WorldWideScience

Sample records for nonlinear stochastic system

  1. New results in global stabilization for stochastic nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    Tao BIAN; Zhong-Ping JIANG

    2016-01-01

    This paper presents new results on the robust global stabilization and the gain assignment problems for stochastic nonlinear systems. Three stochastic nonlinear control design schemes are developed. Furthermore, a new stochastic gain assignment method is developed for a class of uncertain interconnected stochastic nonlinear systems. This method can be combined with the nonlinear small-gain theorem to design partial-state feedback controllers for stochastic nonlinear systems. Two numerical examples are given to illustrate the effectiveness of the proposed methodology.

  2. Identification methods for nonlinear stochastic systems.

    Science.gov (United States)

    Fullana, Jose-Maria; Rossi, Maurice

    2002-03-01

    Model identifications based on orbit tracking methods are here extended to stochastic differential equations. In the present approach, deterministic and statistical features are introduced via the time evolution of ensemble averages and variances. The aforementioned quantities are shown to follow deterministic equations, which are explicitly written within a linear as well as a weakly nonlinear approximation. Based on such equations and the observed time series, a cost function is defined. Its minimization by simulated annealing or backpropagation algorithms then yields a set of best-fit parameters. This procedure is successfully applied for various sampling time intervals, on a stochastic Lorenz system.

  3. Losslessness of Nonlinear Stochastic Discrete-Time Systems

    Directory of Open Access Journals (Sweden)

    Xikui Liu

    2015-01-01

    Full Text Available This paper will study stochastic losslessness theory for nonlinear stochastic discrete-time systems, which are expressed by the Itô-type difference equations. A necessary and sufficient condition is developed for a nonlinear stochastic discrete-time system to be lossless. By the stochastic lossless theory, we show that a nonlinear stochastic discrete-time system can be lossless via state feedback if and only if it has relative degree 0,…,0 and lossless zero dynamics. The effectiveness of the proposed results is illustrated by a numerical example.

  4. Output Feedback for Stochastic Nonlinear Systems with Unmeasurable Inverse Dynamics

    Institute of Scientific and Technical Information of China (English)

    Xin Yu; Na Duan

    2009-01-01

    This paper considers a concrete stochastic nonlinear system with stochastic unmeasurable inverse dynamics. Motivated by the concept of integral input-to-state stability (iISS) in deterministic systems and stochastic input-to-state stability (SISS) in stochastic systems, a concept of stochastic integral input-to-state stability (SiISS) using Lyapunov functions is first introduced. A constructive strategy is proposed to design a dynamic output feedback control law, which drives the state to the origin almost surely while keeping all other closed-loop signals almost surely bounded. At last, a simulation is given to verify the effectiveness of the control law.

  5. Stability of Nonlinear Stochastic Discrete-Time Systems

    OpenAIRE

    2013-01-01

    This paper studies the stability for nonlinear stochastic discrete-time systems. First of all, several definitions on stability are introduced, such as stability, asymptotical stability, and pth moment exponential stability. Moreover, using the method of the Lyapunov functionals, some efficient criteria for stochastic stability are obtained. Some examples are presented to illustrate the effectiveness of the proposed theoretical results.

  6. Digital simulation and modeling of nonlinear stochastic systems

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, J M; Rowland, J R

    1981-04-01

    Digitally generated solutions of nonlinear stochastic systems are not unique but depend critically on the numerical integration algorithm used. Some theoretical and practical implications of this dependence are examined. The Ito-Stratonovich controversy concerning the solution of nonlinear stochastic systems is shown to be more than a theoretical debate on maintaining Markov properties as opposed to utilizing the computational rules of ordinary calculus. The theoretical arguments give rise to practical considerations in the formation and solution of discrete models from continuous stochastic systems. Well-known numerical integration algorithms are shown not only to provide different solutions for the same stochastic system but also to correspond to different stochastic integral definitions. These correspondences are proved by considering first and second moments of solutions that result from different integration algorithms and then comparing the moments to those arising from various stochastic integral definitions. This algorithm-dependence of solutions is in sharp contrast to the deterministic and linear stochastic cases in which unique solutions are determined by any convergent numerical algorithm. Consequences of the relationship between stochastic system solutions and simulation procedures are presented for a nonlinear filtering example. Monte Carlo simulations and statistical tests are applied to the example to illustrate the determining role which computational procedures play in generating solutions.

  7. Digital simulation and modeling of nonlinear stochastic systems

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, J M; Rowland, J R

    1980-01-01

    Digitally generated solutions of nonlinear stochastic systems are not unique, but depend critically on the numerical integration algorithm used. Some theoretical and practical implications of this dependence are examined. The Ito-Stratonovich controversy concerning the solution of nonlinear stochastic systems is shown to be more than a theoretical debate on maintaining Markov properties as opposed to utilizing the computational rules of ordinary calculus. The theoretical arguments give rise to practical considerations in the formation and solution of discrete models from continuous stochastic systems. Well-known numerical integration algorithms are shown not only to provide different solutions for the same stochastic system, but also to correspond to different stochastic integral definitions. These correspondences are proved by considering first and second moments of solutions resulting from different integration algorithms and comparing the moments to those arising from various stochastic integral definitions. Monte Carlo simulations and statistical tests are applied to illustrate the determining role that computational procedures play in generating solutions. This algorithm dependence of solutions is in sharp contrast to the deterministic and linear stochastic cases, in which unique solutions are determined by any convergent numerical algorithm. Consequences of this relationship between stochastic system solutions and simulation procedures are presented for a nonlinear filtering example. 2 figures.

  8. Distributed Adaptive Neural Control for Stochastic Nonlinear Multiagent Systems.

    Science.gov (United States)

    Wang, Fang; Chen, Bing; Lin, Chong; Li, Xuehua

    2016-11-14

    In this paper, a consensus tracking problem of nonlinear multiagent systems is investigated under a directed communication topology. All the followers are modeled by stochastic nonlinear systems in nonstrict feedback form, where nonlinearities and stochastic disturbance terms are totally unknown. Based on the structural characteristic of neural networks (in Lemma 4), a novel distributed adaptive neural control scheme is put forward. The raised control method not only effectively handles unknown nonlinearities in nonstrict feedback systems, but also copes with the interactions among agents and coupling terms. Based on the stochastic Lyapunov functional method, it is indicated that all the signals of the closed-loop system are bounded in probability and all followers' outputs are convergent to a neighborhood of the output of leader. At last, the efficiency of the control method is testified by a numerical example.

  9. Nonlinear Damping Identification in Nonlinear Dynamic System Based on Stochastic Inverse Approach

    OpenAIRE

    2012-01-01

    The nonlinear model is crucial to prepare, supervise, and analyze mechanical system. In this paper, a new nonparametric and output-only identification procedure for nonlinear damping is studied. By introducing the concept of the stochastic state space, we formulate a stochastic inverse problem for a nonlinear damping. The solution of the stochastic inverse problem is designed as probabilistic expression via the hierarchical Bayesian formulation by considering various uncertainties such as the...

  10. Exponential Stability of Stochastic Nonlinear Dynamical Price System with Delay

    Directory of Open Access Journals (Sweden)

    Wenli Zhu

    2013-01-01

    Full Text Available Based on Lyapunov stability theory, Itô formula, stochastic analysis, and matrix theory, we study the exponential stability of the stochastic nonlinear dynamical price system. Using Taylor's theorem, the stochastic nonlinear system with delay is reduced to an n-dimensional semilinear stochastic differential equation with delay. Some sufficient conditions of exponential stability and corollaries for such price system are established by virtue of Lyapunov function. The time delay upper limit is solved by using our theoretical results when the system is exponentially stable. Our theoretical results show that if the classical price Rayleigh equation is exponentially stable, so is its perturbed system with delay provided that both the time delay and the intensity of perturbations are small enough. Two examples are presented to illustrate our results.

  11. Digital set point control of nonlinear stochastic systems

    Science.gov (United States)

    Moose, R. L.; Vanlandingham, H. F.; Zwicke, P. E.

    1978-01-01

    A technique for digital control of nonlinear stochastic plants is presented. The development achieves a practical digital algorithm with which the closed-loop system behaves in a classical Type I manner even with gross nonlinearities in the plant structure and low signal-to-noise power ratios. The design procedure is explained in detail and illustrated by an example whose simulated responses testify to the practicality of the approach.

  12. Asymptotic Stabilizability of a Class of Stochastic Nonlinear Hybrid Systems

    Directory of Open Access Journals (Sweden)

    Ewelina Seroka

    2015-01-01

    Full Text Available The problem of the asymptotic stabilizability in probability of a class of stochastic nonlinear control hybrid systems (with a linear dependence of the control with state dependent, Markovian, and any switching rule is considered in the paper. To solve the issue, the Lyapunov technique, including a common, single, and multiple Lyapunov function, the hybrid control theory, and some results for stochastic nonhybrid systems are used. Sufficient conditions for the asymptotic stabilizability in probability for a considered class of hybrid systems are formulated. Also the stabilizing control in a feedback form is considered. Furthermore, in the case of hybrid systems with the state dependent switching rule, a method for a construction of stabilizing switching rules is proposed. Obtained results are illustrated by examples and numerical simulations.

  13. Nonlinear stochastic system identification of skin using volterra kernels.

    Science.gov (United States)

    Chen, Yi; Hunter, Ian W

    2013-04-01

    Volterra kernel stochastic system identification is a technique that can be used to capture and model nonlinear dynamics in biological systems, including the nonlinear properties of skin during indentation. A high bandwidth and high stroke Lorentz force linear actuator system was developed and used to test the mechanical properties of bulk skin and underlying tissue in vivo using a non-white input force and measuring an output position. These short tests (5 s) were conducted in an indentation configuration normal to the skin surface and in an extension configuration tangent to the skin surface. Volterra kernel solution methods were used including a fast least squares procedure and an orthogonalization solution method. The practical modifications, such as frequency domain filtering, necessary for working with low-pass filtered inputs are also described. A simple linear stochastic system identification technique had a variance accounted for (VAF) of less than 75%. Representations using the first and second Volterra kernels had a much higher VAF (90-97%) as well as a lower Akaike information criteria (AICc) indicating that the Volterra kernel models were more efficient. The experimental second Volterra kernel matches well with results from a dynamic-parameter nonlinearity model with fixed mass as a function of depth as well as stiffness and damping that increase with depth into the skin. A study with 16 subjects showed that the kernel peak values have mean coefficients of variation (CV) that ranged from 3 to 8% and showed that the kernel principal components were correlated with location on the body, subject mass, body mass index (BMI), and gender. These fast and robust methods for Volterra kernel stochastic system identification can be applied to the characterization of biological tissues, diagnosis of skin diseases, and determination of consumer product efficacy.

  14. Nonlinear Damping Identification in Nonlinear Dynamic System Based on Stochastic Inverse Approach

    Directory of Open Access Journals (Sweden)

    S. L. Han

    2012-01-01

    Full Text Available The nonlinear model is crucial to prepare, supervise, and analyze mechanical system. In this paper, a new nonparametric and output-only identification procedure for nonlinear damping is studied. By introducing the concept of the stochastic state space, we formulate a stochastic inverse problem for a nonlinear damping. The solution of the stochastic inverse problem is designed as probabilistic expression via the hierarchical Bayesian formulation by considering various uncertainties such as the information insufficiency in parameter of interests or errors in measurement. The probability space is estimated using Markov chain Monte Carlo (MCMC. The applicability of the proposed method is demonstrated through numerical experiment and particular application to a realistic problem related to ship roll motion.

  15. Stochastic response of nonlinear system in probability domain

    Indian Academy of Sciences (India)

    Deepak Kumar; T K Datta

    2006-08-01

    A stochastic averaging procedure for obtaining the probability density function (PDF) of the response for a strongly nonlinear single-degree-of-freedom system, subjected to both multiplicative and additive random excitations is presented. The procedure uses random Van Der Pol transformation, Ito’s equation of limiting diffusion process and stochastic averaging technique as outlined by Zhu and others. However, the equations are rederived in generalized form and arranged in such a way that the procedure lends itself to a numerical computational scheme using FFT. The main objective of the modification is to consider highly irregular nonlinear functions which cannot be integrated in closed form and also to solve problems where analytical expressions for probability density function cannot be obtained. The procedure is applied to obtain the PDF of the response of Duffing oscillator subjected to additive and multiplicative random excitations represented by rational power spectral density functions (PSDFs). The results are verified by digital simulation. It is shown that the procedure provides results which compare very well with those obtained from simulation analysis not only for wide-band excitations but also for very narrow-band excitations, which are weak (when normalized with respect to mass of the system).

  16. Nonlinear stochastic systems with incomplete information filtering and control

    CERN Document Server

    Shen, Bo; Shu, Huisheng

    2013-01-01

    Nonlinear Stochastic Processes addresses the frequently-encountered problem of incomplete information. The causes of this problem considered here include: missing measurements; sensor delays and saturation; quantization effects; and signal sampling. Divided into three parts, the text begins with a focus on H∞ filtering and control problems associated with general classes of nonlinear stochastic discrete-time systems. Filtering problems are considered in the second part, and in the third the theory and techniques previously developed are applied to the solution of issues arising in complex networks with the design of sampled-data-based controllers and filters. Among its highlights, the text provides: ·         a unified framework for handling filtering and control problems in complex communication networks with limited bandwidth; ·         new concepts such as random sensor and signal saturations for more realistic modeling; and ·         demonstration of the use of techniques such...

  17. Study of the nonlinear longitudinal dynamics of a stochastic system

    Directory of Open Access Journals (Sweden)

    Cunha Americo

    2014-01-01

    Full Text Available This paper deals with the theoretical study of how discrete elements attached to a continuous stochastic systems can affect their dynamical behavior. For this, it is studied the nonlinear longitudinal dynamics of an elastic bar, attached to springs and a lumped mass, with a random elastic modulus and subjected to a Gaussian white-noise distributed external force. Numerical simulations are conducted and their results are analyzed in function of the ratio between the masses of the discrete and the continuous parts of the system. This analysis reveals that the dynamic behavior of the bar is significantly altered when the lumped mass is varied, being more influenced by the randomness for small values of the lumped mass.

  18. Online prediction and control in nonlinear stochastic systems

    DEFF Research Database (Denmark)

    Nielsen, Torben Skov

    2002-01-01

    of systems which are inherently non-stationary. The third part concerns the issue of predicting the power production from wind turbines in the presence of Numerical Weather Predictions (NWP) of selected climatical variables. Here the transformation through the wind turbines from (primarily) wind speed....... The papers G , H and J investigate models and methods for predicting wind power from a wind farm on basis of observations and numerical weather predictions. All three papers consider multistep prediction models, but uses di erent estimation methods as well as dierent models for the diurnal variation of wind......The present thesis consists of a summary report and ten research papers. The subject of the thesis is on-line prediction and control of non-linear and non-stationary systems based on stochastic modelling. The thesis consists of three parts where the rst part deals with on-line estimation in linear...

  19. Filtering nonlinear dynamical systems with linear stochastic models

    Science.gov (United States)

    Harlim, J.; Majda, A. J.

    2008-06-01

    An important emerging scientific issue is the real time filtering through observations of noisy signals for nonlinear dynamical systems as well as the statistical accuracy of spatio-temporal discretizations for filtering such systems. From the practical standpoint, the demand for operationally practical filtering methods escalates as the model resolution is significantly increased. For example, in numerical weather forecasting the current generation of global circulation models with resolution of 35 km has a total of billions of state variables. Numerous ensemble based Kalman filters (Evensen 2003 Ocean Dyn. 53 343-67 Bishop et al 2001 Mon. Weather Rev. 129 420-36 Anderson 2001 Mon. Weather Rev. 129 2884-903 Szunyogh et al 2005 Tellus A 57 528-45 Hunt et al 2007 Physica D 230 112-26) show promising results in addressing this issue; however, all these methods are very sensitive to model resolution, observation frequency, and the nature of the turbulent signals when a practical limited ensemble size (typically less than 100) is used. In this paper, we implement a radical filtering approach to a relatively low (40) dimensional toy model, the L-96 model (Lorenz 1996 Proc. on Predictability (ECMWF, 4-8 September 1995) pp 1-18) in various chaotic regimes in order to address the 'curse of ensemble size' for complex nonlinear systems. Practically, our approach has several desirable features such as extremely high computational efficiency, filter robustness towards variations of ensemble size (we found that the filter is reasonably stable even with a single realization) which makes it feasible for high dimensional problems, and it is independent of any tunable parameters such as the variance inflation coefficient in an ensemble Kalman filter. This radical filtering strategy decouples the problem of filtering a spatially extended nonlinear deterministic system to filtering a Fourier diagonal system of parametrized linear stochastic differential equations (Majda and Grote

  20. H∞ Control for Nonlinear Stochastic Systems with Time-Delay and Multiplicative Noise

    Directory of Open Access Journals (Sweden)

    Ming Gao

    2015-01-01

    Full Text Available This paper studies the infinite horizon H∞ control problem for a general class of nonlinear stochastic systems with time-delay and multiplicative noise. The exponential/asymptotic mean square H∞ control design of delayed nonlinear stochastic systems is presented by solving Hamilton-Jacobi inequalities. Two numerical examples are provided to show the effectiveness of the proposed design method.

  1. Globally Asymptotic Stability of Stochastic Nonlinear Systems with Time-Varying Delays via Output Feedback Control

    Directory of Open Access Journals (Sweden)

    Mingzhu Song

    2016-01-01

    Full Text Available We address the problem of globally asymptotic stability for a class of stochastic nonlinear systems with time-varying delays. By the backstepping method and Lyapunov theory, we design a linear output feedback controller recursively based on the observable linearization for a class of stochastic nonlinear systems with time-varying delays to guarantee that the closed-loop system is globally asymptotically stable in probability. In particular, we extend the deterministic nonlinear system to stochastic nonlinear systems with time-varying delays. Finally, an example and its simulations are given to illustrate the theoretical results.

  2. A Notion of Stochastic Input-to-State Stability and Its Application to Stability of Cascaded Stochastic Nonlinear Systems

    Institute of Scientific and Technical Information of China (English)

    Shu-jun Liu; Ji-feng Zhang; Zhong-ping Jiang

    2008-01-01

    In this paper, the property of practical input-to-state stability and its application to stability of cascaded nonlinear systems are investigated in the stochastic framework. Firstly, the notion of (practical)stochastic input-to-state stability with respect to a stochastic input is introduced, and then by the method of changing supply functions, (a) an (practical) SISS-Lyapunov function for the overall system is obtained from the corresponding Lyapunov functions for cascaded (practical) SISS subsystems.

  3. Hitting probabilities for non-linear systems of stochastic waves

    CERN Document Server

    Dalang, Robert C

    2012-01-01

    We consider a $d$-dimensional random field $u = \\{u(t,x)\\}$ that solves a non-linear system of stochastic wave equations in spatial dimensions $k \\in \\{1,2,3\\}$, driven by a spatially homogeneous Gaussian noise that is white in time. We mainly consider the case where the spatial covariance is given by a Riesz kernel with exponent $\\beta$. Using Malliavin calculus, we establish upper and lower bounds on the probabilities that the random field visits a deterministic subset of $\\IR^d$, in terms, respectively, of Hausdorff measure and Newtonian capacity of this set. The dimension that appears in the Hausdorff measure is close to optimal, and shows that when $d(2-\\beta) > 2(k+1)$, points are polar for $u$. Conversely, in low dimensions $d$, points are not polar. There is however an interval in which the question of polarity of points remains open.

  4. H {sub {infinity}} analysis of nonlinear stochastic time-delay systems

    Energy Technology Data Exchange (ETDEWEB)

    Shu Huisheng [Department of Applied Mathematics, Dong Hua University, Shanghai 200051 (China)] e-mail: hsshu@dhu.edu.cn; Wei Guoliang [Department of Applied Mathematics, Dong Hua University, Shanghai 200051 (China)

    2005-10-01

    In this paper, the H {sub {infinity}} analysis problem is studied for a general class of nonlinear stochastic systems with time-delay. The stochastic systems are described in terms of stochastic functional differential equations. The Razumikhin-type lemma is employed to establish sufficient conditions for the time-delay stochastic systems to be internally stable, and the H {sub {infinity}} analysis problem is studied in order to quantify the disturbance rejection attenuation level of the nonlinear stochastic time-delay system. In particular, the paper obtains the general conditions under which the L {sub 2} gain of the system is less than or equal to a given constant. Some easy-to-test criteria are also given so as to determine whether the nonlinear stochastic time-delay system under investigation is internally stable and whether it achieves certain H {sub {infinity}} performance index. Finally, illustrative examples are provided to show the usefulness of the proposed theory.

  5. Nonlinear stochastic systems with network-induced phenomena recursive filtering and sliding-mode design

    CERN Document Server

    Hu, Jun; Gao, Huijun

    2014-01-01

    This monograph introduces methods for handling filtering and control problems in nonlinear stochastic systems arising from network-induced phenomena consequent on limited communication capacity. Such phenomena include communication delay, packet dropout, signal quantization or saturation, randomly occurring nonlinearities and randomly occurring uncertainties.The text is self-contained, beginning with an introduction to nonlinear stochastic systems, network-induced phenomena and filtering and control, moving through a collection of the latest research results which focuses on the three aspects

  6. Stochastic optimal control of partially observable nonlinear quasi-integrable Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The stochastic optimal control of partially observable nonlinear quasi-integrable Hamiltonian systems is investigated. First, the stochastic optimal control problem of a partially observable nonlinear quasi-integrable Hamiltonian system is converted into that of a completely observable linear system based on a theorem due to Charalambous and Elliot. Then, the converted stochastic optimal control problem is solved by applying the stochastic averaging method and the stochastic dynamical programming principle. The response of the controlled quasi Hamiltonian system is predicted by solving the averaged Fokker-Planck-Kolmogorov equation and the Riccati equation for the estimated error of system states. As an example to illustrate the procedure and effectiveness of the proposed method, the stochastic optimal control problem of a partially observable two-degree-of-freedom quasi-integrable Hamiltonian system is worked out in detail.

  7. Function projective synchronization between integer-order and stochastic fractional-order nonlinear systems.

    Science.gov (United States)

    Geng, Lingling; Yu, Yongguang; Zhang, Shuo

    2016-09-01

    In this paper, the function projective synchronization between integer-order and stochastic fractional-order nonlinear systems is investigated. Firstly, according to the stability theory of fractional-order systems and tracking control, a controller is designed. At the same time, based on the orthogonal polynomial approximation, the method of transforming stochastic error system into an equivalent deterministic system is given. Thus, the stability of the stochastic error system can be analyzed through its equivalent deterministic one. Finally, to demonstrate the effectiveness of the proposed scheme, the function projective synchronization between integer-order Lorenz system and stochastic fractional-order Chen system is studied.

  8. Robust Passivity and Feedback Design for Nonlinear Stochastic Systems with Structural Uncertainty

    Directory of Open Access Journals (Sweden)

    Zhongwei Lin

    2013-01-01

    Full Text Available This paper discusses the robust passivity and global stabilization problems for a class of uncertain nonlinear stochastic systems with structural uncertainties. A robust version of stochastic Kalman-Yakubovitch-Popov (KYP lemma is established, which sustains the robust passivity of the system. Moreover, a robust strongly minimum phase system is defined, based on which the uncertain nonlinear stochastic system can be feedback equivalent to a robust passive system. Following with the robust passivity theory, a global stabilizing control is designed, which guarantees that the closed-loop system is globally asymptotically stable in probability (GASP. A numerical example is presented to illustrate the effectiveness of our results.

  9. Finite-time H∞ filtering for non-linear stochastic systems

    Science.gov (United States)

    Hou, Mingzhe; Deng, Zongquan; Duan, Guangren

    2016-09-01

    This paper describes the robust H∞ filtering analysis and the synthesis of general non-linear stochastic systems with finite settling time. We assume that the system dynamic is modelled by Itô-type stochastic differential equations of which the state and the measurement are corrupted by state-dependent noises and exogenous disturbances. A sufficient condition for non-linear stochastic systems to have the finite-time H∞ performance with gain less than or equal to a prescribed positive number is established in terms of a certain Hamilton-Jacobi inequality. Based on this result, the existence of a finite-time H∞ filter is given for the general non-linear stochastic system by a second-order non-linear partial differential inequality, and the filter can be obtained by solving this inequality. The effectiveness of the obtained result is illustrated by a numerical example.

  10. Estimation for Stochastic Nonlinear Systems with Randomly Distributed Time-Varying Delays and Missing Measurements

    Directory of Open Access Journals (Sweden)

    Yan Che

    2012-01-01

    Full Text Available The estimation problem is investigated for a class of stochastic nonlinear systems with distributed time-varying delays and missing measurements. The considered distributed time-varying delays, stochastic nonlinearities, and missing measurements are modeled in random ways governed by Bernoulli stochastic variables. The discussed nonlinearities are expressed by the statistical means. By using the linear matrix inequality method, a sufficient condition is established to guarantee the mean-square stability of the estimation error, and then the estimator parameters are characterized by the solution to a set of LMIs. Finally, a simulation example is exploited to show the effectiveness of the proposed design procedures.

  11. P-th moment and almost sure stability of stochastic switched nonlinear systems.

    Science.gov (United States)

    Gu, Haibo; Gao, Caixia

    2016-01-01

    This paper mainly tends to utilize [Formula: see text]-type function to investigate p-th moment and almost sure stability for a class of stochastic switched nonlinear systems. Based on the multiple Lyapunov functions approach, some sufficient conditions are derived to check the stability criteria of stochastic switched nonlinear systems. One numerical example is provided to demonstrate the effectiveness of the proposed results.

  12. STOCHASTIC OPTIMAL VIBRATION CONTROL OF PARTIALLY OBSERVABLE NONLINEAR QUASI HAMILTONIAN SYSTEMS WITH ACTUATOR SATURATION

    Institute of Scientific and Technical Information of China (English)

    Ronghua Huan; Lincong Chen; Weiliang Jin; Weiqiu Zhu

    2009-01-01

    An optimal vibration control strategy for partially observable nonlinear quasi Hamil-tonian systems with actuator saturation is proposed. First, a controlled partially observable non-linear system is converted into a completely observable linear control system of finite dimension based on the theorem due to Charalambous and Elliott. Then the partially averaged Ito stochas-tic differential equations and dynamical programming equation associated with the completely observable linear system are derived by using the stochastic averaging method and stochastic dynamical programming principle, respectively. The optimal control law is obtained from solving the final dynamical programming equation. The results show that the proposed control strategy has high control effectiveness and control efficiency.

  13. Approximate controllability of nonlinear stochastic impulsive integrodifferential systems in hilbert spaces

    Energy Technology Data Exchange (ETDEWEB)

    Subalakshmi, R. [Department of Mathematics, Bharathiar University, Coimbatore 641 046 (India)], E-mail: suba.ab.bu@gmail.com; Balachandran, K. [Department of Mathematics, Bharathiar University, Coimbatore 641 046 (India)], E-mail: balachandran_k@lycos.com

    2009-11-30

    Many practical systems in physical and biological sciences have impulsive dynamical behaviours during the evolution process which can be modeled by impulsive differential equations. This paper studies the approximate controllability properties of nonlinear stochastic impulsive integrodifferential and neutral functional stochastic impulsive integrodifferential equations in Hilbert spaces. Assuming the conditions for the approximate controllability of these linear systems we obtain the sufficient conditions for the approximate controllability of these associated nonlinear stochastic impulsive integrodifferential systems in Hilbert spaces. The results are obtained by using the Nussbaum fixed-point theorem. Finally, two examples are presented to illustrate the utility of the proposed result.

  14. Nonlinear stochastic optimal bounded control of hysteretic systems with actuator saturation

    Institute of Scientific and Technical Information of China (English)

    Rong-hua HUAN; Wei-qiu ZHU; Yong-jun WU

    2008-01-01

    A modified nonlinear stochastic optimal bounded control strategy for random excited hysteretic systems with actuator saturation is proposed. First, a controlled hysteretic system is converted into an equivalent nonlinear nonhysteretic stochastic system. Then, the partially averaged It6 stochastic differential equation and dynamical programming equation are established, respectively, by using the stochastic averaging method for quasi non-integrable Hamiltonian systems and stochastic dynamical programming principle, from which the optimal control law consisting of optimal unbounded control and bang-bang control is derived. Finally, the response of optimally controlled system is predicted by solving the Fokker-Planck-Kolmogorov (FPK) equation associated with the fully averaged It6 equation. Numerical results show that the proposed control strategy has high control effectiveness and efficiency.

  15. Global asymptotic stabilisation in probability of nonlinear stochastic systems via passivity

    Science.gov (United States)

    Florchinger, Patrick

    2016-07-01

    The purpose of this paper is to develop a systematic method for global asymptotic stabilisation in probability of nonlinear control stochastic systems with stable in probability unforced dynamics. The method is based on the theory of passivity for nonaffine stochastic differential systems combined with the technique of Lyapunov asymptotic stability in probability for stochastic differential equations. In particular, we prove that a nonlinear stochastic differential system whose unforced dynamics are Lyapunov stable in probability is globally asymptotically stabilisable in probability provided some rank conditions involving the affine part of the system coefficients are satisfied. In this framework, we show that a stabilising smooth state feedback law can be designed explicitly. A dynamic output feedback compensator for a class of nonaffine stochastic systems is constructed as an application of our analysis.

  16. Universal fuzzy integral sliding-mode controllers for stochastic nonlinear systems.

    Science.gov (United States)

    Gao, Qing; Liu, Lu; Feng, Gang; Wang, Yong

    2014-12-01

    In this paper, the universal integral sliding-mode controller problem for the general stochastic nonlinear systems modeled by Itô type stochastic differential equations is investigated. One of the main contributions is that a novel dynamic integral sliding mode control (DISMC) scheme is developed for stochastic nonlinear systems based on their stochastic T-S fuzzy approximation models. The key advantage of the proposed DISMC scheme is that two very restrictive assumptions in most existing ISMC approaches to stochastic fuzzy systems have been removed. Based on the stochastic Lyapunov theory, it is shown that the closed-loop control system trajectories are kept on the integral sliding surface almost surely since the initial time, and moreover, the stochastic stability of the sliding motion can be guaranteed in terms of linear matrix inequalities. Another main contribution is that the results of universal fuzzy integral sliding-mode controllers for two classes of stochastic nonlinear systems, along with constructive procedures to obtain the universal fuzzy integral sliding-mode controllers, are provided, respectively. Simulation results from an inverted pendulum example are presented to illustrate the advantages and effectiveness of the proposed approaches.

  17. Robust reliable guaranteed cost control for nonlinear singular stochastic systems with time delay

    Institute of Scientific and Technical Information of China (English)

    Zhang Aiqing; Fang Huajing

    2008-01-01

    To study the design problem of robust reliable guaranteed cost controller for nonlinear singular stochastic systems,the Takagi-Sugeno(T-S)fuzzy model is used to represent a nonlinear singular stochastic system with norm-bounded parameter uncertainties and time delay.Based on the linear matrix inequality(LMI)techniques and stability theory of stochastic differential equations,a stochastic Lyapunov function method is adopted to design a state feedback fuzzy controller.The resulting closed-loop fuzzy system is robustly reliable stochastically stable,and the corresponding quadratic cost function is guarauteed to be no more than a certain upper bound for all admissible uncertainties,as well as different actuator fault cases.A sufficient condition of existence and design method of robust reliable guaranteed cost controller is presented.Finally,a numerical simulation is given to illustrate the effectiveness of the proposed method.

  18. Estimation and Analysis of Nonlinear Stochastic Systems. Ph.D. Thesis

    Science.gov (United States)

    Marcus, S. I.

    1975-01-01

    The algebraic and geometric structures of certain classes of nonlinear stochastic systems were exploited in order to obtain useful stability and estimation results. The class of bilinear stochastic systems (or linear systems with multiplicative noise) was discussed. The stochastic stability of bilinear systems driven by colored noise was considered. Approximate methods for obtaining sufficient conditions for the stochastic stability of bilinear systems evolving on general Lie groups were discussed. Two classes of estimation problems involving bilinear systems were considered. It was proved that, for systems described by certain types of Volterra series expansions or by certain bilinear equations evolving on nilpotent or solvable Lie groups, the optimal conditional mean estimator consists of a finite dimensional nonlinear set of equations. The theory of harmonic analysis was used to derive suboptimal estimators for bilinear systems driven by white noise which evolve on compact Lie groups or homogeneous spaces.

  19. On stochastic optimal control of partially observable nonlinear quasi Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    朱位秋; 应祖光

    2004-01-01

    A stochastic optimal control strategy for partially observable nonlinear quasi Hamiltonian systems is proposed.The optimal control forces consist of two parts. The first part is determined by the conditions under which the stochastic optimal control problem of a partially observable nonlinear system is converted into that of a completely observable linear system. The second part is determined by solving the dynamical programming equation derived by applying the stochastic averaging method and stochastic dynamical programming principle to the completely observable linear control system. The response of the optimally controlled quasi Hamiltonian system is predicted by solving the averaged Fokker-Planck-Kolmogorov equation associated with the optimally controlled completely observable linear system and solving the Riccati equation for the estimated error of system states. An example is given to illustrate the procedure and effectiveness of the proposed control strategy.

  20. Science Letters:On stochastic optimal control of partially observable nonlinear quasi Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    朱位秋; 应祖光

    2004-01-01

    A stochastic optimal control strategy for partially observable nonlinear quasi Hamiltonian systems is proposed. The optimal control forces consist of two parts. The first part is determined by the conditions under which the stochastic optimal control problem of a partially observable nonlinear system is converted into that of a completely observable linear system. The second part is determined by solving the dynamical programming equation derived by applying the stochastic averaging method and stochastic dynamical programming principle to the completely observable linear control system. The response of the optimally controlled quasi Hamiltonian system is predicted by solving the averaged Fokker-Planck-Kolmogorov equation associated with the optimally controlled completely observable linear system and solving the Riccati equation for the estimated error of system states. An example is given to illustrate the procedure and effectiveness of the proposed control strategy.

  1. Stochastic Stability Analysis for Markovian Jump Neutral Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2012-10-01

    Full Text Available In this paper, the stability problem is studied for a class of Markovian jump neutral nonlinear systems with time-varying delay. By Lyapunov-Krasovskii function approach, a novel mean-square exponential stability criterion is derived for the situations that the system's transition rates are completely accessible, partially accessible and non-accessible, respectively. Moreover, the developed stability criterion is extended to the systems with different bounded sector nonlinear constraints. Finally, some numerical examples are provided to illustrate the effectiveness of the proposed methods.

  2. Stochastic bifurcations in the nonlinear vibroimpact system with fractional derivative under random excitation

    Science.gov (United States)

    Yang, Yongge; Xu, Wei; Sun, Yahui; Xiao, Yanwen

    2017-01-01

    This paper aims to investigate the stochastic bifurcations in the nonlinear vibroimpact system with fractional derivative under random excitation. Firstly, the original stochastic vibroimpact system with fractional derivative is transformed into equivalent stochastic vibroimpact system without fractional derivative. Then, the non-smooth transformation and stochastic averaging method are used to obtain the analytical solutions of the equivalent stochastic system. At last, in order to verify the effectiveness of the above mentioned approach, the van der Pol vibroimpact system with fractional derivative is worked out in detail. A very satisfactory agreement can be found between the analytical results and the numerical results. An interesting phenomenon we found in this paper is that the fractional order and fractional coefficient of the stochastic van der Pol vibroimpact system can induce the occurrence of stochastic P-bifurcation. To the best of authors' knowledge, the stochastic P-bifurcation phenomena induced by fractional order and fractional coefficient have not been found in the present available literature which studies the dynamical behaviors of stochastic system with fractional derivative under Gaussian white noise excitation.

  3. Finite-time stabilization for a class of stochastic nonlinear systems via output feedback.

    Science.gov (United States)

    Zha, Wenting; Zhai, Junyong; Fei, Shumin; Wang, Yunji

    2014-05-01

    This paper investigates the problem of global finite-time stabilization in probability for a class of stochastic nonlinear systems. The drift and diffusion terms satisfy lower-triangular or upper-triangular homogeneous growth conditions. By adding one power integrator technique, an output feedback controller is first designed for the nominal system without perturbing nonlinearities. Based on homogeneous domination approach and stochastic finite-time stability theorem, it is proved that the solution of the closed-loop system will converge to the origin in finite time and stay at the origin thereafter with probability one. Two simulation examples are presented to illustrate the effectiveness of the proposed design procedure.

  4. Fuzzy Stabilization for Nonlinear Discrete Ship Steering Stochastic Systems Subject to State Variance and Passivity Constraints

    Directory of Open Access Journals (Sweden)

    Wen-Jer Chang

    2014-01-01

    Full Text Available For nonlinear discrete-time stochastic systems, a fuzzy controller design methodology is developed in this paper subject to state variance constraint and passivity constraint. According to fuzzy model based control technique, the nonlinear discrete-time stochastic systems considered in this paper are represented by the discrete-time Takagi-Sugeno fuzzy models with multiplicative noise. Employing Lyapunov stability theory, upper bound covariance control theory, and passivity theory, some sufficient conditions are derived to find parallel distributed compensation based fuzzy controllers. In order to solve these sufficient conditions, an iterative linear matrix inequality algorithm is applied based on the linear matrix inequality technique. Finally, the fuzzy stabilization problem for nonlinear discrete ship steering stochastic systems is investigated in the numerical example to illustrate the feasibility and validity of proposed fuzzy controller design method.

  5. Robust stabilisation of 2D state-delayed stochastic systems with randomly occurring uncertainties and nonlinearities

    Science.gov (United States)

    Duan, Zhaoxia; Xiang, Zhengrong; Karimi, Hamid Reza

    2014-07-01

    This paper is concerned with the state feedback control problem for a class of two-dimensional (2D) discrete-time stochastic systems with time-delays, randomly occurring uncertainties and nonlinearities. Both the sector-like nonlinearities and the norm-bounded uncertainties enter into the system in random ways, and such randomly occurring uncertainties and nonlinearities obey certain mutually uncorrelated Bernoulli random binary distribution laws. Sufficient computationally tractable linear matrix inequality-based conditions are established for the 2D nonlinear stochastic time-delay systems to be asymptotically stable in the mean-square sense, and then the explicit expression of the desired controller gains is derived. An illustrative example is provided to show the usefulness and effectiveness of the proposed method.

  6. Variance-Constrained Multiobjective Control and Filtering for Nonlinear Stochastic Systems: A Survey

    Directory of Open Access Journals (Sweden)

    Lifeng Ma

    2013-01-01

    Full Text Available The multiobjective control and filtering problems for nonlinear stochastic systems with variance constraints are surveyed. First, the concepts of nonlinear stochastic systems are recalled along with the introduction of some recent advances. Then, the covariance control theory, which serves as a practical method for multi-objective control design as well as a foundation for linear system theory, is reviewed comprehensively. The multiple design requirements frequently applied in engineering practice for the use of evaluating system performances are introduced, including robustness, reliability, and dissipativity. Several design techniques suitable for the multi-objective variance-constrained control and filtering problems for nonlinear stochastic systems are discussed. In particular, as a special case for the multi-objective design problems, the mixed H2/H∞ control and filtering problems are reviewed in great detail. Subsequently, some latest results on the variance-constrained multi-objective control and filtering problems for the nonlinear stochastic systems are summarized. Finally, conclusions are drawn, and several possible future research directions are pointed out.

  7. Output feedback stabilization for stochastic nonlinear systems in observer canonical form with stable zero-dynamics

    Institute of Scientific and Technical Information of China (English)

    潘子刚; 刘允刚; 施颂椒

    2001-01-01

    In this paper, we study the problem of output feedback stabilization for stochastic nonlinear systems. We consider a class of stochastic nonlinear systems in observer canonical form with stable zero-dynamics. We introduce a sequence of state transformations that transform the system into a lower triangular structure that is amenable for integrator backstepping design. Then we design the output-feedback controller and prove that the closed-loop system is bounded in probability. Furthermore, when the disturbance vector field vanishes at the origin, the closed-loop system is asymptotically stable in the large. With special care, the controller preserves the equilibrium of the nonlinear system. An example is included to illustrate the theoretical findings.

  8. Nonlinear H{sub {infinity}} control of stochastic time-delay systems with Markovian switching

    Energy Technology Data Exchange (ETDEWEB)

    Wei Guoliang [School of Information Sciences and Technology, Donghua University, Shanghai 200051 (China); Wang Zidong [School of Information Sciences and Technology, Donghua University, Shanghai 200051 (China); Department of Information Systems and Computing, Brunel University, Uxbridge, Middlesex UB8 3PH (United Kingdom)], E-mail: Zidong.Wang@brunel.ac.uk; Shu Huisheng [Department of Applied Mathematics, Donghua University, Shanghai 200051 (China)

    2008-02-15

    In this paper, the stabilization and H{sub {infinity}} control problems are investigated for a class of stochastic time-delay systems with both nonlinear disturbances and Markovian jumping parameters. The purpose of the stochastic stabilization problem is to design a memoryless state feedback controller such that, for the addressed nonlinear disturbances as well as Markovian jumping parameters, the closed-loop system is stochastically exponentially stable in the mean square, independent of the time delay. In the H{sub {infinity}} control problem, in addition to the mean-square exponential stability requirement, a prescribed H{sub {infinity}} performance index is required to be achieved. By using Ito's differential formula and the Lyapunov stability theory, sufficient conditions for the solvability of these problems are derived in term of linear matrix inequalities, which can be easily checked by resorting to available software packages. A numerical example is exploited to demonstrate the effectiveness of the proposed results.

  9. Adaptive Output Feedback Control for a Class of Stochastic Nonlinear Systems with SiISS Inverse Dynamics

    Directory of Open Access Journals (Sweden)

    Na Duan

    2012-01-01

    Full Text Available The adaptive stabilization scheme based on tuning function for stochastic nonlinear systems with stochastic integral input-to-state stability (SiISS inverse dynamics is investigated. By combining the stochastic LaSalle theorem and small-gain type conditions on SiISS, an adaptive output feedback controller is constructively designed. It is shown that all the closed-loop signals are bounded almost surely and the stochastic closed-loop system is globally stable in probability.

  10. In vivo characterization of skin using a Weiner nonlinear stochastic system identification method.

    Science.gov (United States)

    Chen, Yi; Hunter, Ian W

    2009-01-01

    This paper describes an indentometer device used to identify the linear dynamic and nonlinear properties of skin and underlying tissue using an in vivo test. The device uses a Lorentz force actuator to apply a dynamic force to the skin and measures the resulting displacement. It was found that the skin could be modeled as a Wiener system (i.e. a linear dynamic system followed by a static nonlinearity). Using a stochastic nonlinear system identification technique, the method presented in this paper was able to identify the dynamic linear and static nonlinear mechanical parameters of the indentometer-skin system within 2 to 4 seconds. The shape of the nonlinearity was found to vary depending on the area of the skin that was tested. We show that the device can repeatably distinguish between different areas of human tissue for multiple test subjects.

  11. Minimal-order observer and output-feedback stabilization control design of stochastic nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    LIU Yungang; ZHANG Jifeng

    2004-01-01

    A minimal-order observer and output-feedback stabilization control are given for single-input multi-output stochastic nonlinear systems with unobservable states, unmodelled dynamics and stochastic disturbances. Based on the observer designed, the estimates of all observable states of the system are given, and the convergence of the estimation errors are analyzed. In addition, by using the integrator backstepping approach,an output-feedback stabilization control is constructively designed, and sufficient conditions are obtained under which the closed-loop system is asymptotically stable in the large or bounded in probability, respectively.

  12. On stabilization for a class of nonlinear stochastic time-delay systems: a matrix inequality approach

    Institute of Scientific and Technical Information of China (English)

    Weihai ZHANG; Xuezhen LIU; Shulan KONG; Qinghua LI

    2006-01-01

    This paper treats the feedback stabilization of nonlinear stochastic time-delay systems with state and control-dependent noise. Some locally (globally) robustly stabilizable conditions are given in terms of matrix inequalities that are independent of the delay size. When it is applied to linear stochastic time-delay systems, sufficient conditions for the state-feedback stabilization are presented via linear matrix inequalities. Several previous results are extended to more general systems with both state and control-dependent noise, and easy computation algorithms are also given.

  13. Stochastic Nonlinear Aeroelasticity

    Science.gov (United States)

    2009-01-01

    STOCHASTIC NONLINEAR AEROELASTICITY 5a. CONTRACT NUMBER In- house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 0601102 6. AUTHOR(S) Philip S...ABSTRACT This report documents the culmination of in- house work in the area of uncertainty quantification and probabilistic techniques for... coff U∞ cs ea lw cw Figure 6: Wing and store geometry (left), wing box structural model (middle), flutter distribution (right

  14. Convolutionless Nakajima-Zwanzig equations for stochastic analysis in nonlinear dynamical systems.

    Science.gov (United States)

    Venturi, D; Karniadakis, G E

    2014-06-08

    Determining the statistical properties of stochastic nonlinear systems is of major interest across many disciplines. Currently, there are no general efficient methods to deal with this challenging problem that involves high dimensionality, low regularity and random frequencies. We propose a framework for stochastic analysis in nonlinear dynamical systems based on goal-oriented probability density function (PDF) methods. The key idea stems from techniques of irreversible statistical mechanics, and it relies on deriving evolution equations for the PDF of quantities of interest, e.g. functionals of the solution to systems of stochastic ordinary and partial differential equations. Such quantities could be low-dimensional objects in infinite dimensional phase spaces. We develop the goal-oriented PDF method in the context of the time-convolutionless Nakajima-Zwanzig-Mori formalism. We address the question of approximation of reduced-order density equations by multi-level coarse graining, perturbation series and operator cumulant resummation. Numerical examples are presented for stochastic resonance and stochastic advection-reaction problems.

  15. STABILIZATION FOR A CLASS OF LARGE-SCALE STOCHASTIC NONLINEAR SYSTEMS WITH DECENTRALIZED CONTROLLER DESIGN

    Institute of Scientific and Technical Information of China (English)

    Xiaowu MU; Haijun LIU

    2007-01-01

    In this paper,a state feedback adaptive stabilization for a class of large-scale stochastic nonlinear systems is designed with Lyapunov and Backstepping method.In the systems there are uncertain terms,whose bounds are governed by a set of unknown parameters.The designed controllers would make the close-loop systems asymptotically stable and adaptive for the unknown parameters.As an application,a second order example is delivered to illustrate the approach.

  16. Consensus Problem Over High-Order Multiagent Systems With Uncertain Nonlinearities Under Deterministic and Stochastic Topologies.

    Science.gov (United States)

    Rezaee, Hamed; Abdollahi, Farzaneh

    2016-12-06

    The leaderless consensus problem over a class of high-order nonlinear multiagent systems (MASs) is studied. A robust protocol is proposed which guarantees achieving consensus in the network in the presences of uncertainties in agents models. Achieving consensus in the case of stochastic links failure is studied as well. Based on the concept super-martingales, it is shown that if the probability of the network connectivity is not zero, under some conditions, achieving almost sure consensus in the network can be guaranteed. Despite existing consensus protocols for high-order stochastic networks, the proposed consensus protocol in this paper is robust to uncertain nonlinearities in the agents models, and it can be designed independent of knowledge on the set of feasible topologies (topologies with nonzero probabilities). Numerical examples for a team of single-link flexible joint manipulators with fourth-order models verify the accuracy of the proposed strategy for consensus control of high-order MASs with uncertain nonlinearities.

  17. Non-linear stochastic optimal control of acceleration parametrically excited systems

    Science.gov (United States)

    Wang, Yong; Jin, Xiaoling; Huang, Zhilong

    2016-02-01

    Acceleration parametrical excitations have not been taken into account due to the lack of physical significance in macroscopic structures. The explosive development of microtechnology and nanotechnology, however, motivates the investigation of the acceleration parametrically excited systems. The adsorption and desorption effects dramatically change the mass of nano-sized structures, which significantly reduces the precision of nanoscale sensors or can be reasonably utilised to detect molecular mass. This manuscript proposes a non-linear stochastic optimal control strategy for stochastic systems with acceleration parametric excitation based on stochastic averaging of energy envelope and stochastic dynamic programming principle. System acceleration is approximately expressed as a function of system displacement in a short time range under the conditions of light damping and weak excitations, and the acceleration parametrically excited system is shown to be equivalent to a constructed system with an additional displacement parametric excitation term. Then, the controlled system is converted into a partially averaged Itô equation with respect to the total system energy through stochastic averaging of energy envelope, and the optimal control strategy for the averaged system is derived from solving the associated dynamic programming equation. Numerical results for a controlled Duffing oscillator indicate the efficacy of the proposed control strategy.

  18. Optimal filtering for uncertain systems with stochastic nonlinearities, correlated noises and missing measurements

    Institute of Scientific and Technical Information of China (English)

    Shuo Zhang,Yan Zhao,Min Li,; Jianhui Zhao

    2015-01-01

    The global y optimal recursive filtering problem is stu-died for a class of systems with random parameter matrices, stochastic nonlinearities, correlated noises and missing measure-ments. The stochastic nonlinearities are presented in the system model to reflect multiplicative random disturbances, and the addi-tive noises, process noise and measurement noise, are assumed to be one-step autocorrelated as wel as two-step cross-correlated. A series of random variables is introduced as the missing rates governing the intermittent measurement losses caused by un-favorable network conditions. The aim of the addressed filtering problem is to design an optimal recursive filter for the uncertain systems based on an innovation approach such that the filtering error is global y minimized at each sampling time. A numerical simulation example is provided to il ustrate the effectiveness and applicability of the proposed algorithm.

  19. Mean square stabilisation of complex oscillatory regimes in nonlinear stochastic systems

    Science.gov (United States)

    Bashkirtseva, Irina; Ryashko, Lev

    2016-04-01

    A problem of stabilisation of the randomly forced periodic and quasiperiodic modes for nonlinear dynamic systems is considered. For this problem solution, we propose a new theoretical approach to consider these modes as invariant manifolds of the stochastic differential equations with control. The aim of the control is to provide the exponential mean square (EMS) stability for these manifolds. A general method of the stabilisation based on the algebraic criterion of the EMS-stability is elaborated. A constructive technique for the design of the feedback regulators stabilising various types of oscillatory regimes is proposed. A detailed parametric analysis of the problem of the stabilisation for stochastically forced periodic and quasiperiodic modes is given. An illustrative example of stochastic Hopf system is included to demonstrate the effectiveness of the proposed technique.

  20. Nonlinear system stochastic response determination via fractional equivalent linearization and Karhunen-Loève expansion

    Science.gov (United States)

    Dai, Hongzhe; Zheng, Zhibao; Wang, Wei

    2017-08-01

    In this paper, a novel fractional equivalent linearization (EL) approach is developed by incorporating a fractional derivative term into the classical linearization equation. Due to the introduction of the fractional derivative term, the accuracy of the new linearization is improved, illustrated by a Duffing oscillator that is subjected to a harmonic excitation. Furthermore, a new method for solving stochastic response of nonlinear SDOF system is developed by combining Karhunen-Loève (K-L) expansion and fractional EL. The method firstly decomposes the stochastic excitation in terms of a set of random variables and deterministic sub-excitations using K-L expansion, and then construct sub-fractional equivalent linear system according to each sub-excitation by fractional EL, the response of the original nonlinear system is finally approximated as the weighed summation of the deterministic response of each sub-system multiplied by the corresponding random variable. The random nature of the final response comes from the set of random variables that is obtained in K-L expansion. In this way, the stochastic response computation is converted to a set of deterministic response analysis problems. The effectiveness of the developed method is demonstrated by a Duffing oscillator that is subjected to stochastic excitation modeled by Winner process. The results are compared with the numerical method and Monte Carlo simulation (MCS).

  1. Adaptive Output Neural Network Control for a Class of Stochastic Nonlinear Systems With Dead-Zone Nonlinearities.

    Science.gov (United States)

    Wu, Li-Bing; Yang, Guang-Hong

    2017-03-01

    This paper investigates the problem of adaptive output neural network (NN) control for a class of stochastic nonaffine and nonlinear systems with actuator dead-zone inputs. First, based on the intermediate value theorem, a novel design scheme that converts the nonaffine system into the corresponding affine system is developed. In particular, the priori knowledge of the bound of the derivative of the nonaffine and nonlinear functions is removed; then, by employing NNs to approximate the appropriate nonlinear functions, the corresponding adaptive NN tracking controller with the adjustable parameter updated laws is designed through a backstepping technique. Furthermore, it is shown that all the closed-loop signals are bounded in probability, and the system output tracking error can converge to a small neighborhood in the sense of a mean quartic value. Finally, experimental simulations are provided to demonstrate the efficiency of the proposed adaptive NN tracking control method.

  2. Nonlinear Stochastic Dynamics of Complex Systems, I: A Chemical Reaction Kinetic Perspective with Mesoscopic Nonequilibrium Thermodynamics

    CERN Document Server

    Qian, Hong

    2016-01-01

    We distinguish a mechanical representation of the world in terms of point masses with positions and momenta and the chemical representation of the world in terms of populations of different individuals, each with intrinsic stochasticity, but population wise with statistical rate laws in their syntheses, degradations, spatial diffusion, individual state transitions, and interactions. Such a formal kinetic system in a small volume $V$, like a single cell, can be rigorously treated in terms of a Markov process describing its nonlinear kinetics as well as nonequilibrium thermodynamics at a mesoscopic scale. We introduce notions such as open, driven chemical systems, entropy production, free energy dissipation, etc. Then in the macroscopic limit, we illustrate how two new "laws", in terms of a generalized free energy of the mesoscopic stochastic dynamics, emerge. Detailed balance and complex balance are two special classes of "simple" nonlinear kinetics. Phase transition is intrinsically related to multi-stability...

  3. Uniform Approximate Estimation for Nonlinear Nonhomogenous Stochastic System with Unknown Parameter

    OpenAIRE

    2012-01-01

    The error bound in probability between the approximate maximum likelihood estimator (AMLE) and the continuous maximum likelihood estimator (MLE) is investigated for nonlinear nonhomogenous stochastic system with unknown parameter. The rates of convergence of the approximations for Itô and ordinary integral are introduced under some regular assumptions. Based on these results, the in probability rate of convergence of the approximate log-likelihood function to the true continuous log-likelihoo...

  4. A Review on Analysis and Synthesis of Nonlinear Stochastic Systems with Randomly Occurring Incomplete Information

    Directory of Open Access Journals (Sweden)

    Hongli Dong

    2012-01-01

    Full Text Available In the context of systems and control, incomplete information refers to a dynamical system in which knowledge about the system states is limited due to the difficulties in modeling complexity in a quantitative way. The well-known types of incomplete information include parameter uncertainties and norm-bounded nonlinearities. Recently, in response to the development of network technologies, the phenomenon of randomly occurring incomplete information has become more and more prevalent. Such a phenomenon typically appears in a networked environment. Examples include, but are not limited to, randomly occurring uncertainties, randomly occurring nonlinearities, randomly occurring saturation, randomly missing measurements and randomly occurring quantization. Randomly occurring incomplete information, if not properly handled, would seriously deteriorate the performance of a control system. In this paper, we aim to survey some recent advances on the analysis and synthesis problems for nonlinear stochastic systems with randomly occurring incomplete information. The developments of the filtering, control and fault detection problems are systematically reviewed. Latest results on analysis and synthesis of nonlinear stochastic systems are discussed in great detail. In addition, various distributed filtering technologies over sensor networks are highlighted. Finally, some concluding remarks are given and some possible future research directions are pointed out.

  5. STRUCTURE IDENTIFICATION OF NON-LINEAR SYSTEM “MOVING OBJECT AND SERVO DRIVE” UNDER STOCHASTIC DISTURBANCES

    Directory of Open Access Journals (Sweden)

    Valerii Azarskov

    2015-12-01

    Full Text Available The article represents an algorithm for dynamics models identification of nonlinear system “moving object and servo drive”, taking into account that the stochastic disturbances presented in the real operating mode are acting on it.

  6. Stochastic Stability of Nonlinear Sampled Data Systems with a Jump Linear Controller

    Science.gov (United States)

    Gonzalez, Oscar R.; Herencia-Zapana, Heber; Gray, W. Steven

    2004-01-01

    This paper analyzes the stability of a sampled- data system consisting of a deterministic, nonlinear, time- invariant, continuous-time plant and a stochastic, discrete- time, jump linear controller. The jump linear controller mod- els, for example, computer systems and communication net- works that are subject to stochastic upsets or disruptions. This sampled-data model has been used in the analysis and design of fault-tolerant systems and computer-control systems with random communication delays without taking into account the inter-sample response. To analyze stability, appropriate topologies are introduced for the signal spaces of the sampled- data system. With these topologies, the ideal sampling and zero-order-hold operators are shown to be measurable maps. This paper shows that the known equivalence between the stability of a deterministic, linear sampled-data system and its associated discrete-time representation as well as between a nonlinear sampled-data system and a linearized representation holds even in a stochastic framework.

  7. Adaptive fuzzy decentralised control for stochastic nonlinear large-scale systems in pure-feedback form

    Science.gov (United States)

    Tong, Shaocheng; Xu, Yinyin; Li, Yongming

    2015-06-01

    This paper is concerned with the problem of adaptive fuzzy decentralised output-feedback control for a class of uncertain stochastic nonlinear pure-feedback large-scale systems with completely unknown functions, the mismatched interconnections and without requiring the states being available for controller design. With the help of fuzzy logic systems approximating the unknown nonlinear functions, a fuzzy state observer is designed estimating the unmeasured states. Therefore, the nonlinear filtered signals are incorporated into the backstepping recursive design, and an adaptive fuzzy decentralised output-feedback control scheme is developed. It is proved that the filter system converges to a small neighbourhood of the origin based on appropriate choice of the design parameters. Simulation studies are included illustrating the effectiveness of the proposed approach.

  8. Distributed Fuzzy and Stochastic Observers for Nonlinear Systems

    NARCIS (Netherlands)

    Lendek, Z.

    2009-01-01

    Many problems in decision making, control, and monitoring require that all variables of interest, usually states and parameters of the system, are known at all times. However, in practical situations, not all variables are measurable or they are not measured due to technical or economical reasons. T

  9. Stabilization and Stochastic Control of a Class of Nonlinear Systems.

    Science.gov (United States)

    1980-10-01

    0 is infinite. Thus it is not sufficient that our composite control be only a stabilizing control . To qualify as a candidate for near-optimality uc...completes the proof. 8. Near Optimality The question can now be posed whether uc, being a stabilizing control which produces a bounded cost, is also...procedure when jjc is a small but unknown parameter. For u to be a meaningful feedback control of the system (2.1), it c must first of all be a stabilizing

  10. Modular design of adaptive robust controller for strict-feedback stochastic nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; XI Hong-sheng; JI Hai-bo; KANG Yu

    2006-01-01

    A modular approach of the estimation-based design in adaptive linear control systems has been extended to the adaptive robust control of strict-feedback stochastic nonlinear systems with additive standard Wiener noises and constant unknown parameters.By using It(o)'s differentiation rule, nonlinear damping and adaptive Backstepping procedure,the input-to-state stable controller of global stabilization in probability is developed,which guarantees that system states are bounded and the system has a robust stabilization.According to Swapping technique,we develop two filters and convert dynamic parametric models into static ones to which the gradient update law is designed.Transient performance of the system is estimated by the norm of error.Results of simulation show the effectiveness of the control algorithms.The modular design,which has a concise hierarchy,is more flexible and versatile than a Lyapunov-based algorithm.

  11. Research on nonlinear stochastic dynamical price model

    Energy Technology Data Exchange (ETDEWEB)

    Li Jiaorui [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China); School of Statistics, Xi' an University of Finance and Economics, Xi' an 710061 (China)], E-mail: jiaoruili@mail.nwpu.edu.cn; Xu Wei; Xie Wenxian; Ren Zhengzheng [Department of Applied Mathematics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2008-09-15

    In consideration of many uncertain factors existing in economic system, nonlinear stochastic dynamical price model which is subjected to Gaussian white noise excitation is proposed based on deterministic model. One-dimensional averaged Ito stochastic differential equation for the model is derived by using the stochastic averaging method, and applied to investigate the stability of the trivial solution and the first-passage failure of the stochastic price model. The stochastic price model and the methods presented in this paper are verified by numerical studies.

  12. Input-output finite-time stabilisation of nonlinear stochastic system with missing measurements

    Science.gov (United States)

    Song, Jun; Niu, Yugang; Jia, Tinggang

    2016-09-01

    This paper considers the problem of the input-output finite-time stabilisation for a class of nonlinear stochastic system with state-dependent noise. The phenomenon of the missing measurements may occur when state signals are transmitted via communication networks. An estimating method is proposed to compensate the lost state information. And then, a compensator-based controller is designed to ensure the input-output finite-time stochastic stability (IO-FTSS) of the closed-loop system. Some parameters-dependent sufficient conditions are derived and the corresponding solving approach is given. Finally, numerical simulations are provided to demonstrate the feasibility and effectiveness of the developed IO-FTSS scheme.

  13. Prescribed Performance Fuzzy Adaptive Output-Feedback Control for Nonlinear Stochastic Systems

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    2014-01-01

    Full Text Available A prescribed performance fuzzy adaptive output-feedback control approach is proposed for a class of single-input and single-output nonlinear stochastic systems with unmeasured states. Fuzzy logic systems are used to identify the unknown nonlinear system, and a fuzzy state observer is designed for estimating the unmeasured states. Based on the backstepping recursive design technique and the predefined performance technique, a new fuzzy adaptive output-feedback control method is developed. It is shown that all the signals of the resulting closed-loop system are bounded in probability and the tracking error remains an adjustable neighborhood of the origin with the prescribed performance bounds. A simulation example is provided to show the effectiveness of the proposed approach.

  14. BIBO Stabilization of Discrete-Time Stochastic Control Systems with Mixed Delays and Nonlinear Perturbations

    Directory of Open Access Journals (Sweden)

    Xia Zhou

    2013-01-01

    Full Text Available The problem of bounded-input bounded-output (BIBO stabilization in mean square for a class of discrete-time stochastic control systems with mixed time-varying delays and nonlinear perturbations is investigated. Some novel delay-dependent stability conditions for the previously mentioned system are established by constructing a novel Lyapunov-Krasovskii function. These conditions are expressed in the forms of linear matrix inequalities (LMIs, whose feasibility can be easily checked by using MATLAB LMI Toolbox. Finally, a numerical example is given to illustrate the validity of the obtained results.

  15. Exact stationary solutions independent of energy for strongly nonlinear stochastic systems of multiple degrees of freedom

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A new procedure is proposed to construct strongly nonlinear systems of multiple degrees of freedom subjected to parametric and/or external Gaussian white noises, whose exact stationary solutions are independent of energy. Firstly, the equivalent Fokker-Planck-Kolmogorov (FPK) equations are derived by using exterior differentiation. The main difference between the equivalent FPK equation and the original FPK equation lies in the additional arbitrary antisymmetric diffusion matrix. Then the exact stationary solutions and the structures of the original systems can be obtained by using the coefficients of antisymmetric diffusion matrix. The obtained exact stationary solutions, which are generally independent of energy, are for the most general class of strongly nonlinear stochastic systems multiple degrees of freedom (MDOF) so far, and some classes of the known ones dependent on energy belong to the special cases of them.

  16. Exact stationary solutions independent of energy for strongly nonlinear stochastic systems of multiple degrees of freedom

    Institute of Scientific and Technical Information of China (English)

    HUANG ZhiLong; JIN XiaoLing

    2009-01-01

    A new procedure is proposed to construct strongly nonlinear systems of multiple degrees of freedom subjected to parametric and/or external Gaussian white noises,whose exact stationary solutions are independent of energy.Firstly,the equivalent Fokker-Planck-Kolmogorov(FPK)equations are derived by using exterior differentiation.The main difference between the equivalent FPK equation and the original FPK equation lies in the additional arbitrary antisymmetric diffusion matrix.Then the exact stationary solutions and the structures of the original systems can be obtained by using the coefficients of antisymmetric diffusion matrix.The obtained exact stationary solutions,which are generally independent of energy,are for the most general class of strongly nonlinear stochastic systems multiple degrees of freedom(MDOF)so far,and some classes of the known ones dependent on energy belong to the special cases of them.

  17. STOCHASTIC OPTIMAL CONTROL OF STRONGLY NONLINEAR SYSTEMS UNDER WIDE-BAND RANDOM EXCITATION WITH ACTUATOR SATURATION

    Institute of Scientific and Technical Information of China (English)

    Changshui Feng; Weiqiu Zhu

    2008-01-01

    A bounded optimal control strategy for strongly non-linear systems under non-white wide-band random excitation with actuator saturation is proposed. First, the stochastic averaging method is introduced for controlled strongly non-linear systems under wide-band random excitation using generalized harmonic functions. Then, the dynamical programming equation for the saturated control problem is formulated from the partially averaged Ito equation based on the dynamical programming principle. The optimal control consisting of the unbounded optimal control and the bounded bang-bang control is determined by solving the dynamical programming equation. Finally, the response of the optimally controlled system is predicted by solving the reduced Fokker-Planck-Kolmogorov (FPK) equation associated with the completed averaged Ito equation. An example is given to illustrate the proposed control strategy. Numerical results show that the proposed control strategy has high control effectiveness and efficiency and the chattering is reduced significantly comparing with the bang-bang control strategy.

  18. Effects of Nonlinear Time-Delay on a Stochastic Asymmetric System

    Institute of Scientific and Technical Information of China (English)

    WANG Jiu-Yun; ZHU Chun-Lian; JIA Ya; LI Jia-Rong

    2006-01-01

    We numerically investigate the effects of nonlinear time-delay on the stochastic system. With the delay time increasing, it is found that the peak of probability distribution in low steady states is decreased, and the peak of probability distribution in high steady states is increased. The mean of state variable, the normalized variance, and the normalized autocorrelation function which quantifies the concentrated degree are slowly varied for small delay time. However, the mean of state variable is rapidly increased, and the normalized variance and the normalized autocorrelation function is rapidJy decreased for large delay time.

  19. Leader-Following Consensus for High-Order Nonlinear Stochastic Multiagent Systems.

    Science.gov (United States)

    Hua, Changchun; Li, Yafeng; Guan, Xinping

    2017-01-24

    This paper considers the distributed consensus tracking problem for a class of high-order stochastic multiagent systems with uncertain nonlinear functions under a fixed undirected graph. Through the recursive method, the novel nonlinear distributed controllers are designed. By constructing a kind of special form for the virtual controller in the first step of recursive design, we realize that the state variables of every agent are separated except the outputs of the adjacency agents. The designed controller of each agent only depends on its own state variables and the outputs of the adjacent multiagents. With the proposed method, it is not required any more that the orders of the agents are same. This makes the designed controller be easier to be implemented and the proposed method be applicable for a wider class of multiagent systems. The efficiency of the design approach is illustrated by a simulation example.

  20. Stochastic sensitivity analysis of periodic attractors in non-autonomous nonlinear dynamical systems based on stroboscopic map

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Kong-Ming, E-mail: kmguo@xidian.edu.cn [School of Electromechanical Engineering, Xidian University, P.O. Box 187, Xi' an 710071 (China); Jiang, Jun, E-mail: jun.jiang@mail.xjtu.edu.cn [State Key Laboratory for Strength and Vibration, Xi' an Jiaotong University, Xi' an 710049 (China)

    2014-07-04

    To apply stochastic sensitivity function method, which can estimate the probabilistic distribution of stochastic attractors, to non-autonomous dynamical systems, a 1/N-period stroboscopic map for a periodic motion is constructed in order to discretize the continuous cycle into a discrete one. In this way, the sensitivity analysis of a cycle for discrete map can be utilized and a numerical algorithm for the stochastic sensitivity analysis of periodic solutions of non-autonomous nonlinear dynamical systems under stochastic disturbances is devised. An external excited Duffing oscillator and a parametric excited laser system are studied as examples to show the validity of the proposed method. - Highlights: • A method to analyze sensitivity of stochastic periodic attractors in non-autonomous dynamical systems is proposed. • Probabilistic distribution around periodic attractors in an external excited Φ{sup 6} Duffing system is obtained. • Probabilistic distribution around a periodic attractor in a parametric excited laser system is determined.

  1. Stochastic analysis of neural network modeling and identification of nonlinear memoryless MIMO systems

    Science.gov (United States)

    Ibnkahla, Mohamed

    2012-12-01

    Neural network (NN) approaches have been widely applied for modeling and identification of nonlinear multiple-input multiple-output (MIMO) systems. This paper proposes a stochastic analysis of a class of these NN algorithms. The class of MIMO systems considered in this paper is composed of a set of single-input nonlinearities followed by a linear combiner. The NN model consists of a set of single-input memoryless NN blocks followed by a linear combiner. A gradient descent algorithm is used for the learning process. Here we give analytical expressions for the mean squared error (MSE), explore the stationary points of the algorithm, evaluate the misadjustment error due to weight fluctuations, and derive recursions for the mean weight transient behavior during the learning process. The paper shows that in the case of independent inputs, the adaptive linear combiner identifies the linear combining matrix of the MIMO system (to within a scaling diagonal matrix) and that each NN block identifies the corresponding unknown nonlinearity to within a scale factor. The paper also investigates the particular case of linear identification of the nonlinear MIMO system. It is shown in this case that, for independent inputs, the adaptive linear combiner identifies a scaled version of the unknown linear combining matrix. The paper is supported with computer simulations which confirm the theoretical results.

  2. On the Calculation of System Entropy in Nonlinear Stochastic Biological Networks

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2015-10-01

    Full Text Available Biological networks are open systems that can utilize nutrients and energy from their environment for use in their metabolic processes, and produce metabolic products. System entropy is defined as the difference between input and output signal entropy, i.e., the net signal entropy of the biological system. System entropy is an important indicator for living or non-living biological systems, as biological systems can maintain or decrease their system entropy. In this study, system entropy is determined for the first time for stochastic biological networks, and a computation method is proposed to measure the system entropy of nonlinear stochastic biological networks that are subject to intrinsic random fluctuations and environmental disturbances. We find that intrinsic random fluctuations could increase the system entropy, and that the system entropy is inversely proportional to the robustness and stability of the biological networks. It is also determined that adding feedback loops to shift all eigenvalues to the farther left-hand plane of the complex s-domain could decrease the system entropy of a biological network.

  3. Stochastic Optimal Regulation of Nonlinear Networked Control Systems by Using Event-Driven Adaptive Dynamic Programming.

    Science.gov (United States)

    Sahoo, Avimanyu; Jagannathan, Sarangapani

    2017-02-01

    In this paper, an event-driven stochastic adaptive dynamic programming (ADP)-based technique is introduced for nonlinear systems with a communication network within its feedback loop. A near optimal control policy is designed using an actor-critic framework and ADP with event sampled state vector. First, the system dynamics are approximated by using a novel neural network (NN) identifier with event sampled state vector. The optimal control policy is generated via an actor NN by using the NN identifier and value function approximated by a critic NN through ADP. The stochastic NN identifier, actor, and critic NN weights are tuned at the event sampled instants leading to aperiodic weight tuning laws. Above all, an adaptive event sampling condition based on estimated NN weights is designed by using the Lyapunov technique to ensure ultimate boundedness of all the closed-loop signals along with the approximation accuracy. The net result is event-driven stochastic ADP technique that can significantly reduce the computation and network transmissions. Finally, the analytical design is substantiated with simulation results.

  4. Stochastic optimal controller design for uncertain nonlinear networked control system via neuro dynamic programming.

    Science.gov (United States)

    Xu, Hao; Jagannathan, Sarangapani

    2013-03-01

    The stochastic optimal controller design for the nonlinear networked control system (NNCS) with uncertain system dynamics is a challenging problem due to the presence of both system nonlinearities and communication network imperfections, such as random delays and packet losses, which are not unknown a priori. In the recent literature, neuro dynamic programming (NDP) techniques, based on value and policy iterations, have been widely reported to solve the optimal control of general affine nonlinear systems. However, for realtime control, value and policy iterations-based methodology are not suitable and time-based NDP techniques are preferred. In addition, output feedback-based controller designs are preferred for implementation. Therefore, in this paper, a novel NNCS representation incorporating the system uncertainties and network imperfections is introduced first by using input and output measurements for facilitating output feedback. Then, an online neural network (NN) identifier is introduced to estimate the control coefficient matrix, which is subsequently utilized for the controller design. Subsequently, the critic and action NNs are employed along with the NN identifier to determine the forward-in-time, time-based stochastic optimal control of NNCS without using value and policy iterations. Here, the value function and control inputs are updated once a sampling instant. By using novel NN weight update laws, Lyapunov theory is used to show that all the closed-loop signals and NN weights are uniformly ultimately bounded in the mean while the approximated control input converges close to its target value with time. Simulation results are included to show the effectiveness of the proposed scheme.

  5. Switching Controller Design for a Class of Markovian Jump Nonlinear Systems Using Stochastic Small-Gain Theorem

    Directory of Open Access Journals (Sweden)

    Jin Zhu

    2009-01-01

    Full Text Available Switching controller design for a class of Markovian jump nonlinear systems with unmodeled dynamics is considered in this paper. Based on the differential equation and infinitesimal generator of jump systems, the concept of Jump Input-to-State practical Stability (JISpS in probability and stochastic Lyapunov stability criterion are put forward. By using backsetpping technology and stochastic small-gain theorem, a switching controller is proposed which ensures JISpS in probability for the jump nonlinear system. A simulation example illustrates the validity of this design.

  6. Stationary distribution and periodic solution for stochastic predator-prey systems with nonlinear predator harvesting

    Science.gov (United States)

    Zuo, Wenjie; Jiang, Daqing

    2016-07-01

    In this paper, we investigate the dynamics of the stochastic autonomous and non-autonomous predator-prey systems with nonlinear predator harvesting respectively. For the autonomous system, we first give the existence of the global positive solution. Then, in the case of persistence, we prove that there exists a unique stationary distribution and it has ergodicity by constructing a suitable Lyapunov function. The result shows that, the relatively weaker white noise will strengthen the stability of the system, but the stronger white noise will result in the extinction of one or two species. Particularly, for the non-autonomous periodic system, we show that there exists at least one nontrivial positive periodic solution according to the theory of Khasminskii. Finally, numerical simulations illustrate our theoretical results.

  7. Use of stochastic optimization techniques for damage detection in complex nonlinear systems

    Directory of Open Access Journals (Sweden)

    Jafarkhani R.

    2012-07-01

    Full Text Available In this study, the performance of stochastic optimization techniques in the finite element model updating approach was investigated for damage detection in a quarter-scale two-span reinforced concrete bridge system which was tested experimentally at the University of Nevada, Reno. The damage sequence in the structure was induced by a range of progressively increasing excitations in the transverse direction of the specimen. Intermediate non-destructive white noise excitations and response measurements were used for system identification and damage detection purposes. It is shown that, when evaluated together with the strain gauge measurements and visual inspection results, the applied finite element model updating algorithm on this complex nonlinear system could accurately detect, localize, and quantify the damage in the tested bridge columns throughout the different phases of the experiment.

  8. Fast state estimation subject to random data loss in discrete-time nonlinear stochastic systems

    Science.gov (United States)

    Mahdi Alavi, S. M.; Saif, Mehrdad

    2013-12-01

    This paper focuses on the design of the standard observer in discrete-time nonlinear stochastic systems subject to random data loss. By the assumption that the system response is incrementally bounded, two sufficient conditions are subsequently derived that guarantee exponential mean-square stability and fast convergence of the estimation error for the problem at hand. An efficient algorithm is also presented to obtain the observer gain. Finally, the proposed methodology is employed for monitoring the Continuous Stirred Tank Reactor (CSTR) via a wireless communication network. The effectiveness of the designed observer is extensively assessed by using an experimental tested-bed that has been fabricated for performance evaluation of the over wireless-network estimation techniques under realistic radio channel conditions.

  9. Controllability of nonlinear stochastic systems with multiple time-varying delays in control

    Directory of Open Access Journals (Sweden)

    Karthikeyan Shanmugasundaram

    2015-06-01

    Full Text Available This paper is concerned with the problem of controllability of semi-linear stochastic systems with time varying multiple delays in control in finite dimensional spaces. Sufficient conditions are established for the relative controllability of semilinear stochastic systems by using the Banach fixed point theorem. A numerical example is given to illustrate the application of the theoretical results. Some important comments are also presented on existing results for the stochastic controllability of fractional dynamical systems.

  10. Adaptive Consensus Control of Nonlinear Multiagent Systems With Unknown Control Directions Under Stochastic Topologies.

    Science.gov (United States)

    Rezaee, Hamed; Abdollahi, Farzaneh

    2017-08-15

    The consensus problem over high-order nonlinear multiagent systems with the Brunovsky-type model is studied. The model parameters and control directions of agents are supposed to be unknown. Hence, based on Nussbaum-type functions, an adaptive protocol is proposed, which guarantees achieving consensus in the network when the parameters and control directions of the agents are unknown and unidentical. The main contribution of this paper (compared with the existing similar results in the literature) is to guarantee achieving consensus in networks of agents when the communication topology is not connected constantly, and communication links stochastically switch over time. It is shown that if the probability of the network connectivity is not zero, under some conditions, almost sure consensus can be achieved. Illustrative examples verify the accuracy of the proposed consensus protocol.

  11. Adaptive Fuzzy Output Constrained Control Design for Multi-Input Multioutput Stochastic Nonstrict-Feedback Nonlinear Systems.

    Science.gov (United States)

    Li, Yongming; Tong, Shaocheng

    2016-08-25

    In this paper, an adaptive fuzzy output constrained control design approach is addressed for multi-input multioutput uncertain stochastic nonlinear systems in nonstrict-feedback form. The nonlinear systems addressed in this paper possess unstructured uncertainties, unknown gain functions and unknown stochastic disturbances. Fuzzy logic systems are utilized to tackle the problem of unknown nonlinear uncertainties. The barrier Lyapunov function technique is employed to solve the output constrained problem. In the framework of backstepping design, an adaptive fuzzy control design scheme is constructed. All the signals in the closed-loop system are proved to be bounded in probability and the system outputs are constrained in a given compact set. Finally, the applicability of the proposed controller is well carried out by a simulation example.

  12. Stochastic State Space Modelling of Nonlinear systems - With application to Marine Ecosystems

    DEFF Research Database (Denmark)

    Møller, Jan Kloppenborg

    to conflict with the concept of mass balances. One of the central conclusions of the thesis is that the stochastic formulations should be an integral part of the model formulation. As discrete-time stochastic processes are simpler to handle numerically than continuous-time stochastic processes, I start......This thesis deals with stochastic dynamical systems in discrete and continuous time. Traditionally dynamical systems in continuous time are modelled using Ordinary Differential Equations (ODEs). Even the most complex system of ODEs will not be able to capture every detail of a complex system like...... a natural ecosystem, and hence residual variation between the model and observations will always remain. In stochastic state-space models the residual variation is separated into observation and system noise and a main theme of the thesis is a proper description of the system noise. Additive Gaussian noise...

  13. Stochastic nonlinear differential equations. I

    NARCIS (Netherlands)

    Heilmann, O.J.; Kampen, N.G. van

    1974-01-01

    A solution method is developed for nonlinear differential equations having the following two properties. Their coefficients are stochastic through their dependence on a Markov process. The magnitude of the fluctuations, multiplied with their auto-correlation time, is a small quantity. Under these co

  14. Stochastic Dominance under the Nonlinear Expected Utilities

    Directory of Open Access Journals (Sweden)

    Xinling Xiao

    2014-01-01

    Full Text Available In 1947, von Neumann and Morgenstern introduced the well-known expected utility and the related axiomatic system (see von Neumann and Morgenstern (1953. It is widely used in economics, for example, financial economics. But the well-known Allais paradox (see Allais (1979 shows that the linear expected utility has some limitations sometimes. Because of this, Peng proposed a concept of nonlinear expected utility (see Peng (2005. In this paper we propose a concept of stochastic dominance under the nonlinear expected utilities. We give sufficient conditions on which a random choice X stochastically dominates a random choice Y under the nonlinear expected utilities. We also provide sufficient conditions on which a random choice X strictly stochastically dominates a random choice Y under the sublinear expected utilities.

  15. State estimation of stochastic non-linear hybrid dynamic system using an interacting multiple model algorithm.

    Science.gov (United States)

    Elenchezhiyan, M; Prakash, J

    2015-09-01

    In this work, state estimation schemes for non-linear hybrid dynamic systems subjected to stochastic state disturbances and random errors in measurements using interacting multiple-model (IMM) algorithms are formulated. In order to compute both discrete modes and continuous state estimates of a hybrid dynamic system either an IMM extended Kalman filter (IMM-EKF) or an IMM based derivative-free Kalman filters is proposed in this study. The efficacy of the proposed IMM based state estimation schemes is demonstrated by conducting Monte-Carlo simulation studies on the two-tank hybrid system and switched non-isothermal continuous stirred tank reactor system. Extensive simulation studies reveal that the proposed IMM based state estimation schemes are able to generate fairly accurate continuous state estimates and discrete modes. In the presence and absence of sensor bias, the simulation studies reveal that the proposed IMM unscented Kalman filter (IMM-UKF) based simultaneous state and parameter estimation scheme outperforms multiple-model UKF (MM-UKF) based simultaneous state and parameter estimation scheme.

  16. Leader-Following Consensus of Nonlinear Multiagent Systems With Stochastic Sampling.

    Science.gov (United States)

    He, Wangli; Zhang, Biao; Han, Qing-Long; Qian, Feng; Kurths, Jurgen; Cao, Jinde

    2017-02-01

    This paper is concerned with sampled-data leader-following consensus of a group of agents with nonlinear characteristic. A distributed consensus protocol with probabilistic sampling in two sampling periods is proposed. First, a general consensus criterion is derived for multiagent systems under a directed graph. A number of results in several special cases without transmittal delays or with the deterministic sampling are obtained. Second, a dimension-reduced condition is obtained for multiagent systems under an undirected graph. It is shown that the leader-following consensus problem with stochastic sampling can be transferred into a master-slave synchronization problem with only one master system and two slave systems. The problem solving is independent of the number of agents, which greatly facilitates its application to large-scale networked agents. Third, the network design issue is further addressed, demonstrating the positive and active roles of the network structure in reaching consensus. Finally, two examples are given to verify the theoretical results.

  17. Estimation of Critical Conditions for Noise-Induced Bifurcation in Nonautonomous Nonlinear Systems by Stochastic Sensitivity Function

    Science.gov (United States)

    Sun, Yahui; Hong, Ling; Jiang, Jun; Li, Zigang

    This paper proposes an efficient but simple method to determine the approximate stationary probability distribution around periodic attractors of nonautonomous nonlinear systems under multiple time-dependent parametric noises and estimate the critical noise intensity for noise-induced explosive bifurcations under a given confidence probability. After adopting a stroboscopic map constructed by a method with higher accuracy and efficiency, nonautonomous dynamical systems around periodic attractors are transformed into mapping ones. Then the mean-square analysis method of discrete systems is used to derive the stochastic sensitivity function. Based on the confidence ellipses of stochastic attractors and the global structure of deterministic nonlinear systems, the critical noise intensity of noise-induced explosive bifurcations under a given confidence probability is estimated. A Mathieu-Duffing oscillator under both multiplicative and additive noises is studied to show the validity of the proposed method.

  18. Adaptive NN backstepping output-feedback control for stochastic nonlinear strict-feedback systems with time-varying delays.

    Science.gov (United States)

    Chen, Weisheng; Jiao, Licheng; Li, Jing; Li, Ruihong

    2010-06-01

    For the first time, this paper addresses the problem of adaptive output-feedback control for a class of uncertain stochastic nonlinear strict-feedback systems with time-varying delays using neural networks (NNs). The circle criterion is applied to designing a nonlinear observer, and no linear growth condition is imposed on nonlinear functions depending on system states. Under the assumption that time-varying delays exist in the system output, only an NN is employed to compensate for all unknown nonlinear terms depending on the delayed output, and thus, the proposed control algorithm is more simple even than the existing NN backstepping control schemes for uncertain systems described by ordinary differential equations. Three examples are given to demonstrate the effectiveness of the control scheme proposed in this paper.

  19. Application of fast orthogonal search to linear and nonlinear stochastic systems

    DEFF Research Database (Denmark)

    Chon, K H; Korenberg, M J; Holstein-Rathlou, N H

    1997-01-01

    linear and nonlinear stochastic ARMA model parameters by using a method known as fast orthogonal search, with an extended model containing prediction errors as part of the model estimation process. The extended algorithm uses fast orthogonal search in a two-step procedure in which deterministic terms...... in the nonlinear difference equation model are first identified and then reestimated, this time in a model containing the prediction errors. Since the extended algorithm uses an orthogonal procedure, together with automatic model order selection criteria, the significant model terms are estimated efficiently...

  20. Nonlinear and Stochastic Morphological Segregation

    CERN Document Server

    Blanton, M R

    1999-01-01

    I perform a joint counts-in-cells analysis of galaxies of different spectral types using the Las Campanas Redshift Survey (LCRS). Using a maximum-likelihood technique to fit for the relationship between the density fields of early- and late-type galaxies, I find a relative linear bias of $b=0.76\\pm 0.02$. This technique can probe the nonlinearity and stochasticity of the relationship as well. However, the degree to which nonlinear and stochastic fits improve upon the linear fit turns out to depend on the redshift range in question. In particular, there seems to be a systematic difference between the high- and low-redshift halves of the data (respectively, further than and closer than $cz\\approx 36,000$ km/s); all of the signal of stochasticity and nonlinearity comes from the low-redshift portion. Analysis of mock catalogs shows that the peculiar geometry and variable flux limits of the LCRS do not cause this effect. I speculate that the central surface brightness selection criteria of the LCRS may be responsi...

  1. Symmetrized solutions for nonlinear stochastic differential equations

    Directory of Open Access Journals (Sweden)

    G. Adomian

    1981-01-01

    Full Text Available Solutions of nonlinear stochastic differential equations in series form can be put into convenient symmetrized forms which are easily calculable. This paper investigates such forms for polynomial nonlinearities, i.e., equations of the form Ly+ym=x where x is a stochastic process and L is a linear stochastic operator.

  2. Interval Type-2 Recurrent Fuzzy Neural System for Nonlinear Systems Control Using Stable Simultaneous Perturbation Stochastic Approximation Algorithm

    Directory of Open Access Journals (Sweden)

    Ching-Hung Lee

    2011-01-01

    Full Text Available This paper proposes a new type fuzzy neural systems, denoted IT2RFNS-A (interval type-2 recurrent fuzzy neural system with asymmetric membership function, for nonlinear systems identification and control. To enhance the performance and approximation ability, the triangular asymmetric fuzzy membership function (AFMF and TSK-type consequent part are adopted for IT2RFNS-A. The gradient information of the IT2RFNS-A is not easy to obtain due to the asymmetric membership functions and interval valued sets. The corresponding stable learning is derived by simultaneous perturbation stochastic approximation (SPSA algorithm which guarantees the convergence and stability of the closed-loop systems. Simulation and comparison results for the chaotic system identification and the control of Chua's chaotic circuit are shown to illustrate the feasibility and effectiveness of the proposed method.

  3. State estimation of nonlinear stochastic systems using a novel meta-heuristic particle filter

    DEFF Research Database (Denmark)

    Ahmadi, Mohamadreza; Mojallali, Hamed; Izadi-Zamanabadi, Roozbeh

    2012-01-01

    This paper proposes a new version of the particle filtering (PF) algorithm based on the invasive weed optimization (IWO) method. The sub-optimality of the sampling step in the PF algorithm is prone to estimation errors. In order to avert such approximation errors, this paper suggests applying...... the IWO algorithm by translating the sampling step into a nonlinear optimization problem. By introducing an appropriate fitness function, the optimization problem is properly treated. The validity of the proposed method is evaluated against three distinct examples: the stochastic volatility estimation...... problem in finance, the severely nonlinear waste water sludge treatment plant, and the benchmark target tracking on re-entry problem. By simulation analysis and evaluation, it is verified that applying the suggested IWO enhanced PF algorithm (PFIWO) would contribute to significant estimation performance...

  4. Multidirectional In Vivo Characterization of Skin Using Wiener Nonlinear Stochastic System Identification Techniques.

    Science.gov (United States)

    Parker, Matthew D; Jones, Lynette A; Hunter, Ian W; Taberner, A J; Nash, M P; Nielsen, P M F

    2017-01-01

    A triaxial force-sensitive microrobot was developed to dynamically perturb skin in multiple deformation modes, in vivo. Wiener static nonlinear identification was used to extract the linear dynamics and static nonlinearity of the force-displacement behavior of skin. Stochastic input forces were applied to the volar forearm and thenar eminence of the hand, producing probe tip perturbations in indentation and tangential extension. Wiener static nonlinear approaches reproduced the resulting displacements with variances accounted for (VAF) ranging 94-97%, indicating a good fit to the data. These approaches provided VAF improvements of 0.1-3.4% over linear models. Thenar eminence stiffness measures were approximately twice those measured on the forearm. Damping was shown to be significantly higher on the palm, whereas the perturbed mass typically was lower. Coefficients of variation (CVs) for nonlinear parameters were assessed within and across individuals. Individual CVs ranged from 2% to 11% for indentation and from 2% to 19% for extension. Stochastic perturbations with incrementally increasing mean amplitudes were applied to the same test areas. Differences between full-scale and incremental reduced-scale perturbations were investigated. Different incremental preloading schemes were investigated. However, no significant difference in parameters was found between different incremental preloading schemes. Incremental schemes provided depth-dependent estimates of stiffness and damping, ranging from 300 N/m and 2 Ns/m, respectively, at the surface to 5 kN/m and 50 Ns/m at greater depths. The device and techniques used in this research have potential applications in areas, such as evaluating skincare products, assessing skin hydration, or analyzing wound healing.

  5. van't Hoff-Arrhenius Analysis of Mesoscopic and Macroscopic Dynamics of Simple Biochemical Systems: Stochastic vs. Nonlinear Bistabilities

    CERN Document Server

    Zhang, Yunxin; Qian, Hong

    2010-01-01

    Multistability of mesoscopic, driven biochemical reaction systems has implications to a wide range of cellular processes. Using several simple models, we show that one class of bistable chemical systems has a deterministic counterpart in the nonlinear dynamics based on the Law of Mass Action, while another class, widely known as noise-induced stochastic bistability, does not. Observing the system's volume ($V$) playing a similar role as the inverse temperature ($\\beta$) in classical rate theory, an van't Hoff-Arrhenius like analysis is introduced. In one-dimensional systems, a transition rate between two states, represented in terms of a barrier in the landscape for the dynamics $\\Phi(x,V)$, $k\\propto\\exp\\{-V\\Delta\\Phi^{\\ddag}(V)\\}$, can be understood from a decomposition $\\Delta\\Phi^{\\ddag}(V) \\approx\\Delta\\phi_0^{\\ddag} \\Delta\\phi_1^{\\ddag}/V$. Nonlinear bistability means $\\Delta\\phi_0^{\\ddag}>0$ while stochastic bistability has $\\Delta\\phi_0^{\\ddag}0$. Stochastic bistabilities can be viewed as remants (or ...

  6. Non-fragile robust stabilization and H{sub {infinity}} control for uncertain stochastic nonlinear time-delay systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jinhui [Department of Automatic Control, Beijing Institute of Technology, Beijing 100081 (China)], E-mail: jinhuizhang82@gmail.com; Shi Peng [Faculty of Advanced Technology, University of Glamorgan, Pontypridd CF37 1DL (United Kingdom); ILSCM, School of Science and Engineering, Victoria University, Melbourne, Vic. 8001 (Australia); School of Mathematics and Statistics, University of South Australia, Mawson Lakes, SA 5095 (Australia)], E-mail: pshi@glam.ac.uk; Yang Hongjiu [Department of Automatic Control, Beijing Institute of Technology, Beijing 100081 (China)], E-mail: yanghongjiu@gmail.com

    2009-12-15

    This paper deals with the problem of non-fragile robust stabilization and H{sub {infinity}} control for a class of uncertain stochastic nonlinear time-delay systems. The parametric uncertainties are real time-varying as well as norm bounded. The time-delay factors are unknown and time-varying with known bounds. The aim is to design a memoryless non-fragile state feedback control law such that the closed-loop system is stochastically asymptotically stable in the mean square and the effect of the disturbance input on the controlled output is less than a prescribed level for all admissible parameter uncertainties. New sufficient conditions for the existence of such controllers are presented based on the linear matrix inequalities (LMIs) approach. Numerical example is given to illustrate the effectiveness of the developed techniques.

  7. Direct Adaptive Tracking Control for a Class of Pure-Feedback Stochastic Nonlinear Systems Based on Fuzzy-Approximation

    Directory of Open Access Journals (Sweden)

    Huanqing Wang

    2014-01-01

    Full Text Available The problem of fuzzy-based direct adaptive tracking control is considered for a class of pure-feedback stochastic nonlinear systems. During the controller design, fuzzy logic systems are used to approximate the packaged unknown nonlinearities, and then a novel direct adaptive controller is constructed via backstepping technique. It is shown that the proposed controller guarantees that all the signals in the closed-loop system are bounded in probability and the tracking error eventually converges to a small neighborhood around the origin in the sense of mean quartic value. The main advantages lie in that the proposed controller structure is simpler and only one adaptive parameter needs to be updated online. Simulation results are used to illustrate the effectiveness of the proposed approach.

  8. Adaptive neural tracking control for a class of nonstrict-feedback stochastic nonlinear systems with unknown backlash-like hysteresis.

    Science.gov (United States)

    Wang, Huanqing; Chen, Bing; Liu, Kefu; Liu, Xiaoping; Lin, Chong

    2014-05-01

    This paper considers the problem of adaptive neural control of stochastic nonlinear systems in nonstrict-feedback form with unknown backlash-like hysteresis nonlinearities. To overcome the design difficulty of nonstrict-feedback structure, variable separation technique is used to decompose the unknown functions of all state variables into a sum of smooth functions of each error dynamic. By combining radial basis function neural networks' universal approximation capability with an adaptive backstepping technique, an adaptive neural control algorithm is proposed. It is shown that the proposed controller guarantees that all the signals in the closed-loop system are four-moment semiglobally uniformly ultimately bounded, and the tracking error eventually converges to a small neighborhood of the origin in the sense of mean quartic value. Simulation results further show the effectiveness of the presented control scheme.

  9. Non-parametric system identification from non-linear stochastic response

    DEFF Research Database (Denmark)

    Rüdinger, Finn; Krenk, Steen

    2001-01-01

    An estimation method is proposed for identification of non-linear stiffness and damping of single-degree-of-freedom systems under stationary white noise excitation. Non-parametric estimates of the stiffness and damping along with an estimate of the white noise intensity are obtained by suitable p...

  10. State-feedback ℋ∞ control for stochastic time-delay nonlinear systems with state and disturbance-dependent noise

    Science.gov (United States)

    Li, Huiping; Shi, Yang

    2012-10-01

    This article focuses on the state-feedback ℋ∞ control problem for the stochastic nonlinear systems with state and disturbance-dependent noise and time-varying state delays. Based on the maxmin optimisation approach, both the delay-independent and the delay-dependent Hamilton-Jacobi-inequalities (HJIs) are developed for synthesising the state-feedback ℋ∞ controller for a general type of stochastic nonlinear systems. It is shown that the resulting control system achieves stochastic stability in probability and the prescribed disturbance attenuation level. For a class of stochastic affine nonlinear systems, the delay-independent as well as delay-dependent matrix-valued inequalities are proposed; the resulting control system satisfies global asymptotic stability in the mean-square sense and the required disturbance attenuation level. By modelling the nonlinearities as uncertainties in corresponding stochastic time-delay systems, the sufficient conditions in terms of a linear matrix inequality (LMI) and a bilinear matrix inequality (BMI) are derived to facilitate the design of the state-feedback ℋ∞ controller. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed methods.

  11. An Active Fault-Tolerant PWM Tracker for Unknown Nonlinear Stochastic Hybrid Systems: NARMAX Model and OKID-Based State-Space Self-Tuning Control

    OpenAIRE

    Chu-Tong Wang; Tsai, Jason S. H.; Chia-Wei Chen; You Lin; Shu-Mei Guo; Leang-San Shieh

    2010-01-01

    An active fault-tolerant pulse-width-modulated tracker using the nonlinear autoregressive moving average with exogenous inputs model-based state-space self-tuning control is proposed for continuous-time multivariable nonlinear stochastic systems with unknown system parameters, plant noises, measurement noises, and inaccessible system states. Through observer/Kalman filter identification method, a good initial guess of the unknown parameters of the chosen model is obtained so as to reduce the ...

  12. Neural-Based Adaptive Output-Feedback Control for a Class of Nonstrict-Feedback Stochastic Nonlinear Systems.

    Science.gov (United States)

    Wang, Huanqing; Liu, Kefu; Liu, Xiaoping; Chen, Bing; Lin, Chong

    2015-09-01

    In this paper, we consider the problem of observer-based adaptive neural output-feedback control for a class of stochastic nonlinear systems with nonstrict-feedback structure. To overcome the design difficulty from the nonstrict-feedback structure, a variable separation approach is introduced by using the monotonically increasing property of system bounding functions. On the basis of the state observer, and by combining the adaptive backstepping technique with radial basis function neural networks' universal approximation capability, an adaptive neural output feedback control algorithm is presented. It is shown that the proposed controller can guarantee that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded in the sense of mean quartic value. Simulation results are provided to show the effectiveness of the proposed control scheme.

  13. Design of satisfaction output feedback controls for stochastic nonlinear systems under quadratic tracking risk-sensitive index

    Institute of Scientific and Technical Information of China (English)

    刘允刚; 张纪峰; 潘子刚

    2003-01-01

    In this paper, the design problem of satisfaction output feedback controls for stochastic nonlinear systems in strict feedback form under long-term tracking risk-sensitive index is investigated.The index function adopted here is of quadratic form usually encountered in practice, rather than of quartic one used to beg the essential difficulty on controller design and performance analysis of the closed-loop systems. For any given risk-sensitive parameter and desired index value, by using the integrator backstepping method, an output feedback control is constructively designed so that the closed-loop system is bounded in probability and the risk-sensitive index is upper bounded by the desired value.

  14. Stochastic Stability for Time-Delay Markovian Jump Systems with Sector-Bounded Nonlinearities and More General Transition Probabilities

    Directory of Open Access Journals (Sweden)

    Dan Ye

    2013-01-01

    Full Text Available This paper is concerned with delay-dependent stochastic stability for time-delay Markovian jump systems (MJSs with sector-bounded nonlinearities and more general transition probabilities. Different from the previous results where the transition probability matrix is completely known, a more general transition probability matrix is considered which includes completely known elements, boundary known elements, and completely unknown ones. In order to get less conservative criterion, the state and transition probability information is used as much as possible to construct the Lyapunov-Krasovskii functional and deal with stability analysis. The delay-dependent sufficient conditions are derived in terms of linear matrix inequalities to guarantee the stability of systems. Finally, numerical examples are exploited to demonstrate the effectiveness of the proposed method.

  15. Decentralized Output Feedback Adaptive NN Tracking Control for Time-Delay Stochastic Nonlinear Systems With Prescribed Performance.

    Science.gov (United States)

    Hua, Changchun; Zhang, Liuliu; Guan, Xinping

    2015-11-01

    This paper studies the dynamic output feedback tracking control problem for stochastic interconnected time-delay systems with the prescribed performance. The subsystems are in the form of triangular structure. First, we design a reduced-order observer independent of time delay to estimate the unmeasured state variables online instead of the traditional full-order observer. Then, a new state transformation is proposed in consideration of the prescribed performance requirement. Using neural network to approximate the composite unknown nonlinear function, the corresponding decentralized output tracking controller is designed. It is strictly proved that the resulting closed-loop system is stable in probability in the sense of uniformly ultimately boundedness and that both transient-state and steady-state performances are preserved. Finally, a simulation example is given, and the result shows the effectiveness of the proposed control design method.

  16. Exponential L2-L∞ Filtering for a Class of Stochastic System with Mixed Delays and Nonlinear Perturbations

    Directory of Open Access Journals (Sweden)

    Zhaohui Chen

    2013-01-01

    Full Text Available The delay-dependent exponential L2-L∞ performance analysis and filter design are investigated for stochastic systems with mixed delays and nonlinear perturbations. Based on the delay partitioning and integral partitioning technique, an improved delay-dependent sufficient condition for the existence of the L2-L∞ filter is established, by choosing an appropriate Lyapunov-Krasovskii functional and constructing a new integral inequality. The full-order filter design approaches are obtained in terms of linear matrix inequalities (LMIs. By solving the LMIs and using matrix decomposition, the desired filter gains can be obtained, which ensure that the filter error system is exponentially stable with a prescribed L2-L∞ performance γ. Numerical examples are provided to illustrate the effectiveness and significant improvement of the proposed method.

  17. Stochastic system identification of skin properties: linear and wiener static nonlinear methods.

    Science.gov (United States)

    Chen, Yi; Hunter, Ian W

    2012-10-01

    Wiener static nonlinear system identification was used to study the linear dynamics and static nonlinearities in the response of skin and underlying tissue under indentation in vivo. A device capable of measuring the dynamic mechanical properties of bulk skin tissue was developed and it incorporates a custom-built Lorentz force actuator that measures the dynamic compliance between the input force (system identification technique produced a variance accounted for (VAF) of 75-81% and Wiener static nonlinear techniques increased the VAF by 5%. Localized linear techniques increased the VAF to 85-95% with longer tests. Indentation experiments were conducted on 16 test subjects to determine device sensitivity and repeatability. Using the device, the coefficient of variation of test metrics was found to be as low as 2% for a single test location. The measured tissue stiffness was 300 N/m near the surface and 4.5 kN/m for high compression. The damping ranged from 5 to 23 N s/m. The bulk skin properties were also shown to vary significantly with gender and body mass index. The device and techniques used in this research can be applied to consumer product analysis, medical diagnosis and tissue research.

  18. Output-feedback adaptive neural control for stochastic nonlinear time-varying delay systems with unknown control directions.

    Science.gov (United States)

    Li, Tieshan; Li, Zifu; Wang, Dan; Chen, C L Philip

    2015-06-01

    This paper presents an adaptive output-feedback neural network (NN) control scheme for a class of stochastic nonlinear time-varying delay systems with unknown control directions. To make the controller design feasible, the unknown control coefficients are grouped together and the original system is transformed into a new system using a linear state transformation technique. Then, the Nussbaum function technique is incorporated into the backstepping recursive design technique to solve the problem of unknown control directions. Furthermore, under the assumption that the time-varying delays exist in the system output, only one NN is employed to compensate for all unknown nonlinear terms depending on the delayed output. Moreover, by estimating the maximum of NN parameters instead of the parameters themselves, the NN parameters to be estimated are greatly decreased and the online learning time is also dramatically decreased. It is shown that all the signals of the closed-loop system are bounded in probability. The effectiveness of the proposed scheme is demonstrated by the simulation results.

  19. Nonlinear Stochastic Dynamics of Complex Systems, III: Noneqilibrium Thermodynamics of Self-Replication Kinetics

    CERN Document Server

    Saakian, David B

    2016-01-01

    We briefly review the recently developed, Markov process based isothermal chemical thermodynamics for nonlinear, driven mesoscopic kinetic systems. Both the instantaneous Shannon entropy {\\boldmath $S[p_{\\alpha}(t)]$} and relative entropy {\\boldmath $F[p_{\\alpha}(t)]$}, defined based on probability distribution {\\boldmath $\\{p_{\\alpha}(t)\\}$}, play prominent roles. The theory is general; and as a special case when a chemical reaction system is situated in an equilibrium environment, it agrees perfectly with Gibbsian chemical thermodynamics: {\\boldmath $k_BS$} and {\\boldmath $k_BTF$} become thermodynamic entropy and free energy, respectively. We apply this theory to a fully reversible autocatalytic reaction kinetics, represented by a Delbr\\"{u}ck-Gillespie process, in a chemostatic nonequilibrium environment. The open, driven chemical system serves as an archetype for biochemical self-replication. The significance of {\\em thermodynamically consistent} kinetic coarse-graining is emphasized. In a kinetic system ...

  20. A tightly-coupled domain-decomposition approach for highly nonlinear stochastic multiphysics systems

    Science.gov (United States)

    Taverniers, Søren; Tartakovsky, Daniel M.

    2017-02-01

    Multiphysics simulations often involve nonlinear components that are driven by internally generated or externally imposed random fluctuations. When used with a domain-decomposition (DD) algorithm, such components have to be coupled in a way that both accurately propagates the noise between the subdomains and lends itself to a stable and cost-effective temporal integration. We develop a conservative DD approach in which tight coupling is obtained by using a Jacobian-free Newton-Krylov (JfNK) method with a generalized minimum residual iterative linear solver. This strategy is tested on a coupled nonlinear diffusion system forced by a truncated Gaussian noise at the boundary. Enforcement of path-wise continuity of the state variable and its flux, as opposed to continuity in the mean, at interfaces between subdomains enables the DD algorithm to correctly propagate boundary fluctuations throughout the computational domain. Reliance on a single Newton iteration (explicit coupling), rather than on the fully converged JfNK (implicit) coupling, may increase the solution error by an order of magnitude. Increase in communication frequency between the DD components reduces the explicit coupling's error, but makes it less efficient than the implicit coupling at comparable error levels for all noise strengths considered. Finally, the DD algorithm with the implicit JfNK coupling resolves temporally-correlated fluctuations of the boundary noise when the correlation time of the latter exceeds some multiple of an appropriately defined characteristic diffusion time.

  1. Reaching Nonlinear Consensus via Non-Autonomous Polynomial Stochastic Operators

    Science.gov (United States)

    Saburov, Mansoor; Saburov, Khikmat

    2017-03-01

    This paper is a continuation of our previous studies on nonlinear consensus which unifies and generalizes all previous results. We consider a nonlinear protocol for a structured time-varying synchronous multi-agent system. We present an opinion sharing dynamics of the multi-agent system as a trajectory of non-autonomous polynomial stochastic operators associated with multidimensional stochastic hyper-matrices. We show that the multi-agent system eventually reaches to a nonlinear consensus if either one of the following two conditions is satisfied: (i) every member of the group people has a positive subjective distribution on the given task after some revision steps or (ii) all entries of some multidimensional stochastic hyper-matrix are positive.

  2. Inference of a nonlinear stochastic model of the cardiorespiratory interaction

    CERN Document Server

    Smelyanskiy, V N; Stefanovska, A; McClintock, P V E

    2005-01-01

    A new technique is introduced to reconstruct a nonlinear stochastic model of the cardiorespiratory interaction. Its inferential framework uses a set of polynomial basis functions representing the nonlinear force governing the system oscillations. The strength and direction of coupling, and the noise intensity are simultaneously inferred from a univariate blood pressure signal, monitored in a clinical environment. The technique does not require extensive global optimization and it is applicable to a wide range of complex dynamical systems subject to noise.

  3. Non-Gaussian Stochastic Equivalent Linearization Method for Inelastic Nonlinear Systems with Softening Behaviour, under Seismic Ground Motions

    Directory of Open Access Journals (Sweden)

    Francisco L. Silva-González

    2014-01-01

    Full Text Available A non-Gaussian stochastic equivalent linearization (NSEL method for estimating the non-Gaussian response of inelastic non-linear structural systems subjected to seismic ground motions represented as nonstationary random processes is presented. Based on a model that represents the time evolution of the joint probability density function (PDF of the structural response, mathematical expressions of equivalent linearization coefficients are derived. The displacement and velocity are assumed jointly Gaussian and the marginal PDF of the hysteretic component of the displacement is modeled by a mixed PDF which is Gaussian when the structural behavior is linear and turns into a bimodal PDF when the structural behavior is hysteretic. The proposed NSEL method is applied to calculate the response of hysteretic single-degree-of-freedom systems with different vibration periods and different design displacement ductility values. The results corresponding to the proposed method are compared with those calculated by means of Monte Carlo simulation, as well as by a Gaussian equivalent linearization method. It is verified that the NSEL approach proposed herein leads to maximum structural response standard deviations similar to those obtained with Monte Carlo technique. In addition, a brief discussion about the extension of the method to muti-degree-of-freedom systems is presented.

  4. Stochastic viscosity solution for stochastic PDIEs with nonlinear Neumann boundary condition

    CERN Document Server

    Aman, Auguste

    2010-01-01

    This paper is an attempt to extend the notion of viscosity solution to nonlinear stochastic partial differential integral equations with nonlinear Neumann boundary condition. Using the recently developed theory on generalized backward doubly stochastic differential equations driven by a L\\'evy process, we prove the existence of the stochastic viscosity solution, and further extend the nonlinear Feynman-Kac formula.

  5. Stochasticity in numerical solutions of the nonlinear Schroedinger equation

    Science.gov (United States)

    Shen, Mei-Mei; Nicholson, D. R.

    1987-01-01

    The cubically nonlinear Schroedinger equation is an important model of nonlinear phenomena in fluids and plasmas. Numerical solutions in a spatially periodic system commonly involve truncation to a finite number of Fourier modes. These solutions are found to be stochastic in the sense that the largest Liapunov exponent is positive. As the number of modes is increased, the size of this exponent appears to converge to zero, in agreement with the recent demonstration of the integrability of the spatially periodic case.

  6. Nonlinear analysis of a structure loaded by a stochastic excitation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    For a non-linear system excited by a stochastic load which is expressed as a time series, a recursive method based on the Z-transform is presented. To identify the obtained response time series, a discrete wavelet transform (DWT) technique is proposed.

  7. New travelling wave solutions for nonlinear stochastic evolution equations

    Indian Academy of Sciences (India)

    Hyunsoo Kim; Rathinasamy Sakthivel

    2013-06-01

    The nonlinear stochastic evolution equations have a wide range of applications in physics, chemistry, biology, economics and finance from various points of view. In this paper, the (′/)-expansion method is implemented for obtaining new travelling wave solutions of the nonlinear (2 + 1)-dimensional stochastic Broer–Kaup equation and stochastic coupled Korteweg–de Vries (KdV) equation. The study highlights the significant features of the method employed and its capability of handling nonlinear stochastic problems.

  8. Stochastic Physics, Complex Systems and Biology

    CERN Document Server

    Qian, Hong

    2012-01-01

    In complex systems, the interplay between nonlinear and stochastic dynamics gives rise to an evolution process in Darwinian sense with punctuated equilibrium, random "mutations" and "adaptations". The emergent discrete states in such a system, i.e., attractors, have natural robustness against both internal and external perturbations. Epigenetic states of a biological cell, a mesoscopic nonlinear stochastic open biochemical system, could be understood through such a framework.

  9. Fluorescence Correlation Spectroscopy and Nonlinear Stochastic Reaction-Diffusion

    CERN Document Server

    Del Razo, Mauricio J; Qian, Hong; Lin, Guang

    2014-01-01

    The currently existing theory of fluorescence correlation spectroscopy(FCS) is based on the linear fluctuation theory originally developed by Einstein, Onsager, Lax, and others as a phenomenological approach to equilibrium fluctuations in bulk solutions. For mesoscopic reaction-diffusion systems with nonlinear chemical reactions among a small number of molecules, a situation often encountered in single-cell biochemistry, it is expected that FCS time correlation functions of a reaction-diffusion system can deviate from the classic results of Elson and Magde. We first discuss this nonlinear effect for reaction systems without diffusion. For nonlinear stochastic reaction-diffusion systems here are no closed solutions; therefore, stochastic Monte-Carlo simulations are carried out. We show that the deviation is small for a simple bimolecular reaction; the most significant deviations occur when the number of molecules is small and of the same order. Our results show that current linear FCS theory could be adequate ...

  10. An efficient computational method for solving nonlinear stochastic Itô integral equations: Application for stochastic problems in physics

    Energy Technology Data Exchange (ETDEWEB)

    Heydari, M.H., E-mail: heydari@stu.yazd.ac.ir [Faculty of Mathematics, Yazd University, Yazd (Iran, Islamic Republic of); The Laboratory of Quantum Information Processing, Yazd University, Yazd (Iran, Islamic Republic of); Hooshmandasl, M.R., E-mail: hooshmandasl@yazd.ac.ir [Faculty of Mathematics, Yazd University, Yazd (Iran, Islamic Republic of); The Laboratory of Quantum Information Processing, Yazd University, Yazd (Iran, Islamic Republic of); Cattani, C., E-mail: ccattani@unisa.it [Department of Mathematics, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano (Italy); Maalek Ghaini, F.M., E-mail: maalek@yazd.ac.ir [Faculty of Mathematics, Yazd University, Yazd (Iran, Islamic Republic of); The Laboratory of Quantum Information Processing, Yazd University, Yazd (Iran, Islamic Republic of)

    2015-02-15

    Because of the nonlinearity, closed-form solutions of many important stochastic functional equations are virtually impossible to obtain. Thus, numerical solutions are a viable alternative. In this paper, a new computational method based on the generalized hat basis functions together with their stochastic operational matrix of Itô-integration is proposed for solving nonlinear stochastic Itô integral equations in large intervals. In the proposed method, a new technique for computing nonlinear terms in such problems is presented. The main advantage of the proposed method is that it transforms problems under consideration into nonlinear systems of algebraic equations which can be simply solved. Error analysis of the proposed method is investigated and also the efficiency of this method is shown on some concrete examples. The obtained results reveal that the proposed method is very accurate and efficient. As two useful applications, the proposed method is applied to obtain approximate solutions of the stochastic population growth models and stochastic pendulum problem.

  11. A modified NARMAX model-based self-tuner with fault tolerance for unknown nonlinear stochastic hybrid systems with an input-output direct feed-through term.

    Science.gov (United States)

    Tsai, Jason S-H; Hsu, Wen-Teng; Lin, Long-Guei; Guo, Shu-Mei; Tann, Joseph W

    2014-01-01

    A modified nonlinear autoregressive moving average with exogenous inputs (NARMAX) model-based state-space self-tuner with fault tolerance is proposed in this paper for the unknown nonlinear stochastic hybrid system with a direct transmission matrix from input to output. Through the off-line observer/Kalman filter identification method, one has a good initial guess of modified NARMAX model to reduce the on-line system identification process time. Then, based on the modified NARMAX-based system identification, a corresponding adaptive digital control scheme is presented for the unknown continuous-time nonlinear system, with an input-output direct transmission term, which also has measurement and system noises and inaccessible system states. Besides, an effective state space self-turner with fault tolerance scheme is presented for the unknown multivariable stochastic system. A quantitative criterion is suggested by comparing the innovation process error estimated by the Kalman filter estimation algorithm, so that a weighting matrix resetting technique by adjusting and resetting the covariance matrices of parameter estimate obtained by the Kalman filter estimation algorithm is utilized to achieve the parameter estimation for faulty system recovery. Consequently, the proposed method can effectively cope with partially abrupt and/or gradual system faults and input failures by the fault detection.

  12. Nonlinear Analysis of Mechanical Systems Under Combined Harmonic and Stochastic Excitation

    Science.gov (United States)

    1993-05-27

    autonomous system is studied. The effect of studied by several authors in the past ( Caprino et a]. periodic parametric excitations is examined on systems...Resonance," (in preparation). 3. Caprino , S., Maffei, C., and Negrini, P., 1984, "Hopf 17. Namachchivaya, N. Sri, and Malhotra, N., 1! Bifurcation with

  13. Fluorescence Correlation Spectroscopy and Nonlinear Stochastic Reaction-Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Del Razo, Mauricio; Pan, Wenxiao; Qian, Hong; Lin, Guang

    2014-05-30

    The currently existing theory of fluorescence correlation spectroscopy (FCS) is based on the linear fluctuation theory originally developed by Einstein, Onsager, Lax, and others as a phenomenological approach to equilibrium fluctuations in bulk solutions. For mesoscopic reaction-diffusion systems with nonlinear chemical reactions among a small number of molecules, a situation often encountered in single-cell biochemistry, it is expected that FCS time correlation functions of a reaction-diffusion system can deviate from the classic results of Elson and Magde [Biopolymers (1974) 13:1-27]. We first discuss this nonlinear effect for reaction systems without diffusion. For nonlinear stochastic reaction-diffusion systems there are no closed solutions; therefore, stochastic Monte-Carlo simulations are carried out. We show that the deviation is small for a simple bimolecular reaction; the most significant deviations occur when the number of molecules is small and of the same order. Extending Delbrück-Gillespie’s theory for stochastic nonlinear reactions with rapidly stirring to reaction-diffusion systems provides a mesoscopic model for chemical and biochemical reactions at nanometric and mesoscopic level such as a single biological cell.

  14. Distributed Adaptive Neural Network Output Tracking of Leader-Following High-Order Stochastic Nonlinear Multiagent Systems With Unknown Dead-Zone Input.

    Science.gov (United States)

    Hua, Changchun; Zhang, Liuliu; Guan, Xinping

    2017-01-01

    This paper studies the problem of distributed output tracking consensus control for a class of high-order stochastic nonlinear multiagent systems with unknown nonlinear dead-zone under a directed graph topology. The adaptive neural networks are used to approximate the unknown nonlinear functions and a new inequality is used to deal with the completely unknown dead-zone input. Then, we design the controllers based on backstepping method and the dynamic surface control technique. It is strictly proved that the resulting closed-loop system is stable in probability in the sense of semiglobally uniform ultimate boundedness and the tracking errors between the leader and the followers approach to a small residual set based on Lyapunov stability theory. Finally, two simulation examples are presented to show the effectiveness and the advantages of the proposed techniques.

  15. NONLINEAR STOCHASTIC DYNAMICS: A SURVEY OF RECENT DEVELOPMENTS

    Institute of Scientific and Technical Information of China (English)

    朱位秋; 蔡国强

    2002-01-01

    This paper provides an overview of significant advances in nonlinearstochastic dynamics during the past two decades, including random response, stochas-tic stability, stochastic bifurcation, first passage problem and nonlinear stochasticcontrol. Topics for future research are also suggested.

  16. Bonus algorithm for large scale stochastic nonlinear programming problems

    CERN Document Server

    Diwekar, Urmila

    2015-01-01

    This book presents the details of the BONUS algorithm and its real world applications in areas like sensor placement in large scale drinking water networks, sensor placement in advanced power systems, water management in power systems, and capacity expansion of energy systems. A generalized method for stochastic nonlinear programming based on a sampling based approach for uncertainty analysis and statistical reweighting to obtain probability information is demonstrated in this book. Stochastic optimization problems are difficult to solve since they involve dealing with optimization and uncertainty loops. There are two fundamental approaches used to solve such problems. The first being the decomposition techniques and the second method identifies problem specific structures and transforms the problem into a deterministic nonlinear programming problem. These techniques have significant limitations on either the objective function type or the underlying distributions for the uncertain variables. Moreover, these ...

  17. On the exact controllability of a nonlinear stochastic heat equation

    Directory of Open Access Journals (Sweden)

    Bui An Ton

    2006-01-01

    Full Text Available The exact controllability of a nonlinear stochastic heat equation with null Dirichlet boundary conditions, nonzero initial and target values, and an interior control is established.

  18. IDENTIFICATION OF SEVERAL CLASSES OF STOCHASTIC NONLINEAR SYSTEMS%几类典型随机非线性系统的辨识

    Institute of Scientific and Technical Information of China (English)

    陈翰馥; 赵文虓

    2011-01-01

    Identification of several classes of stochastic nonlinear systems, I.e., the Wiener system, the Hammerstein system and the nonlinear ARX system, is considered. First, existing recursive and nonrecursive algorithms for identifying these systems are briefly summarized. Then, a unified framework to recursively identify these systems is introduced. Based on the Markov chains and mixing properties connected with these systems, the identification is transformed into root searching problems. Finally, identification algorithms based on stochastic approximation with expanding truncations are introduced and strong consistency of estimates is established. The theoretical results are verified by simulation examples.%考察实际中常见的三类典型随机非线性系统(即Wiener、Hammerstein和NARX系统)的辨识,首先概述了现有的递推和非递推辨识算法,然后介绍这三类系统的一个统一辨识框架:利用系统所确定的过程的马氏性及混合型,将辨识转化为求函数零点的问题,基于扩张截尾的随机逼近算法,得到了递推、强一致的辨识结果,并给出了数值模拟验证辨识算法收敛到真值.

  19. Complexity and synchronization in stochastic chaotic systems

    Science.gov (United States)

    Son Dang, Thai; Palit, Sanjay Kumar; Mukherjee, Sayan; Hoang, Thang Manh; Banerjee, Santo

    2016-02-01

    We investigate the complexity of a hyperchaotic dynamical system perturbed by noise and various nonlinear speech and music signals. The complexity is measured by the weighted recurrence entropy of the hyperchaotic and stochastic systems. The synchronization phenomenon between two stochastic systems with complex coupling is also investigated. These criteria are tested on chaotic and perturbed systems by mean conditional recurrence and normalized synchronization error. Numerical results including surface plots, normalized synchronization errors, complexity variations etc show the effectiveness of the proposed analysis.

  20. A data driven nonlinear stochastic model for blood glucose dynamics.

    Science.gov (United States)

    Zhang, Yan; Holt, Tim A; Khovanova, Natalia

    2016-03-01

    The development of adequate mathematical models for blood glucose dynamics may improve early diagnosis and control of diabetes mellitus (DM). We have developed a stochastic nonlinear second order differential equation to describe the response of blood glucose concentration to food intake using continuous glucose monitoring (CGM) data. A variational Bayesian learning scheme was applied to define the number and values of the system's parameters by iterative optimisation of free energy. The model has the minimal order and number of parameters to successfully describe blood glucose dynamics in people with and without DM. The model accounts for the nonlinearity and stochasticity of the underlying glucose-insulin dynamic process. Being data-driven, it takes full advantage of available CGM data and, at the same time, reflects the intrinsic characteristics of the glucose-insulin system without detailed knowledge of the physiological mechanisms. We have shown that the dynamics of some postprandial blood glucose excursions can be described by a reduced (linear) model, previously seen in the literature. A comprehensive analysis demonstrates that deterministic system parameters belong to different ranges for diabetes and controls. Implications for clinical practice are discussed. This is the first study introducing a continuous data-driven nonlinear stochastic model capable of describing both DM and non-DM profiles.

  1. Extended Riccati Equation Rational Expansion Method and Its Application to Nonlinear Stochastic Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    WANG Mei-Jiao; WANG Qi

    2006-01-01

    In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly construct a series of stochastic nontravelling wave solutions for nonlinear stochastic evolution equation. To illustrate the effectiveness of our method, we take the stochastic mKdV equation as an example, and successfully construct some new and more general solutions including a series of rational formal nontraveling wave and coefficient functions' soliton-like solutions and trigonometric-like function solutions. The method can also be applied to solve other nonlinear stochastic evolution equation or equations.

  2. Nonlinear Stochastic Dynamics of Complex Systems, II: Potential of Entropic Force in Markov Systems with Nonequilibrium Steady State, Generalized Gibbs Function and Criticality

    CERN Document Server

    Thompson, Lowell F

    2016-01-01

    In this paper we revisit the notion of the "minus logarithm of stationary probability" as a generalized potential in nonequilibrium systems and attempt to illustrate its central role in an axiomatic approach to stochastic nonequilibrium thermodynamics of complex systems. It is demonstrated that this quantity arises naturally through both monotonicity results of Markov processes and as the rate function when a stochastic process approaches a detrministic limit. We then undertake a more detailed mathematical analysis of the consequences of this quantity, culminating in a necessary and sufficient condition for the criticality of stochastic systems. This condition is then discussed in the context of recent results about criticality in biological systems.

  3. Synchronization of noisy systems by stochastic signals

    Energy Technology Data Exchange (ETDEWEB)

    Neiman, A.; Schimansky-Geier, L.; Moss, F. [Center for Neurodynamics, University of Missouri at St. Louis, St. Louis, Missouri 63121 (United States); Schimansky-Geier, L. [Institute of Physics, Humboldt University at Berlin, Invalidenstrasse 110, D-10115 Berlin (Germany); Shulgin, B.; Collins, J.J. [Center for BioDynamics and Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, Massachusetts 02215 (United States)

    1999-07-01

    We study, in terms of synchronization, the {ital nonlinear response} of noisy bistable systems to a stochastic external signal, represented by Markovian dichotomic noise. We propose a general kinetic model which allows us to conduct a full analytical study of the nonlinear response, including the calculation of cross-correlation measures, the mean switching frequency, and synchronization regions. Theoretical results are compared with numerical simulations of a noisy overdamped bistable oscillator. We show that dichotomic noise can instantaneously synchronize the switching process of the system. We also show that synchronization is most pronounced at an optimal noise level{emdash}this effect connects this phenomenon with aperiodic stochastic resonance. Similar synchronization effects are observed for a stochastic neuron model stimulated by a stochastic spike train. {copyright} {ital 1999} {ital The American Physical Society}

  4. EXISTENCE OF SOLUTION TO NONLINEAR SECOND ORDER NEUTRAL STOCHASTIC DIFFERENTIAL EQUATIONS WITH DELAY

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper is concerned with nonlinear second order neutral stochastic differential equations with delay in a Hilbert space. Sufficient conditions for the existence of solution to the system are obtained by Picard iterations.

  5. Analysis of bilinear stochastic systems

    Science.gov (United States)

    Willsky, A. S.; Martin, D. N.; Marcus, S. I.

    1975-01-01

    Analysis of stochastic dynamical systems that involve multiplicative (bilinear) noise processes. After defining the systems of interest, consideration is given to the evolution of the moments of such systems, the question of stochastic stability, and estimation for bilinear stochastic systems. Both exact and approximate methods of analysis are introduced, and, in particular, the uses of Lie-theoretic concepts and harmonic analysis are discussed.

  6. Nonlinear and stochastic dynamics in the heart

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Zhilin, E-mail: zqu@mednet.ucla.edu [Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, CA 90095 (United States); Hu, Gang [Department of Physics, Beijing Normal University, Beijing 100875 (China); Garfinkel, Alan [Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, CA 90095 (United States); Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095 (United States); Weiss, James N. [Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, CA 90095 (United States); Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 (United States)

    2014-10-10

    In a normal human life span, the heart beats about 2–3 billion times. Under diseased conditions, a heart may lose its normal rhythm and degenerate suddenly into much faster and irregular rhythms, called arrhythmias, which may lead to sudden death. The transition from a normal rhythm to an arrhythmia is a transition from regular electrical wave conduction to irregular or turbulent wave conduction in the heart, and thus this medical problem is also a problem of physics and mathematics. In the last century, clinical, experimental, and theoretical studies have shown that dynamical theories play fundamental roles in understanding the mechanisms of the genesis of the normal heart rhythm as well as lethal arrhythmias. In this article, we summarize in detail the nonlinear and stochastic dynamics occurring in the heart and their links to normal cardiac functions and arrhythmias, providing a holistic view through integrating dynamics from the molecular (microscopic) scale, to the organelle (mesoscopic) scale, to the cellular, tissue, and organ (macroscopic) scales. We discuss what existing problems and challenges are waiting to be solved and how multi-scale mathematical modeling and nonlinear dynamics may be helpful for solving these problems.

  7. Stochastic power system operation

    OpenAIRE

    Power, Michael

    2010-01-01

    This paper outlines how to economically and reliably operate a power system with high levels of renewable generation which are stochastic in nature. It outlines the challenges for system operators, and suggests tools and methods for meeting this challenge, which is one of the most fundamental since large scale power networks were instituted. The Ireland power system, due to its nature and level of renewable generation, is considered as an example in this paper.

  8. [Deterministic and stochastic identification of neurophysiologic systems].

    Science.gov (United States)

    Piatigorskiĭ, B Ia; Kostiukov, A I; Chinarov, V A; Cherkasskiĭ, V L

    1984-01-01

    The paper deals with deterministic and stochastic identification methods applied to the concrete neurophysiological systems. The deterministic identification was carried out for the system: efferent fibres-muscle. The obtained transition characteristics demonstrated dynamic nonlinearity of the system. Identification of the neuronal model and the "afferent fibres-synapses-neuron" system in mollusc Planorbis corneus was carried out using the stochastic methods. For these purpose the Wiener method of stochastic identification was expanded for the case of pulse trains as input and output signals. The weight of the nonlinear component in the Wiener model and accuracy of the model prediction were quantitatively estimated. The results obtained proves the possibility of using these identification methods for various neurophysiological systems.

  9. Adaptive neural network tracking control for a class of switched stochastic pure-feedback nonlinear systems with backlash-like hysteresis

    Science.gov (United States)

    Niu, Ben; Qin, Tian; Fan, Xiaodong

    2016-10-01

    In this paper, an adaptive neural network tracking control approach is proposed for a class of switched stochastic pure-feedback nonlinear systems with backlash-like hysteresis. In the design procedure, an affine variable is constructed, which avoids the use of the mean value theorem, and the additional first-order low-pass filter is employed to deal with the problem of explosion of complexity. Then, a common Lyapunov function and a state feedback controller are explicitly obtained for all subsystems. It is proved that the proposed controller that guarantees all signals in the closed-loop system are semi-globally uniformly ultimately bounded and the tracking error remains an adjustable neighbourhood of the origin. Finally, simulation results show the effectiveness of the presented control design approach.

  10. Nonlinear and stochastic dynamics of coherent structures

    DEFF Research Database (Denmark)

    Rasmussen, Kim

    1997-01-01

    system described by a tight-binding Hamiltonian and a harmonic lattice coupled b y a deformation-type potential. This derivation results in a two-dimensional nonline ar Schrödinger model, and considering the harmonic lattice to be in thermal contact with a heat bath w e show that the nonlinear...... phenomenon. We find numerically and analytically that the collapse can be delayed and ultimatively arrested by the fluctuations. Allowing the system to reach thermal equilibrium we further augment the model by a nonlineardamping term and find that this prohibits collapse in the strict mathematical se nse....... However a collapse like behavior still persists in the presence of the nonlinear damping . Apart from the absence of the collapse in the strict mathematical sense we find that the nonlinear damping term has rather weak influence on the interplay between fluctuations and self-focusing. The study...

  11. An Active Fault-Tolerant PWM Tracker for Unknown Nonlinear Stochastic Hybrid Systems: NARMAX Model and OKID-Based State-Space Self-Tuning Control

    Directory of Open Access Journals (Sweden)

    Chu-Tong Wang

    2010-01-01

    Full Text Available An active fault-tolerant pulse-width-modulated tracker using the nonlinear autoregressive moving average with exogenous inputs model-based state-space self-tuning control is proposed for continuous-time multivariable nonlinear stochastic systems with unknown system parameters, plant noises, measurement noises, and inaccessible system states. Through observer/Kalman filter identification method, a good initial guess of the unknown parameters of the chosen model is obtained so as to reduce the identification process time and enhance the system performances. Besides, by modifying the conventional self-tuning control, a fault-tolerant control scheme is also developed. For the detection of fault occurrence, a quantitative criterion is exploited by comparing the innovation process errors estimated by the Kalman filter estimation algorithm. In addition, the weighting matrix resetting technique is presented by adjusting and resetting the covariance matrix of parameter estimates to improve the parameter estimation for faulty system recovery. The technique can effectively cope with partially abrupt and/or gradual system faults and/or input failures with fault detection.

  12. A new framework for output feedback controller design for a class of discrete-time stochastic nonlinear system with quantization and missing measurement

    Science.gov (United States)

    Liu, Dan; Liu, Yurong; Alsaadi, Fuad E.

    2016-07-01

    In this paper, we are concerned with the problem of analysis and synthesis for a class of output feedback control system. The system under consideration is a discrete-time stochastic system with time-varying delay. It is assumed that the measurement of system is quantized via a logarithmic quantizer before it is transmitted, and the measurement data would be missing from time to time which can be described by a Bernoulli distributed white sequence. In addition, the nonlinearities are assumed to satisfy the sector conditions. The problem addressed is to design an output feedback controller such that the resulting closed-loop system is exponentially stable in the mean square. By employing Lyapunov theory and some new techniques, a new framework is established to cope with the design of output feedback controller for nonlinear systems involving quantization and missing measurement. Sufficient conditions are derived to guarantee the existence of the desired controllers, and the controller parameters are given in an explicit expression as well. A numerical example is exploited to show the usefulness of the results obtained.

  13. Optimal Stochastic Control with Recursive Cost Functionals of Stochastic Differential Systems Reflected in a Domain

    CERN Document Server

    Li, Juan

    2012-01-01

    In this paper we study the optimal stochastic control problem for stochastic differential systems reflected in a domain. The cost functional is a recursive one, which is defined via generalized backward stochastic differential equations developed by Pardoux and Zhang [17]. The value function is shown to be the viscosity solution to the associated Hamilton-Jacobi-Bellman equation, which is a fully nonlinear parabolic partial differential equation with a nonlinear Neumann boundary condition. The method of stochastic "backward semigroups" introduced by Peng [18] is adapted to our context.

  14. Fuzzy Adaptive Control of Stochastic Nonlinear Systems with Unknown Virtual Control Gain Function%虚拟控制增益函数未知的随机非线性系统模糊自适应控制

    Institute of Scientific and Technical Information of China (English)

    王迎春; 张化光; 王以忠

    2006-01-01

    The problem of track control is studied for a class of strict-feedback stochastic nonlinear systems in which unknown virtual control gain function is the main feature. First, the so-called stochastic LaSalle theory is extended to some extent, and accordingly, the results of global ultimate boundedness for stochastic nonlinear systems are developed. Next, a new design scheme of fuzzy adaptive control is proposed. The advantage of it is that it does not require priori knowledge of virtual control gain function sign, which is usually demanded in many designs. At the same time,the track performance of closed-loop systems is improved by adaptive modifying the estimated error upper bound. By theoretical analysis, the signals of closed-loop systems are globally ultimately bounded in probability and the track error converges to a small residual set around the origin in 4th-power expectation.

  15. Dynamics of stochastic systems

    CERN Document Server

    Klyatskin, Valery I

    2005-01-01

    Fluctuating parameters appear in a variety of physical systems and phenomena. They typically come either as random forces/sources, or advecting velocities, or media (material) parameters, like refraction index, conductivity, diffusivity, etc. The well known example of Brownian particle suspended in fluid and subjected to random molecular bombardment laid the foundation for modern stochastic calculus and statistical physics. Other important examples include turbulent transport and diffusion of particle-tracers (pollutants), or continuous densities (''''oil slicks''''), wave propagation and scattering in randomly inhomogeneous media, for instance light or sound propagating in the turbulent atmosphere.Such models naturally render to statistical description, where the input parameters and solutions are expressed by random processes and fields.The fundamental problem of stochastic dynamics is to identify the essential characteristics of system (its state and evolution), and relate those to the input parameters of ...

  16. Stochastic pump effect and geometric phases in dissipative and stochastic systems

    Energy Technology Data Exchange (ETDEWEB)

    Sinitsyn, Nikolai [Los Alamos National Laboratory

    2008-01-01

    The success of Berry phases in quantum mechanics stimulated the study of similar phenomena in other areas of physics, including the theory of living cell locomotion and motion of patterns in nonlinear media. More recently, geometric phases have been applied to systems operating in a strongly stochastic environment, such as molecular motors. We discuss such geometric effects in purely classical dissipative stochastic systems and their role in the theory of the stochastic pump effect (SPE).

  17. Stochastic Consensus of Single-Integrator Multiagent Systems with Inherent Nonlinear Dynamics and Measurement Noises in Directed Fixed Topologies

    Directory of Open Access Journals (Sweden)

    Sabir Djaidja

    2014-01-01

    Full Text Available Consensus of continuous-time single-integrator multiagent systems with inherent nonlinear dynamics and measurement noises is addressed in this paper. The consensus controller is developed for directed interaction topologies. Each agent’s control input is constructed based on its own state and its neighbors’ states corrupted by noises. The control input contains a time-varying consensus gain in order to attenuate the noises. Conditions for ensuring mean square convergence under noisy measurement and asymptotic convergence in the noise-free case are derived. Finally, some simulations were carried out to show the effectiveness of our control law and how it can solve the consensus problem.

  18. Nonlinear dynamic characteristics of SMA intravascular stent under radial stochastic loads.

    Science.gov (United States)

    Zhu, Zhiwen; Zhang, Qingxin; Xu, Jia

    2014-01-01

    Nonlinear dynamic characteristics of shape memory alloy (SMA) intravascular stent under radial stochastic loads were studied in this paper. Von de Pol item was improved to interpret the hysteretic phenomena of SMA, and the nonlinear dynamic model of SMA intravascular stent under radial stochastic loads was developed. The conditions of stochastic stability of the system were obtained in singular boundary theory. The steady-state probability density function of the dynamic response of the system was given, and the stochastic Hopf bifurcation characteristics of the system were analyzed. Theoretical analysis and numerical simulation show that the stability of the trivial solution varies with bifurcation parameters, and stochastic Hopf bifurcation appears in the process, which can cause stent fracture or loss. The results of this paper are helpful to application of SMA intravascular stent in biomedical engineering fields.

  19. 基于ESN的非线性随机系统对偶自适应控制%Dual adaptive control of nonlinear stochastic systems based on ESN

    Institute of Scientific and Technical Information of China (English)

    曹素平; 胡喜珍; 周铭

    2015-01-01

    The dual adaptive control problem was addressed for a class of single‐in‐single‐out (SISO) stochastic ,affine nonlinear ,discrete systems .The nonlinear functions of system model were assumed to be unknown and approximated by the echo state network (ESN) ,which were recurrent neural net‐works with dynamic reservoirs .The parameters of ESN were online adjusted by using the convention‐al Kalman filtering technique .The dual adaptive control law was designed considering an explicit‐type ,suboptimal cost function based on the innovations .The performance of proposed control law was verified by simulations and Monte Carlo analysis .%设计了一种用于一类单入单出(SISO )离散随机仿射非线性系统的自适应对偶控制器。回声状态网络(ESN)是一种带有动态池的回归神经网络,通过使用卡尔曼滤波在线调节ESN的参数,估计未知非线性系统的模型,然后基于一种显式次优的代价函数来设计其对偶自适应控制律。最后通过仿真及蒙特卡罗分析验证了所提出的对偶控制律的有效性。

  20. Analysis of stochastic bifurcation and chaos in stochastic Duffing-van der Pol system via Chebyshev polynomial approximation

    Institute of Scientific and Technical Information of China (English)

    Ma Shao-Juan; Xu Wei; Li Wei; Fang Tong

    2006-01-01

    The Chebyshev polynomial approximation is applied to investigate the stochastic period-doubling bifurcation and chaos problems of a stochastic Duffing-van der Pol system with bounded random parameter of exponential probability density function subjected to a harmonic excitation. Firstly the stochastic system is reduced into its equivalent deterministic one, and then the responses of stochastic system can be obtained by numerical methods. Nonlinear dynamical behaviour related to stochastic period-doubling bifurcation and chaos in the stochastic system is explored. Numerical simulations show that similar to its counterpart in deterministic nonlinear system of stochastic period-doubling bifurcation and chaos may occur in the stochastic Duffing-van der Pol system even for weak intensity of random parameter.Simply increasing the intensity of the random parameter may result in the period-doubling bifurcation which is absent from the deterministic system.

  1. Approximate controllability of Sobolev type fractional stochastic nonlocal nonlinear differential equations in Hilbert spaces

    Directory of Open Access Journals (Sweden)

    Mourad Kerboua

    2014-12-01

    Full Text Available We introduce a new notion called fractional stochastic nonlocal condition, and then we study approximate controllability of class of fractional stochastic nonlinear differential equations of Sobolev type in Hilbert spaces. We use Hölder's inequality, fixed point technique, fractional calculus, stochastic analysis and methods adopted directly from deterministic control problems for the main results. A new set of sufficient conditions is formulated and proved for the fractional stochastic control system to be approximately controllable. An example is given to illustrate the abstract results.

  2. Non-linear stochastic response of a shallow cable

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2004-01-01

    The paper considers the stochastic response of geometrical non-linear shallow cables. Large rain-wind induced cable oscillations with non-linear interactions have been observed in many large cable stayed bridges during the last decades. The response of the cable is investigated for a reduced two-degrees-of-freedom...

  3. An SQP Algorithm for Recourse-based Stochastic Nonlinear Programming

    Directory of Open Access Journals (Sweden)

    Xinshun Ma

    2016-05-01

    Full Text Available The stochastic nonlinear programming problem with completed recourse and nonlinear constraints is studied in this paper. We present a sequential quadratic programming method for solving the problem based on the certainty extended nonlinear model. This algorithm is obtained by combing the active set method and filter method. The convergence of the method is established under some standard assumptions. Moreover, a practical design is presented and numerical results are provided.

  4. Backward stochastic differential equations from linear to fully nonlinear theory

    CERN Document Server

    Zhang, Jianfeng

    2017-01-01

    This book provides a systematic and accessible approach to stochastic differential equations, backward stochastic differential equations, and their connection with partial differential equations, as well as the recent development of the fully nonlinear theory, including nonlinear expectation, second order backward stochastic differential equations, and path dependent partial differential equations. Their main applications and numerical algorithms, as well as many exercises, are included. The book focuses on ideas and clarity, with most results having been solved from scratch and most theories being motivated from applications. It can be considered a starting point for junior researchers in the field, and can serve as a textbook for a two-semester graduate course in probability theory and stochastic analysis. It is also accessible for graduate students majoring in financial engineering.

  5. Mean Square Synchronization of Stochastic Nonlinear Delayed Coupled Complex Networks

    Directory of Open Access Journals (Sweden)

    Chengrong Xie

    2013-01-01

    Full Text Available We investigate the problem of adaptive mean square synchronization for nonlinear delayed coupled complex networks with stochastic perturbation. Based on the LaSalle invariance principle and the properties of the Weiner process, the controller and adaptive laws are designed to ensure achieving stochastic synchronization and topology identification of complex networks. Sufficient conditions are given to ensure the complex networks to be mean square synchronization. Furthermore, numerical simulations are also given to demonstrate the effectiveness of the proposed scheme.

  6. System Entropy Measurement of Stochastic Partial Differential Systems

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2016-03-01

    Full Text Available System entropy describes the dispersal of a system’s energy and is an indication of the disorder of a physical system. Several system entropy measurement methods have been developed for dynamic systems. However, most real physical systems are always modeled using stochastic partial differential dynamic equations in the spatio-temporal domain. No efficient method currently exists that can calculate the system entropy of stochastic partial differential systems (SPDSs in consideration of the effects of intrinsic random fluctuation and compartment diffusion. In this study, a novel indirect measurement method is proposed for calculating of system entropy of SPDSs using a Hamilton–Jacobi integral inequality (HJII-constrained optimization method. In other words, we solve a nonlinear HJII-constrained optimization problem for measuring the system entropy of nonlinear stochastic partial differential systems (NSPDSs. To simplify the system entropy measurement of NSPDSs, the global linearization technique and finite difference scheme were employed to approximate the nonlinear stochastic spatial state space system. This allows the nonlinear HJII-constrained optimization problem for the system entropy measurement to be transformed to an equivalent linear matrix inequalities (LMIs-constrained optimization problem, which can be easily solved using the MATLAB LMI-toolbox (MATLAB R2014a, version 8.3. Finally, several examples are presented to illustrate the system entropy measurement of SPDSs.

  7. Response of harmonically and stochastically excited strongly nonlinear oscillators with delayed feedback bang-bang control

    Institute of Scientific and Technical Information of China (English)

    Chang-shui FENG; Wei-qiu ZHU

    2009-01-01

    We studied the response of harmonically and stochastically excited strongly nonlinear oscillators with delayed feedback bang-bang control using the stochastic averaging method. First, the time-delayed feedback bang-bang control force is expressed approximately in terms of the system state variables without time delay. Then the averaged Ito stochastic differential equations for the system are derived using the stochastic averaging method. Finally, the response of the system is obtained by solving the Fokker-Plank-Kolmogorov (FPK) equation associated with the averaged Ito equations. A Duffing oscillator with time-delayed feedback bang-bang control under combined harmonic and white noise excitations is taken as an example to illus-trate the proposed method. The analytical results are confirmed by digital simulation. We found that the time delay in feedback bang-bang control will deteriorate the control effectiveness and cause bifurcation of stochastic jump of Duffing oscillator.

  8. Frequency Resonance in Stochastic Systems

    Institute of Scientific and Technical Information of China (English)

    钱敏; 张雪娟

    2003-01-01

    The phenomenon of frequency resonance, which is usually related to deterministic systems, is investigated in stochastic systems. We show that for those autonomous systems driven only by white noise, if the output power spectrum exhibits a nonzero peak frequency, then applying a periodic signel just on this noise-induced central frequency can also induce a resonance phenomenon, which we call the frequency stochastic resonance. The effect of such a resonance in a coupled stochastic system is shown to be much better than that in a single-oscillator system.

  9. Nonlinear stochastic inflation modelling using SEASETARs

    NARCIS (Netherlands)

    de Gooijer, J.G.; Vidiella-i-Anguera, A.

    2003-01-01

    The development of stochastic inflation models for actuarial and investment applications has become an important topic to actuaries since Wilkie [Transactions of the Faculty of Actuaries 39 (1986) 341] introduced his first investment model. Two empirical features of monthly inflation rates are dynam

  10. Nonlinear Optical Properties in Molecular Systems with Non-Zero Permanent Dipole Moments in Four-Wave Mixing Under Stochastic Considerations

    Science.gov (United States)

    Paz, J. L.; Mastrodomenico, A.; Cardenas-Garcia, Jaime F.; Rodriguez, Luis G.; Vera, Cesar Costa

    2016-07-01

    The solvent effects over nonlinear optical properties of a two-level molecular system in presence of a classical electromagnetic field were modeled in this work. The collective effects proper of the thermal reservoir are modeled as a random Bohr frequency, whose manifestation is the broadening of the upper level according to a prescribed random function. A technique of work, based in the use of the cumulant expansions to obtain the average in the Fourier components associated with the coherence and populations, evaluated by the use of the Optical Stochastic Bloch Equations (OSBE), is employed. Analytical expressions for susceptibility, optical properties and non-degenerate Four-Wave Mixing (nd-FWM) signal intensity, were obtained. Numerical calculations were carried out to construct surfaces corresponding to these magnitudes as a function of the pump-probe frequency detuning, values of the permanent dipole moments (PDM), noise parameters and relationships between the longitudinal and transversal relaxation times. Our results show that it is necessary to neglect the Rotating-Wave approximation (RWA) in order to measure the effect of the permanent dipole moments and that the inclusion of these favors two-photon transitions over those with one-photon. In general, the effect of non-zero permanent dipole moments, are reflected in the appearance of new and more complex signals associated with new multiphoton processes.

  11. Approximate Controllability of Fractional Neutral Stochastic System with Infinite Delay

    Science.gov (United States)

    Sakthivel, R.; Ganesh, R.; Suganya, S.

    2012-12-01

    The concept of controllability plays an important role in analysis and design of linear and nonlinear control systems. Further, fractional differential equations have wide applications in engineering and science. In this paper, the approximate controllability of neutral stochastic fractional integro-differential equation with infinite delay in a Hilbert space is studied. By using Krasnoselskii's fixed point theorem with stochastic analysis theory, we derive a new set of sufficient conditions for the approximate controllability of nonlinear fractional stochastic system under the assumption that the corresponding linear system is approximately controllable. Finally, an example is provided to illustrate the obtained theory.

  12. Stochastic nonlinear mixed effects: a metformin case study.

    Science.gov (United States)

    Matzuka, Brett; Chittenden, Jason; Monteleone, Jonathan; Tran, Hien

    2016-02-01

    In nonlinear mixed effect (NLME) modeling, the intra-individual variability is a collection of errors due to assay sensitivity, dosing, sampling, as well as model misspecification. Utilizing stochastic differential equations (SDE) within the NLME framework allows the decoupling of the measurement errors from the model misspecification. This leads the SDE approach to be a novel tool for model refinement. Using Metformin clinical pharmacokinetic (PK) data, the process of model development through the use of SDEs in population PK modeling was done to study the dynamics of absorption rate. A base model was constructed and then refined by using the system noise terms of the SDEs to track model parameters and model misspecification. This provides the unique advantage of making no underlying assumptions about the structural model for the absorption process while quantifying insufficiencies in the current model. This article focuses on implementing the extended Kalman filter and unscented Kalman filter in an NLME framework for parameter estimation and model development, comparing the methodologies, and illustrating their challenges and utility. The Kalman filter algorithms were successfully implemented in NLME models using MATLAB with run time differences between the ODE and SDE methods comparable to the differences found by Kakhi for their stochastic deconvolution.

  13. Representation of nonlinear random transformations by non-gaussian stochastic neural networks.

    Science.gov (United States)

    Turchetti, Claudio; Crippa, Paolo; Pirani, Massimiliano; Biagetti, Giorgio

    2008-06-01

    The learning capability of neural networks is equivalent to modeling physical events that occur in the real environment. Several early works have demonstrated that neural networks belonging to some classes are universal approximators of input-output deterministic functions. Recent works extend the ability of neural networks in approximating random functions using a class of networks named stochastic neural networks (SNN). In the language of system theory, the approximation of both deterministic and stochastic functions falls within the identification of nonlinear no-memory systems. However, all the results presented so far are restricted to the case of Gaussian stochastic processes (SPs) only, or to linear transformations that guarantee this property. This paper aims at investigating the ability of stochastic neural networks to approximate nonlinear input-output random transformations, thus widening the range of applicability of these networks to nonlinear systems with memory. In particular, this study shows that networks belonging to a class named non-Gaussian stochastic approximate identity neural networks (SAINNs) are capable of approximating the solutions of large classes of nonlinear random ordinary differential transformations. The effectiveness of this approach is demonstrated and discussed by some application examples.

  14. Nonlinear Systems.

    Science.gov (United States)

    Seider, Warren D.; Ungar, Lyle H.

    1987-01-01

    Describes a course in nonlinear mathematics courses offered at the University of Pennsylvania which provides an opportunity for students to examine the complex solution spaces that chemical engineers encounter. Topics include modeling many chemical processes, especially those involving reaction and diffusion, auto catalytic reactions, phase…

  15. A Stochastic Nonlinear Water Wave Model for Efficient Uncertainty Quantification

    CERN Document Server

    Bigoni, Daniele; Eskilsson, Claes

    2014-01-01

    A major challenge in next-generation industrial applications is to improve numerical analysis by quantifying uncertainties in predictions. In this work we present a stochastic formulation of a fully nonlinear and dispersive potential flow water wave model for the probabilistic description of the evolution waves. This model is discretized using the Stochastic Collocation Method (SCM), which provides an approximate surrogate of the model. This can be used to accurately and efficiently estimate the probability distribution of the unknown time dependent stochastic solution after the forward propagation of uncertainties. We revisit experimental benchmarks often used for validation of deterministic water wave models. We do this using a fully nonlinear and dispersive model and show how uncertainty in the model input can influence the model output. Based on numerical experiments and assumed uncertainties in boundary data, our analysis reveals that some of the known discrepancies from deterministic simulation in compa...

  16. Exact controllability for a nonlinear stochastic wave equation

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available The exact controllability for a semilinear stochastic wave equation with a boundary control is established. The target and initial spaces are L 2 ( G × H −1 ( G with G being a bounded open subset of R 3 and the nonlinear terms having at most a linear growth.

  17. A toolkit for analyzing nonlinear dynamic stochastic models easily

    NARCIS (Netherlands)

    Uhlig, H.F.H.V.S.

    1995-01-01

    Often, researchers wish to analyze nonlinear dynamic discrete-time stochastic models. This paper provides a toolkit for solving such models easily, building on log-linearizing the necessary equations characterizing the equilibrium and solving for the recursive equilibrium law of motion with the meth

  18. A toolkit for analyzing nonlinear dynamic stochastic models easily

    NARCIS (Netherlands)

    Uhlig, H.F.H.V.S.

    1995-01-01

    Often, researchers wish to analyze nonlinear dynamic discrete-time stochastic models. This paper provides a toolkit for solving such models easily, building on log-linearizing the necessary equations characterizing the equilibrium and solving for the recursive equilibrium law of motion with the meth

  19. Nonlinear Stochastic PDEs: Analysis and Approximations

    Science.gov (United States)

    2016-05-23

    Distribution free Skorokhod-Malliavian Calculus , Stochastic And Partial Differential Equations: Analysis and Computations, (06 2016): 319. doi : Z. Zhang... doi : X. Wang, Boris Rozovskii. The Wick-Malliavin Approximation on Elliptic Problems with Long-Normal Random Coefficients, SIAM J Scientific...Computing, (10 2013): 2370. doi : Z. Zhang, M.V. Trrtykov, B. Rozovskii, G.E. Karniadakis. A Recursive Sparse Grid Collocation Methd for Differential

  20. A DELAY-DEPENDENT STABILITY CRITERION FOR NONLINEAR STOCHASTIC DELAY-INTEGRO-DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Niu Yuanling; Zhang Chengjian; Duan Jinqiao

    2011-01-01

    A type of complex systems under both random influence and memory effects is considered.The systems are modeled by a class of nonlinear stochastic delay-integrodifferential equations.A delay-dependent stability criterion for such equations is derived under the condition that the time lags are small enough.Numerical simulations are presented to illustrate the theoretical result.

  1. Optimal nonlinear feedback control of quasi-Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    朱位秋; 应祖光

    1999-01-01

    An innovative strategy for optimal nonlinear feedback control of linear or nonlinear stochastic dynamic systems is proposed based on the stochastic averaging method for quasi-Hamiltonian systems and stochastic dynamic programming principle. Feedback control forces of a system are divided into conservative parts and dissipative parts. The conservative parts are so selected that the energy distribution in the controlled system is as requested as possible. Then the response of the system with known conservative control forces is reduced to a controlled diffusion process by using the stochastic averaging method. The dissipative parts of control forces are obtained from solving the stochastic dynamic programming equation.

  2. Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence

    Science.gov (United States)

    Liu, Qun; Chen, Qingmei

    2015-06-01

    In this paper, the deterministic and stochastic SIRS epidemic models with nonlinear incidence are introduced and investigated. For deterministic system, the basic reproductive number R0 is obtained. Furthermore, if R0 ≤ 1, then the disease-free equilibrium is globally asymptotically stable and if R0 > 1, then there is a unique endemic equilibrium which is globally asymptotically stable. For stochastic system, to begin with, we verify that there is a unique global positive solution starting from the positive initial value. Then when R0 > 1, we prove that stochastic perturbations may lead the disease to extinction in scenarios where the deterministic system is persistent. When R0 ≤ 1, a result on fluctuation of the solution around the disease-free equilibrium of deterministic model is obtained under appropriate conditions. At last, if the intensity of the white noise is sufficiently small and R0 > 1, then there is a unique stationary distribution to stochastic system.

  3. Nonlinear and Nonparametric Stochastic Model to Represent Uncertainty of Renewable Generation in Operation and Expansion Planning Studies of Electrical Energy Systems

    Science.gov (United States)

    Martins, T. M.; Alberto, J.

    2015-12-01

    The uncertainties of wind and solar generation patterns tends to be a critical factor in operation and expansion planning studies of electrical energy systems, as these generations are highly dependent on atmospheric variables which are difficult to predict. Traditionally, the uncertainty of renewable generation has been represented through scenarios generated by autoregressive parametric models (ARMA, PAR(p), SARIMA, etc.), that have been widely used for simulating the uncertainty of inflows and electrical demand. These methods have 3 disadvantages: (i) it is assumed that the random variables can be modelled through a known probability distribution, usually Weibull, log-normal, or normal, which are not always adequate; (ii) the temporal and spatial coupling of the represented variables are generally constructed from the Pearson Correlation, strictly requiring the hypothesis of data normality, that in the case of wind and solar generation is not met; (iii) there is an exponential increase in the model complexity due to its dimensionality. This work proposes the use of a stochastic model built from the combination of a non-parametric approach of a probability density function (the kernel density estimation method) with a dynamic Bayesian network framework. The kernel density estimation method is used to obtain the probability density function of the random variables directly from historical records, eliminating the need of choosing prior distributions. The Bayesian network allows the representation of nonlinearities in the temporal coupling of the time series, since they allow reproducing a compact probability distribution of a variable, subject to preceding stages. The proposed model was used to the generate wind power scenarios in long-term operation studies of the Brazilian Electric System, in which inflows of major rivers were also represented. The results show a considerable quality gain when compared to scenarios generated by traditional approaches.

  4. Stochastic period-doubling bifurcation analysis of stochastic Bonhoeffer-van der Pol system

    Institute of Scientific and Technical Information of China (English)

    Zhang Ying; Xu Wei; Fang Tong; Xu Xu-Lin

    2007-01-01

    In this paper, the Chebyshev polynomial approximation is applied to the problem of stochastic period-doubling bifurcation of a stochastic Bonhoeffer-van der Pol (BVP for short) system with a bounded random parameter. In the analysis, the stochastic BVP system is transformed by the Chebyshev polynomial approximation into an equivalent deterministic system, whose response can be readily obtained by conventional numerical methods. In this way we have explored plenty of stochastic period-doubling bifurcation phenomena of the stochastic BVP system. The numerical simulations show that the behaviour of the stochastic period-doubling bifurcation in the stochastic BVP system is by and large similar to that in the deterministic mean-parameter BVP system, but there are still some featured differences between them. For example, in the stochastic dynamic system the period-doubling bifurcation point diffuses into a critical interval and the location of the critical interval shifts with the variation of intensity of the random parameter.The obtained results show that Chebyshev polynomial approximation is an effective approach to dynamical problems in some typical nonlinear systems with a bounded random parameter of an arch-like probability density function.

  5. Stochastic simulation in systems biology

    Directory of Open Access Journals (Sweden)

    Tamás Székely Jr.

    2014-11-01

    There are many different types of stochastic methods. We focus on one group that has become especially popular in systems biology, biochemistry, chemistry and physics. These discrete-state stochastic methods do not follow individuals over time; rather they track only total populations. They also assume that the volume of interest is spatially homogeneous. We give an overview of these methods, with a discussion of the advantages and disadvantages of each, and suggest when each is more appropriate to use. We also include references to software implementations of them, so that beginners can quickly start using stochastic methods for practical problems of interest.

  6. Filtering and control of stochastic jump hybrid systems

    CERN Document Server

    Yao, Xiuming; Zheng, Wei Xing

    2016-01-01

    This book presents recent research work on stochastic jump hybrid systems. Specifically, the considered stochastic jump hybrid systems include Markovian jump Ito stochastic systems, Markovian jump linear-parameter-varying (LPV) systems, Markovian jump singular systems, Markovian jump two-dimensional (2-D) systems, and Markovian jump repeated scalar nonlinear systems. Some sufficient conditions are first established respectively for the stability and performances of those kinds of stochastic jump hybrid systems in terms of solution of linear matrix inequalities (LMIs). Based on the derived analysis conditions, the filtering and control problems are addressed. The book presents up-to-date research developments and novel methodologies on stochastic jump hybrid systems. The contents can be divided into two parts: the first part is focused on robust filter design problem, while the second part is put the emphasis on robust control problem. These methodologies provide a framework for stability and performance analy...

  7. Stochastic nonlinear differential equation generating 1/f noise.

    Science.gov (United States)

    Kaulakys, B; Ruseckas, J

    2004-08-01

    Starting from the simple point process model of 1/f noise, we derive a stochastic nonlinear differential equation for the signal exhibiting 1/f noise, in any desirably wide range of frequency. A stochastic differential equation (the general Langevin equation with a multiplicative noise) that gives 1/f noise is derived. The solution of the equation exhibits the power-law distribution. The process with 1/f noise is demonstrated by the numerical solution of the derived equation with the appropriate restriction of the diffusion of the signal in some finite interval.

  8. Nonlinear Dynamic Characteristics and Optimal Control of SMA Composite Wings Subjected to Stochastic Excitation

    Directory of Open Access Journals (Sweden)

    Zhi-Wen Zhu

    2015-01-01

    Full Text Available A kind of high-aspect-ratio shape memory alloy (SMA composite wing is proposed to reduce the wing’s fluttering. The nonlinear dynamic characteristics and optimal control of the SMA composite wings subjected to in-plane stochastic excitation are investigated where the great bending under the flight loads is considered. The stochastic stability of the system is analyzed, and the system’s response is obtained. The conditions of stochastic Hopf bifurcation are determined, and the probability density of the first-passage time is obtained. Finally, the optimal control strategy is proposed. Numerical simulation shows that the stability of the system varies with bifurcation parameters, and stochastic Hopf bifurcation appears in the process; the reliability of the system is improved through optimal control, and the first-passage time is delayed. Finally, the effects of the control strategy are proved by experiments. The results of this paper are helpful for engineering applications of SMA.

  9. Stochastic simulation in systems biology.

    Science.gov (United States)

    Székely, Tamás; Burrage, Kevin

    2014-11-01

    Natural systems are, almost by definition, heterogeneous: this can be either a boon or an obstacle to be overcome, depending on the situation. Traditionally, when constructing mathematical models of these systems, heterogeneity has typically been ignored, despite its critical role. However, in recent years, stochastic computational methods have become commonplace in science. They are able to appropriately account for heterogeneity; indeed, they are based around the premise that systems inherently contain at least one source of heterogeneity (namely, intrinsic heterogeneity). In this mini-review, we give a brief introduction to theoretical modelling and simulation in systems biology and discuss the three different sources of heterogeneity in natural systems. Our main topic is an overview of stochastic simulation methods in systems biology. There are many different types of stochastic methods. We focus on one group that has become especially popular in systems biology, biochemistry, chemistry and physics. These discrete-state stochastic methods do not follow individuals over time; rather they track only total populations. They also assume that the volume of interest is spatially homogeneous. We give an overview of these methods, with a discussion of the advantages and disadvantages of each, and suggest when each is more appropriate to use. We also include references to software implementations of them, so that beginners can quickly start using stochastic methods for practical problems of interest.

  10. Nonlinear high-order mode locking in stochastic sensory neurons

    Science.gov (United States)

    Rowe, Michael; Afghan, Muhammad; Neiman, Alexander

    2004-03-01

    Excitable systems demonstrate various mode locking regimes when driven by periodic external signals. With noise taken into account, such regimes represent complex nonlinear responses which depend crucially on the frequency and amplitude of the periodic drive as well as on the noise intensity. We study this using a computational model of a stochastic Hodgkin-Huxley neuron in combination with the turtle vestibular sensory system as an experimental model. A bifurcation analysis of the model is performed. Extracellular recordings from primary vestibular afferent neurons with two types of stimuli are used in the experimental study. First, mechanical stimuli applied to the labyrinth allow us to study the responses of the entire system, including transduction by the hair cells and spike generation in the primary afferents. Second, a galvanic stimuli applied directly to an afferent are used to study the responses of afferent spike generator directly. The responses to galvanic stimuli reveal multiple high-order mode locking regimes which are well reproduced in numerical simulation. Responses to mechanical stimulation are characterized by larger variability so that fewer mode-locking regimes can be observed.

  11. Stochastic Nonlinear Response of Woven CMCs

    Science.gov (United States)

    Kuang, C. Liu; Arnold, Steven M.

    2013-01-01

    It is well known that failure of a material is a locally driven event. In the case of ceramic matrix composites (CMCs), significant variations in the microstructure of the composite exist and their significance on both deformation and life response need to be assessed. Examples of these variations include changes in the fiber tow shape, tow shifting/nesting and voids within and between tows. In the present work, the influence of scale specific architectural features of woven ceramic composite are examined stochastically at both the macroscale (woven repeating unit cell (RUC)) and structural scale (idealized using multiple RUCs). The recently developed MultiScale Generalized Method of Cells methodology is used to determine the overall deformation response, proportional elastic limit (first matrix cracking), and failure under tensile loading conditions and associated probability distribution functions. Prior results showed that the most critical architectural parameter to account for is weave void shape and content with other parameters being less in severity. Current results show that statistically only the post-elastic limit region (secondary hardening modulus and ultimate tensile strength) is impacted by local uncertainties both at the macro and structural level.

  12. Stochastic Cahn-Hilliard equation with singular nonlinearity and reflection

    OpenAIRE

    Goudenège, Ludovic

    2008-01-01

    International audience; We consider a stochastic partial differential equation with logarithmic (or negative power) nonlinearity, with one reflection at 0 and with a constraint of conservation of the space average. The equation, driven by the derivative in space of a space-time white noise, contains a bi-Laplacian in the drift. The lack of the maximum principle for the bi-Laplacian generates difficulties for the classical penalization method, which uses a crucial monotonicity property. Being ...

  13. Adaptive State-feedback Stabilization for More General High-order Stochastic Nonlinear Systems%更一般的高阶段随机非线性系统的自适应状态反馈镇定

    Institute of Scientific and Technical Information of China (English)

    田杰; 解学军

    2008-01-01

    An adaptive state-feedback stabilization is inves-tigated for a class of high-order stochastic nonlinear systems in which the upper bound of the function fi(·) depends on the state xi+1 besides the states x1,…,xi and z.A smooth adaptive state-feedback controller is designed, which guarantees that the cloeed-loop system has an almost surely unique solution, and the equilibrium is globally stable in probability. A numerical simu-lation example is given to show the systematic design and the effectiveness of controller.

  14. Random-order fractional bistable system and its stochastic resonance

    Science.gov (United States)

    Gao, Shilong; Zhang, Li; Liu, Hui; Kan, Bixia

    2017-01-01

    In this paper, the diffusion motion of Brownian particles in a viscous liquid suffering from stochastic fluctuations of the external environment is modeled as a random-order fractional bistable equation, and as a typical nonlinear dynamic behavior, the stochastic resonance phenomena in this system are investigated. At first, the derivation process of the random-order fractional bistable system is given. In particular, the random-power-law memory is deeply discussed to obtain the physical interpretation of the random-order fractional derivative. Secondly, the stochastic resonance evoked by random-order and external periodic force is mainly studied by numerical simulation. In particular, the frequency shifting phenomena of the periodical output are observed in SR induced by the excitation of the random order. Finally, the stochastic resonance of the system under the double stochastic excitations of the random order and the internal color noise is also investigated.

  15. Stochastic analysis of laminated composite plates on elastic foundation: The cases of post-buckling behavior and nonlinear free vibration

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.N., E-mail: bnsingh@aero.iitkgp.ernet.i [Department of Aerospace Engineering, IIT Kharagpur 721 302, West Bengal (India); Lal, Achchhe [Department of Mechanical Engineering, SVNIT, Surat 395007 (India)

    2010-10-15

    This study deals with the stochastic post-buckling and nonlinear free vibration analysis of a laminated composite plate resting on a two parameters Pasternak foundation with Winkler cubic nonlinearity having uncertain system properties. The system properties are modeled as basic random variables. A C{sup 0} nonlinear finite element formulation of the random problem based on higher-order shear deformation theory in the von Karman sense is presented. A direct iterative method in conjunction with a stochastic nonlinear finite element method proposed earlier by the authors is extended to analyze the effect of uncertainty in system properties on the post-buckling and nonlinear free vibration of the composite plates having Winler type of geometric nonlinearity. Mean as well as standard deviation of the responses have been obtained for various combinations of geometric parameters, foundation parameters, stacking sequences and boundary conditions and compared with those available in the literature and Monte Carlo simulation.

  16. Nonlinear distortion in wireless systems modeling and simulation with Matlab

    CERN Document Server

    Gharaibeh, Khaled M

    2011-01-01

    This book covers the principles of modeling and simulation of nonlinear distortion in wireless communication systems with MATLAB simulations and techniques In this book, the author describes the principles of modeling and simulation of nonlinear distortion in single and multichannel wireless communication systems using both deterministic and stochastic signals. Models and simulation methods of nonlinear amplifiers explain in detail how to analyze and evaluate the performance of data communication links under nonlinear amplification. The book addresses the analysis of nonlinear systems

  17. Advanced models of neural networks nonlinear dynamics and stochasticity in biological neurons

    CERN Document Server

    Rigatos, Gerasimos G

    2015-01-01

    This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines their stability properties with the use of dynamical systems theory. It is suitable for researchers and postgraduate students engaged with neural networks and dynamical systems theory.

  18. Simple Planar Truss (Linear, Nonlinear and Stochastic Approach

    Directory of Open Access Journals (Sweden)

    Frydrýšek Karel

    2016-11-01

    Full Text Available This article deals with a simple planar and statically determinate pin-connected truss. It demonstrates the processes and methods of derivations and solutions according to 1st and 2nd order theories. The article applies linear and nonlinear approaches and their simplifications via a Maclaurin series. Programming connected with the stochastic Simulation-Based Reliability Method (i.e. the direct Monte Carlo approach is used to conduct a probabilistic reliability assessment (i.e. a calculation of the probability that plastic deformation will occur in members of the truss.

  19. Non-linear dynamic characteristics and optimal control of giant magnetostrictive film subjected to in-plane stochastic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Z. W., E-mail: zhuzhiwen@tju.edu.cn [Department of Mechanics, Tianjin University, 300072, Tianjin (China); Tianjin Key Laboratory of Non-linear Dynamics and Chaos Control, 300072, Tianjin (China); Zhang, W. D., E-mail: zhangwenditju@126.com; Xu, J., E-mail: xujia-ld@163.com [Department of Mechanics, Tianjin University, 300072, Tianjin (China)

    2014-03-15

    The non-linear dynamic characteristics and optimal control of a giant magnetostrictive film (GMF) subjected to in-plane stochastic excitation were studied. Non-linear differential items were introduced to interpret the hysteretic phenomena of the GMF, and the non-linear dynamic model of the GMF subjected to in-plane stochastic excitation was developed. The stochastic stability was analysed, and the probability density function was obtained. The condition of stochastic Hopf bifurcation and noise-induced chaotic response were determined, and the fractal boundary of the system's safe basin was provided. The reliability function was solved from the backward Kolmogorov equation, and an optimal control strategy was proposed in the stochastic dynamic programming method. Numerical simulation shows that the system stability varies with the parameters, and stochastic Hopf bifurcation and chaos appear in the process; the area of the safe basin decreases when the noise intensifies, and the boundary of the safe basin becomes fractal; the system reliability improved through stochastic optimal control. Finally, the theoretical and numerical results were proved by experiments. The results are helpful in the engineering applications of GMF.

  20. Stochastic Reachability Analysis of Hybrid Systems

    CERN Document Server

    Bujorianu, Luminita Manuela

    2012-01-01

    Stochastic reachability analysis (SRA) is a method of analyzing the behavior of control systems which mix discrete and continuous dynamics. For probabilistic discrete systems it has been shown to be a practical verification method but for stochastic hybrid systems it can be rather more. As a verification technique SRA can assess the safety and performance of, for example, autonomous systems, robot and aircraft path planning and multi-agent coordination but it can also be used for the adaptive control of such systems. Stochastic Reachability Analysis of Hybrid Systems is a self-contained and accessible introduction to this novel topic in the analysis and development of stochastic hybrid systems. Beginning with the relevant aspects of Markov models and introducing stochastic hybrid systems, the book then moves on to coverage of reachability analysis for stochastic hybrid systems. Following this build up, the core of the text first formally defines the concept of reachability in the stochastic framework and then...

  1. Symmetry reduction for stochastic hybrid systems

    NARCIS (Netherlands)

    Bujorianu, L.M.; Katoen, J.P.

    2009-01-01

    This paper is focused on adapting symmetry reduction, a technique that is highly successful in traditional model checking, to stochastic hybrid systems. We first show that performability analysis of stochastic hybrid systems can be reduced to a stochastic reachability analysis (SRA). Then, we genera

  2. Symmetry Reduction For Stochastic Hybrid Systems

    NARCIS (Netherlands)

    Bujorianu, L.M.; Katoen, J.P.

    2008-01-01

    This paper is focused on adapting symmetry reduction, a technique that is highly successful in traditional model checking, to stochastic hybrid systems. To that end, we first show that performability analysis of stochastic hybrid systems can be reduced to a stochastic reachability analysis (SRA). Th

  3. A class of stochastic delayed SIR epidemic models with generalized nonlinear incidence rate and temporary immunity

    Science.gov (United States)

    Fan, Kuangang; Zhang, Yan; Gao, Shujing; Wei, Xiang

    2017-09-01

    A class of SIR epidemic model with generalized nonlinear incidence rate is presented in this paper. Temporary immunity and stochastic perturbation are also considered. The existence and uniqueness of the global positive solution is achieved. Sufficient conditions guaranteeing the extinction and persistence of the epidemic disease are established. Moreover, the threshold behavior is discussed, and the threshold value R0 is obtained. We show that if R0 1, then the system remains permanent in the mean.

  4. Extreme value distribution and reliability of nonlinear stochastic structures

    Institute of Scientific and Technical Information of China (English)

    Chen Jianbing; Li Jie

    2005-01-01

    A new approach to evaluate the extreme value distribution (EVD) of the response and reliability of general multi-DOF nonlinear stochastic structures is proposed. The approach is based on the recently developed probability density evolution method, which enables the instantaneous probability density functions of the stochastic responses to be captured.In the proposed method, a virtual stochastic process is first constructed to satisfy the condition that the extreme value of the response equals the value of the constructed process at a certain instant of time. The probability density evolution method is then applied to evaluate the instantaneous probability density function of the response, yielding the EVD. The reliability is therefore available through a simple integration over the safe domain. A numerical algorithm is developed using the Number Theoretical Method to select the discretized representative points. Further, a hyper-ball is imposed to sieve the points from the preceding point set in the hypercube. In the numerical examples, the EVD of random variables is evaluated and compared with the analytical solution. A frame structure is analyzed to capture the EVD of the response and the dynamic reliability. The investigations indicate that the proposed approach provides reasonable accuracy and efficiency.

  5. Stochastic averaging of quasi-Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    朱位秋

    1996-01-01

    A stochastic averaging method is proposed for quasi-Hamiltonian systems (Hamiltonian systems with light dampings subject to weakly stochastic excitations). Various versions of the method, depending on whether the associated Hamiltonian systems are integrable or nonintegrable, resonant or nonresonant, are discussed. It is pointed out that the standard stochastic averaging method and the stochastic averaging method of energy envelope are special cases of the stochastic averaging method of quasi-Hamiltonian systems and that the results obtained by this method for several examples prove its effectiveness.

  6. Applications of Nonlinear Dynamics Model and Design of Complex Systems

    CERN Document Server

    In, Visarath; Palacios, Antonio

    2009-01-01

    This edited book is aimed at interdisciplinary, device-oriented, applications of nonlinear science theory and methods in complex systems. In particular, applications directed to nonlinear phenomena with space and time characteristics. Examples include: complex networks of magnetic sensor systems, coupled nano-mechanical oscillators, nano-detectors, microscale devices, stochastic resonance in multi-dimensional chaotic systems, biosensors, and stochastic signal quantization. "applications of nonlinear dynamics: model and design of complex systems" brings together the work of scientists and engineers that are applying ideas and methods from nonlinear dynamics to design and fabricate complex systems.

  7. Controllability in nonlinear systems

    Science.gov (United States)

    Hirschorn, R. M.

    1975-01-01

    An explicit expression for the reachable set is obtained for a class of nonlinear systems. This class is described by a chain condition on the Lie algebra of vector fields associated with each nonlinear system. These ideas are used to obtain a generalization of a controllability result for linear systems in the case where multiplicative controls are present.

  8. A BSDE approach to Nash equilibrium payoffs for stochastic differential games with nonlinear cost functionals

    OpenAIRE

    Lin, Qian

    2011-01-01

    In this paper, we study Nash equilibrium payoffs for nonzero-sum stochastic differential games via the theory of backward stochastic differential equations. We obtain an existence theorem and a characterization theorem of Nash equilibrium payoffs for nonzero-sum stochastic differential games with nonlinear cost functionals defined with the help of a doubly controlled backward stochastic differential equation. Our results extend former ones by Buckdahn, Cardaliaguet and Rainer (2004) and are b...

  9. CISM Course on Analysis and Estimation of Stochastic Mechanical Systems

    CERN Document Server

    Wedig, Walter

    1988-01-01

    This book summarizes the developments in stochastic analysis and estimation. It presents novel applications to practical problems in mechanical systems. The main aspects of the course are random vibrations of discrete and continuous systems, analysis of nonlinear and parametric systems, stochastic modelling of fatigue damage, parameter estimation and identification with applications to vehicle road systems and process simulations by means of autoregressive models. The contributions will be of interest to engineers and research workers in industries and universities who want first hand information on present trends and problems in this topical field of engineering dynamics.

  10. Stochastic analysis of biochemical systems

    CERN Document Server

    Anderson, David F

    2015-01-01

    This book focuses on counting processes and continuous-time Markov chains motivated by examples and applications drawn from chemical networks in systems biology.  The book should serve well as a supplement for courses in probability and stochastic processes.  While the material is presented in a manner most suitable for students who have studied stochastic processes up to and including martingales in continuous time, much of the necessary background material is summarized in the Appendix. Students and Researchers with a solid understanding of calculus, differential equations, and elementary probability and who are well-motivated by the applications will find this book of interest.    David F. Anderson is Associate Professor in the Department of Mathematics at the University of Wisconsin and Thomas G. Kurtz is Emeritus Professor in the Departments of Mathematics and Statistics at that university. Their research is focused on probability and stochastic processes with applications in biology and other ar...

  11. Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models

    Science.gov (United States)

    Daunizeau, J.; Friston, K. J.; Kiebel, S. J.

    2009-11-01

    In this paper, we describe a general variational Bayesian approach for approximate inference on nonlinear stochastic dynamic models. This scheme extends established approximate inference on hidden-states to cover: (i) nonlinear evolution and observation functions, (ii) unknown parameters and (precision) hyperparameters and (iii) model comparison and prediction under uncertainty. Model identification or inversion entails the estimation of the marginal likelihood or evidence of a model. This difficult integration problem can be finessed by optimising a free-energy bound on the evidence using results from variational calculus. This yields a deterministic update scheme that optimises an approximation to the posterior density on the unknown model variables. We derive such a variational Bayesian scheme in the context of nonlinear stochastic dynamic hierarchical models, for both model identification and time-series prediction. The computational complexity of the scheme is comparable to that of an extended Kalman filter, which is critical when inverting high dimensional models or long time-series. Using Monte-Carlo simulations, we assess the estimation efficiency of this variational Bayesian approach using three stochastic variants of chaotic dynamic systems. We also demonstrate the model comparison capabilities of the method, its self-consistency and its predictive power.

  12. Stochastic bifurcations in a prototypical thermoacoustic system.

    Science.gov (United States)

    Gopalakrishnan, E A; Tony, J; Sreelekha, E; Sujith, R I

    2016-08-01

    We study the influence of noise in a prototypical thermoacoustic system, which represents a nonlinear self-excited bistable oscillator. We analyze the time series of unsteady pressure obtained from a horizontal Rijke tube and a mathematical model to identify the effect of noise. We report the occurrence of stochastic bifurcations in a thermoacoustic system by tracking the changes in the stationary amplitude distribution. We observe a complete suppression of a bistable zone in the presence of high intensity noise. We find that the complete suppression of the bistable zone corresponds to the nonexistence of phenomenological (P) bifurcations. This is a study in thermoacoustics to identify the parameter regimes pertinent to P bifurcation using the stationary amplitude distribution obtained by solving the Fokker-Planck equation.

  13. Stochastic bifurcations in a prototypical thermoacoustic system

    Science.gov (United States)

    Gopalakrishnan, E. A.; Tony, J.; Sreelekha, E.; Sujith, R. I.

    2016-08-01

    We study the influence of noise in a prototypical thermoacoustic system, which represents a nonlinear self-excited bistable oscillator. We analyze the time series of unsteady pressure obtained from a horizontal Rijke tube and a mathematical model to identify the effect of noise. We report the occurrence of stochastic bifurcations in a thermoacoustic system by tracking the changes in the stationary amplitude distribution. We observe a complete suppression of a bistable zone in the presence of high intensity noise. We find that the complete suppression of the bistable zone corresponds to the nonexistence of phenomenological (P) bifurcations. This is a study in thermoacoustics to identify the parameter regimes pertinent to P bifurcation using the stationary amplitude distribution obtained by solving the Fokker-Planck equation.

  14. Nonlinear dynamics and bifurcation characteristics of shape memory alloy thin films subjected to in-plane stochastic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhi-Wen [Department of Mechanics, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072 (China); Tianjin Key Laboratory of Nonlinear Dynamics and Chaos Control 92 Weijin Road, Nankai District, Tianjin 300072 (China); Zhang, Qing-Xin [Department of Mechanics, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072 (China); Xu, Jia, E-mail: xujia_ld@163.com [Department of Mechanics, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072 (China)

    2014-11-03

    A kind of shape memory alloy (SMA) hysteretic nonlinear model was developed, and the nonlinear dynamics and bifurcation characteristics of the SMA thin film subjected to in-plane stochastic excitation were investigated. Van der Pol difference item was introduced to describe the hysteretic phenomena of the SMA strain–stress curves, and the nonlinear dynamic model of the SMA thin film subjected to in-plane stochastic excitation was developed. The conditions of global stochastic stability of the system were determined in singular boundary theory, and the probability density function of the system response was obtained. Finally, the conditions of stochastic Hopf bifurcation were analyzed. The results of theoretical analysis and numerical simulation indicate that self-excited vibration is induced by the hysteretic nonlinear characteristics of SMA, and stochastic Hopf bifurcation appears when the bifurcation parameter was changed; there are two limit cycles in the stationary probability density of the dynamic response of the system in some cases, which means that there are two vibration amplitudes whose probabilities are both very high, and jumping phenomena between the two vibration amplitudes appear with the change in conditions. The results obtained in this current paper are helpful for the application of the SMA thin film in stochastic vibration fields. - Highlights: • Hysteretic nonlinear model of shape memory alloy was developed. • Van der Pol item was introduced to interpret hysteretic strain–stress curves. • Nonlinear dynamic characteristics of the shape memory alloy film were analyzed. • Jumping phenomena were observed in the change of the parameters.

  15. Modelling of nonlinear shoaling based on stochastic evolution equations

    DEFF Research Database (Denmark)

    Kofoed-Hansen, Henrik; Rasmussen, Jørgen Hvenekær

    1998-01-01

    A one-dimensional stochastic model is derived to simulate the transformation of wave spectra in shallow water including generation of bound sub- and super-harmonics, near-resonant triad wave interaction and wave breaking. Boussinesq type equations with improved linear dispersion characteristics...... are recast into evolution equations for the complex amplitudes, and serve as the underlying deterministic model. Next, a set of evolution equations for the cumulants is derived. By formally introducing the well-known Gaussian closure hypothesis, nonlinear evolution equations for the power spectrum...... and bispectrum are derived. A simple description of depth-induced wave breaking is incorporated in the model equations, assuming that the total rate of dissipation may be distributed in proportion to the spectral energy density on each discrete frequency. The proposed phase-averaged model is compared...

  16. Nonlinear stochastic modeling of river dissolved-oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Tabios, G.Q. III.

    1984-01-01

    An important aspect of water quality modeling is forecasting water quality variables for real-time management and control applications to enhance, maintain and sustain desirable water qualities. The major objective of this research is to develop daily time series models for forecasting river dissolved-oxygen (DO). The modeling approach adopted herein combines deterministic and stochastic concepts for determining properties of the DO process based on time series data and dynamic mechanisms governing the said process. This is accomplished by deriving a general DO stochastic model structure based on a modified Streeter-Phelps DO-BOD dynamic model. Then some types of nonlinear models namely, self-exciting threshold autoregressive-moving average (SETARMA), amplitude-dependent autoregressive (ADAR) and bilinear (BL) models, and the class of linear autoregressive-moving average (ARMA) models are adopted for model identification and parameter estimation. Six stream-water quality gaging stations located in the eastern portion of the continental U.S.A. are utilized in this study. Various orders of ARMA, SETARMA, ADAR and BL models are fitted to the data. Results obtained indicated that ADAR and BL models are superior for one-step ahead forecasts, while SETARMA models are better for forecasts of longer lead times. In general, the SETARMA, ADAR and BL models show promise as alternative models for river DO time series modeling and forecasting with unique advantages in each.

  17. Nonlinear Stochastic Modelling of Antimicrobial resistance in Bacterial Populations

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber

    in humans and animals. To prevent the evolution and spread of resistance, there is a need for further understanding of its dynamics. A grey-box modelling approach based on stochastic differential equations is the main and innovative method applied to study bacterial systems in this thesis. Through...... development consist mainly of optical density measurements of bacterial concentrations. At high cell densities the optical density measurements will be effected by shadow effects from the bacteria leading to an underestimation of the concentration. To circumvent this problem a exponential calibration curve...... for bacterial growth in an environment with multiple substrates. Models based on stochastic differential equations are also used in studies of mutation and conjugation. Mutation and conjugation are important mechanisms for the development of resistance. Earlier models for conjugation have described systems...

  18. Stochastic stabilization analysis of networked control systems

    Institute of Scientific and Technical Information of China (English)

    Ma Changlin; Fang Huajing

    2007-01-01

    Considering the stochastic delay problems existing in networked control systems, a new control mode is proposed for networked control systems whose delay is longer than a sampling period. Under the control mode, the mathematical model of such a system is established. A stochastic stabilization condition for the system is given. The maximum delay can be derived from the stabilization condition.

  19. Nonlinear optical systems

    CERN Document Server

    Lugiato, Luigi; Brambilla, Massimo

    2015-01-01

    Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.

  20. Numerical Solution of Stochastic Nonlinear Fractional Differential Equations

    KAUST Repository

    El-Beltagy, Mohamed A.

    2015-01-07

    Using Wiener-Hermite expansion (WHE) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. WHE is the only known expansion that handles the white/colored noise exactly. This work introduces a numerical estimation of the stochastic response of the Duffing oscillator with fractional or variable order damping and driven by white noise. The WHE technique is integrated with the Grunwald-Letnikov approximation in case of fractional order and with Coimbra approximation in case of variable-order damping. The numerical solver was tested with the analytic solution and with Monte-Carlo simulations. The developed mixed technique was shown to be efficient in simulating SPDEs.

  1. Smooth solutions of non-linear stochastic partial differential equations driven by multiplicative noises

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper, we study the regularity of solutions of nonlinear stochastic partial differential equations (SPDEs) with multiplicative noises in the framework of Hilbert scales. Then we apply our abstract result to several typical nonlinear SPDEs such as stochastic Burgers and Ginzburg-Landau equations on the real line, stochastic 2D Navier-Stokes equations (SNSEs) in the whole space and a stochastic tamed 3D Navier-Stokes equation in the whole space, and obtain the existence of their smooth solutions respectively. In particular, we also get the existence of local smooth solutions for 3D SNSEs.

  2. Quadratic stabilization for uncertain stochastic systems

    Institute of Scientific and Technical Information of China (English)

    Jun'e FENG; Weihai ZHANG

    2005-01-01

    This paper discusses the robust quadratic stabilization control problem for stochastic uncertain systems,where the uncertain matrix is norm bounded,and the external disturbance is a stochastic process.Two kinds of controllers are designed,which include state feedback case and output feedback case.The conditions for the robust quadratic stabilization of stochastic uncertain systems are given via linear matrix inequalities.The detailed design methods are presented.Numerical examples show the effectiveness of our results.

  3. Approximation of stochastic equilibria for dynamic systems with colored noise

    Energy Technology Data Exchange (ETDEWEB)

    Bashkirtseva, Irina [Ural Federal University, Lenina 51, Ekaterinburg, 620083 (Russian Federation)

    2015-03-10

    We consider nonlinear dynamic systems forced by colored noise. Using first approximation systems, we study dynamics of deviations of stochastic solutions from stable deterministic equilibria. Equations for the stationary second moments of deviations of random states are derived. An application of the elaborated theory to Van der Pol system driven by colored noise is given. A dependence of the dispersion on the time correlation of the colored noise is studied.

  4. STOCHASTIC OPTIMAL CONTROL FOR THE RESPONSE OF QUASI NON-INTEGRABLE HAMILTONIAN SYSTEMS~

    Institute of Scientific and Technical Information of China (English)

    DengMaolin; HongMingchao; ZhuWeiqiu

    2003-01-01

    A strategy is proposed based on the stochastic averaging method for quasi nonintegrable Hamiltonian systems and the stochastic dynamical programming principle. The proposed strategy can be used to design nonlinear stochastic optimal control to minimize the response of quasi non-integrable Hamiltonian systems subject to Gaussian white noise excitation. By using the stochastic averaging method for quasi non-integrable Hamiltonian systems the equations of motion of a controlled quasi non-integrable Hamiltonian system is reduced to a one-dimensional averaged Ito stochastic differential equation. By using the stochastic dynamical programming principle the dynamical programming equation for minimizing the response of the system is formulated.The optimal control law is derived from the dynamical programming equation and the bounded control constraints. The response of optimally controlled systems is predicted through solving the FPK equation associated with It5 stochastic differential equation. An example is worked out in detail to illustrate the application of the control strategy proposed.

  5. Stochastic versus deterministic systems of differential equations

    CERN Document Server

    Ladde, G S

    2003-01-01

    This peerless reference/text unfurls a unified and systematic study of the two types of mathematical models of dynamic processes-stochastic and deterministic-as placed in the context of systems of stochastic differential equations. Using the tools of variational comparison, generalized variation of constants, and probability distribution as its methodological backbone, Stochastic Versus Deterministic Systems of Differential Equations addresses questions relating to the need for a stochastic mathematical model and the between-model contrast that arises in the absence of random disturbances/flu

  6. Nonlinear systems in medicine.

    Science.gov (United States)

    Higgins, John P

    2002-01-01

    Many achievements in medicine have come from applying linear theory to problems. Most current methods of data analysis use linear models, which are based on proportionality between two variables and/or relationships described by linear differential equations. However, nonlinear behavior commonly occurs within human systems due to their complex dynamic nature; this cannot be described adequately by linear models. Nonlinear thinking has grown among physiologists and physicians over the past century, and non-linear system theories are beginning to be applied to assist in interpreting, explaining, and predicting biological phenomena. Chaos theory describes elements manifesting behavior that is extremely sensitive to initial conditions, does not repeat itself and yet is deterministic. Complexity theory goes one step beyond chaos and is attempting to explain complex behavior that emerges within dynamic nonlinear systems. Nonlinear modeling still has not been able to explain all of the complexity present in human systems, and further models still need to be refined and developed. However, nonlinear modeling is helping to explain some system behaviors that linear systems cannot and thus will augment our understanding of the nature of complex dynamic systems within the human body in health and in disease states.

  7. Safety Analysis of Stochastic Dynamical Systems

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2015-01-01

    This paper presents a method for verifying the safety of a stochastic system. In particular, we show how to compute the largest set of initial conditions such that a given stochastic system is safe with probability p. To compute the set of initial conditions we rely on the moment method that via...

  8. Statistical Model Checking for Stochastic Hybrid Systems

    DEFF Research Database (Denmark)

    David, Alexandre; Du, Dehui; Larsen, Kim Guldstrand

    2012-01-01

    This paper presents novel extensions and applications of the UPPAAL-SMC model checker. The extensions allow for statistical model checking of stochastic hybrid systems. We show how our race-based stochastic semantics extends to networks of hybrid systems, and indicate the integration technique ap...

  9. Nonlinear Hamiltonian systems

    DEFF Research Database (Denmark)

    Jørgensen, Michael Finn

    1995-01-01

    It is generally very difficult to solve nonlinear systems, and such systems often possess chaotic solutions. In the rare event that a system is completely solvable, it is said to integrable. Such systems never have chaotic solutions. Using the Inverse Scattering Transform Method (ISTM) two...

  10. Research on Nonlinear and Stochastic Dynamics with Defense Applications

    Science.gov (United States)

    2009-03-30

    sensitivity of phase-synchronization time in stochastic resonance: Theory and experiment," Physical Review E 75, 046205(1-5) (2007). • K. Park, Y...34 Physical Review E 77, 026210(1-6) (2008). • Q.-F. Chen, L. Huang, and Y.-C. Lai, "Chaos-induced intrinsic localized modes in coupled mir...localized modes in micro-oscillator ar- rays," submitted to Physical Review E. Small-sized systems such as MEM resonators have become common in many

  11. Agent based reasoning for the non-linear stochastic models of long-range memory

    Science.gov (United States)

    Kononovicius, A.; Gontis, V.

    2012-02-01

    We extend Kirman's model by introducing variable event time scale. The proposed flexible time scale is equivalent to the variable trading activity observed in financial markets. Stochastic version of the extended Kirman's agent based model is compared to the non-linear stochastic models of long-range memory in financial markets. The agent based model providing matching macroscopic description serves as a microscopic reasoning of the earlier proposed stochastic model exhibiting power law statistics.

  12. The human ECG nonlinear deterministic versus stochastic aspects

    CERN Document Server

    Kantz, H; Kantz, Holger; Schreiber, Thomas

    1998-01-01

    We discuss aspects of randomness and of determinism in electrocardiographic signals. In particular, we take a critical look at attempts to apply methods of nonlinear time series analysis derived from the theory of deterministic dynamical systems. We will argue that deterministic chaos is not a likely explanation for the short time variablity of the inter-beat interval times, except for certain pathologies. Conversely, densely sampled full ECG recordings possess properties typical of deterministic signals. In the latter case, methods of deterministic nonlinear time series analysis can yield new insights.

  13. Estimating parameters in stochastic systems: A variational Bayesian approach

    Science.gov (United States)

    Vrettas, Michail D.; Cornford, Dan; Opper, Manfred

    2011-11-01

    This work is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variation of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here a new extended framework is derived that is based on a local polynomial approximation of a recently proposed variational Bayesian algorithm. The paper begins by showing that the new extension of this variational algorithm can be used for state estimation (smoothing) and converges to the original algorithm. However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new approach is validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein-Uhlenbeck process, the exact likelihood of which can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz ’63 (3D model). As a special case the algorithm is also applied to the 40 dimensional stochastic Lorenz ’96 system. In our investigation we compare this new approach with a variety of other well known methods, such as the hybrid Monte Carlo, dual unscented Kalman filter, full weak-constraint 4D-Var algorithm and analyse empirically their asymptotic behaviour as a function of observation density or length of time window increases. In particular we show that we are able to estimate parameters in both the drift (deterministic) and the diffusion (stochastic) part of the model evolution equations using our new methods.

  14. Solution of stochastic nonlinear PDEs using Wiener-Hermite expansion of high orders

    KAUST Repository

    El Beltagy, Mohamed

    2016-01-06

    In this work, the Wiener-Hermite Expansion (WHE) is used to solve stochastic nonlinear PDEs excited with noise. The generation of the equivalent set of deterministic integro-differential equations is automated and hence allows for high order terms of WHE. The automation difficulties are discussed, solved and implemented to output the final system to be solved. A numerical Pikard-like algorithm is suggested to solve the resulting deterministic system. The automated WHE is applied to the 1D diffusion equation and to the heat equation. The results are compared with previous solutions obtained with WHEP (WHE with perturbation) technique. The solution obtained using the suggested WHE technique is shown to be the limit of the WHEP solutions with infinite number of corrections. The automation is extended easily to account for white-noise of higher dimension and for general nonlinear PDEs.

  15. Estimation in continuous-time stochastic| volatility models using nonlinear filters

    DEFF Research Database (Denmark)

    Nielsen, Jan Nygaard; Vestergaard, M.; Madsen, Henrik

    2000-01-01

    Presents a correction to the authorship of the article 'Estimation in Continuous-Time Stochastic Volatility Models Using Nonlinear Filters,' published in the periodical 'International Journal of Theoretical and Applied Finance,' Vol. 3, No. 2., pp. 279-308.......Presents a correction to the authorship of the article 'Estimation in Continuous-Time Stochastic Volatility Models Using Nonlinear Filters,' published in the periodical 'International Journal of Theoretical and Applied Finance,' Vol. 3, No. 2., pp. 279-308....

  16. Integration of stochastic generation in power systems

    NARCIS (Netherlands)

    Papaefthymiou, G.

    2007-01-01

    Stochastic Generation is the electrical power production by the use of an uncontrollable prime energy mover, corresponding mainly to renewable energy sources. For the large-scale integration of stochastic generation in power systems, methods are necessary for the modeling of power generation

  17. Integration of stochastic generation in power systems

    NARCIS (Netherlands)

    Papaefthymiou, G.

    2007-01-01

    Stochastic Generation is the electrical power production by the use of an uncontrollable prime energy mover, corresponding mainly to renewable energy sources. For the large-scale integration of stochastic generation in power systems, methods are necessary for the modeling of power generation uncerta

  18. Integration of stochastic generation in power systems

    NARCIS (Netherlands)

    Papaefthymiou, G.

    2007-01-01

    Stochastic Generation is the electrical power production by the use of an uncontrollable prime energy mover, corresponding mainly to renewable energy sources. For the large-scale integration of stochastic generation in power systems, methods are necessary for the modeling of power generation uncerta

  19. Modeling and analysis of stochastic systems

    CERN Document Server

    Kulkarni, Vidyadhar G

    2011-01-01

    Based on the author's more than 25 years of teaching experience, Modeling and Analysis of Stochastic Systems, Second Edition covers the most important classes of stochastic processes used in the modeling of diverse systems, from supply chains and inventory systems to genetics and biological systems. For each class of stochastic process, the text includes its definition, characterization, applications, transient and limiting behavior, first passage times, and cost/reward models. Along with reorganizing the material, this edition revises and adds new exercises and examples. New to the second edi

  20. Nonlinear signaling on biological networks: The role of stochasticity and spectral clustering

    Science.gov (United States)

    Hernandez-Hernandez, Gonzalo; Myers, Jesse; Alvarez-Lacalle, Enrique; Shiferaw, Yohannes

    2017-03-01

    Signal transduction within biological cells is governed by networks of interacting proteins. Communication between these proteins is mediated by signaling molecules which bind to receptors and induce stochastic transitions between different conformational states. Signaling is typically a cooperative process which requires the occurrence of multiple binding events so that reaction rates have a nonlinear dependence on the amount of signaling molecule. It is this nonlinearity that endows biological signaling networks with robust switchlike properties which are critical to their biological function. In this study we investigate how the properties of these signaling systems depend on the network architecture. Our main result is that these nonlinear networks exhibit bistability where the network activity can switch between states that correspond to a low and high activity level. We show that this bistable regime emerges at a critical coupling strength that is determined by the spectral structure of the network. In particular, the set of nodes that correspond to large components of the leading eigenvector of the adjacency matrix determines the onset of bistability. Above this transition the eigenvectors of the adjacency matrix determine a hierarchy of clusters, defined by its spectral properties, which are activated sequentially with increasing network activity. We argue further that the onset of bistability occurs either continuously or discontinuously depending upon whether the leading eigenvector is localized or delocalized. Finally, we show that at low network coupling stochastic transitions to the active branch are also driven by the set of nodes that contribute more strongly to the leading eigenvector. However, at high coupling, transitions are insensitive to network structure since the network can be activated by stochastic transitions of a few nodes. Thus this work identifies important features of biological signaling networks that may underlie their biological

  1. Density-based Monte Carlo filter and its applications in nonlinear stochastic differential equation models.

    Science.gov (United States)

    Huang, Guanghui; Wan, Jianping; Chen, Hui

    2013-02-01

    Nonlinear stochastic differential equation models with unobservable state variables are now widely used in analysis of PK/PD data. Unobservable state variables are usually estimated with extended Kalman filter (EKF), and the unknown pharmacokinetic parameters are usually estimated by maximum likelihood estimator. However, EKF is inadequate for nonlinear PK/PD models, and MLE is known to be biased downwards. A density-based Monte Carlo filter (DMF) is proposed to estimate the unobservable state variables, and a simulation-based M estimator is proposed to estimate the unknown parameters in this paper, where a genetic algorithm is designed to search the optimal values of pharmacokinetic parameters. The performances of EKF and DMF are compared through simulations for discrete time and continuous time systems respectively, and it is found that the results based on DMF are more accurate than those given by EKF with respect to mean absolute error.

  2. System Identification and Filtering of Nonlinear Controlled Markov Processes by Canonical Variate Analysis

    Science.gov (United States)

    1989-10-30

    In this Phase I SBIR study, new methods are developed for the system identification and stochastic filtering of nonlinear controlled Markov processes...state space Markov process models and canonical variate analysis (CVA) for obtaining optimal nonlinear procedures for system identification and stochastic

  3. Stochastic Modelling of Hydrologic Systems

    DEFF Research Database (Denmark)

    Jonsdottir, Harpa

    2007-01-01

    In this PhD project several stochastic modelling methods are studied and applied on various subjects in hydrology. The research was prepared at Informatics and Mathematical Modelling at the Technical University of Denmark. The thesis is divided into two parts. The first part contains an introduct......In this PhD project several stochastic modelling methods are studied and applied on various subjects in hydrology. The research was prepared at Informatics and Mathematical Modelling at the Technical University of Denmark. The thesis is divided into two parts. The first part contains...... an introduction and an overview of the papers published. Then an introduction to basic concepts in hydrology along with a description of hydrological data is given. Finally an introduction to stochastic modelling is given. The second part contains the research papers. In the research papers the stochastic methods...

  4. Adaptive and Optimal Control of Stochastic Dynamical Systems

    Science.gov (United States)

    2015-09-14

    games that does not require finding solutions to nonlinear partial differential equations or solv- ing backward stochastic differential equations ...for stochastic partial differential equations with fractional Brownian motions having the Hurst parameter in the interval (1/2,1), which includes the...Linear exponential-quadratic control problems for stochastic partial differential equations are explicitly solved. Discrete time linear quadratic

  5. Statistical Model Checking for Stochastic Hybrid Systems

    DEFF Research Database (Denmark)

    David, Alexandre; Du, Dehui; Larsen, Kim Guldstrand

    2012-01-01

    This paper presents novel extensions and applications of the UPPAAL-SMC model checker. The extensions allow for statistical model checking of stochastic hybrid systems. We show how our race-based stochastic semantics extends to networks of hybrid systems, and indicate the integration technique...... applied for implementing this semantics in the UPPAAL-SMC simulation engine. We report on two applications of the resulting tool-set coming from systems biology and energy aware buildings....

  6. Stochastic system identification in structural dynamics

    Science.gov (United States)

    Safak, Erdal

    1988-01-01

    Recently, new identification methods have been developed by using the concept of optimal-recursive filtering and stochastic approximation. These methods, known as stochastic identification, are based on the statistical properties of the signal and noise, and do not require the assumptions of current methods. The criterion for stochastic system identification is that the difference between the recorded output and the output from the identified system (i.e., the residual of the identification) should be equal to white noise. In this paper, first a brief review of the theory is given. Then, an application of the method is presented by using ambient vibration data from a nine-story building.

  7. Permanence of Stochastic Lotka-Volterra Systems

    Science.gov (United States)

    Liu, Meng; Fan, Meng

    2017-04-01

    This paper proposes a new definition of permanence for stochastic population models, which overcomes some limitations and deficiency of the existing ones. Then, we explore the permanence of two-dimensional stochastic Lotka-Volterra systems in a general setting, which models several different interactions between two species such as cooperation, competition, and predation. Sharp sufficient criteria are established with the help of the Lyapunov direct method and some new techniques. This study reveals that the stochastic noises play an essential role in the permanence and characterize the systems being permanent or not.

  8. An integration factor method for stochastic and stiff reaction–diffusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Ta, Catherine; Wang, Dongyong; Nie, Qing, E-mail: qnie@uci.edu

    2015-08-15

    Stochastic effects are often present in the biochemical systems involving reactions and diffusions. When the reactions are stiff, existing numerical methods for stochastic reaction diffusion equations require either very small time steps for any explicit schemes or solving large nonlinear systems at each time step for the implicit schemes. Here we present a class of semi-implicit integration factor methods that treat the diffusion term exactly and reaction implicitly for a system of stochastic reaction–diffusion equations. Our linear stability analysis shows the advantage of such methods for both small and large amplitudes of noise. Direct use of the method to solving several linear and nonlinear stochastic reaction–diffusion equations demonstrates good accuracy, efficiency, and stability properties. This new class of methods, which are easy to implement, will have broader applications in solving stochastic reaction–diffusion equations arising from models in biology and physical sciences.

  9. The construction of the program control with probability one for stochastic dynamic systems with jumps

    CERN Document Server

    Karachanskaya, Elena

    2012-01-01

    Investigate the stochastic dynamic non-linear system with the Wiener and the Poisson perturbations. For such systems we construct the program control with probability one, which allows this system to move on the given trajectory. In this case the control program is solution of the algebraic system of linear equations. Considered algorithm is based on the first integral theory for stochastic differential equations system.

  10. Study on high order perturbation-based nonlinear stochastic finite element method for dynamic problems

    Science.gov (United States)

    Wang, Qing; Yao, Jing-Zheng

    2010-12-01

    Several algorithms were proposed relating to the development of a framework of the perturbation-based stochastic finite element method (PSFEM) for large variation nonlinear dynamic problems. For this purpose, algorithms and a framework related to SFEM based on the stochastic virtual work principle were studied. To prove the validity and practicality of the algorithms and framework, numerical examples for nonlinear dynamic problems with large variations were calculated and compared with the Monte-Carlo Simulation method. This comparison shows that the proposed approaches are accurate and effective for the nonlinear dynamic analysis of structures with random parameters.

  11. EXPONENTIAL STABILITY FOR NONLINEAR HYBRID STOCHASTIC PANTOGRAPH EQUATIONS AND NUMERICAL APPROXIMATION

    Institute of Scientific and Technical Information of China (English)

    周少波; 薛明皋

    2014-01-01

    The paper develops exponential stability of the analytic solution and convergence in probability of the numerical method for highly nonlinear hybrid stochastic pantograph equation. The classical linear growth condition is replaced by polynomial growth conditions, under which there exists a unique global solution and the solution is almost surely exponen-tially stable. On the basis of a series of lemmas, the paper establishes a new criterion on convergence in probability of the Euler-Maruyama approximate solution. The criterion is very general so that many highly nonlinear stochastic pantograph equations can obey these conditions. A highly nonlinear example is provided to illustrate the main theory.

  12. On stability of randomly switched nonlinear systems

    CERN Document Server

    Chatterjee, Debasish

    2007-01-01

    This article is concerned with stability analysis and stabilization of randomly switched nonlinear systems. These systems may be regarded as piecewise deterministic stochastic systems: the discrete switches are triggered by a stochastic process which is independent of the state of the system, and between two consecutive switching instants the dynamics are deterministic. Our results provide sufficient conditions for almost sure global asymptotic stability using Lyapunov-based methods when individual subsystems are stable and a certain ``slow switching'' condition holds. This slow switching condition takes the form of an asymptotic upper bound on the probability mass function of the number of switches that occur between the initial and current time instants. This condition is shown to hold for switching signals coming from the states of finite-dimensional continuous-time Markov chains; our results therefore hold for Markov jump systems in particular. For systems with control inputs we provide explicit control s...

  13. Stochastic Inverse Identification of Nonlinear Roll Damping Moment of a Ship Moving at Nonzero-Forward Speeds

    Directory of Open Access Journals (Sweden)

    S. L. Han

    2012-01-01

    Full Text Available The nonlinear responses of ship rolling motion characterized by a roll damping moment are of great interest to naval architects and ocean engineers. Modeling and identification of the nonlinear damping moment are essential to incorporate the inherent nonlinearity in design, analysis, and control of a ship. A stochastic nonparametric approach for identification of nonlinear damping in the general mechanical system has been presented in the literature (Han and Kinoshits 2012. The method has been also applied to identification of the nonlinear damping moment of a ship at zero-forward speed (Han and Kinoshits 2013. In the presence of forward speed, however, the characteristic of roll damping moment of a ship is significantly changed due to the lift effect. In this paper, the stochastic inverse method is applied to identification of the nonlinear damping moment of a ship moving at nonzero-forward speed. The workability and validity of the method are verified with laboratory tests under controlled conditions. In experimental trials, two different types of ship rolling motion are considered: time-dependent transient motion and frequency-dependent periodic motion. It is shown that this method enables the inherent nonlinearity in damping moment to be estimated, including its reliability analysis.

  14. Stochastic relations foundations for Markov transition systems

    CERN Document Server

    Doberkat, Ernst-Erich

    2007-01-01

    Collecting information previously scattered throughout the vast literature, including the author's own research, Stochastic Relations: Foundations for Markov Transition Systems develops the theory of stochastic relations as a basis for Markov transition systems. After an introduction to the basic mathematical tools from topology, measure theory, and categories, the book examines the central topics of congruences and morphisms, applies these to the monoidal structure, and defines bisimilarity and behavioral equivalence within this framework. The author views developments from the general

  15. Nonlinear Stochastic H∞ Control with Markov Jumps and (x,u,v-Dependent Noise: Finite and Infinite Horizon Cases

    Directory of Open Access Journals (Sweden)

    Li Sheng

    2014-01-01

    Full Text Available This paper is concerned with the H∞ control problem for nonlinear stochastic Markov jump systems with state, control, and external disturbance-dependent noise. By means of inequality techniques and coupled Hamilton-Jacobi inequalities, both finite and infinite horizon H∞ control designs of such systems are developed. Two numerical examples are provided to illustrate the effectiveness of the proposed design method.

  16. Optically levitated nanoparticle as a model system for stochastic bistable dynamics

    Science.gov (United States)

    Ricci, F.; Rica, R. A.; Spasenović, M.; Gieseler, J.; Rondin, L.; Novotny, L.; Quidant, R.

    2017-05-01

    Nano-mechanical resonators have gained an increasing importance in nanotechnology owing to their contributions to both fundamental and applied science. Yet, their small dimensions and mass raises some challenges as their dynamics gets dominated by nonlinearities that degrade their performance, for instance in sensing applications. Here, we report on the precise control of the nonlinear and stochastic bistable dynamics of a levitated nanoparticle in high vacuum. We demonstrate how it can lead to efficient signal amplification schemes, including stochastic resonance. This work contributes to showing the use of levitated nanoparticles as a model system for stochastic bistable dynamics, with applications to a wide variety of fields.

  17. Stochastic Systems Uncertainty Quantification and Propagation

    CERN Document Server

    Grigoriu, Mircea

    2012-01-01

    Uncertainty is an inherent feature of both properties of physical systems and the inputs to these systems that needs to be quantified for cost effective and reliable designs. The states of these systems satisfy equations with random entries, referred to as stochastic equations, so that they are random functions of time and/or space. The solution of stochastic equations poses notable technical difficulties that are frequently circumvented by heuristic assumptions at the expense of accuracy and rigor. The main objective of Stochastic Systems is to promoting the development of accurate and efficient methods for solving stochastic equations and to foster interactions between engineers, scientists, and mathematicians. To achieve these objectives Stochastic Systems presents: ·         A clear and brief review of essential concepts on probability theory, random functions, stochastic calculus, Monte Carlo simulation, and functional analysis   ·          Probabilistic models for random variables an...

  18. Stochastic Modelling of Energy Systems

    DEFF Research Database (Denmark)

    Andersen, Klaus Kaae

    2001-01-01

    equations are expressed in terms of stochastic differential equations. From a theoretical viewpoint the techniques for experimental design, parameter estimation and model validation are considered. From the practical viewpoint emphasis is put on how this methods can be used to construct models adequate...

  19. Stochastic uncertainty analysis for unconfined flow systems

    Science.gov (United States)

    Liu, Gaisheng; Zhang, Dongxiao; Lu, Zhiming

    2006-01-01

    A new stochastic approach proposed by Zhang and Lu (2004), called the Karhunen-Loeve decomposition-based moment equation (KLME), has been extended to solving nonlinear, unconfined flow problems in randomly heterogeneous aquifers. This approach is on the basis of an innovative combination of Karhunen-Loeve decomposition, polynomial expansion, and perturbation methods. The random log-transformed hydraulic conductivity field (InKS) is first expanded into a series in terms of orthogonal Gaussian standard random variables with their coefficients obtained as the eigenvalues and eigenfunctions of the covariance function of InKS- Next, head h is decomposed as a perturbation expansion series ??A(m), where A(m) represents the mth-order head term with respect to the standard deviation of InKS. Then A(m) is further expanded into a polynomial series of m products of orthogonal Gaussian standard random variables whose coefficients Ai1,i2(m)...,im are deterministic and solved sequentially from low to high expansion orders using MODFLOW-2000. Finally, the statistics of head and flux are computed using simple algebraic operations on Ai1,i2(m)...,im. A series of numerical test results in 2-D and 3-D unconfined flow systems indicated that the KLME approach is effective in estimating the mean and (co)variance of both heads and fluxes and requires much less computational effort as compared to the traditional Monte Carlo simulation technique. Copyright 2006 by the American Geophysical Union.

  20. Nonlinear functional response parameter estimation in a stochastic predator-prey model.

    Science.gov (United States)

    Gilioli, Gianni; Pasquali, Sara; Ruggeri, Fabrizio

    2012-01-01

    Parameter estimation for the functional response of predator-prey systems is a critical methodological problem in population ecology. In this paper we consider a stochastic predator-prey system with non-linear Ivlev functional response and propose a method for model parameter estimation based on time series of field data. We tackle the problem of parameter estimation using a Bayesian approach relying on a Markov Chain Monte Carlo algorithm. The efficiency of the method is tested on a set of simulated data. Then, the method is applied to a predator-prey system of importance for Integrated Pest Management and biological control, the pest mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. The model is estimated on a dataset obtained from a field survey. Finally, the estimated model is used to forecast predator-prey dynamics in similar fields, with slightly different initial conditions.

  1. Stochastic solution of a nonlinear fractional differential equation

    OpenAIRE

    Cipriano, F; Ouerdiane, H.; Mendes, R. Vilela

    2008-01-01

    A stochastic solution is constructed for a fractional generalization of the KPP (Kolmogorov, Petrovskii, Piskunov) equation. The solution uses a fractional generalization of the branching exponential process and propagation processes which are spectral integrals of Levy processes

  2. Towards sub-optimal stochastic control of partially observable stochastic systems

    Science.gov (United States)

    Ruzicka, G. J.

    1980-01-01

    The paper deals with a class of multidimensional stochastic control problems with noisy data and bounded controls encountered in aerospace design. The emphasis is on suboptimal design, the optimality being taken in quadratic mean sense. To that effect the problem is viewed as a stochastic version of the Lurie problem known from nonlinear control theory. The main result is a separation theorem (involving a nonlinear Kalman-like filter) suitable for Lurie-type approximations. The theorem allows for discontinuous characteristics. As a byproduct the existence of strong solutions to a class of non-Lipschitzian stochastic differential equations in n dimensions is proved.

  3. Controllability of nonlinear systems.

    Science.gov (United States)

    Sussmann, H. J.; Jurdjevic, V.

    1972-01-01

    Discussion of the controllability of nonlinear systems described by the equation dx/dt - F(x,u). Concepts formulated by Chow (1939) and Lobry (1970) are applied to establish criteria for F and its derivatives to obtain qualitative information on sets which can be obtained from x which denotes a variable of state in an arbitrary, real, analytical manifold. It is shown that controllability implies strong accessibility for a large class of manifolds including Euclidean spaces.-

  4. Nonlinear Control Systems

    Science.gov (United States)

    2007-03-01

    IEEE Transactions on Automatic Control , AC- 48, pp. 1712-1723, (2003). [14] C.I. Byrnes, A. Isidori...Nonlinear internal models for output regulation,” IEEE Transactions on Automatic Control , AC-49, pp. 2244-2247, (2004). [15] C.I. Byrnes, F. Celani, A...approach,” IEEE Transactions on Automatic Control , 48 (Dec. 2003), 2172–2190. 2. C. I. Byrnes, “Differential Forms and Dynamical Systems,” to appear

  5. Fault Detection for Nonlinear Systems

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.H.

    1998-01-01

    The paper describes a general method for designing fault detection and isolation (FDI) systems for nonlinear processes. For a rich class of nonlinear systems, a nonlinear FDI system can be designed using convex optimization procedures. The proposed method is a natural extension of methods based...

  6. Distributed Consensus of Stochastic Delayed Multi-agent Systems Under Asynchronous Switching.

    Science.gov (United States)

    Wu, Xiaotai; Tang, Yang; Cao, Jinde; Zhang, Wenbing

    2016-08-01

    In this paper, the distributed exponential consensus of stochastic delayed multi-agent systems with nonlinear dynamics is investigated under asynchronous switching. The asynchronous switching considered here is to account for the time of identifying the active modes of multi-agent systems. After receipt of confirmation of mode's switching, the matched controller can be applied, which means that the switching time of the matched controller in each node usually lags behind that of system switching. In order to handle the coexistence of switched signals and stochastic disturbances, a comparison principle of stochastic switched delayed systems is first proved. By means of this extended comparison principle, several easy to verified conditions for the existence of an asynchronously switched distributed controller are derived such that stochastic delayed multi-agent systems with asynchronous switching and nonlinear dynamics can achieve global exponential consensus. Two examples are given to illustrate the effectiveness of the proposed method.

  7. Efficient Output Solution for Nonlinear Stochastic Optimal Control Problem with Model-Reality Differences

    Directory of Open Access Journals (Sweden)

    Sie Long Kek

    2015-01-01

    Full Text Available A computational approach is proposed for solving the discrete time nonlinear stochastic optimal control problem. Our aim is to obtain the optimal output solution of the original optimal control problem through solving the simplified model-based optimal control problem iteratively. In our approach, the adjusted parameters are introduced into the model used such that the differences between the real system and the model used can be computed. Particularly, system optimization and parameter estimation are integrated interactively. On the other hand, the output is measured from the real plant and is fed back into the parameter estimation problem to establish a matching scheme. During the calculation procedure, the iterative solution is updated in order to approximate the true optimal solution of the original optimal control problem despite model-reality differences. For illustration, a wastewater treatment problem is studied and the results show the efficiency of the approach proposed.

  8. Threshold Dynamics in Stochastic SIRS Epidemic Models with Nonlinear Incidence and Vaccination.

    Science.gov (United States)

    Wang, Lei; Teng, Zhidong; Tang, Tingting; Li, Zhiming

    2017-01-01

    In this paper, the dynamical behaviors for a stochastic SIRS epidemic model with nonlinear incidence and vaccination are investigated. In the models, the disease transmission coefficient and the removal rates are all affected by noise. Some new basic properties of the models are found. Applying these properties, we establish a series of new threshold conditions on the stochastically exponential extinction, stochastic persistence, and permanence in the mean of the disease with probability one for the models. Furthermore, we obtain a sufficient condition on the existence of unique stationary distribution for the model. Finally, a series of numerical examples are introduced to illustrate our main theoretical results and some conjectures are further proposed.

  9. Vector Lyapunov Functions for Stochastic Interconnected Systems

    Science.gov (United States)

    Boussalis, D.

    1985-01-01

    Theoretical paper presents set of sufficient conditions for asymptotic and exponential stability with probability 1 for class of stochastic interconnected systems. Theory applicable to complicated, large-scale mechanical or electrical systems, and, for several design problems, it reduces computational difficulty by relating stability criteria to fundamental structural features of system.

  10. Vector Lyapunov Functions for Stochastic Interconnected Systems

    Science.gov (United States)

    Boussalis, D.

    1985-01-01

    Theoretical paper presents set of sufficient conditions for asymptotic and exponential stability with probability 1 for class of stochastic interconnected systems. Theory applicable to complicated, large-scale mechanical or electrical systems, and, for several design problems, it reduces computational difficulty by relating stability criteria to fundamental structural features of system.

  11. Nonlinear elliptic systems

    Directory of Open Access Journals (Sweden)

    DJAIRO G. DEFIGUEIREDO

    2000-12-01

    Full Text Available In this paper we treat the question of the existence of solutions of boundary value problems for systems of nonlinear elliptic equations of the form - deltau = f (x, u, v,Ñu,Ñv, - deltav = g(x, u, v, Ñu, Ñv, in omega, We discuss several classes of such systems using both variational and topological methods. The notion of criticality takes into consideration the coupling, which plays important roles in both a priori estimates for the solutions and Palais-Smale conditions for the associated functional in the variational case.

  12. Stochastic description for open quantum systems

    CERN Document Server

    Calzetta, E A; Verdaguer, E; Calzetta, Esteban; Roura, Albert; Verdaguer, Enric

    2000-01-01

    A linear open quantum system consisting of a harmonic oscillator coupled linearly to an infinite set of independent harmonic oscillators is considered; these oscillators have a general spectral density function and are initially in thermal equilibrium. Using the influence functional formalism a formal Langevin equation can be introduced to describe the system's fully quantum properties even beyond the semiclassical regime. It is shown that the reduced Wigner function for the system is exactly the formal distribution function resulting from averaging both over the initial conditions and the stochastic source of the formal Langevin equation. The master equation for the reduced density matrix is then obtained in the same way a Fokker-Planck equation can always be derived from a Langevin equation characterizing a stochastic process. We also show that the quantum correlation functions for the system can be deduced within the stochastic description provided by the Langevin equation. It is emphasized that when the s...

  13. Stochastic Modelling Of The Repairable System

    Directory of Open Access Journals (Sweden)

    Andrzejczak Karol

    2015-11-01

    Full Text Available All reliability models consisting of random time factors form stochastic processes. In this paper we recall the definitions of the most common point processes which are used for modelling of repairable systems. Particularly this paper presents stochastic processes as examples of reliability systems for the support of the maintenance related decisions. We consider the simplest one-unit system with a negligible repair or replacement time, i.e., the unit is operating and is repaired or replaced at failure, where the time required for repair and replacement is negligible. When the repair or replacement is completed, the unit becomes as good as new and resumes operation. The stochastic modelling of recoverable systems constitutes an excellent method of supporting maintenance related decision-making processes and enables their more rational use.

  14. Stochastic Computational Approach for Complex Nonlinear Ordinary Differential Equations

    Institute of Scientific and Technical Information of China (English)

    Junaid Ali Khan; Muhammad Asif Zahoor Raja; Ijaz Mansoor Qureshi

    2011-01-01

    @@ We present an evolutionary computational approach for the solution of nonlinear ordinary differential equations (NLODEs).The mathematical modeling is performed by a feed-forward artificial neural network that defines an unsupervised error.The training of these networks is achieved by a hybrid intelligent algorithm, a combination of global search with genetic algorithm and local search by pattern search technique.The applicability of this approach ranges from single order NLODEs, to systems of coupled differential equations.We illustrate the method by solving a variety of model problems and present comparisons with solutions obtained by exact methods and classical numerical methods.The solution is provided on a continuous finite time interval unlike the other numerical techniques with comparable accuracy.With the advent of neuroprocessors and digital signal processors the method becomes particularly interesting due to the expected essential gains in the execution speed.%We present an evolutionary computational approach for the solution of nonlinear ordinary differential equations (NLODEs). The mathematical modeling is performed by a feed-forward artificial neural network that defines an unsupervised error. The training of these networks is achieved by a hybrid intelligent algorithm, a combination of global search with genetic algorithm and local search by pattern search technique. The applicability of this approach ranges from single order NLODEs, to systems of coupled differential equations. We illustrate the method by solving a variety of model problems and present comparisons with solutions obtained by exact methods and classical numerical methods. The solution is provided on a continuous finite time interval unlike the other numerical techniques with comparable accuracy. With the advent of neuroprocessors and digital signal processors the method becomes particularly interesting due to the expected essential gains in the execution speed.

  15. Robustness analysis of stochastic biochemical systems.

    Science.gov (United States)

    Ceska, Milan; Safránek, David; Dražan, Sven; Brim, Luboš

    2014-01-01

    We propose a new framework for rigorous robustness analysis of stochastic biochemical systems that is based on probabilistic model checking techniques. We adapt the general definition of robustness introduced by Kitano to the class of stochastic systems modelled as continuous time Markov Chains in order to extensively analyse and compare robustness of biological models with uncertain parameters. The framework utilises novel computational methods that enable to effectively evaluate the robustness of models with respect to quantitative temporal properties and parameters such as reaction rate constants and initial conditions. We have applied the framework to gene regulation as an example of a central biological mechanism where intrinsic and extrinsic stochasticity plays crucial role due to low numbers of DNA and RNA molecules. Using our methods we have obtained a comprehensive and precise analysis of stochastic dynamics under parameter uncertainty. Furthermore, we apply our framework to compare several variants of two-component signalling networks from the perspective of robustness with respect to intrinsic noise caused by low populations of signalling components. We have successfully extended previous studies performed on deterministic models (ODE) and showed that stochasticity may significantly affect obtained predictions. Our case studies demonstrate that the framework can provide deeper insight into the role of key parameters in maintaining the system functionality and thus it significantly contributes to formal methods in computational systems biology.

  16. Robust Performance And Dissipation of Stochastic Control Systems

    DEFF Research Database (Denmark)

    Thygesen, Uffe Høgsbro

    The topic of the present dissertation is robustness and performance issues in nonlinear control systems. The control systems in our study are described by nominal models consisting of nonlinear deterministic or stochastic differential equations in a Euclidean state space. The nominal models...... and topology on the space of supply rates. For instance, we give conditions under which the available storage is a continuous convex function of the supply rate. Dissipation theory in the existing literature applies only to deterministic systems. This is unfortunate since robust control applications typically...... are subject to perturbations which are completely unknown dynamic systems, except that they are known to possess certain properties of dissipation. A dissipation property restricts the dynamic behaviour of the perturbation to conform with a bounded resource; for instance energy. The main contribution...

  17. THE MEAN-SQUARE EXPONENTIAL STABILITY AND INSTABILITY OF STOCHASTIC NONHOLONOMIC SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    SHANG MEI; GUO YONG-XIN

    2001-01-01

    We present a new methodology for studying the mean-square exponential stability and instability of nonlinear nonholonomic systems under disturbance of Gaussian white-noise by the first approximation. Firstly, we give the linearized equations of nonlinear nonholonomic stochastic systems; then we construct a proper stochastic Lyapunov function to investigate the mean-square exponential stability and instability of the linearized systems, and thus determine the stability and instability in probability of corresponding competing systems. An example is given to illustrate the application procedures.

  18. Control design for discrete-time state-multiplicative noise stochastic systems

    Science.gov (United States)

    Krokavec, Dušan; Filasová, Anna

    2015-11-01

    Design conditions for existence of the H∞ linear state feedback control for discretetime stochastic systems with state-multiplicative noise and polytopic uncertainties are presented in the paper. Using an enhanced form of the bounded real lemma for discrete-time stochastic systems with state-multiplicative noise, the LMI-based procedure is provided for computation of the gains of linear, as well as nonlinear, state control law. The approach is illustrated on an example demonstrating the validity of the proposed method.

  19. Higher-order Solution of Stochastic Diffusion equation with Nonlinear Losses Using WHEP technique

    KAUST Repository

    El-Beltagy, Mohamed A.

    2014-01-06

    Using Wiener-Hermite expansion with perturbation (WHEP) technique in the solution of the stochastic partial differential equations (SPDEs) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. The Wiener-Hermite expansion is the only known expansion that handles the white/colored noise exactly. The main statistics, such as the mean, covariance, and higher order statistical moments, can be calculated by simple formulae involving only the deterministic Wiener-Hermite coefficients. In this poster, the WHEP technique is used to solve the 2D diffusion equation with nonlinear losses and excited with white noise. The solution will be obtained numerically and will be validated and compared with the analytical solution that can be obtained from any symbolic mathematics package such as Mathematica.

  20. Analytical vs. Simulation Solution Techniques for Pulse Problems in Non-linear Stochastic Dynamics

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R. K.

    -numerical techniques suitable for Markov response problems such as moments equation, Petrov-Galerkin and cell-to-cell mapping techniques are briefly discussed. Usefulness of these techniques is limited by the fact that effectiveness of each of them depends on the mean rate of impulses. Another limitation is the size...... of the problem, i.e. the number of state variables of the dynamical systems. In contrast, the application of the simulation techniques is not limited to Markov problems, nor is it dependent on the mean rate of impulses. Moreover their use is straightforward for a large class of point processes, at least......Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically...

  1. Robust H∞ control for uncertain stochastic saturating systems with time delays

    Institute of Scientific and Technical Information of China (English)

    谢立; 何星; 张卫东; 许晓鹏

    2004-01-01

    The robust H∞ control problem for uncertain stochastic time-delay systems containing nonlinear actuators is considered. The uncertainties in the systems are assumed to satisfy specific match condition. The time delays exitst in state as well as control input. The new stochastic robust stabilization criterion and a sufficient condition for the existence of stochastic robust stabilizing control law are derived. The delay-independent memoryless robust H∞ controllers are constructed to stabilize the given systems in terms of a group of linear matrix inequalities. A numerical simulation example is presented to show that the proposed approach is valid.

  2. A Non-linear Stochastic Model for an Office Building with Air Infiltration

    DEFF Research Database (Denmark)

    Thavlov, Anders; Madsen, Henrik

    2015-01-01

    This paper presents a non-linear heat dynamic model for a multi-room office building with air infiltration. Several linear and non-linear models, with and without air infiltration, are investigated and compared. The models are formulated using stochastic differential equations and the model param...... heat load reduction during peak load hours, control of indoor air temperature and for generating forecasts of power consumption from space heating....

  3. A bias identification and state estimation methodology for nonlinear systems

    Science.gov (United States)

    Caglayan, A. K.; Lancraft, R. E.

    1983-01-01

    A computational algorithm for the identification of input and output biases in discrete-time nonlinear stochastic systems is derived by extending the separate bias estimation results for linear systems to the extended Kalman filter formulation. The merits of the approach are illustrated by identifying instrument biases using a terminal configured vehicle simulation.

  4. The dynamical system of weathering: deterministic and stochastic analysis

    Science.gov (United States)

    Calabrese, S.; Parolari, A.; Porporato, A. M.

    2016-12-01

    The critical zone is fundamental to human society as it provides most of the ecosystem services such as food and fresh water. However, climate change and intense land use are threatening the critical zone, so that theoretical frameworks, to predict its future response, are needed. In this talk, a new modeling approach to evaluate the effect of hydrologic fluctuations on soil water chemistry and weathering reactions is analyzed by means of a dynamical system approach. In this model, equilibrium is assumed for the aqueous carbonate system while a kinetic law is adopted for the weathering reaction. Also, through an algebraic manipulation, we eliminate the equilibrium reactions and reduce the order of the system. We first analyze the deterministic temporal evolution, and study the stability of the nonlinear system and its trajectories, as a function of the hydro-climatic parameters. By introducing a stochastic rainfall forcing, we then analyze the system probabilistically, and through averaging techniques determine the inter-annual response of the nonlinear stochastic system to the climatic regime and hydrologic parameters (e.g., ET, soil texture). Some fundamental thermodynamic aspects of the chemical reactions are also discussed. By introducing the weathering reaction into the system, any mineral, such as calcium carbonate or a silicate mineral, can be considered.

  5. Impulsive control of stochastic system under the sense of stochastic asymptotical stability

    Institute of Scientific and Technical Information of China (English)

    Niu Yu-Jun; Ma Ge

    2010-01-01

    This paper studies the stochastic asymptotical stability of stochastic impulsive differential equations,and establishes a comparison theory to ensure the trivial solution's stochastic asymptotical stability.From the comparison theory,it can find out whether the stochastic impulsive differential system is stable just by studying the stability of a deterimpulsive control method,and numerical simulations are employed to verify the feasibility of this method.

  6. High Frequency Stochastic Resonance in Periodically Driven Systems

    CERN Document Server

    Dykman, M I

    1993-01-01

    Abstract: High frequency stochastic resonance (SR) phenomena, associated with fluctuational transitions between coexisting periodic attractors, have been investigated experimentally in an electronic model of a single-well Duffing oscillator bistable in a nearly resonant field of frequency $\\omega_F$. It is shown that, with increasing noise intensity, the signal/noise ratio (SNR) for a signal due to a weak trial force of frequency $\\Omega decreases again at higher noise intensities: behaviour similar to that observed previously for conventional (low frequency) SR in systems with static bistable potentials. The stochastic enhancement of the SNR of an additional signal at the mirror-reflected frequency $\\vert Ømega - 2 ømega_F \\vert$ is also observed, in accordance with theoretical predictions. Relationships with phenomena in nonlinear optics are discussed.

  7. Stochastic Modeling and Analysis of Power System with Renewable Generation

    DEFF Research Database (Denmark)

    Chen, Peiyuan

    to evaluate year-to-year variation of wind power generation through a sensitivity analysis and to forecast very short-term wind power through a model-based prediction method. The stochastic load model is established on the basis of a seasonal autoregressive moving average (ARMA) process. It is demonstrated...... that such a stochastic model can be used to simulate the effect of load management on the load duration curve. As CHP units are turned on and off by regulating power, CHP generation has discrete output and thus can be modeled by a transition matrix based discrete Markov chain. As the CHP generation has a strong diurnal...... that minimizes the expectation of power losses of a 69-bus distribution system by controlling the power factor of WTs. The optimization is subjected to the probabilistic constraints of bus voltage and line current. The algorithm combines a constrained nonlinear optimization algorithm and a Monte Carlo based PLF...

  8. Experimental Design for Stochastic Models of Nonlinear Signaling Pathways Using an Interval-Wise Linear Noise Approximation and State Estimation.

    Science.gov (United States)

    Zimmer, Christoph

    2016-01-01

    Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the information encoded in the data. For ODE models there are well established approaches for experimental design and even software tools. However, data from single cell experiments on signaling pathways in systems biology often shows intrinsic stochastic effects prompting the development of specialized methods. While simulation methods have been developed for decades and parameter estimation has been targeted for the last years, only very few articles focus on experimental design for stochastic models. The Fisher information matrix is the central measure for experimental design as it evaluates the information an experiment provides for parameter estimation. This article suggest an approach to calculate a Fisher information matrix for models containing intrinsic stochasticity and high nonlinearity. The approach makes use of a recently suggested multiple shooting for stochastic systems (MSS) objective function. The Fisher information matrix is calculated by evaluating pseudo data with the MSS technique. The performance of the approach is evaluated with simulation studies on an Immigration-Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is a particularly appropriate case study as it contains the challenges inherent to signaling pathways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an ODE solution, and partial observability. The computational speed of the MSS approach for the Fisher information matrix allows for an application in realistic size models.

  9. Experimental Design for Stochastic Models of Nonlinear Signaling Pathways Using an Interval-Wise Linear Noise Approximation and State Estimation

    Science.gov (United States)

    Zimmer, Christoph

    2016-01-01

    Background Computational modeling is a key technique for analyzing models in systems biology. There are well established methods for the estimation of the kinetic parameters in models of ordinary differential equations (ODE). Experimental design techniques aim at devising experiments that maximize the information encoded in the data. For ODE models there are well established approaches for experimental design and even software tools. However, data from single cell experiments on signaling pathways in systems biology often shows intrinsic stochastic effects prompting the development of specialized methods. While simulation methods have been developed for decades and parameter estimation has been targeted for the last years, only very few articles focus on experimental design for stochastic models. Methods The Fisher information matrix is the central measure for experimental design as it evaluates the information an experiment provides for parameter estimation. This article suggest an approach to calculate a Fisher information matrix for models containing intrinsic stochasticity and high nonlinearity. The approach makes use of a recently suggested multiple shooting for stochastic systems (MSS) objective function. The Fisher information matrix is calculated by evaluating pseudo data with the MSS technique. Results The performance of the approach is evaluated with simulation studies on an Immigration-Death, a Lotka-Volterra, and a Calcium oscillation model. The Calcium oscillation model is a particularly appropriate case study as it contains the challenges inherent to signaling pathways: high nonlinearity, intrinsic stochasticity, a qualitatively different behavior from an ODE solution, and partial observability. The computational speed of the MSS approach for the Fisher information matrix allows for an application in realistic size models. PMID:27583802

  10. Adaptive NN State-Feedback Control for Stochastic High-Order Nonlinear Systems with Time-Varying Control Direction and Delays

    Directory of Open Access Journals (Sweden)

    Huifang Min

    2015-01-01

    and dynamic surface control technique, an adaptive NN controller is constructed to render the closed-loop system semiglobally uniformly ultimately bounded (SGUUB. Finally, a simulation example is shown to demonstrate the effectiveness of the proposed control scheme.

  11. Stochastic modeling of unresolved scales in complex systems

    Institute of Scientific and Technical Information of China (English)

    Jinqiao DUAN

    2009-01-01

    Model uncertainties or simulation uncertainties occur in math-ematical modeling of multiscale complex systems, since some mechanisms or scales are not represented (i.e., 'unresolved') due to a lack in our understand-ing of these mechanisms or limitations in computational power. The impact of these unresolved scales on the resolved scales needs to be parameterized or taken into account. A stochastic scheme is devised to take the effects of unresolved scales into account, in the context of solving nonlinear partial differential equations. An example is presented to demonstrate this strategy.

  12. On Unique Ergodicity in Nonlinear Stochastic Partial Differential Equations

    Science.gov (United States)

    Glatt-Holtz, Nathan; Mattingly, Jonathan C.; Richards, Geordie

    2017-02-01

    We illustrate how the notion of asymptotic coupling provides a flexible and intuitive framework for proving the uniqueness of invariant measures for a variety of stochastic partial differential equations whose deterministic counterpart possesses a finite number of determining modes. Examples exhibiting parabolic and hyperbolic structure are studied in detail. In the later situation we also present a simple framework for establishing the existence of invariant measures when the usual approach relying on the Krylov-Bogolyubov procedure and compactness fails.

  13. On Unique Ergodicity in Nonlinear Stochastic Partial Differential Equations

    Science.gov (United States)

    Glatt-Holtz, Nathan; Mattingly, Jonathan C.; Richards, Geordie

    2016-08-01

    We illustrate how the notion of asymptotic coupling provides a flexible and intuitive framework for proving the uniqueness of invariant measures for a variety of stochastic partial differential equations whose deterministic counterpart possesses a finite number of determining modes. Examples exhibiting parabolic and hyperbolic structure are studied in detail. In the later situation we also present a simple framework for establishing the existence of invariant measures when the usual approach relying on the Krylov-Bogolyubov procedure and compactness fails.

  14. Conditional least squares estimation in nonstationary nonlinear stochastic regression models

    CERN Document Server

    Jacob, Christine

    2010-01-01

    Let $\\{Z_n\\}$ be a real nonstationary stochastic process such that $E(Z_n|{\\mathcaligr F}_{n-1})\\stackrel{\\mathrm{a.s.}}{<}\\infty$ and $E(Z^2_n|{\\mathcaligr F}_{n-1})\\stackrel{\\mathrm{a.s.}}{<}\\infty$, where $\\{{\\mathcaligr F}_n\\}$ is an increasing sequence of $\\sigma$-algebras. Assuming that $E(Z_n|{\\mathcaligr F}_{n-1})=g_n(\\theta_0,\

  15. Response of MDOF strongly nonlinear systems to fractional Gaussian noises

    Science.gov (United States)

    Deng, Mao-Lin; Zhu, Wei-Qiu

    2016-08-01

    In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.

  16. Response of MDOF strongly nonlinear systems to fractional Gaussian noises

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Mao-Lin; Zhu, Wei-Qiu, E-mail: wqzhu@zju.edu.cn [Department of Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027 (China)

    2016-08-15

    In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.

  17. Response of MDOF strongly nonlinear systems to fractional Gaussian noises.

    Science.gov (United States)

    Deng, Mao-Lin; Zhu, Wei-Qiu

    2016-08-01

    In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.

  18. Balancing for unstable nonlinear systems

    NARCIS (Netherlands)

    Scherpen, J.M.A.

    1993-01-01

    A previously obtained method of balancing for stable nonlinear systems is extended to unstable nonlinear systems. The similarity invariants obtained by the concept of LQG balancing for an unstable linear system can also be obtained by considering a past and future energy function of the system. By c

  19. Analysis of bilinear stochastic systems. [involving multiplicative noise processes

    Science.gov (United States)

    Willsky, A. S.; Marcus, S. I.; Martin, D. N.

    1974-01-01

    Analysis of stochastic dynamical systems that involve multiplicative (bilinear) noise processes is considered. After defining the systems of interest, the evolution of the moments of such systems, the question of stochastic stability, and estimation for bilinear stochastic systems are discussed. Both exact and approximate methods of analysis are introduced, and, in particular, the uses of Lie-theoretic concepts and harmonic analysis are discussed.

  20. SEMI-LINEAR SYSTEMS OF BACKWARD STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS IN IRn

    Institute of Scientific and Technical Information of China (English)

    TANG SHANJIAN

    2005-01-01

    This paper explores the diffeomorphism of a backward stochastic ordinary differential equation (BSDE) to a system of semi-linear backward stochastic partial differential equations (BSPDEs), under the inverse of a stochastic flow generated by an ordinary stochastic differential equation (SDE). The author develops a new approach to BSPDEs and also provides some new results. The adapted solution of BSPDEs in terms of those of SDEs and BSDEs is constructed. This brings a new insight on BSPDEs, and leads to a probabilistic approach. As a consequence, the existence, uniqueness, and regularity results are obtained for the (classical, Sobolev, and distributional) solution of BSPDEs.The dimension of the space variable x is allowed to be arbitrary n, and BSPDEs are allowed to be nonlinear in both unknown variables, which implies that the BSPDEs may be nonlinear in the gradient. Due to the limitation of space, however, this paper concerns only classical solution of BSPDEs under some more restricted assumptions.

  1. A non-linear stochastic model for an office building with air infiltration

    Directory of Open Access Journals (Sweden)

    Anders Thavlov

    2015-06-01

    Full Text Available This paper presents a non-linear heat dynamic model for a multi-room office building with air infiltration. Several linear and non-linear models, with and without air infiltration, are investigated and compared. The models are formulated using stochastic differential equations and the model parameters are estimated using a maximum-likelihood technique. Based on the maximum-likelihood value, the different models are statistically compared to each other using Wilk's likelihood ratio test. The model showing the best performance is finally verified in both the time domain and the frequency domain using the auto-correlation function and cumulated periodogram. The proposed model which includes air-infiltration shows a significant improvement compared to previously proposed linear models. The model has subsequently been used in applications for provision of power system services, e.g. by providing heat load reduction during peak load hours, control of indoor air temperature and for generating forecasts of power consumption from space heating.

  2. Stochastic transport processes in discrete biological systems

    CERN Document Server

    Frehland, Eckart

    1982-01-01

    These notes are in part based on a course for advanced students in the applications of stochastic processes held in 1978 at the University of Konstanz. These notes contain the results of re­ cent studies on the stochastic description of ion transport through biological membranes. In particular, they serve as an introduction to an unified theory of fluctuations in complex biological transport systems. We emphasize that the subject of this volume is not to introduce the mathematics of stochastic processes but to present a field of theoretical biophysics in which stochastic methods are important. In the last years the study of membrane noise has become an important method in biophysics. Valuable information on the ion transport mechanisms in membranes can be obtained from noise analysis. A number of different processes such as the opening and closing of ion channels have been shown to be sources of the measured current or voltage fluctuations. Bio­ logical 'transport systems can be complex. For example, the tr...

  3. Numerical Approximation of Higher-Order Solutions of the Quadratic Nonlinear Stochastic Oscillatory Equation Using WHEP Technique

    Directory of Open Access Journals (Sweden)

    Mohamed A. El-Beltagy

    2013-01-01

    Full Text Available This paper introduces higher-order solutions of the stochastic nonlinear differential equations with the Wiener-Hermite expansion and perturbation (WHEP technique. The technique is used to study the quadratic nonlinear stochastic oscillatory equation with different orders, different number of corrections, and different strengths of the nonlinear term. The equivalent deterministic equations are derived up to third order and fourth correction. A model numerical integral solver is developed to solve the resulting set of equations. The numerical solver is tested and validated and then used in simulating the stochastic quadratic nonlinear oscillatory motion with different parameters. The solution ensemble average and variance are computed and compared in all cases. The current work extends the use of WHEP technique in solving stochastic nonlinear differential equations.

  4. Advances in nonlinear partial differential equations and stochastics

    CERN Document Server

    Kawashima, S

    1998-01-01

    In the past two decades, there has been great progress in the theory of nonlinear partial differential equations. This book describes the progress, focusing on interesting topics in gas dynamics, fluid dynamics, elastodynamics etc. It contains ten articles, each of which discusses a very recent result obtained by the author. Some of these articles review related results.

  5. Dynamic Stochastic Superresolution of sparsely observed turbulent systems

    Energy Technology Data Exchange (ETDEWEB)

    Branicki, M., E-mail: branicki@cims.nyu.edu [Department of Mathematics and Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University (United States); Majda, A.J. [Department of Mathematics and Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University (United States)

    2013-05-15

    Real-time capture of the relevant features of the unresolved turbulent dynamics of complex natural systems from sparse noisy observations and imperfect models is a notoriously difficult problem. The resulting lack of observational resolution and statistical accuracy in estimating the important turbulent processes, which intermittently send significant energy to the large-scale fluctuations, hinders efficient parameterization and real-time prediction using discretized PDE models. This issue is particularly subtle and important when dealing with turbulent geophysical systems with an vast range of interacting spatio-temporal scales and rough energy spectra near the mesh scale of numerical models. Here, we introduce and study a suite of general Dynamic Stochastic Superresolution (DSS) algorithms and show that, by appropriately filtering sparse regular observations with the help of cheap stochastic exactly solvable models, one can derive stochastically ‘superresolved’ velocity fields and gain insight into the important characteristics of the unresolved dynamics, including the detection of the so-called black swans. The DSS algorithms operate in Fourier domain and exploit the fact that the coarse observation network aliases high-wavenumber information into the resolved waveband. It is shown that these cheap algorithms are robust and have significant skill on a test bed of turbulent solutions from realistic nonlinear turbulent spatially extended systems in the presence of a significant model error. In particular, the DSS algorithms are capable of successfully capturing time-localized extreme events in the unresolved modes, and they provide good and robust skill for recovery of the unresolved processes in terms of pattern correlation. Moreover, we show that DSS improves the skill for recovering the primary modes associated with the sparse observation mesh which is equally important in applications. The skill of the various DSS algorithms depends on the energy spectrum

  6. On the Stability of Bilinear Stochastic Systems

    Science.gov (United States)

    1988-08-01

    d’Equations Differentielles Stochastiques Lineaires", Journees Stabilite Asymptotique des Systemes Differentiels a Perturbation Aleatoire. CNRS, 1986. [3...for the Lyapunov numbers associated with this equation are given. Bilinear noise models are, after linear ones, the second simplest case of stochastic...give a condition for the stability with probability one of the d-dimensional Ito equation which describes the behavior of such a system dYs = AYs ds

  7. Optimal Control of Stochastic Systems Driven by Fractional Brownian Motions

    Science.gov (United States)

    2014-10-09

    motions and other stochastic processes. For the control of both continuous time and discrete time finite dimensional linear systems with quadratic...problems for stochastic partial differential equations driven by fractional Brownian motions are explicitly solved. For the control of a continuous time...2010 30-Jun-2014 Approved for Public Release; Distribution Unlimited Final Report: Optimal Control of Stochastic Systems Driven by Fractional Brownian

  8. Influence of stochastic perturbation on prey-predator systems.

    Science.gov (United States)

    Rudnicki, Ryszard; Pichór, Katarzyna

    2007-03-01

    We analyse the influence of various stochastic perturbations on prey-predator systems. The prey-predator model is described by stochastic versions of a deterministic Lotka-Volterra system. We study long-time behaviour of both trajectories and distributions of the solutions. We indicate the differences between the deterministic and stochastic models.

  9. Stochastic Stabilization of Itô Stochastic Systems with Markov Jumping and Linear Fractional Uncertainty

    Directory of Open Access Journals (Sweden)

    Fei Long

    2013-01-01

    Full Text Available For a class of Itô stochastic linear systems with the Markov jumping and linear fractional uncertainty, the stochastic stabilization problem is investigated via state feedback and dynamic output feedback, respectively. In order to guarantee the stochastic stability of such uncertain systems, state feedback and dynamic output control law are, respectively, designed by using multiple Lyapunov function technique and LMI approach. Finally, two numerical examples are presented to illustrate our results.

  10. Stochastic Car-Following Model for Explaining Nonlinear Traffic Phenomena

    Science.gov (United States)

    Meng, Jianping; Song, Tao; Dong, Liyun; Dai, Shiqiang

    There is a common time parameter for representing the sensitivity or the lag (response) time of drivers in many car-following models. In the viewpoint of traffic psychology, this parameter could be considered as the perception-response time (PRT). Generally, this parameter is set to be a constant in previous models. However, PRT is actually not a constant but a random variable described by the lognormal distribution. Thus the probability can be naturally introduced into car-following models by recovering the probability of PRT. For demonstrating this idea, a specific stochastic model is constructed based on the optimal velocity model. By conducting simulations under periodic boundary conditions, it is found that some important traffic phenomena, such as the hysteresis and phantom traffic jams phenomena, can be reproduced more realistically. Especially, an interesting experimental feature of traffic jams, i.e., two moving jams propagating in parallel with constant speed stably and sustainably, is successfully captured by the present model.

  11. A Weak Solution of a Stochastic Nonlinear Problem

    Directory of Open Access Journals (Sweden)

    M. L. Hadji

    2015-01-01

    Full Text Available We consider a problem modeling a porous medium with a random perturbation. This model occurs in many applications such as biology, medical sciences, oil exploitation, and chemical engineering. Many authors focused their study mostly on the deterministic case. The more classical one was due to Biot in the 50s, where he suggested to ignore everything that happens at the microscopic level, to apply the principles of the continuum mechanics at the macroscopic level. Here we consider a stochastic problem, that is, a problem with a random perturbation. First we prove a result on the existence and uniqueness of the solution, by making use of the weak formulation. Furthermore, we use a numerical scheme based on finite differences to present numerical results.

  12. Guidance of Nonlinear Systems

    Science.gov (United States)

    Meyer, George

    1997-01-01

    The paper describes a method for guiding a dynamic system through a given set of points. The paradigm is a fully automatic aircraft subject to air traffic control (ATC). The ATC provides a sequence of way points through which the aircraft trajectory must pass. The way points typically specify time, position, and velocity. The guidance problem is to synthesize a system state trajectory which satisfies both the ATC and aircraft constraints. Complications arise because the controlled process is multi-dimensional, multi-axis, nonlinear, highly coupled, and the state space is not flat. In addition, there is a multitude of possible operating modes, which may number in the hundreds. Each such mode defines a distinct state space model of the process by specifying the state space coordinatization, the partition of the controls into active controls and configuration controls, and the output map. Furthermore, mode transitions must be smooth. The guidance algorithm is based on the inversion of the pure feedback approximations, which is followed by iterative corrections for the effects of zero dynamics. The paper describes the structure and modules of the algorithm, and the performance is illustrated by several example aircraft maneuvers.

  13. Weak-periodic stochastic resonance in a parallel array of static nonlinearities.

    Directory of Open Access Journals (Sweden)

    Yumei Ma

    Full Text Available This paper studies the output-input signal-to-noise ratio (SNR gain of an uncoupled parallel array of static, yet arbitrary, nonlinear elements for transmitting a weak periodic signal in additive white noise. In the small-signal limit, an explicit expression for the SNR gain is derived. It serves to prove that the SNR gain is always a monotonically increasing function of the array size for any given nonlinearity and noisy environment. It also determines the SNR gain maximized by the locally optimal nonlinearity as the upper bound of the SNR gain achieved by an array of static nonlinear elements. With locally optimal nonlinearity, it is demonstrated that stochastic resonance cannot occur, i.e. adding internal noise into the array never improves the SNR gain. However, in an array of suboptimal but easily implemented threshold nonlinearities, we show the feasibility of situations where stochastic resonance occurs, and also the possibility of the SNR gain exceeding unity for a wide range of input noise distributions.

  14. Fixed Points for Stochastic Open Chemical Systems

    CERN Document Server

    Malyshev, V A

    2011-01-01

    In the first part of this paper we give a short review of the hierarchy of stochastic models, related to physical chemistry. In the basement of this hierarchy there are two models --- stochastic chemical kinetics and the Kac model for Boltzman equation. Classical chemical kinetics and chemical thermodynamics are obtained as some scaling limits in the models, introduced below. In the second part of this paper we specify some simple class of open chemical reaction systems, where one can still prove the existence of attracting fixed points. For example, Michaelis\\tire Menten kinetics belongs to this class. At the end we present a simplest possible model of the biological network. It is a network of networks (of closed chemical reaction systems, called compartments), so that the only source of nonreversibility is the matter exchange (transport) with the environment and between the compartments. Keywords: chemical kinetics, chemical thermodynamics, Kac model, mathematical biology

  15. Conditional reversibility in nonequilibrium stochastic systems

    Science.gov (United States)

    Bonança, Marcus V. S.; Jarzynski, Christopher

    2016-02-01

    For discrete-state stochastic systems obeying Markovian dynamics, we establish the counterpart of the conditional reversibility theorem obtained by Gallavotti for deterministic systems [Ann. de l'Institut Henri Poincaré (A) 70, 429 (1999)]. Our result states that stochastic trajectories conditioned on opposite values of entropy production are related by time reversal, in the long-time limit. In other words, the probability of observing a particular sequence of events, given a long trajectory with a specified entropy production rate σ , is the same as the probability of observing the time-reversed sequence of events, given a trajectory conditioned on the opposite entropy production, -σ , where both trajectories are sampled from the same underlying Markov process. To obtain our result, we use an equivalence between conditioned ("microcanonical") and biased ("canonical") ensembles of nonequilibrium trajectories. We provide an example to illustrate our findings.

  16. Modelling Coagulation Systems: A Stochastic Approach

    CERN Document Server

    Ryazanov, V V

    2011-01-01

    A general stochastic approach to the description of coagulating aerosol system is developed. As the object of description one can consider arbitrary mesoscopic values (number of aerosol clusters, their size etc). The birth-and-death formalism for a number of clusters can be regarded as a partial case of the generalized storage model. An application of the storage model to the number of monomers in a cluster is discussed.

  17. Threshold Dynamics in Stochastic SIRS Epidemic Models with Nonlinear Incidence and Vaccination

    Science.gov (United States)

    Wang, Lei; Tang, Tingting

    2017-01-01

    In this paper, the dynamical behaviors for a stochastic SIRS epidemic model with nonlinear incidence and vaccination are investigated. In the models, the disease transmission coefficient and the removal rates are all affected by noise. Some new basic properties of the models are found. Applying these properties, we establish a series of new threshold conditions on the stochastically exponential extinction, stochastic persistence, and permanence in the mean of the disease with probability one for the models. Furthermore, we obtain a sufficient condition on the existence of unique stationary distribution for the model. Finally, a series of numerical examples are introduced to illustrate our main theoretical results and some conjectures are further proposed. PMID:28194223

  18. Stochastic response and bifurcation of periodically driven nonlinear oscillators by the generalized cell mapping method

    Science.gov (United States)

    Han, Qun; Xu, Wei; Sun, Jian-Qiao

    2016-09-01

    The stochastic response of nonlinear oscillators under periodic and Gaussian white noise excitations is studied with the generalized cell mapping based on short-time Gaussian approximation (GCM/STGA) method. The solutions of the transition probability density functions over a small fraction of the period are constructed by the STGA scheme in order to construct the GCM over one complete period. Both the transient and steady-state probability density functions (PDFs) of a smooth and discontinuous (SD) oscillator are computed to illustrate the application of the method. The accuracy of the results is verified by direct Monte Carlo simulations. The transient responses show the evolution of the PDFs from being Gaussian to non-Gaussian. The effect of a chaotic saddle on the stochastic response is also studied. The stochastic P-bifurcation in terms of the steady-state PDFs occurs with the decrease of the smoothness parameter, which corresponds to the deterministic pitchfork bifurcation.

  19. Stochastic Analysis of Nonlinear Coupled Heave-Pitch Motion for the Truss Spar Platform

    Institute of Scientific and Technical Information of China (English)

    Wenjun Shen; Yougang Tang

    2011-01-01

    Considering the static stability and the change of the displacement volume,including the influences of higher order nonlinear terms and the instantaneous wave surface,the nonlinear coupled heave-pitch motion was established in stochastic waves.The responses of heave-pitch coupling motion for the Truss Spar platform were investigated.It was found that,when the characteristic frequency of a stochastic wave is close to the natural heave frequency,the large amplitude pitch motion is induced under the parametric-forced excitation,which is called the Mathieu instability.It was observed that the heave mode energy is transferred to pitch mode when the heave motion amplitude exceeds a certain extent.In addition,the probability of internal resonant heave-pitch motion is greatly reduced while the characteristic wave frequency is away from the natural heave frequency.

  20. Stochastic measurements and systems implications

    Science.gov (United States)

    Collins, J. L.; Greene, R. R.

    1985-06-01

    The U.S. Navy is defining the baseline performance of the current SSN ASW suite in the Arctic operating environment. This suite includes the AN/BQQ-5 sonar suit (including the Towed Array, the sphere and other sensor and processor sub-systems), communications subsystems and weapon systems (Mk 48 and ADCAP). An effective acoustic measurement program in the Arctic must support the evaluation of how well the different subsystems are able to carry out their assigned functions. Unique aspects of the operating environment in the Arctic include unusual noise properties, unusual transmission effects and an unusual sea surface. This report addresses those acoustic transmission effects which affect system performance due to fluctuations or spreads in the acoustic field space, angle time and frequency.

  1. A stochastic nonlinear oscillator model for glacial millennial-scale climate transitions derived from ice-core data

    Directory of Open Access Journals (Sweden)

    F. Kwasniok

    2012-11-01

    Full Text Available A stochastic Duffing-type oscillator model, i.e noise-driven motion with inertia in a potential landscape, is considered for glacial millennial-scale climate transitions. The potential and noise parameters are estimated from a Greenland ice-core record using a nonlinear Kalman filter. For the period from 60 to 20 ky before present, a bistable potential with a deep well corresponding to a cold stadial state and a shallow well corresponding to a warm interstadial state is found. The system is in the strongly dissipative regime and can be very well approximated by an effective one-dimensional Langevin equation.

  2. Robust stability of uncertain neutral linear stochastic differential delay system

    Institute of Scientific and Technical Information of China (English)

    JIANG Ming-hui; SHEN Yi; LIAO Xiao-xin

    2007-01-01

    The LaSalle-type theorem for the neutral stochastic differential equations with delay is established for the first time and then applied to propose algebraic criteria of the stochastically asymptotic stability and almost exponential stability for the uncertain neutral stochastic differential systems with delay. An example is given to verify the effectiveness of obtained results.

  3. Constrained Optimal Stochastic Control of Non-Linear Wave Energy Point Absorbers

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Chen, Jian-Bing; Kramer, Morten

    2014-01-01

    The paper deals with the stochastic optimal control of a wave energy point absorber with strong nonlinear buoyancy forces using the reactive force from the electric generator on the absorber as control force. The considered point absorber has only one degree of freedom, heave motion, which is used...... presented in the paper. The effect of nonlinear buoyancy force – in comparison to linear buoyancy force – and constraints of the controller on the power outtake of the device have been studied in details and supported by numerical simulations....

  4. A Nonlinear Lagrange Algorithm for Stochastic Minimax Problems Based on Sample Average Approximation Method

    Directory of Open Access Journals (Sweden)

    Suxiang He

    2014-01-01

    Full Text Available An implementable nonlinear Lagrange algorithm for stochastic minimax problems is presented based on sample average approximation method in this paper, in which the second step minimizes a nonlinear Lagrange function with sample average approximation functions of original functions and the sample average approximation of the Lagrange multiplier is adopted. Under a set of mild assumptions, it is proven that the sequences of solution and multiplier obtained by the proposed algorithm converge to the Kuhn-Tucker pair of the original problem with probability one as the sample size increases. At last, the numerical experiments for five test examples are performed and the numerical results indicate that the algorithm is promising.

  5. A Non-linear Stochastic Model for an Office Building with Air Infiltration

    DEFF Research Database (Denmark)

    Thavlov, Anders; Madsen, Henrik

    2015-01-01

    This paper presents a non-linear heat dynamic model for a multi-room office building with air infiltration. Several linear and non-linear models, with and without air infiltration, are investigated and compared. The models are formulated using stochastic differential equations and the model...... parameters are estimated using a maximum likelihood technique. Based on the maximum likelihood value, the different models are statistically compared to each other using Wilk's likelihood ratio test. The model showing the best performance is finally verified in both the time domain and the frequency domain...

  6. Stochastic Hall-Magneto-hydrodynamics System in Three and Two and a Half Dimensions

    Science.gov (United States)

    Yamazaki, Kazuo

    2017-01-01

    We introduce the stochastic Hall-magneto-hydrodynamics (Hall-MHD) system in three and two and a half dimensions with infinite-dimensional multiplicative noise, white in time, and prove the global existence of a martingale solution via a stochastic Galerkin approximation and applications of Prokhorov's, Skorokhod's and martingale representation theorems, as well as the pressure term through de Rham's theorem adapted to processes. The Hall term represents mathematically a very singular nonlinear term, unprecedented in the previous work. The results extend many others on the deterministic Hall-MHD and stochastic MHD systems and Navier-Stokes equations. In contrast to the stochastic MHD system, the path-wise uniqueness in the two and a half dimensional case is an open problem.

  7. Multidimensional characterization of stochastic dynamical systems based on multiple perturbations and measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kryvohuz, Maksym, E-mail: mkryvohu@uci.edu; Mukamel, Shaul [Chemistry Department, University of California, Irvine, California 92697-2025 (United States)

    2015-06-07

    Generalized nonlinear response theory is presented for stochastic dynamical systems. Experiments in which multiple measurements of dynamical quantities are used along with multiple perturbations of parameters of dynamical systems are described by generalized response functions (GRFs). These constitute a new type of multidimensional measures of stochastic dynamics either in the time or the frequency domains. Closed expressions for GRFs in stochastic dynamical systems are derived and compared with numerical non-equilibrium simulations. Several types of perturbations are considered: impulsive and periodic perturbations of temperature and impulsive perturbations of coordinates. The present approach can be used to study various types of stochastic processes ranging from single-molecule conformational dynamics to chemical kinetics of finite-size reactors such as biocells.

  8. Stochastic Models of Polymer Systems

    Science.gov (United States)

    2016-01-01

    field limit of a dynamical model for polymer systems, Science China Mathematics , (11 2012): 0. doi: TOTAL: 1 Number of Non Peer-Reviewed Conference...4.0 (4.0 max scale): Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for Education , Research and Engineering...undergraduates funded by your agreement who graduated during this period and will receive scholarships or fellowships for further studies in science

  9. A stochastic perturbation theory for non-autonomous systems

    Energy Technology Data Exchange (ETDEWEB)

    Moon, W., E-mail: wm275@damtp.cam.ac.uk [Yale University, New Haven, Connecticut 06520-8109 (United States); Wettlaufer, J. S., E-mail: wettlaufer@maths.ox.ac.uk [Yale University, New Haven, Connecticut 06520-8109 (United States); Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom)

    2013-12-15

    We develop a perturbation theory for a class of first order nonlinear non-autonomous stochastic ordinary differential equations that arise in climate physics. The perturbative procedure produces moments in terms of integral delay equations, whose order by order decay is characterized in a Floquet-like sense. Both additive and multiplicative sources of noise are discussed and the question of how the nature of the noise influences the results is addressed theoretically and numerically. By invoking the Martingale property, we rationalize the transformation of the underlying Stratonovich form of the model to an Ito form, independent of whether the noise is additive or multiplicative. The generality of the analysis is demonstrated by developing it both for a Brownian particle moving in a periodically forced quartic potential, which acts as a simple model of stochastic resonance, as well as for our more complex climate physics model. The validity of the approach is shown by comparison with numerical solutions. The particular climate dynamics problem upon which we focus involves a low-order model for the evolution of Arctic sea ice under the influence of increasing greenhouse gas forcing ΔF{sub 0}. The deterministic model, developed by Eisenman and Wettlaufer [“Nonlinear threshold behavior during the loss of Arctic sea ice,” Proc. Natl. Acad. Sci. U.S.A. 106(1), 28–32 (2009)] exhibits several transitions as ΔF{sub 0} increases and the stochastic analysis is used to understand the manner in which noise influences these transitions and the stability of the system.

  10. A stochastic perturbation theory for non-autonomous systems

    Science.gov (United States)

    Moon, Woosok; Wettlaufer, John

    2014-05-01

    We develop a perturbation theory for a class of first order nonlinear non-autonomous stochastic ordinary differential equations that arise in climate physics. The perturbative procedure produces moments in terms of integral delay equations, whose order by order decay is characterized in a Floquet-like sense. Both additive and multiplicative sources of noise are discussed and the question of how the nature of the noise influences the results is addressed theoretically and numerically. By invoking the Martingale property, we rationalize the transformation of the underlying Stratonovich form of the model to an Ito form, independent of whether the noise is additive or multiplicative. The generality of the analysis is demonstrated by developing it both for a Brownian particle moving in a periodically forced quartic potential, which acts as a simple model of stochastic resonance, as well as for our more complex climate physics model. The validity of the approach is shown by comparison with numerical solutions. The particular climate dynamics problem upon which we focus involves a low-order model for the evolution of Arctic sea ice under the influence of increasing greenhouse gas forcing ΔF0. The deterministic model, developed by Eisenman and Wettlaufer EW09 exhibits several transitions as ΔF0 increases and the stochastic analysis is used to understand the manner in which noise influences these transitions and the stability of the system. Eisenman, I., and J. S. Wettlaufer, 'Nonlinear threshold behavior during the loss of Arctic sea ice,' Proc. Natl. Acad. Sci. USA, 106, 28-32, 2009.

  11. Stochastic non-linear oscillator models of EEG: the Alzheimer's disease case

    Science.gov (United States)

    Ghorbanian, Parham; Ramakrishnan, Subramanian; Ashrafiuon, Hashem

    2015-01-01

    In this article, the Electroencephalography (EEG) signal of the human brain is modeled as the output of stochastic non-linear coupled oscillator networks. It is shown that EEG signals recorded under different brain states in healthy as well as Alzheimer's disease (AD) patients may be understood as distinct, statistically significant realizations of the model. EEG signals recorded during resting eyes-open (EO) and eyes-closed (EC) resting conditions in a pilot study with AD patients and age-matched healthy control subjects (CTL) are employed. An optimization scheme is then utilized to match the output of the stochastic Duffing—van der Pol double oscillator network with EEG signals recorded during each condition for AD and CTL subjects by selecting the model physical parameters and noise intensity. The selected signal characteristics are power spectral densities in major brain frequency bands Shannon and sample entropies. These measures allow matching of linear time varying frequency content as well as non-linear signal information content and complexity. The main finding of the work is that statistically significant unique models represent the EC and EO conditions for both CTL and AD subjects. However, it is also shown that the inclusion of sample entropy in the optimization process, to match the complexity of the EEG signal, enhances the stochastic non-linear oscillator model performance. PMID:25964756

  12. Nonlinear Stochastic Analysis of Subharmonic Response of a Shallow Cable

    DEFF Research Database (Denmark)

    Zhou, Q.; Stærdahl, Jesper Winther; Nielsen, Søren R.K.

    2007-01-01

    The paper deals with the subharmonic response of a shallow cable due to time variations of the chord length of the equilibrium suspension, caused by time varying support point motions. Initially, the capability of a simple nonlinear two-degree-of-freedom model for the prediction of chaotic...... time-consuming for the finite difference model, most of the results are next based on the reduced model. Under harmonical varying support point motions the stable subharmonic motion consists of a harmonically varying component in the equilibrium plane and a large subharmonic out-of-plane component......, producing a trajectory at the mid-point of shape as an infinity sign. However, when the harmonical variation of the chordwise elongation is replaced by a narrow-banded Gaussian excitation with the same standard deviation and a centre frequency equal to the circular frequency of the harmonic excitation...

  13. Stochastic modelling of central heating systems

    DEFF Research Database (Denmark)

    Hansen, Lars Henrik

    1997-01-01

    and the degree Erhvervsforsker (a special Danish degree, equivalent to ``Industrial Ph.D.''). The thesis is mainly concerned with experimental design and system identification for individual components in water based central heating systems. The main contribution to this field is on the nonlinear dynamic...

  14. System Optimization Using a Parallel Stochastic Approach

    Directory of Open Access Journals (Sweden)

    ZAPLATILEK, K.

    2013-05-01

    Full Text Available This paper describes an original stochastic algorithm based on a parallel approach. The algorithm is suitable especially for a real technical system optimization. A few independent pseudorandom generators are used. They generate independent variable vectors along all of the optimized system axes. Local optimal values are used to define a final pseudorandom generator with a narrower interval around the global optimum. Theoretical foundations are introduced and a few practical experiments are presented. The described method is also suitable for the quality classification of the pseudorandom generators using the selected RGB color scheme. Main advantages of this approach are discussed. The algorithm was developed in the MATLAB environment.

  15. Nonlinear dynamics in distributed systems

    CERN Document Server

    Adjali, I; Gell-Mann, Murray; Iqbal Adjali; Jose-Luis Fernandez-Villacanas; Michael Gell

    1994-01-01

    formulate it in a way that the deterministic and stochastic processes within the system are clearly separable. We show how internal fluctuations can be analysed in a systematic way using Van Kanpen's expansion method for Markov processes. We present some results for both stationary and time-dependent states. Our approach allows the effect of fluctuations to be explored, particularly in finite systems where such processes assume increasing importance.

  16. The change of the fractal dimension of the stochastic system with colored multiplicative noise (in Ukrainian)

    Science.gov (United States)

    Kharchenko, D. O.

    For the system with colored multiplicative noise the nonlinearity of the synergetic potential like φ^{2+m} model in Langevin equation was shown to be capable of providing the expanse of the stochastic system phase space. The concrete system of the population dynamics with the noise correlation time τ_cto∞ is examined. The fractal dimension of that kind of a system is defined as D=m, in contrast to the system with a white noise were D=0.

  17. Nonlinear Waves in Complex Systems

    DEFF Research Database (Denmark)

    2007-01-01

    The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations, it is the ......The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations......, it is the universality and robustness of the main models with respect to perturbations that developped the field. This is true for both continuous and discrete equations. In this volume we keep this broad view and draw new perspectives for nonlinear waves in complex systems. In particular we address energy flow...

  18. Effect of signal modulating noise in bistable stochastic dynamical systems

    Institute of Scientific and Technical Information of China (English)

    肖方红; 闫桂荣; 张新武

    2003-01-01

    The effect of signal modulating noise in bistable stochastic dynamical systems is studied.The concept of instan taneous steady state is proposed for bistable dynamical systems.By making a dynamical analysis of bistable stochastic systems,we find that global and local effect of signal modulating noise as well as stochastic resonance can occur in bistable dynamical systems on which both a weak sinusoidal signal and noise are forced.The effect is demonstrated by numerical simulation.

  19. Stochastic filtering for damage identification through nonlinear structural finite element model updating

    Science.gov (United States)

    Astroza, Rodrigo; Ebrahimian, Hamed; Conte, Joel P.

    2015-03-01

    This paper describes a novel framework that combines advanced mechanics-based nonlinear (hysteretic) finite element (FE) models and stochastic filtering techniques to estimate unknown time-invariant parameters of nonlinear inelastic material models used in the FE model. Using input-output data recorded during earthquake events, the proposed framework updates the nonlinear FE model of the structure. The updated FE model can be directly used for damage identification and further used for damage prognosis. To update the unknown time-invariant parameters of the FE model, two alternative stochastic filtering methods are used: the extended Kalman filter (EKF) and the unscented Kalman filter (UKF). A three-dimensional, 5-story, 2-by-1 bay reinforced concrete (RC) frame is used to verify the proposed framework. The RC frame is modeled using fiber-section displacement-based beam-column elements with distributed plasticity and is subjected to the ground motion recorded at the Sylmar station during the 1994 Northridge earthquake. The results indicate that the proposed framework accurately estimate the unknown material parameters of the nonlinear FE model. The UKF outperforms the EKF when the relative root-mean-square error of the recorded responses are compared. In addition, the results suggest that the convergence of the estimate of modeling parameters is smoother and faster when the UKF is utilized.

  20. Approximation Methods in Stochastic Max-Plus Systems

    NARCIS (Netherlands)

    Safaei Farahani, S.

    2012-01-01

    Stochastic max-plus systems belong to a special class of discrete-event systems. This class consists of systems with synchronization but no choice and the models of such systems are defined using the operators maximization and addition. Stochastic max-plus systems can be further extended

  1. A Particle Filtering Approach to Change Detection for Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    P. S. Krishnaprasad

    2004-11-01

    Full Text Available We present a change detection method for nonlinear stochastic systems based on particle filtering. We assume that the parameters of the system before and after change are known. The statistic for this method is chosen in such a way that it can be calculated recursively while the computational complexity of the method remains constant with respect to time. We present simulation results that show the advantages of this method compared to linearization techniques.

  2. Stochastic stability properties of jump linear systems

    Science.gov (United States)

    Feng, Xiangbo; Loparo, Kenneth A.; Ji, Yuandong; Chizeck, Howard J.

    1992-01-01

    Jump linear systems are defined as a family of linear systems with randomly jumping parameters (usually governed by a Markov jump process) and are used to model systems subject to failures or changes in structure. The authors study stochastic stability properties in jump linear systems and the relationship among various moment and sample path stability properties. It is shown that all second moment stability properties are equivalent and are sufficient for almost sure sample path stability, and a testable necessary and sufficient condition for second moment stability is derived. The Lyapunov exponent method for the study of almost sure sample stability is discussed, and a theorem which characterizes the Lyapunov exponents of jump linear systems is presented.

  3. Robust stabilization of stochastic systems based on the LQ controller

    Institute of Scientific and Technical Information of China (English)

    Jundong BAO; Feiqi DENG; Qi LUO

    2005-01-01

    The robust exponential stability in mean square for a class of linear stochastic uncertain control systems is dealt with.For the uncertain stochastic systems,we have designed an optimal controller which guarantees the exponential stability of the system.Actually,we employed Lyapunov function approach and the stochastic algebraic Riccati equation (SARE) to have shown the robustness of the linear quadratic(LQ) optimal control law.And the algebraic criteria for the exponential stability on the linear stochastic uncertain closed-loop systems are given.

  4. Nonlinear Control Systems

    Science.gov (United States)

    2009-11-18

    analytic semigroup T(t) ~ eAl is exponentially stable (Notice that it is also a contraction semigroup ). 3. Be 3(U, Z) and P e £(W, 2) are bounded. 4. Ce...quite often in practice, .4 is self-adjoint. We also note that, since we assume (—A) is sectorial, we work with the semigroup exp(.4f) rather than...Uniform Output Regulation of Nonlinear Sys- tems: A convergent Dynamics Approach, Birkhauser, Boston, 2006. 23 135] A. Pazy, Semigroups of Linear

  5. Study on phase synchronization of stochastic chaotic system

    Institute of Scientific and Technical Information of China (English)

    Yang Xiao-Li; Xu Wei

    2008-01-01

    This paper detects and characterizes the diverse roles played by bounded noise in chaotic phase synchronization (CPS) of weakly coupled nonlinear stochastic systems. Analysis of a paradigmatic model of two bidirectional coupled three-level food chains is carried out by various statistical measures such as Shannon entropy and mutual information. The results indicate that inside the synchronous regime, CPS is considerably reduced under the influence of bounded noise; near the onset of phase synchronization, temporal phase locking is diversely changed with the increase of noise, i.e., either weak or strong noise also degrades the degree of CPS, while intermediate noise enhances CPS remarkably, and an optimal noise intensity is detected that maximizes the enhancement.

  6. Rotation number, stochastic resonance, and synchronization of coupled systems without periodic driving.

    Science.gov (United States)

    Qian, Min; Zhang, Xue-Juan

    2002-03-01

    This article investigates the influence of noise in a two-dimensional square array of coupled nonlinear oscillators without periodic driving. Array enhanced stochastic resonance under global as well as local noise perturbation is shown to exist under a crucial condition: the value of the rotation number of the deterministic system being zero. Meanwhile, the stochastic synchronization phenomenon is displayed in a wide range of noise intensity whether noise is added globally or locally. Furthermore, for every oscillator, the peak frequency is shown to agree with the rotation number much better than in the uncoupled system.

  7. Nonlinear Phase Distortion in a Ti:Sapphire Optical Amplifier for Optical Stochastic Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Andorf, Matthew [NICADD, DeKalb; Lebedev, Valeri [Fermilab; Piot, Philippe [NICADD, DeKalb; Ruan, Jinhao [Fermilab

    2016-06-01

    Optical Stochastic Cooling (OSC) has been considered for future high-luminosity colliders as it offers much faster cooling time in comparison to the micro-wave stochastic cooling. The OSC technique relies on collecting and amplifying a broadband optical signal from a pickup undulator and feeding the amplified signal back to the beam. It creates a corrective kick in a kicker undulator. Owing to its superb gain qualities and broadband amplification features, Titanium:Sapphire medium has been considered as a gain medium for the optical amplifier (OA) needed in the OSC*. A limiting factor for any OA used in OSC is the possibility of nonlinear phase distortions. In this paper we experimentally measure phase distortions by inserting a single-pass OA into one leg of a Mach-Zehnder interferometer. The measurement results are used to estimate the reduction of the corrective kick a particle would receive due to these phase distortions in the kicker undulator.

  8. Nonlinear random gravity. I. Stochastic gravitational waves and spontaneous conformal fluctuations due to the quantum vacuum

    CERN Document Server

    Wang, Charles H -T; Bingham, Robert; Mendonca, J Tito

    2008-01-01

    We investigate the problem of metric fluctuations in the presence of the vacuum fluctuations of matter fields and critically assess the usual assertion that vacuum energy implies a Planckian cosmological constant. A new stochastic classical approach to the quantum fluctuations of spacetime is developed. The work extends conceptually Boyer's random electrodynamics to a theory of random gravity but has a considerably richer structure for inheriting nonlinearity from general relativity. Attention is drawn to subtleties in choosing boundary conditions for metric fluctuations in relation to their dynamical consequences. Those compatible with the observed Lorentz invariance must allow for spontaneous conformal fluctuations, in addition to stochastic gravitational waves due to zero point gravitons. This is implemented through an effective metric defined in terms of the random spacetime metric modulo a fluctuating conformal factor. It satisfies an effective Einstein equation coupled to an effective stress-energy tens...

  9. Non-linear stochastic response of a shallow cable

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2004-01-01

    -degrees-of-freedom system with one modal coordinate for the in-plane displacement and one for the out-of-plane displacement. At first harmonic varying chord elongation at excitation frequencies close to the corresponding eigenfrequencies of the cable is considered in order to identify stable modes of vibration. Depending...... for determining the probability of occupying either of these modes at a certain time is derived based on a homogeneous, continuous time three states Markov chain model. It is shown that the transitional probability rates can be determined by first-passage crossing rates of the envelope process of the chord wise...

  10. Conserved quantities and symmetries related to stochastic Hamiltonian systems

    Institute of Scientific and Technical Information of China (English)

    Shang Mei; Mei Feng-Xiang

    2007-01-01

    In this paper symmetries and conservation laws for stochastic dynamical systems are discussed in detail.Determining equations for infinitesimal approximate symmetries of Ito and Stratonovich dynamical systems are derived. It shows how to derive conserved quantities for stochastic dynamical systems by using their symmetries without recourse to Noether's theorem.

  11. Stochastic thermodynamics for delayed Langevin systems.

    Science.gov (United States)

    Jiang, Huijun; Xiao, Tiejun; Hou, Zhonghuai

    2011-06-01

    We discuss stochastic thermodynamics (ST) for delayed Langevin systems in this paper. By using the general principles of ST, the first-law-like energy balance and trajectory-dependent entropy s(t) can be well defined in a way that is similar to that in a system without delay. Because the presence of time delay brings an additional entropy flux into the system, the conventional second law (Δs(tot))≥0 no longer holds true, where Δs(tot) denotes the total entropy change along a stochastic path and (·) stands for the average over the path ensemble. With the help of a Fokker-Planck description, we introduce a delay-averaged trajectory-dependent dissipation functional η[χ(t)] which involves the work done by a delay-averaged force F(x,t) along the path χ(t) and equals the medium entropy change Δs(m)[x(t)] in the absence of delay. We show that the total dissipation functional R=Δs+η, where Δs denotes the system entropy change along a path, obeys (R)≥0, which could be viewed as the second law in the delayed system. In addition, the integral fluctuation theorem (e(-R))=1 also holds true. We apply these concepts to a linear Langevin system with time delay and periodic external force. Numerical results demonstrate that the total entropy change (Δs(tot)) could indeed be negative when the delay feedback is positive. By using an inversing-mapping approach, we are able to obtain the delay-averaged force F(x,t) from the stationary distribution and then calculate the functional R as well as its distribution. The second law (R)≥0 and the fluctuation theorem are successfully validated.

  12. Guaranteed cost control for uncertain stochastic fuzzy systems with time delay

    Institute of Scientific and Technical Information of China (English)

    ZHANG Huaguang; WANG Yingchun

    2007-01-01

    This paper studies a delay-dependent guaranteed cost control problem for a class of uncertain nonlinear stochastic systems with time delay represented by the Takagi-Sugeno (T-S) fuzzy model with uncertain parameters. The descriptor system method and Gu's inequality are employed to obtain delay-dependent sufficient conditions such that the closed-loop system is asymptotically stable with a certain guaranteed cost control performance. The effectiveness of the proposed method is shown by a simulation example.

  13. CUMULANTS OF STOCHASTIC RESPONSE FOR A CLASS OF SPECIAL NONHOLONOMIC SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    SHANG MEI; ZHANG YI

    2001-01-01

    This paper studies the response cumulants for a kind of special nonholonomic systems under non-Gaussian, delta- correlated excitations. We present a new methodology for formulating the equations governing the evolution of the response cumulants of the stochastic dynamic systems. The response cumulant differential equations (CDEs) derived can be used to calculate the response cumulants for both linear and nonlinear systems. One example is given to illustrate how to use the CDEs for calculating response cumulants.

  14. Nonlinear robust hierarchical control for nonlinear uncertain systems

    Directory of Open Access Journals (Sweden)

    Leonessa Alexander

    1999-01-01

    Full Text Available A nonlinear robust control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving nominal system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear system over a prescribed range of system uncertainty by robustly stabilizing a collection of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller architecture is designed based on a generalized (lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized nominal system equilibria. The proposed framework robustly stabilizes a compact positively invariant set of a given nonlinear uncertain dynamical system with structured parametric uncertainty. Finally, the efficacy of the proposed approach is demonstrated on a jet engine propulsion control problem with uncertain pressure-flow map data.

  15. Stochastic optimal bounded control of MDOF quasi nonintegrable-hamiltonian systems with actuator saturation

    Energy Technology Data Exchange (ETDEWEB)

    Huan, Ronghua; Zhu, Weiqiu [Zhejiang University, Department of Mechanics, State Key Laboratory of Fluid Power Transmission and Control, Hangzhou (China); Wu, Yongjun [East China University of Science and Technology, School of Information Science and Engineering, Shanghai (China)

    2009-02-15

    A new bounded optimal control strategy for multi-degree-of-freedom (MDOF) quasi nonintegrable-Hamiltonian systems with actuator saturation is proposed. First, an n-degree-of-freedom (n-DOF) controlled quasi nonintegrable-Hamiltonian system is reduced to a partially averaged Ito stochastic differential equation by using the stochastic averaging method for quasi nonintegrable-Hamiltonian systems. Then, a dynamical programming equation is established by using the stochastic dynamical programming principle, from which the optimal control law consisting of optimal unbounded control and bang-bang control is derived. Finally, the response of the optimally controlled system is predicted by solving the Fokker-Planck-Kolmogorov (FPK) equation associated with the fully averaged Ito equation. An example of two controlled nonlinearly coupled Duffing oscillators is worked out in detail. Numerical results show that the proposed control strategy has high control effectiveness and efficiency and that chattering is reduced significantly compared with the bang-bang control strategy. (orig.)

  16. Attractors for stochastic lattice dynamical systems with a multiplicative noise

    Institute of Scientific and Technical Information of China (English)

    Tomás CARABALLO; Kening LU

    2008-01-01

    In this paper,we consider a stochastic lattice differential equation with diffusive nearest neighbor interaction,a dissipative nonlinear reaction term,and multiplicative white noise at each node.We prove the existence of a compact global random attractor which,pulled back,attracts tempered random bounded sets.

  17. Time-ordered product expansions for computational stochastic system biology.

    Science.gov (United States)

    Mjolsness, Eric

    2013-06-01

    The time-ordered product framework of quantum field theory can also be used to understand salient phenomena in stochastic biochemical networks. It is used here to derive Gillespie's stochastic simulation algorithm (SSA) for chemical reaction networks; consequently, the SSA can be interpreted in terms of Feynman diagrams. It is also used here to derive other, more general simulation and parameter-learning algorithms including simulation algorithms for networks of stochastic reaction-like processes operating on parameterized objects, and also hybrid stochastic reaction/differential equation models in which systems of ordinary differential equations evolve the parameters of objects that can also undergo stochastic reactions. Thus, the time-ordered product expansion can be used systematically to derive simulation and parameter-fitting algorithms for stochastic systems.

  18. Stochastic resonance enhanced by dichotomic noise in a bistable system

    Energy Technology Data Exchange (ETDEWEB)

    Rozenfeld, Robert [Institute for Physics, Humboldt University at Berlin, D-10115, Berlin, (Germany); Neiman, Alexander [Center for Neurodynamics, University of Missouri at St. Louis, St. Louis, Missouri 63121 (United States); Schimansky-Geier, Lutz [Institute for Physics, Humboldt University at Berlin, D-10115, Berlin, (Germany)

    2000-09-01

    We study linear responses of a stochastic bistable system driven by dichotomic noise to a weak periodic signal. We show that the effect of stochastic resonance can be greatly enhanced in comparison with the conventional case when dichotomic forcing is absent, that is, both the signal-to-noise ratio and the spectral power amplification reach much greater values than in the standard stochastic resonance setup. (c) 2000 The American Physical Society.

  19. Towards a General Theory of Stochastic Hybrid Systems

    OpenAIRE

    Bujorianu, L.M.; Lygeros, J.; Bujorianu, M. C.

    2008-01-01

    In this paper we set up a mathematical structure, called Markov string, to obtaining a very general class of models for stochastic hybrid systems. Markov Strings are, in fact, a class of Markov processes, obtained by a mixing mechanism of stochastic processes, introduced by Meyer. We prove that Markov strings are strong Markov processes with the cadlag property. We then show how a very general class of stochastic hybrid processes can be embedded in the framework of Markov strings. This class,...

  20. Stochastic impulsive control for the stabilization of Lorenz system

    Institute of Scientific and Technical Information of China (English)

    Wang Liang; Zhao Rui; Xu Wei; Zhang Ying

    2011-01-01

    This paper derives some sufficient conditions for the stabilization of Lorenz system with stochastic impulsive control. The estimate of the upper bound of impulse interval for asymptotically stable control is obtained. Some differences between the system with stochastic impulsive control and with deterministic impulsive control are presented. Computer simulation is given to show the effectiveness of the proposed method.

  1. Waiting time distribution for continuous stochastic systems.

    Science.gov (United States)

    Gernert, Robert; Emary, Clive; Klapp, Sabine H L

    2014-12-01

    The waiting time distribution (WTD) is a common tool for analyzing discrete stochastic processes in classical and quantum systems. However, there are many physical examples where the dynamics is continuous and only approximately discrete, or where it is favourable to discuss the dynamics on a discretized and a continuous level in parallel. An example is the hindered motion of particles through potential landscapes with barriers. In the present paper we propose a consistent generalization of the WTD from the discrete case to situations where the particles perform continuous barrier crossing characterized by a finite duration. To this end, we introduce a recipe to calculate the WTD from the Fokker-Planck (Smoluchowski) equation. In contrast to the closely related first passage time distribution (FPTD), which is frequently used to describe continuous processes, the WTD contains information about the direction of motion. As an application, we consider the paradigmatic example of an overdamped particle diffusing through a washboard potential. To verify the approach and to elucidate its numerical implications, we compare the WTD defined via the Smoluchowski equation with data from direct simulation of the underlying Langevin equation and find full consistency provided that the jumps in the Langevin approach are defined properly. Moreover, for sufficiently large energy barriers, the WTD defined via the Smoluchowski equation becomes consistent with that resulting from the analytical solution of a (two-state) master equation model for the short-time dynamics developed previously by us [Phys. Rev. E 86, 061135 (2012)]. Thus, our approach "interpolates" between these two types of stochastic motion. We illustrate our approach for both symmetric systems and systems under constant force.

  2. Nonlinear Waves in Complex Systems

    DEFF Research Database (Denmark)

    2007-01-01

    The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations......, it is the universality and robustness of the main models with respect to perturbations that developped the field. This is true for both continuous and discrete equations. In this volume we keep this broad view and draw new perspectives for nonlinear waves in complex systems. In particular we address energy flow...... in Fourier space and equipartition, the role of inhomogeneities and complex geometry and the importance of coupled systems....

  3. Computational singular perturbation analysis of stochastic chemical systems with stiffness

    Science.gov (United States)

    Wang, Lijin; Han, Xiaoying; Cao, Yanzhao; Najm, Habib N.

    2017-04-01

    Computational singular perturbation (CSP) is a useful method for analysis, reduction, and time integration of stiff ordinary differential equation systems. It has found dominant utility, in particular, in chemical reaction systems with a large range of time scales at continuum and deterministic level. On the other hand, CSP is not directly applicable to chemical reaction systems at micro or meso-scale, where stochasticity plays an non-negligible role and thus has to be taken into account. In this work we develop a novel stochastic computational singular perturbation (SCSP) analysis and time integration framework, and associated algorithm, that can be used to not only construct accurately and efficiently the numerical solutions to stiff stochastic chemical reaction systems, but also analyze the dynamics of the reduced stochastic reaction systems. The algorithm is illustrated by an application to a benchmark stochastic differential equation model, and numerical experiments are carried out to demonstrate the effectiveness of the construction.

  4. Stochastic symplectic and multi-symplectic methods for nonlinear Schrödinger equation with white noise dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jianbo, E-mail: jianbocui@lsec.cc.ac.cn [Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, Beijing, 100190 (China); Hong, Jialin, E-mail: hjl@lsec.cc.ac.cn [Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, Beijing, 100190 (China); Liu, Zhihui, E-mail: liuzhihui@lsec.cc.ac.cn [Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, Beijing, 100190 (China); Zhou, Weien, E-mail: weienzhou@nudt.edu.cn [College of Science, National University of Defense Technology, Changsha 410073 (China)

    2017-08-01

    We indicate that the nonlinear Schrödinger equation with white noise dispersion possesses stochastic symplectic and multi-symplectic structures. Based on these structures, we propose the stochastic symplectic and multi-symplectic methods, which preserve the continuous and discrete charge conservation laws, respectively. Moreover, we show that the proposed methods are convergent with temporal order one in probability. Numerical experiments are presented to verify our theoretical results.

  5. Fock space, symbolic algebra, and analytical solutions for small stochastic systems.

    Science.gov (United States)

    Santos, Fernando A N; Gadêlha, Hermes; Gaffney, Eamonn A

    2015-12-01

    Randomness is ubiquitous in nature. From single-molecule biochemical reactions to macroscale biological systems, stochasticity permeates individual interactions and often regulates emergent properties of the system. While such systems are regularly studied from a modeling viewpoint using stochastic simulation algorithms, numerous potential analytical tools can be inherited from statistical and quantum physics, replacing randomness due to quantum fluctuations with low-copy-number stochasticity. Nevertheless, classical studies remained limited to the abstract level, demonstrating a more general applicability and equivalence between systems in physics and biology rather than exploiting the physics tools to study biological systems. Here the Fock space representation, used in quantum mechanics, is combined with the symbolic algebra of creation and annihilation operators to consider explicit solutions for the chemical master equations describing small, well-mixed, biochemical, or biological systems. This is illustrated with an exact solution for a Michaelis-Menten single enzyme interacting with limited substrate, including a consideration of very short time scales, which emphasizes when stiffness is present even for small copy numbers. Furthermore, we present a general matrix representation for Michaelis-Menten kinetics with an arbitrary number of enzymes and substrates that, following diagonalization, leads to the solution of this ubiquitous, nonlinear enzyme kinetics problem. For this, a flexible symbolic maple code is provided, demonstrating the prospective advantages of this framework compared to stochastic simulation algorithms. This further highlights the possibilities for analytically based studies of stochastic systems in biology and chemistry using tools from theoretical quantum physics.

  6. Nonlinear input-output systems

    Science.gov (United States)

    Hunt, L. R.; Luksic, Mladen; Su, Renjeng

    1987-01-01

    Necessary and sufficient conditions that the nonlinear system dot-x = f(x) + ug(x) and y = h(x) be locally feedback equivalent to the controllable linear system dot-xi = A xi + bv and y = C xi having linear output are found. Only the single input and single output case is considered, however, the results generalize to multi-input and multi-output systems.

  7. Practical stability of nonlinear systems

    CERN Document Server

    Lakshmikantham, Vangipuram; Martynyuk, Anatolii Andreevich

    1990-01-01

    This is the first book that deals with practical stability and its development. It presents a systematic study of the theory of practical stability in terms of two different measures and arbitrary sets and demonstrates the manifestations of general Lyapunov's method by showing how this effective technique can be adapted to investigate various apparently diverse nonlinear problems including control systems and multivalued differential equations.

  8. Stability analysis of nonlinear systems

    CERN Document Server

    Lakshmikantham, Vangipuram; Martynyuk, Anatoly A

    2015-01-01

    The book investigates stability theory in terms of two different measure, exhibiting the advantage of employing families of Lyapunov functions and treats the theory of a variety of inequalities, clearly bringing out the underlying theme. It also demonstrates manifestations of the general Lyapunov method, showing how this technique can be adapted to various apparently diverse nonlinear problems. Furthermore it discusses the application of theoretical results to several different models chosen from real world phenomena, furnishing data that is particularly relevant for practitioners. Stability Analysis of Nonlinear Systems is an invaluable single-sourse reference for industrial and applied mathematicians, statisticians, engineers, researchers in the applied sciences, and graduate students studying differential equations.

  9. Stochastic models for uncertain flexible systems

    NARCIS (Netherlands)

    Curtain, R.F.; Kotelenez, P.

    1987-01-01

    If a spectral operator is perturbed by an infinite-dimensional white noise process, it generates a stochastic evolution operator which has well defined second order properties. This type of stochastic bilinear spectral evolution equation may be used to model uncertainty of the higher modes in flexib

  10. PBH tests for nonlinear systems

    NARCIS (Netherlands)

    Kawano, Yu; Ohtsuka, Toshiyuki

    2017-01-01

    Recently, concepts of nonlinear eigenvalues and eigenvectors are introduced. In this paper, we establish connections between the nonlinear eigenvalues and nonlinear accessibility/observability. In particular, we provide a generalization of Popov- Belevitch-Hautus (PBH) test to nonlinear accessibilit

  11. Nonlinear dynamics in biological systems

    CERN Document Server

    Carballido-Landeira, Jorge

    2016-01-01

    This book presents recent research results relating to applications of nonlinear dynamics, focusing specifically on four topics of wide interest: heart dynamics, DNA/RNA, cell mobility, and proteins. The book derives from the First BCAM Workshop on Nonlinear Dynamics in Biological Systems, held in June 2014 at the Basque Center of Applied Mathematics (BCAM). At this international meeting, researchers from different but complementary backgrounds, including molecular dynamics, physical chemistry, bio-informatics and biophysics, presented their most recent results and discussed the future direction of their studies using theoretical, mathematical modeling and experimental approaches. Such was the level of interest stimulated that the decision was taken to produce this publication, with the organizers of the event acting as editors. All of the contributing authors are researchers working on diverse biological problems that can be approached using nonlinear dynamics. The book will appeal especially to applied math...

  12. Identification and estimation algorithm for stochastic neural system. II.

    Science.gov (United States)

    Nakao, M; Hara, K; Kimura, M; Sato, R

    1985-01-01

    The algorithm for identifying the stochastic neural system and estimating the system process which reflects the dynamics of the neural network are presented in this paper. The analogous algorithm has been proposed in our preceding paper (Nakao et al., 1984), which was based on the randomly missed observations of a system process only. Since the previous algorithm mentioned above was subject to an unfavorable effect of consecutively missed observations, to reduce such an effect the algorithm proposed here is designed additionally to observe an intensity process in a neural spike train as the information for the estimation. The algorithm is constructed with the extended Kalman filters because it is naturally expected that a nonlinear and time variant structure is necessary for the filters to realize the observation of an intensity process by means of mapping from a system process to an intensity process. The performance of the algorithm is examined by applying it to some artificial neural systems and also to cat's visual nervous systems. The results in these applications are thought to prove the effectiveness of the algorithm proposed here and its superiority to the algorithm proposed previously.

  13. Systemic risk in dynamical networks with stochastic failure criterion

    Science.gov (United States)

    Podobnik, B.; Horvatic, D.; Bertella, M. A.; Feng, L.; Huang, X.; Li, B.

    2014-06-01

    Complex non-linear interactions between banks and assets we model by two time-dependent Erdős-Renyi network models where each node, representing a bank, can invest either to a single asset (model I) or multiple assets (model II). We use a dynamical network approach to evaluate the collective financial failure —systemic risk— quantified by the fraction of active nodes. The systemic risk can be calculated over any future time period, divided into sub-periods, where within each sub-period banks may contiguously fail due to links to either i) assets or ii) other banks, controlled by two parameters, probability of internal failure p and threshold Th (“solvency” parameter). The systemic risk decreases with the average network degree faster when all assets are equally distributed across banks than if assets are randomly distributed. The more inactive banks each bank can sustain (smaller Th), the smaller the systemic risk —for some Th values in I we report a discontinuity in systemic risk. When contiguous spreading becomes stochastic ii) controlled by probability p2 —a condition for the bank to be solvent (active) is stochastic— the systemic risk decreases with decreasing p2. We analyse the asset allocation for the U.S. banks.

  14. Nonlinear Response of Strong Nonlinear System Arisen in Polymer Cushion

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2013-01-01

    Full Text Available A dynamic model is proposed for a polymer foam-based nonlinear cushioning system. An accurate analytical solution for the nonlinear free vibration of the system is derived by applying He's variational iteration method, and conditions for resonance are obtained, which should be avoided in the cushioning design.

  15. Litchi freshness rapid non-destructive evaluating method using electronic nose and non-linear dynamics stochastic resonance model.

    Science.gov (United States)

    Ying, Xiaoguo; Liu, Wei; Hui, Guohua

    2015-01-01

    In this paper, litchi freshness rapid non-destructive evaluating method using electronic nose (e-nose) and non-linear stochastic resonance (SR) was proposed. EN responses to litchi samples were continuously detected for 6 d Principal component analysis (PCA) and non-linear stochastic resonance (SR) methods were utilized to analyze EN detection data. PCA method could not totally discriminate litchi samples, while SR signal-to-noise ratio (SNR) eigen spectrum successfully discriminated all litchi samples. Litchi freshness predictive model developed using SNR eigen values shows high predictive accuracy with regression coefficients R(2) = 0 .99396.

  16. Output feedback stabilization for a class of multi-variable bilinear stochastic systems with stochastic coupling attenuation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qichun; Zhou, Jinglin; Wang, Hong; Chai, Tianyou

    2016-08-31

    In this paper, stochastic coupling attenuation is investigated for a class of multi-variable bilinear stochastic systems and a novel output feedback m-block backstepping controller with linear estimator is designed, where gradient descent optimization is used to tune the design parameters of the controller. It has been shown that the trajectories of the closed-loop stochastic systems are bounded in probability sense and the stochastic coupling of the system outputs can be effectively attenuated by the proposed control algorithm. Moreover, the stability of the stochastic systems is analyzed and the effectiveness of the proposed method has been demonstrated using a simulated example.

  17. Towards a General Theory of Stochastic Hybrid Systems

    NARCIS (Netherlands)

    Bujorianu, L.M.; Lygeros, J.; Bujorianu, M.C.

    2008-01-01

    In this paper we set up a mathematical structure, called Markov string, to obtaining a very general class of models for stochastic hybrid systems. Markov Strings are, in fact, a class of Markov processes, obtained by a mixing mechanism of stochastic processes, introduced by Meyer. We prove that Mark

  18. Toward a General Theory of Stochastic Hybrid Systems

    NARCIS (Netherlands)

    Bujorianu, L.M.; Lygeros, J.; Blom, H.A.P.; Lygeros, J.

    2006-01-01

    In this chapter we set up a mathematical structure, called Markov string, to obtaining a very general class of models for stochastic hybrid systems. Markov Strings are, in fact, a class of Markov processes, obtained by a mixing mechanism of stochastic processes, introduced by Meyer. We prove that Ma

  19. Consistency of global total least squares in stochastic system identification

    NARCIS (Netherlands)

    C. Heij (Christiaan); W. Scherrer

    1995-01-01

    textabstractGlobal total least squares has been introduced as a method for the identification of deterministic system behaviours. We analyse this method within a stochastic framework, where the observed data are generated by a stationary stochastic process. Conditions are formulated so that the meth

  20. Stochastic bifurcation in a driven laser system: experiment and theory.

    Science.gov (United States)

    Billings, Lora; Schwartz, Ira B; Morgan, David S; Bollt, Erik M; Meucci, Riccardo; Allaria, Enrico

    2004-08-01

    We analyze the effects of stochastic perturbations in a physical example occurring as a higher-dimensional dynamical system. The physical model is that of a class- B laser, which is perturbed stochastically with finite noise. The effect of the noise perturbations on the dynamics is shown to change the qualitative nature of the dynamics experimentally from a stochastic periodic attractor to one of chaoslike behavior, or noise-induced chaos. To analyze the qualitative change, we apply the technique of the stochastic Frobenius-Perron operator [L. Billings et al., Phys. Rev. Lett. 88, 234101 (2002)] to a model of the experimental system. Our main result is the identification of a global mechanism to induce chaoslike behavior by adding stochastic perturbations in a realistic model system of an optics experiment. In quantifying the stochastic bifurcation, we have computed a transition matrix describing the probability of transport from one region of phase space to another, which approximates the stochastic Frobenius-Perron operator. This mechanism depends on both the standard deviation of the noise and the global topology of the system. Our result pinpoints regions of stochastic transport whereby topological deterministic dynamics subjected to sufficient noise results in noise-induced chaos in both theory and experiment.

  1. Approximate controllability of neutral stochastic integrodifferential systems in Hilbert spaces

    Directory of Open Access Journals (Sweden)

    Krishnan Balachandran

    2008-12-01

    Full Text Available In this paper sufficient conditions are established for the controllability of a class of neutral stochastic integrodifferential equations with nonlocal conditions in abstract space. The Nussbaum fixed point theorem is used to obtain the controllability results, which extends the linear system to the stochastic settings with the help of compact semigroup. An example is provided to illustrate the theory.

  2. Online identification of nonlinear spatiotemporal systems using kernel learning approach.

    Science.gov (United States)

    Ning, Hanwen; Jing, Xingjian; Cheng, Li

    2011-09-01

    The identification of nonlinear spatiotemporal systems is of significance to engineering practice, since it can always provide useful insight into the underlying nonlinear mechanism and physical characteristics under study. In this paper, nonlinear spatiotemporal system models are transformed into a class of multi-input-multi-output (MIMO) partially linear systems (PLSs), and an effective online identification algorithm is therefore proposed by using a pruning error minimization principle and least square support vector machines. It is shown that many benchmark physical and engineering systems can be transformed into MIMO-PLSs which keep some important physical spatiotemporal relationships and are very helpful in the identification and analysis of the underlying system. Compared with several existing methods, the advantages of the proposed method are that it can make full use of some prior structural information about system physical models, can realize online estimation of the system dynamics, and achieve accurate characterization of some important nonlinear physical characteristics of the system. This would provide an important basis for state estimation, control, optimal analysis, and design of nonlinear distributed parameter systems. The proposed algorithm can also be applied to identification problems of stochastic spatiotemporal dynamical systems. Numeral examples and comparisons are given to demonstrate our results.

  3. Numerical analysis of systems of ordinary and stochastic differential equations

    CERN Document Server

    Artemiev, S S

    1997-01-01

    This text deals with numerical analysis of systems of both ordinary and stochastic differential equations. It covers numerical solution problems of the Cauchy problem for stiff ordinary differential equations (ODE) systems by Rosenbrock-type methods (RTMs).

  4. Formal Abstractions for Automated Verification and Synthesis of Stochastic Systems

    NARCIS (Netherlands)

    Esmaeil Zadeh Soudjani, S.

    2014-01-01

    Stochastic hybrid systems involve the coupling of discrete, continuous, and probabilistic phenomena, in which the composition of continuous and discrete variables captures the behavior of physical systems interacting with digital, computational devices. Because of their versatility and generality, m

  5. Formal Abstractions for Automated Verification and Synthesis of Stochastic Systems

    NARCIS (Netherlands)

    Esmaeil Zadeh Soudjani, S.

    2014-01-01

    Stochastic hybrid systems involve the coupling of discrete, continuous, and probabilistic phenomena, in which the composition of continuous and discrete variables captures the behavior of physical systems interacting with digital, computational devices. Because of their versatility and generality, m

  6. Nonlinear elliptic systems with exponential nonlinearities

    Directory of Open Access Journals (Sweden)

    Said El Manouni

    2002-12-01

    Full Text Available In this paper we investigate the existence of solutions for {gather*} -mathop{m div}( a(| abla u | ^N| abla u |^{N-2}u = f(x,u,v quad mbox{in } Omega -mathop{m div}(a(| abla v| ^N| abla v |^{N-2}v = g(x,u,v quad mbox{in } Omega u(x = v(x = 0 quad mbox{on }partial Omega. end{gather*} Where $Omega$ is a bounded domain in ${mathbb{R}}^N$, $Ngeq 2$, $f$ and $g$ are nonlinearities having an exponential growth on $Omega$ and $a$ is a continuous function satisfying some conditions which ensure the existence of solutions.

  7. Stochastic variability and noise-induced generation of chaos in a climate feedback system including the carbon dioxide dynamics

    Science.gov (United States)

    Alexandrov, D. V.; Bashkirtseva, I. A.; Ryashko, L. B.

    2016-08-01

    In this work, a non-linear dynamics of a simple three-dimensional climate model in the presence of stochastic forcing is studied. We demonstrate that a dynamic scenario of mixed-mode stochastic oscillations of the climate system near its equilibrium can be formed. As this takes place, a growth of noise intensity increases the frequency of interspike intervals responsible for the abrupt climate changes. In addition, a certain enhancement of stochastic forcing abruptly increases the atmospheric carbon dioxide and decreases the Earth's ice mass. A transition from order to chaos occurring at a critical noise is shown.

  8. Modeling of long-range memory processes with inverse cubic distributions by the nonlinear stochastic differential equations

    Science.gov (United States)

    Kaulakys, B.; Alaburda, M.; Ruseckas, J.

    2016-05-01

    A well-known fact in the financial markets is the so-called ‘inverse cubic law’ of the cumulative distributions of the long-range memory fluctuations of market indicators such as a number of events of trades, trading volume and the logarithmic price change. We propose the nonlinear stochastic differential equation (SDE) giving both the power-law behavior of the power spectral density and the long-range dependent inverse cubic law of the cumulative distribution. This is achieved using the suggestion that when the market evolves from calm to violent behavior there is a decrease of the delay time of multiplicative feedback of the system in comparison to the driving noise correlation time. This results in a transition from the Itô to the Stratonovich sense of the SDE and yields a long-range memory process.

  9. On balanced truncation for symmetric nonlinear systems

    NARCIS (Netherlands)

    Fujimoto, K.; Scherpen, Jacqueline M.A.

    2014-01-01

    This paper is concerned with model order reduction based on balanced realization for symmetric nonlinear systems. A new notion of symmetry for nonlinear systems was characterized recently. It plays an important role in linear systems theory and is expected to provide new insights to nonlinear system

  10. Conformal invariance in conditioned stochastic particle systems

    Science.gov (United States)

    Schütz, Gunter M.

    2017-08-01

    We consider space-time correlations in generic one-dimensional stochastic interacting particle systems with short-range interactions that undergo a fluctuation with an atypically activity of particle jumps or reactions or spin flips. We briefly review the approach in the framework of the quantum Hamiltonian formalism and present examples where the dynamics during such large fluctuations is governed not by the typical stationary dynamics, but by ballistic universality classes with dynamical exponent z=1 that are described unitary conformally invariant field theories with central charge c. For reaction-diffusion and spin flip dynamics we identify critical points (a) in the Ising universality class with c=1/2 , and (b) in the universality class of the three-states Potts model with c=4/5 . For the Ising universality class we obtain a universal scaling form for the generating function of cumulants of the jump activity. For repulsive driven diffusive systems with one conservation law the regime of an atypically high current or hopping activity is generically conformally invariant with central charge c=1 .

  11. Bounded stabilisation of stochastic port-Hamiltonian systems

    Science.gov (United States)

    Satoh, Satoshi; Saeki, Masami

    2014-08-01

    This paper proposes a stochastic bounded stabilisation method for a class of stochastic port-Hamiltonian systems. Both full-actuated and underactuated mechanical systems in the presence of noise are considered in this class. The proposed method gives conditions for the controller gain and design parameters under which the state remains bounded in probability. The bounded region and achieving probability are both assignable, and a stochastic Lyapunov function is explicitly provided based on a Hamiltonian structure. Although many conventional stabilisation methods assume that the noise vanishes at the origin, the proposed method is applicable to systems under persistent disturbances.

  12. System Identification for Nonlinear FOPDT Model with Input-Dependent Dead-Time

    DEFF Research Database (Denmark)

    Sun, Zhen; Yang, Zhenyu

    2011-01-01

    . In order to identify these parameters in an online manner, the considered system is discretized at first. Then, the nonlinear FOPDT identification problem is formulated as a stochastic Mixed Integer Non-Linear Programming problem, and an identification algorithm is proposed by combining the Branch......An on-line iterative method of system identification for a kind of nonlinear FOPDT system is proposed in the paper. The considered nonlinear FOPDT model is an extension of the standard FOPDT model by means that its dead time depends on the input signal and the other parameters are time dependent...

  13. Characterization and Moment Stability Analysis of Quasilinear Quantum Stochastic Systems with Quadratic Coupling to External Fields

    CERN Document Server

    Vladimirov, Igor G

    2012-01-01

    The paper is concerned with open quantum systems whose Heisenberg dynamics are described by quantum stochastic differential equations driven by external boson fields. The system-field coupling operators are assumed to be quadratic polynomials of the system observables, with the latter satisfying canonical commutation relations. In combination with a cubic system Hamiltonian, this leads to a class of quasilinear quantum stochastic systems which retain algebraic closedness in the evolution of mixed moments of the observables. Although such a system is nonlinear and its quantum state is no longer Gaussian, the dynamics of the moments of any order are amenable to exact analysis, including the computation of their steady-state values. In particular, a generalized criterion is developed for quadratic stability of the quasilinear systems. The results of the paper are applicable to the generation of non-Gaussian quantum states with manageable moments and an optimal design of linear quantum controllers for quasilinear...

  14. Sliding-mode control design for nonlinear systems using probability density function shaping.

    Science.gov (United States)

    Liu, Yu; Wang, Hong; Hou, Chaohuan

    2014-02-01

    In this paper, we propose a sliding-mode-based stochastic distribution control algorithm for nonlinear systems, where the sliding-mode controller is designed to stabilize the stochastic system and stochastic distribution control tries to shape the sliding surface as close as possible to the desired probability density function. Kullback-Leibler divergence is introduced to the stochastic distribution control, and the parameter of the stochastic distribution controller is updated at each sample interval rather than using a batch mode. It is shown that the estimated weight vector will converge to its ideal value and the system will be asymptotically stable under the rank-condition, which is much weaker than the persistent excitation condition. The effectiveness of the proposed algorithm is illustrated by simulation.

  15. On the stochastic behaviors of locally confined particle systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yao, E-mail: yaoli@cims.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)

    2015-07-15

    We investigate a class of Hamiltonian particle systems and their stochastic behaviors. Using both rigorous proof and numerical simulations, we show that the geometric configuration can qualitatively change key statistical characteristics of the particle system, which are expected to be retained by stochastic modifications. In particular, whether a particle system has an exponential mixing rate or a polynomial mixing rate depends on whether the geometric setting allows a slow particle being reached by adjacent fast particles.

  16. Optimal inspection and maintenance for stochastically deteriorating systems

    OpenAIRE

    Dagg, R.A.

    1999-01-01

    This thesis concerns the optimisation of maintenance and inspection for stochastically deteriorating systems. The motivation for this thesis is the problem of determining condition based maintenance policies, for systems whose degradation may be modelled by a continuous time stochastic process. Our emphasis is mainly on using the information gained from inspecting the degradation to determine efficient maintenance and inspection policies. The system we shall consider is one in which the degra...

  17. Complex motions and chaos in nonlinear systems

    CERN Document Server

    Machado, José; Zhang, Jiazhong

    2016-01-01

    This book brings together 10 chapters on a new stream of research examining complex phenomena in nonlinear systems—including engineering, physics, and social science. Complex Motions and Chaos in Nonlinear Systems provides readers a particular vantage of the nature and nonlinear phenomena in nonlinear dynamics that can develop the corresponding mathematical theory and apply nonlinear design to practical engineering as well as the study of other complex phenomena including those investigated within social science.

  18. Fast cooling for a system of stochastic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yongxin, E-mail: chen2468@umn.edu; Georgiou, Tryphon T., E-mail: tryphon@umn.edu [Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street S.E., Minneapolis, Minnesota 55455 (United States); Pavon, Michele, E-mail: pavon@math.unipd.it [Dipartimento di Matematica, Università di Padova, Via Trieste 63, 35121 Padova (Italy)

    2015-11-15

    We study feedback control of coupled nonlinear stochastic oscillators in a force field. We first consider the problem of asymptotically driving the system to a desired steady state corresponding to reduced thermal noise. Among the feedback controls achieving the desired asymptotic transfer, we find that the most efficient one from an energy point of view is characterized by time-reversibility. We also extend the theory of Schrödinger bridges to this model, thereby steering the system in finite time and with minimum effort to a target steady-state distribution. The system can then be maintained in this state through the optimal steady-state feedback control. The solution, in the finite-horizon case, involves a space-time harmonic function φ, and −logφ plays the role of an artificial, time-varying potential in which the desired evolution occurs. This framework appears extremely general and flexible and can be viewed as a considerable generalization of existing active control strategies such as macromolecular cooling. In the case of a quadratic potential, the results assume a form particularly attractive from the algorithmic viewpoint as the optimal control can be computed via deterministic matricial differential equations. An example involving inertial particles illustrates both transient and steady state optimal feedback control.

  19. Fast cooling for a system of stochastic oscillators

    Science.gov (United States)

    Chen, Yongxin; Georgiou, Tryphon T.; Pavon, Michele

    2015-11-01

    We study feedback control of coupled nonlinear stochastic oscillators in a force field. We first consider the problem of asymptotically driving the system to a desired steady state corresponding to reduced thermal noise. Among the feedback controls achieving the desired asymptotic transfer, we find that the most efficient one from an energy point of view is characterized by time-reversibility. We also extend the theory of Schrödinger bridges to this model, thereby steering the system in finite time and with minimum effort to a target steady-state distribution. The system can then be maintained in this state through the optimal steady-state feedback control. The solution, in the finite-horizon case, involves a space-time harmonic function φ, and -logφ plays the role of an artificial, time-varying potential in which the desired evolution occurs. This framework appears extremely general and flexible and can be viewed as a considerable generalization of existing active control strategies such as macromolecular cooling. In the case of a quadratic potential, the results assume a form particularly attractive from the algorithmic viewpoint as the optimal control can be computed via deterministic matricial differential equations. An example involving inertial particles illustrates both transient and steady state optimal feedback control.

  20. An Adaptive Nonlinear Filter for System Identification

    Directory of Open Access Journals (Sweden)

    Tokunbo Ogunfunmi

    2009-01-01

    Full Text Available The primary difficulty in the identification of Hammerstein nonlinear systems (a static memoryless nonlinear system in series with a dynamic linear system is that the output of the nonlinear system (input to the linear system is unknown. By employing the theory of affine projection, we propose a gradient-based adaptive Hammerstein algorithm with variable step-size which estimates the Hammerstein nonlinear system parameters. The adaptive Hammerstein nonlinear system parameter estimation algorithm proposed is accomplished without linearizing the systems nonlinearity. To reduce the effects of eigenvalue spread as a result of the Hammerstein system nonlinearity, a new criterion that provides a measure of how close the Hammerstein filter is to optimum performance was used to update the step-size. Experimental results are presented to validate our proposed variable step-size adaptive Hammerstein algorithm given a real life system and a hypothetical case.

  1. Decentralised adaptive output feedback stabilisation for stochastic time-delay systems via LaSalle-Yoshizawa-type theorem

    Science.gov (United States)

    Jiao, Ticao; Xu, Shengyuan; Lu, Junwei; Wei, Yunliang; Zou, Yun

    2016-01-01

    This paper deals with the decentralised output feedback stabilisation problem for a class of large-scale stochastic time-delay nonlinear systems. A general theorem is firstly given to guarantee the global existence and uniqueness of the solution for stochastic time-delay systems. In addition, a stochastic version of the well-known LaSalle-Yoshizawa theorem with time-varying delay is initially proposed for the controller design and stability analysis. Then, for a class of large-scale stochastic systems with time-varying delays, totally decentralised adaptive delay-dependent controllers are designed by using K-filter and backstepping approach. Via LaSalle-Yoshizawa-type theorem and constructing a general Lyapunov function, it is shown that all signals in the closed-loop system are bounded almost surely and the solution is almost surely asymptotically stable. Finally, a simulation example is given to illustrate the effectiveness of the results of this paper.

  2. Longest increasing subsequence as expectation of a simple nonlinear stochastic partial differential equation with a low noise intensity.

    Science.gov (United States)

    Katzav, E; Nechaev, S; Vasilyev, O

    2007-06-01

    We report some observations concerning the statistics of longest increasing subsequences (LIS). We argue that the expectation of LIS, its variance, and apparently the full distribution function appears in statistical analysis of some simple nonlinear stochastic partial differential equation in the limit of very low noise intensity.

  3. Nonlinearity of colloid systems oxyhydrate systems

    CERN Document Server

    Sucharev, Yuri I

    2008-01-01

    The present monograph is the first systematic study of the non-linear characteristic of gel oxy-hydrate systems involving d- and f- elements. These are the oxyhydrates of rare-earth elements and oxides - hydroxides of d- elements (zirconium, niobium, titanium, etc.) The non-linearity of these gel systems introduces fundamental peculiarities into their structure and, consequently, their properties. The polymer-conformational diversity of energetically congenial gel fragments, which continu-ously transform under the effect of, for instance, system dissipation heat, is central to the au-thor's hy

  4. Noise-correlation-time-mediated localization in random nonlinear dynamical systems

    CERN Document Server

    Cabrera, J L; De la Rubia, F J; Cabrera, Juan L.

    1999-01-01

    We investigate the behavior of the residence times density function for different nonlinear dynamical systems with limit cycle behavior and perturbed parametrically with a colored noise. We present evidence that underlying the stochastic resonancelike behavior with the noise correlation time, there is an effect of optimal localization of the system trajectories in the phase space. This phenomenon is observed in systems with different nonlinearities, suggesting a degree of universality.

  5. Stochastic nonlinear time series forecasting using time-delay reservoir computers: performance and universality.

    Science.gov (United States)

    Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo

    2014-07-01

    Reservoir computing is a recently introduced machine learning paradigm that has already shown excellent performances in the processing of empirical data. We study a particular kind of reservoir computers called time-delay reservoirs that are constructed out of the sampling of the solution of a time-delay differential equation and show their good performance in the forecasting of the conditional covariances associated to multivariate discrete-time nonlinear stochastic processes of VEC-GARCH type as well as in the prediction of factual daily market realized volatilities computed with intraday quotes, using as training input daily log-return series of moderate size. We tackle some problems associated to the lack of task-universality for individually operating reservoirs and propose a solution based on the use of parallel arrays of time-delay reservoirs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Robust synchronization control scheme of a population of nonlinear stochastic synthetic genetic oscillators under intrinsic and extrinsic molecular noise via quorum sensing

    Directory of Open Access Journals (Sweden)

    Chen Bor-Sen

    2012-10-01

    Full Text Available Abstract Background Collective rhythms of gene regulatory networks have been a subject of considerable interest for biologists and theoreticians, in particular the synchronization of dynamic cells mediated by intercellular communication. Synchronization of a population of synthetic genetic oscillators is an important design in practical applications, because such a population distributed over different host cells needs to exploit molecular phenomena simultaneously in order to emerge a biological phenomenon. However, this synchronization may be corrupted by intrinsic kinetic parameter fluctuations and extrinsic environmental molecular noise. Therefore, robust synchronization is an important design topic in nonlinear stochastic coupled synthetic genetic oscillators with intrinsic kinetic parameter fluctuations and extrinsic molecular noise. Results Initially, the condition for robust synchronization of synthetic genetic oscillators was derived based on Hamilton Jacobi inequality (HJI. We found that if the synchronization robustness can confer enough intrinsic robustness to tolerate intrinsic parameter fluctuation and extrinsic robustness to filter the environmental noise, then robust synchronization of coupled synthetic genetic oscillators is guaranteed. If the synchronization robustness of a population of nonlinear stochastic coupled synthetic genetic oscillators distributed over different host cells could not be maintained, then robust synchronization could be enhanced by external control input through quorum sensing molecules. In order to simplify the analysis and design of robust synchronization of nonlinear stochastic synthetic genetic oscillators, the fuzzy interpolation method was employed to interpolate several local linear stochastic coupled systems to approximate the nonlinear stochastic coupled system so that the HJI-based synchronization design problem could be replaced by a simple linear matrix inequality (LMI-based design problem

  7. STOCHASTICITY

    Energy Technology Data Exchange (ETDEWEB)

    Laslett, L. Jackson.

    1974-05-01

    Detailed examination of computed particle trajectories has revealed a complexity and disorder that is of increasing interest to accelerator specialists. To introduce this topic, the author would like you to consider for a moment the analysis of synchrotron oscillations for a particle in a coasting beam, regarded as a problem in one degree of freedom. A simple analysis replaces the electric field of the RF-v cavity system by a traveling wave, having the speed of a synchronous reference particle, and leads to a pair of differential equations of the form dy/dn = -K sin {pi}x, (1A) where y measures the fractional departure of energy from the reference value {pi}x measures the electrical phase angle at which the particle traverses the cavity, and K is proportional to the cavity voltage; and dx/dn = {lambda}{prime}y, (1b) in which {lambda}{prime} is proportional to the change of revolution period with respect to particle energy. It will be recognized that these equations can be derived from a Hamiltonian function H = (1/2){lambda}{prime}y{sup 2}-(K/{pi})cos {pi}x. (2) Because this Hamiltonian function does not contain the independent variable explicitly, it will constitute a constant of the motion and possible trajectories in the x,y phase space will be just the curves defined by H = Constant, namely the familiar simple curves in phase space that are characteristic of a physical (non-linear) pendulum.

  8. 一类随机非线性关联大系统的全局指数稳定性%Global Exponential Stability for a Class of Stochastic Nonlinear Interconnected Large-Scale Systems

    Institute of Scientific and Technical Information of China (English)

    施继忠; 张继业

    2012-01-01

    为研究车辆建模导致的随机误差对自动化公路车辆系统等关联大系统的影响,将确定性箱体理论推广到随机箱体理论,利用M-矩阵理论和随机箱体理论,构造适当的向量Lyapunov函数,通过分析相应随机微分不等式的稳定性,利用随机大系统的系数矩阵以及与大系统关联的Lyapunov矩阵方程的解构造判定矩阵,得到该类大系统全局指数稳定性的充分性判据,即当判定矩阵为M-矩阵时,大系统是全局指数稳定的.仿真结果表明:本文算法收敛速度快,在20 s内系统状态就能达到稳定.%In order to study the effects of random errors caused by vehicle modeling on interconnected large-scale systems like the automated highway vehicle system, the deterministic theory was extended to the random case theory, and a proper vector Lyapunov function was constructed using the matrix theory and the random case theory. By analyzing the stability of stochastic differential inequalities, a coefficient matrix of the random large-scale system and the solutions of the Lyapunov matrix function interconnected with large-scale system are used to construct a judgment matrix, and then obtain the sufficiency criterion for global exponential stability of the large-scale system: when the judgment matrix is a quasi-Af-matrix, the global index of the large-scale system is stable. Simulation results show that the algorithm proposed in the paper has a rapid convergence rate, and the system can achieve stability in 20 s.

  9. Effect of coupling on stochastic resonance and stochastic antiresonance processes in a unidirectionally N-coupled systems in periodic sinusoidal potential

    Science.gov (United States)

    Wadop Ngouongo, Y. J.; Djuidjé Kenmoé, G.; Kofané, T. C.

    2017-04-01

    This work presents the characterization of stochastic resonance (SR) and stochastic antiresonance (SAR) in terms of hysteresis loop area (HLA). In connection with SR and SAR phenomena, we study the dynamics of a chain of particles coupled by nonlinear springs in a periodic sinusoidal potential. The dependence of the coupling parameter as well as the system size on SR and SAR is analysed. We consider the role played by the nonlinear coupling on the SR. We show that there is a range of coupling parameter where only SAR is observed, after this range the SR can occur, however, there also exists a range where neither SAR nor SR appear. It is noted that the maximum and the minimum of the average input energy increases with the coupling parameter. Also demonstrate that there exists an optimal value of the number of particles N for which the average input energy of the first particle reaches the saturation.

  10. Computational Methods for Predictive Simulation of Stochastic Turbulence Systems

    Science.gov (United States)

    2015-11-05

    AFRL-AFOSR-VA-TR-2015-0363 Computational Methods for Predictive Simulation of Stochastic Turbulence Systems Catalin Trenchea UNIVERSITY OF PITTSBURGH...STOCHASTIC TURBULENCE SYSTEMS AFOSR GRANT FA 9550-12-1-0191 William Layton and Catalin Trenchea Department of Mathematics University of Pittsburgh...During Duration of Grant Nan Jian Graduate student, Univ . of Pittsburgh (currently Postdoc at FSU) Sarah Khankan Graduate student, Univ . of Pittsburgh

  11. EXPONENTIAL ESTIMATES FOR STOCHASTIC DELAY HYBRID SYSTEMS WITH MARKOVIAN SWITCHING

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper deals with the problem of norm bounds for the solutions of stochastic hybrid systems with Markovian switching and time delay. Based on Lyapunov-Krasovskii theory for functional differential equations and the linear matrix inequality (LMI) approach, mean square exponential estimates for the solutions of this class of linear stochastic hybrid systems are derived. Finally, An example is illustrated to show the applicability and effectiveness of our method.

  12. Stochastic chemical kinetics theory and (mostly) systems biological applications

    CERN Document Server

    Érdi, Péter; Lente, Gabor

    2014-01-01

    This volume reviews the theory and simulation methods of stochastic kinetics by integrating historical and recent perspectives, presents applications, mostly in the context of systems biology and also in combustion theory. In recent years, due to the development in experimental techniques, such as optical imaging, single cell analysis, and fluorescence spectroscopy, biochemical kinetic data inside single living cells have increasingly been available. The emergence of systems biology brought renaissance in the application of stochastic kinetic methods.

  13. Stochastic resonance in a nonlinear model of a rotating, stratified shear flow, with a simple stochastic inertia-gravity wave parameterization

    Directory of Open Access Journals (Sweden)

    P. D. Williams

    2004-01-01

    Full Text Available We report on a numerical study of the impact of short, fast inertia-gravity waves on the large-scale, slowly-evolving flow with which they co-exist. A nonlinear quasi-geostrophic numerical model of a stratified shear flow is used to simulate, at reasonably high resolution, the evolution of a large-scale mode which grows due to baroclinic instability and equilibrates at finite amplitude. Ageostrophic inertia-gravity modes are filtered out of the model by construction, but their effects on the balanced flow are incorporated using a simple stochastic parameterization of the potential vorticity anomalies which they induce. The model simulates a rotating, two-layer annulus laboratory experiment, in which we recently observed systematic inertia-gravity wave generation by an evolving, large-scale flow. We find that the impact of the small-amplitude stochastic contribution to the potential vorticity tendency, on the model balanced flow, is generally small, as expected. In certain circumstances, however, the parameterized fast waves can exert a dominant influence. In a flow which is baroclinically-unstable to a range of zonal wavenumbers, and in which there is a close match between the growth rates of the multiple modes, the stochastic waves can strongly affect wavenumber selection. This is illustrated by a flow in which the parameterized fast modes dramatically re-partition the probability-density function for equilibrated large-scale zonal wavenumber. In a second case study, the stochastic perturbations are shown to force spontaneous wavenumber transitions in the large-scale flow, which do not occur in their absence. These phenomena are due to a stochastic resonance effect. They add to the evidence that deterministic parameterizations in general circulation models, of subgrid-scale processes such as gravity wave drag, cannot always adequately capture the full details of the nonlinear interaction.

  14. Sparse calibration of subsurface flow models using nonlinear orthogonal matching pursuit and an iterative stochastic ensemble method

    KAUST Repository

    Elsheikh, Ahmed H.

    2013-06-01

    We introduce a nonlinear orthogonal matching pursuit (NOMP) for sparse calibration of subsurface flow models. Sparse calibration is a challenging problem as the unknowns are both the non-zero components of the solution and their associated weights. NOMP is a greedy algorithm that discovers at each iteration the most correlated basis function with the residual from a large pool of basis functions. The discovered basis (aka support) is augmented across the nonlinear iterations. Once a set of basis functions are selected, the solution is obtained by applying Tikhonov regularization. The proposed algorithm relies on stochastically approximated gradient using an iterative stochastic ensemble method (ISEM). In the current study, the search space is parameterized using an overcomplete dictionary of basis functions built using the K-SVD algorithm. The proposed algorithm is the first ensemble based algorithm that tackels the sparse nonlinear parameter estimation problem. © 2013 Elsevier Ltd.

  15. Fitting Nonlinear Ordinary Differential Equation Models with Random Effects and Unknown Initial Conditions Using the Stochastic Approximation Expectation-Maximization (SAEM) Algorithm.

    Science.gov (United States)

    Chow, Sy-Miin; Lu, Zhaohua; Sherwood, Andrew; Zhu, Hongtu

    2016-03-01

    The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation-maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed.

  16. Gaussian Stochastic Linearization for Open Quantum Systems Using Quadratic Approximation of Hamiltonians

    CERN Document Server

    Vladimirov, Igor G

    2012-01-01

    This paper extends the energy-based version of the stochastic linearization method, known for classical nonlinear systems, to open quantum systems with canonically commuting dynamic variables governed by quantum stochastic differential equations with non-quadratic Hamiltonians. The linearization proceeds by approximating the actual Hamiltonian of the quantum system by a quadratic function of its observables which corresponds to the Hamiltonian of a quantum harmonic oscillator. This approximation is carried out in a mean square optimal sense with respect to a Gaussian reference quantum state and leads to a self-consistent linearization procedure where the mean vector and quantum covariance matrix of the system observables evolve in time according to the effective linear dynamics. We demonstrate the proposed Hamiltonian-based Gaussian linearization for the quantum Duffing oscillator whose Hamiltonian is a quadro-quartic polynomial of the momentum and position operators. The results of the paper are applicable t...

  17. A separated bias identification and state estimation algorithm for nonlinear systems

    Science.gov (United States)

    Caglayan, A. K.; Lancraft, R. E.

    1983-01-01

    A computational algorithm for the identification of biases in discrete-time, nonlinear, stochastic systems is derived by extending the separate bias estimation results for linear systems to the extended Kalman filter formulation. The merits of the approach are illustrated by identifying instrument biases using a terminal configured vehicle simulation.

  18. Nonlinear cross Gramians and gradient systems

    OpenAIRE

    Ionescu, T. C.; Scherpen, J.M.A.

    2007-01-01

    We study the notion of cross Gramians for nonlinear gradient systems, using the characterization in terms of prolongation and gradient extension associated to the system. The cross Gramian is given for the variational system associated to the original nonlinear gradient system. We obtain linearization results that precisely correspond to the notion of a cross Gramian for symmetric linear systems. Furthermore, first steps towards relations with the singular value functions of the nonlinear Han...

  19. Oceanic stochastic parametrizations in a seasonal forecast system

    CERN Document Server

    Andrejczuk, M; Juricke, S; Palmer, T N; Weisheimer, A; Zanna, L

    2015-01-01

    We study the impact of three stochastic parametrizations in the ocean component of a coupled model, on forecast reliability over seasonal timescales. The relative impacts of these schemes upon the ocean mean state and ensemble spread are analyzed. The oceanic variability induced by the atmospheric forcing of the coupled system is, in most regions, the major source of ensemble spread. The largest impact on spread and bias came from the Stochastically Perturbed Parametrization Tendency (SPPT) scheme - which has proven particularly effective in the atmosphere. The key regions affected are eddy-active regions, namely the western boundary currents and the Southern Ocean. However, unlike its impact in the atmosphere, SPPT in the ocean did not result in a significant decrease in forecast error. Whilst there are good grounds for implementing stochastic schemes in ocean models, our results suggest that they will have to be more sophisticated. Some suggestions for next-generation stochastic schemes are made.

  20. Observability and Controllability for Smooth Nonlinear Systems

    OpenAIRE

    Schaft, A.J. van der

    1982-01-01

    The definition of a smooth nonlinear system as proposed recently, is elaborated as a natural generalization of the more common definitions of a smooth nonlinear input-output system. Minimality for such systems can be defined in a very direct geometric way, and already implies a usual notion of observability, namely, local weak observability. As an application of this theory, it is shown that observable nonlinear Hamiltonian systems are necessarily controllable, and vice versa.

  1. Combined Deterministic and Stochastic System Identification and Realization: DSR - A Subspace Approach Based on Observations

    Directory of Open Access Journals (Sweden)

    David Di Ruscio

    1996-07-01

    Full Text Available A numerically stable and general algorithm for identification and realization of a complete dynamic linear state space model, including the system order, for combined deterministic and stochastic systems from time series is presented. A special property of this algorithm is that the innovations covariance matrix and the Markov parameters for the stochastic sub-system are determined directly from a projection of known data matrices, without e.g. recursions of non-linear matrix Riccatti equations. A realization of the Kalman filter gain matrix is determined from the estimated extended observability matrix and the Markov parameters. Monte Carlo simulations are used to analyze the statistical properties of the algorithm as well as comparing with existing algorithms.

  2. Stochastic differential equations and a biological system

    DEFF Research Database (Denmark)

    Wang, Chunyan

    1994-01-01

    on experimental data is considered. As an example, the growth of bacteria Pseudomonas fluorescens is taken. Due to the specific features of stochastic differential equations, namely that their solutions do not exist in the general sense, two new integrals - the Ito integral and the Stratonovich integral - have......The purpose of this Ph.D. study is to explore the property of a growth process. The study includes solving and simulating of the growth process which is described in terms of stochastic differential equations. The identification of the growth and variability parameters of the process based......, Milstein and Runge-Kutta methods are used. Because of the specific feature of the model for the growth process, that its solution does not exist in the general sense, we combine these numerical integration methods with a transformation technique, and the solutions are derived in the Ito sense...

  3. Estimating partial observability and nonlinear climate effects on stochastic community dynamics of migratory waterfowl.

    Science.gov (United States)

    Almaraz, Pablo; Green, Andy J; Aguilera, Eduardo; Rendón, Miguel A; Bustamante, Javier

    2012-09-01

    1. Understanding the impact of environmental variability on migrating species requires the estimation of sequential abiotic effects in different geographic areas across the life cycle. For instance, waterfowl (ducks, geese and swans) usually breed widely dispersed throughout their breeding range and gather in large numbers in their wintering headquarters, but there is a lack of knowledge on the effects of the sequential environmental conditions experienced by migrating birds on the long-term community dynamics at their wintering sites. 2. Here, we analyse multidecadal time-series data of 10 waterfowl species wintering in the Guadalquivir Marshes (SW Spain), the single most important wintering site for waterfowl breeding in Europe. We use a multivariate state-space approach to estimate the effects of biotic interactions, local environmental forcing during winter and large-scale climate during breeding and migration on wintering multispecies abundance fluctuations, while accounting for partial observability (observation error and missing data) in both population and environmental data. 3. The joint effect of local weather and large-scale climate explained 31·6% of variance at the community level, while the variability explained by interspecific interactions was negligible (observations through data augmentation increased the estimated magnitude of environmental forcing by an average 30·1% and reduced the impact of stochasticity by 39·3% when accounting for observation error. Interestingly however, the impact of environmental forcing on community dynamics was underestimated by an average 15·3% and environmental stochasticity overestimated by 14·1% when ignoring both observation error and data augmentation. 5. These results provide a salient example of sequential multiscale environmental forcing in a major migratory bird community, which suggests a demographic link between the breeding and wintering grounds operating through nonlinear environmental effects

  4. Computing abstractions of nonlinear systems

    CERN Document Server

    Reißig, Gunther

    2009-01-01

    We present an efficient algorithm for computing discrete abstractions of arbitrary memory span for nonlinear discrete-time and sampled systems, in which, apart from possibly numerically integrating ordinary differential equations, the only nontrivial operation to be performed repeatedly is to distinguish empty from non-empty convex polyhedra. We also provide sufficient conditions for the convexity of attainable sets, which is an important requirement for the correctness of the method we propose. It turns out that requirement can be met under rather mild conditions, which essentially reduce to sufficient smoothness in the case of sampled systems. Practicability of our approach in the design of discrete controllers for continuous plants is demonstrated by an example.

  5. On the Hamiltonian structure of large deviations in stochastic hybrid systems

    Science.gov (United States)

    Bressloff, Paul C.; Faugeras, Olivier

    2017-03-01

    We present a new derivation of the classical action underlying a large deviation principle (LDP) for a stochastic hybrid system, which couples a piecewise deterministic dynamical system in {{{R}}d} with a time-homogeneous Markov chain on some discrete space Γ . We assume that the Markov chain on Γ is ergodic, and that the discrete dynamics is much faster than the piecewise deterministic dynamics (separation of time-scales). Using the Perron–Frobenius theorem and the calculus-of-variations, we show that the resulting action Hamiltonian is given by the Perron eigenvalue of a | Γ | -dimensional linear equation. The corresponding linear operator depends on the transition rates of the Markov chain and the nonlinear functions of the piecewise deterministic system. We compare the Hamiltonian to one derived using WKB methods, and show that the latter is a reduction of the former. We also indicate how the analysis can be extended to a multi-scale stochastic process, in which the continuous dynamics is described by a piecewise stochastic differential equations (SDE). Finally, we illustrate the theory by considering applications to conductance-based models of membrane voltage fluctuations in the presence of stochastic ion channels.

  6. STOCHASTIC HOPF BIFURCATION IN QUASI-INTEGRABLE-HAMILTONIAN SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    GAN Chunbiao

    2004-01-01

    A new procedure is developed to study the stochastic Hopf bifurcation in quasiintegrable-Hamiltonian systems under the Gaussian white noise excitation. Firstly, the singular boundaries of the first-class and their asymptotic stable conditions in probability are given for the averaged Ito differential equations about all the sub-system's energy levels with respect to the stochastic averaging method. Secondly, the stochastic Hopf bifurcation for the coupled sub-systems are discussed by defining a suitable bounded torus region in the space of the energy levels and employing the theory of the torus region when the singular boundaries turn into the unstable ones. Lastly, a quasi-integrableHamiltonian system with two degrees of freedom is studied in detail to illustrate the above procedure.Moreover, simulations by the Monte-Carlo method are performed for the illustrative example to verify the proposed procedure. It is shown that the attenuation motions and the stochastic Hopf bifurcation of two oscillators and the stochastic Hopf bifurcation of a single oscillator may occur in the system for some system's parameters. Therefore, one can see that the numerical results are consistent with the theoretical predictions.

  7. Distributed parallel computing in stochastic modeling of groundwater systems.

    Science.gov (United States)

    Dong, Yanhui; Li, Guomin; Xu, Haizhen

    2013-03-01

    Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo-type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW-related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  8. Nonlinear cross Gramians and gradient systems

    NARCIS (Netherlands)

    Ionescu, T. C.; Scherpen, J. M. A.

    2007-01-01

    We study the notion of cross Gramians for nonlinear gradient systems, using the characterization in terms of prolongation and gradient extension associated to the system. The cross Gramian is given for the variational system associated to the original nonlinear gradient system. We obtain

  9. Lagrangian Descriptors for Stochastic Differential Equations: A Tool for Revealing the Phase Portrait of Stochastic Dynamical Systems

    Science.gov (United States)

    Balibrea-Iniesta, Francisco; Lopesino, Carlos; Wiggins, Stephen; Mancho, Ana M.

    2016-12-01

    In this paper, we introduce a new technique for depicting the phase portrait of stochastic differential equations. Following previous work for deterministic systems, we represent the phase space by means of a generalization of the method of Lagrangian descriptors to stochastic differential equations. Analogously to the deterministic differential equations setting, the Lagrangian descriptors graphically provide the distinguished trajectories and hyperbolic structures arising within the stochastic dynamics, such as random fixed points and their stable and unstable manifolds. We analyze the sense in which structures form barriers to transport in stochastic systems. We apply the method to several benchmark examples where the deterministic phase space structures are well-understood. In particular, we apply our method to the noisy saddle, the stochastically forced Duffing equation, and the stochastic double gyre model that is a benchmark for analyzing fluid transport.

  10. Defect Detection and Localization of Nonlinear System Based on Particle Filter with an Adaptive Parametric Model

    Directory of Open Access Journals (Sweden)

    Jingjing Wu

    2015-01-01

    Full Text Available A robust particle filter (PF and its application to fault/defect detection of nonlinear system are investigated in this paper. First, an adaptive parametric model is exploited as the observation model for a nonlinear system. Second, by incorporating the parametric model, particle filter is employed to estimate more accurate hidden states for the nonlinear stochastic system. Third, by formulating the problem of defect detection within the hypothesis testing framework, the statistical properties of the proposed testing are established. Finally, experimental results demonstrate the effectiveness and robustness of the proposed detector on real defect detection and localization in images.

  11. Computational Models for Nonlinear Aeroelastic Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate new and efficient computational methods of modeling nonlinear aeroelastic systems. The...

  12. Model Updating Nonlinear System Identification Toolbox Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology (ZONA) proposes to develop an enhanced model updating nonlinear system identification (MUNSID) methodology that utilizes flight data with...

  13. Realization of synchronization in time-delayed systems with stochastic perturbation

    Energy Technology Data Exchange (ETDEWEB)

    Lin Wei [School of Mathematical Sciences, Research Center for Nonlinear Sciences, Fudan University, Shanghai (China)], E-mail: wlin@fudan.edu.cn

    2008-06-13

    Since noise is ubiquitous in both nature and artificial systems, the stochastic perturbation influence on the dynamics of the unidirectionally coupled Ikeda models is investigated in this paper. On the one hand, sufficient conditions on the complete synchronization between these noise-perturbed and chaotic models are mathematically established, and an estimation of the sample transverse Lyapunov exponent is rigorously derived. On the other hand, specific examples and their numerical simulations are provided to illustrate the feasibility of our theoretical results. Moreover, the results on the Ikeda models are further generalized to a wide class of coupled nonlinear systems with multiple time delays and a common additive noise. It is believed that the idea and approach developed in this paper could be further generalized to investigate some other problems on chaos synchronization and chaos control with stochastic perturbation.

  14. Random perturbations of nonlinear parabolic systems

    CERN Document Server

    Beck, Lisa

    2011-01-01

    Several aspects of regularity theory for parabolic systems are investigated under the effect of random perturbations. The deterministic theory, when strict parabolicity is assumed, presents both classes of systems where all weak solutions are in fact more regular, and examples of systems with weak solutions which develop singularities in finite time. Our main result is the extension of a regularity result due to Kalita to the stochastic case. Concerning the examples with singular solutions (outside the setting of Kalita's regularity result), we do not know whether stochastic noise may prevent the emergence of singularities, as it happens for easier PDEs. We can only prove that, for a linear stochastic parabolic system with coefficients outside the previous regularity theory, the expected value of the solution is not singular.

  15. Optimal Control and Optimization of Stochastic Supply Chain Systems

    CERN Document Server

    Song, Dong-Ping

    2013-01-01

    Optimal Control and Optimization of Stochastic Supply Chain Systems examines its subject in the context of the presence of a variety of uncertainties. Numerous examples with intuitive illustrations and tables are provided, to demonstrate the structural characteristics of the optimal control policies in various stochastic supply chains and to show how to make use of these characteristics to construct easy-to-operate sub-optimal policies.                 In Part I, a general introduction to stochastic supply chain systems is provided. Analytical models for various stochastic supply chain systems are formulated and analysed in Part II. In Part III the structural knowledge of the optimal control policies obtained in Part II is utilized to construct easy-to-operate sub-optimal control policies for various stochastic supply chain systems accordingly. Finally, Part IV discusses the optimisation of threshold-type control policies and their robustness. A key feature of the book is its tying together of ...

  16. Network realization of triplet-type quantum stochastic systems

    Science.gov (United States)

    Zhou, Shaosheng; Fu, Shizhou; Chen, Yuping

    2017-01-01

    This paper focuses on a problem of network synthesis for a class of quantum stochastic systems. The systems under consideration are of triplet-type form and stem from linear quantum optics and linear quantum circuits. A new quantum network realization approach is proposed by generalizing the scattering operator from the scalar form to a unitary matrix in network components. It shows that the triplet-type quantum stochastic system can be approximated by a quantum network which consists of some one-degree-of-freedom generalized open-quantum harmonic oscillators (1DGQHOs) via series, concatenation and feedback connections.

  17. Identification of linear stochastic systems through projection filters

    Science.gov (United States)

    Chen, Chung-Wen; Huang, Jen-Kuang; Juang, Jer-Nan

    1992-01-01

    A novel method is presented for identifying a state-space model and a state estimator for linear stochastic systems from input and output data. The method is primarily based on the relationship between the state-space model and the finite-difference model of linear stochastic systems derived through projection filters. It is proved that least-squares identification of a finite difference model converges to the model derived from the projection filters. System pulse response samples are computed from the coefficients of the finite difference model.

  18. Identification of Stochastic Wiener Systems using Indirect Inference

    OpenAIRE

    2015-01-01

    We study identification of stochastic Wiener dynamic systems using so-called indirect inference. The main idea is to first fit an auxiliary model to the observed data and then in a second step, often by simulation, fit a more structured model to the estimated auxiliary model. This two-step procedure can be used when the direct maximum-likelihood estimate is difficult or intractable to compute. One such example is the identification of stochastic Wiener systems, i.e.,~linear dynamic systems wi...

  19. Average quantum dynamics of closed systems over stochastic Hamiltonians

    CERN Document Server

    Yu, Li

    2011-01-01

    We develop a master equation formalism to describe the evolution of the average density matrix of a closed quantum system driven by a stochastic Hamiltonian. The average over random processes generally results in decoherence effects in closed system dynamics, in addition to the usual unitary evolution. We then show that, for an important class of problems in which the Hamiltonian is proportional to a Gaussian random process, the 2nd-order master equation yields exact dynamics. The general formalism is applied to study the examples of a two-level system, two atoms in a stochastic magnetic field and the heating of a trapped ion.

  20. A maximum principle for optimal control problem of fully coupled forward-backward stochastic systems with partial information

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The paper is concerned with a stochastic optimal control problem in which the controlled system is described by a fully coupled nonlinear forward-backward stochastic differential equation driven by a Brownian motion.It is required that all admissible control processes are adapted to a given subfiltration of the filtration generated by the underlying Brownian motion.For this type of partial information control,one sufficient(a verification theorem) and one necessary conditions of optimality are proved.The control domain need to be convex and the forward diffusion coefficient of the system can contain the control variable.

  1. A maximum principle for optimal control problem of fully coupled forward-backward stochastic systems with partial information

    Institute of Scientific and Technical Information of China (English)

    MENG QingXin

    2009-01-01

    The paper is concerned with a stochastic optimal control problem in which the controlled system is described by a fully coupled nonlinear forward-backward stochastic differential equation driven by a Brownian motion. It is required that all admissible control processes are adapted to a given subfiltration of the filtration generated by the underlying Brownian motion. For this type of partial information control, one sufficient (a verification theorem) and one necessary conditions of optimality are proved. The control domain need to be convex and the forward diffusion coefficient of the system can contain the control variable.

  2. Response of Non-Linear Systems to Renewal Impulses by Path Integration

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Iwankiewicz, R.

    The cell-to-cell mapping (path integration) technique has been devised for MDOF non-linear and non-hysteretic systems subjected to random trains of impulses driven by an ordinary renewal point process with gamma-distributed integer parameter interarrival times (an Erlang process). Since the renewal...... additional discrete-valued state variables for which the stochastic equations are also formulated....

  3. Modeling Stochastic Complexity in Complex Adaptive Systems: Non-Kolmogorov Probability and the Process Algebra Approach.

    Science.gov (United States)

    Sulis, William H

    2017-10-01

    Walter Freeman III pioneered the application of nonlinear dynamical systems theories and methodologies in his work on mesoscopic brain dynamics.Sadly, mainstream psychology and psychiatry still cling to linear correlation based data analysis techniques, which threaten to subvert the process of experimentation and theory building. In order to progress, it is necessary to develop tools capable of managing the stochastic complexity of complex biopsychosocial systems, which includes multilevel feedback relationships, nonlinear interactions, chaotic dynamics and adaptability. In addition, however, these systems exhibit intrinsic randomness, non-Gaussian probability distributions, non-stationarity, contextuality, and non-Kolmogorov probabilities, as well as the absence of mean and/or variance and conditional probabilities. These properties and their implications for statistical analysis are discussed. An alternative approach, the Process Algebra approach, is described. It is a generative model, capable of generating non-Kolmogorov probabilities. It has proven useful in addressing fundamental problems in quantum mechanics and in the modeling of developing psychosocial systems.

  4. Size and stochasticity in irrigated social-ecological systems

    Science.gov (United States)

    Puy, Arnald; Muneepeerakul, Rachata; Balbo, Andrea L.

    2017-01-01

    This paper presents a systematic study of the relation between the size of irrigation systems and the management of uncertainty. We specifically focus on studying, through a stylized theoretical model, how stochasticity in water availability and taxation interacts with the stochastic behavior of the population within irrigation systems. Our results indicate the existence of two key population thresholds for the sustainability of any irrigation system: or the critical population size required to keep the irrigation system operative, and N* or the population threshold at which the incentive to work inside the irrigation system equals the incentives to work elsewhere. Crossing irretrievably leads to system collapse. N* is the population level with a sub-optimal per capita payoff towards which irrigation systems tend to gravitate. When subjected to strong stochasticity in water availability or taxation, irrigation systems might suffer sharp population drops and irreversibly disintegrate into a system collapse, via a mechanism we dub ‘collapse trap’. Our conceptual study establishes the basis for further work aiming at appraising the dynamics between size and stochasticity in irrigation systems, whose understanding is key for devising mitigation and adaptation measures to ensure their sustainability in the face of increasing and inevitable uncertainty. PMID:28266656

  5. Discontinuity and complexity in nonlinear physical systems

    CERN Document Server

    Baleanu, Dumitru; Luo, Albert

    2014-01-01

    This unique book explores recent developments in experimental research in this broad field, organized in four distinct sections. Part I introduces the reader to the fractional dynamics and Lie group analysis for nonlinear partial differential equations. Part II covers chaos and complexity in nonlinear Hamiltonian systems, important to understand the resonance interactions in nonlinear dynamical systems, such as Tsunami waves and wildfire propagations; as well as Lev flights in chaotic trajectories, dynamical system synchronization and DNA information complexity analysis. Part III examines chaos and periodic motions in discontinuous dynamical systems, extensively present in a range of systems, including piecewise linear systems, vibro-impact systems and drilling systems in engineering. And in Part IV, engineering and financial nonlinearity are discussed. The mechanism of shock wave with saddle-node bifurcation and rotating disk stability will be presented, and the financial nonlinear models will be discussed....

  6. H∞ Observer-Based Sliding Mode Control for Uncertain Stochastic Systems with Time-Varying Delays

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2013-01-01

    Full Text Available The paper is concerned with sliding mode control for uncertain time-delay systems subjected to input nonlinearity and stochastic perturbations. Using the sliding mode control, a robust law is derived to guarantee the reachability of the sliding surface in a finite time interval. The sufficient conditions on asymptotic stability of the error system and sliding mode dynamics with disturbance attenuation level are presented in terms of linear matrix inequalities (LMIs. Finally, an example is provided to illustrate the efficiency and effectiveness of the proposed method.

  7. Stochastic resonance in a bistable system with coloured correlation between additive and multiplicative noise

    Institute of Scientific and Technical Information of China (English)

    Luo Xiao-Qin; Zhu Shi-Qun

    2004-01-01

    The phenomenon of stochastic resonance (SR) in a bistable nonlinear system with coupling between additive and multiplicative noises is investigated when the correlation between two noise terms is coloured. It is found that the signal-to-noise ratio (SNR) of the system is affected not only by the coupling strength λ between two noise terms, but also by the noise correlation time . The SNR is changed from a single peak, to two peaks with a dip, and then to a monotonically decreasing function with noise strength. The dependence of the SR on the initial conditions is entirely caused by the coupling strength λ between two noise terms.

  8. Research on Nonlinear Dynamical Systems.

    Science.gov (United States)

    1983-01-10

    investigated fundamental aspects of functional differential equations, including qualitative questions (stability, nonlinear oscillations ), in 142,45,47,52...Bifurcation in the Duffing equation with several parameters, II. Proc. of the Royal Society of Edinburgh, Series A, 79A (1977), pp.317-326. 1I.J (with ;Ibtoas...Lecture Notes in Mathematics, Vol. 730 (1979). [54] Nonlinear oscillations in equations with delays. Proc. at A.M.S. 10th Summer Seminar on Nonlinear

  9. Boosting iterative stochastic ensemble method for nonlinear calibration of subsurface flow models

    KAUST Repository

    Elsheikh, Ahmed H.

    2013-06-01

    A novel parameter estimation algorithm is proposed. The inverse problem is formulated as a sequential data integration problem in which Gaussian process regression (GPR) is used to integrate the prior knowledge (static data). The search space is further parameterized using Karhunen-Loève expansion to build a set of basis functions that spans the search space. Optimal weights of the reduced basis functions are estimated by an iterative stochastic ensemble method (ISEM). ISEM employs directional derivatives within a Gauss-Newton iteration for efficient gradient estimation. The resulting update equation relies on the inverse of the output covariance matrix which is rank deficient.In the proposed algorithm we use an iterative regularization based on the ℓ2 Boosting algorithm. ℓ2 Boosting iteratively fits the residual and the amount of regularization is controlled by the number of iterations. A termination criteria based on Akaike information criterion (AIC) is utilized. This regularization method is very attractive in terms of performance and simplicity of implementation. The proposed algorithm combining ISEM and ℓ2 Boosting is evaluated on several nonlinear subsurface flow parameter estimation problems. The efficiency of the proposed algorithm is demonstrated by the small size of utilized ensembles and in terms of error convergence rates. © 2013 Elsevier B.V.

  10. Stability of fractional positive nonlinear systems

    Directory of Open Access Journals (Sweden)

    Kaczorek Tadeusz

    2015-12-01

    Full Text Available The conditions for positivity and stability of a class of fractional nonlinear continuous-time systems are established. It is assumed that the nonlinear vector function is continuous, satisfies the Lipschitz condition and the linear part is described by a Metzler matrix. The stability conditions are established by the use of an extension of the Lyapunov method to fractional positive nonlinear systems.

  11. River water quality management considering agricultural return flows: application of a nonlinear two-stage stochastic fuzzy programming.

    Science.gov (United States)

    Tavakoli, Ali; Nikoo, Mohammad Reza; Kerachian, Reza; Soltani, Maryam

    2015-04-01

    In this paper, a new fuzzy methodology is developed to optimize water and waste load allocation (WWLA) in rivers under uncertainty. An interactive two-stage stochastic fuzzy programming (ITSFP) method is utilized to handle parameter uncertainties, which are expressed as fuzzy boundary intervals. An iterative linear programming (ILP) is also used for solving the nonlinear optimization model. To accurately consider the impacts of the water and waste load allocation strategies on the river water quality, a calibrated QUAL2Kw model is linked with the WWLA optimization model. The soil, water, atmosphere, and plant (SWAP) simulation model is utilized to determine the quantity and quality of each agricultural return flow. To control pollution loads of agricultural networks, it is assumed that a part of each agricultural return flow can be diverted to an evaporation pond and also another part of it can be stored in a detention pond. In detention ponds, contaminated water is exposed to solar radiation for disinfecting pathogens. Results of applying the proposed methodology to the Dez River system in the southwestern region of Iran illustrate its effectiveness and applicability for water and waste load allocation in rivers. In the planning phase, this methodology can be used for estimating the capacities of return flow diversion system and evaporation and detention ponds.

  12. Swarming behaviors in multi-agent systems with nonlinear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wenwu, E-mail: wenwuyu@gmail.com [Department of Mathematics, Southeast University, Nanjing 210096 (China); School of Electrical and Computer Engineering, RMIT University, Melbourne VIC 3001 (Australia); Chen, Guanrong [Department of Electronic Engineering, City University of Hong Kong, Hong Kong (China); Cao, Ming [Faculty of Mathematics and Natural Sciences, ITM, University of Groningen (Netherlands); Lü, Jinhu [Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China); Zhang, Hai-Tao [Department of Control Science and Engineering, State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2013-12-15

    The dynamic analysis of a continuous-time multi-agent swarm model with nonlinear profiles is investigated in this paper. It is shown that, under mild conditions, all agents in a swarm can reach cohesion within a finite time, where the upper bounds of the cohesion are derived in terms of the parameters of the swarm model. The results are then generalized by considering stochastic noise and switching between nonlinear profiles. Furthermore, swarm models with limited sensing range inducing changing communication topologies and unbounded repulsive interactions between agents are studied by switching system and nonsmooth analysis. Here, the sensing range of each agent is limited and the possibility of collision among nearby agents is high. Finally, simulation results are presented to demonstrate the validity of the theoretical analysis.

  13. Swarming behaviors in multi-agent systems with nonlinear dynamics.

    Science.gov (United States)

    Yu, Wenwu; Chen, Guanrong; Cao, Ming; Lü, Jinhu; Zhang, Hai-Tao

    2013-12-01

    The dynamic analysis of a continuous-time multi-agent swarm model with nonlinear profiles is investigated in this paper. It is shown that, under mild conditions, all agents in a swarm can reach cohesion within a finite time, where the upper bounds of the cohesion are derived in terms of the parameters of the swarm model. The results are then generalized by considering stochastic noise and switching between nonlinear profiles. Furthermore, swarm models with limited sensing range inducing changing communication topologies and unbounded repulsive interactions between agents are studied by switching system and nonsmooth analysis. Here, the sensing range of each agent is limited and the possibility of collision among nearby agents is high. Finally, simulation results are presented to demonstrate the validity of the theoretical analysis.

  14. Principal resonance response of a stochastic elastic impact oscillator under nonlinear delayed state feedback

    Institute of Scientific and Technical Information of China (English)

    黄冬梅; 徐伟; 谢文贤; 韩群

    2015-01-01

    In this paper, the principal resonance response of a stochastically driven elastic impact (EI) system with time-delayed cubic velocity feedback is investigated. Firstly, based on the method of multiple scales, the steady-state response and its dynamic stability are analyzed in deterministic and stochastic cases, respectively. It is shown that for the case of the multi-valued response with the frequency island phenomenon, only the smallest amplitude of the steady-state response is stable under a certain time delay, which is different from the case of the traditional frequency response. Then, a design criterion is proposed to suppress the jump phenomenon, which is induced by the saddle-node bifurcation. The effects of the feedback parameters on the steady-state responses, as well as the size, shape, and location of stability regions are studied. Results show that the system responses and the stability boundaries are highly dependent on these parameters. Furthermore, with the purpose of suppressing the amplitude peak and governing the resonance stability, appropriate feedback gain and time delay are derived.

  15. Quality control system response to stochastic growth of amyloid fibrils

    DEFF Research Database (Denmark)

    Pigolotti, Simone; Lizana, Ludvig; Otzen, Daniel

    2013-01-01

    We introduce a stochastic model describing aggregation of misfolded proteins and degradation by the protein quality control system in a single cell. Aggregate growth is contrasted by the cell quality control system, that attacks them at different stages of the growth process, with an efficiency t...

  16. Stochastic Modelling and Optimization of Complex Infrastructure Systems

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In this paper it is shown that recent progress in stochastic modelling and optimization in combination with advanced computer systems has now made it possible to improve the design and the maintenance strategies for infrastructure systems. The paper concentrates on highway networks and single lar...

  17. STABILITY CRITERIA FOR STOCHASTIC DISCRETE-TIME FRACTIONAL ORDER SYSTEMS

    Directory of Open Access Journals (Sweden)

    Carmen BARBACIORU

    2016-05-01

    Full Text Available In this paper are discussed stability problems for a class of discrete-time fractional systems (DTFSs with independent random perturbations. Two notions of mean square stability (MSS and mean square asymptotic stability (MSAS are introduced for the DTFSs by using an approximating linear stochastic system. Necessary and sufficient conditions for MSS and MSA are then derived.

  18. An identification algorithm for linear stochastic systems with time delays

    Science.gov (United States)

    Leondes, C. T.; Wong, E. C.

    1982-01-01

    Linear discrete stochastic control systems containing unknown multiple time delays, plant parameters and noise variances are considered. An algorithm is established which uses the maximum-likelihood technique to identify the unknown parameters. An estimated likelihood function is evaluated based on the previous parameter estimates, which in turn generates a new descent direction vector to update the unknown parameters. The delays and plant parameters are identified in their respective parameter spaces. An example of a second-order stochastic system has been implemented by digital simulation to demonstrate the applicability of the algorithm.

  19. ? filtering for stochastic systems driven by Poisson processes

    Science.gov (United States)

    Song, Bo; Wu, Zheng-Guang; Park, Ju H.; Shi, Guodong; Zhang, Ya

    2015-01-01

    This paper investigates the ? filtering problem for stochastic systems driven by Poisson processes. By utilising the martingale theory such as the predictable projection operator and the dual predictable projection operator, this paper transforms the expectation of stochastic integral with respect to the Poisson process into the expectation of Lebesgue integral. Then, based on this, this paper designs an ? filter such that the filtering error system is mean-square asymptotically stable and satisfies a prescribed ? performance level. Finally, a simulation example is given to illustrate the effectiveness of the proposed filtering scheme.

  20. Maximized Gust Loads of a Closed-Loop, Nonlinear Aeroelastic System Using Nonlinear Systems Theory

    Science.gov (United States)

    Silva, Walter A.

    1999-01-01

    The problem of computing the maximized gust load for a nonlinear, closed-loop aeroelastic aircraft is discusses. The Volterra theory of nonlinear systems is applied in order to define a linearized system that provides a bounds on the response of the nonlinear system of interest. The method is applied to a simplified model of an Airbus A310.

  1. Girsanov's transformation based variance reduced Monte Carlo simulation schemes for reliability estimation in nonlinear stochastic dynamics

    Science.gov (United States)

    Kanjilal, Oindrila; Manohar, C. S.

    2017-07-01

    The study considers the problem of simulation based time variant reliability analysis of nonlinear randomly excited dynamical systems. Attention is focused on importance sampling strategies based on the application of Girsanov's transformation method. Controls which minimize the distance function, as in the first order reliability method (FORM), are shown to minimize a bound on the sampling variance of the estimator for the probability of failure. Two schemes based on the application of calculus of variations for selecting control signals are proposed: the first obtains the control force as the solution of a two-point nonlinear boundary value problem, and, the second explores the application of the Volterra series in characterizing the controls. The relative merits of these schemes, vis-à-vis the method based on ideas from the FORM, are discussed. Illustrative examples, involving archetypal single degree of freedom (dof) nonlinear oscillators, and a multi-degree of freedom nonlinear dynamical system, are presented. The credentials of the proposed procedures are established by comparing the solutions with pertinent results from direct Monte Carlo simulations.

  2. Feynman-Kac formula for stochastic hybrid systems

    Science.gov (United States)

    Bressloff, Paul C.

    2017-01-01

    We derive a Feynman-Kac formula for functionals of a stochastic hybrid system evolving according to a piecewise deterministic Markov process. We first derive a stochastic Liouville equation for the moment generator of the stochastic functional, given a particular realization of the underlying discrete Markov process; the latter generates transitions between different dynamical equations for the continuous process. We then analyze the stochastic Liouville equation using methods recently developed for diffusion processes in randomly switching environments. In particular, we obtain dynamical equations for the moment generating function, averaged with respect to realizations of the discrete Markov process. The resulting Feynman-Kac formula takes the form of a differential Chapman-Kolmogorov equation. We illustrate the theory by calculating the occupation time for a one-dimensional velocity jump process on the infinite or semi-infinite real line. Finally, we present an alternative derivation of the Feynman-Kac formula based on a recent path-integral formulation of stochastic hybrid systems.

  3. Feynman-Kac formula for stochastic hybrid systems.

    Science.gov (United States)

    Bressloff, Paul C

    2017-01-01

    We derive a Feynman-Kac formula for functionals of a stochastic hybrid system evolving according to a piecewise deterministic Markov process. We first derive a stochastic Liouville equation for the moment generator of the stochastic functional, given a particular realization of the underlying discrete Markov process; the latter generates transitions between different dynamical equations for the continuous process. We then analyze the stochastic Liouville equation using methods recently developed for diffusion processes in randomly switching environments. In particular, we obtain dynamical equations for the moment generating function, averaged with respect to realizations of the discrete Markov process. The resulting Feynman-Kac formula takes the form of a differential Chapman-Kolmogorov equation. We illustrate the theory by calculating the occupation time for a one-dimensional velocity jump process on the infinite or semi-infinite real line. Finally, we present an alternative derivation of the Feynman-Kac formula based on a recent path-integral formulation of stochastic hybrid systems.

  4. Introduction to modeling and analysis of stochastic systems

    CERN Document Server

    Kulkarni, V G

    2011-01-01

    This is an introductory-level text on stochastic modeling. It is suited for undergraduate students in engineering, operations research, statistics, mathematics, actuarial science, business management, computer science, and public policy. It employs a large number of examples to teach the students to use stochastic models of real-life systems to predict their performance, and use this analysis to design better systems. The book is devoted to the study of important classes of stochastic processes: discrete and continuous time Markov processes, Poisson processes, renewal and regenerative processes, semi-Markov processes, queueing models, and diffusion processes. The book systematically studies the short-term and the long-term behavior, cost/reward models, and first passage times. All the material is illustrated with many examples, and case studies. The book provides a concise review of probability in the appendix. The book emphasizes numerical answers to the problems. A collection of MATLAB programs to accompany...

  5. A stochastic physical system approach to modeling river water quality

    Science.gov (United States)

    Curi, W. F.; Unny, T. E.; Kay, J. J.

    1995-06-01

    In this paper, concepts of network thermodynamics are applied to a river water quality model, which is based on Streeter-Phelps equations, to identify the corresponding physical components and their topology. Then, the randomness in the parameters, input coefficients and initial conditions are modeled by Gaussian white noises. From the stochastic components of the physical system description of problem and concepts of physical system theory, a set of stochastic differential equations can be automatically generated in a computer and the recent developments on the automatic formulation of the moment equations based on Ito calculus can be used. This procedure is illustrated through the solution of an example of stochastic river water quality problem and it is also shown how other related problems with different configurations can be automatically solved in a computer using just one software.

  6. Compositional abstractions for long-run properties of stochastic systems

    DEFF Research Database (Denmark)

    Smith, Michael James Andrew

    2011-01-01

    When analysing the performance of a system, we are often interested in long-run properties, such as the proportion of time it spends in a certain state. Stochastic process algebras help us to answer this sort of question by building a compositional model of the system, and using tools to analyse...... its underlying Markov chain. However, this also leads to state space explosion problems as the number of components in the model increases, which severely limits the size of models we can analyse. Because of this, we look for abstraction techniques that allow us to analyse a smaller model that safely...... bounds the properties of the original. In this paper, we present an approach to bounding long-run properties of models in the stochastic process algebra PEPA. We use a method called stochastic bounds to build upper and lower bounds of the underlying Markov chain that are lumpable, and therefore can...

  7. Stability analysis of nonlinear systems with slope restricted nonlinearities.

    Science.gov (United States)

    Liu, Xian; Du, Jiajia; Gao, Qing

    2014-01-01

    The problem of absolute stability of Lur'e systems with sector and slope restricted nonlinearities is revisited. Novel time-domain and frequency-domain criteria are established by using the Lyapunov method and the well-known Kalman-Yakubovich-Popov (KYP) lemma. The criteria strengthen some existing results. Simulations are given to illustrate the efficiency of the results.

  8. Stability Analysis of Nonlinear Systems with Slope Restricted Nonlinearities

    Directory of Open Access Journals (Sweden)

    Xian Liu

    2014-01-01

    Full Text Available The problem of absolute stability of Lur’e systems with sector and slope restricted nonlinearities is revisited. Novel time-domain and frequency-domain criteria are established by using the Lyapunov method and the well-known Kalman-Yakubovich-Popov (KYP lemma. The criteria strengthen some existing results. Simulations are given to illustrate the efficiency of the results.

  9. Identification and estimation algorithm for stochastic neural system.

    Science.gov (United States)

    Nakao, M; Hara, K; Kimura, M; Sato, R

    1984-01-01

    An algorithm for the estimation of stochastic processes in a neural system is presented. This process is defined here as the continuous stochastic process reflecting the dynamics of the neural system which has some inputs and generates output spike trains. The algorithm proposed here is to identify the system parameters and then estimate the stochastic process called neural system process here. These procedures carried out on the basis of the output spike trains which are supposed to be the data observed in the randomly missing way by the threshold time function in the neural system. The algorithm is constructed with the well-known Kalman filters and realizes the estimation of the neural system process by cooperating with the algorithm for the parameter estimation of the threshold time function presented previously (Nakao et al., 1983). The performance of the algorithm is examined by applying it to the various spike trains simulated by some artificial models and also to the neural spike trains recorded in cat's optic tract fibers. The results in these applications are thought to prove the effectiveness of the algorithm proposed here to some extent. Such attempts, we think, will serve to improve the characterizing and modelling techniques of the stochastic neural systems.

  10. Variational mean-field algorithm for efficient inference in large systems of stochastic differential equations.

    Science.gov (United States)

    Vrettas, Michail D; Opper, Manfred; Cornford, Dan

    2015-01-01

    This work introduces a Gaussian variational mean-field approximation for inference in dynamical systems which can be modeled by ordinary stochastic differential equations. This new approach allows one to express the variational free energy as a functional of the marginal moments of the approximating Gaussian process. A restriction of the moment equations to piecewise polynomial functions, over time, dramatically reduces the complexity of approximate inference for stochastic differential equation models and makes it comparable to that of discrete time hidden Markov models. The algorithm is demonstrated on state and parameter estimation for nonlinear problems with up to 1000 dimensional state vectors and compares the results empirically with various well-known inference methodologies.

  11. DISTURBANCE ATTENUATION FOR UNCERTAIN NONLINEAR CASCADED SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    BI Weiping; MU Xiaowu; SUN Yuqiang

    2004-01-01

    In present paper, the disturbance attenuation problem of uncertain nonlinear cascaded systems is studied. Based on the adding one power integrator technique and recursive design, a feedback controller that solves the disturbance attenuation problem is constructed for uncertain nonlinear cascaded systems with internal stability.

  12. Nonlinear stochastic exclusion financial dynamics modeling and time-dependent intrinsic detrended cross-correlation

    Science.gov (United States)

    Zhang, Wei; Wang, Jun

    2017-09-01

    In attempt to reproduce price dynamics of financial markets, a stochastic agent-based financial price model is proposed and investigated by stochastic exclusion process. The exclusion process, one of interacting particle systems, is usually thought of as modeling particle motion (with the conserved number of particles) in a continuous time Markov process. In this work, the process is utilized to imitate the trading interactions among the investing agents, in order to explain some stylized facts found in financial time series dynamics. To better understand the correlation behaviors of the proposed model, a new time-dependent intrinsic detrended cross-correlation (TDI-DCC) is introduced and performed, also, the autocorrelation analyses are applied in the empirical research. Furthermore, to verify the rationality of the financial price model, the actual return series are also considered to be comparatively studied with the simulation ones. The comparison results of return behaviors reveal that this financial price dynamics model can reproduce some correlation features of actual stock markets.

  13. Solution of Stochastic Nonlinear PDEs Using Automated Wiener-Hermite Expansion

    KAUST Repository

    Al-Juhani, Amnah

    2014-01-06

    The solution of the stochastic differential equations (SDEs) using Wiener-Hermite expansion (WHE) has the advantage of converting the problem to a system of deterministic equations that can be solved efficiently using the standard deterministic numerical methods [1]. The main statistics, such as the mean, covariance, and higher order statistical moments, can be calculated by simple formulae involving only the deterministic Wiener-Hermite coefficients. In WHE approach, there is no randomness directly involved in the computations. One does not have to rely on pseudo random number generators, and there is no need to solve the SDEs repeatedly for many realizations. Instead, the deterministic system is solved only once. For previous research efforts see [2, 4].

  14. Stochastic Analysis of Advection-diffusion-Reactive Systems with Applications to Reactive Transport in Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Tartakovsky, Daniel

    2013-08-30

    We developed new CDF and PDF methods for solving non-linear stochastic hyperbolic equations that does not rely on linearization approximations and allows for rigorous formulation of the boundary conditions.

  15. Quantum Dynamics of Nonlinear Cavity Systems

    OpenAIRE

    Nation, Paul D.

    2010-01-01

    We investigate the quantum dynamics of three different configurations of nonlinear cavity systems. To begin, we carry out a quantum analysis of a dc superconducting quantum interference device (SQUID) mechanical displacement detector comprised of a SQUID with a mechanically compliant loop segment. The SQUID is approximated by a nonlinear current-dependent inductor, inducing a flux tunable nonlinear Duffing term in the cavity equation of motion. Expressions are derived for the detector signal ...

  16. A new design of robust H∞ sliding mode control for uncertain stochastic T-S fuzzy time-delay systems.

    Science.gov (United States)

    Gao, Qing; Feng, Gang; Xi, Zhiyu; Wang, Yong; Qiu, Jianbin

    2014-09-01

    In this paper, a novel dynamic sliding mode control scheme is proposed for a class of uncertain stochastic nonlinear time-delay systems represented by Takagi-Sugeno fuzzy models. The key advantage of the proposed scheme is that two very restrictive assumptions in most existing sliding mode control approaches for stochastic fuzzy systems have been removed. It is shown that the closed-loop control system trajectories can be driven onto the sliding surface in finite time almost certainly. It is also shown that the stochastic stability of the resulting sliding motion can be guaranteed in terms of linear matrix inequalities; moreover, the sliding-mode controller can be obtained simultaneously. Simulation results illustrating the advantages and effectiveness of the proposed approaches are also provided.

  17. Theory and application of stability for stochastic reaction diffusion systems

    Institute of Scientific and Technical Information of China (English)

    LUO Qi; DENG FeiQi; MAO XueRong; BAO JunDong; ZHANG YuTian

    2008-01-01

    So far, the Lyapunov direct method is still the moat effective technique in the study of stability for ordinary differential equations and stochastic differential equations. Due to the shortage of the corresponding Ito formula, this useful method has not been popularized in stochastic partial differential equations. The aim of this work is to try to extend the Lyapunov direct method to the Ito stochastic reaction diffusion systems and to establish the corresponding Lyapunov stability theory, including stability in probablity, asymptotic stability in probablity, end exponential stability in mean square. As the application of the obtained theorems, this paper addresses the stability of the Hopfield neural network and points out that the main results ob-tained by Holden Helge and Liao Xiaoxin et al. can be all regarded as the corollaries of the theorems presented in this paper.

  18. Threshold for extinction and survival in stochastic tumor immune system

    Science.gov (United States)

    Li, Dongxi; Cheng, Fangjuan

    2017-10-01

    This paper mainly investigates the stochastic character of tumor growth and extinction in the presence of immune response of a host organism. Firstly, the mathematical model describing the interaction and competition between the tumor cells and immune system is established based on the Michaelis-Menten enzyme kinetics. Then, the threshold conditions for extinction, weak persistence and stochastic persistence of tumor cells are derived by the rigorous theoretical proofs. Finally, stochastic simulation are taken to substantiate and illustrate the conclusion we have derived. The modeling results will be beneficial to understand to concept of immunoediting, and develop the cancer immunotherapy. Besides, our simple theoretical model can help to obtain new insight into the complexity of tumor growth.

  19. Stochastic stage-structured modeling of the adaptive immune system

    Energy Technology Data Exchange (ETDEWEB)

    Chao, D. L. (Dennis L.); Davenport, M. P. (Miles P.); Forrest, S. (Stephanie); Perelson, Alan S.,

    2003-01-01

    We have constructed a computer model of the cytotoxic T lymphocyte (CTL) response to antigen and the maintenance of immunological memory. Because immune responses often begin with small numbers of cells and there is great variation among individual immune systems, we have chosen to implement a stochastic model that captures the life cycle of T cells more faithfully than deterministic models. Past models of the immune response have been differential equation based, which do not capture stochastic effects, or agent-based, which are computationally expensive. We use a stochastic stage-structured approach that has many of the advantages of agent-based modeling but is more efficient. Our model can provide insights into the effect infections have on the CTL repertoire and the response to subsequent infections.

  20. Stochastic homogenization of rate-independent systems and applications

    Science.gov (United States)

    Heida, Martin

    2017-05-01

    We study the stochastic and periodic homogenization 1-homogeneous convex functionals. We prove some convergence results with respect to stochastic two-scale convergence, which are related to classical Γ -convergence results. The main result is a general \\liminf -estimate for a sequence of 1-homogeneous functionals and a two-scale stability result for sequences of convex sets. We apply our results to the homogenization of rate-independent systems with 1-homogeneous dissipation potentials and quadratic energies. In these applications, both the energy and the dissipation potential have an underlying stochastic microscopic structure. We study the particular homogenization problems of Prandtl-Reuss plasticity, Tresca friction on a macroscopic surface and Tresca friction on microscopic fissures.

  1. Central suboptimal H ∞ control design for nonlinear polynomial systems

    Science.gov (United States)

    Basin, Michael V.; Shi, Peng; Calderon-Alvarez, Dario

    2011-05-01

    This article presents the central finite-dimensional H ∞ regulator for nonlinear polynomial systems, which is suboptimal for a given threshold γ with respect to a modified Bolza-Meyer quadratic criterion including the attenuation control term with the opposite sign. In contrast to the previously obtained results, the article reduces the original H ∞ control problem to the corresponding optimal H 2 control problem, using this technique proposed in Doyle et al. [Doyle, J.C., Glover, K., Khargonekar, P.P., and Francis, B.A. (1989), 'State-space Solutions to Standard H 2 and H ∞ Control Problems', IEEE Transactions on Automatic Control, 34, 831-847]. This article yields the central suboptimal H ∞ regulator for nonlinear polynomial systems in a closed finite-dimensional form, based on the optimal H 2 regulator obtained in Basin and Calderon-Alvarez [Basin, M.V., and Calderon-Alvarez, D. (2008b), 'Optimal Controller for Uncertain Stochastic Polynomial Systems', Journal of the Franklin Institute, 345, 293-302]. Numerical simulations are conducted to verify performance of the designed central suboptimal regulator for nonlinear polynomial systems against the central suboptimal H ∞ regulator available for the corresponding linearised system.

  2. Filtering of Systems with Nonlinearities

    Science.gov (United States)

    1982-03-01

    IEEE Transactions on Automatic Control , Vol. AC - 15, No. 1, February -1970, 74-81. 41 .’ w 7, 1.%U.-.. j...1972, 439 - 448. •IA 35. D. T. Magill, ’"ptimal Adaptive Estimation of Sampled Stochastic I .,"* , Processes," IEEE Transactions on Automatic Control , Vol...F. L. Sims, "Performance Measure for Adaptive Kalman Estimators," IEEE Transactions on Automatic Control , April 1970, pp. 249-250.

  3. Optimal adaptive control for a class of stochastic systems

    NARCIS (Netherlands)

    Bagchi, Arunabha; Chen, Han-Fu

    1997-01-01

    We study linear-quadratic adaptive tracking problems for a special class of stochastic systems expressed in the state-space form. This is a long-standing problem in the control of aircraft flying through atmospheric turbulence. Using an ELS-based algorithm and introducing dither in the control law w

  4. Analysis of Stochastic Gilpin-Ayala Competition System

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2014-01-01

    Full Text Available This paper is concerned with the asymptotic behavior for stochastic Gilpin-Ayala competition system. The sufficient conditions for existence of stationary distribution and extinction are established. And a certain asymptotic property of the solution is also obtained. A nontrivial example is provided to illustrate our results.

  5. Parameter identification of stochastic diffusion systems with unknown boundary conditions

    NARCIS (Netherlands)

    Aihara, Shin Ichi; Bagchi, Arunabha

    2013-01-01

    This paper treats the filtering and parameter identification for the stochastic diffusion systems with unknown boundary conditions. The physical situation of the unknown boundary conditions can be found in many industrial problems,i.g., the salt concentration model of the river Rhine is a typical ex

  6. Prediction of the Stochastic System Properties Using Genetic Identification

    OpenAIRE

    2003-01-01

    The article deals with the equation solutions for conditional probabilities determination. The number of variables in equation for correlation estimation could be reduced under the specific conditions. Stochastic system could be approximated by the mean values of the conditional probabilities as it declared by presented example.

  7. Prediction of the Stochastic System Properties Using Genetic Identification

    Directory of Open Access Journals (Sweden)

    Juraj Spalek

    2003-01-01

    Full Text Available The article deals with the equation solutions for conditional probabilities determination. The number of variables in equation for correlation estimation could be reduced under the specific conditions. Stochastic system could be approximated by the mean values of the conditional probabilities as it declared by presented example.

  8. Computational procedures for stochastic multi-echelon production systems

    NARCIS (Netherlands)

    Houtum, van G.J.J.A.; Zijm, W.H.M.

    1991-01-01

    This paper is concerned with the numerical evaluation of multi-echelon production systems. Each stage requires a fixed predetermined leadtime; furthermore, we assume a stochastic, stationary end-time demand process. In a previous paper, we have developed an analytical framework for determining optim

  9. Topics on the stochastical treatement of an open quantum system

    CERN Document Server

    Sturzu, I

    2002-01-01

    The paper shortly presents the role of Stochastic Processes Theory in the present day Quantum Theory, and the relation to Operational Quantum Physics. The dynamics of an open quantum system is studied on a usual example from Quantum Optics, suggesting the definition of a Neumark-type dilation for the non-thermal states.

  10. Stabilization of a Class of Stochastic Systems with Time Delays

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2014-01-01

    Full Text Available The problem of exponential stability is investigated for a class of stochastic time-delay systems. By using the decomposition technique and Lyapunov stability theory, two improved exponential stability criteria are derived. Finally, a numerical example is given to illustrate the effectiveness and the benefit of the proposed method.

  11. Experimental Analysis of Stochastic Resonance in a Duffing System

    Institute of Scientific and Technical Information of China (English)

    WANG Fu-Zhong; CHEN Wei-Shi; QIN Guang-Rong; GUO De-Yong; LIU Jun-Ling

    2003-01-01

    An experimental circuit is used to study the stochastic resonance (SR) phenomena in a Duffing system. The characteristics ofSR are investigated from various aspects by varying all the possible parameters. The deviations between the experimental results and the adiabatic theory are presented.

  12. Analysis of Stochastic Gilpin-Ayala Competition System

    OpenAIRE

    Lei Liu; Quanxin Zhu

    2014-01-01

    This paper is concerned with the asymptotic behavior for stochastic Gilpin-Ayala competition system. The sufficient conditions for existence of stationary distribution and extinction are established. And a certain asymptotic property of the solution is also obtained. A nontrivial example is provided to illustrate our results.

  13. Stochastic Robust Mathematical Programming Model for Power System Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cong; Changhyeok, Lee; Haoyong, Chen; Mehrotra, Sanjay

    2016-01-01

    This paper presents a stochastic robust framework for two-stage power system optimization problems with uncertainty. The model optimizes the probabilistic expectation of different worst-case scenarios with ifferent uncertainty sets. A case study of unit commitment shows the effectiveness of the proposed model and algorithms.

  14. Time Evolution of the Dynamical Variables of a Stochastic System.

    Science.gov (United States)

    de la Pena, L.

    1980-01-01

    By using the method of moments, it is shown that several important and apparently unrelated theorems describing average properties of stochastic systems are in fact particular cases of a general law; this method is applied to generalize the virial theorem and the fluctuation-dissipation theorem to the time-dependent case. (Author/SK)

  15. Simulating rare events in equilibrium or nonequilibrium stochastic systems

    NARCIS (Netherlands)

    Allen, R.J.; Frenkel, D.; Wolde, P.R. ten

    2006-01-01

    We present three algorithms for calculating rate constants and sampling transition paths for rare events in simulations with stochastic dynamics. The methods do not require a priori knowledge of the phase-space density and are suitable for equilibrium or nonequilibrium systems in stationary state. A

  16. Exact lower and upper bounds on stationary moments in stochastic biochemical systems

    Science.gov (United States)

    Ghusinga, Khem Raj; Vargas-Garcia, Cesar A.; Lamperski, Andrew; Singh, Abhyudai

    2017-08-01

    In the stochastic description of biochemical reaction systems, the time evolution of statistical moments for species population counts is described by a linear dynamical system. However, except for some ideal cases (such as zero- and first-order reaction kinetics), the moment dynamics is underdetermined as lower-order moments depend upon higher-order moments. Here, we propose a novel method to find exact lower and upper bounds on stationary moments for a given arbitrary system of biochemical reactions. The method exploits the fact that statistical moments of any positive-valued random variable must satisfy some constraints that are compactly represented through the positive semidefiniteness of moment matrices. Our analysis shows that solving moment equations at steady state in conjunction with constraints on moment matrices provides exact lower and upper bounds on the moments. These results are illustrated by three different examples—the commonly used logistic growth model, stochastic gene expression with auto-regulation and an activator-repressor gene network motif. Interestingly, in all cases the accuracy of the bounds is shown to improve as moment equations are expanded to include higher-order moments. Our results provide avenues for development of approximation methods that provide explicit bounds on moments for nonlinear stochastic systems that are otherwise analytically intractable.

  17. Fundamentals of Stochastic Filtering

    CERN Document Server

    Crisan, Dan

    2008-01-01

    The objective of stochastic filtering is to determine the best estimate for the state of a stochastic dynamical system from partial observations. The solution of this problem in the linear case is the well known Kalman-Bucy filter which has found widespread practical application. The purpose of this book is to provide a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods. The book should provide sufficient

  18. Hopf Bifurcation in a Nonlinear Wave System

    Institute of Scientific and Technical Information of China (English)

    HE Kai-Fen

    2004-01-01

    @@ Bifurcation behaviour of a nonlinear wave system is studied by utilizing the data in solving the nonlinear wave equation. By shifting to the steady wave frame and taking into account the Doppler effect, the nonlinear wave can be transformed into a set of coupled oscillators with its (stable or unstable) steady wave as the fixed point.It is found that in the chosen parameter regime, both mode amplitudes and phases of the wave can bifurcate to limit cycles attributed to the Hopf instability. It is emphasized that the investigation is carried out in a pure nonlinear wave framework, and the method can be used for the further exploring routes to turbulence.

  19. FORCED OSCILLATIONS IN NONLINEAR FEEDBACK CONTROL SYSTEM

    Science.gov (United States)

    Since a nonlinear feedback control system may possess more than one type of forced oscillations, it is highly desirable to investigate the type of...method for finding the existence of forced oscillations and response curve characteristics of a nonlinear feedback control system by means of finding the...second order feedback control system are investigated; the fundamental frequency forced oscillation for a higher order system and the jump resonance

  20. Nonlinear identification of power electronic systems

    OpenAIRE

    Chau, KT; Chan, CC

    1995-01-01

    This paper presents a new approach to modelling power electronic systems using nonlinear system identification. By employing the nonlinear autoregressive moving average with exogenous input (NARMAX) technique, the parametric model of power electronic systems can be derived from the time-domain data. This approach possesses some advantages over available circuit-oriented modelling approaches, such as no small-signal approximation, no circuit idealization and no detailed knowledge of system ope...