewardship, High Energy Density and Inertial Confinement Fusion (ICF) programs. We report on the design of an Optical Thomson Scattering (OTS) diagnostic that has the potential to transform the community's understanding of NIF hohlraum physics by providing first principle, local, time-resolved measurements of under-dense plasma conditions. The system design allows operation with different probe laser wavelengths by manual selection of the appropriate beam splitter and gratings before the shot. A deep-UV probe beam (λ0-210 nm) will be used to optimize the scattered signal for plasma densities of 5 × 1020 electrons/cm3 while a 3ω probe will be used for experiments investigating lower density plasmas of 1 × 1019 electrons/cm3. We report the phase I design of a two phase design strategy. Phase I includes the OTS telescope, spectrometer, and streak camera; these will be used to assess the background levels at NIF. Phase II will include the design and installation of a probe laser.

  16. Antenna design for fast ion collective Thomson scattering diagnostic for the international thermonuclear experimental reactor.

    Science.gov (United States)

    Leipold, F; Furtula, V; Salewski, M; Bindslev, H; Korsholm, S B; Meo, F; Michelsen, P K; Moseev, D; Nielsen, S K; Stejner, M

    2009-09-01

    Fast ion physics will play an important role for the international thermonuclear experimental reactor (ITER), where confined alpha particles will affect and be affected by plasma dynamics and thereby have impacts on the overall confinement. A fast ion collective Thomson scattering (CTS) diagnostic using gyrotrons operated at 60 GHz will meet the requirements for spatially and temporally resolved measurements of the velocity distributions of confined fast alphas in ITER by evaluating the scattered radiation (CTS signal). While a receiver antenna on the low field side of the tokamak, resolving near perpendicular (to the magnetic field) velocity components, has been enabled, an additional antenna on the high field side (HFS) would enable measurements of near parallel (to the magnetic field) velocity components. A compact design solution for the proposed mirror system on the HFS is presented. The HFS CTS antenna is located behind the blankets and views the plasma through the gap between two blanket modules. The viewing gap has been modified to dimensions 30x500 mm(2) to optimize the CTS signal. A 1:1 mock-up of the HFS mirror system was built. Measurements of the beam characteristics for millimeter-waves at 60 GHz used in the mock-up agree well with the modeling.

  17. Asphericalizing the Light Collection Mirror for the 200-Point Thomson Scattering Diagnostic Installed on the Large Helical Device%Asphericalizing the Light Collection Mirror for the 200-Point Thomson Scattering Diagnostic Installed on the Large Helical Device

    Institute of Scientific and Technical Information of China (English)

    Kazumichi NARIHARA; Hiroshi HAYASHI

    2011-01-01

    Shown is a possibility to make the image of a laser beam over a distance of 2.5 m, formed by the spherical multi-segment mirror installed in LHD, twice sharper by suitably adjusting the inclination of each segment mirror, which is equivalent to making the mirror surface aspherical. This will further enhance the attractiveness of a mirror-based Thomson scattering system.

  18. Thomson scattering laser-electron X-ray source for reduction of patient radiation dose in interventional coronary angiography

    Science.gov (United States)

    Artyukov, I. A.; Dyachkov, N. V.; Feshchenko, R. M.; Polunina, A. V.; Popov, N. L.; Shvedunov, V. I.; Vinogradov, A. V.

    2017-05-01

    It was medical applications that stimulated F. Carrol in the early 1990s to start the research of on relativistic Thomson scattering X-ray sources, as a part of the infrastructure of the future society. The possibility to use such a source in interventional cardiology is discussed in this paper. The replacement of X-ray tube by relativistic Thomson scattering Xray source is predicted to lower the patient radiation dose by a factor of 3 while image quality remains the same. The required general characteristics of accelerator and laser units are found. They can be reached by existing technology. A semiempirical method for simulation of medical and technical parameters of interventional coronary angiography systems is suggested.

  19. Relativistic correction of (v/c)2 to the collective Thomson scattering for high-temperature high-density plasma

    Institute of Scientific and Technical Information of China (English)

    Jiang Chen-Fan-Fu; Zheng Jian; Zhao Bin

    2011-01-01

    Collective Thomson scattering is theoretically investigated with the inclusion of the relativistic correction of (v/c)2.The correction is rather small for the plasma parameters inferred from the spectra of the thermal electron plasma waves in the plasma. Since the full formula of the corrected result is rather complicated,a simplified one is derived for practical use,which is shown to be in good agreement with the un-simplified one.

  20. Thomson scattering system on the TEXTOR tokamak using a multi-pass laser beam configuration

    Energy Technology Data Exchange (ETDEWEB)

    Kantor, M Yu; Donne, A J H; Jaspers, R; Van der Meiden, H J [FOM-Institute for Plasma Physics Rijnhuizen , Association EURATOM-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands)], E-mail: m.kantor@fz-juelich.de

    2009-05-15

    The main challenge for the Thomson scattering (TS) diagnostic on the TEXTOR tokamak is the detailed study of fast plasma events at a high spatial resolution and a high repetition rate of the measurements. The diagnostic uses intra-cavity probing of the plasma with a repetitively pulsed ruby laser and a fast CMOS camera as detectors. Since 2004, the TS system on TEXTOR has been gradually and systematically enhanced for the measurements of fast plasma events. For that it has recently been upgraded to obtain a multi-pass configuration. Two spherical mirrors have been installed that force the laser beam to probe the plasma a specified number of times before it is directed back into the laser medium. The diagnostics with the upgraded probing system have achieved the measurement accuracy of 3% for the electron temperature and 1.5% for the electron density at <1 cm spatial resolution and 3 x 10{sup 19} m{sup -3} plasma density and can measure at 5 kHz during an interval up to 8 ms. This makes it possible to detect, amongst others, fine structures of magnetic islands and variations of the edge pedestal in the ELMy limiter H-mode.

  1. Measurements with the fast repetitive multi-pulse Edge Thomson Scattering system on TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Uzgel, Evren; Pospieszczyk, Albrecht; Unterberg, Bernhard [IEF-Plasmaphysik, Forschungszentrum Juelich, 52425 Juelich (Germany); Kantor, Mikhail [Ioffe Institute, RAS, Saint Petersburg (Russian Federation); Meiden, Hennie van der; Jaspers, Roger [FOM-Institute for Plasma Physics Rijnhuizen, Nieuwegein (Netherlands)

    2008-07-01

    A fast repetitive multi-pulse Edge Thomson Scattering system is in operation since March 2006 and provides a sophisticated tool for the study of transport processes in the edge region of the tokamak TEXTOR. The specially designed viewing optics enables the study of the dynamics of fast plasma phenomena with high spatial resolution at the plasma edge. Various measurements under different plasma conditions were performed where the influence of resonant magnetic perturbations generated by the Dynamic Ergodic Divertor on fast electron transport in the edge region was a point of emphasis. The electron density and temperature profiles obtained are compared with other edge diagnostics based on different measuring principles. The system utilizes a ruby laser delivering bursts of 15 pulses each with a pulse energy of about 15 J. The TEXTOR plasma itself is inside the laser cavity where the double-pass system allows high laser energies of each laser pulse through the plasma. The edge system (170 mm) has 98 spatial channels of 1.7 mm each. The lower detection limit of the edge system for T{sub e} is observed to be 30 eV.

  2. Thomson scattering system on the TEXTOR tokamak using a multi-pass laser beam configuration

    Science.gov (United States)

    Kantor, M Yu; Donné, A J H; Jaspers, R; van der Meiden, H J; TEXTOR Team

    2009-05-01

    The main challenge for the Thomson scattering (TS) diagnostic on the TEXTOR tokamak is the detailed study of fast plasma events at a high spatial resolution and a high repetition rate of the measurements. The diagnostic uses intra-cavity probing of the plasma with a repetitively pulsed ruby laser and a fast CMOS camera as detectors. Since 2004, the TS system on TEXTOR has been gradually and systematically enhanced for the measurements of fast plasma events. For that it has recently been upgraded to obtain a multi-pass configuration. Two spherical mirrors have been installed that force the laser beam to probe the plasma a specified number of times before it is directed back into the laser medium. The diagnostics with the upgraded probing system have achieved the measurement accuracy of 3% for the electron temperature and 1.5% for the electron density at <1 cm spatial resolution and 3 × 1019 m-3 plasma density and can measure at 5 kHz during an interval up to 8 ms. This makes it possible to detect, amongst others, fine structures of magnetic islands and variations of the edge pedestal in the ELMy limiter H-mode.

  3. Measurements with the fast repetitive multi-pulse Edge Thomson scattering system on TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Uzgel, Evren; Pospieszczyk, Albrecht; Unterberg, Bernhard [Institut fuer Plasmaphysik, Forschungszentrum Juelich, 52425 Juelich (Germany); Kantor, Mikhail; Kouprienko, Denis [Ioffe Institute, RAS, Saint Petersburg (Russian Federation); Meiden, Hennie van der; Oyevaar, Theo; Jaspers, Roger [FOM-Institute for Plasma Physics Rijnhuizen, Nieuwegein (Netherlands)

    2007-07-01

    A fast repetitive multi-pulse Edge Thomson Scattering system is in operation since March 2006 and provides a sophisticated tool for the study of transport processes in the edge region of the tokamak TEXTOR. The specially designed viewing optics enables the study of the dynamics of fast plasma phenomena with high spatial resolution at the plasma edge. Various measurements under different plasma conditions were performed where the influence of resonant magnetic perturbations generated by the Dynamic Ergodic Divertor on fast electron transport in the edge region was a point of emphasis. The electron density and temperature profiles obtained will be compared with other edge diagnostics based on different measuring principles. The system utilizes a ruby laser delivering bursts of 15 pulses each with a pulse energy of about 15 J. The TEXTOR plasma itself is inside the laser cavity where the double-pass system allows high laser energies of each laser pulse through the plasma. The new edge system (170 mm) has 98 spatial channels of 1.7 mm each. The lower detection limit of the edge system for T{sub e} is observed to be 30 eV.

  4. Development of density measurement method of negative ion in plasmas using laser Thomson scattering

    Science.gov (United States)

    Yamagata, Yukihiko; Saiho, Hiroatsu; Uchino, Kiichiro; Muraoka, Katsunori

    2004-09-01

    Measurements of negative ion density in plasmas have been an important subject for many years. We have proposed a new method to measure the negative ion density in plasmas using laser Thomson scattering (LTS), and successfully measured O^- ion density in an radio frequency inductively coupled plasma [1]. In order to ensure the reliability of this technique and to estimate the accuracy, we have measured O^- ion density in the same experimental conditions using the second (SHG) and third harmonics (THG) of a Nd:YAG laser as different laser sources. The LTS spectra measured at pure argon plasma (500 W, 20 mTorr) fitted in a straight line well in both SHG and THG cases. As for the plasma at 500 W in 20 mTorr with Ar/O_2=95%/5%, a clear bump in LTS spectra, which is caused by photo-detached electrons, was observed below 0.9 eV for the SHG case and 2 eV for the case, as predicted by a difference between the electron affinity of O^- ion and the laser photon energy. The electron temperatures, the electron densities and the O^- ion densities, which were obtained from the spectral shape and intensity of both LTS spectra, were in agreement each other within an experimental error. [1] M. Noguchi, K. Ariga, T. Hirao, P. Suanpoot, Y. Yamagata, K. Uchino, K. Muraoka, Plasma Sources Sci. Technol., 11 (2002) 57.

  5. Spectrometer Development in Support of Thomson Scattering Investigations for the Helicon Plasma Experiment (HPX)

    Science.gov (United States)

    Sandri, Eva; Davies, Richard; Azzari, Phil; Frank, John; Frank, Jackson; James, Royce; Hopson, Jordon; Duke-Tinson, Omar; Paolino, Richard; Sherman, Justin; Wright, Erin; Turk, Jeremy

    2016-10-01

    Now that reproducible plasmas have been created on the Helicon Plasma Experiment (HPX) at the Coast Guard Academy Plasma Laboratory (CGAPL), a high-performance spectrometer utilizing volume-phase-holographic (VPH) grating and a charge coupled device (CCD) camera with a range of 380-1090 nm and resolution of 1024x1024 is being assembled. This spectrometer will collect doppler shifted photons created by exciting the plasma with the first harmonic of a 2.5 J Nd:YAG laser at a wavelength of 1064 nm. Direct measurements of the plasma's temperature and density will be determined using HPX's Thomson Scattering (TS) system as a single spatial point diagnostic. TS has the capability of determining plasma properties on short time scales and will be used to create a robust picture of the internal plasma parameters. A prototype spectrometer has been constructed to explore the Andor CCD camera's resolution and sensitivity. Concurrently, through intensive study of the high energy TS system, safety protocols and standard operation procedures (SOP) for the Coast Guard's largest and most powerful Laser have been developed. The current status of the TS SOP, diagnostic development, and the collection optic's spectrometer will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY15-16.

  6. Improved Collective Thomson Scattering measurements of fast ions at ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, J.; Nielsen, S. K.; Stejner, M.; Salewski, M.; Jacobsen, A. S.; Korsholm, S. B.; Leipold, F.; Meo, F.; Michelsen, P. K. [Association Euratom-DTU, Technical University of Denmark, Department of Physics, DTU Riso/ Campus, DK-4000 Roskilde (Denmark); Moseev, D. [Association Euratom-FOM Institute DIFFER, 3430 BE Nieuwegein (Netherlands); Schubert, M.; Stober, J.; Tardini, G.; Wagner, D.; Collaboration: ASDEX Upgrade Team

    2014-08-21

    Understanding the behaviour of the confined fast ions is important in both current and future fusion experiments. These ions play a key role in heating the plasma and will be crucial for achieving conditions for burning plasma in next-step fusion devices. Microwave-based Collective Thomson Scattering (CTS) is well suited for reactor conditions and offers such an opportunity by providing measurements of the confined fast-ion distribution function resolved in space, time and 1D velocity space. We currently operate a CTS system at ASDEX Upgrade using a gyrotron which generates probing radiation at 105 GHz. A new setup using two independent receiver systems has enabled improved subtraction of the background signal, and hence the first accurate characterization of fast-ion properties. Here we review this new dual-receiver CTS setup and present results on fast-ion measurements based on the improved background characterization. These results have been obtained both with and without NBI heating, and with the measurement volume located close to the centre of the plasma. The measurements agree quantitatively with predictions of numerical simulations. Hence, CTS studies of fast-ion dynamics at ASDEX Upgrade are now feasible. The new background subtraction technique could be important for the design of CTS systems in other fusion experiments.

  7. A compact, low cost, 7 channel polychromator for Thomson scattering measurements

    Energy Technology Data Exchange (ETDEWEB)

    Carlstrom, T.N.; DeBoo, J.C.; Evanko, R.; Greenfield, C.M.; Hsieh, C.-L.; Snider, R.T.; Trost, P.

    1990-10-01

    A seven channel polychromator, utilizing high performance interference filters, has been tested for use in the multi-Nd:YAG laser Thomson scattering system for the DIII-D tokamak. Unique features of this polychromator are the combination of high throughput, easy alignment, flexibility, compact size, and low cost when compared with other alternatives. Light is introduced to the polychromator (f/1.75) via a fiber optic bundle which permits the use of small (3.0 cm dia) optics and leads to a compact design, an important design consideration for multiple polychromator systems. The light is cascaded through a series of different bandpass interference filters and relay lenses which are mounted on two precision parallel rails in such a way that alignment is trivial. The relay lenses are positioned directly in front of the filters so that light reflected from the filter passes through the lens twice. This leads to an efficient, compact design and reduces the angle of incidence (4{degree}) and the cone angle of light (4.5{degree}) seen by the filter, an important factor for narrowband (3.0 nm) filters. The transmission was optimized for 700--1100 nm by using broadband coatings throughout. The output images of each channel (2.3 mm dia) can be directly coupled to large format (3 nm dia) RCA silicon avalanche photodiode detectors, avoiding the losses caused by fiber optic coupling.

  8. Improved Collective Thomson Scattering measurements of fast ions at ASDEX Upgrade

    CERN Document Server

    Rasmussen, J; Stejner, M; Salewski, M; Jacobsen, A S; Korsholm, S B; Leipold, F; Meo, F; Michelsen, P K; Moseev, D; Schubert, M; Stober, J; Tardini, G; Wagner, D

    2013-01-01

    Understanding the behaviour of the confined fast ions is important in both current and future fusion experiments. These ions play a key role in heating the plasma and will be crucial for achieving conditions for burning plasma in next-step fusion devices. Microwave-based Collective Thomson Scattering (CTS) is well suited for reactor conditions and offers such an opportunity by providing measurements of the confined fast-ion distribution function resolved in space, time and 1D velocity space. We currently operate a CTS system at ASDEX Upgrade using a gyrotron which generates probing radiation at 105 GHz. A new setup using two independent receiver systems has enabled improved subtraction of the background signal, and hence the first accurate characterization of fast-ion properties. Here we review this new dual-receiver CTS setup and present results on fast-ion measurements based on the improved background characterization. These results have been obtained both with and without NBI heating, and with the measurem...

  9. Study of Fast, Near-Infrared Photodetectors for the ITER Core LIDAR Thomson Scattering

    Science.gov (United States)

    Giudicotti, L.; Pasqualotto, R.; Alfier, A.; Beurskens, M.; Kempenaars, M.; Walsh, M. J.

    2008-03-01

    A key component for the ITER core LIDAR Thomson Scattering (TS) diagnostic would be a detector with good sensitivity in the 850-1060 nm near infrared (NIR) spectral region. Covering this spectral region becomes necessary if a Nd:YAG laser system operating at λ = 1.06 μm is used as the laser source, which is a very attractive choice in terms of available energy, repetition rate, reliability and cost. In this paper we review the state of the art of two types of detectors available for the above spectral range: the transferred electron (TE) InGaAs/InP hybrid photodiode and the InxGa1-xAs microchannel plate (MCP) image intensifier and we describe the advancements necessary for a possible application in the ITER LIDAR TS. In addition we describe the preliminary characterization of new GaAsP fast MCP photomultipliers (PMTs) suitable for the detection of the visible part of the LIDAR TS spectrum in JET and ITER.

  10. The Thomson Scattering System on the Lithium Tokamak eXperiment (LTX)

    Energy Technology Data Exchange (ETDEWEB)

    T. Strickler, R. Majeski, R. Kaita, B. LeBlanc

    2008-07-31

    The Lithium Tokamak eXperiment (LTX) is a spherical tokamak with R0 = 0.4m, a = 0.26m, BTF ~ 3.4kG, IP ~ 400kA, and pulse length ~ 0.25s. The goal of LTX is to investigate tokamak plasmas that are almost entirely surrounded by a lithium-coated plasma-facing shell conformal to the last closed magnetic flux surface. Based on previous experimental results and simulation, it is expected that the low-recycling liquid lithium surfaces will result in higher temperatures at the plasma edge, flatter overall temperature profiles, centrally-peaked density profiles, and an increased confinement time. To test these predictions, the electron temperature and density profiles in LTX will be measured by a multi-point Thomson scattering system (TVTS). Initially, TS measurements will be made at up to 12 simultaneous points between the plasma center and plasma edge. Later, high resolution edge measurements will be deployed to study the lithium edge physics in greater detail. Technical challenges to implementing the TS system included limited "line of sight" access to the plasma due to the plasma-facing shell and problems associated with the presence of liquid lithium.

  11. Thomson scattering diagnostic system design for the Compact Toroidal Hybrid experiment

    Energy Technology Data Exchange (ETDEWEB)

    Traverso, P. J., E-mail: pjt0002@auburn.edu; Maurer, D. A.; Ennis, D. A.; Hartwell, G. J.; Goforth, M. M.; Loch, S. D.; Pearce, A. J.; Cianciosa, M. R. [Physics Department, Auburn University, Auburn, Alabama 36849 (United States)

    2014-11-15

    A new Thomson scattering system using standard commercially available components has been designed for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH). The beam, generated by a frequency doubled Continuum PL DLS 2 J Nd:YAG laser, is passed vertically through an entrance Brewster window and an aperturing baffle system to minimize the stray laser light that could enter the collection optics. The beam line has been designed with an 8 m propagation distance to the mid-plane of the CTH device with the beam diameter kept less than 3 mm inside the plasma volume. The beam exits the vacuum system through another Brewster window and enters a beam dump, again to minimize the stray light in the vacuum chamber. Light collection, spectral processing, and signal detection are accomplished with an f/#∼ 1 aspheric lens, a commercially available Holospec f/1.8 spectrometer, and an Andor iStar DH740-18U-C3 image intensified camera. Spectral rejection of stray laser light, if needed, can be performed with the use of an optional interference filter at the spectrometer input. The system has been developed for initial single point measurements of plasmas with core electron temperatures of approximately 20–300 eV and densities of 5 × 10{sup 18} to 5 × 10{sup 19} m{sup −3} dependent upon operational scenario.

  12. Installation of a Thomson scattering diagnostic on the Compact Toroidal Hybrid Experiment

    Science.gov (United States)

    Traverso, P. J.; Maurer, D. A.; Ennis, D. A.; Hartwell, G. J.; Cianciosa, M. R.

    2015-11-01

    A Thomson scattering system is being commissioned for the non-axisymmetric plasmas of the Compact Toroidal Hybrid (CTH), a five-field period current-carrying torsatron. The initial system takes a single point measurement on the magnetic axis and will be used to assess options for an expansion to a multi-point system to enable better 3D equilibrium reconstructions using the V3FIT code. A single point measurement will reduce the uncertainty in the reconstructed peak pressure by an order of magnitude for both current-carrying plasmas and future gyrotron-heated stellarator plasmas. The beam, generated by a frequency doubled Continuum 2 J, Nd:YaG laser, is passed vertically through an entrance Brewster window and a two-aperture optical baffle system to minimize stray light. The beam line is designed to propagate ~ 8 m to the mid-plane of the CTH device with the beam diameter < 3 mm inside the plasma volume. An Andor iStar DH740-18U-C3 image intensified CCD camera is used in conjunction with a Holospec f/1.8 spectrograph to collect the red-shifted scattered light from 532-580 nm. A single point system will initially measure plasmas with core electron temperatures of 100 to 200 eV and densities of 5 ×1018 to 5 ×1019 m-3. This work is supported by U.S. Department of Energy Grant No. DE-FG02-00ER54610.

  13. ITER fast ion collective Thomson scattering, conceptual design of 60 GHz system

    Energy Technology Data Exchange (ETDEWEB)

    Meo, F.; Bindslev, H.; Korsholm, S.B.

    2007-08-15

    The collective Thomson scattering diagnostic for ITER at the 60 GHz range is capable of measuring the fast ion distribution parallel and perpendicular to the magnetic field at different radial locations simultaneously. The design is robust technologically with no moveable components near the plasma. The fast ion CTS diagnostic consists of two separate systems. Each system has its own RF launcher and separate set of detectors. The first system measures the perpendicular component of the fast ion velocity distribution. It consists of radially directed RF launcher and receiver, both located in the equatorial port on the low field side (LFS). This system will be referred to by the acronym LFS-BS system referring to the location of the receiver and the fact that it measures backscattered radiation. The second part of the CTS diagnostic measures the parallel component of the fast ion distribution. It consists of an RF launcher located in the mid-plane port on the LFS and a receiver mounted on the inner vacuum vessel wall that views the plasma from between two blanket modules. This system will be referred to as HFS-FS referring to the location of the receivers and that they measure forward scattered radiation. The design of both LFS-BS and HFS-FS receivers is aimed at measuring at different spatial locations simultaneously with no moveable components near the plasma. This report is a preliminary study of the hardware design and engineering constraints for this frequency range. Section 2 conceptually describes the two systems and their main components. Section 3 clarifies the impact of design parameters such as beam widths and scattering angle on the CTS measurements. With this in hand, the ITER measurement requirements are translated into constraints on the CTS system designs. An important result in this section is that systems can be designed inside these constraints. Section 4 outlines the technical feasibility and describes in more detail the design and the engineering

  14. Initial Thomson Scattering Survey of Local Helicity Injection and Ohmic Plasmas at the Pegasus Toroidal Experiment

    Science.gov (United States)

    Schlossberg, D. J.; Bodner, G. M.; Bongard, M. W.; Fonck, R. J.; Winz, G. R.

    2014-10-01

    A multipoint Thomson scattering diagnostic has recently been installed on the Pegasus ST. The system utilizes a frequency-doubled Nd:YAG laser (λ0 ~ 532 nm), spectrometers with volume phase holographic gratings, and a gated, intensified CCD camera. It provides measurements of Te and ne at 8 spatial locations for each spectrometer once per discharge. A new multiple aperture and beam dump system has been implemented to mitigate interference from stray light. This system has provided initial measurements in the core region of plasmas initiated by local helicity injection (LHI), as well as conventional Ohmic L- and H-mode discharges. Multi-shot averages of low-density (ne ~ 3 ×1018 m-3) , Ip ~ 0 . 1 MA LHI discharges show central Te ~ 75 eV at the end of the helicity injection phase. Ip ~ 0 . 13 MA Ohmic plasmas at moderate densities (ne ~ 2 ×1019 m-3) have core Te ~ 150 eV in L-mode. Generally, these plasmas do not reach transport equilibrium in the short 25 ms pulse length available. After an L-H transition, strong spectral broadening indicates increasing Te, to values above the range of the present spectrometer system with a high-dispersion VPH grating. Near-term system upgrades will focus on deploying a second spectrometer, with a lower-dispersion grating capable of measuring the 0.1-1.0 keV range. The second spectrometer system will also increase the available number of spatial channels, enabling study of H-mode pedestal structure. Work supported by US DOE Grant DE-FG02-96ER54375.

  15. Spatially resolved Thomson scattering measurements of the transition from the collective to the non-collective regime in a laser-produced plasma

    Science.gov (United States)

    Schaeffer, D. B.; Constantin, C. G.; Bondarenko, A. S.; Everson, E. T.; Niemann, C.

    2016-11-01

    We present optical Thomson scattering results that image for the first time in a single measurement the spatial transition from collective to non-collective scattering. Data were taken in the Phoenix laser laboratory at the University of California, Los Angeles. The Raptor laser was used to ablate a carbon plasma, which was diagnosed with the frequency-doubled Phoenix laser serving as a Thomson scattering probe. Scattered light was collected from the laser plasma up to 10 cm from the target surface and up to 10 us after ablation, and imaged with high spatial and spectral resolutions. The results show a strong Thomson collective feature close to the target surface that smoothly transitions to a non-collective feature over several mm.

  16. Evidence for out-of-equilibrium states in warm dense matter probed by X-ray Thomson scattering

    CERN Document Server

    Clerouin, J; Robert, G; Ticknor, C; Kress, J; Collins, L

    2014-01-01

    A recent and unexpected discrepancy between \\textit{ab initio} simulations and the interpretation of a laser shock experiment on aluminum, probed by X-ray Thomson scattering (XRTS), is addressed. The ion-ion structure factor deduced from the XRTS elastic peak (ion feature) is only compatible with a strongly coupled out-of-equilibrium state. Orbital free molecular dynamics simulations with ions colder than the electrons are employed to interpret the experiment. The relevance of decoupled temperatures for ions and electrons is discussed. The possibility that it mimics a transient, or metastable, out-of-equilibrium state after melting is also suggested.

  17. Nonlinear X-ray Compton Scattering

    CERN Document Server

    Fuchs, Matthias; Chen, Jian; Ghimire, Shambhu; Shwartz, Sharon; Kozina, Michael; Jiang, Mason; Henighan, Thomas; Bray, Crystal; Ndabashimiye, Georges; Bucksbaum, P H; Feng, Yiping; Herrmann, Sven; Carini, Gabriella; Pines, Jack; Hart, Philip; Kenney, Christopher; Guillet, Serge; Boutet, Sebastien; Williams, Garth; Messerschmidt, Marc; Seibert, Marvin; Moeller, Stefan; Hastings, Jerome B; Reis, David A

    2015-01-01

    X-ray scattering is a weak linear probe of matter. It is primarily sensitive to the position of electrons and their momentum distribution. Elastic X-ray scattering forms the basis of atomic structural determination while inelastic Compton scattering is often used as a spectroscopic probe of both single-particle excitations and collective modes. X-ray free-electron lasers (XFELs) are unique tools for studying matter on its natural time and length scales due to their bright and coherent ultrashort pulses. However, in the focus of an XFEL the assumption of a weak linear probe breaks down, and nonlinear light-matter interactions can become ubiquitous. The field can be sufficiently high that even non-resonant multiphoton interactions at hard X-rays wavelengths become relevant. Here we report the observation of one of the most fundamental nonlinear X-ray-matter interactions, the simultaneous Compton scattering of two identical photons producing a single photon at nearly twice the photon energy. We measure scattered...

  18. Short Pulse High Brightness X-ray Production with the PLEIADES Thomson Scattering Source

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S G; Barty, C P J; Betts, S M; Brown, W J; Crane, J K; Cross, R R; Fittinghoff, D N; Gibson, D J; Hartemann, F V; Kuba, J; LaSage, G P; Rosenzweig, J B; Slaughter, D R; Springer, P T; Tremaine, A M

    2003-07-01

    We describe PLEIADES, a compact, tunable, high-brightness, ultra-short pulse, Thomson x-ray source. The peak brightness of the source is expected to exceed 10{sup 20} photons/s/0.1% bandwidth/mm{sup 2}/mrad{sup 2}. Initial results are reported and compared to theoretical calculations.

  19. Generation of bright attosecond x-ray pulse trains via Thomson scattering from laser-plasma accelerators.

    Science.gov (United States)

    Luo, W; Yu, T P; Chen, M; Song, Y M; Zhu, Z C; Ma, Y Y; Zhuo, H B

    2014-12-29

    Generation of attosecond x-ray pulse attracts more and more attention within the advanced light source user community due to its potentially wide applications. Here we propose an all-optical scheme to generate bright, attosecond hard x-ray pulse trains by Thomson backscattering of similarly structured electron beams produced in a vacuum channel by a tightly focused laser pulse. Design parameters for a proof-of-concept experiment are presented and demonstrated by using a particle-in-cell code and a four-dimensional laser-Compton scattering simulation code to model both the laser-based electron acceleration and Thomson scattering processes. Trains of 200 attosecond duration hard x-ray pulses holding stable longitudinal spacing with photon energies approaching 50 keV and maximum achievable peak brightness up to 1020 photons/s/mm2/mrad2/0.1%BW for each micro-bunch are observed. The suggested physical scheme for attosecond x-ray pulse trains generation may directly access the fastest time scales relevant to electron dynamics in atoms, molecules and materials.

  20. Development of a Thomson scattering system and its use in a rotating magnetic field driven field-reversed configurations plasma

    Science.gov (United States)

    Lee, Kiyong

    The Thomson scattering system has been utilized on the Translation Confinement & Sustainment Upgrade (TCSU) experiment to measure the electron temperature and density. The system uses five polychromators from General Atomics attached with three pre-amplifier modules from Princeton Plasma Physics Laboratory to measure five spatial points during a single plasma discharge. The diagnostic consisting of various mechanical and optical components is introduced, followed by the calibration procedure of the system. For validating measurements, the electron temperature and the relative density obtained from Thomson scattering are compared with measurements from the Langmuir probe. Both measurements are in good agreement. A power scan was conducted by applying different voltages to the rotating magnetic field (RMF) current drive to observe the scaling properties of temperature and density for even-parity and odd-parity RMF operations. Also, a discrepancy is observed when comparing the density based on pressure-balance with localized measurements. Further analysis indicates a possibility of an ion-temperature-gradient, presumably due to ion cyclotron heating, present during steady-state operation.

  1. Bubble nonlinear dynamics and stimulated scattering process

    Science.gov (United States)

    Jie, Shi; De-Sen, Yang; Sheng-Guo, Shi; Bo, Hu; Hao-Yang, Zhang; Shi-Yong, Hu

    2016-02-01

    A complete understanding of the bubble dynamics is deemed necessary in order to achieve their full potential applications in industry and medicine. For this purpose it is first needed to expand our knowledge of a single bubble behavior under different possible conditions including the frequency and pressure variations of the sound field. In addition, stimulated scattering of sound on a bubble is a special effect in sound field, and its characteristics are associated with bubble oscillation mode. A bubble in liquid can be considered as a representative example of nonlinear dynamical system theory with its resonance, and its dynamics characteristics can be described by the Keller-Miksis equation. The nonlinear dynamics of an acoustically excited gas bubble in water is investigated by using theoretical and numerical analysis methods. Our results show its strongly nonlinear behavior with respect to the pressure amplitude and excitation frequency as the control parameters, and give an intuitive insight into stimulated sound scattering on a bubble. It is seen that the stimulated sound scattering is different from common dynamical behaviors, such as bifurcation and chaos, which is the result of the nonlinear resonance of a bubble under the excitation of a high amplitude acoustic sound wave essentially. The numerical analysis results show that the threshold of stimulated sound scattering is smaller than those of bifurcation and chaos in the common condition. Project supported by the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1228) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11204050 and 11204049).

  2. Simulating x-ray Thomson scattering signals from high-density, millimetre-scale plasmas at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, D. A., E-mail: david.chapman@awe.co.uk [Plasma Physics Group, Radiation Physics Department, AWE plc, Reading RG7 4PR (United Kingdom); Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Kraus, D.; Falcone, R. W. [Department of Physics, University of California, Berkeley, California 94720 (United States); Kritcher, A. L.; Bachmann, B.; Collins, G. W.; Gaffney, J. A.; Hawreliak, J. A.; Landen, O. L.; Le Pape, S.; Ma, T.; Nilsen, J.; Pak, A.; Swift, D. C.; Döppner, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Gericke, D. O. [Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94309 (United States); Guymer, T. M. [Plasma Physics Group, Radiation Physics Department, AWE plc, Reading RG7 4PR (United Kingdom); Neumayer, P. [Gesellschaft für Schwerionenforschung, 64291 Darmstadt (Germany); Redmer, R. [Institut für Physik, Universität Rostock, 18051 Rostock (Germany); and others

    2014-08-15

    We have developed a model for analysing x-ray Thomson scattering data from high-density, millimetre-scale inhomogeneous plasmas created during ultra-high pressure implosions at the National Ignition Facility in a spherically convergent geometry. The density weighting of the scattered signal and attenuation of the incident and scattered x-rays throughout the target are included using radial profiles of the density, opacity, ionization state, and temperature provided by radiation-hydrodynamics simulations. These simulations show that the scattered signal is strongly weighted toward the bulk of the shocked plasma and the Fermi degenerate material near the ablation front. We show that the scattered signal provides a good representation of the temperature of this highly nonuniform bulk plasma and can be determined to an accuracy of ca. 15% using typical data analysis techniques with simple 0D calculations. On the other hand, the mean ionization of the carbon in the bulk is underestimated. We suggest that this discrepancy is due to the convolution of scattering profiles from different regions of the target. Subsequently, we discuss modifications to the current platform to minimise the impact of inhomogeneities, as well as opacity, and also to enable probing of conditions more strongly weighted toward the compressed core.

  3. Qualification of a high-efficiency, gated spectrometer for x-ray Thomson scattering on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Döppner, T.; Kritcher, A. L.; Bachmann, B.; Burns, S.; Hawreliak, J.; House, A.; Landen, O. L.; LePape, S.; Ma, T.; Pak, A.; Swift, D. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Neumayer, P. [Gesellschaft für Schwerionenphysik, 64291 Darmstadt (Germany); Kraus, D. [University of California, Berkeley, California 94720 (United States); Falcone, R. W. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94309 (United States)

    2014-11-15

    We have designed, built, and successfully fielded a highly efficient and gated Bragg crystal spectrometer for x-ray Thomson scattering measurements on the National Ignition Facility (NIF). It utilizes a cylindrically curved Highly Oriented Pyrolytic Graphite crystal. Its spectral range of 7.4–10 keV is optimized for scattering experiments using a Zn He-α x-ray probe at 9.0 keV or Mo K-shell line emission around 18 keV in second diffraction order. The spectrometer has been designed as a diagnostic instrument manipulator-based instrument for the NIF target chamber at the Lawrence Livermore National Laboratory, USA. Here, we report on details of the spectrometer snout, its novel debris shield configuration and an in situ spectral calibration experiment with a Brass foil target, which demonstrated a spectral resolution of E/ΔE = 220 at 9.8 keV.

  4. Identification and mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus (MST)

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, C. M., E-mail: cjacobson@wisc.edu; Borchardt, M. T.; Den Hartog, D. J.; Falkowski, A. F.; Morton, L. A.; Thomas, M. A. [Department of Physics, University of Wisconsin–Madison, 1150 University Avenue, Madison, Wisconsin 53706 (United States)

    2016-11-15

    The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The model of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.

  5. Diagnosis of energetic ions and ion composition in fusion plasmas by collective Thomson scattering of mm-waves

    DEFF Research Database (Denmark)

    Bindslev, Henrik; Korsholm, Søren Bang; Leipold, Frank;

    2012-01-01

    In fusion plasmas, the dominant heating source will be fusion generated energetic ions slowing down in the plasma. The same ions can also drive waves and instabilities in the plasma. Their distribution in velocity and in space has major impact on plasma dynamics, and plasma dynamics in turn affects...... the energetic ion distributions. The dynamics of energetic ions is thus important to measure in order to understand fusion plasmas, and important to monitor as part of input to plasma control. The collective Thomson scattering of millimeter waves has proven to be a valuable means of diagnosing energetic ion...... distributions in fusion plasmas1,2. A beam of mm-waves with a diameter of 5–10 cm and a power of 150–600 kW is sent through the plasma, and radiation scattered from this probe beam by the microscopic fluctuations in the plasma is detected. These microscopic fluctuations are in part induced by the ion motion...

  6. Quantifying noise sources in the KSTAR 2014 Thomson Scattering system from the measured variation on electron temperature

    CERN Document Server

    Oh, Tae-suk; Lee, J H; Lee, S H; Scannell, R; Field, A R; Cho, K; Bawa'aneh, M S; Ghim, Y -c

    2015-01-01

    With the Thomson scattering (TS) system in KSTAR, temporal evolution of electron temperature ($T_e$) is estimated using a weighted look-up table method with fast sampling ($1.25$ or $2.5$ GS/s) digitizers during the 2014 KSTAR campaign. Background noise level is used as a weighting parameter without considering the photon noise due to the absence of information on absolute photon counts detected by the TS system. Estimated electron temperature during a relatively quiescent discharge are scattered, i.e., $15$\\% variation on $T_e$ with respect to its mean value. We find that this $15$\\% variation on $T_e$ cannot be explained solely by the background noise level which leads us to include photon noise effects in our analysis. Using synthetic data, we have estimated the required photon noise level consistent with the observation and determined the dominant noise source in KSTAR TS system.

  7. Identification and mitigation of stray laser light in the Thomson scattering system on the Madison Symmetric Torus (MST)

    Science.gov (United States)

    Jacobson, C. M.; Borchardt, M. T.; Den Hartog, D. J.; Falkowski, A. F.; Morton, L. A.; Thomas, M. A.

    2016-11-01

    The Thomson scattering diagnostic on the Madison Symmetric Torus (MST) records excessive levels of stray Nd:YAG laser light. Stray light saturates the 1064 nm spectral channel in all polychromators, which prevents absolute electron density measurements via Rayleigh scattering calibration. Furthermore, stray light contaminates adjacent spectral channels for r/a ≥ 0.75, which renders the diagnostic unable to make electron temperature measurements at these radii. In situ measurements of stray light levels during a vacuum vessel vent are used to identify stray light sources and strategies for reduction of stray light levels. Numerical modeling using Zemax OpticStudio supports these measurements. The model of the vacuum vessel and diagnostic includes synthetic collection optics to enable direct comparison of measured and simulated stray light levels. Modeling produces qualitatively similar stray light distributions to MST measurements, and quantifies the mitigation effects of stray light mitigation strategies prior to implementation.

  8. Upgrade of the automatic analysis system in the TJ-II Thomson Scattering diagnostic: New image recognition classifier and fault condition detection

    NARCIS (Netherlands)

    Makili, L.; Vega, J.; Dormido-Canto, S.; Pastor, I.; Pereira, A.; Farias, G.; Portas, A.; Perez-Risco, D.; Rodriguez-Fernandez, M. C.; Busch, P.

    2010-01-01

    An automatic image classification system based on support vector machines (SVM) has been in operation for years in the TJ-II Thomson Scattering diagnostic. It recognizes five different types of images: CCD camera background, measurement of stray light without plasma or in a collapsed discharge, imag

  9. High-transmission 20-channel polychromator for observing non-Maxwellian electron velocity distributions in plasmas by Thomson scattering.

    Science.gov (United States)

    Barth, C J

    1988-07-15

    A high-transmission (~45%) twenty-channel polychromator equipped with near-infrared sensitive photomultipliers has been constructed to record Thomson scattering spectra at the TORTUR tokamak. The high transmission was achieved by the use of mirrors instead of fiber optics to guide the spectrally resolved light to a set of photomultipliers. Spectral analysis is performed with a holographically ruled concave grating. Acceptable dimensions of the wavelength selection mirrors were obtained by magnifying the spectral image by a factor of 5 with a Mangin mirror. Electron temperatures up to 1000 eV at a density of 5 x 10(19) m(-3) can be measured with an accuracy of approximately l%. Both high sensitivity and high resolution enable the detection of irregularities in the velocity distribution. For example, satellites corresponding to partial densities of (5 +/- 1) x 10(17) m(-3) were found at 23 nm from the laser wavelength.

  10. Fast ion measurements by collective Thomson scattering in TEXTOR and ASDEX Upgrade and proposal for the ITER CTS system

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Bindslev, Henrik; Furtula, Vedran;

    Moving towards the era of burning fusion plasmas, a better knowledge of the physics of highly energetic particles, such as fusion born alpha particles, becomes essential. Diagnosing the fast ions in a fusion plasma is a challenging task, but the technique of collective Thomson scattering (CTS......) provides the possibility of revealing the velocity distribution of the confined fast ions along a given direction – resolved both in time and space. Recently, the ITER baseline design has been expanded to include the enabling of the front end of a fast ion CTS diagnostic system resolving dynamics...... perpendicular to the magnetic field. The feasibility study and conceptual design of this diagnostic was provided by the CTS group at Risø DTU. The development of the ITER CTS diagnostic builds on the experiences and expertise gained from the construction and current operation of the CTS diagnostic systems...

  11. Improving a high-efficiency, gated spectrometer for x-ray Thomson scattering experiments at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Döppner, T., E-mail: doeppner1@llnl.gov; Bachmann, B.; Emig, J.; Hardy, M.; Kalantar, D. H.; Kritcher, A. L.; Landen, O. L.; Ma, T.; Wood, R. D. [Lawrence Livermore National Laboratory, Livermore, California 94720 (United States); Kraus, D.; Saunders, A. M. [University of California, Berkeley, California 94720 (United States); Neumayer, P. [Gesellschaft für Schwerionenphysik, Darmstadt (Germany); Falcone, R. W. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Fletcher, L. B. [SLAC National Accelerator Laboratory, Menlo Park, California 94720 (United States)

    2016-11-15

    We are developing x-ray Thomson scattering for applications in implosion experiments at the National Ignition Facility. In particular we have designed and fielded MACS, a high-efficiency, gated x-ray spectrometer at 7.5–10 keV [T. Döppner et al., Rev. Sci. Instrum. 85, 11D617 (2014)]. Here we report on two new Bragg crystals based on Highly Oriented Pyrolytic Graphite (HOPG), a flat crystal and a dual-section cylindrically curved crystal. We have performed in situ calibration measurements using a brass foil target, and we used the flat HOPG crystal to measure Mo K-shell emission at 18 keV in 2nd order diffraction. Such high photon energy line emission will be required to penetrate and probe ultra-high-density plasmas or plasmas of mid-Z elements.

  12. Operation and beam profiling of an up to 200 kHz pulse-burst laser for Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Young, W. C., E-mail: wcyoung2@wisc.edu; Den Hartog, D. J. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2014-11-15

    A new, high-repetition rate laser is in development for use on the Thomson scattering diagnostic on the Madison Symmetric Torus. The laser has been tested at a rate of 200 kHz in a pulse-burst operation, producing bursts of 5 pulses above 1.5 J each, while capable of bursts of 17 pulses at 100 kHz. A master oscillator-power amplifier architecture is used with a Nd:YVO{sub 4} oscillator, four Nd:YAG amplifiers, and a Nd:glass amplifier. A radial profile over the pulse sequence is measured by using a set of graphite apertures and an energy meter, showing a change in beam quality over a pulsing sequence.

  13. LIGHT SOURCE: RF deflecting cavity for bunch length measurement in Tsinghua Thomson scattering X-ray source

    Science.gov (United States)

    Shi, Jia-Ru; Chen, Huai-Bi; Tang, Chuan-Xiang; Huang, Wen-Hui; Du, Ying-Chao; Zheng, Shu-Xin; Ren, Li

    2009-06-01

    An RF deflecting cavity used for bunch length measurement has been designed and fabricated at Tsinghua University for the Thomson Scattering X-Ray Source. The cavity is a 2856 MHz, π-mode, 3-cell standing-wave cavity, to diagnose the 3.5 MeV beam produced by photocathode electron gun. With a larger power source, the same cavity will again be used to measure the accelerated beam with energy of 50 MeV before colliding with the laser pulse. The RF design using MAFIA for both the cavity shape and the power coupler is reviewed, followed by presenting the fabrication procedure and bench measurement results of two cavities.

  14. Simultaneous measurement of electron and heavy particle temperatures in He laser-induced plasma by Thomson and Rayleigh scattering

    Energy Technology Data Exchange (ETDEWEB)

    Dzierzega, K.; Mendys, A.; Zawadzki, W. [Marian Smoluchowski Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Krakow (Poland); Pokrzywka, B. [Mt. Suhora Observatory, Pedagogical University of Cracow, ul. Podchorazych 2, 30-084 Krakow (Poland); Pellerin, S. [GREMI, site de Bourges, Universite d' Orleans, CNRS, rue Gaston Berger BP 4043, 18028 Bourges (France)

    2013-04-01

    Thomson and Rayleigh scattering methods were applied to quantify the electron and heavy particle temperatures, as well as electron number density, in a laser spark in helium at atmospheric pressure. Plasma was created using 4.5 ns, 25 mJ pulses from Nd:YAG laser at 532 nm. Measurements, performed for the time interval between 20 ns and 800 ns after breakdown, show electron density and temperature to decrease from 7.8 Multiplication-Sign 10{sup 23} m{sup -3} to 2.6 Multiplication-Sign 10{sup 22} m{sup -3} and from 95 900 K to 10 350 K, respectively. At the same time, the heavy particle temperature drops from only 47 000 K down to 4100 K which indicates a two temperature plasma out of local isothermal equilibrium.

  15. The use of ultraviolet Thomson scattering as a versatile diagnostic for detailed measurements of a collisional laser produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tracy, M.D.

    1993-01-08

    Collective Thomson scattering from ion-acoustic waves at 266nm is used to obtain spatially resolved, two-dimensional electron density, sound speed, and radial drift profiles of a collisional laser plasma. An ultraviolet diagnostic wavelength minimizes the complicating effects of inverse bremsstrahlung and refractive turning in the coronal region of interest, where the electron densities approach n{sub c}/10. Laser plasmas of this type are important because they model some of the aspects of the plasmas found in high-gain laser-fusion pellets irradiated by long pulse widths where the laser light is absorbed mostly in the corona. The experimental results and LASNEX simulations agree within a percent standard deviation of 40% for the electron density and 50% for the sound speed and radial drift velocity. Thus it is shown that the hydrodynamics equations with classical coefficients and the numerical approximations in LASNEX are valid models of laser-heated, highly collisional plasmas. The versatility of Thomson scattering is expanded upon by extending existing theory with a Fokker-Planck based model to include plasmas that are characterized by (0 {le} k{sub ia}{lambda}{sub ii} {le} {infinity}) and ZT{sub e}/T{sub i}, where k{sub ia} is the ion- acoustic wave number, {lambda}{sub ii} is the ion-ion mean free path, Z is the ionization state of the plasma, and T{sub e}, T{sub i} are the electron and ion temperatures in electron volts respectively. The model is valid for plasmas in which the electrons are approximately collisionless, (k{sub ia}{lambda}{sub ei}, k{sub ia}{lambda}{sub ee} {ge} 1), and quasineutrality holds, ({alpha} {much_gt}1), where {alpha} = 1/k{lambda}{sub DE} and {lambda}{sub DE} is the electron Debye length. This newly developed model predicts the lineshape of the ion-acoustic Thomson spectra and when fit to experimental data provides a direct measurement of the relative thermal flow velocity between the electrons and ions.

  16. Demonstration of space-resolved x-ray Thomson scattering capability for warm dense matter experiments on the Z accelerator

    Science.gov (United States)

    Ao, T.; Harding, E. C.; Bailey, J. E.; Lemke, R. W.; Desjarlais, M. P.; Hansen, S. B.; Smith, I. C.; Geissel, M.; Maurer, A.; Reneker, J.; Romero, D.; Sinars, D. B.; Rochau, G. A.; Benage, J. F.

    2016-03-01

    Experiments on the Sandia Z pulsed-power accelerator have demonstrated the ability to produce warm dense matter (WDM) states with unprecedented uniformity, duration, and size, which are ideal for investigations of fundamental WDM properties. For the first time, space-resolved x-ray Thomson scattering (XRTS) spectra from shocked carbon foams were recorded on Z. The large (>20 MA) electrical current produced by Z was used to launch Al flyer plates up to 25 km/s. The impact of the flyer plate on a CH2 foam target produced a shocked state with an estimated pressure of 0.75 Mbar, density of 0.52 g/cm3, and temperature of 4.3 eV. Both unshocked and shocked portions of the foam target were probed with 6.2 keV x-rays produced by focusing the Z-Beamlet laser onto a nearby Mn foil. The data are composed of three spatially distinct spectra that were simultaneously captured with a single spectrometer with high spectral (4.8 eV) and spatial (190 μm) resolutions. Detailed spectral information from three target locations is provided simultaneously: the incident x-ray source, the scattered signal from unshocked foam, and the scattered signal from shocked foam.

  17. Design and Operation of a Frequency Doubled Nd:YAG Thomson Scattering System with Transmission Grating ICCD Spectrometer

    Science.gov (United States)

    Schoenbeck, N. L.; Dowd, A. S.; Fonck, R. J.; Schlossberg, D. J.; Winz, G. R.

    2012-10-01

    A novel Thomson scattering system has been deployed on the Pegasus Toroidal Experiment. It provides a relatively low-cost, simplified design. Scattering is achieved using a 7 ns, 2 J frequency doubled Nd:YAG laser operating at 532 nm. The laser focuses to ˜3 mm diameter within the plasma via a 7 m beam-line. The beam-line contains cameras as beam finders and remotely adjustable mirrors for shot-to-shot alignment. A custom multi-element lens collects scattered photons from 15 cm 40%) image intensified CCD (ICCD) camera. Three spectrometers provide a total of 24 channels. Two interchangeable gratings exist to cover low (Te = 10--100 eV) and high (Te = 0.10--1 keV) electron temperature regimes on Pegasus. The spectrometer is optimized for ne from mid-10^18 to mid-10^19 m-3. The signal-to-noise expected is ˜0.5 of an equivalent system using Nd:YAG at 1064 nm and avalanche photodiode detectors.

  18. Use of webcams as tools for alignment and supervision of a Thomson scattering system in the near infrared

    Energy Technology Data Exchange (ETDEWEB)

    Andrebe, Y., E-mail: yanis.andrebe@epfl.ch [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, Station 13, 1015 Lausanne (Switzerland); Behn, R.; Duval, B.P.; Etienne, P.; Pitzschke, A. [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, Station 13, 1015 Lausanne (Switzerland)

    2011-10-15

    The alignment stability is a major concern for Thomson scattering systems. Even small angular deviations of the laser beams crossing the plasma lead to a loss of the calibration resulting in unreliable measurements of the electron density profile. For the TCV (Tokamak a Configuration Variable) installation, the beam paths from the laser output to the vacuum chamber are {approx}25 m long and include several optical components. In order to monitor the alignment on a regular basis, a set of 9 cameras has been installed at several locations along the beam path. They view the actual laser beam pattern by recording the scattered light from an intercepting optical surface (mirror or window) together with the position of markers used for reference. Small 'webcams' are used for this purpose; they feature adequate intensity response at the laser wavelength of 1.06 {mu}m, are compact, cheap and several units may be connected to a server PC simultaneously. The real-time images from all the cameras are accessible from a Web browser. This installation has proven to be extremely useful in the early detection of alignment problems and to assist the alignment procedure .

  19. Nonlinear ion acoustic waves scattered by vortexes

    Science.gov (United States)

    Ohno, Yuji; Yoshida, Zensho

    2016-09-01

    The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.

  20. Temporal evolution of confined fast-ion velocity distributions measured by collective Thomson scattering in TEXTOR

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Bindslev, Henrik; Porte, L.

    2008-01-01

    of scattering locations and different resolved velocity components can be measured. The temporal resolution is 4 ms while the spatial resolution is similar to 10 cm depending on the scattering geometry. Fast-ion velocity distributions in a variety of scenarios are measured, including the evolution...

  1. Measurement of electron density of the plasma in the Tokamak TCABR, through Thomson scattering diagnostic; Medida da densidade eletronica do plasma no Tokamak TCABR, atraves do diagnostico Espalhamento Thomson

    Energy Technology Data Exchange (ETDEWEB)

    Jeronimo, Leonardo Cunha

    2013-07-01

    Over the last few years is remarkable, so increasingly evident the need for a new source of energy for mankind. One promising option is through nuclear fusion, where the plasma produced in the reactor can be converted into electrical energy. Therefore, knowing the characteristics of this plasma is very important to control it and understand it so desirable. One of the diagnostic options is called Thomson scattering . This is considered the most reliable method for the determination of important plasma parameters such as temperature and electron density, and may also help in the study and explanation of various internal mechanisms. The great advantage lies in the tact that they consist of a direct measurement and nonperturbative. But it is a diagnosis whose installation and execution is admittedly complex, limiting it only a few laboratories in the fíeld of fusion for the world. Among the main difficulties, wc can highlight the fact that the scattered signal is very small, thus requiring a large increase of the incident power. Moreover, the external physical conditions can cause mechanical vibrations that eliminate or minimize them as much as possible, is a great challenge, considering the optical micrometrically very sensitive and needs involved in the system. This work describes the entire process of installation and operation of Thomson scattering diagnostic in tokamak TCABR and through this diagnosis, we work on results of electron temperature, to finally be able to calculate the electron density of the plasma. (author)

  2. Investigation of thermodynamic equilibrium in laser-induced aluminum plasma using the H{sub α} line profiles and Thomson scattering spectra

    Energy Technology Data Exchange (ETDEWEB)

    Cvejić, M., E-mail: marko.cvejic@ipb.ac.rs, E-mail: krzysztof.dzierzega@uj.edu.pl [Institute of Physics, University of Belgrade, P.O. Box 68, 11080 Belgrade (Serbia); Faculty of Physics, Weizmann Institute of Science, Rehovot 7610001 (Israel); Dzierżęga, K., E-mail: marko.cvejic@ipb.ac.rs, E-mail: krzysztof.dzierzega@uj.edu.pl; Pięta, T. [M. Smoluchowski Institute of Physics, Jagellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland)

    2015-07-13

    We have studied isothermal equilibrium in the laser-induced plasma from aluminum pellets in argon at pressure of 200 mbar by using a method which combines the standard laser Thomson scattering and analysis of the H{sub α}, Stark-broadened, line profiles. Plasma was created using 4.5 ns, 4 mJ pulses from a Nd:YAG laser at 1064 nm. While electron density and temperature were determined from the electron feature of Thomson scattering spectra, the heavy particle temperature was obtained from the H{sub α} full profile applying computer simulation including ion-dynamical effects. We have found strong imbalance between these two temperatures during entire plasma evolution which indicates its non-isothermal character. At the same time, according to the McWhirter criterion, the electron density was high enough to establish plasma in local thermodynamic equilibrium.

  3. Non-Linear Compton Scattering of Ultrashort and Ultraintense Laser Pulses

    CERN Document Server

    Seipt, D

    2010-01-01

    The scattering of temporally shaped intense laser pulses off electrons is discussed by means of manifestly covariant quantum electrodynamics. We employ a framework based on Volkov states with a time dependent laser envelope in light-cone coordinates within the Furry picture. An expression for the cross section is constructed, which is independent of the considered pulse shape and pulse length. A broad distribution of scatted photons with a rich pattern of subpeaks like that obtained in Thomson scattering is found. These broad peaks may overlap at sufficiently high laser intensity, rendering inappropriate the notion of individual harmonics. The limit of monochromatic plane waves as well as the classical limit of Thomson scattering are discussed. As a main result, a scaling law is presented connecting the Thomson limit with the general result for arbitrary kinematics. In the overlapping regions of the spectral density, the classical and quantum calculations give different results, even in the Thomson limit. Thu...

  4. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic.

    Science.gov (United States)

    Swadling, G F; Ross, J S; Datte, P; Moody, J; Divol, L; Jones, O; Landen, O

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm(-2). This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 10(19) cm(-2) Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  5. An Improved Detector Electronics and Data Acquisition System Design for Thomson Scattering Diagnostic on DIII-D

    Science.gov (United States)

    Liu, C.

    2005-10-01

    The detector electronics and data acquisition system for the Thomson scattering diagnostic on DIII-D is being upgraded to replace the present CAMAC-based system. Besides more modern electronics, the proposed design contains a number of improved features. For instance, to reduce the gain drift with temperature in the avalanche photodiode, the diode will be mounted on a thermally insulated copper block and maintained at an elevated temperature using feedback control. Since the plasma background light plays a dominant role in the measurement noise, a model is used to analyze the noise contribution in regard to the time widths of the electronic output pulse and the signal integration gate. The building blocks of the detector electronics are GHz OpAmps and the ns analog switches. The method of differential gating [1] is used to cancel the charge injection induced by the high speed operation in the analog switch. 0.5em [1] X. Wang, AIP Conf. Proceeding 333, Beam Instrumentation Workshop, Vancouver, Canada (1994).

  6. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    Science.gov (United States)

    Swadling, G. F.; Ross, J. S.; Datte, P.; Moody, J.; Divol, L.; Jones, O.; Landen, O.

    2016-11-01

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause "blanking" (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ˜8 J cm-2. This is significantly above the expected threshold for the onset of "blanking" effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate "blanking." Estimates suggest that an areal density of 1019 cm-2 Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  7. JT-60U Thomson scattering system with multiple ruby laser and high spatial resolution for high electron temperature plasma measurement

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Hidetoshi; Naito, Osamu; Yamashita, Osamu; Kitamura, Shigeru; Hatae, Takaki; Nagashima, Akira [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1996-11-01

    This article describes the design and operation of a 60 spatial channel Thomson scattering system as of 1996 with multiple ruby lasers to measure the electron temperature T{sub e} and density n{sub e} profiles of the JT-60U plasmas. The wide spectral range (403-683 nm) of the spectrometer and newly developed two-dimensional detector (high repetition photodiode array) has enabled this system to measure the high electron temperature plasma (5 keV or more) formed at the plasma core during negative magnetic shear discharge with high precision and reliability. The high spatial resolution (8 mm) have provided the precise measurement of steep electron temperature and density gradients formed at the plasma edge and in the scrape-off layer during H-mode discharge. The multilaser operation with the minimum time interval of 2 ms has provided an essential tool for the transient phenomenon measurement like the formation process of edge transport barrier during L- to H-mode transition and internal transport barrier during discharge with negative magnetic shear, the relaxation process of pellet injected plasma and so on. Measurement examples of recent JT-60U T{sub e} and n{sub e} profiles are also presented. (author)

  8. Design calculations for a xenon plasma x-ray shield to protect the NIF optical Thomson scattering diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F.; Ross, J. S.; Datte, P.; Moody, J.; Divol, L.; Jones, O.; Landen, O. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2016-11-15

    An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. This diagnostic is designed to make measurements of the hohlraum plasma parameters, such as the electron temperature and the density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature, hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated to be ∼8 J cm{sup −2}. This is significantly above the expected threshold for the onset of “blanking” effects. A novel xenon plasma x-ray shield is proposed to protect the blast shield from x-rays and mitigate “blanking.” Estimates suggest that an areal density of 10{sup 19} cm{sup −2} Xe atoms will be sufficient to absorb 99.5% of the soft x-ray flux. Two potential designs for this shield are presented.

  9. Optical designs of reflection and refraction collection optics for a JT-60SA core Thomson scattering system.

    Science.gov (United States)

    Tojo, H; Hatae, T; Hamano, T; Sakuma, T; Itami, K

    2013-09-01

    Collection optics for core measurements in a JT-60SA Thomson scattering system were designed. The collection optics will be installed in a limited space and have a wide field of view and wide wavelength range. Two types of the optics are therefore suggested: refraction and reflection types. The reflection system, with a large primary mirror, avoids large chromatic aberrations. Because the size limit of the primary mirror and vignetting due to the secondary mirror affect the total collection throughput, conditions that provide the high throughput are found through an optimization. A refraction system with four lenses forming an Ernostar system is also employed. The use of high-refractive-index glass materials enhances the freedom of the lens curvatures, resulting in suppression of the spherical and coma aberration. Moreover, sufficient throughput can be achieved, even with smaller lenses than that of a previous design given in [H. Tojo, T. Hatae, T. Sakuma, T. Hamano, K. Itami, Y. Aida, S. Suitoh, and D. Fujie, Rev. Sci. Instrum. 81, 10D539 (2010)]. The optical resolutions of the reflection and refraction systems are both sufficient for understanding the spatial structures in plasma. In particular, the spot sizes at the image of the optics are evaluated as ~0.3 mm and ~0.4 mm, respectively. The throughput for the two systems, including the pupil size and transmissivity, are also compared. The results show that good measurement accuracy (refraction system.

  10. Pair potentials for warm dense matter and their application to x-ray Thomson scattering in aluminum and beryllium

    Science.gov (United States)

    Harbour, L.; Dharma-wardana, M. W. C.; Klug, D. D.; Lewis, L. J.

    2016-11-01

    Ultrafast laser experiments yield increasingly reliable data on warm dense matter, but their interpretation requires theoretical models. We employ an efficient density functional neutral-pseudoatom hypernetted-chain (NPA-HNC) model with accuracy comparable to ab initio simulations and which provides first-principles pseudopotentials and pair potentials for warm-dense matter. It avoids the use of (i) ad hoc core-repulsion models and (ii) "Yukawa screening" and (iii) need not assume ion-electron thermal equilibrium. Computations of the x-ray Thomson scattering (XRTS) spectra of aluminum and beryllium are compared with recent experiments and with density-functional-theory molecular-dynamics (DFT-MD) simulations. The NPA-HNC structure factors, compressibilities, phonons, and conductivities agree closely with DFT-MD results, while Yukawa screening gives misleading results. The analysis of the XRTS data for two of the experiments, using two-temperature quasi-equilibrium models, is supported by calculations of their temperature relaxation times.

  11. Nonlinear ion acoustic waves scattered by vortexes

    CERN Document Server

    Ohno, Yuji

    2015-01-01

    The Kadomtsev--Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes `scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are `ambient' because they do not receive reciprocal reactions from the waves (i.e.,...

  12. Fast ion collective Thomson scattering - present results and plans for ITER

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Bindslev, Henrik; Furtula, Vedran;

    scattering (CTS) provides the possibility of revealing the velocity distribution of the confined fast ions along a given direction – resolved both in time and space. Recently, the ITER baseline design has been expanded to include a fast ion CTS diagnostic. The design of this diagnostic was provided...... and results, and present the expectations for the ITER CTS diagnostic....

  13. Validations of calibration-free measurements of electron temperature using double-pass Thomson scattering diagnostics from theoretical and experimental aspects

    Science.gov (United States)

    Tojo, H.; Yamada, I.; Yasuhara, R.; Ejiri, A.; Hiratsuka, J.; Togashi, H.; Yatsuka, E.; Hatae, T.; Funaba, H.; Hayashi, H.; Takase, Y.; Itami, K.

    2016-09-01

    This paper evaluates the accuracy of electron temperature measurements and relative transmissivities of double-pass Thomson scattering diagnostics. The electron temperature (Te) is obtained from the ratio of signals from a double-pass scattering system, then relative transmissivities are calculated from the measured Te and intensity of the signals. How accurate the values are depends on the electron temperature (Te) and scattering angle (θ), and therefore the accuracy of the values was evaluated experimentally using the Large Helical Device (LHD) and the Tokyo spherical tokamak-2 (TST-2). Analyzing the data from the TST-2 indicates that a high Te and a large scattering angle (θ) yield accurate values. Indeed, the errors for scattering angle θ = 135° are approximately half of those for θ = 115°. The method of determining the Te in a wide Te range spanning over two orders of magnitude (0.01-1.5 keV) was validated using the experimental results of the LHD and TST-2. A simple method to provide relative transmissivities, which include inputs from collection optics, vacuum window, optical fibers, and polychromators, is also presented. The relative errors were less than approximately 10%. Numerical simulations also indicate that the Te measurements are valid under harsh radiation conditions. This method to obtain Te can be considered for the design of Thomson scattering systems where there is high-performance plasma that generates harsh radiation environments.

  14. The Thomson Surface. II. Polarization

    CERN Document Server

    DeForest, C E; Tappin, S J

    2012-01-01

    The solar corona and heliosphere are visible via sunlight that is Thomson-scattered off of free electrons, yielding a radiance against the celestial sphere. In this second part of a three-article series, we discuss linear polarization of this scattered light parallel and perpendicular to the plane of scatter in the context of heliopheric imaging. The difference between these two radiances, (\\emph{pB}), varies quite differently with scattering angle, compared to the sum that would be detected by a nonpolarizing instrument (\\emph{B}). In particular, the Thomson surface defined by 90\\degr{} scattering angle is a local minimum in scattering efficiency for \\emph{B} measurements, but a local maximum in scattering efficiency for \\emph{pB} measurements. We describe the polarization properties of heliospheric Thomson scattered light and their applications, covering basic scattering physics, signal-to-noise considerations, measurement of 3-D object location, background subtraction, and modeled \\emph{pB} instrument resp...

  15. Final Report LDRD 02-ERD-013 Dense Plasma Characterization by X-ray Thomson Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Landen, O L; Glenzer, S H; Gregori, G; Pollaine, S M; Hammer, J H; Rogers, F; Meezan, N B; Chung, H; Lee, R W

    2005-02-11

    We have successfully demonstrated spectrally-resolved x-ray scattering in a variety of dense plasmas as a powerful new technique for providing microscopic dense plasma parameters unattainable by other means. The results have also been used to distinguish between ionization balance models. This has led to 10 published or to be published papers, 8 invited talks and significant interest from both internal and external experimental plasma physicists and the international statistical plasma physics theory community.

  16. COMPUTING THE CONTINUUM POLARIZATION FROM THOMSON SCATTERING IN GASEOUS CIRCUMSTELLAR DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Halonen, R. J.; Mackay, F. E.; Jones, C. E., E-mail: rhalonen@uwo.ca [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada)

    2013-01-15

    We investigate the computation of the intrinsic continuum linear polarization from electron scattering in optically thin and thick circumstellar disks of gas. We present the use of a non-LTE radiative transfer code, along with two different computational methods for obtaining the Stokes parameters, to reproduce the polarization levels that arise from disks of classical Be stars. Since the pioneering work of Poeckert and Marlborough, numerous improvements and refinements have been incorporated into computational radiative transfer models of classical Be stars. We present an assessment of the effect of several improvements on Poeckert and Marlborough's technique for calculating the polarization levels of the classical Be star {gamma} Cas. We find that improvements to the sampling of the disk density and the inclusion of a non-isothermal structure for the gas in the disk yield polarization levels that differ from the levels expected by Poeckert and Marlborough. Principally, the inclusion of the self-consistent calculation of the thermal structure of the disk has a significant impact on the resulting polarization. In addition, we assess the importance of the inclusion of multiple scattering calculations in predicting the continuum polarization in classical Be stars. We confirm that multiple scattering calculations are necessary for studying the linear polarization levels from optically thick gaseous disks around classical Be stars.

  17. Image processing methods for noise reduction in the TJ-II Thomson Scattering diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Dormido-Canto, S., E-mail: sebas@dia.uned.es [Departamento de Informatica y Automatica, UNED, Madrid 28040 (Spain); Farias, G. [Pontificia Universidad Catolica de Valparaiso, Valparaiso (Chile); Vega, J.; Pastor, I. [Asociacion EURATOM/CIEMAT para Fusion, Madrid 28040 (Spain)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We describe an approach in order to reduce or mitigate the stray-light on the images and show the exceptional results. Black-Right-Pointing-Pointer We analyze the parameters to take account in the proposed process. Black-Right-Pointing-Pointer We report a simplified exampled in order to explain the proposed process. - Abstract: The Thomsom Scattering diagnostic of the TJ-II stellarator provides temperature and density profiles. The CCD camera acquires images corrupted with noise that, in some cases, can produce unreliable profiles. The main source of noise is the so-called stray-light. In this paper we describe an approach that allows mitigation of the effects that stray-light has on the images: extraction regions with connected-components. In addition, the robustness and effectiveness of the noise reduction technique is validated in two ways: (1) supervised classification and (2) comparison of electron temperature profiles.

  18. Optical designs of reflection and refraction collection optics for a JT-60SA core Thomson scattering system

    Energy Technology Data Exchange (ETDEWEB)

    Tojo, H.; Hatae, T.; Hamano, T.; Sakuma, T.; Itami, K. [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka 311-0193 (Japan)

    2013-09-15

    Collection optics for core measurements in a JT-60SA Thomson scattering system were designed. The collection optics will be installed in a limited space and have a wide field of view and wide wavelength range. Two types of the optics are therefore suggested: refraction and reflection types. The reflection system, with a large primary mirror, avoids large chromatic aberrations. Because the size limit of the primary mirror and vignetting due to the secondary mirror affect the total collection throughput, conditions that provide the high throughput are found through an optimization. A refraction system with four lenses forming an Ernostar system is also employed. The use of high-refractive-index glass materials enhances the freedom of the lens curvatures, resulting in suppression of the spherical and coma aberration. Moreover, sufficient throughput can be achieved, even with smaller lenses than that of a previous design given in [H. Tojo, T. Hatae, T. Sakuma, T. Hamano, K. Itami, Y. Aida, S. Suitoh, and D. Fujie, Rev. Sci. Instrum. 81, 10D539 (2010)]. The optical resolutions of the reflection and refraction systems are both sufficient for understanding the spatial structures in plasma. In particular, the spot sizes at the image of the optics are evaluated as ∼0.3 mm and ∼0.4 mm, respectively. The throughput for the two systems, including the pupil size and transmissivity, are also compared. The results show that good measurement accuracy (<10%) even at high electron temperatures (<30 keV) can be expected in the refraction system.

  19. The SPARC-LAB Thomson source

    Energy Technology Data Exchange (ETDEWEB)

    Vaccarezza, C., E-mail: cristina.vaccarezza@lnf.infn.it [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Alesini, D.; Anania, M.P. [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Bacci, A. [INFN-MI, Via Celoria 16, 20133 Milan (Italy); Biagioni, A.; Bisesto, F.; Bellaveglia, M. [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Cardarelli, P. [University of Ferrara and INFN-FE, via Saragat 1, 44122 Ferrara (Italy); Cardelli, F. [University La Sapienza and INFN-Roma1, Piazzale Aldo Moro, 2 00161 Rome (Italy); Cianchi, A. [University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Chiadroni, E.; Croia, M.; Curcio, A. [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Delogu, P. [University of Pisa and INFN-PI, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Giovenale, D. Di [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Domenico, G. Di [University of Ferrara and INFN-FE, via Saragat 1, 44122 Ferrara (Italy); Pirro, G. Di [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Drebot, I. [INFN-MI, Via Celoria 16, 20133 Milan (Italy); Ferrario, M. [INFN-LNF, Via Enrico Fermi, 40 00044 Frascati, Rome (Italy); Filippi, F. [University La Sapienza and INFN-Roma1, Piazzale Aldo Moro, 2 00161 Rome (Italy); and others

    2016-09-01

    The SPARC-LAB Thomson source is a compact X-ray source based on the Thomson backscattering process presently under its second phase of commissioning at the LNF. The electron beam energy ranges between 30 and 150 MeV, the electrons collide head-on with the Ti:Sapphire FLAME laser pulse the energy of which ranges between 1 and 5 J with pulse lengths in the 25 fs–10 ps range, this provides an X-ray energy tunability in the range of 20–500 keV, with the further capability to generate strongly non-linear phenomena and to drive diffusion processes due to multiple and plural scattering effects. The experimental results of the obtained X-ray radiation are presented.

  20. The SPARC_LAB Thomson source

    Science.gov (United States)

    Vaccarezza, C.; Alesini, D.; Anania, M. P.; Bacci, A.; Biagioni, A.; Bisesto, F.; Bellaveglia, M.; Cardarelli, P.; Cardelli, F.; Cianchi, A.; Chiadroni, E.; Croia, M.; Curcio, A.; Delogu, P.; Giovenale, D. Di; Domenico, G. Di; Pirro, G. Di; Drebot, I.; Ferrario, M.; Filippi, F.; Gallo, A.; Galletti, M.; Gambaccini, M.; Giribono, A.; Golosio, B.; Li, W.; Mostacci, A.; Oliva, P.; Palmer, D.; Petrillo, V.; Petrarca, M.; Pioli, S.; Piersanti, L.; Pompili, R.; Romeo, S.; Rossi, A. R.; Scifo, J.; Serafini, L.; Suliman, G.; Villa, F.

    2016-09-01

    The SPARC_LAB Thomson source is a compact X-ray source based on the Thomson backscattering process presently under its second phase of commissioning at the LNF. The electron beam energy ranges between 30 and 150 MeV, the electrons collide head-on with the Ti:Sapphire FLAME laser pulse the energy of which ranges between 1 and 5 J with pulse lengths in the 25 fs-10 ps range, this provides an X-ray energy tunability in the range of 20-500 keV, with the further capability to generate strongly non-linear phenomena and to drive diffusion processes due to multiple and plural scattering effects. The experimental results of the obtained X-ray radiation are presented.

  1. Focusing coherent light through a nonlinear scattering medium

    CERN Document Server

    Frostig, Hadas; Derevyanko, Stanislav; Silberberg, Yaron

    2016-01-01

    Wavefront shaping is a powerful technique that can be used to focus light through scattering media, with the limitation that the obtained focus contains a small fraction of the total power. The method is based on the assumption that the field at the output is a linear superposition of the modes traveling through different paths in the medium. However, when the scattering medium also exhibits nonlinearity, as may occur in multiphoton microscopy, this assumption is violated and the applicability of wavefront shaping becomes unclear. Here we show that using adaptive optimization of the wavefront light can still be controlled and focused through a nonlinear scattering medium, and that the focused fraction of power can be significantly enhanced in the presence of moderate positive nonlinearity. Our results suggest that the use of short pulses for focusing through scattering media with a mild self-focusing response might be favorable to the use of continuous-wave light.

  2. Nonlinear images of scatterers in chirped pulsed laser beams

    Institute of Scientific and Technical Information of China (English)

    Hu Yong-Hua; Wang You-Wen; Wen Shuang-Chun; Fan Dian-Yuan

    2010-01-01

    The bandwidth and the duration of incident pulsed beam are proved to play important roles in modifying the nonlinear image of amplitude-type scatterer.It is found that the initially positive chirp-type bandwidth can suppress the nonlinear image,while the negative one can enhance it,and that both effects are inversely proportional to the incident pulse duration.Numerical simulations further demonstrate that the location of nonlinear image is at the conjugate plane of the scatterer and that,for negatively pre-chirped pulsed beam,the nonlinear image peak intensity can be higher than that in the corresponding monochromatic case under certain conditions.Moreover the effect of group velocity dispersion on nonlinear image is found to be similar to that of chirp-type bandwidth.

  3. Characterization of x-ray imaging crystal spectrometer for high-resolution spatially-resolved x-ray Thomson scattering measurements in shock-compressed experiments

    Science.gov (United States)

    Lu, J.; Hill, K. W.; Bitter, M.; Pablant, N. A.; Delgado-Aparicio, L. F.; Efthimion, P. C.; Lee, H. J.; Zastrau, U.

    2017-01-01

    We have proposed, designed and built a dual-channel x-ray imaging crystal spectrometer (XICS) for spectrally- and spatially-resolved x-ray Thomson scattering (XRTS) measurements in the Matter in Extreme Conditions (MEC) end station at the Linac Coherent Light Source (LCLS). This spectrometer employs two spherically-bent germanium (Ge) 220 crystals, which are combined to form a large aperture dispersive element with a spectral bandwidth of 300 eV that enables both the elastic and inelastic x-ray scattering peaks to be simultaneously measured. The apparatus and its characterization are described. A resolving power of 1900 was demonstrated and a spatial resolution of 12 μm was achieved in calibration tests. For XRTS measurements, a narrow-bandwidth (ΔE/Ecarbon plasma produced in shock-compressed samples of different forms of carbon. Preliminary results of the scattering experiments from Pyrolytic Graphite samples that illustrate the utility of the instrument are presented.

  4. A Recursive Born Approach to Nonlinear Inverse Scattering

    CERN Document Server

    Kamilov, Ulugbek S; Mansour, Hassan; Boufounos, Petros T

    2016-01-01

    The Iterative Born Approximation (IBA) is a well-known method for describing waves scattered by semi-transparent objects. In this paper, we present a novel nonlinear inverse scattering method that combines IBA with an edge-preserving total variation (TV) regularizer. The proposed method is obtained by relating iterations of IBA to layers of a feedforward neural network and developing a corresponding error backpropagation algorithm for efficiently estimating the permittivity of the object. Simulations illustrate that, by accounting for multiple scattering, the method successfully recovers the permittivity distribution where the traditional linear inverse scattering fails.

  5. Thomson Experiment

    CERN Multimedia

    This experiment, conducted by JJ Thomson in 1897, established the existence of the electron. Thomson won the Nobel physics prize for this work in 1906. A beam of electrons crosses the chamber emitting blue light. Adding an electric field (E) or a magnetic field (B) exerts a force on the moving electrons.Use switch E to turn on the electric field in the chamber. Then, by turning knob B, you can increase the current in the coils, generating a magnetic field. By balancing the electric and magnetic fields, Thomson was able to keep the electron beam level and deduce the ratio of the electron's charge to its mass.

  6. Nonlinear single Compton scattering of an electron wave-packet

    CERN Document Server

    Angioi, A; Di Piazza, A

    2016-01-01

    In the presence of a sufficiently intense electromagnetic laser field, an electron can absorb on average a large number of photons from the laser and emit a high-energy one (nonlinear single Compton scattering). The case of nonlinear single Compton scattering by an electron with definite initial momentum has been thoroughly investigated in the literature. Here, we consider a more general initial state of the electron and use a wave-packet obtained as a superposition of Volkov wave functions. In particular, we investigate the energy spectrum of the emitted radiation at fixed observation direction and show that in typical experimental situations the sharply peaked structure of nonlinear single Compton scattering spectra of an electron with definite initial energy is almost completely washed out. Moreover, we show that at comparable uncertainties, the one in the momentum of the incoming electron has a larger impact on the photon spectra at a fixed observation direction than the one on the laser frequency, relate...

  7. Heldi Thomson

    Index Scriptorium Estoniae

    1997-01-01

    Teaduspreemia autorite kollektiivile arstiteaduse alal töö "Vähktõbi Eestis 1968-1992: haigestumus, levimus, elulemus ja suremus" eest - Mati Rahu (kollektiivi juht), Tiiu Aarelaid, Kaja Gornoi, Heldi Thomson

  8. Experimental determination of EEDF and He{sub 2}{sup *} Rydberg-state density by Thomson scattering in a ns-pulsed atmospheric micro-discharge

    Energy Technology Data Exchange (ETDEWEB)

    Schregel, Christian-Georg; Luggenhoelscher, Dirk; Czarnetzki, Uwe [Institute for Plasma and Atomic Physics, Ruhr-University Bochum (Germany)

    2016-07-01

    An open question of major importance for the investigation of atmospheric micro plasmas is the shape of the EEDF. This has been addressed by using incoherent Thomson scattering as a non-invasive diagnostic. The technique has been applied to measure the temporal evolution (Δt=20 ns) of the EVDF for a pure Helium plasma between two plane molybdenum electrodes, 0.95 mm apart. The plasma is pulsed with a repetition rate of 5 kHz at 0.7 bar. Measurements were done by a 532 nm Nd:YAG laser and a triple grating spectrometer with a gated ICCD for detection. The setup allows for detection of electron energies between 0.5 eV and 12 eV with up to three orders of magnitude in the dynamic range. Additionally, time resolved optical emission spectra where recorded and the Helium metastable was density probed by laser absorption. With the different diagnostic data combined, variation of laser energy used in Thomson scattering could additionally be utilized as a probe for the absolute Helium Excimer Rydberg-state density, allowing a unique determination of absolute density values in the early stages of the afterglow. Peak electron densities of 2 . 10{sup 20} m{sup -3} with a peak electron temperature of 2 eV have been observed.

  9. Scattering in the nonlinear Lamb system

    Energy Technology Data Exchange (ETDEWEB)

    Komech, A.I. [Faculty of Mathematics of Vienna University, Vienna (Austria); Institute for the Information Transmission Problems of RAS, Moscow (Russian Federation)], E-mail: alexander.komech@univie.ac.at; Merzon, A.E. [Institute of Physics and Mathematics, University of Michoacan of San Nicolas de Hidalgo, Morelia, Michoacan (Mexico)], E-mail: anatoli@ifm.imich.mx

    2009-03-09

    We obtain long time asymptotics for the solutions to a string coupled to a nonlinear oscillator: each finite energy solution decays to a sum of a stationary state and a dispersive wave. The asymptotics hold in global energy norm. The dispersive waves are expressed via initial data and solution to an ordinary differential equation. The asymptotics give a mathematical model for the Bohr's transitions between quantum stationary states.

  10. Diagnosing collisions of magnetized, high energy density plasma flows using a combination of collective Thomson scattering, Faraday rotation, and interferometry (invited).

    Science.gov (United States)

    Swadling, G F; Lebedev, S V; Hall, G N; Patankar, S; Stewart, N H; Smith, R A; Harvey-Thompson, A J; Burdiak, G C; de Grouchy, P; Skidmore, J; Suttle, L; Suzuki-Vidal, F; Bland, S N; Kwek, K H; Pickworth, L; Bennett, M; Hare, J D; Rozmus, W; Yuan, J

    2014-11-01

    A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7-14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnostics are used to constrain analysis, increasing the accuracy of interpretation.

  11. Diagnosing collisions of magnetized, high energy density plasma flows using a combination of collective Thomson scattering, Faraday rotation, and interferometry (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F., E-mail: swadling@imperial.ac.uk; Lebedev, S. V.; Hall, G. N.; Patankar, S.; Stewart, N. H.; Smith, R. A.; Burdiak, G. C.; Grouchy, P. de; Skidmore, J.; Suttle, L.; Suzuki-Vidal, F.; Bland, S. N.; Kwek, K. H.; Pickworth, L.; Bennett, M.; Hare, J. D. [Plasma Physics Group, Imperial College, London SW6 7LZ (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratory, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); Yuan, J. [Key Laboratory of Pulsed Power, Institute of Fluid Physics, CAE, Mianyang 621900 (China)

    2014-11-15

    A suite of laser based diagnostics is used to study interactions of magnetised, supersonic, radiatively cooled plasma flows produced using the Magpie pulse power generator (1.4 MA, 240 ns rise time). Collective optical Thomson scattering measures the time-resolved local flow velocity and temperature across 7–14 spatial positions. The scattering spectrum is recorded from multiple directions, allowing more accurate reconstruction of the flow velocity vectors. The areal electron density is measured using 2D interferometry; optimisation and analysis are discussed. The Faraday rotation diagnostic, operating at 1053 nm, measures the magnetic field distribution in the plasma. Measurements obtained simultaneously by these diagnostics are used to constrain analysis, increasing the accuracy of interpretation.

  12. Electron scattering and nonlinear trapping by oblique whistler waves: The critical wave intensity for nonlinear effects

    Energy Technology Data Exchange (ETDEWEB)

    Artemyev, A. V., E-mail: ante0226@gmail.com; Vasiliev, A. A. [Space Research Institute, RAS, Moscow (Russian Federation); Mourenas, D.; Krasnoselskikh, V. V. [LPC2E/CNRS—University of Orleans, Orleans (France); Agapitov, O. V. [Space Sciences Laboratory, University of California, Berkeley, California 94720 (United States)

    2014-10-15

    In this paper, we consider high-energy electron scattering and nonlinear trapping by oblique whistler waves via the Landau resonance. We use recent spacecraft observations in the radiation belts to construct the whistler wave model. The main purpose of the paper is to provide an estimate of the critical wave amplitude for which the nonlinear wave-particle resonant interaction becomes more important than particle scattering. To this aim, we derive an analytical expression describing the particle scattering by large amplitude whistler waves and compare the corresponding effect with the nonlinear particle acceleration due to trapping. The latter is much more rare but the corresponding change of energy is substantially larger than energy jumps due to scattering. We show that for reasonable wave amplitudes ∼10–100 mV/m of strong whistlers, the nonlinear effects are more important than the linear and nonlinear scattering for electrons with energies ∼10–50 keV. We test the dependencies of the critical wave amplitude on system parameters (background plasma density, wave frequency, etc.). We discuss the role of obtained results for the theoretical description of the nonlinear wave amplification in radiation belts.

  13. Nonlinear scattering of radio waves by metal objects

    Science.gov (United States)

    Shteynshleyger, V. B.

    1984-07-01

    Nonlinear scattering of radio waves by metal structures with resulting harmonic and intermodulation interference is analyzed from both theoretical and empirical standpoints, disregarding nonlinear effects associated with the nonlinear dependence of the electric or magnetic polarization vector on respectively the electric or magnetic field intensity in the wave propagating medium. Nonlinear characteristics of metal-oxide-metal contacts where the thin oxide film separation two metal surfaces has properties approximately those of a dielectric or a high-resistivity semiconductor are discussed. Tunneling was found to be the principal mechanism of charge carrier transfer through such a contact with a sufficiently thin film, the contact having usually a cubic or sometimes an integral sign current-voltage characteristic at 300 K and usually S-form or sometimes a cubic current-voltage characteristic at 77 K.

  14. Nonreciprocal wave scattering on nonlinear string-coupled oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Lepri, Stefano, E-mail: stefano.lepri@isc.cnr.it [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Pikovsky, Arkady [Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str 24/25, Potsdam (Germany); Department of Control Theory, Nizhni Novgorod State University, Gagarin Av. 23, 606950, Nizhni Novgorod (Russian Federation)

    2014-12-01

    We study scattering of a periodic wave in a string on two lumped oscillators attached to it. The equations can be represented as a driven (by the incident wave) dissipative (due to radiation losses) system of delay differential equations of neutral type. Nonlinearity of oscillators makes the scattering non-reciprocal: The same wave is transmitted differently in two directions. Periodic regimes of scattering are analyzed approximately, using amplitude equation approach. We show that this setup can act as a nonreciprocal modulator via Hopf bifurcations of the steady solutions. Numerical simulations of the full system reveal nontrivial regimes of quasiperiodic and chaotic scattering. Moreover, a regime of a “chaotic diode,” where transmission is periodic in one direction and chaotic in the opposite one, is reported.

  15. Noninvasive nonlinear imaging through strongly-scattering turbid layers

    CERN Document Server

    Katz, Ori; Guan, Yefeng; Silberberg, Yaron

    2014-01-01

    Diffraction-limited imaging through complex scattering media is a long sought after goal with important applications in biomedical research. In recent years, high resolution wavefront-shaping has emerged as a powerful approach to generate a sharp focus through highly scattering, visually opaque samples. However, it requires a localized feedback signal from the target point of interest, which necessitates an invasive procedure in all-optical techniques. Here, we show that by exploiting optical nonlinearities, a diffraction-limited focus can be formed inside or through a complex sample, even when the feedback signal is not localized. We prove our approach theoretically and numerically, and experimentally demonstrate it with a two-photon fluorescence signal through highly scattering biological samples. We use the formed focus to perform two-photon microscopy through highly scattering, visually opaque layers.

  16. Initial result of collective Thomson scattering using 77 GHz gyrotron for bulk and tail ion diagnostics in the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Nishiura, M; Kubo, S; Tanaka, K; Shimozuma, T; Mutoh, T; Kawahata, K; Watari, T [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Tamura, N [Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 (Japan); Saito, T; Tatematsu, Y [FIR FU, University of Fukui, 3-9-1 Bunkyo, Fukui, 910-8507 (Japan); Notake, T, E-mail: nishiura@nifs.ac.j [RIKEN, 519-1399 Aoba, Aramaki, Aoba-ku, Sendai, 980-0845 (Japan)

    2010-05-01

    The collective Thomson scattering (CTS) technique has been utilized with the backscattering configuration in the collective scattering regime to diagnose the velocity distribution functions in the Large Helical Device (LHD). The receiver was equipped with 16 channels and the first test has been carried out using the eight channels for scattered radiation and these channels cover a few GHz frequency shift from the 76.95 GHz probe beam. During the discharge, the electron density and temperature at the central region of the LHD are 1x10{sup 19}m{sup -3}, and 1.0 keV, respectively. The probing beam with rectangular wave modulation is injected by 50 Hz in order to be distinct from the background electron cyclotron emission (ECE). The scattered radiation is resolved successfully at each channel of CTS receiver system. The detected signals of bulk ion and electron components are by a factor of 10 {approx} 10{sup 2} larger than the background ECE signal. We found that the measured spectra are in reasonably agreement with the theoretical spectra calculated by using the reliable measured electron temperature and density for input parameters. The CTS receiver system will be improved to obtain more accurate velocity distributions in high temperature plasmas.

  17. THE THOMSON SURFACE. I. REALITY AND MYTH

    Energy Technology Data Exchange (ETDEWEB)

    Howard, T. A.; DeForest, C. E., E-mail: howard@boulder.swri.edu [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States)

    2012-06-20

    The solar corona and heliosphere are visible via sunlight that is Thomson-scattered off free electrons and detected by coronagraphs and heliospheric imagers. It is well known that these instruments are most responsive to material at the 'Thomson surface', the sphere with a diameter passing through both the observer and the Sun. It is less well known that in fact the Thomson scattering efficiency is minimized on the Thomson surface. Unpolarized heliospheric imagers such as STEREO/HI are thus approximately equally responsive to material over more than a 90 Degree-Sign range of solar exit angles at each given position in the image plane. We call this range of angles the 'Thomson plateau'. We observe that heliospheric imagers are actually more sensitive to material far from the Thomson surface than close to it, at a fixed radius from the Sun. We review the theory of Thomson scattering as applied to heliospheric imaging, feature detection in the presence of background noise, geometry inference, and feature mass measurement. We show that feature detection is primarily limited by observing geometry and field of view, that the highest sensitivity for detection of density features is to objects close to the observer, that electron surface density inference is independent of geometry across the Thomson plateau, and that mass inference varies with observer distance in all geometries. We demonstrate the sensitivity results with a few examples of features detected by STEREO, far from the Thomson surface.

  18. The Thomson Surface. I. Reality and Myth

    Science.gov (United States)

    Howard, T. A.; DeForest, C. E.

    2012-06-01

    The solar corona and heliosphere are visible via sunlight that is Thomson-scattered off free electrons and detected by coronagraphs and heliospheric imagers. It is well known that these instruments are most responsive to material at the "Thomson surface," the sphere with a diameter passing through both the observer and the Sun. It is less well known that in fact the Thomson scattering efficiency is minimized on the Thomson surface. Unpolarized heliospheric imagers such as STEREO/HI are thus approximately equally responsive to material over more than a 90° range of solar exit angles at each given position in the image plane. We call this range of angles the "Thomson plateau." We observe that heliospheric imagers are actually more sensitive to material far from the Thomson surface than close to it, at a fixed radius from the Sun. We review the theory of Thomson scattering as applied to heliospheric imaging, feature detection in the presence of background noise, geometry inference, and feature mass measurement. We show that feature detection is primarily limited by observing geometry and field of view, that the highest sensitivity for detection of density features is to objects close to the observer, that electron surface density inference is independent of geometry across the Thomson plateau, and that mass inference varies with observer distance in all geometries. We demonstrate the sensitivity results with a few examples of features detected by STEREO, far from the Thomson surface.

  19. Higher-dimensional catastrophes in nonlinear Compton scattering

    Science.gov (United States)

    Kharin, Vasily; Seipt, Daniel; Rykovanov, Sergey

    2016-10-01

    The Compton scattering of the light on the accelerated electron beam is a valuable tool for generating tunable wide range X- and γ-radiation.However, the cross-section of the scattering is relatively low. That is, in order to obtain bright X-rays one naturally may consider increasing the intensity of the incident light. Passing to relativistic values of laser intensity significantly changes scattering mechanism. Precise QED analysis of the scattered spectra leads to the study of the corresponding elements of S-matrix. Evaluation is usually performed numerically (except cases of specific pulse shapes and scattering angles). We argue that the problem of extracting the scattered spectra in nonlinear Compton scattering of the pulse can be reformulated in terms of studying properties of projection map of specific surfaces associated to the pulse. They are stable with respect to initial conditions, and the brightest regions of the spectrum appear to be in correspondence with the singularities of the projection map, also known as caustics in pure mathematics, diffraction optics and cosmology. Work was supported by the Helmholtz Association (Helmholtz Young Investigators group VH-NG-1037).

  20. Measurements of the fast-ion distribution function at ASDEX upgrade by collective Thomson scattering (CTS) using active and passive views

    Science.gov (United States)

    Nielsen, S. K.; Stejner, M.; Rasmussen, J.; Jacobsen, A. S.; Korsholm, S. B.; Leipold, F.; Maraschek, M.; Meo, F.; Michelsen, P. K.; Moseev, D.; Salewski, M.; Schubert, M.; Stober, J.; Suttrop, W.; Tardini, G.; Wagner, D.

    2015-03-01

    Collective Thomson scattering (CTS) can provide measurements of the confined fast-ion distribution function resolved in space, time and 1D velocity space. On ASDEX Upgrade, the measured spectra include an additional signal which previously has hampered data interpretation. A new set-up using two independent heterodyne receiver systems enables subtraction of the additional part from the total spectrum, revealing the resulting CTS spectrum. Here we present CTS measurements from the plasma centre obtained in L-mode and H-mode plasmas with and without neutral beam injection (NBI). For the first time, the measured spectra agree quantitatively with the synthetic spectra in periods with and without NBI heating. For the discharges investigated, the central velocity distribution of neutral beam ions can be described by classical slowing down. These results will have a major impact on ITER physics exploration, since CTS is presently the only diagnostic to measure the confined alpha particles produced by the fusion reactions.

  1. Nonlinear Evolutions of Stimulated Raman and Brillouin Scattering Processes in Partially Stripped-Ion Plasmas

    Institute of Scientific and Technical Information of China (English)

    胡业民; 胡希伟

    2001-01-01

    Numerical analyses for the nonlinear evolutions of stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) processes are given. Various effects of the second- and third-order nonlinear susceptibilities on the SRS and SBS processes are studied. The nonlinear evolutions of SRS and SBS processes are atfected more efficiently than their linear growth rates by the nonlinear susceptibility.

  2. Rayleigh scattering and nonlinear inversion of elastic waves

    Energy Technology Data Exchange (ETDEWEB)

    Gritto, R.

    1995-12-01

    Rayleigh scattering of elastic waves by an inclusion is investigated and the limitations determined. In the near field of the inhomogeneity, the scattered waves are up to a factor of 300 stronger than in the far field, excluding the application of the far field Rayleigh approximation for this range. The investigation of the relative error as a function of parameter perturbation shows a range of applicability broader than previously assumed, with errors of 37% and 17% for perturbations of {minus}100% and +100%, respectively. The validity range for the Rayleigh limit is controlled by large inequalities, and therefore, the exact limit is determined as a function of various parameter configurations, resulting in surprisingly high values of up to k{sub p}R = 0.9. The nonlinear scattering problem can be solved by inverting for equivalent source terms (moments) of the scatterer, before the elastic parameters are determined. The nonlinear dependence between the moments and the elastic parameters reveals a strong asymmetry around the origin, which will produce different results for weak scattering approximations depending on the sign of the anomaly. Numerical modeling of cross hole situations shows that near field terms are important to yield correct estimates of the inhomogeneities in the vicinity of the receivers, while a few well positioned sources and receivers considerably increase the angular coverage, and thus the model resolution of the inversion parameters. The pattern of scattered energy by an inhomogeneity is complicated and varies depending on the object, the wavelength of the incident wave, and the elastic parameters involved. Therefore, it is necessary to investigate the direction of scattered amplitudes to determine the best survey geometry.

  3. Measurement of high-dynamic range x-ray Thomson scattering spectra for the characterization of nano-plasmas at LCLS

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, M. J., E-mail: macdonm@umich.edu [University of Michigan, Ann Arbor, Michigan 48109 (United States); SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Gorkhover, T. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Technische Universität, 10623 Berlin (Germany); Bachmann, B.; Hau-Riege, S. P.; Pardini, T.; Döppner, T. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Bucher, M. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Argonne National Lab, Lemont, Illinois 60439 (United States); Carron, S. [California Lutheran University, Thousand Oaks, California 91360 (United States); Coffee, R. N.; Fletcher, L. B.; Gamboa, E. J.; Glenzer, S. H.; Göde, S.; Krzywinski, J.; O’Grady, C. P.; Osipov, T.; Swiggers, M. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Drake, R. P. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Ferguson, K. R. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Stanford University, Stanford, California 94305 (United States); Kraus, D. [University of California, Berkeley, California 94720 (United States); and others

    2016-11-15

    Atomic clusters can serve as ideal model systems for exploring ultrafast (∼100 fs) laser-driven ionization dynamics of dense matter on the nanometer scale. Resonant absorption of optical laser pulses enables heating to temperatures on the order of 1 keV at near solid density conditions. To date, direct probing of transient states of such nano-plasmas was limited to coherent x-ray imaging. Here we present the first measurement of spectrally resolved incoherent x-ray scattering from clusters, enabling measurements of transient temperature, densities, and ionization. Single shot x-ray Thomson scattering signals were recorded at 120 Hz using a crystal spectrometer in combination with a single-photon counting and energy-dispersive pnCCD. A precise pump laser collimation scheme enabled recording near background-free scattering spectra from Ar clusters with an unprecedented dynamic range of more than 3 orders of magnitude. Such measurements are important for understanding collective effects in laser-matter interactions on femtosecond time scales, opening new routes for the development of schemes for their ultrafast control.

  4. Measurement of high-dynamic range x-ray Thomson scattering spectra for the characterization of nano-plasmas at LCLS

    Science.gov (United States)

    MacDonald, M. J.; Gorkhover, T.; Bachmann, B.; Bucher, M.; Carron, S.; Coffee, R. N.; Drake, R. P.; Ferguson, K. R.; Fletcher, L. B.; Gamboa, E. J.; Glenzer, S. H.; Göde, S.; Hau-Riege, S. P.; Kraus, D.; Krzywinski, J.; Levitan, A. L.; Meiwes-Broer, K.-H.; O'Grady, C. P.; Osipov, T.; Pardini, T.; Peltz, C.; Skruszewicz, S.; Swiggers, M.; Bostedt, C.; Fennel, T.; Döppner, T.

    2016-11-01

    Atomic clusters can serve as ideal model systems for exploring ultrafast (˜100 fs) laser-driven ionization dynamics of dense matter on the nanometer scale. Resonant absorption of optical laser pulses enables heating to temperatures on the order of 1 keV at near solid density conditions. To date, direct probing of transient states of such nano-plasmas was limited to coherent x-ray imaging. Here we present the first measurement of spectrally resolved incoherent x-ray scattering from clusters, enabling measurements of transient temperature, densities, and ionization. Single shot x-ray Thomson scattering signals were recorded at 120 Hz using a crystal spectrometer in combination with a single-photon counting and energy-dispersive pnCCD. A precise pump laser collimation scheme enabled recording near background-free scattering spectra from Ar clusters with an unprecedented dynamic range of more than 3 orders of magnitude. Such measurements are important for understanding collective effects in laser-matter interactions on femtosecond time scales, opening new routes for the development of schemes for their ultrafast control.

  5. Nonlinear double Compton scattering in the full quantum regime

    CERN Document Server

    Mackenroth, F

    2012-01-01

    A detailed analysis of the process of two photon emission by an electron scattered from a high-intensity laser pulse is presented. The calculations are performed in the framework of strong-field QED and include exactly the presence of the laser field, described as a plane wave. We investigate the full quantum regime of interaction, where photon recoil plays an essential role in the emission process, and substantially alters the emitted photon spectra as compared to those in previously-studied regimes. We provide a semiclassical explanation for such differences, based on the possibility of assigning a trajectory to the electron in the laser field before and after each quantum photon emission. Our numerical results indicate the feasibility of investigating experimentally the full quantum regime of nonlinear double Compton scattering with already available plasma-based electron accelerator and laser technology.

  6. Measurements of Ionic Structure in Shock Compressed Lithium Hydride from Ultra-fast X-ray Thomson Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kritcher, A L; Neumayer, P; Brown, C; Davis, P; Doppner, T; Falcone, R W; Gericke, D O; Gregori, G; Holst, B; Landen, O L; Lee, H J; Morse, E C; Pelka, A; Redmer, R; Roth, M; Vorberger, J; Wunsch, K; Glenzer, S H

    2009-07-14

    We present the first ultrafast temporally, spectrally and angularly resolved x-ray scattering measurements from shock-compressed matter. These laser-compressed lithium-hydride samples are well characterized by inelastic Compton and Plasmon scattering of a K-{alpha} x-ray probe providing independent measurements of temperature and density. The experimental spectra yield the absolute elastic and inelastic scattering intensities from the measured density of free electrons. The data show excellent agreement with the total intensity and structure when using the two-species form factor and accounting for ionic screening.

  7. High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source.

    Science.gov (United States)

    Fletcher, L B; Zastrau, U; Galtier, E; Gamboa, E J; Goede, S; Schumaker, W; Ravasio, A; Gauthier, M; MacDonald, M J; Chen, Z; Granados, E; Lee, H J; Fry, A; Kim, J B; Roedel, C; Mishra, R; Pelka, A; Kraus, D; Barbrel, B; Döppner, T; Glenzer, S H

    2016-11-01

    We present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen and focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].

  8. High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source

    Science.gov (United States)

    Fletcher, L. B.; Zastrau, U.; Galtier, E.; Gamboa, E. J.; Goede, S.; Schumaker, W.; Ravasio, A.; Gauthier, M.; MacDonald, M. J.; Chen, Z.; Granados, E.; Lee, H. J.; Fry, A.; Kim, J. B.; Roedel, C.; Mishra, R.; Pelka, A.; Kraus, D.; Barbrel, B.; Döppner, T.; Glenzer, S. H.

    2016-11-01

    We present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen and focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].

  9. High resolution x-ray Thomson scattering measurements from cryogenic hydrogen jets using the linac coherent light source

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, L. B., E-mail: lbfletch@slac.stanford.edu; Galtier, E.; Gamboa, E. J.; Schumaker, W.; Gauthier, M.; Granados, E.; Lee, H. J.; Fry, A.; Kim, J. B.; Roedel, C.; Mishra, R.; Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Zastrau, U. [European XFEL, Schenefeld (Germany); Goede, S. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); European XFEL, Schenefeld (Germany); Ravasio, A. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Laboratoire pour l’Utilisation des Lasers Intenses, Palaiseau Cedex (France); MacDonald, M. J. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); University of Michigan, Ann Arbor, Michigan 48109 (United States); Chen, Z. [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); University of Alberta, Edmonton, Alberta T6G 2R3 (Canada); Pelka, A. [Helmholtz Zentrum Dresden-Rossendorf, Dresden (Germany); Kraus, D. [Helmholtz Zentrum Dresden-Rossendorf, Dresden (Germany); Department of Physics, University of California Berkeley, Berkeley, California 94720 (United States); Barbrel, B. [Department of Physics, University of California Berkeley, Berkeley, California 94720 (United States); and others

    2016-11-15

    We present the first spectrally resolved measurements of x-rays scattered from cryogenic hydrogen jets in the single photon counting limit. The 120 Hz capabilities of the LCLS, together with a novel hydrogen jet design [J. B. Kim et al., Rev. Sci. Instrum. (these proceedings)], allow for the ability to record a near background free spectrum. Such high-dynamic-range x-ray scattering measurements enable a platform to study ultra-fast, laser-driven, heating dynamics of hydrogen plasmas. This measurement has been achieved using two highly annealed pyrolytic graphite crystal spectrometers to spectrally resolve 5.5 keV x-rays elastically and inelastically scattered from cryogenic hydrogen and focused on Cornell-SLAC pixel array detectors [S. Herrmann et al., Nucl. Instrum. Methods Phys. Res., Sect. A 718, 550 (2013)].

  10. Statistical modeling of deconvolution procedures for improving the resolution of measuring electron temperature profiles in tokamak plasmas by Thomson scattering lidar

    Science.gov (United States)

    Dreischuh, Tanja N.; Gurdev, Ljuan L.; Stoyanov, Dimitar V.

    2010-10-01

    The potentialities are investigated, by statistical modeling, of deconvolution techniques for high-resolution restoration of electron temperature profiles in fusion plasma reactors like Joint European Torus (JET) measured by Thomson scattering lidar using the center-of-mass wavelength approach. The sensing laser pulse shape and the receiving-system response function are assumed to be exponentially-shaped. The plasma light background influence is taken into account as well as the Poisson fluctuations of the photoelectron number after the photocathode enhanced in the process of cascade multiplying in the employed microchannel photomultiplier tube. It is shown that the Fourier-deconvolution of the measured long-pulse (lidar-response-convolved) lidar profiles, at relatively high and low signal-to-noise ratios, ensures a higher accuracy of recovering the electron temperature profiles with three times higher range resolution compared to the case without deconvolution. The final resolution scale is determined by the width of the window of an optimum monotone sharp-cutoff digital noise-suppressing (noise-controlling) filter applied to the measured lidar profiles.

  11. Application of Thomson scattering at 1.06{mu}m as a diagnostic for spatial profile measurements of electron temperature and density on the TCV tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Franke, S. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1997-04-01

    The variable configuration tokamak, TCV, in operation at CRPP since the end of 1991, is a particularly challenging machine with regard to the experimental system that must provide essential information regarding properties of confined plasmas with strongly shaped, non-circular cross-sections. The importance of the energy confinement issue in a machine designed specifically for the investigation of the effect of plasma shape on confinement and stability is self-evident, as is the necessity for a diagnostic capable of providing the profiles of electron temperature and density required for evaluation of this confinement. For TCV, a comprehensive Thomson Scattering (TS) diagnostic was the natural choice, specifically owing to the resulting spatially localized and time resolved measurement. The details of the system installed on TCV, together with the results obtained from the diagnostic comprise the subject matter of this thesis. A first version of the diagnostic was equipped with only ten observation volumes. In this case, adequate spatial resolution can only be maintained if measurements are limited to plasmas located in the upper half of the highly elongated TCV vacuum vessel. The system has recently been upgraded through the addition of a further fifteen observation volumes, together with major technical improvements in the scattered light detection system. This new version now permits TS observations in all TCV plasma configurations, including equilibria produced in the lower and upper halves of the vacuum vessel and the highly elongated plasmas now routinely created. Whilst a description of the new detection system along with some results obtained using the extended set of observation volumes are included, this thesis reports principally on the hardware details of and the interpretation of data from the original, ten observation volume system. (author) figs., tabs., 75 refs.

  12. Application of Thomson scattering at 1.06{mu}m as a diagnostic for spatial profile measurements of electron temperature and density on the TCV tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Franke, S. [Ecole Polytechnique Federale, Lausanne (Switzerland). Centre de Recherche en Physique des Plasma (CRPP)

    1997-04-01

    The variable configuration tokamak, TCV, in operation at CRPP since the end of 1991, is a particularly challenging machine with regard to the experimental system that must provide essential information regarding properties of confined plasmas with strongly shaped, non-circular cross-sections. The importance of the energy confinement issue in a machine designed specifically for the investigation of the effect of plasma shape on confinement and stability is self-evident, as is the necessity for a diagnostic capable of providing the profiles of electron temperature and density required for evaluation of this confinement. For TCV, a comprehensive Thomson Scattering (TS) diagnostic was the natural choice, specifically owing to the resulting spatially localized and time resolved measurement. The details of the system installed on TCV, together with the results obtained from the diagnostic comprise the subject matter of this thesis. A first version of the diagnostic was equipped with only ten observation volumes. In this case, adequate spatial resolution can only be maintained if measurements are limited to plasmas located in the upper half of the highly elongated TCV vacuum vessel. The system has recently been upgraded through the addition of a further fifteen observation volumes, together with major technical improvements in the scattered light detection system. This new version now permits TS observations in all TCV plasma configurations, including equilibria produced in the lower and upper halves of the vacuum vessel and the highly elongated plasmas now routinely created. Whilst a description of the new detection system along with some results obtained using the extended set of observation volumes are included, this thesis reports principally on the hardware details of and the interpretation of data from the original, ten observation volume system. (author) figs., tabs., 75 refs.

  13. Comparison of collective Thomson scattering signals due to fast ions in ITER scenarios with fusion and auxiliary heating

    DEFF Research Database (Denmark)

    Salewski, Mirko; Asunta, O.; Eriksson, L.-G.

    2009-01-01

    to the alpha population in these frequency ranges. The exceptions are limited regions in space with some non-negligible signal due to beam ions or fast He-3 which give rise to about 30% and 10-20% of the CTS signal, respectively. In turn, the dominance of the alpha contribution implies that the effects...... scattering (CTS) signal for the proposed CTS diagnostic in ITER. It is of interest to determine the contributions of these fast ion populations to the CTS signal for large Doppler shifts of the scattered radiation since conclusions can mostly be drawn for the dominant contributor. In this study, distribution...... functions for fast deuterons, fast tritons, fast He-3 and the fusion born alphas are presented, revealing that fusion alphas dominate the measurable signal by an order of magnitude or more in the Doppler shift frequency ranges typical for fast ions. Hence the observable CTS signal can mostly be attributed...

  14. Optical scattering by a nonlinear medium, II: induced photonic crystal in a nonlinear slab of BBO

    CERN Document Server

    Godard, Pierre; Nicolet, Andre

    2010-01-01

    The purpose of this paper is to investigate the scattering by a nonlinear crystal whose depth is about the wavelength of the impinging field. More precisely, an infinite nonlinear slab is illuminated by an incident field which is the sum of three plane waves of the same frequency, but with different propagation vectors and amplitudes, in such a way that the resulting incident field is periodic. Moreover, the height of the slab is of the same order of the wavelength, and therefore the so-called slowly varying envelope approximation cannot be used. In our approach we take into account some retroactions of the scattered fields between them (for instance, we do not use the nondepletion of the pump beam). As a result, a system of coupled nonlinear partial differential equations has to be solved. To do this, the finite element method (FEM) associated with perfectly matched layers is well suited. Nevertheless, when using the FEM, the sources have to be located in the meshed area, which is of course impossible when d...

  15. Phase space distribution of an electron beam emerging from Compton/Thomson back-scattering by an intense laser pulse

    Science.gov (United States)

    Petrillo, V.; Chaikovska, I.; Ronsivalle, C.; Rossi, A. R.; Serafini, L.; Vaccarezza, C.

    2013-01-01

    We analyze the energy distribution of a relativistic electron beam after the Compton back-scattering by a counterpropagating laser field. The analysis is performed for parameters in the range of realistic X-γ sources, in the framework of the Quantum Electrodynamics, by means of the code CAIN. The results lead to the conclusion that, in the regime considered, the main effect is the initial formation of stripes, followed by the diffusion of the most energetic particles toward lower values in the longitudinal phase space, with a final increase of the electron energy bandwidth.

  16. Edge profile analysis of Joint European Torus (JET) Thomson scattering data: Quantifying the systematic error due to edge localised mode synchronisation.

    Science.gov (United States)

    Leyland, M J; Beurskens, M N A; Flanagan, J C; Frassinetti, L; Gibson, K J; Kempenaars, M; Maslov, M; Scannell, R

    2016-01-01

    The Joint European Torus (JET) high resolution Thomson scattering (HRTS) system measures radial electron temperature and density profiles. One of the key capabilities of this diagnostic is measuring the steep pressure gradient, termed the pedestal, at the edge of JET plasmas. The pedestal is susceptible to limiting instabilities, such as Edge Localised Modes (ELMs), characterised by a periodic collapse of the steep gradient region. A common method to extract the pedestal width, gradient, and height, used on numerous machines, is by performing a modified hyperbolic tangent (mtanh) fit to overlaid profiles selected from the same region of the ELM cycle. This process of overlaying profiles, termed ELM synchronisation, maximises the number of data points defining the pedestal region for a given phase of the ELM cycle. When fitting to HRTS profiles, it is necessary to incorporate the diagnostic radial instrument function, particularly important when considering the pedestal width. A deconvolved fit is determined by a forward convolution method requiring knowledge of only the instrument function and profiles. The systematic error due to the deconvolution technique incorporated into the JET pedestal fitting tool has been documented by Frassinetti et al. [Rev. Sci. Instrum. 83, 013506 (2012)]. This paper seeks to understand and quantify the systematic error introduced to the pedestal width due to ELM synchronisation. Synthetic profiles, generated with error bars and point-to-point variation characteristic of real HRTS profiles, are used to evaluate the deviation from the underlying pedestal width. We find on JET that the ELM synchronisation systematic error is negligible in comparison to the statistical error when assuming ten overlaid profiles (typical for a pre-ELM fit to HRTS profiles). This confirms that fitting a mtanh to ELM synchronised profiles is a robust and practical technique for extracting the pedestal structure.

  17. Design of practical alignment device in KSTAR Thomson diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. H., E-mail: jhlee@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); University of Science and Technology (UST), Daejeon (Korea, Republic of); Lee, S. H. [National Fusion Research Institute, Daejeon (Korea, Republic of); Yamada, I. [National Institute for Fusion Science, Toki (Japan)

    2016-11-15

    The precise alignment of the laser path and collection optics in Thomson scattering measurements is essential for accurately determining electron temperature and density in tokamak experiments. For the last five years, during the development stage, the KSTAR tokamak’s Thomson diagnostic system has had alignment fibers installed in its optical collection modules, but these lacked a proper alignment detection system. In order to address these difficulties, an alignment verifying detection device between lasers and an object field of collection optics is developed. The alignment detection device utilizes two types of filters: a narrow laser band wavelength for laser, and a broad wavelength filter for Thomson scattering signal. Four such alignment detection devices have been successfully developed for the KSTAR Thomson scattering system in this year, and these will be tested in KSTAR experiments in 2016. In this paper, we present the newly developed alignment detection device for KSTAR’s Thomson scattering diagnostics.

  18. Rothmund - Thomson Syndrome

    Directory of Open Access Journals (Sweden)

    Sharma N. L

    2003-01-01

    Full Text Available Rothmund-Thomson syndrome is a rare geno-photodermatosis of children. Poikilodermatous cutaneous changes, growth retardation, juvenile cataract and high incidence of malignancy are its classical features. A Thomson type of Rothmund-Thomson syndrome with characteristic poikiloderma congenitale, growth retardation, absence of juvenile cataract and parental non-consanguinity is described in an 8 year old Indian girl.

  19. Nonlinear optical absorption and stimulated Mie scattering in metallic nanoparticle suspensions

    Science.gov (United States)

    He, Guang S.; Law, Wing-Cheung; Baev, Alexander; Liu, Sha; Swihart, Mark T.; Prasad, Paras N.

    2013-01-01

    The nonlinear optical properties of four metallic (Au-, Au/Ag-, Ag-, and Pt-) nanoparticle suspensions in toluene have been studied in both femtosecond and nanosecond regimes. Nonlinear transmission measurements in the femtosecond laser regime revealed two-photon absorption (2PA) induced nonlinear attenuation, while in the nanosecond laser regime a stronger nonlinear attenuation is due to both 2PA and 2PA-induced excited-state absorption. In the nanosecond regime, at input pump laser intensities above a certain threshold value, a new type of stimulated (Mie) scattering has been observed. Being essentially different from all other well known molecular (Raman, Brillouin) stimulated scattering effects, the newly observed stimulated Mie scattering from the metallic nanoparticles exhibits the features of no frequency shift and low pump threshold requirement. A physical model of induced Bragg grating initiated by the backward Mie scattering from metallic nanoparticles is proposed to explain the gain mechanism of the observed stimulated scattering effect.

  20. Weak Turbulence in the Magnetosphere: Formation of Whistler Wave Cavity by Nonlinear Scattering

    CERN Document Server

    Crabtree, C; Ganguli, G; Mithaiwala, M; Galinsky, V; Shevchenko, V

    2011-01-01

    We consider the weak turbulence of whistler waves in the in low-\\beta\\ inner magnetosphere of the Earth. Whistler waves with frequencies, originating in the ionosphere, propagate radially outward and can trigger nonlinear induced scattering by thermal electrons provided the wave energy density is large enough. Nonlinear scattering can substantially change the direction of the wave vector of whistler waves and hence the direction of energy flux with only a small change in the frequency. A portion of whistler waves return to the ionosphere with a smaller perpendicular wave vector resulting in diminished linear damping and enhanced ability to pitch-angle scatter trapped electrons. In addition, a portion of the scattered wave packets can be reflected near the ionosphere back into the magnetosphere. Through multiple nonlinear scatterings and ionospheric reflections a long-lived wave cavity containing turbulent whistler waves can be formed with the appropriate properties to efficiently pitch-angle scatter trapped e...

  1. The Scattering Problem for a Noncommutative Nonlinear Schrödinger Equation

    Directory of Open Access Journals (Sweden)

    Bergfinnur Durhuus

    2010-06-01

    Full Text Available We investigate scattering properties of a Moyal deformed version of the nonlinear Schrödinger equation in an even number of space dimensions. With rather weak conditions on the degree of nonlinearity, the Cauchy problem for general initial data has a unique globally defined solution, and also has solitary wave solutions if the interaction potential is suitably chosen. We demonstrate how to set up a scattering framework for equations of this type, including appropriate decay estimates of the free time evolution and the construction of wave operators defined for small scattering data in the general case and for arbitrary scattering data in the rotationally symmetric case.

  2. Properties of Differential Scattering Section Based on Multi-photon Nonlinear Compton Effect

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Properties of damping electrons in collision with photons based on multi-photon nonlinear Compton effect are investigated. The expressions of the differential scattering section are derived. Several useful conclusions are drawn.

  3. High frequency nonlinear scattering from a micrometer to submicrometer sized lipid encapsulated contrast agent

    NARCIS (Netherlands)

    Goertz, David E.; Frijlink, Martijn E.; de Jong, N.; van der Steen, A.F.W.

    2006-01-01

    An experimental lipid encapsulated contrast agent comprised substantially of micrometer to submicrometer diameter bubbles was evaluated for its capacity to produce nonlinear scattering in response to high transmit frequencies. Agent characterization experiments were conducted at transmit frequencies

  4. The Smoothness of Scattering Operators for Sinh-Gordon and Nonlinear Schrodinger Equations

    Institute of Scientific and Technical Information of China (English)

    Bao Xiang WANG

    2002-01-01

    We show that the scattering operator carries a band in Hs(Rn) × Hs-1(Rn) into Hs(Rn) ×Hs-1(Rn) for the sinh-Gordon equation and an analogous result also holds true for the nonlinearSchrodinger equation with an exponential nonlinearity, where s ≥ n/2 is arbitrary and n ≥ 2. Therefore,the scattering operators are infinitely smooth for the above two equations.

  5. Asymmetrically pumped Bragg scattering with the effects of nonlinear phase modulation

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; Friis, Søren Michael Mørk; Reddy, Dileep V.

    2014-01-01

    We derive exact solutions to asymmetrically pumped Bragg scattering with nonlinear phase-modulation (NPM) and show that this setup allows for the frequency conversion of many temporal modes, while reducing the effects due to NPM.......We derive exact solutions to asymmetrically pumped Bragg scattering with nonlinear phase-modulation (NPM) and show that this setup allows for the frequency conversion of many temporal modes, while reducing the effects due to NPM....

  6. Optical Performance and Nonlinear Scattering of Soluble Polystyrene Grafted Multi-Walled Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    TONG Rui; WU Hui-Xia; QIU Xue-Qiong; QIAN Shi-Xiong; LIN Yang-Hui; CAI Rui-Fang

    2006-01-01

    @@ Three soluble polystyrene grafted multi-walled carbon nanotube (MWNT) samples are synthesized, and their optical performance and nonlinear scattering properties are investigated by z-scan method using nanosecond pulses of 532nm from a frequency-doubled Q-switched Nd:YLF laser. Analysis of the experimental results shows that other than nonlinear scattering, nonlinear absorption plays a major role in optical limiting performance of these stable and well-dispersed suspensions. These new synthesized materials which can be better dispersed in common organic solvents than MWNT itself can be considered as potential sources for further optical applications.

  7. The initial value problem, scattering and inverse scattering, for Schroedinger equations with a potential and a non-local nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Romero, MarIa de los Angeles Sandoval; Weder, Ricardo [Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-726, Mexico DF 01000 (Mexico)

    2006-09-15

    We consider nonlinear Schroedinger equations with a potential, and non-local nonlinearities, that are models in mesoscopic physics, for example of a quantum capacitor, and that are also models of molecular structure. We study in detail the initial value problem for these equations, in particular, existence and uniqueness of local and global solutions, continuous dependence on the initial data and regularity. We allow for a large class of unbounded potentials. We have no restriction on the growth at infinity of the positive part of the potential. We also construct the scattering operator in the case of potentials that go to zero at infinity. Furthermore, we give a method for the unique reconstruction of the potential from the small amplitude limit of the scattering operator. In the case of the quantum capacitor, our method allows us to uniquely reconstruct all the physical parameters from the small amplitude limit of the scattering operator.

  8. Enhanced nonlinear imaging through scattering media using transmission matrix based wavefront shaping

    CERN Document Server

    de Aguiar, Hilton B; Brasselet, Sophie

    2016-01-01

    Despite the tremendous progresses in wavefront control through or inside complex scattering media, several limitations prevent reaching practical feasibility for nonlinear imaging in biological tissues. While the optimization of nonlinear signals might suffer from low signal to noise conditions and from possible artifacts at large penetration depths, it has nevertheless been largely used in the multiple scattering regime since it provides a guide star mechanism as well as an intrinsic compensation for spatiotemporal distortions. Here, we demonstrate the benefit of Transmission Matrix (TM) based approaches under broadband illumination conditions, to perform nonlinear imaging. Using ultrashort pulse illumination with spectral bandwidth comparable but still lower than the spectral width of the scattering medium, we show strong nonlinear enhancements of several orders of magnitude, through thicknesses of a few transport mean free paths, which corresponds to millimeters in biological tissues. Linear TM refocusing ...

  9. Scattering in the ultrastrong regime: nonlinear optics with one photon

    OpenAIRE

    Sánchez-Burillo, Eduardo; Zueco, David; García-Ripoll, Juanjo; Martín-Moreno, Luis

    2014-01-01

    The scattering of a flying photon by a two-level system ultrastrongly coupled to a one-dimensional photonic waveguide is studied numerically. The photonic medium is modeled as an array of coupled cavities and the whole system is analyzed beyond the rotating wave approximation using Matrix Product States. It is found that the scattering is strongly influenced by the single- and multi-photon dressed bound states present in the system. In the ultrastrong coupling regime a new channel for inelast...

  10. Global well-posedness and scattering for nonlinear Schrödinger equations with combined nonlinearities in the radial case

    Science.gov (United States)

    Cheng, Xing; Miao, Changxing; Zhao, Lifeng

    2016-09-01

    We consider the Cauchy problem for the nonlinear Schrödinger equation with combined nonlinearities, one of which is defocusing mass-critical and the other is focusing energy-critical or energy-subcritical. The threshold is given by means of variational argument. We establish the profile decomposition in H1 (Rd) and then utilize the concentration-compactness method to show the global wellposedness and scattering versus blowup in H1 (Rd) below the threshold for radial data when d ≤ 4.

  11. An explicit MOT-TDVIE scheme for analyzing electromagnetic field interactions on nonlinear scatterers

    KAUST Repository

    Ulku, Huseyin Arda

    2015-02-01

    An explicit marching on-in-time (MOT) based time domain electric field volume integral equation (TDVIE) solver for characterizing electromagnetic wave interactions on scatterers with nonlinear material properties is proposed. Discretization of the unknown electric field intensity and flux density is carried out by half and full Schaubert-Wilton-Glisson basis functions, respectively. Coupled system of spatially discretized TDVIE and the nonlinear constitutive relation between the field intensity and the flux density is integrated in time to compute the samples of the unknowns. An explicit PE(CE)m scheme is used for this purpose. Explicitness allows for \\'easy\\' incorporation of the nonlinearity as a function only to be evaluated on the right hand side of the coupled system of equations. A numerical example that demonstrates the applicability of the proposed MOT scheme to analyzing electromagnetic interactions on Kerr-nonlinear scatterers is presented. © 2015 IEEE.

  12. Nonlinear photoacoustic wavefront shaping (PAWS) for single speckle-grain optical focusing in scattering media

    CERN Document Server

    Lai, Puxiang; Tay, Jian Wei; Wang, Lihong V

    2014-01-01

    Non-invasively focusing light into strongly scattering media, such as biological tissue, is highly desirable but challenging. Recently, wavefront shaping technologies guided by ultrasonic encoding or photoacoustic sensing have been developed to address this limitation. So far, these methods provide only acoustic diffraction-limited optical focusing. Here, we introduce nonlinear photoacoustic wavefront shaping (PAWS), which achieves optical diffraction-limited (i.e. single-speckle-grain) focusing in scattering media. We develop an efficient dual-pulse excitation approach to generate strong nonlinear photoacoustic (PA) signals based on the Grueneisen memory effect. These nonlinear PA signals are used as feedback to guide iterative wavefront optimization. By maximizing the amplitude of the nonlinear PA signal, light is effectively focused to a single optical speckle grain. Experimental results demonstrate a clear optical focus on the scale of 5-7 micrometers, which is ~10 times smaller than the acoustic focus in...

  13. Nonlinear scattering in hard tissue studied with ultrashort laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Eichler, J. [Technische Fachhochschule Berlin, Univ. of Applied Sciences (Germany); Kim, B.M. [Yonsei Univ., Wonjoo, Kangwon-Do (Korea)

    2002-07-01

    The back-scattered spectrum of ultrashort laser pulses (800 nm, 0.2 ps) was studied in human dental and other hard tissues in vitro below the ablation threshold. Frequency doubled radiation (SHG), frequency tripled radiation and two-photon fluorescence were detected. The relative yield for these processes was measured for various pulse energies. The dependence of the SHG signal on probe thickness was determined in forward and back scattering geometry. SHG is sensitive to linear polarization of the incident laser radiation. SHG in human teeth was studied in vitro showing larger signals in dentin than in cementum and enamel. In carious areas no SHG signal could be detected. Possible applications of higher harmonic radiation for diagnostics and microscopy are discussed. (orig.)

  14. Inverse scattering solution of non-linear evolution equations in one space dimension: an introduction

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Estrada, R.F.

    1979-08-01

    A comprehensive review of the inverse scattering solution of certain non-linear evolution equations of physical interest in one space dimension is presented. We explain in some detail the interrelated techniques which allow to linearize exactly the following equations: (1) the Korteweg and de Vries equation; (2) the non-linear Schrodinger equation; (3) the modified Korteweg and de Vries equation; (4) the Sine-Gordon equation. We concentrate in discussing the pairs of linear operators which accomplish such an exact linearization and the solution of the associated initial value problem. The application of the method to other non-linear evolution equations is reviewed very briefly.

  15. Flow velocity measurement with the nonlinear acoustic wave scattering

    Science.gov (United States)

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-01

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  16. Flow velocity measurement with the nonlinear acoustic wave scattering

    Energy Technology Data Exchange (ETDEWEB)

    Didenkulov, Igor, E-mail: din@appl.sci-nnov.ru [Institute of Applied Physics, 46 Ulyanov str., Nizhny Novgorod, 603950 (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation); Pronchatov-Rubtsov, Nikolay, E-mail: nikvas@rf.unn.ru [Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation)

    2015-10-28

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  17. Nonlinear Schroedinger excitations scattering on local barrier in one dimension

    CERN Document Server

    Kovrizhin, D L

    2001-01-01

    The task on the excitations scattering of the Bose condensate under consideration on the unidimensional barrier is nontrivial one even in the case of a low barrier because the barrier itself and change in the condensate density in its vicinity play the similar important role. It is shown that if any repulsive barrier for a bare particle within the range of the waves high lengths is impermeable, than the coefficient of the delta-functional transmission for the phonons within this range strives to the unity and the barrier becomes transparent

  18. Effects of nonlinear phase modulation on Bragg scattering in the low-conversion regime

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; Cargill, D. S.; McKinstrie, C. J.

    2012-01-01

    In this paper, we consider the effects of nonlinear phase modulation on frequency conversion by four-wave mixing (Bragg scattering) in the low-conversion regime. We derive the Green functions for this process using the time-domain collision method, for partial collisions, in which the four fields...

  19. Non-Linear Rheological Properties and Neutron Scattering Investigation on Dilute Ring-Linear Blends

    DEFF Research Database (Denmark)

    Pyckhout-Hintzen, W.; Bras, A.R.; Wischnewski, A.;

    Linear and non-linear Rheology on dilute blends of polystyrene ring polymers in linear matrix is combined with Small Angle Neutron Scattering (SANS) investigations. In this way 2 different entanglement interactions become clear. After stretching the samples to different hencky strains up to 2 in ...

  20. Effects of nonlinear phase modulation on low-conversion four-wave mixing Bragg scattering

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; McKinstrie, C. J.; Rottwitt, Karsten

    We consider the effects of nonlinear phase modulation (NPM) on frequency converseon by Bragg scattering. Previously we found that arbitrary mode reshaping without temporal entanglement (separability) was possible. When NPM is included, the modes are chirped and the separability is no longer compl...

  1. Fractal scattering of Gaussian solitons in directional couplers with logarithmic nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Rafael M.P.; Cardoso, Wesley B., E-mail: wesleybcardoso@gmail.com

    2016-08-12

    In this paper we study the interaction of Gaussian solitons in a dispersive and nonlinear media with log-law nonlinearity. The model is described by the coupled logarithmic nonlinear Schrödinger equations, which is a nonintegrable system that allows the observation of a very rich scenario in the collision patterns. By employing a variational approach and direct numerical simulations, we observe a fractal-scattering phenomenon from the exit velocities of each soliton as a function of the input velocities. Furthermore, we introduce a linearization model to identify the position of the reflection/transmission window that emerges within the chaotic region. This enables us the possibility of controlling the scattering of solitons as well as the lifetime of bound states. - Highlights: • We study the interaction of Gaussian solitons in a system with log-law nonlinearity. • The model is described by the coupled logarithmic nonlinear Schrödinger equations. • We observe a fractal-scattering phenomenon of the solitons.

  2. Stimulated Raman Scattering and Nonlinear Focusing of High-Power Laser Beams Propagating in Water

    CERN Document Server

    Hafizi, B; Penano, J R; Gordon, D F; Jones, T G; Helle, M H; Kaganovich, D

    2015-01-01

    The physical processes associated with propagation of a high-power (power > critical power for self-focusing) laser beam in water include nonlinear focusing, stimulated Raman scattering (SRS), optical breakdown and plasma formation. The interplay between nonlinear focusing and SRS is analyzed for cases where a significant portion of the pump power is channeled into the Stokes wave. Propagation simulations and an analytical model demonstrate that the Stokes wave can re-focus the pump wave after the power in the latter falls below the critical power. It is shown that this novel focusing mechanism is distinct from cross-phase focusing. While discussed here in the context of propagation in water, the gain-focusing phenomenon is general to any medium supporting nonlinear focusing and stimulated forward Raman scattering.

  3. Scattering of time-harmonic elastic waves by an elastic inclusion with quadratic nonlinearity.

    Science.gov (United States)

    Tang, Guangxin; Jacobs, Laurence J; Qu, Jianmin

    2012-04-01

    This paper considers the scattering of a plane, time-harmonic wave by an inclusion with heterogeneous nonlinear elastic properties embedded in an otherwise homogeneous linear elastic solid. When the inclusion and the surrounding matrix are both isotropic, the scattered second harmonic fields are obtained in terms of the Green's function of the surrounding medium. It is found that the second harmonic fields depend on two independent acoustic nonlinearity parameters related to the third order elastic constants. Solutions are also obtained when these two acoustic nonlinearity parameters are given as spatially random functions. An inverse procedure is developed to obtain the statistics of these two random functions from the measured forward and backscattered second harmonic fields.

  4. A Time Marching Scheme for Solving Volume Integral Equations on Nonlinear Scatterers

    KAUST Repository

    Bagci, Hakan

    2015-01-07

    Transient electromagnetic field interactions on inhomogeneous penetrable scatterers can be analyzed by solving time domain volume integral equations (TDVIEs). TDVIEs are oftentimes solved using marchingon-in-time (MOT) schemes. Unlike finite difference and finite element schemes, MOT-TDVIE solvers require discretization of only the scatterers, do not call for artificial absorbing boundary conditions, and are more robust to numerical phase dispersion. On the other hand, their computational cost is high, they suffer from late-time instabilities, and their implicit nature makes incorporation of nonlinear constitutive relations more difficult. Development of plane-wave time-domain (PWTD) and FFT-based schemes has significantly reduced the computational cost of the MOT-TDVIE solvers. Additionally, latetime instability problem has been alleviated for all practical purposes with the development of accurate integration schemes and specially designed temporal basis functions. Addressing the third challenge is the topic of this presentation. I will talk about an explicit MOT scheme developed for solving the TDVIE on scatterers with nonlinear material properties. The proposed scheme separately discretizes the TDVIE and the nonlinear constitutive relation between electric field intensity and flux density. The unknown field intensity and flux density are expanded using half and full Schaubert-Wilton-Glisson (SWG) basis functions in space and polynomial temporal interpolators in time. The resulting coupled system of the discretized TDVIE and constitutive relation is integrated in time using an explicit P E(CE) m scheme to yield the unknown expansion coefficients. Explicitness of time marching allows for straightforward incorporation of the nonlinearity as a function evaluation on the right hand side of the coupled system of equations. Consequently, the resulting MOT scheme does not call for a Newton-like nonlinear solver. Numerical examples, which demonstrate the applicability

  5. Dual color x-rays from Thomson or Compton sources

    Science.gov (United States)

    Petrillo, V.; Bacci, A.; Curatolo, C.; Ferrario, M.; Maroli, C.; Rau, J. V.; Ronsivalle, C.; Serafini, L.; Vaccarezza, C.; Venturelli, M.

    2015-05-01

    We analyze the possibility of producing two color X or γ radiation by Thomson/Compton back-scattering between a high intensity laser pulse and a two-energy level electron beam, constituted by a couple of beamlets separated in time and/or energy obtained by a photoinjector with comb laser techniques and linac velocity bunching. The parameters of the Thomson source at SPARC_LAB have been simulated, proposing a set of values for a realistic experiments.

  6. Strong nonlinearity-induced correlations for counterpropagating photons scattering on a two-level emitter

    DEFF Research Database (Denmark)

    Nysteen, Anders; McCutcheon, Dara; Mørk, Jesper

    2015-01-01

    We analytically treat the scattering of two counterpropagating photons on a two-level emitter embedded in an optical waveguide. We find that the nonlinearity of the emitter can give rise to significant pulse-dependent directional correlations in the scattered photonic state, which could...... be quantified via a reduction in coincidence clicks in a Hong–Ou–Mandel measurement setup, analogous to a linear beam splitter. Changes to the spectra and phase of the scattered photons, however, would lead to reduced interference with other photons when implemented in a larger optical circuit. We introduce...... suitable fidelity measures which account for these changes and find that high values can still be achieved even when accounting for all properties of the scattered photonic state....

  7. Inverse scattering transform for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions.

    Science.gov (United States)

    Chen, Xiang-Jun; Lam, Wa Kun

    2004-06-01

    An inverse scattering transform for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions is derived by introducing an affine parameter to avoid constructing Riemann sheets. A one-soliton solution simpler than that in the literature is obtained, which is a breather and degenerates to a bright or dark soliton as the discrete eigenvalue becomes purely imaginary. The solution is mapped to that of the modified nonlinear Schrödinger equation by a gaugelike transformation, predicting some sub-picosecond solitons in optical fibers.

  8. Nonlinear Propagation of Coupling Optical Pulse under Compton Scattering in Laser Medium

    Institute of Scientific and Technical Information of China (English)

    HAO Dong-shan; ZHANG Xiao-fu

    2006-01-01

    After considering Kerr nonlinear effect,group velocity dispersion of host and gain distribution of active particle in laser amplifying medium,a basic equation describing propagation of the coupling optical pulse under the multi-photon nonlinear Compton scattering in the laser amplifying medium has been deduced. Besides,the profile and power spectrum of a picosecond-level super-Gaussian coupling pulse in the laser amplifying medium have been discussed when its central frequency coincides with the gain peak frequency of the laser amplifying medium.

  9. Buried Object Detection by an Inexact Newton Method Applied to Nonlinear Inverse Scattering

    Directory of Open Access Journals (Sweden)

    Matteo Pastorino

    2012-01-01

    Full Text Available An approach to reconstruct buried objects is proposed. It is based on the integral equations of the electromagnetic inverse scattering problem, written in terms of the Green’s function for half-space geometries. The full nonlinearity of the problem is exploited in order to inspect strong scatterers. After discretization of the continuous model, the resulting equations are solved in a regularization sense by means of a two-step inexact Newton algorithm. The capabilities and limitations of the method are evaluated by means of some numerical simulations.

  10. Thomson Scattering for Determining Electron Concentrations and Temperatures in an Inductively Coupled Plasma. 1. Assessment of the Technique for a Lo -Flow, Low-Power Plasma.

    Science.gov (United States)

    1988-02-15

    is the spectral density function which describes the frequency dependence of the scattering spectrum. If the electrons in the scattering volume are...stationary, no Doppler shift occurs and the spectral density function is 1 at (w=O (no frequency ,,diihit) and ;zero at all other frequencies. Of...electrons moving in a hot plasma. The spectral density function , which describes this Doppler- shifted spectrum, is very complicated and a description of it

  11. Nonlinear coda wave analysis of hysteretic elastic behavior in strongly scattering media

    Science.gov (United States)

    Ouarabi, M. Ait; Boubenider, F.; Gliozzi, A. S.; Scalerandi, M.

    2016-10-01

    Strongly scattering elastic media, such as consolidated granular materials, respond to ultrasonic pulse excitations with a long response signal with peculiar properties. The portion of the signal at late times, termed coda, is due to multiple scattering. It contains information about the elastic properties of the material, and it has been proven to be very sensitive to small variations in the modulus. Here we propose a technique based on a nonlinear analysis of the coda of a signal, which might be applied to quantify the nonlinear elastic response in consolidated granular media exhibiting a hysteretic elastic behavior. The method proposed allows for an intrinsic definition of the reference signal which is normally needed for applying coda-based methods.

  12. Particle spectra and efficiency in nonlinear relativistic shock acceleration: survey of scattering models

    CERN Document Server

    Ellison, Donald C; Bykov, Andrei M

    2015-01-01

    We include a general form for the scattering mean free path in a nonlinear Monte Carlo model of relativistic shock formation and Fermi acceleration. Particle-in-cell (PIC) simulations, as well as analytic work, suggest that relativistic shocks tend to produce short-scale, self-generated magnetic turbulence that leads to a scattering mean free path (mfp) with a stronger momentum dependence than the mfp ~ p dependence for Bohm diffusion. In unmagnetized shocks, this turbulence is strong enough to dominate the background magnetic field so the shock can be treated as parallel regardless of the initial magnetic field orientation, making application to gamma-ray bursts (GRBs), pulsar winds, Type Ibc supernovae, and extra-galactic radio sources more straightforward and realistic. In addition to changing the scale of the shock precursor, we show that, when nonlinear effects from efficient Fermi acceleration are taken into account, the momentum dependence of the mfp has an important influence on the efficiency of cosm...

  13. Opto-mechanical measurement of micro-trap on atom chip via nonlinear cavity enhanced Raman scattering spectrum

    CERN Document Server

    Zhang, Lin

    2012-01-01

    High-gain resonant nonlinear Raman scattering on trapped cold atoms within a high-fineness ring optical cavity is simply explained under a nonlinear opto-mechanical mechanism, and a proposal using it to detect frequency of micro-trap on atom chip is presented. The enhancement of scattering spectrum is due to coherent Raman conversion between two different cavity modes mediated by collective vibrations of atoms through nonlinear opto-mechanical couplings. The physical conditions of this technique are roughly estimated on Rubidium atoms, and a simple quantum analysis as well as a multi-body semiclassical simulation on this nonlinear Raman process is conducted.

  14. Gamma ray vortices from nonlinear inverse Compton scattering of circularly polarized light

    CERN Document Server

    Taira, Yoshitaka; Katoh, Masahiro

    2016-01-01

    Inverse Compton scattering (ICS) is an elemental radiation process that produces high-energy photons both in nature and in the laboratory. Non-linear ICS is a process in which multiple photons are converted to a single high-energy photon. Here, we theoretically show that the photon produced by non-linear ICS of circularly polarized photons is a vortex, which means that it possesses a helical wave front and carries orbital angular momentum. Our work explains a recent experimental result regarding non-linear Compton scattering that clearly shows an annular intensity distribution as a remarkable feature of a vortex beam. Our work implies that gamma ray vortices should be produced in various situations in astrophysics in which high-energy electrons and intense circularly polarized light fields coexist. They should play a critical role in stellar nucleosynthesis. Non-linear ICS is the most promising radiation process for realizing a gamma ray vortex source based on currently available laser and accelerator technol...

  15. Particle sizing by dynamic light scattering: non-linear cumulant analysis.

    Science.gov (United States)

    Mailer, Alastair G; Clegg, Paul S; Pusey, Peter N

    2015-04-15

    We revisit the method of cumulants for analysing dynamic light scattering data in particle sizing applications. Here the data, in the form of the time correlation function of scattered light, is written as a series involving the first few cumulants (or moments) of the distribution of particle diffusion constants. Frisken (2001 Appl. Opt. 40 4087) has pointed out that, despite greater computational complexity, a non-linear, iterative, analysis of the data has advantages over the linear least-squares analysis used originally. In order to explore further the potential and limitations of cumulant methods we analyse, by both linear and non-linear methods, computer-generated data with realistic 'noise', where the parameters of the distribution can be set explicitly. We find that, with modern computers, non-linear analysis is straightforward and robust. The mean and variance of the distribution of diffusion constants can be obtained quite accurately for distributions of width (standard deviation/mean) up to about 0.6, but there appears to be little prospect of obtaining meaningful higher moments.

  16. Particle spectra and efficiency in nonlinear relativistic shock acceleration - survey of scattering models

    Science.gov (United States)

    Ellison, Donald C.; Warren, Donald C.; Bykov, Andrei M.

    2016-03-01

    We include a general form for the scattering mean free path, λmfp(p), in a nonlinear Monte Carlo model of relativistic shock formation and Fermi acceleration. Particle-in-cell simulations, as well as analytic work, suggest that relativistic shocks tend to produce short-scale, self-generated magnetic turbulence that leads to a scattering mean free path with a stronger momentum dependence than the λmfp ∝ p dependence for Bohm diffusion. In unmagnetized shocks, this turbulence is strong enough to dominate the background magnetic field so the shock can be treated as parallel regardless of the initial magnetic field orientation, making application to γ-ray bursts, pulsar winds, type Ibc supernovae, and extragalactic radio sources more straightforward and realistic. In addition to changing the scale of the shock precursor, we show that, when nonlinear effects from efficient Fermi acceleration are taken into account, the momentum dependence of λmfp(p) has an important influence on the efficiency of cosmic ray production as well as the accelerated particle spectral shape. These effects are absent in non-relativistic shocks and do not appear in relativistic shock models unless nonlinear effects are self-consistently described. We show, for limited examples, how the changes in Fermi acceleration translate to changes in the intensity and spectral shape of γ-ray emission from proton-proton interactions and pion-decay radiation.

  17. Nonlinear acoustic propagation in bubbly liquids: Multiple scattering, softening and hardening phenomena.

    Science.gov (United States)

    Doc, Jean-Baptiste; Conoir, Jean-Marc; Marchiano, Régis; Fuster, Daniel

    2016-04-01

    The weakly nonlinear propagation of acoustic waves in monodisperse bubbly liquids is investigated numerically. A hydrodynamic model based on the averaged two-phase fluid equations is coupled with the Rayleigh-Plesset equation to model the dynamics of bubbles at the local scale. The present model is validated in the linear regime by comparing with the Foldy approximation. The analysis of the pressure signals in the linear regime highlights two resonance frequencies: the Minnaert frequency and a multiple scattering resonance that strongly depends on the bubble concentration. For weakly nonlinear regimes, the generation of higher harmonics is observed only for the Minnaert frequency. Linear combinations between the Minnaert harmonics and the multiple scattering resonance are also observed. However, the most significant effect observed is the appearance of softening-hardening effects that share some similarities with those observed for sandstones or cracked materials. These effects are related to the multiple scattering resonance. Downward or upward resonance frequency shifts can be observed depending on the characteristic of the incident wave when increasing the excitation amplitude. It is shown that the frequency shift can be explained assuming that the acoustic wave velocity depends on a law different from those usually encountered for sandstones or cracked materials.

  18. Nonlinear Effects in the Cosmic Microwave Background

    CERN Document Server

    Maartens, R

    2000-01-01

    Major advances in the observation and theory of cosmic microwave background anisotropies have opened up a new era in cosmology. This has encouraged the hope that the fundamental parameters of cosmology will be determined to high accuracy in the near future. However, this optimism should not obscure the ongoing need for theoretical developments that go beyond the highly successful but simplified standard model. Such developments include improvements in observational modelling (e.g. foregrounds, non-Gaussian features), extensions and alternatives to the simplest inflationary paradigm (e.g. non-adiabatic effects, defects), and investigation of nonlinear effects. In addition to well known nonlinear effects such as the Rees-Sciama and Ostriker-Vishniac effects, further nonlinear effects have recently been identified. These include a Rees-Sciama-type tensor effect, time-delay effects of scalar and tensor lensing, nonlinear Thomson scattering effects and a nonlinear shear effect. Some of the nonlinear effects and th...

  19. Solution of the nonlinear inverse scattering problem by T -matrix completion. II. Simulations

    Science.gov (United States)

    Levinson, Howard W.; Markel, Vadim A.

    2016-10-01

    This is Part II of the paper series on data-compatible T -matrix completion (DCTMC), which is a method for solving nonlinear inverse problems. Part I of the series [H. W. Levinson and V. A. Markel, Phys. Rev. E 94, 043317 (2016), 10.1103/PhysRevE.94.043317] contains theory and here we present simulations for inverse scattering of scalar waves. The underlying mathematical model is the scalar wave equation and the object function that is reconstructed is the medium susceptibility. The simulations are relevant to ultrasound tomographic imaging and seismic tomography. It is shown that DCTMC is a viable method for solving strongly nonlinear inverse problems with large data sets. It provides not only the overall shape of the object, but the quantitative contrast, which can correspond, for instance, to the variable speed of sound in the imaged medium.

  20. Optical transistor action by nonlinear coupling of stimulated emission and coherent scattering

    Science.gov (United States)

    Andrews, David L.; Bradshaw, David S.

    2010-08-01

    In the pursuit of improved platforms for computing, communications and internet connectivity, all-optical systems offer excellent prospects for a speed and fidelity of data transmission that will greatly surpass conventional electronics, alongside the anticipated benefits of reduced energy loss. With a diverse range of sources and fiber optical connections already in production, much current effort is being devoted towards forging optical components for signal switching, such as an all-optical transistor. Achievement of the desired characteristics for any practicable device can be expected to depend crucially on the engagement of a strongly nonlinear optical response. The innovative scheme proposed in the present work is based upon a third-order nonlinearity - its effect enhanced by stimulated emission - operating within a system designed to exploit the highly nonlinear response observed at the threshold for laser emission. Here, stimulated emission is strongly driven by coupling to the coherent scattering of a signal input beam whose optical frequency is purposely off-set from resonance. An electrodynamical analysis of the all-optical coupling process shows that the signal beam can significantly modify the kinetics of emission, and so lead to a dramatically enhanced output of resonant radiation. The underlying nonlinear optical mechanism is analyzed, model calculations are performed for realizable three-level laser systems, and the results exhibited graphically. The advantages of implementing this all-optical transistor scheme, compared to several previously envisaged proposals, are then outlined.

  1. Investigation of X-Ray Harmonics in the Polarized Nonlinear Inverse Compton Scattering Experiment at UCLA

    CERN Document Server

    Doyuran, Adnan; Joshi, Chandrashekhar; Lim, Jae; Rosenzweig, James E; Tochitsky, Sergei Ya; Travish, Gil; Williams, Oliver

    2005-01-01

    An Inverse Compton Scattering (ICS) experiment investigating the polarized harmonic production in the nonlinear regime has begun which will utilize the existing terawatt CO2 laser system and 15 MeV photoinjector in the Neptune Laboratory at UCLA. A major motivation for a source of high brightness polarized x-rays is the production of polarized positrons for use in future linear collider experiments. Analytical calculations have been performed to predict the angular and frequency spectrums for various polarizations and different scattering angles. Currently, the experiment is running and we report the set-up and initial results. The advantages and limitations of using a high laser vector potential, ao, in an ICS-based polarized positron source are expected to be revealed with further measurement of the harmonic spectrum and angular characteristics.

  2. Analysis of key properties for optical power limiting and the influence of nonlinear scattering

    Science.gov (United States)

    Koerber, M.; Azarian, A.; Schwarz, B.; Eberle, B.

    2014-10-01

    In this paper, we propose ways to study the optical limiting behavior of dissolved nanoparticles. We want to present two different approaches. First, we identify the key properties responsible for the critical fluence threshold using a principal component analysis. For metallic nanoparticles, we found that the real part of the complex dielectric function must have a negative value as low as possible, while the imaginary part must be close to zero. Additionally, the solvent should have a low refractive index as well as a low absorption. Furthermore, nonlinear scattering seems to be an important limiting mechanism for nanoparticle limiters. Here, we present a thermal finite element model to predict the temporal evolution of the temperature profile in the nanoparticles and their vicinity. The temperature profile leads to vapor bubbles around the nanoparticles and Mie theory is used to calculate the induced scattering. We demonstrate the functionality of the model by simulating an Au-nanoparticle in an ethanol solution.

  3. Effects of nonlinear phase modulation on quantum frequency conversion using four-wave mixing Bragg scattering

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; McKinstrie, C. J.; Rottwitt, Karsten

    2013-01-01

    Recently, we solved the coupled-mode equations for Bragg scattering (BS) in the low- and high-conversion regimes, but without the effects of nonlinear phase modulation (NPM). We now present solutions and Green functions in the low-conversion regime that include NPM. We find that NPM does not change...... are still possible, even when the effects of NPM are included. Finally, the effects of using different input signals are considered, and we conclude that using the natural input modes of the system drastically increases the efficiency. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers...

  4. Nonlinear scattering of acoustic waves by natural and artificially generated subsurface bubble layers in sea.

    Science.gov (United States)

    Ostrovsky, Lev A; Sutin, Alexander M; Soustova, Irina A; Matveyev, Alexander L; Potapov, Andrey I; Kluzek, Zigmund

    2003-02-01

    The paper describes nonlinear effects due to a biharmonic acoustic signal scattering from air bubbles in the sea. The results of field experiments in a shallow sea are presented. Two waves radiated at frequencies 30 and 31-37 kHz generated backscattered signals at sum and difference frequencies in a bubble layer. A motorboat propeller was used to generate bubbles with different concentrations at different times, up to the return to the natural subsurface layer. Theoretical consideration is given for these effects. The experimental data are in a reasonably good agreement with theoretical predictions.

  5. Nonlinear kinetic modeling and simulations of Raman scattering in a two-dimensional geometry

    Directory of Open Access Journals (Sweden)

    Bénisti Didier

    2013-11-01

    Full Text Available In this paper, we present our nonlinear kinetic modeling of stimulated Raman scattering (SRS by the means of envelope equations, whose coefficients have been derived using a mixture of perturbative and adiabatic calculations. First examples of the numerical resolution of these envelope equations in a two-dimensional homogeneous plasma are given, and the results are compared against those of particle-in-cell (PIC simulations. These preliminary comparisons are encouraging since our envelope code provides threshold intensities consistent with those of PIC simulations while requiring computational resources reduced by 4 to 5 orders of magnitude compared to full-kinetic codes.

  6. Analysis of electromagnetic wave interactions on nonlinear scatterers using time domain volume integral equations

    KAUST Repository

    Ulku, Huseyin Arda

    2014-07-06

    Effects of material nonlinearities on electromagnetic field interactions become dominant as field amplitudes increase. A typical example is observed in plasmonics, where highly localized fields “activate” Kerr nonlinearities. Naturally, time domain solvers are the method of choice when it comes simulating these nonlinear effects. Oftentimes, finite difference time domain (FDTD) method is used for this purpose. This is simply due to the fact that explicitness of the FDTD renders the implementation easier and the material nonlinearity can be easily accounted for using an auxiliary differential equation (J.H. Green and A. Taflove, Opt. Express, 14(18), 8305-8310, 2006). On the other hand, explicit marching on-in-time (MOT)-based time domain integral equation (TDIE) solvers have never been used for the same purpose even though they offer several advantages over FDTD (E. Michielssen, et al., ECCOMAS CFD, The Netherlands, Sep. 5-8, 2006). This is because explicit MOT solvers have never been stabilized until not so long ago. Recently an explicit but stable MOT scheme has been proposed for solving the time domain surface magnetic field integral equation (H.A. Ulku, et al., IEEE Trans. Antennas Propag., 61(8), 4120-4131, 2013) and later it has been extended for the time domain volume electric field integral equation (TDVEFIE) (S. B. Sayed, et al., Pr. Electromagn. Res. S., 378, Stockholm, 2013). This explicit MOT scheme uses predictor-corrector updates together with successive over relaxation during time marching to stabilize the solution even when time step is as large as in the implicit counterpart. In this work, an explicit MOT-TDVEFIE solver is proposed for analyzing electromagnetic wave interactions on scatterers exhibiting Kerr nonlinearity. Nonlinearity is accounted for using the constitutive relation between the electric field intensity and flux density. Then, this relation and the TDVEFIE are discretized together by expanding the intensity and flux - sing half

  7. Low-frequency vibration modulation of guided waves to image nonlinear scatterers for structural health monitoring

    Science.gov (United States)

    Jiao, J. P.; Drinkwater, B. W.; Neild, S. A.; Wilcox, P. D.

    2009-06-01

    Guided wave structural health monitoring offers the prospect of continuous interrogation of large plate-like structures with a sparse network of permanently attached sensors. Currently, the most common approach is to monitor changes in the received signals by subtraction from a reference signal obtained when the structure was known to be defect-free. In this paper a comparison is made between this defect-free subtraction approach and a technique in which low-frequency vibration modulation of guided wave signals is used to detect nonlinear scatterers. The modulation technique potentially overcomes the need for the defect-free reference measurement as the subtraction is now made between different parts of an externally applied low-frequency vibration. Linear defects were simulated by masses bonded onto a plate and nonlinear scatterers were simulated by loading a similar mass against the plate. The experimental results show that the defect-free subtraction technique performs well in detecting the bonded mass whereas the modulation technique is able to discriminate between the bonded and loaded masses. Furthermore, because the modulation technique does not require a defect-free reference, it is shown to be relatively independent of temperature effects, a significant problem for reference based subtraction techniques.

  8. Bobina de Thomson

    Directory of Open Access Journals (Sweden)

    Horacio Munguía Aguilar

    2014-12-01

    Full Text Available Uno de los instrumentos más didácticos en la enseñanza de las leyes del electromagnetismo es la denominada Bobina de Thomson. Con ella se pueden realizar diferentes experimentos sobre las leyes de Ampere y Faraday. En el presente trabajo se muestra su funcionamiento, se explica el mecanismo de levitación del anillo de inducción, se presenta los detalles de un modelo construido y se mencionan otros experimentos que enriquecen su funcionalidad.

  9. Bobina de Thomson

    OpenAIRE

    2014-01-01

    Uno de los instrumentos más didácticos en la enseñanza de las leyes del electromagnetismo es la denominada Bobina de Thomson. Con ella se pueden realizar diferentes experimentos sobre las leyes de Ampere y Faraday. En el presente trabajo se muestra su funcionamiento, se explica el mecanismo de levitación del anillo de inducción, se presenta los detalles de un modelo construido y se mencionan otros experimentos que enriquecen su funcionalidad.

  10. Cycling Joule Thomson refrigerator

    Science.gov (United States)

    Tward, E.

    1983-01-01

    A symmetrical adsorption pump/compressor system having a pair of mirror image legs and a Joule Thomson expander, or valve, interposed between the legs thereof for providing a, efficient refrigeration cycle is described. The system further includes a plurality of gas operational heat switches adapted selectively to transfer heat from a thermal load and to transfer or discharge heat through a heat projector, such as a radiator or the like. The heat switches comprise heat pressurizable chambers adapted for alternate pressurization in response to adsorption and desorption of a pressurizing gas confined therein.

  11. Nonlinear kinetic modeling of stimulated Raman scattering in a multidimensional geometry

    Energy Technology Data Exchange (ETDEWEB)

    Benisti, D.; Morice, O.; Gremillet, L.; Friou, A.; Lefebvre, E. [CEA, DAM, DIF F-91297 Arpajon (France)

    2012-05-15

    In this paper, we derive coupled envelope equations modeling the growth of stimulated Raman scattering (SRS) in a multi-dimensional geometry and accounting for nonlinear kinetic effects. In particular, our envelope equations allow for the nonlinear reduction of the Landau damping rate, whose decrease with the plasma wave amplitude depends on the rate of side-loss. Account is also made of the variations in the extent of the plasma wave packet entailed by the collisionless dissipation due to trapping. The dephasing between the electron plasma wave (EPW) and the laser drive, as well as the self-focussing of the plasma wave, both induced by the EPW nonlinear frequency shift, are also included in our envelope equations. These equations are solved in a multi-dimensional geometry using our code dubbed BRAMA, whose predictions regarding the evolution of Raman reflectivity as a function of the laser intensity are compared against previously published particle in cell results, thus illustrating the ability of BRAMA simulations to provide the correct laser threshold intensity for SRS as well as the right order of magnitude of Raman reflectivity above threshold.

  12. Coupled force-balance and scattering equations for nonlinear transport in quantum wires

    Science.gov (United States)

    Huang, Danhong; Gumbs, Godfrey

    2009-07-01

    The coupled force-balance and scattering equations have been derived and applied to study nonlinear transport of electrons subjected to a strong dc electric field in an elastic-scattering-limited quantum wire. Numerical results have demonstrated both field-induced heating-up and cooling-down behaviors in the nonequilibrium part of the total electron-distribution function by varying the impurity density or the width of the quantum wire. The obtained asymmetric distribution function in momentum space invalidates the application of the energy-balance equation to our quantum-wire system in the center-of-mass frame. The experimentally observed suppression of mobility by a driving field for the center-of-mass motion in the quantum-wire system has been reproduced [see K. Tsubaki , Electr. Lett. 24, 1267 (1988); M. Hauser , Sci. Technol. 9, 951 (1994)]. In addition, the thermal enhancement of mobility in the elastic-scattering-limited system has been demonstrated, in accordance with a similar prediction made for graphene nanoribbons [see T. Fang , Phys. Rev. B 78, 205403 (2008)]. This thermal enhancement has been found to play a more and more significant role with higher lattice temperature and becomes stronger for a low-driving field.

  13. Nonlinear fundamental and harmonic cyclotron resonant scattering of radiation belt ultrarelativistic electrons by oblique monochromatic EMIC waves

    Science.gov (United States)

    Wang, Geng; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Zhang, Min; Wang, Shui

    2017-02-01

    Cyclotron resonant scattering by electromagnetic ion cyclotron (EMIC) waves has been considered to be responsible for the rapid loss of radiation belt high-energy electrons. For parallel-propagating EMIC waves, the nonlinear character of cyclotron resonance has been revealed in recent studies. Here we present the first study on the nonlinear fundamental and harmonic cyclotron resonant scattering of radiation belt ultrarelativistic electrons by oblique EMIC waves on the basis of test particle simulations. Higher wave obliquity produces stronger nonlinearity of harmonic resonances but weaker nonlinearity of fundamental resonance. Compared to the quasi-linear prediction, these nonlinear resonances yield a more rapid loss of electrons over a wider pitch angle range. In the quasi-linear regime, the ultrarelativistic electrons are lost in the equatorial pitch angle range αeq87.5° at ψ = 20° and 40°. At the resonant pitch angles αeq<75°, the difference between quasi-linear and nonlinear loss timescales tends to decrease with the wave normal angle increasing. At ψ = 0° and 20°, the nonlinear electron loss timescale is 10% shorter than the quasi-linear prediction; at ψ = 40°, the difference in loss timescales is reduced to <5%.

  14. Single shot, double differential spectral measurements of inverse Compton scattering in the nonlinear regime

    Directory of Open Access Journals (Sweden)

    Y. Sakai

    2017-06-01

    Full Text Available Inverse Compton scattering (ICS is a unique mechanism for producing fast pulses—picosecond and below—of bright photons, ranging from x to γ rays. These nominally narrow spectral bandwidth electromagnetic radiation pulses are efficiently produced in the interaction between intense, well-focused electron and laser beams. The spectral characteristics of such sources are affected by many experimental parameters, with intense laser effects often dominant. A laser field capable of inducing relativistic oscillatory motion may give rise to harmonic generation and, importantly for the present work, nonlinear redshifting, both of which dilute the spectral brightness of the radiation. As the applications enabled by this source often depend sensitively on its spectra, it is critical to resolve the details of the wavelength and angular distribution obtained from ICS collisions. With this motivation, we present an experimental study that greatly improves on previous spectral measurement methods based on x-ray K-edge filters, by implementing a multilayer bent-crystal x-ray spectrometer. In tandem with a collimating slit, this method reveals a projection of the double differential angular-wavelength spectrum of the ICS radiation in a single shot. The measurements enabled by this diagnostic illustrate the combined off-axis and nonlinear-field-induced redshifting in the ICS emission process. The spectra obtained illustrate in detail the strength of the normalized laser vector potential, and provide a nondestructive measure of the temporal and spatial electron-laser beam overlap.

  15. Single shot, double differential spectral measurements of inverse Compton scattering in the nonlinear regime

    Science.gov (United States)

    Sakai, Y.; Gadjev, I.; Hoang, P.; Majernik, N.; Nause, A.; Fukasawa, A.; Williams, O.; Fedurin, M.; Malone, B.; Swinson, C.; Kusche, K.; Polyanskiy, M.; Babzien, M.; Montemagno, M.; Zhong, Z.; Siddons, P.; Pogorelsky, I.; Yakimenko, V.; Kumita, T.; Kamiya, Y.; Rosenzweig, J. B.

    2017-06-01

    Inverse Compton scattering (ICS) is a unique mechanism for producing fast pulses—picosecond and below—of bright photons, ranging from x to γ rays. These nominally narrow spectral bandwidth electromagnetic radiation pulses are efficiently produced in the interaction between intense, well-focused electron and laser beams. The spectral characteristics of such sources are affected by many experimental parameters, with intense laser effects often dominant. A laser field capable of inducing relativistic oscillatory motion may give rise to harmonic generation and, importantly for the present work, nonlinear redshifting, both of which dilute the spectral brightness of the radiation. As the applications enabled by this source often depend sensitively on its spectra, it is critical to resolve the details of the wavelength and angular distribution obtained from ICS collisions. With this motivation, we present an experimental study that greatly improves on previous spectral measurement methods based on x-ray K -edge filters, by implementing a multilayer bent-crystal x-ray spectrometer. In tandem with a collimating slit, this method reveals a projection of the double differential angular-wavelength spectrum of the ICS radiation in a single shot. The measurements enabled by this diagnostic illustrate the combined off-axis and nonlinear-field-induced redshifting in the ICS emission process. The spectra obtained illustrate in detail the strength of the normalized laser vector potential, and provide a nondestructive measure of the temporal and spatial electron-laser beam overlap.

  16. Non-Linear Compton Scattering in a Strong Rotating Electric Field

    CERN Document Server

    Raicher, Erez; Zigler, Arie

    2016-01-01

    The non-linear Compton scattering rate in a rotating electric field is explicitly calculated for the first time. For this purpose, a novel solution to the Klein-Gordon equation in the presence of a rotating electric field is applied. An analytical expression for the emission rate is obtained, as well as a simplified approximation adequate for emplementation in kinetic codes. The spectrum is numerically calculated for nowadays optical and X-ray laser parameters. The results are compared to the standard Volkov-Ritus rate for a particle in a plane wave, which is commonly assumed to be valid for a rotating electric field under certain conditions. Subsequent deviations between the two models, both in the radiated power and the spectral shape, are demonstrated. First, the typical number of photons participating in the scattering process is much smaller compared to the Volkov-Ritus rate, resulting in up to an order of magnitude lower emitted power. Furthermore, our model predicts a discrete harmonics spectrum for el...

  17. Role of orbital filling on nonlinear ionic Raman scattering in perovskite titanates

    Science.gov (United States)

    Gu, Mingqiang; Rondinelli, James M.

    2017-01-01

    The linear and nonlinear phononic interactions between an optically excited infrared (IR) or hyper-Raman mode and a driven Raman mode are computed for the d0 (CaTiO3) and d1 (LaTiO3) titanates within a first-principles density functional framework. We calculate the potential energy surface expanded in terms of the Ag or B1 g mode amplitudes coupled to the Au or the B3 u mode and determine the coupling coefficients for these multimode interactions. We find that the linear-quadratic coupling dominates the anharmonicities over the quadratic-quadratic interaction in the perovskite titanates. The IR and Raman modes both modify the electronic structure with the former being more significant but occurring on a different time scale; furthermore, the coupled-mode interactions lead to sizable perturbations to the valence bandwidth (˜100 meV ) and band gap (˜50 meV). By comparing the coupling coefficients of undoped CaTiO3 and LaTiO3 to those for electron-doped (CaTiO3) and hole-doped (LaTiO3) titanates, we isolate the role of orbital filling in the nonlinear coupling process. We find that with increasing occupancy of the d manifold, the linear-quadratic interaction decreases by approximately 30% with minor changes induced by the cation chemistry (that mainly affect the phonon mode frequencies) or by electron correlation. We identify the importance of the Ti-O bond stiffness, which depends on the orbital filling, in governing the lattice anharmonicitiy. This microscopic understanding can be used to increase the nonlinear coupling coefficient to facilitate more facile access of nonequilibrium structures and properties through ionic Raman scattering processes.

  18. ITER Fast Ion Collective Thomson Scattering

    DEFF Research Database (Denmark)

    Bindslev, Henrik; Meo, Fernando; Korsholm, Søren Bang

    for measurements of the confined fusion alpha particles in ITER set by the ITER team. Then we outline the considerations, which enter into the selection and evaluation of CTS systems. System definition includes choice of probe frequency, geometry of probe and receiver beam patterns and probe power, but ultimately...

  19. Bragg-Scattering Four-Wave Mixing in Nonlinear Fibers with Intracavity Frequency-Shifted Laser Pumps

    Directory of Open Access Journals (Sweden)

    Katarzyna Krupa

    2012-01-01

    Full Text Available We experimentally study four-wave mixing in highly nonlinear fibers using two independent and partially coherent laser pumps and a third coherent signal. We focus our attention on the Bragg-scattering frequency conversion. The two pumps were obtained by amplifying two Intracavity frequency-shifted feedback lasers working in a continuous wave regime.

  20. Resonance Rayleigh scattering and resonance non-linear scattering method for the determination of aminoglycoside antibiotics with water solubility CdS quantum dots as probe

    Science.gov (United States)

    Liu, Zhengwen; Liu, Shaopu; Wang, Lei; Peng, Juanjuan; He, Youqiu

    2009-09-01

    In pH 6.6 Britton-Robinson buffer medium, the CdS quantum dots capped by thioglycolic acid could react with aminoglycoside (AGs) antibiotics such as neomycin sulfate (NEO) and streptomycin sulfate (STP) to form the large aggregates by virtue of electrostatic attraction and the hydrophobic force, which resulted in a great enhancement of resonance Rayleigh scattering (RRS) and resonance non-linear scattering such as second-order scattering (SOS) and frequency doubling scattering (FDS). The maximum scattering peak was located at 310 nm for RRS, 568 nm for SOS and 390 nm for FDS, respectively. The enhancements of scattering intensity (Δ I) were directly proportional to the concentration of AGs in a certain ranges. A new method for the determination of trace NEO and STP using CdS quantum dots probe was developed. The detection limits (3 σ) were 1.7 ng mL -1 (NEO) and 4.4 ng mL -1 (STP) by RRS method, were 5.2 ng mL -1 (NEO) and 20.9 ng mL -1 (STP) by SOS method and were 4.4 ng mL -1 (NEO) and 25.7 ng mL -1 (STP) by FDS method, respectively. The sensitivity of RRS method was the highest. The optimum conditions and influence factors were investigated. In addition, the reaction mechanism was discussed.

  1. Perturbation method for the second-order nonlinear effect of focused acoustic field around a scatterer in an ideal fluid.

    Science.gov (United States)

    Liu, Gang; Jayathilake, Pahala Gedara; Khoo, Boo Cheong

    2014-02-01

    Two nonlinear models are proposed to investigate the focused acoustic waves that the nonlinear effects will be important inside the liquid around the scatterer. Firstly, the one dimensional solutions for the widely used Westervelt equation with different coordinates are obtained based on the perturbation method with the second order nonlinear terms. Then, by introducing the small parameter (Mach number), a dimensionless formulation and asymptotic perturbation expansion via the compressible potential flow theory is applied. This model permits the decoupling between the velocity potential and enthalpy to second order, with the first potential solutions satisfying the linear wave equation (Helmholtz equation), whereas the second order solutions are associated with the linear non-homogeneous equation. Based on the model, the local nonlinear effects of focused acoustic waves on certain volume are studied in which the findings may have important implications for bubble cavitation/initiation via focused ultrasound called HIFU (High Intensity Focused Ultrasound). The calculated results show that for the domain encompassing less than ten times the radius away from the center of the scatterer, the non-linear effect exerts a significant influence on the focused high intensity acoustic wave. Moreover, at the comparatively higher frequencies, for the model of spherical wave, a lower Mach number may result in stronger nonlinear effects.

  2. Generalized Wideband Harmonic Imaging of Nonlinearly Loaded Scatterers: Theory, Analysis, and Application for Forward-Looking Radar Target Detection

    Science.gov (United States)

    2014-09-01

    nonlinearly loaded, perfectly conducting scatterer) is assumed to be excited by infinitesimal electric dipoles at ’r transmitting time-harmonic fields at...that for the half-space problem, for the calculation of the dyadic and scalar Green’s functions within the integral equation solver, exact...and located at the center of the array—is a vertical infinitesimal electric dipole operating over the frequency band [300 MHz, 1.5 GHz] in 401P

  3. A compact multichannel spectrometer for Thomson scatteringa)

    Science.gov (United States)

    Schoenbeck, N. L.; Schlossberg, D. J.; Dowd, A. S.; Fonck, R. J.; Winz, G. R.

    2012-10-01

    The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of Te VPH grating and measurements Te > 100 eV by a 2072 l/mm VPH grating. The spectrometer uses a fast-gated (˜2 ns) ICCD camera for detection. A Gen III image intensifier provides ˜45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction.

  4. Geometry and quadratic nonlinearity of charge transfer complexes in solution using depolarized hyper-Rayleigh scattering.

    Science.gov (United States)

    Pandey, Ravindra; Ghosh, Sampa; Mukhopadhyay, S; Ramasesha, S; Das, Puspendu K

    2011-01-28

    We report large quadratic nonlinearity in a series of 1:1 molecular complexes between methyl substituted benzene donors and quinone acceptors in solution. The first hyperpolarizability, β(HRS), which is very small for the individual components, becomes large by intermolecular charge transfer (CT) interaction between the donor and the acceptor in the complex. In addition, we have investigated the geometry of these CT complexes in solution using polarization resolved hyper-Rayleigh scattering (HRS). Using linearly (electric field vector along X direction) and circularly polarized incident light, respectively, we have measured two macroscopic depolarization ratios D=I(2ω,X,X)/I(2ω,Z,X) and D(')=I(2ω,X,C)/I(2ω,Z,C) in the laboratory fixed XYZ frame by detecting the second harmonic scattered light in a polarization resolved fashion. The experimentally obtained first hyperpolarizability, β(HRS), and the value of macroscopic depolarization ratios, D and D('), are then matched with the theoretically deduced values from single and double configuration interaction calculations performed using the Zerner's intermediate neglect of differential overlap self-consistent reaction field technique. In solution, since several geometries are possible, we have carried out calculations by rotating the acceptor moiety around three different axes keeping the donor molecule fixed at an optimized geometry. These rotations give us the theoretical β(HRS), D and D(') values as a function of the geometry of the complex. The calculated β(HRS), D, and D(') values that closely match with the experimental values, give the dominant equilibrium geometry in solution. All the CT complexes between methyl benzenes and chloranil or 1,2-dichloro-4,5-dicyano-p-benzoquinone investigated here are found to have a slipped parallel stacking of the donors and the acceptors. Furthermore, the geometries are staggered and in some pairs, a twist angle as high as 30° is observed. Thus, we have demonstrated in

  5. Rothmund-Thomson syndrome

    Directory of Open Access Journals (Sweden)

    Roversi Gaia

    2010-01-01

    Full Text Available Abstract Rothmund-Thomson syndrome (RTS is a genodermatosis presenting with a characteristic facial rash (poikiloderma associated with short stature, sparse scalp hair, sparse or absent eyelashes and/or eyebrows, juvenile cataracts, skeletal abnormalities, radial ray defects, premature aging and a predisposition to cancer. The prevalence is unknown but around 300 cases have been reported in the literature so far. The diagnostic hallmark is facial erythema, which spreads to the extremities but spares the trunk, and which manifests itself within the first year and then develops into poikiloderma. Two clinical subforms of RTS have been defined: RTSI characterised by poikiloderma, ectodermal dysplasia and juvenile cataracts, and RTSII characterised by poikiloderma, congenital bone defects and an increased risk of osteosarcoma in childhood and skin cancer later in life. The skeletal abnormalities may be overt (frontal bossing, saddle nose and congenital radial ray defects, and/or subtle (visible only by radiographic analysis. Gastrointestinal, respiratory and haematological signs have been reported in a few patients. RTS is transmitted in an autosomal recessive manner and is genetically heterogeneous: RTSII is caused by homozygous or compound heterozygous mutations in the RECQL4 helicase gene (detected in 60-65% of RTS patients, whereas the aetiology in RTSI remains unknown. Diagnosis is based on clinical findings (primarily on the age of onset, spreading and appearance of the poikiloderma and molecular analysis for RECQL4 mutations. Missense mutations are rare, while frameshift, nonsense mutations and splice-site mutations prevail. A fully informative test requires transcript analysis not to overlook intronic deletions causing missplicing. The diagnosis of RTS should be considered in all patients with osteosarcoma, particularly if associated with skin changes. The differential diagnosis should include other causes of childhood poikiloderma

  6. Inverse scattering transform for the defocusing nonlinear Schrödinger equation with fully asymmetric non-zero boundary conditions

    Science.gov (United States)

    Biondini, Gino; Fagerstrom, Emily; Prinari, Barbara

    2016-10-01

    We formulate the inverse scattering transform (IST) for the defocusing nonlinear Schrödinger (NLS) equation with fully asymmetric non-zero boundary conditions (i.e., when the limiting values of the solution at space infinities have different non-zero moduli). The theory is formulated without making use of Riemann surfaces, and instead by dealing explicitly with the branched nature of the eigenvalues of the associated scattering problem. For the direct problem, we give explicit single-valued definitions of the Jost eigenfunctions and scattering coefficients over the whole complex plane, and we characterize their discontinuous behavior across the branch cut arising from the square root behavior of the corresponding eigenvalues. We pose the inverse problem as a Riemann-Hilbert Problem on an open contour, and we reduce the problem to a standard set of linear integral equations. Finally, for comparison purposes, we present the single-sheet, branch cut formulation of the inverse scattering transform for the initial value problem with symmetric (equimodular) non-zero boundary conditions, as well as for the initial value problem with one-sided non-zero boundary conditions, and we also briefly describe the formulation of the inverse scattering transform when a different choice is made for the location of the branch cuts.

  7. A new approach to detect congestive heart failure using Teager energy nonlinear scatter plot of R-R interval series.

    Science.gov (United States)

    Kamath, Chandrakar

    2012-09-01

    A novel approach to distinguish congestive heart failure (CHF) subjects from healthy subjects is proposed. Heart rate variability (HRV) is impaired in CHF subjects. In this work hypothesizing that capturing moment to moment nonlinear dynamics of HRV will reveal cardiac patterning, we construct the nonlinear scatter plot for Teager energy of R-R interval series. The key feature of Teager energy is that it models the energy of the source that generated the signal rather than the energy of the signal itself. Hence, any deviations in the genesis of HRV, by complex interactions of hemodynamic, electrophysiological, and humoral variables, as well as by the autonomic and central nervous regulations, get manifested in the Teager energy function. Comparison of the Teager energy scatter plot with the second-order difference plot (SODP) for normal and CHF subjects reveals significant differences qualitatively and quantitatively. We introduce the concept of curvilinearity for central tendency measures of the plots and define a radial distance index that reveals the efficacy of the Teager energy scatter plot over SODP in separating CHF subjects from healthy subjects. The k-nearest neighbor classifier with RDI as feature showed almost 100% classification rate.

  8. A silica based highly nonlinear fibre with improved threshold for stimulated brillouin scattering

    DEFF Research Database (Denmark)

    Grüner-Nielsen, Lars; Dasguta, Sonali; D. Mermelstein, Marc

    2010-01-01

    8.8 dB improvement in figure of merit for SBS limited highly nonlinear fibres is reported by using a combination of Al-doping and straining of the fibre......8.8 dB improvement in figure of merit for SBS limited highly nonlinear fibres is reported by using a combination of Al-doping and straining of the fibre...

  9. On Asymptotic Completeness of Scattering in the Nonlinear Lamb System, II

    CERN Document Server

    Komech, A I

    2012-01-01

    We establish the asymptotic completeness in the nonlinear Lamb system for hyperbolic stationary states. For the proof we construct a trajectory of a reduced equation (which is a nonlinear nonautonomous ODE) converging to a hyperbolic stationary point using the Inverse Function Theorem in a Banach space. We give the counterexamples showing nonexistence of such trajectories for nonhyperbolic stationary points.

  10. Nonlinear development of stimulated Raman scattering from electrostatic modes excited by self-consistent non-Maxwellian velocity distributions.

    Science.gov (United States)

    Yin, L; Daughton, W; Albright, B J; Bezzerides, B; DuBois, D F; Kindel, J M; Vu, H X

    2006-02-01

    The parametric coupling involving backward stimulated scattering of a laser and electron beam acoustic modes (BAM) is described as observed in particle-in-cell (PIC) simulations. The BAM modes evolve from Langmuir waves (LW) as the electron velocity distribution is nonlinearly modified to be non-Maxwellian by backward stimulated Raman scattering (BSRS). With a marginal damping rate, BAM can be easily excited and allow an extended chirping in frequency to occur as later SRS pulses encounter modified distributions. Coincident with the emergence of this non-Maxwellian distribution is a rapid increase in BSRS reflectivities with laser intensities. Both the reflectivity scaling with laser intensity and the observed spectral features from PIC simulations are consistent with recent Trident experiments.

  11. Inverse Gibbs-Thomson effect

    Science.gov (United States)

    Gershanov, V. Yu.; Garmashov, S. I.

    2015-01-01

    We prove the existence of an effect inverse to the Gibbs-Thomson effect for mass transfer in systems consisting of a solid phase and the solution of the solid phase material in a certain solvent. The effect involves a change in the shape of the interface due to a variation of the equilibrium concentrations under it, which is induced by external conditions, and exists in the presence of a negative feedback for mass transfer associated with capillary effects.

  12. The Innovative Technique at Thomson

    Directory of Open Access Journals (Sweden)

    Raveesh Agarwal

    2010-01-01

    Full Text Available Problem statement: As we continue to ride out of the current economic recession, employee engagement has become a critical business issue for the organization. It is tough time for Thomson Press to enhance its position as leader in printing industry and stay ahead of competition. Key challenges include identifying the areas of improvement and engaging each and every employee of the organization at an individual level so that everyone benefits-the business, the environment and the workforce. Approach: In order to meet the challenges and to sustain its leadership in the market, Thomson has taken a new initiative “Vaarta-an Employee Engagement survey”. To ensure the objectivity of this process and maintain the confidentiality of the responses, Thomson appointed “hrcraft business consultancy”, an external agency which specializes in conducting such surveys for many reputed organizations. Results: The survey identified areas of strength and weakness of the organization to assess levels of employee engagement and set new priorities for its employees and customer services. It helps officers and managers to gain useful insights, on how their team members engage with their team and then to take specific actions to address areas of concern. Equally, senior leadership will get insights on application of policy of the organization to enhance their motivation and drive. Conclusion: The objective of writing this case is to gain insight into the human resource practices being adopted at Thomson Press. This case described a new initiative-“Vaarta”, which will facilitate the organization through engagement of its employees into a high performance workforce during recession period. This will make a significant contribution to improvements in levels of customer satisfaction and business growth. It will help individual officers and managers in identifying specific and positive action steps towards engaging their team and thereby, enhancing and sustaining

  13. 76 FR 50272 - West, A Thomson Reuters Business, Thomson Reuters Legal Division, Including On-Site Leased...

    Science.gov (United States)

    2011-08-12

    ... Employment and Training Administration West, A Thomson Reuters Business, Thomson Reuters Legal Division... Reuters Business, Thomson Reuters Legal Division, including On-Site Leased Workers from Adecco... applicable to workers and former workers of West, A Thomson Reuters Business, Thomson Reuters...

  14. Global well-posedness and scattering for the focusing nonlinear Schrödinger equation in the nonradial case

    Directory of Open Access Journals (Sweden)

    Pigong Han

    2012-01-01

    Full Text Available The energy-critical, focusing nonlinear Schrödinger equation in the nonradial case reads as follows: \\[i\\partial_t u = -\\Delta u -|u|^{\\frac{4}{N-2}}u,\\quad (x,0=u_0 \\in H^1 (\\mathbb{R}^N,\\quad N\\geq 3.\\] Under a suitable assumption on the maximal strong solution, using a compactness argument and a virial identity, we establish the global well-posedness and scattering in the nonradial case, which gives a positive answer to one open problem proposed by Kenig and Merle [Invent. Math. 166 (2006, 645–675].

  15. Direct measurements of multi-photon induced nonlinear lattice dynamics in semiconductors via time-resolved x-ray scattering

    Science.gov (United States)

    Williams, G. Jackson; Lee, Sooheyong; Walko, Donald A.; Watson, Michael A.; Jo, Wonhuyk; Lee, Dong Ryeol; Landahl, Eric C.

    2016-12-01

    Nonlinear optical phenomena in semiconductors present several fundamental problems in modern optics that are of great importance for the development of optoelectronic devices. In particular, the details of photo-induced lattice dynamics at early time-scales prior to carrier recombination remain poorly understood. We demonstrate the first integrated measurements of both optical and structural, material-dependent quantities while also inferring the bulk impulsive strain profile by using high spatial-resolution time-resolved x-ray scattering (TRXS) on bulk crystalline gallium arsenide. Our findings reveal distinctive laser-fluence dependent crystal lattice responses, which are not described by previous TRXS experiments or models. The initial linear expansion of the crystal upon laser excitation stagnates at a laser fluence corresponding to the saturation of the free carrier density before resuming expansion in a third regime at higher fluences where two-photon absorption becomes dominant. Our interpretations of the lattice dynamics as nonlinear optical effects are confirmed by numerical simulations and by additional measurements in an n-type semiconductor that allows higher-order nonlinear optical processes to be directly observed as modulations of x-ray diffraction lineshapes.

  16. 76 FR 27365 - West, A Thomson Reuters Business, Thomson Reuters Legal Division, Including On-Site Leased...

    Science.gov (United States)

    2011-05-11

    ..., Including On-Site Leased Workers From ADECCO, Albuquerque, NM; Notice of Affirmative Determination Regarding... former workers of West, A Thomson Reuters Business, Thomson Reuters Legal Division, Albuquerque,...

  17. NONLINEAR OPTICS: Stimulated resonant hyper-Raman scattering of light by polaritons in alkali metal vapors

    Science.gov (United States)

    Galaĭchuk, Yu A.; Yashkir, Yu N.

    1989-12-01

    A theory is developed for the calculation of the gain g due to stimulated resonant hyper-Raman scattering of light by polaritons in gaseous media. It is shown that throughout the tuning range of the pump frequency (including one- and two-photon resonances) a maximum of g corresponds to a dispersion curve of polaritons plotted ignoring attenuation. Theoretical results are used to analyze characteristics of hyper-Raman scattering in sodium vapor. It is shown that under normal experimental conditions the splitting of polariton branches is considerable (amounting to tens of reciprocal centimeters on the frequency scale and several angular degrees). The value of g is estimated for two-photon resonances in the case when the pump frequency is tunable in a wide range. The optimal conditions for stimulated hyper-Raman scattering are identified.

  18. The Joule-Thomson effect on the thermoelectric conductors

    Energy Technology Data Exchange (ETDEWEB)

    Consiglieri, Luisa [Lisbon Univ. (Portugal). Dept. of Mathematics and CMAF

    2009-03-15

    The transmission of an electric current in a conductor is a process in which some electrical energy is converted into heat (thermal energy). We deal with a nonlinear boundary value elliptic problem which describes the electrical heating of a solid conductor and the Joule-Thomson effect is taken into account. The existence of a weak solution is proved under both space and temperature dependence of the electrical and thermal conductivities. When the coefficients are only dependent on their temperature argument, some regularity results are stated. (orig.)

  19. Spatiotemporal focusing in opaque scattering media by wave front shaping with nonlinear feedback.

    Science.gov (United States)

    Aulbach, Jochen; Gjonaj, Bergin; Johnson, Patrick; Lagendijk, Ad

    2012-12-31

    We experimentally demonstrate spatiotemporal focusing of light on single nanocrystals embedded inside a strongly scattering medium. Our approach is based on spatial wave front shaping of short pulses, using second harmonic generation inside the target nanocrystals as the feedback signal. We successfully develop a model both for the achieved pulse duration as well as the observed enhancement of the feedback signal. The approach enables exciting opportunities for studies of light propagation in the presence of strong scattering as well as for applications in imaging, micro- and nanomanipulation, coherent control and spectroscopy in complex media.

  20. Quantification and parametrization of non-linearity effects by higher-order sensitivity terms in scattered light differential optical absorption spectroscopy

    OpenAIRE

    J. Puķīte; T. Wagner

    2016-01-01

    We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer–Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, ...

  1. The optimal antenna for nonlinear spectroscopy of weakly and strongly scattering nanoobjects

    Science.gov (United States)

    Schumacher, Thorsten; Brandstetter, Matthias; Wolf, Daniela; Kratzer, Kai; Hentschel, Mario; Giessen, Harald; Lippitz, Markus

    2016-04-01

    Optical nanoantennas, i.e., arrangements of plasmonic nanostructures, promise to enhance the light-matter interaction on the nanoscale. In particular, nonlinear optical spectroscopy of single nanoobjects would profit from such an antenna, as nonlinear optical effects are already weak for bulk material, and become almost undetectable for single nanoobjects. We investigate the design of optical nanoantennas for transient absorption spectroscopy in two different cases: the mechanical breathing mode of a metal nanodisk and the quantum-confined carrier dynamics in a single CdSe nanowire. In the latter case, an antenna with a resonance at the desired wavelength optimally increases the light intensity at the nanoobject. In the first case, the perturbation of the antenna by the investigated nanosystem cannot be neglected and off-resonant antennas become most efficient.

  2. Fully band-resolved scattering rate in MgB2 revealed by the nonlinear hall effect and magnetoresistance measurements.

    Science.gov (United States)

    Yang, Huan; Liu, Yi; Zhuang, Chenggang; Shi, Junren; Yao, Yugui; Massidda, Sandro; Monni, Marco; Jia, Ying; Xi, Xiaoxing; Li, Qi; Liu, Zi-Kui; Feng, Qingrong; Wen, Hai-Hu

    2008-08-01

    We have measured the normal state temperature dependence of the Hall effect and magnetoresistance in epitaxial MgB2 thin films with variable disorders characterized by the residual resistance ratio RRR ranging from 4.0 to 33.3. A strong nonlinearity of the Hall effect and magnetoresistance have been found in clean samples, and they decrease gradually with the increase of disorders or temperature. By fitting the data to the theoretical model based on the Boltzmann equation and ab initio calculations for a four-band system, for the first time, we derived the scattering rates of these four bands at different temperatures and magnitude of disorders. Our method provides a unique way to derive these important parameters in multiband systems.

  3. Evolution of Electron Phase Orbits of Multi-photon Nonlinear Compton Scattering in High Power Laser-plasma

    Institute of Scientific and Technical Information of China (English)

    HAO Dong-shan; L(U) Jian

    2005-01-01

    The evolution of the electron phase orbits based on the multi-photon nonlinear Compton scattering with the high power laser-plasma is discussed by using Kroll-Morton-Rosenbluth theory. The random evolution of the un-captured electron phase orbits from periodicity to non-periodicity is found after the energy has been exchanged between the electron and photons. With the increase of the absorbed photon number n by an electron,this evolution will be more and more intense, while which is rapidly decreased with the enhancement of the collision non-flexibility ξ and their initial speeds of the electrons and photons, but this evolution is lower than that in the high power laser field. When the electrons are captured by the laser field, the evolution is finished, and the electrons will stably transport,and the photons don't provide the energy for these electrons any more.

  4. Temperature rise of He Ⅱ forced flow and its negative Joule-Thomson effect

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu; JU Yong-lin; ZHENG Qing-rong; LU Xue-sheng; GU An-zhong

    2009-01-01

    The temperature rise of He Ⅱ transfer system due to the negative Joule-Thomson (JT) effect is one of the major problems in the He Ⅱ forced flow system design. Negative Joule-Thomson effect of the He Ⅱ forced flow was analyzed and calculated in this paper. The temperature rise due to the heat leak along the transfer pipeline was calculated by the simplified equation and was modified by considering the negative Joule-Thomson effect. The modified results were compared with the temperature rise obtained by non-linear differential equations with consideration of the pressure gradient. The results show that the pressure gradient has strong effect on the temperature distribution. The modified results are in good agreement with the values calculated by the complicated equation, which verifies the effectiveness of the simplified equation in calculating the temperature rise when the negative JT effect of He Ⅱ is known.

  5. Time-Domain Volume Integral Equation for TM-Case Scattering from Nonlinear Penetrable Objects

    Institute of Scientific and Technical Information of China (English)

    WANG Jianguo; Eric Michielssen

    2001-01-01

    This paper presents the time-domainvolume integral equation (TDVIE) method to analyzescattering from nonlinear penetrable objects, whichare illuminated by the transverse magnetic (TM) in-cident pulse. The time-domain volume integral equa-tion is formulated in terms of two-dimensional (2D)Green's function, and solved by using the march-on-in time (MOT) technique. Some numerical results aregiven to validate this method, and comparisons aremade with the results obtained by using the finite-difference time-domain (FDTD) method.

  6. Development of a Thomson X-ray Polarimeter

    CERN Document Server

    V., Rishin P; R., Duraichelvan; James, Marykutty; Devasia, Jincy

    2010-01-01

    We describe the current status of the design and development of a Thomson X-ray polarimeter suitable for a small satellite mission. Currently we are considering two detector geometries, one using rectangular detectors placed on four sides of a scattering element and the other using a single cylindrical detector with the scattering element at the center. The rectangular detector configuration has been fabricated and tested. The cylindrical detector is currently under fabrication. In order to compensate any pointing offset of the satellite, a collimator with a flat topped response has been developed that provides a constant effective area over an angular range. We have also developed a double crystal monochromator/polariser for the purpose of test and calibration of the polarimeter. Preliminary test results from the developmental activities are presented here.

  7. Rothmund–Thomson syndrome: anaesthesia considerations

    African Journals Online (AJOL)

    Rothmund–Thomson syndrome (RTS) or poikiloderma congenitale is a rare autosomal recessive disorder. Approximately ... increased likelihood of osteosarcoma and skin cancer.3. We successfully .... Anesthesia for genetic, metabolic, and.

  8. Weakly nonlinear models for internal waves: inverse scattering transform and solitary wave contents

    CERN Document Server

    Chen, Shengqian

    2016-01-01

    The time evolution emanating from ``internal dam-break'' initial conditions is studied for a class of models of stratified Euler fluids in configurations close to two-homogeneous layers separated by a thin diffused interface. Direct numerical simulations and experiments in wave tanks show that such initial conditions eventually give rise to coherent structures that are close to solitary-wave solutions moving ahead of a region of dispersive wave motion and turbulent mixing close to the location of the initial dam step. A priori theoretical predictions of the main features of these solitary waves, such as their amplitudes and speeds, appear to be unavailable, even for simplified models of wave evolution in stratified fluids. With the aim of providing estimates of the existence, amplitude and speed of such solitary waves, an approach based on Inverse Scattering Transform (IST) for completely integrable models is developed here and tested against direct numerical simulations of Euler fluids and some of their mode...

  9. Attosecond gamma-ray pulses via nonlinear Compton scattering in the radiation dominated regime

    CERN Document Server

    Li, Jian-Xing; Galow, Benjamin J; Keitel, Christoph H

    2015-01-01

    The interaction of a relativistic electron bunch with a counter-propagating tightly-focused laser beam is investigated for intensities when the dynamics is strongly affected by its own radiation. The Compton scattering spectra of gamma-radiation are evaluated employing a semiclassical description for the laser-driven electron dynamics and a quantum electrodynamical description for the photon emissions. We show for laser facilities under construction that gamma-ray bursts of few hundred attoseconds and dozens of megaelectronvolt photon energies may be detected in the near-backwards direction of the initial electron motion. Tight focussing of the laser beam and radiation reaction are demonstrated to be jointly responsible for such short gamma-ray bursts which are independent of both duration of electron bunch and laser pulse. Furthermore, the stochastic nature of the gamma-photon emission features signatures in the resulting gamma-ray comb in the case of the application of a multi-cycle laser pulse.

  10. Asymptotic approximations, with error estimates, of the scattering matrix for quantal Coulomb excitation by means of a nonlinear (Riccati) matrix differential equation

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, C.H.; Rawitscher, G.H.

    1977-03-01

    A scattering matrix function is defined, which obeys a nonlinear (Riccati) matrix differential equation, containing two coupling potential matrices U and W, which are slowly vanishing, and which are mildly oscillatory and rapidly oscillatory, respectively. The scattering matrix is the limiting value of this scattering function. The equation is first transformed to separate the effects of U and W, this transformation yielding separate equations in each. The long range effects of U and W are included in approximations for the scattering matrix, errors are assessed, and a prescription is outlined for the numerical computation of these approximations. In the case where the effect of W is entirely neglected beyond a certain point, the approximation obtained by Alder and Pauli (Nucl. Phys. 128, 193 (1969)) is recovered. An assessment of the error in this approximation is obtained.

  11. Influence of Guided Waves in Tibia on Non-linear Scattering of Contrast Agents.

    Science.gov (United States)

    Wang, Diya; Zhong, Hui; Zhai, Yu; Hu, Hong; Jin, Bowen; Wan, Mingxi

    2016-02-01

    The aim of this study was to elucidate the linear and non-linear responses of ultrasound contrast agent (UCA) to frequency-dispersive guided waves from the tibia cortex, particularly two individual modes, S0 (1.23 MHz) and A1 (2.06 MHz). The UCA responses to guided waves were illustrated through the Marmottant model derived from measured guided waves, and then verified by continuous infusion experiments in a vessel-tibia flow phantom. These UCA responses were further evaluated by the enhanced ratio of peak values and the resolutions of UCA backscattered echoes. Because of the individual modes S0 and A1 in the tibia, the peak values of the UCA backscattered echoes were enhanced by 83.57 ± 7.35% (p < 0.05) and 80.77 ± 6.60% (p < 0.01) in the UCA subharmonic frequency and subharmonic imaging, respectively. However, corresponding resolutions were 0.78 ± 0.07 (p < 0.05) and 0.72 ± 0.12 (p < 0.01) times those without guided wave disturbances, respectively. Even though the resolution was partly degenerated, the subharmonic detection sensitivity of UCA was improved by the guided waves. Thus, UCA responses to the double-frequency guided waves should be further explored to benefit the detection of capillary perfusion in tissue layers near the bone cortex, particularly for perfusion imaging in the free flaps and skeletal muscles.

  12. Thomson parabola ion energy analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Cobble, James A [Los Alamos National Laboratory; Flippo, Kirk A [Los Alamos National Laboratory; Letzring, Samuel A [Los Alamos National Laboratory; Lopez, Frank E [Los Alamos National Laboratory; Offermann, Dustin T [Los Alamos National Laboratory; Oertel, John A [Los Alamos National Laboratory; Mastrosimone, Dino [UNIV OF ROCHESTER

    2010-01-01

    A new, versatile Thomson parabola ion energy (TPIE) analyzer has been designed and constructed for use at the OMEGA-EP facility. Multi-MeV ions from EP targets are transmitted through a W pinhole into a (5- or 8-kG) magnetic field and subsequently through a parallel electric field of up to 30 kV/cm. The ion drift region may have a user-selected length of 10, 50, or 80 cm. With the highest fields, 500-Me V C{sup 6+} and C{sup 5+} may be resolved. TPIE is TIM-mounted at OMEGA-EP and is qualified in all existing TIMs. The instrument runs on pressure-interlocked 15-VDC power available in EP TIM carts. It may be inserted to within several inches of the target to attain sufficient flux for a measurement. For additional flux control, the user may select a square-aperture W pinhole of 0.004-inch or 0.010-inch. The detector consists of CR-39 backed by an image plate. The fully relativistic design code and design features are discussed. Ion spectral results from first use at OMEGA-EP are expected.

  13. Development of an Internet-Enabled Tool for NSTX-U Thomson Diagnostic Data

    Science.gov (United States)

    Wallace, William; Diallo, Ahmed

    2016-10-01

    MultiPoint Thomson Scattering (MPTS) is an established, accurate method of finding the temperature, density, and pressure of a magnetically confined plasma. Two Nd:YAG (1064 nm) lasers are fired into the plasma with a effective frequency of 60 Hz, and the light is Doppler shifted by Thomson scattering. Polychromators on the NSTX-U midplane collect the scattered photons at various radii/scattering angles, and the avalanche photodiode voltages are saved to an MDSplus tree for later analysis. IDL code is then used to determine plasma temperature, pressure, and density from the captured polychromator measurements via Selden formulas.[1] OMFIT, from the General Atomics Fusion Theory Team, is a rich data workflow package used on DIII-D, NSTX-U, and other experiments to rapidly investigate and draw conclusions from collated data sets and simulations. OMFIT can also be used as a data access source into other toolkits and fusion analysis software. This project, written in Python and taking advantage of late-generation Internet software technologies, uses OMFIT to rapidly find and visualize Thomson diagnostic plasma characteristics enabling scientists to gain a quick understanding of shot behavior and timeframes.

  14. Solitons and Scattering for the Cubic-Quintic Nonlinear Schrödinger Equation on R^3

    Science.gov (United States)

    Killip, Rowan; Oh, Tadahiro; Pocovnicu, Oana; Vişan, Monica

    2017-07-01

    We consider the cubic-quintic nonlinear Schrödinger equation: ipartial_t u = -Δ u - |u|^2u + |u|^4u. In the first part of the paper, we analyze the one-parameter family of ground state solitons associated to this equation with particular attention to the shape of the associated mass/energy curve. Additionally, we are able to characterize the kernel of the linearized operator about such solitons and to demonstrate that they occur as optimizers for a one-parameter family of inequalities of Gagliardo-Nirenberg type. Building on this work, in the latter part of the paper we prove that scattering holds for solutions belonging to the region R of the mass/energy plane where the virial is positive. We show that this region is partially bounded by solitons also by rescalings of solitons (which are not soliton solutions in their own right). The discovery of rescaled solitons in this context is new and highlights an unexpected limitation of any virial-based methodology.

  15. The mathematical models of electromagnetic field dynamics and heat transfer in closed electrical contacts including Thomson effect

    Science.gov (United States)

    Kharin, Stanislav; Sarsengeldin, Merey; Kassabek, Samat

    2016-08-01

    We represent mathematical models of electromagnetic field dynamics and heat transfer in closed symmetric and asymmetric electrical contacts including Thomson effect, which are essentially nonlinear due to the dependence of thermal and electrical conductivities on temperature. Suggested solutions are based on the assumption of identity of equipotentials and isothermal surfaces, which agrees with experimental data and valid for both linear and nonlinear cases. Well known Kohlrausch temperature-potential relation is analytically justified.

  16. Quantification and parametrization of non-linearity effects by higher-order sensitivity terms in scattered light differential optical absorption spectroscopy

    Science.gov (United States)

    Puķīte, Jānis; Wagner, Thomas

    2016-05-01

    We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer-Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, for scenarios with strong absorptions non-linear effects cannot always be neglected. This is especially the case for observation geometries, for which the light contributing to the measurement is crossing the atmosphere under spatially well-separated paths differing strongly in length and location, like in limb geometry. In these cases, often full retrieval algorithms are applied to address the non-linearities, requiring iterative forward modelling of absorption spectra involving time-consuming wavelength-by-wavelength radiative transfer modelling. In this study, we propose to describe the non-linear effects by additional sensitivity parameters that can be used e.g. to build up a lookup table. Together with widely used box air mass factors (effective light paths) describing the linear response to the increase in the trace gas amount, the higher-order sensitivity parameters eliminate the need for repeating the radiative transfer modelling when modifying the absorption scenario even in the presence of a strong absorption background. While the higher-order absorption structures can be described as separate fit parameters in the spectral analysis (so-called DOAS fit), in practice their quantitative evaluation requires good measurement quality (typically better than that available from current measurements). Therefore, we introduce an iterative retrieval algorithm correcting for the higher-order absorption structures not yet considered in the DOAS fit as well as the absorption dependence on

  17. Genetics Home Reference: Rothmund-Thomson syndrome

    Science.gov (United States)

    ... between osteosarcoma and deleterious mutations in the RECQL4 gene in Rothmund-Thomson syndrome. J Natl Cancer Inst. 2003 May 7;95(9):669-74. Citation on PubMed Wang LL, Levy ML, Lewis RA, Chintagumpala MM, Lev D, Rogers M, Plon ...

  18. Start-to-end simulation of a Thomson source for mammography

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, P., E-mail: oliva@uniss.i [Istituto di Matematica e Fisica dell' Universita degli Studi di Sassari e Sezione INFN di Cagliari (Italy); Bacci, A. [Sezione INFN e Dipartimento di Fisica dell' Universita degli Studi di Milano (Italy); Bottigli, U. [Dipartimento di Fisica dell' Universita degli Studi di Siena e Sezione INFN di Pisa (Italy); Carpinelli, M. [Istituto di Matematica e Fisica dell' Universita degli Studi di Sassari e Sezione INFN di Cagliari (Italy); Delogu, P. [Dipartimento di Fisica dell' Universita degli Studi e Sezione INFN di Pisa (Italy); Ferrario, M. [INFN, Laboratori Nazionali di Frascati (Italy); Giulietti, D. [Dipartimento di Fisica dell' Universita degli Studi e Sezione INFN di Pisa (Italy); Golosio, B. [Istituto di Matematica e Fisica dell' Universita degli Studi di Sassari e Sezione INFN di Cagliari (Italy); Petrillo, V.; Serafini, L. [Sezione INFN e Dipartimento di Fisica dell' Universita degli Studi di Milano (Italy); Tomassini, P. [Sezione INFN di Milano (Italy); Vaccarezza, C.; Vicario, C. [INFN, Laboratori Nazionali di Frascati (Italy); Stefanini, A. [Dipartimento di Fisica dell' Universita degli Studi e Sezione INFN di Pisa (Italy)

    2010-03-21

    Thomson scattering X-ray sources have many features which are of relevance for several applications: the main one is the capability to produce intense, quasi-monochromatic, tunable X-ray beams, after collimation, still with a reasonably small size apparatus. Applications to medical physics are straightforward, in particular in mammography where dose control in screening programs is the main relevant issue. An optimal choice of the X-ray energy to image the breast will result in a best image quality and hence will lead to a dose reduction. A Thomson scattering source is presently under development at the Frascati National Laboratories (LNF) of INFN (Istituto Nazionale di Fisica Nucleare). A complete simulation of the source including electron beam, laser beam, Thomson interaction and X-ray imaging is presented. The X-rays are generated in the energy range suitable for mammography and used to generate images of a mammographic phantom. Image quality is evaluated in terms of dose efficiency and compared to those obtained by monochromatic beams and conventional X-ray tubes.

  19. Start-to-end simulation of a Thomson source for mammography

    Science.gov (United States)

    Oliva, P.; Bacci, A.; Bottigli, U.; Carpinelli, M.; Delogu, P.; Ferrario, M.; Giulietti, D.; Golosio, B.; Petrillo, V.; Serafini, L.; Tomassini, P.; Vaccarezza, C.; Vicario, C.; Stefanini, A.

    2010-03-01

    Thomson scattering X-ray sources have many features which are of relevance for several applications: the main one is the capability to produce intense, quasi-monochromatic, tunable X-ray beams, after collimation, still with a reasonably small size apparatus. Applications to medical physics are straightforward, in particular in mammography where dose control in screening programs is the main relevant issue. An optimal choice of the X-ray energy to image the breast will result in a best image quality and hence will lead to a dose reduction. A Thomson scattering source is presently under development at the Frascati National Laboratories (LNF) of INFN (Istituto Nazionale di Fisica Nucleare). A complete simulation of the source including electron beam, laser beam, Thomson interaction and X-ray imaging is presented. The X-rays are generated in the energy range suitable for mammography and used to generate images of a mammographic phantom. Image quality is evaluated in terms of dose efficiency and compared to those obtained by monochromatic beams and conventional X-ray tubes.

  20. Fast Ion Collective Thomson Scattering Diagnostic for ITER

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Bindslev, Henrik; Furtula, Vedran

    2008-01-01

    In the era of high power and burning plasma fusion experiments with significant populations of fast particles, the diagnosis of fast ion dynamics becomes an important topic. In ITER, populations of fast ions due to ICRH and NBI, as well as fusion born alphas will carry a significant fraction of t...

  1. 105 GHz Notch Filter Design for Collective Thomson Scattering

    DEFF Research Database (Denmark)

    Furtula, Vedran; Michelsen, Poul; Leipold, Frank;

    2011-01-01

    A millimeter-wave notch filter with 105-GHz center frequency, >20-GHz passband coverage, and 1-GHz rejection bandwidth has been constructed. The design is based on a fundamental rectangular waveguide with cylindrical cavities coupled by narrow iris gaps, i.e., small elongated holes of negligible...... thickness. We use numerical simulations to study the sensitivity of the notch filter performance to changes in geometry and in material conductivity within a bandwidth of ±10 GHz. The constructed filter is tested successfully using a vector network analyzer monitoring a total bandwidth of 20 GHz...

  2. Problems in Nonlinear Acoustics: Scattering of Sound by Sound, Parametric Arrays, Focused Sound Beams, and Noncollinear Tone-Noise Interactions

    Science.gov (United States)

    1988-07-01

    of Texas at Austin 3(ARL:UT). 3 A. Background The problem of the scattering of sound by sound, as well as the terminology, was introduced3 by Ingard ...Texas at Austin, June 1987. [2] U. Ingard and D. C. Pridmore-Brown, "Scattering of Sound by Sound," J. Acoust. Soc. Am. 28, 367-369 (1956). [3] R. T

  3. Influence of intrapulse Raman scattering on the stationary pulses in the presence of linear and nonlinear gain as well as spectral filtering

    Science.gov (United States)

    Uzunov, Ivan M.; Georgiev, Zhivko D.; Arabadzhev, Todor N.

    2015-01-01

    In this paper we present numerical investigation of the influence of intrapulse Raman scattering (IRS) on the stable stationary pulses. Our basic equation, namely cubic-quintic Ginzburg-Landau equation describes the propagation of ultra-short optical pulses under the effect of IRS in the presence of linear and nonlinear gain as well as spectral filtering. Our aim is to examine numerically the influence of IRS, on the stable stationary pulses in the presence of constant linear and nonlinear gain as well as spectral filtering. Numerical solution of our basic equation is performed by means of the "fourth-order Runge-Kutta method in the interaction picture method" method. We found that the small change of the value of the parameter which describes IRS leads to qualitatively different behavior of the evolution of pulse amplitudes. In order to study the observed strong dependence on the IRS, the perturbation method of conserved quantities of the nonlinear Schrodinger equation is applied. The numerical analysis of the derived nonlinear system of ordinary differential equations has shown that our numerical findings are related to the existence of the Poincare-Andronov-Hopf bifurcation.

  4. Manganese Nitride Sorption Joule-Thomson Refrigerator

    Science.gov (United States)

    Jones, Jack A.; Phillips, Wayne M.

    1992-01-01

    Proposed sorption refrigeration system of increased power efficiency combines MnxNy sorption refrigeration stage with systems described in "Regenerative Sorption Refrigerator" (NPO-17630). Measured pressure-vs-composition isotherms for reversible chemisorption of N2 in MnxNy suggest feasibility to incorporate MnxNy chemisorption stage in Joule-Thomson cryogenic system. Discovery represents first known reversible nitrogen chemisorption compression system. Has potential in nitrogen-isotope separation, nitrogen purification, or contamination-free nitrogen compression.

  5. 78 FR 8587 - Thomson Reuters, Finance Operations & Technology Division, Including On-Site Leased Workers From...

    Science.gov (United States)

    2013-02-06

    ... Employment and Training Administration Thomson Reuters, Finance Operations & Technology Division, Including... Worker Adjustment Assistance on August 2, 2012, applicable to workers of Thomson Reuters, Finance... that workers of Thomson Reuters, Finance Operations & Technology Division, including on-site...

  6. 75 FR 47632 - Thomson Reuters Legal, Legal Editorial Operations, Cleveland Office, Including Workers Whose...

    Science.gov (United States)

    2010-08-06

    ... Employment and Training Administration Thomson Reuters Legal, Legal Editorial Operations, Cleveland Office..., applicable to workers of Thomson Reuters Legal, Legal Editorial Operations, Cleveland Office, Independence... that some workers separated from employment at the Independence, Ohio location of Thomson Reuters...

  7. Continued Development of Python-Based Thomson Data Analysis and Associated Visualization Tool for NSTX-U

    Science.gov (United States)

    Wallace, William; Miller, Jared; Diallo, Ahmed

    2015-11-01

    MultiPoint Thomson Scattering (MPTS) is an established, accurate method of finding the temperature, density, and pressure of a magnetically confined plasma. Two Nd:YAG (1064 nm) lasers are fired into the plasma with a effective frequency of 60 Hz, and the light is Doppler shifted by Thomson scattering. Polychromators on the NSTX-U midplane collect the scattered photons at various radii/scattering angles, and the avalanche photodiode voltages are saved to an MDSplus tree for later analysis. IDL code is then used to determine plasma temperature, pressure, and density from the captured polychromator measurements via Selden formulas. [1] Previous work [2] converted the single-processor IDL code into Python code, and prepared a new architecture for multiprocessing MPTS in parallel. However, that work was not completed to the generation of output data and curve fits that match with the previous IDL. This project refactored the Python code into a object-oriented architecture, and created a software test suite for the new architecture which allowed identification of the code which generated the difference in output. Another effort currently underway is to display the Thomson data in an intuitive, interactive format. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Community College Internship (CCI) program.

  8. John Thomson: Photojournalist in Asia, 1862-1872.

    Science.gov (United States)

    Parker, Elliott S.

    John Thomson was a nineteenth-century British photojournalist who used the wet-plate process to illustrate his explorations of eastern and Southeast Asia. His travels from 1862 to 1872 took him to the following places, among others: Ceylon, Cambodia, Singapore, Thailand, Saigon, Siam, mainland China, and Taiwan. Thomson chose to use the wet-plate…

  9. Basics of Joule-Thomson Liquefaction and JT Cooling

    Science.gov (United States)

    de Waele, A. T. A. M.

    2017-03-01

    This paper describes the basic operation of Joule-Thomson liquefiers and Joule-Thomson coolers. The discussion is based on the first law of thermodynamics mainly using hT-diagrams. It is limited to single-component fluids. A nitrogen liquefier and a helium cooler are discussed as important examples.

  10. Study of the Joule-Thomson effect of Vuktylskiy gas

    Energy Technology Data Exchange (ETDEWEB)

    Buleyko, M.D.; Buleyko, V.M.; Bytsko, L.L.; Starodubtsev, A.M.

    1980-01-01

    Results of studying the effect of the physical chemical-characteristics of formational gas of Vuktylskiy gas-condensate deposit on the integral Joule-Thomson affect and hydraulic resistance in well loops are presented. The effect of the amount of dropping liquid on the value of the integral Joule-Thomson affect is indicated.

  11. Thomson's Theorem of Electrostatics: Its Applications and Mathematical Verification

    Science.gov (United States)

    Bakhoum, Ezzat G.

    2008-01-01

    A 100 years-old formula that was given by J. J. Thomson recently found numerous applications in computational electrostatics and electromagnetics. Thomson himself never gave a proof for the formula; but a proof based on Differential Geometry was suggested by Jackson and later published by Pappas. Unfortunately, Differential Geometry, being a…

  12. On the design of experiments for determining ternary mixture free energies from static light scattering data using a nonlinear partial differential equation.

    Science.gov (United States)

    Wahle, Chris W; Ross, David S; Thurston, George M

    2012-07-21

    We mathematically design sets of static light scattering experiments to provide for model-independent measurements of ternary liquid mixing free energies to a desired level of accuracy. A parabolic partial differential equation (PDE), linearized from the full nonlinear PDE [D. Ross, G. Thurston, and C. Lutzer, J. Chem. Phys. 129, 064106 (2008)], describes how data noise affects the free energies to be inferred. The linearized PDE creates a net of spacelike characteristic curves and orthogonal, timelike curves in the composition triangle, and this net governs diffusion of information coming from light scattering measurements to the free energy. Free energy perturbations induced by a light scattering perturbation diffuse along the characteristic curves and towards their concave sides, with a diffusivity that is proportional to the local characteristic curvature radius. Consequently, static light scattering can determine mixing free energies in regions with convex characteristic curve boundaries, given suitable boundary data. The dielectric coefficient is a Lyapunov function for the dynamical system whose trajectories are PDE characteristics. Information diffusion is heterogeneous and system-dependent in the composition triangle, since the characteristics depend on molecular interactions and are tangent to liquid-liquid phase separation coexistence loci at critical points. We find scaling relations that link free energy accuracy, total measurement time, the number of samples, and the interpolation method, and identify the key quantitative tradeoffs between devoting time to measuring more samples, or fewer samples more accurately. For each total measurement time there are optimal sample numbers beyond which more will not improve free energy accuracy. We estimate the degree to which many-point interpolation and optimized measurement concentrations can improve accuracy and save time. For a modest light scattering setup, a sample calculation shows that less than two

  13. New digital circuits at Thomson semiconductor in France

    Science.gov (United States)

    Dellamussia, J. P.

    1985-11-01

    DCS, Thomson Semiconductors' Semi-Standard Circuits Department, has just announced a CMOS gate array with up to 4,200 gates, standard cells, and a unique 900-component, 3 GHz linear gate array. All of Thomson's gate arrays are supported by Daisy, Valid and Mentor workstations. These are the first fruits of a reorganization begun several months ago to distance the department from the actual design and manufacture of integrated circuits, making it more of an archestrator among customers, workstation manufacturers, independent designers and the various Thomson Semiconductors division. Thomson Semiconductors' silicon sales based on DCS contracts totaled 25,000,000 Frances in 1984. This figure should be double in 1985. Thomson Semiconductors plans to offer 120 new integrated circuits this year, twice the number available in 1984. At the same time, the Munich design center and the American subsidiary, VSI, should open new markets in 1985, bringing exports to an estimated 30 percent of sales.

  14. Experimental Studies of the Stimulated Brillouin Scattering Instability in the Saturated Regime

    Energy Technology Data Exchange (ETDEWEB)

    Froula, D

    2002-10-29

    An experimental study of the stimulated Brillouin scattering (SBS) instability has investigated the effects of velocity gradients and kinetic effects on the saturation of ion-acoustic waves in a plasma. For intensities less than I < 1.5 x 10{sup 15} W cm{sup -2}, the SBS instability is moderated primarily by velocity gradients, and for intensities above this threshold, nonlinear trapping is invoked to saturate the instability. We report direct evidence of detuning of SBS by a velocity gradient which was achieved by directly measuring the frequency shift of the SBS driven acoustic wave relative to the local resonant acoustic frequency. Furthermore, a novel use of Thomson scattering has allowed us to gather direct evidence of kinetic effects associated with the SBS process. Specifically, a measured two-fold increase of the ion temperature has been linked with laser beam excitation of ion-acoustic waves to large amplitudes by the SBS instability. Ion-acoustic waves were excited to large amplitude with a 2{omega} 1.2-ns long interaction beam with intensities up to 5 x 10{sup 15} W cm{sup -2}. The local frequency, amplitude, and spatial range of these waves were measured with a 3{omega} 200ps Thomson-scattering probe beam. These detailed and accurate measurements in well-characterized plasma conditions allow for the first time a direct test of non-linear models of the saturation of SBS. The measured two-fold increase of the ion temperature and its correlation with SBS reactivity measurements is the first quantitative evidence of hot ions created by ion trapping in laser plasmas.

  15. Status of Thomson source at SPARC/PLASMONX

    Energy Technology Data Exchange (ETDEWEB)

    Bacci, A. [INFN-MI/University of Milano (Italy)], E-mail: alberto.bacci@mi.infn.it; Broggi, F.; DeMartinis, C.; Giove, D.; Maroli, C.; Petrillo, V.; Rossi, A.R.; Serafini, L.; Tomassini, P. [INFN-MI/University of Milano (Italy); Cultrera, L.; Di Pirro, G.; Ferrario, M.; Filippetto, D.; Gatti, G.; Pace, E.; Vaccarezza, C.; Vicario, C. [INFN-LNF (Italy); Bosi, F.; Giulietti, D.; Gizzi, L.A. [INFN-Pisa/CNR-IPCF/Pisa and University of Pisa (Italy)] (and others)

    2009-09-01

    The PLasma Acceleration and MONochromatic X-ray generation (PLASMONX) project foresees the installation at LNF of a 0.3 PW (6 J, 20 fs pulse) Ti:Sa laser system, named Frascati Laser for Acceleration and Multidisciplinary Experiments (FLAME), to operate in close connection with the existent SPARC electron photo-injector, allowing for advanced laser/e-beam interaction experiments. Among the foreseen scientific activities, a Thomson scattering experiment between the SPARC electron bunch and the high power laser will be performed. At the present time the linac has been tested and the electron beam characterized up to the maximum operating energy (150 MeV). The beam lines transporting the beam to the interaction chamber with the laser have been designed. The electron final focusing system, featuring a quadrupole triplet and large radius solenoid magnet (ensuring an e-beam waist of 5-10 {mu}m) as well as the whole interaction chamber layout has been defined. The optical transfer line issues: transport up to the interaction; tight focusing; diagnostics and fine positioning; have been solved within the final design. The construction of the building hosting the laser has been completed; delivering and installation of the laser, as much of the beam lines elements will take place in the next months.

  16. ``Bloch wave'' modification of stimulated Raman by stimulated Brillouin scattering

    Science.gov (United States)

    Dodd, E. S.; Vu, H. X.; DuBois, D. F.; Bezzerides, B.

    2013-03-01

    Using the reduced-description particle-in-cell (RPIC) method, we study the coupling of backward stimulated Raman scattering (BSRS) and backward stimulated Brillouin scattering (BSBS) in regimes where the reflectivity involves the nonlinear behavior of particles trapped in the daughter plasma waves. The temporal envelope of a Langmuir wave (LW) obeys a Schrödinger equation where the potential is the periodic electron density fluctuation resulting from an ion-acoustic wave (IAW). The BSRS-driven LWs in this case have a Bloch wave structure and a modified dispersion due to the BSBS-driven spatially periodic IAW, which includes frequency band gaps at kLW˜kIAW/2˜k0 (kLW, kIAW, and k0 are the wave number of the LW, IAW, and incident pump electromagnetic wave, respectively). This band structure and the associated Bloch wave harmonic components are distinctly observed in RPIC calculations of the electron density fluctuation spectra and this structure may be observable in Thomson scatter. Bloch wave components grow up in the LW spectrum, and are not the result of isolated BSRS. Self-Thomson scattered light from these Bloch wave components can have forward scattering components. The distortion of the LW dispersion curve implies that the usual relationship connecting the frequency shift of the BSRS-scattered light and the density of origin of this light may become inaccurate. The modified LW frequency results in a time-dependent frequency shift that increases as the IAW grows, detunes the BSRS frequency matching condition, and reduces BSRS growth. A dependence of the BSRS reflectivity on the IAW Landau damping results because this damping determines the levels of IAWs. The time-dependent reflectivity in our simulations is characterized by bursts of sub-picosecond pulses of BSRS alternating with multi-ps pulses of BSBS, and BSRS is observed to decline precipitously as soon as SBS begins to grow from low levels. In strong BSBS regimes, the Bloch wave effects in BSRS are

  17. Nonlinear phase shifts of modulated light waves with slow and superluminal group delay in stimulated Brillouin scattering.

    Science.gov (United States)

    Arditi, Tal; Granot, Er'el; Sternklar, Shmuel

    2007-09-15

    Brillouin amplification with counterpropagating modulated pump and Stokes light leads to nonlinear modulation-phase shifts of the interacting intensity waves. This is due to a partial transformation of the nonmodulated light component at the input into modulated light at the output as a result of a mixing process with the counterpropagating modulated component of the pump and results in an advance or delay of the input modulation. This occurs for interactions over less than half of a modulation wavelength. Milliwatts of power in a kilometer of standard single-mode fiber give significant tunability of the modulation phase.

  18. 用于汤姆孙散射诊断的高重频高光束质量焦耳级Nd:YAG纳秒激光器∗%High rep etition rate and high b eam quality joule level Nd:YAG nanosecond laser for Thomson scattering diagnosis

    Institute of Scientific and Technical Information of China (English)

    邱基斯; 唐熊忻; 樊仲维; 陈艳中; 葛文琦; 王昊成; 刘昊

    2016-01-01

    A joule-level Nd:YAG nanosecond laser of high repetition frequency and high beam quality is developed for Thom-son scattering diagnosis. The laser is designed as a master oscillator power-amplifier system mainly including single longitudinal mode seed, pre-amplifier unit and energy extraction unit. The single-longitudinal-mode Q-switched laser of a high stability is taken as the seed laser of output pulse at µJ level. The pre-amplifier unit amplifies the µJ-level pulse laser beam into hundreds of mJ level. In order to obtain the high-quality laser beam output, phase conjugation is adopted to compensate for the laser beam distortion. The ultra-filtered FC-770 is taken as an SBS gain medium of 0.0011 cm−1 absorption coefficient, 197.9 GW/cm2 optical breakdown threshold and 3.5 cm/GW gain coefficient. The double-pass amplification of SBS phase conjugation could realize a real-time repair towards the non-uniformity, deformation and wavefront aberration caused by thermal distortion of the optical components and the laser amplifier to achieve the uniform amplified beam output of high quality close to the diffraction limit. In the energy extraction unit, the amplifier of large-diameter slab is used for energy amplification. The size of the slab is 7 mm × 35 mm × 138.2 mm of 56◦ cutting angle and 0.6% Nd3+ doping concentration. The slab is plated by a layer of SiO2 against light leak. Horizontal pumping mode is adopted. And the slow axis of the laser diode is almost the same as the length of the slat and the direction of laser transmission. The single-plane array is composed of 8 groups of vertical stacks and each group consists of 12 laser diode bars of power 200 W. At 200 Hz repetition frequency, 250 µs pump pulse width and 140 A pump current, the up to 2.3 J stored energy can be achieved The energy extraction unit achieves high gain amplification and finally outputs high-quality laser beam. Under the condition of 200 Hz high repetition frequency and 8.23 µ

  19. Inversion mechanism of Joule-Thomson effect. Joule-Thomson koka no hannenkiko

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, T.; Echigo, R.; Yoshida, H.; Tada, S. (Tokyo Institute of Technology, Tokyo (Japan))

    1994-05-25

    An analysis by means of a molecular dynamics method using argon gas has been made on the Joule-Thomson effect and its inversion mechanism from a molecular theory viewpoint. System temperature, pressure and enthalpy under different conditions were calculated, individual results were compared, and amount of gaseous body temperature change before and after expansion was derived. As a result, an explanation was given successfully by using temperature change due to expansion of equivalent internal energy (Joule effect) and its inversion mechanism. Further, it was made clear that the temperature change due to expansion of equivalent enthalpy (Joule-Thomson effect) and its inversion are generated by two mechanisms: internal energy change as a result of inter-molecular works, and mutual conversion between motion and potential energies. The result therefrom verified that the molecular dynamics method is highly effective for quantitative analysis of the Joule-Thomson effect. The method is estimated applicable also to more complex molecules or mixed gaseous bodies. 4 refs., 11 figs.

  20. Inconsistency of Carnot's theorem's proof by William Thomson

    CERN Document Server

    Ihnatovych, V

    2013-01-01

    William Thomson proved Carnot's theorem basing on postulate: "It is impossible, by means of inanimate material agency, to derive mechanical effect from any portion of matter by cooling it below the temperature of the coldest of the surrounding objects". The present paper demonstrates that Carnot's theorem can be proved based on the contrary Thomson's postulate: "It is impossible to use the mechanical effect to the heating the coldest of surrounding objects". A conclusion that Carnot's theorem does not follow from the Thomson's postulate has been drawn.

  1. Espalhamento Thomson no tiroide compacto TC-1

    OpenAIRE

    Luiz Angelo Berni

    1996-01-01

    Resumo: Pela primeira vez foi instalado o diagnóstico de espalhamento Thomson no Toróide Compacto TC-1 da Unicamp. Primeiramente o diagnóstico foi realizado com uma única passagem do laser de rubi ( energia: 3 J -duração: 40 ns ) pelo plasma com injeção axial e radial do laser e observado a 90° .Com a injeção axial obtivemos uma densidade de (4,3 ± 0,7)x1021 m-3 e uma temperatura eletrônica de ( 8 ± 3) eV. Estes resultados foram confirmados com a geometria radial de injeção do laser com uma d...

  2. On the integral Joule-Thomson effect

    Science.gov (United States)

    Maytal, B.-Z.; Shavit, A.

    In this paper, the integral inversion curve concept is developed, involving the locus of all points with a vanishing integral Joule-Thomson (J-T) effect ΔTh and isothermal enthalpy change. The structure of the ΔhT surface over the plane of ( pr,T r) is explored. The maximum isothermal J-T effect ΔhT is related to the normal boiling temperature of the gas. The correlation of the integral effect based on real gas data with a low acentric factor is compared with Van der Waals' equation of state closed form predictions. The maximum integral isenthalpic J-T effect ΔTh which does not undergo a phase change during the expansion, is studied via Van der Waals' equation of state.

  3. Dual color x rays from Thomson or Compton sources

    Science.gov (United States)

    Petrillo, V.; Bacci, A.; Curatolo, C.; Ferrario, M.; Gatti, G.; Maroli, C.; Rau, J. V.; Ronsivalle, C.; Serafini, L.; Vaccarezza, C.; Venturelli, M.

    2014-02-01

    We analyze the possibility of producing two-color x or γ radiation by Thomson/Compton backscattering between a high intensity laser pulse and a two-energy level electron beam, constituted by a couple of beamlets separated in time and/or energy obtained by a photoinjector with comb laser techniques and linac velocity bunching. The parameters of the Thomson source at SPARC_LAB have been simulated, proposing a set of realistic experiments.

  4. Automated classification of single airborne particles from two-dimensional angle-resolved optical scattering (TAOS) patterns by non-linear filtering

    Science.gov (United States)

    Crosta, Giovanni Franco; Pan, Yong-Le; Aptowicz, Kevin B.; Casati, Caterina; Pinnick, Ronald G.; Chang, Richard K.; Videen, Gorden W.

    2013-12-01

    Measurement of two-dimensional angle-resolved optical scattering (TAOS) patterns is an attractive technique for detecting and characterizing micron-sized airborne particles. In general, the interpretation of these patterns and the retrieval of the particle refractive index, shape or size alone, are difficult problems. By reformulating the problem in statistical learning terms, a solution is proposed herewith: rather than identifying airborne particles from their scattering patterns, TAOS patterns themselves are classified through a learning machine, where feature extraction interacts with multivariate statistical analysis. Feature extraction relies on spectrum enhancement, which includes the discrete cosine FOURIER transform and non-linear operations. Multivariate statistical analysis includes computation of the principal components and supervised training, based on the maximization of a suitable figure of merit. All algorithms have been combined together to analyze TAOS patterns, organize feature vectors, design classification experiments, carry out supervised training, assign unknown patterns to classes, and fuse information from different training and recognition experiments. The algorithms have been tested on a data set with more than 3000 TAOS patterns. The parameters that control the algorithms at different stages have been allowed to vary within suitable bounds and are optimized to some extent. Classification has been targeted at discriminating aerosolized Bacillus subtilis particles, a simulant of anthrax, from atmospheric aerosol particles and interfering particles, like diesel soot. By assuming that all training and recognition patterns come from the respective reference materials only, the most satisfactory classification result corresponds to 20% false negatives from B. subtilis particles and classification method may be adapted into a real-time operation technique, capable of detecting and characterizing micron-sized airborne particles.

  5. Fuzzy logic program at SGS-Thomson

    Science.gov (United States)

    Pagni, Andrea; Poluzzi, Rinaldo; Rizzotto, GianGuido

    1993-12-01

    From its conception by Professor Lotfi A. Zadeh in the early '60s, Fuzzy Logic has slowly won acceptance, first in the academic world, then in industry. Its success is mainly due to the different perspective with which problems are tackled. Thanks to Fuzzy Logic we have moved from a numerical/analytical description to a quantitative/qualitative one. It is important to stress that this different perspective not only allows us to solve analysis/control problems at lower costs but can also allow otherwise insoluble problems to be solved at acceptable costs. Of course, it must be stressed that Fuzzy Systems cannot match the computational precision of traditional techniques but seek, instead, to find acceptable solutions in shorter times. Recognizing the enormous importance of fuzzy logic in the markets of the future, SGS-THOMSON intends to produce devices belonging to a new class of machines: Fuzzy Computational Machines. For this purpose a major research project has been established considering the architectural aspects and system implications of fuzzy logic, the development of dedicated VLSI components and supporting software.

  6. Resource Letter NO-1: Nonlinear Optics

    Science.gov (United States)

    Garmire, Elsa

    2011-03-01

    This Resource Letter provides a guide to the literature on nonlinear optics. Books, journals, and websites are introduced that cover the general subject. Journal articles and websites are cited covering the following topics: second-order nonlinearities in transparent media including second-harmonic generation and optical parametric oscillation, third-order and higher nonlinearities, nonlinear refractive index, absorptive nonlinearities such as saturable absorption and multiphoton absorption, and scattering nonlinearities such as stimulated Raman scattering and stimulated Brillouin scattering. Steady-state and transient phenomena, fiber optics, solitons, nonlinear wave mixing, optical phase conjugation, nonlinear spectroscopy, and multiphoton microscopy are all outlined.

  7. Thomson backscattering from laser generated, relativistically moving high-density electron layers

    CERN Document Server

    Paz, Athena E; Rödel, Christian; Schnell, Michael; Jäckel, Oliver; Kaluza, Malte C; Paulus, Gerhard G

    2012-01-01

    We show experimentally that XUV radiation is produced when a laser pulse is Thomson backscattered from sheets of relativistic electrons which are formed at the rear-surface of a foil irradiated on its front side by a high-intensity laser. An all-optical setup is realized using the Jena Titanium:Sapphire TW laser system (JETI). The main pulse is split into two pulses: one to accelerate electrons from thin aluminum foil targets to energies of the order of some MeV and the other, counterpropagating probe pulse is Thomson-backscattered off these electrons when they exit the target rear side. The process produced photons within a wide spectral range of some tens of eV as a result of the broad electron energy distribution. The highest scattering intensity is observed when the probe pulse arrives at the target rear surface 100 fs after the irradiation of the target front side by the pump pulse, corresponding to the maximum flux of hot electrons at the interaction region. These results can provide time-resolved infor...

  8. Analysis of interface kinetics: solutions of the Gibbs-Thomson-type equation and of the kinetic rate theory

    Science.gov (United States)

    Salhoumi, A.; Galenko, P. K.

    2017-04-01

    Rapidly moving solid-liquid interface is treated analytically and numerically. Derivation and qualitative analysis of interface propagation kinetics is presented. Quantitative predictions of solutions, which follow from the Kinetic Rate Theory and the solution of Gibbs-Thomson-type equation, are compared with Molecular Dynamics simulation data (MD-data) on crystallization and melting of fcc-lattice of nickel. It is shown in the approximation of a linear behavior of the interface velocity versus undercooling that the Gibbs-Thomson-type equation and kinetic rate theory describe MD-data well enough, in the range of small growth velocity and within the range of relatively small undercooling, with a relative error for the obtained values of kinetic coefficient of the order 1.1%. Within the small-and long range of undercooling, in nonlinear behavior of the interface velocity versus undercooling, the kinetic rate theory disagrees sharply with MD-data, qualitatively and quantitatively, unlike to the Gibbs-Thomson-type equation which is in a good agreement with MD-data within the whole range of undercooling and crystal growth velocity.

  9. Ground State Energy of Unitary Fermion Gas with the Thomson Problem Approach

    Institute of Scientific and Technical Information of China (English)

    CHEN Ji-Sheng

    2007-01-01

    The dimensionless universal coefficient § defines the ratio of the unitary fermions energy density to that for the ideal non-interacting ones in the non-relativistic limit with T = 0. The classical Thomson problem is taken as a nonperturbative quantum many-body arm to address the ground state energy including the Iow energy nonlinear quantum fluctuation/correlation effects. With the relativistic Dirac continuum field theory formalism, the concise expression for the energy density functional of the strongly interacting limit fermions at both finite temperature and density is obtained. Analytically, the universal factor is calculated to be § = 4/9. The energy gap is △ = 5/18 k2f/(2m).

  10. 75 FR 49528 - Thomson Reuters Legal, Legal Editorial Operations Cleveland Office Including Workers Whose...

    Science.gov (United States)

    2010-08-13

    ... Employment and Training Administration Thomson Reuters Legal, Legal Editorial Operations Cleveland Office... Assistance on June 22, 2010, applicable to workers of Thomson Reuters Legal, Legal Editorial Operations... unemployment insurance (UI) tax account under the name West Publishing Corporation, a Thomson Reuters...

  11. Possible Global Minimum Lattice Configurations for Thomson`s Problem of Charges on a Sphere

    Energy Technology Data Exchange (ETDEWEB)

    Altschuler, E.L.; Tipton, R.; Dowla, F. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Williams, T.J. [Los Alamos National Laboratory, MS B256, Los Alamos, New Mexico 87545 (United States); Ratner, E.R. [Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Stong, R. [Department of Mathematics, Rice University, Houston, Texas 77004 (United States); Wooten, F. [Department of Applied Science, University of California Davis/Livermore, P.O. Box 808, Livermore, California 94551 (United States)

    1997-04-01

    What configuration of N point charges on a conducting sphere minimizes the Coulombic energy? J.J. Thomson posed this question in 1904. For N{le}112, numerical methods have found apparent global minimum-energy configurations; but the number of local minima appears to grow exponentially with N, making many such methods impractical. Here we describe a topological/numerical procedure that we believe gives the global energy minimum lattice configuration for N of the form N=10(m{sup 2}+n{sup 2}+mn)+2 (m, n positive integers). For those N with more than one lattice, we give a rule to choose the minimum one. {copyright} {ital 1997} {ital The American Physical Society}

  12. A variational proof of Thomson's theorem

    Energy Technology Data Exchange (ETDEWEB)

    Fiolhais, Miguel C.N., E-mail: miguel.fiolhais@cern.ch [Department of Physics, City College of the City University of New York, 160 Convent Avenue, New York, NY 10031 (United States); Department of Physics, New York City College of Technology, 300 Jay Street, Brooklyn, NY 11201 (United States); LIP, Department of Physics, University of Coimbra, 3004-516 Coimbra (Portugal); Essén, Hanno [Department of Mechanics, Royal Institute of Technology (KTH), Stockholm SE-10044 (Sweden); Gouveia, Tomé M. [Cavendish Laboratory, 19 JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2016-08-12

    Thomson's theorem of electrostatics, which states the electric charge on a set of conductors distributes itself on the conductor surfaces to minimize the electrostatic energy, is reviewed in this letter. The proof of Thomson's theorem, based on a variational principle, is derived for a set of normal charged conductors, with and without the presence of external electric fields produced by fixed charge distributions. In this novel approach, the variations are performed on both the charge densities and electric potentials, by means of a local Lagrange multiplier associated with Poisson's equation, constraining the two variables.

  13. Improved thermoelectric cooling based on the Thomson effect

    Science.gov (United States)

    Snyder, G. Jeffrey; Khanna, Raghav; Toberer, Eric S.; Heinz, Nicholas A.; Seifert, Wolfgang

    2016-05-01

    Traditional thermoelectric cooling relies on the Peltier effect which produces a temperature drop limited by the figure of merit, zT. This cooling limit is not required from classical thermodynamics but can be traced to problems of thermoelectric compatibility. Alternatively, if a thermoelectric cooler can be designed to achieve full thermoelectric compatibility, lower temperature can be achieved even if the zT is low. In such a device the Thomson effect plays an important role. We present the theoretical concept of a "Thomson cooler," for cryogenic cooling which is designed to maintain thermoelectric compatibility and we derive the requirements for the Seebeck coefficient.

  14. A computational thermodynamics approach to the Gibbs-Thomson effect

    Energy Technology Data Exchange (ETDEWEB)

    Shahandeh, Sina [Department of Material Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)]. E-mail: sinashahandeh@yahoo.com; Nategh, Said [Department of Material Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2007-01-15

    In two-phase system, curvature of interface leads to increase of solute concentration in matrix. This effect plays a significant role in solidification, precipitation, nucleation and growth and coarsening. There are number of models and formulas for Gibbs-Thomson effect in binary alloys. In this paper with the help of CALPHAD calculations, new approach for describing this effect in binary and multicomponent systems is proposed. In this generalized method no traditional simplifying assumption are considered and this yield to more accurate result for Gibbs-Thomson phenomenon. This model is compared with previous formulas in some case alloying systems.

  15. Program For Joule-Thomson Analysis Of Mixed Cryogens

    Science.gov (United States)

    Jones, Jack A.; Lund, Alan

    1994-01-01

    JTMIX computer program predicts ideal and realistic properties of mixed gases at temperatures between 65 and 80 K. Performs Joule-Thomson analysis of any gaseous mixture of neon, nitrogen, various hydrocarbons, argon, oxygen, carbon monoxide, carbon dioxide, and hydrogen sulfide. When used in conjunction with DDMIX computer program of National Institute of Standards and Technology (NIST), JTMIX accurately predicts order-of-magnitude increases in Joule-Thomson cooling capacities occuring when various hydrocarbons added to nitrogen. Also predicts boiling temperature of nitrogen depressed from normal value to as low as 60 K upon addition of neon. Written in Turbo C.

  16. Narrow bandwidth Thomson photon source development using Laser-Plasma Accelerators

    Science.gov (United States)

    Geddes, C. G. R.; van Tilborg, J.; Tsai, H.-E.; Toth, Cs.; Vay, J.-L.; Lehe, R.; Schroeder, C. B.; Esarey, E.; Rykovanov, S. G.; Grote, D. P.; Friedman, A.; Leemans, W. P.

    2016-10-01

    Compact, high-quality photon sources at MeV energies are being developed based on Laser-Plasma Accelerators (LPAs). An independent scattering laser with controlled pulse shaping in frequency and amplitude can be used together with laser guiding to realize high photon yield and narrow bandwidth. Simulations are presented on production of controllable narrow bandwidth sources using the beam and plasma capabilities of LPAs. Recent experiments and simulations demonstrate controllable LPAs in the energy range appropriate to MeV Thomson sources. Design of experiments and laser capabilities to combine these elements will be presented, towards a compact photon source system. A dedicated facility under construction will be described. Work supported by US DOE NNSA DNN R&D and by Sc. HEP under contract DE-AC02-05CH11231.

  17. Characterization of a thermoelectric/Joule–Thomson hybrid microcooler

    NARCIS (Netherlands)

    Cao, H.; Vanapalli, S.; Holland, H.J.; Vermeer, C.H.; Brake, ter H.J.M.

    2016-01-01

    Micromachined Joule–Thomson (JT) coolers are attractive for cooling small electronic devices. However, microcoolers operated with pure gases, such as nitrogen gas require high pressures of about 9 MPa to achieve reasonable cooling powers. Such high pressures severely add complexity to the developmen

  18. Joule-Thomson effect in liquid He II

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.J.

    The paper reports that the Joule-Thomson coefficients of liquid He II are extraordinarily high for temperatures far below the lambda point as compared with ordinary real gases or liquids. Its effect on the throttling process of He II was shown to be quite significant and should be taken into account when dealing with transport processes of He II.

  19. Scale invariance and scaling law of Thomson backscatter spectra by electron moving in laser-magnetic resonance regime

    CERN Document Server

    Fu, Yi-Jia; Wan, Feng; Sang, Hai-Bo; Xie, Bai-Song

    2016-01-01

    The Thomson scattering spectra by an electron moving in the laser-magnetic resonance acceleration regime are computed numerically and analytically. The dependence of fundamental frequency on the laser intensity and magnetic resonance parameter is examined carefully. By calculating the emission of a single electron in a circularly polarized plane-wave laser field and constant external magnetic field, the scale invariance of the radiation spectra is evident in terms of harmonic orders. The scaling law of backscattered spectra are exhibited remarkably for the laser intensity as well for the initial axial momentum of the electron when the cyclotron frequency of the electron approaches the laser frequency. The results indicate that the magnetic resonance parameter plays an important role on the strength of emission. And the rich features of scattering spectra found may be applicable to the radiation source tunability.

  20. Fluid flow and heat transfer in Joule-Thomson coolers coupled with infrared detectors

    Science.gov (United States)

    Du, Bingyan; Jia, Weimin

    2011-08-01

    Joule-Thomson coolers have been widely used in infrared detectors with respect to compact, light and low cost. For self-regulating Joule-Thomson cooler, its performance is required to be improved with the development of higher mass and larger diameter of focal plane infrared detectors. Self-regulating Joule-Thomson coolers use a limited supply of high pressure gas to support the cooling of infrared detectors. In order to develop Joule-Thomson coolers with a given volume of stored gas, it is important to study on fluid flow and heat transfer of Joule-Thomson coolers coupled with infrared detectors, especially the starting time of Joule-Thomson coolers. A serial of experiments of Joule-Thomson coolers coupled with 128×128 focal plane infrared detectors have been carried out. The exchanger of coolers are made of a d=0.5mm capillary finned with a copper wire. The coolers are self-regulated by bellows and the diameters are about 8mm. Nitrogen is used as working gas. The effect of pressure of working gas has been studied. The relation between starting time and pressure of working gas is proved to fit exponential decay. Error analysis has also been carried. It is crucial to study the performance of Joule-Thomson coolers coupled with infrared detectors. Deeper research on Joule-Thomson coolers will be carried on to improve the Joule-Thomson coolers for infrared detectors.

  1. The exact solutions for a nonisospectral nonlinear Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Ning Tongke [Finance College, Shanghai Normal University, Shanghai 200234 (China)], E-mail: tkning@shnu.edu.cn; Zhang Weiguo; Jia Gao [Science College, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2009-10-30

    In this paper, lax pair for the nonisospectral nonlinear Schroedinger hierarchy is given, the time dependence of nonisospectral scattering data is derived and exact solutions for the nonisospectral nonlinear Schroedinger hierarchy are obtained through the inverse scattering transform.

  2. Study on the resonance Rayleigh scattering spectra and resonance non-linear spectra of congo red-amikacin system and its analytical application

    Institute of Scientific and Technical Information of China (English)

    LIU; Shaopu; HU; Xiaoli; LIU; Zhongfang

    2006-01-01

    The interaction between congo red (CR) and amikacin (AMK) was studied by resonance Rayleigh scattering (RRS), frequency doubling scattering (FDS) and second-order scattering (SOS) combining with absorption spectrum. In a weak acidic medium, CR combined with AMK to form an ion association complex with the composition ratio of 1∶1 by electrostatic interaction, hydrophobicity and charge transferring effect. As a result, the new spectra of RRS, FDS, and SOS appeared and their intensities were enhanced greatly. The maximum wavelengths of RRS, FDS and SOS were located at 563 nm, 475 nm and 940 nm, and the scattering intensities were proportional to the concentration of AMK. These three methods have very high sensitivities, and the detection limits were 4.0 ng·mL(1 for RRS, 3.6 ng·mL(1 for FDS and 1.9 ng·mL-1 for SOS, respectively. At the same time, the methods have better selectivity. A new method for the determination of trace amounts of AMK with congo red by resonance scattering technique has been developed. The recovery for the determination of AMK in blood serum and urine sample was between 95.5% and 105.5%. In this study, the properties, such as enthalpy of formation, charge distribution and mean polarizability, were calculated by AM1 quantum chemistry method. In addition, the reaction mechanism and the reasons for the enhancement of scattering spectra were discussed.

  3. Impact of the Thomson effect on concentrating photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Ari, Nimrod [School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Porter School of Environmental Studies, Tel Aviv University, Tel Aviv 69978 (Israel); Kribus, Abraham [School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel)

    2010-08-15

    Photovoltaic cells convert most of the absorbed photon energy to heat. Removal of the heat by thermal conduction creates a temperature gradient that is significant in concentrating photovoltaic (CPV) cells subject to high incident radiation flux. The Thomson effect interaction between this temperature gradient and the electrical current in the cell can either increase or decrease the electrical power output of the cell. Here we show that the Thomson effect has a non-negligible impact on the conversion efficiency of Ge-based CPV cells, which is comparable to the impact of typical series resistance, and therefore this effect should be considered in cell modeling. The effect may also have a significant impact on the performance of other high power optoelectronic devices. (author)

  4. Thomson Reuters to release Book Citation Index later this year

    Science.gov (United States)

    Aldred, Maxine

    2011-08-01

    Thomson Reuters will launch its new Book Citation Index later this year. Projected to include 25,000 volumes from major publishers and university presses in science, social science, and the humanities, the Book Citation Index will cover scholarly books (both series and nonseries) that present original research or literature reviews. The current effort regarding the science section is focused on books published from 2005 to the present. AGU has sent copies of its catalog for inclusion in the Book Citation Index, but the final selection will be made by Thomson Reuters, using its internal selection criteria, which may be found at http://wokinfo.com/wok/media/pdf/BKCI-SelectionEssay_web.pdf.

  5. Development of a high resolution and high dispersion Thomson parabola.

    Science.gov (United States)

    Jung, D; Hörlein, R; Kiefer, D; Letzring, S; Gautier, D C; Schramm, U; Hübsch, C; Öhm, R; Albright, B J; Fernandez, J C; Habs, D; Hegelich, B M

    2011-01-01

    Here, we report on the development of a novel high resolution and high dispersion Thomson parabola for simultaneously resolving protons and low-Z ions of more than 100 MeV/nucleon necessary to explore novel laser ion acceleration schemes. High electric and magnetic fields enable energy resolutions of ΔE∕E parabola for ion energies of more than 30 MeV/nucleon.

  6. Theoretical study on a Miniature Joule-Thomson & Bernoulli Cryocooler

    Science.gov (United States)

    Xiong, L. Y.; Kaiser, G.; Binneberg, A.

    2004-11-01

    In this paper, a microchannel-based cryocooler consisting of a compressor, a recuperator and a cold heat exchanger has been developed to study the feasibility of cryogenic cooling by the use of Joule-Thomson effect and Bernoulli effect. A set of governing equations including Bernoulli equations and energy equations are introduced and the performance of the cooler is calculated. The influences of some working conditions and structure parameters on the performance of coolers are discussed in details.

  7. The Joule-Thomson effect in confined fluids

    Science.gov (United States)

    Schoen, Martin

    1999-08-01

    The Joule-Thomson effect is discussed for a fluid composed of spherically symmetric Lennard-Jones(12,6) molecules (of “diameter” σ) confined between two planar, rigid, structureless solid substrates separated by sz=10 and 20 σ. The effect of “strong” and “weak” of the substrate is studied by employing fluid-substrate potentials with and without attractive interactions, respectively. The focal point of this study is the confinement-induced depression of the inversion temperature Tinv with respect to the bulk value. It is defined such that during a Joule-Thomson expansion the temperature of a (confined or bulk) gas remains constant. In the limit of vanishing gas density, Tinv is computed from the second virial coefficient defined through a density expansion of the transverse stress T∥ in the gas. For higher densities Tinv is computed from the (transverse) expansion coefficient α∥ which is accessible through density and enthalpy fluctuations in mixed stress-strain ensemble Monte Carlo simulations. Results of these simulations are analyzed in terms of a mean-field theory which provides a qualitatively correct description of the Joule-Thomson effect in confined fluids. The smaller sz the more depressed (with respect to the bulk) is Tinv. The density dependence of Tinv is different for “strong” and “weak” substrates. Without attractive fluid-fluid interactions Tinv does not exist and the confined gas is always heated during a Joule-Thomson expansion. In this case α∥ is independent of the substrate material.

  8. Joule—Thomson effect in liquid He II

    Science.gov (United States)

    Huang, B. J.

    It has been shown in the present study that the Joule—Thomson coefficients of liquid He II are extraordinarily high for temperatures far below the lambda point as compared with ordinary real gases or liquids. Its effect on the throttling process of He II was shown to be quite significant and should be taken into account when dealing with transport processes of He II.

  9. Instrucciones de acceso a Thomson Reuters Proview (Aranzadi)

    OpenAIRE

    Biblioteca de la Universidad de Málaga

    2016-01-01

    PROVIEW es la plataforma de revistas y libros digitales de Thomson Reuters (Aranzadi) dirigida específicamente a profesionales, estudiantes y docentes del Derecho. La Universidad de Málaga proporciona acceso institucional a la misma, mediante reconocimiento de los rangos IP, por lo que, salvo que se indique lo contrario en cada registro bibliográfico, el usuario no necesita utilizar identificación por nombre de usuario y contraseña.

  10. Joule-Thomson Cooling Due to CO2 Injection into Natural Gas Reservoirs

    OpenAIRE

    Oldenburg, Curtis M.

    2006-01-01

    Depleted natural gas reservoirs are a promising target for Carbon Sequestration with Enhanced Gas Recovery (CSEGR). The focus of this study is on evaluating the importance of Joule-Thomson cooling during CO2 injection into depleted natural gas reservoirs. Joule-Thomson cooling is the adiabatic cooling that accompanies the expansion of a real gas. If Joule-Thomson cooling were extreme, injectivity and formation permeability could be altered by the freezing of residual water, formation of ...

  11. Application of the Banach Fixed-Point Theorem to the Scattering Problem at a Nonlinear Three-Layer Structure with Absorption

    Directory of Open Access Journals (Sweden)

    V. S. Serov

    2010-01-01

    Full Text Available A method based on the Banach fixed-point theorem is proposed for obtaining certain solutions (TE-polarized electromagnetic waves of the Helmholtz equation describing the reflection and transmission of a plane monochromatic wave at a nonlinear lossy dielectric film situated between two lossless linear semiinfinite media. All three media are assumed to be nonmagnetic and isotropic. The permittivity of the film is modelled by a continuously differentiable function of the transverse coordinate with a saturating Kerr nonlinearity. It is shown that the solution of the Helmholtz equation exists in form of a uniformly convergent sequence of iterations of the equivalent Volterra integral equation. Numerical results are presented.

  12. Stability of charge inversion, Thomson problem, and application to electrophoresis

    Science.gov (United States)

    Patra, Michael; Patriarca, Marco; Karttunen, Mikko

    2003-03-01

    We analyze charge inversion in colloidal systems at zero temperature using stability concepts, and connect this to the classical Thomson problem of arranging electrons on sphere. We show that for a finite microion charge, the globally stable, lowest-energy state of the complex formed by the colloid and the oppositely charged microions is always overcharged. This effect disappears in the continuous limit. Additionally, a layer of at least twice as many microions as required for charge neutrality is always locally stable. In an applied external electric field the stability of the microion cloud is reduced. Finally, this approach is applied to a system of two colloids at low but finite temperature.

  13. The Method of Fixed Point on the Nonlinear Inversion for Seismic Scattering%地震波散射非线性反演的不动点方法

    Institute of Scientific and Technical Information of China (English)

    杨晓春; 李小凡; 张美根

    2007-01-01

    旨在构造一种新的地震波散射非线性反演方法.将函数论中的不动点理论引入到地震波散射非线性反演中,并构造出了波相空间里关于速度参数的具体的压缩映射算子,从而从理论上保证了速度参数不动点的存在性和寻找途径.在此基础上还证明了利用此速度参数的不动点和正演所得到的相应的波值也是波函数本身的不动点,并利用不动点的稳定属性得出此不动点是一个最优的点.最后,文中还用该方法给出了具体的数值算例,间接地证实了本方法的实用性.%The work described in this paper focuses on making a new method of nonlinear inversion for seismic scattering. The fixed-point theory is incorporated into the nonlinear seismic scattering inversion and the method to create a series of contractive mappings of velocity parameter's in the mapping space of wave is given. The existence of fixed point of velocity parameter is testified by the results and the method to find it is given. Furthermore, it is proved that the value obtained by taking the fixed point of velocity parameter into wave equation is the fixed point of the wave of the contractive mapping. Because of the stabilities quality of the fixed point, it is the global optimum. The given numerical example shows the validity of the method.

  14. Multiple Low Energy Long Bone Fractures in the Setting of Rothmund-Thomson Syndrome

    Directory of Open Access Journals (Sweden)

    Nicholas Beckmann

    2015-01-01

    Full Text Available Rothmund-Thomson syndrome is a rare autosomal recessive genodermatosis characterized by a poikilodermatous rash starting in infancy as well as various skeletal anomalies, juvenile cataracts, and predisposition to certain cancers. Although Rothmund-Thomson syndrome is associated with diminished bone mineral density in addition to multiple skeletal abnormalities, there are few reports of the association with stress fractures or pathologic fractures in low energy trauma or delayed healing of fractures. Presented is a case of a young adult male with Rothmund-Thomson syndrome presenting with multiple episodes of long bone fractures caused by low energy trauma with one of the fractures exhibiting significantly delayed healing. The patient was also found to have an asymptomatic stress fracture of the lower extremity, another finding of Rothmund-Thomson syndrome rarely reported in the literature. A thorough review of the literature and comprehensive presentation of Rothmund-Thomson syndrome is provided in conjunction with our case.

  15. Inelastic X-Ray Scattering from Shocked Liquid Deuterium

    Science.gov (United States)

    Regan, S. P.; Falk, K.; Gregori, G.; Radha, P. B.; Hu, S. X.; Boehly, T. R.; Crowley, B. J. B.; Glenzer, S. H.; Landen, O. L.; Gericke, D. O.; Döppner, T.; Meyerhofer, D. D.; Murphy, C. D.; Sangster, T. C.; Vorberger, J.

    2012-12-01

    The Fermi-degenerate plasma conditions created in liquid deuterium by a laser-ablation—driven shock wave were probed with noncollective, spectrally resolved, inelastic x-ray Thomson scattering employing Cl Lyα line emission at 2.96 keV. These first x-ray Thomson scattering measurements of the microscopic properties of shocked deuterium show an inferred spatially averaged electron temperature of 8±5eV, an electron density of 2.2(±0.5)×1023cm-3, and an ionization of 0.8 (-0.25, +0.15). Two-dimensional hydrodynamic simulations using equation-of-state models suited for the extreme parameters occurring in inertial confinement fusion research and planetary interiors are consistent with the experimental results.

  16. Tunable, all-optical quasi-monochromatic Thomson X-ray source

    CERN Document Server

    Khrennikov, K; Buck, A; Xu, J; Heigoldt, M; Veisz, L; Karsch, S

    2014-01-01

    Brilliant X-ray sources are of great interest for many research fields from biology via medicine to material research. The quest for a cost-effective, brilliant source with unprecedented temporal resolution has led to the recent realization of various high-intensity-laser-driven X-ray beam sources. Here we demonstrate the first all-laser-driven, energy-tunable and quasi-monochromatic X-ray source based on Thomson backscattering. This is a decisive step beyond previous results, where the emitted radiation exhibited an uncontrolled broad energy distribution. In the experiment, one part of the laser beam was used to drive a few-fs bunch of quasi-monoenergetic electrons from a Laser-Wakefield Accelerator (LWFA), while the remainder was scattered off the bunch in a near-counter-propagating geometry. When the electron energy was tuned from 10-50 MeV, narrow-bandwidth X-ray spectra peaking at 5-35keV were directly measured, limited in photon energy by the sensitivity curve of our X-ray detector. Due to the ultrashor...

  17. Theoretical considerations for X-ray phase contrast mammography by Thomson source

    Energy Technology Data Exchange (ETDEWEB)

    Cedola, A. [Istituto di Fotonica e Nanotecnologie-Consiglio Nazionale delle Ricerche (IFN-CNR), via Cineto Romano 42, I-00156 Roma (Italy); INFN, Sezione di Roma1, Piazzale Aldo Moro2, 00185 Rome (Italy)], E-mail: cedola@ifn.cnr.it; Bukreeva, I.; Lagomarsino, S. [Istituto di Fotonica e Nanotecnologie-Consiglio Nazionale delle Ricerche (IFN-CNR), via Cineto Romano 42, I-00156 Roma (Italy); INFN, Sezione di Roma1, Piazzale Aldo Moro2, 00185 Rome (Italy); Petrillo, V.; Maroli, C. [Universita di Milano, Physics Department and INFN Sezione di Milano Via Celoria 16, 20133 Milano (Italy)

    2009-09-01

    The advent, in the near future, of compact X-ray sources like Thomson Back-Scattering (TBS) will allow the clinical application of advanced X-ray imaging techniques, such as phase contrast, with higher sensitivity and lower impact in terms of dose delivery. In this work, we theoretically investigated the possibility of using such sources for phase contrast imaging of micro-calcifications included in a breast tissue. In our study we analyzed the phase and amplitude distribution of the TBS source and we showed that this source can be used for phase contrast imaging since the source coherence at the sample position is sufficiently high for achieving good contrast and micrometer spatial resolution. Indeed the spatial coherence of a TBS source is closer to that of a synchrotron radiation source, and much better than that of a laboratory source. Moreover, we showed the advantages of phase imaging with respect to standard absorption imaging, in the specific case of micro-calcifications detection.

  18. Equation-of-State Measurements of Resorcinol Formaldehyde Foam Using Imaging X-Ray Thomson Spectrometer

    Science.gov (United States)

    Belancourt, Patrick; Theobald, W.; Keiter, P. A.; Collins, T. J. B.; Bonino, M. J.; Kozlowski, P.; Drake, R. P.

    2015-11-01

    Understanding the equation of state of materials under shocked conditions is important for laboratory astrophysics and high-energy-density physics experiments. This talk will focus on experiments dedicated to developing a platform for measuring the equation of state of shocked foams on OMEGA EP. The foam used in the development of this platform is resorcinol formaldehyde foam with an initial density of 0.34 g/cc. One OMEGA EP beam drives a shock into the foam, while the remaining three beams irradiate a nickel foil to create the x-ray backlighter. The primary diagnostic for this platform, the imaging x-ray Thomson spectrometer (IXTS), spectrally resolves the scattered x-ray beam while imaging in one spatial dimension. The IXTS is ideally suited to measure plasma conditions upstream, downstream and at the shock front in the foam. Preliminary results from these experiments will be shown. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944, the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas DE-NA0001840, and by the National Laser User Facility Program DE-NA0000850.

  19. Preliminary results of equation of state measurements using imaging x-ray Thomson spectrometer

    Science.gov (United States)

    Belancourt, Patrick; Theobald, Wolfgang; Keiter, Paul; Collins, Timothy; Bonino, Mark; Kozlowski, Pawel; Drake, Paul; University of Michigan Team; LaboratoryLaser Energetics Team; University of Oxford Team

    2014-10-01

    Understanding the equation of state of materials under shocked conditions is important for laboratory astrophysics and high-energy-density physics experiments. The goal of the experiments discussed here is to create a platform for equation of state measurements in shocked foams on Omega EP. The target of interest for these experiments is shocked carbonized resorcinol formaldehyde foam with an initial density of 0.34 g/cc. Lasers irradiate an ablator, driving a shock into the foam. Plasma conditions ahead of the shock, at the shock and behind the shock are diagnosed using the imaging x-ray Thomson spectrometer (IXTS). The IXTS is capable of spectrally resolving the scattered x-ray beam while imaging in one spatial dimension. Preliminary results from these experiments will be shown. This work is funded by the U.S. Department of Energy, through the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-NA0001840, and the National Laser User Facility Program, Grant Number DE-NA0000850, and through the Laboratory for Laser Energetics, University of Rochester by the NNSA/OICF under Cooperative Agreement No. DE-FC52-08NA28302.

  20. Design of and data reduction from compact Thomson parabola spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, J. T.; Willis, C.; Freeman, R. R.; Van Woerkom, L. [Physics Department, Ohio State University, Columbus, Ohio 43210 (United States)

    2011-03-15

    Thomson parabola spectrometers are used to characterize MeV ion beams produced in high intensity laser interactions. These spectrometers disperse multiple ion species according to their charge to mass ratio through the use of parallel electric and magnetic fields. Analytical solutions for ion deflection in electric and magnetic fields have been used to extract ion spectra with the assumption that fringing effects are negligible. Experimental space restrictions and dynamic range requirements necessitate designs that stress the analytical assumptions. Depending on design parameters, the error in the analytical assumption can be comparable to the energy resolution. Estimates are provided to approximate the error on the total ion deflection. A method for modeling ion trajectories including fringing effects is presented using software freely available or in common use. The magnetostatic fields are modeled in 3D, including material properties of nearby magnetic materials using RADIA. Electrostatic fields are modeled in 2D for a spectrometer implementing angled plates using the partial differential equation toolbox in MATLAB. Using these models to calculate the ion trajectory allows for analysis of a Thomson parabola spectrometer with an arbitrary field configuration.

  1. Design of and data reduction from compact Thomson parabola spectrometers.

    Science.gov (United States)

    Morrison, J T; Willis, C; Freeman, R R; Van Woerkom, L

    2011-03-01

    Thomson parabola spectrometers are used to characterize MeV ion beams produced in high intensity laser interactions. These spectrometers disperse multiple ion species according to their charge to mass ratio through the use of parallel electric and magnetic fields. Analytical solutions for ion deflection in electric and magnetic fields have been used to extract ion spectra with the assumption that fringing effects are negligible. Experimental space restrictions and dynamic range requirements necessitate designs that stress the analytical assumptions. Depending on design parameters, the error in the analytical assumption can be comparable to the energy resolution. Estimates are provided to approximate the error on the total ion deflection. A method for modeling ion trajectories including fringing effects is presented using software freely available or in common use. The magnetostatic fields are modeled in 3D, including material properties of nearby magnetic materials using RADIA. Electrostatic fields are modeled in 2D for a spectrometer implementing angled plates using the partial differential equation toolbox in MATLAB(®). Using these models to calculate the ion trajectory allows for analysis of a Thomson parabola spectrometer with an arbitrary field configuration.

  2. Miniature Joule-Thomson cryocooling principles and practice

    CERN Document Server

    Maytal, Ben-Zion

    2013-01-01

    This book is the first in English being entirely dedicated to Miniature Joule-Thomson Cryocooling. The category of Joule-Thomson (JT) cryocoolers takes us back to the roots of cryogenics, in 1895, with figures like Linde and Hampson. The "cold finger" of these cryocoolers is compact, lacks moving parts, and sustains a large heat flux extraction at a steady temperature. Potentially, they cool down unbeatably fast. For example, cooling to below 100 K (minus 173 Celsius) might be accomplished within only a few seconds by liquefying argon. A level of about 120 K can be reached almost instantly with krypton. Indeed, the species of coolant plays a central role dictating the size, the intensity and the level of cryocooling. It is the JT effect that drives these cryocoolers and reflects the deviation of the "real" gas from the ideal gas properties. The nine chapters of the book are arranged in five parts. • The Common Principle of Cyrocoolers shared across the broad variety of cryocooler types • Theoretical Aspec...

  3. CMB Spectral Distortions from the Scattering of Temperature Anisotropies

    OpenAIRE

    Stebbins, Albert

    2007-01-01

    Thomson scattering of CMBR temperature anisotropies will cause the spectrum of the CMBR to differ from blackbody even when one resolves all anisotropies. A formalism for computing the anisotropic and inhomogeneous spectral distortions of intensity and polarization is derived in terms of Lorentz invariant central moments of the temperature distribution. The formalism is non-perturbative, requiring neither small anisotropies nor small metric or matter inhomogeneities; but it does assume cold el...

  4. Incoherent subharmonic light scattering in isotropic media.

    Science.gov (United States)

    Feng, D H; Xu, Z Z; Feng, X L; Jia, T Q; Li, X X; Liu, J S

    2005-02-01

    Incoherent subharmonic light scattering in isotropic media is a new kind of nonlinear light scattering, which involves single input photon and multiple output photons of equal frequency. We investigate theoretically the dependence of the subharmonic scattering intensity on the hyperpolarizability of molecules and the incident intensity using nonlinear optics theory similar to that used for Hyper-Rayleigh scattering and degenerate optical parametric oscillators. It is derived that the subharmonic scattering intensities grow exponentially or superexponentially with the hyperpolarizability of molecules and the incident intensity.

  5. Coarsening kinetics, thermodynamic properties, and interfacial characteristics of δ' precipitates in Al-Li alloys taking into account the Gibbs-Thomson effect

    Science.gov (United States)

    Tsao, C.-S.; Chen, C.-Y.; Huang, J.-Y.

    2004-11-01

    The structure factor model of small-angle x-ray scattering (SAXS) analysis is validated herein by transmission electron microscopy (TEM) result regarding the volume fraction and size of δ' precipitates. The kinetic behaviors of the number density and volume fraction of δ' precipitates in Al-Li alloys during the coarsening stage are quantitatively investigated by SAXS. The results indicate that the conventional kinetic law must be replaced by a more general equation that incorporates the Gibbs-Thomson effect and the time-dependence of the volume fraction during Ostwald ripening. This work also proposes new methods that combine the Gibbs-Thomson effect and the traditional SAXS equation to resolve more reliably and model independently the interfacial energy, the concentration of solute Li in the α matrix in equilibrium with δ' particles of a nanoscale radius Cαr , the equilibrium solubility of the α phase Ceα and the equilibrium concentration of δ' particles. The Gibbs-Thomson effect considers the effects of the interfacial energy and particle size on the equilibrium concentration. This effect quantitatively clarifies that the Cαr value is size-dependent and is related to the Ceα value and the interfacial energy. The traditional SAXS equation determines the Li concentrations in the δ' particles and the matrix from the measured scattering contrast. The traditionally determined solubility is in fact the Cαr value and is mistakenly regarded as the equilibrium concentration Ceα (corresponding to the radius is infinite). These results are compared to other results obtained by SAXS, TEM, and calculation. The time evolution of the transition interfacial layers between δ' particles and the matrix is extensively investigated using SAXS.

  6. Multiorder nonlinear diffraction in frequency doubling processes

    DEFF Research Database (Denmark)

    Saltiel, Solomon M.; Neshev, Dragomir N.; Krolikowski, Wieslaw

    2009-01-01

    We analyze experimentally light scattering from 2 nonlinear gratings and observe two types of second-harmonic frequency-scattering processes. The first process is identified as Raman–Nath type nonlinear diffraction that is explained by applying only transverse phase-matching conditions. The angular...... position of this type of diffraction is defined by the ratio of the second-harmonic wavelength and the grating period. In contrast, the second type of nonlinear scattering process is explained by the longitudinal phase matching only, being insensitive to the nonlinear grating...

  7. Nonlinear Hamiltonian systems

    DEFF Research Database (Denmark)

    Jørgensen, Michael Finn

    1995-01-01

    It is generally very difficult to solve nonlinear systems, and such systems often possess chaotic solutions. In the rare event that a system is completely solvable, it is said to integrable. Such systems never have chaotic solutions. Using the Inverse Scattering Transform Method (ISTM) two...

  8. Terahertz semiconductor nonlinear optics

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias

    2013-01-01

    nonlinearity in doped semiconductors originates from the near-instantaneous heating of free electrons in the ponderomotive potential created by electric field of the THz pulse, leading to ultrafast increase of electron effective mass by intervalley scattering. Modification of effective mass in turn leads...

  9. Fluctuations and Gibbs-Thomson Law - the Simple Physics.

    Energy Technology Data Exchange (ETDEWEB)

    Chernov, A A; De Yoreo, J J; Rashkovich, L N

    2006-09-15

    Crystals of slightly soluble materials should be subject of relatively weak attachment/detachment fluctuations on their faces so that steps on that faces have low kink density. These steps are parallel to the most close packed lattice rows and form polygons on a crystal surface. The process responsible for implementation of the classical Gibbs-Thomson law (GTL) for the polygonal step (in two dimensions, 2D) is kink exchange between the step corners. For the 3D crystallites, this mechanism includes step exchange. If these mechanisms do not operate because of slow fluctuations the GTL is not applicable. Physics of these processes and conditions for the GTL applicability are discussed on a simple qualitative level.

  10. Mark Thomson presents the book "Modern Particle Physics"

    CERN Multimedia

    2013-01-01

    Tuesday 5 November 2013 at 4 p.m. in the Library, Bldg. 52 1-052 This new textbook covers all the main aspects of modern particle physics, providing a clear connection between the theory and recent experimental results, including the recent discovery of a Higgs boson and the most recent developments in neutrino physics. It provides a comprehensive and self-contained description of the Standard Model of particle physics suitable for upper-level undergraduate students and graduate students studying experimental particle physics. Physical theory is introduced in a relatively straightforward manner with step-by-step mathematical derivations. In each chapter, fully worked examples link the theory to central experimental results in contemporary particle physics. Modern Particle Physics, by Mark Thomson, Cambridge University Press, 2013, ISBN 9781107034266. *Coffee will be served from 3.30 p.m.*

  11. Gibbs-Thomson effect in nanocrystalline Fe-Ge

    Science.gov (United States)

    Sarkar, S.; Bansal, C.; Chatterjee, Ashok

    2000-08-01

    We studied the phase transformation behavior of chemically disordered bcc (α) phase Fe1-xGex alloys near the Fe3Ge stoichiometry synthesized in the nanocrystalline state by mechanical alloying of the elemental constituents. The evolution of the equilibrium L12 ordered (ɛ') phase was seen to occur via a metastable DO3-ordered (α1) phase, but a significant α1-->ɛ' phase transformation took place only after the growth of the grains. This behavior is understood with the help of a capillary effect or the Gibbs-Thomson effect wherein the grain boundary energy of the nanosize grains raises the Gibbs free energy of the ɛ' phase relative to the α1 phase for small sizes and the ɛ' phase grows only after a certain grain size is reached.

  12. Unveiling the physics of the Thomson jumping ring

    Science.gov (United States)

    Ladera, Celso L.; Donoso, Guillermo

    2015-04-01

    We present a new theoretical model and validating experiments that unveil the rich physics behind the flight of the conductive ring in the Thomson experiment—physics that is hard to see because of the rapid motion. The electrodynamics of the flying ring exhibits interesting features, e.g., varying mutual inductance between the ring and the electromagnet. The dependences of the ring electrodynamics upon time and position as the ring travels upward are conveniently separated and determined to obtain a comprehensive view of the ring motion. We introduce a low-cost jumping ring setup that incorporates pickup coils connected in opposition, allowing us to scrutinize the ring electrodynamics and confirm our theoretical model with good accuracy. This work is within the reach of senior students of science or engineering, and it can be implemented either as a teaching laboratory experiment or as an open-ended project.

  13. Elevated-pressure mixed-coolants Joule Thomson cryocooling

    Science.gov (United States)

    Maytal, B.-Z.; Nellis, G. F.; Klein, S. A.; Pfotenhauer, J. M.

    2006-01-01

    This paper explores the potential of mixed coolants at elevated pressures for Joule-Thomson cryocooling. A numerical model of a Joule-Thomson cryocooler is developed that is capable of simulating operation with mixtures of up to 9 components consisting of hydrocarbons, non-flammable halogenated refrigerants, and inert gases. The numerical model is integrated with a genetic optimization algorithm, which has a high capability for convergence in an environment of discontinuities, constraints and local optima. The genetic optimization algorithm is used to select the optimal mixture compositions that separately maximizes following two objective functions at each elevated pressure for 80, 90 and 95 K cryocooling: the molar specific cooling capacity (the highest attainable is 3200 J/mol) and the produced cooling capacity per thermal conductance which is a measure of the compactness of the recuperator. The optimized cooling capacity for a non-flammable halogenated refrigerant mixture is smaller than for a hydrocarbon mixture; however, the cooling capacity of the two types of mixtures approach one another as pressure becomes higher. The coefficient of performance, the required heat transfer area and the effect of the number of components in the mixture is investigated as a function of the pressure. It is shown that mixtures with more components provide a higher cooling capacity but require larger recuperative heat exchangers. Optimized mixtures for 90 K cryocooling have similar cooling capacity as those for 80 K. Optimized compactness for 80 K is about 50% higher than can be achieved by pure nitrogen. For 90 K, no mixture provides a more compact recuperator than can be achieved using pure argon. The results are discussed in the context of potential applications for closed and open cycle cryocoolers.

  14. Modification of the collective Thomson scattering radiometer in the search for parametric decay on TEXTOR

    DEFF Research Database (Denmark)

    Nielsen, Stefan Kragh; Salewski, Mirko; Bongers, W.

    2012-01-01

    describe the heterodyne detection system used to characterize the newly discovered signal measured at TEXTOR, and we present spectral shapes in which the signal can appear under different conditions. The radiation is collected by the receiver through a quasi-optical transmission line that is independent...

  15. Collective Thomson scattering measurements of fast-ion transport due to sawtooth crashes in ASDEX Upgrade

    DEFF Research Database (Denmark)

    Rasmussen, Jesper; Nielsen, Stefan Kragh; Pedersen, Morten Stejner;

    2016-01-01

    Sawtooth instabilities can modify heating and current-drive profiles and potentially increase fast-ion losses. Understanding how sawteeth redistribute fast ions as a function of sawtooth parameters and of fast-ion energy and pitch is hence a subject of particular interest for future fusion device...

  16. Engineering design of the ITER Collective Thomson Scattering diagnostic. Contract EFDA 06-1478

    Energy Technology Data Exchange (ETDEWEB)

    Michelsen, P.K.; Furtula, V.; Korsholm, S.B.; Leipold, F.; Meo, F.; Salewski, M.; Bindslev, H.; Lauritzen, B.; Lucas, M.; Nonboel, E.

    2009-12-15

    This report describes the work done under EFDA contract 06-1478 (EFDA Ref.: TW6-TPDS-DIASUP10). The main part of the work has been focused on: 1) An outline plan for the full development of the CTS diagnostic for ITER, including specifications for future design tasks on the system and R and D tasks on critical components. 2) An engineering design and test in a blanket mock-up of the frontend quasi-optical High Field Side (HFS) antenna system,. 3) Some considerations on the waveguide mounting. 4) Neutronics and thermo-elastic calculations on nuclear and radiative heating of the first mirror required to provide input to the engineering design. 5) An engineering design of the front-end quasi-optical components for the Low Field Side (LFS) system in the port plug. 6) A discussion on possible calibration methods. (author)

  17. Bunch length measurement at Tsinghua Thomson scattering X-ray source

    Institute of Scientific and Technical Information of China (English)

    DU Ying-Chao; HUA Jian-Fei; YAN Li-Xin; DU Qiang; HUANG Wcn-Hui; TANG Chuan-Xiang

    2011-01-01

    The length of electron beam from a photocathode RF gun is determined by a spectrometer, according to the relative energy spread induced by the bunch length during the acceleration in a linac. For a photocathode RF gun, different laser injected phase and b

  18. Bunch length measurement at Tsinghua Thomson scattering X-ray source

    Institute of Scientific and Technical Information of China (English)

    DU Ying-Chao; HUA Jian-Fei; YAN Li-Xin; DU Qiang; HUANG Wen-Hui; TANG Chuan-Xiang

    2011-01-01

    The length of electron beam from a photocathode RF gun is determined by a spectrometer, according to the relative energy spread induced by the bunch length during the acceleration in a linac. For a photocathode RF gun, different laser injected phase and beam charge are studied. The compression is changed for the different laser phases, as from 10° to 30°, and the bunch length is lengthened due to the strong longitudinal space charge force, caused by the increased charge.

  19. First operations with the new Collective Thomson Scattering diagnostic on the Frascati Tokamak Upgrade device

    DEFF Research Database (Denmark)

    Bin, W.; Bruschi, A.; D'Arcangelo, O.

    2015-01-01

    in Parametric Decay Instability (PDI) processes correlated with the presence of magnetic islands and occurring for pumping wave power levels well below the threshold predicted by conventional models. A threshold below or close to the Electron Cyclotron Resonance Heating (ECRH) power levels could limit, under...

  20. Engineering design of the ITER Collective Thomson Scattering diagnostic. Contract EFDA 06-1478

    DEFF Research Database (Denmark)

    Michelsen, Poul; Furtula, Vedran; Korsholm, Søren Bang

    on critical components. 2) An engineering design and test in a blanket mock-up of the frontend quasi-optical High Field Side (HFS) antenna system,. 3) Some considerations on the waveguide mounting. 4) Neutronics and thermo-elastic calculations on nuclear and radiative heating of the first mirror required...