WorldWideScience

Sample records for nonlinear stress-strain behavior

  1. Nonlinear Stress-Strain Behavior of Plasma Sprayed Ceramic Coatings

    Czech Academy of Sciences Publication Activity Database

    Nohava, Jiří; Kroupa, František

    2005-01-01

    Roč. 50, č. 3 (2005), s. 251-262 ISSN 0001-7043 R&D Projects: GA AV ČR KSK1010104 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma spraying * ceramic coatings * Young’s modulus * nonlinear behavior * microcracks Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  2. Effect of nonlinear stress-strain relationship on bending strength of isotropic graphite

    International Nuclear Information System (INIS)

    Arai, Taketoshi; Oku, Tatsuo

    1978-05-01

    Four-point bending tests were made on rectangular isotropic 7477PT graphite specimens of different sizes to observe the relation between load and outermost fiber strain. Analytical methods, allowing for nonlinear stress-strain relationships different between tension and compression, were developed for calculating the fiber stress distribution in a beam and the failure probability based on the Weibull statistical theory for bending fracture. With increase of the stress, the stress-strain curves for tension deviate from the linearity and also from those for compression. The true bending strengths of the rectangular bars are 10 -- 20 percent lower than elastic bending strengths. Revised Weibull theory gives failure probability distributions agreeing with measured ones, compared with the theory based on elastic behavior. (auth.)

  3. Probabilistic analysis of structures involving random stress-strain behavior

    Science.gov (United States)

    Millwater, H. R.; Thacker, B. H.; Harren, S. V.

    1991-01-01

    The present methodology for analysis of structures with random stress strain behavior characterizes the uniaxial stress-strain curve in terms of (1) elastic modulus, (2) engineering stress at initial yield, (3) initial plastic-hardening slope, (4) engineering stress at point of ultimate load, and (5) engineering strain at point of ultimate load. The methodology is incorporated into the Numerical Evaluation of Stochastic Structures Under Stress code for probabilistic structural analysis. The illustrative problem of a thick cylinder under internal pressure, where both the internal pressure and the stress-strain curve are random, is addressed by means of the code. The response value is the cumulative distribution function of the equivalent plastic strain at the inner radius.

  4. Soil Stress-Strain Behavior: Measurement, Modeling and Analysis

    CERN Document Server

    Ling, Hoe I; Leshchinsky, Dov; Koseki, Junichi; A Collection of Papers of the Geotechnical Symposium in Rome

    2007-01-01

    This book is an outgrowth of the proceedings for the Geotechnical Symposium in Roma, which was held on March 16 and 17, 2006 in Rome, Italy. The Symposium was organized to celebrate the 60th birthday of Prof. Tatsuoka as well as honoring his research achievement. The publications are focused on the recent developments in the stress-strain behavior of geomaterials, with an emphasis on laboratory measurements, soil constitutive modeling and behavior of soil structures (such as reinforced soils, piles and slopes). The latest advancement in the field, such as the rate effect and dynamic behavior of both clay and sand, behavior of modified soils and soil mixtures, and soil liquefaction are addressed. A special keynote paper by Prof. Tatsuoka is included with three other keynote papers (presented by Prof. Lo Presti, Prof. Di Benedetto, and Prof. Shibuya).

  5. Superelastic stress-strain behavior in ferrogels with different types of magneto-elastic coupling

    Science.gov (United States)

    Cremer, Peet; Löwen, Hartmut; Menzel, Andreas M.

    Colloidal magnetic particles embedded in an elastic polymer matrix constitute a smart material called ferrogel. It responds to an applied external magnetic field by changes in elastic properties, which can be exploited for various applications like dampers, vibration absorbers, or actuators. Under appropriate conditions, the stress-strain behavior of a ferrogel can display a fascinating feature: superelasticity, the capability to reversibly deform by a huge amount while barely altering the applied load. In a previous work, using numerical simulations, we investigated this behavior assuming that the magnetic moments carried by the embedded particles can freely reorient to minimize their magnetic interaction energy. Here, we extend the analysis to ferrogels where restoring torques by the surrounding matrix hinder rotations towards a magnetically favored configuration. For example, the particles can be chemically cross-linked into the polymer matrix and the magnetic moments can be fixed to the particle axes. We demonstrate that these systems still feature a superelastic regime. As before, the nonlinear stress-strain behavior can be reversibly tailored during operation by external magnetic fields. Yet, the different coupling of the magnetic moments causes different types of response to external stimuli. For instance, an external magnetic field applied parallel to the stretching axis hardly affects the superelastic regime but stiffens the system beyond it. Other smart materials featuring superelasticity, e.g. metallic shape-memory alloys, have already found widespread applications. Our soft polymer systems offer many additional advantages like a typically higher deformability and enhanced biocompatibility combined with high tunability.

  6. Analysis of stress-strain behavior in Bi2223 composite tapes

    International Nuclear Information System (INIS)

    Sugano, M.; Osamura, K.; Nyilas, A.

    2004-01-01

    Tensile test was carried out for Bi2223/Ag/Ag alloy composite tapes at RT, 77 and 7 K. Two yielding points are observed in the stress-strain curves. From the stress-strain behavior of the components and critical current (I c ) as a function of tensile strain, it was found that the microscopic reason for these yieldings is attributed to yielding of Ag alloy and fracture of Bi2223, respectively. The strain at the second yielding has temperature dependence and it becomes larger with decreasing measured temperature. From the thermo-mechanical analysis, it can be explained by temperature dependence of compressive residual strain of Bi2223. Reversible recovery of I c was found during loading-unloading test. The relationship between the reversible strain limit and the intrinsic strain of Bi2223 was discussed

  7. Stress-Strain Law for Confined Concrete with Hardening or Softening Behavior

    Directory of Open Access Journals (Sweden)

    Piero Colajanni

    2013-01-01

    Full Text Available This paper provides a new general stress-strain law for concrete confined by steel, fiber reinforced polymer (FRP, or fiber reinforced cementitious matrix (FRCM, obtained by a suitable modification of the well-known Sargin’s curve for steel confined concrete. The proposed law is able to reproduce stress-strain curve of any shape, having both hardening or softening behavior, by using a single closed-form simple algebraic expression with constant coefficients. The coefficients are defined on the basis of the stress and the tangent modulus of the confined concrete in three characteristic points of the curve, thus being related to physical meaningful parameters. It will be shown that if the values of the parameters of the law are deduced from experimental tests, the model is able to accurately reproduce the experimental curve. If they are evaluated on the basis of an analysis-oriented model, the proposed model provides a handy equivalent design model.

  8. On the cyclic stress-strain behavior and low cycle fatigue of aerospace materials

    Science.gov (United States)

    Burbach, J.

    1972-01-01

    The elastic-plastic deformation behavior under cyclic stress of a number of different engineering materials was experimentally investigated with the aid of high-precision methods of measuring, some of which had been newly developed. Experiments made with a variety of steels, the titanium alloy Ti-A16-V4, a cobalt (tungsten) alloy, the high-temperature material Nimonic 90 and Dural (A1-Cu) are reported. The theory given in an attempt to explain these experiments is aimed at finding general formulas for the cyclic stress-strain behavior materials.

  9. The effect of hydrogen on the multiaxial stress-strain behavior of titanium tubing

    International Nuclear Information System (INIS)

    Lentz, C.W.; Hecker, S.S.; Koss, D.A.; Stout, M.G.

    1983-01-01

    The influence of internal hydrogen on the multiaxial stress-strain behavior of commercially pure titanium has been studied. Thin-walled specimens containing either 20 or 1070 ppm hydrogen were tested at constant stress ratios in combined tension and internal pressure. Hydrogen lowers the yield strength but has no significant effect on strain hardening behavior at strains epsilon greater than or equal to 0.02. Thus, hydrogen embrittlement under plain strain or equibiaxial loading is not a consequence of changes of flow behavior. The yielding behavior is described well by Hill's quadratic yield criterion. As measured mechanically and pole figure analysis, the plastic anisotropy changes with deformation in a manner which depends on stress state. A strain dependent, texture-induced strengthening effect in equibiaxial tension an enhanced strain hardening rate

  10. Probabilistic molecular dynamics evaluation of the stress-strain behavior of polyethylene

    International Nuclear Information System (INIS)

    Stowe, J.Q.; Predecki, P.K.; Laz, P.J.; Burks, B.M.; Kumosa, M.

    2009-01-01

    The primary goal of this study was to utilize molecular dynamics to predict the mechanical behavior of polyethylene. In particular, stress-strain relationships, the Young's modulus and Poisson ratio were predicted for low-density polyethylene at several molecular weights and polymer configurations with the number of united CH 2 atoms ranging between 500 and 5000. Probabilistic Monte Carlo methods were also used to identify the extent of uncertainty in mechanical property predictions. In general, asymptotic behavior was observed for stress and the Young's modulus as the molecular weight of the models increased. At the same time, significant variability, of the order of 1000% of the mean, in the stress-strain relationships and the Young's modulus predictions was observed, especially for low molecular weight models. The variability in the Young's modulus predictions ranged from 17.9 to 3.2 GPa for the models ranging from 100 to 5000 CH 2 atom models. However, it was also found that the mean value of the Young's modulus approached a physically possible value of 194 MPa for the 5000 atom model. Poisson ratio predictions also resulted in significant variability, from 200% to 425% of the mean, and ranged from 0.75 to 1.30. The mean value of the Poisson ratios calculated in this study ranged from 0.32 to 0.44 for the 100 to 5000 atom models, respectively.

  11. A model for the stress-strain behavior of toughened polystyrene. Part 2

    NARCIS (Netherlands)

    Sjoerdsma, S.D.; Heikens, D.

    1982-01-01

    The general stress-strain relationship derived in an earlier paper is applied to analyse experimental stress-strain curves of polystyrene-polyethylene blends. It is concluded from the stress and temperature dependence of the rates of craze initiation and craze growth that these rates can be

  12. Stress-strain time-dependent behavior of A356.0 aluminum alloy subjected to cyclic thermal and mechanical loadings

    Science.gov (United States)

    Farrahi, G. H.; Ghodrati, M.; Azadi, M.; Rezvani Rad, M.

    2014-08-01

    This article presents the cyclic behavior of the A356.0 aluminum alloy under low-cycle fatigue (or isothermal) and thermo-mechanical fatigue loadings. Since the thermo-mechanical fatigue (TMF) test is time consuming and has high costs in comparison to low-cycle fatigue (LCF) tests, the purpose of this research is to use LCF test results to predict the TMF behavior of the material. A time-independent model, considering the combined nonlinear isotropic/kinematic hardening law, was used to predict the TMF behavior of the material. Material constants of this model were calibrated based on room-temperature and high-temperature low-cycle fatigue tests. The nonlinear isotropic/kinematic hardening law could accurately estimate the stress-strain hysteresis loop for the LCF condition; however, for the out-of-phase TMF, the condition could not predict properly the stress value due to the strain rate effect. Therefore, a two-layer visco-plastic model and also the Johnson-Cook law were applied to improve the estimation of the stress-strain hysteresis loop. Related finite element results based on the two-layer visco-plastic model demonstrated a good agreement with experimental TMF data of the A356.0 alloy.

  13. Determination of parameters for a stress-strain constitutive equation considering time-dependent behavior of Toki granite

    International Nuclear Information System (INIS)

    Hirano, Toru; Seno, Yasuhiro; Nakama, Shigeo; Okubo, Seisuke

    2008-01-01

    Toki granite was tested to obtain parameters for the constitutive equation. The testing method was uniaxial compressive loading at the moderate a constant strain rate that is decreased after yielding to obtain the complete stress-strain curve. In addition, two kinds of the strain rate were alternately switched to obtain the parameter n from one specimen. The n represents the strength time-dependence in the constitutive equation. The second parameter m can be obtained by fitting the experimental stress-strain curve to the calculated curve. The m accounts for the behavior after yielding. According to the results, Toki granite has n=52 and m=60, showing relatively weak time-dependence of creep failure. (author)

  14. Cyclic stress-strain behavior of polymeric nonwoven structures for the use as artificial leaflet material for transcatheter heart valve prostheses

    Directory of Open Access Journals (Sweden)

    Arbeiter Daniela

    2017-09-01

    Full Text Available Xenogenic leaflet material, bovine and porcine pericardium, is widely used for the fabrication of surgically implanted and transcatheter heart valve prostheses. As a biological material, long term durability of pericardium is limited due to calcification, degeneration and homogeneity. Therefore, polymeric materials represent a promising approach for a next generation of artificial heart valve leaflets with improved durability. Within the current study we analyzed the mechanical performance of polymeric structures based on elastomeric materials. Polymeric cast films were prepared and nonwovens were manufactured in an electrospinning process. Analysis of cyclic stress-strain behavior was performed, using a universal testing machine. The uniaxial cyclic tensile experiments of the elastomeric samples yielded a non-linear elastic response due to viscoelastic behavior with hysteresis. Equilibrium of stress-strain curves was found after a specific number of cycles, for cast films and nonwovens, respectively. In conclusion, preconditioning was found obligatory for the evaluation of the mechanical performance of polymeric materials for the use as artificial leaflet material for heart valve prostheses.

  15. A deep learning approach to estimate chemically-treated collagenous tissue nonlinear anisotropic stress-strain responses from microscopy images.

    Science.gov (United States)

    Liang, Liang; Liu, Minliang; Sun, Wei

    2017-11-01

    Biological collagenous tissues comprised of networks of collagen fibers are suitable for a broad spectrum of medical applications owing to their attractive mechanical properties. In this study, we developed a noninvasive approach to estimate collagenous tissue elastic properties directly from microscopy images using Machine Learning (ML) techniques. Glutaraldehyde-treated bovine pericardium (GLBP) tissue, widely used in the fabrication of bioprosthetic heart valves and vascular patches, was chosen to develop a representative application. A Deep Learning model was designed and trained to process second harmonic generation (SHG) images of collagen networks in GLBP tissue samples, and directly predict the tissue elastic mechanical properties. The trained model is capable of identifying the overall tissue stiffness with a classification accuracy of 84%, and predicting the nonlinear anisotropic stress-strain curves with average regression errors of 0.021 and 0.031. Thus, this study demonstrates the feasibility and great potential of using the Deep Learning approach for fast and noninvasive assessment of collagenous tissue elastic properties from microstructural images. In this study, we developed, to our best knowledge, the first Deep Learning-based approach to estimate the elastic properties of collagenous tissues directly from noninvasive second harmonic generation images. The success of this study holds promise for the use of Machine Learning techniques to noninvasively and efficiently estimate the mechanical properties of many structure-based biological materials, and it also enables many potential applications such as serving as a quality control tool to select tissue for the manufacturing of medical devices (e.g. bioprosthetic heart valves). Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Evaluation of stress-strain for characterization of the rheological behavior of alginate and carrageenan gels

    Directory of Open Access Journals (Sweden)

    E.J. Mammarella

    2002-12-01

    Full Text Available The stress-strain of samples deformed until failure and the relaxation response after 50% deformation of the initial height under constant stress were obtained. Uniaxial compression and stress-relaxation tests enabled satisfactory differentiation of the mechanical resistance of gels with different alginate and carrageenan concentrations. Higher values for initial force at the beginning of the relaxation test were associated with higher calcium uptake by the gels. An increment of failure stress during the uniaxial compression tests for higher concentration of calcium in the gel structure was also observed. The maximum amount of cation uptake was higher than the theoretical value for saturation of all the carboxylic groups available in alginate molecules due to structural rearrangements. Stress-relaxation tests indicated that the residual stress of the gel increased with kappa-carrageenan concentration.

  17. Casting and stress-strain simulations of a cast ductile iron component using microstructure based mechanical behavior

    International Nuclear Information System (INIS)

    Olofsson, Jakob; Svensson, Ingvar L

    2012-01-01

    The industrial demand for increased component performance with concurrent reductions in component weight, development times and verifications using physical prototypes drives the need to use the full potential of casting and Finite Element Method (FEM) simulations to correctly predict the mechanical behavior of cast components in service. The mechanical behavior of the component is determined by the casting process, and factors as component geometry and casting process parameters are known to affect solidification and microstructure formation throughout the component and cause local variations in mechanical behavior as well as residual stresses. Though residual stresses are known to be an important factor in the mechanical behavior of the component, the importance of local mechanical behavior is not well established and the material is typically considered homogeneous throughout the component. This paper deals with the influence of solidification and solid state transformation on microstructure formation and the effect of local microstructure variations on the mechanical behavior of the cast component in service. The current work aims to investigate the coupling between simulation of solidification, microstructure and local variations in mechanical behavior and stress-strain simulation. This is done by performing several simulations of a ductile iron component using a recently developed simulation strategy, a closed chain of simulations for cast components, able to predict and describe the local variations in not only elastic but also plastic behavior throughout the component by using microstructural parameters determined by simulations of microstructural evolution in the component during the casting process. In addition the residual stresses are considered. The results show that the FEM simulation results are significantly affected by including microstructure based mechanical behavior. When the applied load is low and the component is subjected to stress levels

  18. Stress-strain behavior under static loading in Gd123 high-temperature superconductors at 77 K

    Science.gov (United States)

    Fujimoto, Hiroyuki; Murakami, Akira; Teshima, Hidekazu; Morita, Mitsuru

    2013-10-01

    Mechanical properties of melt-growth GdBa2Cu3Ox (Gd123) superconducting samples with 10 wt.% Ag2O and 0.5 wt.% Pt were evaluated at 77 K through flexural tests for specimens cut from the samples in order to estimate the mechanical properties of the Gd123 material without metal substrates, buffer layers or stabilization layers. We discuss the mechanical properties; the Young's modulus and flexural strength with stress-strain behavior at 77 K. The results show that the flexural strength and fracture strain of Gd123 at 77 K are approximately 100 MPa and 0.1%, respectively, and that the origin of the fracture is defects such as pores, impurities and non-superconducting compounds. We also show that the Young's modulus of Gd123 is estimated to be 160-165 GPa.

  19. The MIDAS touch for Accurately Predicting the Stress-Strain Behavior of Tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-02

    Testing the behavior of metals in extreme environments is not always feasible, so material scientists use models to try and predict the behavior. To achieve accurate results it is necessary to use the appropriate model and material-specific parameters. This research evaluated the performance of six material models available in the MIDAS database [1] to determine at which temperatures and strain-rates they perform best, and to determine to which experimental data their parameters were optimized. Additionally, parameters were optimized for the Johnson-Cook model using experimental data from Lassila et al [2].

  20. Teaching Parents Behavioral Strategies for Autism Spectrum Disorder (ASD): Effects on Stress, Strain, and Competence

    Science.gov (United States)

    Iadarola, Suzannah; Levato, Lynne; Harrison, Bryan; Smith, Tristram; Lecavalier, Luc; Johnson, Cynthia; Swiezy, Naomi; Bearss, Karen; Scahill, Lawrence

    2018-01-01

    We report on parent outcomes from a randomized clinical trial of parent training (PT) versus psychoeducation (PEP) in 180 children with autism spectrum disorder (ASD) and disruptive behavior. We compare the impact of PT and PEP on parent outcomes: Parenting Stress Index (PSI), Parent Sense of Competence (PSOC), and Caregiver Strain Questionnaire…

  1. Biaxial stress-strain behavior of chemical and physical gels of poly(vinyl alcohol)

    Czech Academy of Sciences Publication Activity Database

    Meissner, Bohumil; Matějka, Libor

    2008-01-01

    Roč. 49, č. 10 (2008), s. 2560-2567 ISSN 0032-3861 R&D Projects: GA AV ČR IAA400500701 Institutional research plan: CEZ:AV0Z40500505 Keywords : poly(vinyl alcohol) gels * pure shear behavior * constitutive equation Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.331, year: 2008

  2. BILAM: a composite laminate failure-analysis code using bilinear stress-strain approximations

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, P.V. Jr.; Dasgupta, A.; Chun, Y.W.

    1980-10-01

    The BILAM code which uses constant strain laminate analysis to generate in-plane load/deformation or stress/strain history of composite laminates to the point of laminate failure is described. The program uses bilinear stress-strain curves to model layer stress-strain behavior. Composite laminates are used for flywheels. The use of this computer code will help to develop data on the behavior of fiber composite materials which can be used by flywheel designers. In this program the stress-strain curves are modelled by assuming linear response in axial tension while using bilinear approximations (2 linear segments) for stress-strain response to axial compressive, transverse tensile, transverse compressive and axial shear loadings. It should be noted that the program attempts to empirically simulate the effects of the phenomena which cause nonlinear stress-strain behavior, instead of mathematically modelling the micromechanics involved. This code, therefore, performs a bilinear laminate analysis, and, in conjunction with several user-defined failure interaction criteria, is designed to provide sequential information on all layer failures up to and including the first fiber failure. The modus operandi is described. Code BILAM can be used to: predict the load-deformation/stress-strain behavior of a composite laminate subjected to a given combination of in-plane loads, and make analytical predictions of laminate strength.

  3. Nonlinearities in Behavioral Macroeconomics.

    Science.gov (United States)

    Gomes, Orlando

    2017-07-01

    This article undertakes a journey across the literature on behavioral macroeconomics, with attention concentrated on the nonlinearities that the behavioral approach typically suggests or implies. The emphasis is placed on thinking the macro economy as a living organism, composed of many interacting parts, each one having a will of its own, which is in sharp contrast with the mechanism of the orthodox view (well represented by the neoclassical or new Keynesian dynamic stochastic general equilibrium - DSGE - model). The paper advocates that a thorough understanding of individual behavior in collective contexts is the only possible avenue to further explore macroeconomic phenomena and the often observed 'anomalies' that the benchmark DSGE macro framework is unable to explain or justify. After a reflection on the role of behavioral traits as a fundamental component of a new way of thinking the economy, the article proceeds with a debate on some of the most relevant frameworks in the literature that somehow link macro behavior and nonlinearities; covered subjects include macro models with disequilibrium rules, agent-based models that highlight interaction and complexity, evolutionary switching frameworks, and inattention based decision problems. These subjects have, as a fundamental point in common, the use of behavioral elements to transform existing interpretations of the economic reality, making it more evident how irregular fluctuations emerge and unfold on the aggregate.

  4. Back-propagation neural network-based approximate analysis of true stress-strain behaviors of high-strength metallic material

    International Nuclear Information System (INIS)

    Doh, Jaeh Yeok; Lee, Jong Soo; Lee, Seung Uk

    2016-01-01

    In this study, a Back-propagation neural network (BPN) is employed to conduct an approximation of a true stress-strain curve using the load-displacement experimental data of DP590, a high-strength material used in automobile bodies and chassis. The optimized interconnection weights are obtained with hidden layers and output layers of the BPN through intelligent learning and training of the experimental data; by using these weights, a mathematical model of the material's behavior is suggested through this feed-forward neural network. Generally, the material properties from the tensile test cannot be acquired until the fracture regions, since it is difficult to measure the cross-section area of a specimen after diffusion necking. For this reason, the plastic properties of the true stress-strain are extrapolated using the weighted-average method after diffusion necking. The accuracies of BPN-based meta-models for predicting material properties are validated in terms of the Root mean square error (RMSE). By applying the approximate material properties, the reliable finite element solution can be obtained to realize the different shapes of the finite element models. Furthermore, the sensitivity analysis of the approximate meta-model is performed using the first-order approximate derivatives of the BPN and is compared with the results of the finite difference method. In addition, we predict the tension velocity's effect on the material property through a first-order sensitivity analysis.

  5. Prediction of macroscopic and local stress-strain behaviors of perforated plates under primary and secondary creep conditions

    International Nuclear Information System (INIS)

    Igari, Toshihide; Tokiyoshi, Takumi; Mizokami, Yorikata

    2000-01-01

    Prediction methods of macroscopic and local creep behaviors of perforated plates are examined in order to apply these methods to the structural design of perforated structures such as heat exchangers used in elevated temperatures. Both primary and secondary creeps are considered for predicting macroscopic and local creep behaviors of perorated plates which are made of actual structural materials. Both uniaxial and multiaxial loading of perforated plates are taken into consideration. The concept of effective stress is applied to the prediction of macroscopic creep behaviors of perforated plates, and the predicted results are compared with the numerical results by FEM for the unit section of perorated plated under creep, in order to confirm the propriety of the proposed method. Based on the idea that stress exponents in creep equations govern the stress distribution of perforated plates, a modified Neuber's rule is used for predicting local stress and strain concentrations. The propriety of this prediction method is shown through a comparison of the prediction with the numerical results by FEM for the unit section of perforated plates under creep, and experimental results by the Moire method. (author)

  6. Mathematical description for the stress-strain behavior of annealed 21/4 Cr--1 Mo steel

    International Nuclear Information System (INIS)

    Klueh, R.L.; Hebble, T.L.

    1976-01-01

    We have conducted a detailed series of tensile tests on one heat of annealed 2 1 / 4 Cr-1 Mo steel over the range 25 to 593 0 C (75 to 1100 0 F) and at nominal strain rates of 0.4, 0.04, 0.004, and 0.0004/min. To determine an empirical relationship to represent the flow behavior, we fitted the true-stress true-strain data from these tests to several proposed models. The models fit were those proposed by Holloman, Ludwik, Ludwigson, and Voce. From a comparison of the standard error of estimate, the Voce equation was concluded to be the best mathematical description of the data under most test conditions and the best single representation over the wide range of test conditions

  7. Nonlinear response and avalanche behavior in metallic glasses

    Science.gov (United States)

    Riechers, B.; Samwer, K.

    2017-08-01

    The response to different stress amplitudes at temperatures below the glass transition temperature is analyzed by mechanical oscillatory excitation of Pd40Ni40P20 metallic glass samples in single cantilever bending geometry. While low amplitude oscillatory excitations are commonly used in mechanical spectroscopy to probe the relaxation spectrum, in this work the response to comparably high amplitudes is investigated. The strain response of the material is well below the critical yield stress even for highest stress amplitudes, implying the expectation of a linear relation between stress and strain according to Hooke's Law. However, a deviation from the linear behavior is evident, which is analyzed in terms of temperature dependence and influence of the applied stress amplitude by two different approaches of evaluation. The nonlinear approach is based on a nonlinear expansion of the stress-strain-relation, assuming an intrinsic nonlinear character of the shear or elastic modulus. The degree of nonlinearity is extracted by a period-by-period Fourier-analysis and connected to nonlinear coefficients, describing the intensity of nonlinearity at the fundamental and higher harmonic frequencies. The characteristic timescale to adapt to a significant change in stress amplitude in terms of a recovery timescale to a steady state value is connected to the structural relaxation time of the material, suggesting a connection between the observed nonlinearity and primary relaxation processes. The second approach of evaluation is termed the incremental analysis and relates the observed response behavior to avalanches, which occur due to the activation and correlation of local microstructural rearrangements. These rearrangements are connected with shear transformation zones and correspond to localized plastic events, which are superimposed on the linear response behavior of the material.

  8. Effects of strain rate, mixing ratio, and stress-strain definition on the mechanical behavior of the polydimethylsiloxane (PDMS) material as related to its biological applications.

    Science.gov (United States)

    Khanafer, Khalil; Duprey, Ambroise; Schlicht, Marty; Berguer, Ramon

    2009-04-01

    Tensile tests on Polydimethylsiloxane (PDMS) materials were conducted to illustrate the effects of mixing ratio, definition of the stress-strain curve, and the strain rate on the elastic modulus and stress-strain curve. PDMS specimens were prepared according to the ASTM standards for elastic materials. Our results indicate that the physiological elastic modulus depends strongly on the definition of the stress-strain curve, mixing ratio, and the strain rate. For various mixing ratios and strain rates, true stress-strain definition results in higher stress and elastic modulus compared with engineering stress-strain and true stress-engineering strain definitions. The elastic modulus increases as the mixing ratio increases up-to 9:1 ratio after which the elastic modulus begins to decrease even as the mixing ratio continues to increase. The results presented in this study will be helpful to assist the design of in vitro experiments to mimic blood flow in arteries and to understand the complex interaction between blood flow and the walls of arteries using PDMS elastomer.

  9. Numerical analysis oriented biaxial stress-strain relation and failure criterion of plain concrete

    International Nuclear Information System (INIS)

    Link, J.

    1975-01-01

    A biaxial stress-strain relation and failure criterion is proposed, which is applicable to structural analysis methods. The formulation of material behavior of plain concrete in biaxial stress-state was developed. A nonlinear elastic, anisotropic stress-strain relation was derived with two moduli of elasticity, E 1 , E 2 and Poisson's ratios, ν 1 , ν 2 , which depend on the prevailing biaxial stress state. The stress-strain relation is valid in the whole biaxial stress field, that means with a smooth transition between the domains of tension/tension, tension/compression and compression/compression. The stress-dependent moduli E 1 , E 2 and the Poisson's ratios ν 1 , ν 2 are approximated by polynomials, trigonometrical and exponential functions. A failure criterion was defined by approximating the test results of the biaxial ultimate concrete strength with a 7th degree polynomial, which is also valid in the whole biaxial stress domain. The definition of the state of failure is given as a function of stresses as well as strains. Initial parameters of the formulation of the biaxial material behavior are the uniaxial cylindrical strength of concrete and the initial values of Young's modulus and Poisson's ratio. A simple expansion of this formulation makes it applicable not only to normal but also to light-weight concrete. Comparison of numerically calculated stress-strain curves up to the ultimate biaxial stresses which indicate the failure criteria with those obtained from tests show a very good agreement. It is shown, that the biaxial stress-strain relation can be extended for use in cases of triaxial tension/tension/compression stress state. Numerical examples of analysis of concrete slabs show the importance of incorporation of a realistic material behavior for better safety estimations

  10. Modeling the Monotonic and Cyclic Tensile Stress-Strain Behavior of 2D and 2.5D Woven C/SiC Ceramic-Matrix Composites

    Science.gov (United States)

    Li, L. B.

    2018-05-01

    The deformation of 2D and 2.5 C/SiC woven ceramic-matrix composites (CMCs) in monotonic and cyclic loadings has been investigated. Statistical matrix multicracking and fiber failure models and the fracture mechanics interface debonding approach are used to determine the spacing of matrix cracks, the debonded length of interface, and the fraction of broken fibers. The effects of fiber volume fraction and fiber Weibull modulus on the damage evolution in the composites and on their tensile stress-strain curves are analyzed. When matrix multicracking and fiber/matrix interface debonding occur, the fiber slippage relative to the matrix in the debonded interface region of the 0° warp yarns is the main reason for the emergance of stress-strain hysteresis loops for 2D and 2.5D woven CMCs. A model of these loops is developed, and histeresis loops for the composites in cyclic loadings/unloadings are predicted.

  11. Nonlinear dynamics in human behavior

    Energy Technology Data Exchange (ETDEWEB)

    Huys, Raoul [Centre National de la Recherche Scientifique (CNRS), 13 - Marseille (France); Marseille Univ. (France). Movement Science Inst.; Jirsa, Viktor K. (eds.) [Centre National de la Recherche Scientifique (CNRS), 13 - Marseille (France); Marseille Univ. (France). Movement Science Inst.; Florida Atlantic Univ., Boca Raton, FL (United States). Center for Complex Systems and Brain Sciences

    2010-07-01

    Humans engage in a seemingly endless variety of different behaviors, of which some are found across species, while others are conceived of as typically human. Most generally, behavior comes about through the interplay of various constraints - informational, mechanical, neural, metabolic, and so on - operating at multiple scales in space and time. Over the years, consensus has grown in the research community that, rather than investigating behavior only from bottom up, it may be also well understood in terms of concepts and laws on the phenomenological level. Such top down approach is rooted in theories of synergetics and self-organization using tools from nonlinear dynamics. The present compendium brings together scientists from all over the world that have contributed to the development of their respective fields departing from this background. It provides an introduction to deterministic as well as stochastic dynamical systems and contains applications to motor control and coordination, visual perception and illusion, as well as auditory perception in the context of speech and music. (orig.)

  12. Nonlinear behavior of the radiative condensation instability

    International Nuclear Information System (INIS)

    McCarthy, D.; Drake, J.F.

    1991-01-01

    An investigation of the nonlinear behavior of the radiative condensation instability is presented in a simple one-dimensional magnetized plasma. It is shown that the radiative condensation is typically a nonlinear instability---the growth of the instability is stronger once the disturbance reaches finite amplitude. Moreover, classical parallel thermal conduction is insufficient by itself to saturate the instability. Radiative collapse continues until the temperature in the high density condensation falls sufficiently to reduce the radiation rate

  13. Local interaction simulation approach to modelling nonclassical, nonlinear elastic behavior in solids.

    Science.gov (United States)

    Scalerandi, Marco; Agostini, Valentina; Delsanto, Pier Paolo; Van Den Abeele, Koen; Johnson, Paul A

    2003-06-01

    Recent studies show that a broad category of materials share "nonclassical" nonlinear elastic behavior much different from "classical" (Landau-type) nonlinearity. Manifestations of "nonclassical" nonlinearity include stress-strain hysteresis and discrete memory in quasistatic experiments, and specific dependencies of the harmonic amplitudes with respect to the drive amplitude in dynamic wave experiments, which are remarkably different from those predicted by the classical theory. These materials have in common soft "bond" elements, where the elastic nonlinearity originates, contained in hard matter (e.g., a rock sample). The bond system normally comprises a small fraction of the total material volume, and can be localized (e.g., a crack in a solid) or distributed, as in a rock. In this paper a model is presented in which the soft elements are treated as hysteretic or reversible elastic units connected in a one-dimensional lattice to elastic elements (grains), which make up the hard matrix. Calculations are performed in the framework of the local interaction simulation approach (LISA). Experimental observations are well predicted by the model, which is now ready both for basic investigations about the physical origins of nonlinear elasticity and for applications to material damage diagnostics.

  14. Atlas of stress-strain curves

    CERN Document Server

    2002-01-01

    The Atlas of Stress-Strain Curves, Second Edition is substantially bigger in page dimensions, number of pages, and total number of curves than the previous edition. It contains over 1,400 curves, almost three times as many as in the 1987 edition. The curves are normalized in appearance to aid making comparisons among materials. All diagrams include metric (SI) units, and many also include U.S. customary units. All curves are captioned in a consistent format with valuable information including (as available) standard designation, the primary source of the curve, mechanical properties (including hardening exponent and strength coefficient), condition of sample, strain rate, test temperature, and alloy composition. Curve types include monotonic and cyclic stress-strain, isochronous stress-strain, and tangent modulus. Curves are logically arranged and indexed for fast retrieval of information. The book also includes an introduction that provides background information on methods of stress-strain determination, on...

  15. On generalization uniaxial stress-strain relation

    International Nuclear Information System (INIS)

    Sahay, C.; Dubey, R.N.

    1980-01-01

    Different forms of constitutive relations have been advanced for elastic, plastic and elastic-plastic behaviour of materials. It is shown that the various forms of the stress-strain relationship are specialized forms of generalization of a single stress-strain relation. For example, it is shown how the laws of elastic deformation, and the incremental and total deformation relationship for plastic behaviour are derivable from the Ramberg-Osgood relation. (orig.)

  16. Thermodynamic properties, hysteresis behavior and stress-strain analysis of MgH2 thin films, studied over a wide temperature range

    NARCIS (Netherlands)

    Pivak, Y.; Schreuders, H.; Dam, B.

    2012-01-01

    Using hydrogenography, we investigate the thermodynamic parameters and hysteresis behavior in Mg thin films capped by Ta/Pd, in a temperature range from 333 K to 545 K. The enthalpy and entropy of hydride decomposition, ?Hdes = ?78.3 kJ/molH2, ?Sdes = ?136.1 J/K molH2, estimated from the Van't Hoff

  17. Prediction of the Stress-Strain Behavior of Open-Cell Aluminum Foam under Compressive Loading and the Effects of Various RVE Boundary Conditions

    Science.gov (United States)

    Hamidi Ghaleh Jigh, Behrang; Farsi, Mohammad Ali; Hosseini Toudeshky, Hossein

    2018-05-01

    The prediction of the mechanical behavior of metallic foams with realistic microstructure and the effects of various boundary conditions on the mechanical behavior is an important and challenging issue in modeling representative volume elements (RVEs). A numerical investigation is conducted to determine the effects of various boundary conditions and cell wall cross sections on the compressive mechanical properties of aluminum foam, including the stiffness, plateau stress and onset strain of densification. The open-cell AA6101-T6 aluminum foam Duocel is used in the analyses in this study. Geometrical characteristics including the cell size, foam relative density, and cross-sectional shape and thickness of the cell walls are extracted from images of the foam. Then, the obtained foam microstructure is analyzed as a 2D model. The ligaments are modeled as shear deformable beams with elastic-plastic material behavior. To prevent interpenetration of the nodes and walls inside the cells with large deformations, self-contact-type frictionless interaction is stipulated between the internal surfaces. Sensitivity analyses are performed using several boundary conditions and cells wall cross-sectional shapes. The predicted results from the finite element analyses are compared with the experimental results. Finally, the most appropriate boundary conditions, leading to more consistent results with the experimental data, are introduced.

  18. Prediction of the Stress-Strain Behavior of Open-Cell Aluminum Foam under Compressive Loading and the Effects of Various RVE Boundary Conditions

    Science.gov (United States)

    Hamidi Ghaleh Jigh, Behrang; Farsi, Mohammad Ali; Hosseini Toudeshky, Hossein

    2018-04-01

    The prediction of the mechanical behavior of metallic foams with realistic microstructure and the effects of various boundary conditions on the mechanical behavior is an important and challenging issue in modeling representative volume elements (RVEs). A numerical investigation is conducted to determine the effects of various boundary conditions and cell wall cross sections on the compressive mechanical properties of aluminum foam, including the stiffness, plateau stress and onset strain of densification. The open-cell AA6101-T6 aluminum foam Duocel is used in the analyses in this study. Geometrical characteristics including the cell size, foam relative density, and cross-sectional shape and thickness of the cell walls are extracted from images of the foam. Then, the obtained foam microstructure is analyzed as a 2D model. The ligaments are modeled as shear deformable beams with elastic-plastic material behavior. To prevent interpenetration of the nodes and walls inside the cells with large deformations, self-contact-type frictionless interaction is stipulated between the internal surfaces. Sensitivity analyses are performed using several boundary conditions and cells wall cross-sectional shapes. The predicted results from the finite element analyses are compared with the experimental results. Finally, the most appropriate boundary conditions, leading to more consistent results with the experimental data, are introduced.

  19. Thermodynamic Properties, Hysteresis Behavior and Stress-Strain Analysis of MgH2 Thin Films, Studied over a Wide Temperature Range

    Directory of Open Access Journals (Sweden)

    Yevheniy Pivak

    2012-06-01

    Full Text Available Using hydrogenography, we investigate the thermodynamic parameters and hysteresis behavior in Mg thin films capped by Ta/Pd, in a temperature range from 333 K to 545 K. The enthalpy and entropy of hydride decomposition, ∆Hdes = −78.3 kJ/molH2, ∆Sdes = −136.1 J/K molH2, estimated from the Van't Hoff analysis, are in good agreement with bulk results, while the absorption thermodynamics, ∆Habs = −61.6 kJ/molH2, ∆Sabs = −110.9 J/K molH2, appear to be substantially affected by the clamping of the film to the substrate. The clamping is negligible at high temperatures, T > 523 K, while at lower temperatures, T < 393 K, it is considerable. The hysteresis at room temperature in Mg/Ta/Pd films increases by a factor of 16 as compared to MgH2 bulk. The hysteresis increases even further in Mg/Pd films, most likely due to the formation of a Mg-Pd alloy at the Mg/Pd interface. The stress–strain analysis of the Mg/Ta/Pd films at 300–333 K proves that the increase of the hysteresis occurs due to additional mechanical work during the (de-hydrogenation cycle. With a proper temperature correction, our stress–strain analysis quantitatively and qualitatively explains the hysteresis behavior in thin films, as compared to bulk, over the whole temperature range.

  20. Stress-Strain Relationship of Synthetic Fiber Reinforced Concrete Columns

    Directory of Open Access Journals (Sweden)

    Rosidawani

    2017-01-01

    Full Text Available Many empirical confinement models for normal and high strength concrete have been developed. Nevertheless, reported studies in the term of confinement of fiber reinforced concrete are limited. Whereas, the use of fiber reinforced concrete in structural elements has become the subject of the research and has indicated positive experiences. Since the stress-strain relationship of concrete in compression is required for analysis of structural members, the study of the stress-strain relationship for synthetic fiber reinforced concrete is substantial. The aim of the study is to examine the capabilities of the various models available in the literature to predict the actual experimental behavior of synthetic fiber reinforced high-strength concrete columns. The experimental data used are the results of the circular column specimens with the spiral spacing and the volume fraction of synthetic fiber as the test variables. The axial stress-strain curves from the tests are then compared with the various models of confinement from the literature. The performance index of each model is measured by using the coefficient of variation (COV concept of stress and strain behavior parameter. Among the confinement models, Cusson model shows the closest valid value of the coefficient of variation.

  1. Relationship between fatigue life in the creep-fatigue region and stress-strain response

    Science.gov (United States)

    Berkovits, A.; Nadiv, S.

    1988-01-01

    On the basis of mechanical tests and metallographic studies, strainrange partitioned lives were predicted by introducing stress-strain materials parameters into the Universal Slopes Equation. This was the result of correlating fatigue damage mechanisms and deformation mechanisms operating at elevated temperatures on the basis of observed mechanical and microstructural behavior. Correlation between high temperature fatigue and stress strain properties for nickel base superalloys and stainless steel substantiated the method. Parameters which must be evaluated for PP- and CC- life are the maximum stress achievable under entirely plastic and creep conditions respectively and corresponding inelastic strains, and the two more pairs of stress strain parameters must be ascertained.

  2. Effect of Nonlinear Hardening of Lead Rubber Bearing on Long Term Behavior of Base Isolated Containment Building

    International Nuclear Information System (INIS)

    Park, Junhee; Choun, Young-Sun; Kim, Min-Kyu

    2015-01-01

    The rubber material used in laminated rubber bearings is the hyper elastic material whose stress-strain relationship can be defined as nonlinearly elastic. From the previous research, it was presented that the rubber hardness and stiffness was increased by the aging of LRB. The mechanical properties of LRB changed by aging can directly affect a nonlinear hardening behavior. Therefore it is needed to consider the nonlinear hardening effect for exactly evaluating the seismic safety of base isolated structure during the life time. In this study, the seismic response analysis of base isolated containment building was performed by using the bilinear model and the hardening model to identify the effect of structural response on the nonlinear hardening behavior of isolator. Moreover the floor response spectrum of base isolated structure considering the aging was analyzed by according to the analysis model of LRB.. The hardening behavior of lead rubber bearing occurs at high strain. Therefore it is reasonable to assume that the hysteretic model of LRB is the nonlinear hardening model for exactly evaluating the seismic response of base isolated structure. The nonlinear analysis of base isolated containment was performed by using the nonlinear hardening variables which was resulted from the test results and finite element analysis. From the analysis results, it was represented that the FRS was higher about 40% with nonlinear hardening model than with the bilinear model. Therefore the seismic response of base isolated structure with bilinear model can be underestimated than the real response. It is desired that the nonlinear hardening model of LRB is applied for the seismic risk evaluation requiring the ultimate state of LRB

  3. Nonlinear electro-mechanobiological behavior of cell membrane during electroporation

    KAUST Repository

    Deng, Peigang; Lee, Yi-Kuen; Lin, Ran; Zhang, Tong-Yi

    2012-01-01

    A nonlinear electroporation (EP) model is proposed to study the electro-mechanobiological behavior of cell membrane during EP, by taking the nonlinear large deformation of the membrane into account. The proposed model predicts the critical

  4. Complex behavior in chains of nonlinear oscillators.

    Science.gov (United States)

    Alonso, Leandro M

    2017-06-01

    This article outlines sufficient conditions under which a one-dimensional chain of identical nonlinear oscillators can display complex spatio-temporal behavior. The units are described by phase equations and consist of excitable oscillators. The interactions are local and the network is poised to a critical state by balancing excitation and inhibition locally. The results presented here suggest that in networks composed of many oscillatory units with local interactions, excitability together with balanced interactions is sufficient to give rise to complex emergent features. For values of the parameters where complex behavior occurs, the system also displays a high-dimensional bifurcation where an exponentially large number of equilibria are borne in pairs out of multiple saddle-node bifurcations.

  5. Numerical Evaluation of Size Effect on the Stress-Strain Behaviour of Geotextile-Reinforced Sand

    DEFF Research Database (Denmark)

    Hosseinpour, I.; Mirmoradi, S.H.; Barari, Amin

    2010-01-01

    This paper studies the effect of sample size on the stress-strain behavior and strength characteristics of geotextile reinforced sand using the finite element numerical analysis. The effect of sample size was investigated by studying the effects of varying the number of geotextile layers, the con......This paper studies the effect of sample size on the stress-strain behavior and strength characteristics of geotextile reinforced sand using the finite element numerical analysis. The effect of sample size was investigated by studying the effects of varying the number of geotextile layers...... on the mechanical behavior of reinforced sand decreases with an increase in the sample size....

  6. Nonlinear behavior: One degree of freedom

    International Nuclear Information System (INIS)

    Greene, J.M.

    1987-01-01

    There has been very considerable progress in the past few years on the theory of two conservative, coupled, nonlinear oscillators. This is a very general theory, and applies to many equivalent systems including approximate models of particle accelerators. A typical problem of this class has a solution that is so complicated that it is impossible to find an expression for the state of the system that is valid for all time. However, recent results are making it possible to determine the next most useful type of information. This is the asymptotic behavior of individual orbits in the limit of very long times. It is just the information that is desired in many situations. For example, it determines the stability of the motion. They key to our present understanding is renormalization. The present state of the art has been described in Robert MacKay's thesis, for which this is an advertisement

  7. Nonlinear aeroelastic behavior of compliant airfoils

    International Nuclear Information System (INIS)

    Thwapiah, G; Campanile, L F

    2010-01-01

    Since the beginning of aviation and up to the present time, airfoils have always been built as rigid structures. They are designed to fly under their divergence speed in order to avoid static aeroelastic instabilities and the resulting large deformations, which are not compatible with the typically low compliance of such airfoils. In recent years, research on airfoil morphing has generated interest in innovative ideas like the use of compliant systems, i.e. systems built to allow for large deformations without failure, in airfoil construction. Such systems can operate in the neighborhood of divergence and take advantage of large aeroelastic servo-effects. This, in turn, allows compact, advanced actuators to control the airfoil's deformation and loads, and hence complement or even replace conventional flaps. In order to analyze and design such compliant, active aeroelastic structures a nonlinear approach to static aeroelasticity is needed, which takes into account the effect of large deformations on aerodynamics and structure. Such an analytical approach is presented in this paper and applied to a compliant passive airfoil as the preliminary step in the realization of a piezoelectrically driven, active aeroelastic airfoil. Wind tunnel test results are also presented and compared with the analytic prediction. The good agreement and the observed behavior in the wind tunnel give confidence in the potential of this innovative idea

  8. Nonlinear aeroelastic behavior of compliant airfoils

    Science.gov (United States)

    Thwapiah, G.; Campanile, L. F.

    2010-03-01

    Since the beginning of aviation and up to the present time, airfoils have always been built as rigid structures. They are designed to fly under their divergence speed in order to avoid static aeroelastic instabilities and the resulting large deformations, which are not compatible with the typically low compliance of such airfoils. In recent years, research on airfoil morphing has generated interest in innovative ideas like the use of compliant systems, i.e. systems built to allow for large deformations without failure, in airfoil construction. Such systems can operate in the neighborhood of divergence and take advantage of large aeroelastic servo-effects. This, in turn, allows compact, advanced actuators to control the airfoil's deformation and loads, and hence complement or even replace conventional flaps. In order to analyze and design such compliant, active aeroelastic structures a nonlinear approach to static aeroelasticity is needed, which takes into account the effect of large deformations on aerodynamics and structure. Such an analytical approach is presented in this paper and applied to a compliant passive airfoil as the preliminary step in the realization of a piezoelectrically driven, active aeroelastic airfoil. Wind tunnel test results are also presented and compared with the analytic prediction. The good agreement and the observed behavior in the wind tunnel give confidence in the potential of this innovative idea.

  9. Nonlinear Finite Strain Consolidation Analysis with Secondary Consolidation Behavior

    Directory of Open Access Journals (Sweden)

    Jieqing Huang

    2014-01-01

    Full Text Available This paper aims to analyze nonlinear finite strain consolidation with secondary consolidation behavior. On the basis of some assumptions about the secondary consolidation behavior, the continuity equation of pore water in Gibson’s consolidation theory is modified. Taking the nonlinear compressibility and nonlinear permeability of soils into consideration, the governing equation for finite strain consolidation analysis is derived. Based on the experimental data of Hangzhou soft clay samples, the new governing equation is solved with the finite element method. Afterwards, the calculation results of this new method and other two methods are compared. It can be found that Gibson’s method may underestimate the excess pore water pressure during primary consolidation. The new method which takes the secondary consolidation behavior, the nonlinear compressibility, and nonlinear permeability of soils into consideration can precisely estimate the settlement rate and the final settlement of Hangzhou soft clay sample.

  10. Elucidating and tuning the strain-induced non-linear behavior of polymer nanocomposites: a detailed molecular dynamics simulation study.

    Science.gov (United States)

    Shen, Jianxiang; Liu, Jun; Gao, Yangyang; Li, Xiaolin; Zhang, Liqun

    2014-07-28

    By setting up a coarse-grained model of polymer nanocomposites, we monitored the change in the elastic modulus as a function of the strain, derived from the stress-strain behavior by determining uniaxial tension and simple shear of two typical spatial distribution states (aggregation and dispersion) of nanoparticles (NPs). In both these cases, we observed that the elastic modulus decreases non-linearly with the increase of strain and reaches a low plateau at larger strains. This phenomenon is similar to the so-called "Payne effect" for elastomer nanocomposites. Particularly, the modulus of the aggregation case is more sensitive to the imposed strain. By examining the structural parameters, such as the number of neighboring NPs, coordination number of NPs, root-mean-squared average force exerted on the NPs, local strain, chain conformations (bridge, dangle, loop, interface bead and connection bead), and the total interaction energy of NP-polymer and NP-NP, we inferred that the underlying mechanism of the aggregation case is the disintegration of the NP network or clusters formed through direct contact; however, for the dispersion case, the non-linear behavior is attributed to the destruction of the NP network or clusters formed through the bridging of adsorbed polymer segments among the NPs. The former physical network is influenced by NP-NP interaction and NP volume fraction, while the latter is influenced by NP-polymer interaction and NP volume fraction. Lastly, we found that for the dispersion case, further increasing the inter-particle distance or grafting NPs with polymer chains can effectively reduce the non-linear behavior due to the decrease of the physical network density. In general, this simulation work, for the first time, establishes the correlation between the micro-structural evolution and the strain-induced non-linear behavior of polymer nanocomposites, and sheds some light on how to reduce the "Payne effect".

  11. A comparative study on the elastic modulus of polyvinyl alcohol sponge using different stress-strain definitions.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi; Alizadeh, Mansour; Razaghi, Reza

    2014-10-01

    There have been different stress-strain definitions to measure the elastic modulus of spongy materials, especially polyvinyl alcohol (PVA) sponge. However, there is no agreement as to which stress-strain definition should be implemented. This study was aimed to show how different results are given by the various definitions of stress-strain used, and to recommend a specific definition when testing spongy materials. A fabricated PVA sponge was subjected to a series of tensile tests in order to measure its mechanical properties. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) were used to determine the elastic modulus. The results revealed that the Almansi-Hamel strain definition exhibited the highest non-linear stress-strain relation and, as a result, may overestimate the elastic modulus at different stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress). The Green-St. Venant strain definition failed to address the non-linear stress-strain relation using different definitions of stress and invoked an underestimation of the elastic modulus values. Engineering stress and strain definitions were only valid for small strains and displacements, which make them impractical when analyzing spongy materials. The results showed that the effect of varying the stress definition on the maximum stress measurements was significant but not when calculating the elastic modulus. It is important to consider which stress-strain definition is employed when characterizing the mechanical properties of spongy materials. Although the true stress-true strain definition exhibits a non-linear relation, we favor it in spongy materials mechanics as it gives more accurate measurements of the material's response using the instantaneous values.

  12. Characterization of the flexural behavior of a reactive graphitic nanofibers reinforced epoxy using a non-linear damage model

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Soumen [Department of Mechanical Engineering and Applied Mechanics, North Dakota State University, Fargo, ND 58105 (United States); Zhong Weihong [Department of Mechanical Engineering and Applied Mechanics, North Dakota State University, Fargo, ND 58105 (United States)]. E-mail: Katie.zhong@ndsu.edu; Gan, Yong X. [Department of Mechanical Engineering, Albert Nerken School of Engineering, Cooper Union for the Advancement of Science and Art, 51 Astor Place, New York City, NY 10003 (United States)

    2007-02-15

    In our previous work, a nano-epoxy was developed based on the preparation of reactive graphitic nanofibers (r-GNFs). The objective of this work is to study the effect of the r-GNFs in an epoxy resin on the mechanical properties of the resulting nano-epoxy composites. Three-point bending tests were carried out for the pure epoxy and nano-epoxy materials with 0.15, 0.2, 0.3, 0.5 wt% r-GNFs to obtain the flexural behaviors. The nano-epoxy composite containing 0.3 wt% of r-GNFs showed the best flexural properties including highest flexural strength, modules and ductility values among all the tested materials. Non-linear fracture mechanics (NLFM) was applied to analyze the phenomena occurred during the bending tests. A non-linear damage model was used to interpret the flexural stress-strain relationships of the tested materials, which showed agreement with the testing results. The fracture surfaces of the nano-epoxy composites were examined with scanning electron microscopy (SEM), and the morphological features on the SEM images also reveals that the nano-epoxy composites are tougher than the pure epoxy resin.

  13. Analysis of stress-strain relationships in silicon ribbon

    Science.gov (United States)

    Dillon, O. W., Jr.

    1984-01-01

    An analysis of stress-strain relationships in silicon ribbon is presented. A model to present entire process, dynamical Transit Analysis is developed. It is found that knowledge of past-strain history is significant in modeling activities.

  14. An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi

    2014-07-01

    There are different stress-strain definitions to measure the mechanical properties of the brain tissue. However, there is no agreement as to which stress-strain definition should be employed to measure the mechanical properties of the brain tissue at both the longitudinal and circumferential directions. It is worth knowing that an optimize stress-strain definition of the brain tissue at different loading directions may have implications for neuronavigation and surgery simulation through haptic devices. This study is aimed to conduct a comparative study on different results are given by the various definitions of stress-strain and to recommend a specific definition when testing brain tissues. Prepared cylindrical samples are excised from the parietal lobes of rats' brains and experimentally tested by applying load on both the longitudinal and circumferential directions. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are used to determine the elastic modulus, maximum stress and strain. The highest non-linear stress-strain relation is observed for the Almansi-Hamel strain definition and it may overestimate the elastic modulus at different stress definitions at both the longitudinal and circumferential directions. The Green-St. Venant strain definition fails to address the non-linear stress-strain relation using different definitions of stress and triggers an underestimation of the elastic modulus. The results suggest the application of the true stress-true strain definition for characterization of the brain tissues mechanics since it gives more accurate measurements of the tissue's response using the instantaneous values.

  15. Stress-strain curve of concretes with recycled concrete aggregates: analysis of the NBR 8522 methodology

    Directory of Open Access Journals (Sweden)

    D. A. GUJEL

    Full Text Available ABSTRACT This work analyses the methodology "A" (item A.4 employed by the Brazilian Standard ABNT 8522 (ABNT, 2008 for determining the stress-strain behavior of cylindrical specimens of concrete, presenting considerations about possible enhancements aiming it use for concretes with recycled aggregates with automatic test equipment. The methodology specified by the Brazilian Standard presents methodological issues that brings distortions in obtaining the stress-strain curve, as the use of a very limited number of sampling points and by inducing micro cracks and fluency in the elastic behavior of the material due to the use of steady stress levels in the test. The use of a base stress of 0.5 MPa is too low for modern high load test machines designed do high strength concrete test. The work presents a discussion over these subjects, and a proposal of a modified test procedure to avoid such situations.

  16. In situ subsoil stress-strain behaviour in relation to soil precompression stress

    DEFF Research Database (Denmark)

    Keller, T; Arvidsson, J; Schjønning, Per

    2012-01-01

    is assumed to be elastic and reversible as long as [sigma] work examined soil stress-strain behavior as measured in situ during wheeling experiments and related it to the stress-strain behavior and [sigma]pc measured on soil cores in uniaxial compression tests in the laboratory. The data......Soil compaction negatively influences many important soil functions, including crop growth. Compaction occurs when the applied stress, [sigma], overcomes the soil strength. Soil strength in relation to compaction is typically expressed by the soil precompression stress, [sigma]pc. Deformation...... analyzed were from a large number of wheeling experiments carried out in Sweden and Denmark on soils with a wide range of texture. Contradicting the concept of precompression stress, we observed residual strain, [Latin Small Letter Open E]res, at [sigma

  17. Stress strain modelling of casting processes in the framework of the control volume method

    DEFF Research Database (Denmark)

    Hattel, Jesper; Andersen, Søren; Thorborg, Jesper

    1998-01-01

    Realistic computer simulations of casting processes call for the solution of both thermal, fluid-flow and stress/strain related problems. The multitude of the influencing parameters, and their non-linear, transient and temperature dependent nature, make the calculations complex. Therefore the nee......, the present model is based on the mainly decoupled representation of the thermal, mechanical and microstructural processes. Examples of industrial applications, such as predicting residual deformations in castings and stress levels in die casting dies, are presented...... for fast, flexible, multidimensional numerical methods is obvious. The basis of the deformation and stress/strain calculation is a transient heat transfer analysis including solidification. This paper presents an approach where the stress/strain and the heat transfer analysis uses the same computational...... domain, which is highly convenient. The basis of the method is the control volume finite difference approach on structured meshes. The basic assumptions of the method are shortly reviewed and discussed. As for other methods which aim at application oriented analysis of casting deformations and stresses...

  18. Analysis of Mechanical Stresses/Strains in Superconducting Wire

    Science.gov (United States)

    Barry, Matthew; Chen, Jingping; Zhai, Yuhu

    2016-10-01

    The optimization of superconducting magnet performance and development of high-field superconducting magnets will greatly impact the next generation of fusion devices. A successful magnet development, however, relies deeply on the understanding of superconducting materials. Among the numerous factors that impact a superconductor's performance, mechanical stress is the most important because of the extreme operation temperature and large electromagnetic forces. In this study, mechanical theory is used to calculate the stresses/strains in typical superconducting strands, which consist of a stabilizer, a barrier, a matrix and superconducting filaments. Both thermal loads and mechanical loads are included in the analysis to simulate operation conditions. Because this model simulates the typical architecture of major superconducting materials, such as Nb3Sn, MgB2, Bi-2212 etc., it provides a good overall picture for us to understand the behavior of these superconductors in terms of thermal and mechanical loads. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program.

  19. Stress/strain/time properties of highly compacted bentonite

    International Nuclear Information System (INIS)

    Pusch, R.

    1983-05-01

    In this paper, a recently developed creep theory based on statistical mechanics has been used to analyze a number of experimental creep curves, the conclusion being that the creep behavior of dense MX-80 bentonite is in agreement with the physical model, and that the average bond strength is within the hydrogen bond region. The latter conclusion thus indicates that interparticle displacements leading to macroscopic creep takes place in interparticle and intraparticle water lattices. These findings were taken as a justification to apply the creep theory to a prediction of the settlement over a one million year period. It gave an estimated settlement of 1 cm at maximum, which is of no practical significance. The thixotropic and viscous properties of highly compacted bentonite present certain difficulties in the determination and evaluation of the stress/strain/time parameters that are required for ordinary elastic and elasto-plastic analyses. Still, these parameters could be sufficiently well identified to allow for a preliminary estimation of the stresses induced in the metal canisters by slight rock displacements. The analysis, suggests that a 1 cm rapid shear perpendicular to the axes of the canisters can take place without harming them. (author)

  20. Non-linear Behavior of Curved Sandwich Panels

    DEFF Research Database (Denmark)

    Berggreen, Carl Christian; Jolma, P.; Karjalainen, J. P.

    2003-01-01

    In this paper the non-linear behavior of curved sandwich panels is investigated both numerically and experimentally. Focus is on various aspects of finite element modeling and calculation procedures. A simply supported, singly curved, CFRP/PVC sandwich panel is analyzed under uniform pressure loa...

  1. Methods for predicting isochronous stress-strain curves

    International Nuclear Information System (INIS)

    Kiyoshige, Masanori; Shimizu, Shigeki; Satoh, Keisuke.

    1976-01-01

    Isochronous stress-strain curves show the relation between stress and total strain at a certain temperature with time as a parameter, and they are drawn up from the creep test results at various stress levels at a definite temperature. The concept regarding the isochronous stress-strain curves was proposed by McVetty in 1930s, and has been used for the design of aero-engines. Recently the high temperature characteristics of materials are shown as the isochronous stress-strain curves in the design guide for the nuclear energy equipments and structures used in high temperature creep region. It is prescribed that these curves are used as the criteria for determining design stress intensity or the data for analyzing the superposed effects of creep and fatigue. In case of the isochronous stress-strain curves used for the design of nuclear energy equipments with very long service life, it is impractical to determine the curves directly from the results of long time creep test, accordingly the method of predicting long time stress-strain curves from short time creep test results must be established. The method proposed by the authors, for which the creep constitution equations taking the first and second creep stages into account are used, and the method using Larson-Miller parameter were studied, and it was found that both methods were reliable for the prediction. (Kako, I.)

  2. Nonlinear electro-mechanobiological behavior of cell membrane during electroporation

    KAUST Repository

    Deng, Peigang

    2012-01-01

    A nonlinear electroporation (EP) model is proposed to study the electro-mechanobiological behavior of cell membrane during EP, by taking the nonlinear large deformation of the membrane into account. The proposed model predicts the critical transmembrane potential and the activation energy for EP, the equilibrium pore size, and the resealing process of the pore. Single-cell EP experiments using a micro EP chip were conducted on chicken red blood cells at different temperatures to determine the activation energy and the critical transmembrane potential for EP. The experimental results are in good agreement with the theoretical predictions. © 2012 American Institute of Physics.

  3. Biaxial failure criteria and stress-strain response for concrete of containment structure

    International Nuclear Information System (INIS)

    Lee, S. K.; Woo, S. K.; Song, Y. C.; Kweon, Y. K.; Cho, C. H.

    2001-01-01

    Biaxial failure criteria and stress-strain response for plain concrete of containment structure on nuclear power plants are studied under uniaxial and biaxial stress(compression-compression, compression-tension, and tension-tension combined stress). The concrete specimens of a square plate type are used for uniaxial and biaxial loading. The experimental data indicate that the strength of concrete under biaxial compression, f 2 /f 1 =-1/-1, is 17 percent larger than under uniaxial compression and the poisson's ratio of concrete is 0.1745. On the base of the results, a biaxial failure envelope for plain concrete that the uniaxial strength is 5660 psi are provided, and the biaxial failure behaviors for three biaxial loading areas are plotted respectively. And, various analytical equations having the reliability are proposed for representations of the biaxial failure criteria and stress-strain response curves of concrete

  4. Chameleon's behavior of modulable nonlinear electrical transmission line

    Science.gov (United States)

    Togueu Motcheyo, A. B.; Tchinang Tchameu, J. D.; Fewo, S. I.; Tchawoua, C.; Kofane, T. C.

    2017-12-01

    We show that modulable discrete nonlinear transmission line can adopt Chameleon's behavior due to the fact that, without changing its appearance structure, it can become alternatively purely right or left handed line which is different to the composite one. Using a quasidiscrete approximation, we derive a nonlinear Schrödinger equation, that predicts accurately the carrier frequency threshold from the linear analysis. It appears that the increasing of the linear capacitor in parallel in the series branch induced the selectivity of the filter in the right-handed region while it increases band pass filter in the left-handed region. Numerical simulations of the nonlinear model confirm the forward wave in the right handed line and the backward wave in the left handed one.

  5. Mathematical Systems Theory : from Behaviors to Nonlinear Control

    CERN Document Server

    Julius, A; Pasumarthy, Ramkrishna; Rapisarda, Paolo; Scherpen, Jacquelien

    2015-01-01

    This treatment of modern topics related to mathematical systems theory forms the proceedings of a workshop, Mathematical Systems Theory: From Behaviors to Nonlinear Control, held at the University of Groningen in July 2015. The workshop celebrated the work of Professors Arjan van der Schaft and Harry Trentelman, honouring their 60th Birthdays. The first volume of this two-volume work covers a variety of topics related to nonlinear and hybrid control systems. After giving a detailed account of the state of the art in the related topic, each chapter presents new results and discusses new directions. As such, this volume provides a broad picture of the theory of nonlinear and hybrid control systems for scientists and engineers with an interest in the interdisciplinary field of systems and control theory. The reader will benefit from the expert participants’ ideas on exciting new approaches to control and system theory and their predictions of future directions for the subject that were discussed at the worksho...

  6. A NURBS approximation of experimental stress-strain curves

    International Nuclear Information System (INIS)

    Fedorov, Timofey V.; Morrev, Pavel G.

    2016-01-01

    A compact universal representation of monotonic experimental stress-strain curves of metals and alloys is proposed. It is based on the nonuniform rational Bezier splines (NURBS) of second order and may be used in a computer library of materials. Only six parameters per curve are needed; this is equivalent to a specification of only three points in a stress-strain plane. NURBS-functions of higher order prove to be surplus. Explicit expressions for both yield stress and hardening modulus are given. Two types of curves are considered: at a finite interval of strain and at infinite one. A broad class of metals and alloys of various chemical compositions subjected to various types of preliminary thermo-mechanical working is selected from a comprehensive data base in order to test the methodology proposed. The results demonstrate excellent correspondence to the experimental data. Keywords: work hardening, stress-strain curve, spline approximation, nonuniform rational B-spline, NURBS.

  7. Analysis of nonlinear elastic behavior in miniature pneumatic artificial muscles

    Science.gov (United States)

    Hocking, Erica G.; Wereley, Norman M.

    2013-01-01

    Pneumatic artificial muscles (PAMs) are well known for their excellent actuator characteristics, including high specific work, specific power, and power density. Recent research has focused on miniaturizing this pneumatic actuator technology in order to develop PAMs for use in small-scale mechanical systems, such as those found in robotic or aerospace applications. The first step in implementing these miniature PAMs was to design and characterize the actuator. To that end, this study presents the manufacturing process, experimental characterization, and analytical modeling of PAMs with millimeter-scale diameters. A fabrication method was developed to consistently produce low-cost, high performance, miniature PAMs using commercially available materials. The quasi-static behavior of these PAMs was determined through experimentation on a single actuator with an active length of 39.16 mm (1.54 in) and a diameter of 4.13 mm (0.1625 in). Testing revealed the PAM’s full evolution of force with displacement for operating pressures ranging from 207 to 552 kPa (30-80 psi in 10 psi increments), as well as the blocked force and free contraction at each pressure. Three key nonlinear phenomena were observed: nonlinear PAM stiffness, hysteresis of the force versus displacement response for a given pressure, and a pressure deadband. To address the analysis of the nonlinear response of these miniature PAMs, a nonlinear stress versus strain model, a hysteresis model, and a pressure bias are introduced into a previously developed force balance analysis. Parameters of these nonlinear model refinements are identified from the measured force versus displacement data. This improved nonlinear force balance model is shown to capture the full actuation behavior of the miniature PAMs at each operating pressure and reconstruct miniature PAM response with much more accuracy than previously possible.

  8. Analysis of nonlinear elastic behavior in miniature pneumatic artificial muscles

    International Nuclear Information System (INIS)

    Hocking, Erica G; Wereley, Norman M

    2013-01-01

    Pneumatic artificial muscles (PAMs) are well known for their excellent actuator characteristics, including high specific work, specific power, and power density. Recent research has focused on miniaturizing this pneumatic actuator technology in order to develop PAMs for use in small-scale mechanical systems, such as those found in robotic or aerospace applications. The first step in implementing these miniature PAMs was to design and characterize the actuator. To that end, this study presents the manufacturing process, experimental characterization, and analytical modeling of PAMs with millimeter-scale diameters. A fabrication method was developed to consistently produce low-cost, high performance, miniature PAMs using commercially available materials. The quasi-static behavior of these PAMs was determined through experimentation on a single actuator with an active length of 39.16 mm (1.54 in) and a diameter of 4.13 mm (0.1625 in). Testing revealed the PAM’s full evolution of force with displacement for operating pressures ranging from 207 to 552 kPa (30–80 psi in 10 psi increments), as well as the blocked force and free contraction at each pressure. Three key nonlinear phenomena were observed: nonlinear PAM stiffness, hysteresis of the force versus displacement response for a given pressure, and a pressure deadband. To address the analysis of the nonlinear response of these miniature PAMs, a nonlinear stress versus strain model, a hysteresis model, and a pressure bias are introduced into a previously developed force balance analysis. Parameters of these nonlinear model refinements are identified from the measured force versus displacement data. This improved nonlinear force balance model is shown to capture the full actuation behavior of the miniature PAMs at each operating pressure and reconstruct miniature PAM response with much more accuracy than previously possible. (paper)

  9. A comparative study on the uniaxial mechanical properties of the umbilical vein and umbilical artery using different stress-strain definitions.

    Science.gov (United States)

    Karimi, Alireza; Navidbakhsh, Mahdi

    2014-12-01

    The umbilical cord is part of the fetus and generally includes one umbilical vein (UV) and two umbilical arteries (UAs). As the saphenous vein and UV are the most commonly used veins for the coronary artery disease treatment as a coronary artery bypass graft (CABG), understating the mechanical properties of UV has a key asset in its performance for CABG. However, there is not only a lack of knowledge on the mechanical properties of UV and UA but there is no agreement as to which stress-strain definition should be implemented to measure their mechanical properties. In this study, the UV and UA samples were removed after caesarean from eight individuals and subjected to a series of tensile testing. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) were employed to determine the linear mechanical properties of UVs and UAs. The nonlinear mechanical behavior of UV/UA was computationally investigated using hyperelastic material models, such as Ogden and Mooney-Rivlin. The results showed that the effect of varying the stress definition on the maximum stress measurements of the UV/UA is significant but not when calculating the elastic modulus. In the true stress-strain diagram, the maximum strain of UV was 92 % higher, while the elastic modulus and maximum stress were 162 and 42 % lower than that of UA. The Mooney-Rivlin material model was designated to represent the nonlinear mechanical behavior of the UV and UA under uniaxial loading.

  10. The Cyclic Stress-Strain Curve of Polycrystals

    DEFF Research Database (Denmark)

    Pedersen, Ole Bøcker; Rasmussen, K. V.; Winter, A. T.

    1982-01-01

    The internal stresses implied by the Sachs model are estimated for individual PSBs at low plastic strain amplitudes and for homogeneously sheared grains at higher plastic strain amplitudes. The analysis shows that the Sachs model can account semi-quantitatively for experimentally measured cyclic...... stress-strain curves for copper. A similar approximative analysis of the Taylor model cannot account for the data. An interesting feature of the Sachs model is that, although it is assumed that the flow condition is entirely controlled by the PSBs. the predicted cyclic stress-strain curve displays...

  11. Stress-strain relationship of high-strength steel (HSS) reinforcing bars

    Science.gov (United States)

    Anggraini, Retno; Tavio, Raka, I. Gede Putu; Agustiar

    2018-05-01

    The introduction of High-Strength Steel (HSS) reinforcing bars in reinforced concrete members has gained much attention in recent years and led to many advantages such as construction timesaving. It is also more economical since it can reduce the amount of reinforcing steel bars used in concrete members which in turn alleviates the congestion of reinforcement. Up to present, the building codes, e.g. American Concrete Institute (ACI) 318M-14 and Standard National Indonesia (SNI) 2847:2013, still restrict the use of higher-strength steel reinforcing bars for concrete design up to Grade 420 MPa due to the possible suspected brittle behavior of concrete members. This paper evaluates the characteristics of stress-strain relationships of HSS bars if they are comparable to the characteristics of those of Grade 420 MPa. To achieve the objective of the study, a series of steel bars from various grades (420, 550, 650, and 700 MPa) was selected. Tensile tests of these steel samples were conducted under displacement-controlled mode to capture the complete stress-strain curves and particularly the post-yield response of the steel bars. The results indicate that all the steel bars tested had the actual yield strengths greater than the corresponding specified values. The stress-strain curves of HSS reinforcing bars (Grade 550, 650, and 700 MPa) performed slightly different characteristics with those of Grade 420 MPa.

  12. The thermomechanics of nonlinear irreversible behaviors an introduction

    CERN Document Server

    Maugin, Gérard A

    1999-01-01

    In this invaluable book, macroscopic irreversible thermodynamics is presented in its realm and its splendor by appealing to the notion of internal variables of state. This applies to both fluids and solids with or without microstructures of mechanical or electromagnetic origin. This unmatched richness of essentially nonlinear behaviors is the result of the use of modern mathematical techniques such as convex analysis in a clear-cut framework which allows one to put under the umbrella of "irreversible thermodynamics" behaviors which until now have been commonly considered either not easily cove

  13. Simple quasi-analytical holonomic homogenization model for the non-linear analysis of in-plane loaded masonry panels: Part 1, meso-scale

    Science.gov (United States)

    Milani, G.; Bertolesi, E.

    2017-07-01

    A simple quasi analytical holonomic homogenization approach for the non-linear analysis of masonry walls in-plane loaded is presented. The elementary cell (REV) is discretized with 24 triangular elastic constant stress elements (bricks) and non-linear interfaces (mortar). A holonomic behavior with softening is assumed for mortar. It is shown how the mechanical problem in the unit cell is characterized by very few displacement variables and how homogenized stress-strain behavior can be evaluated semi-analytically.

  14. STRESS - STRAIN CURVE ANALYSIS OF WOVEN FABRICS MAD E FROM COMBED YARNS TYPE WOOL

    Directory of Open Access Journals (Sweden)

    VÎLCU Adrian

    2014-05-01

    Full Text Available The paper analyses the tensile behavior of woven fabrics made from 45%Wool + 55% PES used for garments. Analysis of fabric behavior during wearing has shown that these are submitted to simple and repeated uni-axial or bi-axial tensile strains. The level of these strains is often within the elastic limit, rarely going over yielding. Therefore the designer must be able to evaluate the mechanical behavior of such fabrics in order to control the fabric behavior in the garment. This evaluation is carried out based on the tensile testing, using certain indexes specific to the stress-strain curve. The paper considers an experimental matrix based on woven fabrics of different yarn counts, different or equal yarn count for warp and weft systems and different structures. The fabrics were tested using a testing machine and the results were then compared in order to determine the fabrics’ tensile behavior and the factors of influence that affect it.From the point of view of tensile testing, the woven materials having twill weave are preferable because this type of structure is characterized by higher durability and better yarn stability in the fabric. In practice, the woven material must exhibit an optimum behavior to repeated strains, flexions and abrasions during wearing process. The analysis of fabrics tensile properties studied by investigation of stress-strain diagrams reveals that the main factors influencing the tensile strength are: yarns fineness, technological density of those two systems of yarns and the weaving type.

  15. Analysis of the Nonlinear Static and Dynamic Behavior of Offshore Structures

    KAUST Repository

    Alfosail, Feras

    2015-01-01

    Understanding static and dynamic nonlinear behavior of pipes and risers is crucial for the design aspects in offshore engineering fields. In this work, we examine two nonlinear problems in offshore engineering field: vortex Induced vibration

  16. Elevated temperature stress strain behavior of beryllium powder product

    International Nuclear Information System (INIS)

    Abeln, S.P.; Field, R.; Mataya, M.C.

    1995-01-01

    Several grades of beryllium powder product were tested under isothermal conditions in compression over a temperature range of room temperature to 1000 C and a strain rate range from 0.001 s -1 to 1 s -1 . Samples were compressed to a total strain of 1 (64% reduction in height). It is shown that all the grades are strain rate sensitive and that strain rate sensitivity increases with temperature. Yield points were exhibited by some grades up to a temperature of 500 C, and appeared to be primarily dependent on prior thermal history which determined the availability of mobile dislocations. Serrated flow in the form of stress drops was seen in all the materials tested and was most pronounced at 500 C. The appearance and magnitude of the stress drops were dependent on accumulated strain, strain rate, sample orientation, and composition. The flow stress and shape of the flow curves differed significantly from grade to grade due to variations in alloy content, the size and distribution of BeO particles, aging precipitates, and grain size. The ductile-brittle transition temperature (DBTT) was determined for each grade of material and shown to be dependent on composition and thermal treatment. Structure/property relationships are discussed using processing history, microscopy (light and transmission), and property data

  17. Asymptotic behavior for a quadratic nonlinear Schrodinger equation

    Directory of Open Access Journals (Sweden)

    Pavel I. Naumkin

    2008-02-01

    Full Text Available We study the initial-value problem for the quadratic nonlinear Schrodinger equation $$displaylines{ iu_{t}+frac{1}{2}u_{xx}=partial _{x}overline{u}^{2},quad xin mathbb{R},; t>1, cr u(1,x=u_{1}(x,quad xin mathbb{R}. }$$ For small initial data $u_{1}in mathbf{H}^{2,2}$ we prove that there exists a unique global solution $uin mathbf{C}([1,infty ;mathbf{H}^{2,2}$ of this Cauchy problem. Moreover we show that the large time asymptotic behavior of the solution is defined in the region $|x|leq Csqrt{t}$ by the self-similar solution $frac{1}{sqrt{t}}MS(frac{x}{sqrt{t}}$ such that the total mass $$ frac{1}{sqrt{t}}int_{mathbb{R}}MS(frac{x}{sqrt{t}} dx=int_{mathbb{R}}u_{1}(xdx, $$ and in the far region $|x|>sqrt{t}$ the asymptotic behavior of solutions has rapidly oscillating structure similar to that of the cubic nonlinear Schrodinger equations.

  18. Elasto-plastic stress/strain at notches, comparison of test and approximative computations

    International Nuclear Information System (INIS)

    Beste, A.; Seeger, T.

    1979-01-01

    The lifetime of cyclically loaded components is decisively determined by the value of the local load in the notch root. The determination of the elasto-plastic notch-stress and-strain is therefore an important element of recent methods of lifetime determination. These local loads are normally calculated with the help of approximation formulas. Yet there are no details about their accuracy. The basic construction of the approximation formulas is presented, along with some particulars. The use of approximations within the fully plastic range and for material laws which show a non-linear stress-strain (sigma-epsilon-)-behaviour from the beginning is explained. The use of approximation for cyclic loads is particularly discussed. Finally, the approximations are evaluated in terms of their exactness. The test results are compared with the results of the approximation calculations. (orig.) 891 RW/orig. 892 RKD [de

  19. Stress-strain state analysis and optimization of rod system under periodic pulse load

    Directory of Open Access Journals (Sweden)

    Grebenyuk Grigory

    2018-01-01

    Full Text Available The paper considers the problem of analysis and optimization of rod systems subjected to combined static and periodic pulse load. As a result of the study the analysis method was developed based on traditional approach to solving homogeneous matrix equations of state and a special algorithm for developing a particular solution. The influence of pulse parameters variations on stress-strain state of a rod system was analyzed. Algorithms for rod systems optimization were developed basing on strength recalculation and statement and solution of optimization problem as a problem of nonlinear mathematical programming. Recommendations are developed for efficient organization of process for optimization of rod systems under static and periodic pulse load.

  20. Behavior of Filters and Smoothers for Strongly Nonlinear Dynamics

    Science.gov (United States)

    Zhu, Yanqui; Cohn, Stephen E.; Todling, Ricardo

    1999-01-01

    The Kalman filter is the optimal filter in the presence of known gaussian error statistics and linear dynamics. Filter extension to nonlinear dynamics is non trivial in the sense of appropriately representing high order moments of the statistics. Monte Carlo, ensemble-based, methods have been advocated as the methodology for representing high order moments without any questionable closure assumptions. Investigation along these lines has been conducted for highly idealized dynamics such as the strongly nonlinear Lorenz model as well as more realistic models of the means and atmosphere. A few relevant issues in this context are related to the necessary number of ensemble members to properly represent the error statistics and, the necessary modifications in the usual filter situations to allow for correct update of the ensemble members. The ensemble technique has also been applied to the problem of smoothing for which similar questions apply. Ensemble smoother examples, however, seem to be quite puzzling in that results state estimates are worse than for their filter analogue. In this study, we use concepts in probability theory to revisit the ensemble methodology for filtering and smoothing in data assimilation. We use the Lorenz model to test and compare the behavior of a variety of implementations of ensemble filters. We also implement ensemble smoothers that are able to perform better than their filter counterparts. A discussion of feasibility of these techniques to large data assimilation problems will be given at the time of the conference.

  1. Nonlinear viscoelastic behavior of shells of revolution under arbitrary loading

    International Nuclear Information System (INIS)

    Leonard, J.W.; Arbaki-Kanjoori, F.

    1975-01-01

    The requirement of some structural components such as propulsion systems and gas turbines to operate at high temperatures and pressures make the accurate evaluation of the creep phenomenon exigent (in fast breeder reactor for example). For the expected increases in operating temperatures and pressures, it becomes necessary to perform a thorough analysis of integral structural components of nuclear power plants throughout their life span. Since a large class of structures operating at elevated temperatures are composed of rotationally symmetric shells, a solution technique can be developed which involves the numerical integration of the governing shell equations. This method has been successfully applied to the static and dynamic analysis of thin elastic shells of revolution and for some cases of inelastic material behavior. It has been shown to render solutions efficiently and accurately, usually with only a fraction of computer time and storage requirements and data manipulation that is required for other numerical schemes such as the finite element method. Furthermore, the numerical integration method allows more flexibility for varying the integration step lengths than does the finite difference method and can provide uniform accuracy throughout the analysis. For nonlinear viscoelastic behavior the numerical integration technique is expected to provide similar efficiency to that obtained for the elastic problems. The computer program developed can accept time variation of material properties. Since a single form for the material constitutive law cannot encompass all materials, provisions are made so that the analysis of a very large class of material behavior can be accomplished

  2. Dynamic behavior of a nonlinear rational difference equation and generalization

    Directory of Open Access Journals (Sweden)

    Shi Qihong

    2011-01-01

    Full Text Available Abstract This paper is concerned about the dynamic behavior for the following high order nonlinear difference equation x n = (x n-k + x n-m + x n-l /(x n-k x n-m + x n-m x n-l +1 with the initial data { x - l , x - l + 1 , … , x - 1 } ∈ ℝ + l and 1 ≤ k ≤ m ≤ l. The convergence of solution to this equation is investigated by introducing a new sequence, which extends and includes corresponding results obtained in the references (Li in J Math Anal Appl 312:103-111, 2005; Berenhaut et al. Appl. Math. Lett. 20:54-58, 2007; Papaschinopoulos and Schinas J Math Anal Appl 294:614-620, 2004 to a large extent. In addition, some propositions for generalized equations are reported.

  3. Reliability analysis of reinforced concrete grids with nonlinear material behavior

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Rodrigo A [EESC-USP, Av. Trabalhador Sao Carlense, 400, 13566-590 Sao Carlos (Brazil); Chateauneuf, Alaa [LaMI-UBP and IFMA, Campus de Clermont-Fd, Les Cezeaux, BP 265, 63175 Aubiere cedex (France)]. E-mail: alaa.chateauneuf@ifma.fr; Venturini, Wilson S [EESC-USP, Av. Trabalhador Sao Carlense, 400, 13566-590 Sao Carlos (Brazil)]. E-mail: venturin@sc.usp.br; Lemaire, Maurice [LaMI-UBP and IFMA, Campus de Clermont-Fd, Les Cezeaux, BP 265, 63175 Aubiere cedex (France)

    2006-06-15

    Reinforced concrete grids are usually used to support large floor slabs. These grids are characterized by a great number of critical cross-sections, where the overall failure is usually sudden. However, nonlinear behavior of concrete leads to the redistribution of internal forces and accurate reliability assessment becomes mandatory. This paper presents a reliability study on reinforced concrete (RC) grids based on coupling Monte Carlo simulations with the response surface techniques. This approach allows us to analyze real RC grids with large number of failure components. The response surface is used to evaluate the structural safety by using first order reliability methods. The application to simple grids shows the interest of the proposed method and the role of moment redistribution in the reliability assessment.

  4. Micromechanical Model for Deformation in Solids with Universal Predictions for Stress-Strain Curves and Slip Avalanches

    International Nuclear Information System (INIS)

    Dahmen, Karin A.; Ben-Zion, Yehuda; Uhl, Jonathan T.

    2009-01-01

    A basic micromechanical model for deformation of solids with only one tuning parameter (weakening ε) is introduced. The model can reproduce observed stress-strain curves, acoustic emissions and related power spectra, event statistics, and geometrical properties of slip, with a continuous phase transition from brittle to ductile behavior. Exact universal predictions are extracted using mean field theory and renormalization group tools. The results agree with recent experimental observations and simulations of related models for dislocation dynamics, material damage, and earthquake statistics.

  5. Stress strain flow curves for Cu-OFP

    International Nuclear Information System (INIS)

    Sandstroem, Rolf; Hallgren, Josefin

    2009-04-01

    Stress strain curves of oxygen free copper alloyed with phosphorus Cu-OFP have been determined in compression and tension. The compression tests were performed at room temperature for strain rates between 10 -5 and 10 -3 1/s. The tests in tension covered the temperature range 20 to 175 deg C for strain rates between 10 -7 and 5x10 -3 1/s. The results in compression and tension were close for similar strain rates. A model for stress strain curves has been formulated using basic dislocation mechanisms. The model has been set up in such a way that fitting of parameters to the curves is avoided. By using a fundamental creep model as a basis a direct relation to creep data has been established. The maximum engineering flow stress in tension is related to the creep stress giving the same strain rate. The model reproduces the measured flow curves as function of temperature and strain rate in the investigated interval. The model is suitable to use in finite-element computations of structures in Cu-OFP

  6. Analysis of nonlinear behavior of loudspeakers using the instantaneous frequency

    DEFF Research Database (Denmark)

    Huang, Hai; Jacobsen, Finn

    2003-01-01

    on the Fourier transform. In this work, a new method using the instantaneous frequency is introduced for describing and characterizing loudspeaker nonlinearities. First, numerical integration is applied to simulate the nonlinearities of loudspeakers caused by two nonlinear parameters, force factor and stiffness...

  7. Nonlinear transport behavior of low dimensional electron systems

    Science.gov (United States)

    Zhang, Jingqiao

    The nonlinear behavior of low-dimensional electron systems attracts a great deal of attention for its fundamental interest as well as for potentially important applications in nanoelectronics. In response to microwave radiation and dc bias, strongly nonlinear electron transport that gives rise to unusual electron states has been reported in two-dimensional systems of electrons in high magnetic fields. There has also been great interest in the nonlinear response of quantum ballistic constrictions, where the effects of quantum interference, spatial dispersion and electron-electron interactions play crucial roles. In this thesis, experimental results of the research of low dimensional electron gas systems are presented. The first nonlinear phenomena were observed in samples of highly mobile two dimensional electrons in GaAs heavily doped quantum wells at different magnitudes of DC and AC (10 KHz to 20 GHz) excitations. We found that in the DC excitation regime the differential resistance oscillates with the DC current and external magnetic field, similar behavior was observed earlier in AlGaAs/GaAs heterostructures [C.L. Yang et al. ]. At external AC excitations the resistance is found to be also oscillating as a function of the magnetic field. However the form of the oscillations is considerably different from the DC case. We show that at frequencies below 100 KHz the difference is a result of a specific average of the DC differential resistance during the period of the external AC excitations. Secondly, in similar samples, strong suppression of the resistance by the electric field is observed in magnetic fields at which the Landau quantization of electron motion occurs. The phenomenon survives at high temperatures at which the Shubnikov de Haas oscillations are absent. The scale of the electric fields essential for the effect, is found to be proportional to temperature in the low temperature limit. We suggest that the strong reduction of the longitudinal resistance

  8. Stress-Strain state of structural elements of LWR fuel rods modeling in the MSC.MARC and ANSYS software

    International Nuclear Information System (INIS)

    Kuznetsov, A.; Kuznetsov, V.; Krupkin, A.; Kashirin, B.; Medvedev, A.; Novikov, V.

    2009-01-01

    The results of stress-strain state in the fuel rod spring fixing lock coils modeling are presented in this paper. The solution of this problem was realized in finite-element software MSC.MARC and ANSIS. The solution was obtained in the three-dimensional setting, taking into account multicontact interaction and all physical and geometric nonlinearities. The finite-element models were verified on analytical parities and experimental data. Results of verification have proved a correctness of the accepted finite-element models

  9. The Behavior of Filters and Smoothers for Strongly Nonlinear Dynamics

    Science.gov (United States)

    Zhu, Yanqiu; Cohn, Stephen E.; Todling, Ricardo

    1999-01-01

    The Kalman filter is the optimal filter in the presence of known Gaussian error statistics and linear dynamics. Filter extension to nonlinear dynamics is non trivial in the sense of appropriately representing high order moments of the statistics. Monte Carlo, ensemble-based, methods have been advocated as the methodology for representing high order moments without any questionable closure assumptions (e.g., Miller 1994). Investigation along these lines has been conducted for highly idealized dynamics such as the strongly nonlinear Lorenz (1963) model as well as more realistic models of the oceans (Evensen and van Leeuwen 1996) and atmosphere (Houtekamer and Mitchell 1998). A few relevant issues in this context are related to the necessary number of ensemble members to properly represent the error statistics and, the necessary modifications in the usual filter equations to allow for correct update of the ensemble members (Burgers 1998). The ensemble technique has also been applied to the problem of smoothing for which similar questions apply. Ensemble smoother examples, however, seem to quite puzzling in that results of state estimate are worse than for their filter analogue (Evensen 1997). In this study, we use concepts in probability theory to revisit the ensemble methodology for filtering and smoothing in data assimilation. We use Lorenz (1963) model to test and compare the behavior of a variety implementations of ensemble filters. We also implement ensemble smoothers that are able to perform better than their filter counterparts. A discussion of feasibility of these techniques to large data assimilation problems will be given at the time of the conference.

  10. Electrodynamic soil plate oscillator: Modeling nonlinear mesoscopic elastic behavior and hysteresis in nonlinear acoustic landmine detection

    Science.gov (United States)

    Korman, M. S.; Duong, D. V.; Kalsbeck, A. E.

    2015-10-01

    An apparatus (SPO), designed to study flexural vibrations of a soil loaded plate, consists of a thin circular elastic clamped plate (and cylindrical wall) supporting a vertical soil column. A small magnet attached to the center of the plate is driven by a rigid AC coil (located coaxially below the plate) to complete the electrodynamic soil plate oscillator SPO design. The frequency dependent mechanical impedance Zmech (force / particle velocity, at the plate's center) is inversely proportional to the electrical motional impedance Zmot. Measurements of Zmot are made using the complex output to input response of a Wheatstone bridge that has an identical coil element in one of its legs. Near resonance, measurements of Zmot (with no soil) before and after a slight point mass loading at the center help determine effective mass, spring, damping and coupling constant parameters of the system. "Tuning curve" behavior of real{ Zmot } and imaginary{ Zmot } at successively higher vibration amplitudes of dry sifted masonry sand are measured. They exhibit a decrease "softening" in resonance frequency along with a decrease in the quality Q factor. In soil surface vibration measurements a bilinear hysteresis model predicts the tuning curve shape for this nonlinear mesoscopic elastic SPO behavior - which also models the soil vibration over an actual plastic "inert" VS 1.6 buried landmine. Experiments are performed where a buried 1m cube concrete block supports a 12 inch deep by 30 inch by 30 inch concrete soil box for burying a VS 1.6 in dry sifted masonry sand for on-the-mine and off-the-mine soil vibration experiments. The backbone curve (a plot of the peak amplitude vs. corresponding resonant frequency from a family of tuning curves) exhibits mostly linear behavior for "on target" soil surface vibration measurements of the buried VS 1.6 or drum-like mine simulants for relatively low particle velocities of the soil. Backbone curves for "on target" measurements exhibit

  11. An improved Armstrong-Frederick-Type Plasticity Model for Stable Cyclic Stress-Strain Responses Considering Nonproportional Hardening

    Science.gov (United States)

    Li, Jing; Zhang, Zhong-ping; Li, Chun-wang

    2018-03-01

    This paper modified an Armstrong-Frederick-type plasticity model for investigating the stable cyclic deformation behavior of metallic materials with different sensitivity to nonproportional loadings. In the modified model, the nonproportionality factor and nonproportional cyclic hardening coefficient coupled with the Jiang-Sehitoglu incremental plasticity model were used to estimate the stable stress-strain responses of the two materials (1045HR steel and 304 stainless steel) under various tension-torsion strain paths. A new equation was proposed to calculate the nonproportionality factor on the basis of the minimum normal strain range. Procedures to determine the minimum normal strain range were presented for general multiaxial loadings. Then, the modified model requires only the cyclic strain hardening exponent and cyclic strength coefficient to determine the material constants. It is convenient for predicting the stable stress-strain responses of materials in engineering application. Comparisons showed that the modified model can reflect the effect of nonproportional cyclic hardening well.

  12. Mimicking biological stress-strain behaviour with synthetic elastomers

    Science.gov (United States)

    Vatankhah-Varnosfaderani, Mohammad; Daniel, William F. M.; Everhart, Matthew H.; Pandya, Ashish A.; Liang, Heyi; Matyjaszewski, Krzysztof; Dobrynin, Andrey V.; Sheiko, Sergei S.

    2017-09-01

    Despite the versatility of synthetic chemistry, certain combinations of mechanical softness, strength, and toughness can be difficult to achieve in a single material. These combinations are, however, commonplace in biological tissues, and are therefore needed for applications such as medical implants, tissue engineering, soft robotics, and wearable electronics. Present materials synthesis strategies are predominantly Edisonian, involving the empirical mixing of assorted monomers, crosslinking schemes, and occluded swelling agents, but this approach yields limited property control. Here we present a general strategy for mimicking the mechanical behaviour of biological materials by precisely encoding their stress-strain curves in solvent-free brush- and comb-like polymer networks (elastomers). The code consists of three independent architectural parameters—network strand length, side-chain length and grafting density. Using prototypical poly(dimethylsiloxane) elastomers, we illustrate how this parametric triplet enables the replication of the strain-stiffening characteristics of jellyfish, lung, and arterial tissues.

  13. Stress-strain response of plastic waste mixed soil.

    Science.gov (United States)

    Babu, G L Sivakumar; Chouksey, Sandeep Kumar

    2011-03-01

    Recycling plastic waste from water bottles has become one of the major challenges worldwide. The present study provides an approach for the use plastic waste as reinforcement material in soil. The experimental results in the form of stress-strain-pore water pressure response are presented. Based on experimental test results, it is observed that the strength of soil is improved and compressibility reduced significantly with addition of a small percentage of plastic waste to the soil. The use of the improvement in strength and compressibility response due to inclusion of plastic waste can be advantageously used in bearing capacity improvement and settlement reduction in the design of shallow foundations. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Measurement of stress strain and vibrational properties of tendons

    Science.gov (United States)

    Revel, Gian Marco; Scalise, Alessandro; Scalise, Lorenzo

    2003-08-01

    The authors present a new non-intrusive experimental procedure based on laser techniques for the measurement of mechanical properties of tendons. The procedure is based on the measurement of the first resonance frequency of the tendon by laser Doppler vibrometry during in vitro tensile experiments, with the final aim of establishing a measurement procedure to perform the mechanical characterization of tendons by extracting parameters such as the resonance frequency, also achievable during in vivo investigation. The experimental procedure is reported, taking into account the need to simulate the physiological conditions of the Achilles tendon, and the measurement technique used for the non-invasive determination of tendon cross-sectional area during tensile vibration tests at different load levels is described. The test procedure is based on a tensile machine, which measures longitudinal tendons undergoing controlled load conditions. Cross-sectional area is measured using a new non-contact procedure for the measurement of tendon perimeter (repeatability of 99% and accuracy of 2%). For each loading condition, vibration resonance frequency and damping, cross-sectional area and tensile force are measured, allowing thus a mechanical characterization of the tendon. Tendon stress-strain curves are reported. Stress-strain curves have been correlated to the first vibration resonance frequency and damping of the tendon measured using a single-point laser Doppler vibrometer. Moreover, experimental results have been compared with a theoretical model of a vibrating cord showing discrepancies. In vitro tests are reported, demonstrating the validity of the method for the comparison of different aged rabbit tendons.

  15. The role of creep in stress strain curves for copper

    International Nuclear Information System (INIS)

    Sandström, Rolf; Hallgren, Josefin

    2012-01-01

    Highlights: ► A dislocation based model takes into account both dynamic and static recovery. ► Tests at constant load and at constant strain rate modelled without fitting parameters. ► The model can describe primary and secondary creep of Cu-OFP from 75 to 250 °C. ► The temperature and strain rate dependence of stress strain curves can be modelled. ► Intended for the slow strain rates in canisters for storage of nuclear waste. - Abstract: A model for plastic deformation in pure copper taking work hardening, dynamic recovery and static recovery into account, has been formulated using basic dislocation mechanisms. The model is intended to be used in finite-element computations of the long term behaviour of structures in Cu-OFP for storage of nuclear waste. The relation between the strain rate and the maximum flow stress in the model has been demonstrated to correspond to strain rate versus stress in creep tests for oxygen free copper alloyed with phosphorus Cu-OFP. A further development of the model can also represent the primary and secondary stage of creep curves. The model is compared to stress strain curves in compression and tension for Cu-OFP. The compression tests were performed at room temperature for strain rates between 5 × 10 −5 and 5 × 10 −3 s −1 . The tests in tension covered the temperature range 20–175 °C for strain rates between 1 × 10 −7 and 1 × 10 −4 s −1 . Consequently, it is demonstrated that the model can represent mechanical test data that have been generated both at constant load and at constant strain rate without the use of any fitting parameters.

  16. Augmented twin-nonlinear two-box behavioral models for multicarrier LTE power amplifiers.

    Science.gov (United States)

    Hammi, Oualid

    2014-01-01

    A novel class of behavioral models is proposed for LTE-driven Doherty power amplifiers with strong memory effects. The proposed models, labeled augmented twin-nonlinear two-box models, are built by cascading a highly nonlinear memoryless function with a mildly nonlinear memory polynomial with cross terms. Experimental validation on gallium nitride based Doherty power amplifiers illustrates the accuracy enhancement and complexity reduction achieved by the proposed models. When strong memory effects are observed, the augmented twin-nonlinear two-box models can improve the normalized mean square error by up to 3 dB for the same number of coefficients when compared to state-of-the-art twin-nonlinear two-box models. Furthermore, the augmented twin-nonlinear two-box models lead to the same performance as previously reported twin-nonlinear two-box models while requiring up to 80% less coefficients.

  17. Structural behavior of cable superconductors

    International Nuclear Information System (INIS)

    Becker, H.; Marston, P.

    1983-01-01

    The structural properties of cable superconductor coils, for particle accelerators such as the Tevatron and the CBA (Colliding Beam Accelerator), depend upon direction of loading. For compression perpendicular to the ''flat faces'' of the conductor, the coils exhibit nonlinear, inelastic and time dependent behavior. The same is true for ''inplane'' compression loading perpendicular to the conductor edges. In the lengthwise direction, the coils display tension and compression stress-strain curves typical of structural metals. The loading of primary concern is compression perpendicular to the conductor faces since deformations in that direction can have a major influence on magnetic field quality. However, the coil behavior under that condition is uncertain because of the nonlinear stress strain curve complicated by creep and relaxation at the stress levels induced by preloading and Lorentz forces. Furthermore, the stiffness of the loading fixture appears to influence the data as shown by results from tests run under different conditions at Berkeley, Brookhaven and MIT. The paper displays test data on stress-strain curves for all three loading directions. Results are presented for RT, 77 K and 4 K behavior. Data of various investigators are compared. The applicability of a relatively simple power law between stress and strain is depicted

  18. Nonlinear behavior of three-terminal graphene junctions at room temperature

    International Nuclear Information System (INIS)

    Kim, Wonjae; Riikonen, Juha; Lipsanen, Harri; Pasanen, Pirjo

    2012-01-01

    We demonstrate nonlinear behavior in three-terminal T-branch graphene devices at room temperature. A rectified nonlinear output at the center branch is observed when the device is biased by a push–pull configuration. Nonlinearity is assumed to arise from a difference in charge transfer through the metal–graphene contact barrier between two contacts. The sign of the rectification can be altered by changing the carrier type using the back-gate voltage. (paper)

  19. Modeling of stress-strain diagram on the basis of magnetic measurements

    International Nuclear Information System (INIS)

    Gorkunov, Eh.S.; Fedotov, V.P.; Bukhvalov, A.B.; Veselov, I.N.

    1997-01-01

    The model of a stress-strain diagram with taking into account the strain hardening and the growth of metal damageing is proposed. The model is applied to calculate a stress-strain curve for continuous cast 45 steel using the results of magnetic properties measuring. The latter permits predicting the durability of construction elements with the use of nondestructive magnetic testing

  20. Construction of long-term isochronous stress-strain curves by a modeling of short-term creep curves for a Grade 9Cr-1Mo steel

    International Nuclear Information System (INIS)

    Kim, Woo-Gon; Yin, Song-Nan; Koo, Gyeong-Hoi

    2009-01-01

    This study dealt with the construction of long-term isochronous stress-strain curves (ISSC) by a modeling of short-term creep curves for a Grade 9Cr-1Mo steel (G91) which is a candidate material for structural applications in the next generation nuclear reactors as well as in fusion reactors. To do this, tensile material data used in the inelastic constitutive equations was obtained by tensile tests at 550degC. Creep curves were obtained by a series of creep tests with different stress levels of 300MPa to 220MPa at an identical controlled temperature of 550degC. On the basis of these experimental data, the creep curves were characterized by Garofalo's creep model. Three parameters of P 1 , P 2 and P 3 in Garofalo's model were properly optimized by a nonlinear least square fitting (NLSF) analysis. The stress dependency of the three parameters was found to be a linear relationship. But, the P 3 parameter representing the steady state creep rate exhibited a two slope behavior with different stress exponents at a transient stress of about 250 MPa. The long-term creep curves of the G91 steel was modeled by Garofalo's model with only a few short-term creep data. Using the modeled creep curves, the long-term isochronous curves up to 10 5 hours were successfully constructed. (author)

  1. Application of Nonlinear Elastic Resonance Spectroscopy For Damage Detection In Concrete: An Interesting Story

    Energy Technology Data Exchange (ETDEWEB)

    Byers, Loren W. [Los Alamos National Laboratory; Ten Cate, James A. [Los Alamos National Laboratory; Johnson, Paul A. [Los Alamos National Laboratory

    2012-06-28

    Nonlinear resonance ultrasound spectroscopy experiments conducted on concrete cores, one chemically and mechanically damaged by alkali-silica reactivity, and one undamaged, show that this material displays highly nonlinear wave behavior, similar to many other damaged materials. They find that the damaged sample responds more nonlinearly, manifested by a larger resonant peak and modulus shift as a function of strain amplitude. The nonlinear response indicates that there is a hysteretic influence in the stress-strain equation of state. Further, as in some other materials, slow dynamics are present. The nonlinear response they observe in concrete is an extremely sensitive indicator of damage. Ultimately, nonlinear wave methods applied to concrete may be used to guide mixing, curing, or other production techniques, in order to develop materials with particular desired qualities such as enhanced strength or chemical resistance, and to be used for damage inspection.

  2. Optimization of hardening/softening behavior of plane frame structures using nonlinear normal modes

    DEFF Research Database (Denmark)

    Dou, Suguang; Jensen, Jakob Søndergaard

    2016-01-01

    Devices that exploit essential nonlinear behavior such as hardening/softening and inter-modal coupling effects are increasingly used in engineering and fundamental studies. Based on nonlinear normal modes, we present a gradient-based structural optimization method for tailoring the hardening...... involving plane frame structures where the hardening/softening behavior is qualitatively and quantitatively tuned by simple changes in the geometry of the structures....

  3. Developing the multiple stress-strain creep recovery (MS-SCR) test

    Science.gov (United States)

    Elnasri, Mahmoud; Airey, Gordon; Thom, Nick

    2018-04-01

    While most published work from Europe has been concerned with evaluating binders' resistance to rutting based on their stiffness (deformation resistance), work originating in the US has mainly been concerned with ranking binders based on their recoverability in a multiple stress form. This paper details the design of a new modified multiple stress-strain creep recovery (MS-SCR) test. The test is designed to evaluate binders' rutting resistance based on two rutting resistance mechanisms: stiffness and recoverability. A preliminary investigation is presented in this paper followed by details of the design of the new modified test. A 40/60 penetration grade bitumen and bitumen-filler mastics prepared with three filler concentrations (35%, 50%, and 65% filler content by mass of mastic) were tested. In addition, two polymer modified bitumens (PMBs) using the same base bitumen type were examined for validation. Two parameters are introduced to characterise the short and long recovery in the new test. In terms of stiffness, the test allows the behaviour of binders at different stress levels and loading cycles to be studied and produces a new parameter that can quantify the degree of modification. Finally, a relationship between nonlinearity and normal force in the test was investigated.

  4. Hysteresis, Discrete Memory, and Nonlinear Wave Propagation in Rock: A New Paradigm

    International Nuclear Information System (INIS)

    Guyer, R.A.; McCall, K.R.; Boitnott, G.N.

    1995-01-01

    The structural elements in a rock are characterized by their density in Preisach-Mayergoyz space (PM space). This density is found for a Berea sandstone from stress-strain data and used to study the response of the sandstone to elaborate pressure protocols. Hysteresis with discrete memory, in agreement with experiment, is found. The relationship between strain, quasistatic modulus, and dynamic modulus is established. Nonlinear wave propagation, the production of copious harmonics, and nonlinear attenuation are demonstrated. PM space is shown to be the central construct in a new paradigm for the description of the elastic behavior of consolidated materials

  5. Modal representation of geometrically nonlinear behavior by the finite element method

    International Nuclear Information System (INIS)

    Nagy, D.A.

    1977-01-01

    A method is presented for representing mild geometrically nonlinear static behavior of thin-type structures, within the finite element method, in terms of linear elastic and linear (bifurcation) buckling analysis results for structural loading or geometry situations which violate the idealized restrictive (perfect) interpretation of linear behavior up to bifurcation. (Auth.)

  6. Nonlinear behavior of stimulated scatter in large underdense plasmas

    International Nuclear Information System (INIS)

    Kruer, W.L.; Estabrook, K.G.

    1979-01-01

    Several nonlinear effects which limit Brillouin and Raman scatter of intense light in large underdense plasmas are examined. After briefly considering ion trapping and harmonic generation, we focus on the self-consistent ion heating which occurs as an integral part of the Brillouin scattering process. In the long-term nonlinear state, the ion wave amplitude is determined by damping on the heated ion tail which self-consistently forms. A simple model of the scatter is presented and compared with particle simulations. A similar model is also applied to Raman scatter and compared with simulations. Our calculations emphasize that modest tails on the electron distribution function can significantly limit instabilities involving electron plasma waves

  7. Asymptotic Behavior of Solutions for Nonlinear Volterra Discrete Equations

    Directory of Open Access Journals (Sweden)

    E. Messina

    2008-01-01

    Full Text Available We consider nonlinear difference equations of unbounded order of the form xi=bi−∑j=0iai,jfi−j(xj,  i=0,1,2,…, where fj(x  (j=0,…,i are suitable functions. We establish sufficient conditions for the boundedness and the convergence of xi as i→+∞. Some of these conditions are interesting mainly for studying stability of numerical methods for Volterra integral equations.

  8. Localized Effects in the Nonlinear Behavior of Sandwich Panels with a Transversely Flexible Core

    DEFF Research Database (Denmark)

    Frostig, Y.; Thomsen, Ole Thybo

    2005-01-01

    This paper presents the results of an investigation of the role of localized effects within the geometrically nonlinear domain on structural sandwich panels with a "compliant" core. Special emphasis is focused on the nonlinear response near concentrated loads and stiffened core regions. The adopted...... nonlinear analysis approach incorporates the effects of the vertical flexibility of the core, and it is based on the approach of the High-order Sandwich Panel Theory (HSAPT). The results demonstrate that the effects of localized loads, when taken into the geometrically nonlinear domain, change the response...... of the panel from a strength problem controlled by stress constraints into a stability problem with unstable limit point behavior when force-controlled loads are applied. The stability problem emerge as the nonlinear response develops with the formation of a small number of buckling waves in the compressed...

  9. Correction of the post -- necking true stress -- strain data using instrumented nanoindentation

    Science.gov (United States)

    Romero Fonseca, Ivan Dario

    The study of large plastic deformations has been the focus of numerous studies particularly in the metal forming processes and fracture mechanics fields. A good understanding of the plastic flow properties of metallic alloys and the true stresses and true strains induced during plastic deformation is crucial to optimize the aforementioned processes, and to predict ductile failure in fracture mechanics analyzes. Knowledge of stresses and strains is extracted from the true stress-strain curve of the material from the uniaxial tensile test. In addition, stress triaxiality is manifested by the neck developed during the last stage of a tensile test performed on a ductile material. This necking phenomenon is the factor responsible for deviating from uniaxial state into a triaxial one, then, providing an inaccurate description of the material's behavior after the onset of necking. The research of this dissertation is aimed at the development of a correction method for the nonuniform plastic deformation (post-necking) portion of the true stress-strain curve. The correction proposed is based on the well-known relationship between hardness and flow (yield) stress, except that instrumented nanoindentation hardness is utilized rather than conventional macro or micro hardness. Three metals with different combinations of strain hardening behavior and crystal structure were subjected to quasi-static tensile tests: power-law strain hardening low carbon G10180 steel (BCC) and electrolytic tough pitch copper C11000 (FCC), and linear strain hardening austenitic stainless steel S30400 (FCC). Nanoindentation hardness values, measured on the broken tensile specimen, were converted into flow stress values by means of the constraint factor C from Tabor's, the representative plastic strainepsilonr and the post-test true plastic strains measured. Micro Vickers hardness testing was carried out on the sample as well. The constraint factors were 5.5, 4.5 and 4.5 and the representative plastic

  10. Nonlinear dynamic behavior of an assembly of tubes under transverse fluid flow

    International Nuclear Information System (INIS)

    Beaufils, B.; Axisa, F.; Antunes, J.

    1989-01-01

    The mechanical vibrations induced by a transverse fluid flow passing through an assembly of cylindrical tubes is investigated. Studies on the numerical modeling of such phenomena are presented. The purpose of the work is to allow the evaluation of the risks induced by the vibrations in industrial heat exchangers. The methods for the analysis of nonlinear problems and numerical calculations of the nonlinear dynamic behavior are performed [fr

  11. Analysis of fractional non-linear diffusion behaviors based on Adomian polynomials

    Directory of Open Access Journals (Sweden)

    Wu Guo-Cheng

    2017-01-01

    Full Text Available A time-fractional non-linear diffusion equation of two orders is considered to investigate strong non-linearity through porous media. An equivalent integral equation is established and Adomian polynomials are adopted to linearize non-linear terms. With the Taylor expansion of fractional order, recurrence formulae are proposed and novel numerical solutions are obtained to depict the diffusion behaviors more accurately. The result shows that the method is suitable for numerical simulation of the fractional diffusion equations of multi-orders.

  12. Design of Stress-Strain Measuring System for Bulldozing Plate Based on Virtual Instrument Technology

    International Nuclear Information System (INIS)

    Xu, S C; Li, J Q; Zhang, R

    2006-01-01

    Soil is a kind of discrete, multiphase compound that is composed of soil particles, liquid and air. When soil is disturbed by bulldozing plate, the mechanical behavior of the soil will become very complex. Based on the law of action and reaction, the dynamic mechanical behavior of disturbed soil was indirectly analyzed by measuring and studying the forces on the bulldozing plate by soil currently, so a stress-strain virtual measuring system for bulldozing plate, which was designed by the graphical programming language DASYLab, was used to measure the horizontal force Fz acting on the bulldozing plate. In addition, during the course of design, the experimental complexities and the interferential factors influencing on signal logging were analyzed when bulldozing plate worked, so the anti-jamming methods of hardware and software technology were adopted correlatively. In the end, the horizontal force Fz was analyzed with Error Theory, the result shown that the quantificational analysis of Fz were identical to the qualitative results of soil well, and the error of the whole test system is under 5 percent, so the tress-strain virtual measuring system was stable and credible

  13. Determination of the buckling safety of reinforced concrete shells considering the nonlinear material-behavior

    International Nuclear Information System (INIS)

    Zerna, W.; Mungan, I.; Steffen, W.

    1980-01-01

    The equations of the bending and stability theories for the orthotropic shell are solved using the FEM. A biaxial material law for concrete and a nearly bilinear stress-strain diagram for reinforcing steel were considered. Taking a layered ring element the influence of bending moments together with the membrane forces can be followed under increasing load up to failure of concrete or steel. At each level the bucking factor can be calculated considering the stress dependent buckling stiffness. The method of calculation is applied to a cooling tower shell under dead load acting simultaneously with an axi-symmetric loading to compensate for the wind effect. Due to orthotropy and descending tangent modulus at the ultimate load the buckling load factor drops to the half of the value obtained assuming a linear elastic behaviour. Additional parametric studies demonstrate the effect of some hypothetic cracks of different position and depth of the bifurcation results. The variation of the safety factors against buckling and ultimate load is obtained by changing the shell thickness. For the shell investigated it turns out that the buckling safety is influenced much more than the safety against material failure if the wall thickness is varied. It is recommended to split the buckling analysis of reinforced concrete shells in two parts. For shells of parts of a shell under only slightly disturbed membrane stress state the buckling analysis governs, otherwise the ultimate state considering the geometric and material nonlinearities is decisive to obtain not only the wall thickness but also the amount of reinforced necessary. (orig./HP) [de

  14. Investigation of nonlinear I–V behavior of CNTs filled polymer composites

    International Nuclear Information System (INIS)

    Wang, Jian; Yu, Shuhui; Luo, Suibin; Chu, Baojin; Sun, Rong; Wong, Ching-Ping

    2016-01-01

    Graphical abstract: - Highlights: • Mechanism of nonlinear behavior of the CNT composites was systematically investigated. • There are one linear region (I) and two nonlinear regions (II and III) in the I–V curves. • This phenomenon was analyzed based on hopping, tunneling and Joule heating effects. - Abstract: Nonlinear current–voltage (I–V) behavior is a typical feature of polymeric composites containing conductor or semiconductor fillers, which are desired to handle the transient voltage and electrostatic discharge (ESD) of microelectronic devices. In this paper, the mechanism of nonlinear behavior of carbon nanotubes (CNTs) filled polymer composites in the applied electric field was explored. The I–V curves of the composites exhibited three regions. The variation of current at low voltages (region I) is linear. Under relatively higher voltages (region II), the variation is nonlinear and grows rapidly with voltage. As the voltage is further increased, the I–V curve is still non-linear (region III), but the growth rate is significantly slowed down. The I–V characteristics in the above three regions were analyzed systematically based on the calculation of the electrons hopping from the conduction band of CNTs to epoxy, the induced current under electric field, as well as Joule-heating and tunneling effect.

  15. Multiaxial Stress-Strain Modeling and Effect of Additional Hardening due to Nonproportional Loading

    International Nuclear Information System (INIS)

    Rashed, G.; Ghajar, R.; Farrahi, G.

    2007-01-01

    Most engineering components are subjected to multiaxial rather than uniaxial cyclic loading, which causes multiaxial fatigue. The pre-requisite to predict the fatigue life of such components is to determine the multiaxial stress strain relationship. In this paper the multiaxial cyclic stress-strain model under proportional loading is derived using the modified power law stress-strain relationship. The equivalent strain amplitude consisted of the normal strain excursion and maximum shear strain amplitude is used in the proportional model to include the additional hardening effect due to nonproportional loading. Therefore a new multiaxial cyclic stress-strain relationship is devised for out of phase nonproportional loading. The model is applied to the nonproportional loading case and the results are compared with the other researchers' experimental data published in the literature, which are in a reasonable agreement with the experimental data. The relationship presented here is convenient for the engineering applications

  16. Representative Stress-Strain Curve by Spherical Indentation on Elastic-Plastic Materials

    Directory of Open Access Journals (Sweden)

    Chao Chang

    2018-01-01

    Full Text Available Tensile stress-strain curve of metallic materials can be determined by the representative stress-strain curve from the spherical indentation. Tabor empirically determined the stress constraint factor (stress CF, ψ, and strain constraint factor (strain CF, β, but the choice of value for ψ and β is still under discussion. In this study, a new insight into the relationship between constraint factors of stress and strain is analytically described based on the formation of Tabor’s equation. Experiment tests were performed to evaluate these constraint factors. From the results, representative stress-strain curves using a proposed strain constraint factor can fit better with nominal stress-strain curve than those using Tabor’s constraint factors.

  17. Nonlinear behaviors of a bounded electron beam-plasma system

    International Nuclear Information System (INIS)

    Iizuka, Satoru; Saeki, Koichi; Sato, Noriyoshi; Hatta, Yoshisuke

    1985-01-01

    Nonlinear developments of a bounded electron beam-plasma system including stationary electrons are investigated experimentally. A stable double layer is formed as a result of ion trapping in a growing negative potential dip induced by the Pierce instability above the current regime of the Buneman instability. In the in-between regime of the Buneman and Pierce instabilities, energetic ions are observed. This effective ion heating is caused by ion detrapping due to double-layer disruption, being consistent with computer simulation. (author)

  18. Experimental Study of Stress-Strain Behaviour of Open-Cell Aluminium Foam Sandwich Panel for Automotive Structural Part

    Directory of Open Access Journals (Sweden)

    Nur Asmawiyah Ibrahim

    2017-07-01

    Full Text Available Because of high stiffness and strength to weight ratio, aluminium foam sandwich (AFS has huge advantage in automotive industries in order to reduce the vehicle’s weight which consequently will reduce the fuel consumption. While reducing the weight, AFS must also maintain high strength and durability compared to other competitive materials used which perform same functionalities. AFS had been proved its suitability for industrial application by previous researchers such as in aerospace, automotive and architecture. However, there is still a gap need to be filled in order to expand the use of the AFS in another application. In this paper, the tensile strength of AFS panel made of from aluminium skin sheets and open-cell aluminium foam core with various thickness is investigated. Design of experiment was developed according to JUMP (JMP statistical software and experimental work was done using universal testing machine. The stress-strain behavior was analysed. The result shows that the effect of skin to core ratio is significant on the stress-strain behavior.

  19. Study on elastic-plastic deformation analysis using a cyclic stress-strain curve

    International Nuclear Information System (INIS)

    Igari, Toshihide; Setoguchi, Katsuya; Yamauchi, Masafumi

    1983-01-01

    This paper presents the results of the elastic-plastic deformation analysis using a cyclic stress-strain curve with an intention to apply this method for predicting the low-cycle fatigue life. Uniaxial plastic cycling tests were performed on 2 1/4Cr-1Mo steel to investigate the correspondence between the cyclic stress-strain curve and the hysteresis loop, and also to determine what mathematical model should be used for analysis of deformation at stress reversal. Furthermore, a cyclic in-plane bending test was performed on a flat plate to clarify the validity of the cyclic stress-strain curve-based theoretical analysis. The results obtained are as follows: (1) The cyclic stress-strain curve corresponds nearly to the ascending curve of hysteresis loop scaled by a factor of 1/2 for both stress and strain. Therefore, the cyclic stress-strain curve can be determined from the shape of hysteresis loop, for simplicity. (2) To perform the elastic-plastic deformation analysis using the cyclic stress-strain curve is both practical and effective for predicting the cyclic elastic-plastic deformation of structures at the stage of advanced cycles. And Masing model can serve as a suitable mathematical model for such a deformation analysis. (author)

  20. Nonlinear DC Conduction Behavior in Graphene Nanoplatelets/Epoxy Resin Composites

    Science.gov (United States)

    Yuan, Yang; Wang, Qingguo; Qu, Zhaoming

    2018-01-01

    Graphene nanoplatelets (GNPs)/Epoxy resin (ER) with a low percolation threshold were fabricated. Then the nonlinear DC conduction behavior of GNPs/ER composites was investigated, which indicates that dispersion, exfoliation level and conductivity of GNPs in specimens are closely related to the conduction of composites. Moreover, it could be seen that the modified graphene nanoplatelets made in this paper could be successfully used for increasing the electric conductivity of the epoxy resin, and the GNPs/ER composites with nonlinear conduction behavior have a good application prospects in the field of intelligent electromagnetic protection.

  1. THz impulse radar for biomedical sensing: nonlinear system behavior

    Science.gov (United States)

    Brown, E. R.; Sung, Shijun; Grundfest, W. S.; Taylor, Z. D.

    2014-03-01

    The THz impulse radar is an "RF-inspired" sensor system that has performed remarkably well since its initial development nearly six years ago. It was developed for ex vivo skin-burn imaging, and has since shown great promise in the sensitive detection of hydration levels in soft tissues of several types, such as in vivo corneal and burn samples. An intriguing aspect of the impulse radar is its hybrid architecture which combines the high-peak-power of photoconductive switches with the high-responsivity and -bandwidth (RF and video) of Schottky-diode rectifiers. The result is a very sensitive sensor system in which the post-detection signal-to-noise ratio depends super-linearly on average signal power up to a point where the diode is "turned on" in the forward direction, and then behaves quasi-linearly beyond that point. This paper reports the first nonlinear systems analysis done on the impulse radar using MATLAB.

  2. Understanding of flux-limited behaviors of heat transport in nonlinear regime

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yangyu, E-mail: yangyuhguo@gmail.com [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics and CNMM, Tsinghua University, Beijing 100084 (China); Jou, David, E-mail: david.jou@uab.es [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Wang, Moran, E-mail: mrwang@tsinghua.edu [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics and CNMM, Tsinghua University, Beijing 100084 (China)

    2016-01-28

    The classical Fourier's law of heat transport breaks down in highly nonequilibrium situations as in nanoscale heat transport, where nonlinear effects become important. The present work is aimed at exploring the flux-limited behaviors based on a categorization of existing nonlinear heat transport models in terms of their theoretical foundations. Different saturation heat fluxes are obtained, whereas the same qualitative variation trend of heat flux versus exerted temperature gradient is got in diverse nonlinear models. The phonon hydrodynamic model is proposed to act as a standard to evaluate other heat flux limiters because of its more rigorous physical foundation. A deeper knowledge is thus achieved about the phenomenological generalized heat transport models. The present work provides deeper understanding and accurate modeling of nonlocal and nonlinear heat transport beyond the diffusive limit. - Highlights: • Exploring flux-limited behaviors based on a categorization of existing nonlinear heat transport models. • Proposing phonon hydrodynamic model as a standard to evaluate heat flux limiters. • Providing accurate modeling of nonlocal and nonlinear heat transport beyond the diffusive limit.

  3. Study of the critical behavior of the O(N) linear and nonlinear sigma models

    International Nuclear Information System (INIS)

    Graziani, F.R.

    1983-01-01

    A study of the large N behavior of both the O(N) linear and nonlinear sigma models is presented. The purpose is to investigate the relationship between the disordered (ordered) phase of the linear and nonlinear sigma models. Utilizing operator product expansions and stability analyses, it is shown that for 2 - (lambda/sub R/(M) is the dimensionless renormalized quartic coupling and lambda* is the IR fixed point) limit of the linear sigma model which yields the nonlinear sigma model. It is also shown that stable large N linear sigma models with lambda 0) and nonlinear models are trivial. This result (i.e., triviality) is well known but only for one and two component models. Interestingly enough, the lambda< d = 4 linear sigma model remains nontrivial and tachyonic free

  4. Nonlinear behavior of multiple-helicity resistive interchange modes near marginally stable states

    International Nuclear Information System (INIS)

    Sugama, Hideo; Nakajima, Noriyoshi; Wakatani, Masahiro.

    1991-05-01

    Nonlinear behavior of resistive interchange modes near marginally stable states is theoretically studied under the multiple-helicity condition. Reduced fluid equations in the sheared slab configuration are used in order to treat a local transport problem. With the use of the invariance property of local reduced fluid model equations under a transformation between the modes with different rational surfaces, weakly nonlinear theories for single-helicity modes by Hamaguchi and Nakajima are extended to the multiple-helicity case and applied to the resistive interchange modes. We derive the nonlinear amplitude equations of the multiple-helicity modes, from which the convective transport in the saturated state is obtained. It is shown how the convective transport is enhanced by nonlinear interaction between modes with different rational surfaces compared with the single-helicity case. We confirm that theoretical results are in good agreement with direct numerical simulations. (author)

  5. Flow stress asymmetry and cyclic stress--strain response in a BCC Ti--V alloy

    International Nuclear Information System (INIS)

    Koss, D.A.; Wojcik, C.C.

    1976-01-01

    The cyclic stress-strain response of relatively stable bcc β-phase Ti--40 percent V alloy single crystals was studied. Flow stress asymmetry found in the alloy is attributed to the fact that screw dislocations, when gliding on a (211) plane, are more mobile in the twinning direction than in the antitwinning direction. Thus the flow stress of the crystal is greater when it is sheared in the antitwinning direction than in the twinning direction (the latter case results when crystals of the 100 orientation are stressed in tension and those of the 110 orientation are stressed in compression). Such behavior can be a result of the core of a screw dislocation being asymmetric under stress which causes the flow stress asymmetry observed. It should be noted that screw dislocations dominate the low temperature deformation structure of Ti-40V, which strongly suggests deformation is controlled by screw dislocation motion. The observation in Mo that the microyield stress is independent of crystal orientation could be a result of edge dislocation motion controlling microyield in that instance and this observation would not be inconsistent with screw dislocation motion controlling the macroscopic (epsilon/sub p/ greater than 0.05 percent) deformation measured here

  6. Size effects in non-linear heat conduction with flux-limited behaviors

    Science.gov (United States)

    Li, Shu-Nan; Cao, Bing-Yang

    2017-11-01

    Size effects are discussed for several non-linear heat conduction models with flux-limited behaviors, including the phonon hydrodynamic, Lagrange multiplier, hierarchy moment, nonlinear phonon hydrodynamic, tempered diffusion, thermon gas and generalized nonlinear models. For the phonon hydrodynamic, Lagrange multiplier and tempered diffusion models, heat flux will not exist in problems with sufficiently small scale. The existence of heat flux needs the sizes of heat conduction larger than their corresponding critical sizes, which are determined by the physical properties and boundary temperatures. The critical sizes can be regarded as the theoretical limits of the applicable ranges for these non-linear heat conduction models with flux-limited behaviors. For sufficiently small scale heat conduction, the phonon hydrodynamic and Lagrange multiplier models can also predict the theoretical possibility of violating the second law and multiplicity. Comparisons are also made between these non-Fourier models and non-linear Fourier heat conduction in the type of fast diffusion, which can also predict flux-limited behaviors.

  7. Nonlinear Dynamic Behavior of a Bi-Axial Torsional MEMS Mirror with Sidewall Electrodes

    Directory of Open Access Journals (Sweden)

    Mehmet Ozdogan

    2016-03-01

    Full Text Available Nonlinear dynamic responses of a Micro-Electro-Mechanical Systems (MEMS mirror with sidewall electrodes are presented that are in close agreement with previously-reported experimental data. An analysis of frequency responses reveals softening behavior, and secondary resonances originated from the dominant quadratic nonlinearity. The quadratic nonlinearity is an electromechanical coupling effect caused by the electrostatic force. This effect is reflected in our mathematical model used to simulate the dynamic response of the micro-mirror. The effects of increased forcing and decreased damping on the frequency response are investigated as the mirrors are mostly used in vacuum packages. The results can predict MEMS mirror behaviors in optical devices better than previously-reported models.

  8. Nonlinear current-voltage behavior in PZT thin films

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Mi; Zhang, Weikang; Zhang, Zebin; Li, Shida; Zhang, Ping; Lan, Kuibo [Tianjin University, School of Electrical and Information Engineering, Tianjin (China)

    2017-05-15

    In this paper, Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} (PZT) thin films were prepared by sol-gel synthesis and characterized by X-ray diffraction, field emission scanning electron microscopy and current-voltage measurements. Here, we demonstrate that in addition to the outstanding ferroelectric and dielectric properties, the PZT films also have remarkably nonlinear current-voltage characteristics. Considering the contact of semi-conductive grains in the PZT films, a double Schottky barrier (DSB) model may be responsible for such phenomena. The test results show that with the decrease of annealing temperature and the increase of the film thickness, the threshold voltages (V{sub th}) increase obviously. The maximum V{sub th} value of 60.95 V and the minimum value of 6.9 V in our experiments were obtained from the five-layered samples annealed at 600 C and the two-layered samples annealed at 700 C, respectively. As a result, PZT thin film may lead to efficient switching and sensing devices. (orig.)

  9. Imitative and best response behaviors in a nonlinear Cournotian setting

    Science.gov (United States)

    Cerboni Baiardi, Lorenzo; Naimzada, Ahmad K.

    2018-05-01

    We consider the competition among quantity setting players in a deterministic nonlinear oligopoly framework characterized by an isoelastic demand curve. Players are characterized by having heterogeneous decisional mechanisms to set their outputs: some players are imitators, while the remaining others adopt a rational-like rule according to which their past decisions are adjusted towards their static expectation best response. The Cournot-Nash production level is a stationary state of our model together with a further production level that can be interpreted as the competitive outcome in case only imitators are present. We found that both the number of players and the relative fraction of imitators influence stability of the Cournot-Nash equilibrium with an ambiguous role, and double instability thresholds may be observed. Global analysis shows that a wide variety of complex dynamic scenarios emerge. Chaotic trajectories as well as multi-stabilities, where different attractors coexist, are robust phenomena that can be observed for a wide spectrum of parameter sets.

  10. Non-linear analysis of solid propellant burning rate behavior

    Energy Technology Data Exchange (ETDEWEB)

    Junye Wang [Zhejiang Univ. of Technology, College of Mechanical and Electrical Engineering, Hanzhou (China)

    2000-07-01

    The parametric analysis of the thermal wave model of the non-steady combustion of solid propellants is carried out under a sudden compression. First, to observe non-linear effects, solutions are obtained using a computer under prescribed pressure variations. Then, the effects of rearranging the spatial mesh, additional points, and the time step on numerical solutions are evaluated. Finally, the behaviour of the thermal wave combustion model is examined under large heat releases (H) and a dynamic factor ({beta}). The numerical predictions show that (1) the effect of a dynamic factor ({beta}), related to the magnitude of dp/dt, on the peak burning rate increases as the value of beta increases. However, unsteady burning rate 'runaway' does not appear and will return asymptotically to ap{sup n}, when {beta}{>=}10.0. The burning rate 'runaway' is a numerical difficulty, not a solution to the models. (2) At constant beta and m, the amplitude of the burning rate increases with increasing H. However, the increase in the burning rate amplitude is stepwise, and there is no apparent intrinsic instability limit. A damped oscillation of burning rate occurs when the value of H is less. However, when H>1.0, the state of an intrinsically unstable model is composed of repeated, amplitude spikes, i.e. an undamped oscillation occurs. (3) The effect of the time step on the peak burning rate increases as H increases. (Author)

  11. Measurement of stress-strain behaviour of human hair fibres using optical techniques.

    Science.gov (United States)

    Lee, J; Kwon, H J

    2013-06-01

    Many studies have presented stress-strain relationship of human hair, but most of them have been based on an engineering stress-strain curve, which is not a true representation of stress-strain behaviour. In this study, a more accurate 'true' stress-strain curve of human hair was determined by applying optical techniques to the images of the hair deformed under tension. This was achieved by applying digital image cross-correlation (DIC) to 10× magnified images of hair fibres taken under increasing tension to estimate the strain increments. True strain was calculated by summation of the strain increments according to the theoretical definition of 'true' strain. The variation in diameter with the increase in longitudinal elongation was also measured from the 40× magnified images to estimate the Poisson's ratio and true stress. By combining the true strain and the true stress, a true stress-strain curve could be determined, which demonstrated much higher stress values than the conventional engineering stress-strain curve at the same degree of deformation. Four regions were identified in the true stress-strain relationship and empirical constitutive equations were proposed for each region. Theoretical analysis on the necking condition using the constitutive equations provided the insight into the failure mechanism of human hair. This analysis indicated that local thinning caused by necking does not occur in the hair fibres, but, rather, relatively uniform deformation takes place until final failure (fracture) eventually occurs. © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  12. Simulation of tensile stress-strain properties of irradiated type 316 SS by heavily cold-worked material

    International Nuclear Information System (INIS)

    Muto, Yasushi; Jitsukawa, Shiro; Hishinuma, Akimichi

    1995-07-01

    Type 316 stainless steel is one of the most promising candidate materials to be used for the structural parts of plasma facing components in the nuclear fusion reactor. The neutron irradiation make the material brittle and reduces its uniform elongation to almost zero at heavy doses. In order to apply such a material of reduced ductility to structural components, the structural integrity should be examined and assured by the fracture mechanics. The procedure requires a formulated stress-strain relationship. However, the available irradiated tensile test data are very limited at present, so that the cold-worked material was used as a simulated material in this study. Property changes of 316 SS, that is, a reduction of uniform elongation and an enhancement of yield stress are seemingly very similar for both the irradiated 316 SS and the cold-worked one. The specimens made of annealed 316 SS, 20% (or 15%) cold worked one and 40% cold worked one were prepared. After the formulation of stress strain behavior, the equation for the cold-worked 316 SS was fitted to the data on irradiated material under the assumption that the yield stress is the same for both materials. In addition, the upper limit for the plastic strain was introduced using the data on the irradiated material. (author)

  13. Stress strain tensors with their application to x-ray stress measurement

    International Nuclear Information System (INIS)

    Kurita, Masanori

    2015-01-01

    This paper describes in detail the method of obtaining the formulas of stress-strain tensor that express the directional dependence of stress-strain, that is, how these values change in response to coordinate transformation, and clarifies the preconditions for supporting both formulas. The two conversion formulas are both the second order of tensor, and the formula of strain tensor not only does not use the relational expression of stress and strain at all, but also is obtained completely independently of the formula of stress tensor. Except for the condition that the strain is very small (elastic deformation) in the conversion formula of strain, both formulas unconditionally come into effect. In other words, both formulas hold true even in the isotropic elastic body or anisotropic elastic body. It was shown that the conversion formula of strain can be derived from the conversion formula of stress using the formula of Hooke for isotropic elastic body. From these three-dimensional expressions, the two-dimensional stress-strain coordinate conversion formula that is used for Mohr's stress-strain circle was derived. It was shown that these formulas hold true for three-dimensional stress condition with stress-strain components in the three-axial direction that are not plane stress nor plane strain condition. In addition, as an application case of this theory, two-dimensional and three-dimensional X-ray stress measurements that are effective for residual stress measurement were shown. (A.O.)

  14. Spatiotemporal behavior and nonlinear dynamics in a phase conjugate resonator

    Science.gov (United States)

    Liu, Siuying Raymond

    1993-01-01

    The work described can be divided into two parts. The first part is an investigation of the transient behavior and stability property of a phase conjugate resonator (PCR) below threshold. The second part is an experimental and theoretical study of the PCR's spatiotemporal dynamics above threshold. The time-dependent coupled wave equations for four-wave mixing (FWM) in a photorefractive crystal, with two distinct interaction regions caused by feedback from an ordinary mirror, was used to model the transient dynamics of a PCR below threshold. The conditions for self-oscillation were determined and the solutions were used to define the PCR's transfer function and analyze its stability. Experimental results for the buildup and decay times confirmed qualitatively the predicted behavior. Experiments were carried out above threshold to study the spatiotemporal dynamics of the PCR as a function of Pragg detuning and the resonator's Fresnel number. The existence of optical vortices in the wavefront were identified by optical interferometry. It was possible to describe the transverse dynamics and the spatiotemporal instabilities by modeling the three-dimensional-coupled wave equations in photorefractive FWM using a truncated modal expansion approach.

  15. Seismic response of the 'Cut-and Cover' type reactor containment considering nonlinear soil behavior

    International Nuclear Information System (INIS)

    El-Tahan, H.; Reddy, D.V.

    1979-01-01

    This paper describes some parametric studies of dynamic soil-structure interaction for the 'cut-and-cover' reactor concept. The dynamic loading considered is a horizontal earthquake motion. The high frequency ranges, which must be considered in the study of soil-structure interaction for nuclear power plants, and the nonlinearity of soil behavior during strong earthquakes are adequately taken into account. Soil nonlinearity is accounted for in an approximate manner using a combination of the 'equivalent linear method' and the method of complex response with complex moduli. The structure considered is a reinforced concrete containment for a 1100 - MWe power plant, buried in a dense sand medium. (orig.)

  16. Unraveling complex nonlinear elastic behaviors in rocks using dynamic acousto-elasticity

    Science.gov (United States)

    Riviere, J.; Guyer, R.; Renaud, G.; TenCate, J. A.; Johnson, P. A.

    2012-12-01

    In comparison with standard nonlinear ultrasonic methods like frequency mixing or resonance based measurements that allow one to extract average, bulk variations of modulus and attenuation versus strain level, dynamic acousto-elasticity (DAE) allows to obtain the elastic behavior over the entire dynamic cycle, detailing the full nonlinear behavior under tension and compression, including hysteresis and memory effects. This method consists of exciting a sample in Bulk-mode resonance at strains of 10-7 to 10-5 and simultaneously probing with a sequence of high frequency, low amplitude pulses. Time of flight and amplitudes of these pulses, respectively related to nonlinear elastic and dissipative parameters, can be plotted versus vibration strain level. Despite complex nonlinear signatures obtained for most rocks, it can be shown that for low strain amplitude (Pasqualini et al., JGR 2007), but not with the extreme detail of elasticity provided by DAE. Previous quasi-static measurements made in Berea sandstone (Claytor et al, GRL 2009), show that the hysteretic behavior disappears when the protocol is performed at a very low strain-rate (static limit). Therefore, future work will aim at linking quasi-static and dynamic observations, i.e. the frequency or strain-rate dependence, in order to understand underlying physical phenomena.

  17. Nonlinear behavior in the time domain in argon atmospheric dielectric-barrier discharges

    International Nuclear Information System (INIS)

    Shi Hong; Wang Yanhui; Wang Dezhen

    2008-01-01

    A vast majority of nonlinear behavior in atmospheric pressure discharges has so far been studied in the space domain, and their time-domain characters are often believed to exact the periodicity of the externally applied voltage. In this paper, based on one-dimensional fluid mode, we study complex nonlinear behavior in the time domain in argon atmospheric dielectric-barrier discharges at very broad frequency range from kilohertz to megahertz. Under certain conditions, the discharge not only can be driven to chaos from time-periodic state through period-doubling bifurcation, but also can return stable periodic motion from chaotic state through an inverse period-doubling bifurcation sequence. Upon changing the parameter the discharge undergoes alternatively chaotic and periodic behavior. Some periodic windows embedded in chaos, as well as the secondary bifurcation occurring in the periodic windows can also be observed. The corresponding discharge characteristics are investigated.

  18. Nonlinear shear behavior of rock joints using a linearized implementation of the Barton–Bandis model

    Directory of Open Access Journals (Sweden)

    Simon Heru Prassetyo

    2017-08-01

    Full Text Available Experiments on rock joint behaviors have shown that joint surface roughness is mobilized under shearing, inducing dilation and resulting in nonlinear joint shear strength and shear stress vs. shear displacement behaviors. The Barton–Bandis (BB joint model provides the most realistic prediction for the nonlinear shear behavior of rock joints. The BB model accounts for asperity roughness and strength through the joint roughness coefficient (JRC and joint wall compressive strength (JCS parameters. Nevertheless, many computer codes for rock engineering analysis still use the constant shear strength parameters from the linear Mohr–Coulomb (M−C model, which is only appropriate for smooth and non-dilatant joints. This limitation prevents fractured rock models from capturing the nonlinearity of joint shear behavior. To bridge the BB and the M−C models, this paper aims to provide a linearized implementation of the BB model using a tangential technique to obtain the equivalent M−C parameters that can satisfy the nonlinear shear behavior of rock joints. These equivalent parameters, namely the equivalent peak cohesion, friction angle, and dilation angle, are then converted into their mobilized forms to account for the mobilization and degradation of JRC under shearing. The conversion is done by expressing JRC in the equivalent peak parameters as functions of joint shear displacement using proposed hyperbolic and logarithmic functions at the pre- and post-peak regions of shear displacement, respectively. Likewise, the pre- and post-peak joint shear stiffnesses are derived so that a complete shear stress-shear displacement relationship can be established. Verifications of the linearized implementation of the BB model show that the shear stress-shear displacement curves, the dilation behavior, and the shear strength envelopes of rock joints are consistent with available experimental and numerical results.

  19. Investigation of isochronous stress-strain formulations for elevated temperature structural design

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Kim, Jong Bum

    2012-01-01

    For elevated temperature design evaluations by the ASME-NH rules, the most important material data is the isochronous stress-strain curves, which can provide design creep information. The main purpose of this paper is to investigate appropriate formulations to be able to generate the isochronous stress-strain curves and implement it to the computer program which is coded the ASME-NH design evaluation procedures. To do this, formulations by the strain-time relationship are investigated in detail and the sensitivity studies for rapid initial transient creep contributions, slower and longer transient creep contribution, and secondary creep contributions are carried out for type 316 austenitic stainless steel. From the results of this study, it is found that the strain-time relationship formulations can well describe the isochronous stress-strain curves with the transient creep contributions

  20. Nonlinear threshold behavior during the loss of Arctic sea ice.

    Science.gov (United States)

    Eisenman, I; Wettlaufer, J S

    2009-01-06

    In light of the rapid recent retreat of Arctic sea ice, a number of studies have discussed the possibility of a critical threshold (or "tipping point") beyond which the ice-albedo feedback causes the ice cover to melt away in an irreversible process. The focus has typically been centered on the annual minimum (September) ice cover, which is often seen as particularly susceptible to destabilization by the ice-albedo feedback. Here, we examine the central physical processes associated with the transition from ice-covered to ice-free Arctic Ocean conditions. We show that although the ice-albedo feedback promotes the existence of multiple ice-cover states, the stabilizing thermodynamic effects of sea ice mitigate this when the Arctic Ocean is ice covered during a sufficiently large fraction of the year. These results suggest that critical threshold behavior is unlikely during the approach from current perennial sea-ice conditions to seasonally ice-free conditions. In a further warmed climate, however, we find that a critical threshold associated with the sudden loss of the remaining wintertime-only sea ice cover may be likely.

  1. Nonlinear model for viscoelastic behavior of Achilles tendon.

    Science.gov (United States)

    Kahn, Cyril J F; Wang, Xiong; Rahouadj, Rachid

    2010-11-01

    Although the mechanical properties of ligament and tendon are well documented in research literature, very few unified mechanical formulations can describe a wide range of different loadings. The aim of this study was to propose a new model, which can describe tendon responses to various solicitations such as cycles of loading, unloading, and reloading or successive relaxations at different strain levels. In this work, experiments with cycles of loading and reloading at increasing strain level and sequences of relaxation were performed on white New Zealand rabbit Achilles tendons. We presented a local formulation of thermodynamic evolution outside equilibrium at a representative element volume scale to describe the tendon's macroscopic behavior based on the notion of relaxed stress. It was shown that the model corresponds quite well to the experimental data. This work concludes with the complexity of tendons' mechanical properties due to various microphysical mechanisms of deformation involved in loading such as the recruitment of collagen fibers, the rearrangement of the microstructure (i.e., collagens type I and III, proteoglycans, and water), and the evolution of relaxed stress linked to these mechanisms.

  2. On the Nonlinear Behavior of the Piezoelectric Coupling on Vibration-Based Energy Harvesters

    Directory of Open Access Journals (Sweden)

    Luciana L. Silva

    2015-01-01

    Full Text Available Vibration-based energy harvesting with piezoelectric elements has an increasing importance nowadays being related to numerous potential applications. A wide range of nonlinear effects is observed in energy harvesting devices and the analysis of the power generated suggests that they have considerable influence on the results. Linear constitutive models for piezoelectric materials can provide inconsistencies on the prediction of the power output of the energy harvester, mainly close to resonant conditions. This paper investigates the effect of the nonlinear behavior of the piezoelectric coupling. A one-degree of freedom mechanical system is coupled to an electrical circuit by a piezoelectric element and different coupling models are investigated. Experimental tests available in the literature are employed as a reference establishing the best matches of the models. Subsequently, numerical simulations are carried out showing different responses of the system indicating that nonlinear piezoelectric couplings can strongly modify the system dynamics.

  3. Combined-load stress-strain relationship for advanced fiber composites

    Science.gov (United States)

    Chamis, C. C.; Sullivan, T. L.

    1975-01-01

    It was demonstrated experimentally that only one test specimen is required to determine the combined-load stress-strain relationships of a given fiber composite system. These relationships were determined using a thin angle-plied laminate tube and subjecting it to a number of combined-loading conditions. The measured data obtained are compared with theoretical predictions. Some important considerations associated with such a test are identified, and the significance of combined-load stress-strain relationships in certain practical designs are discussed.

  4. Summary report - development of laboratory tests and the stress- strain behaviour of Olkiluoto mica gneiss

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, M.; Heikkilae, E. [Helsinki Univ. of Technology, Espoo (Finland). Lab. of Rock Engineering

    1997-05-01

    This work summarizes the project aimed at developing and qualifying a suitable combination of laboratory tests to establish a statistically reliable stress-strain behaviour of the main rock types at Posiva Oy`s detailed investigation sites for disposal of spent nuclear fuel. The work includes literature study of stress-strain behaviour of brittle rock, development and qualification of laboratory tests, suggested test procedures and interpretation methods and finally testing of Olkiluoto mica gneiss. The Olkiluoto study includes over 130 loading tests. Besides the commonly used laboratory tests, direct tensile tests, damage controlled tests and acoustic emission measurements were also carried out. (orig.) (54 refs.).

  5. Summary report - development of laboratory tests and the stress- strain behaviour of Olkiluoto mica gneiss

    International Nuclear Information System (INIS)

    Hakala, M.; Heikkilae, E.

    1997-05-01

    This work summarizes the project aimed at developing and qualifying a suitable combination of laboratory tests to establish a statistically reliable stress-strain behaviour of the main rock types at Posiva Oy's detailed investigation sites for disposal of spent nuclear fuel. The work includes literature study of stress-strain behaviour of brittle rock, development and qualification of laboratory tests, suggested test procedures and interpretation methods and finally testing of Olkiluoto mica gneiss. The Olkiluoto study includes over 130 loading tests. Besides the commonly used laboratory tests, direct tensile tests, damage controlled tests and acoustic emission measurements were also carried out. (orig.) (54 refs.)

  6. Characterization and modeling of tensile behavior of ceramic woven fabric composites

    Science.gov (United States)

    Kuo, Wen-Shyong; Chen, Wennei Y.; Parvizi-Majidi, Azar; Chou, Tsu-Wei

    1991-01-01

    This paper examines the tensile behavior of SiC/SiC fabric composites. In the characterization effort, the stress-strain relation and damage evolution are studied with a series of loading and unloading tensile test experiments. The stress-strain relation is linear in response to the initial loading and becomes nonlinear when loading exceeds the proportional limit. Transverse cracking has been observed to be a dominant damage mode governing the nonlinear deformation. The damage is initiated at the inter-tow pores where fiber yarns cross over each other. In the modeling work, the analysis is based upon a fiber bundle model, in which fiber undulation in the warp and fill directions and gaps among fiber yarns have been taken into account. Two limiting cases of fabric stacking arrangements are studied. Closed form solutions are obtained for the composite stiffness and Poisson's ratio. Transverse cracking in the composite is discussed by applying a constant failure strain criterion.

  7. Reproducing the nonlinear dynamic behavior of a structured beam with a generalized continuum model

    Science.gov (United States)

    Vila, J.; Fernández-Sáez, J.; Zaera, R.

    2018-04-01

    In this paper we study the coupled axial-transverse nonlinear vibrations of a kind of one dimensional structured solids by application of the so called Inertia Gradient Nonlinear continuum model. To show the accuracy of this axiomatic model, previously proposed by the authors, its predictions are compared with numeric results from a previously defined finite discrete chain of lumped masses and springs, for several number of particles. A continualization of the discrete model equations based on Taylor series allowed us to set equivalent values of the mechanical properties in both discrete and axiomatic continuum models. Contrary to the classical continuum model, the inertia gradient nonlinear continuum model used herein is able to capture scale effects, which arise for modes in which the wavelength is comparable to the characteristic distance of the structured solid. The main conclusion of the work is that the proposed generalized continuum model captures the scale effects in both linear and nonlinear regimes, reproducing the behavior of the 1D nonlinear discrete model adequately.

  8. Artificial neural networks in prediction of mechanical behavior of concrete at high temperature

    International Nuclear Information System (INIS)

    Mukherjee, A.; Nag Biswas, S.

    1997-01-01

    The behavior of concrete structures that are exposed to extreme thermo-mechanical loading is an issue of great importance in nuclear engineering. The mechanical behavior of concrete at high temperature is non-linear. The properties that regulate its response are highly temperature dependent and extremely complex. In addition, the constituent materials, e.g. aggregates, influence the response significantly. Attempts have been made to trace the stress-strain curve through mathematical models and rheological models. However, it has been difficult to include all the contributing factors in the mathematical model. This paper examines a new programming paradigm, artificial neural networks, for the problem. Implementing a feedforward network and backpropagation algorithm the stress-strain relationship of the material is captured. The neural networks for the prediction of uniaxial behavior of concrete at high temperature has been presented here. The results of the present investigation are very encouraging. (orig.)

  9. Nonlinear behavior of micro bubbles under ultrasound due to heat transfer

    International Nuclear Information System (INIS)

    Lim, Chan Soo; Kwak, Ho Young; Kim, Jeong Eun; Lee, Jae Young

    2009-01-01

    We investigated the nonlinear behavior of a microbubble under ultrasound, taking into account the heat transfer inside the bubble and through the bubble wall. The polytropic relation, which has been used for the process of pressure change depending on the volume variation of ideal gases, cannot properly treat heat transfer involving the oscillating bubble under ultrasound. In this study, a set of solutions of the Navier-Stokes equations for the gas inside the bubble along with an analytical treatment of the Navier-Stokes equations for the liquid adjacent to the bubble wall was used to treat properly the heat transfer process for the oscillating bubble under ultrasound. Entropy generation due to finite heat transfer, which induces the lost work during bubble evolution, reduces the collapsing process and considerably affects the nonlinear behavior of the bubble

  10. Nonlinear electromechanical modelling and dynamical behavior analysis of a satellite reaction wheel

    Science.gov (United States)

    Aghalari, Alireza; Shahravi, Morteza

    2017-12-01

    The present research addresses the satellite reaction wheel (RW) nonlinear electromechanical coupling dynamics including dynamic eccentricity of brushless dc (BLDC) motor and gyroscopic effects, as well as dry friction of shaft-bearing joints (relative small slip) and bearing friction. In contrast to other studies, the rotational velocity of the flywheel is considered to be controllable, so it is possible to study the reaction wheel dynamical behavior in acceleration stages. The RW is modeled as a three-phases BLDC motor as well as flywheel with unbalances on a rigid shaft and flexible bearings. Improved Lagrangian dynamics for electromechanical systems is used to obtain the mathematical model of the system. The developed model can properly describe electromechanical nonlinear coupled dynamical behavior of the satellite RW. Numerical simulations show the effectiveness of the presented approach.

  11. Study of critical behavior in concrete during curing by application of dynamic linear and nonlinear means.

    Science.gov (United States)

    Lacouture, Jean-Christoph; Johnson, Paul A; Cohen-Tenoudji, Frederic

    2003-03-01

    The monitoring of both linear and nonlinear elastic properties of a high performance concrete during curing is presented by application of compressional and shear waves. To follow the linear elastic behavior, both compressional and shear waves are used in wide band pulse echo mode. Through the value of the complex reflection coefficient between the cell material (Lucite) and the concrete within the cell, the elastic moduli are calculated. Simultaneously, the transmission of a continuous compressional sine wave at progressively increasing drive levels permits us to calculate the nonlinear properties by extracting the harmonics amplitudes of the signal. Information regarding the chemical evolution of the concrete based upon the reaction of hydration of cement is obtained by monitoring the temperature inside the sample. These different types of measurements are linked together to interpret the critical behavior.

  12. Emergence of Complex Spatio-Temporal Behavior in Nonlinear Field Theories

    International Nuclear Information System (INIS)

    Gleiser, Marcelo; Howell, Rafael C.

    2006-01-01

    We investigate the emergence of time-dependent nonperturbative configurations during the evolution of nonlinear scalar field models with symmetric and asymmetric double-well potentials. Complex spatio-temporal behavior emerges as the system seeks to establish equipartition after a fast quench. We show that fast quenches may dramatically modify the decay rate of metastable states in first order phase transitions. We discuss possible applications in condensed matter systems and early universe cosmology

  13. Effects of non-linearity of material properties on the coupled mechanical-hydraulic-thermal behavior in rock mass

    International Nuclear Information System (INIS)

    Kobayashi, Akira; Ohnishi, Yuzo

    1986-01-01

    The nonlinearity of material properties used in the coupled mechanical-hydraulic-thermal analysis is investigated from the past literatures. Some nonlinearity that is respectively effective for the system is introduced into our computer code for analysis such a coupling problem by using finite element method. And the effects of nonlinearity of each material property on the coupled behavior in rock mass are examined for simple model and Stripa project model with the computer code. (author)

  14. The study of the stress - strain state of the tank with bottom water drainage during operation

    Science.gov (United States)

    Shchipkova, Yu V.; Tokarev, V. V.

    2018-04-01

    Bottom drainage from tank is a current problem in modern tank usage. This article proposes the use of the bottom drainage system from the tank with the shape of the sloped cone to the centre of it. Changing the bottom design alters the stress - strain state to be analyzed in the Ansys. The analysis concluded that the proposed drainage system should be applied.

  15. On the derivative of the stress-strain relation in a no-tension material

    Czech Academy of Sciences Publication Activity Database

    Padovani, C.; Šilhavý, Miroslav

    2017-01-01

    Roč. 22, č. 7 (2017), s. 1606-1618 ISSN 1081-2865 Institutional support: RVO:67985840 Keywords : no-tension material * stress-strain relation Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 2.953, year: 2016 http:// journals .sagepub.com/doi/10.1177/1081286515571786

  16. Nonlinear vibration behaviors of suspended cables under two-frequency excitation with temperature effects

    Science.gov (United States)

    Zhao, Yaobing; Huang, Chaohui; Chen, Lincong; Peng, Jian

    2018-03-01

    The aim of this paper is to investigate temperature effects on the nonlinear vibration behaviors of suspended cables under two-frequency excitation. For this purpose, two combination and simultaneous resonances are chosen and studied in detail. First of all, based on the assumptions of the temperature effects, the partial differential equations of the in-plane and out-of-plane motions with thermal effects under multi-frequency excitations are obtained. The Galerkin method is adopted to discretize the nonlinear dynamic equations, and the single-mode planar discretization is considered. Then, in the absence of the primary and internal resonances, the frequency response equations are obtained by using the multiple scales method. The stability analyses are conducted via investigating the nature of the singular points of equations. After that, temperature effects on nonlinear vibration characteristics of the first symmetric mode are studied. Parametric investigations of temperature effects on corresponding non-dimensional factors and coefficients of linear and nonlinear terms are performed. Numerical results are presented to show the temperature effects via the frequency-response curves and detuning-phase curves of four different sag-to-span ratios. It is found out that effects of temperature variations would lead to significant quantitative and/or qualitative changes of the nonlinear vibration properties, and these effects are closely related to the sag-to-span ratio and the degree of the temperature variation. Specifically, the softening/hardening-type spring behaviors, the response amplitude, the range of the resonance, the intersection and number of branches, the number and phase of the steady-state solutions are all affected by the temperature changes.

  17. Modal representation of geometrically nonlinear behavior by the finite element method

    International Nuclear Information System (INIS)

    Nagy, D.A.

    1977-01-01

    A method is presented for representing mild geometrically nonlinear static behavior of thin-type structures, within the finite element method, in terms of linear elastic and linear (bifurcation) buckling analysis results for structural loading or geometry situations which violate the idealized restrictive (perfect) interpretation of linear behavior up to bifurcation. Formulation of the finite element displacement method for material linearity but retaining the full, nonlinear strain-displacement relations (geometric nonlinearity) leads to highly nonlinear equations relating the unknown nodal generalized displacements r to the applied loading R. Restriction to small strains alone does not linearize these equations for thin-type structural configurations; only explicitly requiring that all products of displacement gadients be much smaller than the gadients themselves reduces the equations to the familiar linear form Ksub(e)r=R, where Ksub(e) is the elastic stiffness. Assuming then that the solutions r of the linear equations also satisfies the full nonlinear equations (i.e., that the above explicit requirement is satisfied), a second solution to the full equations can be sought for a one-parameter loading path lambdaR, leading to the well-known linear (bifurcation) buckling eigenvalue problem Ksub(e)X=-Ksub(g)XΛ where Ksub(g) is the geometric stiffness, X the matrix whose columns are the eigenvectors (so-called buckling mode shapes) and Λ is a diagonal matrix of eigenvalues lambda(i) (so-called load scale factors). From the viewpoint of the practising structural analyst using finite element software, the method presented here gives broader and deeper significance to an existing linear (bifurcation) buckling analysis capability, in that the additional computations are minimal beyond those already required for a linear static and buckling analysis, and should be easily performable within any well-designed general purpose finite element system

  18. Model-on-Demand Predictive Control for Nonlinear Hybrid Systems With Application to Adaptive Behavioral Interventions

    Science.gov (United States)

    Nandola, Naresh N.; Rivera, Daniel E.

    2011-01-01

    This paper presents a data-centric modeling and predictive control approach for nonlinear hybrid systems. System identification of hybrid systems represents a challenging problem because model parameters depend on the mode or operating point of the system. The proposed algorithm applies Model-on-Demand (MoD) estimation to generate a local linear approximation of the nonlinear hybrid system at each time step, using a small subset of data selected by an adaptive bandwidth selector. The appeal of the MoD approach lies in the fact that model parameters are estimated based on a current operating point; hence estimation of locations or modes governed by autonomous discrete events is achieved automatically. The local MoD model is then converted into a mixed logical dynamical (MLD) system representation which can be used directly in a model predictive control (MPC) law for hybrid systems using multiple-degree-of-freedom tuning. The effectiveness of the proposed MoD predictive control algorithm for nonlinear hybrid systems is demonstrated on a hypothetical adaptive behavioral intervention problem inspired by Fast Track, a real-life preventive intervention for improving parental function and reducing conduct disorder in at-risk children. Simulation results demonstrate that the proposed algorithm can be useful for adaptive intervention problems exhibiting both nonlinear and hybrid character. PMID:21874087

  19. Dissipative behavior of some fully non-linear KdV-type equations

    Science.gov (United States)

    Brenier, Yann; Levy, Doron

    2000-03-01

    The KdV equation can be considered as a special case of the general equation u t+f(u) x-δg(u xx) x=0, δ>0, where f is non-linear and g is linear, namely f( u)= u2/2 and g( v)= v. As the parameter δ tends to 0, the dispersive behavior of the KdV equation has been throughly investigated (see, e.g., [P.G. Drazin, Solitons, London Math. Soc. Lect. Note Ser. 85, Cambridge University Press, Cambridge, 1983; P.D. Lax, C.D. Levermore, The small dispersion limit of the Korteweg-de Vries equation, III, Commun. Pure Appl. Math. 36 (1983) 809-829; G.B. Whitham, Linear and Nonlinear Waves, Wiley/Interscience, New York, 1974] and the references therein). We show through numerical evidence that a completely different, dissipative behavior occurs when g is non-linear, namely when g is an even concave function such as g( v)=-∣ v∣ or g( v)=- v2. In particular, our numerical results hint that as δ→0 the solutions strongly converge to the unique entropy solution of the formal limit equation, in total contrast with the solutions of the KdV equation.

  20. Chaotic behavior of earthquakes induced by a nonlinear magma up flow

    International Nuclear Information System (INIS)

    Pelap, F.B.; Kagho, L.Y.; Fogang, C.F.

    2016-01-01

    This paper considers the dynamics of a modified 1D nonlinear spring-block model for earthquake subjected to the strengths induced by the motion of the tectonic plates and the up flow of magma during volcanism. Based on the multiple time scales method, we establish that after the slip, the fault remains active and the frictions increase with the power of the earthquake. We also obtain in the non-resonance case that the appearing probability of an event decreases with these frictions. In the resonance case, the dynamics of harmonic oscillations show that the rocks constituting the block will fracture or resist to the effects induced by the magma motion. Our analytical investigations are complemented by numerical simulations from which it appears that, for given values of the magma thrust strength magnitude, the friction coefficient, the quadratic and cubic nonlinear parameters, the system exhibits chaotic behavior.

  1. Structure dynamics with regard to non-linear support behavior; Dynamische Strukturberechnung unter Beruecksichtigung nichtlinearen Lagerverhaltens

    Energy Technology Data Exchange (ETDEWEB)

    Driessen, W. [Technischer Ueberwachungs-Verein Nord e.V., Hamburg (Germany)

    2000-07-01

    Because of modifications to a feed-water line of a power plant structural calculations of the pipework were performed. As a result of a linear (modal) analysis very high restraint forces on the supports were calculated. In order to reduce conservatisms in the calculation the model was optimized with regard to the support stiffnesses and nonlinear behavior of slide bearings, guides and shock absorbers were taken into account. The main result of the non-linear analysis, which was performed by methods of direct-integration, was that nonlinearity yields evident differences in structural frequencies and in energy dissipation (damping) in comparison to the linear analysis. The high restraint forces on the supports became smaller for most of the supports but at some points the forces of the non-linear analysis were even higher. So the conservatism of the linear analysis is not fully valid for the whole structure. The relevance of the non-linear effects in dynamic piping calculations is shown by comparing the calculation result with measurements which were performed on structures in the plant. (orig.) [German] Im Rahmen der Aenderung der Speisewasserleitung einer Kraftwerksanlage wurde die Struktur neu berechnet. Die Analysen mit einem linearen Modell (modal), das ueblicherweise verwendet wird, ergaben hohe Lasten an Halterungen. Zum Abbau von Konservativitaeten wurde eine realistischere Modellierung durch die Beruecksichtigung des nichtlinearen Verhaltens der in der Anlage befindlichen Gleitlager, Fuehrungen und Stossbremsen in der Berechnung vorgenommen. Die Untersuchungen haben ergeben, dass durch die Nichtlinearitaet das Frequenzverhalten der Struktur und die Dissipation von Energie durch Reibvorgaenge wesentlich beeinflusst werden. Des Weiteren ist festzustellen, dass aus linearen Analysen nicht uneingeschraenkt konservative Ergebnisse gewonnen werden. Die Relevanz der Beruecksichtigung des nichtlinearen Lagerverhaltens bei einer dynamischen Strukturberechnung wird

  2. Nonlinear finite element analyses: advances and challenges in dental applications.

    Science.gov (United States)

    Wakabayashi, N; Ona, M; Suzuki, T; Igarashi, Y

    2008-07-01

    To discuss the development and current status of application of nonlinear finite element method (FEM) in dentistry. The literature was searched for original research articles with keywords such as nonlinear, finite element analysis, and tooth/dental/implant. References were selected manually or searched from the PUBMED and MEDLINE databases through November 2007. The nonlinear problems analyzed in FEM studies were reviewed and categorized into: (A) nonlinear simulations of the periodontal ligament (PDL), (B) plastic and viscoelastic behaviors of dental materials, (C) contact phenomena in tooth-to-tooth contact, (D) contact phenomena within prosthodontic structures, and (E) interfacial mechanics between the tooth and the restoration. The FEM in dentistry recently focused on simulation of realistic intra-oral conditions such as the nonlinear stress-strain relationship in the periodontal tissues and the contact phenomena in teeth, which could hardly be solved by the linear static model. The definition of contact area critically affects the reliability of the contact analyses, especially for implant-abutment complexes. To predict the failure risk of a bonded tooth-restoration interface, it is essential to assess the normal and shear stresses relative to the interface. The inclusion of viscoelasticity and plastic deformation to the program to account for the time-dependent, thermal sensitive, and largely deformable nature of dental materials would enhance its application. Further improvement of the nonlinear FEM solutions should be encouraged to widen the range of applications in dental and oral health science.

  3. Electrospun microcrimped fibers with nonlinear mechanical properties enhance ligament fibroblast phenotype.

    Science.gov (United States)

    Grace Chao, Pen-hsiu; Hsu, Hsiang-Yi; Tseng, Hsiao-Yun

    2014-09-01

    Fiber structure and order greatly impact the mechanical behavior of fibrous materials. In biological tissues, the nonlinear mechanics of fibrous scaffolds contribute to the functionality of the material. The nonlinear mechanical properties of the wavy structure (crimp) in collagen allow tissue flexibility while preventing over-extension. A number of approaches have tried to recreate this complex mechanical functionality. We generated microcrimped fibers by briefly heating electrospun parallel fibers over the glass transition temperature or by ethanol treatment. The crimp structure is similar to those of collagen fibers found in native aorta, intestines, or ligaments. Using poly-L-lactic acid fibers, we demonstrated that the bulk materials exhibit changed stress-strain behaviors with a significant increase in the toe region in correlation to the degree of crimp, similar to those observed in collagenous tissues. In addition to mimicking the stress-strain behavior of biological tissues, the microcrimped fibers are instructive in cell morphology and promote ligament phenotypic gene expression. This effect can be further enhanced by dynamic tensile loading, a physiological perturbation in vivo. This rapid and economical approach for microcrimped fiber production provides an accessible platform to study structure-function relationships and a novel functional scaffold for tissue engineering and cell mechanobiology studies.

  4. Nonlinear complexity behaviors of agent-based 3D Potts financial dynamics with random environments

    Science.gov (United States)

    Xing, Yani; Wang, Jun

    2018-02-01

    A new microscopic 3D Potts interaction financial price model is established in this work, to investigate the nonlinear complexity behaviors of stock markets. 3D Potts model, which extends the 2D Potts model to three-dimensional, is a cubic lattice model to explain the interaction behavior among the agents. In order to explore the complexity of real financial markets and the 3D Potts financial model, a new random coarse-grained Lempel-Ziv complexity is proposed to certain series, such as the price returns, the price volatilities, and the random time d-returns. Then the composite multiscale entropy (CMSE) method is applied to the intrinsic mode functions (IMFs) and the corresponding shuffled data to study the complexity behaviors. The empirical results indicate that the 3D financial model is feasible.

  5. STRESS-STRAIN STATE OF ROCKFILL DAM DOUBLE-LAYER FACE MADE OF REINFORCED CONCRETE AND SOIL-CEMENT CONCRETE

    Directory of Open Access Journals (Sweden)

    Sainov Mikhail Petrovich

    2017-05-01

    Full Text Available There was studied the stress-strain state of 215 m high rockfill dam where the seepage-control element is presented by a reinforced concrete face of soil-cement concrete placed on the under-face zone. Calculations were carried out for two possible variants of deformability of rock outline taking into account the non-linearity of its deformative properties. It was obtained that the reinforced concrete face and the soil-cement concrete under-face zone work jointly as a single construction - a double-layer face. As the face assembly resting on rock is made with a sliding joint the scheme of its static operation is similar to the that of the beam operation on the elastic foundation. At that, the upstream surface of the double-layer face is in the compressed zone and lower one is in the tensile zone. This protects the face against cracking on the upstream surface but threatens with structural failure of soil-cement concrete. In order to avoid appearance of cracks in soil-cement concrete part due to tension it is necessary to achieve proper compaction of rockfill and arrange transverse joints in the double-layer face.

  6. Model-based methodology to develop the isochronous stress-strain curves for modified 9Cr steels

    International Nuclear Information System (INIS)

    Kim, Woo Gon; Yin, Song Nan; Kim, Sung Ho; Lee, Chan Bock; Jung, Ik Hee

    2008-01-01

    Since high temperature materials are designed with a target life based on a specified amount of allowable strain and stress, their Isochronous Stress-Strain Curves (ISSC) are needed to avoid an excessive deformation during an intended service life. In this paper, a model-based methodology to develop the isochronous curves for a G91 steel is described. Creep strain-time curves were reviewed for typical high-temperature materials, and Garofalo's model which conforms well to the primary and secondary creep stages was proper for the G91 steel. Procedures to obtain an instantaneous elastic-plastic strain, ε i were given in detail. Also, to accurately determine the P 1 , P 2 and P 3 parameters in the Garofalo's model, a Nonlinear Least Square Fitting (NLSF) method was adopted and useful. The long-term creep curves for the G91 steel can be modeled by the Garofalo's model, and the long-term ISSCs can be developed using the modeled creep curves

  7. A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z., E-mail: zhaohui@nwpu.edu.cn; Yu, T. [School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072 (China); Chen, H. [Xi’an Aerospace Propulsion Institute, Xi’an 710100 (China); Li, B. [State Key Laboratory for Manufacturing and Systems Engineering, Xi’an Jiaotong University, Xi’an 710054 (China)

    2016-08-15

    The high-precision ball bearing is fundamental to the performance of complex mechanical systems. As the speed increases, the cage behavior becomes a key factor in influencing the bearing performance, especially life and reliability. This paper develops a high-precision instrument for analyzing nonlinear dynamic behavior of the bearing cage. The trajectory of the rotational center and non-repetitive run-out (NRRO) of the cage are used to evaluate the instability of cage motion. This instrument applied an aerostatic spindle to support and spin test the bearing to decrease the influence of system error. Then, a high-speed camera is used to capture images when the bearing works at high speeds. A 3D trajectory tracking software TEMA Motion is used to track the spot which marked the cage surface. Finally, by developing the MATLAB program, a Lissajous’ figure was used to evaluate the nonlinear dynamic behavior of the cage with different speeds. The trajectory of rotational center and NRRO of the cage with various speeds are analyzed. The results can be used to predict the initial failure and optimize cage structural parameters. In addition, the repeatability precision of instrument is also validated. In the future, the motorized spindle will be applied to increase testing speed and image processing algorithms will be developed to analyze the trajectory of the cage.

  8. A high-precision instrument for analyzing nonlinear dynamic behavior of bearing cage

    International Nuclear Information System (INIS)

    Yang, Z.; Yu, T.; Chen, H.; Li, B.

    2016-01-01

    The high-precision ball bearing is fundamental to the performance of complex mechanical systems. As the speed increases, the cage behavior becomes a key factor in influencing the bearing performance, especially life and reliability. This paper develops a high-precision instrument for analyzing nonlinear dynamic behavior of the bearing cage. The trajectory of the rotational center and non-repetitive run-out (NRRO) of the cage are used to evaluate the instability of cage motion. This instrument applied an aerostatic spindle to support and spin test the bearing to decrease the influence of system error. Then, a high-speed camera is used to capture images when the bearing works at high speeds. A 3D trajectory tracking software TEMA Motion is used to track the spot which marked the cage surface. Finally, by developing the MATLAB program, a Lissajous’ figure was used to evaluate the nonlinear dynamic behavior of the cage with different speeds. The trajectory of rotational center and NRRO of the cage with various speeds are analyzed. The results can be used to predict the initial failure and optimize cage structural parameters. In addition, the repeatability precision of instrument is also validated. In the future, the motorized spindle will be applied to increase testing speed and image processing algorithms will be developed to analyze the trajectory of the cage.

  9. Effect on stress-strain relations brought by surface carburization of 316 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, K [Ishikawajima-Harima Heavy Industries, Tokyo (Japan)

    1977-07-01

    The effect of sodium. environment on austenitic stainless steels used as structural materials in Liquid Metal Cooled Fast Breeder Reactors (LMFBRs) has long been the subject of extensive studies in many countries. Recent developments tending toward stricter control of the oxygen content permitted to be present in the circulating sodium have come to allay the apprehensions formerly held on the possibility of general corrosion affecting the mechanical properties of structural materials expected to be used In LMFBR plants. Grain boundary corrosion and depletion of elements from the structure surface also have come to be considered to provide little cause of fear in this regard, though some uncertainty is still left concerning the influence that these phenomena might exert toward the end of plant life. What still remains essentially to be clarified relates to carbon mass transfer. Decarburization and/or carburization are phenomena that cannot be disregarded even in the primary heat transfer system of LMFBRs, on account of the temperature dependence of carbon activity in steels, which could cause the carbon to leak out from structural material into the circulating sodium in the higher temperature zones of a circuit, to deposit itself on the channel walls in the lower temperature parts. Recent reports on loop experiments point toward the possibility of carboneous matter leaching into flowing sodium and into the cover gas to produce significant carburization phenomena. Carburization, in particular, can bring about loss of ductility and deterioration of fatigue properties, and hence serious consideration of this aspect is called for in the design of components incorporating thin stainless steel plates. To represent the stress-strain behavior at 550 deg. C of 316 stainless steel affected by surface carburization, an empirical formula was adopted. It was proposed by Voce for relating true stress to true plastic strain: {sigma} = Aexp(C {epsilon}{sub p} ) + B, where {sigma

  10. Effect on stress-strain relations brought by surface carburization of 316 stainless steel

    International Nuclear Information System (INIS)

    Matsumoto, K.

    1977-01-01

    The effect of sodium. environment on austenitic stainless steels used as structural materials in Liquid Metal Cooled Fast Breeder Reactors (LMFBRs) has long been the subject of extensive studies in many countries. Recent developments tending toward stricter control of the oxygen content permitted to be present in the circulating sodium have come to allay the apprehensions formerly held on the possibility of general corrosion affecting the mechanical properties of structural materials expected to be used In LMFBR plants. Grain boundary corrosion and depletion of elements from the structure surface also have come to be considered to provide little cause of fear in this regard, though some uncertainty is still left concerning the influence that these phenomena might exert toward the end of plant life. What still remains essentially to be clarified relates to carbon mass transfer. Decarburization and/or carburization are phenomena that cannot be disregarded even in the primary heat transfer system of LMFBRs, on account of the temperature dependence of carbon activity in steels, which could cause the carbon to leak out from structural material into the circulating sodium in the higher temperature zones of a circuit, to deposit itself on the channel walls in the lower temperature parts. Recent reports on loop experiments point toward the possibility of carboneous matter leaching into flowing sodium and into the cover gas to produce significant carburization phenomena. Carburization, in particular, can bring about loss of ductility and deterioration of fatigue properties, and hence serious consideration of this aspect is called for in the design of components incorporating thin stainless steel plates. To represent the stress-strain behavior at 550 deg. C of 316 stainless steel affected by surface carburization, an empirical formula was adopted. It was proposed by Voce for relating true stress to true plastic strain: σ = Aexp(C ε p ) + B, where σ is the true stress, and

  11. Prediction of thermal and mechanical stress-strain responses of TMC's subjected to complex TMF histories

    Science.gov (United States)

    Johnson, W. S.; Mirdamadi, M.

    1994-01-01

    This paper presents an experimental and analytical evaluation of cross-plied laminates of Ti-15V-3Cr-3Al-3Sn (Ti-15-3) matrix reinforced with continuous silicon-carbide fibers (SCS-6) subjected to a complex TMF loading profile. Thermomechanical fatigue test techniques were developed to conduct a simulation of a generic hypersonic flight profile. A micromechanical analysis was used. The analysis predicts the stress-strain response of the laminate and of the constituents in each ply during thermal and mechanical cycling by using only constituent properties as input. The fiber was modeled as elastic with transverse orthotropic and temperature-dependent properties. The matrix was modeled using a thermoviscoplastic constitutive relation. The fiber transverse modulus was reduced in the analysis to simulate the fiber-matrix interface failures. Excellent correlation was found between measured and predicted laminate stress-strain response due to generic hypersonic flight profile when fiber debonding was modeled.

  12. The mechanical behaviour of NBR/FEF under compressive cyclic stress strain

    Science.gov (United States)

    Mahmoud, W. E.; El-Eraki, M. H. I.; El-Lawindy, A. M. Y.; Hassan, H. H.

    2006-06-01

    Acrylonitrile butadiene rubber compounds filled with different concentrations of fast extrusion furnace (FEF) carbon black were experimentally investigated. The stress-strain curves of the composites were studied, which suggest good filler-matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non-spherical particles. The effect of FEF carbon black on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress-strain relationships for any cycle were described by applying Ogden's model for rubber samples. The dissipation energy that indicates the vibration damping capacity for all samples was determined. A simple model was proposed, to investigate the relation between maximum stress and the number of cyclic fatigue.

  13. The mechanical behaviour of NBR/FEF under compressive cyclic stress-strain

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, W E [Faculty of Science, Physics Department, Suez Canal University, Ismailia (Egypt); El-Eraki, M H I [Faculty of Science, Physics Department, Suez Canal University, Ismailia (Egypt); El-Lawindy, A M Y [Faculty of Science, Physics Department, Suez Canal University, Ismailia (Egypt); Hassan, H H [Faculty of Science, Physics Department, Cairo University, Giza (Egypt)

    2006-06-07

    Acrylonitrile butadiene rubber compounds filled with different concentrations of fast extrusion furnace (FEF) carbon black were experimentally investigated. The stress-strain curves of the composites were studied, which suggest good filler-matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non-spherical particles. The effect of FEF carbon black on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress-strain relationships for any cycle were described by applying Ogden's model for rubber samples. The dissipation energy that indicates the vibration damping capacity for all samples was determined. A simple model was proposed, to investigate the relation between maximum stress and the number of cyclic fatigue.

  14. The study of stress-strain state of stabilized layered soil foundations

    Directory of Open Access Journals (Sweden)

    Sokolov Mikhail V.

    2017-01-01

    Full Text Available Herein presented are the results of modeling and analysis of stress-strain state of layered inhomogeneous foundation soil when it is stabilised by injection to different depths. Produced qualitative and quantitative analysis of the components of the field of isolines of stresses, strains, stress concentration and the difference between the strain at the boundary of different elastic horizontal layers. Recommendations are given for the location of stabilised zones in relation to the border of different elastic layers. In particular, it found that stabilization of soil within the weak layer is inappropriate, since it practically provides no increase in the stability of the soil foundation, and when performing stabilisation of soil foundations, it is recommended to place the lower border of the stabilisation zone below the border of a stronger layer, at this the distribution of stresses and strains occurs more evenly, and load-bearing capacity of this layer is used to the maximum.

  15. An effective uniaxial tensile stress-strain relationship for prestressed concrete

    International Nuclear Information System (INIS)

    Chitnuyanondh, L.; Rizkalla, S.; Murray, D.W.; MacGregor, J.G.

    1979-02-01

    This report evaluates the direct tensile strength and an equivalent uniaxial tensile stress-strain relationship for prestressed concrete using data from specimens tested at the University of Alberta which represent segments from the wall of a containment vessel. The stress-strain relationship, when used in conjunction with the BOSOR5 program, enables prediction of the response of prestressed concrete under any biaxial combination of compressive and/or tensile stresses. Comparisons between the experimental and analytical (BOSOR5) load-strain response of the wall segments are also presented. It is concluded that the BOSOR5 program is able to predict satisfactorily the response of the wall segments and multi-layered shell structures. (author)

  16. The mechanical behaviour of NBR/FEF under compressive cyclic stress-strain

    International Nuclear Information System (INIS)

    Mahmoud, W E; El-Eraki, M H I; El-Lawindy, A M Y; Hassan, H H

    2006-01-01

    Acrylonitrile butadiene rubber compounds filled with different concentrations of fast extrusion furnace (FEF) carbon black were experimentally investigated. The stress-strain curves of the composites were studied, which suggest good filler-matrix adhesion. The large reinforcement effect of the filler followed the Guth model for non-spherical particles. The effect of FEF carbon black on the cyclic fatigue and hysteresis was also examined. The loading and unloading stress-strain relationships for any cycle were described by applying Ogden's model for rubber samples. The dissipation energy that indicates the vibration damping capacity for all samples was determined. A simple model was proposed, to investigate the relation between maximum stress and the number of cyclic fatigue

  17. Nonlinear behavior of photoluminescence from silicon particles under two-photon excitation

    International Nuclear Information System (INIS)

    Xu Xingsheng; Yokoyama, Shiyoshi

    2011-01-01

    Two-photon excited fluorescence (TPEF) under continuous-wave excitation from silicon particles produced by a pulsed laser is investigated. Spectra and images of TPEF from silicon particles are studied under different excitation intensities and operation modes (continuous wave or pulse). It is found that the photoluminescence depends superlinearly on the excitation intensity and that the spectral shape and peaks vary with different silicon particles. The above phenomena show the nonlinear behavior of TPEF from silicon particles, and stimulated emission is a possible process.

  18. The stress-strain relationship for multilayers of the high Tc superconducting oxides

    International Nuclear Information System (INIS)

    Hidaka, H.; Yamamura, H.

    1988-01-01

    This paper reports the calculation of the stress-strain relationship for multilayers of the high Tc superconducting oxides. The elucidation of this relationship is expected quite helpful for the preparation of high-quality multilayers of these materials. This calculation is possible to do in the same way of Timoshenko's bi-metal treatment. The authors did computation of the residual stress and strain, and the state of stress and strain for these multilayers has been acquired in detail by this calculation

  19. Stress, strain, and structural dynamics an interactive handbook of formulas, solutions, and Matlab toolboxes

    CERN Document Server

    Yang, Bingen

    2005-01-01

    Stress, Strain, and Structural Dynamics is a comprehensive and definitive reference to statics and dynamics of solids and structures, including mechanics of materials, structural mechanics, elasticity, rigid-body dynamics, vibrations, structural dynamics, and structural controls. This text integrates the development of fundamental theories, formulas and mathematical models with user-friendly interactive computer programs, written in the powerful and popular MATLAB. This unique merger of technical referencing and interactive computing allows instant solution of a variety of engineering problems

  20. Simulation of Stress-Strain State of Shovel Rotary Support Kingpin

    Science.gov (United States)

    Khoreshok, A. A.; Buyankin, P. V.; Vorobiev, A. V.; Dronov, A. A.

    2016-04-01

    The article presents the sequence of computational simulation of stress-strain state of shovel’s rotary support. Computation results are analyzed, the kingpin is specified as the most loaded element, maximum stress zones are identified. Kingpin design modification such as enhancement of fillet curvature radius to 25 mm and displacement of eyebolt holes on the diameter of 165 mm are proposed, thus diminishing impact of stress concentrators and improving reliability of the rotary support.

  1. Measurement of the uniaxial mechanical properties of rat skin using different stress-strain definitions.

    Science.gov (United States)

    Karimi, A; Navidbakhsh, M

    2015-05-01

    The mechanical properties of skin tissue may vary according to the anatomical locations of a body. There are different stress-strain definitions to measure the mechanical properties of skin tissue. However, there is no agreement as to which stress-strain definition should be implemented to measure the mechanical properties of skin at different anatomical locations. Three stress definitions (second Piola-Kichhoff stress, engineering stress, and true stress) and four strain definitions (Almansi-Hamel strain, Green-St. Venant strain, engineering strain, and true strain) are employed to determine the mechanical properties of skin tissue at back and abdomen locations of a rat body. The back and abdomen skins of eight rats are excised and subjected to a series of tensile tests. The elastic modulus, maximum stress, and strain of skin tissues are measured using three stress definitions and four strain definitions. The results show that the effect of varying the stress definition on the maximum stress measurements of the back skin is significant but not when calculating the elastic modulus and maximum strain. No significant effects are observed on the elastic modulus, maximum stress, and strain measurements of abdomen skin by varying the stress definition. In the true stress-strain diagram, the maximum stress (20%), and elastic modulus (35%) of back skin are significantly higher than that of abdomen skin. The true stress-strain definition is favored to measure the mechanical properties of skin tissue since it gives more accurate measurements of the skin's response using the instantaneous values. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Determination of Stress-Strain Characteristics of Railhead Steel using Image Analysis

    OpenAIRE

    Bandula-Heva; T.; Dhanasekar; M.

    2011-01-01

    True stress-strain curve of railhead steel is required to investigate the behaviour of railhead under wheel loading through elasto-plastic Finite Element (FE) analysis. To reduce the rate of wear, the railhead material is hardened through annealing and quenching. The Australian standard rail sections are not fully hardened and hence suffer from non-uniform distribution of the material property; usage of average properties in the FE modelling can potentially induce error in the predic...

  3. Nonlinear dynamic behaviors of an optically injected vertical-cavity surface-emitting laser

    International Nuclear Information System (INIS)

    Li Xiaofeng; Pan Wei; Luo Bin; Ma Dong; Wang Yong; Li Nuohan

    2006-01-01

    Nonlinear dynamics of a vertical-cavity surface-emitting laser (VCSEL) with external optical injection are studied numerically. We consider a master-slave configuration where the dynamic characteristics of the slave are affected by the optical injection from the master, and we also establish the corresponding Simulink model. The period-doubling route as well as the period-halving route is observed, where the regular, double-periodic, and chaotic pulsings are found. By adjusting the injection strength properly, the laser can be controlled to work at a given state. The effects of frequency detuning on the nonlinear behaviors are also investigated in terms of the bifurcation diagrams of photon density with the frequency detuning. For weak injection case, the nonlinear dynamics shown by the laser are quite different when the value of frequency detuning varies contrarily (positive and negative direction). If the optical injection is strong enough, the slave can be locked by the master even though the frequency detuning is relatively large

  4. A vacancy-modulated self-selective resistive switching memory with pronounced nonlinear behavior

    Science.gov (United States)

    Ma, Haili; Feng, Jie; Gao, Tian; Zhu, Xi

    2017-12-01

    In this study, we report a self-selective (nonlinear) resistive switching memory cell, with high on-state half-bias nonlinearity of 650, sub-μA operating current, and high On/Off ratios above 100×. Regarding the cell structure, a thermal oxidized HfO x layer in combination with a sputtered Ta2O5 layer was configured as an active stack, with Pt and Hf as top and bottom electrodes, respectively. The Ta2O5 acts as a selective layer as well as a series resistor, which could make the resistive switching happened in HfO x layer. Through the analysis of the physicochemical properties and electrical conduction mechanisms at each state, a vacancy-modulated resistance switching model was proposed to explain the switching behavior. The conductivity of HfO x layer was changed by polarity-dependent drift of the oxygen vacancy ( V o), resulting in an electron hopping distance change during switching. With the help of Ta2O5 selective layer, high nonlinearity observed in low resistance state. The proposed material stack shows a promising prospect to act as a self-selective cell for 3D vertical RRAM application.

  5. Nonlinear Seismic Behavior of Different Boundary Conditions of Transmission Line Systems under Earthquake Loading

    Directory of Open Access Journals (Sweden)

    Li Tian

    2016-01-01

    Full Text Available Nonlinear seismic behaviors of different boundary conditions of transmission line system under earthquake loading are investigated in this paper. The transmission lines are modeled by cable element accounting for the nonlinearity of the cable. For the suspension type, three towers and two span lines with spring model (Model 1 and three towers and four span lines’ model (Model 2 are established, respectively. For the tension type, three towers and two span lines’ model (Model 3 and three towers and four span lines’ model (Model 4 are created, respectively. The frequencies of the transmission towers and transmission lines of the suspension type and tension type are calculated, respectively. The responses of the suspension type and tension type are investigated using nonlinear time history analysis method, respectively. The results show that the responses of the transmission tower and transmission line of the two models of the suspension type are slightly different. However, the responses of transmission tower and transmission line of the two models of the tension type are significantly different. Therefore, in order to obtain accurate results, a reasonable model should be considered. The results could provide a reference for the seismic analysis of the transmission tower-line system.

  6. Formation of stress/strain cycles for analytical assessment of fatigue crack initiation and growth

    International Nuclear Information System (INIS)

    Tashkinov, A.V.

    2005-01-01

    This paper discusses standard techniques for setting up cycles of stresses, strains and stress intensity factors (SIF) for use in analysing the fatigue characteristics of crack-free components or the fatigue crack growth if crack-like flaws are present. A number of improved techniques are proposed. An enhanced procedure for analytical description of true metal stress-strain curves, covering plastic effects, is presented. This procedure involves standard physical and mechanical properties of the metal in question, such as ultimate stress, yield stress and elasticity modulus. It is emphasized that the currently practiced rain-flow method of design cycle formation, which is effective for an actual (truly known) cyclic loading history, is not suitable for a projected (anticipated) history, as it leaves out of account possible variations in the sequence of operating conditions. Improved techniques for establishing design stress/strain and SIF cycles are described, which make allowance for the most unfavourable sequence of events in the projected loading history. The paper points to a basic difference in the methods of design cycle formation, employed in assessment of the current condition of a component (with the actual history accounted for) and in estimation of the residual lifetime or life extension (for a projected history). (authors)

  7. Computer modeling of the stress-strain state of welded construction

    Science.gov (United States)

    Nurguzhin, Marat; Danenova, Gulmira; Akhmetzhanov, Talgat

    2017-11-01

    At the present time the maintenance of the welded construction serviceability over normative service life is provided by the maintenance system on the basis of the guiding documents according to the concept of "fail safe". However, technology factors relating to welding such as high residual stresses and significant plastic strains are not considered in the guiding documents. The design procedure of the stressed-strained state of welded constructions is suggested in the paper. The procedure investigates welded constructions during welding and the external load using the program ANSYS. In this paper, the model of influence of the residual stress strain state on the factor of stress intensity is proposed. The calculation method of the residual stressed-strained state (SSS) taking into account the phase transition is developed by the authors. Melting and hardening of a plate material during heating and cooling is considered. The thermomechanical problem of heating a plate by a stationary heat source is solved. The setup of the heating spot center on distance (190 mm) from the crack top in a direction of its propagation leads to the fact that the value of total factor of stress intensity will considerably decrease under action of the specified residual compressing stresses. It can lower the speed of the crack propagation to zero. The suggested method of survivability maintenance can be applied during operation with the purpose of increasing the service life of metal constructions up to running repair of technological machines.

  8. Limitations of Hollomon and Ludwigson stress-strain relations in assessing the strain hardening parameters

    International Nuclear Information System (INIS)

    Samuel, K G

    2006-01-01

    It is shown that the deviation from the ideal Hollomon relation in describing the stress-strain behaviour is characteristic of all materials at low strains. The Ludwigson relation describing the deviation from the Hollomon relation at low strains is critically analysed and it is shown that the deviation at low strains is a consequence of some unknown 'plastic strain equivalent' present in the material. Stress strain curves obeying an ideal Hollomon relation as well as that of a structurally modified (prior cold worked) material were simulated and compared. The results show that the yield strength and the flow strength of a material at constant strain rate and temperature are dictated by the magnitude of the 'plastic strain equivalent' term. It is shown that this component need not necessarily mean a prior plastic strain present in the material due to prior cold work alone and that prior cold work strain will add to this. If this component is identified, the stress-strain behaviour can be adequately described by the Swift relation. It is shown that in both formalisms, the strain hardening index is a function of the yield strength of the material

  9. A non-linear elastic constitutive framework for replicating plastic deformation in solids.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Scott Alan; Schunk, Peter Randall

    2014-02-01

    Ductile metals and other materials typically deform plastically under large applied loads; a behavior most often modeled using plastic deformation constitutive models. However, it is possible to capture some of the key behaviors of plastic deformation using only the framework for nonlinear elastic mechanics. In this paper, we develop a phenomenological, hysteretic, nonlinear elastic constitutive model that captures many of the features expected of a plastic deformation model. This model is based on calculating a secant modulus directly from a materials stress-strain curve. Scalar stress and strain values are obtained in three dimensions by using the von Mises invariants. Hysteresis is incorporated by tracking an additional history variable and assuming an elastic unloading response. This model is demonstrated in both single- and multi-element simulations under varying strain conditions.

  10. Improving stability and strength characteristics of framed structures with nonlinear behavior

    Science.gov (United States)

    Pezeshk, Shahram

    1990-01-01

    In this paper an optimal design procedure is introduced to improve the overall performance of nonlinear framed structures. The design methodology presented here is a multiple-objective optimization procedure whose objective functions involve the buckling eigenvalues and eigenvectors of the structure. A constant volume with bounds on the design variables is used in conjunction with an optimality criterion approach. The method provides a general tool for solving complex design problems and generally leads to structures with better limit strength and stability. Many algorithms have been developed to improve the limit strength of structures. In most applications geometrically linear analysis is employed with the consequence that overall strength of the design is overestimated. Directly optimizing the limit load of the structure would require a full nonlinear analysis at each iteration which would be prohibitively expensive. The objective of this paper is to develop an algorithm that can improve the limit-load of geometrically nonlinear framed structures while avoiding the nonlinear analysis. One of the novelties of the new design methodology is its ability to efficiently model and design structures under multiple loading conditions. These loading conditions can be different factored loads or any kind of loads that can be applied to the structure simultaneously or independently. Attention is focused on optimal design of space framed structures. Three-dimensional design problems are more complicated to carry out, but they yield insight into real behavior of the structure and can help avoiding some of the problems that might appear in planar design procedure such as the need for out-of-plane buckling constraint. Although researchers in the field of structural engineering generally agree that optimum design of three-dimension building frames especially in the seismic regions would be beneficial, methods have been slow to emerge. Most of the research in this area has dealt

  11. A study on nonlinear behavior of reactor containment structures during ultimate accident condition(I)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun Hoon; Kim, Young Jin; Park, Joo Yeon [Youngdong Univ., Yeongdong (Korea, Republic of)] (and others)

    2003-03-15

    In this study, the following scope and contents are established for first year's study of determining ultimate pressure capacity of CANDU-type reactor containment. State-of-arts on the prediction of the ultimate pressure capacity of prestressed concrete reactor containment. Comparative study on structural characteristics and analysis model of CANDU-type reactor containment. State-of-arts on evaluation method of the ultimate pressure capacity of prestressed concrete reactor containment. Enhancement of evaluation method of the ultimate pressure capacity for PWR containment structure. In order to determine a realistic lower bound of a typical reactor containment structural capacity for internal pressure, modelling techniques and analytical investigation to predict its non-linear behavior up to ultimate capacity are required. Especially, the in-depth evaluation of modeling technique and analysis procedure for determining ultimate pressure capacity of CANDU-type reactor containment is required. Therefore, modelling techniques and analytical investigation to predict its non-linear behavior up to ultimate pressure capacity of CANDU-type reactor containment for internal pressure will be suggested in this study.

  12. A study on nonlinear behavior of reactor containment structures during ultimate accident condition(I)

    International Nuclear Information System (INIS)

    Kim, Sun Hoon; Kim, Young Jin; Park, Joo Yeon

    2003-03-01

    In this study, the following scope and contents are established for first year's study of determining ultimate pressure capacity of CANDU-type reactor containment. State-of-arts on the prediction of the ultimate pressure capacity of prestressed concrete reactor containment. Comparative study on structural characteristics and analysis model of CANDU-type reactor containment. State-of-arts on evaluation method of the ultimate pressure capacity of prestressed concrete reactor containment. Enhancement of evaluation method of the ultimate pressure capacity for PWR containment structure. In order to determine a realistic lower bound of a typical reactor containment structural capacity for internal pressure, modelling techniques and analytical investigation to predict its non-linear behavior up to ultimate capacity are required. Especially, the in-depth evaluation of modeling technique and analysis procedure for determining ultimate pressure capacity of CANDU-type reactor containment is required. Therefore, modelling techniques and analytical investigation to predict its non-linear behavior up to ultimate pressure capacity of CANDU-type reactor containment for internal pressure will be suggested in this study

  13. Analysis of the Nonlinear Static and Dynamic Behavior of Offshore Structures

    KAUST Repository

    Alfosail, Feras

    2015-07-01

    Understanding static and dynamic nonlinear behavior of pipes and risers is crucial for the design aspects in offshore engineering fields. In this work, we examine two nonlinear problems in offshore engineering field: vortex Induced vibration of straight horizontal pipes, and boundary layer static solution of inclined risers. In the first study, we analyze the effect of the internal velocity of straight horizontal pipe and obtain the vortex induced vibration forces via coupling the pipe equation of motion with the recently modified Van Der Pol oscillator governing the lift coefficient. Our numerical results are obtained for two different pipe configurations: hinged-hinged, and clamped- clamped. The results show that the internal velocity reduces the vibration and the oscillation amplitudes. Also, it is shown that the clamped-clamped pipe configuration offers a wider range of internal velocities before buckling instability occurs. The results also demonstrate the effect of the end condition on the amplitudes of vibration. In the second study, we develop a boundary layer perturbation static solution to govern and simulate the static behavior of inclined risers. In the boundary layer analysis, we take in consideration the effects of the axial stretch, applied tension, and internal velocity. Our numerical simulation results show good agreement with the exact solutions for special cases. In addition, our developed method overcomes the mathematical and numerical limitations of the previous methods used before.

  14. An Experimental Study of Mortars with Recycled Ceramic Aggregates: Deduction and Prediction of the Stress-Strain

    Directory of Open Access Journals (Sweden)

    Francisca Guadalupe Cabrera-Covarrubias

    2016-12-01

    Full Text Available The difficult current environmental situation, caused by construction industry residues containing ceramic materials, could be improved by using these materials as recycled aggregates in mortars, with their processing causing a reduction in their use in landfill, contributing to recycling and also minimizing the consumption of virgin materials. Although some research is currently being carried out into recycled mortars, little is known about their stress-strain (σ-ε; therefore, this work will provide the experimental results obtained from recycled mortars with recycled ceramic aggregates (with contents of 0%, 10%, 20%, 30%, 50% and 100%, such as the density and compression strength, as well as the σ-ε curves representative of their behavior. The values obtained from the analytical process of the results in order to finally obtain, through numerical analysis, the equations to predict their behavior (related to their recycled content are those of: σ (elastic ranges and failure maximum, ε (elastic ranges and failure maximum, and Resilience and Toughness. At the end of the investigation, it is established that mortars with recycled ceramic aggregate contents of up to 20% could be assimilated just like mortars with the usual aggregates, and the obtained prediction equations could be used in cases of similar applications.

  15. A constitutive model for developing blood clots with various compositions and their nonlinear viscoelastic behavior.

    Science.gov (United States)

    van Kempen, Thomas H S; Donders, Wouter P; van de Vosse, Frans N; Peters, Gerrit W M

    2016-04-01

    The mechanical properties determine to a large extent the functioning of a blood clot. These properties depend on the composition of the clot and have been related to many diseases. However, the various involved components and their complex interactions make it difficult at this stage to fully understand and predict properties as a function of the components. Therefore, in this study, a constitutive model is developed that describes the viscoelastic behavior of blood clots with various compositions. Hereto, clots are formed from whole blood, platelet-rich plasma and platelet-poor plasma to study the influence of red blood cells, platelets and fibrin, respectively. Rheological experiments are performed to probe the mechanical behavior of the clots during their formation. The nonlinear viscoelastic behavior of the mature clots is characterized using a large amplitude oscillatory shear deformation. The model is based on a generalized Maxwell model that accurately describes the results for the different rheological experiments by making the moduli and viscosities a function of time and the past and current deformation. Using the same model with different parameter values enables a description of clots with different compositions. A sensitivity analysis is applied to study the influence of parameter variations on the model output. The relative simplicity and flexibility make the model suitable for numerical simulations of blood clots and other materials showing similar behavior.

  16. Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties

    Science.gov (United States)

    Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon

    2012-01-01

    Purpose: The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency (F[subscript 0]) during anterior-posterior stretching. Method: Three materially linear and 3 materially nonlinear models were…

  17. FEATURES APPLICATION CIRCUIT MOMENT FINITE ELEMENT (MSSE) NONLINEAR CALCULATIONS OF PLATES AND SHELLS

    OpenAIRE

    Bazhenov V.A.; Sacharov A.S.; Guliar A. I.; Pyskunov S.O.; Maksymiuk Y.V.

    2014-01-01

    Based MSSE created shell CE general type, which allows you to analyze the stress-strain state of axisymmetrical shells and plates in problems of physical and geometric nonlinearity. The principal nonlinear elasticity theory, algorithms for solving systems of nonlinear equations for determining the temperature and plastic deformation.

  18. FEATURES APPLICATION CIRCUIT MOMENT FINITE ELEMENT (MSSE NONLINEAR CALCULATIONS OF PLATES AND SHELLS

    Directory of Open Access Journals (Sweden)

    Bazhenov V.A.

    2014-06-01

    Full Text Available Based MSSE created shell CE general type, which allows you to analyze the stress-strain state of axisymmetrical shells and plates in problems of physical and geometric nonlinearity. The principal nonlinear elasticity theory, algorithms for solving systems of nonlinear equations for determining the temperature and plastic deformation.

  19. Assessment of Effects of a Delay Block and a Nonlinear Block in Systems with Chaotic Behavior Using Lyapunov Exponents

    Directory of Open Access Journals (Sweden)

    Pablo César Rodríguez Gómez

    2017-05-01

    Full Text Available Context: Because feedback systems are very common and widely used, studies of the structural characteristics under which chaotic behavior is generated have been developed. These can be separated into a nonlinear system and a linear system at least of the third order. Methods such as the descriptive function have been used for analysis. Method: A feedback system is proposed comprising a linear system, a nonlinear system and a delay block, in order to assess his behavior using Lyapunov exponents. It is evaluated with three different linear systems, different delay values and different values for parameters of nonlinear characteristic, aiming to reach chaotic behavior. Results: One hundred experiments were carried out for each of the three linear systems, by changing the value of some parameters, assessing their influence on the dynamics of the system. Contour plots that relate these parameters to the Largest Lyapunov exponent were obtained and analyzed. Conclusions: In spite non-linearity is a condition for the existence of chaos, this does not imply that any nonlinear characteristic generates a chaotic system, it is reflected by the contour plots showing the transitions between chaotic and no chaotic behavior of the feedback system. Language: English

  20. Nonlinear Dynamic Behavior of a Flexible Structure to Combined External Acoustic and Parametric Excitation

    Directory of Open Access Journals (Sweden)

    Paulo S. Varoto

    2006-01-01

    Full Text Available Flexible structures are frequently subjected to multiple inputs when in the field environment. The accurate determination of the system dynamic response to multiple inputs depends on how much information is available from the excitation sources that act on the system under study. Detailed information include, but are not restricted to appropriate characterization of the excitation sources in terms of their variation in time and in space for the case of distributed loads. Another important aspect related to the excitation sources is how inputs of different nature contribute to the measured dynamic response. A particular and important driving mechanism that can occur in practical situations is the parametric resonance. Another important input that occurs frequently in practice is related to acoustic pressure distributions that is a distributed type of loading. In this paper, detailed theoretical and experimental investigations on the dynamic response of a flexible cantilever beam carrying a tip mass to simultaneously applied external acoustic and parametric excitation signals have been performed. A mathematical model for transverse nonlinear vibration is obtained by employing Lagrange’s equations where important nonlinear effects such as the beam’s curvature and quadratic viscous damping are accounted for in the equation of motion. The beam is driven by two excitation sources, a sinusoidal motion applied to the beam’s fixed end and parallel to its longitudinal axis and a distributed sinusoidal acoustic load applied orthogonally to the beam’s longitudinal axis. The major goal here is to investigate theoretically as well as experimentally the dynamic behavior of the beam-lumped mass system under the action of these two excitation sources. Results from an extensive experimental work show how these two excitation sources interacts for various testing conditions. These experimental results are validated through numerically simulated results

  1. Non-linear behavior of public opinion on the issues regarding inhabitants' polls

    International Nuclear Information System (INIS)

    Ohnishi, Teruaki; Suganuma, Jyun-ichi

    2003-01-01

    The observed change of public attitude around the time of inhabitants' poll in Japan was compared with model calculation to investigate its non-linear behavior. Two inhabitants' polls regarding nuclear issues, the approval and disapproval of the construction of Maki nuclear station, and of the MOX fuel use at Kashiwazaki-Kariwa nuclear station, were considered together with the poll on the reconstruction of the tenth weir in Yoshino river carried out in Tokushima. By using a mathematical model such that the individual attitude is mainly subject to two factors of the information environment and the mutual communication between the public, it was found that the change and the unification of public attitude around the time of inhabitants' poll can be interpreted as a manifestation of self-organization resulted from the cooperative phenomenon of those two factors. Moreover, it was also found that the abrupt change of public attitude just before the poll can be interpreted as a result of positive feedback of the information environment formed by the various types of propaganda activities to the attitude change, though the extent of such non-linear effects differs from case to case. (author)

  2. Undirected learning styles and academic risk: Analysis of the impact of stress, strain and coping.

    Science.gov (United States)

    Kimatian, Stephen; Lloyd, Sara; Berger, Jeffrey; Steiner, Lorraine; McKay, Robert; Schwengal, Deborah

    2017-01-01

    Learning style inventories used in conjunction with a measure of academic achievement consistently show an association of meaning directed learning patterns with academic success, but have failed to show a clear association of undirected learning styles with academic failure. Using survey methods with anesthesia residents, this study questioned whether additional assessment of factors related to stress, strain, and coping help to better define the association between undirected learning styles and academic risk. Pearson chi squared tests. 296 subjects were enrolled from eight institutions with 142 (48%) completing the study. American Board of Anesthesiologists In Training Examinations (ITE) percentiles (ITE%) were used as a measure of academic achievement. The Vermunt Inventory of Learning Styles (ILS) was used to identify four learning patterns and 20 strategies, and the Osipow Stress Inventory-Revised (OSI-R) was used as a measure of six scales of occupational stress, four of personal strain, and four coping resources. Two learning patterns had significant relationship with ITE scores. As seen in previous studies, Meaning Directed Learning was beneficial for academic achievement while Undirected Learning was the least beneficial. Higher scores on Meaning Directed Learning correlated positively with higher ITE scores while higher Undirected and lower Meaning Directed patterns related negatively to ITE%. OSI-R measures of stress, strain and coping indicated that residents with Undirected learning patterns had higher scores on three scales related to stress, and 4 related to strain, while displaying lower scores on two scales related to coping. Residents with higher Meaning Directed patterns scored lower on two scales of stress and two scales of strain, with higher scores on two scales for coping resources. Low Meaning Directed and high Undirected learning patterns correlated with lower ITE percentiles, higher scores for stress and strain, and lower coping resources

  3. Main results of BN-600 reactor stress-strain state investigations

    International Nuclear Information System (INIS)

    Panov, V.A.

    1983-01-01

    The development of BN-600 fast reactor plant needed the solution of a series of complex engineering problems including ones for confirming integrity of the most vital structural components. The particular attention was given to the main vessel since reactor availability end safe operation of the plant as a whole depend on vessel strength end integrity. The present report deals with the main results of theoretical and experimental investigations of the stress-strain state of BN-600 reactor vessel carried out during design, start-up and initial bringing the reactor to power

  4. Stress-strain properties of railway steel at strain rates of upto 105 per second

    International Nuclear Information System (INIS)

    Hashmi, M.S.J.; Islam, M.N.

    1985-01-01

    This paper presents the stress-strain characteristics of railway steel at strain rates of up to 10 5 /s at room temperature determined by a new technique. In determining the results, account has been taken of the strain-rate variation, the total strain and the strain rate history. The effect of friction, material inertia and temperature rise is also assessed and an empirical constitutive equation describing the strain-rate and strain sensitive flow stress for this type of steel is proposed. (orig.)

  5. Spall damage of a mild carbon steel: Effects of peak stress, strain rate and pulse duration

    International Nuclear Information System (INIS)

    Li, C.; Li, B.; Huang, J.Y.; Ma, H.H.; Zhu, M.H.; Zhu, J.; Luo, S.N.

    2016-01-01

    We investigate spall damage of a mild carbon steel under high strain-rate loading, regarding the effects of peak stress, strain rate, and pulse duration on spall strength and damage, as well as related microstructure features, using gas gun plate impact, laser velocimetry, and electron backscatter diffraction analysis. Our experiments demonstrate strong dependences of spall strength on peak stress and strain rate, and its weak dependence on pulse duration. We establish numerical relations between damage and peak stress or pulse duration. Brittle and ductile spall fracture modes are observed at different loading conditions. Damage nucleates at grain boundaries and triple junctions, either as transgranular cleavage cracks or voids.

  6. Spall damage of a mild carbon steel: Effects of peak stress, strain rate and pulse duration

    Energy Technology Data Exchange (ETDEWEB)

    Li, C. [College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031 (China); Li, B.; Huang, J.Y. [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031 (China); CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 (China); Ma, H.H. [CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027 (China); Zhu, M.H. [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Zhu, J., E-mail: zhujun01@163.com [College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan 610064 (China); Luo, S.N., E-mail: sluo@pims.ac.cn [The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610031 (China); Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2016-04-13

    We investigate spall damage of a mild carbon steel under high strain-rate loading, regarding the effects of peak stress, strain rate, and pulse duration on spall strength and damage, as well as related microstructure features, using gas gun plate impact, laser velocimetry, and electron backscatter diffraction analysis. Our experiments demonstrate strong dependences of spall strength on peak stress and strain rate, and its weak dependence on pulse duration. We establish numerical relations between damage and peak stress or pulse duration. Brittle and ductile spall fracture modes are observed at different loading conditions. Damage nucleates at grain boundaries and triple junctions, either as transgranular cleavage cracks or voids.

  7. Determination of stress-strain state of the wooden church log walls with software package

    Directory of Open Access Journals (Sweden)

    Chulkova Anastasia

    2016-01-01

    Full Text Available The restoration of architectural monuments is going on all over the world today. The main aim of restoration is the renewal of stable functioning of building constructions in normal state. In this article, we have tried to figure out with special software the bearing capacity of log cabins of the Church of Transfiguration on Kizhi island. As shown in research results, determination of stress-strain stage with software package is necessary for the bearing capacity computation as well as field tests.

  8. Observation of Self-Similar Behavior of the 3D, Nonlinear Rayleigh-Taylor Instability

    International Nuclear Information System (INIS)

    Sadot, O.; Smalyuk, V.A.; Delettrez, J.A.; Sangster, T.C.; Goncharov, V.N.; Meyerhofer, D.D.; Betti, R.; Shvarts, D.

    2005-01-01

    The Rayleigh-Taylor unstable growth of laser-seeded, 3D broadband perturbations was experimentally measured in the laser-accelerated, planar plastic foils. The first experimental observation showing the self-similar behavior of the bubble size and amplitude distributions under ablative conditions is presented. In the nonlinear regime, the modulation σ rms grows as α σ gt 2 , where g is the foil acceleration, t is the time, and α σ is constant. The number of bubbles evolves as N(t)∝(ωt√(g)+C) -4 and the average size evolves as (t)∝ω 2 gt 2 , where C is a constant and ω=0.83±0.1 is the measured scaled bubble-merging rate

  9. Nonlinear failure analysis of a reinforced concrete containment under internal pressure

    International Nuclear Information System (INIS)

    Sharma, S.; Wang, Y.K.; Reich, M.

    1984-01-01

    A detailed nonlinear finite element model is used to investigate the failure response of the Indian Point containment building under severe accident pressures. Refined material models are used to describe the complex stress-strain behavior of the liner and rebar steels, the plain concrete and the reinforced concrete. Structural geometry of the containment is idealized by eight layers of axisymmetric finite elements through the wall thickness in order to closely model the actual placement of the rebars. Soil stiffness under the containment base mat is modeled by a series of nonlinear spring elements. Numerical results presented in the paper describe cracking and plastic deformation (in compression) of the concrete, yielding of the liner and rebar steels and eventual loss of the load carrying capacity of the containment. The results are compared with available data from the previous studies for this containment. 8 references, 9 figures

  10. Theoretical and Experimental Investigation of the Nonlinear Behavior of an Electrostatically Actuated In-Plane MEMS Arch

    KAUST Repository

    Ramini, Abdallah

    2016-05-02

    We present theoretical and experimental investigation of the nonlinear behavior of a clamped-clamped in-plane MEMS arch when excited by a DC electrostatic load superimposed to an AC harmonic load. Experimentally, a case study of in-plane silicon micromachined arch is examined and its mechanical behavior is measured using optical techniques. An algorithm is developed to extract the various parameters, such as the induced axial force and the initial rise, needed to model the behavior of the arch. A softening spring behavior is observed when the excitation is close to the first resonance frequency due to the quadratic nonlinearity coming from the arch geometry and the electrostatic force. Also, a hardening spring behavior is observed when the excitation is close to the third (second symmetric) resonance frequency due to the cubic nonlinearity coming from mid-plane stretching. Dynamic snap-through behavior is also reported for larger range of electric loads. Theoretically, a multi-mode Galerkin reduced order model is utilized to simulate the arch behavior. General agreement is reported among the theoretical and experimental data.

  11. Modeling Stress Strain Relationships and Predicting Failure Probabilities For Graphite Core Components

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, Stephen [Cleveland State Univ., Cleveland, OH (United States)

    2013-09-09

    This project will implement inelastic constitutive models that will yield the requisite stress-strain information necessary for graphite component design. Accurate knowledge of stress states (both elastic and inelastic) is required to assess how close a nuclear core component is to failure. Strain states are needed to assess deformations in order to ascertain serviceability issues relating to failure, e.g., whether too much shrinkage has taken place for the core to function properly. Failure probabilities, as opposed to safety factors, are required in order to capture the bariability in failure strength in tensile regimes. The current stress state is used to predict the probability of failure. Stochastic failure models will be developed that can accommodate possible material anisotropy. This work will also model material damage (i.e., degradation of mechanical properties) due to radiation exposure. The team will design tools for components fabricated from nuclear graphite. These tools must readily interact with finite element software--in particular, COMSOL, the software algorithm currently being utilized by the Idaho National Laboratory. For the eleastic response of graphite, the team will adopt anisotropic stress-strain relationships available in COMSO. Data from the literature will be utilized to characterize the appropriate elastic material constants.

  12. Modeling Stress Strain Relationships and Predicting Failure Probabilities For Graphite Core Components

    International Nuclear Information System (INIS)

    Duffy, Stephen

    2013-01-01

    This project will implement inelastic constitutive models that will yield the requisite stress-strain information necessary for graphite component design. Accurate knowledge of stress states (both elastic and inelastic) is required to assess how close a nuclear core component is to failure. Strain states are needed to assess deformations in order to ascertain serviceability issues relating to failure, e.g., whether too much shrinkage has taken place for the core to function properly. Failure probabilities, as opposed to safety factors, are required in order to capture the bariability in failure strength in tensile regimes. The current stress state is used to predict the probability of failure. Stochastic failure models will be developed that can accommodate possible material anisotropy. This work will also model material damage (i.e., degradation of mechanical properties) due to radiation exposure. The team will design tools for components fabricated from nuclear graphite. These tools must readily interact with finite element software--in particular, COMSOL, the software algorithm currently being utilized by the Idaho National Laboratory. For the eleastic response of graphite, the team will adopt anisotropic stress-strain relationships available in COMSO. Data from the literature will be utilized to characterize the appropriate elastic material constants.

  13. Modeling of the stress-strain state of the ground mass contaminated with peracetic acid

    Directory of Open Access Journals (Sweden)

    Levenko Anna

    2017-01-01

    Full Text Available None of the methods described previously provides a solution to the problem that deals with the SSS evaluation of the ground mass which is under the influence of chemically active substances and, in particular, under the influence of peracetic acid. The stress-strain state of the ground mass contaminated with peracetic acid was estimated. Stresses occurring in the ground mass in the natural state were determined after the entry of acid into it and after the chemical fixation of it with sodium silicate. All the parameters of the stress-strain state of the ground mass were obtained under a number of physical and mechanical conditions. It was determined that following the work on the silicatization of the ground mass contaminated with peracetic acid the quantity of strain decreased by 26.11 to 48.9%. The comparison of the results of stress calculations indicates the stress reduction in the ground mass in 1.8 – 2.6 times after its fixing.

  14. Nonlinear rock behavior and its implications on deeper-level platinum mining

    CSIR Research Space (South Africa)

    Watson, BP

    2008-10-01

    Full Text Available Uniaxial tests performed on core from instrumented sites at Amandelbult 1 shaft, Impala 10 shaft and Union Section Spud-shaft showed a nonlinear elastic relationship between applied load and induced deformation. This nonlinear behaviour does...

  15. Theoretical and Experimental Investigation of the Nonlinear Behavior of an Electrostatically Actuated In-Plane MEMS Arch

    KAUST Repository

    Ramini, Abdallah; Al Hennawi, Qais M.; Younis, Mohammad I.

    2016-01-01

    We present theoretical and experimental investigation of the nonlinear behavior of a clamped-clamped in-plane MEMS arch when excited by a DC electrostatic load superimposed to an AC harmonic load. Experimentally, a case study of in-plane silicon

  16. The behavior of steady quasisolitons near the limit cases of third-order nonlinear Schrödinger equation

    DEFF Research Database (Denmark)

    Karpman, V.I.; Shagalov, A.G.; Juul Rasmussen, J.

    2002-01-01

    The behavior of steady quasisoliton solutions to the extended third-order nonlinear Schrodinger (NLS) equation is studied in two cases: (i) when the coefficients in the equation approach the Hirota conditions, and (ii) near the limit of the regular NLS equation. (C) 2002 Published by Elsevier...

  17. Simulation of Stress-Strain behavior for one-dimensional aluminum samples subjected to high temperature

    DEFF Research Database (Denmark)

    Bellini, Anna; Thorborg, Jesper; Hattel, Jesper

    2004-01-01

    , financed by the EU in frame work 6 and born in collaboration with the automobile and foundry industries, to fill the mentioned gap. Through a systematic analysis of experimental tests, this study aims to develop a powerful predicting tool capable of capturing stress relaxation effects through an adequate...

  18. Parameter estimation of a nonlinear Burger's model using nanoindentation and finite element-based inverse analysis

    Science.gov (United States)

    Hamim, Salah Uddin Ahmed

    Nanoindentation involves probing a hard diamond tip into a material, where the load and the displacement experienced by the tip is recorded continuously. This load-displacement data is a direct function of material's innate stress-strain behavior. Thus, theoretically it is possible to extract mechanical properties of a material through nanoindentation. However, due to various nonlinearities associated with nanoindentation the process of interpreting load-displacement data into material properties is difficult. Although, simple elastic behavior can be characterized easily, a method to characterize complicated material behavior such as nonlinear viscoelasticity is still lacking. In this study, a nanoindentation-based material characterization technique is developed to characterize soft materials exhibiting nonlinear viscoelasticity. Nanoindentation experiment was modeled in finite element analysis software (ABAQUS), where a nonlinear viscoelastic behavior was incorporated using user-defined subroutine (UMAT). The model parameters were calibrated using a process called inverse analysis. In this study, a surrogate model-based approach was used for the inverse analysis. The different factors affecting the surrogate model performance are analyzed in order to optimize the performance with respect to the computational cost.

  19. Mechanical behavior and stress effects in hard superconductors: a review

    International Nuclear Information System (INIS)

    Koch, C.C.; Easton, D.S.

    1977-11-01

    The mechanical properties of type II superconducting materials are reviewed as well as the effect of stress on the superconducting properties of these materials. The bcc alloys niobium-titanium and niobium-zirconium exhibit good strength and extensive ductility at room temperature. Mechanical tests on these alloys at 4.2 0 K revealed serrated stress-strain curves, nonlinear elastic effects and reduced ductility. The nonlinear behavior is probably due to twinning and detwinning or a reversible stress-induced martensitic transformation. The brittle A-15 compound superconductors, such as Nb 3 Sn and V 3 Ga, exhibit unusual elastic properties and structural instabilities at cryogenic temperatures. Multifilamentary composites consisting of superconducting filaments in a normal metal matrix are generally used for superconducting devices. The mechanical properties of alloy and compound composites, tapes, as well as composites of niobium carbonitride chemically vapor deposited on high strength carbon fibers are presented. Hysteretic stress-strain behavior in the metal matrix composites produces significant heat generation, an effect which may lead to degradation in the performance of high field magnets. Measurements of the critical current density, J/sub c/, under stress in a magnetic field are reported. Modest stress-reversible degradation in J/sub c/ was observed in niobium-titanium composites, while more serious degradation was found in Nb 3 Sn samples. The importance of mechanical behavior to device performance is discussed

  20. Nonlinear crack mechanics

    International Nuclear Information System (INIS)

    Khoroshun, L.P.

    1995-01-01

    The characteristic features of the deformation and failure of actual materials in the vicinity of a crack tip are due to their physical nonlinearity in the stress-concentration zone, which is a result of plasticity, microfailure, or a nonlinear dependence of the interatomic forces on the distance. Therefore, adequate models of the failure mechanics must be nonlinear, in principle, although linear failure mechanics is applicable if the zone of nonlinear deformation is small in comparison with the crack length. Models of crack mechanics are based on analytical solutions of the problem of the stress-strain state in the vicinity of the crack. On account of the complexity of the problem, nonlinear models are bason on approximate schematic solutions. In the Leonov-Panasyuk-Dugdale nonlinear model, one of the best known, the actual two-dimensional plastic zone (the nonlinearity zone) is replaced by a narrow one-dimensional zone, which is then modeled by extending the crack with a specified normal load equal to the yield point. The condition of finite stress is applied here, and hence the length of the plastic zone is determined. As a result of this approximation, the displacement in the plastic zone at the abscissa is nonzero

  1. STRESS-STRAIN STATE IN EMBEDMENT OF REINFORCEMENT IN CASE OF REPEATED LOADINGS

    Directory of Open Access Journals (Sweden)

    Mirsayapov Ilshat Talgatovich

    2016-05-01

    Full Text Available The author offer transforming the diagram of ideal elastic-plastic deformations for the description of the stress-strain state of embedment of reinforcement behind a critical inclined crack at repeatedly repeating loadings. The endurance limit of the adhesion between concrete and reinforcement and its corresponding displacements in case of repeated loadings are accepted as the main indicators. This adhesion law is the most appropriate for the description of physical and mechanical phenomena in the contact zone in case of cyclic loading, because it simply and reliably describes the adhesion mechanism and the nature of the deformation, and greatly simplifies the endurance calculations compared to the standard adhesion law. On the basis of this diagram the author obtained the equations for the description of the distribution of pressures and displacements after cyclic loading with account for the development of deformations of cyclic creep of the concrete under the studs of reinforcement.

  2. Study of the stress-strain state of compressed concrete elements with composite reinforcement

    Directory of Open Access Journals (Sweden)

    Bondarenko Yurii

    2017-01-01

    Full Text Available The efficiency analysis of the application of glass composite reinforcement in compressed concrete elements as a load-carrying component has been performed. The results of experimental studies of the deformation-strength characteristics of this reinforcement on compression and compressed concrete cylinders reinforced by this reinforcement are presented. The results of tests and mechanisms of sample destruction have been analyzed. The numerical analysis of the stress-strain state has been performed for axial compression of concrete elements with glasscomposite reinforcement. The influence of the reinforcement percentage on the stressed state of a concrete compressed element with the noted reinforcement is estimated. On the basis of the obtained results, it is established that the glass-composite reinforcement has positive effect on the strength of the compressed concrete elements. That is, when calculating the load-bearing capacity of such structures, the function of composite reinforcement on compression should not be neglected.

  3. Experimental determination of the stress/strain situation in a sheared tunnel model with canister

    International Nuclear Information System (INIS)

    Pusch, R.

    1978-03-01

    A previous report concerned a technical matter which could be of great importance as regards the mechanical strength of canisters embedded in a bentonite/quartz buffer mass, i.e. the effect of a differential movement triggered by a critical deviatoric stress condition. Even if this is extremely unlikeley to occur it was considered to be of importance to verify the theoretical expressions for the maximum bending moment and maximum shear force. A special reason was to test the hypothesis that the contact pressure would soon reach a high value and then stay fairly constant when the displacement increased. The theoretical approach requires that the stress/strain properties of the fill are thoroghly investigated and described in therms of a mathematical model. Experience shows that this may be a tedions and difficult task. (L.E.)

  4. Micromechanical modelling of the cyclic stress-strain behaviour of nickel polycrystals

    International Nuclear Information System (INIS)

    Steckmeyer, A.; Sauzay, M.; Weidner, A.; Hieckmann, E.

    2012-01-01

    A crystalline elasto-plasticity model is proposed to describe the cyclic behaviour of face-centred cubic crystals. It is based on many experimental observations correlating the observed dislocation structures with the orientations of corresponding crystals. The model distinguishes between two families of crystals. The first family gathers crystals for which the tension-compression loading axis is located in the centre of the standard stereo-graphic triangle. These crystals, in which bundle and/or slip band dislocation structures are usually observed, are subjected to single slip deformation. The second family gathers crystals in which labyrinths or wall dislocation structures develop. These crystals are subjected to multiple slip deformation. Crystalline plasticity parameters are adjusted using only the single crystal cyclic stress strain curves measured for one orientation of each of the two families. The relevance of the model is evaluated through finite elements calculations of the uniaxial cyclic deformation of texture-free nickel polycrystals at room temperature. The macroscopic predictions are in reasonable agreement with experimental data concerning both the cyclic stress-strain curve and the hysteresis loops provided either large grain sizes or intermediate to high plastic strains are considered. By construction, the modelling is unable to predict grain size effect observed at low plastic strain. The distributions of the mean grain plastic strains become narrower as the macroscopic plastic strain amplitude increases, which appears consistent with the large scattering in high-cycle fatigue lifetimes usually observed. On the contrary, the distributions of mean grain axial stresses get broader, in agreement with neutron and X-ray diffraction measurement values published in the literature. The influence of the material parameters is then discussed. Finally, the cumulative probability curves of the number of cycles to fatigue microcrack nucleation are deduced

  5. Evaluation of fracture toughness of vessel materials using small-size specimens and full stress-strain curves

    Energy Technology Data Exchange (ETDEWEB)

    Lebedev, A A; Chausov, N G [Akademyiya Nauk Ukrayini, Kiev (Ukraine)

    1994-12-31

    Physically substantiated dependences between crack resistance characteristics determined by the parameters of descending sections of full stress-strain curves and stressed state rigidity at crack initiation moment, have been experimentally obtained. The possibility of crack resistance reliable estimation based on full stress-strain obtained using small-size specimens with different concentrators, has thus been experimentally substantiated. Results obtained by the method and actual temperature dependence of irradiated steel 15X2NMFA crack resistance characteristics, agreed well. 2 refs., 7 figs.

  6. Studies on Stress-Strain Relationships of Polymeric Materials Used in Space Applications

    Science.gov (United States)

    Jana, Sadhan C.; Freed, Alan

    2002-01-01

    A two-year research plan was undertaken in association with Polymers Branch, NASA Glenn Research Center, to carry out experimental and modeling work relating stress and strain behavior of polymeric materials, especially elastomers and vulcanized rubber. An experimental system based on MTS (Mechanical Testing and Simulation) A/T-4 test facility environment has been developed for a broader range of polymeric materials in addition to a design of laser compatible temperature control chamber for online measurements of various strains. Necessary material processing has been accomplished including rubber compounding and thermoplastic elastomer processing via injection molding. A broad suite of testing methodologies has been identified to reveal the complex non-linear mechanical behaviors of rubbery materials when subjected to complex modes of deformation. This suite of tests required the conceptualization, design and development of new specimen geometries, test fixtures, and test systems including development of a new laser based technique to measure large multi-axial deformations. Test data has been generated for some of these new fixtures and has revealed some complex coupling effects generated during multi-axial deformations. In addition, fundamental research has been conducted concerning the foundation principles of rubber thermodynamics and resulting theories of rubber elasticity. Studies have been completed on morphological properties of several thermoplastic elastomers. Finally, a series of steps have been identified to further advance the goals of NASA's ongoing effort.

  7. Oblique propagation of nonlinear hydromagnetic waves: One- and two-dimensional behavior

    International Nuclear Information System (INIS)

    Malara, F.; Elaoufir, J.

    1991-01-01

    The one- and two-dimensional behavior of obliquely propagating hydromagnetic waves is analyzed by means of analytical theory and numerical simulations. It is shown that the nonlinear evolution of a one-dimensional MHD wave leads to the formation of a rotational discontinuity and a compressive steepened quasi-linearly polarized pulse whose structure is similar to that of a finite amplitude magnetosonic simple wave. For small propagation angles, the pulse mode (fast or slow) depends on the value of β with respect to unity while for large propagation angles the wave mode is fixed by the sign of the initial density-field correlation. The two-dimensional evolution shows that an MHD wave is unstable against a small-amplitude long-wavelength modulation in the direction transverse to the wave propagation direction. A two-dimensional magnetosonic wave solution is found, in which the density fluctuation is driven by the corresponding total pressure fluctuation, exactly as in the one-dimensional simple wave. Along with the steepening effect, the wave experiences both wave front deformation and a self-focusing effect which may eventually lead to the collapse of the wave. The results compare well with observations of MHD waves in the Earth's foreshock and at comets

  8. Nonlinear behaviors in a pulsed dielectric barrier discharge at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jiao; Wang Yanhui, E-mail: wangyh@dlut.edu.cn; Wang Dezhen

    2011-08-01

    In this paper, the temporal nonlinear behaviors of pulsed dielectric barrier discharge in atmospheric helium are studied numerically by a one-dimensional fluid model. The results show that the common single-period pulsed discharge with two current pulses per single voltage pulse can take place over a broad parameter range. The rising and falling times of the voltage pulse can affect the discharge characteristics greatly. When the discharge is ignited by a pulse voltage with long rising and falling times, a single-period pulsed discharge with multiple current peaks can be observed. Under appropriate rising and falling times of the voltage pulse, a stable period-two discharge can occur over wide frequency and voltage ranges. Also this period-two discharge can exhibit different current and voltage characteristics with changing the duty cycle. With other parameters fixed, the pulsed DBD could be driven to chaos through period-doubling route by increasing either the falling time or the frequency of voltage pulse.

  9. The Nonlinear Behavior of Vibrational Conveyers with Single-Mass Crank-and-Rod Exciters

    Directory of Open Access Journals (Sweden)

    G. Füsun Alışverişçi

    2012-01-01

    Full Text Available The single-mass, crank-and-rod exciters vibrational conveyers have a trough supported on elastic stands which are rigidly fastened to the trough and a supporting frame. The trough is oscillated by a common crank drive. This vibration causes the load to move forward and upward. The moving loads jump periodically and move forward with relatively small vibration. The movement is strictly related to vibrational parameters. This is applicable in laboratory conditions in the industry which accommodate a few grams of loads, up to those that accommodate tons of loading capacity. In this study I explore the transitional behavior across resonance, during the starting of a single degree of freedom vibratory system excited by crank-and-rod. A loaded vibratory conveyor is more safe to start than an empty one. Vibrational conveyers with cubic nonlinear spring and ideal vibration exciter have been analyzed analytically for primary and secondary resonance by the Method of Multiple Scales, and numerically. The approximate analytical results obtained in this study have been compared with the numerical results and have been found to be well matched.

  10. Nonlinear dynamic model for skidding behavior of angular contact ball bearings

    Science.gov (United States)

    Han, Qinkai; Chu, Fulei

    2015-10-01

    A three-dimensional nonlinear dynamic model is proposed to predict the skidding behavior of angular contact ball bearings under combined load condition. The centrifugal and gyroscopic effects induced by ball rotation and revolution, Hertz contact between the ball and inner/outer races, discontinuous contact between the ball and cage and elastohydrodynamic lubrication are considered in the model. Through comparisons with the tested results of the reference, the dynamic model is verified. Based upon these, variations of ball slipping speed with time and space are discussed for the bearing under combined load condition. It is shown that radial load leads to the fluctuations in the slipping velocity of the ball contacting with inner/outer races, especially for the ball in load-decreasing regions. Adding the radial load would significantly increase the amplitude and range of slipping velocity, indicating that the skidding becomes more serious. As the ball still withstands contact load in the load-decreasing region, large slipping velocity would increase the temperature of both bearing and lubricant oil, intensify the wear and then might shorten the bearing service life. Therefore, the radial load should be considered carefully in the design and monitoring of rotating machinery.

  11. Hurst exponent: A Brownian approach to characterize the nonlinear behavior of red blood cells deformability

    Science.gov (United States)

    Mancilla Canales, M. A.; Leguto, A. J.; Riquelme, B. D.; León, P. Ponce de; Bortolato, S. A.; Korol, A. M.

    2017-12-01

    Ektacytometry techniques quantifies red blood cells (RBCs) deformability by measuring the elongation of suspended RBCs subjected to shear stress. Raw shear stress elongation plots are difficult to understand, thus most research papers apply data reduction methods characterizing the relationship between curve fitting. Our approach works with the naturally generated photometrically recorded time series of the diffraction pattern of several million of RBCs subjected to shear stress, and applies nonlinear quantifiers to study the fluctuations of these elongations. The development of new quantitative methods is crucial for restricting the subjectivity in the study of the cells behavior, mainly if they are capable of analyze at the same time biological and mechanical aspects of the cells in flowing conditions and compare their dynamics. A patented optical system called Erythrocyte Rheometer was used to evaluate viscoelastic properties of erythrocytes by Ektacytometry. To analyze cell dynamics we used the technique of Time Delay Coordinates, False Nearest Neighbors, the forecasting procedure proposed by Sugihara and May, and Hurst exponent. The results have expressive meaning on comparing healthy samples with parasite treated samples, suggesting that apparent noise associated with deterministic chaos can be used not only to distinguish but also to characterize biological and mechanical aspects of cells at the same time in flowing conditions.

  12. Nonlinear seismic behavior of a CANDU containment building subjected to near-field ground motions

    International Nuclear Information System (INIS)

    Choi, In Kil; Ahn, Seong Moon; Choun, Young Sun; Seo, Jeong Moon

    2004-01-01

    The standard response spectrum proposed by US NRC has been used as a design earthquake for the design of Korean nuclear power plant structures. A survey on some of the Quaternary fault segments near Korean nuclear power plants is ongoing. It is likely that these faults will be identified as active ones. If the faults are confirmed as active ones, it will be necessary to reevaluate the seismic safety of the nuclear power plants located near the fault. Near-fault ground motions are the ground motions that occur near an earthquake fault. In general, the near-fault ground motion records exhibit a distinctive long period pulse like time history with very high peak velocities. These features are induced by the slip of the earthquake fault. Near-fault ground motions, which have caused much of the damage in recent major earthquakes, can be characterized by a pulse-like motion that exposes the structure to a high input energy at the beginning of the motion. In this study, nonlinear dynamic time-history analyses were performed to investigate the seismic behavior of a CANDU containment structure subjected to various earthquake ground motions including the near-field ground motions

  13. Nonlinear photocurrent-intensity behavior of amorphous InZnO thin film transistors

    Science.gov (United States)

    Lu, Huiling; Zhou, Xiaoliang; Liang, Ting; Zhang, Letao; Zhang, Shengdong

    2018-01-01

    The photocurrent (IPH) of amorphous InZnO thin film transistors in the off-state is investigated as a function of incident optical power (P). The results show that IPH exhibits a nonlinear dependence on P. Additionally, the dependence of IPH on P exhibits a strong photon energy (hυ)-dependent feature. When P is relatively low, IPH is shown to be proportional to Pγ, where γ is greater than 1. The γ > 1 behavior may be ascribed to the source-barrier-lowering effect due to the accumulation of photo-induced positive charges at the source side. When P is relatively high, while IPH remains proportional to Pγ under the incident light with hυ larger than the optical bandgap (Eg) of a-IZO, it turns to increase at an exponential rate with P if hυ of the incident light is smaller than the Eg. The exponential increase in IPH is attributed to the source-barrier-thinning effect, which leads to a significantly enhanced tunneling current.

  14. Nonlinear behaviors of FRP-wrapped tall trees subjected to high wind loads

    Science.gov (United States)

    Kang, J.; Yi, Z. Z.; Choi, S. G.

    2017-12-01

    This study investigated the mechanical stability of historical tall trees wrapped with fiber-reinforced polymer (FRP) laminates using finite element (FE) analysis. High wind loads are considered as external loading conditions as they are one of the major threats on the structural stability of tall old trees. There have been several traditional practices to enhance the stability of tall trees exposed to high windstorms such as tree supporters and anchorages. They, however, have been sometimes causing negative effects with their misuses as the application guidelines for those methods were not adequately studied or documented. Furthermore, the oldest known trees in the country should be protected from the damage of external surface as well as ruin of the landscape. The objective of this study was to evaluate the structural effects of FRP wraps applied to tall trees subjected to high wind loads. The anisotropic material properties of wood and FRP laminates were considered in the analysis in addition to geometrically nonlinear behaviors. This study revealed that FRP wrapping for tall trees could effectively reduce the deflections and maximum stresses of trees, which results in the enhanced stability of tall trees. The optimum geometry and thicknesses of FRP wraps proposed in this study would provide fundemental guidelines for designing and constructing the application of innovative FRP wraps on tall trees, which are structurally unstable or should be preserved nationally and historically.

  15. A non-linear dynamical approach to belief revision in cognitive behavioral therapy

    Science.gov (United States)

    Kronemyer, David; Bystritsky, Alexander

    2014-01-01

    Belief revision is the key change mechanism underlying the psychological intervention known as cognitive behavioral therapy (CBT). It both motivates and reinforces new behavior. In this review we analyze and apply a novel approach to this process based on AGM theory of belief revision, named after its proponents, Carlos Alchourrón, Peter Gärdenfors and David Makinson. AGM is a set-theoretical model. We reconceptualize it as describing a non-linear, dynamical system that occurs within a semantic space, which can be represented as a phase plane comprising all of the brain's attentional, cognitive, affective and physiological resources. Triggering events, such as anxiety-producing or depressing situations in the real world, or their imaginal equivalents, mobilize these assets so they converge on an equilibrium point. A preference function then evaluates and integrates evidentiary data associated with individual beliefs, selecting some of them and comprising them into a belief set, which is a metastable state. Belief sets evolve in time from one metastable state to another. In the phase space, this evolution creates a heteroclinic channel. AGM regulates this process and characterizes the outcome at each equilibrium point. Its objective is to define the necessary and sufficient conditions for belief revision by simultaneously minimizing the set of new beliefs that have to be adopted, and the set of old beliefs that have to be discarded or reformulated. Using AGM, belief revision can be modeled using three (and only three) fundamental syntactical operations performed on belief sets, which are expansion; revision; and contraction. Expansion is like adding a new belief without changing any old ones. Revision is like adding a new belief and changing old, inconsistent ones. Contraction is like changing an old belief without adding any new ones. We provide operationalized examples of this process in action. PMID:24860491

  16. Modeling, numerical simulation, and nonlinear dynamic behavior analysis of PV microgrid-connected inverter with capacitance catastrophe

    Science.gov (United States)

    Li, Sichen; Liao, Zhixian; Luo, Xiaoshu; Wei, Duqu; Jiang, Pinqun; Jiang, Qinghong

    2018-02-01

    The value of the output capacitance (C) should be carefully considered when designing a photovoltaic (PV) inverter since it can cause distortion in the working state of the circuit, and the circuit produces nonlinear dynamic behavior. According to Kirchhoff’s laws and the characteristics of an ideal operational amplifier for a strict piecewise linear state equation, a circuit simulation model is constructed to study the system parameters (time, C) for the current passing through an inductor with an inductance of L and the voltage across the capacitor with a capacitance of C. The developed simulation model uses Runge-Kutta methods to solve the state equations. This study focuses on predicting the fault of the circuit from the two aspects of the harmonic distortion and simulation results. Moreover, the presented model is also used to research the working state of the system in the case of a load capacitance catastrophe. The nonlinear dynamic behaviors in the inverter are simulated and verified.

  17. Existence and asymptotic behavior of solutions for nonlinear Schrödinger-Poisson systems with steep potential well.

    Science.gov (United States)

    Du, Miao; Tian, Lixin; Wang, Jun; Zhang, Fubao

    2016-03-01

    In this paper, we are concerned with a class of Schrödinger-Poisson systems with the asymptotically linear or asymptotically 3-linear nonlinearity. Under some suitable assumptions on V , K , a , and f , we prove the existence, nonexistence, and asymptotic behavior of solutions via variational methods. In particular, the potential V is allowed to be sign-changing for the asymptotically linear case.

  18. Mathematical modeling of stress-strain state of the system HPP building - soil base with account for the phased construction of the building

    Directory of Open Access Journals (Sweden)

    Orekhov Vyacheslav Valentinovich

    Full Text Available The interaction process of a power plant building with the soil base is studied basing on mathematical modeling of the construction process of Kambarata-2 HPP, taking into account the excavation of foundation pit, the concreting schedule of the building construction, the HPP units putting into operation and territory planning. Mathematical modeling of stress-strain state of the system “power plant - soil base” in the process of construction was performed by using the computer program “Zemlya” (the Earth, which implements the method of finite elements. Such a behavior of soil was described using elastoplastic soil model, the parameters of which were determined from the results of the triaxial tests. As shown by the results of the research, the continuous change of settlement, slope, deflection and torsion of the bottom plate and accordingly change of stressed-strained state of power plant are noted during the construction process. The installed HPP construction schedule, starting from the construction of the first block and the adjacent mounting platform, is leading to the formation of initial roll of bottom plate to the path of the mounting pad. In the process of further construction of powerhouse, up to the 29th phase of construction (out of 40, a steady increase in its subsidence (maximum values of about 4.5 cm is noted. Filling of foundation pit hollows and territorial planning of the construction area lead to drastic situation. In this case, as a territory planning points exceeded the relief, the plastic deformation in the soil evolves, resulting in significant subsidence of the bottom plate under the first block (up to 7.4 cm. As a result, the additional subsidence of the soil of bottom plate edges lead to the large vertical movement in relation to its central part and it is bent around the X axis, resulting in a large horizontal tensile stress values of Sz (up to 2.17 MPa in the constructive elements of the upper part of the

  19. Unconstrained Finite Element for Geometrical Nonlinear Dynamics of Shells

    Directory of Open Access Journals (Sweden)

    Humberto Breves Coda

    2009-01-01

    Full Text Available This paper presents a positional FEM formulation to deal with geometrical nonlinear dynamics of shells. The main objective is to develop a new FEM methodology based on the minimum potential energy theorem written regarding nodal positions and generalized unconstrained vectors not displacements and rotations. These characteristics are the novelty of the present work and avoid the use of large rotation approximations. A nondimensional auxiliary coordinate system is created, and the change of configuration function is written following two independent mappings from which the strain energy function is derived. This methodology is called positional and, as far as the authors' knowledge goes, is a new procedure to approximated geometrical nonlinear structures. In this paper a proof for the linear and angular momentum conservation property of the Newmark algorithm is provided for total Lagrangian description. The proposed shell element is locking free for elastic stress-strain relations due to the presence of linear strain variation along the shell thickness. The curved, high-order element together with an implicit procedure to solve nonlinear equations guarantees precision in calculations. The momentum conserving, the locking free behavior, and the frame invariance of the adopted mapping are numerically confirmed by examples.

  20. Numerical analysis of the asymptotic behavior of solutions of a boundary problem for a nonlinear parabolic equation

    International Nuclear Information System (INIS)

    Vasileva, D.P.

    1993-01-01

    Blow-up and global time self-similar solutions of a boundary problem for a nonlinear equation u t = Δ u σ+1 + u β are found in the case β = σ + 1. It is shown that they describe the asymptotic behavior of a wide class of initial perturbations. A numerical investigation of the solutions in the case β>σ + 1 is also made. A hypothesis is done that the behavior for large times of global time solutions is described by the self-similar solutions of the equation without source.(author). 20 refs.; 9 figs

  1. Evidence for bifurcation and universal chaotic behavior in nonlinear semiconducting devices

    International Nuclear Information System (INIS)

    Testa, J.; Perez, J.; Jeffries, C.

    1982-01-01

    Bifurcations, chaos, and extensive periodic windows in the chaotic regime are observed for a driven LRC circuit, the capacitive element being a nonlinear varactor diode. Measurements include power spectral analysis; real time amplitude data; phase portraits; and a bifurcation diagram, obtained by sampling methods. The effects of added external noise are studied. These data yield experimental determinations of several of the universal numbers predicted to characterize nonlinear systems having this route to chaos

  2. Simulation and measurement of nonlinear behavior in a high-power test cell.

    Science.gov (United States)

    Harvey, Gerald; Gachagan, Anthony

    2011-04-01

    High-power ultrasound has many diverse uses in process applications in industries ranging from food to pharmaceutical. Because cavitation is frequently a desirable effect within many high-power, low-frequency systems, these systems are commonly expected to feature highly nonlinear acoustic propagation because of the high input levels employed. This generation of harmonics significantly alters the field profile compared with that of a linear system, making accurate field modeling difficult. However, when the short propagation distances involved are considered, it is not unreasonable to assume that these systems may remain largely linear until the onset of cavitation, in terms of classical acoustic propagation. The purpose of this paper is to investigate the possible nonlinear effects within such systems before the onset of cavitation. A theoretical description of nonlinear propagation will be presented and the merits of common analytical models will be discussed. Following this, a numerical model of nonlinearity will be outlined and the advantages it presents for representing nonlinear effects in bounded fields will be discussed. Next, the driving equipment and transducers will be evaluated for linearity to disengage any effects from those formed in the transmission load. Finally, the linearity of the system will be measured using an acoustic hydrophone and compared with finite element analysis to confirm that nonlinear effects are not prevalent in such systems at the onset of cavitation. © 2011 IEEE

  3. Stress-Strain Relation of Tire Rubber Consist of Entangled Polymers, Fillers and Crosslink

    Science.gov (United States)

    Hagita, Katsumi; Bito, Y.; Minagawa, Y.; Omiya, M.; Morita, H.; Doi, M.; Takano, H.

    2009-03-01

    We presented a preliminary result of large scale coarse-grained Molecular Dynamics simulation of filled polymer melts with Sulfur-crosslink under an uni-axial deformation by using the Kremer-Grest Model. The size of simulation box under periodic boundary conditions (PBC) is set to about 66nm to consider length of entangled polymer chains, size and structure of fillers, and non-uniform distribution of crosslink. We put 640 polymer chains of 1024 particles and 32 fillers into the PBC box. Each filler consists of 1280 particles of the C1280 fullerene structure. A repulsive force from the center of the filler is applied to the particles. Here, the particles of the fillers are chosen to be the same as the particles of the polymers and the diameter of the filler is about 15nm. The distribution of the fillers used in this simulation is provided by the result of 2d pattern RMC analysis for 2D-USAXS experiments at SPring-8. Sulfur crosslink are randomly distributed in the system. It is found that stress-strain curves estimated by applying a certain uni-axial deformation to the system in simulations are in good agreement with those in experiments. It is successful to show difference on the S-S curve between existence / absence of fillers and qualitative dependence of attractive force between polymer and filler.

  4. Spherical Nanoindentation Stress-Strain Measurements of BOR-60 14YWT-NFA1 Irradiated Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Jordan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carvajal Nunez, Ursula [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Krumwiede, David [Univ. of California, Berkeley, CA (United States); Saleh, Tarik A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hosemann, Peter [Univ. of California, Berkeley, CA (United States); Nelson, Andrew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mara, Nathan Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-28

    Spherical nanoindentation stress-strain protocols were applied to characterize unirradiated and fast neutron irradiated nanostructured ferritic alloy (NFA) 14YWT and compared against Berkovich nanohardness and available tensile data. The predicted uniaxial yield strength from spherical, 100 and 5 micron radii, indentation yield strength measurements was 1100-1400 MPa which compares well with the predictions from Berkovich nanohardness, 1200 MPa, and available tensile data, ~1100 MPa. However, spherical indentation measurements predict an increase in the uniaxial yield strength of ~1 GPa while Berkovich nanohardness measurements predict an increase of only ~250 MPa. No tensile data exists on the irradiated condition. It is believed the difference in the predicted uniaxial yield strength between spherical and Berkovich nanoindentation are due to a low number of tests on the irradiated sample combined with the significant heterogeneity in the microstructure, the differences in sensitivity to sample preparation on the irradiated sample between the two indentation protocols , and/or in how strain localizes under the indenter with the possibility of dislocation channeling under Berkovich hardness indents leading to strain softening. Nanoindentation capabilities to test neutron irradiated samples in a radiological area were realized.

  5. Apparent stress-strain relationships in experimental equipment where magnetorheological fluids operate under compression mode

    International Nuclear Information System (INIS)

    Mazlan, S A; Ekreem, N B; Olabi, A G

    2008-01-01

    This paper presents an experimental investigation of two different magnetorheological (MR) fluids, namely, water-based and hydrocarbon-based MR fluids in compression mode under various applied currents. Finite element method magnetics was used to predict the magnetic field distribution inside the MR fluids generated by a coil. A test rig was constructed where the MR fluid was sandwiched between two flat surfaces. During the compression, the upper surface was moved towards the lower surface in a vertical direction. Stress-strain relationships were obtained for arrangements of equipment where each type of fluid was involved, using compression test equipment. The apparent compressive stress was found to be increased with the increase in magnetic field strength. In addition, the apparent compressive stress of the water-based MR fluid showed a response to the compressive strain of greater magnitude. However, during the compression process, the hydrocarbon-based MR fluid appeared to show a unique behaviour where an abrupt pressure drop was discovered in a region where the apparent compressive stress would be expected to increase steadily. The conclusion is drawn that the apparent compressive stress of MR fluids is influenced strongly by the nature of the carrier fluid and by the magnitude of the applied current

  6. Fatigue Life Prediction of High Modulus Asphalt Concrete Based on the Local Stress-Strain Method

    Directory of Open Access Journals (Sweden)

    Mulian Zheng

    2017-03-01

    Full Text Available Previously published studies have proposed fatigue life prediction models for dense graded asphalt pavement based on flexural fatigue test. This study focused on the fatigue life prediction of High Modulus Asphalt Concrete (HMAC pavement using the local strain-stress method and direct tension fatigue test. First, the direct tension fatigue test at various strain levels was conducted on HMAC prism samples cut from plate specimens. Afterwards, their true stress-strain loop curves were obtained and modified to develop the strain-fatigue life equation. Then the nominal strain of HMAC course determined using finite element method was converted into local strain using the Neuber method. Finally, based on the established fatigue equation and converted local strain, a method to predict the pavement fatigue crack initiation life was proposed and the fatigue life of a typical HMAC overlay pavement which runs a risk of bottom-up cracking was predicted and validated. Results show that the proposed method was able to produce satisfactory crack initiation life.

  7. On stress/strain shielding and the material stiffness paradigm for dental implants.

    Science.gov (United States)

    Korabi, Raoof; Shemtov-Yona, Keren; Rittel, Daniel

    2017-10-01

    Stress shielding considerations suggest that the dental implant material's compliance should be matched to that of the host bone. However, this belief has not been confirmed from a general perspective, either clinically or numerically. To characterize the influence of the implant stiffness on its functionality using the failure envelope concept that examines all possible combinations of mechanical load and application angle for selected stress, strain and displacement-based bone failure criteria. Those criteria represent bone yielding, remodeling, and implant primary stability, respectively MATERIALS AND METHODS: We performed numerical simulations to generate failure envelopes for all possible loading configurations of dental implants, with stiffness ranging from very low (polymer) to extremely high, through that of bone, titanium, and ceramics. Irrespective of the failure criterion, stiffer implants allow for improved implant functionality. The latter reduces with increasing compliance, while the trabecular bone experiences higher strains, albeit of an overall small level. Micromotions remain quite small irrespective of the implant's stiffness. The current paradigm favoring reduced implant material's stiffness out of concern for stress or strain shielding, or even excessive micromotions, is not supported by the present calculations, that point exactly to the opposite. © 2017 Wiley Periodicals, Inc.

  8. Anisotropy effect of the clay soil masses on the stress-strain state of transport tunnels

    Directory of Open Access Journals (Sweden)

    Yushkov Boris Semenovich

    2014-09-01

    Full Text Available The article considers the kinds of clay soil mass anisotropy in the form of the spatial heterogeneity of properties of thawed and frozen soils, ambiguity of the frost heaving values and shrinkage in different directions. The questions of anisotropy of the clay soil properties at the positive temperatures are reported. The dependence of the heterogeneity of the physical and mechanical properties of frozen soils from the cryogenic texture, natural arrangement, different types of stratification and interbedding is considered. Indexes of the strength and strain anisotropy are noted. The accounting possibilities of the basic numerical indexes of heaving phenomena from the standpoint of anisotropy of the properties and processes inherent in the freezing through soil are analyzed by substitution in the heaving strain formula. The unevenness of thawed soil shrinkage in vertical and horizontal directions is noted during the freezing of the top layer. The unevenness of shrinkage in different directions is connected with kind of stress and cryogenic texture. Anisotropy of the frost heaving process is considered in the context of one-dimensional and non-one-dimensional problem depending on the amount of the freezing fronts and their direction. There is summarized the effect of anisotropy appearances on the stress-strain state of the transport tunnel. One can conclude that the resulting non-uniformity of heaving and shrinkage in conjunction with anisotropic properties of frozen soils, is a significant component in the complex of power factors determining the optimal design solution of a transport tunnel.

  9. Study of stress-strain state of pipeline under permafrost conditions

    Science.gov (United States)

    Tarasenko, A. A.; Redutinskiy, M. N.; Chepur, P. V.; Gruchenkova, A. A.

    2018-05-01

    In this paper, the dependences of the stress-strain state and subsidence of pipelines on the dimensions of the subsidence zone are obtained for the sizes of pipes that have become most widespread during the construction of main oil pipelines (530x10, 820x12, 1020x12, 1020x14, 1020x16, 1220x14, 1220x16, 1220x18 mm). True values of stresses in the pipeline wall, as well as the exact location of maximum stresses for the interval of subsidence zones from 5 to 60 meters, are determined. For this purpose, the authors developed a finite element model of the pipeline that takes into account the actual interaction of the pipeline with the subgrade and allows calculating the SSS of the structure for a variable subsidence zone. Based on the obtained dependences for the underground laying of oil pipelines in permafrost areas, it is proposed to artificially limit the zone of possible subsidence by separation supports from the soil with higher building properties and physical-mechanical parameters. This technical solution would significantly reduce costs when constructing new oil pipelines in permafrost areas.

  10. Numerical simulation of stress-strain state of electrophoretic shell molds

    Science.gov (United States)

    Sviridov, A. V.; Odinokov, V. I.; Dmitriev, E. A.; Evstigneev, A. I.; Bashkov, O. V.

    2017-10-01

    In the foundry engineering, castings obtained in one-piece non-gas-generating high-refractory electrophoretic shell molds (ShM) by investment patterns (IP) have an increased rejects percentage associated with low deformation resistance and crack resistance of the SM at different stages of their formation and manufacturing. Crack resistance of the ShM based on IP depends mainly on their stress-strain state (SSS) at various stages of mold forming. SSS decrease significantly improves their crack resistance and decreases their rejects percentage of castings occurring due to clogging and surface defects. In addition, the known methods of decreasing the SSS are still poorly understood. Thus, current research trends are to determine SSS at each stage of ShM forming and develop the ways to decrease it. Theoretical predicting of crack formation in multiple-layer axisymmetric shell molds is given in the work [1], and SSS of multiple-layer axisymmetric shell molds is given in the work [2]. Monolayer electrophoretic ShM had a lack of concern in this field, thus it became an argument for the present workMathematical Model of ShM SSS

  11. Multilinear stress-strain and failure calibrations for Ti-6Al-4V.

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2018-02-01

    This memo concerns calibration of an elastic-plastic J2 material model for Ti-6Al-4V (grade 5) alloy based on tensile uniaxial stress-strain data obtained in the laboratory. In addition, tension tests on notched specimens provided data to calibrate two ductile failure models: Johnson-Cook and Wellman's tearing parameter. The tests were conducted by Kim Haulen- beek and Dave Johnson (1528) in the Structural Mechanics Laboratory (SML) during late March and early April, 2017. The SML EWP number was 4162. The stock material was a TIMETALR® 6-4 Titanium billet with 9 in. by 9 in. square section and length of 137 in. The product description indicates that it was a forging delivered in annealed condition (2 hours @ 1300oF, AC at the mill). The tensile mechanical properties reported in the material certi cation are given in Table 1, where σo represents the 0.2% strain offset yield stress, σu the ultimate stress, εf the elongation at failure and R.A. the reduction in area.

  12. Modeling of Nonlinear Mechanical Response in CFRP Angle-Ply Laminates

    Science.gov (United States)

    Ogihara, Shinji

    2014-03-01

    It is known that the failure process in angle-ply laminate involves matrix cracking and delamination and that they exhibit nonlinear stress-strain relation. There may be a significant effect of the constituent blocked ply thickness on the mechanical behavior of angle-ply laminates. These days, thin prepregs whose thickness is, for example 50 micron, are developed and commercially available. Therefore, we can design wide variety of laminates with various constituent ply thicknesses. In this study, effects of constituent ply thickness on the nonlinear mechanical behavior and the damage behavior of CFRP angle-ply laminates are investigated experimentally. Based on the experimental results, the mechanical response in CFRP angle-ply laminates is modeled by using the finite strain viscoplasticity model. We evaluated the mechanical behavior and damage behavior in CFRP angle-ply laminates with different constituent ply thickness under tensile loading experimentally. It was found that as the constituent ply thickness decreases, the strength and failure strain increases. We also observed difference in damage behavior. The preliminary results of finite strain viscoplasticity model considering the damage effect for laminated composites are shown. A qualitative agreement is obtained.

  13. Effect of spatial variability of ground motion on non-linear dynamic behavior of cable stayed bridges

    Directory of Open Access Journals (Sweden)

    Ouanani Mouloud

    2018-01-01

    Full Text Available This present paper summarizes the main results of incoherence of Spatial Variability of Ground Motion (SVGM component on the non-linear dynamic behavior of a Mila cable stayed bridge. The Hindy and Novack coherence model is developed for the present study in order to examine the SVGM on bridge responses, Nonlinear bridge responses are investigated in terms of transverse displacements and bending moments along the superstructure and substructure of the study bridge, as well as temporal variations of rotational ductility demands at the bridge piers ends under the incoherence SVGM component. The results are systematically compared with those obtained assuming uniform ground motion. As a general trend, it may be concluded that incoherence component of SVGM should be considered for the earthquake response assessments of cable-stayed bridges.

  14. On Maximally Dissipative Shock Waves in Nonlinear Elasticity

    OpenAIRE

    Knowles, James K.

    2010-01-01

    Shock waves in nonlinearly elastic solids are, in general, dissipative. We study the following question: among all plane shock waves that can propagate with a given speed in a given one-dimensional nonlinearly elastic bar, which one—if any—maximizes the rate of dissipation? We find that the answer to this question depends strongly on the qualitative nature of the stress-strain relation characteristic of the given material. When maximally dissipative shocks do occur, they propagate according t...

  15. Nonlinear beam mechanics

    NARCIS (Netherlands)

    Westra, H.J.R.

    2012-01-01

    In this Thesis, nonlinear dynamics and nonlinear interactions are studied from a micromechanical point of view. Single and doubly clamped beams are used as model systems where nonlinearity plays an important role. The nonlinearity also gives rise to rich dynamic behavior with phenomena like

  16. Critical behavior and phase transition of dilaton black holes with nonlinear electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dayyani, Z.; Dehghani, M.H.; Hajkhalili, S. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Sheykhi, A. [Shiraz University, Physics Department and Biruni Observatory, College of Sciences, Shiraz (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of)

    2018-02-15

    In this paper, we take into account the dilaton black hole solutions of Einstein gravity in the presence of logarithmic and exponential forms of nonlinear electrodynamics. First of all, we consider the cosmological constant and nonlinear parameter as thermodynamic quantities which can vary. We obtain thermodynamic quantities of the system such as pressure, temperature and Gibbs free energy in an extended phase space. We complete the analogy of the nonlinear dilaton black holes with the Van der Waals liquid-gas system. We work in the canonical ensemble and hence we treat the charge of the black hole as an external fixed parameter. Moreover, we calculate the critical values of temperature, volume and pressure and show that they depend on the dilaton coupling constant as well as on the nonlinear parameter. We also investigate the critical exponents and find that they are universal and independent of the dilaton and nonlinear parameters, which is an expected result. Finally, we explore the phase transition of nonlinear dilaton black holes by studying the Gibbs free energy of the system. We find that in the case of T > T{sub c}, we have no phase transition. When T = T{sub c}, the system admits a second-order phase transition, while for T = T{sub f} < T{sub c} the system experiences a first-order transition. Interestingly, for T{sub f} < T < T{sub c} we observe a zeroth-order phase transition in the presence of a dilaton field. This novel zeroth-order phase transition occurs due to a finite jump in the Gibbs free energy which is generated by the dilaton-electromagnetic coupling constant, α, for a certain range of pressure. (orig.)

  17. The Stress-Strain State of Recent Structures in the Northeastern Sector of the Russian Arctic Region

    Science.gov (United States)

    Imaeva, L. P.; Imaev, V. S.; Mel'nikova, V. I.

    2018-03-01

    Complex research to determine the stress-strain state of the Earth's crust and the types of seismotectonic destruction for the northeastern sector of the Russian Arctic was conducted. The principles of regional ranking of neotectonic structures were developed according to the activity of geodynamic processes, and argumentation for their class differentiation is presented. The structural-tectonic position, the parameters of the deep structure, the system of active faults, and the tectonic stress fields, calculated on the basis of both tectonophysical analysis of discontinuous and folded late Cenozoic deformations and seismological data, were analyzed. This complex of investigations made it possible to determine the directions of the main axes of deformations of the stress-strain state of the Earth's crust and to reveal the regularity in the change of tectonic regimes.

  18. Experimental determination of the micro-scale strength and stress-strain relation of an epoxy resin

    DEFF Research Database (Denmark)

    Zike, Sanita; Sørensen, Bent F.; Mikkelsen, Lars Pilgaard

    2016-01-01

    An approach is developed for determining the stress-strain law and a failure stress appropriate for micro-mechanical models of polymer materials. Double cantilever beam test specimens, made of an epoxy polymer with notches having finite root radius, were subjected to pure bending moments in an en......An approach is developed for determining the stress-strain law and a failure stress appropriate for micro-mechanical models of polymer materials. Double cantilever beam test specimens, made of an epoxy polymer with notches having finite root radius, were subjected to pure bending moments......-scale (5–6%). The hardening exponent of a power law hardening material was obtained by the use of the J-integral, estimating the strain energy density around the notch. The hardening exponent was found to be within the range of 5–6 and the corresponding micro-scale failure stress was in the range of 220...

  19. Stress-strain effects on powder-in-tube MgB2 tapes and wires

    International Nuclear Information System (INIS)

    Katagiri, Kazumune; Takaya, Ryuya; Kasaba, Koichi; Tachikawa, Kyoji; Yamada, Yutaka; Shimura, Satoshi; Koshizuka, Naoki; Watanabe, Kazuo

    2005-01-01

    The effects of stress-strain on the critical current, I c , of ex situ powder-in-tube (PIT)-processed Ni-sheathed MgB 2 tapes and round wires as well as in situ PIT-processed Cu-sheathed wires at 4.2 K in a magnetic field up to 5 T have been studied. The effect of In powder addition on the Ni-sheathed MgB 2 wire was not so clear compared with that in the tape, in which the irreversible strain, ε irr , for the I c degradation onset increases significantly by the addition. This is attributed to the difference in the microstructure of the core associated with cold workings. A peak and gradual degradation behaviour of I c with strain beyond ε irr was found in the wire, whereas no evident peak and a steep degradation behaviour was found in the tape. As a possible reason, the difference in the triaxial residual stress state at 4.2 K due to the difference in geometry of the cross-section is suspected. The transverse compression tests revealed that I c of the wire did not degrade up to 270 MPa. Again, the effect of In addition was minimal. The Young's modulus of MgB 2 , 31-41 GPa, at room temperature was estimated by a tensile test of Cu sheath wire using a high-accuracy extensometer and the law of mixtures. The tensile strain dependence of I c in the Cu sheath wire was similar to that in the Ni-sheathed wire, ε irr being 0.4%. However, the stress corresponding to ε irr , 50 MPa, was about 1/10 of that for the Ni-sheath wire and the irreversible transverse compressive stress, 150 MPa, was also lower. The effect of bending strain on the I c in Cu-sheathed wire was compared with that of the tensile strain

  20. Experimental and Model Studies on Loading Path-Dependent and Nonlinear Gas Flow Behavior in Shale Fractures

    Science.gov (United States)

    Li, Honglian; Lu, Yiyu; Zhou, Lei; Tang, Jiren; Han, Shuaibin; Ao, Xiang

    2018-01-01

    Interest in shale gas as an energy source is growing worldwide. Because the rock's natural fracture system can contribute to gas production, it is important to understand the flow behavior of natural fractures in shale. Previous studies on the flow characteristics in shale fractures were limited and did not consider the effect of nonlinearity. To understand the basic mechanics of the gas flow behavior in shale fractures, laboratory investigations with consideration of the fluid pressure gradient, the confining stress, the loading history and the fracture geometry were conducted in this paper. Izbash's equation was used to analyze the nonlinearity of the flow. The results show that the behavior of the friction factors is similar to that shown in flow tests in smooth and rough pipes. The increase of the confining stress and the irreversible damage to the shale decreased the hydraulic aperture and increased the relative roughness. Thus, turbulent flow could appear at a low Reynolds number, resulting in a significant pressure loss. The limits of the cubic law and the existing correction factor for transmissivity are discussed. It is found that the previous friction models overestimate the friction factor in the laminar regime and underestimate the friction factor in the turbulent regime. For this reason, a new friction model based on a linear combination of the Reynolds number and the relative roughness was developed.

  1. Comparison between the Norton - and Mukherjee constitutive equations in the determination of stress - strain analysis of a material under creep

    International Nuclear Information System (INIS)

    Bevilacqua, L.; Feijoo, R.A.; Freire, J.L.; Miranda, P.E.V. de; Monteiro, E.; Silveira, T.L. da; Taroco, E.

    1981-06-01

    The Norton and Mukherjee constitutive equations are used to approximate the experimental results of creep in AISI 304 steel. Both equations are applied to the stress-strain analysis of a rotating disk with a concentric circular hole. From the design point of view it is shown that the stresses obtained with both equations are equivalents, which is not true for the velocities. (Author) [pt

  2. Stress overshoot in stress-strain curves of Zr65Al10Ni10Cu15 metallic glass

    International Nuclear Information System (INIS)

    Kawamura, Y.; Shibata, T.; Inoue, A.; Masumoto, T.

    1997-01-01

    The essential features of the stress overshoot in the stress-strain curves of Zr 65 Al 10 Ni 10 Cu 15 (at.%) metallic glass that has a wide supercooled liquid region were revealed. The stress overshoot was dependent on temperature, strain rate, and stress relaxation. During the stretch, a change in strain rate gave rise to stress overshoot or undershoot which was sensitive to the variable quantities in the strain rate. copyright 1997 American Institute of Physics

  3. Nonlinear behavior of a monochromatic wave in a one-dimensional Vlasov plasma

    International Nuclear Information System (INIS)

    Shoucri, M.M.; Gagne, R.R.J.

    1978-01-01

    The nonlinear evolution of a monochromatic wave in a one-dimensional Vlasov plasma is studied numerically. The numerical results are carried out far enough in time for phase mixing to dominate the asymptotic state of the system. A qualitative comparison with previously reported simulations is given

  4. Cyclic stress-strain behaviour under thermomechanical fatigue conditions - Modeling by means of an enhanced multi-component model

    Energy Technology Data Exchange (ETDEWEB)

    Christ, H J [Institut fuer Werkstofftechnik, Universitaet Siegen, D-57068 Siegen (Germany); Bauer, V, E-mail: hans-juergen.christ@uni-siegen.d [Wieland Werke AG, Graf-Arco Str. 36, D-89072 Ulm (Germany)

    2010-07-01

    The cyclic stress-strain behaviour of metals and alloys in cyclic saturation can reasonably be described by means of simple multi-component models, such as the model based on a parallel arrangement of elastic-perfectly plastic elements, which was originally proposed by Masing already in 1923. This model concept was applied to thermomechanical fatigue loading of two metallic engineering materials which were found to be rather oppositional with respect to cyclic plastic deformation. One material is an austenitic stainless steel of type AISI304L which shows dynamic strain aging (DSA) and serves as an example for a rather ductile alloy. A dislocation arrangement was found after TMF testing deviating characteristically from the corresponding isothermal microstructures. The second material is a third-generation near-gamma TiAl alloy which is characterized by a very pronounced ductile-to-brittle transition (DBT) within the temperature range of TMF cycling. Isothermal fatigue testing at temperatures below the DBT temperature leads to cyclic hardening, while cyclic softening was found to occur above DBT. The combined effect under TMF leads to a continuously developing mean stress. The experimental observations regarding isothermal and non-isothermal stress-strain behaviour and the correlation to the underlying microstructural processes was used to further develop the TMF multi-composite model in order to accurately predict the TMF stress-strain response by taking the alloy-specific features into account.

  5. Mathematical Modeling in Systems for Operational Evaluation of the Stress-Strain State of the Arch-Gravity Dam at the Sayano-Shushenskaya Hydroelectric Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Bellendir, E. N.; Gordon, L. A., E-mail: lev-gordon@mail.ru; Khrapkov, A. A.; Skvortsova, A. E., E-mail: SkvortsovaAE@vniig.ru [B. E. Vedeneev All-Russia Research Institute of Hydraulic Engineering (VNIIG) (Russian Federation)

    2017-01-15

    Current studies of the stress-strain state of the dam at the Sayano-Shushenskaya Hydroelectric Power Plant at VNIIG based on mathematical modeling including full scale and experimental data are described. Applications and programs intended for automatic operational evaluation of the stress-strain state of the dam for optimizing control of the upper race level in the course of the annual filling-drawdown cycle and during seismic events are examined. Improvements in systems for monitoring the stress-strain state of concrete dams are proposed.

  6. The development and validation of a numerical integration method for non-linear viscoelastic modeling

    Science.gov (United States)

    Ramo, Nicole L.; Puttlitz, Christian M.

    2018-01-01

    Compelling evidence that many biological soft tissues display both strain- and time-dependent behavior has led to the development of fully non-linear viscoelastic modeling techniques to represent the tissue’s mechanical response under dynamic conditions. Since the current stress state of a viscoelastic material is dependent on all previous loading events, numerical analyses are complicated by the requirement of computing and storing the stress at each step throughout the load history. This requirement quickly becomes computationally expensive, and in some cases intractable, for finite element models. Therefore, we have developed a strain-dependent numerical integration approach for capturing non-linear viscoelasticity that enables calculation of the current stress from a strain-dependent history state variable stored from the preceding time step only, which improves both fitting efficiency and computational tractability. This methodology was validated based on its ability to recover non-linear viscoelastic coefficients from simulated stress-relaxation (six strain levels) and dynamic cyclic (three frequencies) experimental stress-strain data. The model successfully fit each data set with average errors in recovered coefficients of 0.3% for stress-relaxation fits and 0.1% for cyclic. The results support the use of the presented methodology to develop linear or non-linear viscoelastic models from stress-relaxation or cyclic experimental data of biological soft tissues. PMID:29293558

  7. On Poisson Nonlinear Transformations

    Directory of Open Access Journals (Sweden)

    Nasir Ganikhodjaev

    2014-01-01

    Full Text Available We construct the family of Poisson nonlinear transformations defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. We have proved that these nonlinear transformations are regular.

  8. Differential behavior of amino-imino constitutional isomers in nonlinear optical processes.

    Science.gov (United States)

    Latorre, Sonia; Moreira, Ibério de P R; Villacampa, Belén; Julià, Lluís; Velasco, Dolores; Bofill, Josep Maria; López-Calahorra, Francisco

    2010-03-15

    A detailed study of the "blocked" amino-imino tautomers derived from N-acridine-substituted 2-aminobenzothiazole--and their effect on the nonlinear optical response--is presented. The synthesis, characterization, and nonlinear optical properties of these frozen tautomers, namely, N-methyl-N-(2-nitroacridin-6-yl)-2-aminobenzothia-zole and 3-methyl-N-(7-nitroacridin-3-yl)-2-iminobenzothiazole, are reported. A theoretical model based on valence-bond theory is also proposed and used to analyze the effects of the nuclear configuration corresponding to each frozen tautomer structure. In the present case, the aromatic form and the allylic-anion-like system of the -N-C-N- group inherent to each isomer are crucial for understanding and analyzing the different responses of each "blocked" tautomer.

  9. Nonlinear Dynamic Behavior of Impact Damage in a Composite Skin-Stiffener Structure

    Science.gov (United States)

    Ooijevaar, T. H.; Rogge, M. D.; Loendersloot, R.; Warnet, L.; Akkerman, R.; deBoer, A.

    2013-01-01

    One of the key issues in composite structures for aircraft applications is the early identification of damage. Often, service induced damage does not involve visible plastic deformation, but internal matrix related damage, like delaminations. A wide range of technologies, comprising global vibration and local wave propagation methods can be employed for health monitoring purposes. Traditional low frequency modal analysis based methods are linear methods. The effectiveness of these methods is often limited since they rely on a stationary and linear approximation of the system. The nonlinear interaction between a low frequency wave field and a local impact induced skin-stiffener failure is experimentally demonstrated in this paper. The different mechanisms that are responsible for the nonlinearities (opening, closing and contact) of the distorted harmonic waveforms are separated with the help of phase portraits. A basic analytical model is employed to support the observations.

  10. Numerical analysis of nonlinear behavior of steel-concrete composite structures

    Directory of Open Access Journals (Sweden)

    Í.J.M. LEMES

    Full Text Available Abstract This paper presents the development of an effective numerical formulation for the analysis of steel-concrete composite structures considering geometric and materials nonlinear effects. Thus, a methodology based on Refined Plastic Hinge Method (RPHM was developed and the stiffness parameters were obtained by homogenization of cross-section. The evaluation of structural elements strength is done through the Strain Compatibility Method (SCM. The Newton-Raphson Method with path-following strategies is adopted to solve nonlinear global and local (in cross-section level equations. The results are compared with experimental and numerical database presents in literature and a good accuracy is observed in composite cross sections, composite columns, and composite portal frames.

  11. Nonlinear Dynamics and Bifurcation Behavior of a 2-DOF Spring Resonator with End Stopper for Energy Harvesting

    Directory of Open Access Journals (Sweden)

    El Aroudi A.

    2014-01-01

    Full Text Available In this paper, the model of a two-degree-of-freedom (2-DOF spring resonator with end stopper for an energy harvesting application is presented. Then we characterize its nonlinear dynamical behavior by numerical simulations when some suitable parameters are varied. The system is formed by two resonators subject to external vibrational excitation and with an end stopper. We present the continuous time dynamical model of the system in the form of a switched fourth order differential equation. Harmonic vibrations are considered as the main ambient energy source for the system and its frequency response representing the RMS value of the displacement is first computed. The dynamical behavior is unveiled by computing state-space trajectories, timedomain series and FFT spectra and frequency response as the excitation amplitude is varied.

  12. Dynamic Behavior for an SIRS Model with Nonlinear Incidence Rate and Treatment

    Directory of Open Access Journals (Sweden)

    Junhong Li

    2013-01-01

    Full Text Available This paper considers an SIRS model with nonlinear incidence rate and treatment. It is assumed that susceptible and infectious individuals have constant immigration rates. We investigate the existence of equilibrium and prove the global asymptotical stable results of the endemic equilibrium. We then obtained that the model undergoes a Hopf bifurcation and existences a limit cycle. Some numerical simulations are given to illustrate the analytical results.

  13. Role of interstitial atoms in the microstructure and non-linear elastic deformation behavior of Ti–Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Tahara, Masaki [Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Kim, Hee Young, E-mail: heeykim@ims.tsukuba.ac.jp [Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Inamura, Tomonari; Hosoda, Hideki [Precision and Intelligence Laboratory, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Miyazaki, Shuichi, E-mail: miyazaki@ims.tsukuba.ac.jp [Division of Materials Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589 (Saudi Arabia); School of Materials Science and Engineering and ERI, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of)

    2013-11-15

    Highlights: ► {110}{sub β}〈11{sup ¯}0〉{sub β} transverse type lattice modulation is confirmed in β phase. ► Nanosized modulated region (nanodomain) distributes homogeneously and randomly. ► Nanodomains act as obstacles against the long-ranged martensitic transformation. ► The origin of non-linear elastic deformation behavior is the continuous increase in lattice distortion strain of the favorable nanodomain variant during tensile deformation. -- Abstract: In order to clarify the effect of interstitial atoms on the non-linear elastic deformation behavior of the Ti–Nb alloy, the microstructure of (Ti–26Nb)–1.0O alloy was closely investigated by transmission electron microscope (TEM) and in situ X-ray diffraction (XRD) measurements. The 〈1 1 0〉{sub β}* rel rods and {1 1 1}{sub β}* rel planes were observed in a reciprocal space for the (Ti–26Nb)–1.0O alloy. Their origin was {110}{sub β}〈11{sup ¯}0〉{sub β} transverse type lattice modulation generated by oxygen atoms. Nanosized modulated domain structure (nanodomain) distributed homogeneously and randomly in the β phase and acted as obstacles for the long-ranged martensitic transformation in the (Ti–26Nb)–1.0O alloy. The non-linear elastic strain of the (Ti–26Nb)–1.0O alloy was generated by the continuous increase in lattice distortion strain of the favorable nanodomain variant during tensile deformation.

  14. Role of interstitial atoms in the microstructure and non-linear elastic deformation behavior of Ti–Nb alloy

    International Nuclear Information System (INIS)

    Tahara, Masaki; Kim, Hee Young; Inamura, Tomonari; Hosoda, Hideki; Miyazaki, Shuichi

    2013-01-01

    Highlights: ► {110} β 〈11 ¯ 0〉 β transverse type lattice modulation is confirmed in β phase. ► Nanosized modulated region (nanodomain) distributes homogeneously and randomly. ► Nanodomains act as obstacles against the long-ranged martensitic transformation. ► The origin of non-linear elastic deformation behavior is the continuous increase in lattice distortion strain of the favorable nanodomain variant during tensile deformation. -- Abstract: In order to clarify the effect of interstitial atoms on the non-linear elastic deformation behavior of the Ti–Nb alloy, the microstructure of (Ti–26Nb)–1.0O alloy was closely investigated by transmission electron microscope (TEM) and in situ X-ray diffraction (XRD) measurements. The 〈1 1 0〉 β * rel rods and {1 1 1} β * rel planes were observed in a reciprocal space for the (Ti–26Nb)–1.0O alloy. Their origin was {110} β 〈11 ¯ 0〉 β transverse type lattice modulation generated by oxygen atoms. Nanosized modulated domain structure (nanodomain) distributed homogeneously and randomly in the β phase and acted as obstacles for the long-ranged martensitic transformation in the (Ti–26Nb)–1.0O alloy. The non-linear elastic strain of the (Ti–26Nb)–1.0O alloy was generated by the continuous increase in lattice distortion strain of the favorable nanodomain variant during tensile deformation

  15. Nonlinear vibration behaviors of high-Tc superconducting bulks in an applied permanent magnetic array field

    Science.gov (United States)

    Li, Jipeng; Li, Haitao; Zheng, Jun; Zheng, Botian; Huang, Huan; Deng, Zigang

    2017-06-01

    The nonlinear vibration of high temperature superconducting (HTS) bulks in an applied permanent magnetic array (Halbach array) field, as a precondition for commercial application to HTS maglev train and HTS bearing, is systematically investigated. This article reports the actual vibration rules of HTS bulks from three aspects. First, we propose a new numerical model to simplify the calculation of levitation force. This model could provide precise simulations, especially the estimation of eigenfrequency. Second, an approximate analytic solution of the vibration of the HTS bulks is obtained by using the method of harmonic balance. Finally, to verify the results mentioned above, we measure the vertical vibration acceleration signals of an HTS maglev model, consisting of eight YBaCuO bulks, oscillating freely above a Halbach array with large displacement excitation. Higher order harmonic components, which indicate the nonlinear vibration phenomenon, are detected in the responses. All the three results are compared and agreed well with each other. This study combines the experimental and theoretical analyses and provides a deep understanding of the physical phenomenon of the nonlinear vibration and is meaningful for the vibration control of the relevant applications.

  16. Nonlinear Analysis of Cavities in Rock Salt

    DEFF Research Database (Denmark)

    Ottosen, N. S.; Krenk, Steen

    1979-01-01

    The paper covers some material and computational aspects of the rock mechanics of leached cavities in salt. A material model is presented in which the instantaneous stiffness of the salt is obtained by interpolation between the unloaded state and a relevant failure state. The model enables predic...... prediction of short term triaxial behaviour from uniaxial stress-strain curves. Key results from a nonlinear finite element calculation of a gas-filled cavity are given, and the general features are related to a simple nonlinear method of stress evaluation....

  17. Numerical study on the discharge characteristics and nonlinear behaviors of atmospheric pressure coaxial electrode dielectric barrier discharges

    International Nuclear Information System (INIS)

    Zhang Ding-Zong; Wang Yan-Hui; Wang De-Zhen

    2017-01-01

    The discharge characteristics and temporal nonlinear behaviors of the atmospheric pressure coaxial electrode dielectric barrier discharges are studied by using a one-dimensional fluid model. It is shown that the discharge is always asymmetrical between the positive pulses and negative pulses. The gas gap severely affects this asymmetry. But it is hard to acquire a symmetrical discharge by changing the gas gap. This asymmetry is proportional to the asymmetric extent of electrode structure, namely the ratio of the outer electrode radius to the inner electrode radius. When this ratio is close to unity, a symmetrical discharge can be obtained. With the increase of frequency, the discharge can exhibit a series of nonlinear behaviors such as period-doubling bifurcation, secondary bifurcation and chaotic phenomena. In the period-doubling bifurcation sequence the period- n discharge becomes more and more unstable with the increase of n . The period-doubling bifurcation can also be obtained by altering the discharge gas gap. The mechanisms of two bifurcations are further studied. It is found that the residual quasineutral plasma from the previous discharges and corresponding electric field distribution can weaken the subsequent discharge, and leads to the occurrence of bifurcation. (paper)

  18. Observations of hydrotectonic stress/strain events at a basement high at the Nicoya outer rise

    Science.gov (United States)

    Tryon, M. D.; Brown, K. M.

    2005-12-01

    instruments. A few indicate downflow while the others show upflow. This sort of response would be expected during a stress event causing regions of compression and dilation. These results suggest that ridge flank basement highs may be good sites to monitor stress/strain events as well as basement hydrology.

  19. PROCESS FEATURES OF FLUCTUATIONS PROPAGATION AT STRESS-STRAIN WORK OF THE RAILWAY TRACK

    Directory of Open Access Journals (Sweden)

    I. O. Bondarenko

    2015-12-01

    reliability of trains as part of security checkpoints in the area of rolling stock gauge because of its technical state. Therefore, for examining issues of reliable performance elements of the permanent way and substructures of the railway track are proposed its stress-strain work. It gives the possibility to consider a dynamic process, localized both in time and space.

  20. Life prediction of l6 steel using strain-life curve and cyclic stress-strain curve by means of low cycle fatigue testing

    Science.gov (United States)

    Inamdar, Sanket; Ukhande, Manoj; Date, Prashant; Lomate, Dattaprasad; Takale, Shyam; Singh, RKP

    2017-05-01

    L6 Steel is used as die material in closed die hot forging process. This material is having some unique properties. These properties are due to its composition. Strain softening is the noticeable property of this material. Due to this in spite of cracking at high stress this material gets plastically deformed and encounters loss in time as well as money. Studies of these properties are necessary to nurture this material at fullest extent. In this paper, numerous experiments have been carried on L6 material to evaluate cyclic Stress - strain behavior as swell as strain-life behavior of the material. Low cycle fatigue test is carried out on MTS fatigue test machine at fully reverse loading condition R=-1. Also strain softening effect on forging metal forming process is explained in detail. The failed samples during low cycle fatigue test further investigated metallurgically on scanning electron microscopy. Based on this study, life estimation of hot forging die is carried out and it’s correlation with actual shop floor data is found out. This work also concludes about effect of pre-treatments like nitro-carburizing and surface coating on L6 steel material, to enhance its fatigue life to certain extent.

  1. NUMERICAL ANALYSIS OF THE STRESS-STRAIN STATE OF A ROPE STRAND WITH LINEAR CONTACT UNDER TENSION AND TORSION LOADING CONDITIONS

    Directory of Open Access Journals (Sweden)

    Evgenij Kalentev

    2017-06-01

    Full Text Available The paper presents the results of a numerical analysis of the stress-strain state of a rope strand with linear contact under tension and torsion loading conditions. Calculations are done using the ANSYS software package. Different approaches to calculation of the stress-strain state of ropes are reviewed, and their advantages and deficiencies are considered. The analysis of the obtained results leads us to the conclusion that the proposed method can be used in engineering calculations.

  2. Asymptotic behavior of non-autonomous stochastic parabolic equations with nonlinear Laplacian principal part

    Directory of Open Access Journals (Sweden)

    Bixiang Wang

    2013-08-01

    Full Text Available We prove the existence and uniqueness of random attractors for the p-Laplace equation driven simultaneously by non-autonomous deterministic and stochastic forcing. The nonlinearity of the equation is allowed to have a polynomial growth rate of any order which may be greater than p. We further establish the upper semicontinuity of random attractors as the intensity of noise approaches zero. In addition, we show the pathwise periodicity of random attractors when all non-autonomous deterministic forcing terms are time periodic.

  3. Random cyclic stress-strain responses of a stainless steel pipe-weld metal. II. A modeling

    International Nuclear Information System (INIS)

    Zhao, Y.X.; Wang, J.N.

    2000-01-01

    For pt.I see ibid., vol.199, p.303-14, 2000. This paper pays special attention to an issue that there is a significant scatter of the stress-strain responses of a nuclear engineering material, 1Cr18Ni9Ti stainless steel pipe-weld metal. Efforts are made to reveal the random fatigue damage character by fracture surface observations and to model the random responses by introducing probability-based stress-strain curves of Ramberg-Osgood relation and its modified form. Results reveal that the fatigue damage is subjected to, 3-D interacting and involved microcracks. The three stages, namely microstructural short cracks (MSC), physical short cracks (PSC) and long cracks (LC) subdivided by Miller and de los Rios, can give a good characterization of the damage process. Both micro- and macro-behaviour of the material have the character of three stages. The 3-D effects are strong in the MSC stage, tend to a gradual decrease in the PSC stage, and then show saturation after going to the LC stage. Intrinsic causes of the random behaviour are the difference and evolution of the microstructural conditions ahead of the dominant crack tips. The 'effectively short fatigue crack criterion' introduced by Zhao et al. in observing the material surface short crack behaviour could facilitate an understanding of the mechanism of interaction and evolution. Based on the previous obtained appropriate assumed distribution, normal model, for the cyclic stress amplitude, the probability-based curves are approximated by the mean value and standard deviation cyclic stress-strain curves. Then, fatigue analysis at arbitrarily given reliability can be conveniently made according to the normal distribution function. To estimate these curves, a maximum likelihood method is developed. The analysis reveals that the curves could give a good modeling of the random responses of material. (orig.)

  4. Assessment of stress-strain data suitable for finite-element elastic--plastic analysis of shipping containers

    International Nuclear Information System (INIS)

    Rack, H.J.; Knorovsky, G.A.

    1978-09-01

    Stress-strain data which describes the influence of strain rate and temperature on the mechanical response of materials presently being used for light water reactor fuel shipping containers have been assembled. Selection of data has been limited to that which is suitable for use in finite-element elastic--plastic analysis of shipping containers (e.g., they must include complete material history profiles). Based on this information, recommendations have been made for further work which is required to complete the necessary data base

  5. Evaluation of Nonlinear Behavior of Dual Steel Frame-Shear Wall System by a Group of Real Earthquakes

    Directory of Open Access Journals (Sweden)

    Reza Bemanian

    2016-03-01

    Full Text Available Dual system of steel moment frame and steel plate shear wall has many advantages in comparison to the other systems. Since the last four decades the dual system has been used more frequently in new and existing structures. the steel shear wall has many advantages such as high ductility, strength, stiffness and it has light weight, it consequent reduce lateral forces and time efficiency in contracture procedure. The aim of this study is to evaluate the seismic performance of the dual steel frame steel plate shear wall system in comparison with the moment resisting frame using nonlinear dynamic analysis. A dual System of Steel Moment frame and steel Plate shear walls system and a moment resisting frame is chosen a frame of four stories building were designed by used existing code. The height of each floor is 3.5 m. Seismic behavior of frame evaluate using nonlinear dynamic analysis. For this purpose a set of seven earthquake ground motions were appropriately selected and applied to the systems. Interstory drift ratio, input energy, distribution frames responses in height were compared for the systems under two different hazard level of ground motion and the results were analyzed.

  6. Nonlinear Raman scattering behavior with Langmuir and sound waves coupling in a homogeneous plasma

    International Nuclear Information System (INIS)

    Bonnaud, G.; Pesme, D.; Pellat, R.

    1990-01-01

    By means of wave-coupling simulations, the typical nonlinear evolution of stimulated Raman scattering (SRS) is investigated in a homogeneous sub-quarter-critical plasma for present-day low laser irradiances and kilo-electron-volt electron temperatures. The decrease of the Langmuir energy observed after the SRS growth is found to be basically the result of the electrostatic decay instability (EDI) onset, which generates a high-amplitude ion-acoustic wave. The resulting strong modulation of the plasma density causes a conversion process that transforms the initial one-wave-vector Langmuir wave driven by SRS into a Bloch wave and induces SRS detuning and larger damping. The conditions involved herein have allowed isolation of these processes from the modulational instability; in addition, the Langmuir collapse is found not to occur owing to the high electron temperature

  7. Heterogeneity and nonlinearity in consumers' preferences: An application to the olive oil shopping behavior in Chile.

    Science.gov (United States)

    Romo-Muñoz, Rodrigo Alejandro; Cabas-Monje, Juan Hernán; Garrido-Henrríquez, Héctor Manuel; Gil, José María

    2017-01-01

    In relatively unknown products, consumers use prices as a quality reference. Under such circumstances, the utility function can be non-negative for a specific price range and generate an inverted U-shaped function. The extra virgin olive oil market in Chile is a good example. Although domestic production and consumption have increased significantly in the last few years, consumer knowledge of this product is still limited. The objective of this study was to analyze Chilean consumer preferences and willingness to pay for extra virgin olive oil attributes. Consumers were segmented taking into account purchasing frequency. A Random Parameter Logit model was estimated for preference heterogeneity. Results indicate that the utility function is nonlinear allowing us to differentiate between two regimes. In the first regime, olive oil behaves as a conspicuous good, that is, higher utility is assigned to higher prices and consumers prefer foreign products in smaller containers. Under the second regime, Chilean olive oil in larger containers is preferred.

  8. Viscoelasticity and nonlinear simple shear flow behavior of an entangled asymmetric exact comb polymer solution

    KAUST Repository

    Snijkers, F.; Kirkwood, K. M.; Vlassopoulos, D.; Leal, L. G.; Nikopoulou, A.; Hadjichristidis, Nikolaos; Coppola, S.

    2016-01-01

    We report upon the characterization of the steady-state shear stresses and first normal stress differences as a function of shear rate using mechanical rheometry (both with a standard cone and plate and with a cone partitioned plate) and optical rheometry (with a flow-birefringence setup) of an entangled solution of asymmetric exact combs. The combs are polybutadienes (1,4-addition) consisting of an H-skeleton with an additional off-center branch on the backbone. We chose to investigate a solution in order to obtain reliable nonlinear shear data in overlapping dynamic regions with the two different techniques. The transient measurements obtained by cone partitioned plate indicated the appearance of overshoots in both the shear stress and the first normal stress difference during start-up shear flow. Interestingly, the overshoots in the start-up normal stress difference started to occur only at rates above the inverse stretch time of the backbone, when the stretch time of the backbone was estimated in analogy with linear chains including the effects of dynamic dilution of the branches but neglecting the effects of branch point friction, in excellent agreement with the situation for linear polymers. Flow-birefringence measurements were performed in a Couette geometry, and the extracted steady-state shear and first normal stress differences were found to agree well with the mechanical data, but were limited to relatively low rates below the inverse stretch time of the backbone. Finally, the steady-state properties were found to be in good agreement with model predictions based on a nonlinear multimode tube model developed for linear polymers when the branches are treated as solvent.

  9. Viscoelasticity and nonlinear simple shear flow behavior of an entangled asymmetric exact comb polymer solution

    KAUST Repository

    Snijkers, F.

    2016-03-31

    We report upon the characterization of the steady-state shear stresses and first normal stress differences as a function of shear rate using mechanical rheometry (both with a standard cone and plate and with a cone partitioned plate) and optical rheometry (with a flow-birefringence setup) of an entangled solution of asymmetric exact combs. The combs are polybutadienes (1,4-addition) consisting of an H-skeleton with an additional off-center branch on the backbone. We chose to investigate a solution in order to obtain reliable nonlinear shear data in overlapping dynamic regions with the two different techniques. The transient measurements obtained by cone partitioned plate indicated the appearance of overshoots in both the shear stress and the first normal stress difference during start-up shear flow. Interestingly, the overshoots in the start-up normal stress difference started to occur only at rates above the inverse stretch time of the backbone, when the stretch time of the backbone was estimated in analogy with linear chains including the effects of dynamic dilution of the branches but neglecting the effects of branch point friction, in excellent agreement with the situation for linear polymers. Flow-birefringence measurements were performed in a Couette geometry, and the extracted steady-state shear and first normal stress differences were found to agree well with the mechanical data, but were limited to relatively low rates below the inverse stretch time of the backbone. Finally, the steady-state properties were found to be in good agreement with model predictions based on a nonlinear multimode tube model developed for linear polymers when the branches are treated as solvent.

  10. Asymptotic behavior of the nonlinear diffusion equation n/sub t/ = (n-1n/sub x/)/sub x/

    International Nuclear Information System (INIS)

    Berryman, J.G.; Holland, C.J.

    1982-01-01

    The asymptotic behavior of the equation n/sub t/ = (ln n)/sub x/x is studied on the finite interval 0 0 and initial data n(x,0)> or =n 0 . We prove that asymptotically ln[n(x,t)/n 0 ]→A exp(-π 2 t/n 0 )2/sup 1/2/ sin πx and also provide rigorous upper and lower bounds on the asymptotic amplitude A in terms of integrals of nonlinear functions of the initial data. The rigorous bounds are compared to values of A obtained from computer experiments. The lower bound L = (2/sup 3/2//π)exp[li(1+Q)-γ], where li is the logarithmic integral, γ is Euler's constant, and Q = (π/2)∫[n(x,0)/n 0 -1]sin πx dx, is found to be the best known estimate of A

  11. Blow-up behavior of ground states for a nonlinear Schrödinger system with attractive and repulsive interactions

    Science.gov (United States)

    Guo, Yujin; Zeng, Xiaoyu; Zhou, Huan-Song

    2018-01-01

    We consider a nonlinear Schrödinger system arising in a two-component Bose-Einstein condensate (BEC) with attractive intraspecies interactions and repulsive interspecies interactions in R2. We get ground states of this system by solving a constrained minimization problem. For some kinds of trapping potentials, we prove that the minimization problem has a minimizer if and only if the attractive interaction strength ai (i = 1 , 2) of each component of the BEC system is strictly less than a threshold a*. Furthermore, as (a1 ,a2) ↗ (a* ,a*), the asymptotical behavior for the minimizers of the minimization problem is discussed. Our results show that each component of the BEC system concentrates at a global minimum of the associated trapping potential.

  12. STRESS - STRAIN CURVE ANALYSIS OF WOVEN FABRICS MAD E FROM COMBED YARNS TYPE WOOL

    OpenAIRE

    VÎLCU Adrian; HRISTIAN Liliana; BORDEIANU Demetra L.; VÎLCU Catalin

    2014-01-01

    The paper analyses the tensile behavior of woven fabrics made from 45%Wool + 55% PES used for garments. Analysis of fabric behavior during wearing has shown that these are submitted to simple and repeated uni-axial or bi-axial tensile strains. The level of these strains is often within the elastic limit, rarely going over yielding. Therefore the designer must be able to evaluate the mechanical behavior of such fabrics in order to control the fabric behavior in the garment. This evaluation is ...

  13. Gap Dependent Bifurcation Behavior of a Nano-Beam Subjected to a Nonlinear Electrostatic Pressure

    Directory of Open Access Journals (Sweden)

    Mohammad Fathalilou

    Full Text Available This paper presents a study on the gap dependent bifurcation behavior of an electro statically-actuated nano-beam. The sizedependent behavior of the beam was taken into account by applying the couple stress theory. Two small and large gap distance regimes have been considered in which the intermolecular vdW and Casimir forces are dominant, respectively. It has been shown that changing the gap size can affect the fundamental frequency of the beam. The bifurcation diagrams for small gap distance revealed that by changing the gap size, the number and type of the fixed points can change. However, for large gap regime, where the Casimir force is the dominant intermolecular force, changing the gap size does not affect the quality of the bifurcation behavior.

  14. Microscopic origin of nonlinear non-affine deformation in metallic glasses

    NARCIS (Netherlands)

    Zaccone, A.; Schall, P.; Terentjev, E.M.

    2014-01-01

    The atomic theory of elasticity of amorphous solids, based on the nonaffine response formalism, is extended into the nonlinear stress-strain regime by coupling with the underlying irreversible many-body dynamics. The latter is implemented in compact analytical form using a qualitative method for the

  15. A Phenomenological Study on Inelastic Torsion Caused By Nonlinear Behavior Changes during Earthquake Excitations

    Directory of Open Access Journals (Sweden)

    Seyed Bahram Beheshti-Aval

    2014-12-01

    Full Text Available Torsion of many symmetric structures, which were designed based on the seismic codes, is due to their asymmetricity induced during inelastic behavior. Although the structure was designed symmetrically assuming elastic based criteria, different factors such as material inconsistency in structure, construction details discrepancy and construction errors may result in asymmetric behavior in inelastic deformation range. So far, these considerations have been rarely contemplated in previous published investigations and should be studied regarding the importance of irregularity in increase of seismic demand of structures in the inelastic range. In this paper, as the first step, the asymmetry and irregularity in plan due to non-similar inelastic characteristics with respect to axis passing through center of gravity as well as the effect and importance of each irregularity factors are studied by changing the excitation properties applying to one-storey one-bay steel structures. This simplified structure is chosen due to studying and illustrating the absolute effect of this kind of irregularity in which higher mode effect is eliminated. The results show that the behavior of a structure with inelastic asymmetry is completely different from the structure with elastic asymmetry. As for inelastic asymmetry structure, although the translational and rotational oscillations before yielding were uncouple, these DOFs after yielding become coupled until reaching the terminal rotation point (rotation reaches a constant value and then become uncoupled, i.e., again oscillated symmetrically. This behavior is different from the structures with elastic asymmetricity, in which the translational and rotational movements being coupled during all the excitation time. This effect has not been recognized in previews studies on inelastic behavior of initially elastic symmetry buildings. The study of these behaviors aids the designer to choose the appropriate rehabilitation

  16. First-principles studies on the pressure dependences of the stress-strain relationship and elastic stability of semiconductors

    International Nuclear Information System (INIS)

    Wang, S Q; Ye, H Q; Yip, S

    2006-01-01

    We investigate the stress-strain relationship and elastic stability of zinc-blende GaP, GaN, InP and BN lattices under hydrostatic pressure by first-principles calculation. A simple and direct ab initio implementation for studying the mechanical properties of cubic crystals is developed. The four phases' full-set stress-strain coefficients in wide pressure ranges are theoretically calculated. The fundamental mechanism of elastic stability and the origin of phase transformation under hydrostatic pressure are explored. We found that the abilities for most of these lattices are enhanced to sustain axial strain but weaken to shear strain under higher pressure. The conditions of lattice stability are analysed using both the thermodynamic work-energy criterion and the elastic-stiffness criteria. We show that the lattice collapse of the perfect crystals is caused by the disappearance of their bulk moduli under volume dilation. Lattice defects are considered to be the main reason causing phase transformation under pressure. The correlation between the phonon softening and the variation of elastic coefficients is studied. The pressure dependence of the Kleinman internal strain parameter and its relationship to elastic stability is also explored

  17. Tensile Stress-Strain Results for 304L and 316L Stainless-Steel Plate at Temperature

    International Nuclear Information System (INIS)

    R. K. Blandford; D. K. Morton; S. D. Snow; T. E. Rahl

    2007-01-01

    The Idaho National Laboratory (INL) is conducting moderate strain rate (10 to 200 per second) research on stainless steel materials in support of the Department of Energy's (DOE) National Spent Nuclear Fuel Program (NSNFP). For this research, strain rate effects are characterized by comparison to quasi-static tensile test results. Considerable tensile testing has been conducted resulting in the generation of a large amount of basic material data expressed as engineering and true stress-strain curves. The purpose of this paper is to present the results of quasi-static tensile testing of 304/304L and 316/316L stainless steels in order to add to the existing data pool for these materials and make the data more readily available to other researchers, engineers, and interested parties. Standard tensile testing of round specimens in accordance with ASTM procedure A 370-03a were conducted on 304L and 316L stainless-steel plate materials at temperatures ranging from -20 F to 600 F. Two plate thicknesses, eight material heats, and both base and weld metal were tested. Material yield strength, Young's modulus, ultimate strength, ultimate strain, failure strength and failure strain were determined, engineering and true stress-strain curves to failure were developed, and comparisons to ASME Code minimums were made. The procedures used during testing and the typical results obtained are described in this paper

  18. River-tide dynamics : Exploration of nonstationary and nonlinear tidal behavior in the Yangtze River estuary

    NARCIS (Netherlands)

    Guo, L.; Van der Wegen, M.; Jay, D.A.; Matte, P.; Wang, Z.B.; Roelvink, J.A.; He, Q.

    2015-01-01

    River-tide dynamics remain poorly understood, in part because conventional harmonic analysis (HA) does not cope effectively with nonstationary signals. To explore nonstationary behavior of river tides and the modulation effects of river discharge, this work analyzes tidal signals in the Yangtze

  19. Affective Organizational Commitment and Citizenship Behavior: Linear and Non-linear Moderating Effects of Organizational Tenure

    Science.gov (United States)

    Ng, Thomas W. H.; Feldman, Daniel C.

    2011-01-01

    Utilizing a meta-analytical approach for testing moderating effects, the current study investigated organizational tenure as a moderator in the relation between affective organizational commitment and organizational citizenship behavior (OCB). We observed that, across 40 studies (N = 11,416 respondents), the effect size for the relation between…

  20. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior

    KAUST Repository

    Markowich, Peter

    2010-06-01

    We study the system ct + u · ∇c = ∇c -nf(c) nt + u · ∇n = ∇n m - ∇ · (n×(c) ∇c) ut + u·∇u + ∇P - η∇u + n∇φ/ = 0 ∇·u = 0. arising in the modelling of the motion of swimming bacteria under the effect of diffusion, oxygen-taxis and transport through an incompressible fluid. The novelty with respect to previous papers in the literature lies in the presence of nonlinear porous-medium-like diffusion in the equation for the density n of the bacteria, motivated by a finite size effect. We prove that, under the constraint m ε (3/2, 2] for the adiabatic exponent, such system features global in time solutions in two space dimensions for large data. Moreover, in the case m = 2 we prove that solutions converge to constant states in the large-time limit. The proofs rely on standard energy methods and on a basic entropy estimate which cannot be achieved in the case m = 1. The case m = 2 is very special as we can provide a Lyapounov functional. We generalize our results to the three-dimensional case and obtain a smaller range of exponents m ε (m*, 2] with m* > 3/2, due to the use of classical Sobolev inequalities.

  1. The classical Pierce diode: Using particle simulations on linear and nonlinear behavior and final states

    International Nuclear Information System (INIS)

    Crystal, T.L.; Kuhn, S.; Birdsall, C.K.

    1984-01-01

    The classical Pierce diode is a simple 1-d system of two shorted metal plates, a cold beam of electrons injected from one side and a neutralizing background of rigid ions. While the plasma medium is technically stable, the finiteness of the Pierce system allows stable and unstable operation. It is usefully studied as an archetypical bounded plasma system, related e.g., to Q-machines, particle accelerators, thermionic converters. New particle simulations of the Pierce diode have successfully recovered many novel linear phenomena including the dominant linear eigenmodes (seen in the internal electrostatic fields), and the dominant and subdominant eigenfrequencies, (seen both in the internal electrostatics and in the external circuit current, J/sub ext/(t)). These simulation results conform very well to detailed predictions of a new linear analysis. The final (nonlinear) state recovered can show critical dependence on initial (linear perturbation) conditions, and can be made steady-state (d.c.) or periodic-oscillatory by simply changing the initial conditions by a factor of 10/sup -4/ or less. A third class of final state is also possible which has oscillations which seem to be nonperiodic

  2. Heterogeneity and nonlinearity in consumers’ preferences: An application to the olive oil shopping behavior in Chile

    Science.gov (United States)

    Romo-Muñoz, Rodrigo Alejandro; Cabas-Monje, Juan Hernán; Garrido-Henrríquez, Héctor Manuel

    2017-01-01

    In relatively unknown products, consumers use prices as a quality reference. Under such circumstances, the utility function can be non-negative for a specific price range and generate an inverted U-shaped function. The extra virgin olive oil market in Chile is a good example. Although domestic production and consumption have increased significantly in the last few years, consumer knowledge of this product is still limited. The objective of this study was to analyze Chilean consumer preferences and willingness to pay for extra virgin olive oil attributes. Consumers were segmented taking into account purchasing frequency. A Random Parameter Logit model was estimated for preference heterogeneity. Results indicate that the utility function is nonlinear allowing us to differentiate between two regimes. In the first regime, olive oil behaves as a conspicuous good, that is, higher utility is assigned to higher prices and consumers prefer foreign products in smaller containers. Under the second regime, Chilean olive oil in larger containers is preferred. PMID:28892516

  3. Nonlinear optical switching behavior in the solid state: A theoretical investigation on anils

    KAUST Repository

    Ségerie, Audrey

    2011-09-13

    The linear (π(1)) and second-order nonlinear (π(2)) optical properties of two anil crystals, [N-(4-hydroxy)-salicylidene-amino-4-(methylbenzoate) and N-(3,5-di-tert- butylsalicylidene)-4-aminopyridine, denoted 4A and 4P, respectively], as well as the optical contrasts upon switching between their enol (E) and keto (K) forms, have been investigated by combining the molecular responses calculated using quantum chemistry methods and an electrostatic interaction scheme to account for the local field effects. It is found that intermolecular interactions impact differently the K/E optical contrasts in the two systems, which illustrates the importance of the supramolecular organization on the macroscopic responses. In 4A, the surrounding effects on the (hyper)polarizabilities are similar in the enol and keto forms, leading to optical contrasts very close to those of the isolated molecule. In contrast, an enhancement of the second-order susceptibility is observed in the keto form of 4P, leading to a large π(2)(K)/π(2)(E) contrast. Moreover, the π(2)(4A)/π(2)(4P) ratio for the most stable enol forms is obtained to be in good agreement with previous experimental investigations, which supports the reliability of the computational procedure. © 2011 American Chemical Society.

  4. Nonlinear optical switching behavior in the solid state: A theoretical investigation on anils

    KAUST Repository

    Sé gerie, Audrey; Castet, Fré dé ric; Kanoun, Mohammed; Plaquet, Auré lie; Lié geois, Vincent; Champagne, Benoit

    2011-01-01

    The linear (π(1)) and second-order nonlinear (π(2)) optical properties of two anil crystals, [N-(4-hydroxy)-salicylidene-amino-4-(methylbenzoate) and N-(3,5-di-tert- butylsalicylidene)-4-aminopyridine, denoted 4A and 4P, respectively], as well as the optical contrasts upon switching between their enol (E) and keto (K) forms, have been investigated by combining the molecular responses calculated using quantum chemistry methods and an electrostatic interaction scheme to account for the local field effects. It is found that intermolecular interactions impact differently the K/E optical contrasts in the two systems, which illustrates the importance of the supramolecular organization on the macroscopic responses. In 4A, the surrounding effects on the (hyper)polarizabilities are similar in the enol and keto forms, leading to optical contrasts very close to those of the isolated molecule. In contrast, an enhancement of the second-order susceptibility is observed in the keto form of 4P, leading to a large π(2)(K)/π(2)(E) contrast. Moreover, the π(2)(4A)/π(2)(4P) ratio for the most stable enol forms is obtained to be in good agreement with previous experimental investigations, which supports the reliability of the computational procedure. © 2011 American Chemical Society.

  5. Dynamic behaviors for a perturbed nonlinear Schrödinger equation with the power-law nonlinearity in a non-Kerr medium

    Science.gov (United States)

    Chai, Jun; Tian, Bo; Zhen, Hui-Ling; Sun, Wen-Rong; Liu, De-Yin

    2017-04-01

    Effects of quantic nonlinearity on the propagation of the ultrashort optical pulses in a non-Kerr medium, like an optical fiber, can be described by a perturbed nonlinear Schrödinger equation with the power law nonlinearity, which is studied in this paper from a planar-dynamic-system view point. We obtain the equivalent two-dimensional planar dynamic system of such an equation, for which, according to the bifurcation theory and qualitative theory, phase portraits are given. Through the analysis of those phase portraits, we present the relations among the Hamiltonian, orbits of the dynamic system and types of the analytic solutions. Analytic expressions of the periodic-wave solutions, kink- and bell-shaped solitary-wave solutions are derived, and we find that the periodic-wave solutions can be reduced to the kink- and bell-shaped solitary-wave solutions.

  6. Nonlinear Fluctuation Behavior of Financial Time Series Model by Statistical Physics System

    Directory of Open Access Journals (Sweden)

    Wuyang Cheng

    2014-01-01

    Full Text Available We develop a random financial time series model of stock market by one of statistical physics systems, the stochastic contact interacting system. Contact process is a continuous time Markov process; one interpretation of this model is as a model for the spread of an infection, where the epidemic spreading mimics the interplay of local infections and recovery of individuals. From this financial model, we study the statistical behaviors of return time series, and the corresponding behaviors of returns for Shanghai Stock Exchange Composite Index (SSECI and Hang Seng Index (HSI are also comparatively studied. Further, we investigate the Zipf distribution and multifractal phenomenon of returns and price changes. Zipf analysis and MF-DFA analysis are applied to investigate the natures of fluctuations for the stock market.

  7. Nonlinear behavior of capacitive micro-beams based on strain gradient theory

    International Nuclear Information System (INIS)

    Fathalilou, Mohammad; Sadeghi, Morteza; Rezazadeh, Ghader

    2014-01-01

    This paper studies the size dependent behavior of materials in MEMS structures. This behavior becomes noticeable for a structure when the characteristic size such as thickness or diameter is close to its internal length-scale parameter and is insignificant for the high ratio of the characteristic size to the length-scale parameter, which is the case of the silicon base micro-beams. However, in some types of micro-beams like gold or nickel bases, the size dependent effect cannot be overlooked. In such cases, ignoring this behavior in modeling will lead to incorrect results. Some previous researchers have applied classic beam theory on their models and imposed a considerable hypothetical value of residual stress to match their theoretical results with the experimental ones. The equilibrium positions or fixed points of the gold and nickel micro-beams are obtained and shown that for a given DC voltage, there is a considerable difference between the obtained fixed points using classic beam theory, modified couple stress theory, and modified strain gradient theory. In addition, it is shown that the calculated static and dynamic pull-in voltages using higher order theories are much closer to the experimental results and are higher several times than those obtained by classic beam theory.

  8. Investigation of Stress-Strain-Time Relationships of Concrete Filled Steel Tube Columns

    Directory of Open Access Journals (Sweden)

    Mutlu Seçer

    2010-01-01

    Full Text Available In this study, time dependent creep and shrinkage behaviors of concrete filled steel box section columns are investigated by using various methods. Time dependent behavior is examined by using effective modulus method, age-adjusted effective modulus method, creep rate method and Dischinger method. Shrinkage and creep strains are modeled using ACI 209 specification. In the study, in order to investigate time dependent behavior numerically, a concrete filled steel box section column is selected in a twenty story building and the time dependent stress decrease in concrete and stress increase in steel box section and the changes in strain components are calculated. Stress – time, strain – time and strain components – time graphics are shown and the advantages and the disadvantages of the numerical methods in modeling the time dependent behavior are revealed respectively.

  9. Effects of nonlinearity in the materials used for the semi-rigid pedicle screw systems on biomechanical behaviors of the lumbar spine after surgery

    International Nuclear Information System (INIS)

    Kim, Hyun; Lee, Sung-Jae; Lim, Do-Hyung; Oh, Hyun-Ju; Lee, Kwon-Yong

    2011-01-01

    Recently, various types of semi-rigid pedicle screw fixation systems have been developed for the surgical treatment of the lumbar spine. They were introduced to address the adverse issues commonly found in traditional rigid spinal fusion--abnormally large motion at the adjacent level and subsequent degeneration. The semi-rigid system uses more compliant materials (nitinol or polymers) and/or changes in rod design (coiled or twisted rods) as compared to the conventional rigid straight rods made of Ti alloys (E = 114 GPa, υ = 0.32). However, biomechanical studies on the semi-rigid pedicle screw systems were usually limited to linear modeling of the implant and anatomic elements, which may not be capable of reflecting realistic post-operative motions of the spine. In this study, we evaluated the effects of nonlinearity in materials used for semi-rigid pedicle screw fixation systems to evaluate the changes in biomechanical behaviors using finite element analysis. Changes in range of motion (ROM) and center of rotation (COR) were assessed at the operated and adjacent levels. Actual load-displacement results of the semi-rigid rod from mechanical test were carried out to reflect the nonlinearity of the implant. In addition, nonlinear material properties of various spinal ligaments studies were used for the finite element modeling. The post-operative models were constructed by modifying the previously validated intact model of the L1-S1 spine. Eight different post-operative models were made to address the effects of nonlinearity-with a traditional stiffness modulus rod (with linear ligaments, case 1; with nonlinear ligaments, case 5), with a rigid rod (with linear ligaments, case 2; with nonlinear ligaments, case 6), with a soft rod (with linear ligaments, case 3; with nonlinear ligaments, case 7), and with a nonlinear rod (with linear ligaments, case 4; with nonlinear ligaments, case 8). To simulate the load on the lumbar spine in a neutral posture, follower load (400 N

  10. Nonlinear behavior of matrix-inclusion composites under high confining pressure: application to concrete and mortar

    Science.gov (United States)

    Le, Tuan Hung; Dormieux, Luc; Jeannin, Laurent; Burlion, Nicolas; Barthélémy, Jean-François

    2008-08-01

    This paper is devoted to a micromechanics-based simulation of the response of concrete to hydrostatic and oedometric compressions. Concrete is described as a composite made up of a cement matrix in which rigid inclusions are embedded. The focus is put on the role of the interface between matrix and inclusion which represent the interfacial transition zone (ITZ). A plastic behavior is considered for both the matrix and the interfaces. The effective response of the composite is derived from the modified secant method adapted to the situation of imperfect interfaces. To cite this article: T.H. Le et al., C. R. Mecanique 336 (2008).

  11. Development of a structural model for the nonlinear shear deformation behavior of a seismic isolator

    International Nuclear Information System (INIS)

    Lee, Jae Han; Koo, Gyeong Hoi; Yoo, Bong

    2002-02-01

    The seismic excitation test results of an isolated test structure for artificial time history excitation are summarized for structure models of the isolated structure and isolation bearing. To simulate the response characteristic of isolated structure, shear hysteresis curves of isolators are analyzed. A simple analysis model is developed representing the actual dynamic behaviors of the test model, and the seismic responses using the simple model of the isolated structure and structure models, which are developed such as linear and bilinear models for isolators, are performed and compared with those of the seismic tests. The developed bilinear model is well applicable only to large shear strain area of LLRB

  12. Prediction of inelastic behavior and creep-fatigue life of perforated plates

    International Nuclear Information System (INIS)

    Igari, Toshihide; Setoguchi, Katsuya; Nakano, Shohki; Nomura, Shinichi

    1991-01-01

    Prediction methods of macroscopic and local stress-strain behavior of perforated plates in plastic and creep regime which are proposed by the authors are applied to the inelastic analysis and creep-fatigue life prediction of perforated cylinder subjected to cyclic thermal stress. Stress-strain behavior of perforated cylinder is analyzed by modeling the perforated portion to cylinder with equivalent-solid-plate properties. Creep-fatigue lives at around a hole of perforated plates are predicted by using the local stress-strain behavior and are compared with experimentally observed lives. (author)

  13. Correlation between ultrasonic nonlinearity and elastic nonlinearity in heat-treated aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Beom; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)

    2017-04-15

    The nonlinear ultrasonic technique is a potential nondestructive method to evaluate material degradation, in which the ultrasonic nonlinearity parameter is usually measured. The ultrasonic nonlinearity parameter is defined by the elastic nonlinearity coefficients of the nonlinear Hooke’s equation. Therefore, even though the ultrasonic nonlinearity parameter is not equal to the elastic nonlinearity parameter, they have a close relationship. However, there has been no experimental verification of the relationship between the ultrasonic and elastic nonlinearity parameters. In this study, the relationship is experimentally verified for a heat-treated aluminum alloy. Specimens of the aluminum alloy were heat-treated at 300°C for different periods of time (0, 1, 2, 5, 10, 20, and 50 h). The relative ultrasonic nonlinearity parameter of each specimen was then measured, and the elastic nonlinearity parameter was determined by fitting the stress-strain curve obtained from a tensile test to the 5th-order-polynomial nonlinear Hooke’s equation. The results showed that the variations in these parameters were in good agreement with each other.

  14. Nonlinear Approaches in Engineering Applications

    CERN Document Server

    Jazar, Reza

    2012-01-01

    Nonlinear Approaches in Engineering Applications focuses on nonlinear phenomena that are common in the engineering field. The nonlinear approaches described in this book provide a sound theoretical base and practical tools to design and analyze engineering systems with high efficiency and accuracy and with less energy and downtime. Presented here are nonlinear approaches in areas such as dynamic systems, optimal control and approaches in nonlinear dynamics and acoustics. Coverage encompasses a wide range of applications and fields including mathematical modeling and nonlinear behavior as applied to microresonators, nanotechnologies, nonlinear behavior in soil erosion,nonlinear population dynamics, and optimization in reducing vibration and noise as well as vibration in triple-walled carbon nanotubes. This book also: Provides a complete introduction to nonlinear behavior of systems and the advantages of nonlinearity as a tool for solving engineering problems Includes applications and examples drawn from the el...

  15. Identification of Nonlinear Dynamic Behavior and Failure for Riveted Joint Assemblies

    Directory of Open Access Journals (Sweden)

    B. Langrand

    2000-01-01

    Full Text Available Many different types of rivets need to be modeled to analyze the crashworthiness of aircraft structures. A numerical procedure based on FE modeling and characterization of material failure constitutive models is proposed herein with the aim of limiting the costs of experimental procedures otherwise necessary to obtain these data. Quasi-static and dynamic experiments were carried out on elementary tension (punched and shear (riveted specimens. No strain rate sensitivity was detected in the failure behavior of the riveted joint assemblies. Experimental data were used to identify the Gurson damage parameters of each material (2024-T351 and 7050 aluminum alloys for the sheet metal plate and the rivet respectively by an inverse method. Characterization gave rise to satisfactory correlation between FE models and experiments. Optimized parameters were validated for each material by means of a uniaxial tension test for the sheet metal plate and an ARCAN type specimen in pure tension for the rivet.

  16. Fundamentals of nonlinear optical materials

    Indian Academy of Sciences (India)

    Nonlinear optics; nonlinear polarization; optical fiber communication; optical switch- ing. PACS Nos 42.65Tg; ... The importance of nonlinear optics is to understand the nonlinear behavior in the induced polarization and to ..... but much work in material development and characterization remains to be done. 16. Conclusion.

  17. Acquirement of true stress-strain curve using true fracture strain obtained by tensile test and FE analysis

    International Nuclear Information System (INIS)

    Lee, Kyoung Yoon; Kim, Tae Hyung; Lee, Hyung Yil

    2009-01-01

    In this work, we predict a true fracture strain using load-displacement curves from tensile test and Finite Element Analysis (FEA), and suggest a method for acquiring true Stress-Strain (SS) curves by predicted fracture strain. We first derived the true SS curve up to necking point from load-displacement curve. As the beginning, the posterior necking part of true SS curve is linearly extrapolated with the slope at necking point. The whole SS curve is then adopted for FE simulation of tensile test. The Bridgman factor or suitable plate correction factors are applied to pre and post FEA. In the load-true strain curve from FEA, the true fracture strain is determined as the matching point to test fracture load. The determined true strain is validated by comparing with test fracture strain. Finally, we complete the true SS curve by combining the prior necking part and linear part, the latter of which connects necking and predicted fracture points.

  18. Acquirement of true stress-strain curve using true fracture strain obtained by tensile test and FE analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyoung Yoon; Kim, Tae Hyung; Lee, Hyung Yil [Sogang University, Seoul (Korea, Republic of)

    2009-07-01

    In this work, we predict a true fracture strain using load-displacement curves from tensile test and Finite Element Analysis (FEA), and suggest a method for acquiring true Stress-Strain (SS) curves by predicted fracture strain. We first derived the true SS curve up to necking point from load-displacement curve. As the beginning, the posterior necking part of true SS curve is linearly extrapolated with the slope at necking point. The whole SS curve is then adopted for FE simulation of tensile test. The Bridgman factor or suitable plate correction factors are applied to pre and post FEA. In the load-true strain curve from FEA, the true fracture strain is determined as the matching point to test fracture load. The determined true strain is validated by comparing with test fracture strain. Finally, we complete the true SS curve by combining the prior necking part and linear part, the latter of which connects necking and predicted fracture points.

  19. Acquirement of True Stress-strain Curve Using True Fracture Strain Obtained by Tensile Test and FE Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyoung Yoon; Lee, Hyung Yil [Sogang University, Seoul (Korea, Republic of); Kim, Tae Hyung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    In this work, we predict a true fracture strain using load-displacement curves from tensile test and finite element analysis (FEA), and suggest a method for acquiring true stress-strain (SS) curves by predicted fracture strain. We first derived the true SS curve up to necking point from load-displacement curve. As the beginning, the posterior necking part of true SS curve is linearly extrapolated with the slope at necking point. The whole SS curve is then adopted for FE simulation of tensile test. The Bridgman factor or suitable plate correction factors are applied to pre and post FEA. In the load-true strain curve from FEA, the true fracture strain is determined as the matching point to test fracture load. The determined true strain is validated by comparing with test fracture strain. Finally, we complete the true SS curve by combining the prior necking part and linear part, the latter of which connects necking and predicted fracture points.

  20. A THM stress-strain framework for modelling the performance of argillaceous materials in deep repositories for radioactive waste

    International Nuclear Information System (INIS)

    Laloui, L.; Francois, B.

    2007-01-01

    In the scenarios for deep, geological nuclear-waste repositories, clayey soils will be hydrated, heated, cooled and dried. The numerical modelling of these mechanical processes is a key issue. Performance assessment of deep repositories for heat-generating radioactive waste would benefit from improvements in mechanical stress-strain constitutive modelling of the coupled thermo-hydro-mechanical behaviour. The presented framework allows progress in understanding the most involved phenomena relevant to nuclear-waste repositories and their coupled nature. It could be used both in the design and in the performance assessment of repositories. It may be applied to disposal in clay formations and to hard-rock repositories where artificially compacted clay is to be used as buffer and backfill. Such a constitutive framework may help in understanding some unexplained or controversial behaviours and in defining experimental programmes to answer key questions. (author)

  1. THE CALCULATION OF STRESS-STRAIN STATE OF THREE-LAYER BEAM TAKING INTO ACCOUNT EDGE EFFECTS

    Directory of Open Access Journals (Sweden)

    Kh. M. Muselemov

    2015-01-01

    Full Text Available The work is dedicated to the calculation of the stress-strain state (SSS of the three-layer beam (TLB subject to boundary effects.In this paper, a system of differential equations of equilibrium of the threelayer beam. To solve these equations, it is necessary to know the 12 boundary conditions, co-which depend on support conditions and loading of sandwich beams under study. This system of equations is solved by the application package of mathematical modeling "Maple 5.4." The solution of this system we obtain expressions for determining de-formations and stress all components (bearing layers and filler, a three-layer beam anywhere under specified conditions of fastening the ends of the beam and its loading. 

  2. Investigation of s stressed-strained state and optimization of the T-15 facility electromagnetic system design

    International Nuclear Information System (INIS)

    Vaulina, I.G.; Gusev, S.V.; Monoszon, N.A.; Sivkova, G.N.; Spirchenko, Yu.V.; Chvartatskij, R.V.; Churakov, G.F.

    1982-01-01

    The results of investigation of a stressed-strained state (SSS) of superconducting coils of toroidal field (TFSC) of the T-15 facility are presented. The TFSC SSS dependence on the forces acting in the coil plane is reduced to solving the plane problem of the elasticity theory. The problem is solved by the finite element method according to a specially developed program. The TFSC SSS dependence on the action of tilting forces is studied by the structural mechanics method. A refined rod theory taking into account shear strain of the rod cross-section in the direction perpendicular to its axis is used. A comparative analysis of different versions of the TFSC design is carried out. A TFSC design optimized over the SSS is chosen. It is used in constructing the electromagnetic system of the T-15 facility

  3. Theoretical Conversions of Different Hardness and Tensile Strength for Ductile Materials Based on Stress-Strain Curves

    Science.gov (United States)

    Chen, Hui; Cai, Li-Xun

    2018-04-01

    Based on the power-law stress-strain relation and equivalent energy principle, theoretical equations for converting between Brinell hardness (HB), Rockwell hardness (HR), and Vickers hardness (HV) were established. Combining the pre-existing relation between the tensile strength ( σ b ) and Hollomon parameters ( K, N), theoretical conversions between hardness (HB/HR/HV) and tensile strength ( σ b ) were obtained as well. In addition, to confirm the pre-existing σ b -( K, N) relation, a large number of uniaxial tensile tests were conducted in various ductile materials. Finally, to verify the theoretical conversions, plenty of statistical data listed in ASTM and ISO standards were adopted to test the robustness of the converting equations with various hardness and tensile strength. The results show that both hardness conversions and hardness-strength conversions calculated from the theoretical equations accord well with the standard data.

  4. Stress/strain characteristics of Cu alloy sheath in situ processed MgB2 superconducting wires

    International Nuclear Information System (INIS)

    Katagiri, Kazumune; Kasaba, Koichi; Shoji, Yoshitaka

    2005-01-01

    The mechanical properties of copper and copper alloy (Cu-Zr, Cu-Be and Cu-Cr) sheath in situ PIT-processed MgB 2 superconducting wires were studied at room temperature (RT) and 4.2 K. The effects of stress-strain on the critical current (I c ) of the wires have also been studied at 4.2 K and in magnetic fields up to 5 T. It has been clarified that alloying the Cu sheath significantly increases the yield and flow stresses of the wires at both RT and 4.2 K. The 0.5% flow stresses of the Cu alloy sheath wire were 147-237 MPa, whereas that of Cu was 55 MPa. At RT, serration corresponding to multiple cracking was observed around a strain of 0.4% and the stress-strain curves saturated beyond that point. The strain dependence of I c prior to the critical strain (ε irr ) was different depending on the magnetic field; being almost constant at 2 T and increasing with strain at 5 T. The I c decreased beyond ε irr , which is much larger for Cu alloy sheath wires as compared to Cu sheath wire. This is due to the difference in the residual compressive strain in the MgB 2 core during cooling from the heat-treatment temperature to 4.2 K, which is determined through relaxation by yielding in the sheath materials. The transverse compression tests revealed that the I c of the Cu alloy sheath wire did not degrade up to 314 MPa, which is also higher than that of Cu sheath wire. (author)

  5. Stress-strain effects in alumina-Cu reinforced Nb3Sn wires fabricated by the tube process

    International Nuclear Information System (INIS)

    Murase, Satoru; Nakayama, Shigeo; Masegi, Tamaki; Koyanagi, Kei; Nomura, Shunji; Shiga, Noriyuki; Kobayashi, Norio; Watanabe, Kazuo.

    1997-01-01

    In order to fabricate a large-bore, high-field magnet which achieves a low coil weight and volume, a high strength compound superconducting wire is required. For those demands we have developed the reinforced Nb 3 Sn wire using alumina dispersion strengthened copper (alumina-Cu) as a reinforcement material and the tube process of the Nb 3 Sn wire fabrication. The ductility study of the composites which consisted of the reinforcement, Nb tube, Cu, and Cu clad Sn brought a 1 km long alumina-Cu reinforced Nb 3 Sn wire successfully. Using fabricated wires measurements and evaluations of critical current density as parameters of magnetic field, tensile stress, tensile strain, and transverse compressive stress, and those of stress-strain curves at 4.2 K were performed. They showed superior performance such as high 0.3% proof stress (240 MPa at 0.3% strain) and high maximum tolerance stress (320 MPa) which were two times as large as those of conventional Cu matrix Nb 3 Sn wire. The strain sensitivity parameters were obtained for the reinforced Nb 3 Sn wire and the Cu matrix one using the scaling law. Residual stress of the component materials caused by cooling down to 4.2 K from heat-treatment temperature was calculated using equivalent Young's modulus, equivalent yield strength, thermal expansion coefficient and other mechanical parameters. Calculated stress-strain curves at 4.2 K for the reinforced Nb 3 Sn wire and the Cu matrix one based on calculation of residual stress, had good agreement with the experimental values. (author)

  6. Stochastic analysis of laminated composite plates on elastic foundation: The cases of post-buckling behavior and nonlinear free vibration

    International Nuclear Information System (INIS)

    Singh, B.N.; Lal, Achchhe

    2010-01-01

    This study deals with the stochastic post-buckling and nonlinear free vibration analysis of a laminated composite plate resting on a two parameters Pasternak foundation with Winkler cubic nonlinearity having uncertain system properties. The system properties are modeled as basic random variables. A C 0 nonlinear finite element formulation of the random problem based on higher-order shear deformation theory in the von Karman sense is presented. A direct iterative method in conjunction with a stochastic nonlinear finite element method proposed earlier by the authors is extended to analyze the effect of uncertainty in system properties on the post-buckling and nonlinear free vibration of the composite plates having Winler type of geometric nonlinearity. Mean as well as standard deviation of the responses have been obtained for various combinations of geometric parameters, foundation parameters, stacking sequences and boundary conditions and compared with those available in the literature and Monte Carlo simulation.

  7. Effect of Stress-Strain Behavior on Low-Cycle Fatigue of Alpha-Beta Titanium Alloys.

    Science.gov (United States)

    1980-11-21

    and strain excursion, such a curve would appear to fit much of the high temperature hold-time data compiled by Krempl and Wundt [21]. Thus, it might...34Mechanische Relaxation von Kupfer-Einkristallen," Phys. Stat. Sol. 3, 111-120. 21. Krempl, E. and Wundt , B. M., (1971), Hold-Time Effects in High- Temperature Low-Cycle Fatigue, ASTM STP 489. 26 Low

  8. Stress-strain-temperature behavior due to B2-R-B19 ' transformation in NiTi polycrystals

    Czech Academy of Sciences Publication Activity Database

    Šittner, Petr; Novák, Václav; Lukáš, Petr; Landa, Michal

    2006-01-01

    Roč. 128, č. 3 (2006), s. 268-278 ISSN 0094-4289 Institutional research plan: CEZ:AV0Z10480505; CEZ:AV0Z10100520; CEZ:AV0Z20760514 Keywords : shape- memory alloy * situ neutron-diffraction * martensitic transformations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.239, year: 2006

  9. Analytical solution for stress, strain and plastic instability of pressurized pipes with volumetric flaws

    International Nuclear Information System (INIS)

    Cunha, Sérgio B.; Netto, Theodoro A.

    2012-01-01

    The mechanical behavior of internally pressurized pipes with volumetric flaws is analyzed. The two possible modes of circumferentially straining the pipe wall are identified and associated to hypothesized geometries. The radial deformation that takes place by bending the pipe wall is studied by means of axisymmetric flaws and the membrane strain developed by unequal hoop deformation is analyzed with the help of narrow axial flaws. Linear elastic shell solutions for stress and strain are developed, the plastic behavior is studied and the maximum hoop stress at the flaw is related to the undamaged pipe hoop stress by means of stress concentration factors. The stress concentration factors are employed to obtain equations predicting the pressure at which the pipe fails by plastic instability for both types of flaw. These analytical solutions are validated by comparison with burst tests on 3″ diameter pipes and finite element simulations. Forty-one burst tests were carried out and two materials with very dissimilar plastic behavior, carbon steel and austenitic stainless steel, were used in the experiments. Both the analytical and the numerical predictions showed good correlation with the experimentally observed burst pressures. - Highlights: ► An analytical model for the burst of a pipe with a volumetric flaw is developed. ► Deformation, strain and stress are modeled in the elastic and plastic domains. ► The model is comprehensively validated by experiments and numerical simulations. ► The burst pressure model’s accuracy is equivalent to finite element simulations.

  10. A non-linear kinematic hardening function

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1977-05-01

    Based on the classical theory of plasticity, and accepting the von Mises criterion as the initial yield criterion, a non-linear kinematic hardening function applicable both to Melan-Prager's and to Ziegler's hardening rule is proposed. This non-linear hardening function is determined by means of the uniaxial stress-strain curve, and any such curve is applicable. The proposed hardening function considers the problem of general reversed loading, and a smooth change in the behaviour from one plastic state to another nearlying plastic state is obtained. A review of both the kinematic hardening theory and the corresponding non-linear hardening assumptions is given, and it is shown that material behaviour is identical whether Melan-Prager's or Ziegler's hardening rule is applied, provided that the von Mises yield criterion is adopted. (author)

  11. Analytical solution for stress, strain and plastic instability of pressurized pipes with volumetric flaws

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Sergio B., E-mail: sbcunha@petrobras.com.br [PETROBRAS/TRANSPETRO, Av. Pres. Vargas 328 - 7th floor, Rio de Janeiro, RJ 20091-060 (Brazil); Netto, Theodoro A., E-mail: tanetto@lts.coppe.ufrj.br [COPPE, Federal University ot Rio de Janeiro, Ocean Engineering Department, PO BOX 68508, Rio de Janeiro - RJ (Brazil)

    2012-01-15

    The mechanical behavior of internally pressurized pipes with volumetric flaws is analyzed. The two possible modes of circumferentially straining the pipe wall are identified and associated to hypothesized geometries. The radial deformation that takes place by bending the pipe wall is studied by means of axisymmetric flaws and the membrane strain developed by unequal hoop deformation is analyzed with the help of narrow axial flaws. Linear elastic shell solutions for stress and strain are developed, the plastic behavior is studied and the maximum hoop stress at the flaw is related to the undamaged pipe hoop stress by means of stress concentration factors. The stress concentration factors are employed to obtain equations predicting the pressure at which the pipe fails by plastic instability for both types of flaw. These analytical solutions are validated by comparison with burst tests on 3 Double-Prime diameter pipes and finite element simulations. Forty-one burst tests were carried out and two materials with very dissimilar plastic behavior, carbon steel and austenitic stainless steel, were used in the experiments. Both the analytical and the numerical predictions showed good correlation with the experimentally observed burst pressures. - Highlights: Black-Right-Pointing-Pointer An analytical model for the burst of a pipe with a volumetric flaw is developed. Black-Right-Pointing-Pointer Deformation, strain and stress are modeled in the elastic and plastic domains. Black-Right-Pointing-Pointer The model is comprehensively validated by experiments and numerical simulations. Black-Right-Pointing-Pointer The burst pressure model's accuracy is equivalent to finite element simulations.

  12. Stress-strain state of the elastic strip with nearly rectangular cross section

    Science.gov (United States)

    Minaeva, N. V.

    2018-03-01

    The article considers behavior of elastic strip in the framework of plane strain under compression. Conditions are formulated in integral form on the boundaries where the forces are imposed. All the boundary conditions are imposed on the boundary of the body in the strained state, which is necessary for investigating the continuous dependence of the solution to the corresponding task on the functions describing the difference between the shape of cross-section of the strip and a rectangle. The study of the analyticity of the problem solution with respect to small near zero parameters is carried out. The solution is found by perturbation method up to the first order of terms.

  13. Third order nonlinear optical properties and optical limiting behavior of alkali metal complexes of p-nitrophenol

    Science.gov (United States)

    Thangaraj, M.; Vinitha, G.; Sabari Girisun, T. C.; Anandan, P.; Ravi, G.

    2015-10-01

    Optical nonlinearity of metal complexes of p-nitrophenolate (M=Li, Na and K) in ethanol is studied by using a continuous wave (cw) diode pumped Nd:YAG laser (532 nm, 50 mW). The predominant mechanism of observed nonlinearity is thermal in origin. The nonlinear refractive index and the nonlinear absorption coefficient of the samples were found to be in the order of 10-8 cm2/W and 10-3 cm/W respectively. Magnitude of third-order optical parameters varies according to the choice of alkali metal chosen for metal complex formation of p-nitrophenolate. The third-order nonlinear susceptibility was found to be in the order of 10-6 esu. The observed saturable absorption and the self-defocusing effect were used to demonstrate the optical limiting action at 532 nm by using the same cw laser beam.

  14. THE STRESS-STRAIN STATE OF ELASTIC HALF-SPACE FROM RUNNING LINEAR LOAD ACTING ON THE LIMITED AND UNLIMITED EXTENT OVER ITS SURFACE

    Directory of Open Access Journals (Sweden)

    I. K. Badalakha

    2009-02-01

    Full Text Available The article shows the result of solving the problem of stress-strain state of an elastic half-space because of the load action that uniformly distributed over the line, with the use of untraditional linear dependence of deformations on stressed state that is different from the generalized Hooke’s law.

  15. Characterization of the Mechanical Stress-Strain Performance of Aerospace Alloy Materials Using Frequency-Domain Photoacoustic Ultrasound and Photothermal Methods: An FEM Approach

    Science.gov (United States)

    Huan, Huiting; Mandelis, Andreas; Liu, Lixian

    2018-04-01

    Determining and keeping track of a material's mechanical performance is very important for safety in the aerospace industry. The mechanical strength of alloy materials is precisely quantified in terms of its stress-strain relation. It has been proven that frequency-domain photothermoacoustic (FD-PTA) techniques are effective methods for characterizing the stress-strain relation of metallic alloys. PTA methodologies include photothermal (PT) diffusion and laser thermoelastic photoacoustic ultrasound (PAUS) generation which must be separately discussed because the relevant frequency ranges and signal detection principles are widely different. In this paper, a detailed theoretical analysis of the connection between thermoelastic parameters and stress/strain tensor is presented with respect to FD-PTA nondestructive testing. Based on the theoretical model, a finite element method (FEM) was further implemented to simulate the PT and PAUS signals at very different frequency ranges as an important analysis tool of experimental data. The change in the stress-strain relation has an impact on both thermal and elastic properties, verified by FEM and results/signals from both PT and PAUS experiments.

  16. Prediction of stress-strain state of municipal solid waste with application of soft soil creep model

    Directory of Open Access Journals (Sweden)

    Ofrikhter Vadim Grigor'evich

    Full Text Available The deformation of municipal solid waste is a complex process caused by the nature of MSW, the properties of which differ from the properties of common soils. The mass of municipal solid waste shows the mixed behaviour partially similar to granular soils, and partially - to cohesive. So, one of mechanical characteristics of MSW is the cohesion typical to cohesive soils, but at the same time the filtration coefficient of MSW has an order of 1 m/day that is characteristic for granular soils. It has been established that MSW massif can be simulated like the soil reinforced by randomly oriented fibers. Today a significant amount of the verified and well proved software products are available for numerical modelling of soils. The majority of them use finite element method (FEM. The soft soil creep model (SSC-model seems to be the most suitable for modelling of municipal solid waste, as it allows estimating the development of settlements in time with separation of primary and secondary consolidation. Unlike the soft soil, one of the factors of secondary consolidation of MSW is biological degradation, the influence of which is possible to consider at the definition of the modified parameters essential for soft soil model. Application of soft soil creep model allows carrying out the calculation of stress-strain state of waste from the beginning of landfill filling up to any moment of time both during the period of operation and in postclosure period. The comparative calculation presented in the paper is executed in Plaxis software using the soft-soil creep model in contrast to the calculation using the composite model of MSW. All the characteristics for SSC-model were derived from the composite model. The comparative results demonstrate the advantage of SSC-model for prediction of the development of MSW stress-strain state. As far as after the completion of the biodegradation processes MSW behaviour is similar to cohesion-like soils, the demonstrated

  17. A Modified Constitutive Model for Tensile Flow Behaviors of BR1500HS Ultra-High-Strength Steel at Medium and Low Temperature Regions

    Science.gov (United States)

    Zhao, Jun; Quan, Guo-Zheng; Pan, Jia; Wang, Xuan; Wu, Dong-Sen; Xia, Yu-Feng

    2018-01-01

    Constitutive model of materials is one of the most requisite mathematical model in the finite element analysis, which describes the relationships of flow behaviors with strain, strain rate and temperature. In order to construct such constitutive relationships of ultra-high-strength BR1500HS steel at medium and low temperature regions, the true stress-strain data over a wide temperature range of 293-873 K and strain rate range of 0.01-10 s-1 were collected from a series of isothermal uniaxial tensile tests. The experimental results show that stress-strain relationships are highly non-linear and susceptible to three parameters involving temperature, strain and strain rate. By considering the impacts of strain rate and temperature on strain hardening, a modified constitutive model based on Johnson-Cook model was proposed to characterize flow behaviors in medium and low temperature ranges. The predictability of the improved model was also evaluated by the relative error (W(%)), correlation coefficient (R) and average absolute relative error (AARE). The R-value and AARE-value for modified constitutive model at medium and low temperature regions are 0.9915 & 1.56 % and 0.9570 & 5.39 %, respectively, which indicates that the modified constitutive model can precisely estimate the flow behaviors for BR1500HS steel in the medium and low temperature regions.

  18. Stress, strain, and temperature induced permeability changes in potential repository rocks

    International Nuclear Information System (INIS)

    Heard, H.C.; Duba, A.

    1977-01-01

    Work is in progress to assess the permeability characteristics of coarse-grained igneous rocks as affected by pressure, deviatoric stress, and temperature. In order to predict the long-term behavior of these rocks, both virgin and fractured, permeability and all principal strains resulting from an imposed deviatoric stress under various simulated lithostatic pressures are being measured. In addition, compressional as well as shear velocities and electrical conductivity are being evaluated along these principal directions. These simultaneous measurements are being made initially at 25 0 C on a 15 cm diameter by 30 cm long sample in a pressure apparatus controlled by a mini-computer. Correlation of these data with similar field observations should then allow simplified exploration for a suitable repository site as well as the prediction of the response of a mined cavity with both distance and time at this site. After emplacement of the waste canisters, the mechanical stability and hydrologic integrity of this mined repository will be directly influenced by the fracturing of the surrounding rock which results from local temperature differences and the thermal expansion of that rock. Temperatures (and, hence, these differences) in the vicinity of the repository are expected to be affected by the presence of pore fluids (single- or two-phase) in the rock, the heat capacity and the thermal conductivity of this system. In turn, these are all dependent upon lithostatic pressure, pore pressure, and stress. Thermal expansion (and fracturing) will also be affected by the lithostatic (and effective) pressure, the deviatoric stress field, and the initial anisotropy of the rock

  19. Simulación numérica del comportamiento no-lineal de materiales utilizando el método sin malla de puntos finitos Meshless numerical simulation of the non-linear behavior of a material using the finite point method

    Directory of Open Access Journals (Sweden)

    Luis Pérez P

    2011-12-01

    Full Text Available La formulación sin malla del método de puntos finitos permite aprovechar en toda su potencialidad la ventaja de este tipo de técnica numérica, habiéndose comprobado su buen funcionamiento para aplicaciones en los campos de la mecánica de fluidos, mecánica de sólidos, ciencia de materiales y más tarde en adaptividad y electromagnetismo. En el presente trabajo se desarrolla una metodología numérica para aproximar el comportamiento no-lineal de un material mediante el método de puntos finitos, basada en la teoría de deformación total de Hencky, en conjunto con un enfoque elástico para aproximar la distribución de tensiones y de deformaciones. Esta aproximación introduce el concepto de propiedades efectivas del material, las cuales se obtienen en forma iterativa mediante un procedimiento de corrección aplicado sobre la curva experimental de tensión-deformación. Los ejemplos desarrollados demuestran el correcto comportamiento de la metodología utilizada, siendo una de sus principales ventajas la sencillez y facilidad de su implementación, puesto que no es necesaria la partición o subdivisión del dominio de solución.The use of fully meshless formulation of the finite point method allows taking advantage the benefit of this type of numerical technique for applications in the fields of fluid mechanics, solid mechanics, material science and later in adaptivity and electromagnetism. In this work a meshless numerical method to approximate the non-linear behavior of a material using the finite point method, based on the theory of Hencky total strain and elastic approach to approximate the distribution of stresses and deformation, is developed. This approach introduces the concept of effective properties of the material which are obtained using a correction procedure applied to the stress-strain curve. The examples show the good behavior of the methodology that is used, being one of the main advantages the simplicity and the ease of

  20. The nonlinear unloading behavior of a typical Ni-based superalloy during hot deformation. A new elasto-viscoplastic constitutive model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ming-Song; Li, Kuo-Kuo [Central South University, School of Mechanical and Electrical Engineering, Changsha (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha (China); Lin, Y.C. [Central South University, School of Mechanical and Electrical Engineering, Changsha (China); State Key Laboratory of High Performance Complex Manufacturing, Changsha (China); Central South University, Light Alloy Research Institute, Changsha (China); Chen, Jian [Changsha University of Science and Technology, School of Energy and Power Engineering, Key Laboratory of Efficient and Clean Energy Utilization, Changsha (China)

    2016-09-15

    The nonlinear unloading behavior of a typical Ni-based superalloy is investigated by hot compressive experiments with intermediate unloading-reloading cycles. The experimental results show that there are at least four types of unloading curves. However, it is found that there is no essential difference among four types of unloading curves. The variation curves of instantaneous Young's modulus with stress for all types of unloading curves include four segments, i.e., three linear elastic segments (segments I, II, and III) and one subsequent nonlinear elastic segment (segment IV). The instantaneous Young's modulus of segments I and III is approximately equal to that of reloading process, while smaller than that of segment II. In the nonlinear elastic segment, the instantaneous Young's modulus linearly decreases with the decrease in stress. In addition, the relationship between stress and strain rate can be accurately expressed by the hyperbolic sine function. This study includes two parts. In the present part, the characters of unloading curves are discussed in detail, and a new elasto-viscoplastic constitutive model is proposed to describe the nonlinear unloading behavior based on the experimental findings. While in the latter part (Chen et al. in Appl Phys A. doi:10.1007/s00339-016-0385-0, 2016), the effects of deformation temperature, strain rate, and pre-strain on the parameters of this new constitutive model are analyzed, and a unified elasto-viscoplastic constitutive model is proposed to predict the unloading behavior at arbitrary deformation temperature, strain rate, and pre-strain. (orig.)

  1. The nonlinear unloading behavior of a typical Ni-based superalloy during hot deformation. A new elasto-viscoplastic constitutive model

    International Nuclear Information System (INIS)

    Chen, Ming-Song; Li, Kuo-Kuo; Lin, Y.C.; Chen, Jian

    2016-01-01

    The nonlinear unloading behavior of a typical Ni-based superalloy is investigated by hot compressive experiments with intermediate unloading-reloading cycles. The experimental results show that there are at least four types of unloading curves. However, it is found that there is no essential difference among four types of unloading curves. The variation curves of instantaneous Young's modulus with stress for all types of unloading curves include four segments, i.e., three linear elastic segments (segments I, II, and III) and one subsequent nonlinear elastic segment (segment IV). The instantaneous Young's modulus of segments I and III is approximately equal to that of reloading process, while smaller than that of segment II. In the nonlinear elastic segment, the instantaneous Young's modulus linearly decreases with the decrease in stress. In addition, the relationship between stress and strain rate can be accurately expressed by the hyperbolic sine function. This study includes two parts. In the present part, the characters of unloading curves are discussed in detail, and a new elasto-viscoplastic constitutive model is proposed to describe the nonlinear unloading behavior based on the experimental findings. While in the latter part (Chen et al. in Appl Phys A. doi:10.1007/s00339-016-0385-0, 2016), the effects of deformation temperature, strain rate, and pre-strain on the parameters of this new constitutive model are analyzed, and a unified elasto-viscoplastic constitutive model is proposed to predict the unloading behavior at arbitrary deformation temperature, strain rate, and pre-strain. (orig.)

  2. The Mine Working's Roof Stress-strain State Research in the Perspective of Development of New Coal Deposits of Kuzbass

    Science.gov (United States)

    Kostyuk, Svetlana; Bedarev, Nikolay; Lyubimov, Oleg; Shaikhislamov, Arthur

    2017-11-01

    The present now normative and information base is regulating of the Kuzbass coal seams treatment but is not considering of the mining-geological and mining-engineering conditions for new coal deposits. The analysis of works for the research of the rock pressure manifestation shows that in many cases numerous results require of the practical confirmation in mine conditions directly, and also confirmation by the physical models. This work reflects one of the stages of research on changing the stress-strain state of the massif with the formation of unloading zones, increased rock pressure, and recovery. As an example, the results of the information analysis obtained by means of contour and depth benchmarks on the ventilation drift in the course of the 34 seam treatment at the "Tagaryshskaya" mine are presented. The differences of the analyzed results from the results obtained in the conditions of other mines are established. The values of the drift's roof stratification on the contour and at the distance from the contour of 1.0 to 4.0 m are given. The revealed maximums of the rock pressure and pressure changes in the hydraulic supports of the complex used for movement are presented. Recommendations on the choice of the anchor's length taking into account the roof stratification size are given. The further research stages on models from equivalent materials at various geometric scales are proposed.

  3. Analysis of stress-strain relationship in materials containing voids by means of plastic finite element method

    International Nuclear Information System (INIS)

    Shiraishi, Haruki; Tabuchi, Masaaki

    2000-01-01

    Applying the finite element method in two dimensions, an analysis is performed to derive the stress-strain relationship of material containing voids in matrix, and which is subjected to large deformation. The conditions assumed for the analysis are applicability of continuum body mechanics, Mises yield criterion, J2 flow theory, power work-hardening, plane stress in two-dimensional system and uniform cyclically recurring void distribution. Taking as example a case of material presenting 0.3 work-hardening, it is indicated from the analysis that: With voids arrayed in square lattice, total elongation would be little affected by change in void size; With a void spacing in lattice of 10 μ m, a uniform elongation 12-14% should be obtained in a wide range of void sizes from 0.01 to 8.0 μm; Tensile strength should start to lower at a void areal fraction of around 1%; A sharply lowered uniform elongation of a level far below 1% should be presented by material of low work-hardening exponent. The severe decline of ductility seen with 316 stainless steel upon neutron irradiation at temperatures around 600 K is interpreted as resulting from a combination of low work-hardening and the presence of voids in matrix. (author)

  4. Random cyclic stress-strain responses of a stainless steel pipe-weld metal. I. A statistical investigation

    International Nuclear Information System (INIS)

    Zhao, Y.X.; Wang, J.N.

    2000-01-01

    For pt.II see ibid., vol.199, p.315-26, 2000. This paper pays a special attention to the issue that there is a significant scatter of the stress-strain responses of a nuclear engineering material, 1Cr18Ni9Ti stainless steel pipe-weld metal. Statistical investigation is made to the cyclic stress amplitudes of this material. Three considerations are given. They consist of the total fit, the consistency with fatigue physics and the safety in practice of the seven commonly used statistical distributions, namely Weibull (two- and three-parameter), normal, lognormal, extreme minimum value, extreme maximum value and exponential. Results reveal that the data follow meanwhile the seven distributions but the local effects of the distributions yield a significant difference. Any of the normal, lognormal, extreme minimum value and extreme maximum value distributions might be an appropriate assumed distribution for characterizing the data. The normal and extreme minimum models are excellent. Other distributions do not fit the data as they violate two or three of the mentioned considerations. (orig.)

  5. Algorithm for study on the stressed-strained state of thermonuclear device vacuum chambers under dynamic loads

    International Nuclear Information System (INIS)

    Zhuravleva, A.M.; Litvinov, V.B.

    1982-01-01

    The problem of dynamic analysis of stressed-strained state of vacuum chambers is vital for large thermonuclear devices during the stall of the plasma-filament apd other tpansitional operation regimes when loading for a chamber are nonstationary. To plot a mathematical model the design of the vacuum chamber is discreted on the basis of the method of final elements. To approximate vacuum shell, a plate triangular element with 3 joint points and 5 parameters in the joint is used. It is obtained due to the unity of the bemded element and the element for the flat problem. To investigate nonstationary oscillations of vacuum chambers discreted on the basis of the method of final elements, it is suggested to use the numeric conversion of the Japlace transformation. On the basis of the algorithm suggested a program of numerical function conversion is developed. Test calculations have shown a good stability of the algorithm when selecting the values of transformation parameter in the range of lower intrinsic system frequencies. The advantage of the above method is in the fact that the time-structure shift function is found instantly in the form of the series for the whole time interval and does not require temporary steps, which bring about large expenses of counting time and error accumulation

  6. Finite Element Analysis of the Pseudo-elastic Behavior of Shape Memory Alloy Truss and Beam

    Directory of Open Access Journals (Sweden)

    Kamal M. Bajoria

    2010-07-01

    Full Text Available The pseudo-elastic behavior of Shape memory alloy (SMA truss and cantilever beam are investigated. Brinson’s one-dimensional material model, which uses the twinned and detwinned martensite fractions separately as internal variables, is applied in the algorithm to establish the SMA stress-strain characteristics. This material model also incorporates different young’s modulus for austenitic and martensite phase to represent the true SMA characteristics. In this model, a cosine function was used to express the evolution of the stress induced martensite fractions during the forward and reverse martensite phase transformation. A finite element formulation for the SMA truss member considering the geometric nonlinearity is proposed and the results are compared with the corresponding linear analysis. As a step forward, a finite element formulation for an SMA cantilever beam with an applied end moment is proposed. The load displacement characteristic for both the loading and unloading phases are considered to check the full pseudo-elastic hysteretic loop. In the numerical investigation, the stress-strain variation along the beam depth is also examined during the loading and unloading process to investigate the forward and reverse martensite phase transformation phenomena. Newton-Raphson’s iterative method is applied to get convergence to the equilibrium for each loading steps. During a complete loading-unloading process, the temperature is kept constant as the model is essentially an isothermal model. Numerical simulation is performed considering two different temperatures to demonstrate the effect of temperature on the hysteretic loop.

  7. Introduction to nonlinear science

    CERN Document Server

    Nicolis, G

    1995-01-01

    One of the most unexpected results in science in recent years is that quite ordinary systems obeying simple laws can give rise to complex, nonlinear or chaotic, behavior. In this book, the author presents a unified treatment of the concepts and tools needed to analyze nonlinear phenomena and to outline some representative applications drawn from the physical, engineering, and biological sciences. Some of the interesting topics covered include: dynamical systems with a finite number of degrees of freedom, linear stability analysis of fixed points, nonlinear behavior of fixed points, bifurcation analysis, spatially distributed systems, broken symmetries, pattern formation, and chaotic dynamics. The author makes a special effort to provide a logical connection between ordinary dynamical systems and spatially extended systems, and to balance the emphasis on chaotic behavior and more classical nonlinear behavior. He also develops a statistical approach to complex systems and compares it to traditional deterministi...

  8. Nonlinear Physics of Plasmas

    CERN Document Server

    Kono, Mitsuo

    2010-01-01

    A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.

  9. Numerical insight into the seismic behavior of eight masonry towers in Northern Italy: FE pushover vs non-linear dynamic analyses

    Energy Technology Data Exchange (ETDEWEB)

    Milani, Gabriele, E-mail: milani@stru.polimi.it, E-mail: gabriele.milani@polimi.it; Valente, Marco [Department of Architecture, Built Environment and Construction Engineering (ABC), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy)

    2015-12-31

    This study presents some FE results regarding the behavior under horizontal loads of eight existing masonry towers located in the North-East of Italy. The towers, albeit unique for geometric and architectural features, show some affinities which justify a comparative analysis, as for instance the location and the similar masonry material. Their structural behavior under horizontal loads is therefore influenced by geometrical issues, such as slenderness, walls thickness, perforations, irregularities, presence of internal vaults, etc., all features which may be responsible for a peculiar output. The geometry of the towers is deduced from both existing available documentation and in-situ surveys. On the basis of such geometrical data, a detailed 3D realistic mesh is conceived, with a point by point characterization of each single geometric element. The FE models are analysed under seismic loads acting along geometric axes of the plan section, both under non-linear static (pushover) and non-linear dynamic excitation assumptions. A damage-plasticity material model exhibiting softening in both tension and compression, already available in the commercial code Abaqus, is used for masonry. Pushover analyses are performed with both G1 and G2 horizontal loads distribution, according to Italian code requirements, along X+/− and Y+/− directions. Non-linear dynamic analyses are performed along both X and Y directions with a real accelerogram scaled to different peak ground accelerations. Some few results are presented in this paper. It is found that the results obtained with pushover analyses reasonably well fit expensive non-linear dynamic simulations, with a slightly less conservative trend.

  10. Numerical insight into the seismic behavior of eight masonry towers in Northern Italy: FE pushover vs non-linear dynamic analyses

    International Nuclear Information System (INIS)

    Milani, Gabriele; Valente, Marco

    2015-01-01

    This study presents some FE results regarding the behavior under horizontal loads of eight existing masonry towers located in the North-East of Italy. The towers, albeit unique for geometric and architectural features, show some affinities which justify a comparative analysis, as for instance the location and the similar masonry material. Their structural behavior under horizontal loads is therefore influenced by geometrical issues, such as slenderness, walls thickness, perforations, irregularities, presence of internal vaults, etc., all features which may be responsible for a peculiar output. The geometry of the towers is deduced from both existing available documentation and in-situ surveys. On the basis of such geometrical data, a detailed 3D realistic mesh is conceived, with a point by point characterization of each single geometric element. The FE models are analysed under seismic loads acting along geometric axes of the plan section, both under non-linear static (pushover) and non-linear dynamic excitation assumptions. A damage-plasticity material model exhibiting softening in both tension and compression, already available in the commercial code Abaqus, is used for masonry. Pushover analyses are performed with both G1 and G2 horizontal loads distribution, according to Italian code requirements, along X+/− and Y+/− directions. Non-linear dynamic analyses are performed along both X and Y directions with a real accelerogram scaled to different peak ground accelerations. Some few results are presented in this paper. It is found that the results obtained with pushover analyses reasonably well fit expensive non-linear dynamic simulations, with a slightly less conservative trend

  11. Effect of fiber distribution and realignment on the nonlinear and inhomogeneous mechanical properties of human supraspinatus tendon under longitudinal tensile loading.

    Science.gov (United States)

    Lake, Spencer P; Miller, Kristin S; Elliott, Dawn M; Soslowsky, Louis J

    2009-12-01

    Tendon exhibits nonlinear stress-strain behavior that may be partly due to movement of collagen fibers through the extracellular matrix. While a few techniques have been developed to evaluate the fiber architecture of other soft tissues, the organizational behavior of tendon under load has not been determined. The supraspinatus tendon (SST) of the rotator cuff is of particular interest for investigation due to its complex mechanical environment and corresponding inhomogeneity. In addition, SST injury occurs frequently with limited success in treatment strategies, illustrating the need for a better understanding of SST properties. Therefore, the objective of this study was to quantitatively evaluate the inhomogeneous tensile mechanical properties, fiber organization, and fiber realignment under load of human SST utilizing a novel polarized light technique. Fiber distributions were found to become more aligned under load, particularly during the low stiffness toe-region, suggesting that fiber realignment may be partly responsible for observed nonlinear behavior. Fiber alignment was found to correlate significantly with mechanical parameters, providing evidence for strong structure-function relationships in tendon. Human SST exhibits complex, inhomogeneous mechanical properties and fiber distributions, perhaps due to its complex loading environment. Surprisingly, histological grade of degeneration did not correlate with mechanical properties.

  12. Influence of the representation models of the stress-strain law on the LMFBR structures in an HCDA

    International Nuclear Information System (INIS)

    Daneri, A.; Toselli, G.; Trombetti, T.; Blanchet, Y.; Louvet, J.; Obry, P.

    1981-08-01

    Most of analysis involved in mechanical calculations related to explosive accidents in fast breeder reactors are now aware of the inadequacy of certain rough stress-strain laws to representing the correct behaviour of vessel materials. Indeed stress waves along the vessel walls deform the material at a high strain rate with multiaxial loading or reverse loading. Recently different questions have been under investigation in France in this direction and the present study, performed in the frame of the agreement CNEN-CEA, is an example of the way how two very important factors (strain rate and strain hardening) may be taken into account in the constitutive equations of materials subject to dynamic deformations. Several parametric calculations have been carried out with the hydrodynamic structural codes ASTARTE-3/4 and SIRIUS, which are the Lagrangian validated code now available at the CNEN and CEA-Cadarache computing centres. Analysis was performed by comparing two reference calculations relating to the MARA 01 and COVA IT7 explosive tests with experimental data and with other calculations in which different values of the initial hardening and of the strain rates of the tank shell material were introduced. In general both codes give similar results; improvements of predicted axial and hoop strains and of impulses in water have been reached in certain cases but it is difficult to find a general trend and there is no ideal constitutive model: indeed the strain rate is not constant in time, in place and in direction and some parts of the vessels are uniaxially loaded while others are multiaxially loaded

  13. Influence of the representation models of the stress-strain law on the LMFBR structures in an HCDA

    International Nuclear Information System (INIS)

    Daneri, A.; Toselli, G.; Trombetti, T.; Blanche, Y.; Louvet, J.; Obry, P.

    1982-01-01

    Most of analysis involved in mechanical calculations related to explosive accidents in fast breeder reactor are now aware of the inadequacy of certain roug stress-strain laws to representing the correct behaviour of vessel materials. Indeed stress waves along the vessel walls deform the material at high strain rate with multiaxial loading or reverse loading. Recently different questions have been under investigation in France in this direction and the present study, performed in the frame of the agreement CNEN-CEA, is an example of the way how two very important factors (strain rate and strain hardening) may be taken into account in the consecutive equations of materials subject to dynamic deformations. Several parametric calculations have been carried out with the hydrodynamic structural codes ASTARTE 3/4 and SIRIUS, which are the Lagrangian validated codes now available at the CNEN and CEA Cadarache Computing Centres.Analysis was performed by comparing two reference calculations relating to the MARA 01 and COVA IT7 explosive tests with experimental data and with other calculations in which different values of the initial hardening and of the strain rates of the tank shell material were introduced. In general both codes give similar results; improvements of predicted axial and hoop strain and of impulses in water have been reached in certain cases but it is difficult to find a general trend and there is no ideal constitutive model: indeed the strain rate is not constant in time, in place and in direction and some parts of the vessels are uniaxially loaded while others are multiaxially loaded

  14. Effect of Temperature Reversion on Hot Ductility and Flow Stress-Strain Curves of C-Mn Continuously Cast Steels

    Science.gov (United States)

    Dong, Zhihua; Li, Wei; Long, Mujun; Gui, Lintao; Chen, Dengfu; Huang, Yunwei; Vitos, Levente

    2015-08-01

    The influence of temperature reversion in secondary cooling and its reversion rate on hot ductility and flow stress-strain curve of C-Mn steel has been investigated. Tensile specimens were cooled at various regimes. One cooling regime involved cooling at a constant rate of 100 °C min-1 to the test temperature, while the others involved temperature reversion processes at three different reversion rates before deformation. After hot tensile test, the evolution of mechanical properties of steel was analyzed at various scales by means of microstructure observation, ab initio prediction, and thermodynamic calculation. Results indicated that the temperature reversion in secondary cooling led to hot ductility trough occurring at higher temperature with greater depth. With increasing temperature reversion rate, the low temperature end of ductility trough extended toward lower temperature, leading to wider hot ductility trough with slightly reducing depth. Microstructure examinations indicated that the intergranular fracture related to the thin film-like ferrite and (Fe,Mn)S particles did not changed with varying cooling regimes; however, the Widmanstatten ferrite surrounding austenite grains resulted from the temperature reversion process seriously deteriorated the ductility. In addition, after the temperature reversion in secondary cooling, the peak stress on the flow curve slightly declined and the peak of strain to peak stress occurred at higher temperature. With increasing temperature reversion rate, the strain to peak stress slightly increased, while the peak stress showed little variation. The evolution of plastic modulus and strain to peak stress of austenite with varying temperature was in line with the theoretical prediction on Fe.

  15. APPLICATION OF COMPUTER SIMULATION IN THE EVALUATION OF THE STRESS-STRAIN STATE OF LOAD-BEARING STRUCTURES OF BUILDINGS MASONRY

    Directory of Open Access Journals (Sweden)

    Anatoliy I. Bedov

    2017-03-01

    Full Text Available The results of studies on the analysis of the stress-strain state of the structures of bearing walls of high-hollow pottery. The way of modeling masonry finite element method. The experimental study of masonry structures produced in the Republic of Bashkortostan high-hollow pottery, set the nature of their work load, the mechanism of destruction. The results of the comparative evaluation of the calculations in the software package and the traditional “manual” calculation.

  16. The nonlinear unloading behavior of a typical Ni-based superalloy during hot deformation. A unified elasto-viscoplastic constitutive model

    International Nuclear Information System (INIS)

    Chen, Ming-Song; Lin, Y.C.; Li, Kuo-Kuo; Chen, Jian

    2016-01-01

    In authors' previous work (Chen et al. in Appl Phys A. doi:10.1007/s00339-016-0371-6, 2016), the nonlinear unloading behavior of a typical Ni-based superalloy was investigated by hot compressive experiments with intermediate unloading-reloading cycles. The characters of unloading curves were discussed in detail, and a new elasto-viscoplastic constitutive model was proposed to describe the nonlinear unloading behavior of the studied Ni-based superalloy. Still, the functional relationships between the deformation temperature, strain rate, pre-strain and the parameters of the proposed constitutive model need to be established. In this study, the effects of deformation temperature, strain rate and pre-strain on the parameters of the new constitutive model proposed in authors' previous work (Chen et al. 2016) are analyzed, and a unified elasto-viscoplastic constitutive model is proposed to predict the unloading behavior at arbitrary deformation temperature, strain rate and pre-strain. (orig.)

  17. Analysis of stress- strain distribution of dowel and glue line in L-type furniture joint by means of finite element method

    Directory of Open Access Journals (Sweden)

    mossayeb dalvand

    2017-08-01

    Full Text Available In this study 3D stress-strain distribution of dowel and glue line on L-type joints made of plywood doweled was investigated. Members of joints made of 11-ply hardwood plywood (Hornbeam, Beech and Alder that were 19 mm in thickness. In this study effect of beech dowels in three levels diameters (6, 8 and 10 mm and penetration of depth (9, 13 and 17 mm on bending moment capacity of L-type joints under compression loading was investigated as experimental test, then stress-strain distribution of wood dowel and glue line in specimens were simulated by means of ANSYS 15 software with finite element method (FEM.Results have shown that bending moment resistance increased with increasing dowel diameter from 6 to 8 mm, but downward trend was observed with increasing 8 to 10 mm in dowel diameter. Bending moment resistance increased with increasing penetration depth. Also, result obtained of simulation by means of ANSYS software have shown that stress-strain in dowel and glue line increased with increasing diameter of dowel and Increasing stress in joints made of diameter dowel 10 mm due to fracture in joints and decrease in resistance once. According to results obtained of model analysis, the ultimate stress of dowel and glue line occurred in the area that joints were contacted.

  18. On the linear discrepancy model and risky shifts in group behavior: a nonlinear Fokker-Planck perspective

    International Nuclear Information System (INIS)

    Frank, T D

    2009-01-01

    Using a nonlinear Fokker-Planck perspective we re-formulate the linear discrepancy model proposed by Boster and colleagues that describes the emergence of risky shifts during group decision making. Analytical expressions for the stationary case are derived and risky shifts are obtained by Monte Carlo simulations. Striking similarities with the Kuramoto model for group synchronization are pointed out

  19. Nonlinear effects of high temperature on buckling of structural elements

    International Nuclear Information System (INIS)

    Iyengar, N.G.R.

    1975-01-01

    Structural elements used in nuclear reactors are subjected to high temperatures. Since with increase in temperature there is a gradual fall in the elastic modulus and the stress-strain relationship is nonlinear at these operating load levels, a realistic estimate of the buckling load should include this nonlinearity. In this paper the buckling loads for uniform columns with circular and rectangular cross-sections and different boundary conditions under high temperature environment are estimated. The stress-strain relationship for the material has been assumed to follow inverse Ramberg-Osgood law. In view of the fact that no closed form solutions are possible, approximate methods like perturbation and Galerkin techniques are used. Further, the solution for general value for 'm' is quite involved. Results have been obtained with values for 'm' as 3 and 5. Studies reveal that the influence of material nonlinearity on the buckling load is of the softening type, and it increases with increase in the value of 'm'. The nonlinear effects are more for clamped boundaries than for simply supported boundaries. For the first mode analysis both the methods are powerful. It is, however, felt that for higher modes the Galerkin method might be better in view of its simplicity. This investigation may be considered as a step towards a more general solution

  20. Investigation of mechanical behavior of copper in Nb3Sn superconducting composite wire

    International Nuclear Information System (INIS)

    Hojo, M.; Matsuoka, T.; Nakamura, M.; Tanaka, M.; Adachi, T.; Ochiai, S.; Miyashita, K.

    2004-01-01

    The mechanical properties and the thermal residual stress distribution of copper in Nb 3 Sn/Cu composite superconductor were investigated in detail. The stabilizer copper was removed from the composite wire, and the stress-strain behavior of this wire was compared with that of the original composite wire. The subtraction yielded the stress-strain curves of the copper when the Bauschinger effect was taken into account. The tensile test of the composites from which about 30% and 60% of copper was removed suggested the existence of the distribution of the thermal residual stress in the stabilizer copper. When this factor was taken into account, the analytical stress-strain curve agreed well with the experimental stress-strain curve. Thus, the stress-stain behavior of each component was fully understood

  1. Large-distance and long-time asymptotic behavior of the reduced density matrix in the non-linear Schroedinger model

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.K.

    2010-12-15

    Starting from the form factor expansion in finite volume, we derive the multidimensional generalization of the so-called Natte series for the zero-temperature, time and distance dependent reduced density matrix in the non-linear Schroedinger model. This representation allows one to read-off straightforwardly the long-time/large-distance asymptotic behavior of this correlator. Our method of analysis reduces the complexity of the computation of the asymptotic behavior of correlation functions in the so-called interacting integrable models, to the one appearing in free fermion equivalent models. We compute explicitly the first few terms appearing in the asymptotic expansion. Part of these terms stems from excitations lying away from the Fermi boundary, and hence go beyond what can be obtained by using the CFT/Luttinger liquid based predictions. (orig.)

  2. Behavior of the maximal solution of the Cauchy problem for some nonlinear pseudoparabolic equation as $|x|oinfty$

    Directory of Open Access Journals (Sweden)

    Tatiana Kavitova

    2012-08-01

    Full Text Available We prove a comparison principle for solutions of the Cauchy problem of the nonlinear pseudoparabolic equation $u_t=Delta u_t+ Deltavarphi(u +h(t,u$ with nonnegative bounded initial data. We show stabilization of a maximal solution to a maximal solution of the Cauchy problem for the corresponding ordinary differential equation $vartheta'(t=h(t,vartheta$ as $|x|oinfty$ under certain conditions on an initial datum.

  3. Nonlinear Elasticity

    Science.gov (United States)

    Fu, Y. B.; Ogden, R. W.

    2001-05-01

    This collection of papers by leading researchers in the field of finite, nonlinear elasticity concerns itself with the behavior of objects that deform when external forces or temperature gradients are applied. This process is extremely important in many industrial settings, such as aerospace and rubber industries. This book covers the various aspects of the subject comprehensively with careful explanations of the basic theories and individual chapters each covering a different research direction. The authors discuss the use of symbolic manipulation software as well as computer algorithm issues. The emphasis is placed firmly on covering modern, recent developments, rather than the very theoretical approach often found. The book will be an excellent reference for both beginners and specialists in engineering, applied mathematics and physics.

  4. Modeling complicated rheological behaviors in encapsulating shells of lipid-coated microbubbles accounting for nonlinear changes of both shell viscosity and elasticity.

    Science.gov (United States)

    Li, Qian; Matula, Thomas J; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2013-02-21

    It has been accepted that the dynamic responses of ultrasound contrast agent (UCA) microbubbles will be significantly affected by the encapsulating shell properties (e.g., shell elasticity and viscosity). In this work, a new model is proposed to describe the complicated rheological behaviors in an encapsulating shell of UCA microbubbles by applying the nonlinear 'Cross law' to the shell viscous term in the Marmottant model. The proposed new model was verified by fitting the dynamic responses of UCAs measured with either a high-speed optical imaging system or a light scattering system. The comparison results between the measured radius-time curves and the numerical simulations demonstrate that the 'compression-only' behavior of UCAs can be successfully simulated with the new model. Then, the shell elastic and viscous coefficients of SonoVue microbubbles were evaluated based on the new model simulations, and compared to the results obtained from some existing UCA models. The results confirm the capability of the current model for reducing the dependence of bubble shell parameters on the initial bubble radius, which indicates that the current model might be more comprehensive to describe the complex rheological nature (e.g., 'shear-thinning' and 'strain-softening') in encapsulating shells of UCA microbubbles by taking into account the nonlinear changes of both shell elasticity and shell viscosity.

  5. Modeling complicated rheological behaviors in encapsulating shells of lipid-coated microbubbles accounting for nonlinear changes of both shell viscosity and elasticity

    International Nuclear Information System (INIS)

    Li Qian; Tu Juan; Guo Xiasheng; Zhang Dong; Matula, Thomas J

    2013-01-01

    It has been accepted that the dynamic responses of ultrasound contrast agent (UCA) microbubbles will be significantly affected by the encapsulating shell properties (e.g., shell elasticity and viscosity). In this work, a new model is proposed to describe the complicated rheological behaviors in an encapsulating shell of UCA microbubbles by applying the nonlinear ‘Cross law’ to the shell viscous term in the Marmottant model. The proposed new model was verified by fitting the dynamic responses of UCAs measured with either a high-speed optical imaging system or a light scattering system. The comparison results between the measured radius–time curves and the numerical simulations demonstrate that the ‘compression-only’ behavior of UCAs can be successfully simulated with the new model. Then, the shell elastic and viscous coefficients of SonoVue microbubbles were evaluated based on the new model simulations, and compared to the results obtained from some existing UCA models. The results confirm the capability of the current model for reducing the dependence of bubble shell parameters on the initial bubble radius, which indicates that the current model might be more comprehensive to describe the complex rheological nature (e.g., ‘shear-thinning’ and ‘strain-softening’) in encapsulating shells of UCA microbubbles by taking into account the nonlinear changes of both shell elasticity and shell viscosity. (paper)

  6. Non-linear extension of FFT-based methods accelerated by conjugate gradients to evaluate the mechanical behavior of composite materials

    International Nuclear Information System (INIS)

    Gelebart, Lionel; Mondon-Cancel, Romain

    2013-01-01

    FFT-based methods are used to solve the problem of a heterogeneous unit-cell submitted to periodic boundary conditions, which is of a great interest in the context of numerical homogenization. Recently (in 2010), Brisard and Zeman proposed simultaneously to use Conjugate Gradient based solvers in order to improve the convergence properties (when compared to the basic scheme, proposed initially in 1994). The purpose of the paper is to extend this idea to the case of non-linear behaviors. The proposed method is based on a Newton-Raphson algorithm and can be applied to various kinds of behaviors (time dependant or independent, with or without internal variables) through a conventional integration procedure as used in finite element codes. It must be pointed out that this approach is fundamentally different from the traditional FFT-based approaches which rely on a fixed-point algorithm (e.g. basic scheme, Eyre and Milton accelerated scheme, Augmented Lagrangian scheme, etc.). The method is compared to the basic scheme on the basis of a simple application (a linear elastic spherical inclusion within a non-linear elastic matrix): a low sensitivity to the reference material and an improved efficiency, for a soft or a stiff inclusion, are observed. At first proposed for a prescribed macroscopic strain, the method is then extended to mixed loadings. (authors)

  7. Non-linear calculation of PCRV using dynamic relaxation

    International Nuclear Information System (INIS)

    Schnellenbach, G.

    1979-01-01

    A brief review is presented of a numerical method called the dynamic relaxation method for stress analysis of the concrete in prestressed concrete pressure vessels. By this method the three-dimensional elliptic differential equations of the continuum are changed into the four-dimensional hyperbolic differential equations known as wave equations. The boundary value problem of the static system is changed into an initial and boundary value problem for which a solution exists if the physical system is defined at time t=0. The effect of non-linear stress-strain behaviour of the material as well as creep and cracking are considered

  8. Nonlinear optics

    International Nuclear Information System (INIS)

    Boyd, R.W.

    1992-01-01

    Nonlinear optics is the study of the interaction of intense laser light with matter. This book is a textbook on nonlinear optics at the level of a beginning graduate student. The intent of the book is to provide an introduction to the field of nonlinear optics that stresses fundamental concepts and that enables the student to go on to perform independent research in this field. This book covers the areas of nonlinear optics, quantum optics, quantum electronics, laser physics, electrooptics, and modern optics

  9. Investigation of Deterioration Behavior of Hysteretic Loops in Nonlinear Static Procedure Analysis of Concrete Structures with Shear Walls

    International Nuclear Information System (INIS)

    Ghodrati Amiri, G.; Amidi, S.; Khorasani, M.

    2008-01-01

    In the recent years, scientists developed the seismic rehabilitation of structures and their view points were changed from sufficient strength to the performance of structures (Performance Base Design) to prepare a safe design. Nonlinear Static Procedure analysis (NSP) or pushover analysis is a new method that is chosen for its speed and simplicity in calculations. 'Seismic Rehabilitation Code for Existing Buildings' and FEMA 356 considered this method. Result of this analysis is a target displacement that is the base of the performance and rehabilitation procedure of the structures. Exact recognition of that displacement could develop the workability of pushover analysis. In these days, Nonlinear Dynamic Analysis (NDP) is only method can exactly apply the seismic ground motions. In this case because it consumes time, costs very high and is more difficult than other methods, is not applicable as much as NSP. A coefficient used in NSP for determining the target displacement is C2 (Stiffness and Strength Degradations Coefficient) and is applicable for correcting the errors due to eliminating the stiffness and strength degradations in hysteretic loops. In this study it has been tried to analysis three concrete frames with shear walls by several accelerations that scaled according to FEMA 273 and FEMA 356. These structures were designed with Iranian 2800 standard (vers.3). Finally after the analyzing by pushover method and comparison results with dynamic analysis, calculated C2 was comprised with values in rehabilitation codes

  10. Axial and transverse stress-strain characterization of the EU dipole high current density Nb{sub 3}Sn strand

    Energy Technology Data Exchange (ETDEWEB)

    Nijhuis, A; Ilyin, Y; Abbas, W [Faculty of Science and Technology, Low Temperature Division, University of Twente, PO Box 217, 7500 AE Enschede (Netherlands)], E-mail: a.nijhuis@tnw.utwente.nl

    2008-06-15

    We have measured the critical current (I{sub c}) of a high current density Nb{sub 3}Sn strand subjected to spatial periodic bending, periodic contact stress and uniaxial strain. The strand is destined for the cable-in-conduit conductors (CICC) of the European dipole (EDIPO) 12.5 T superconducting magnet test facility. The spatial periodic bending was applied on the strand, using the bending wavelengths from 5 to 10 mm with a peak bending strain of 1.5%, a periodic contact stress with a periodicity of 4.7 mm and a stress level exceeding 250 MPa. For the uniaxial strain characterization, the voltage-current characteristics were measured with an applied axial strain from -0.9% to +0.3%, with a magnetic field from 6 to 14 T, temperature from 4.2 to 10 K and currents up to almost 900 A. In addition the axial stiffness was determined by a tensile axial stress-strain test. The characterization of the strand is essential for understanding the behaviour of the strand under mainly axial thermal stress variation during cool down and transverse electromagnetic forces during charging, which is essential for the design of the CICC for the dipole magnet. The strand appears to be fully reversible in the compressive regime during the axial strain testing, while in the tensile regime, the behaviour is already irreversibly degraded when reaching the maximum in the critical current versus strain characteristic. The degradation is accentuated by an immediate decrease of the n value by a factor of 2. The parameters for the improved deviatoric strain description are derived from the I{sub c} data, giving the accuracy of the scaling with a standard deviation of 4 A, which is by far within the expected deviation for the large scale strand production of such a high J{sub c} strand. The I{sub c} versus the applied bending strain follows the low resistivity limit, indicative of full interfilament current transfer, while a strong decrease is observed at a peak bending strain of {approx}0

  11. Influence of uneven settlements of the curved glulam frames’ bearings on the cornice node’s stress-strain state

    Directory of Open Access Journals (Sweden)

    Денис Віталійович Михайловський

    2016-07-01

    Full Text Available Comparison analysis of the cornice node’s stress of three-hinged curved glulam frames that caused by uneven settlements of bearings are shown in the article. Three-dimensional finite elements model of the building using LIRA-SAPR 2013 was developed for research. Settlements were determined by the stratified method and by calculations of the system “substructures – foundations – constructions” using physically non-linear soil massive

  12. Ultrasound elastography of the lower uterine segment in women with a previous cesarean section: Comparison of in-/ex-vivo elastography versus tensile-stress-strain-rupture analysis.

    Science.gov (United States)

    Seliger, Gregor; Chaoui, Katharina; Lautenschläger, Christine; Jenderka, Klaus-Vitold; Kunze, Christian; Hiller, Grit Gesine Ruth; Tchirikov, Michael

    2018-06-01

    The purpose of this study was to assess, if the biomechanical properties of the lower uterine segment (LUS) in women with a previous cesarean section (CS) can be determined by ultrasound (US) elastography. The first aim was to establish an ex-vivo LUS tensile-stress-strain-rupture(break point) analysis with the possibility of simultaneously using US elastography. The second aim was to investigate the relationship between measurement results of LUS stiffness using US elastography in-/ex-vivo with results of tensile-stress-strain-rupture analysis, and to compare different US elastography LUS-stiffness-measurement methods ex-vivo. An explorative experimental, in-/ex-vivo US study of women with previous CS was conducted. LUS elasticity was measured by point Shear Wave Elastography (pSWE) and bidimensional Shear-Wave-Elastography (2D-SWE) first in-vivo during preoperative examination within 24 h before repeat CS (including resection of the thinnest part of the LUS = uterine scar area during CS), second within 1 h after operation during the ex-vivo experiment, followed by tensile-stress-strain-rupture analysis. Pearson's correlation coefficient and scatter plots, Bland-Altman plots and paired T-tests, were used. Thirty three women were included in the study; elastography measurements n = 1412. The feasibility of ex-vivo assessment of LUS by quantitative US elastography using pSWE and 2D-SWE to detect stiffness of LUS was demonstrated. The strongest correlation with tensile-stress-strain analysis was found in the US elastography examination carried out with 2D-SWE (0.78, p break point - as a surrogate marker for the risk of rupture of the LUS after CS - is linearly dependent on the thickness of the LUS in the scar area (Coefficient of correlation: 0.79, p even at less stroke/strain than would be expected by their thickness. This study confirms that US elastography can help in determining viscoelastic properties of the LUS in women with a previous CS. The

  13. Mathematical Model of Stress-Strain State of Curved Tube of Non-Circular Cross-Section with Account of Technological Wall Thickness Variation

    Science.gov (United States)

    Pirogov, S. P.; Ustinov, N. N.; Smolin, N. I.

    2018-05-01

    A mathematical model of the stress-strain state of a curved tube of a non-circular cross-section is presented, taking into account the technological wall thickness variation. On the basis of the semi-membrane shell theory, a system of linear differential equations describing the deformation of a tube under the effect of pressure is obtained. To solve the boundary value problem, the method of shooting is applied. The adequacy of the proposed mathematical model is verified by comparison with the experimental data and the results of the calculation of tubes by the energy method.

  14. Neutron diffraction investigation of hysteresis reduction and increase in linearity in the stress-strain response of superelastic NiTi

    International Nuclear Information System (INIS)

    Rathod, C.R.; Clausen, B.; Bourke, M.A.M.; Vaidyanathan, R.

    2006-01-01

    In situ neutron diffraction measurements during loading have been performed on plastically deformed superelastic NiTi samples. The measurements observed retained B19 ' phase in the unloaded state as a result of the plastic deformation in otherwise completely B2 phase samples. A reversible stress-induced B2-B19 ' transformation on application and removal of stress occurred in the presence of this retained B19 ' phase. The amount and orientation of this retained B19 ' phase changed with cycling. Such direct atomic scale observations in the bulk are used here for the first time to qualitatively elucidate the macroscopic stress-strain response in plastically deformed superelastic NiTi

  15. Nonlinear dynamics of structures

    CERN Document Server

    Oller, Sergio

    2014-01-01

    This book lays the foundation of knowledge that will allow a better understanding of nonlinear phenomena that occur in structural dynamics.   This work is intended for graduate engineering students who want to expand their knowledge on the dynamic behavior of structures, specifically in the nonlinear field, by presenting the basis of dynamic balance in non‐linear behavior structures due to the material and kinematics mechanical effects.   Particularly, this publication shows the solution of the equation of dynamic equilibrium for structure with nonlinear time‐independent materials (plasticity, damage and frequencies evolution), as well as those time dependent non‐linear behavior materials (viscoelasticity and viscoplasticity). The convergence conditions for the non‐linear dynamic structure solution  are studied, and the theoretical concepts and its programming algorithms are presented.  

  16. Nonlinear optics

    CERN Document Server

    Bloembergen, Nicolaas

    1996-01-01

    Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe

  17. Dynamical behaviors of the shock compacton in the nonlinearly Schrödinger equation with a source term

    International Nuclear Information System (INIS)

    Yin, Jiuli; Zhao, Liuwei

    2014-01-01

    In this paper, the dynamics from the shock compacton to chaos in the nonlinearly Schrödinger equation with a source term is investigated in detail. The existence of unclosed homoclinic orbits which are not connected with the saddle point indicates that the system has a discontinuous fiber solution which is a shock compacton. We prove that the shock compacton is a weak solution. The Melnikov technique is used to detect the conditions for the occurrence from the shock compacton to chaos and further analysis of the conditions for chaos suppression. The results show that the system turns to chaos easily under external disturbances. The critical parameter values for chaos appearing are obtained analytically and numerically using the Lyapunov exponents and the bifurcation diagrams

  18. Simulation of nonlinear benchmarks and sheet metal forming processes using linear and quadratic solid–shell elements combined with advanced anisotropic behavior models

    Directory of Open Access Journals (Sweden)

    Wang Peng

    2016-01-01

    Full Text Available A family of prismatic and hexahedral solid‒shell (SHB elements with their linear and quadratic versions is presented in this paper to model thin 3D structures. Based on reduced integration and special treatments to eliminate locking effects and to control spurious zero-energy modes, the SHB solid‒shell elements are capable of modeling most thin 3D structural problems with only a single element layer, while describing accurately the various through-thickness phenomena. In this paper, the SHB elements are combined with fully 3D behavior models, including orthotropic elastic behavior for composite materials and anisotropic plastic behavior for metallic materials, which allows describing the strain/stress state in the thickness direction, in contrast to traditional shell elements. All SHB elements are implemented into ABAQUS using both standard/quasi-static and explicit/dynamic solvers. Several benchmark tests have been conducted, in order to first assess the performance of the SHB elements in quasi-static and dynamic analyses. Then, deep drawing of a hemispherical cup is performed to demonstrate the capabilities of the SHB elements in handling various types of nonlinearities (large displacements and rotations, anisotropic plasticity, and contact. Compared to classical ABAQUS solid and shell elements, the results given by the SHB elements show good agreement with the reference solutions.

  19. Long-time and large-distance asymptotic behavior of the current-current correlators in the non-linear Schroedinger model

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Terras, V. [CNRS, ENS Lyon (France). Lab. de Physique

    2010-12-15

    We present a new method allowing us to derive the long-time and large-distance asymptotic behavior of the correlations functions of quantum integrable models from their exact representations. Starting from the form factor expansion of the correlation functions in finite volume, we explain how to reduce the complexity of the computation in the so-called interacting integrable models to the one appearing in free fermion equivalent models. We apply our method to the time-dependent zero-temperature current-current correlation function in the non-linear Schroedinger model and compute the first few terms in its asymptotic expansion. Our result goes beyond the conformal field theory based predictions: in the time-dependent case, other types of excitations than the ones on the Fermi surface contribute to the leading orders of the asymptotics. (orig.)

  20. Long-time and large-distance asymptotic behavior of the current-current correlators in the non-linear Schroedinger model

    International Nuclear Information System (INIS)

    Kozlowski, K.K.; Terras, V.

    2010-12-01

    We present a new method allowing us to derive the long-time and large-distance asymptotic behavior of the correlations functions of quantum integrable models from their exact representations. Starting from the form factor expansion of the correlation functions in finite volume, we explain how to reduce the complexity of the computation in the so-called interacting integrable models to the one appearing in free fermion equivalent models. We apply our method to the time-dependent zero-temperature current-current correlation function in the non-linear Schroedinger model and compute the first few terms in its asymptotic expansion. Our result goes beyond the conformal field theory based predictions: in the time-dependent case, other types of excitations than the ones on the Fermi surface contribute to the leading orders of the asymptotics. (orig.)

  1. EXPERIMENTAL AND THEORETICAL STUDIES OF THE STRESS-STRAIN STATE OF WOOD-CONCRETE AND WOOD-GYPSUM MASONRY

    Directory of Open Access Journals (Sweden)

    Likhacheva Svetlana Yur'evna

    2012-12-01

    The findings of the prototype testing include identification of the two areas of deformations: areas of elastic deformations and areas of intensive development of deformations. The first area of partial elastic deformations is characterized by the linear stress function, while the second area demonstrates that this relationship is nonlinear. Permanent deformations appear as of the startup of the loading process and disproportionate stress is demonstrated throughout the deformation process. However, in the first area (partial elastic deformations residual deformations are so small that this area is considered as the area of "the area of incomplete elasticity".

  2. FRF decoupling of nonlinear systems

    Science.gov (United States)

    Kalaycıoğlu, Taner; Özgüven, H. Nevzat

    2018-03-01

    Structural decoupling problem, i.e. predicting dynamic behavior of a particular substructure from the knowledge of the dynamics of the coupled structure and the other substructure, has been well investigated for three decades and led to several decoupling methods. In spite of the inherent nonlinearities in a structural system in various forms such as clearances, friction and nonlinear stiffness, all decoupling studies are for linear systems. In this study, decoupling problem for nonlinear systems is addressed for the first time. A method, named as FRF Decoupling Method for Nonlinear Systems (FDM-NS), is proposed for calculating FRFs of a substructure decoupled from a coupled nonlinear structure where nonlinearity can be modeled as a single nonlinear element. Depending on where nonlinear element is, i.e., either in the known or unknown subsystem, or at the connection point, the formulation differs. The method requires relative displacement information between two end points of the nonlinear element, in addition to point and transfer FRFs at some points of the known subsystem. However, it is not necessary to excite the system from the unknown subsystem even when the nonlinear element is in that subsystem. The validation of FDM-NS is demonstrated with two different case studies using nonlinear lumped parameter systems. Finally, a nonlinear experimental test structure is used in order to show the real-life application and accuracy of FDM-NS.

  3. Nonlinear FE analysis of reinforced concrete panels subjected to in-plane force

    International Nuclear Information System (INIS)

    Lee, H. P.; Lee, S. J.; Jun, Y. S.; Su, J. M.

    2003-01-01

    Reinforced concrete structures subjected to in-plane force exhibit strong nonlinear behaviour due to complex material properties, cracks, interactions between concrete and steel and shear transfer exists in crack surface. Especially if there is crack formations, nonlinear behaviour increases. Thus the prediction of nonlinear behaviour of reinforced concrete includes failure or crushing is very difficult task. Various constitutive equations for concrete stress-strain relationship to predict nonlinear behaviour of reinforced concrete have been proposed. But the study for reinforced concrete analysis model using plastic material model is still demanded. So the purpose of this research is to formulate standard 8-node shell element using plasticity material model for concrete and to analyze nonlinear behaviour of RC panel subjected to in-plane force

  4. Nonlinear analysis of reinforced concrete beam with/without tension stiffening effect

    International Nuclear Information System (INIS)

    Dede, T.; Ayvaz, Y.

    2009-01-01

    The aim of this paper is to do materially nonlinear failure analysis of RC beam by using finite element method. In the finite element modeling, two different approaches and different tension stress-strain models with/without tension stiffening effect are used by considering two different mesh sizes. In the first approach, the material matrices of concrete and reinforcement are constructed separately, and then superimposed to obtain the element stiffness matrix. In the second approach, the reinforcement is assumed to be uniformly distributed throughout the beam. So, the beam is modeled as a single composite element with increasing the modulus of elasticity of concrete by considering the reinforcement ratio. For these two approaches, elastic-perfectly plastic stress-strain relationship is used for concrete in compression. For the concrete in tension, a stress-strain relationship with/without tension stiffening is used. It is concluded that the approaches and the models considered in this study can be effectively used in the materially nonlinear analysis of RC beams.

  5. [Nonlinear magnetohydrodynamics

    International Nuclear Information System (INIS)

    1994-01-01

    Resistive MHD equilibrium, even for small resistivity, differs greatly from ideal equilibrium, as do the dynamical consequences of its instabilities. The requirement, imposed by Faraday's law, that time independent magnetic fields imply curl-free electric fields, greatly restricts the electric fields allowed inside a finite-resistivity plasma. If there is no flow and the implications of the Ohm's law are taken into account (and they need not be, for ideal equilibria), the electric field must equal the resistivity times the current density. The vanishing of the divergence of the current density then provides a partial differential equation which, together with boundary conditions, uniquely determines the scalar potential, the electric field, and the current density, for any given resistivity profile. The situation parallels closely that of driven shear flows in hydrodynamics, in that while dissipative steady states are somewhat more complex than ideal ones, there are vastly fewer of them to consider. Seen in this light, the vast majority of ideal MHD equilibria are just irrelevant, incapable of being set up in the first place. The steady state whose stability thresholds and nonlinear behavior needs to be investigated ceases to be an arbitrary ad hoc exercise dependent upon the whim of the investigator, but is determined by boundary conditions and choice of resistivity profile

  6. Nonlinear Science

    CERN Document Server

    Yoshida, Zensho

    2010-01-01

    This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl

  7. Nonlinear oscillations

    CERN Document Server

    Nayfeh, Ali Hasan

    1995-01-01

    Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

  8. Relationship between anelastic and non-linear visco-plastic behavior of 316 stainless steel at low homologous temperature

    International Nuclear Information System (INIS)

    Nir, N.; Huang, F.H.; Hart, E.W.; Li, C.Y.

    1976-05-01

    At low homologous temperature the plastic strain rate seems to be controlled largely by dislocation glide friction. However, since a sizeable fraction of the applied stress sigma is dissipated in overcoming the strong barriers due to dislocation tangles generated by strain hardening, only a portion of the applied stress is actually expended against the frictional resistance. A recent model for this process includes the role of dislocation pile-ups at the strong barriers. The pile-ups provide a mechanism for producing the internal back stresses that limit the effective frictional stress. The also appear in the deformation as a stored anelastic strain component. The resultant behavior at low temperature and high stress is similar to that proposed by Grupta and Li. The same model also predicts an anelastic behavior at low stress. Measurements at both high and low stress levels on 316 Stainless Steel have now shown that the predictions of the model are quantitatively consistent at both stress levels

  9. A Study of the Behavior and Micromechanical Modelling of Granular Soil. Volume 3. A Numerical Investigation of the Behavior of Granular Media Using Nonlinear Discrete Element Simulation

    Science.gov (United States)

    1991-05-22

    plasticity, including those of DiMaggio and Sandier (1971), Baladi and Rohani (1979), Lade (1977), Prevost (1978, 1985), Dafalias and Herrmann (1982). In...distribution can be achieved only if the behavior at the contact is fully understood and rigorously modelled. 18 REFERENCES Baladi , G.Y. and Rohani, B. (1979

  10. Experimental assessment and numerical modeling of the nonlinear behavior of the masonry shear walls under in-plane cyclic loading considering the brickwork-setting effect

    Directory of Open Access Journals (Sweden)

    Amir Hossein Karimi

    2017-08-01

    Full Text Available In this article, the main purpose is nonlinear analysis of the cyclic behavior of the masonry shear walls including brickwork setting using finite element method. Three different brickwork-settings including running bond style, herringbone style and Zarbi style (herreh style were investigated. To this end, the walls (in dimension of 195×1500×1720 mm were tested in the laboratory and then were simulated using macro modeling method by Abaqus software, and their hysteretic curves was drawn. The concrete damaged plasticity criteria in the Abaqus software is a model used in this research.In this method, the main failure mechanisms of fracture are cracking in tension and crushing in compression. The macro modeling method was used for numerical assessment of the masonry walls. After numerical modeling and drawing hysteretic curves and contrasting them with laboratory results, it was proven that the concrete damaged plasticity model, which is behavioral model for simulating concrete material, can be used for modeling masonry materials under seismic loading. However, this model cannot be used to simulate pinching effect in hysteretic curve drawn from seismic loading. The envelope curve resulted from the numerical analysis of all three brickwork layouts had a good agreement with the results of the laboratory tests, but in Hysteretic curve of Herringbone style and Zarbi style the pinching effect did not match experimental results

  11. Study of a Steel’s Energy Absorption System for Heavy Quadricycles and Nonlinear Explicit Dynamic Analysis of its Behavior under Impact by FEM

    Science.gov (United States)

    López Campos, José Ángel; Segade Robleda, Abraham; Vilán Vilán, José Antonio; García Nieto, Paulino José; Blanco Cordero, Javier

    2015-01-01

    Current knowledge of the behavior of heavy quadricycles under impact is still very poor. One of the most significant causes is the lack of energy absorption in the vehicle frame or its steel chassis structure. For this reason, special steels (with yield stresses equal to or greater than 350 MPa) are commonly used in the automotive industry due to their great strain hardening properties along the plastic zone, which allows good energy absorption under impact. This paper presents a proposal for a steel quadricycle energy absorption system which meets the percentages of energy absorption for conventional vehicles systems. This proposal is validated by explicit dynamics simulation, which will define the whole problem mathematically and verify behavior under impact at speeds of 40 km/h and 56 km/h using the finite element method (FEM). One of the main consequences of this study is that this FEM–based methodology can tackle high nonlinear problems like this one with success, avoiding the need to carry out experimental tests, with consequent economical savings since experimental tests are very expensive. Finally, the conclusions from this innovative research work are given. PMID:28793607

  12. Study of a Steel’s Energy Absorption System for Heavy Quadricycles and Nonlinear Explicit Dynamic Analysis of its Behavior under Impact by FEM

    Directory of Open Access Journals (Sweden)

    José Ángel López Campos

    2015-10-01

    Full Text Available Current knowledge of the behavior of heavy quadricycles under impact is still very poor. One of the most significant causes is the lack of energy absorption in the vehicle frame or its steel chassis structure. For this reason, special steels (with yield stresses equal to or greater than 350 MPa are commonly used in the automotive industry due to their great strain hardening properties along the plastic zone, which allows good energy absorption under impact. This paper presents a proposal for a steel quadricycle energy absorption system which meets the percentages of energy absorption for conventional vehicles systems. This proposal is validated by explicit dynamics simulation, which will define the whole problem mathematically and verify behavior under impact at speeds of 40 km/h and 56 km/h using the finite element method (FEM. One of the main consequences of this study is that this FEM–based methodology can tackle high nonlinear problems like this one with success, avoiding the need to carry out experimental tests, with consequent economical savings since experimental tests are very expensive. Finally, the conclusions from this innovative research work are given.

  13. Prediction of inelastic behavior and creep-fatigue life of perforated plates

    International Nuclear Information System (INIS)

    Igari, Toshihide; Yamauchi, Masafumi; Nomura, Shinichi.

    1992-01-01

    Prediction methods of macroscopic and local stress-strain behaviors of perforated plates in plastic and creep regime are proposed in this paper, and are applied to the creep-fatigue life prediction of perforated plates. Both equivalent-solid-plate properties corresponding to the macroscopic behavior and the stress-strain concentration around a hole were obtained by assuming the analogy between plasticity and creep and also by extending the authors' proposal in creep condition. The perforated plates which were made of Hastelloy XR were subjected to the strain-controlled cyclic test at 950degC in air in order to experimentally obtain the macroscopic behavior such as the cyclic stress-strain curve and creep-fatigue life around a hole. The results obtained are summarized as follows. (1) The macroscopic behavior of perforated plates including cyclic stress-strain behavior and relaxation is predictable by using the proposed method in this paper. (2) The creep-fatigue life around a hole can be predicted by using the proposed method for stress-strain concentration around a hole. (author)

  14. The effect of non-local higher order stress to predict the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow

    International Nuclear Information System (INIS)

    Mohammadimehr, M.; Mohammadi-Dehabadi, A.A.; Maraghi, Z. Khoddami

    2017-01-01

    In this research, the effect of non-local higher order stress on the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow resting on elastic foundation is investigated. Physical intuition reveals that increasing nanoscale stress leads to decrease the stiffness of nanostructure which firstly established by Eringen's non-local elasticity theory (previous nonlocal method) while many of papers have concluded otherwise at microscale based on modified couple stress, modified strain gradient theories and surface stress effect. The non-local higher order stress model (new nonlocal method) is used in this article that has been studied by few researchers in other fields and the results from the present study show that the trend of the new nonlocal method and size dependent effect including modified couple stress theory is the same. In this regard, the nonlinear motion equations are derived using a variational principal approach considering essential higher-order non-local terms. The surrounded elastic medium is modeled by Pasternak foundation to increase the stability of system where the fluid flow may cause system instability. Effects of various parameters such as non-local parameter, elastic foundation coefficient, and fluid flow velocity on the stability and dimensionless natural frequency of nanotube are investigated. The results of this research show that the small scale parameter based on higher order stress help to increase the natural frequency which has been approved by other small scale theories such as strain gradient theory, modified couple stress theory and experiments, and vice versa for previous nonlocal method. This study may be useful to measure accurately the vibration characteristics of nanotubes conveying viscous nanoflow and to design nanofluidic devices for detecting blood Glucose.

  15. The effect of non-local higher order stress to predict the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadimehr, M., E-mail: mmohammadimehr@kashanu.ac.ir [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of); Mohammadi-Dehabadi, A.A. [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of); Department of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran, Islamic Republic of); Maraghi, Z. Khoddami [Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, P.O. Box: 87317-53153, Kashan (Iran, Islamic Republic of)

    2017-04-01

    In this research, the effect of non-local higher order stress on the nonlinear vibration behavior of carbon nanotube conveying viscous nanoflow resting on elastic foundation is investigated. Physical intuition reveals that increasing nanoscale stress leads to decrease the stiffness of nanostructure which firstly established by Eringen's non-local elasticity theory (previous nonlocal method) while many of papers have concluded otherwise at microscale based on modified couple stress, modified strain gradient theories and surface stress effect. The non-local higher order stress model (new nonlocal method) is used in this article that has been studied by few researchers in other fields and the results from the present study show that the trend of the new nonlocal method and size dependent effect including modified couple stress theory is the same. In this regard, the nonlinear motion equations are derived using a variational principal approach considering essential higher-order non-local terms. The surrounded elastic medium is modeled by Pasternak foundation to increase the stability of system where the fluid flow may cause system instability. Effects of various parameters such as non-local parameter, elastic foundation coefficient, and fluid flow velocity on the stability and dimensionless natural frequency of nanotube are investigated. The results of this research show that the small scale parameter based on higher order stress help to increase the natural frequency which has been approved by other small scale theories such as strain gradient theory, modified couple stress theory and experiments, and vice versa for previous nonlocal method. This study may be useful to measure accurately the vibration characteristics of nanotubes conveying viscous nanoflow and to design nanofluidic devices for detecting blood Glucose.

  16. Existence and Global Asymptotic Behavior of Positive Solutions for Nonlinear Fractional Dirichlet Problems on the Half-Line

    Directory of Open Access Journals (Sweden)

    Imed Bachar

    2014-01-01

    Full Text Available We are interested in the following fractional boundary value problem: Dαu(t+atuσ=0, t∈(0,∞, limt→0⁡t2-αu(t=0, limt→∞⁡t1-αu(t=0, where 1<α<2, σ∈(-1,1, Dα is the standard Riemann-Liouville fractional derivative, and a is a nonnegative continuous function on (0,∞ satisfying some appropriate assumptions related to Karamata regular variation theory. Using the Schauder fixed point theorem, we prove the existence and the uniqueness of a positive solution. We also give a global behavior of such solution.

  17. Evaluation of anisotropic effective stress-strain criteria for the biaxial yield and flow of 2024 aluminum tubes

    International Nuclear Information System (INIS)

    Stout, M.G.; Hecker, S.S.; Bourcier, R.

    1983-01-01

    2024 aluminum tubes, heat treated to a T6 and T8 temper, were tested in combinations of tension-internal pressure and tension-torsion loading. Yield loci and flow behavior were determined for both modes of loading and compared to theoretical predictions. Both tempers of 2024 aluminum exhibited crystallographic textures and anisotropic yield and flow. Hill's quadratic yield criterion and the associated flow rule under-estimate balanced biaxial yield and flow, which is consistent with hydraulic bulge data on other face-centered cubic metals. Hill's nonquadratic criterion, which adds one additional parameter, and Bassani's criterion, which adds two parameters, predict the anisotropic yield behavior much more accurately. Predictions of the complete flow behavior, including strain paths, with these anisotropic criteria could be improved markedly by including provisions for planar anisotropy

  18. Incorporation of amphiphilic ruthenium(II) ammine complexes into Langmuir-Blodgett thin films with switchable quadratic nonlinear optical behavior.

    Science.gov (United States)

    Boubekeur-Lecaque, Leïla; Coe, Benjamin J; Harris, James A; Helliwell, Madeleine; Asselberghs, Inge; Clays, Koen; Foerier, Stijn; Verbiest, Thierry

    2011-12-19

    Nine nonlinear optical (NLO) chromophores with pyridinium electron acceptors have been synthesized by complexing new proligands with {Ru(II)(NH(3))(5)}(2+) electron-donor centers. The presence of long alkyl/fluoroalkyl chain substituents imparts amphiphilic properties, and these cationic complexes have been characterized as their PF(6)(-) salts by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. Each complex shows three reversible/quasireversible redox processes; a Ru(III/II) oxidation and two ligand-based reductions. The energies of the intense visible d → π* metal-to-ligand charge-transfer (MLCT) absorptions correlate to some extent with the ligand reduction potentials. (1)H NMR spectroscopy also provides insights into the relative electron-withdrawing strengths of the new ligands. Single crystal X-ray structures have been determined for two of the proligand salts and one complex salt, [Ru(II)(NH(3))(5)(4-C(16)H(33)PhQ(+))]Cl(3)·3.25H(2)O (PhQ(+) = N-phenyl-4,4'-bipyridinium), showing centrosymmetric packing structures in each case. The PF(6)(-) analogue of the latter complex has been used to deposit reproducibly high-quality, multilayered Langmuir-Blodgett (LB) thin films. These films show a strong second harmonic generation (SHG) response from a 1064 nm laser; their MLCT absorbance increases linearly with the number of layers (N) and I(2ω)/I(ω)(2) (I(2ω) = intensity at 532 nm; I(ω) = intensity at 1064 nm) scales quadratically with N, consistent with homogeneous deposition. LB films on indium tin oxide (ITO)-coated glass show electrochemically induced switching of the SHG response, with a decrease in activity of about 50% on Ru(II) → Ru(III) oxidation. This effect is reversible, but reproducible over only a few cycles before the signal from the Ru(II) species diminishes. This work extrapolates our original solution studies (Coe, B. J. et al. Angew. Chem., Int. Ed.1999, 38, 366) to the first demonstration of

  19. Particles geometry influence in the thermal stress level in an SiC reinforced aluminum matrix composite considering the material non-linear behavior

    International Nuclear Information System (INIS)

    Miranda, Carlos A. de J.; Libardi, Rosani M.P.; Boari, Zoroastro de M.

    2009-01-01

    An analytical methodology was developed to predict the thermal stress level that occurs in a metallic matrix composite reinforced with SiC particles, when the temperature decreases from 600 deg C to 20 deg C during the fabrication process. This analytical development is based on the Eshelby method, dislocation mechanisms, and the Maxwell-Boltzmann distribution model. The material was assumed to have a linear elastic behavior. The analytical results from this formulation were verified against numerical linear analyses that were performed over a set of random non-uniform distribution of particles that covers a wide range of volumetric ratios. To stick with the analytical hypothesis, particles with round geometry were used. Each stress distribution, represented by the isostress curves at ΔT=-580 deg C, was analyzed with an image analyzer. A statistical procedure was applied to obtain the most probable thermal stress level. Analytical and numerical results compared very well. Plastic deformation as well as particle geometry can alter significantly the stress field in the material. To account for these effects, in this work, several numerical analyses were performed considering the non-linear behavior for the aluminum matrix and distinct particle geometries. Two distinct sets of data with were used. To allow a direct comparison, the first set has the same models (particle form, size and distribution) as used previously. The second set analyze quadrilateral particles and present very tight range of volumetric ratio, closer to what is found in actual SiC composites. A simple and fast algorithm was developed to analyze the new results. The comparison of these results with the previous ones shows, as expected, the strong influence of the elastic-plastic behavior of the aluminum matrix on the composite thermal stress distribution due to its manufacturing process and shows, also, a small influence of the particles geometry and volumetric ratio. (author)

  20. Nonlinear systems

    CERN Document Server

    Palmero, Faustino; Lemos, M; Sánchez-Rey, Bernardo; Casado-Pascual, Jesús

    2018-01-01

    This book presents an overview of the most recent advances in nonlinear science. It provides a unified view of nonlinear properties in many different systems and highlights many  new developments. While volume 1 concentrates on mathematical theory and computational techniques and challenges, which are essential for the study of nonlinear science, this second volume deals with nonlinear excitations in several fields. These excitations can be localized and transport energy and matter in the form of breathers, solitons, kinks or quodons with very different characteristics, which are discussed in the book. They can also transport electric charge, in which case they are known as polarobreathers or solectrons. Nonlinear excitations can influence function and structure in biology, as for example, protein folding. In crystals and other condensed matter, they can modify transport properties, reaction kinetics and interact with defects. There are also engineering applications in electric lattices, Josephson junction a...

  1. Stress-strain relation of bentonite at undrained shear. Laboratory tests to investigate the influence of material composition and test technique

    Energy Technology Data Exchange (ETDEWEB)

    Dueck, Ann; Boergesson, Lennart; Johannesson, Lars-Erik (Clay Technology AB, Lund (Sweden))

    2010-12-15

    This report describes a laboratory study conducted to update the material model of the buffer material used in the analyses of the effect of a rock shear through a deposition hole. The study considers some new conditions and is especially focused on the reference case with MX-80Ca developed for SR-Site (MX-80 ion exchanged to Ca). The material model is based on relations between density, swelling pressure, shear strength and rate of strain. The reference model is described by Boergesson et al. (2010). The laboratory study is focused on undrained stress-strain-strength properties, which have been studied mainly by conducting triaxial tests and unconfined compression tests. The test results are compared to the earlier measurements and models which show that the new results fit very well into the general picture and models. For the new conditions suitable values of constants included in the model are proposed

  2. Stress-strain relation of bentonite at undrained shear. Laboratory tests to investigate the influence of material composition and test technique

    International Nuclear Information System (INIS)

    Dueck, Ann; Boergesson, Lennart; Johannesson, Lars-Erik

    2010-12-01

    This report describes a laboratory study conducted to update the material model of the buffer material used in the analyses of the effect of a rock shear through a deposition hole. The study considers some new conditions and is especially focused on the reference case with MX-80Ca developed for SR-Site (MX-80 ion exchanged to Ca). The material model is based on relations between density, swelling pressure, shear strength and rate of strain. The reference model is described by Boergesson et al. (2010). The laboratory study is focused on undrained stress-strain-strength properties, which have been studied mainly by conducting triaxial tests and unconfined compression tests. The test results are compared to the earlier measurements and models which show that the new results fit very well into the general picture and models. For the new conditions suitable values of constants included in the model are proposed

  3. Analysis of the effects of non-supine sleeping positions on the stress, strain, deformation and intraocular pressure of the human eye

    Science.gov (United States)

    Volpe, Peter A.

    This thesis presents analytical models, finite element models and experimental data to investigate the response of the human eye to loads that can be experienced when in a non-supine sleeping position. The hypothesis being investigated is that non-supine sleeping positions can lead to stress, strain and deformation of the eye as well as changes in intraocular pressure (IOP) that may exacerbate vision loss in individuals who have glaucoma. To investigate the quasi-static changes in stress and internal pressure, a Fluid-Structure Interaction simulation was performed on an axisymmetrical model of an eye. Common Aerospace Engineering methods for analyzing pressure vessels and hyperelastic structural walls are applied to developing a suitable model. The quasi-static pressure increase was used in an iterative code to analyze changes in IOP over time.

  4. Numerical study of the stress-strain state of reinforced plate on an elastic foundation by the Bubnov-Galerkin method

    Science.gov (United States)

    Beskopylny, Alexey; Kadomtseva, Elena; Strelnikov, Grigory

    2017-10-01

    The stress-strain state of a rectangular slab resting on an elastic foundation is considered. The slab material is isotropic. The slab has stiffening ribs that directed parallel to both sides of the plate. Solving equations are obtained for determining the deflection for various mechanical and geometric characteristics of the stiffening ribs which are parallel to different sides of the plate, having different rigidity for bending and torsion. The calculation scheme assumes an orthotropic slab having different cylindrical stiffness in two mutually perpendicular directions parallel to the reinforcing ribs. An elastic foundation is adopted by Winkler model. To determine the deflection the Bubnov-Galerkin method is used. The deflection is taken in the form of an expansion in a series with unknown coefficients by special polynomials, which are a combination of Legendre polynomials.

  5. Experimental and theoretical studies into the stress-strain state of the purlin supported by sandwich panels

    Directory of Open Access Journals (Sweden)

    Danilov Aleksandr Ivanovich

    2014-12-01

    Full Text Available In the article, the co-authors analyze the findings of the experimental and theoretical studies into the real behaviour of a thin-walled cold-formed purlin as part of the roof structure made of sandwich panels. The roof structure fragment was tested; displacements and stresses, that the purlin was exposed to, were identified in respect of each loading increment. NASTRAN software was employed to perform the numerical analysis of the roof structure, pre-exposed to experimental tests, in the geometrically and physically non-linear setting. The finite element model, generated as a result (the numerical analysis pattern, is sufficiently well-set, given the proposed grid of elements, and it ensures reasonably trustworthy results. The diagrams describing the stress/displacement to the load ratio and obtained numerically are consistent with those generated experimentally. The gap between the critical loading values reaches 4%. Analytical and experimental findings demonstrate their close conformity, and this fact may justify the application of the numerical model, generated within the framework of this research project, in the course of any further research actions. The co-authors have identified that the exhaustion of the bearing capacity occurs due to the loss of the buckling resistance as a result of the lateral torsional buckling.

  6. Refined Modeling of Flexural Deformation of Layered Plates with a Regular Structure Made from Nonlinear Hereditary Materials

    Science.gov (United States)

    Yankovskii, A. P.

    2018-01-01

    On the basis of constitutive equations of the Rabotnov nonlinear hereditary theory of creep, the problem on the rheonomic flexural behavior of layered plates with a regular structure is formu-lated. Equations allowing one to describe, with different degrees of accuracy, the stress-strain state of such plates with account of their weakened resistance to transverse shear were ob-tained. From them, the relations of the nonclassical Reissner- and Reddytype theories can be found. For axially loaded annular plates clamped at one edge and loaded quasistatically on the other edge, a simplified version of the refined theory, whose complexity is comparable to that of the Reissner and Reddy theories, is developed. The flexural strains of such metal-composite annular plates in shortterm and long-term loadings at different levels of heat action are calcu-lated. It is shown that, for plates with a relative thickness of order of 1/10, neither the classical theory, nor the traditional nonclassical Reissner and Reddy theories guarantee reliable results for deflections even with the rough 10% accuracy. The accuracy of these theories decreases at elevated temperatures and with time under long-term loadings of structures. On the basic of relations of the refined theory, it is revealed that, in bending of layered metal-composite heat-sensitive plates under elevated temperatures, marked edge effects arise in the neighborhood of the supported edge, which characterize the shear of these structures in the transverse direction

  7. Effects of mean strain on the random cyclic stress-strain relations of 0Cr18Ni10Ti pipe steel

    International Nuclear Information System (INIS)

    Zhao Yongxiang; Yang Bing

    2005-01-01

    Experimental study is performed for the effects of the mean strain on the random cyclic stress-strain relations of the new nuclear material, 0Cr18Ni10Ti pipe steel. From saving the size of specimens, an improved maximum likelihood fatigue test method is proposed to operate the present strain-controlled fatigue tests. Six straining ratios, -1, -0.52, -0.22, 0.029, 0.18, and 0.48, respectively, are applied to study the effects. Fatigue test has been carried out on totally 104 specimens. The test results reveal that the material exhibits a Masing behaviour and the saturation hysteresis loops under the six ratios hold an entirely relaxation effect of mean stress. There is no effectively method for the description of the mean straining effects under this case. Previous Zhao's random stress-strain relations are therefore applied to characterizing effectively the scattering test data under the six ratios on a basis of Ramberg-Osgood equation. Then the effects of the ratios are analyzed respectively on the average stress amplitudes, the standard deviations of the stress amplitudes, and the stress amplitudes under different survival probabilities and confidences. The results reveal that the ratios act a relatively decreasing effect to the stress amplitudes under higher survival probabilities and confidences. The strongest effect appears at the ratio of 0.029, and a weaker effect acts as the distance increase of the ratio from the zero. In addition, it is indicated that the effects from the sense of average fatigue lives might result in a wrong conclusion. The effects can be appropriately assessed from a probabilistic sense to take into account the scattering regularity of test data and the size of sampling. (author)

  8. Variations of fracture toughness and stress-strain curve of cold worked stainless steel and their influence on failure strength of cracked pipe

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2016-01-01

    In order to assess failure probability of cracked components, it is important to know the variations of the material properties and their influence on the failure load assessment. In this study, variations of the fracture toughness and stress-strain curve were investigated for cold worked stainless steel. The variations of the 0.2% proof and ultimate strengths obtained using 8 specimens of 20% cold worked stainless steel (CW20) were 77 MPa and 81 MPa, respectively. The respective variations were decreased to 13 and 21 MPa for 40% cold worked material (CW40). Namely, the variation in the tensile strength was decreased by hardening. The COVs (coefficients of variation) of fracture toughness were 7.3% and 16.7% for CW20 and CW40, respectively. Namely, the variation in the fracture toughness was increased by hardening. Then, in order to investigate the influence of the variations in the material properties on failure load of a cracked pipe, flaw assessments were performed for a cracked pipe subjected to a global bending load. Using the obtained material properties led to variation in the failure load. The variation in the failure load of the cracked pipe caused by the variation in the stress-strain curve was less than 1.5% for the COV. The variation in the failure load caused by fracture toughness variation was relatively large for CW40, although it was less than 2.0% for the maximum case. It was concluded that the hardening induced by cold working does not cause significant variation in the failure load of cracked stainless steel pipe. (author)

  9. Variational principles for nonlinear piezoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Ramos, R.; Guinovart-Diaz, R. [Universidad de la Habana, Facultad de Matematica y Computacion, Vedado, Habana (Cuba); Pobedria, B.E. [Moscow State University M. V. Lomonosov, Composites Department, Moscow (Russian Federation); Padilla, P. [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas (IIMAS), Cd. Universitaria, Mexico D.F. (Mexico); Bravo-Castillero, J. [Universidad de la Habana, Facultad de Matematica y Computacion, Vedado, Habana (Cuba); Campus Estado de Mexico. Division de Arquitectura e Ingenieria, Instituto Tecnologico de Estudios Superiores de Monterrey, Atizapan de Zaragoza, Estado de Mexico (Mexico); Maugin, G.A. [Universite Pierre et Marie Curie. Case 162, UMR 7607 CNRS, Laboratoire de Modelisation en Mecanique, Paris Cedex 05 (France)

    2004-12-01

    In the present paper, we consider the behavior of nonlinear piezoelectric materials by generalization for this case of the Hashin-Shtrikman variational principles. The new general formulation used here differs from others, because, it gives the possibility to evaluate the upper and lower Hashin-Shtrikman bounds for specific physical nonlinearities of piezoelectric materials. Geometrical nonlinearities are not considered. (orig.)

  10. Nonlinear optics

    CERN Document Server

    Boyd, Robert W

    2013-01-01

    Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q

  11. [Non-linear System Dynamics Simulation Modeling of Adolescent Obesity: Using Korea Youth Risk Behavior Web-based Survey].

    Science.gov (United States)

    Lee, Hanna; Park, Eun Suk; Yu, Jae Kook; Yun, Eun Kyoung

    2015-10-01

    The purpose of this study was to develop a system dynamics model for adolescent obesity in Korea that could be used for obesity policy analysis. On the basis of the casual loop diagram, a model was developed by converting to stock and flow diagram. The Vensim DSS 5.0 program was used in the model development. We simulated method of moments to the calibration of this model with data from The Korea Youth Risk Behavior Web-based Survey 2005 to 2013. We ran the scenario simulation. This model can be used to understand the current adolescent obesity rate, predict the future obesity rate, and be utilized as a tool for controlling the risk factors. The results of the model simulation match well with the data. It was identified that a proper model, able to predict obesity probability, was established. These results of stock and flow diagram modeling in adolescent obesity can be helpful in development of obesity by policy planners and other stakeholders to better anticipate the multiple effects of interventions in both the short and the long term. In the future we suggest the development of an expanded model based on this adolescent obesity model.

  12. Nonlinear behavior analysis of split-winding dry-type transformer using a new star model and a coupled field-circuit approach

    Directory of Open Access Journals (Sweden)

    Azizian Davood

    2016-12-01

    Full Text Available Regarding the importance of short circuit and inrush current simulations in the split-winding transformer, a novel nonlinear equivalent circuit is introduced in this paper for nonlinear simulation of this transformer. The equivalent circuit is extended using the nonlinear inductances. Employing a numerical method, leakage and magnetizing inductances in the split-winding transformer are extracted and the nonlinear model inductances are estimated using these inductances. The introduced model is validated and using this nonlinear model, inrush and short-circuit currents are calculated. It has been seen that the introduced model is valid and suitable for simulations of the split-winding transformer due to various loading conditions. Finally, the effects of nonlinearity of the model inductances are discussed in the following.

  13. Nonlinear systems

    National Research Council Canada - National Science Library

    Drazin, P. G

    1992-01-01

    This book is an introduction to the theories of bifurcation and chaos. It treats the solution of nonlinear equations, especially difference and ordinary differential equations, as a parameter varies...

  14. Nonlinear analysis

    CERN Document Server

    Gasinski, Leszek

    2005-01-01

    Hausdorff Measures and Capacity. Lebesgue-Bochner and Sobolev Spaces. Nonlinear Operators and Young Measures. Smooth and Nonsmooth Analysis and Variational Principles. Critical Point Theory. Eigenvalue Problems and Maximum Principles. Fixed Point Theory.

  15. Determination of the stress-strain curve in specimens of Scots pine for numerical simulation of defect free beams

    Directory of Open Access Journals (Sweden)

    Baño, V.

    2012-06-01

    Full Text Available The objective of this paper is to develop a twodimensional numerical model to simulate the response of Scots pine (Pinus sylvestris L. defect free timber members in order to predict the behaviour of these members when subjected to external forces. For this purpose, data of the mechanical properties of Scots pine were obtained by performing experimental tests on specimens. We determined the stresses and deformations of timber beams in the elastic-plastic and plastic phases. In addition, we developed a finite element software that considered the orthotropic nature of timber, the non-linearity of the compression-reduction branch and the differing moduli of elasticity in tension and compression for Scots pine beams free from defects. The software developed simulates an experimental four point bending test according to UNE-EN 408 Standard.

    El objetivo de este trabajo es el desarrollo de un modelo numérico bidimensional de piezas de madera de Pinus sylvestris L. libre de defectos que prediga su comportamiento frente a solicitaciones externas. Para su desarrollo, fue necesario realizar ensayos experimentales sobre probetas de pequeño tamaño con el fin de obtener los datos de las propiedades mecánicas para el Pinus sylvestris L. de procedencia española. A partir de los datos experimentales obtenidos, se desarrolla un programa de elementos finitos que considera la ortotropía de la madera, la no linealidad de la rama compresión-acortamiento y los distintos módulos de elasticidad a tracción y a compresión para vigas libres de defectos. El programa simula el ensayo experimental de flexión en cuatro puntos según la Norma UNE-EN 408 y aborda la determinación de las tensiones y deformaciones de las vigas de madera en las tres fases de comportamiento: elástica, elastoplástica y plástica.

  16. The healing stages of an intramedullary implanted tibia: A stress strain comparative analysis of the calcification process

    Science.gov (United States)

    Filardi, Vincenzo

    2015-01-01

    Aims The extended usage of unreamed tibial nailing resulted in reports of an increased rate of complications, especially for the distal portion of the tibia. Unreamed nailing favours biology at the expense of the achievable mechanical stability, it is therefore of interest to define the limits of the clinical indications for this method. Extra-articular fractures of the distal tibial metaphysis, meta-diaphyseal junction, and adjacent diaphysis are distinct in their management from impaction derived ‘‘pilon’’ type fractures and mid-diaphyseal fractures. The goals of this work were to gain a thorough understanding of the load-sharing mechanism between unreamed nail and bones in a fractured tibia. With this purpose a complete model of the human leg was realised, simulating a mid-diaphyseal fracture, classified as A2 type 1, according to the AO classification. The analysis of the entire chain allows to have a complete picture of the stress distribution and of the most stressed bones and soft tissues, but, more importantly can overcome problems connected with boundary conditions imposed at single bony components. Methods Model consists of six bony structures: pelvis, femur, patella, fibula, tibia, and a simplified lump of the feet, configured in a standing up position. Their articular cartilage layers, were simulated by 3D membranes of opportune stiffness connecting the different segments. Moreover an unreamed intra-medullary nail Expert Tibial Nail (DePuy Synthes®) stabilized the fractured tibia. A load of 700 N has been applied at the top of pelvis and a part the feet, at the tip, was rigidly fixed. Five different contact interfaces have been imposed at the different bony surfaces in contact. Results Three different conditions were analysed: the initially healthy tibia, the A2 type 1 fractured tibia with the Expert tibial nail implanted, and the follow up stage after complete healing of tibia. Non-linear finite element analysis of the models were performed

  17. Studies of biaxial mechanical properties and nonlinear finite element modeling of skin.

    Science.gov (United States)

    Shang, Xituan; Yen, Michael R T; Gaber, M Waleed

    2010-06-01

    The objective of this research is to conduct mechanical property studies of skin from two individual but potentially connected aspects. One is to determine the mechanical properties of the skin experimentally by biaxial tests, and the other is to use the finite element method to model the skin properties. Dynamic biaxial tests were performed on 16 pieces of abdominal skin specimen from rats. Typical biaxial stress-strain responses show that skin possesses anisotropy, nonlinearity and hysteresis. To describe the stress-strain relationship in forms of strain energy function, the material constants of each specimen were obtained and the results show a high correlation between theory and experiments. Based on the experimental results, a finite element model of skin was built to model the skin's special properties including anisotropy and nonlinearity. This model was based on Arruda and Boyce's eight-chain model and Bischoff et al.'s finite element model of skin. The simulation results show that the isotropic, nonlinear eight-chain model could predict the skin's anisotropic and nonlinear responses to biaxial loading by the presence of an anisotropic prestress state.

  18. A kinematic hardening constitutive model for the uniaxial cyclic stress-strain response of magnesium sheet alloys at room temperature

    Science.gov (United States)

    He, Zhitao; Chen, Wufan; Wang, Fenghua; Feng, Miaolin

    2017-11-01

    A kinematic hardening constitutive model is presented, in which a modified form of von Mises yield function is adopted, and the initial asymmetric tension and compression yield stresses of magnesium (Mg) alloys at room temperature (RT) are considered. The hardening behavior was classified into slip, twinning, and untwinning deformation modes, and these were described by two forms of back stress to capture the mechanical response of Mg sheet alloys under cyclic loading tests at RT. Experimental values were obtained for AZ31B-O and AZ31B sheet alloys under both tension-compression-tension (T-C-T) and compression-tension (C-T) loadings to calibrate the parameters of back stresses in the proposed model. The predicted parameters of back stresses in the twinning and untwinning modes were expressed as a cubic polynomial. The predicted curves based on these parameters showed good agreement with the tests.

  19. The nonlinear Maxwell-type model for viscoelastoplastic materials: simulation of temperature influence on creep, relaxation and strain-stress curves

    Directory of Open Access Journals (Sweden)

    Andrew V. Khokhlov

    2017-04-01

    Full Text Available The nonlinear Maxwell-type constitutive relation with two arbitrary material functions for viscoelastoplastic multi-modulus materials is studied analytically in uniaxial isothermic case to reveal the model abilities and applicability scope and to develop techniques of its identification, tuning and fitting. The constitutive equation is aimed at adequate modeling of the rheological phenomena set which is typical for reonomic materials exhibiting non-linear hereditary properties, strong strain rate sensitivity, secondary creep, yielding at constant stress, tension compression asymmetry and such temperature effects as increase of material compliance, strain rate sensitivity and rates of dissipation, relaxation, creep and plastic strain accumulation with temperature growth. The model is applicable for simulation of mechanical behaviour of various polymers, their solutions and melts, solid propellants, sand-asphalt concretes, composite materials, titanium and aluminum alloys, ceramics at high temperature and so on. To describe the influence of temperature on material mechanical behavior (under isothermic conditions, two scalar material parameters of the model (viscosity coefficient and “modulus of elasticity” are considered as a functions of temperature level. The general restrictions on their properties which are necessary and sufficient for adequate qualitative description of the basic thermomechanical phenomena related to typical temperature influence on creep and relaxation curves, creep recovery curves, creep curves under step-wise loading and quasi-static stress-strain curves of viscoelastoplastic materials are obtained. The restrictions are derived using systematic analytical study of general qualitative features of the theoretic creep and relaxation curves, creep curves under step-wise loading, long-term strength curves and stress-strain curves at constant strain or stress rates generated by the constitutive equation (under minimal

  20. Nonlinear optimization

    CERN Document Server

    Ruszczynski, Andrzej

    2011-01-01

    Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures. The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern top...

  1. Effect of Prior Exposure at Elevated Temperatures on Tensile Properties and Stress-Strain Behavior of Four Non-Oxide Ceramic Matrix Composites

    Science.gov (United States)

    2015-06-18

    Ceramics, San Diego, CA, manufactured the SiC/SiNC and C/SiC composites using polymer infiltration and pyrolysis (PIP). The C/HYPR-SiC™ and SiC/HYPR- SiC...research. Thank you to Dr. Kristin Keller (AFRL/RXCCM), Ms. Jennifer Pierce (AFRL/RXCM), Mr. Randall Corns (AFRL/RXCCM), and Dr. Kathleen Shugart (AFRL...with Hi-Nicalon™ SiC fibers in a SiNC matrix derived by polymer infiltration and pyrolysis (PIP) (manufactured by COI Ceramics, San Diego, CA

  2. Effect of Prior Exposure at Elevated Temperatures on Tensile Properties and Stress-Strain Behavior of Three Oxide/Oxide Ceramic Matrix Composites

    Science.gov (United States)

    2015-03-26

    observations on the fracture surface using an optical microscope and SEM. 4 II. Background 2.1 Ceramics Ceramics are inorganic and nonmetallic... The original uses for ceramic were primarily decorative, until more utilitarian purposes were discovered. Pottery was developed around 9,000...OF THREE OXIDE/OXIDE CERAMIC MATRIX COMPOSITES THESIS Christopher J. Hull, Captain, USAF AFIT-ENY-MS-15-M-228 DEPARTMENT OF THE AIR FORCE

  3. Analysis of the biaxial stress-strain behavior of poly(dimethylsiloxane) networks from the viewpoint of the slip-link model of rubber elasticity

    Czech Academy of Sciences Publication Activity Database

    Meissner, Bohumil; Matějka, Libor

    2004-01-01

    Roč. 42, č. 17 (2004), s. 2318-2328 ISSN 0887-6266 R&D Projects: GA ČR GA104/00/1311; GA AV ČR IAA4050008 Institutional research plan: CEZ:AV0Z4050913 Keywords : elastomers * entanglements * networks Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.391, year: 2004

  4. A Modified Johnson-Cook Model for Sheet Metal Forming at Elevated Temperatures and Its Application for Cooled Stress-Strain Curve and Spring-Back Prediction

    International Nuclear Information System (INIS)

    Duc-Toan, Nguyen; Tien-Long, Banh; Young-Suk, Kim; Dong-Won, Jung

    2011-01-01

    In this study, a modified Johnson-Cook (J-C) model and an innovated method to determine (J-C) material parameters are proposed to predict more correctly stress-strain curve for tensile tests in elevated temperatures. A MATLAB tool is used to determine material parameters by fitting a curve to follow Ludwick's hardening law at various elevated temperatures. Those hardening law parameters are then utilized to determine modified (J-C) model material parameters. The modified (J-C) model shows the better prediction compared to the conventional one. As the first verification, an FEM tensile test simulation based on the isotropic hardening model for boron sheet steel at elevated temperatures was carried out via a user-material subroutine, using an explicit finite element code, and compared with the measurements. The temperature decrease of all elements due to the air cooling process was then calculated when considering the modified (J-C) model and coded to VUMAT subroutine for tensile test simulation of cooling process. The modified (J-C) model showed the good agreement between the simulation results and the corresponding experiments. The second investigation was applied for V-bending spring-back prediction of magnesium alloy sheets at elevated temperatures. Here, the combination of proposed J-C model with modified hardening law considering the unusual plastic behaviour for magnesium alloy sheet was adopted for FEM simulation of V-bending spring-back prediction and shown the good comparability with corresponding experiments.

  5. Effect of Initial Backfill Temperature on the Deformation Behavior of Early Age Cemented Paste Backfill That Contains Sodium Silicate

    Directory of Open Access Journals (Sweden)

    Aixiang Wu

    2016-01-01

    Full Text Available Enhancing the knowledge on the deformation behavior of cemented paste backfill (CPB in terms of stress-strain relations and modulus of elasticity is significant for economic and safety reasons. In this paper, the effect of the initial backfill temperature on the CPB’s stress-strain behavior and modulus of elasticity is investigated. Results show that the stress-strain relationship and the modulus of elasticity behavior of CPB are significantly affected by the curing time and initial temperature of CPB. Additionally, the relationship between the modulus of elasticity and unconfined compressive strength (UCS and the degree of hydration was evaluated and discussed. The increase of UCS and hydration degree leads to an increase in the modulus of elasticity, which is not significantly affected by the initial temperature.

  6. Nonlinear analysis of AS4/PEEK thermoplastic composite laminate using a one parameter plasticity model

    Science.gov (United States)

    Sun, C. T.; Yoon, K. J.

    1990-01-01

    A one-parameter plasticity model was shown to adequately describe the orthotropic plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The nonlinear stress-strain relations were measured and compared with those predicted by the finite element analysis using the one-parameter elastic-plastic constitutive model. The results show that the one-parameter orthotropic plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.

  7. A nonlinear beam model to describe the postbuckling of wide neo-Hookean beams

    Science.gov (United States)

    Lubbers, Luuk A.; van Hecke, Martin; Coulais, Corentin

    2017-09-01

    Wide beams can exhibit subcritical buckling, i.e. the slope of the force-displacement curve can become negative in the postbuckling regime. In this paper, we capture this intriguing behaviour by constructing a 1D nonlinear beam model, where the central ingredient is the nonlinearity in the stress-strain relation of the beams constitutive material. First, we present experimental and numerical evidence of a transition to subcritical buckling for wide neo-Hookean hyperelastic beams, when their width-to-length ratio exceeds a critical value of 12%. Second, we construct an effective 1D energy density by combining the Mindlin-Reissner kinematics with a nonlinearity in the stress-strain relation. Finally, we establish and solve the governing beam equations to analytically determine the slope of the force-displacement curve in the postbuckling regime. We find, without any adjustable parameters, excellent agreement between the 1D theory, experiments and simulations. Our work extends the understanding of the postbuckling of structures made of wide elastic beams and opens up avenues for the reverse-engineering of instabilities in soft and metamaterials.

  8. Modeling Pseudo-elastic Behavior of Springback

    International Nuclear Information System (INIS)

    Xia, Z. Cedric

    2005-01-01

    constant. In the context of this investigation we refer psuedoelastic behavior in the most general sense as any deviation from linearity in the unloading curve. The non-linearity leads to a hysteresis loop upon reloading. The approach is based on the non-conventional theory with a vanishing elastic region as advanced by Dafalias and Popov. The treatment is purely phenomenological where we don't distinguish between macroscopic plasticity and micro-plasticity. The macroscopic uniaxial stress-strain curve is used to define effective plastic response in the same manner as classical plasticity theory except that the nonlinearity during unloading and reloading are incorporated into plasticity. It is shown that such models can be easily formulated within the context of elastoplasticity without violating any physical mechanisms of deformation. Springback for a plane strain bending model is used to demonstrate the potential effect if such a model is applied

  9. NONLINEAR DYNAMICS OF ORGANIZATION DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Денис Антонович БУШУЕВ

    2016-02-01

    Full Text Available The nonlinear behavior of organizations in development projects is considered. The nonlinear behavior is initiated in the growth of organizations and requires a restructuring of governance in identifying dysfunctions. Such a restructuring is needed in the area of soft components, determining the organizational levels of competence in the management of projects, programs, portfolios and heads of the Project Management Office. An important component of the strategic development of the organization is the proposed concept for formation and management of development programs in the context according to their life cycle. It should take into account the non-linear behavior of the soft components of the system and violation of functional processes of the organization. The specific management syndromes of projects and programs are considered. Such as syndromes time management project linked to the singular points of the project. These syndromes are "shift to the right", "point of no return", "braking at the end of the project" and others.

  10. Nonlinear Mechanics of MEMS Rectangular Microplates under Electrostatic Actuation

    KAUST Repository

    Saghir, Shahid

    2016-01-01

    The first objective of the dissertation is to develop a suitable reduced order model capable of investigating the nonlinear mechanical behavior of von-Karman plates under electrostatic actuation. The second objective is to investigate the nonlinear

  11. Nonparametric inference in nonlinear principal components analysis : exploration and beyond

    NARCIS (Netherlands)

    Linting, Mariëlle

    2007-01-01

    In the social and behavioral sciences, data sets often do not meet the assumptions of traditional analysis methods. Therefore, nonlinear alternatives to traditional methods have been developed. This thesis starts with a didactic discussion of nonlinear principal components analysis (NLPCA),

  12. Quantification of Internal Stress-Strain Fields in Human Tendon: Unraveling the Mechanisms that Underlie Regional Tendon Adaptations and Mal-Adaptations to Mechanical Loading and the Effectiveness of Therapeutic Eccentric Exercise

    Science.gov (United States)

    Maganaris, Constantinos N.; Chatzistergos, Panagiotis; Reeves, Neil D.; Narici, Marco V.

    2017-01-01

    of the stress created by the exercise and is not only reliant upon the type of muscle contraction performed. To better understand the micromechanical behavior and regional adaptability/mal-adaptability of tendon tissue it is important to estimate its internal stress-strain fields. Recent relevant advancements in numerical techniques related to tendon loading are discussed. PMID:28293194

  13. MODEL SIMULATION OF GEOMETRY AND STRESS-STRAIN VARIATION OF BATAN FUEL PIN PROTOTYPE DURING IRRADIATION TEST IN RSG-GAS REACTOR

    Directory of Open Access Journals (Sweden)

    Suwardi Suwardi

    2015-03-01

    Full Text Available MODEL SIMULATION OF GEOMETRY AND STRESS-STRAIN VARIATION OF BATAN FUEL PIN PROTOTYPE DURING IRRADIATION TEST IN RSG-GAS REACTOR*. The first short fuel pin containing natural UO2 pellet in Zry4 cladding has been prepared at the CNFT (Center for Nuclear Fuel Technology then a ramp test will be performed. The present work is part of designing first irradiation experiments in the PRTF (Power Ramp Test Facility of RSG-GAS 30 MW reactor. The thermal mechanic of the pin during irradiation has simulated. The geometry variation of pellet and cladding is modeled by taking into account different phenomena such as thermal expansion, densification, swelling by fission product, thermal creep and radiation growth. The cladding variation is modeled by thermal expansion, thermal and irradiation creeps. The material properties are modeled by MATPRO and standard numerical parameter of TRANSURANUS code. Results of irradiation simulation with 9 kW/m LHR indicates that pellet-clad contacts onset from 0.090 mm initial gaps after 806 d, when pellet radius expansion attain 0.015 mm while inner cladding creep-down 0.075 mm. A newer computation data show that the maximum measured LHR of n-UO2 pin in the PRTF 12.4 kW/m. The next simulation will be done with a higher LHR, up to ~ 25 kW/m. MODEL SIMULASI VARIASI GEOMETRI DAN STRESS-STRAIN DARI PROTOTIP BAHAN BAKAR PIN BATAN SELAMA UJI IRADIASI DI REAKTOR RSG-GAS. Pusat Teknologi Bahan Bakar Nuklir (PTBBN telah menyiapkan tangkai (pin bahan bakar pendek perdana yang berisi pelet UO2 alam dalam kelongsong paduan zircaloy untuk dilakukan uji iradiasi daya naik. Penelitian ini merupakan bagian dari perancangan percobaan iradiasi pertama di PRTF (Power Ramp Test Fasility yang terpasang di reaktor serbaguna RSG-GAS berdaya 30 MW. Telah dilakukan pemodelan dan simulasi kinerja termal mekanikal pin selama iradiasi. Variasi geometri pelet dan kelongsong selama pengujian dimodelkan dengan memperhatikan fenomena ekspansi termal

  14. Characterization of the constitutive behavior of municipal solid waste considering particle compressibility.

    Science.gov (United States)

    Lü, Xilin; Zhai, Xinle; Huang, Maosong

    2017-11-01

    This paper presents a characterization of the mechanical behavior of municipal solid waste (MSW) under consolidated drained and undrained triaxial conditions. The constitutive model was established based on a deviatoric hardening plasticity model. A power form function and incremental hyperbolic form function were proposed to describe the shear strength and the hardening role of MSW. The stress ratio that corresponds to the zero dilatancy was not fixed but depended on mean stress, making the Rowe's rule be able to describe the stress-dilatancy of MSW. A pore water pressure reduction coefficient, which attributed to the compressibility of a particle and the solid matrix, was introduced to the effective stress formulation to modify the Terzaghi's principle. The effects of particle compressibility and solid matrix compressibility on the undrained behavior of MSW were analyzed by parametric analysis, and the changing characteristic of stress-path, stress-strain, and pore-water pressure were obtained. The applicability of the proposed model on MSW under drained and undrained conditions was verified by model predictions of three triaxial tests. The comparison between model simulations and experiments indicated that the proposed model can capture the observed different characteristics of MSW response from normal soil, such as nonlinear shear strength, pressure dependent stress dilatancy, and the reduced value of pore water pressure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Nonlinear analysis of prestressed concrete reactor pressure vessels

    International Nuclear Information System (INIS)

    Berg, S.; Loeseth, S.; Holand, I.

    1977-01-01

    A computational model for circular symmetric reinforced concrete shell problems is described. The model is based on the Finite Element Method. Non-linear stress-strain constitutive relations are used for the concrete, the reinforcement and for the liner. The reinforcement layers may be of different steel qualities. Each layer may be given a specified prestressing. This can be done at the beginning of the computations or the specific reinforcement layer can be considered inactive until a specified level of loading is reached. Thus, the prestressing procedure may also be analyzed in detail. Bond-slip effects are not accounted for. However, no bond may be assumed for prestressing cables by inserting special reinforcement elements. Several models of prestressed concrete reactor pressure vessels which have been tested up to rupture have been analysed. Analytical (numerical) models for reinforced concrete are also discussed on a more general basis. (Auth.)

  16. Nonlinear Elliptic Differential Equations with Multivalued Nonlinearities

    Indian Academy of Sciences (India)

    In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all R R . Assuming the existence of an upper and of a lower ...

  17. A study of serrated plastic flow behavior in an aluminum-lithium binary alloy

    International Nuclear Information System (INIS)

    Sun, D.L.; Yang, D.Z.; Lei, T.Q.

    1990-01-01

    The serrated plastic flow behavior of an Al-2.73wt%Li alloy at various aging conditions is investigated. The stress-strain curve of the alloy is examined using an Instron machine. The microstructure of the alloy before and after deformation is observed using a transmission electron microscope. It has been shown that the stress-strain curve in the alloy is serrated and both time and/or temperature of aging affect the formation of serrations. The δ' phase (Al 3 Li) which is induced by plastic deformation precipitates along dislocations. The formation mechanism of the serrated stress-strain curve in the Al-Li binary alloy is discussed. (orig.)

  18. Device Applications of Nonlinear Dynamics

    CERN Document Server

    Baglio, Salvatore

    2006-01-01

    This edited book is devoted specifically to the applications of complex nonlinear dynamic phenomena to real systems and device applications. While in the past decades there has been significant progress in the theory of nonlinear phenomena under an assortment of system boundary conditions and preparations, there exist comparatively few devices that actually take this rich behavior into account. "Device Applications of Nonlinear Dynamics" applies and exploits this knowledge to make devices which operate more efficiently and cheaply, while affording the promise of much better performance. Given the current explosion of ideas in areas as diverse as molecular motors, nonlinear filtering theory, noise-enhanced propagation, stochastic resonance and networked systems, the time is right to integrate the progress of complex systems research into real devices.

  19. Nonlinear dynamics and numerical uncertainties in CFD

    Science.gov (United States)

    Yee, H. C.; Sweby, P. K.

    1996-01-01

    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching, approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with spurious behavior observed in CFD computations.

  20. Some Aspects of Nonlinear Dynamics and CFD

    Science.gov (United States)

    Yee, Helen C.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    The application of nonlinear dynamics to improve the understanding of numerical uncertainties in computational fluid dynamics (CFD) is reviewed. Elementary examples in the use of dynamics to explain the nonlinear phenomena and spurious behavior that occur in numerics are given. The role of dynamics in the understanding of long time behavior of numerical integrations and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in CFD is explained. The study is complemented with examples of spurious behavior observed in CFD computations.

  1. Thermomechanical behavior of SBR reinforced with nanotubes functionalized with polyvinylpyridine

    Energy Technology Data Exchange (ETDEWEB)

    De Falco, A. [Universidad de Buenos Aires, FCEyN, Depto. de Fisica, LPyMC, Pabellon I, Buenos Aires 1428 (Argentina); Lamanna, M. [Universidad de Buenos Aires, FCEyN, Depto. de Quimica Organica, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) (Argentina); Goyanes, S. [Universidad de Buenos Aires, FCEyN, Depto. de Fisica, LPyMC, Pabellon I, Buenos Aires 1428 (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); D' Accorso, N.B. [Universidad de Buenos Aires, FCEyN, Depto. de Quimica Organica, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Fascio, M.L., E-mail: mfascio@qo.fcen.uba.ar [Universidad de Buenos Aires, FCEyN, Depto. de Quimica Organica, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) (Argentina)

    2012-08-15

    The mechanical and thermal behavior of composites consisting on a styrene-butadiene rubber (SBR) matrix with a sulphur/accelerator system and multiwalled carbon nanotubes functionalized with poly-4-vinylpyridine (MWCNT-PVP) as reinforcement, were studied. The materials were tested with stress-strain tensile tests, DMTA and DSC for thermal properties. A strong increase in the plastic behavior with slight decrease of its elastic Modulus and Tg led to unexpected results.

  2. Thermomechanical behavior of SBR reinforced with nanotubes functionalized with polyvinylpyridine

    International Nuclear Information System (INIS)

    De Falco, A.; Lamanna, M.; Goyanes, S.; D'Accorso, N.B.; Fascio, M.L.

    2012-01-01

    The mechanical and thermal behavior of composites consisting on a styrene-butadiene rubber (SBR) matrix with a sulphur/accelerator system and multiwalled carbon nanotubes functionalized with poly-4-vinylpyridine (MWCNT-PVP) as reinforcement, were studied. The materials were tested with stress-strain tensile tests, DMTA and DSC for thermal properties. A strong increase in the plastic behavior with slight decrease of its elastic Modulus and Tg led to unexpected results.

  3. Topics in Nonlinear Dynamics

    DEFF Research Database (Denmark)

    Mosekilde, Erik

    Through a significant number of detailed and realistic examples this book illustrates how the insights gained over the past couple of decades in the fields of nonlinear dynamics and chaos theory can be applied in practice. Aomng the topics considered are microbiological reaction systems, ecological...... food-web systems, nephron pressure and flow regulation, pulsatile secretion of hormones, thermostatically controlled radiator systems, post-stall maneuvering of aircrafts, transfer electron devices for microwave generation, economic long waves, human decision making behavior, and pattern formation...... in chemical reaction-diffusion systems....

  4. Nonlinear and anisotropic tensile properties of graft materials used in soft tissue applications.

    Science.gov (United States)

    Yoder, Jonathon H; Elliott, Dawn M

    2010-05-01

    The mechanical properties of extracellular matrix grafts that are intended to augment or replace soft tissues should be comparable to the native tissue. Such grafts are often used in fiber-reinforced tissue applications that undergo multi-axial loading and therefore knowledge of the anisotropic and nonlinear properties are needed, including the moduli and Poisson's ratio in two orthogonal directions within the plane of the graft. The objective of this study was to measure the tensile mechanical properties of several marketed grafts: Alloderm, Restore, CuffPatch, and OrthADAPT. The degree of anisotropy and non-linearity within each graft was evaluated from uniaxial tensile tests and compared to their native tissue. The Alloderm graft was anisotropic in both the toe- and linear-region of the stress-strain response, was highly nonlinear, and generally had low properties. The Restore and CuffPatch grafts had similar stress-strain responses, were largely isotropic, had a linear-region modulus of 18MPa, and were nonlinear. OrthADAPT was anisotropic in the linear-region (131 MPA vs 47MPa in the toe-region) and was highly nonlinear. The Poisson ratio for all grafts was between 0.4 and 0.7, except for the parallel orientation of Restore which was greater than 1.0. Having an informed understanding of how the available grafts perform mechanically will allow for better assessment by the physician for which graft to apply depending upon its application. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. Identifying factors related to Achilles tendon stress, strain, and stiffness before and after 6 months of growth in youth 10-14 years of age.

    Science.gov (United States)

    Neugebauer, Jennifer M; Hawkins, David A

    2012-09-21

    The purposes of this study were (1) determine if youth peak Achilles tendon (AT) strain, peak AT stress, and AT stiffness, measured during an isometric plantar flexion, differed after six months (mos) of growth, and (2) determine if sex, physical activity level (Physical Activity Questionnaire (PAQ-C)), and/or growth rate (GR) were related to these properties. AT stress, strain, and stiffness were quantified in 20 boys (13.47±0.81 years) and 22 girls (11.18±0.82 years) at 2 times (0 and 6 mos). GR (change in height in 6 mos) was not significantly different between boys and girls (3.5±1.4 and 3.4±1.1cm/6 mos respectively). Peak AT strain and stiffness (mean 3.8±0.4% and 128.9±153.6N/mm, respectively) did not differ between testing sessions or sex. Peak AT stress (22.1±2.4 and 24.0±2.1MPa at 0 and 6 mos, respectively) did not differ between sex and increased significantly at 6 mos due to a significant decrease in AT cross-sectional area (40.6±1.3 and 38.1±1.6mm(2) at 0 and 6 mos, respectively) with no significant difference in peak AT force (882.3±93.9 and 900.3± 65.5N at 0 and 6 mos, respectively). Peak AT stress was significantly greater in subjects with greater PAQ-C scores (9.1% increase with 1 unit increase in PAQ-C score) and smaller in subjects with faster GRs (13.8% decrease with 1cm/6 mos increase in GR). These results indicate that of the AT mechanical properties quantified, none differed between sex, and only peak AT stress significantly differed after 6 months and was related to GR and physical activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Nonlinear Analysis and Modeling of Tires

    Science.gov (United States)

    Noor, Ahmed K.

    1996-01-01

    The objective of the study was to develop efficient modeling techniques and computational strategies for: (1) predicting the nonlinear response of tires subjected to inflation pressure, mechanical and thermal loads; (2) determining the footprint region, and analyzing the tire pavement contact problem, including the effect of friction; and (3) determining the sensitivity of the tire response (displacements, stresses, strain energy, contact pressures and contact area) to variations in the different material and geometric parameters. Two computational strategies were developed. In the first strategy the tire was modeled by using either a two-dimensional shear flexible mixed shell finite elements or a quasi-three-dimensional solid model. The contact conditions were incorporated into the formulation by using a perturbed Lagrangian approach. A number of model reduction techniques were applied to substantially reduce the number of degrees of freedom used in describing the response outside the contact region. The second strategy exploited the axial symmetry of the undeformed tire, and uses cylindrical coordinates in the development of three-dimensional elements for modeling each of the different parts of the tire cross section. Model reduction techniques are also used with this strategy.

  7. Non-Linear Behaviour Of Gelatin Networks Reveals A Hierarchical Structure

    KAUST Repository

    Yang, Zhi; Hemar, Yacine; Hilliou, loic; Gilbert, Elliot P.; McGillivray, Duncan James; Williams, Martin A. K.; Chaieb, Saharoui

    2015-01-01

    We investigate the strain hardening behaviour of various gelatin networks - namely physically-crosslinked gelatin gel, chemically-crosslinked gelatin gels, and a hybrid gels made of a combination of the former two - under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillation shear protocols. Further, the internal structures of physically-crosslinked gelatin gel and chemically-crosslinked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically-crosslinked network, whereas in the physically-crosslinked gels a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as correlation length (ξ), cross-sectional polymer chain radius (Rc), and the fractal dimension (df) of the gel networks. The fractal dimension df obtained from the SANS data of the physically-crosslinked and chemically crosslinked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized non-linear elastic theory we used to fit our stress-strain curves. The chemical crosslinking that generates coils and aggregates hinders the free stretching of the triple helices bundles in the physically-crosslinked gels.

  8. Non-Linear Behaviour Of Gelatin Networks Reveals A Hierarchical Structure

    KAUST Repository

    Yang, Zhi

    2015-12-14

    We investigate the strain hardening behaviour of various gelatin networks - namely physically-crosslinked gelatin gel, chemically-crosslinked gelatin gels, and a hybrid gels made of a combination of the former two - under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillation shear protocols. Further, the internal structures of physically-crosslinked gelatin gel and chemically-crosslinked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically-crosslinked network, whereas in the physically-crosslinked gels a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as correlation length (ξ), cross-sectional polymer chain radius (Rc), and the fractal dimension (df) of the gel networks. The fractal dimension df obtained from the SANS data of the physically-crosslinked and chemically crosslinked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized non-linear elastic theory we used to fit our stress-strain curves. The chemical crosslinking that generates coils and aggregates hinders the free stretching of the triple helices bundles in the physically-crosslinked gels.

  9. Nonlinear resonances

    CERN Document Server

    Rajasekar, Shanmuganathan

    2016-01-01

    This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...

  10. FINITE ELEMENT DISPLACEMENT PERTURBATION METHOD FOR GEOMETRIC NONLINEAR BEHAVIORS OF SHELLS OF REVOLUTION OVERALL BENDING IN A MERIDIONAL PLANE AND APPLICATION TO BELLOWS (Ⅰ)

    Institute of Scientific and Technical Information of China (English)

    朱卫平; 黄黔

    2002-01-01

    In order to analyze bellows effectively and practically, the finite-element-displacement-perturbation method (FEDPM) is proposed for the geometric nonlinearbehaviors of shells of revolution subjected to pure bending moments or lateral forces in one of their meridional planes. The formulations are mainly based upon the idea of perturba-tion that the nodal displacement vector and the nodal force vector of each finite elementare expanded by taking root-mean-square value of circumferential strains of the shells as aperturbation parameter. The load steps and the iteration times are not cs arbitrary andunpredictable as in usual nonlinear analysis. Instead, there are certain relations betweenthe load steps and the displacement increments, and no need of iteration for each loadstep. Besides, in the formulations, the shell is idealized into a series of conical frusta for the convenience of practice, Sander' s nonlinear geometric equations of moderate smallrotation are used, and the shell made of more than one material ply is also considered.

  11. Nonlinear absorption, optical limiting behavior and structural study of a new chalcone derivative-1-(3, 4-dimethylphenyl)-3-[4(methylsulfanyl) phenyl] prop-2-en-1-one

    Science.gov (United States)

    Chandra Shekhara Shetty, T.; Raghavendra, S.; Chidan Kumar, C. S.; Dharmaprakash, S. M.

    2016-03-01

    A new third order nonlinear optical (NLO) organic material-1-(3, 4-dimethylphenyl)-3-[4(methylsulfanyl) phenyl] prop-2-en-1-one (4DPMS) belonging to chalcone family has been crystallized in acetone solution. The 4DPMS crystals are characterized by CHNS analysis, FTIR, UV-visible spectral and thermal techniques. The single crystal X-ray diffraction study reveals that 4DPMS crystallizes in monoclinic system with P21/n space group. The linear optical absorption spectrum revealed that the 4DPMS crystals are transparent in the entire visible region. Thermogravimetric data shows absence of phase transition before melting point and from differential scanning calorimetry analysis the melting point of the crystal is found to be 106 °C. Third order nonlinear absorption and optical limiting experiment on 4DPMS was carried out using open aperture Z-scan technique with Nd: YAG laser operating at 532 nm. It was found that the calculated values of excited state absorption cross section for 4DPMS molecules is much greater than the ground state absorption cross section. A decrease in effective nonlinear absorption coefficient was observed with increase in the input irradiance of laser. The observed optical limiting property in 4DPMS is attributed to reverse saturable absorption.

  12. Behaviorism

    Science.gov (United States)

    Moore, J.

    2011-01-01

    Early forms of psychology assumed that mental life was the appropriate subject matter for psychology, and introspection was an appropriate method to engage that subject matter. In 1913, John B. Watson proposed an alternative: classical S-R behaviorism. According to Watson, behavior was a subject matter in its own right, to be studied by the…

  13. Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures

    Science.gov (United States)

    Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.

    2012-01-01

    A research program has been developed to quantify the effects of the microstructure of a woven ceramic matrix composite and its variability on the effective properties and response of the material. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, chemical vapor infiltrated (CVI) SiC/SiC composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents, from which two dimensional finite element models were generated which approximated the actual specimen section geometry. A simplified elastic-plastic model, wherein all stress above yield is redistributed to lower stress regions, is used to approximate the progressive damage behavior for each of the composite constituents. Finite element analyses under in-plane tensile loading were performed to examine how the variability in the local microstructure affected the macroscopic stress-strain response of the material as well as the local initiation and progression of damage. The macroscopic stress-strain response appeared to be minimally affected by the variation in local microstructure, but the locations where damage initiated and propagated appeared to be linked to specific aspects of the local microstructure.

  14. A New Theory of Non-Linear Thermo-Elastic Constitutive Equation of Isotropic Hyperelastic Materials

    Science.gov (United States)

    Li, Chen; Liao, Yufei

    2018-03-01

    Considering the influence of temperature and strain variables on materials. According to the relationship of conjugate stress-strain, a complete and irreducible non-linear constitutive equation of isotropic hyperelastic materials is derived and the constitutive equations of 16 types of isotropic hyperelastic materials are given we study the transformation methods and routes of 16 kinds of constitutive equations and the study proves that transformation of two forms of constitutive equation. As an example of application, the non-linear thermo-elastic constitutive equation of isotropic hyperelastic materials is combined with the natural vulcanized rubber experimental data in the existing literature base on MATLAB, The results show that the fitting accuracy is satisfactory.

  15. Optimal design of geometrically nonlinear shells of revolution with using the mixed finite element method

    Science.gov (United States)

    Stupishin, L. U.; Nikitin, K. E.; Kolesnikov, A. G.

    2018-02-01

    The article is concerned with a methodology of optimal design of geometrically nonlinear (flexible) shells of revolution of minimum weight with strength, stability and strain constraints. The problem of optimal design with constraints is reduced to the problem of unconstrained minimization using the penalty functions method. Stress-strain state of shell is determined within the geometrically nonlinear deformation theory. A special feature of the methodology is the use of a mixed finite-element formulation based on the Galerkin method. Test problems for determining the optimal form and thickness distribution of a shell of minimum weight are considered. The validity of the results obtained using the developed methodology is analyzed, and the efficiency of various optimization algorithms is compared to solve the set problem. The developed methodology has demonstrated the possibility and accuracy of finding the optimal solution.

  16. Mathematical modeling and applications in nonlinear dynamics

    CERN Document Server

    Merdan, Hüseyin

    2016-01-01

    The book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems. Provides methods for mathematical models with switching, thresholds, and impulses, each of particular importance for discontinuous processes Includes qualitative analysis of behaviors on Tumor-Immune Systems and methods of analysis for DNA, neural networks and epidemiology Introduces...

  17. Time series with tailored nonlinearities

    Science.gov (United States)

    Räth, C.; Laut, I.

    2015-10-01

    It is demonstrated how to generate time series with tailored nonlinearities by inducing well-defined constraints on the Fourier phases. Correlations between the phase information of adjacent phases and (static and dynamic) measures of nonlinearities are established and their origin is explained. By applying a set of simple constraints on the phases of an originally linear and uncorrelated Gaussian time series, the observed scaling behavior of the intensity distribution of empirical time series can be reproduced. The power law character of the intensity distributions being typical for, e.g., turbulence and financial data can thus be explained in terms of phase correlations.

  18. VISCOT: a two-dimensional and axisymmetric nonlinear transient thermoviscoelastic and thermoviscoplastic finite-element code for modeling time-dependent viscous mechanical behavior of a rock mass

    International Nuclear Information System (INIS)

    1983-04-01

    VISCOT is a non-linear, transient, thermal-stress finite-element code designed to determine the viscoelastic, fiscoplastic, or elastoplastic deformation of a rock mass due to mechanical and thermal loading. The numerical solution of the nonlinear incremental equilibrium equations within VISCOT is performed by using an explicit Euler time-stepping scheme. The rock mass may be modeled as a viscoplastic or viscoelastic material. The viscoplastic material model can be described by a Tresca, von Mises, Drucker-Prager or Mohr-Coulomb yield criteria (with or without strain hardening) with an associated flow rule which can be a power or an exponential law. The viscoelastic material model within VISCOT is a temperature- and stress-dependent law which has been developed specifically for salt rock masses by Pfeifle, Mellegard and Senseny in ONWI-314 topical report (1981). Site specific parameters for this creep law at the Richton, Permian, Paradox and Vacherie salt sites have been calculated and are given in ONWI-314 topical report (1981). A major application of VISCOT (in conjunction with a SCEPTER heat transfer code such as DOT) is the thermomechanical analysis of a rock mass such as salt in which significant time-dependent nonlinear deformations are expected to occur. Such problems include room- and canister-scale studies during the excavation, operation, and long-term post-closure stages in a salt repository. In Section 1.5 of this document the code custodianship and control is described along with the status of verification, validation and peer review of this report

  19. 陷落柱填隙物全应力-应变过程的渗流特性研究%Research on permeability characteristics of karst collapse column fillings in complete stress-strain process

    Institute of Scientific and Technical Information of China (English)

    张勃阳; 白海波; 张凯

    2016-01-01

    岩溶陷落柱易导通含水层与煤层从而引发底板突水事故,已经成为我国华北地区下组煤开采的重要安全隐患。对于固结良好的陷落柱,其填隙物的渗透性直接影响着陷落柱的整体渗透性,且在采动压力的影响下,陷落柱填隙物的渗透性也在不断发生变化。为研究不同应力状态下填隙物渗透率的变化规律,对填隙物进行固结重塑,并利用MTS815.02渗流试验系统对重塑后不同初始含水率的填隙物试样进行了不同围压条件下的全应力-应变过程的渗流特性试验。试验结果表明:1)陷落柱填隙物全应力-应变过程渗透率的变化曲线可划分为压密段、破坏段和蠕变段,渗透率对应的呈现出减小-增大-减小的变化规律;2)填隙物的全应力-应变过程的渗透率峰值随围压的增大而减小,其峰值比与围压差存在指数函数关系;3)填隙物的初始渗透率和孔隙度随初始含水率的增大而增大,渗透率比和孔隙度比存在幂函数关系,在全应力-应变过程中渗透率峰值与初始值的差随初始含水率的增大而减小。%The floor water-inrush accident caused by karst collapse column is easy to break over the aquifer and coal seam. This kind of accident has become the serious danger of lower group coal mining in northern China. For the well-consolidated collapse column, the permeability of the fillings directly affects that of the overall collapse column, and the permeability of fillings constantly changes under the influence of mining. The study on seepage characteristic of collapse column fillings is conducted with MTS815.02 seepage test system in a complete stress-strain process and the variation of permeability under different strain states. Meanwhile the influence of initial moisture content and confining pressure on the fillings permeability is analyzed in this test. The results show that: 1) The representative stress-strain

  20. Analysis of nonlinear systems using ARMA [autoregressive moving average] models

    International Nuclear Information System (INIS)

    Hunter, N.F. Jr.

    1990-01-01

    While many vibration systems exhibit primarily linear behavior, a significant percentage of the systems encountered in vibration and model testing are mildly to severely nonlinear. Analysis methods for such nonlinear systems are not yet well developed and the response of such systems is not accurately predicted by linear models. Nonlinear ARMA (autoregressive moving average) models are one method for the analysis and response prediction of nonlinear vibratory systems. In this paper we review the background of linear and nonlinear ARMA models, and illustrate the application of these models to nonlinear vibration systems. We conclude by summarizing the advantages and disadvantages of ARMA models and emphasizing prospects for future development. 14 refs., 11 figs

  1. Model of anisotropic nonlinearity in self-defocusing photorefractive media.

    Science.gov (United States)

    Barsi, C; Fleischer, J W

    2015-09-21

    We develop a phenomenological model of anisotropy in self-defocusing photorefractive crystals. In addition to an independent term due to nonlinear susceptibility, we introduce a nonlinear, non-separable correction to the spectral diffraction operator. The model successfully describes the crossover between photovoltaic and photorefractive responses and the spatially dispersive shock wave behavior of a nonlinearly spreading Gaussian input beam. It should prove useful for characterizing internal charge dynamics in complex materials and for accurate image reconstruction through nonlinear media.

  2. Spatial nonlinearities: Cascading effects in the earth system

    Science.gov (United States)

    Peters, Debra P.C.; Pielke, R.A.; Bestelmeyer, B.T.; Allen, Craig D.; Munson-McGee, Stuart; Havstad, K. M.; Canadell, Josep G.; Pataki, Diane E.; Pitelka, Louis F.

    2006-01-01

    Nonlinear behavior is prevalent in all aspects of the Earth System, including ecological responses to global change (Gallagher and Appenzeller 1999; Steffen et al. 2004). Nonlinear behavior refers to a large, discontinuous change in response to a small change in a driving variable (Rial et al. 2004). In contrast to linear systems where responses are smooth, well-behaved, continuous functions, nonlinear systems often undergo sharp or discontinuous transitions resulting from the crossing of thresholds. These nonlinear responses can result in surprising behavior that makes forecasting difficult (Kaplan and Glass 1995). Given that many system dynamics are nonlinear, it is imperative that conceptual and quantitative tools be developed to increase our understanding of the processes leading to nonlinear behavior in order to determine if forecasting can be improved under future environmental changes (Clark et al. 2001).

  3. Nonlinear analysis of pupillary dynamics.

    Science.gov (United States)

    Onorati, Francesco; Mainardi, Luca Tommaso; Sirca, Fabiola; Russo, Vincenzo; Barbieri, Riccardo

    2016-02-01

    Pupil size reflects autonomic response to different environmental and behavioral stimuli, and its dynamics have been linked to other autonomic correlates such as cardiac and respiratory rhythms. The aim of this study is to assess the nonlinear characteristics of pupil size of 25 normal subjects who participated in a psychophysiological experimental protocol with four experimental conditions, namely “baseline”, “anger”, “joy”, and “sadness”. Nonlinear measures, such as sample entropy, correlation dimension, and largest Lyapunov exponent, were computed on reconstructed signals of spontaneous fluctuations of pupil dilation. Nonparametric statistical tests were performed on surrogate data to verify that the nonlinear measures are an intrinsic characteristic of the signals. We then developed and applied a piecewise linear regression model to detrended fluctuation analysis (DFA). Two joinpoints and three scaling intervals were identified: slope α0, at slow time scales, represents a persistent nonstationary long-range correlation, whereas α1 and α2, at middle and fast time scales, respectively, represent long-range power-law correlations, similarly to DFA applied to heart rate variability signals. Of the computed complexity measures, α0 showed statistically significant differences among experimental conditions (pnonlinear dynamics, (b) three well-defined and distinct long-memory processes exist at different time scales, and (c) autonomic stimulation is partially reflected in nonlinear dynamics. (c) autonomic stimulation is partially reflected in nonlinear dynamics.

  4. Nonlinear Dynamics of Carbon Nanotubes Under Large Electrostatic Force

    KAUST Repository

    Xu, Tiantian; Younis, Mohammad I.

    2015-01-01

    Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction

  5. Analysis of cement-treated clay behavior by micromechanical approach

    OpenAIRE

    Zhang , Dong-Mei; Yin , Zhenyu; Hicher , Pierre Yves; Huang , Hong-Wei

    2013-01-01

    International audience; Experimental results show the significant influence of cement content on the mechanical properties of cement-treated clays. Cementation is produced by mixing a certain amount of cement with the saturated clay. The purpose of this paper is to model the cementation effect on the mechanical behavior of cement-treated clay. A micromechanical stress-strain model is developed considering explicitly the cementation at inter-cluster contacts. The inter-cluster bonding and debo...

  6. Nonlinear dynamical phenomena in liquid crystals

    International Nuclear Information System (INIS)

    Wang, X.Y.; Sun, Z.M.

    1988-09-01

    Because of the existence of the orientational order and anisotropy in liquid crystals, strong nonlinear phenomena and singular behaviors, such as solitary wave, transient periodic structure, chaos, fractal and viscous fingering, can be excited by a very small disturbance. These phenomena and behaviors are in connection with physics, biology and mathematics. 12 refs, 6 figs

  7. Seminar “Nonlinear Dynamics”

    OpenAIRE

    Статья Редакционная

    2014-01-01

    The workshop of the Nonlinear Dynamics scientific-educational center continued its work in 2014, focusing on methods of the dynamical system analysis and studies of their behavior. More than 30 talks in the field of scientific-educational center research have been made this year. The talk topics included numerical analysis of traveling waves in the Fisher–KPP equation with delay and simulations of the twophase heat distribution problem using heterogeneous computing architectures. In a number ...

  8. Effects of torsional degree of freedom, geometric nonlinearity, and gravity on aeroelastic behavior of large-scale horizontal axis wind turbine blades under varying wind speed conditions

    DEFF Research Database (Denmark)

    Jeong, Min-Soo; Cha, Myung-Chan; Kim, Sang-Woo

    2014-01-01

    Modern horizontal axis wind turbine blades are long, slender, and flexible structures that can undergo considerable deformation, leading to blade failures (e.g., blade-tower collision). For this reason, it is important to estimate blade behaviors accurately when designing large-scale wind turbine...

  9. Identifying design parameters controlling damage behaviors of continuous fiber-reinforced thermoplastic composites using micromechanics as a virtual testing tool

    KAUST Repository

    Pulungan, Ditho Ardiansyah; Lubineau, Gilles; Yudhanto, Arief; Yaldiz, Recep; Schijve, Warden

    2017-01-01

    In this paper, we propose a micromechanical approach to predict damage mechanisms and their interactions in glass fibers/polypropylene thermoplastic composites. First, a representative volume element (RVE) of such materials was rigorously determined using a geometrical two-point probability function and the eigenvalue stabilization of homogenized elastic tensor obtained by Hill-Mandel kinematic homogenization. Next, the 3D finite element models of the RVE were developed accordingly. The fibers were modeled with an isotropic linear elastic material. The matrix was modeled with an isotropic linear elastic, rate-independent hyperbolic Drucker-Prager plasticity coupled with a ductile damage model that is able to show pressure dependency of the yield and damage behavior often found in a thermoplastic material. In addition, cohesive elements were inserted into the fiber-matrix interfaces to simulate debonding. The RVE faces are imposed with periodical boundary conditions to minimize the edge effect. The RVE was then subjected to transverse tensile loading in accordance with experimental tensile tests on [90]8 laminates. The model prediction was found to be in very good agreement with the experimental results in terms of the global stress-strain curves, including the linear and nonlinear portion of the response and also the failure point, making it a useful virtual testing tool for composite material design. Furthermore, the effect of tailoring the main parameters of thermoplastic composites is investigated to provide guidelines for future improvements of these materials.

  10. Identifying design parameters controlling damage behaviors of continuous fiber-reinforced thermoplastic composites using micromechanics as a virtual testing tool

    KAUST Repository

    Pulungan, Ditho Ardiansyah

    2017-03-31

    In this paper, we propose a micromechanical approach to predict damage mechanisms and their interactions in glass fibers/polypropylene thermoplastic composites. First, a representative volume element (RVE) of such materials was rigorously determined using a geometrical two-point probability function and the eigenvalue stabilization of homogenized elastic tensor obtained by Hill-Mandel kinematic homogenization. Next, the 3D finite element models of the RVE were developed accordingly. The fibers were modeled with an isotropic linear elastic material. The matrix was modeled with an isotropic linear elastic, rate-independent hyperbolic Drucker-Prager plasticity coupled with a ductile damage model that is able to show pressure dependency of the yield and damage behavior often found in a thermoplastic material. In addition, cohesive elements were inserted into the fiber-matrix interfaces to simulate debonding. The RVE faces are imposed with periodical boundary conditions to minimize the edge effect. The RVE was then subjected to transverse tensile loading in accordance with experimental tensile tests on [90]8 laminates. The model prediction was found to be in very good agreement with the experimental results in terms of the global stress-strain curves, including the linear and nonlinear portion of the response and also the failure point, making it a useful virtual testing tool for composite material design. Furthermore, the effect of tailoring the main parameters of thermoplastic composites is investigated to provide guidelines for future improvements of these materials.

  11. Nonlinear Modeling by Assembling Piecewise Linear Models

    Science.gov (United States)

    Yao, Weigang; Liou, Meng-Sing

    2013-01-01

    To preserve nonlinearity of a full order system over a parameters range of interest, we propose a simple modeling approach by assembling a set of piecewise local solutions, including the first-order Taylor series terms expanded about some sampling states. The work by Rewienski and White inspired our use of piecewise linear local solutions. The assembly of these local approximations is accomplished by assigning nonlinear weights, through radial basis functions in this study. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving at different Mach numbers and pitching motions, under which the flow exhibits prominent nonlinear behaviors. All results confirm that our nonlinear model is accurate and stable for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robustness-accurate for inputs considerably different from the base trajectory in form and magnitude. This modeling preserves nonlinearity of the problems considered in a rather simple and accurate manner.

  12. Computational mechanics of nonlinear response of shells

    Energy Technology Data Exchange (ETDEWEB)

    Kraetzig, W.B. (Bochum Univ. (Germany, F.R.). Inst. fuer Statik und Dynamik); Onate, E. (Universidad Politecnica de Cataluna, Barcelona (Spain). Escuela Tecnica Superior de Ingenieros de Caminos) (eds.)

    1990-01-01

    Shell structures and their components are utilized in a wide spectrum of engineering fields reaching from space and aircraft structures, pipes and pressure vessels over liquid storage tanks, off-shore installations, cooling towers and domes, to bodyworks of motor vehicles. Of continuously increasing importance is their nonlinear behavior, in which large deformations and large rotations are involved as well as nonlinear material properties. The book starts with a survey about nonlinear shell theories from the rigorous point of view of continuum mechanics, this starting point being unavoidable for modern computational concepts. There follows a series of papers on nonlinear, especially unstable shell responses, which draw computational connections to well established tools in the field of static and dynamic stability of systems. Several papers are then concerned with new finite element derivations for nonlinear shell problems, and finally a series of authors contribute to specific applications opening a small window of the above mentioned wide spectrum. (orig./HP) With 159 figs.

  13. Computational mechanics of nonlinear response of shells

    International Nuclear Information System (INIS)

    Kraetzig, W.B.; Onate, E.

    1990-01-01

    Shell structures and their components are utilized in a wide spectrum of engineering fields reaching from space and aircraft structures, pipes and pressure vessels over liquid storage tanks, off-shore installations, cooling towers and domes, to bodyworks of motor vehicles. Of continuously increasing importance is their nonlinear behavior, in which large deformations and large rotations are involved as well as nonlinear material properties. The book starts with a survey about nonlinear shell theories from the rigorous point of view of continuum mechanics, this starting point being unavoidable for modern computational concepts. There follows a series of papers on nonlinear, especially unstable shell responses, which draw computational connections to well established tools in the field of static and dynamic stability of systems. Several papers are then concerned with new finite element derivations for nonlinear shell problems, and finally a series of authors contribute to specific applications opening a small window of the above mentioned wide spectrum. (orig./HP) With 159 figs

  14. Unidirectional reflection and invisibility in nonlinear media with an incoherent nonlinearity

    Science.gov (United States)

    Mostafazadeh, Ali; Oflaz, Neslihan

    2017-11-01

    We give explicit criteria for the reflectionlessness, transparency, and invisibility of a finite-range potential in the presence of an incoherent (intensity-dependent) nonlinearity that is confined to the range of the potential. This allows us to conduct a systematic study of the effects of such a nonlinearity on a locally periodic class of finite-range potentials that display perturbative unidirectional invisibility. We use our general results to examine the effects of a weak Kerr nonlinearity on the behavior of these potentials and show that the presence of nonlinearity destroys the unidirectional invisibility of these potentials. If the strength of the Kerr nonlinearity is so weak that the first-order perturbation theory is reliable, the presence of nonlinearity does not affect the unidirectional reflectionlessness and transmission reciprocity of the potential. We show that the expected violation of the latter is a second order perturbative effect.

  15. Topological approximation of the nonlinear Anderson model

    Science.gov (United States)

    Milovanov, Alexander V.; Iomin, Alexander

    2014-06-01

    We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrödinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance overlap in phase space, ranging from a fully developed chaos involving Lévy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that the quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on the infinite Cayley tree (Bethe lattice). It is found in the vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t →+∞. The second moment of the associated probability distribution grows with time as a power law ∝ tα, with the exponent α =1/3 exactly. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to the details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of "stripes" propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the

  16. Nonlinear optical studies of curcumin metal derivatives with cw laser

    Energy Technology Data Exchange (ETDEWEB)

    Henari, F. Z., E-mail: fzhenari@rcsi-mub.com; Cassidy, S. [Department of Basic Medical Sciences, Royal College of Surgeons in Ireland, Medical University of Bahrain (Bahrain)

    2015-03-30

    We report on measurements of the nonlinear refractive index and nonlinear absorption coefficients for curcumin and curcumin metal complexes of boron, copper, and iron at different wavelengths using the Z-scan technique. These materials are found to be novel nonlinear media. It was found that the addition of metals slightly influences its nonlinearity. These materials show a large negative nonlinear refractive index of the order of 10{sup −7} cm{sup 2}/W and negative nonlinear absorption of the order of 10{sup −6} cm/W. The origin of the nonlinearity was investigated by comparison of the formalism that is known as the Gaussian decomposition model with the thermal lens model. The optical limiting behavior based on the nonlinear refractive index was also investigated.

  17. Nonlinear optical studies of curcumin metal derivatives with cw laser

    International Nuclear Information System (INIS)

    Henari, F. Z.; Cassidy, S.

    2015-01-01

    We report on measurements of the nonlinear refractive index and nonlinear absorption coefficients for curcumin and curcumin metal complexes of boron, copper, and iron at different wavelengths using the Z-scan technique. These materials are found to be novel nonlinear media. It was found that the addition of metals slightly influences its nonlinearity. These materials show a large negative nonlinear refractive index of the order of 10 −7 cm 2 /W and negative nonlinear absorption of the order of 10 −6 cm/W. The origin of the nonlinearity was investigated by comparison of the formalism that is known as the Gaussian decomposition model with the thermal lens model. The optical limiting behavior based on the nonlinear refractive index was also investigated

  18. Fluctuations in Nonlinear Systems: A Short Review

    International Nuclear Information System (INIS)

    Rubia, F.J. de la; Buceta, J.; Cabrera, J.L.; Olarrea, J.; Parrondo, J.M.R.

    2003-01-01

    We review some results that illustrate the constructive role of noise in nonlinear systems. Several phenomena are briefly discussed: optimal localization of orbits in a system with limit cycle behavior and perturbed by colored noise; stochastic branch selection at secondary bifurcations; noise- induced order/disorder transitions and pattern formation in spatially extended systems. In all cases the presence of noise is crucial, and the results reinforce the modern view of the importance of noise in the evolution of nonlinear systems. (author)

  19. Nonlinear and Complex Dynamics in Real Systems

    OpenAIRE

    William Barnett; Apostolos Serletis; Demitre Serletis

    2005-01-01

    This paper was produced for the El-Naschie Symposium on Nonlinear Dynamics in Shanghai in December 2005. In this paper we provide a review of the literature with respect to fluctuations in real systems and chaos. In doing so, we contrast the order and organization hypothesis of real systems with nonlinear chaotic dynamics and discuss some techniques used in distinguishing between stochastic and deterministic behavior. Moreover, we look at the issue of where and when the ideas of chaos could p...

  20. Nonlinear and Nonequilibrium Dynamics in Geomaterials

    OpenAIRE

    TenCate, James A.; Pasqualini, Donatella; Habib, Salman; Heitmann, Katrin; Higdon, David; Johnson, Paul A.

    2004-01-01

    The transition from linear to nonlinear dynamical elasticity in rocks is of considerable interest in seismic wave propagation as well as in understanding the basic dynamical processes in consolidated granular materials. We have carried out a careful experimental investigation of this transition for Berea and Fontainebleau sandstones. Below a well-characterized strain, the materials behave linearly, transitioning beyond that point to a nonlinear behavior which can be accurately captured by a s...

  1. Response to "Comment on `Solitonic and chaotic behaviors for the nonlinear dust-acoustic waves in a magnetized dusty plasma'" [Phys. Plasmas 24, 094701 (2017)

    Science.gov (United States)

    Zhen, Hui-Ling; Tian, Bo; Xie, Xi-Yang; Wu, Xiao-Yu; Wen, Xiao-Yong

    2018-02-01

    On our previous construction [H. L. Zhen et al., Phys. Plasmas 23, 052301 (2016)] of the soliton solutions of a model describing the dynamics of the dust particles in a weakly ionized, collisional dusty plasma comprised of the negatively charged cold dust particles, hot ions, hot electrons, and stationary neutrals in the presence of an external static magnetic field, Ali et al. [Phys. Plasmas 24, 094701 (2017)] have commented that there exists a different form of Eq. (4) from that shown in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] and that certain interesting phenomena with the dust neutral collision frequency ν0>0 are ignored in Zhen et al. [Phys. Plasmas 23, 052301 (2016)]. In this Reply, according to the transformation given by the Ali et al. [Phys. Plasmas 24, 094701 (2017)] comment, we present some one-, two-, and N-soliton solutions which have not been obtained in the Ali et al. [Phys. Plasmas 24, 094701 (2017)] comment. We point out that our previous solutions in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] are still valid because of the similarity between the two dispersion relations of previous solutions in Zhen et al. [Phys. Plasmas 23, 052301 (2016)] and the solutions presented in this Reply. Based on our soliton solutions in this Reply, it is found that the soliton amplitude is inversely related to Zd and B0, but positively related to md and α, where α refers to the coefficient of the nonlinear term, Zd and md are the charge number and mass of a dust particle, respectively, B0 represents the strength of the external static magnetic field. We also find that the two solitons are always in parallel during the propagation.

  2. Linear and non-linear simulation of joints contact surface using ...

    African Journals Online (AJOL)

    The joint modelling including non-linear effects needs accurate and precise study of their behaviors. When joints are under the dynamic loading, micro, macro- slip happens in contact surface which is non-linear reason of the joint contact surface. The non-linear effects of joint contact surface on total behavior of structure are ...

  3. Advances in nonlinear optics

    CERN Document Server

    Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong

    2015-01-01

    This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.

  4. Analysis of the nonlinear dynamic behavior of power systems using normal forms of superior order; Analisis del comportamiento dinamico no lineal de sistemas de potencia usando formas normales de orden superior

    Energy Technology Data Exchange (ETDEWEB)

    Marinez Carrillo, Irma

    2003-08-01

    This thesis investigates the application of parameter disturbance methods of analysis to the nonlinear dynamic systems theory, for the study of the stability of small signal of electric power systems. The work is centered in the determination of two fundamental aspects of interest in the study of the nonlinear dynamic behavior of the system: the characterization and quantification of the nonlinear interaction degree between the fundamental ways of oscillation of the system and the study of the ways with greater influence in the response of the system in the presence of small disturbances. With these objectives, a general mathematical model, based on the application of the expansion in series of power of the nonlinear model of the power system and the theory of normal forms of vector fields is proposed for the study of the dynamic behavior of the power system. The proposed tool generalizes the existing methods in the literature to consider effects of superior order in the dynamic model of the power system. Starting off of this representation, a methodology is proposed to obtain analytical solutions of loop back and the extension of the existing methods is investigated to identify and quantify the of interaction degree among the fundamental ways of oscillation of the system. The developed tool allows, from analytical expressions of loop backs, the development of analytical measures to evaluate the stress degree in the system, the interaction between the fundamental ways of oscillation and the determination of stability borders. The conceptual development of the proposed method in this thesis offers, on the other hand, a great flexibility to incorporate detailed models of the power system and the evaluation of diverse measures of the nonlinear modal interaction. Finally, the results are presented of the application of the method of analysis proposed for the study of the nonlinear dynamic behavior in a machine-infinite bus system considering different modeled degrees

  5. Analytical evaluation of nonlinear distortion effects on multicarrier signals

    CERN Document Server

    Araújo, Theresa

    2015-01-01

    Due to their ability to support reliable high quality of service as well as spectral and power efficiency, multicarrier modulation systems have found increasing use in modern communications services. However, one of the main drawbacks of these systems is their vulnerability to nonlinear distortion effects. Analytical Evaluation of Nonlinear Distortion Effects on Multicarrier Signals details a unified approach to well-known analytical results on memoryless nonlinearities that takes advantage of the Gaussian behavior of multicarrier signals.Sharing new insights into the behavior of nonlinearly d

  6. The Power of Unit Root Tests Against Nonlinear Local Alternatives

    DEFF Research Database (Denmark)

    Demetrescu, Matei; Kruse, Robinson

    of Econometrics 112, 359-379) in comparison to the linear Dickey-Fuller test. To this end, we consider different adjustment schemes for deterministic terms. We provide asymptotic results which imply that the error variance has a severe impact on the behavior of the tests in the nonlinear case; the reason...... for such behavior is the interplay of nonstationarity and nonlinearity. In particular, we show that nonlinearity of the data generating process can be asymptotically negligible when the error variance is moderate or large (compared to the "amount of nonlinearity"), rendering the linear test more powerful than...

  7. Quantum Nonlinear Optics

    CERN Document Server

    Hanamura, Eiichi; Yamanaka, Akio

    2007-01-01

    This graduate-level textbook gives an introductory overview of the fundamentals of quantum nonlinear optics. Based on the quantum theory of radiation, Quantum Nonlinear Optics incorporates the exciting developments in novel nonlinear responses of materials (plus laser oscillation and superradiance) developed over the past decade. It deals with the organization of radiation field, interaction between electronic system and radiation field, statistics of light, mutual manipulation of light and matter, laser oscillation, dynamics of light, nonlinear optical response, and nonlinear spectroscopy, as well as ultrashort and ultrastrong laser pulse. Also considered are Q-switching, mode locking and pulse compression. Experimental and theoretical aspects are intertwined throughout.

  8. Nonlinear dynamics and complexity

    CERN Document Server

    Luo, Albert; Fu, Xilin

    2014-01-01

    This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.

  9. Distributed nonlinear optical response

    DEFF Research Database (Denmark)

    Nikolov, Nikola Ivanov

    2005-01-01

    of bound states of out of phase bright solitons and dark solitons. Also, the newly introduced analogy between the nonlocal cubic nonlinear and the quadratic nonlinear media, presented in paper B and Chapter 3 is discussed. In particular it supplies intuitive physical meaning of the formation of solitons...... in quadratic nonlinear media. In the second part of the report (Chapter 4), the possibility to obtain light with ultrabroad spectrum due to the interplay of many nonlinear effects based on cubic nonlinearity is investigated thoroughly. The contribution of stimulated Raman scattering, a delayed nonlinear...... a modified nonlinear Schroedinger model equation. Chapter 4 and papers D and E are dedicated to this part of the research....

  10. Quantitative research on microscopic deformation behavior of Ti-6Al-4V two-phase titanium alloy based on finite element method

    Science.gov (United States)

    Peng, Yan; Chen, Guoxing; Sun, Jianliang; Shi, Baodong

    2018-04-01

    The microscopic deformation of Ti-6Al-4V titanium alloy shows great inhomogeneity due to its duplex-microstructure that consists of two phases. In order to study the deformation behaviors of the constituent phases, the 2D FE model based on the realistic microstructure is established by MSC.Marc nonlinear FE software, and the tensile simulation is carried out. The simulated global stress-strain response is confirmed by the tensile testing result. Then the strain and stress distribution in the constituent phases and their evolution with the increase of the global strain are analyzed. The results show that the strain and stress partitioning between the two phases are considerable, most of the strain is concentrated in soft primary α phase, while hard transformed β matrix undertakes most of the stress. Under the global strain of 0.05, the deformation bands in the direction of 45° to the stretch direction and the local stress in primary α phase near to the interface between the two phases are observed, and they become more significant when the global strain increases to 0.1. The strain and stress concentration factors of the two phases are obviously different at different macroscopic deformation stages, but they almost tend to be stable finally.

  11. FEAST: a two-dimensional non-linear finite element code for calculating stresses

    International Nuclear Information System (INIS)

    Tayal, M.

    1986-06-01

    The computer code FEAST calculates stresses, strains, and displacements. The code is two-dimensional. That is, either plane or axisymmetric calculations can be done. The code models elastic, plastic, creep, and thermal strains and stresses. Cracking can also be simulated. The finite element method is used to solve equations describing the following fundamental laws of mechanics: equilibrium; compatibility; constitutive relations; yield criterion; and flow rule. FEAST combines several unique features that permit large time-steps in even severely non-linear situations. The features include a special formulation for permitting many finite elements to simultaneously cross the boundary from elastic to plastic behaviour; accomodation of large drops in yield-strength due to changes in local temperature and a three-step predictor-corrector method for plastic analyses. These features reduce computing costs. Comparisons against twenty analytical solutions and against experimental measurements show that predictions of FEAST are generally accurate to ± 5%

  12. Viscoelastic behavior of discrete human collagen fibrils

    DEFF Research Database (Denmark)

    Svensson, René; Hassenkam, Tue; Hansen, Philip

    2010-01-01

    Whole tendon and fibril bundles display viscoelastic behavior, but to the best of our knowledge this property has not been directly measured in single human tendon fibrils. In the present work an atomic force microscopy (AFM) approach was used for tensile testing of two human patellar tendon...... saline, cyclic testing was performed in the pre-yield region at different strain rates, and the elastic response was determined by a stepwise stress relaxation test. The elastic stress-strain response corresponded to a second-order polynomial fit, while the viscous response showed a linear dependence...

  13. Geometrically Nonlinear Transient Response of Laminated Plates with Nonlinear Elastic Restraints

    Directory of Open Access Journals (Sweden)

    Shaochong Yang

    2017-01-01

    Full Text Available To investigate the dynamic behavior of laminated plates with nonlinear elastic restraints, a varied constraint force model and a systematic numerical procedure are presented in this work. Several kinds of typical relationships of force-displacement for spring are established to simulate the nonlinear elastic restraints. In addition, considering the restraining moments of flexible pads, the pads are modeled by translational and rotational springs. The displacement- dependent constraint forces are added to the right-hand side of equations of motion and treated as additional applied loads. These loads can be explicitly defined, via an independent set of nonlinear load functions. The time histories of transverse displacements at typical points of the laminated plate are obtained through the transient analysis. Numerical examples show that the present method can effectively treat the geometrically nonlinear transient response of plates with nonlinear elastic restraints.

  14. Nonlinear structural mechanics theory, dynamical phenomena and modeling

    CERN Document Server

    Lacarbonara, Walter

    2013-01-01

    Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling offers a concise, coherent presentation of the theoretical framework of nonlinear structural mechanics, computational methods, applications, parametric investigations of nonlinear phenomena and their mechanical interpretation towards design. The theoretical and computational tools that enable the formulation, solution, and interpretation of nonlinear structures are presented in a systematic fashion so as to gradually attain an increasing level of complexity of structural behaviors, under the prevailing assumptions on the geometry of deformation, the constitutive aspects and the loading scenarios. Readers will find a treatment of the foundations of nonlinear structural mechanics towards advanced reduced models, unified with modern computational tools in the framework of the prominent nonlinear structural dynamic phenomena while tackling both the mathematical and applied sciences. Nonlinear Structural Mechanics: Theory, Dynamical Phenomena...

  15. Rotating black string with nonlinear source

    International Nuclear Information System (INIS)

    Hendi, S. H.

    2010-01-01

    In this paper, we derive rotating black string solutions in the presence of two kinds of nonlinear electromagnetic fields, so-called Born-Infeld and power Maxwell invariant. Investigation of the solutions show that for the Born-Infeld black string the singularity is timelike and the asymptotic behavior of the solutions is anti-de Sitter, but for power Maxwell invariant solutions, depending on the values of nonlinearity parameter, the singularity may be timelike as well as spacelike and the solutions are not asymptotically anti-de Sitter for all values of the nonlinearity parameter. Next, we calculate the conserved quantities of the solutions by using the counterterm method, and find that these quantities do not depend on the nonlinearity parameter. We also compute the entropy, temperature, the angular velocity, the electric charge, and the electric potential of the solutions, in which the conserved and thermodynamics quantities satisfy the first law of thermodynamics.

  16. Discounting Behavior

    DEFF Research Database (Denmark)

    Andersen, Steffen; Harrison, Glenn W.; Lau, Morten

    2014-01-01

    We re-evaluate the theory, experimental design and econometrics behind claims that individuals exhibit non-constant discounting behavior. Theory points to the importance of controlling for the non-linearity of the utility function of individuals, since the discount rate is defined over time-dated...

  17. Nonlinear Dirac Equations

    Directory of Open Access Journals (Sweden)

    Wei Khim Ng

    2009-02-01

    Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.

  18. Nonlinear graphene plasmonics

    Science.gov (United States)

    Ooi, Kelvin J. A.; Tan, Dawn T. H.

    2017-10-01

    The rapid development of graphene has opened up exciting new fields in graphene plasmonics and nonlinear optics. Graphene's unique two-dimensional band structure provides extraordinary linear and nonlinear optical properties, which have led to extreme optical confinement in graphene plasmonics and ultrahigh nonlinear optical coefficients, respectively. The synergy between graphene's linear and nonlinear optical properties gave rise to nonlinear graphene plasmonics, which greatly augments graphene-based nonlinear device performance beyond a billion-fold. This nascent field of research will eventually find far-reaching revolutionary technological applications that require device miniaturization, low power consumption and a broad range of operating wavelengths approaching the far-infrared, such as optical computing, medical instrumentation and security applications.

  19. Inducing in situ, nonlinear soil response applying an active source

    Science.gov (United States)

    Johnson, P.A.; Bodin, P.; Gomberg, J.; Pearce, F.; Lawrence, Z.; Menq, F.-Y.

    2009-01-01

    [1] It is well known that soil sites have a profound effect on ground motion during large earthquakes. The complex structure of soil deposits and the highly nonlinear constitutive behavior of soils largely control nonlinear site response at soil sites. Measurements of nonlinear soil response under natural conditions are critical to advancing our understanding of soil behavior during earthquakes. Many factors limit the use of earthquake observations to estimate nonlinear site response such that quantitative characterization of nonlinear behavior relies almost exclusively on laboratory experiments and modeling of wave propagation. Here we introduce a new method for in situ characterization of the nonlinear behavior of a natural soil formation using measurements obtained immediately adjacent to a large vibrator source. To our knowledge, we are the first group to propose and test such an approach. Employing a large, surface vibrator as a source, we measure the nonlinear behavior of the soil by incrementally increasing the source amplitude over a range of frequencies and monitoring changes in the output spectra. We apply a homodyne algorithm for measuring spectral amplitudes, which provides robust signal-to-noise ratios at the frequencies of interest. Spectral ratios are computed between the receivers and the source as well as receiver pairs located in an array adjacent to the source, providing the means to separate source and near-source nonlinearity from pervasive nonlinearity in the soil column. We find clear evidence of nonlinearity in significant decreases in the frequency of peak spectral ratios, corresponding to material softening with amplitude, observed across the array as the source amplitude is increased. The observed peak shifts are consistent with laboratory measurements of soil nonlinearity. Our results provide constraints for future numerical modeling studies of strong ground motion during earthquakes.

  20. Stationary nonlinear Airy beams

    International Nuclear Information System (INIS)

    Lotti, A.; Faccio, D.; Couairon, A.; Papazoglou, D. G.; Panagiotopoulos, P.; Tzortzakis, S.; Abdollahpour, D.

    2011-01-01

    We demonstrate the existence of an additional class of stationary accelerating Airy wave forms that exist in the presence of third-order (Kerr) nonlinearity and nonlinear losses. Numerical simulations and experiments, in agreement with the analytical model, highlight how these stationary solutions sustain the nonlinear evolution of Airy beams. The generic nature of the Airy solution allows extension of these results to other settings, and a variety of applications are suggested.