Spinor Field Nonlinearity and Space-Time Geometry
Saha, Bijan
2018-03-01
Within the scope of Bianchi type VI,VI0,V, III, I, LRSBI and FRW cosmological models we have studied the role of nonlinear spinor field on the evolution of the Universe and the spinor field itself. It was found that due to the presence of non-trivial non-diagonal components of the energy-momentum tensor of the spinor field in the anisotropic space-time, there occur some severe restrictions both on the metric functions and on the components of the spinor field. In this report we have considered a polynomial nonlinearity which is a function of invariants constructed from the bilinear spinor forms. It is found that in case of a Bianchi type-VI space-time, depending of the sign of self-coupling constants, the model allows either late time acceleration or oscillatory mode of evolution. In case of a Bianchi VI 0 type space-time due to the specific behavior of the spinor field we have two different scenarios. In one case the invariants constructed from bilinear spinor forms become trivial, thus giving rise to a massless and linear spinor field Lagrangian. This case is equivalent to the vacuum solution of the Bianchi VI 0 type space-time. The second case allows non-vanishing massive and nonlinear terms and depending on the sign of coupling constants gives rise to accelerating mode of expansion or the one that after obtaining some maximum value contracts and ends in big crunch, consequently generating space-time singularity. In case of a Bianchi type-V model there occur two possibilities. In one case we found that the metric functions are similar to each other. In this case the Universe expands with acceleration if the self-coupling constant is taken to be a positive one, whereas a negative coupling constant gives rise to a cyclic or periodic solution. In the second case the spinor mass and the spinor field nonlinearity vanish and the Universe expands linearly in time. In case of a Bianchi type-III model the space-time remains locally rotationally symmetric all the time
Symmetry and exact solutions of nonlinear spinor equations
International Nuclear Information System (INIS)
Fushchich, W.I.; Zhdanov, R.Z.
1989-01-01
This review is devoted to the application of algebraic-theoretical methods to the problem of constructing exact solutions of the many-dimensional nonlinear systems of partial differential equations for spinor, vector and scalar fields widely used in quantum field theory. Large classes of nonlinear spinor equations invariant under the Poincare group P(1, 3), Weyl group (i.e. Poincare group supplemented by a group of scale transformations), and the conformal group C(1, 3) are described. Ansaetze invariant under the Poincare and the Weyl groups are constructed. Using these we reduce the Poincare-invariant nonlinear Dirac equations to systems of ordinary differential equations and construct large families of exact solutions of the nonlinear Dirac-Heisenberg equation depending on arbitrary parameters and functions. In a similar way we have obtained new families of exact solutions of the nonlinear Maxwell-Dirac and Klein-Gordon-Dirac equations. The obtained solutions can be used for quantization of nonlinear equations. (orig.)
Nonlinear Spinor Fields in Bianchi type-I spacetime reexamined
Saha, Bijan
2013-01-01
The specific behavior of spinor field in curve space-time with the exception of FRW model almost always gives rise to non-trivial non-diagonal components of the energy-momentum tensor. This non-triviality of non-diagonal components of the energy-momentum tensor imposes some severe restrictions either on the spinor field or on the metric functions. In this paper within the scope of an anisotropic Bianchi type-I Universe we study the role of spinor field in the evolution of the Universe. It is ...
Nonlinear Spinor Field in Non-Diagonal Bianchi Type Space-Time
Directory of Open Access Journals (Sweden)
Saha Bijan
2018-01-01
Full Text Available Within the scope of the non-diagonal Bianchi cosmological models we have studied the role of the spinor field in the evolution of the Universe. In the non-diagonal Bianchi models the spinor field distribution along the main axis is anisotropic and does not vanish in the absence of the spinor field nonlinearity. Hence within these models perfect fluid, dark energy etc. cannot be simulated by the spinor field nonlinearity. The equation for volume scale V in the case of non-diagonal Bianchi models contains a term with first derivative of V explicitly and does not allow exact solution by quadratures. Like the diagonal models the non-diagonal Bianchi space-time becomes locally rotationally symmetric even in the presence of a spinor field. It was found that depending on the sign of the coupling constant the model allows either an open Universe that rapidly grows up or a close Universe that ends in a Big Crunch singularity.
Towards exact solutions of the non-linear Heisenberg-Pauli-Weyl spinor equation
International Nuclear Information System (INIS)
Mielke, E.W.
1980-03-01
In ''color geometrodynamics'' fundamental spinor fields are assumed to obey a GL(2f,C) x GL(2c,C) gauge-invariant nonlinear spinor equation of the Heisenberg-Pauli-Weyl type. Quark confinement, assimilating a scheme of Salam and Strathdee, is (partially) mediated by the tensor ''gluons'' of strong gravity. This hypothesis is incorporated into the model by considering the nonlinear Dirac equation in a curved space-time of hadronic dimensions. Disregarding internal degrees of freedom, it is then feasible, for a particular background space-time, to obtain exact solutions of the spherical bound-state problem. Finally, these solutions are tentatively interpreted as droplet-type solitons and remarks on their interrelation with Wheeler's geon construction are made. (author)
Exact solutions to the nonlinear spinor field equations in the Goedel universe
International Nuclear Information System (INIS)
Herrera, A.
1996-01-01
The nonlinear spinor field in the external gravitational field of the Goedel universe is considered and exact static solutions to the field equations corresponding to the Lagrangians with the nonlinear terms L N =F(I S ) and L N =G(I P ) are obtained. Here F(I S ) and G(I P ) are arbitrary functions of the spinor invariants I S =S+Ψ bar Ψ and I P =P 2 =(iΨ bar γ 5 Ψ) 2 . The conditions under which one-dimensional soliton-like solutions exist are established and the role of gravity in the formation of these objects is determined. 9 refs., 1 fig
Nucleon-nucleon scattering in the functional quantum theory of the nonlinear spinor field
International Nuclear Information System (INIS)
Haegele, G.
1979-01-01
The author calculates the S matrix for the elastic nucleon-nucleon scattering in the lowest approximation using the quantum theory of nonlinear spinor fields with special emphasis to the ghost configuration of this theory. Introducing a general scalar product a new functional channel calculus is considered. From the results the R and T matrix elements and the differential and integral cross sections are derived. (HSI)
Yao, Yu-Qin; Han, Wei; Li, Ji; Liu, Wu-Ming
2018-05-01
Nonlinearity is one of the most remarkable characteristics of Bose–Einstein condensates (BECs). Much work has been done on one- and two-component BECs with time- or space-modulated nonlinearities, while there is little work on spinor BECs with space–time-modulated nonlinearities. In the present paper we investigate localized nonlinear waves and dynamical stability in spinor Bose–Einstein condensates with nonlinearities dependent on time and space. We solve the three coupled Gross–Pitaevskii equations by similarity transformation and obtain two families of exact matter wave solutions in terms of Jacobi elliptic functions and the Mathieu equation. The localized states of the spinor matter wave describe the dynamics of vector breathing solitons, moving breathing solitons, quasi-breathing solitons and resonant solitons. The results show that one-order vector breathing solitons, quasi-breathing solitons, resonant solitons and the moving breathing solitons ψ ±1 are all stable, but the moving breathing soliton ψ 0 is unstable. We also present the experimental parameters to realize these phenomena in future experiments.
Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid.
Dominici, Lorenzo; Dagvadorj, Galbadrakh; Fellows, Jonathan M; Ballarini, Dario; De Giorgi, Milena; Marchetti, Francesca M; Piccirillo, Bruno; Marrucci, Lorenzo; Bramati, Alberto; Gigli, Giuseppe; Szymańska, Marzena H; Sanvitto, Daniele
2015-12-01
Vortices are archetypal objects that recur in the universe across the scale of complexity, from subatomic particles to galaxies and black holes. Their appearance is connected with spontaneous symmetry breaking and phase transitions. In Bose-Einstein condensates and superfluids, vortices are both point-like and quantized quasiparticles. We use a two-dimensional (2D) fluid of polaritons, bosonic particles constituted by hybrid photonic and electronic oscillations, to study quantum vortex dynamics. Polaritons benefit from easiness of wave function phase detection, a spinor nature sustaining half-integer vorticity, strong nonlinearity, and tuning of the background disorder. We can directly generate by resonant pulsed excitations a polariton condensate carrying either a full or half-integer vortex as initial condition and follow their coherent evolution using ultrafast imaging on the picosecond scale. The observations highlight a rich phenomenology, such as the spiraling of the half-vortex and the joint path of the twin charges of a full vortex, until the moment of their splitting. Furthermore, we observe the ordered branching into newly generated secondary couples, associated with the breaking of radial and azimuthal symmetries. This allows us to devise the interplay of nonlinearity and sample disorder in shaping the fluid and driving the vortex dynamics. In addition, our observations suggest that phase singularities may be seen as fundamental particles whose quantized events span from pair creation and recombination to 2D+t topological vortex strings.
Nonlinear unitary quantum collapse model with self-generated noise
Geszti, Tamás
2018-04-01
Collapse models including some external noise of unknown origin are routinely used to describe phenomena on the quantum-classical border; in particular, quantum measurement. Although containing nonlinear dynamics and thereby exposed to the possibility of superluminal signaling in individual events, such models are widely accepted on the basis of fully reproducing the non-signaling statistical predictions of quantum mechanics. Here we present a deterministic nonlinear model without any external noise, in which randomness—instead of being universally present—emerges in the measurement process, from deterministic irregular dynamics of the detectors. The treatment is based on a minimally nonlinear von Neumann equation for a Stern–Gerlach or Bell-type measuring setup, containing coordinate and momentum operators in a self-adjoint skew-symmetric, split scalar product structure over the configuration space. The microscopic states of the detectors act as a nonlocal set of hidden parameters, controlling individual outcomes. The model is shown to display pumping of weights between setup-defined basis states, with a single winner randomly selected and the rest collapsing to zero. Environmental decoherence has no role in the scenario. Through stochastic modelling, based on Pearle’s ‘gambler’s ruin’ scheme, outcome probabilities are shown to obey Born’s rule under a no-drift or ‘fair-game’ condition. This fully reproduces quantum statistical predictions, implying that the proposed non-linear deterministic model satisfies the non-signaling requirement. Our treatment is still vulnerable to hidden signaling in individual events, which remains to be handled by future research.
International Nuclear Information System (INIS)
Sijacki, Dj.
1998-01-01
World spinors are objects that transform w.r.t. double covering group Diff(4, R) of the Group of General Coordinate Transformations. The basic mathematical results and the corresponding physical interpretation concerning these, infinite-dimensional, spinorial representations are reviewed. The role of groups Diff(4, R), GA(4, R), GL(4, R), SL(4, R), SO(3,1) and the corresponding covering groups is pointed out. New results on the infinite dimensionality of spinorial representations, explicit construction of the SL(4, R) representations in the basis of finite-dimensional non-unitary SL(2, C) representations, SL(4, R) representation regrouping of tonsorial and spinorial fields of an arbitrary spin Lagrangian field theory, as well as its SL(5, R) generalization in the case of infinite-component world spinor and tensor field theories are presented. (author)
Stability of the static solitons in a pure spinor theory with fractional power nonlinearities
International Nuclear Information System (INIS)
Akdeniz, K.G.; Tezgor, G.; Barut, A.O.; Kalayci, J.; Okan, S.E.
1988-08-01
Soliton solutions are obtained in a pure fermionic model with fractional power nonlinear self-interactions. The stability properties of the minimum solutions have also been investigated within the framework of the Shatah-Strauss formalism. (author). 10 refs
International Nuclear Information System (INIS)
Rausch Traubenberg, M. de; Fleury, N.
1988-01-01
We propose an extension of spinors, called metaspinors, in space with any number of dimensions. Metaspinors are interpreted as a representation of the symmetry group that leaves a given homogeneous forms of degree n invariant. First, we study two kinds of homogeneous forms and the symmetry groups associated. Only one of these allows to define n-metaspinors. We next find two sets of nxn matrices associated with the two previous forms which could be an extension of Pauli matrices. Assuming n-metaspinors to be a n-complex vectorial space with a peculiar n-metric, we also characterize states of metaspinors and introduce the metaspin. From the study of metaspinorial tensors, we prove that they reduce to vectors. From n-metaspinors, if the dimension is n = pk, we can define p-metaspinors. Finally, we give the dynamical evolution of metaspinors, on the classical level with Dirac and Bargmann-Wigner-Like equations and on the quantic one with path integral formulation. At each step of the calculations, when n = 2, metaspinors reproduce the results of ordinary spinors
Shulkind, Gal; Nazarathy, Moshe
2012-11-05
DFT-spread (DFT-S) coherent optical OFDM was numerically and experimentally shown to provide improved nonlinear tolerance over an optically amplified dispersion uncompensated fiber link, relative to both conventional coherent OFDM and single-carrier transmission. Here we provide an analytic model rigorously accounting for this numerical result and precisely predicting the optimal bandwidth per DFT-S sub-band (or equivalently the optimal number of sub-bands per optical channel) required in order to maximize the link non-linear tolerance (NLT). The NLT advantage of DFT-S OFDM is traced to the particular statistical dependency introduced among the OFDM sub-carriers by means of the DFT spreading operation. We further extend DFT-S to a unitary-spread generalized modulation format which includes as special cases the DFT-S scheme as well as a new format which we refer to as wavelet-spread (WAV-S) OFDM, replacing the spreading DFTs by Hadamard matrices which have elements +/-1 hence are multiplier-free. The extra complexity incurred in the spreading operation is almost negligible, however the performance improvement with WAV-S relative to plain OFDM is more modest than that achieved by DFT-S, which remains the preferred format for nonlinear tolerance improvement, outperforming both plain OFDM and single-carrier schemes.
Energy Technology Data Exchange (ETDEWEB)
Hoff da Silva, J.M.; Rogerio, R.J.B. [Universidade Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil); Villalobos, C.H.C. [Universidade Estadual Paulista, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil); Universidade Federal Fluminense, Instituto de Fisica, Niteroi, RJ (Brazil); Rocha, Roldao da [Universidade Federal do ABC-UFABC, Centro de Matematica, Computacao e Cognicao, Santo Andre (Brazil)
2017-07-15
A systematic study of the spinor representation by means of the fermionic physical space is accomplished and implemented. The spinor representation space is shown to be constrained by the Fierz-Pauli-Kofink identities among the spinor bilinear covariants. A robust geometric and topological structure can be manifested from the spinor space, wherein the first and second homotopy groups play prominent roles on the underlying physical properties, associated to fermionic fields. The mapping that changes spinor fields classes is then exemplified, in an Einstein-Dirac system that provides the spacetime generated by a fermion. (orig.)
On the bosonization of the massless spinor electrodynamics
International Nuclear Information System (INIS)
Mikhov, S.G.; Stoyanov, D.Ts.
1979-01-01
A method for constructing a field transformed according to a linear representation of a Lie group out of fields transformed nonlinearly under the action of the same group is proposed. This procedure is used in order to construct spinor fields out of tensor ones. Such a ''bosonization'' of the spinor field is used to reformulate the massless spinor electrodynamics in terms of nonlinear tensor fields. It appears in this formulation that the Dirac equation is reduced to a definition of the electromagnetic vector potential in terms of the nonlinear tensor fields and to the current conservations playing the role of a consistency condition for this formulation
International Nuclear Information System (INIS)
Ketov, S.V.
1996-01-01
The simplest free-field realizations of the exceptional non-linear (quadratically generated, or W-type) N=8 and N=7 superconformal algebras with Spin(7) and G 2 affine currents, respectively, are investigated. Both the N=8 and N=7 algebras are found to admit unitary and highest-weight irreducible representations in terms of a single free boson and free fermions in 8 of Spin(7) or 7 of G 2 , respectively, at level k=1 and the corresponding central charges c 8 =26/5 and c 7 =5. (orig.)
International Nuclear Information System (INIS)
Todorov, Ivan
2010-12-01
Expository notes on Clifford algebras and spinors with a detailed discussion of Majorana, Weyl, and Dirac spinors. The paper is meant as a review of background material, needed, in particular, in now fashionable theoretical speculations on neutrino masses. It has a more mathematical flavour than the over twenty-six-year-old Introduction to Majorana masses [M84] and includes historical notes and biographical data on past participants in the story. (author)
Spinor structures on homogeneous spaces
International Nuclear Information System (INIS)
Lyakhovskii, V.D.; Mudrov, A.I.
1993-01-01
For multidimensional models of the interaction of elementary particles, the problem of constructing and classifying spinor fields on homogeneous spaces is exceptionally important. An algebraic criterion for the existence of spinor structures on homogeneous spaces used in multidimensional models is developed. A method of explicit construction of spinor structures is proposed, and its effectiveness is demonstrated in examples. The results are of particular importance for harmonic decomposition of spinor fields
Topological solitons in 8-spinor mie electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Rybakov, Yu. P., E-mail: soliton4@mail.ru [Peoples' Friendship University of Russia, Department of Theoretical Physics (Russian Federation)
2013-10-15
We investigate the effective 8-spinor field model suggested earlier as the generalization of nonlinear Mie electrodynamics. We first study in pure spinorial model the existence of topological solitons endowed with the nontrivial Hopf invariant Q{sub H}, which can be interpreted as the lepton number. Electromagnetic field being included as the perturbation, we estimate the energy and the spin of the localized charged configuration.
Minimal surfaces and strings from spinors a realization of the Cartan programme
International Nuclear Information System (INIS)
Budinich, P.; Dabrowski, L.; Furlan, P.
1986-01-01
It is shown how the old Enneper-Weierstrass integral parametrization of minimal surfaces in R 3 and the Eisenhart ones in Rsup(3,1), when expressed through bilinear spinor polynomia, may be considered as deriving from a particular local realization of the possibility envisaged by Cartan: to consider ordinary vectors as generated from isotropic planes in complex spaces, in the frame of the bijective Cartan map connecting pure spinor directions to totally null planes in complex spaces. In the case of R 3 the corresponding global realization of the Cartan map extends the Enneper-Weierstrass parametrization to the Gauss-conformal map of the minimal surface to S 2 , which may be identified with the Riemann celestial sphere. For real spinors minimal surfaces are substituted by strings both in Rsup(2,1) and Rsup(3,1); in Rsup(2,1) strings are globally mapped to a torus(in R 4 ). In Rsup(3,1) (and its conformal extensions) a prescription is given to obtain strings as integrals of real, bilinear spinor null vectors, from the Enneper-Weierstrass spinor representation of minimal surfaces, through the use of unitary transformations in spinor space which allows its restriction to the real (Majorana spinor-space). It is shown that the Nambu action, or the area of the world surface described by the space-time string, is minimized by the Lagrangian density expressed as a quadrilinear spinor product formally reminding Fermi and Thirring interaction Lagrangians
Heo, Jino; Hong, Chang-Ho; Lim, Jong-In; Yang, Hyung-Jin
2015-05-01
We propose an arbitrary controlled-unitary (CU) gate and a bidirectional quantum teleportation (BQTP) scheme. The proposed CU gate utilizes photonic qubits (photons) with cross-Kerr nonlinearities (XKNLs), X-homodyne detectors, and linear optical elements, and consists of the consecutive operation of a controlled-path (C-path) gate and a gathering-path (G-path) gate. It is almost deterministic and feasible with current technology when a strong coherent state and weak XKNLs are employed. Based on the CU gate, we present a BQTP scheme that simultaneously teleports two unknown photons between distant users by transmitting only one photon in a path-polarization intra-particle hybrid entangled state. Consequently, it is possible to experimentally implement BQTP with a certain success probability using the proposed CU gate. Project supported by the Ministry of Science, ICT&Future Planning, Korea, under the C-ITRC (Convergence Information Technology Research Center) Support program (NIPA-2013-H0301-13-3007) supervised by the National IT Industry Promotion Agency.
Dynamics of excited instantons in the system of forced Gursey nonlinear differential equations
Energy Technology Data Exchange (ETDEWEB)
Aydogmus, F., E-mail: fatma.aydogmus@gmail.com [Istanbul University, Department of Physics, Faculty of Science (Turkey)
2015-02-15
The Gursey model is a 4D conformally invariant pure fermionic model with a nonlinear spinor self-coupled term. Gursey proposed his model as a possible basis for a unitary description of elementary particles following the “Heisenberg dream.” In this paper, we consider the system of Gursey nonlinear differential equations (GNDEs) formed by using the Heisenberg ansatz. We use it to understand how the behavior of spinor-type Gursey instantons can be affected by excitations. For this, the regular and chaotic numerical solutions of forced GNDEs are investigated by constructing their Poincaré sections in phase space. A hierarchical cluster analysis method for investigating the forced GNDEs is also presented.
Projector bases and algebraic spinors
International Nuclear Information System (INIS)
Bergdolt, G.
1988-01-01
In the case of complex Clifford algebras a basis is constructed whose elements satisfy projector relations. The relations are sufficient conditions for the elements to span minimal ideals and hence to define algebraic spinors
Molecular orbital theory. Spinor representation
International Nuclear Information System (INIS)
Aono, Shigeyuki
2003-01-01
The algebra representing electron is spinor. The many electron problem is investigated with the Nambu 2x2 spinor. Operators then are expressed 2x2 matrices. The electron-electron interaction is decomposed into couplings between various electron densities by using the Pauli spin matrices. The diagonal ones of them refer to the direct and exchange interactions and the off-diagonal terms to those for superconducting. The Roothaan theory is rewritten. The approximation beyond the Hartree-Fock is discussed. (author)
Spinor pregeometry at finite temperature
International Nuclear Information System (INIS)
Yoshimoto, Seiji.
1985-10-01
We derive the effective action for gravity at finite temperature in spinor pregeometry. The temperature-dependent effective potential for the vierbein which is parametrized as e sub(kμ) = b.diag(1, xi, xi, xi) has the minimum at b = 0 for fixed xi, and behaves as -xi 3 for fixed b. These results indicate that the system of fundamental matters in spinor pregeometry cannot be in equilibrium. (author)
New spinor fields classes and applications
da Rocha, Roldao
2017-01-01
After revisiting the well-known Lounesto classification of spinor fields, wherefrom the bilinear covariants are considered as the landmark beyond Wigner classification, relevant features of regular and singular spinor fields are presented. Hence, non-standard spinor fields are scrutinised, together with their associated dynamics, paving recently found applications in Physics. The case of the new classes of spinors on 7-manifolds is revisited to provide concrete examples.
International Nuclear Information System (INIS)
Bergmann, P.G.
1980-01-01
A problem of construction of the unitary field theory is discussed. The preconditions of the theory are briefly described. The main attention is paid to the geometrical interpretation of physical fields. The meaning of the conceptions of diversity and exfoliation is elucidated. Two unitary field theories are described: the Weyl conformic geometry and Calitzy five-dimensioned theory. It is proposed to consider supersymmetrical theories as a new approach to the problem of a unitary field theory. It is noted that the supergravitational theories are really unitary theories, since the fields figuring there do not assume invariant expansion
Non-critical pure spinor superstrings
International Nuclear Information System (INIS)
Adam, Ido; Grassi, Pietro Antonio; Mazzucato, Luca; Oz, Yaron; Yankielowicz, Shimon
2007-01-01
We construct non-critical pure spinor superstrings in two, four and six dimensions. We find explicitly the map between the RNS variables and the pure spinor ones in the linear dilaton background. The RNS variables map onto a patch of the pure spinor space and the holomorphic top form on the pure spinor space is an essential ingredient of the mapping. A basic feature of the map is the requirement of doubling the superspace, which we analyze in detail. We study the structure of the non-critical pure spinor space, which is different from the ten-dimensional one, and its quantum anomalies. We compute the pure spinor lowest lying BRST cohomology and find an agreement with the RNS spectra. The analysis is generalized to curved backgrounds and we construct as an example the non-critical pure spinor type IIA superstring on AdS 4 with RR 4-form flux
Unitary information ether and its possible applications
International Nuclear Information System (INIS)
Horodecki, R.
1991-01-01
The idea of information ether as the unitary information field is developed. It rests on the assumption that the notion of information is a fundamental category in the description of reality and that it can be defined independently from the notion of probability itself. It is shown that the information ether provides a deterministic background for the nonlinear wave hypothesis and quantum cybernetics. (orig.)
Algebraic and Dirac-Hestenes spinors and spinor fields
International Nuclear Information System (INIS)
Rodrigues, Waldyr A. Jr.
2004-01-01
Almost all presentations of Dirac theory in first or second quantization in physics (and mathematics) textbooks make use of covariant Dirac spinor fields. An exception is the presentation of that theory (first quantization) offered originally by Hestenes and now used by many authors. There, a new concept of spinor field (as a sum of nonhomogeneous even multivectors fields) is used. However, a careful analysis (detailed below) shows that the original Hestenes definition cannot be correct since it conflicts with the meaning of the Fierz identities. In this paper we start a program dedicated to the examination of the mathematical and physical basis for a comprehensive definition of the objects used by Hestenes. In order to do that we give a preliminary definition of algebraic spinor fields (ASF) and Dirac-Hestenes spinor fields (DHSF) on Minkowski space-time as some equivalence classes of pairs (Ξ u ,ψ Ξ u ), where Ξ u is a spinorial frame field and ψ Ξ u is an appropriate sum of multivectors fields (to be specified below). The necessity of our definitions are shown by a careful analysis of possible formulations of Dirac theory and the meaning of the set of Fierz identities associated with the bilinear covariants (on Minkowski space-time) made with ASF or DHSF. We believe that the present paper clarifies some misunderstandings (past and recent) appearing on the literature of the subject. It will be followed by a sequel paper where definitive definitions of ASF and DHSF are given as appropriate sections of a vector bundle called the left spin-Clifford bundle. The bundle formulation is essential in order to be possible to produce a coherent theory for the covariant derivatives of these fields on arbitrary Riemann-Cartan space-times. The present paper contains also Appendixes A-E which exhibits a truly useful collection of results concerning the theory of Clifford algebras (including many tricks of the trade) necessary for the intelligibility of the text
Leptonic unitary triangles and boomerangs
International Nuclear Information System (INIS)
Dueck, Alexander; Rodejohann, Werner; Petcov, Serguey T.
2010-01-01
We review the idea of leptonic unitary triangles and extend the concept of the recently proposed unitary boomerangs to the lepton sector. Using a convenient parametrization of the lepton mixing, we provide approximate expressions for the side lengths and the angles of the six different triangles and give examples of leptonic unitary boomerangs. Possible applications of the leptonic unitary boomerangs are also briefly discussed.
Dipolar and spinor bosonic systems
Yukalov, V. I.
2018-05-01
The main properties and methods of describing dipolar and spinor atomic systems, composed of bosonic atoms or molecules, are reviewed. The general approach for the correct treatment of Bose-condensed atomic systems with nonlocal interaction potentials is explained. The approach is applied to Bose-condensed systems with dipolar interaction potentials. The properties of systems with spinor interaction potentials are described. Trapped atoms and atoms in optical lattices are considered. Effective spin Hamiltonians for atoms in optical lattices are derived. The possibility of spintronics with cold atom is emphasized. The present review differs from the previous review articles by concentrating on a thorough presentation of basic theoretical points, helping the reader to better follow mathematical details and to make clearer physical conclusions.
Phantom metrics with Killing spinors
Directory of Open Access Journals (Sweden)
W.A. Sabra
2015-11-01
Full Text Available We study metric solutions of Einstein–anti-Maxwell theory admitting Killing spinors. The analogue of the IWP metric which admits a space-like Killing vector is found and is expressed in terms of a complex function satisfying the wave equation in flat (2+1-dimensional space–time. As examples, electric and magnetic Kasner spaces are constructed by allowing the solution to depend only on the time coordinate. Euclidean solutions are also presented.
Fundamentals of the Pure Spinor Formalism
Hoogeveen, Joost
2010-01-01
This thesis presents recent developments within the pure spinor formalism, which has simplified amplitude computations in perturbative string theory, especially when spacetime fermions are involved. Firstly the worldsheet action of both the minimal and the non-minimal pure spinor formalism is derived from first principles, i.e. from an action with two dimensional diffeomorphism and Weyl invariance. Secondly the decoupling of unphysical states in the minimal pure spinor formalism is proved
Unitary unified field theories
International Nuclear Information System (INIS)
Sudarshan, E.C.G.
1976-01-01
This is an informal exposition of some recent developments. Starting with an examination of the universality of electromagnetic and weak interactions, the attempts at their unification are outlined. The theory of unitary renormalizable self-coupled vector mesons with dynamical sources is formulated for a general group. With masses introduced as variable parameters it is shown that the theory so defined is indeed unitary. Diagrammatic rules are developed in terms of a chosen set of fictitious particles. A number of special examples are outlined including a theory with strongly interacting vector and axial vector mesons and weak mesons. Applications to weak interactions of strange particles is briefly outlined. (Auth.)
International Nuclear Information System (INIS)
Audenaert, Koenraad M R; Scheel, Stefan
2008-01-01
In this paper, we provide necessary and sufficient conditions for a completely positive trace-preserving (CPT) map to be decomposable into a convex combination of unitary maps. Additionally, we set out to define a proper distance measure between a given CPT map and the set of random unitary maps, and methods for calculating it. In this way one could determine whether non-classical error mechanisms such as spontaneous decay or photon loss dominate over classical uncertainties, for example, in a phase parameter. The present paper is a step towards achieving this goal
Spinor calculus on 5-dimensional spacetimes
International Nuclear Information System (INIS)
Gomez-Lobo, Alfonso Garcia-Parrado; Martin-Garcia, Jose M
2010-01-01
We explain how Penrose's spinor calculus of 4-dimensional Lorentzian geometry is implemented in a 5-dimensional Lorentzian manifold. A number of issues, such as the essential spin algebra, the spin covariant derivative and the algebro-differential properties of the curvature spinors are discussed.
Spinor Structure and Internal Symmetries
Varlamov, V. V.
2015-10-01
Spinor structure and internal symmetries are considered within one theoretical framework based on the generalized spin and abstract Hilbert space. Complex momentum is understood as a generating kernel of the underlying spinor structure. It is shown that tensor products of biquaternion algebras are associated with the each irreducible representation of the Lorentz group. Space-time discrete symmetries P, T and their combination PT are generated by the fundamental automorphisms of this algebraic background (Clifford algebras). Charge conjugation C is presented by a pseudoautomorphism of the complex Clifford algebra. This description of the operation C allows one to distinguish charged and neutral particles including particle-antiparticle interchange and truly neutral particles. Spin and charge multiplets, based on the interlocking representations of the Lorentz group, are introduced. A central point of the work is a correspondence between Wigner definition of elementary particle as an irreducible representation of the Poincaré group and SU(3)-description (quark scheme) of the particle as a vector of the supermultiplet (irreducible representation of SU(3)). This correspondence is realized on the ground of a spin-charge Hilbert space. Basic hadron supermultiplets of SU(3)-theory (baryon octet and two meson octets) are studied in this framework. It is shown that quark phenomenologies are naturally incorporated into presented scheme. The relationship between mass and spin is established. The introduced spin-mass formula and its combination with Gell-Mann-Okubo mass formula allows one to take a new look at the problem of mass spectrum of elementary particles.
Black Holes and Exotic Spinors
Directory of Open Access Journals (Sweden)
J. M. Hoff da Silva
2016-05-01
Full Text Available Exotic spin structures are non-trivial liftings, of the orthogonal bundle to the spin bundle, on orientable manifolds that admit spin structures according to the celebrated Geroch theorem. Exotic spin structures play a role of paramount importance in different areas of physics, from quantum field theory, in particular at Planck length scales, to gravity, and in cosmological scales. Here, we introduce an in-depth panorama in this field, providing black hole physics as the fount of spacetime exoticness. Black holes are then studied as the generators of a non-trivial topology that also can correspond to some inequivalent spin structure. Moreover, we investigate exotic spinor fields in this context and the way exotic spinor fields branch new physics. We also calculate the tunneling probability of exotic fermions across a Kerr-Sen black hole, showing that the exotic term does affect the tunneling probability, altering the black hole evaporation rate. Finally we show that it complies with the Hawking temperature universal law.
On pure spinor formalism for quantum superstring and spinor moving frame
International Nuclear Information System (INIS)
Bandos, Igor A
2013-01-01
The D = 10 pure spinor constraint can be solved in terms of spinor moving frame variables v -α q and eight-component complex null vector Λ + q , Λ + q Λ + q =0, which can be related to the κ-symmetry ghost. Using this and similar solutions for the conjugate pure spinor and other elements of the non-minimal pure spinor formalism, we present a (hopefully useful) reformulation of the measure of the pure spinor path integral for superstring in terms of products of Cartan forms corresponding to the coset of 10D Lorentz group and to the coset of complex orthogonal group SO(8, C). Our study suggests a possible complete reformulation of the pure spinor superstring in terms of new irreducible set of variable. (paper)
Pure spinors as auxiliary fields in the ten-dimensional supersymmetric Yang-Mills theory
International Nuclear Information System (INIS)
Nilsson, B.E.W.
1986-01-01
A new way of introducing auxiliary fields into the ten-dimensional supersymmetric Yang-Mills theory is proposed. The auxiliary fields are commuting 'pure spinors' and constitute a non-linear realisation of the Lorentz group. This invalidates previous no-go theorems concerning the possibility of going off-shell in this theory. There seems to be a close relation between pure spinors and the concepts usually used in twistor theory. The non-Abelian theory can be constructed for all groups having pseudo-real representations. (author)
Pure spinor integration from the collating formula
International Nuclear Information System (INIS)
Grassi, P.A.; Sommovigo, L.
2011-01-01
We use the technique developed by Becchi and Imbimbo to construct a well-defined BRST-invariant path integral formulation of pure spinor amplitudes. The space of pure spinors can be viewed from the algebraic geometry point of view as a collection of open sets where the constraints can be solved and a set of free and independent variables can be defined. On the intersections of those open sets, the functional measure jumps and one has to add boundary terms to construct a well-defined path integral. The result is the definition of the pure spinor integration measure constructed in terms of differential forms on each single patch.
Timelike Killing spinors in seven dimensions
International Nuclear Information System (INIS)
Cariglia, Marco; Conamhna, Oisin A.P. Mac
2004-01-01
We employ the G-structure formalism to study supersymmetric solutions of minimal and SU(2) gauged supergravities in seven dimensions admitting Killing spinors with an associated timelike Killing vector. The most general such Killing spinor defines a SU(3) structure. We deduce necessary and sufficient conditions for the existence of a timelike Killing spinor on the bosonic fields of the theories, and find that such configurations generically preserve one out of 16 supersymmetries. Using our general supersymmetric ansatz we obtain numerous new solutions, including squashed or deformed anti-de Sitter solutions of the gauged theory, and a large class of Goedel-like solutions with closed timelike curves
Some basic properties of Killing spinors
International Nuclear Information System (INIS)
Hacyan, S.; Plebanski, J.
1976-01-01
The concept of Killing spinor is analyzed in a general way by using the spinorial formalism. It is shown, among other things, that higher derivatives of Killing spinors can be expressed in terms of lower order derivatives. Conformal Killing vectors are studied in some detail in the light of spinorial analysis: Classical results are formulated in terms of spinors. A theorem on Lie derivatives of Debever--Penrose vectors is proved, and it is shown that conformal motion in vacuum with zero cosmological constant must be homothetic, unless the conformal tensor vanishes or is of type N. Our results are valid for either real or complex space--time manifolds
Dirac operators and Killing spinors with torsion
International Nuclear Information System (INIS)
Becker-Bender, Julia
2012-01-01
On a Riemannian spin manifold with parallel skew torsion, we use the twistor operator to obtain an eigenvalue estimate for the Dirac operator with torsion. We consider the equality case in dimensions four and six. In odd dimensions we describe Sasaki manifolds on which equality in the estimate is realized by Killing spinors with torsion. In dimension five we characterize all Killing spinors with torsion and obtain certain naturally reductive spaces as exceptional cases.
Pure spinor partition function and the massive superstring spectrum
International Nuclear Information System (INIS)
Aisaka, Yuri; Arroyo, E. Aldo; Berkovits, Nathan; Nekrasov, Nikita
2008-01-01
We explicitly compute up to the fifth mass-level the partition function of ten-dimensional pure spinor worldsheet variables including the spin dependence. After adding the contribution from the (x μ , θ α , p α ) matter variables, we reproduce the massive superstring spectrum. Even though pure spinor variables are bosonic, the pure spinor partition function contains fermionic states which first appear at the second mass-level. These fermionic states come from functions which are not globally defined in pure spinor space, and are related to the b ghost in the pure spinor formalism. This result clarifies the proper definition of the Hilbert space for pure spinor variables.
Evenly distributed unitaries: On the structure of unitary designs
International Nuclear Information System (INIS)
Gross, D.; Audenaert, K.; Eisert, J.
2007-01-01
We clarify the mathematical structure underlying unitary t-designs. These are sets of unitary matrices, evenly distributed in the sense that the average of any tth order polynomial over the design equals the average over the entire unitary group. We present a simple necessary and sufficient criterion for deciding if a set of matrices constitutes a design. Lower bounds for the number of elements of 2-designs are derived. We show how to turn mutually unbiased bases into approximate 2-designs whose cardinality is optimal in leading order. Designs of higher order are discussed and an example of a unitary 5-design is presented. We comment on the relation between unitary and spherical designs and outline methods for finding designs numerically or by searching character tables of finite groups. Further, we sketch connections to problems in linear optics and questions regarding typical entanglement
On ''conformal spinor geometry'': An attempt to ''understand'' internal symmetry
International Nuclear Information System (INIS)
Budinich, P.
1982-01-01
The natural homomorphism of pure spinors corresponding to a given Clifford algebra Csub(2n) to polarized isotropic n-planes of complex Euclidean space Esub(2n)sup(c) is taken as a starting point for the construction of a geometry called spinor geometry where pure spinors are the only elements out of which all tensors have to be constructed (analytically as bilinear polynomials of the components of a pure spinor). C 4 and C 6 spinor geometry are analyzed, but it seems that C 8 spinor geometry is necessary to construct Minkowski space Msup(3,1). C 6 spinor field equations give rise in Minkowski space to a pair of Dirac equations (for conformal semispinors) presenting an su(2) internal symmetry algebra. Mass is generated by breaking spontaneously the original O(4,2) symmetry of the spinor equation. (author)
On ''conformal spinor geometry'': An attempt to ''understand'' internal symmetry
International Nuclear Information System (INIS)
Budinich, P.
1981-09-01
The natural homomorphism of pure spinors corresponding to a given Clifford algebra Csub(2n) to polarized isotropic n-planes of complex Euclidean space Esub(2n)sup(c) is taken as a starting point for the construction of a geometry called spinor geometry where pure spinors are the only elements out of which all tensors have to be constructed (analytically as bilinear polynomia of the components of a pure spinor). C 4 and C 6 spinor geometry are analyzed but it seems that C 8 spinor geometry is necessary to construct Minkowski space Msup(3,1). C 6 spinor field equations give rise in Minkowski space to a pair of Dirac equations (for conformal semispinors) presenting an SU(2) internal symmetry algebra. Mass is generated by spontaneously breaking the original O(4,2) symmetry of the spinor equation. (author)
Unfolding physics from the algebraic classification of spinor fields
International Nuclear Information System (INIS)
Hoff da Silva, J.M.; Rocha, Roldão da
2013-01-01
After reviewing the Lounesto spinor field classification, according to the bilinear covariants associated to a spinor field, we call attention and unravel some prominent features involving unexpected properties about spinor fields under such classification. In particular, we pithily focus on the new aspects — as well as current concrete possibilities. They mainly arise when we deal with some non-standard spinor fields concerning, in particular, their applications in physics.
Spinors, tensors and the covariant form of Dirac's equation
International Nuclear Information System (INIS)
Chen, W.Q.; Cook, A.H.
1986-01-01
The relations between tensors and spinors are used to establish the form of the covariant derivative of a spinor, making use of the fact that certain bilinear combinations of spinors are vectors. The covariant forms of Dirac's equation are thus obtained and examples in specific coordinate systems are displayed. (author)
Higgs potential and spinor connection within Weinberg-Salam model
International Nuclear Information System (INIS)
Trostel, R.
1987-01-01
We arrive at a theory of the Higgs potential by extending the usual concept of the covariant derivative containing the gauge fields to one which also contains the Higgs fields, by using a spinor connection compatible under local gauge transformations. Not only the Yukawa couplings are geometrized by this procedure but also the nonlinear Higgs potential naturally appears within the curvature of the corresponding spinor connection. Taking the gauge group to be SU(2) x U(1), we arrive for the leptonic Weinberg Salam model at a Weinberg angle prediction of sin 2 θ=1/4 and at a Higgs mass of about 263-270 GeV without using any supersymmetry argument. Taking the gauge group to be SU(3) C x SU(2) x U(1) the above leptonic result is obtained only if e 2 /g S 2 is sufficiently small, which is approximately true. Working with two independent Higgs doublets we arrive at a Higgs mass sum rule, where two Higgs must have a mass of about 188 GeV. (author)
An introduction to Clifford algebras and spinors
Vaz, Jayme
2016-01-01
This text explores how Clifford algebras and spinors have been sparking a collaboration and bridging a gap between Physics and Mathematics. This collaboration has been the consequence of a growing awareness of the importance of algebraic and geometric properties in many physical phenomena, and of the discovery of common ground through various touch points: relating Clifford algebras and the arising geometry to so-called spinors, and to their three definitions (both from the mathematical and physical viewpoint). The main point of contact are the representations of Clifford algebras and the periodicity theorems. Clifford algebras also constitute a highly intuitive formalism, having an intimate relationship to quantum field theory. The text strives to seamlessly combine these various viewpoints and is devoted to a wider audience of both physicists and mathematicians. Among the existing approaches to Clifford algebras and spinors this book is unique in that it provides a didactical presentation of the topic and i...
Topological M Theory from Pure Spinor Formalism
Grassi, P A; Grassi, Pietro Antonio; Vanhove, Pierre
2005-01-01
We construct multiloop superparticle amplitudes in 11d using the pure spinor formalism. We explain how this construction reduces to the superparticle limit of the multiloop pure spinor superstring amplitudes prescription. We then argue that this construction points to some evidence for the existence of a topological M theory based on a relation between the ghost number of the full-fledged supersymmetric critical models and the dimension of the spacetime for topological models. In particular, we show that the extensions at higher orders of the previous results for the tree and one-loop level expansion for the superparticle in 11 dimensions is related to a topological model in 7 dimensions.
International Nuclear Information System (INIS)
Kawano, Teruhiko; Okuyama, Kazumi
2000-01-01
We explicitly calculate a Witten diagram with general spinor field exchange on (d+1)-dimensional Euclidean Anti-de Sitter space, which is necessary to evaluate four-point correlation functions with spinor fields when we make use of the AdS/CFT correspondence, especially in supersymmetric cases. We also show that the amplitude can be reduced to a scalar exchange amplitude. We discuss the operator product expansion of the dual conformal field theory by interpreting the short distance expansion of the amplitude according to the AdS/CFT correspondence
Clifford algebras, spinors, spin groups and covering groups
International Nuclear Information System (INIS)
Magneville, C.; Pansart, J.P.
1991-03-01
The Dirac equation uses matrices named Υ matrices which are representations of general algebraic structures associated with a metric space. These algebras are the Clifford algebras. In the first past, these algebras are studied. Then the notion of spinor is developed. It is shown that Majorana and Weyl spinors only exist for some particular metric space. In the second part, Clifford and spinor groups are studied. They may be interpreted as the extension of the notion of orthogonal group for Clifford algebras and their spaces for representation. The rotation of a spinor is computed. In the last part, the connexion between the spinor groups and the Universal Covering Groups is presented [fr
Spinor approach to gravitational motion and precession
International Nuclear Information System (INIS)
Hestenes, D.
1986-01-01
The translational and rotational equations of motion for a small rigid body in a gravitational field are combined in a single spinor equation. Besides its computational advantages, this unifies the description of gravitational interaction in classical and quantum theory. Explicit expressions for gravitational precession rates are derived. (author)
Unitary Transformation in Quantum Teleportation
International Nuclear Information System (INIS)
Wang Zhengchuan
2006-01-01
In the well-known treatment of quantum teleportation, the receiver should convert the state of his EPR particle into the replica of the unknown quantum state by one of four possible unitary transformations. However, the importance of these unitary transformations must be emphasized. We will show in this paper that the receiver cannot transform the state of his particle into an exact replica of the unknown state which the sender wants to transfer if he has not a proper implementation of these unitary transformations. In the procedure of converting state, the inevitable coupling between EPR particle and environment which is needed by the implementation of unitary transformations will reduce the accuracy of the replica.
Joule-Thomson Coefficient for Strongly Interacting Unitary Fermi Gas
International Nuclear Information System (INIS)
Liao Kai; Chen Jisheng; Li Chao
2010-01-01
The Joule-Thomson effect reflects the interaction among constituent particles of macroscopic system. For classical ideal gas, the corresponding Joule-Thomson coefficient is vanishing while it is non-zero for ideal quantum gas due to the quantum degeneracy. In recent years, much attention is paid to the unitary Fermi gas with infinite two-body scattering length. According to universal analysis, the thermodynamical law of unitary Fermi gas is similar to that of non-interacting ideal gas, which can be explored by the virial theorem P = 2E/3V. Based on previous works, we further study the unitary Fermi gas properties. The effective chemical potential is introduced to characterize the nonlinear levels crossing effects in a strongly interacting medium. The changing behavior of the rescaled Joule-Thomson coefficient according to temperature manifests a quite different behavior from that for ideal Fermi gas. (general)
Black hole attractors and pure spinors
International Nuclear Information System (INIS)
Hsu, Jonathan P.; Maloney, Alexander; Tomasiello, Alessandro
2006-01-01
We construct black hole attractor solutions for a wide class of N = 2 compactifications. The analysis is carried out in ten dimensions and makes crucial use of pure spinor techniques. This formalism can accommodate non-Kaehler manifolds as well as compactifications with flux, in addition to the usual Calabi-Yau case. At the attractor point, the charges fix the moduli according to Σf k = Im(CΦ), where Φ is a pure spinor of odd (even) chirality in IIB (A). For IIB on a Calabi-Yau, Φ = Ω and the equation reduces to the usual one. Methods in generalized complex geometry can be used to study solutions to the attractor equation
Scattering equations, supergravity integrands, and pure spinors
Energy Technology Data Exchange (ETDEWEB)
Adamo, Tim; Casali, Eduardo [Department of Applied Mathematics & Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2015-05-25
The tree-level S-matrix of type II supergravity can be computed in scattering equation form by correlators in a worldsheet theory analogous to a chiral, infinite tension limit of the pure spinor formalism. By defining a non-minimal version of this theory, we give a prescription for computing correlators on higher genus worldsheets which manifest space-time supersymmetry. These correlators are conjectured to provide the loop integrands of supergravity scattering amplitudes, supported on the scattering equations. We give non-trivial evidence in support of this conjecture at genus one and two with four external states. Throughout, we find a close correspondence with the pure spinor formalism of superstring theory, particularly regarding regulators and zero-mode counting.
Black Hole Attractors and Pure Spinors
International Nuclear Information System (INIS)
Hsu, Jonathan P.; Maloney, Alexander; Tomasiello, Alessandro
2006-01-01
We construct black hole attractor solutions for a wide class of N = 2 compactifications. The analysis is carried out in ten dimensions and makes crucial use of pure spinor techniques. This formalism can accommodate non-Kaehler manifolds as well as compactifications with flux, in addition to the usual Calabi-Yau case. At the attractor point, the charges fix the moduli according to Σf k = Im(CΦ), where Φ is a pure spinor of odd (even) chirality in IIB (A). For IIB on a Calabi-Yau, Φ = (Omega) and the equation reduces to the usual one. Methods in generalized complex geometry can be used to study solutions to the attractor equation
Scattering equations, supergravity integrands, and pure spinors
International Nuclear Information System (INIS)
Adamo, Tim; Casali, Eduardo
2015-01-01
The tree-level S-matrix of type II supergravity can be computed in scattering equation form by correlators in a worldsheet theory analogous to a chiral, infinite tension limit of the pure spinor formalism. By defining a non-minimal version of this theory, we give a prescription for computing correlators on higher genus worldsheets which manifest space-time supersymmetry. These correlators are conjectured to provide the loop integrands of supergravity scattering amplitudes, supported on the scattering equations. We give non-trivial evidence in support of this conjecture at genus one and two with four external states. Throughout, we find a close correspondence with the pure spinor formalism of superstring theory, particularly regarding regulators and zero-mode counting.
Antiferromagnetic spinor condensates in a bichromatic superlattice
Tang, Tao; Zhao, Lichao; Chen, Zihe; Liu, Yingmei
2017-04-01
A spinor Bose-Einstein condensate in an optical supelattice has been considered as a good quantum simulator for understanding mesoscopic magnetism. We report an experimental study on an antiferromagnetic spinor condensate in a bichromatic superlattice constructed by a cubic red-detuned optical lattice and a one-dimensional blue-detuned optical lattice. Our data demonstrate a few advantages of this bichromatic superlattice over a monochromatic lattice. One distinct advantage is that the bichromatic superlattice enables realizing the first-order superfluid to Mott-insulator phase transitions within a much wider range of magnetic fields. In addition, we discuss an apparent discrepancy between our data and the mean-field theory. We thank the National Science Foundation and the Oklahoma Center for the Advancement of Science and Technology for financial support.
Entanglement-continuous unitary transformations
Energy Technology Data Exchange (ETDEWEB)
Sahin, Serkan; Orus, Roman [Institute of Physics, Johannes Gutenberg University, 55099 Mainz (Germany)
2016-07-01
In this talk we present a new algorithm for quantum many-body systems using continuous unitary transformations (CUT) and tensor networks (TNs). With TNs we are able to approximate the solution to the flow equations that lie at the heart of continuous unitary transformations. We call this method Entanglement-Continuous Unitary Transformations (eCUT). It allows us to compute expectation values of local observables as well as tensor network representations of ground states and low-energy excited states. An implementation of the method is shown for 1d systems using matrix product operators. We show preliminary results for the 1d transverse-field Ising model to demonstrate the feasibility of the method.
Notes on the ambitwistor pure spinor string
Czech Academy of Sciences Publication Activity Database
Lipinski Jusinskas, Renann
2016-01-01
Roč. 2016, č. 5 (2016), s. 1-12, č. článku 116. ISSN 1029-8479 R&D Projects: GA ČR GBP201/12/G028 Institutional support: RVO:68378271 Keywords : ambitwistor string * pure spinor formalism Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 6.063, year: 2016
Quantization of scalar-spinor instanton
International Nuclear Information System (INIS)
Inagaki, H.
1977-04-01
A systematic quantization to the scalar-spinor instanton is given in a canonical formalism of Euclidean space. A basic idea is in the repair of the symmetries of the 0(5) covariant system in the presence of the instanton. The quantization of the fermion is carried through in such a way that the fermion number should be conserved. Our quantization enables us to get well-defined propagators for both the scalar and the fermion, which are free from unphysical poles
Wigner function for the Dirac oscillator in spinor space
International Nuclear Information System (INIS)
Ma Kai; Wang Jianhua; Yuan Yi
2011-01-01
The Wigner function for the Dirac oscillator in spinor space is studied in this paper. Firstly, since the Dirac equation is described as a matrix equation in phase space, it is necessary to define the Wigner function as a matrix function in spinor space. Secondly, the matrix form of the Wigner function is proven to support the Dirac equation. Thirdly, by solving the Dirac equation, energy levels and the Wigner function for the Dirac oscillator in spinor space are obtained. (authors)
A formalism for the calculus of variations with spinors
Energy Technology Data Exchange (ETDEWEB)
Bäckdahl, Thomas, E-mail: thobac@chalmers.se [The School of Mathematics, University of Edinburgh, JCMB 6228, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom and Mathematical Sciences - Chalmers University of Technology and University of Gothenburg - SE-412 96 Gothenburg (Sweden); Valiente Kroon, Juan A., E-mail: j.a.valiente-kroon@qmul.ac.uk [School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)
2016-02-15
We develop a frame and dyad gauge-independent formalism for the calculus of variations of functionals involving spinorial objects. As a part of this formalism, we define a modified variation operator which absorbs frame and spin dyad gauge terms. This formalism is applicable to both the standard spacetime (i.e., SL(2, ℂ)) 2-spinors as well as to space (i.e., SU(2, ℂ)) 2-spinors. We compute expressions for the variations of the connection and the curvature spinors.
A formalism for the calculus of variations with spinors
International Nuclear Information System (INIS)
Bäckdahl, Thomas; Valiente Kroon, Juan A.
2016-01-01
We develop a frame and dyad gauge-independent formalism for the calculus of variations of functionals involving spinorial objects. As a part of this formalism, we define a modified variation operator which absorbs frame and spin dyad gauge terms. This formalism is applicable to both the standard spacetime (i.e., SL(2, ℂ)) 2-spinors as well as to space (i.e., SU(2, ℂ)) 2-spinors. We compute expressions for the variations of the connection and the curvature spinors
International Nuclear Information System (INIS)
Aisaka, Yuri; Kazama, Yoichi
2006-01-01
In a previous work, we have constructed a reparametrization invariant worldsheet action from which one can derive the super-Poincare covariant pure spinor formalism for the superstring at the fully quantum level. The main idea was the doubling of the spinor degrees of freedom in the Green-Schwarz formulation together with the introduction of a new compensating local fermionic symmetry. In this paper, we extend this 'double spinor' formalism to the case of the supermembrane in 11 dimensions at the classical level. The basic scheme works in parallel with the string case and we are able to construct the closed algebra of first class constraints which governs the entire dynamics of the system. A notable difference from the string case is that this algebra is first order reducible and the associated BRST operator must be constructed accordingly. The remaining problems which need to be solved for the quantization will also be discussed
Two-spinor description of massive particles and relativistic spin projection operators
Directory of Open Access Journals (Sweden)
A.P. Isaev
2018-04-01
Full Text Available On the basis of the Wigner unitary representations of the covering group ISL(2,C of the Poincaré group, we obtain spin-tensor wave functions of free massive particles with arbitrary spin. The wave functions automatically satisfy the Dirac–Pauli–Fierz equations. In the framework of the two-spinor formalism we construct spin-vectors of polarizations and obtain conditions that fix the corresponding relativistic spin projection operators (Behrends–Fronsdal projection operators. With the help of these conditions we find explicit expressions for relativistic spin projection operators for integer spins (Behrends–Fronsdal projection operators and then find relativistic spin projection operators for half integer spins. These projection operators determine the numerators in the propagators of fields of relativistic particles. We deduce generalizations of the Behrends–Fronsdal projection operators for arbitrary space–time dimensions D>2.
Two-spinor description of massive particles and relativistic spin projection operators
Isaev, A. P.; Podoinitsyn, M. A.
2018-04-01
On the basis of the Wigner unitary representations of the covering group ISL (2 , C) of the Poincaré group, we obtain spin-tensor wave functions of free massive particles with arbitrary spin. The wave functions automatically satisfy the Dirac-Pauli-Fierz equations. In the framework of the two-spinor formalism we construct spin-vectors of polarizations and obtain conditions that fix the corresponding relativistic spin projection operators (Behrends-Fronsdal projection operators). With the help of these conditions we find explicit expressions for relativistic spin projection operators for integer spins (Behrends-Fronsdal projection operators) and then find relativistic spin projection operators for half integer spins. These projection operators determine the numerators in the propagators of fields of relativistic particles. We deduce generalizations of the Behrends-Fronsdal projection operators for arbitrary space-time dimensions D > 2.
Piaget's Egocentrism: A Unitary Construct?
Ruthven, Avis J.; Cunningham, William L.
In order to determine whether egocentrism can be conceptualized as a unitary construct, 100 children (51 four-year-olds, 37 five-year-olds, and 12 six-year-olds) were administered a visual/spatial perspective task, a cognitive/communicative task, and an affective task. All tasks were designed to measure different facets of egocentrism. The 50…
Deformations of polyhedra and polygons by the unitary group
Energy Technology Data Exchange (ETDEWEB)
Livine, Etera R. [Laboratoire de Physique, ENS Lyon, CNRS-UMR 5672, 46 Allée d' Italie, Lyon 69007, France and Perimeter Institute, 31 Caroline St N, Waterloo, Ontario N2L 2Y5 (Canada)
2013-12-15
We introduce the set of framed (convex) polyhedra with N faces as the symplectic quotient C{sup 2N}//SU(2). A framed polyhedron is then parametrized by N spinors living in C{sup 2} satisfying suitable closure constraints and defines a usual convex polyhedron plus extra U(1) phases attached to each face. We show that there is a natural action of the unitary group U(N) on this phase space, which changes the shape of faces and allows to map any (framed) polyhedron onto any other with the same total (boundary) area. This identifies the space of framed polyhedra to the Grassmannian space U(N)/ (SU(2)×U(N−2)). We show how to write averages of geometrical observables (polynomials in the faces' area and the angles between them) over the ensemble of polyhedra (distributed uniformly with respect to the Haar measure on U(N)) as polynomial integrals over the unitary group and we provide a few methods to compute these integrals systematically. We also use the Itzykson-Zuber formula from matrix models as the generating function for these averages and correlations. In the quantum case, a canonical quantization of the framed polyhedron phase space leads to the Hilbert space of SU(2) intertwiners (or, in other words, SU(2)-invariant states in tensor products of irreducible representations). The total boundary area as well as the individual face areas are quantized as half-integers (spins), and the Hilbert spaces for fixed total area form irreducible representations of U(N). We define semi-classical coherent intertwiner states peaked on classical framed polyhedra and transforming consistently under U(N) transformations. And we show how the U(N) character formula for unitary transformations is to be considered as an extension of the Itzykson-Zuber to the quantum level and generates the traces of all polynomial observables over the Hilbert space of intertwiners. We finally apply the same formalism to two dimensions and show that classical (convex) polygons can be described in
Teleportation of M-Qubit Unitary Operations
Institute of Scientific and Technical Information of China (English)
郑亦庄; 顾永建; 郭光灿
2002-01-01
We discuss teleportation of unitary operations on a two-qubit in detail, then generalize the bidirectional state teleportation scheme from one-qubit to M-qubit unitary operations. The resources required for the optimal implementation of teleportation of an M-qubit unitary operation using a bidirectional state teleportation scheme are given.
AdS pure spinor superstring in constant backgrounds
International Nuclear Information System (INIS)
Chandia, Osvaldo; Bevilaqua, L. Ibiapina; Vallilo, Brenno Carlini
2014-01-01
In this paper we study the pure spinor formulation of the superstring in AdS_5×S"5 around point particle solutions of the classical equations of motion. As a particular example we quantize the pure spinor string in the BMN background
AdS pure spinor superstring in constant backgrounds
Energy Technology Data Exchange (ETDEWEB)
Chandia, Osvaldo [Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez,Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,Diagonal Las Torres 2640, Peñalolén, Santiago (Chile); Bevilaqua, L. Ibiapina [Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte,Caixa Postal 1524, 59072-970, Natal, RN (Brazil); Vallilo, Brenno Carlini [Facultad de Ciencias Exactas, Departamento de Ciencias Físicas, Universidad Andres Bello,Republica 220, Santiago (Chile)
2014-06-05
In this paper we study the pure spinor formulation of the superstring in AdS{sub 5}×S{sup 5} around point particle solutions of the classical equations of motion. As a particular example we quantize the pure spinor string in the BMN background.
On the bilinear covariants associated to mass dimension one spinors
Energy Technology Data Exchange (ETDEWEB)
Silva, J.M.H. da; Villalobos, C.H.C.; Rogerio, R.J.B. [DFQ, UNESP, Guaratingueta, SP (Brazil); Scatena, E. [Universidade Federal de Santa Catarina-CEE, Blumenau, SC (Brazil)
2016-10-15
In this paper we approach the issue of Clifford algebra basis deformation, allowing for bilinear covariants associated to Elko spinors which satisfy the Fierz-Pauli-Kofink identities. We present a complete analysis of covariance, taking into account the involved dual structure associated to Elko spinors. Moreover, the possible generalizations to the recently presented new dual structure are performed. (orig.)
A visual description of 2-component spinor calculus
International Nuclear Information System (INIS)
Hellsten, H.
1975-07-01
Spinors and algebraic operations on them are given a visual description. This structural interpretation of spinors is to be contrasted with the well known quadratic relation between spinors and visual objects (vectors,flagpoles). The interpretation in the present paper is founded on the observation that the product between two successive rotations half a turn along the legs of an angle will be a rotation through twice that angle. This observation makes it possible to explain visually the doubling of angles, which occurs when vectors are constructed out of spinors. It is seen that, using this explanation, spinor calculus can, in close analogy to 3-dimensional Euclidean vector calculus, be given a purely visual meaning. (Auth.)
Generalized phase transformations of spinor fields
International Nuclear Information System (INIS)
Mikhov, S.G.
1993-09-01
In this paper some generalized four parameter phase transformations of a Dirac spinor are considered. It is shown that a corresponding compensating transformation of the electromagnetic field which restores the invariance of the Dirac-Maxwell equation might exist, provided some consistency conditions are satisfied by the parameters of the transformations. These transformations are used further to consider the Maxwell equations under the assumption that a Bosonization takes place. Only one of the considered cases proves to have a solution (the other cases show to be trivial) which although unphysical is obtained explicitly. (author). 10 refs
Unitary Housing Regimes in Transition
DEFF Research Database (Denmark)
Bengtsson, Bo; Jensen, Lotte
2013-01-01
Path dependence is strong in housing institutions and policy. In both Denmark and Sweden, today’s universal and ‘unitary’ (Kemeny) housing regimes can be traced back to institutions that were introduced fifty years back in history or more. Recently, universal and unitary housing systems...... in Scandinavia, and elsewhere, are under challenge from strong political and economic forces. These challenges can be summarized as economic cutbacks, privatization and Europeanization. Although both the Danish and the Swedish housing system are universal and unitary in character, they differ considerably...... in institutional detail. Both systems have corporatist features, however in Denmark public housing is based on local tenant democracy and control, and in Sweden on companies owned and controlled by the municipalities, combined with a centralized system of rent negotiations. In the paper the present challenges...
Classical probabilities for Majorana and Weyl spinors
International Nuclear Information System (INIS)
Wetterich, C.
2011-01-01
Highlights: → Map of classical statistical Ising model to fermionic quantum field theory. → Lattice-regularized real Grassmann functional integral for single Weyl spinor. → Emerging complex structure characteristic for quantum physics. → A classical statistical ensemble describes a quantum theory. - Abstract: We construct a map between the quantum field theory of free Weyl or Majorana fermions and the probability distribution of a classical statistical ensemble for Ising spins or discrete bits. More precisely, a Grassmann functional integral based on a real Grassmann algebra specifies the time evolution of the real wave function q τ (t) for the Ising states τ. The time dependent probability distribution of a generalized Ising model obtains as p τ (t)=q τ 2 (t). The functional integral employs a lattice regularization for single Weyl or Majorana spinors. We further introduce the complex structure characteristic for quantum mechanics. Probability distributions of the Ising model which correspond to one or many propagating fermions are discussed explicitly. Expectation values of observables can be computed equivalently in the classical statistical Ising model or in the quantum field theory for fermions.
Exact periodic and solitonic states of the spinor condensates in a uniform external potential
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zhi-Hai [School of Physics and Electronics, Yancheng Teachers University, Yancheng 224051 (China); Yang, Shi-Jie, E-mail: yangshijie@tsinghua.org.cn [Department of Physics, Beijing Normal University, Beijing 100875 (China)
2016-08-15
We propose a method to analytically solve the one-dimensional coupled nonlinear Gross–Pitaevskii equations which govern the motion of the spinor Bose–Einstein condensates. In a uniform external potential, several classes of exact periodic and solitonic solutions, either in real or in complex forms, are obtained for both the F=1 and F=2 condensates for the Hamiltonian comprising the kinetic energy, the linear and the quadratic Zeeman energies. Real solutions take the form of composite soliton trains. Complex solutions correspond to the mass counter-flows as well as spin currents. These solutions are general that contains neither approximations nor constraints on the system parameters.
On spinor geometry: A genesis of extended supersymmetry
International Nuclear Information System (INIS)
Budini, P.
1980-08-01
It is conjectured that euclidean geometry should be derived from spinor geometry through the equivalence of simple semispinor with isotropic semi n-vectors. The only tensors of complex 2n dimensional Euclidean space Esub(c)sup(2n) should then be: isotropic n - vectors and their intersections. Esub(c) 4 spinor geometry generates two isotropic semi bivectors equivalent to the semispinors of Esub(c) 4 (their geometrical properties are those of light propagating in vacuum), and their intersection: an isotropic vector (possibly representing momenta of massless particle and/or light rays); but no scalar, pseudoscalar or pseudovector is generated. In order to generate vectors outside the light cone in Msup(3.1) one needs not less than Esub(c) 6 spinor geometry which also generates Lorentz pseudoscalars and non isotropic pseudovectors and tensors. Besides, Dirac spinor should then always appear in doublets in Msup(3.1). Furthermore the mere geometrical structure of Esub(c) 6 spinor geometry seems to suggest formally, both Poincare (extended) and conformal supersymmetry. The suggested spinor-geometrical approach privileges the elementary role of semispinors. Its relevance for the real world should be manifested by the privileged role of semispinors in elementary interactions as in fact seems to be the case with Lorentz semispinors in weak interactions (and could perhaps also be the case for strong ones where conformal semispinors (or twistors) could be the interacting spinor fields). (author)
Cohomology in the Pure Spinor Formalism for the Superstring
International Nuclear Information System (INIS)
Berkovits, Nathan
2000-01-01
A manifestly super-Poincare covariant formalism for the superstring has recently been constructed using a pure spinor variable. Unlike the covariant Green-Schwarz formalism, this new formalism is easily quantized with a BRST operator and tree-level scattering amplitudes have been evaluated in a manifestly covariant manner. In this paper, the cohomology of the BRST operator in the pure spinor formalism is shown to give the usual light-cone Green-Schwarz spectrum. Although the BRST operator does not directly involve the Virasoro constraint, this constraint emerges after expressing the pure spinor variable in terms of SO(8) variables. (author)
Killing spinors as a characterisation of rotating black hole spacetimes
International Nuclear Information System (INIS)
Cole, Michael J; Kroon, Juan A Valiente
2016-01-01
We investigate the implications of the existence of Killing spinors in a spacetime. In particular, we show that in vacuum and electrovacuum a Killing spinor, along with some assumptions on the associated Killing vector in an asymptotic region, guarantees that the spacetime is locally isometric to the Kerr or Kerr–Newman solutions. We show that the characterisation of these spacetimes in terms of Killing spinors is an alternative expression of characterisation results of Mars (Kerr) and Wong (Kerr–Newman) involving restrictions on the Weyl curvature and matter content. (paper)
Spinor formalism and complex-vector formalism of general relativity
International Nuclear Information System (INIS)
Han-ying, G.; Yong-shi, W.; Gendao, L.
1974-01-01
In this paper, using E. Cartan's exterior calculus, we give the spinor form of the structure equations, which leads naturally to the Newman--Penrose equations. Furthermore, starting from the spinor spaces and the el (2C) algebra, we construct the general complex-vector formalism of general relativity. We find that both the Cahen--Debever--Defrise complex-vector formalism and that of Brans are its special cases. Thus, the spinor formalism and the complex-vector formalism of general relativity are unified on the basis of the uni-modular group SL(2C) and its Lie algebra
Experimental demonstration of spinor slow light
Lee, Meng-Jung; Ruseckas, Julius; Lee, Chin-Yuan; Kudriašov, Viačeslav; Chang, Kao-Fang; Cho, Hung-Wen; JuzeliÅ«nas, Gediminas; Yu, Ite A.
2016-03-01
Over the last decade there has been a continuing interest in slow and stored light based on the electromagnetically induced transparency (EIT) effect, because of their potential applications in quantum information manipulation. However, previous experimental works all dealt with the single-component slow light which cannot be employed as a qubit. In this work, we report the first experimental demonstration of two-component or spinor slow light (SSL) using a double tripod (DT) atom-light coupling scheme. The oscillations between the two components, similar to the Rabi oscillation of a two-level system or a qubit, were observed. Single-photon SSL can be considered as two-color qubits. We experimentally demonstrated a possible application of the DT scheme as quantum memory and quantum rotator for the two-color qubits. This work opens up a new direction in the slow light research.
Chiral solitons in spinor polariton rings
Zezyulin, D. A.; Gulevich, D. R.; Skryabin, D. V.; Shelykh, I. A.
2018-04-01
We consider theoretically one-dimensional polariton ring accounting for both longitudinal-transverse (TE-TM) and Zeeman splittings of spinor polariton states and spin-dependent polariton-polariton interactions. We present a class of solutions in the form of the localized defects rotating with constant angular velocity and analyze their properties for realistic values of the parameters of the system. We show that the effects of the geometric phase arising from the interplay between the external magnetic field and the TE-TM splitting introduce chirality in the system and make solitons propagating in clockwise and anticlockwise directions nonequivalent. This can be interpreted as a solitonic analog of the Aharonov-Bohm effect.
Unitary Root Music and Unitary Music with Real-Valued Rank Revealing Triangular Factorization
2010-06-01
AFRL-RY-WP-TP-2010-1213 UNITARY ROOT MUSIC AND UNITARY MUSIC WITH REAL-VALUED RANK REVEALING TRIANGULAR FACTORIZATION (Postprint) Nizar...DATES COVERED (From - To) June 2010 Journal Article Postprint 08 September 2006 – 31 August 2009 4. TITLE AND SUBTITLE UNITARY ROOT MUSIC AND...UNITARY MUSIC WITH REAL-VALUED RANK REVEALING TRIANGULAR FACTORIZATION (Postprint) 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA8650-05-D-1912-0007 5c
The b ghost of the pure spinor formalism is nilpotent
Energy Technology Data Exchange (ETDEWEB)
Chandia, Osvaldo, E-mail: osvaldo.chandia@uai.c [Departamento de Ciencias, Facultad de Artes Liberales and Facultad de Ingenieria y Ciencias, Universidad Adolfo Ibanez, Santiago (Chile)
2011-01-10
The ghost for world-sheet reparametrization invariance is not a fundamental field in the pure spinor formalism. It is written as a combination of pure spinor variables which have conformal dimension two and such that it commutes with the BRST operator to give the world-sheet stress tensor. We show that the ghost variable defined in this way is nilpotent since the OPE of b with itself does not have singularities.
Type I supergravity effective action from pure spinor formalism
International Nuclear Information System (INIS)
Alencar, Geova
2009-01-01
Using the pure spinor formalism, we compute the tree-level correlation functions for three strings, one closed and two open, in N = 1 D = 10 superspace. Expanding the superfields in components, the respective terms of the effective action for the type I supergravity are obtained. All terms found agree with the effective action known in the literature. This result gives one more consistency test for the pure spinor formalism.
The naked spinor a rewrite of Clifford algebra
Morris, Dennis
2015-01-01
This book is about spinors. The whole mathematical theory of spinors is within Clifford algebra, and so this book is about Clifford algebra. Spinor theory is really the theory of empty space, and so this book is about empty space. The whole of Clifford algebra is rewritten in a much simpler form, and so the whole of spinor theory is rewritten in a much simpler form. Not only does this book make Clifford algebra simple and obvious, but it lifts the fog and mirrors from this area of mathematics to make it clear and obvious. In doing so, the true nature of spinors is revealed to the reader, and, with that, the true nature of empty space. To understand this book you will need an elementary knowledge of linear algebra (matrices) an elementary knowledge of finite groups and an elementary knowledge of the complex numbers. From no more than that, you will gain a very deep understanding of Clifford algebra, spinors, and empty space. The book is well written with all the mathematical steps laid before the reader in a w...
On Investigating GMRES Convergence using Unitary Matrices
Czech Academy of Sciences Publication Activity Database
Duintjer Tebbens, Jurjen; Meurant, G.; Sadok, H.; Strakoš, Z.
2014-01-01
Roč. 450, 1 June (2014), s. 83-107 ISSN 0024-3795 Grant - others:GA AV ČR(CZ) M100301201; GA MŠk(CZ) LL1202 Institutional support: RVO:67985807 Keywords : GMRES convergence * unitary matrices * unitary spectra * normal matrices * Krylov residual subspace * Schur parameters Subject RIV: BA - General Mathematics Impact factor: 0.939, year: 2014
Unitary symmetry, combinatorics, and special functions
Energy Technology Data Exchange (ETDEWEB)
Louck, J.D.
1996-12-31
From 1967 to 1994, Larry Biedenham and I collaborated on 35 papers on various aspects of the general unitary group, especially its unitary irreducible representations and Wigner-Clebsch-Gordan coefficients. In our studies to unveil comprehensible structures in this subject, we discovered several nice results in special functions and combinatorics. The more important of these will be presented and their present status reviewed.
A unitary correlation operator method
International Nuclear Information System (INIS)
Feldmeier, H.; Neff, T.; Roth, R.; Schnack, J.
1997-09-01
The short range repulsion between nucleons is treated by a unitary correlation operator which shifts the nucleons away from each other whenever their uncorrelated positions are within the repulsive core. By formulating the correlation as a transformation of the relative distance between particle pairs, general analytic expressions for the correlated wave functions and correlated operators are given. The decomposition of correlated operators into irreducible n-body operators is discussed. The one- and two-body-irreducible parts are worked out explicitly and the contribution of three-body correlations is estimated to check convergence. Ground state energies of nuclei up to mass number A=48 are calculated with a spin-isospin-dependent potential and single Slater determinants as uncorrelated states. They show that the deduced energy-and mass-number-independent correlated two-body Hamiltonian reproduces all ''exact'' many-body calculations surprisingly well. (orig.)
All-optical spinor Bose-Einstein condensation and the spinor dynamics-driven atom laser
Lundblad, Nathan Eric
Optical trapping as a viable means of exploring the physics of ultracold dilute atomic gases has revealed a new spectrum of physical phenomena. In particular, macroscopic and sudden occupation of the ground state below a critical temperature---a phenomenon known as Bose-Einstein condensation---has become an even richer system for the study of quantum mechanics, ultracold collisions, and many-body physics in general. Optical trapping liberates the spin degree of the BEC, making the order parameter vectorial ('spinor BEC'), as opposed to the scalar order of traditional magnetically trapped condensates. The work described within is divided into two main efforts. The first encompasses the all-optical creation of a Bose-Einstein condensate in rubidium vapor. An all-optical path to spinor BEC (as opposed to transfer to an optical trap from a magnetic trap condensate) was desired both for the simplicity of the experimental setup and also for the potential gains in speed of creation; evaporative cooling, the only known path to dilute-gas condensation, works only as efficiently as the rate of elastic collisions in the gas, a rate that starts out much higher in optical traps. The first all-optical BEC was formed elsewhere in 2001; the years following saw many groups worldwide seeking to create their own version. Our own all-optical spinor BEC, made with a single-beam dipole trap formed by a focused CO2 laser, is described here, with particular attention paid to trap loading, measurement of trap parameters, and the use of a novel 780 nm high-power laser system. The second part describes initial experiments performed with the nascent condensate. The spinor properties of the condensate are documented, and a measurement is made of the density-dependent rate of spin mixing in the condensate. In addition, we demonstrate a novel dual-beam atom laser formed by outcoupling oppositely polarized components of the condensate, whose populations have been coherently evolved through spin
Disordered spinor Bose-Hubbard model
International Nuclear Information System (INIS)
LaPcki, Mateusz; Paganelli, Simone; Ahufinger, Veronica; Sanpera, Anna; Zakrzewski, Jakub
2011-01-01
We study the zero-temperature phase diagram of the disordered spin-1 Bose-Hubbard model in a two-dimensional square lattice. To this aim, we use a mean-field Gutzwiller ansatz and a probabilistic mean-field perturbation theory. The spin interaction induces two different regimes, corresponding to a ferromagnetic and antiferromagnetic order. In the ferromagnetic case, the introduction of disorder reproduces analogous features of the disordered scalar Bose-Hubbard model, consisting in the formation of a Bose glass phase between Mott insulator lobes. In the antiferromagnetic regime, the phase diagram differs more from the scalar case. Disorder in the chemical potential can lead to the disappearance of Mott insulator lobes with an odd-integer filling factor and, for sufficiently strong spin coupling, to Bose glass of singlets between even-filling Mott insulator lobes. Disorder in the spinor coupling parameter results in the appearance of a Bose glass phase only between the n and the n+1 lobes for n odd. Disorder in the scalar Hubbard interaction inhibits Mott insulator regions for occupation larger than a critical value.
New unitary affine-Virasoro constructions
International Nuclear Information System (INIS)
Halpern, M.B.; Kiritsis, E.; Obers, N.A.; Poratti, M.; Yamron, J.P.
1990-01-01
This paper reports on a quasi-systematic investigation of the Virasoro master equation. The space of all affine-Virasoro constructions is organized by K-conjugation into affine-Virasoro nests, and an estimate of the dimension of the space shows that most solutions await discovery. With consistent ansatze for the master equation, large classes of new unitary nests are constructed, including quadratic deformation nests with continuous conformal weights, and unitary irrational central charge nests, which may dominate unitary rational central charge on compact g
Quantum entanglement as an aspect of pure spinor geometry
International Nuclear Information System (INIS)
Kiosses, V
2014-01-01
Relying on the mathematical analogy of the pure states of a two-qubit system with four-component Dirac spinors, we provide an alternative consideration of quantum entanglement using the mathematical formulation of Cartan's pure spinors. A result of our analysis is that the Cartan equation of a two-qubit state is entanglement sensitive in the same way that the Dirac equation for fermions is mass sensitive. The Cartan equation for unentangled qubits is reduced to a pair of Cartan equations for single qubits as the Dirac equation for massless fermions separates into two Weyl equations. Finally, we establish a correspondence between the separability condition in qubit geometry and the separability condition in spinor geometry. (paper)
Pure spinor formalism as an N = 2 topological string
International Nuclear Information System (INIS)
Berkovits, Nathan
2005-01-01
Following suggestions of Nekrasov and Siegel, a non-minimal set of fields are added to the pure spinor formalism for the superstring. Twisted c-circumflex = 3 N = 2 generators are then constructed where the pure spinor BRST operator is the fermionic spin-one generator, and the formalism is interpreted as a critical topological string. Three applications of this topological string theory include the super-Poincare covariant computation of multiloop superstring amplitudes without picture-changing operators, the construction of a cubic open superstring field theory without contact-term problems, and a new four-dimensional version of the pure spinor formalism which computes F-terms in the spacetime action
Invariant Killing spinors in 11D and type II supergravities
International Nuclear Information System (INIS)
Gran, U; Gutowski, J; Papadopoulos, G
2009-01-01
We present all isotropy groups and associated Σ groups, up to discrete identifications of the component connected to the identity, of spinors of 11-dimensional and type II supergravities. The Σ groups are products of a Spin group and an R-symmetry group of a suitable lower dimensional supergravity theory. Using the case of SU(4)-invariant spinors as a paradigm, we demonstrate that the Σ groups, and so the R-symmetry groups of lower dimensional supergravity theories arising from compactifications, have disconnected components. These lead us to discrete symmetry groups reminiscent of R-parity. We examine the role of disconnected components of the Σ groups in the choice of Killing spinor representatives and in the context of compactifications.
The unitary space of particle internal states
International Nuclear Information System (INIS)
Perjes, Z.
1978-09-01
A relativistic theory of particle internal properties has been developed. Suppressing space-time information, internal wave functions and -observables are constructed in a 3-complex-dimensional space. The quantum numbers of a spinning point particle in this unitary space correspond with those of a low-mass hadron. Unitary space physics is linked with space-time notions via the Penrose theory of twistors, where new flavors may be represented by many-twistor systems. It is shown here that a four-twistor particle fits into the unitary space picture as a system of two points with equal masses and oppositely pointing unitary spins. Quantum states fall into the ISU(3) irreducible representations discovered by Sparling and the author. Full details of the computation involving SU(3) recoupling techniques are given. (author)
Chiral unitary theory: Application to nuclear problems
Indian Academy of Sciences (India)
Chiral unitary theory: Application to nuclear problems ... Physics Department, Nara Women University, Nara, Japan. 5 ... RCNP, Osaka University, Osaka, Japan ...... We acknowledge partial financial support from the DGICYT under contract ...
Non-unitary probabilistic quantum computing
Gingrich, Robert M.; Williams, Colin P.
2004-01-01
We present a method for designing quantum circuits that perform non-unitary quantum computations on n-qubit states probabilistically, and give analytic expressions for the success probability and fidelity.
Quantum unitary dynamics in cosmological spacetimes
International Nuclear Information System (INIS)
Cortez, Jerónimo; Mena Marugán, Guillermo A.; Velhinho, José M.
2015-01-01
We address the question of unitary implementation of the dynamics for scalar fields in cosmological scenarios. Together with invariance under spatial isometries, the requirement of a unitary evolution singles out a rescaling of the scalar field and a unitary equivalence class of Fock representations for the associated canonical commutation relations. Moreover, this criterion provides as well a privileged quantization for the unscaled field, even though the associated dynamics is not unitarily implementable in that case. We discuss the relation between the initial data that determine the Fock representations in the rescaled and unscaled descriptions, and clarify that the S-matrix is well defined in both cases. In our discussion, we also comment on a recently proposed generalized notion of unitary implementation of the dynamics, making clear the difference with the standard unitarity criterion and showing that the two approaches are not equivalent.
Quantum unitary dynamics in cosmological spacetimes
Energy Technology Data Exchange (ETDEWEB)
Cortez, Jerónimo, E-mail: jacq@ciencias.unam.mx [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Mena Marugán, Guillermo A., E-mail: mena@iem.cfmac.csic.es [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid (Spain); Velhinho, José M., E-mail: jvelhi@ubi.pt [Departamento de Física, Faculdade de Ciências, Universidade da Beira Interior, R. Marquês D’Ávila e Bolama, 6201-001 Covilhã (Portugal)
2015-12-15
We address the question of unitary implementation of the dynamics for scalar fields in cosmological scenarios. Together with invariance under spatial isometries, the requirement of a unitary evolution singles out a rescaling of the scalar field and a unitary equivalence class of Fock representations for the associated canonical commutation relations. Moreover, this criterion provides as well a privileged quantization for the unscaled field, even though the associated dynamics is not unitarily implementable in that case. We discuss the relation between the initial data that determine the Fock representations in the rescaled and unscaled descriptions, and clarify that the S-matrix is well defined in both cases. In our discussion, we also comment on a recently proposed generalized notion of unitary implementation of the dynamics, making clear the difference with the standard unitarity criterion and showing that the two approaches are not equivalent.
Probabilistic implementation of Hadamard and unitary gates
International Nuclear Information System (INIS)
Song Wei; Yang Ming; Cao Zhuoliang
2004-01-01
We show that the Hadamard and unitary gates could be implemented by a unitary evolution together with a measurement for any unknown state chosen from a set A={ vertical bar Ψi>, vertical bar Ψ-bar i>} (i=1,2) if and only if vertical bar Ψ1>, vertical bar Ψ2>, vertical bar Ψ-bar 1>, vertical bar Ψ-bar 2> are linearly independent. We also derive the best transformation efficiencies
Entanglement quantification by local unitary operations
Energy Technology Data Exchange (ETDEWEB)
Monras, A.; Giampaolo, S. M.; Gualdi, G.; Illuminati, F. [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, CNISM, Unita di Salerno, and INFN, Sezione di Napoli-Gruppo Collegato di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy); Adesso, G.; Davies, G. B. [School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)
2011-07-15
Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as ''mirror entanglement.'' They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the ''stellar mirror entanglement'' associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.
Entanglement quantification by local unitary operations
Monras, A.; Adesso, G.; Giampaolo, S. M.; Gualdi, G.; Davies, G. B.; Illuminati, F.
2011-07-01
Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as “mirror entanglement.” They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the “stellar mirror entanglement” associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.76.042301 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.
Entanglement quantification by local unitary operations
International Nuclear Information System (INIS)
Monras, A.; Giampaolo, S. M.; Gualdi, G.; Illuminati, F.; Adesso, G.; Davies, G. B.
2011-01-01
Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as ''mirror entanglement.'' They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the ''stellar mirror entanglement'' associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.
Unitary representations of basic classical Lie superalgebras
International Nuclear Information System (INIS)
Gould, M.D.; Zhang, R.B.
1990-01-01
We have obtained all the finite-dimensional unitary irreps of gl(mvertical stroken) and C(n), which also exhaust such irreps of all the basic classical Lie superalgebras. The lowest weights of such irreps are worked out explicitly. It is also shown that the contravariant and covariant tensor irreps of gl(mvertical stroken) are unitary irreps of type (1) and type (2) respectively, explaining the applicability of the Young diagram method to these two types of tensor irreps. (orig.)
Spinor and isospinor structure of relativistic particle propagators
International Nuclear Information System (INIS)
Gitman, D.M.; Shvartsman, Sh.M.
1993-07-01
Representations by means of path integrals are used to find spinor and isospinor structure of relativistic particle propagators in external fields. For Dirac propagator in an external electromagnetic field all Grassmannian integrations are performed and a general result is presented via a bosonic path integral. The spinor structure of the integrand is given explicitly by its decomposition in the independent γ-matrix structures. A similar technique is used to get the isospinor structure of the scalar particle propagator in an external non-Abelian field. (author). 21 refs
Pure spinors, free differential algebras, and the supermembrane
International Nuclear Information System (INIS)
Fre, Pietro; Grassi, Pietro Antonio
2007-01-01
The Lagrangian formalism for the supermembrane in any 11d supergravity background is constructed in the pure spinor framework. Our gauge-fixed action is manifestly BRST, supersymmetric, and 3d Lorentz invariant. The relation between the Free Differential Algebras (FDA) underlying 11d supergravity and the BRST symmetry of the membrane action is exploited. The 'gauge-fixing' has a natural interpretation as the variation of the Chevalley cohomology class needed for the extension of 11d super-Poincare superalgebra to M-theory FDA. We study the solution of the pure spinor constraints in full detail
Pure spinors, free differential algebras, and the supermembrane
Energy Technology Data Exchange (ETDEWEB)
Fre, Pietro [Dipartimento di Fisica Teorica, Universita di Torino, and INFN-Sezione di Torino, Via P. Giuria 1, I-10125 Turin (Italy); Grassi, Pietro Antonio [Centro Studi e Ricerche E. Fermi, Compendio Viminale, I-00184 Rome (Italy) and DISTA, Universita del Piemonte Orientale, and INFN-Sezione di Torino, Via Bellini 25/G, Alessandria 15100 (Italy) and CERN, Theory Unit, CH-1211 Geneva 23 (Switzerland)]. E-mail: pgrassi@insti.physics.sunysb.edu
2007-02-12
The Lagrangian formalism for the supermembrane in any 11d supergravity background is constructed in the pure spinor framework. Our gauge-fixed action is manifestly BRST, supersymmetric, and 3d Lorentz invariant. The relation between the Free Differential Algebras (FDA) underlying 11d supergravity and the BRST symmetry of the membrane action is exploited. The 'gauge-fixing' has a natural interpretation as the variation of the Chevalley cohomology class needed for the extension of 11d super-Poincare superalgebra to M-theory FDA. We study the solution of the pure spinor constraints in full detail.
Radio-Frequency-Controlled Cold Collisions and Universal Properties of Unitary Bose Gases
Ding, Yijue
This thesis investigates two topics: ultracold atomic collisions in a radio-frequency field and universal properties of a degenerate unitary Bose gas. One interesting point of the unitary Bose gas is that the system has only one length scale, that is, the average interparticle distance. This single parameter determines all properties of the gas, which is called the universality of the system. We first introduce a renormalized contact interaction to extend the validity of the zero-range interaction to large scattering lengths. Then this renormalized interaction is applied to many-body theories to determined those universal relations of the system. From the few-body perspective, we discuss the scattering between atoms in a single-color radio-frequency field. Our motivation is proposing the radio-frequency field as an effective tool to control interactions between cold atoms. Such a technique may be useful in future experiments such as creating phase transitions in spinor condensates. We also discuss the formation of ultracold molecules using radio-freqency fields from a time-dependent approach.
Unitary transformations in solid state physics
International Nuclear Information System (INIS)
Wagner, M.
1986-01-01
The main emphasis of this book is on the practical application of unitary transformations to problems in solid state physics. This is a method used in the field of nonadiabatic electron-phonon phenomena where the Born-Oppenheimer approximation is no longer applicable. The book is intended as a tool for those who want to apply unitary transformations quickly and on a more elementary level and also for those who want to use this method for more involved problems. The book is divided into 6 chapters. The first three chapters are concerned with presenting quick applications of unitary transformations and chapter 4 presents a more systematic procedure. The last two chapters contain the major known examples of the utilization of unitary transformations in solid state physics, including such highlights as the Froehlich and the Fulton-Gouterman transformations. The book is supplemented by extended tables of unitary transformations, whose properties and peculiarities are also listed. This tabulated material is unique and will be of great practical use to those applying the method of unitary transformations in their work. (Auth.)
Optimal quantum learning of a unitary transformation
International Nuclear Information System (INIS)
Bisio, Alessandro; Chiribella, Giulio; D'Ariano, Giacomo Mauro; Facchini, Stefano; Perinotti, Paolo
2010-01-01
We address the problem of learning an unknown unitary transformation from a finite number of examples. The problem consists in finding the learning machine that optimally emulates the examples, thus reproducing the unknown unitary with maximum fidelity. Learning a unitary is equivalent to storing it in the state of a quantum memory (the memory of the learning machine) and subsequently retrieving it. We prove that, whenever the unknown unitary is drawn from a group, the optimal strategy consists in a parallel call of the available uses followed by a 'measure-and-rotate' retrieving. Differing from the case of quantum cloning, where the incoherent 'measure-and-prepare' strategies are typically suboptimal, in the case of learning the 'measure-and-rotate' strategy is optimal even when the learning machine is asked to reproduce a single copy of the unknown unitary. We finally address the problem of the optimal inversion of an unknown unitary evolution, showing also in this case the optimality of the 'measure-and-rotate' strategies and applying our result to the optimal approximate realignment of reference frames for quantum communication.
Flag-dipole and flagpole spinor fluid flows in Kerr spacetimes
Energy Technology Data Exchange (ETDEWEB)
Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [Universidade Federal do ABC, CMCC (Brazil); Cavalcanti, R. T., E-mail: rogerio.cavalcanti@ufabc.edu.br [Universidade Federal do ABC, CCNH (Brazil)
2017-03-15
Flagpole and flag-dipole spinors are particular classes of spinor fields that has been recently used in different branches of theoretical physics. In this paper, we study the possibility and consequences of these spinor fields to induce an underlying fluid flow structure in the background of Kerr spacetimes. We show that flag-dipole spinor fields are solutions of the equations of motion in this context. To our knowledge, this is the second time that this class of spinor field appears as a physical solution, the first one occurring as a solution of the Dirac equation in ESK gravities.
Unveiling a spinor field classification with non-Abelian gauge symmetries
Fabbri, Luca; da Rocha, Roldão
2018-05-01
A spinor fields classification with non-Abelian gauge symmetries is introduced, generalizing the U(1) gauge symmetries-based Lounesto's classification. Here, a more general classification, contrary to the Lounesto's one, encompasses spinor multiplets, corresponding to non-Abelian gauge fields. The particular case of SU(2) gauge symmetry, encompassing electroweak and electromagnetic conserved charges, is then implemented by a non-Abelian spinor classification, now involving 14 mixed classes of spinor doublets. A richer flagpole, dipole, and flag-dipole structure naturally descends from this general classification. The Lounesto's classification of spinors is shown to arise as a Pauli's singlet, into this more general classification.
Random unitary operations and quantum Darwinism
International Nuclear Information System (INIS)
Balaneskovic, Nenad
2016-01-01
We study the behavior of Quantum Darwinism (Zurek, Nature Physics 5, 181-188 (2009)) within the iterative, random unitary operations qubit-model of pure decoherence (Novotn'y et al, New Jour. Phys. 13, 053052 (2011)). We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system from the point of view of its environment, is not a generic phenomenon, but depends on the specific form of initial states and on the type of system-environment interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial initial states of environment that allow to store information about an open system of interest and its pointer-basis with maximal efficiency. Furthermore, we investigate the behavior of Quantum Darwinism after introducing dissipation into the iterative random unitary qubit model with pure decoherence in accord with V. Scarani et al (Phys. Rev. Lett. 88, 097905 (2002)) and reconstruct the corresponding dissipative attractor space. We conclude that in Zurek's qubit model Quantum Darwinism depends on the order in which pure decoherence and dissipation act upon an initial state of the entire system. We show explicitly that introducing dissipation into the random unitary evolution model in general suppresses Quantum Darwinism (regardless of the order in which decoherence and dissipation are applied) for all positive non-zero values of the dissipation strength parameter, even for those initial state configurations which, in Zurek's qubit model and in the random unitary model with pure decoherence, would lead to Quantum Darwinism. Finally, we discuss what happens with Quantum Darwinism after introducing into the iterative random unitary qubit model with pure decoherence (asymmetric) dissipation and dephasing, again in accord with V. Scarani et al (Phys. Rev. Lett. 88, 097905 (2002)), and reconstruct the corresponding
Geon-type solutions of the non-linear Heisenberg-Klein-Gordon equation
International Nuclear Information System (INIS)
Mielke, E.W.; Scherzer, R.
1980-10-01
As a model for a ''unitary'' field theory of extended particles we consider the non-linear Klein-Gordon equation - associated with a ''squared'' Heisenberg-Pauli-Weyl non-linear spinor equation - coupled to strong gravity. Using a stationary spherical ansatz for the complex scalar field as well as for the background metric generated via Einstein's field equation, we are able to study the effects of the scalar self-interaction as well as of the classical tensor forces. By numerical integration we obtain a continuous spectrum of localized, gravitational solitons resembling the geons previously constructed for the Einstein-Maxwell system by Wheeler. A self-generated curvature potential originating from the curved background partially confines the Schroedinger type wave functions within the ''scalar geon''. For zero angular momentum states and normalized scalar charge the spectrum for the total gravitational energy of these solitons exhibits a branching with respect to the number of nodes appearing in the radial part of the scalar field. Preliminary studies for higher values of the corresponding ''principal quantum number'' reveal that a kind of fine splitting of the energy levels occurs, which may indicate a rich, particle-like structure of these ''quantized geons''. (author)
IIB solutions with N>28 Killing spinors are maximally supersymmetric
International Nuclear Information System (INIS)
Gran, U.; Gutowski, J.; Papadopoulos, G.; Roest, D.
2007-01-01
We show that all IIB supergravity backgrounds which admit more than 28 Killing spinors are maximally supersymmetric. In particular, we find that for all N>28 backgrounds the supercovariant curvature vanishes, and that the quotients of maximally supersymmetric backgrounds either preserve all 32 or N<29 supersymmetries
Complex vector triads in spinor theory in Minkowski space
International Nuclear Information System (INIS)
Zhelnorovich, V.A.
1990-01-01
It is shown that tensor equations corresponding to the spinor Dirac equations represent a three-dimensional part of four-dimensional vector equations. The equations are formulated in an evidently invariant form in antisymmetric tensor components and in the corresponding components of a complex vector triad. A complete system of relativistically invariant tensor equations is ascertained
Discrete symmetries for spinor field in de Sitter space
International Nuclear Information System (INIS)
Moradi, S.; Rouhani, S.; Takook, M.V.
2005-01-01
Discrete symmetries, parity, time reversal, antipodal, and charge conjugation transformations for spinor field in de Sitter space, are presented in the ambient space notation, i.e., in a coordinate independent way. The PT and PCT transformations are also discussed in this notation. The five-current density is studied and their transformation under the discrete symmetries is discussed
Ambitwistor pure spinor string in a type II supergravity background
Energy Technology Data Exchange (ETDEWEB)
Chandia, Osvaldo [Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez,Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,Diagonal Las Torres 2640, Peñalolén, Santiago (Chile); Vallilo, Brenno Carlini [Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andres Bello,República 220, Santiago (Chile)
2015-06-30
We construct the ambitwistor pure spinor string in a general type II supergravity background in the semi-classical regime. Almost all supergravity constraints are obtained from nilpotency of the BRST charge and further consistency conditions from additional world-sheet the case of AdS{sub 5}×S{sup 5} background.
Spontaneous symmetry breaking in spinor Bose-Einstein condensates
DEFF Research Database (Denmark)
Scherer, Manuel; Lücke, Bernd; Peise, Jan
2013-01-01
We present an analytical model for the theoretical analysis of spin dynamics and spontaneous symmetry breaking in a spinor Bose-Einstein condensate (BEC). This allows for an excellent intuitive understanding of the processes and provides good quantitative agreement with the experimental results...
Spinor bose gases in cubic optical lattice
International Nuclear Information System (INIS)
Mobarak, Mohamed Saidan Sayed Mohamed
2014-01-01
In recent years the quantum simulation of condensed-matter physics problems has resulted from exciting experimental progress in the realm of ultracold atoms and molecules in optical lattices. In this thesis we analyze theoretically a spinor Bose gas loaded into a three-dimensional cubic optical lattice. In order to account for different superfluid phases of spin-1 bosons with a linear Zeeman effect, we work out a Ginzburg-Landau theory for the underlying spin-1 Bose-Hubbard model. To this end we add artificial symmetry-breaking currents to the spin-1 Bose-Hubbard Hamiltonian in order to break the global U (1) symmetry. With this we determine a diagrammatic expansion of the grand-canonical free energy up to fourth order in the symmetry-breaking currents and up to the leading non-trivial order in the hopping strength which is of first order. As a cross-check we demonstrate that the resulting grand-canonical free energy allows to recover the mean-field theory. Applying a Legendre transformation to the grand-canonical free energy, where the symmetry-breaking currents are transformed to order parameters, we obtain the effective Ginzburg-Landau action. With this we calculate in detail at zero temperature the Mott insulator-superfluid quantum phase boundary as well as condensate and particle number density in the superfluid phase. We find that both mean-field and Ginzburg-Landau theory yield the same quantum phase transition between the Mott insulator and superfluid phases, but the range of validity of the mean-field theory turns out to be smaller than that of the Ginzburg-Landau theory. Due to this finding we expect that the Ginzburg-Landau theory gives better results for the superfluid phase and, thus, we restrict ourselves to extremize only the effective Ginzburg-Landau action with respect to the order parameters. Without external magnetic field the superfluid phase is a polar (ferromagnetic) state for anti-ferromagnetic (ferromagnetic) interactions, i.e. only the
Multiple multicontrol unitary operations: Implementation and applications
Lin, Qing
2018-04-01
The efficient implementation of computational tasks is critical to quantum computations. In quantum circuits, multicontrol unitary operations are important components. Here, we present an extremely efficient and direct approach to multiple multicontrol unitary operations without decomposition to CNOT and single-photon gates. With the proposed approach, the necessary two-photon operations could be reduced from O( n 3) with the traditional decomposition approach to O( n), which will greatly relax the requirements and make large-scale quantum computation feasible. Moreover, we propose the potential application to the ( n- k)-uniform hypergraph state.
The SNARC effect is not a unitary phenomenon.
Basso Moro, Sara; Dell'Acqua, Roberto; Cutini, Simone
2018-04-01
Models of the spatial-numerical association of response codes (SNARC) effect-faster responses to small numbers using left effectors, and the converse for large numbers-diverge substantially in localizing the root cause of this effect along the numbers' processing chain. One class of models ascribes the cause of the SNARC effect to the inherently spatial nature of the semantic representation of numerical magnitude. A different class of models ascribes the effect's cause to the processing dynamics taking place during response selection. To disentangle these opposing views, we devised a paradigm combining magnitude comparison and stimulus-response switching in order to monitor modulations of the SNARC effect while concurrently tapping both semantic and response-related processing stages. We observed that the SNARC effect varied nonlinearly as a function of both manipulated factors, a result that can hardly be reconciled with a unitary cause of the SNARC effect.
Multiqubit Clifford groups are unitary 3-designs
Zhu, Huangjun
2017-12-01
Unitary t -designs are a ubiquitous tool in many research areas, including randomized benchmarking, quantum process tomography, and scrambling. Despite the intensive efforts of many researchers, little is known about unitary t -designs with t ≥3 in the literature. We show that the multiqubit Clifford group in any even prime-power dimension is not only a unitary 2-design, but also a 3-design. Moreover, it is a minimal 3-design except for dimension 4. As an immediate consequence, any orbit of pure states of the multiqubit Clifford group forms a complex projective 3-design; in particular, the set of stabilizer states forms a 3-design. In addition, our study is helpful in studying higher moments of the Clifford group, which are useful in many research areas ranging from quantum information science to signal processing. Furthermore, we reveal a surprising connection between unitary 3-designs and the physics of discrete phase spaces and thereby offer a simple explanation of why no discrete Wigner function is covariant with respect to the multiqubit Clifford group, which is of intrinsic interest in studying quantum computation.
Remarks on unitary representations of Poincare group
International Nuclear Information System (INIS)
Burzynski, A.
1979-01-01
In this paper the elementary review of methods and notions using in the theory of unitary representations of Poincare group is included. The Poincare group is a basic group for relativistic quantum mechanics. Our aim is to introduce the reader into some problems of quantum physics, which are difficult approachable for beginners. (author)
Generalized unitaries and the Picard group
Indian Academy of Sciences (India)
some explicit calculations of that type.) So the range of this .... when we restrict our attention to generalized unitaries and full modules, that is, to modules. E for which BE = B. For every ..... without dividing out equivalence classes. But there is no ...
Comments on the symmetry of AdS6 solutions in string/M-theory and Killing spinor equations
Directory of Open Access Journals (Sweden)
Hyojoong Kim
2016-09-01
Full Text Available It was recently pointed out in [1] that AdS6 solutions in IIB theory enjoy an extended symmetry structure and the consistent truncation to D=4 internal space leads to a nonlinear sigma model with target SL(3,R/SO(2,1. We continue to study the purely bosonic D=4 effective action, and elucidate how the addition of scalar potential term still allows Killing spinor equations in the absence of gauge fields. In particular, the potential turns out to be a single diagonal component of the coset representative. Furthermore, we perform a general analysis of the integrability conditions of Killing spinor equations and establish that the effective action can be in fact generalized to arbitrary sizes and signatures, e.g. with target SL(n,R/SO(p,n−p and the scalar potential expressible by a single diagonal component of the coset representative. We also comment on a similar construction and its generalizations of effective D=5 purely bosonic non-linear sigma model action related to AdS6 in M-theory.
Opening the Pandora's box of quantum spinor fields
Energy Technology Data Exchange (ETDEWEB)
Bonora, L. [International School for Advanced Studies-SISSA, Trieste (Italy); Silva, J.M.H. da [Universidade Estadual Paulista-UNESP, Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil); Rocha, R. da [Universidade Federal do ABC-UFABC, Centro de Matematica, Computacao e Cognicao, Santo Andre (Brazil)
2018-02-15
Lounesto's classification of spinors is a comprehensive and exhaustive algorithm that, based on the bilinears covariants, discloses the possibility of a large variety of spinors, comprising regular and singular spinors and their unexpected applications in physics and including the cases of Dirac, Weyl, and Majorana as very particular spinor fields. In this paper we pose the problem of an analogous classification in the framework of second quantization. We first discuss in general the nature of the problem. Then we start the analysis of two basic bilinear covariants, the scalar and pseudoscalar, in the second quantized setup, with expressions applicable to the quantum field theory extended to all types of spinors. One can see that an ampler set of possibilities opens up with respect to the classical case. A quantum reconstruction algorithm is also proposed. The Feynman propagator is extended for spinors in all classes. (orig.)
Four forces and spinor connection in general relativity
International Nuclear Information System (INIS)
Lynch, J.T.
1985-01-01
This work is an extension of the recent spinor-connection theory of Szekeres, Cullinan, and Lynch. In that theory, a geometric model for the gravitational and electromagnetic fields was realized by use of both left- and right-connection groups acting on a 4 x 4 spinor tetrad. Here the right-connection group is enlarged in a natural way from a one-parameter to a three-parameter Lie group. This enlargement introduces two extra potential fields which may provide a simple model for the strong and weak fields in curved space-time. A solution to the new field equations is given for a neutral ''pionlike'' particle exhibiting the strong and gravitational fields
Harmonic spinors on a family of Einstein manifolds
Franchetti, Guido
2018-06-01
The purpose of this paper is to study harmonic spinors defined on a 1-parameter family of Einstein manifolds which includes Taub–NUT, Eguchi–Hanson and with the Fubini–Study metric as particular cases. We discuss the existence of and explicitly solve for spinors harmonic with respect to the Dirac operator twisted by a geometrically preferred connection. The metrics examined are defined, for generic values of the parameter, on a non-compact manifold with the topology of and extend to as edge-cone metrics. As a consequence, the subtle boundary conditions of the Atiyah–Patodi–Singer index theorem need to be carefully considered in order to show agreement between the index of the twisted Dirac operator and the result obtained by counting the explicit solutions.
Spinors and supersymmetry in four-dimensional Euclidean space
International Nuclear Information System (INIS)
McKeon, D.G.C.; Sherry, T.N.
2001-01-01
Spinors in four-dimensional Euclidean space are treated using the decomposition of the Euclidean space SO(4) symmetry group into SU(2)xSU(2). Both 2- and 4-spinor representations of this SO(4) symmetry group are shown to differ significantly from the corresponding spinor representations of the SO(3, 1) symmetry group in Minkowski space. The simplest self conjugate supersymmetry algebra allowed in four-dimensional Euclidean space is demonstrated to be an N=2 supersymmetry algebra which resembles the N=2 supersymmetry algebra in four-dimensional Minkowski space. The differences between the two supersymmetry algebras gives rise to different representations; in particular an analysis of the Clifford algebra structure shows that the momentum invariant is bounded above by the central charges in 4dE, while in 4dM the central charges bound the momentum invariant from below. Dimensional reduction of the N=1 SUSY algebra in six-dimensional Minkowski space (6dM) to 4dE reproduces our SUSY algebra in 4dE. This dimensional reduction can be used to introduce additional generators into the SUSY algebra in 4dE. Well known interpolating maps are used to relate the N=2 SUSY algebra in 4dE derived in this paper to the N=2 SUSY algebra in 4dM. The nature of the spinors in 4dE allows us to write an axially gauge invariant model which is shown to be both Hermitian and anomaly-free. No equivalent model exists in 4dM. Useful formulae in 4dE are collected together in two appendixes
Anti-ferromagnetic spinor BECs in optical lattices
Energy Technology Data Exchange (ETDEWEB)
Rossini, Davide [NEST-CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy); Rizzi, Matteo [NEST-CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy); Chiara, Gabriele De [NEST-CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy); Montangero, Simone [NEST-CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy); Fazio, Rosario [NEST-CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy); International School for Advanced Studies SISSA/ISAS, via Beirut 2-4, I-34014 Trieste (Italy)
2006-05-28
Spinor Bose condensates loaded in optical lattices have a rich phase diagram characterized by different magnetic order. In this work we evaluated the phase boundary between the Mott insulator and the superfluid phase by means of the density matrix renormalization group. Furthermore, we studied the properties of the insulating phase for odd fillings. The results obtained in this work are also relevant for the determination of the ground state phase diagram of the S = 1 Heisenberg model with biquadratic interaction.
Quantization of a nonlinearly realized supersymmetric theory
International Nuclear Information System (INIS)
Shima, K.
1977-01-01
The two-dimensional version of the Volkov-Akulov Lagrangian, where the supersymmetry is realized nonlinearly by means of a single Majorana spinor psi (x), is quantized. The equal-time anticommutators for the field are not c numbers but are functions of the field itself. By explicit calculation we shall show that the supersymmetry charges of the model form the supersymmetry algebra (the graded Lie algebra); therefore the Hamiltonian of the system P 0 is written as a bilinear sum of products of supersymmetry charges. We shall also show that the supersymmetry charges exactly generate a constant translation of psi (x) in the spinor space
Scattering of massive open strings in pure spinor
International Nuclear Information System (INIS)
Park, I.Y.
2011-01-01
In Park (2008) , it was proposed that the D-brane geometry could be produced by open string quantum effects. In an effort to verify the proposal, we consider scattering amplitudes involving massive open superstrings. The main goal of this paper is to set the ground for two-loop 'renormalization' of an oriented open superstring on a D-brane and to strengthen our skill in the pure spinor formulation of a superstring, an effective tool for multi-loop string diagrams. We start by reviewing scattering amplitudes of massless states in the 2D component method of the NSR formulation. A few examples of massive string scattering are worked out. The NSR results are then reproduced in the pure spinor formulation. We compute the amplitudes using the unintegrated form of the massive vertex operator constructed by Berkovits and Chandia (2002) . We point out that it may be possible to discover new Riemann type identities involving Jacobi θ-functions by comparing a NSR computation and the corresponding pure spinor computation.
International Nuclear Information System (INIS)
Budinich, Paolo
2009-03-01
In a previous paper we proposed a purely mathematical way to quantum mechanics based on Cartan's simple spinors in their most elementary form of 2 components spinors. Here we proceed along that path proposing, this time, a symmetric tensor, quadrilinear in simple spinors, as a candidate for the symmetric tensor of general relativity. The procedure resembles closely that in which one builds bilinearly from simple spinors an asymmetric electromagnetic tensor, from which easily descend Maxwell's equations and the photon can be seen as a bilinear combination of neutrinos. Here Lorentzian spaces result compact, building up spheres, where hopefully the problems of the Standard Model could be solved. (author)
The bundles of algebraic and Dirac-Hestenes spinor fields
International Nuclear Information System (INIS)
Mosna, Ricardo A.; Rodrigues, Waldyr A. Jr.
2004-01-01
Our main objective in this paper is to clarify the ontology of Dirac-Hestenes spinor fields (DHSF) and its relationship with even multivector fields, on a Riemann-Cartan spacetime (RCST) M=(M,g,∇,τ g ,↑) admitting a spin structure, and to give a mathematically rigorous derivation of the so-called Dirac-Hestenes equation (DHE) in the case where M is a Lorentzian spacetime (the general case when M is a RCST will be discussed in another publication). To this aim we introduce the Clifford bundle of multivector fields (Cl(M,g)) and the left (Cl Spin 1,3 e l (M)) and right (Cl Spin 1,3 e r (M)) spin-Clifford bundles on the spin manifold (M,g). The relation between left ideal algebraic spinor fields (LIASF) and Dirac-Hestenes spinor fields (both fields are sections of Cl Spin 1,3 e l (M)) is clarified. We study in detail the theory of covariant derivatives of Clifford fields as well as that of left and right spin-Clifford fields. A consistent Dirac equation for a DHSF Ψ is a member of sec Cl Spin 1,3 e l (M) (denoted DECl l ) on a Lorentzian spacetime is found. We also obtain a representation of the DECl l in the Clifford bundle Cl(M,g). It is such equation that we call the DHE and it is satisfied by Clifford fields ψ Ξ is a member of sec Cl(M,g). This means that to each DHSF Ψ is a member of sec Cl Spin 1,3 e l (M) and spin frame Ξ is a member of sec P Spin 1,3 e (M), there is a well-defined sum of even multivector fields ψ Ξ isa member of sec Cl(M,g) (EMFS) associated with Ψ. Such an EMFS is called a representative of the DHSF on the given spin frame. And, of course, such a EMFS (the representative of the DHSF) is not a spinor field. With this crucial distinction between a DHSF and its representatives on the Clifford bundle, we provide a consistent theory for the covariant derivatives of Clifford and spinor fields of all kinds. We emphasize that the DECl l and the DHE, although related, are equations of different mathematical natures. We study also the
Optimal unitary dilation for bosonic Gaussian channels
International Nuclear Information System (INIS)
Caruso, Filippo; Eisert, Jens; Giovannetti, Vittorio; Holevo, Alexander S.
2011-01-01
A general quantum channel can be represented in terms of a unitary interaction between the information-carrying system and a noisy environment. In this paper the minimal number of quantum Gaussian environmental modes required to provide a unitary dilation of a multimode bosonic Gaussian channel is analyzed for both pure and mixed environments. We compute this quantity in the case of pure environment corresponding to the Stinespring representation and give an improved estimate in the case of mixed environment. The computations rely, on one hand, on the properties of the generalized Choi-Jamiolkowski state and, on the other hand, on an explicit construction of the minimal dilation for arbitrary bosonic Gaussian channel. These results introduce a new quantity reflecting ''noisiness'' of bosonic Gaussian channels and can be applied to address some issues concerning transmission of information in continuous variables systems.
Black hole thermodynamics based on unitary evolutions
International Nuclear Information System (INIS)
Feng, Yu-Lei; Chen, Yi-Xin
2015-01-01
In this paper, we try to construct black hole thermodynamics based on the fact that the formation and evaporation of a black hole can be described by quantum unitary evolutions. First, we show that the Bekenstein–Hawking entropy S BH may not be a Boltzmann or thermal entropy. To confirm this statement, we show that the original black hole's ‘first law’ may not simply be treated as the first law of thermodynamics formally, due to some missing metric perturbations caused by matter. Then, by including those (quantum) metric perturbations, we show that the black hole formation and evaporation can be described effectively in a unitary manner, through a quantum channel between the exterior and interior of the event horizon. In this way, the paradoxes of information loss and firewall can be resolved effectively. Finally, we show that black hole thermodynamics can be constructed in an ordinary way, by constructing statistical mechanics. (paper)
Unitary evolution between pure and mixed states
International Nuclear Information System (INIS)
Reznik, B.
1996-01-01
We propose an extended quantum mechanical formalism that is based on a wave operator d, which is related to the ordinary density matrix via ρ=dd degree . This formalism allows a (generalized) unitary evolution between pure and mixed states. It also preserves much of the connection between symmetries and conservation laws. The new formalism is illustrated for the case of a two-level system. copyright 1996 The American Physical Society
Biased Monte Carlo algorithms on unitary groups
International Nuclear Information System (INIS)
Creutz, M.; Gausterer, H.; Sanielevici, S.
1989-01-01
We introduce a general updating scheme for the simulation of physical systems defined on unitary groups, which eliminates the systematic errors due to inexact exponentiation of algebra elements. The essence is to work directly with group elements for the stochastic noise. Particular cases of the scheme include the algorithm of Metropolis et al., overrelaxation algorithms, and globally corrected Langevin and hybrid algorithms. The latter are studied numerically for the case of SU(3) theory
Some remarks on spinor particle pair creation in alternating homogeneous external field
International Nuclear Information System (INIS)
Perelomov, A.M.
1975-01-01
It is shown that the dynamical symmetry group of the problem of spinor particle pair creation in alternating homogeneous external fields is the SO(5) group. The probability of pair creation is given by the modulus square of the matrix element of spinor representation of this group. (Auth.)
Spinor Field Realizations of Non-critical $W_{2,s}$ Strings
Duan, Yi-Shi; Liu, Yu-Xiao; Zhang, Li-Jie
2005-01-01
In this paper, we construct the nilpotent Becchi-Rouet-Stora-Tyutin($BRST$) charges of spinor non-critical $W_{2,s}$ strings. The cases of $s=3,4$ are discussed in detail, and spinor realization for $s=4$ is given explicitly. The $BRST$ charges are graded.
Spinor field realizations of non-critical W2,s strings
International Nuclear Information System (INIS)
Duan, Y.S.; Liu, Y.X.; Zhang, L.J.
2004-01-01
In this paper, we construct the nilpotent Becchi-Rouet-Stora-Tyutin (BRST) charges of spinor non-critical W2,s strings. The cases of s=3,4 are discussed in detail, and spinor realization for s=4 is given explicitly. The BRST charges are graded
Infinite tension limit of the pure spinor superstring
Energy Technology Data Exchange (ETDEWEB)
Berkovits, Nathan [ICTP South American Institute for Fundamental Research,Instituto de Física Teórica, UNESP - Univ. Estadual Paulista,Rua Dr. Bento T. Ferraz 271, 01140-070, São Paulo, SP (Brazil)
2014-03-04
Mason and Skinner recently constructed a chiral infinite tension limit of the Ramond-Neveu-Schwarz superstring which was shown to compute the Cachazo-He-Yuan formulae for tree-level d=10 Yang-Mills amplitudes and the NS-NS sector of tree-level d=10 supergravity amplitudes. In this letter, their chiral infinite tension limit is generalized to the pure spinor superstring which computes a d=10 superspace version of the Cachazo-He-Yuan formulae for tree-level d=10 super-Yang-Mills and supergravity amplitudes.
Maximal entanglement of two spinor Bose-Einstein condensates
Jack, Michael W.; Yamashita, Makoto
2005-01-01
Starting with two weakly-coupled anti-ferromagnetic spinor condensates, we show that by changing the sign of the coefficient of the spin interaction, $U_{2}$, via an optically-induced Feshbach resonance one can create an entangled state consisting of two anti-correlated ferromagnetic condensates. This state is maximally entangled and a generalization of the Bell state from two anti-correlated spin-1/2 particles to two anti-correlated spin$-N/2$ atomic samples, where $N$ is the total number of...
Relativistic algebraic spinors and quantum motions in phase space
International Nuclear Information System (INIS)
Holland, P.R.
1986-01-01
Following suggestions of Schonberg and Bohm, we study the tensorial phase space representation of the Dirac and Feynman-Gell-Mann equations in terms of the complex Dirac algebra C 4 , a Jordan-Wigner algebra G 4 , and Wigner transformations. To do this we solve the problem of the conditions under which elements in C 4 generate minimal ideals, and extend this to G 4 . This yields the linear theory of Dirac spin spaces and tensor representations of Dirac spinors, and the spin-1/2 wave equations are represented through fermionic state vectors in a higher space as a set of interconnected tensor relations
Quantum reading of unitary optical devices
International Nuclear Information System (INIS)
Dall'Arno, Michele; Bisio, Alessandro; D'Ariano, Giacomo Mauro
2014-01-01
We address the problem of quantum reading of optical memories, namely the retrieving of classical information stored in the optical properties of a media with minimum energy. We present optimal strategies for ambiguous and unambiguous quantum reading of unitary optical memories, namely when one's task is to minimize the probability of errors in the retrieved information and when perfect retrieving of information is achieved probabilistically, respectively. A comparison of the optimal strategy with coherent probes and homodyne detection shows that the former saves orders of magnitude of energy when achieving the same performances. Experimental proposals for quantum reading which are feasible with present quantum optical technology are reported
Spinors in euclidean field theory, complex structures and discrete symmetries
International Nuclear Information System (INIS)
Wetterich, C.
2011-01-01
We discuss fermions for arbitrary dimensions and signature of the metric, with special emphasis on euclidean space. Generalized Majorana spinors are defined for d=2,3,4,8,9mod8, independently of the signature. These objects permit a consistent analytic continuation of Majorana spinors in Minkowski space to euclidean signature. Compatibility of charge conjugation with complex conjugation requires for euclidean signature a new complex structure which involves a reflection in euclidean time. The possible complex structures for Minkowski and euclidean signature can be understood in terms of a modulo two periodicity in the signature. The concepts of a real action and hermitean observables depend on the choice of the complex structure. For a real action the expectation values of all hermitean multi-fermion observables are real. This holds for arbitrary signature, including euclidean space. In particular, a chemical potential is compatible with a real action for the euclidean theory. We also discuss the discrete symmetries of parity, time reversal and charge conjugation for arbitrary dimension and signature.
Unitary Transformations in 3 D Vector Representation of Qutrit States
2018-03-12
ARL-TR-8330 ● MAR 2018 US Army Research Laboratory Unitary Transformations in 3- D Vector Representation of Qutrit States by...return it to the originator. ARL-TR-8330 ● MAR 2018 US Army Research Laboratory Unitary Transformations in 3- D Vector...2018 2. REPORT TYPE Technical Report 3. DATES COVERED June–December 2017 4. TITLE AND SUBTITLE Unitary Transformations in 3- D Vector
Meditations on the unitary rhythm of dying-grieving.
Malinski, Violet M
2012-07-01
When someone faces loss of a loved one, that person simultaneously grieves and dies a little, just as the one dying also grieves. The author's personal conceptualization of dying and grieving as a unitary rhythm is explored based primarily on her interpretation of Rogers' science of unitary human beings, along with selected examples from related nursing literature and from the emerging focus on continuing bonds in other disciplines. Examples from contemporary songwriters that depict such a unitary conceptualization are given along with personal examples. The author concludes with her description of the unitary rhythm of dying-grieving.
Moduli spaces of unitary conformal field theories
International Nuclear Information System (INIS)
Wendland, K.
2000-08-01
We investigate various features of moduli spaces of unitary conformal field theories. A geometric characterization of rational toroidal conformal field theories in arbitrary dimensions is presented and discussed in relation to singular tori and those with complex multiplication. We study the moduli space M 2 of unitary two-dimensional conformal field theories with central charge c = 2. All the 26 non-exceptional non-isolated irreducible components of M 2 are constructed that may be obtained by an orbifold procedure from toroidal theories. The parameter spaces and partition functions are calculated explicitly. All multicritical points and lines are determined, such that all but three of these 26 components are directly or indirectly connected to the space of toroidal theories in M 2 . Relating our results to those by Dixon, Ginsparg, Harvey on the classification of c = 3/2 superconformal field theories, we give geometric interpretations to all non-isolated orbifolds discussed by them and correct their statements on multicritical points within the moduli space of c = 3/2 superconformal field theories. In the main part of this work, we investigate the moduli space M of N = (4, 4) superconformal field theories with central charge c = 6. After a slight emendation of its global description we give generic partition functions for models contained in M. We explicitly determine the locations of various known models in the component of M associated to K3 surfaces
Random unitary maps for quantum state reconstruction
International Nuclear Information System (INIS)
Merkel, Seth T.; Riofrio, Carlos A.; Deutsch, Ivan H.; Flammia, Steven T.
2010-01-01
We study the possibility of performing quantum state reconstruction from a measurement record that is obtained as a sequence of expectation values of a Hermitian operator evolving under repeated application of a single random unitary map, U 0 . We show that while this single-parameter orbit in operator space is not informationally complete, it can be used to yield surprisingly high-fidelity reconstruction. For a d-dimensional Hilbert space with the initial observable in su(d), the measurement record lacks information about a matrix subspace of dimension ≥d-2 out of the total dimension d 2 -1. We determine the conditions on U 0 such that the bound is saturated, and show they are achieved by almost all pseudorandom unitary matrices. When we further impose the constraint that the physical density matrix must be positive, we obtain even higher fidelity than that predicted from the missing subspace. With prior knowledge that the state is pure, the reconstruction will be perfect (in the limit of vanishing noise) and for arbitrary mixed states, the fidelity is over 0.96, even for small d, and reaching F>0.99 for d>9. We also study the implementation of this protocol based on the relationship between random matrices and quantum chaos. We show that the Floquet operator of the quantum kicked top provides a means of generating the required type of measurement record, with implications on the relationship between quantum chaos and information gain.
Covariant map between Ramond-Neveu-Schwarz and pure spinor formalisms for the superstring
International Nuclear Information System (INIS)
Berkovits, Nathan
2014-01-01
A covariant map between the Ramond-Neveu-Schwarz (RNS) and pure spinor formalisms for the superstring is found which transforms the RNS and pure spinor BRST operators into each other. The key ingredient is a dynamical twisting of the ten spin-half RNS fermions into five spin-one and five spin-zero fermions using bosonic pure spinors that parameterize an SO(10)/U(5) coset. The map relates massless vertex operators in the two formalisms, and gives a new description of Ramond states which does not require spin fields. An argument is proposed for relating the amplitude prescriptions in the two formalisms
q-deformed conformal and Poincare algebras on quantum 4-spinors
International Nuclear Information System (INIS)
Kobayashi, Tatsuo; Uematsu, Tsuneo
1993-01-01
We investigate quantum deformation of conformal algebras by constructing the quantum space for sl q (4). The differential calculus on the quantum space and the action of the quantum generators are studied. We derive deformed su(2, 2) algebra from the deformed sl(4) algebra using the quantum 4-spinor and its conjugate spinor. The quantum 6-vector in so q (4, 2) is constructed as a tensor product of two sets of 4-spinors. We obtain the q-deformed conformal algebra with the suitable assignment of the generators which satisfy the reality condition. The deformed Poincare algebra is derived through a contraction procedure. (orig.)
Optical propagators in vector and spinor theories by path integral formalism
International Nuclear Information System (INIS)
Linares, J.
1993-01-01
The construction of an extended parabolic (wide-angle) vector and spinor wave theory is presented. For that, optical propagators in monochromatic vector light optics and monoenergetic spinor electron optics are evaluated by the path integral formalism. The auxiliary parameter method introduced by Fock and the Feynman-Dyson perturbative series are used. The proposed theory supplies, by a generalized Fermat's principle, the Mukunda-Simon-Sudarshan transformation for the passage from scalar to vector light (or spinor electron) optics in an asymptotic approximation. (author). 19 refs
Equivalence of quantum states under local unitary transformations
International Nuclear Information System (INIS)
Fei Shaoming; Jing Naihuan
2005-01-01
In terms of the analysis of fixed point subgroup and tensor decomposability of certain matrices, we study the equivalence of quantum bipartite mixed states under local unitary transformations. For non-degenerate case an operational criterion for the equivalence of two such mixed bipartite states under local unitary transformations is presented
Perfect state transfer in unitary Cayley graphs over local rings
Directory of Open Access Journals (Sweden)
Yotsanan Meemark
2014-12-01
Full Text Available In this work, using eigenvalues and eigenvectors of unitary Cayley graphs over finite local rings and elementary linear algebra, we characterize which local rings allowing PST occurring in its unitary Cayley graph. Moreover, we have some developments when $R$ is a product of local rings.
Supersymmetric quantum mechanics, spinors and the standard model
International Nuclear Information System (INIS)
Woit, P.
1988-01-01
The quantization of the simplest supersymmetric quantum mechanical theory of a free fermion on a riemannian manifold requires the introduction of a complex structure on the tangent space. In 4 dimensions, the subgroup of the group of frame rotations that preserves the complex structure is SU(2) x U(1), and it is argued that this symmetry can be consistently interpreted to be an internal gauge symmetry for the analytically continued theory in Minkowski space. The states of the theory carry the quantum numbers of a generation of leptons in the Weinberg-Salam model. Examination of the geometry of spinors in four dimensions also provides a natural SU(3) symmetry and very simple construction of a multiplet with the standard model quantum numbers. (orig.)
Spinor monopole harmonics and the Pauli spin equation
International Nuclear Information System (INIS)
Pereira, J.G.; Ferreira, P.L.
1982-01-01
In the framework of Wu and Yang theory of U(1) magnetic monopoles, two problems are revisited: (i) the binding of spin-0 monopole to a spin-1/2 particle possessing an arbitrary magnetic dipole moment, and (ii) the energy levels and properties of the electron-dyon system. In both problems, the spin-1/2 particle is assumed to obey the Pauli spin equation. Spin-orbit and other higher order terms are treated as a perturbation, in connection with the second mentioned problem. Wu and Yang's spinor monopole harmonics allow an elegant and simplified treatment of those problems. The results obtained are in good agreement with those obtained in older papers. (Author) [pt
Unitary Quantum Relativity. (Work in Progress)
Finkelstein, David Ritz
2017-01-01
A quantum universe is expressed as a finite unitary relativistic quantum computer network. Its addresses are subject to quantum superposition as well as its memory. It has no exact mathematical model. It Its Hilbert space of input processes is also a Clifford algebra with a modular architecture of many ranks. A fundamental fermion is a quantum computer element whose quantum address belongs to the rank below. The least significant figures of its address define its spin and flavor. The most significant figures of it adress define its orbital variables. Gauging arises from the same quantification as space-time. This blurs star images only slightly, but perhaps measurably. General relativity is an approximation that splits nature into an emptiness with a high symmetry that is broken by a filling of lower symmetry. Action principles result from self-organization pf the vacuum.
Quantization of a non-linearly realized supersymmetric theory
International Nuclear Information System (INIS)
Shima, Kazunari
1976-01-01
The two-dimensional version of the Volkov-Akulov's Lagrngian, where the super-symmetry is realized non-linearly by means of a single Majorana spinor psi(x), is quantized. The equal time anti-commutators for the field are not c-numbers but functions of the field itself. By the explicite calculation we shall show that supersymmetry charges of the model form the supersymmetry algebra(the graded Lie algebra) and the supersymmetry charges exactly generate a constant translation of psi(x) in the spinor space. In this work we restrict our investigation to the two-dimensional space-time for the sake of simplicity. (auth.)
Quantum Entanglement Growth under Random Unitary Dynamics
Nahum, Adam; Ruhman, Jonathan; Vijay, Sagar; Haah, Jeongwan
2017-07-01
Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the "entanglement tsunami" in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like (time )1/3 and are spatially correlated over a distance ∝(time )2/3. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a "minimal cut" picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the "velocity" of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.
Quantum Entanglement Growth under Random Unitary Dynamics
Directory of Open Access Journals (Sweden)
Adam Nahum
2017-07-01
Full Text Available Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the “entanglement tsunami” in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ equation. The mean entanglement grows linearly in time, while fluctuations grow like (time^{1/3} and are spatially correlated over a distance ∝(time^{2/3}. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i a stochastic model of a growing surface, (ii a “minimal cut” picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the “velocity” of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.
Spinors fields in co-dimension one braneworlds
Mendes, W. M.; Alencar, G.; Landim, R. R.
2018-02-01
In this work we analyze the zero mode localization and resonances of 1/2-spin fermions in co-dimension one Randall-Sundrum braneworld scenarios. We consider delta-like, domain walls and deformed domain walls membranes. Beyond the influence of the spacetime dimension D we also consider three types of couplings: (i) the standard Yukawa coupling with the scalar field and parameter η 1, (ii) a Yukawa-dilaton coupling with two parameters η 2 and λ and (iii) a dilaton derivative coupling with parameter h. Together with the deformation parameter s, we end up with five free parameter to be considered. For the zero mode we find that the localization is dependent of D, because the spinorial representation changes when the bulk dimensionality is odd or even and must be treated separately. For case (i) we find that in odd dimensions only one chirality can be localized and for even dimension a massless Dirac spinor is trapped over the brane. In the cases (ii) and (iii) we find that for some values of the parameters, both chiralities can be localized in odd dimensions and for even dimensions we obtain that the massless Dirac spinor is trapped over the brane. We also calculated numerically resonances for cases (ii) and (iii) by using the transfer matrix method. We find that, for deformed defects, the increasing of D induces a shift in the peaks of resonances. For a given λ with domain walls, we find that the resonances can show up by changing the spacetime dimensionality. For example, the same case in D = 5 do not induces resonances but when we consider D = 10 one peak of resonance is found. Therefore the introduction of more dimensions, diversely from the bosonic case, can change drastically the zero mode and resonances in fermion fields.
Quantum theory of spinor field in four-dimensional Riemannian space-time
International Nuclear Information System (INIS)
Shavokhina, N.S.
1996-01-01
The review deals with the spinor field in the four-dimensional Riemannian space-time. The field beys the Dirac-Fock-Ivanenko equation. Principles of quantization of the spinor field in the Riemannian space-time are formulated which in a particular case of the plane space-time are equivalent to the canonical rules of quantization. The formulated principles are exemplified by the De Sitter space-time. The study of quantum field theory in the De Sitter space-time is interesting because it itself leads to a method of an invariant well for plane space-time. However, the study of the quantum spinor field theory in an arbitrary Riemannian space-time allows one to take into account the influence of the external gravitational field on the quantized spinor field. 60 refs
Spinor-electron wave guided modes in coupled quantum wells structures by solving the Dirac equation
International Nuclear Information System (INIS)
Linares, Jesus; Nistal, Maria C.
2009-01-01
A quantum analysis based on the Dirac equation of the propagation of spinor-electron waves in coupled quantum wells, or equivalently coupled electron waveguides, is presented. The complete optical wave equations for Spin-Up (SU) and Spin-Down (SD) spinor-electron waves in these electron guides couplers are derived from the Dirac equation. The relativistic amplitudes and dispersion equations of the spinor-electron wave-guided modes in a planar quantum coupler formed by two coupled quantum wells, or equivalently by two coupled slab electron waveguides, are exactly derived. The main outcomes related to the spinor modal structure, such as the breaking of the non-relativistic degenerate spin states, the appearance of phase shifts associated with the spin polarization and so on, are shown.
Non-minimal fields of the pure spinor string in general curved backgrounds
Energy Technology Data Exchange (ETDEWEB)
Chandia, Osvaldo [Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez,Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,Diagonal Las Torres 2640, Peñalolén, Santiago (Chile); Vallilo, Brenno Carlini [Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello,República 220, Santiago (Chile)
2015-02-16
We study the coupling of the non-minimal ghost fields of the pure spinor superstring in general curved backgrounds. The coupling is found solving the consistency relations from the nilpotency of the non-minimal BRST charge.
Existence of parallel spinors on non-simply-connected Riemannian manifolds
International Nuclear Information System (INIS)
McInnes, B.
1997-04-01
It is well known, and important for applications, that Ricci-flat Riemannian manifolds of non-generic holonomy always admit a parallel [covariant constant] spinor if they are simply connected. The non-simply-connected case is much more subtle, however. We show that a parallel spinor can still be found in this case provided that the [real] dimension is not a multiple of four, and provided that the spin structure is carefully chosen. (author). 10 refs
Solutions to Yang-Baxter equation for the spinor representations of q-Bl
International Nuclear Information System (INIS)
Hou Boyuan; Ma Zhongqi.
1990-10-01
In this paper, both trigonometric and rational solutions to the Yang-Baxter equation associated with the spinor representations of the quantum B l universal enveloping algebras are obtained. The corresponding representations of the braid group and the link polynomials are also computed through a standard method. The quantum Clebsch-Gordan matrix, the quantum projectors and the solutions associated with the spinor representation of the quantum B 3 are presented explicitly. (author). 16 refs, 2 tabs
Dirac operators and Killing spinors with torsion; Dirac-Operatoren und Killing-Spinoren mit Torsion
Energy Technology Data Exchange (ETDEWEB)
Becker-Bender, Julia
2012-12-17
On a Riemannian spin manifold with parallel skew torsion, we use the twistor operator to obtain an eigenvalue estimate for the Dirac operator with torsion. We consider the equality case in dimensions four and six. In odd dimensions we describe Sasaki manifolds on which equality in the estimate is realized by Killing spinors with torsion. In dimension five we characterize all Killing spinors with torsion and obtain certain naturally reductive spaces as exceptional cases.
A compact expression for bilinear combination of Dirac spinors via world tensors
International Nuclear Information System (INIS)
Rogalev, R.N.
1994-01-01
A compact expression for a product of two Dirac spinors is obtained as a linear combination of 16 Dirac γ-matrices. The result is presented in a convenient from, which can give rise to using it for analytical calculations of multiparticle amplitudes. It has been shown that a bilinear combination of Dirac spinors can be expressed by momentum and spin vectors of the corresponding particles up to a phase factor. 8 refs
Operator entanglement of two-qubit joint unitary operations revisited: Schmidt number approach
Energy Technology Data Exchange (ETDEWEB)
Xia, Hui-Zhi; Li, Chao; Yang, Qing; Yang, Ming, E-mail: mingyang@ahu.edu.cn [Key Laboratory of Opto-electronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Material Science, Anhui University Hefei (China); Cao, Zhuo-Liang [School of Electronic Information Engineering, Hefei Normal University (China)
2012-08-15
The operator entanglement of two-qubit joint unitary operations is revisited. The Schmidt number, an important attribute of a two-qubit unitary operation, may have connection with the entanglement measure of the unitary operator. We find that the entanglement measure of a two-qubit unitary operators is classified by the Schmidt number of the unitary operators. We also discuss the exact relation between the operator entanglement and the parameters of the unitary operator. (author)
Relation of a unified quantum field theory of spinors to the structure of general relativity
International Nuclear Information System (INIS)
Kober, Martin
2009-01-01
Based on a unified quantum field theory of spinors assumed to describe all matter fields and their interactions we construct the space-time structure of general relativity according to a general connection within the corresponding spinor space. The tetrad field and the corresponding metric field are composed from a space-time dependent basis of spinors within the internal space of the fundamental matter field. Similar to twistor theory the Minkowski signature of the space-time metric is related to this spinor nature of elementary matter, if we assume the spinor space to be endowed with a symplectic structure. The equivalence principle and the property of background independence arise from the fact that all elementary fields are composed from the fundamental spinor field. This means that the structure of space-time according to general relativity seems to be a consequence of a fundamental theory of matter fields and not a presupposition as in the usual setting of relativistic quantum field theories.
Lugiato, Luigi; Brambilla, Massimo
2015-01-01
Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.
Unitary 4-point correlators from classical geometries
Energy Technology Data Exchange (ETDEWEB)
Bombini, Alessandro; Galliani, Andrea; Giusto, Stefano [Universita di Padova, Dipartimento di Fisica ed Astronomia ' ' Galileo Galilei' ' , Padua (Italy); I.N.F.N. Sezione di Padova, Padua (Italy); Moscato, Emanuele; Russo, Rodolfo [Queen Mary University of London, Centre for Research in String Theory, School of Physics and Astronomy, London (United Kingdom)
2018-01-15
We compute correlators of two heavy and two light operators in the strong coupling and large c limit of the D1D5 CFT which is dual to weakly coupled AdS{sub 3} gravity. The light operators have dimension two and are scalar descendants of the chiral primaries considered in arXiv:1705.09250, while the heavy operators belong to an ensemble of Ramond-Ramond ground states. We derive a general expression for these correlators when the heavy states in the ensemble are close to the maximally spinning ground state. For a particular family of heavy states we also provide a result valid for any value of the spin. In all cases we find that the correlators depend non-trivially on the CFT moduli and are not determined by the symmetries of the theory; however, they have the properties expected for correlators among pure states in a unitary theory, in particular they do not decay at large Lorentzian times. (orig.)
About the unitary discretizations of Heisenberg equations of motion
International Nuclear Information System (INIS)
Vazquez, L.
1986-01-01
In a recent paper Bender et al. (1985) have used a unitary discretization of Heisenberg equations for a one-dimensional quantum system in order to obtain information about the spectrum of the underlying continuum theory. The method consists in comparing the matrix elements between adjacent Fock states of the operators and at two steps. At the same time a very simple variational approach must be made. The purpose of this paper is to show that with unitary schemes, accurate either to order τ or τ 2 , we obtain the same spectrum results in the framework of the above method. On the other hand the same eigenvalues are obtained with a non-unitary scheme (Section II). In Section III we discuss the construction of the Hamiltonian associated to the unitary discretizations. (orig.)
Constructing a unitary title regime for the European Patent System
Rodriguez, V.F.
2011-01-01
The European Patent System without any unitary title allows Member States to retain institutional arrangements within their borders and to prevent any moves to delegate responsibility outside the national sphere. This intergovernmental patent regime suffers from fragmentation due to national
Elegant Coercion and Iran: Beyond the Unitary Actor Model
National Research Council Canada - National Science Library
Moss, J. C
2005-01-01
.... At its core, then, coercion is about state decision-making. Most theories of coercion describe states as if they were unitary actors whose decision-making results from purely rational cost-benefit calculations...
Spinor Slow Light and Two-Color Qubits
Yu, Ite; Lee, Meng-Jung; Ruseckas, Julius; Lee, Chin-Yuan; Kudriasov, Viaceslav; Chang, Kao-Fang; Cho, Hung-Wen; Juzeliunas, Gediminas; Yu, Ite A.
2015-05-01
We report the first experimental demonstration of two-component or spinor slow light (SSL) using a double tripod (DT) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by six light fields. The oscillation due to the interaction between the two components was observed. SSL can be used to achieve high conversion efficiencies in the sum frequency generation and is a better method than the widely-used double- Λ scheme. On the basis of the stored light, our data showed that the DT scheme behaves like the two outcomes of an interferometer enabling precision measurements of frequency detuning. Furthermore, the single-photon SSL can be considered as the qubit with the superposition state of two frequency modes or, simply, as the two-color qubit. We experimentally demonstrated a possible application of the DT scheme as quantum memory/rotator for the two-color qubit. This work opens up a new direction in the EIT/slow light research. yu@phys.nthu.edu.tw
Do spinors give rise to a frame-dragging effect?
International Nuclear Information System (INIS)
Randono, Andrew
2010-01-01
We investigate the effect of the intrinsic spin of a fundamental spinor field on the surrounding spacetime geometry. We show that despite the lack of a rotating stress-energy source (and despite claims to the contrary) the intrinsic spin of a spin-half fermion gives rise to a frame-dragging effect analogous to that of orbital angular momentum, even in Einstein-Hilbert gravity where torsion is constrained to be zero. This resolves a paradox regarding the counter-force needed to restore Newton's third law in the well-known spin-orbit interaction. In addition, the frame-dragging effect gives rise to a long-range gravitationally mediated spin-spin dipole interaction coupling the internal spins of two sources. We argue that despite the weakness of the interaction, the spin-spin interaction will dominate over the ordinary inverse square Newtonian interaction in any process of sufficiently high energy for quantum field theoretical effects to be non-negligible.
Theory of the unitary representations of compact groups
International Nuclear Information System (INIS)
Burzynski, A.; Burzynska, M.
1979-01-01
An introduction contains some basic notions used in group theory, Lie group, Lie algebras and unitary representations. Then we are dealing with compact groups. For these groups we show the problem of reduction of unitary representation of Wigner's projection operators, Clebsch-Gordan coefficients and Wigner-Eckart theorem. We show (this is a new approach) the representations reduction formalism by using superoperators in Hilbert-Schmidt space. (author)
Operator Spreading in Random Unitary Circuits
Nahum, Adam; Vijay, Sagar; Haah, Jeongwan
2018-04-01
Random quantum circuits yield minimally structured models for chaotic quantum dynamics, which are able to capture, for example, universal properties of entanglement growth. We provide exact results and coarse-grained models for the spreading of operators by quantum circuits made of Haar-random unitaries. We study both 1 +1 D and higher dimensions and argue that the coarse-grained pictures carry over to operator spreading in generic many-body systems. In 1 +1 D , we demonstrate that the out-of-time-order correlator (OTOC) satisfies a biased diffusion equation, which gives exact results for the spatial profile of the OTOC and determines the butterfly speed vB. We find that in 1 +1 D , the "front" of the OTOC broadens diffusively, with a width scaling in time as t1 /2. We address fluctuations in the OTOC between different realizations of the random circuit, arguing that they are negligible in comparison to the broadening of the front within a realization. Turning to higher dimensions, we show that the averaged OTOC can be understood exactly via a remarkable correspondence with a purely classical droplet growth problem. This implies that the width of the front of the averaged OTOC scales as t1 /3 in 2 +1 D and as t0.240 in 3 +1 D (exponents of the Kardar-Parisi-Zhang universality class). We support our analytic argument with simulations in 2 +1 D . We point out that, in two or higher spatial dimensions, the shape of the spreading operator at late times is affected by underlying lattice symmetries and, in general, is not spherical. However, when full spatial rotational symmetry is present in 2 +1 D , our mapping implies an exact asymptotic form for the OTOC, in terms of the Tracy-Widom distribution. For an alternative perspective on the OTOC in 1 +1 D , we map it to the partition function of an Ising-like statistical mechanics model. As a result of special structure arising from unitarity, this partition function reduces to a random walk calculation which can be
Unitary Evolution as a Uniqueness Criterion
Cortez, J.; Mena Marugán, G. A.; Olmedo, J.; Velhinho, J. M.
2015-01-01
It is well known that the process of quantizing field theories is plagued with ambiguities. First, there is ambiguity in the choice of basic variables describing the system. Second, once a choice of field variables has been made, there is ambiguity concerning the selection of a quantum representation of the corresponding canonical commutation relations. The natural strategy to remove these ambiguities is to demand positivity of energy and to invoke symmetries, namely by requiring that classical symmetries become unitarily implemented in the quantum realm. The success of this strategy depends, however, on the existence of a sufficiently large group of symmetries, usually including time-translation invariance. These criteria are therefore generally insufficient in non-stationary situations, as is typical for free fields in curved spacetimes. Recently, the criterion of unitary implementation of the dynamics has been proposed in order to select a unique quantization in the context of manifestly non-stationary systems. Specifically, the unitarity criterion, together with the requirement of invariance under spatial symmetries, has been successfully employed to remove the ambiguities in the quantization of linearly polarized Gowdy models as well as in the quantization of a scalar field with time varying mass, propagating in a static background whose spatial topology is either of a d-sphere (with d = 1, 2, 3) or a three torus. Following Ref. 3, we will see here that the symmetry and unitarity criteria allows for a complete removal of the ambiguities in the quantization of scalar fields propagating in static spacetimes with compact spatial sections, obeying field equations with an explicitly time-dependent mass, of the form ddot φ - Δ φ + s(t)φ = 0 . These results apply in particular to free fields in spacetimes which, like e.g. in the closed FRW models, are conformal to a static spacetime, by means of an exclusively time-dependent conformal factor. In fact, in such
Off-shell spinor-helicity amplitudes from light-cone deformation procedure
Energy Technology Data Exchange (ETDEWEB)
Ponomarev, Dmitry [Theoretical physics group, Blackett Laboratory, Imperial College London,London, SW7 2AZ (United Kingdom)
2016-12-22
We study the consistency conditions for interactions of massless fields of any spin in four-dimensional flat space using the light-cone approach. We show that they can be equivalently rewritten as the Ward identities for the off-shell light-cone amplitudes built from the light-cone Hamiltonian in the standard way. Then we find a general solution of these Ward identities. The solution admits a compact representation when written in the spinor-helicity form and is given by an arbitrary function of spinor products, satisfying well-known homogeneity constraints. Thus, we show that the light-cone consistent deformation procedure inevitably leads to a certain off-shell version of the spinor-helicity approach. We discuss how the relation between the two approaches can be employed to facilitate the search of consistent interaction of massless higher-spin fields.
Global positioning of spin GPS scheme for half-spin massive spinors
Jadach, Stanislaw; Was, Zbigniew
2001-01-01
We present a simple and flexible method of keeping track of the complex phases and spin quantisation axes for half-spin initial- and final-state Weyl spinors in scattering amplitudes of Standard Model high energy physics processes. Both cases of massless and massive spinors are discussed. The method is demonstrated and checked numerically for spin correlations in tau tau production and decay. Its application is in our work of combining effects due to multiple photon emission (exponentiation) and spin, embodied in the Monte Carlo event generators for production and decay of unstable fermions such as the, tau lepton, t-quark and hypothetical new heavy particles. In particular, the recurrent problem of combining, for such unstable fermions, one author's calculation of production and another author's calculation of decay, in the presence or absence of multiple photon effects, is there given a practical solution, both for Weyl spinor methods and for the traditional Jacob-Wick helicity methods. Moreover, for massiv...
Killing spinors for the bosonic string and Kaluza-Klein theory with scalar potentials
International Nuclear Information System (INIS)
Liu, Haishan; Lue, H.; Wang, Zhao-Long
2012-01-01
The paper consists mainly of two parts. In the first part, we obtain well-defined Killing spinor equations for the low-energy effective action of the bosonic string with the conformal anomaly term. We show that the conformal anomaly term is the only scalar potential that one can add into the action that is consistent with the Killing spinor equations. In the second part, we demonstrate that Kaluza-Klein theory can be gauged so that the Killing spinors are charged under the Kaluza-Klein vector. This gauging process generates a scalar potential with a maximum that gives rise to an AdS spacetime. We also construct solutions of these theories. (orig.)
International Nuclear Information System (INIS)
Dimakis, A.
1983-01-01
The algebraic structure of the real Clifford algebras (CA) of vector spaces with non-degenerated scalar product of arbitrary signature is studied, and a classification formula for this is obtained. The latter is based on three sequences of integer numbers from which one is the Radon-Harwitz sequence. A new representation method of real CA is constructed. This leads to a geometrical representation of real Clifford algebras in which the representation spaces are subspaces of the CA itself (''spinor spaces''). One of these spinor spaces is a subalgebra of the original CA. The relation between CA and external algebras is studied. Each external algebra with a scalar product possesses the structure of a CA. From the geometric representation developed here then follows that spinors are inhomogeneous external forms. The transformation behaviour of spinors under the orthogonal, as well as under the general linear group is studied. By means of these algebraic results the spinor connexion and the covariant Dirac operator on a differential manifold are introduced. In the geometrical representation a further in ternal SL(2,R) symmetry of the Dirac equation (DE) is shown. Furthermore other equivalent formulations of the DE can be obtained. Of special interest is the tetrade formulation of the DE. A generalization of the DE is introduced. The equations of motion of the classical relativistic spin particle are derived by means of spinors and CA from a variational principle. From this interesting formal analogies with the supersymmetric theories of the spin particle result. Finally the DE in the curved space-time is established and studied in the tetrade formulation. Using the methods developed here a new exact solution of the coupled Einstein-Curtan-Dirac theory was found (massice ''Ghost-Dirac fields''). (orig.) [de
Non-Schwinger solution of the two-dimensional massless spinor electrodynamics
International Nuclear Information System (INIS)
Mikhov, S.G.
1981-01-01
In the present paper a regularization procedure is formulated for the current in the two-dimensional massless spinor electrodynamics that is both gauge and γ 5 -gauge invariant. This gives rise to an operator solution of the model that does not involve a massive photon. The latter solution is studied in some detail, and it is shown that although a charge operator exists, it does not define the electric charge of the spinor field. This can be a manifestation of the charge screening mechanism that is present in the Schwinger model [ru
Nonadiabatic production of spinor condensates with a quadrupole-Ioffe-configuration trap
International Nuclear Information System (INIS)
Zhang, P.; Xu, Z.; You, L.
2006-01-01
Motivated by the recent experimental observation of multicomponent spinor condensates via a time-dependent quadrupole-Ioffe-configuration trap, we provide a general framework for the investigation of nonadiabatic Landau-Zener dynamics of a hyperfine spin, e.g., from an atomic magnetic dipole moment coupled to a weak time-dependent magnetic (B-) field. The spin flipped population distribution, or the so-called Majorona formula, is expressed in terms of system parameters and experimental observables; thus, the distribution provides much needed insight into the underlying mechanism for the production of spinor condensates due to nonadiabatic level crossings
Lecture in Honour of Leopold Infeld (Extended Outline Only) Spinors in General Relativity
International Nuclear Information System (INIS)
Penrose, R. sir
1999-01-01
This article is an extended outline of the lecture delivered at the Infeld Centennial Meeting. In the lecture a review was given of the development of the theory of spinors and related objects in special and general relativity, with some emphasis on the twistor theory and its applications. The lecture was not intended as a detailed account of the subject, but it rather was a series of comments on the relevance of various spinor-type objects and their relation to some features of space-time structure. The present article is also a guide, with its author's personal preferences, to the extensive bibliography of the subject. (author)
Magnetic resonance, especially spin echo, in spinor Bose-Einstein condensates
International Nuclear Information System (INIS)
Yasunaga, Masashi; Tsubota, Makoto
2009-01-01
Magnetic resonance, especially NMR and ESR, has been studied in magnetic materials for a long time, having been used in various fields. Spin echo is typical phenomenon in magnetic resonance. The magnetic resonance should be applied to spinor Bose-Einstein condensates (BECs). We numerically study spin echo of a spinor BEC in a gradient magnetic field by calculating the spin-1 two-dimensional Gross-Pitaevskii equations, obtaining the recovery of the signal of the spins, which is called spin echo. We will discuss the relation between the spin echo and the Stern-Gelrach separation in the system.
Y-formalism and b ghost in the non-minimal pure spinor formalism of superstrings
International Nuclear Information System (INIS)
Oda, Ichiro; Tonin, Mario
2007-01-01
We present the Y-formalism for the non-minimal pure spinor quantization of superstrings. In the framework of this formalism we compute, at the quantum level, the explicit form of the compound operators involved in the construction of the b ghost, their normal-ordering contributions and the relevant relations among them. We use these results to construct the quantum-mechanical b ghost in the non-minimal pure spinor formalism. Moreover we show that this non-minimal b ghost is cohomologically equivalent to the non-covariant b ghost
On a modification of the spinor calculus of Infeeld and van der Waerden
International Nuclear Information System (INIS)
Buchdahl, H.A.
1990-01-01
A modification of the spinor calculus of Infeeld and van der Waerden is presented in which σ kμν is no longer covariant constant. The structure of spin space is enriched by a spinor f μνρσ defined on it. Flatness of the Riemannian world space no longer necessarily entails the vanishing of the curvature of the spin space. After a brief look at Dirac's equation, the revised calculus is re-interpreted in terms of a Riemann-Cartan space, with σ kμν again covariant constant. (author)
One-particle reducible contribution to the one-loop spinor propagator in a constant field
Directory of Open Access Journals (Sweden)
N. Ahmadiniaz
2017-11-01
Full Text Available Extending work by Gies and Karbstein on the Euler–Heisenberg Lagrangian, it has recently been shown that the one-loop propagator of a charged scalar particle in a constant electromagnetic field has a one-particle reducible contribution in addition to the well-studied irreducible one. Here we further generalize this result to the spinor case, and find the same relation between the reducible term, the tree-level propagator and the one-loop Euler–Heisenberg Lagrangian as in the scalar case. Our demonstration uses a novel worldline path integral representation of the photon-dressed spinor propagator in a constant electromagnetic field background.
Robust Learning Control Design for Quantum Unitary Transformations.
Wu, Chengzhi; Qi, Bo; Chen, Chunlin; Dong, Daoyi
2017-12-01
Robust control design for quantum unitary transformations has been recognized as a fundamental and challenging task in the development of quantum information processing due to unavoidable decoherence or operational errors in the experimental implementation of quantum operations. In this paper, we extend the systematic methodology of sampling-based learning control (SLC) approach with a gradient flow algorithm for the design of robust quantum unitary transformations. The SLC approach first uses a "training" process to find an optimal control strategy robust against certain ranges of uncertainties. Then a number of randomly selected samples are tested and the performance is evaluated according to their average fidelity. The approach is applied to three typical examples of robust quantum transformation problems including robust quantum transformations in a three-level quantum system, in a superconducting quantum circuit, and in a spin chain system. Numerical results demonstrate the effectiveness of the SLC approach and show its potential applications in various implementation of quantum unitary transformations.
The virial equation of state for unitary fermion thermodynamics with non-Gaussian correlations
International Nuclear Information System (INIS)
Chen Jisheng; Li Jiarong; Wang Yanping; Xia Xiangjun
2008-01-01
We study the roles of the dynamical high order perturbation and statistically non-linear infrared fluctuation/correlation in the virial equation of state for the Fermi gas in the unitary limit. Incorporating the quantum level crossing rearrangement effects, the spontaneously generated entropy departing from the mean-field theory formalism leads to concise thermodynamical expressions. The dimensionless virial coefficients with complex non-local correlations are calculated up to the fourth order for the first time. The virial coefficients of unitary Fermi gas are found to be proportional to those of the ideal quantum gas with integer ratios through a general term formula. Counterintuitively, contrary to those of the ideal bosons (a (0) 2 =-(1/4√2)) or fermions (a (0) 2 =(1/4√2)), the second virial coefficient a 2 of Fermi gas at unitarity is found to be equal to zero. With the vanishing leading order quantum correction, the BCS–BEC crossover thermodynamics manifests the famous pure classical Boyle's law in the Boltzmann regime. The non-Gaussian correlation phenomena can be validated by studying the Joule–Thomson effect
Consciousness, intentionality, and community: Unitary perspectives and research.
Zahourek, Rothlyn P; Larkin, Dorothy M
2009-01-01
Consciousness and intentionality often have been related and studied together. These concepts also are readily viewed and understood for practice, research, and education in a unitary paradigm. How these ideas relate to community is less known. Considering the expansion of our capacity for communication through the World Wide Web and other technologic advances and appreciating recent research on the nonlocal character of intentionality and consciousness, it is more apparent how concepts of community can be seen in the same unitary context. The authors address these issues and review relevant nursing research.
Non-unitary probabilistic quantum computing circuit and method
Williams, Colin P. (Inventor); Gingrich, Robert M. (Inventor)
2009-01-01
A quantum circuit performing quantum computation in a quantum computer. A chosen transformation of an initial n-qubit state is probabilistically obtained. The circuit comprises a unitary quantum operator obtained from a non-unitary quantum operator, operating on an n-qubit state and an ancilla state. When operation on the ancilla state provides a success condition, computation is stopped. When operation on the ancilla state provides a failure condition, computation is performed again on the ancilla state and the n-qubit state obtained in the previous computation, until a success condition is obtained.
Cogeneration Power Plants: a Proposed Methodology for Unitary Production Cost
International Nuclear Information System (INIS)
Metalli, E.
2009-01-01
A new methodology to evaluate unitary energetic production costs in the cogeneration power plants is proposed. This methodology exploits the energy conversion factors fixed by Italian Regulatory Authority for Electricity and Gas. So it allows to settle such unitary costs univocally for a given plant, without assigning them a priori subjective values when there are two or more energy productions at the same time. Moreover the proposed methodology always ensures positive values for these costs, complying with the total generation cost balance equation. [it
Directory of Open Access Journals (Sweden)
Akihito Soeda
2010-06-01
Full Text Available We study how two pieces of localized quantum information can be delocalized across a composite Hilbert space when a global unitary operation is applied. We classify the delocalization power of global unitary operations on quantum information by investigating the possibility of relocalizing one piece of the quantum information without using any global quantum resource. We show that one-piece relocalization is possible if and only if the global unitary operation is local unitary equivalent of a controlled-unitary operation. The delocalization power turns out to reveal different aspect of the non-local properties of global unitary operations characterized by their entangling power.
Nucleon-nucleon scattering in the functional quantum theory of the non-linear spinor field
International Nuclear Information System (INIS)
Philipp, W.
1975-01-01
The nucleon-nucleon and nucleon-antinucleon scattering cross sections are calculated in the frame of the functional quantum field theory by means of two different approximation methods: averaging by integration of indefinite integrals and pulse averaging. The results for nucleon-nucleon scattering are compared with experimental data, with calculations using a modified functional scalar product and with results in first order perturbation theory (V-A-coupling). As for elastic nucleon-antinucleon scattering, the S matrix is investigated for crossing symmetry. Scattering of 'nucleons' of different mass results in different cross sections even in the lowest-order approximation. (BJ) [de
Spin factor and spinor structure of Dirac propagator in constant field
Energy Technology Data Exchange (ETDEWEB)
Gitman, D.M.; Cruz, W. da [Sao Paulo Univ., SP (Brazil). Inst. de Fisica; Zlatev, S.I. [Sergipe Univ., Aracaju, SE (Brazil). Dept. de Fisica
1996-06-01
We use bosonic path integral representation of Dirac propagator with a spin factor to calculate the propagator in a constant uniform electromagnetic field. Such a way of calculation allows us to get the explicit spinor structure of the propagator in the case under consideration. The representation obtained differs from the Schwinger`s one but the equivalence can be checked. (author). 21 refs.
Spin factor and spinor structure of Dirac propagator in constant field
International Nuclear Information System (INIS)
Gitman, D.M.; Cruz, W. da; Zlatev, S.I.
1996-01-01
We use bosonic path integral representation of Dirac propagator with a spin factor to calculate the propagator in a constant uniform electromagnetic field. Such a way of calculation allows us to get the explicit spinor structure of the propagator in the case under consideration. The representation obtained differs from the Schwinger's one but the equivalence can be checked. (author). 21 refs
Gauge-invariant approach and infrared behaviour of the spinor propagator
International Nuclear Information System (INIS)
Sisakyan, A.N.; Skachkov, N.B.; Solovtsov, I.L.; Shevchenko, O.Yu.
1989-01-01
Infrared behaviour of the gauge-invariant spinor propagator is studied. It is proved that infrared peculiarities of such a propagator can be factorized in a form of the Wilson loop that includes only the slowly varying component of electromagnetic field and accumulates all the dependence of the initial Green function of the form of the path
Weyl-van der Waerden spinor technic for spin-3/2 fermions
International Nuclear Information System (INIS)
Novaes, S.F.; Spehler, D.
1991-09-01
We use the Weyl-van der Waerden spinor technic to construct helicity wave functions for massless and massive spin-3/2 fermions. We apply our formalism to evaluate helicity amplitudes taking into account some phenomenological couplings involving these particles. (author)
The non-minimal heterotic pure spinor string in a curved background
Energy Technology Data Exchange (ETDEWEB)
Chandia, Osvaldo [Facultad de Artes Liberales and Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,Diagonal Las Torres 2640, Peñalolén, Santiago (Chile)
2014-03-21
We study the non-minimal pure spinor string in a curved background. We find that the minimal BRST invariance implies the existence of a non-trivial stress-energy tensor for the minimal and non-minimal variables in the heterotic curved background. We find constraint equations for the b ghost. We construct the b ghost as a solution of these constraints.
Simplified pure spinor b ghost in a curved heterotic superstring background
Energy Technology Data Exchange (ETDEWEB)
Berkovits, Nathan [ICTP South American Institute for Fundamental Research,Instituto de Física Teórica, UNESP - Universidade Estadual Paulista,Rua Dr. Bento T. Ferraz 271, 01140-070, São Paulo, SP (Brazil); Chandia, Osvaldo [Departamento de Ciencias, Facultad de Artes Liberales,Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,Diagonal Las Torres 2640, Peñalolén, Santiago (Chile)
2014-06-03
Using the RNS-like fermionic vector variables introduced in arXiv:1305.0693, the pure spinor b ghost in a curved heterotic superstring background is easily constructed. This construction simplifies and completes the b ghost construction in a curved background of arXiv:1311.7012.
Gap probabilities for edge intervals in finite Gaussian and Jacobi unitary matrix ensembles
International Nuclear Information System (INIS)
Witte, N.S.; Forrester, P.J.
1999-01-01
The probabilities for gaps in the eigenvalue spectrum of the finite dimension N x N random matrix Hermite and Jacobi unitary ensembles on some single and disconnected double intervals are found. These are cases where a reflection symmetry exists and the probability factors into two other related probabilities, defined on single intervals. Our investigation uses the system of partial differential equations arising from the Fredholm determinant expression for the gap probability and the differential-recurrence equations satisfied by Hermite and Jacobi orthogonal polynomials. In our study we find second and third order nonlinear ordinary differential equations defining the probabilities in the general N case, specific explicit solutions for N = 1 and N = 2, asymptotic expansions, scaling at the edge of the Hermite spectrum as N →∞ and the Jacobi to Hermite limit both of which make correspondence to other cases reported here or known previously. (authors)
DU and UD-invariants of unitary groups
International Nuclear Information System (INIS)
Aguilera-Navarro, M.C.K.
1977-01-01
Four distint ways of obtaining the eigenvalues of unitary groups, in any irreducible representation, are presented. The invariants are defined according to two different contraction conventions. Their eigenvalue can be given in terms of two classes of special partial hooks associated with the young diagram characterizing the irreducible representation considered
A remark on the unitary part of contractions
International Nuclear Information System (INIS)
Duggal, B.P.
1992-07-01
Considering operators on a complex infinite dimensional Hilbert space H and denoting by T * a construction with C .O completely non-unitary part, it is proved that A T is projection which commutes with T and H (u) T = A T H. 3 refs
Establishing the Unitary Classroom: Organizational Change and School Culture.
Eddy, Elizabeth M.; True, Joan H.
1980-01-01
This paper examines the organizational changes introduced in two elementary schools to create unitary (desegregated) classrooms. The different models adopted by the two schools--departmentalization and team teaching--are considered as expressions of their patterns of interaction, behavior, and values. (Part of a theme issue on educational…
Microscopic description and excitation of unitary analog states
Energy Technology Data Exchange (ETDEWEB)
Kisslinger, L S [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA); Van Giai, N [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire
1977-12-05
A microscopic investigation in a self-consistent particle-hole model reveals approximate unitary analog states in spite of large symmetry breaking. The K-nucleus elastic scattering and (K/sup -/, ..pi../sup -/) excitation of these states are studied, showing strong surface effects.
Dang, Cai-Ping; Braeken, Johan; Ferrer, Emilio; Liu, Chang
2012-01-01
This study explored the controversy surrounding working memory: whether it is a unitary system providing general purpose resources or a more differentiated system with domain-specific sub-components. A total of 348 participants completed a set of 6 working memory tasks that systematically varied in storage target contents and type of information…
A mapping from the unitary to doubly stochastic matrices and symbols on a finite set
Karabegov, Alexander V.
2008-11-01
We prove that the mapping from the unitary to doubly stochastic matrices that maps a unitary matrix (ukl) to the doubly stochastic matrix (|ukl|2) is a submersion at a generic unitary matrix. The proof uses the framework of operator symbols on a finite set.
International Nuclear Information System (INIS)
Skachkov, N.B.; Solovtsov, I.L.; Shevchenko, O.Yu.
1985-01-01
The Dayson-Schwinger equations for the gauge-invariant (G.I.) spinor Green function are derived for an Abelian case. On the basis of these equations as well as the functional integration method the behaviour of the G.I. spinor propagator is studied in the infrared region. It is shown that the G.I. propagator has a singularity of a simple pole in this region
Random unitary evolution model of quantum Darwinism with pure decoherence
Balanesković, Nenad
2015-10-01
We study the behavior of Quantum Darwinism [W.H. Zurek, Nat. Phys. 5, 181 (2009)] within the iterative, random unitary operations qubit-model of pure decoherence [J. Novotný, G. Alber, I. Jex, New J. Phys. 13, 053052 (2011)]. We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system S from the point of view of its environment E, is not a generic phenomenon, but depends on the specific form of input states and on the type of S-E-interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial input states of environment E that allow to store information about an open system S of interest with maximal efficiency.
Multiloop amplitudes and vanishing theorems using the pure spinor formalism for the superstring
International Nuclear Information System (INIS)
Berkovits, Nathan
2004-01-01
A ten-dimensional super-Poincare covariant formalism for the superstring was recently developed which involves a BRST operator constructed from superspace matter variables and a pure spinor ghost variable. A super-Poincare covariant prescription was defined for computing tree amplitudes and was shown to coincide with the standard RNS prescription. In this paper, picture-changing operators are used to define functional integration over the pure spinor ghosts and to construct a suitable b ghost. A super-Poincare covariant prescription is then given for the computation of N-point multiloop amplitudes. One can easily prove that massless N-point multiloop amplitudes vanish for N 4 terms in the effective action receive no perturbative contributions above one loop. (author)
International Nuclear Information System (INIS)
Borstnik, N. Mankoc; Nielsen, H.B.
2002-01-01
We present a technique to construct a spinor space basis as products of certain nilpotents and projections formed from γ a for which we only need to know that they obey the Clifford algebra. The technique works for all dimensions and signatures. We use this technique to deliver a concrete choice of γ-matrices and Lorentz group generators for (fundamental representations of) spinors in a rather systematic and transparent way. We further develop the formalism by proposing the corresponding graphic presentation of basic states, which offers an easy way to see all the quantum numbers of states with respect to the generators of the Lorentz group, as well as transformation properties of the states under any element of the Clifford algebra
SO(d,d) transformations of Ramond-Ramond fields and space-time spinors
International Nuclear Information System (INIS)
Hassan, S.F.
2000-01-01
We explicitly construct the SO(d,d) transformations of Ramond-Ramond field strengths and potentials, along with those of the space-time supersymmetry parameters, the gravitinos and the dilatinos in type-II theories. The results include the case when the SO(d,d) transformation involves the time direction. The derivation is based on the compatibility of SO(d,d) transformations with space-time supersymmetry, which automatically guarantees compatibility with the equations of motion. It involves constructing the spinor representation of a twist that an SO(d,d) action induces between the local Lorentz frames associated with the left- and right-moving sectors of the worldsheet theory. The relation to the transformation of R-R potentials as SO(d,d) spinors is also clarified
Coherent magnon optics in a ferromagnetic spinor Bose-Einstein condensate.
Marti, G Edward; MacRae, Andrew; Olf, Ryan; Lourette, Sean; Fang, Fang; Stamper-Kurn, Dan M
2014-10-10
We measure the dispersion relation, gap, and magnetic moment of a magnon in the ferromagnetic F = 1 spinor Bose-Einstein condensate of (87)Rb. From the dispersion relation we measure an average effective mass 1.033(2)(stat)(10)(sys) times the atomic mass, as determined by interfering standing and running coherent magnon waves within the dense and trapped condensed gas. The measured mass is higher than theoretical predictions of mean-field and beyond-mean-field Beliaev theory for a bulk spinor Bose gas with s-wave contact interactions. We observe a magnon energy gap of h × 2.5(1)(stat)(2)(sys) Hz, which is consistent with the predicted effect of magnetic dipole-dipole interactions. These dipolar interactions may also account for the high magnon mass. The effective magnetic moment of -1.04(2)(stat)(8)(sys) times the atomic magnetic moment is consistent with mean-field theory.
Population and phase dynamics of F=1 spinor condensates in an external magnetic field
International Nuclear Information System (INIS)
Romano, D.R.; Passos, E.J.V. de
2004-01-01
We show that the classical dynamics underlying the mean-field description of homogeneous mixtures of spinor F=1 Bose-Einstein condensates in an external magnetic field is integrable as a consequence of number conservation and axial symmetry in spin space. The population dynamics depends only on the quadratic term of the Zeeman energy and on the strength of the spin-dependent term of the atom-atom interaction. We determine the equilibrium populations as function of the ratio of these two quantities and the miscibility of the hyperfine components in the ground state spinors are thoroughly discussed. Outside the equilibrium, the populations are always a periodic function of time where the periodic motion can be a libration or a rotation. Our studies also indicate the absence of metastability
U(N) tools for loop quantum gravity: the return of the spinor
Borja, Enrique F.; Freidel, Laurent; Garay, Iñaki; Livine, Etera R.
2011-03-01
We explore the classical setting for the U(N) framework for SU(2) intertwiners for loop quantum gravity and describe the corresponding phase space in terms of spinors with the appropriate constraints. We show how its quantization leads back to the standard Hilbert space of intertwiner states defined as holomorphic functionals. We then explain how to glue these intertwiners states in order to construct spin network states as wavefunctions on the spinor phase space. In particular, we translate the usual loop gravity holonomy observables to our classical framework. Finally, we propose how to derive our phase space structure from an action principle which induces non-trivial dynamics for the spin network states. We conclude by applying explicitly our framework to states living on the simple 2-vertex graph and discuss the properties of the resulting Hamiltonian.
On relevant boundary perturbations of unitary minimal models
International Nuclear Information System (INIS)
Recknagel, A.; Roggenkamp, D.; Schomerus, V.
2000-01-01
We consider unitary Virasoro minimal models on the disk with Cardy boundary conditions and discuss deformations by certain relevant boundary operators, analogous to tachyon condensation in string theory. Concentrating on the least relevant boundary field, we can perform a perturbative analysis of renormalization group fixed points. We find that the systems always flow towards stable fixed points which admit no further (non-trivial) relevant perturbations. The new conformal boundary conditions are in general given by superpositions of 'pure' Cardy boundary conditions
Unitary group representations in Fock spaces with generalized exchange properties
International Nuclear Information System (INIS)
Liguori, A.
1994-09-01
The notion of second R-quantization is investigated, - a suitable deformation of the standard second quantization which properly takes into account the non-trivial exchange properties characterizing generalized statistics. The R-quantization of a class of unitary one-particle representations relevant for the description of symmetries is also performed. The Euclidean covariance of anyons is analyzed in this context. (author). 11 refs
Prenominal and postnominal reduced relative clauses: arguments against unitary analyses
Directory of Open Access Journals (Sweden)
Petra Sleeman
2007-01-01
Full Text Available These last years, several analyses have been proposed in which prenominal and postnominal reduced relatives are merged in the same position. Kayne (1994 claims that both types of reduced relative clauses are the complement of the determiner. More recently, Cinque (2005 has proposed that both types are merged in the functional projections of the noun, at the left edge of the modifier system. In this paper, I argue against a unitary analysis of prenominal and postnominal participial reduced relatives.
Unitary Application of the Quantum Error Correction Codes
International Nuclear Information System (INIS)
You Bo; Xu Ke; Wu Xiaohua
2012-01-01
For applying the perfect code to transmit quantum information over a noise channel, the standard protocol contains four steps: the encoding, the noise channel, the error-correction operation, and the decoding. In present work, we show that this protocol can be simplified. The error-correction operation is not necessary if the decoding is realized by the so-called complete unitary transformation. We also offer a quantum circuit, which can correct the arbitrary single-qubit errors.
Effective hamiltonian within the microscopic unitary nuclear model
International Nuclear Information System (INIS)
Avramenko, V.I.; Blokhin, A.L.
1989-01-01
Within the microscopic version of the unitary collective model with the horizontal mixing the effective Hamiltonian for 18 O and 18 Ne nuclei is constructed. The algebraic structure of the Hamiltonian is compared to the familiar phenomenological ones with the SU(3)-mixing terms which describe the coupled rotational and vibrational spectra. The Hamiltonian, including central nuclear and Coulomb interaction, is diagonalized on the basis of three SU(3) irreducible representations with two orbital symmetries. 32 refs.; 2 figs.; 4 tabs
Unitary-matrix models as exactly solvable string theories
Periwal, Vipul; Shevitz, Danny
1990-01-01
Exact differential equations are presently found for the scaling functions of models of unitary matrices which are solved in a double-scaling limit, using orthogonal polynomials on a circle. For the case of the simplest, k = 1 model, the Painleve II equation with constant 0 is obtained; possible nonperturbative phase transitions exist for these models. Equations are presented for k = 2 and 3, and discussed with a view to asymptotic behavior.
Complex projection of unitary dynamics of quaternionic pure states
International Nuclear Information System (INIS)
Asorey, M.; Scolarici, G.; Solombrino, L.
2007-01-01
Quaternionic quantum mechanics has been revealed to be a very useful framework to describe quantum phenomena. In the case of two qubit compound systems we show that the complex projection of quaternionic pure states and quaternionic unitary maps permits the description of interesting phenomena such as decoherence and optimal entanglement generation. The approach, however, presents severe limitations for the case of multipartite or higher dimensional bipartite quantum systems as we point out
Information-disturbance tradeoff in estimating a unitary transformation
International Nuclear Information System (INIS)
Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Chiribella, Giulio
2010-01-01
We address the problem of the information-disturbance tradeoff associated to the estimation of a quantum transformation and show how the extraction of information about a black box causes a perturbation of the corresponding input-output evolution. In the case of a black box performing a unitary transformation, randomly distributed according to the invariant measure, we give a complete solution of the problem, deriving the optimal tradeoff curve and presenting an explicit construction of the optimal quantum network.
Primary fields in a unitary representation of Virasoro algebras
International Nuclear Information System (INIS)
Sasaki, R.; Yamanaka, I.
1985-08-01
A unitary representation of Virasoro algebras with the central charge c = 1 - 6/(N + 1)(N + 2) is constructed explicitly in terms of a colored (two color) coset space (the complex projective space CP sup(N-1)) quark model. By utilizing the explicit forms of the Virasoro generators Lsub(m), we derive a general method of constructing the primary fields (fields with well-defined conformal transformation properties) of the above Virasoro algebras. (author)
Efficient learning algorithm for quantum perceptron unitary weights
Seow, Kok-Leong; Behrman, Elizabeth; Steck, James
2015-01-01
For the past two decades, researchers have attempted to create a Quantum Neural Network (QNN) by combining the merits of quantum computing and neural computing. In order to exploit the advantages of the two prolific fields, the QNN must meet the non-trivial task of integrating the unitary dynamics of quantum computing and the dissipative dynamics of neural computing. At the core of quantum computing and neural computing lies the qubit and perceptron, respectively. We see that past implementat...
Entanglement entropy of non-unitary integrable quantum field theory
Directory of Open Access Journals (Sweden)
Davide Bianchini
2015-07-01
Full Text Available In this paper we study the simplest massive 1+1 dimensional integrable quantum field theory which can be described as a perturbation of a non-unitary minimal conformal field theory: the Lee–Yang model. We are particularly interested in the features of the bi-partite entanglement entropy for this model and on building blocks thereof, namely twist field form factors. Non-unitarity selects out a new type of twist field as the operator whose two-point function (appropriately normalized yields the entanglement entropy. We compute this two-point function both from a form factor expansion and by means of perturbed conformal field theory. We find good agreement with CFT predictions put forward in a recent work involving the present authors. In particular, our results are consistent with a scaling of the entanglement entropy given by ceff3logℓ where ceff is the effective central charge of the theory (a positive number related to the central charge and ℓ is the size of the region. Furthermore the form factor expansion of twist fields allows us to explore the large region limit of the entanglement entropy and find the next-to-leading order correction to saturation. We find that this correction is very different from its counterpart in unitary models. Whereas in the latter case, it had a form depending only on few parameters of the model (the particle spectrum, it appears to be much more model-dependent for non-unitary models.
Higher dimensional unitary braid matrices: Construction, associated structures and entanglements
International Nuclear Information System (INIS)
Abdesselam, B.; Chakrabarti, A.; Dobrev, V.K.; Mihov, S.G.
2007-03-01
We construct (2n) 2 x (2n) 2 unitary braid matrices R-circumflex for n ≥ 2 generalizing the class known for n = 1. A set of (2n) x (2n) matrices (I, J,K,L) are defined. R-circumflex is expressed in terms of their tensor products (such as K x J), leading to a canonical formulation for all n. Complex projectors P ± provide a basis for our real, unitary R-circumflex. Baxterization is obtained. Diagonalizations and block- diagonalizations are presented. The loss of braid property when R-circumflex (n > 1) is block-diagonalized in terms of R-circumflex (n = 1) is pointed out and explained. For odd dimension (2n + 1) 2 x (2n + 1) 2 , a previously constructed braid matrix is complexified to obtain unitarity. R-circumflexLL- and R-circumflexTT- algebras, chain Hamiltonians, potentials for factorizable S-matrices, complex non-commutative spaces are all studied briefly in the context of our unitary braid matrices. Turaev construction of link invariants is formulated for our case. We conclude with comments concerning entanglements. (author)
Real-time response in AdS/CFT with application to spinors
International Nuclear Information System (INIS)
Iqbal, N.; Liu, H.
2009-01-01
We discuss a simple derivation of the real-time AdS/CFT prescription as an analytic continuation of the corresponding problem in Euclidean signature. We then extend the formalism to spinor operators and apply it to the examples of real-time fermionic correlators in CFTs dual to pure AdS and the BTZ black hole. (Abstract Copyright [2009], Wiley Periodicals, Inc.)
Non-existence of rest-frame spin-eigenstate spinors in their own electrodynamics
Fabbri, Luca; da Rocha, Roldão
2018-05-01
We assume a physical situation where gravity with torsion is neglected for an electrodynamically self-interacting spinor that will be taken in its rest-frame and spin-eigenstate: we demonstrate that under this circumstance no solution exists for the system of field equations. Despite such a situation might look artificial nevertheless it represents the instance that is commonly taken as the basis for all computations of quantum electrodynamics.
The lattice spinor QED Hamiltonian critique of the continuous space approach
International Nuclear Information System (INIS)
Sidorov, A.V.; Zastavenko, L.G.
1993-01-01
We give the irreproachable, from the point of view of gauge invariance, derivation of the lattice spinor QED Hamiltonian. Our QED Hamiltonian is manifestly gauge invariant. We point out important defects of the continuous space formulation of the QED that make, in our opinion, the lattice QED obviously preferable to the continuous space QED. We state that it is impossible to give a continuous space QED formulation which is compatible with the condition of gauge invariance. 17 refs
Multiscale differential phase contrast analysis with a unitary detector
Lopatin, Sergei; Ivanov, Yurii P.; Kosel, Jü rgen; Chuvilin, Andrey
2015-01-01
A new approach to generate differential phase contrast (DPC) images for the visualization and quantification of local magnetic fields in a wide range of modern nano materials is reported. In contrast to conventional DPC methods our technique utilizes the idea of a unitary detector under bright field conditions, making it immediately usable by a majority of modern transmission electron microscopes. The approach is put on test to characterize the local magnetization of cylindrical nanowires and their 3D ordered arrays, revealing high sensitivity of our method in a combination with nanometer-scale spatial resolution.
Configurable unitary transformations and linear logic gates using quantum memories.
Campbell, G T; Pinel, O; Hosseini, M; Ralph, T C; Buchler, B C; Lam, P K
2014-08-08
We show that a set of optical memories can act as a configurable linear optical network operating on frequency-multiplexed optical states. Our protocol is applicable to any quantum memories that employ off-resonant Raman transitions to store optical information in atomic spins. In addition to the configurability, the protocol also offers favorable scaling with an increasing number of modes where N memories can be configured to implement arbitrary N-mode unitary operations during storage and readout. We demonstrate the versatility of this protocol by showing an example where cascaded memories are used to implement a conditional cz gate.
Introduction to orthogonal, symplectic and unitary representations of finite groups
Riehm, Carl R
2011-01-01
Orthogonal, symplectic and unitary representations of finite groups lie at the crossroads of two more traditional subjects of mathematics-linear representations of finite groups, and the theory of quadratic, skew symmetric and Hermitian forms-and thus inherit some of the characteristics of both. This book is written as an introduction to the subject and not as an encyclopaedic reference text. The principal goal is an exposition of the known results on the equivalence theory, and related matters such as the Witt and Witt-Grothendieck groups, over the "classical" fields-algebraically closed, rea
Implementing controlled-unitary operations over the butterfly network
Energy Technology Data Exchange (ETDEWEB)
Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S. [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo (Japan); Murao, Mio [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan and NanoQuine, The University of Tokyo, Tokyo (Japan)
2014-12-04
We introduce a multiparty quantum computation task over a network in a situation where the capacities of both the quantum and classical communication channels of the network are limited and a bottleneck occurs. Using a resource setting introduced by Hayashi [1], we present an efficient protocol for performing controlled-unitary operations between two input nodes and two output nodes over the butterfly network, one of the most fundamental networks exhibiting the bottleneck problem. This result opens the possibility of developing a theory of quantum network coding for multiparty quantum computation, whereas the conventional network coding only treats multiparty quantum communication.
A model of diffraction scattering with unitary corrections
International Nuclear Information System (INIS)
Etim, E.; Malecki, A.; Satta, L.
1989-01-01
The inability of the multiple scattering model of Glauber and similar geometrical picture models to fit data at Collider energies, to fit low energy data at large momentum transfers and to explain the absence of multiple diffraction dips in the data is noted. It is argued and shown that a unitary correction to the multiple scattering amplitude gives rise to a better model and allows to fit all available data on nucleon-nucleon and nucleus-nucleus collisions at all energies and all momentum transfers. There are no multiple diffraction dips
Non-unitary neutrino propagation from neutrino decay
Energy Technology Data Exchange (ETDEWEB)
Berryman, Jeffrey M., E-mail: jeffreyberryman2012@u.northwestern.edu [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Gouvêa, André de; Hernández, Daniel [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Oliveira, Roberto L.N. [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Instituto de Física Gleb Wataghin Universidade Estadual de Campinas, UNICAMP 13083-970, Campinas, São Paulo (Brazil)
2015-03-06
Neutrino propagation in space-time is not constrained to be unitary if very light states – lighter than the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature.
Non-unitary neutrino propagation from neutrino decay
International Nuclear Information System (INIS)
Berryman, Jeffrey M.; Gouvêa, André de; Hernández, Daniel; Oliveira, Roberto L.N.
2015-01-01
Neutrino propagation in space-time is not constrained to be unitary if very light states – lighter than the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature
Experiments with Highly-Ionized Atoms in Unitary Penning Traps
Directory of Open Access Journals (Sweden)
Shannon Fogwell Hoogerheide
2015-08-01
Full Text Available Highly-ionized atoms with special properties have been proposed for interesting applications, including potential candidates for a new generation of optical atomic clocks at the one part in 1019 level of precision, quantum information processing and tests of fundamental theory. The proposed atomic systems are largely unexplored. Recent developments at NIST are described, including the isolation of highly-ionized atoms at low energy in unitary Penning traps and the use of these traps for the precise measurement of radiative decay lifetimes (demonstrated with a forbidden transition in Kr17+, as well as for studying electron capture processes.
A Unitary-Transformative Nursing Science: From Angst to Appreciation.
Cowling, W Richard
2017-10-01
The discord within nursing regarding the definition of nursing science has created great angst, particularly for those who view nursing science as a body of knowledge derived from theories specific to its unique concerns. The purpose of this brief article is to suggest a perspective and process grounded in appreciation of wholeness that may offer a way forward for proponents of a unitary-transformative nursing science that transcends the discord. This way forward is guided by principles of fostering dissent without contempt, generating a well-imagined future, and garnering appreciatively inspired action for change.
Multiscale differential phase contrast analysis with a unitary detector
Lopatin, Sergei
2015-12-30
A new approach to generate differential phase contrast (DPC) images for the visualization and quantification of local magnetic fields in a wide range of modern nano materials is reported. In contrast to conventional DPC methods our technique utilizes the idea of a unitary detector under bright field conditions, making it immediately usable by a majority of modern transmission electron microscopes. The approach is put on test to characterize the local magnetization of cylindrical nanowires and their 3D ordered arrays, revealing high sensitivity of our method in a combination with nanometer-scale spatial resolution.
Global unitary fixing and matrix-valued correlations in matrix models
International Nuclear Information System (INIS)
Adler, Stephen L.; Horwitz, Lawrence P.
2003-01-01
We consider the partition function for a matrix model with a global unitary invariant energy function. We show that the averages over the partition function of global unitary invariant trace polynomials of the matrix variables are the same when calculated with any choice of a global unitary fixing, while averages of such polynomials without a trace define matrix-valued correlation functions, that depend on the choice of unitary fixing. The unitary fixing is formulated within the standard Faddeev-Popov framework, in which the squared Vandermonde determinant emerges as a factor of the complete Faddeev-Popov determinant. We give the ghost representation for the FP determinant, and the corresponding BRST invariance of the unitary-fixed partition function. The formalism is relevant for deriving Ward identities obeyed by matrix-valued correlation functions
Zhou, Junhe; Wu, Jianjie; Hu, Qinsong
2018-02-05
In this paper, we propose a novel tunable unitary transformer, which can achieve arbitrary discrete unitary transforms. The unitary transformer is composed of multiple sections of multi-core fibers with closely aligned coupled cores. Phase shifters are inserted before and after the sections to control the phases of the waves in the cores. A simple algorithm is proposed to find the optimal phase setup for the phase shifters to realize the desired unitary transforms. The proposed device is fiber based and is particularly suitable for the mode division multiplexing systems. A tunable mode MUX/DEMUX for a three-mode fiber is designed based on the proposed structure.
On the equivalence of massive qed with renormalizable and in unitary gauge
International Nuclear Information System (INIS)
Abdalla, E.
1978-03-01
In the framework of BPHZ renormalization procedure, we discuss the equivalence between 4-dimensional renormalizable massive quantum electrodynamics (Stueckelberg lagrangian), and massive QED in the unitary gauge
The universal sound velocity formula for the strongly interacting unitary Fermi gas
International Nuclear Information System (INIS)
Liu Ke; Chen Ji-Sheng
2011-01-01
Due to the scale invariance, the thermodynamic laws of strongly interacting limit unitary Fermi gas can be similar to those of non-interacting ideal gas. For example, the virial theorem between pressure and energy density of the ideal gas P = 2E/3V is still satisfied by the unitary Fermi gas. This paper analyses the sound velocity of unitary Fermi gases with the quasi-linear approximation. For comparison, the sound velocities for the ideal Boltzmann, Bose and Fermi gas are also given. Quite interestingly, the sound velocity formula for the ideal non-interacting gas is found to be satisfied by the unitary Fermi gas in different temperature regions. (general)
First unitary, then divided: the temporal dynamics of dividing attention.
Jefferies, Lisa N; Witt, Joseph B
2018-04-24
Whether focused visual attention can be divided has been the topic of much investigation, and there is a compelling body of evidence showing that, at least under certain conditions, attention can be divided and deployed as two independent foci. Three experiments were conducted to examine whether attention can be deployed in divided form from the outset, or whether it is first deployed as a unitary focus before being divided. To test this, we adapted the methodology of Jefferies, Enns, and Di Lollo (Journal of Experimental Psychology: Human Perception and Performance 40: 465, 2014), who used a dual-stream Attentional Blink paradigm and two letter-pair targets. One aspect of the AB, Lag-1 sparing, has been shown to occur only if the second target pair appears within the focus of attention. By presenting the second target pair at various spatial locations and assessing the magnitude of Lag-1 sparing, we probed the spatial distribution of attention. By systematically manipulating the stimulus-onset-asynchrony between the targets, we also tracked changes to the spatial distribution of attention over time. The results showed that even under conditions which encourage the division of attention, the attentional focus is first deployed in unitary form before being divided. It is then maintained in divided form only briefly before settling on a single location.
Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories
Buican, Matthew; Laczko, Zoltan
2018-02-01
In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N =2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N =2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.
Nonunitary Lagrangians and Unitary Non-Lagrangian Conformal Field Theories.
Buican, Matthew; Laczko, Zoltan
2018-02-23
In various dimensions, we can sometimes compute observables of interacting conformal field theories (CFTs) that are connected to free theories via the renormalization group (RG) flow by computing protected quantities in the free theories. On the other hand, in two dimensions, it is often possible to algebraically construct observables of interacting CFTs using free fields without the need to explicitly construct an underlying RG flow. In this Letter, we begin to extend this idea to higher dimensions by showing that one can compute certain observables of an infinite set of unitary strongly interacting four-dimensional N=2 superconformal field theories (SCFTs) by performing simple calculations involving sets of nonunitary free four-dimensional hypermultiplets. These free fields are distant cousins of the Majorana fermion underlying the two-dimensional Ising model and are not obviously connected to our interacting theories via an RG flow. Rather surprisingly, this construction gives us Lagrangians for particular observables in certain subsectors of many "non-Lagrangian" SCFTs by sacrificing unitarity while preserving the full N=2 superconformal algebra. As a by-product, we find relations between characters in unitary and nonunitary affine Kac-Moody algebras. We conclude by commenting on possible generalizations of our construction.
General-transformation matrix for Dirac spinors and the calculation of spinorial amplitudes
International Nuclear Information System (INIS)
Nam, K.; Moravcsik, M.J.
1983-01-01
A general transformation matrix T(p's';p,s) is constructed which transforms a Dirac spinor psi(p,s) into another Dirac spinor psi(p',s') with arbitrarily given momenta and polarization states by expoloting the so-called Stech operator as one of generators for those transformations. This transformation matrix is then used in a calculation to yield the spinorial matrix element M = anti psi(p',s')GAMMApsi(p,s) for any spin polarization state. The final expressions of these matrix elements show the explicit structure of spin dependence for the process described by these spinorial amplitudes. The kinematical limiting cases such as very low energy or high energy of the various matrix elements can also be easily displayed. Our method is superior to the existing one in the following points. Since we have a well-defined transformation operator between two Dirac spinor states, we can evaluate the necessary phase factor of the matrix elements in an unambiguous way without introducing the coordinate system. This enables us to write down the Feynman amplitudes of complicated processes in any spin basis very easily in terms of previously calculated matrix elements of anti psiGAMMApsi which are building blocks of those Feynman amplitudes. The usefulness of the results is illustrated on Compton scattering and on the elastic scattering of two identical massive leptons where the phase factor is important. It is also shown that the Stech operator as a polarization operator is simply related to the operator K = #betta#(polarized μ . polarized L + 1)/2 which is often used in bound state problems
Directory of Open Access Journals (Sweden)
J. Buitrago
Full Text Available A new classical 2-spinor approach to U(1 gauge theory is presented in which the usual four-potential vector field is replaced by a symmetric second rank spinor. Following a lagrangian formulation, it is shown that the four-rank spinor representing the Maxwell field tensor has a U(1 local gauge invariance in terms of the electric and magnetic field strengths. When applied to the magnetic field of a monopole, this formulation, via the irreducible representation condition for the gauge group, leads to a quantization condition differing by a factor 2 of the one predicted by Dirac without relying on any kind of singular vector potentials. Finally, the U(1 invariant spinor equations, are applied to electron magnetic resonance which has many applications in the study of materials. Keywords: Weyl 2-spinor lenguage, Dirac equation, Gauge theories, Charge quantization
Spinors in self-dual Yang-Mills fields in minkowski space
International Nuclear Information System (INIS)
Pervushin, V.N.
1981-01-01
Yang-Mills theory with infrared divergences removed by spontaneous vacuum symmetry breaking is considered. The corresponding vacuum fields are self-dual and are defined in the Minkowski space. The complete set of solutions of Dirac equations with self-dual fields, depending on certain arbitrary function, is found. Physical observables (charge, energy, spin) for the spinor fields within the self-dual vacuum are calculated and a Hermitean Hamiltonian is obtained. The physical picture corresponds to a relativistic generalization of the hadron bag model [ru
A massive spinless particle and the unit of length in a spinor geometry
International Nuclear Information System (INIS)
Lynch, J.T.
1999-01-01
The field equations of a spinor geometry are solved for a massive spinless particle. The particle has a composite internal structure, a quantised rest-mass, and a positive-definite and everywhere finite mass density. The particle is stable in isolation, but evidently unstable in the presence of fields due to external sources, such as the electromagnetic fields of particle detectors. On identifying the particle as a neutral meson, the unit of length of the geometry turns out to be approximately 10 -15 m
Numerical simulation of spin motion in circular accelerators using spinor formulation
International Nuclear Information System (INIS)
Nghiem, P.; Tkatchenko, A.
1992-07-01
A simple method is presented based on spinor algebra formalism for tracking the spin motion in circular accelerators. Using an analytical expression of the one-turn transformation matrix including the effects of perturbating fields or of siberian snakes, a simple and very fast numerical code has been written for studying spin motion in various circumstances. In particular, effects of synchrotron oscillations on final polarization after one isolated resonance crossing are simulated. Results of these calculations agree very well with those which have been obtained previously from analytical approaches or from other numerical-simulation programs. (author) 8 refs.; 14 figs
Some statistical aspects of the spinor field Fermi-Bose duality
Directory of Open Access Journals (Sweden)
V.M. Simulik
2012-12-01
Full Text Available The structure of 29-dimensional extended real Clifford-Dirac algebra, which has been introduced in our paper Phys. Lett. A, 2011, Vol. 375, 2479, is considered in brief. Using this algebra, the property of Fermi-Bose duality of the Dirac equation with nonzero mass is proved. It means that Dirac equation can describe not only the fermionic but also the bosonic states. The proof of our assertion based on the examples of bosonic symmetries, solutions and conservation laws is given. Some statistical aspects of the spinor field Fermi-Bose duality are discussed.
Spatial Landau-Zener-Stueckelberg interference in spinor Bose-Einstein condensates
International Nuclear Information System (INIS)
Zhang, J.-N.; Sun, C.-P.; Yi, S.; Nori, Franco
2011-01-01
We investigate the Stueckelberg oscillations of a spin-1 Bose-Einstein condensate subject to a spatially inhomogeneous transverse magnetic field and a periodic longitudinal field. We show that the time-domain Stueckelberg oscillations result in modulations in the density profiles of all spin components due to the spatial inhomogeneity of the transverse field. This phenomenon represents the Landau-Zener-Stueckelberg interference in the space domain. Since the magnetic dipole-dipole interaction between spin-1 atoms induces an inhomogeneous effective magnetic field, interference fringes also appear if a dipolar spinor condensate is driven periodically. We also point out some potential applications of this spatial Landau-Zener-Stuekelberg interference.
Spinor Field Realizations of the half-integer $W_{2,s}$ Strings
Wei, Shao-Wen; Liu, Yu-Xiao; Zhang, Li-Jie; Ren, Ji-Rong
2008-01-01
The grading Becchi-Rouet-Stora-Tyutin (BRST) method gives a way to construct the integer $W_{2,s}$ strings, where the BRST charge is written as $Q_B=Q_0+Q_1$. Using this method, we reconstruct the nilpotent BRST charges $Q_{0}$ for the integer $W_{2,s}$ strings and the half-integer $W_{2,s}$ strings. Then we construct the exact grading BRST charge with spinor fields and give the new realizations of the half-integer $W_{2,s}$ strings for the cases of $s=3/2$, 5/2, and 7/2.
Killing spinor equations in dimension 7 and geometry of integrable G2-manifolds
International Nuclear Information System (INIS)
Friedrich, Thomas; Ivanov, Stefan
2001-12-01
We compute the scalar curvature of 7-dimensional G 2 -manifolds admitting a connection with totally skew-symmetric torsion. We prove the formula for the general solution of the Killing spinor equation and express the Riemannian scalar curvature of the solution in terms of the dilation function and the NS 3-form field. In dimension n=7 the dilation function involved in the second fermionic string equation has an interpretation as a conformal change of the underlying integrable G 2 -structure into a cocalibrated one of pure type W 3 . (author)
International Nuclear Information System (INIS)
Barut, A.O.; Pavsic, M.
1988-05-01
A remarkable equivalence is established between the theories of spinning particles or superparticles using anticommuting Grassmann variables on the one hand and commuting c-number spinors on the other. We consider both real and complex Grassmann variables and map the equations of motion and the supersymmetry transformation from one theory to another. The more intuitive c-number theory allows us to generalize the notion of Zitterbewegung to strings and membranes. (A hidden supersymmetry exists in the classical model of the Dirac electron.) (author). 12 refs
On the problem of unboundedness from below of the spinor QED Hamiltonian
International Nuclear Information System (INIS)
Zastavenko, L.G.
1993-01-01
It is show that the Hamiltonian H QED + H 2 , where H QED is the spinor QED Hamiltonian and H 2 is the positive transversal photon mass term, is unbounded from below if the electromagnetic coupling constant e 2 is small enough, e 2 0 2 , and the transversal photon squared mass parameter M 2 is not large: 0 2 2 (1 - e 2 /e 0 2 )l 2 , here, l is the cut-off parameter; and c and e 0 2 , positive constants which do not depend on any parameters. 7 refs
C{sub T} for non-unitary CFTs in higher dimensions
Energy Technology Data Exchange (ETDEWEB)
Osborn, Hugh [Department of Applied Mathematics and Theoretical Physics, Wilberforce Road,Cambridge CB3 0WA, England (United Kingdom); Stergiou, Andreas [Department of Physics, Yale University,New Haven, CT 06520 (United States)
2016-06-13
The coefficient C{sub T} of the conformal energy-momentum tensor two-point function is determined for the non-unitary scalar CFTs with four- and six-derivative kinetic terms. The results match those expected from large-N calculations for the CFTs arising from the O(N) non-linear sigma and Gross-Neveu models in specific even dimensions. C{sub T} is also calculated for the CFT arising from (n−1)-form gauge fields with derivatives in 2n+2 dimensions. Results for (n−1)-form theory extended to general dimensions as a non-gauge-invariant CFT are also obtained; the resulting C{sub T} differs from that for the gauge-invariant theory. The construction of conformal primaries by subtracting descendants of lower-dimension primaries is also discussed. For free theories this also leads to an alternative construction of the energy-momentum tensor, which can be quite involved for higher-derivative theories.
Compactifications of the Heterotic string with unitary bundles
Energy Technology Data Exchange (ETDEWEB)
Weigand, T.
2006-05-23
In this thesis we investigate a large new class of four-dimensional supersymmetric string vacua defined as compactifications of the E{sub 8} x E{sub 8} and the SO(32) heterotic string on smooth Calabi-Yau threefolds with unitary gauge bundles and heterotic five-branes. The first part of the thesis discusses the implementation of this idea into the E{sub 8} x E{sub 8} heterotic string. After specifying a large class of group theoretic embeddings featuring unitary bundles, we analyse the effective four-dimensional N=1 supergravity upon compactification. From the gauge invariant Kaehler potential for the moduli fields we derive a modification of the Fayet-Iliopoulos D-terms arising at one-loop in string perturbation theory. From this we conjecture a one-loop deformation of the Hermitian Yang-Mills equation and introduce the idea of {lambda}-stability as the perturbatively correct stability concept generalising the notion of Mumford stability valid at tree-level. We then proceed to a definition of SO(32) heterotic vacua with unitary gauge bundles in the presence of heterotic five-branes and find agreement of the resulting spectrum with the S-dual framework of Type I/Type IIB orientifolds. A similar analysis of the effective four-dimensional supergravity is performed. Further evidence for the proposed one-loop correction to the stability condition is found by identifying the heterotic corrections as the S-dual of the perturbative part of {pi}-stability as the correct stability concept in Type IIB theory. After reviewing the construction of holomorphic stable vector bundles on elliptically fibered Calabi-Yau manifolds via spectral covers, we provide semi-realistic examples for SO(32) heterotic vacua with Pati-Salam and MSSM-like gauge sectors. We finally discuss the construction of realistic vacua with flipped SU(5) GUT and MSSM gauge group within the E{sub 8} x E{sub 8} framework, based on the embedding of line bundles into both E{sub 8} factors. Some of the appealing
Quantum gravity in three dimensions, Witten spinors and the quantisation of length
Wieland, Wolfgang
2018-05-01
In this paper, I investigate the quantisation of length in euclidean quantum gravity in three dimensions. The starting point is the classical hamiltonian formalism in a cylinder of finite radius. At this finite boundary, a counter term is introduced that couples the gravitational field in the interior to a two-dimensional conformal field theory for an SU (2) boundary spinor, whose norm determines the conformal factor between the fiducial boundary metric and the physical metric in the bulk. The equations of motion for this boundary spinor are derived from the boundary action and turn out to be the two-dimensional analogue of the Witten equations appearing in Witten's proof of the positive mass theorem. The paper concludes with some comments on the resulting quantum theory. It is shown, in particular, that the length of a one-dimensional cross section of the boundary turns into a number operator on the Fock space of the theory. The spectrum of this operator is discrete and matches the results from loop quantum gravity in the spin network representation.
Phase-space spinor amplitudes for spin-1/2 systems
International Nuclear Information System (INIS)
Watson, P.; Bracken, A. J.
2011-01-01
The concept of phase-space amplitudes for systems with continuous degrees of freedom is generalized to finite-dimensional spin systems. Complex amplitudes are obtained on both a sphere and a finite lattice, in each case enabling a more fundamental description of pure spin states than that previously given by Wigner functions. In each case the Wigner function can be expressed as the star product of the amplitude and its conjugate, so providing a generalized Born interpretation of amplitudes that emphasizes their more fundamental status. The ordinary product of the amplitude and its conjugate produces a (generalized) spin Husimi function. The case of spin-(1/2) is treated in detail, and it is shown that phase-space amplitudes on the sphere transform correctly as spinors under rotations, despite their expression in terms of spherical harmonics. Spin amplitudes on a lattice are also found to transform as spinors. Applications are given to the phase space description of state superposition, and to the evolution in phase space of the state of a spin-(1/2) magnetic dipole in a time-dependent magnetic field.
DDF construction and D-brane boundary states in pure spinor formalism
International Nuclear Information System (INIS)
Mukhopadhyay, Partha
2006-01-01
Open string boundary conditions for non-BPS D-branes in type II string theories discussed in hep-th/0505157 give rise to two sectors with integer (R sector) and half-integer (NS sector) modes for the combined fermionic matter and bosonic ghost variables in pure spinor formalism. Exploiting the manifest supersymmetry of the formalism we explicitly construct the DDF (Del Giudice, Di Vecchia, Fubini) states in both the sectors which are in one-to-one correspondence with the states in light-cone Green-Schwarz formalism. We also give a proof of validity of this construction. A similar construction in the closed string sector enables us to define a physical Hilbert space in pure spinor formalism which is used to project the covariant boundary states of both the BPS and non-BPS instantonic D-branes. These projected boundary states take exactly the same form as those found in light-cone Green-Schwarz formalism and are suitable for computing the cylinder diagram with manifest open-closed duality
Approximate KMS states for scalar and spinor fields in Friedmann-Robertson-Walker spacetimes
Energy Technology Data Exchange (ETDEWEB)
Dappiaggi, Claudio; Hack, Thomas-Paul [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Pinamonti, Nicola [Roma ' ' Tor Vergata' ' Univ. (Italy). Dipt. di Matematica
2010-09-15
We construct and discuss Hadamard states for both scalar and Dirac spinor fields in a large class of spatially flat Friedmann-Robertson-Walker spacetimes characterised by an initial phase either of exponential or of power-law expansion. The states we obtain can be interpreted as being in thermal equilibrium at the time when the scale factor a has a specific value a = a{sub 0}. In the case a{sub 0} = 0, these states fulfil a strict KMS condition on the boundary of the spacetime, which is either a cosmological horizon, or a Big Bang hypersurface. Furthermore, in the conformally invariant case, they are conformal KMS states on the full spacetime. However, they provide a natural notion of an approximate KMS state also in the remaining cases, especially for massive fields. On the technical side, our results are based on a bulk-to-boundary reconstruction technique already successfully applied in the scalar case and here proven to be suitable also for spinor fields. The potential applications of the states we find range over a broad spectrum, but they appear to be suited to discuss in particular thermal phenomena such as the cosmic neutrino background or the quantum state of dark matter. (orig.)
Approximate KMS states for scalar and spinor fields in Friedmann-Robertson-Walker spacetimes
International Nuclear Information System (INIS)
Dappiaggi, Claudio; Hack, Thomas-Paul; Pinamonti, Nicola
2010-09-01
We construct and discuss Hadamard states for both scalar and Dirac spinor fields in a large class of spatially flat Friedmann-Robertson-Walker spacetimes characterised by an initial phase either of exponential or of power-law expansion. The states we obtain can be interpreted as being in thermal equilibrium at the time when the scale factor a has a specific value a = a 0 . In the case a 0 = 0, these states fulfil a strict KMS condition on the boundary of the spacetime, which is either a cosmological horizon, or a Big Bang hypersurface. Furthermore, in the conformally invariant case, they are conformal KMS states on the full spacetime. However, they provide a natural notion of an approximate KMS state also in the remaining cases, especially for massive fields. On the technical side, our results are based on a bulk-to-boundary reconstruction technique already successfully applied in the scalar case and here proven to be suitable also for spinor fields. The potential applications of the states we find range over a broad spectrum, but they appear to be suited to discuss in particular thermal phenomena such as the cosmic neutrino background or the quantum state of dark matter. (orig.)
Dirac bi-spinor entanglement under local noise and its simulation by Jaynes-Cummings interactions
Bittencourt, Victor A. S. V.; Bernardini, Alex E.
2017-08-01
A description of the effects of the local noise on the quantum entanglement constraining the internal degrees of freedom of Dirac bi-spinor structures driven by arbitrary Poincaré invariant potentials is proposed. Given that the Dirac equation dynamics including external potentials can be simulated by a suitable four level trapped ion setup, quantum entanglement of two-qubit ionic states with quantum numbers related to the total angular momentum and to its projection onto the direction of the external magnetic field (used for lift the ions degeneracy), are recovered by means of a suitable ansatz. This formalism allows the inclusion of noise effects, which leads to disentanglement in the four level trapped ion quantum system. Our results indicate the role of interactions in bi-spinor entanglement, as well as the description of disentanglement in ionic states under local noises. For a state prepared initially in one of the ionic levels, local noise induces entanglement sudden death followed by sudden revivals driven by the noiseless dynamics of the state. Residual quantum correlations are observed in the intervals where such state is separable. Schrödinger cat and Werner states partially loose their initial entanglement content due to the interaction with the noisy environment but presenting entanglement oscillations without sudden death. Because Dirac equation describes low energy excitations of mono layer and bi-layer graphene, the formalism can also be applied to compute, for instance, electron-hole or electron/electron entanglement in various circumstances.
The Schur algorithm for generalized Schur functions III : J-unitary matrix polynomials on the circle
Alpay, Daniel; Azizov, Tomas; Dijksma, Aad; Langer, Heinz
2003-01-01
The main result is that for J = ((1)(0) (0)(-1)) every J-unitary 2 x 2-matrix polynomial on the unit circle is an essentially unique product of elementary J-unitary 2 x 2-matrix polynomials which are either of degree 1 or 2k. This is shown by means of the generalized Schur transformation introduced
An Informal Overview of the Unitary Group Approach
International Nuclear Information System (INIS)
Sonnad, V.; Escher, J.; Kruse, M.; Baker, R.
2016-01-01
The Unitary Groups Approach (UGA) is an elegant and conceptually unified approach to quantum structure calculations. It has been widely used in molecular structure calculations, and holds the promise of a single computational approach to structure calculations in a variety of different fields. We explore the possibility of extending the UGA to computations in atomic and nuclear structure as a simpler alternative to traditional Racah algebra-based approaches. We provide a simple introduction to the basic UGA and consider some of the issues in using the UGA with spin-dependent, multi-body Hamiltonians requiring multi-shell bases adapted to additional symmetries. While the UGA is perfectly capable of dealing with such problems, it is seen that the complexity rises dramatically, and the UGA is not at this time, a simpler alternative to Racah algebra-based approaches.
Construction of unitary matrices from observable transition probabilities
International Nuclear Information System (INIS)
Peres, A.
1989-01-01
An ideal measuring apparatus defines an orthonormal basis vertical strokeu m ) in Hilbert space. Another apparatus defines another basis vertical strokeυ μ ). Both apparatuses together allow to measure the transition probabilities P mμ =vertical stroke(u m vertical strokeυ μ )vertical stroke 2 . The problem is: Given all the elements of a doubly stochastic matrix P mμ , find a unitary matrix U mμ such that P mμ =vertical strokeU mμ vertical stroke 2 . The number of unknown nontrivial phases is equal to the number of independent equations to satisfy. The problem can therefore be solved provided that the values of the P mμ satisfy some inequalities. (orig.)
The Science of Unitary Human Beings in a Creative Perspective.
Caratao-Mojica, Rhea
2015-10-01
In moving into a new kind of world, nurses are encouraged to look ahead and be innovative by transcending to new ways of using nursing knowledge while embracing a new worldview. "We need to recognize that we're going to have to use our imagination more and more" (Rogers, 1994). On that note, the author in this paper explicates Rogers' science of unitary human beings in a creative way relating it to painting. In addition, the author also explores works derived from Rogers' science such as Butcher's (1993) and Cowling's (1997), which are here discussed in light of an artwork. A painting is presented with the unpredictability, creativity, and the "dance of color and light" (Butcher, 1993) is appreciated through comprehending essence, pandimensionality, and wholeness. © The Author(s) 2015.
Qubit transport model for unitary black hole evaporation without firewalls*
Osuga, Kento; Page, Don N.
2018-03-01
We give an explicit toy qubit transport model for transferring information from the gravitational field of a black hole to the Hawking radiation by a continuous unitary transformation of the outgoing radiation and the black hole gravitational field. The model has no firewalls or other drama at the event horizon, and it avoids a counterargument that has been raised for subsystem transfer models as resolutions of the firewall paradox. Furthermore, it fits the set of six physical constraints that Giddings has proposed for models of black hole evaporation. It does utilize nonlocal qubits for the gravitational field but assumes that the radiation interacts locally with these nonlocal qubits, so in some sense the nonlocality is confined to the gravitational sector. Although the qubit model is too crude to be quantitatively correct for the detailed spectrum of Hawking radiation, it fits qualitatively with what is expected.
Mesoscopic Fluctuations for the Thinned Circular Unitary Ensemble
Berggren, Tomas; Duits, Maurice
2017-09-01
In this paper we study the asymptotic behavior of mesoscopic fluctuations for the thinned Circular Unitary Ensemble. The effect of thinning is that the eigenvalues start to decorrelate. The decorrelation is stronger on the larger scales than on the smaller scales. We investigate this behavior by studying mesoscopic linear statistics. There are two regimes depending on the scale parameter and the thinning parameter. In one regime we obtain a CLT of a classical type and in the other regime we retrieve the CLT for CUE. The two regimes are separated by a critical line. On the critical line the limiting fluctuations are no longer Gaussian, but described by infinitely divisible laws. We argue that this transition phenomenon is universal by showing that the same transition and their laws appear for fluctuations of the thinned sine process in a growing box. The proofs are based on a Riemann-Hilbert problem for integrable operators.
Unitary pole approximations and expansions in few-body systems
International Nuclear Information System (INIS)
Casel, A.; Haberzettl, H.; Sandhas, W.
1982-01-01
The unitary pole approximations or expansions of the two-body subsystem operators are well known, and particularly efficient and practical, methods to reduce the three-body problem to an effective two-body theory. In the present investigation we develop generalizations of these approximation techniques to the subsystem amplitudes of problems with higher particle numbers. They are based on the expansion of effective potentials which, in contrast to the genuine two-body interactions, are now energy dependent. Despite this feature our generalizations require only energy independent form factors, thus preserving one of the essential advantages of the genuine two-body approach. The application of these techniques to the four-body case is discussed in detail
Nonclassicality by Local Gaussian Unitary Operations for Gaussian States
Directory of Open Access Journals (Sweden)
Yangyang Wang
2018-04-01
Full Text Available A measure of nonclassicality N in terms of local Gaussian unitary operations for bipartite Gaussian states is introduced. N is a faithful quantum correlation measure for Gaussian states as product states have no such correlation and every non product Gaussian state contains it. For any bipartite Gaussian state ρ A B , we always have 0 ≤ N ( ρ A B < 1 , where the upper bound 1 is sharp. An explicit formula of N for ( 1 + 1 -mode Gaussian states and an estimate of N for ( n + m -mode Gaussian states are presented. A criterion of entanglement is established in terms of this correlation. The quantum correlation N is also compared with entanglement, Gaussian discord and Gaussian geometric discord.
Territory in the Constitutional Standards of Unitary States
Directory of Open Access Journals (Sweden)
Marina V. Markhgeym
2017-06-01
Full Text Available The article is based on the analysis of the constitutions of seven European countries (Albania, Hungary, Greece, Spain, Malta, Poland, Sweden. The research allows to reveal general and specific approaches to consolidation of norms on territories in a state and give the characteristic of the corresponding constitutional norms. Given the authors ' comprehensive approach to the definition of the territory of the state declared constitutional norms were assessed from the perspective of the fundamental principles and constituent elements of the territory. Considering the specifics of the constitutional types of state territories authors suggest typical and variative models and determine the constitutions of unitary states, distinguished by their originality in the declared group of legal relations. The original constitutional language areas associated with the introduction at the state level, these types of areas that are not typical for other countries.
Isometric and unitary phase operators: explaining the Villain transform
International Nuclear Information System (INIS)
Hemmen, J L van; Wreszinski, Walter F
2007-01-01
The Villain transform plays a key role in spin-wave theory, a bosonization of elementary excitations in a system of extensively many Heisenberg spins. Intuitively, it is a representation of the spin operators in terms of an angle and its canonically conjugate angular momentum operator and, as such, has a few nasty boundary-condition twists. We construct an isometric phase representation of spin operators that conveys a precise mathematical meaning to the Villain transform and is related to both classical mechanics and the Pegg-Barnett-Bialynicki-Birula boson (photon) phase operators by means of suitable limits. In contrast to the photon case, unitary extensions are inadequate because they describe the wrong physics. We also discuss in some detail the application to spin-wave theory, pointing out some examples in which the isometric representation is indispensable
Energy Technology Data Exchange (ETDEWEB)
Nishijima, K; Sasaki, R [Tokyo Univ. (Japan). Dept. of Physics
1975-06-01
On the basis of the dispersion formulation of field theories the Schwinger term in spinor electrodynamics is shown to be a c-number. The essence of the proof consists in the dimensional argument and the characteristic features of the linear unitarity condition for a set of Green's functions involving the Schwinger term.
Master symmetry in the AdS{sub 5}×S{sup 5} pure spinor string
Energy Technology Data Exchange (ETDEWEB)
Chandía, Osvaldo [Departamento de Ciencias, Facultad de Artes Liberales & Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,Diagonal Las Torres 2640, Peñalolén, Santiago (Chile); III, William Divine Linch [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University,College Station, TX 77843-4242 (United States); Vallilo, Brenno Carlini [Departamento de Ciencias Físicas, Universidad Andres Bello,Sazie 2212, Santiago (Chile)
2017-01-09
We lift the set of classical non-local symmetries recently studied by Klose, Loebbert, and Münkler in the context of ℤ{sub 2} cosets to the pure spinor description of the superstring in the AdS{sub 5}×S{sup 5} background.
Alpay, D.; Dijksma, A.; Langer, H.
2004-01-01
We prove that a 2 × 2 matrix polynomial which is J-unitary on the real line can be written as a product of normalized elementary J-unitary factors and a J-unitary constant. In the second part we give an algorithm for this factorization using an analog of the Schur transformation.
Route to non-Abelian quantum turbulence in spinor Bose-Einstein condensates
Mawson, Thomas; Ruben, Gary; Simula, Tapio
2015-06-01
We have studied computationally the collision dynamics of spin-2 Bose-Einstein condensates initially confined in a triple-well trap. Depending on the phase structure of the initial-state spinor wave function, the collision of the three condensate fragments produces one of many possible vortex-antivortex lattices, after which the system transitions to quantum turbulence. We find that the emerging vortex lattice structures can be described in terms of multiwave interference. We show that the three-fragment collisions can be used to systematically produce staggered vortex-antivortex honeycomb lattices of fractional-charge vortices, whose collision dynamics are known to be non-Abelian. Such condensate collider experiments could potentially be used as a controllable pathway to generating non-Abelian superfluid turbulence with networks of vortex rungs.
Exact spinor-scalar bound states in a quantum field theory with scalar interactions
International Nuclear Information System (INIS)
Shpytko, Volodymyr; Darewych, Jurij
2001-01-01
We study two-particle systems in a model quantum field theory in which scalar particles and spinor particles interact via a mediating scalar field. The Lagrangian of the model is reformulated by using covariant Green's functions to solve for the mediating field in terms of the particle fields. This results in a Hamiltonian in which the mediating-field propagator appears directly in the interaction term. It is shown that exact two-particle eigenstates of the Hamiltonian can be determined. The resulting relativistic fermion-boson equation is shown to have Dirac and Klein-Gordon one-particle limits. Analytical solutions for the bound state energy spectrum are obtained for the case of massless mediating fields
Photon transitions between baryons in a new hadron scheme. [Composite model, Dirac spinor
Energy Technology Data Exchange (ETDEWEB)
Sugimoto, H [Kanazawa Inst. of Tech. (Japan); Toya, M
1976-05-01
Photon transitions from the ground state baryon to the nonstrange excited one with L=0, 1 and 2 are investigated. The discussion is based on a new scheme of hadron composite model which takes account of the lower component of the Dirac spinor of constituent particles even in a hadron rest system. There appear generally four independent model amplitudes. Each process ..gamma..+p..-->..B/sub 8/* is described in terms of an individual model amplitude. This helps us to explain the characteristic features of experiment and solve the troubles found in the nonrelativistic scheme. Both magnitudes and signs of predicted amplitudes are shown to be in good agreement with experimental data. From this comparison the specific features of the model amplitudes are found. Discussion is made for higher excited baryons.
Zhou, Xiang-Fa; Wu, Congjun; Guo, Guang-Can; Wang, Ruquan; Pu, Han; Zhou, Zheng-Wei
2018-03-30
We present a flexible scheme to realize exact flat Landau levels on curved spherical geometry in a system of spinful cold atoms. This is achieved by applying the Floquet engineering of a magnetic quadrupole field to create a synthetic monopole field in real space. The system can be exactly mapped to the electron-monopole system on a sphere, thus realizing Haldane's spherical geometry for fractional quantum Hall physics. This method works for either bosons or fermions. We investigate the ground-state vortex pattern for an s-wave interacting atomic condensate by mapping this system to the classical Thompson's problem. The distortion and stability of the vortex pattern are further studied in the presence of dipolar interaction. Our scheme is compatible with the current experimental setup, and may serve as a promising route of investigating quantum Hall physics and exotic spinor vortex matter on curved space.
Koithan, Mary S; Kreitzer, Mary Jo; Watson, Jean
2017-07-01
The principles of integrative nursing and caring science align with the unitary paradigm in a way that can inform and shape nursing knowledge, patient care delivery across populations and settings, and new healthcare policy. The proposed policies may transform the healthcare system in a way that supports nursing praxis and honors the discipline's unitary paradigm. This call to action provides a distinct and hopeful vision of a healthcare system that is accessible, equitable, safe, patient-centered, and affordable. In these challenging times, it is the unitary paradigm and nursing wisdom that offer a clear path forward.
Symmetric mixed states of n qubits: Local unitary stabilizers and entanglement classes
Energy Technology Data Exchange (ETDEWEB)
Lyons, David W.; Walck, Scott N. [Lebanon Valley College, Annville, Pennsylvania 17003 (United States)
2011-10-15
We classify, up to local unitary equivalence, local unitary stabilizer Lie algebras for symmetric mixed states of n qubits into six classes. These include the stabilizer types of the Werner states, the Greenberger-Horne-Zeilinger state and its generalizations, and Dicke states. For all but the zero algebra, we classify entanglement types (local unitary equivalence classes) of symmetric mixed states that have those stabilizers. We make use of the identification of symmetric density matrices with polynomials in three variables with real coefficients and apply the representation theory of SO(3) on this space of polynomials.
Spinor matter fields in SL(2,C) gauge theories of gravity: Lagrangian and Hamiltonian approaches
Antonowicz, Marek; Szczyrba, Wiktor
1985-06-01
We consider the SL(2,C)-covariant Lagrangian formulation of gravitational theories with the presence of spinor matter fields. The invariance properties of such theories give rise to the conservation laws (the contracted Bianchi identities) having in the presence of matter fields a more complicated form than those known in the literature previously. A general SL(2,C) gauge theory of gravity is cast into an SL(2,C)-covariant Hamiltonian formulation. Breaking the SL(2,C) symmetry of the system to the SU(2) symmetry, by introducing a spacelike slicing of spacetime, we get an SU(2)-covariant Hamiltonian picture. The qualitative analysis of SL(2,C) gauge theories of gravity in the SU(2)-covariant formulation enables us to define the dynamical symplectic variables and the gauge variables of the theory under consideration as well as to divide the set of field equations into the dynamical equations and the constraints. In the SU(2)-covariant Hamiltonian formulation the primary constraints, which are generic for first-order matter Lagrangians (Dirac, Weyl, Fierz-Pauli), can be reduced. The effective matter symplectic variables are given by SU(2)-spinor-valued half-forms on three-dimensional slices of spacetime. The coupled Einstein-Cartan-Dirac (Weyl, Fierz-Pauli) system is analyzed from the (3+1) point of view. This analysis is complete; the field equations of the Einstein-Cartan-Dirac theory split into 18 gravitational dynamical equations, 8 dynamical Dirac equations, and 7 first-class constraints. The system has 4+8=12 independent degrees of freedom in the phase space.
Spinor matter fields in SL(2,C) gauge theories of gravity: Lagrangian and Hamiltonian approaches
International Nuclear Information System (INIS)
Antonowicz, M.; Szczyrba, W.
1985-01-01
We consider the SL(2,C)-covariant Lagrangian formulation of gravitational theories with the presence of spinor matter fields. The invariance properties of such theories give rise to the conservation laws (the contracted Bianchi identities) having in the presence of matter fields a more complicated form than those known in the literature previously. A general SL(2,C) gauge theory of gravity is cast into an SL(2,C)-covariant Hamiltonian formulation. Breaking the SL(2,C) symmetry of the system to the SU(2) symmetry, by introducing a spacelike slicing of spacetime, we get an SU(2)-covariant Hamiltonian picture. The qualitative analysis of SL(2,C) gauge theories of gravity in the SU(2)-covariant formulation enables us to define the dynamical symplectic variables and the gauge variables of the theory under consideration as well as to divide the set of field equations into the dynamical equations and the constraints. In the SU(2)-covariant Hamiltonian formulation the primary constraints, which are generic for first-order matter Lagrangians (Dirac, Weyl, Fierz-Pauli), can be reduced. The effective matter symplectic variables are given by SU(2)-spinor-valued half-forms on three-dimensional slices of spacetime. The coupled Einstein-Cartan-Dirac (Weyl, Fierz-Pauli) system is analyzed from the (3+1) point of view. This analysis is complete; the field equations of the Einstein-Cartan-Dirac theory split into 18 gravitational dynamical equations, 8 dynamical Dirac equations, and 7 first-class constraints. The system has 4+8 = 12 independent degrees of freedom in the phase space
A unitary model of the black hole evaporation
Feng, Yu-Lei; Chen, Yi-Xin
2014-12-01
A unitary effective field model of the black hole evaporation is proposed to satisfy almost the four postulates of the black hole complementarity (BHC). In this model, we enlarge a black hole-scalar field system by adding an extra radiation detector that couples with the scalar field. After performing a partial trace over the scalar field space, we obtain an effective entanglement between the black hole and the detector (or radiation in it). As the whole system evolves, the S-matrix formula can be constructed formally step by step. Without local quantum measurements, the paradoxes of the information loss and AMPS's firewall can be resolved. However, the information can be lost due to quantum decoherence, as long as some local measurement has been performed on the detector to acquire the information of the radiation in it. But unlike Hawking's completely thermal spectrum, some residual correlations can be found in the radiations. All these considerations can be simplified in a qubit model that provides a modified quantum teleportation to transfer the information via an EPR pairs.
The unitary conformal field theory behind 2D Asymptotic Safety
Energy Technology Data Exchange (ETDEWEB)
Nink, Andreas; Reuter, Martin [Institute of Physics, PRISMA & MITP, Johannes Gutenberg University Mainz,Staudingerweg 7, D-55099 Mainz (Germany)
2016-02-25
Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in d>2 dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge c=25. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety program. In particular, we discuss its field parametrization dependence and argue that there might exist more than one universality class of metric gravity theories in two dimensions. Furthermore, studying the gravitational dressing in 2D asymptotically safe gravity coupled to conformal matter we uncover a mechanism which leads to a complete quenching of the a priori expected Knizhnik-Polyakov-Zamolodchikov (KPZ) scaling. A possible connection of this prediction to Monte Carlo results obtained in the discrete approach to 2D quantum gravity based upon causal dynamical triangulations is mentioned. Similarities of the fixed point theory to, and differences from, non-critical string theory are also described. On the technical side, we provide a detailed analysis of an intriguing connection between the Einstein-Hilbert action in d>2 dimensions and Polyakov’s induced gravity action in two dimensions.
The unitary-group formulation of quantum chemistry
International Nuclear Information System (INIS)
Campbell, L.L.
1990-01-01
The major part of this dissertation establishes group theoretical techniques that are applicable to the quantum-mechanical many-body atomic and molecular problems. Several matrix element evaluation methods for many-body states are developed. The generator commutation method using generator states is presented for the first time as a complete algorithm, and a computer implementation of the method is developed. A major result of this work is the development of a new method of calculation called the freeon tensor product (FTP) method. This method is much simpler and for many purposes superior to the GUGA procedure (graphical unitary group approach), widely used in configuration interaction calculations. This dissertation is also concerned with the prediction of atomic spectra. In principle spectra can be computed by the methods of ab initio quantum chemistry. In practice these computations are difficult, expensive, time consuming, and not uniformly successful. In this dissertation, the author employs a semi-empirical group theoretical analysis of discrete spectra is the exact analog of the Fourier analysis of continuous functions. In particular, he focuses on the spectra of atoms with incomplete p, d, and f shells. The formulas and techniques are derived in a fashion that apply equally well for more complex systems, as well as the isofreeon model of spherical nuclei
Conditional mutual information of bipartite unitaries and scrambling
Energy Technology Data Exchange (ETDEWEB)
Ding, Dawei; Hayden, Patrick; Walter, Michael [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,382 Via Pueblo, Stanford, CA 94305 (United States)
2016-12-28
One way to diagnose chaos in bipartite unitary channels is via the tripartite information of the corresponding Choi state, which for certain choices of the subsystems reduces to the negative conditional mutual information (CMI). We study this quantity from a quantum information-theoretic perspective to clarify its role in diagnosing scrambling. When the CMI is zero, we find that the channel has a special normal form consisting of local channels between individual inputs and outputs. However, we find that arbitrarily low CMI does not imply arbitrary proximity to a channel of this form, although it does imply a type of approximate recoverability of one of the inputs. When the CMI is maximal, we find that the residual channel from an individual input to an individual output is completely depolarizing when the other input is maximally mixed. However, we again find that this result is not robust. We also extend some of these results to the multipartite case and to the case of Haar-random pure input states. Finally, we look at the relationship between tripartite information and its Rényi-2 version which is directly related to out-of-time-order correlation functions. In particular, we demonstrate an arbitrarily large gap between the two quantities.
Correlation functions in unitary minimal Liouville gravity and Frobenius manifolds
Energy Technology Data Exchange (ETDEWEB)
Belavin, V. [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky prospect 53, 119991 Moscow (Russian Federation); Department of Quantum Physics, Institute for Information Transmission Problems,Bolshoy Karetny per. 19, 127994 Moscow (Russian Federation); Department of Theoretical Physics, National Research Nuclear University MEPhI,Kashirskoe shosse 31, 115409 Moscow (Russian Federation)
2015-02-10
We continue to study minimal Liouville gravity (MLG) using a dual approach based on the idea that the MLG partition function is related to the tau function of the A{sub q} integrable hierarchy via the resonance transformations, which are in turn fixed by conformal selection rules. One of the main problems in this approach is to choose the solution of the Douglas string equation that is relevant for MLG. The appropriate solution was recently found using connection with the Frobenius manifolds. We use this solution to investigate three- and four-point correlators in the unitary MLG models. We find an agreement with the results of the original approach in the region of the parameters where both methods are applicable. In addition, we find that only part of the selection rules can be satisfied using the resonance transformations. The physical meaning of the nonzero correlators, which before coupling to Liouville gravity are forbidden by the selection rules, and also the modification of the dual formulation that takes this effect into account remains to be found.
Energy Technology Data Exchange (ETDEWEB)
Akibue, Seiseki [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo (Japan); Murao, Mio [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan and NanoQuine, The University of Tokyo, Tokyo (Japan)
2014-12-04
We investigate distributed implementation of two-qubit unitary operations over two primitive networks, the butterfly network and the ladder network, as a first step to apply network coding for quantum computation. By classifying two-qubit unitary operations in terms of the Kraus-Cirac number, the number of non-zero parameters describing the global part of two-qubit unitary operations, we analyze which class of two-qubit unitary operations is implementable over these networks with free classical communication. For the butterfly network, we show that two classes of two-qubit unitary operations, which contain all Clifford, controlled-unitary and matchgate operations, are implementable over the network. For the ladder network, we show that two-qubit unitary operations are implementable over the network if and only if their Kraus-Cirac number do not exceed the number of the bridges of the ladder.
International Nuclear Information System (INIS)
Akibue, Seiseki; Murao, Mio
2014-01-01
We investigate distributed implementation of two-qubit unitary operations over two primitive networks, the butterfly network and the ladder network, as a first step to apply network coding for quantum computation. By classifying two-qubit unitary operations in terms of the Kraus-Cirac number, the number of non-zero parameters describing the global part of two-qubit unitary operations, we analyze which class of two-qubit unitary operations is implementable over these networks with free classical communication. For the butterfly network, we show that two classes of two-qubit unitary operations, which contain all Clifford, controlled-unitary and matchgate operations, are implementable over the network. For the ladder network, we show that two-qubit unitary operations are implementable over the network if and only if their Kraus-Cirac number do not exceed the number of the bridges of the ladder
Positive-definite functions and unitary representations of locally compact groups in a Hilbert space
International Nuclear Information System (INIS)
Gali, I.M.; Okb el-Bab, A.S.; Hassan, H.M.
1977-08-01
It is proved that the necessary and sufficient condition for the existence of an integral representation of a group of unitary operators in a Hilbert space is that it is positive-definite and continuous in some topology
A remark on the unitary group of a tensor product of n finite ...
Indian Academy of Sciences (India)
By using the method of quantum circuits in the theory of quantum computing as outlined in Nielsen and Chuang [2] and using a key lemma of Jaikumar [1] we show that every unitary operator on the tensor product H = H 1 ⊗ H 2 ⊗ … ⊗ H n can be expressed as a composition of a finite number of unitary operators living on ...
All unitary ray representations of the conformal group SU(2,2) with positive energy
International Nuclear Information System (INIS)
Mack, G.
1975-12-01
We find all those unitary irreducible representations of the infinitely - sheeted covering group G tilde of the conformal group SU(2,2)/Z 4 which have positive energy P 0 >= O. They are all finite component field representations and are labelled by dimension d and a finite dimensional irreducible representation (j 1 , j 2 ) of the Lorentz group SL(2C). They all decompose into a finite number of unitary irreducible representations of the Poincare subgroup with dilations. (orig.) [de
On Parametrization of the Linear GL(4,C) and Unitary SU(4) Groups in Terms of Dirac Matrices
Red'Kov, Victor M.; Bogush, Andrei A.; Tokarevskaya, Natalia G.
2008-02-01
Parametrization of 4 × 4-matrices G of the complex linear group GL(4,C) in terms of four complex 4-vector parameters (k,m,n,l) is investigated. Additional restrictions separating some subgroups of GL(4,C) are given explicitly. In the given parametrization, the problem of inverting any 4 × 4 matrix G is solved. Expression for determinant of any matrix G is found: det G = F(k,m,n,l). Unitarity conditions G+ = G-1 have been formulated in the form of non-linear cubic algebraic equations including complex conjugation. Several simplest solutions of these unitarity equations have been found: three 2-parametric subgroups G1, G2, G3 - each of subgroups consists of two commuting Abelian unitary groups; 4-parametric unitary subgroup consis! ting of a product of a 3-parametric group isomorphic SU(2) and 1-parametric Abelian group. The Dirac basis of generators Λk, being of Gell-Mann type, substantially differs from the basis λi used in the literature on SU(4) group, formulas relating them are found - they permit to separate SU(3) subgroup in SU(4). Special way to list 15 Dirac generators of GL(4,C) can be used {Λk} = {μiÅνjÅ(μiVνj = KÅL ÅM )}, which permit to factorize SU(4) transformations according to S = eiaμ eibνeikKeilLeimM, where two first factors commute with each other and are isomorphic to SU(2) group, the three last ones are 3-parametric groups, each of them consisting of three Abelian commuting unitary subgroups. Besides, the structure of fifteen Dirac matrices Λk permits to separate twenty 3-parametric subgroups in SU(4) isomorphic to SU(2); those subgroups might be used as bigger elementary blocks in constructing of a general transformation SU(4). It is shown how one can specify the present approach for the pseudounitary group SU(2,2) and SU(3,1).
International Nuclear Information System (INIS)
Gunaydin, Murat; Pavlyk, Oleksandr
2005-01-01
We study the minimal unitary representations of noncompact exceptional groups that arise as U-duality groups in extended supergravity theories. First we give the unitary realizations of the exceptional group E 8(-24) in SU*(8) as well as SU(6,2) covariant bases. E 8(-24) has E 7 x SU(2) as its maximal compact subgroup and is the U-duality group of the exceptional supergravity theory in d=3. For the corresponding U-duality group E 8(8) of the maximal supergravity theory the minimal realization was given. The minimal unitary realizations of all the lower rank noncompact exceptional groups can be obtained by truncation of those of E 8(-24) and E 8(8) . By further truncation one can obtain the minimal unitary realizations of all the groups of the 'Magic Triangle'. We give explicitly the minimal unitary realizations of the exceptional subgroups of E 8(-24) as well as other physically interesting subgroups. These minimal unitary realizations correspond, in general, to the quantization of their geometric actions as quasi-conformal groups. (author)
Unitary three-body calculation of nucleon-nucleon scattering
International Nuclear Information System (INIS)
Tanabe, H.; Ohta, K.
1986-07-01
We calculate nucleon-nucleon elastic scattering phase parameters based on a unitary, relativistic, pion-exchange model. The results are highly dependent on the off-shell amplitudes of πN scattering. The isobar-dominated model for the P 33 interaction leads to too small pion production rates owing to its strong suppression of off-shell pions. We propose to expand the idea of the Δ-isobar model in such a manner as to incorporate a background (non-pole) interaction. The two-potential model, which was first applied to the P 11 partial wave by Mizutani and Koltun, is applied also to the P 33 wave. Our phenomenological model for πN interaction in the P 33 partial wave differs from the conventional model only in its off-shell extrapolation, and has two different variants for the πN → Δ vertex. The three-body approach of Kloet and Silbar is extended such that the background interactions can be included straightfowardly. We make detailed comparisons of the new model with the conventional one and find that our model adequately reproduces the 1 D 2 phase parameters as well as those of peripheral partial waves. We also find that the longitudinal total cross section difference Δσ L (pp → NNπ) comes closer to the data compared to Kloet and Silbar. We discuss about the backward pion propagation in the three-body calculation, and the Pauli-principle violating states for the background P 11 interaction. (author)
Sun, Wen-Rong; Wang, Lei
2018-01-01
To show the existence and properties of matter rogue waves in an F =1 spinor Bose-Einstein condensate (BEC), we work on the three-component Gross-Pitaevskii (GP) equations. Via the Darboux-dressing transformation, we obtain a family of rational solutions describing the extreme events, i.e. rogue waves. This family of solutions includes bright-dark-bright and bright-bright-bright rogue waves. The algebraic construction depends on Lax matrices and their Jordan form. The conditions for the existence of rogue wave solutions in an F =1 spinor BEC are discussed. For the three-component GP equations, if there is modulation instability, it is of baseband type only, confirming our analytic conditions. The energy transfers between the waves are discussed.
On semiclassical analysis of pure spinor superstring in an AdS{sub 5} x S{sup 5} background
Energy Technology Data Exchange (ETDEWEB)
Aisaka, Yuri [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Sao Paulo State Univ. (Brazil). Inst. de Fisica Teorica; Ibiapina Bevilaqua, L. [Univ. Federal do Rio Grande do Norte, Natal (Brazil). Esola de Ciencias e Tecnologia; Vallilo, Brenno C. [Santiago Univ. (Chile). Dept. de Ciencias Fisicas
2012-06-15
Relation between semiclassical analyses of Green-Schwarz and pure spinor formalisms in an AdS{sub 5} x S{sup 5} background is clarified. It is shown that the two formalisms have identical semiclassical partition functions for a simple family of classical solutions. It is also shown that, when the classical string is furthermore rigid, this in turn implies that the two formalisms predict the same one-loop corrections to spacetime energies.
Analytical and unitary approach in mesons electromagnetic form factor applications
International Nuclear Information System (INIS)
Liptaj, A.
2010-07-01
In the dissertation thesis we address several topics related to the domain of particle physics. All of them represent interesting open problems that can be connected to the elastic or transition electromagnetic form factors of mesons, the form factors being the main objects of our interest. Our ambition is to contribute to the solution of these problems and use for that purpose known analytic properties of the form factors and the unitarity condition. These two tools are very powerful in the low energy domain (such as bound states of partons), where the perturbative QCD looses its validity. This is the motivation for construction of the unitary and analytic (U and A) models of studied form factors, that enable us to get the majority of our results. We use the U and A model to evaluate the contribution of the processes e"+e"- → Pγ, P = π"0, η, η to the muon magnetic anomaly a_μ in the lowest order of the hadronic vacuum polarization. For the contribution a_μ"h"a"d","L"O (π"+π"-) we demonstrate, that the use of the model leads to a dramatic error reduction with respect to the results of other authors. We also get a shift in the central value in the 'correct' direction, that brings the theoretical value closer to the experimental one. This results encourages us to use the model also for the evaluation of a_μ"h"a"d","L"O (P_γ). These contributions are smaller, however the precision of the experiment makes their evaluation necessary. We further use the U and A model of the transition form factors of π"0, η and η"' mesons to predict the partial decay widths of these particles Γ_π_"0_→_γ_γ and Γ_η_→_γ_γ and Γ_η_"'_→_γ_γ. In this way we make an independent cross check of the PDG table values. We find an agreement in the case of Γ_η_→_γ_γ and Γ_η_"'_→_γ_γ, even a smaller uncertainty for Γ_η_"'_→_γ_γ. In the case of Γ_π_"0_→_γ_γ we find a disagreement that points to an interesting problem. We wonder whether it could be
Superradiant MeV γ Scattered by a Room-Temperature Spinor Quantum Fluid
Directory of Open Access Journals (Sweden)
Yao Cheng
2017-07-01
Full Text Available Recent reports have revealed the rich long-lived Mossbauer phenomenon of 93mNb, in which it has long been speculated that the delocalized 93mNb undergoes Bose-Einstein condensation following an increase in the 93mNb density beyond the threshold of 1012 cm−3 at room temperature. We now report on the superradiant Rayleigh of the M4 γ at 662 keV scattered into end-fire modes along the long axis of the sample, as evidence of Bose-Einstein condensation. We observed the Arago (Poisson’s spot in order to demonstrate a near-field γ-ray diffraction from a mm-sized γ source, as well as a γ interference beyond the Huygens-Fresnel principle. During the 107-day monitoring period, seven Sisyphus cycles of mode hopping appeared in the superradiance, which demonstrates the optomechanic bistabilty provided by the collective interaction between the spinor quantum fluid and the impinging γs. Condensate-light interaction produces a pm matter-wave grating to become a Fabry-Pérot resonator with a Q-factor on the order of 1020, from which end-fired γs lase.
Wasak, Tomasz; Chwedeńczuk, Jan
2018-04-01
We propose an experiment, where the Bell inequality is violated in a many-body system of massive particles. The source of correlated atoms is a spinor F =1 Bose-Einstein condensate residing in an optical lattice. We characterize the complete procedure—the local operations, the measurements, and the inequality—necessary to run the Bell test. We show how the degree of violation of the Bell inequality depends on the strengths of the two-body correlations and on the number of scattered pairs. We show that the system can be used to demonstrate the Einstein-Podolsky-Rosen paradox. Also, the scattered pairs are an excellent many-body resource for the quantum-enhanced metrology. Our results apply to any multimode system where the spin-changing collision drives the scattering into separate regions. The presented inquiry shows that such a system is versatile as it can be used for the tests of nonlocality, quantum metrology, and quantum information.
Quantum fluctuations and gapped Goldstone modes in spinor Bose-Einstein condensates
Beekman, Aron
2015-03-01
The classical Heisenberg ferromagnet is an exact eigenstate of the quantum Hamiltonian and therefore has no quantum fluctuations. Furthermore it has a reduced number of Goldstone modes, an order parameter that is itself a symmetry generator, is a highest-weight state for the spin algebra, and has no tower of states of vanishing energy. We derive the connection between all these properties and provide general criteria for their presence in other spontaneously-broken symmetry states. The phletora of groundstates in spinor Bose-Einstein condensates is an ideal testing ground for these predictions. In particular the phases with non-maximal polarization (e.g. the F-phase in spin-3 condensates) have an additional gapped mode that is a partner to the quadratically dispersing Goldstone mode, as compared to the maximally polarized, ferromagnetic phase. Furthermore there is a fundamental limit to the coherence time of superpositions in the non-maximally polarized state, which should manifest itself for small-size systems.
Magneto-optical quantum interferences in a system of spinor excitons
Kuan, Wen-Hsuan; Gudmundsson, Vidar
2018-04-01
In this work we investigate magneto-optical properties of two-dimensional semiconductor quantum-ring excitons with Rashba and Dresselhaus spin-orbit interactions threaded by a magnetic flux perpendicular to the plane of the ring. By calculating the excitonic Aharonov-Bohm spectrum, we study the Coulomb and spin-orbit effects on the Aharonov-Bohm features. From the light-matter interactions of the excitons, we find that for scalar excitons, there are open channels for spontaneous recombination resulting in a bright photoluminescence spectrum, whereas the forbidden recombination of dipolar excitons results in a dark photoluminescence spectrum. We investigate the generation of persistent charge and spin currents. The exploration of spin orientations manifests that by adjusting the strength of the spin-orbit interactions, the exciton can be constructed as a squeezed complex with specific spin polarization. Moreover, a coherently moving dipolar exciton acquires a nontrivial dual Aharonov-Casher phase, creating the possibility to generate persistent dipole currents and spin dipole currents. Our study reveals that in the presence of certain spin-orbit generated fields, the manipulation of the magnetic field provides a potential application for quantum-ring spinor excitons to be utilized in nano-scaled magneto-optical switches.
Dirac spinors for doubly special relativity and κ-Minkowski noncommutative spacetime
International Nuclear Information System (INIS)
Agostini, Alessandra; Amelino-Camelia, Giovanni; Arzano, Michele
2004-01-01
We construct a Dirac equation that is consistent with one of the recently-proposed schemes for a 'doubly special relativity', a relativity with both an observer-independent velocity scale (still naturally identified with the speed-of-light constant) and an observer-independent length/momentum scale (possibly given by the Planck length/momentum). We find that the introduction of the second observer-independent scale only induces a mild deformation of the structure of Dirac spinors. We also show that our modified Dirac equation naturally arises in constructing a Dirac equation in the κ-Minkowski noncommutative spacetime. Previous, more heuristic studies had already argued for a possible role of doubly special relativity in κ-Minkowski, but remained vague on the nature of the consistency requirements that should be implemented in order to assure the observer-independence of the two scales. We find that a key role is played by the choice of a differential calculus in κ-Minkowski. A much-studied choice of the differential calculus does lead to our doubly special relativity Dirac equation, but a different scenario is encountered for another popular choice of differential calculus
Spinor Casimir densities for a spherical shell in the global monopole spacetime
International Nuclear Information System (INIS)
Saharian, A A; Mello, E R Bezerra de
2004-01-01
We investigate the vacuum expectation values of the energy-momentum tensor and the fermionic condensate associated with a massive spinor field obeying the MIT bag boundary condition on a spherical shell in the global monopole spacetime. In order to do that, we use the generalized Abel-Plana summation formula. As we shall see, this procedure allows us to extract from the vacuum expectation values the contribution coming from the unbounded spacetime and to explicitly present the boundary induced parts. As regards the boundary induced contribution, two distinct situations are examined: the vacuum average effects inside and outside the spherical shell. The asymptotic behaviour of the vacuum densities is investigated near the sphere centre and near the surface, and at large distances from the sphere. In the limit of strong gravitational field corresponding to small values of the parameter describing the solid angle deficit in the global monopole geometry, the sphere induced expectation values are exponentially suppressed. We discuss, as a special case, the fermionic vacuum densities for the spherical shell on the background of the Minkowski spacetime. Previous approaches to this problem within the framework of the QCD bag models have been global and our calculation is a local extension of these contributions
Multi-second magnetic coherence in a single domain spinor Bose–Einstein condensate
Palacios, Silvana; Coop, Simon; Gomez, Pau; Vanderbruggen, Thomas; Natali Martinez de Escobar, Y.; Jasperse, Martijn; Mitchell, Morgan W.
2018-05-01
We describe a compact, robust and versatile system for studying the macroscopic spin dynamics in a spinor Bose–Einstein condensate. Condensates of {}87{Rb} are produced by all-optical evaporation in a 1560 nm optical dipole trap, using a non-standard loading sequence that employs an ancillary 1529 nm beam for partial compensation of the strong differential light-shift induced by the dipole trap itself. We use near-resonant Faraday rotation probing to non-destructively track the condensate magnetization, and demonstrate few-Larmor-cycle tracking with no detectable degradation of the spin polarization. In the ferromagnetic F = 1 ground state, we observe the spin orientation between atoms in the condensate is preserved, such that they precess all together like one large spin in the presence of a magnetic field. We characterize this dynamics in terms of the single-shot magnetic coherence times {{ \\mathcal T }}1 and {{ \\mathcal T }}2* , and observe them to be of several seconds, limited only by the residence time of the atoms in the trap. At the densities used, this residence is restricted only by one-body losses set by the vacuum conditions.
Wasak, Tomasz; Chwedeńczuk, Jan
2018-04-06
We propose an experiment, where the Bell inequality is violated in a many-body system of massive particles. The source of correlated atoms is a spinor F=1 Bose-Einstein condensate residing in an optical lattice. We characterize the complete procedure-the local operations, the measurements, and the inequality-necessary to run the Bell test. We show how the degree of violation of the Bell inequality depends on the strengths of the two-body correlations and on the number of scattered pairs. We show that the system can be used to demonstrate the Einstein-Podolsky-Rosen paradox. Also, the scattered pairs are an excellent many-body resource for the quantum-enhanced metrology. Our results apply to any multimode system where the spin-changing collision drives the scattering into separate regions. The presented inquiry shows that such a system is versatile as it can be used for the tests of nonlocality, quantum metrology, and quantum information.
Probing non-unitary CP violation effects in neutrino oscillation experiments
Verma, Surender; Bhardwaj, Shankita
2018-05-01
In the present work, we have considered minimal unitarity violation scheme to obtain the general expression for ν _{μ }→ ν _{τ } oscillation probability in vacuum and matter. For this channel, we have investigated the sensitivities of short baseline experiments to non-unitary parameters |ρ _{μ τ }| and ω _{μ τ } for normal as well as inverted hierarchical neutrino masses and θ _{23} being above or below maximality. We find that for normal hierarchy, the 3σ sensitivity of |ρ _{μ τ }| is maximum for non-unitary phase ω _{μ τ }=0 whereas it is minimum for ω _{μ τ }=± π . For inverted hierarchy, the sensitivity is minimum at ω _{μ τ }=0 and maximum for ω _{μ τ }=± π . We observe that the sensitivity to measure non-unitarity remains unaffected for unitary CP phase δ =0 or δ =π /2 . We have, also, explored wide spectrum of L/E ratio to investigate the possibilities to observe CP-violation due to unitary (δ ) and non-unitary (ω _{μ τ } ) phases. We find that the both phases can be disentangled, in principle, from each other for L/E<200 km/GeV.
International Nuclear Information System (INIS)
Boyd, R.W.
1992-01-01
Nonlinear optics is the study of the interaction of intense laser light with matter. This book is a textbook on nonlinear optics at the level of a beginning graduate student. The intent of the book is to provide an introduction to the field of nonlinear optics that stresses fundamental concepts and that enables the student to go on to perform independent research in this field. This book covers the areas of nonlinear optics, quantum optics, quantum electronics, laser physics, electrooptics, and modern optics
Treating experimental data of inverse kinetic method by unitary linear regression analysis
International Nuclear Information System (INIS)
Zhao Yusen; Chen Xiaoliang
2009-01-01
The theory of treating experimental data of inverse kinetic method by unitary linear regression analysis was described. Not only the reactivity, but also the effective neutron source intensity could be calculated by this method. Computer code was compiled base on the inverse kinetic method and unitary linear regression analysis. The data of zero power facility BFS-1 in Russia were processed and the results were compared. The results show that the reactivity and the effective neutron source intensity can be obtained correctly by treating experimental data of inverse kinetic method using unitary linear regression analysis and the precision of reactivity measurement is improved. The central element efficiency can be calculated by using the reactivity. The result also shows that the effect to reactivity measurement caused by external neutron source should be considered when the reactor power is low and the intensity of external neutron source is strong. (authors)
Unitary relation for the time-dependent SU(1,1) systems
International Nuclear Information System (INIS)
Song, Dae-Yup
2003-01-01
The system whose Hamiltonian is a linear combination of the generators of SU(1,1) group with time-dependent coefficients is studied. It is shown that there is a unitary relation between the system and a system whose Hamiltonian is simply proportional to the generator of the compact subgroup of SU(1,1). The unitary relation is described by the classical solutions of a time-dependent (harmonic) oscillator. Making use of the relation, the wave functions satisfying the Schroedinger equation are given, for a general unitary representation, in terms of the matrix elements of a finite group transformation (Bargmann function). The wave functions of the harmonic oscillator with an inverse-square potential is studied in detail, and it is shown that through an integral, the model provides a way of deriving the Bargmann function for the representation of positive discrete series of SU(1,1)
Bloembergen, Nicolaas
1996-01-01
Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe
Forward-backward equations for nonlinear propagation in axially invariant optical systems
International Nuclear Information System (INIS)
Ferrando, Albert; Zacares, Mario; Fernandez de Cordoba, Pedro; Binosi, Daniele; Montero, Alvaro
2005-01-01
We present a general framework to deal with forward and backward components of the electromagnetic field in axially invariant nonlinear optical systems, which include those having any type of linear or nonlinear transverse inhomogeneities. With a minimum amount of approximations, we obtain a system of two first-order equations for forward and backward components, explicitly showing the nonlinear couplings among them. The modal approach used allows for an effective reduction of the dimensionality of the original problem from 3+1 (three spatial dimensions plus one time dimension) to 1+1 (one spatial dimension plus one frequency dimension). The new equations can be written in a spinor Dirac-like form, out of which conserved quantities can be calculated in an elegant manner. Finally, these equations inherently incorporate spatiotemporal couplings, so that they can be easily particularized to deal with purely temporal or purely spatial effects. Nonlinear forward pulse propagation and nonparaxial evolution of spatial structures are analyzed as examples
A unified approach to the minimal unitary realizations of noncompact groups and supergroups
International Nuclear Information System (INIS)
Guenaydin, Murat; Pavlyk, Oleksandr
2006-01-01
We study the minimal unitary representations of non-compact groups and supergroups obtained by quantization of their geometric realizations as quasi-conformal groups and supergroups. The quasi-conformal groups G leave generalized light-cones defined by a quartic norm invariant and have maximal rank subgroups of the form H x SL(2, R) such that G/H x SL(2, R) are para-quaternionic symmetric spaces. We give a unified formulation of the minimal unitary representations of simple non-compact groups of type A 2 , G 2 , D 4 , F 4 , E 6 , E 7 , E 8 and Sp(2n, R). The minimal unitary representations of Sp(2n, R) are simply the singleton representations and correspond to a degenerate limit of the unified construction. The minimal unitary representations of the other noncompact groups SU(m, n), SO(m, n), SO*(2n) and SL(m, R) are also given explicitly. We extend our formalism to define and construct the corresponding minimal representations of non-compact supergroups G whose even subgroups are of the form H x SL(2, R). If H is noncompact then the supergroup G does not admit any unitary representations, in general. The unified construction with H simple or Abelian leads to the minimal representations of G(3), F(4) and O Sp(n|2, R) (in the degenerate limit). The minimal unitary representations of O Sp(n|2, R) with even subgroups SO(n) x SL(2, R) are the singleton representations. We also give the minimal realization of the one parameter family of Lie superalgebras D(2, 1; σ)
International Nuclear Information System (INIS)
Qin Fang; Chen Jisheng
2010-01-01
We utilize the fractional exclusion statistics of the Haldane and Wu hypothesis to study the thermodynamics of a unitary Fermi gas trapped in a harmonic oscillator potential at ultra-low finite temperature. The entropy per particle as a function of the energy per particle and energy per particle versus rescaled temperature are numerically compared with the experimental data. The study shows that, except the chemical potential behaviour, there exists a reasonable consistency between the experimental measurement and theoretical attempt for the entropy and energy per particle. In the fractional exclusion statistics formalism, the behaviour of the isochore heat capacity for a trapped unitary Fermi gas is also analysed.
Comparison of the unitary pole and Adhikari-Sloan expansions in the three nucleon system
International Nuclear Information System (INIS)
Afnan, I.R.; Birrell, N.D.
1977-01-01
The binding energy of 3 H, percentage S-, S'- and D-state probability, and charge form factor of 3 He are calculated using the unitary pole and Adhikari-Sloan separable expansions to the Reid soft core potential. Comparison of the results for the two separable expansions show that the expansion of Adhikari and Sloan has the better convergence property, and the lowest rank expansion considered (equivalent to the unitary pole approximation) gives a good approximation to the binding energy of 3 H and the charge form factor of 3 He, even at large momentum transfer (K 2 -2 ). (Author)
International Nuclear Information System (INIS)
Klimko, G.T.; Luzanov, A.V.
1988-01-01
An analysis has been made of the problem of calculating one- and two-particle spin densities, which are needed in calculations of spin-orbit and spin-spin coupling. The proposed solution is oriented toward the application of computational algorithms using unitary group representations; the solution consists of explicit expressions for the matrix elements of spin density operators in terms of the means of products of spin-free generators. This has eliminated a serious problem encountered previously in determining spin characteristics of molecules within the framework of unitary formalism
Polynomial approximation of non-Gaussian unitaries by counting one photon at a time
Arzani, Francesco; Treps, Nicolas; Ferrini, Giulia
2017-05-01
In quantum computation with continuous-variable systems, quantum advantage can only be achieved if some non-Gaussian resource is available. Yet, non-Gaussian unitary evolutions and measurements suited for computation are challenging to realize in the laboratory. We propose and analyze two methods to apply a polynomial approximation of any unitary operator diagonal in the amplitude quadrature representation, including non-Gaussian operators, to an unknown input state. Our protocols use as a primary non-Gaussian resource a single-photon counter. We use the fidelity of the transformation with the target one on Fock and coherent states to assess the quality of the approximate gate.
How many invariant polynomials are needed to decide local unitary equivalence of qubit states?
International Nuclear Information System (INIS)
Maciążek, Tomasz; Oszmaniec, Michał; Sawicki, Adam
2013-01-01
Given L-qubit states with the fixed spectra of reduced one-qubit density matrices, we find a formula for the minimal number of invariant polynomials needed for solving local unitary (LU) equivalence problem, that is, problem of deciding if two states can be connected by local unitary operations. Interestingly, this number is not the same for every collection of the spectra. Some spectra require less polynomials to solve LU equivalence problem than others. The result is obtained using geometric methods, i.e., by calculating the dimensions of reduced spaces, stemming from the symplectic reduction procedure
Experimental tests of coherence and entanglement conservation under unitary evolutions
Černoch, Antonín; Bartkiewicz, Karol; Lemr, Karel; Soubusta, Jan
2018-04-01
We experimentally demonstrate the migration of coherence between composite quantum systems and their subsystems. The quantum systems are implemented using polarization states of photons in two experimental setups. The first setup is based on a linear optical controlled-phase quantum gate and the second scheme utilizes effects of nonlinear optics. Our experiment allows one to verify the relation between correlations of the subsystems and the coherence of the composite system, which was given in terms of a conservation law for maximal accessible coherence by Svozilík et al. [J. Svozilík et al., Phys. Rev. Lett. 115, 220501 (2015), 10.1103/PhysRevLett.115.220501]. We observe that the maximal accessible coherence is conserved for the implemented class of global evolutions of the composite system.
Ghost field realizations of the spinor $W_{2,s}$ strings based on the linear W(1,2,s) algebras
Liu, Yu-Xiao; Zhang, Li-Jie; Ren, Ji-Rong
2005-01-01
It has been shown that certain W algebras can be linearized by the inclusion of a spin-1 current. This Provides a way of obtaining new realizations of the W algebras. In this paper, we investigate the new ghost field realizations of the W(2,s)(s=3,4) algebras, making use of the fact that these two algebras can be linearized. We then construct the nilpotent BRST charges of the spinor non-critical W(2,s) strings with these new realizations.
Ghost field realizations of the spinor W2,s strings based on the linear W1,2,s algebras
International Nuclear Information System (INIS)
Liu Yuxiao; Ren Jirong; Zhang Lijie
2005-01-01
It has been shown that certain W algebras can be linearized by the inclusion of a spin-1 current. This provides a way of obtaining new realizations of the W algebras. In this paper, we investigate the new ghost field realizations of the W 2,s (s=3,4) algebras, making use of the fact that these two algebras can be linearized. We then construct the nilpotent BRST charges of the spinor non-critical W 2,s strings with these new realizations. (author)
Directory of Open Access Journals (Sweden)
J. Buitrago
Full Text Available In a new classical Weyl 2-spinor approach to non abelian gauge theories, starting with the U(1 gauge group in a previous work, we study now the SU(3 case corresponding to quarks (antiquarks interacting with color fields. The principal difference with the conventional approach is that particle-field interactions are not described by means of potentials but by the field strength magnitudes. Some analytical expressions showing similarities with electrodynamics are obtained. Classical equations that describe the behavior of quarks under gluon fields might be in principle applied to the quark–gluon plasma phase existing during the first instants of the Universe.
Kurkcuoglu, Doga Murat; de Melo, C. A. R. Sá
2018-05-01
We propose the creation and investigation of a system of spin-one fermions in the presence of artificial spin-orbit coupling, via the interaction of three hyperfine states of fermionic atoms to Raman laser fields. We explore the emergence of spinor physics in the Hamiltonian described by the interaction between light and atoms, and analyze spectroscopic properties such as dispersion relation, Fermi surfaces, spectral functions, spin-dependent momentum distributions and density of states. Connections to spin-one bosons and SU(3) systems is made, as well relations to the Lifshitz transition and Pomeranchuk instability are presented.
Energy Technology Data Exchange (ETDEWEB)
Jarvis, P.D.; Corney, S.P.; Tsohantjis, I. [School of Mathematics and Physics, University of Tasmania, Hobart Tas (Australia)
1999-12-03
A covariant spinor representation of iosp(d,2/2) is constructed for the quantization of the spinning relativistic particle. It is found that, with appropriately defined wavefunctions, this representation can be identified with the state space arising from the canonical extended BFV-BRST quantization of the spinning particle with admissible gauge fixing conditions after a contraction procedure. For this model, the cohomological determination of physical states can thus be obtained purely from the representation theory of the iosp(d,2/2) algebra. (author)
Yoshida, Zensho
2010-01-01
This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl
Nayfeh, Ali Hasan
1995-01-01
Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim
Matrix elements and few-body calculations within the unitary correlation operator method
International Nuclear Information System (INIS)
Roth, R.; Hergert, H.; Papakonstantinou, P.
2005-01-01
We employ the unitary correlation operator method (UCOM) to construct correlated, low-momentum matrix elements of realistic nucleon-nucleon interactions. The dominant short-range central and tensor correlations induced by the interaction are included explicitly by an unitary transformation. Using correlated momentum-space matrix elements of the Argonne V18 potential, we show that the unitary transformation eliminates the strong off-diagonal contributions caused by the short-range repulsion and the tensor interaction and leaves a correlated interaction dominated by low-momentum contributions. We use correlated harmonic oscillator matrix elements as input for no-core shell model calculations for few-nucleon systems. Compared to the bare interaction, the convergence properties are dramatically improved. The bulk of the binding energy can already be obtained in very small model spaces or even with a single Slater determinant. Residual long-range correlations, not treated explicitly by the unitary transformation, can easily be described in model spaces of moderate size allowing for fast convergence. By varying the range of the tensor correlator we are able to map out the Tjon line and can in turn constrain the optimal correlator ranges. (orig.)
Matrix elements and few-body calculations within the unitary correlation operator method
International Nuclear Information System (INIS)
Roth, R.; Hergert, H.; Papakonstantinou, P.; Neff, T.; Feldmeier, H.
2005-01-01
We employ the unitary correlation operator method (UCOM) to construct correlated, low-momentum matrix elements of realistic nucleon-nucleon interactions. The dominant short-range central and tensor correlations induced by the interaction are included explicitly by an unitary transformation. Using correlated momentum-space matrix elements of the Argonne V18 potential, we show that the unitary transformation eliminates the strong off-diagonal contributions caused by the short-range repulsion and the tensor interaction and leaves a correlated interaction dominated by low-momentum contributions. We use correlated harmonic oscillator matrix elements as input for no-core shell model calculations for few-nucleon systems. Compared to the bare interaction, the convergence properties are dramatically improved. The bulk of the binding energy can already be obtained in very small model spaces or even with a single Slater determinant. Residual long-range correlations, not treated explicitly by the unitary transformation, can easily be described in model spaces of moderate size allowing for fast convergence. By varying the range of the tensor correlator we are able to map out the Tjon line and can in turn constrain the optimal correlator ranges
Experimental implementation of optimal linear-optical controlled-unitary gates
Czech Academy of Sciences Publication Activity Database
Lemr, K.; Bartkiewicz, K.; Černoch, Antonín; Dušek, M.; Soubusta, Jan
2015-01-01
Roč. 114, č. 15 (2015), "153602-1"-"153602-5" ISSN 0031-9007 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : two-qubit gates * optimal linear-optical controlled-unitary gates * quantum computing Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.645, year: 2015
The flexible focus: whether spatial attention is unitary or divided depends on observer goals.
Jefferies, Lisa N; Enns, James T; Di Lollo, Vincent
2014-04-01
The distribution of visual attention has been the topic of much investigation, and various theories have posited that attention is allocated either as a single unitary focus or as multiple independent foci. In the present experiment, we demonstrate that attention can be flexibly deployed as either a unitary or a divided focus in the same experimental task, depending on the observer's goals. To assess the distribution of attention, we used a dual-stream Attentional Blink (AB) paradigm and 2 target pairs. One component of the AB, Lag-1 sparing, occurs only if the second target pair appears within the focus of attention. By varying whether the first-target-pair could be expected in a predictable location (always in-stream) or not (unpredictably in-stream or between-streams), observers were encouraged to deploy a divided or a unitary focus, respectively. When the second-target-pair appeared between the streams, Lag-1 sparing occurred for the Unpredictable group (consistent with a unitary focus) but not for the Predictable group (consistent with a divided focus). Thus, diametrically different outcomes occurred for physically identical displays, depending on the expectations of the observer about where spatial attention would be required.
Gaussian elimination in split unitary groups with an application to public-key cryptography
Directory of Open Access Journals (Sweden)
Ayan Mahalanobis
2017-07-01
Full Text Available Gaussian elimination is used in special linear groups to solve the word problem. In this paper, we extend Gaussian elimination to split unitary groups. These algorithms have an application in building a public-key cryptosystem, we demonstrate that.
Unitary eikonal formalism for multiproduction of isovector mesons at high energy
Redei, L B
1973-01-01
Unitary eikonal models for multiproduction of isovector mesons are discussed in general terms. A closed analytic expression is derived for the partial production cross sections and for the meson multiplicity moments. A simple class of models is discussed in more detail. (11 refs).
Point transformations and renormalization in the unitary gauge. III. Renormalization effects
International Nuclear Information System (INIS)
Sherry, T.N.
1976-06-01
An analysis of two simple gauge theory models is continued using point transformations rather than gauge transformations. The renormalization constants are examined directly in two gauges, the renormalization (Landau) and unitary gauges. The result is that the individual coupling constant renormalizations are identical when calculated in each of the above two gauges, although the wave-function and proper vertex renormalizations differ
Topology of unitary groups and the prime orders of binomial coefficients
Duan, HaiBao; Lin, XianZu
2017-09-01
Let $c:SU(n)\\rightarrow PSU(n)=SU(n)/\\mathbb{Z}_{n}$ be the quotient map of the special unitary group $SU(n)$ by its center subgroup $\\mathbb{Z}_{n}$. We determine the induced homomorphism $c^{\\ast}:$ $H^{\\ast}(PSU(n))\\rightarrow H^{\\ast}(SU(n))$ on cohomologies by computing with the prime orders of binomial coefficients
International Nuclear Information System (INIS)
Malik, R. P.; Srinivas, N.; Bhanja, T.
2016-01-01
We exploit the key concepts of the augmented version of superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism to derive the superspace (SUSP) dual unitary operator and its Hermitian conjugate and demonstrate their utility in the derivation of the nilpotent and absolutely anticommuting (anti-)dual-BRST symmetry transformations for a set of interesting models of the Abelian 1-form gauge theories. These models are the one (0+1)-dimensional (1D) rigid rotor and modified versions of the two (1+1)-dimensional (2D) Proca as well as anomalous gauge theories and 2D model of a self-dual bosonic field theory. We show the universality of the SUSP dual unitary operator and its Hermitian conjugate in the cases of all the Abelian models under consideration. These SUSP dual unitary operators, besides maintaining the explicit group structure, provide the alternatives to the dual horizontality condition (DHC) and dual gauge invariant restrictions (DGIRs) of the superfield formalism. The derivations of the dual unitary operators and corresponding (anti-)dual-BRST symmetries are completely novel results in our present investigation.
An Integral Representation of Standard Automorphic L Functions for Unitary Groups
Directory of Open Access Journals (Sweden)
Yujun Qin
2007-01-01
Full Text Available Let F be a number field, G a quasi-split unitary group of rank n. We show that given an irreducible cuspidal automorphic representation π of G(A, its (partial L function LS(s,π,σ can be represented by a Rankin-Selberg-type integral involving cusp forms of π, Eisenstein series, and theta series.
Beyond the Tipping Point: Issues of Racial Diversity in Magnet Schools Following Unitary Status
Smrekar, Claire
2009-01-01
This article uses qualitative case study methodology to examine why the racial composition of magnet schools in Nashville, Tennessee, has shifted to predominantly African American in the aftermath of unitary status. The article compares the policy contexts and parents' reasons for choosing magnet schools at two points in time--under court order…
J(l)-unitary factorization and the Schur algorithm for Nevanlinna functions in an indefinite setting
Alpay, D.; Dijksma, A.; Langer, H.
2006-01-01
We introduce a Schur transformation for generalized Nevanlinna functions and show that it can be used in obtaining the unique minimal factorization of a class of rational J(l)-unitary 2 x 2 matrix functions into elementary factors from the same class. (c) 2006 Elsevier Inc. All rights reserved.
Unitary-model-operator approach to Λ17O and lambda-nucleon effective interaction
International Nuclear Information System (INIS)
Fujii, Shinichiro; Okamoto, Ryoji; Suzuki, Kenji
1998-01-01
The unitary-model-operator approach (UMOA) is applied to Λ 17 O. A lambda-nucleon effective interaction is derived, taking the coupling of the sigma-nucleon channel into account. The lambda single-particle energies are calculated for the Os 1/2 , Op 3/2 and Op 1/2 states employing the Nijmegen soft-core potential. (author)
Palmero, Faustino; Lemos, M; Sánchez-Rey, Bernardo; Casado-Pascual, Jesús
2018-01-01
This book presents an overview of the most recent advances in nonlinear science. It provides a unified view of nonlinear properties in many different systems and highlights many new developments. While volume 1 concentrates on mathematical theory and computational techniques and challenges, which are essential for the study of nonlinear science, this second volume deals with nonlinear excitations in several fields. These excitations can be localized and transport energy and matter in the form of breathers, solitons, kinks or quodons with very different characteristics, which are discussed in the book. They can also transport electric charge, in which case they are known as polarobreathers or solectrons. Nonlinear excitations can influence function and structure in biology, as for example, protein folding. In crystals and other condensed matter, they can modify transport properties, reaction kinetics and interact with defects. There are also engineering applications in electric lattices, Josephson junction a...
International Nuclear Information System (INIS)
Alvarado, R.; Rybakov, Yu.P.; Shikin, G.N.; Saha, B.
1995-01-01
Self-consistent solutions to the system of spinor and scalar field equations in General Relativity are studied for the case of Bianchi type-I space-time. The absence of initial singularity should be emphasized for some types of solutions and also the isotropic mode of space-time expansion in some special cases. 3 refs
Boyd, Robert W
2013-01-01
Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q
National Research Council Canada - National Science Library
Drazin, P. G
1992-01-01
This book is an introduction to the theories of bifurcation and chaos. It treats the solution of nonlinear equations, especially difference and ordinary differential equations, as a parameter varies...
Gasinski, Leszek
2005-01-01
Hausdorff Measures and Capacity. Lebesgue-Bochner and Sobolev Spaces. Nonlinear Operators and Young Measures. Smooth and Nonsmooth Analysis and Variational Principles. Critical Point Theory. Eigenvalue Problems and Maximum Principles. Fixed Point Theory.
Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio
2007-10-01
We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1×M bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a , uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes.
Dynamics of Three-Body Correlations in Quenched Unitary Bose Gases
Colussi, V. E.; Corson, J. P.; D'Incao, J. P.
2018-03-01
We investigate dynamical three-body correlations in the Bose gas during the earliest stages of evolution after a quench to the unitary regime. The development of few-body correlations is theoretically observed by determining the two- and three-body contacts. We find that the growth of three-body correlations is gradual compared to two-body correlations. The three-body contact oscillates coherently, and we identify this as a signature of Efimov trimers. We show that the growth of three-body correlations depends nontrivially on parameters derived from both the density and Efimov physics. These results demonstrate the violation of scaling invariance of unitary bosonic systems via the appearance of log-periodic modulation of three-body correlations.
International Nuclear Information System (INIS)
Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio
2007-01-01
We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1xM bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a, uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes
The solution space of the unitary matrix model string equation and the Sato Grassmannian
International Nuclear Information System (INIS)
Anagnostopoulos, K.N.; Bowick, M.J.; Schwarz, A.
1992-01-01
The space of all solutions to the string equation of the symmetric unitary one-matrix model is determined. It is shown that the string equations is equivalent to simple conditions on points V 1 and V 2 in the big cell Gr (0) of the Sato Grassmannian Gr. This is a consequence of a well-defined continuum limit in which the string equation has the simple form [P, 2 - ]=1, with P and 2 - 2x2 matrices of differential operators. These conditions on V 1 and V 2 yield a simple system of first order differential equations whose analysis determines the space of all solutions to the string equation. This geometric formulation leads directly to the Virasoro constraints L n (n≥0), where L n annihilate the two modified-KdV τ-functions whose product gives the partition function of the Unitary Matrix Model. (orig.)
Non-unitary neutrino mixing and CP violation in the minimal inverse seesaw model
International Nuclear Information System (INIS)
Malinsky, Michal; Ohlsson, Tommy; Xing, Zhi-zhong; Zhang He
2009-01-01
We propose a simplified version of the inverse seesaw model, in which only two pairs of the gauge-singlet neutrinos are introduced, to interpret the observed neutrino mass hierarchy and lepton flavor mixing at or below the TeV scale. This 'minimal' inverse seesaw scenario (MISS) is technically natural and experimentally testable. In particular, we show that the effective parameters describing the non-unitary neutrino mixing matrix are strongly correlated in the MISS, and thus, their upper bounds can be constrained by current experimental data in a more restrictive way. The Jarlskog invariants of non-unitary CP violation are calculated, and the discovery potential of such new CP-violating effects in the near detector of a neutrino factory is discussed.
Toward a self-consistent and unitary reaction network for big bang nucleosynthesis
Energy Technology Data Exchange (ETDEWEB)
Paris, Mark W.; Brown, Lowell S.; Hale, Gerald M.; Hayes-Sterbenz, Anna C.; Jungman, Gerard; Kawano, Toshihiko, E-mail: mparis@lanl.gov [Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Fuller, George M.; Grohs, Evan B. [Department of Physics, University of California, San Diego, La Jolla, CA (United States); Kunieda, Satoshi [Nuclear Data Center, Japan Atomic Energy Agency, Tokai-mura Naka-gun, Ibaraki (Japan)
2014-07-01
Unitarity, the mathematical expression of the conservation of probability in multichannel reactions, is an essential ingredient in the development of accurate nuclear reaction networks appropriate for nucleosynthesis in a variety of environments. We describe our ongoing program to develop a 'unitary reaction network' for the big-bang nucleosynthesis environment and look at an example of the need and power of unitary parametrizations of nuclear scattering and reaction data. Recent attention has been focused on the possible role of the {sup 9}B compound nuclear system in the resonant destruction of {sup 7}Li during primordial nucleosynthesis. We have studied reactions in the {sup 9}B compound system with a multichannel, two-body unitary R-matrix code (EDA) using the known elastic and reaction data, in a four-channel treatment. The data include elastic {sup 6}Li({sup 3}He,{sup 3}He){sup 6}Li differential cross sections from 0.7 to 2.0 MeV, integrated reaction cross sections for energies from 0.7 to 5.0 MeV for {sup 6}Li({sup 3}He,p){sup 8}Be* and from 0.4 to 5.0 MeV for the {sup 6}Li({sup 3}He,γ){sup 7}Be reaction. Capture data have been added to the previous analysis with integrated cross section measurements from 0.7 to 0.825 MeV for {sup 6}Li({sup 3}He,γ){sup 9}B. The resulting resonance parameters are compared with tabulated values from TUNL Nuclear Data Group analyses. Previously unidentified resonances are noted and the relevance of this analysis and a unitary reaction network for big-bang nucleosynthesis are emphasized. (author)
International Nuclear Information System (INIS)
Namgung, W.
1991-01-01
The well known requirement that physical theories should be gauge independent is not so apparent in the actual calculation of gauge theories, especially in the perturbative approach. In this paper the authors show that the Weyl, Coulomb, and unitary gauges of the scalar QED are manifestly equivalent in the context of the functional Schrodinger picture. Further, the three gauge conditions are shown equivalent to the covariant gauge in the way that they correspond to some specific cases of the latter
Prats, J. M.; Lopez-Aguilar, F.
1996-01-01
Using unitary transformations, we express the Kondo lattice Hamiltonian in terms of fermionic operators that annihilate the ground state of the interacting system and that represent the best possible approximations to the actual charged excitations. In this way, we obtain an effective Hamiltonian which, for small couplings, consists in a kinetic term for conduction electrons and holes, an RKKY-like term, and a renormalized Kondo interaction. The physical picture of the system implied by this ...
High-energy properties of a class of unitary eikonal models for multiproduction
Redei, L B
1974-01-01
The high-energy properties of a simple class of unitary, crossing- symmetric eikonal models of multiproduction are discussed on the basis of the general closed expression given for the S-matrix elements in a previous publication. In particular, the high-energy behaviour of the multiplicity moments is discussed and it is shown that the KNO scaling relation emerges in a very natural fashion in this class of models. (8 refs).
On the reconstruction of a unitary matrix from its moduli. Existence of continuous ambiguities
International Nuclear Information System (INIS)
Auberson, G.
1989-01-01
It is shown that, for an n x n unitary matrix with n ≥ 4, the knowledge of the moduli of its elements is not always sufficient to determine this matrix up to 'trivial' or 'discrete' ambiguities. Using a parametrization a la Kobayashi-Maskawa in the case n=4, we exhibit various configurations of the moduli for which a continuous ambiguity appears (i.e., some non-trivial phase remains free). (orig.)
Toward a self-consistent and unitary reaction network for big bang nucleosynthesis
International Nuclear Information System (INIS)
Paris, Mark W.; Brown, Lowell S.; Hale, Gerald M.; Hayes-Sterbenz, Anna C.; Jungman, Gerard; Kawano, Toshihiko; Fuller, George M.; Grohs, Evan B.; Kunieda, Satoshi
2014-01-01
Unitarity, the mathematical expression of the conservation of probability in multichannel reactions, is an essential ingredient in the development of accurate nuclear reaction networks appropriate for nucleosynthesis in a variety of environments. We describe our ongoing program to develop a 'unitary reaction network' for the big-bang nucleosynthesis environment and look at an example of the need and power of unitary parametrizations of nuclear scattering and reaction data. Recent attention has been focused on the possible role of the 9 B compound nuclear system in the resonant destruction of 7 Li during primordial nucleosynthesis. We have studied reactions in the 9 B compound system with a multichannel, two-body unitary R-matrix code (EDA) using the known elastic and reaction data, in a four-channel treatment. The data include elastic 6 Li( 3 He, 3 He) 6 Li differential cross sections from 0.7 to 2.0 MeV, integrated reaction cross sections for energies from 0.7 to 5.0 MeV for 6 Li( 3 He,p) 8 Be* and from 0.4 to 5.0 MeV for the 6 Li( 3 He,γ) 7 Be reaction. Capture data have been added to the previous analysis with integrated cross section measurements from 0.7 to 0.825 MeV for 6 Li( 3 He,γ) 9 B. The resulting resonance parameters are compared with tabulated values from TUNL Nuclear Data Group analyses. Previously unidentified resonances are noted and the relevance of this analysis and a unitary reaction network for big-bang nucleosynthesis are emphasized. (author)
Entanglement Capacity of Two-Qubit Unitary Operator with the Help of Auxiliary System
International Nuclear Information System (INIS)
Hu Baolin; Di Yaomin
2007-01-01
The entanglement capacity of general two-qubit unitary operators is studied when auxiliary systems are allowed, and the analytical results based on linear entropy when input states are disentangled are given. From the results the condition for perfect entangler, α 1 = α 2 = π/4, is obtained. Contrary to the case without auxiliary system, the parameter α 3 may play active role to the entanglement capacity when auxiliary systems are allowed.
Massless scalar field in de Sitter spacetime: unitary quantum time evolution
International Nuclear Information System (INIS)
Cortez, Jerónimo; Blas, Daniel Martín-de; Marugán, Guillermo A Mena; Velhinho, José M
2013-01-01
We prove that, under the standard conformal scaling, a free scalar field in de Sitter spacetime admits an O(4)-invariant Fock quantization such that time evolution is unitarily implemented. Since this applies in particular to the massless case, this result disproves previous claims in the literature. We discuss the relationship between this quantization with unitary dynamics and the family of O(4)-invariant Hadamard states given by Allen and Folacci, as well as with the Bunch–Davies vacuum. (paper)
Optimal control landscape for the generation of unitary transformations with constrained dynamics
International Nuclear Information System (INIS)
Hsieh, Michael; Wu, Rebing; Rabitz, Herschel; Lidar, Daniel
2010-01-01
The reliable and precise generation of quantum unitary transformations is essential for the realization of a number of fundamental objectives, such as quantum control and quantum information processing. Prior work has explored the optimal control problem of generating such unitary transformations as a surface-optimization problem over the quantum control landscape, defined as a metric for realizing a desired unitary transformation as a function of the control variables. It was found that under the assumption of nondissipative and controllable dynamics, the landscape topology is trap free, which implies that any reasonable optimization heuristic should be able to identify globally optimal solutions. The present work is a control landscape analysis, which incorporates specific constraints in the Hamiltonian that correspond to certain dynamical symmetries in the underlying physical system. It is found that the presence of such symmetries does not destroy the trap-free topology. These findings expand the class of quantum dynamical systems on which control problems are intrinsically amenable to a solution by optimal control.
Unitary W-algebras and three-dimensional higher spin gravities with spin one symmetry
International Nuclear Information System (INIS)
Afshar, Hamid; Creutzig, Thomas; Grumiller, Daniel; Hikida, Yasuaki; Rønne, Peter B.
2014-01-01
We investigate whether there are unitary families of W-algebras with spin one fields in the natural example of the Feigin-Semikhatov W_n"("2")-algebra. This algebra is conjecturally a quantum Hamiltonian reduction corresponding to a non-principal nilpotent element. We conjecture that this algebra admits a unitary real form for even n. Our main result is that this conjecture is consistent with the known part of the operator product algebra, and especially it is true for n=2 and n=4. Moreover, we find certain ranges of allowed levels where a positive definite inner product is possible. We also find a unitary conformal field theory for every even n at the special level k+n=(n+1)/(n−1). At these points, the W_n"("2")-algebra is nothing but a compactified free boson. This family of W-algebras admits an ’t Hooft limit. Further, in the case of n=4, we reproduce the algebra from the higher spin gravity point of view. In general, gravity computations allow us to reproduce some leading coefficients of the operator product.
On the complete classification of unitary N=2 minimal superconformal field theories
Energy Technology Data Exchange (ETDEWEB)
Gray, Oliver
2009-08-03
Aiming at a complete classification of unitary N=2 minimal models (where the assumption of space-time supersymmetry has been dropped), it is shown that each candidate for a modular invariant partition function of such a theory is indeed the partition function of a minimal model. A family of models constructed via orbifoldings of either the diagonal model or of the space-time supersymmetric exceptional models demonstrates that there exists a unitary N=2 minimal model for every one of the allowed partition functions in the list obtained from Gannon's work. Kreuzer and Schellekens' conjecture that all simple current invariants can be obtained as orbifolds of the diagonal model, even when the extra assumption of higher-genus modular invariance is dropped, is confirmed in the case of the unitary N=2 minimal models by simple counting arguments. We nd a nice characterisation of the projection from the Hilbert space of a minimal model with k odd to its modular invariant subspace, and we present a new simple proof of the superconformal version of the Verlinde formula for the minimal models using simple currents. Finally we demonstrate a curious relation between the generating function of simple current invariants and the Riemann zeta function. (orig.)
International Nuclear Information System (INIS)
Luca, Gheorghe
2004-01-01
In our country, within the studies, on which the development strategies of power output are based on, the assessment of the economical efficiency of the use of two main energetic resources, the fuel used in cogeneration thermal power plants and the water used in hydropower plants respectively, was made in compliance with non-unitary specific norms. In contradiction with the degree of utilization of hydroelectric resources, realized all over the world in the developed countries (80-90%) resulted that in our country, where the degree of utilization is only 40%, the use of hydroelectric potential is not yet justified from technical-economical point of view. This anomaly was determined by the cause of non-unitary assessment of the economic efficiency for the cogeneration thermo-power plants and hydropower plants. This paper presents comparatively the elements, which were to the basis of the assessment of the economic efficiency for two types of electrical power plants, and one presents a proposal in the aim to perform a unitary assessment of the economical efficiency by applying efficiently the laws in force. (author)
On the complete classification of unitary N=2 minimal superconformal field theories
Energy Technology Data Exchange (ETDEWEB)
Gray, Oliver
2009-08-03
Aiming at a complete classification of unitary N=2 minimal models (where the assumption of space-time supersymmetry has been dropped), it is shown that each candidate for a modular invariant partition function of such a theory is indeed the partition function of a minimal model. A family of models constructed via orbifoldings of either the diagonal model or of the space-time supersymmetric exceptional models demonstrates that there exists a unitary N=2 minimal model for every one of the allowed partition functions in the list obtained from Gannon's work. Kreuzer and Schellekens' conjecture that all simple current invariants can be obtained as orbifolds of the diagonal model, even when the extra assumption of higher-genus modular invariance is dropped, is confirmed in the case of the unitary N=2 minimal models by simple counting arguments. We nd a nice characterisation of the projection from the Hilbert space of a minimal model with k odd to its modular invariant subspace, and we present a new simple proof of the superconformal version of the Verlinde formula for the minimal models using simple currents. Finally we demonstrate a curious relation between the generating function of simple current invariants and the Riemann zeta function. (orig.)
On the complete classification of unitary N=2 minimal superconformal field theories
International Nuclear Information System (INIS)
Gray, Oliver
2009-01-01
Aiming at a complete classi cation of unitary N=2 minimal models (where the assumption of space-time supersymmetry has been dropped), it is shown that each candidate for a modular invariant partition function of such a theory is indeed the partition function of a minimal model. A family of models constructed via orbifoldings of either the diagonal model or of the space-time supersymmetric exceptional models demonstrates that there exists a unitary N=2 minimal model for every one of the allowed partition functions in the list obtained from Gannon's work. Kreuzer and Schellekens' conjecture that all simple current invariants can be obtained as orbifolds of the diagonal model, even when the extra assumption of higher-genus modular invariance is dropped, is confirmed in the case of the unitary N=2 minimal models by simple counting arguments. We nd a nice characterisation of the projection from the Hilbert space of a minimal model with k odd to its modular invariant subspace, and we present a new simple proof of the superconformal version of the Verlinde formula for the minimal models using simple currents. Finally we demonstrate a curious relation between the generating function of simple current invariants and the Riemann zeta function. (orig.)
International Nuclear Information System (INIS)
Lindesay, James V
2002-01-01
Starting from a unitary, Lorentz invariant two-particle scattering amplitude, we show how to use an identification and replacement process to construct a unique, unitary particle-antiparticle amplitude. This process differs from conventional on-shell Mandelstam s,t,u crossing in that the input and constructed amplitudes can be off-diagonal and off-energy shell. Further, amplitudes are constructed using the invariant parameters which are appropriate to use as driving terms in the multi-particle, multichannel nonperturbative, cluster decomposable, relativistic scattering equations of the Faddeev-type integral equations recently presented by Alfred, Kwizera, Lindesay and Noyes. It is therefore anticipated that when so employed, the resulting multi-channel solutions will also be unitary. The process preserves the usual particle-antiparticle symmetries. To illustrate this process, we construct a J=0 scattering length model chosen for simplicity. We also exhibit a class of physical models which contain a finite quantum mass parameter and are Lorentz invariant. These are constructed to reduce in the appropriate limits, and with the proper choice of value and sign of the interaction parameter, to the asymptotic solution of the nonrelativistic Coulomb problem, including the forward scattering singularity , the essential singularity in the phase, and the Bohr bound-state spectrum
Matrix Elements of One- and Two-Body Operators in the Unitary Group Approach (I)-Formalism
Institute of Scientific and Technical Information of China (English)
DAI Lian-Rong; PAN Feng
2001-01-01
The tensor algebraic method is used to derive general one- and two-body operator matrix elements within the Un representations, which are useful in the unitary group approach to the configuration interaction problems of quantum many-body systems.
Fuzzy Killing spinors and supersymmetric D4 action on the fuzzy 2-sphere from the ABJM model
International Nuclear Information System (INIS)
Nastase, Horatiu; Papageorgakis, Constantinos
2009-01-01
Our recent construction arXiv:0903.3966 for the fuzzy 2-sphere in terms of bifundamentals, discovered in the context of the ABJM model, is shown to be explicitly equivalent to the usual (adjoint) fuzzy sphere construction. The matrices G-tilde α that define it play the role of fuzzy Killing spinors on the 2-sphere, out of which all spherical harmonics are constructed. Starting from the quadratic fluctuation action around these solutions in the mass-deformed ABJM theory, we recover a supersymmetric D4-brane action wrapping a 2-sphere, including fermions. We obtain both the usual D4 action with an unusual x-dependence on the sphere, as well as a twisted version in terms of the usual x-dependence, and contrast our result with the Maldacena-Nunez case of a D5 wrapping an S 2 . The twisted and unwisted fields are related by the same matrix G-tilde α .
Non-unitary boson mapping and its application to nuclear collective motions
International Nuclear Information System (INIS)
Takada, Kenjiro
2001-01-01
First, the general theory of boson mapping for even-number many-fermion systems is surveyed. In order to overcome the confusion concerning the so-called unphysical or spurious states in the boson mapping, the correct concept of the unphysical states is precisely given in a clear-cut way. Next, a method to apply the boson mapping to a truncated many-fermion Hilbert space consisting of collective phonons is proposed, by putting special emphasis on the Dyson-type non-unitary boson mapping. On the basis of this method, it becomes possible for the first time to apply the Dyson-type boson mapping to analyses of collective motions in realistic nuclei. This method is also extended to be applicable to odd-number-fermion systems. As known well, the Dyson-type boson mapping is a non-unitary transformation and it gives a non-Hermitian boson Hamiltonian. It is not easy (but not impossible) to solve the eigenstates of the non-Hermitian Hamiltonian. A Hermitian treatment of this non-Hermitian eigenvalue problem is discussed and it is shown that this treatment is a very good approximation. using this Hermitian treatment, we can obtain the normal-ordered Holstein-Primakoff-type boson expansion in the multi-collective-phonon subspace. Thereby the convergence of the boson expansion can be tested. Some examples of application of the Dyson-type non-unitary boson mapping to simplified models and realistic nuclei are also shown, and we can see that it is quite useful for analysis of the collective motions in realistic nuclei. In contrast to the above-mentioned ordinary type of boson mapping, which may be called a a 'static' boson mapping, the Dyson-type non-unitary self-consistent-collective-coordinate method is discussed. The latter is, so to speak, a 'dynamical' boson mapping, which is a dynamical extension of the ordinary boson mapping to be capable to include the coupling effects from the non-collective degrees of freedom self-consistently.Thus all of the Dyson-type non-unitary boson
Ruszczynski, Andrzej
2011-01-01
Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures. The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern top...
International Nuclear Information System (INIS)
Chau, L.L.
1983-01-01
Integrable properties, i.e., existence of linear systems, infinite number of conservation laws, Reimann-Hilbert transforms, affine Lie algebra of Kac-Moody, and Bianchi-Baecklund transformation, are discussed for the constraint equations of the supersymmetric Yang-Mills fields. For N greater than or equal to 3 these constraint equations give equations of motion of the fields. These equations of motion reduce to the ordinary Yang-Mills equations as the spinor and scalar fields are eliminated. These understandings provide a possible method to solve the full Yang-Mills equations. Connections with other non-linear systems are also discussed. 53 references
Classical Exchange Algebra of the Nonlinear Sigma Model on a Supercoset Target with Z2n Grading
International Nuclear Information System (INIS)
Ke San-Min; Li Xin-Ying; Wang Chun; Yue Rui-Hong
2011-01-01
The classical exchange algebra satisfied by the monodromy matrix of the nonlinear sigma model on a supercoset target with Z 2n grading is derived using a first-order Hamiltonian formulation and by adding to the Lax connection terms proportional to constraints. This enables us to show that the conserved charges of the theory are in involution. When n = 2, our results coincide with the results given by Magro for the pure spinor description of AdS 5 × S 5 string theory (when the ghost terms are omitted). (the physics of elementary particles and fields)
International Nuclear Information System (INIS)
Watabe, Shohei; Ohashi, Yoji; Kato, Yusuke
2011-01-01
We investigate tunneling properties of collective modes in the polar phase of a spin-1 spinor Bose-Einstein condensate (BEC). This spinor BEC state has two kinds of gapless modes (i.e., Bogoliubov and spin-wave). Within the framework of mean-field theory at T=0, we show that these Goldstone modes exhibit perfect transmission in the low-energy limit. Their anomalous tunneling behavior still holds in the presence of superflow, except in the critical current state. In the critical current state, while the tunneling of Bogoliubov mode is accompanied by finite reflection, the spin wave still exhibits perfect transmission, unless the strengths of spin-dependent and spin-independent interactions take the same value. We discuss the relation between perfect transmission of a spin wave and underlying superfluidity through a comparison of wave functions of the spin wave and the condensate.
Non-linear gauge transformations in D=10 SYM theory and the BCJ duality
Energy Technology Data Exchange (ETDEWEB)
Lee, Seungjin [Max-Planck-Institut für Gravitationsphysik Albert-Einstein-Institut,14476 Potsdam (Germany); Mafra, Carlos R. [Institute for Advanced Study, School of Natural Sciences,Einstein Drive, Princeton, NJ 08540 (United States); DAMTP, University of Cambridge,Wilberforce Road, Cambridge, CB3 0WA (United Kingdom); Schlotterer, Oliver [Max-Planck-Institut für Gravitationsphysik Albert-Einstein-Institut,14476 Potsdam (Germany)
2016-03-14
Recent progress on scattering amplitudes in super Yang-Mills and superstring theory benefitted from the use of multiparticle superfields. They universally capture tree-level subdiagrams, and their generating series solve the non-linear equations of ten-dimensional super Yang-Mills. We provide simplified recursions for multiparticle superfields and relate them to earlier representations through non-linear gauge transformations of their generating series. Moreover, we discuss the gauge transformations which enforce their Lie symmetries as suggested by the Bern-Carrasco-Johansson duality between color and kinematics. Another gauge transformation due to Harnad and Shnider is shown to streamline the theta-expansion of multiparticle superfields, bypassing the need to use their recursion relations beyond the lowest components. The findings of this work tremendously simplify the component extraction from kinematic factors in pure spinor superspace.
Realization of a unique time evolution unitary operator in Klein Gordon theory
International Nuclear Information System (INIS)
Balasubramanian, T.S.; Bhatia, S.Kr.
1986-01-01
The scattering theory for the Klein Gordon equation, with time-dependent potential and in a non-static space-time, is considered. Using the Klein Gordon equation formulated in the Hilbert space L 2 (R 3 ) and the Einstein's relativistic equation in the space L 2 (R 3 ,dx) and establishing the equivalence of the vacuum states of their linearized forms in the Hilbert space L 2 (R 3 ) with the help of unique symmetric symplectic operator, the time evolution unitary operator U(t) has been fixed for the Klein Gordon eqution, incorporating either the positive or negative frequencies, in the infinite dimensional Hilbert space L 2 (R 3 ). (author)
A new derivation of the highest-weight polynomial of a unitary lie algebra
International Nuclear Information System (INIS)
P Chau, Huu-Tai; P Van, Isacker
2000-01-01
A new method is presented to derive the expression of the highest-weight polynomial used to build the basis of an irreducible representation (IR) of the unitary algebra U(2J+1). After a brief reminder of Moshinsky's method to arrive at the set of equations defining the highest-weight polynomial of U(2J+1), an alternative derivation of the polynomial from these equations is presented. The method is less general than the one proposed by Moshinsky but has the advantage that the determinantal expression of the highest-weight polynomial is arrived at in a direct way using matrix inversions. (authors)
A gauge-invariant chiral unitary framework for kaon photo- and electroproduction on the proton
International Nuclear Information System (INIS)
Borasoy, B.; Bruns, P.C.; Nissler, R.; Meissner, U.G.
2007-01-01
We present a gauge-invariant approach to photoproduction of mesons on nucleons within a chiral unitary framework. The interaction kernel for meson-baryon scattering is derived from the chiral effective Lagrangian and iterated in a Bethe-Salpeter equation. Within the leading-order approximation to the interaction kernel, data on kaon photoproduction from SAPHIR, CLAS and CBELSA/TAPS are analyzed in the threshold region. The importance of gauge invariance and the precision of various approximations in the interaction kernel utilized in earlier works are discussed. (orig.)
On Parseval Wavelet Frames with Two or Three Generators via the Unitary Extension Principle
DEFF Research Database (Denmark)
Christensen, Ole; Kim, Hong Oh; Kim, Rae Young
2014-01-01
The unitary extension principle (UEP) by A. Ron and Z. Shen yields a sufficient condition for the construction of Parseval wavelet frames with multiple generators. In this paper we characterize the UEP-type wavelet systems that can be extended to a Parseval wavelet frame by adding just one UEP......-type wavelet system. We derive a condition that is necessary for the extension of a UEP-type wavelet system to any Parseval wavelet frame with any number of generators and prove that this condition is also sufficient to ensure that an extension with just two generators is possible....
Pore dimensions and the role of occupancy in unitary conductance of Shaker K channels
Díaz-Franulic, Ignacio; Sepúlveda, Romina V.; Navarro-Quezada, Nieves; González-Nilo, Fernando
2015-01-01
K channels mediate the selective passage of K+ across the plasma membrane by means of intimate interactions with ions at the pore selectivity filter located near the external face. Despite high conservation of the selectivity filter, the K+ transport properties of different K channels vary widely, with the unitary conductance spanning a range of over two orders of magnitude. Mutation of Pro475, a residue located at the cytoplasmic entrance of the pore of the small-intermediate conductance K channel Shaker (Pro475Asp (P475D) or Pro475Gln (P475Q)), increases Shaker’s reported ∼20-pS conductance by approximately six- and approximately threefold, respectively, without any detectable effect on its selectivity. These findings suggest that the structural determinants underlying the diversity of K channel conductance are distinct from the selectivity filter, making P475D and P475Q excellent probes to identify key determinants of the K channel unitary conductance. By measuring diffusion-limited unitary outward currents after unilateral addition of 2 M sucrose to the internal solution to increase its viscosity, we estimated a pore internal radius of capture of ∼0.82 Å for all three Shaker variants (wild type, P475D, and P475Q). This estimate is consistent with the internal entrance of the Kv1.2/2.1 structure if the effective radius of hydrated K+ is set to ∼4 Å. Unilateral exposure to sucrose allowed us to estimate the internal and external access resistances together with that of the inner pore. We determined that Shaker resistance resides mainly in the inner cavity, whereas only ∼8% resides in the selectivity filter. To reduce the inner resistance, we introduced additional aspartate residues into the internal vestibule to favor ion occupancy. No aspartate addition raised the maximum unitary conductance, measured at saturating [K+], beyond that of P475D, suggesting an ∼200-pS conductance ceiling for Shaker. This value is approximately one third of the maximum
Quantum entanglement: the unitary 8-vertex braid matrix with imaginary rapidity
International Nuclear Information System (INIS)
Chakrabarti, Amitabha; Chakraborti, Anirban; Jedidi, Aymen
2010-01-01
We study quantum entanglements induced on product states by the action of 8-vertex braid matrices, rendered unitary with purely imaginary spectral parameters (rapidity). The unitarity is displayed via the 'canonical factorization' of the coefficients of the projectors spanning the basis. This adds one more new facet to the famous and fascinating features of the 8-vertex model. The double periodicity and the analytic properties of the elliptic functions involved lead to a rich structure of the 3-tangle quantifying the entanglement. We thus explore the complex relationship between topological and quantum entanglement. (fast track communication)
Scalar ΛN and ΛΛ interaction in a chiral unitary approach
International Nuclear Information System (INIS)
Sasaki, K.; Oset, E.; Vacas, M. J. Vicente
2006-01-01
We study the central part of the ΛN and ΛΛ potential by considering the correlated and uncorrelated two-meson exchange in addition to the ω exchange contribution. The correlated two-meson exchange is evaluated within a chiral unitary approach. We find that a short-range repulsion is generated by the correlated two-meson potential, which also produces an attraction in the intermediate-distance region. The uncorrelated two-meson exchange produces a sizable attraction in all cases that is counterbalanced by the ω exchange contribution
Cold dilute neutron matter on the lattice. II. Results in the unitary limit
International Nuclear Information System (INIS)
Lee, Dean; Schaefer, Thomas
2006-01-01
This is the second of two articles that investigate cold dilute neutron matter on the lattice using pionless effective field theory. In the unitary limit, where the effective range is zero and scattering length is infinite, simple scaling relations relate thermodynamic functions at different temperatures. When the second virial coefficient is properly tuned, we find that the lattice results obey these scaling relations. We compute the energy per particle, pressure, spin susceptibility, dineutron correlation function, and an upper bound for the superfluid critical temperature
Fortran code for generating random probability vectors, unitaries, and quantum states
Directory of Open Access Journals (Sweden)
Jonas eMaziero
2016-03-01
Full Text Available The usefulness of generating random configurations is recognized in many areas of knowledge. Fortran was born for scientific computing and has been one of the main programming languages in this area since then. And several ongoing projects targeting towards its betterment indicate that it will keep this status in the decades to come. In this article, we describe Fortran codes produced, or organized, for the generation of the following random objects: numbers, probability vectors, unitary matrices, and quantum state vectors and density matrices. Some matrix functions are also included and may be of independent interest.
Energy Technology Data Exchange (ETDEWEB)
Bang, Jeongho [Seoul National University, Seoul (Korea, Republic of); Hanyang University, Seoul (Korea, Republic of); Yoo, Seokwon [Hanyang University, Seoul (Korea, Republic of)
2014-12-15
We propose a genetic-algorithm-based method to find the unitary transformations for any desired quantum computation. We formulate a simple genetic algorithm by introducing the 'genetic parameter vector' of the unitary transformations to be found. In the genetic algorithm process, all components of the genetic parameter vectors are supposed to evolve to the solution parameters of the unitary transformations. We apply our method to find the optimal unitary transformations and to generalize the corresponding quantum algorithms for a realistic problem, the one-bit oracle decision problem, or the often-called Deutsch problem. By numerical simulations, we can faithfully find the appropriate unitary transformations to solve the problem by using our method. We analyze the quantum algorithms identified by the found unitary transformations and generalize the variant models of the original Deutsch's algorithm.
Ren, Shiwei; Ma, Xiaochuan; Yan, Shefeng; Hao, Chengpeng
2013-03-28
A unitary transformation-based algorithm is proposed for two-dimensional (2-D) direction-of-arrival (DOA) estimation of coherent signals. The problem is solved by reorganizing the covariance matrix into a block Hankel one for decorrelation first and then reconstructing a new matrix to facilitate the unitary transformation. By multiplying unitary matrices, eigenvalue decomposition and singular value decomposition are both transformed into real-valued, so that the computational complexity can be reduced significantly. In addition, a fast and computationally attractive realization of the 2-D unitary transformation is given by making a Kronecker product of the 1-D matrices. Compared with the existing 2-D algorithms, our scheme is more efficient in computation and less restrictive on the array geometry. The processing of the received data matrix before unitary transformation combines the estimation of signal parameters via rotational invariance techniques (ESPRIT)-Like method and the forward-backward averaging, which can decorrelate the impinging signalsmore thoroughly. Simulation results and computational order analysis are presented to verify the validity and effectiveness of the proposed algorithm.
Efficient Nonlocal M-Control and N-Target Controlled Unitary Gate Using Non-symmetric GHZ States
Chen, Li-Bing; Lu, Hong
2018-03-01
Efficient local implementation of a nonlocal M-control and N-target controlled unitary gate is considered. We first show that with the assistance of two non-symmetric qubit(1)-qutrit(N) Greenberger-Horne-Zeilinger (GHZ) states, a nonlocal 2-control and N-target controlled unitary gate can be constructed from 2 local two-qubit CNOT gates, 2 N local two-qutrit conditional SWAP gates, N local qutrit-qubit controlled unitary gates, and 2 N single-qutrit gates. At each target node, the two third levels of the two GHZ target qutrits are used to expose one and only one initial computational state to the local qutrit-qubit controlled unitary gate, instead of being used to hide certain states from the conditional dynamics. This scheme can be generalized straightforwardly to implement a higher-order nonlocal M-control and N-target controlled unitary gate by using M non-symmetric qubit(1)-qutrit(N) GHZ states as quantum channels. Neither the number of the additional levels of each GHZ target particle nor that of single-qutrit gates needs to increase with M. For certain realistic physical systems, the total gate time may be reduced compared with that required in previous schemes.
On the algebra of local unitary invariants of pure and mixed quantum states
International Nuclear Information System (INIS)
Vrana, Peter
2011-01-01
We study the structure of the inverse limit of the graded algebras of local unitary invariant polynomials using its Hilbert series. For k subsystems, we show that the inverse limit is a free algebra and the number of algebraically independent generators with homogenous degree 2m equals the number of conjugacy classes of index m subgroups in a free group on k - 1 generators. Similarly, we show that the inverse limit in the case of k-partite mixed state invariants is free and the number of algebraically independent generators with homogenous degree m equals the number of conjugacy classes of index m subgroups in a free group on k generators. The two statements are shown to be equivalent. To illustrate the equivalence, using the representation theory of the unitary groups, we obtain all invariants in the m = 2 graded parts and express them in a simple form both in the case of mixed and pure states. The transformation between the two forms is also derived. Analogous invariants of higher degree are also introduced.
A self-consistency check for unitary propagation of Hawking quanta
Baker, Daniel; Kodwani, Darsh; Pen, Ue-Li; Yang, I.-Sheng
2017-11-01
The black hole information paradox presumes that quantum field theory in curved space-time can provide unitary propagation from a near-horizon mode to an asymptotic Hawking quantum. Instead of invoking conjectural quantum-gravity effects to modify such an assumption, we propose a self-consistency check. We establish an analogy to Feynman’s analysis of a double-slit experiment. Feynman showed that unitary propagation of the interfering particles, namely ignoring the entanglement with the double-slit, becomes an arbitrarily reliable assumption when the screen upon which the interference pattern is projected is infinitely far away. We argue for an analogous self-consistency check for quantum field theory in curved space-time. We apply it to the propagation of Hawking quanta and test whether ignoring the entanglement with the geometry also becomes arbitrarily reliable in the limit of a large black hole. We present curious results to suggest a negative answer, and we discuss how this loss of naive unitarity in QFT might be related to a solution of the paradox based on the soft-hair-memory effect.
A unitary ESPRIT scheme of joint angle estimation for MOTS MIMO radar.
Wen, Chao; Shi, Guangming
2014-08-07
The transmit array of multi-overlapped-transmit-subarray configured bistatic multiple-input multiple-output (MOTS MIMO) radar is partitioned into a number of overlapped subarrays, which is different from the traditional bistatic MIMO radar. In this paper, a new unitary ESPRIT scheme for joint estimation of the direction of departure (DOD) and the direction of arrival (DOA) for MOTS MIMO radar is proposed. In our method, each overlapped-transmit-subarray (OTS) with the identical effective aperture is regarded as a transmit element and the characteristics that the phase delays between the two OTSs is utilized. First, the measurements corresponding to all the OTSs are partitioned into two groups which have a rotational invariance relationship with each other. Then, the properties of centro-Hermitian matrices and real-valued rotational invariance factors are exploited to double the measurement samples and reduce computational complexity. Finally, the close-formed solution of automatically paired DOAs and DODs of targets is derived in a new manner. The proposed scheme provides increased estimation accuracy with the combination of inherent advantages of MOTS MIMO radar with unitary ESPRIT. Simulation results are presented to demonstrate the effectiveness and advantage of the proposed scheme.
International Nuclear Information System (INIS)
Guenaydin, Murat; Pavlyk, Oleksandr
2005-01-01
We study the symmetries of generalized spacetimes and corresponding phase spaces defined by Jordan algebras of degree three. The generic Jordan family of formally real Jordan algebras of degree three describe extensions of the minkowskian spacetimes by an extra 'dilatonic' coordinate, whose rotation, Lorentz and conformal groups are SO(d-1), SO(d-1,1) x SO(1,1) and SO(d,2) x SO(2,1), respectively. The generalized spacetimes described by simple Jordan algebras of degree three correspond to extensions of minkowskian spacetimes in the critical dimensions (d = 3,4,6,10) by a dilatonic and extra commuting spinorial coordinates, respectively. Their rotation, Lorentz and conformal groups are those that occur in the first three rows of the Magic Square. The Freudenthal triple systems defined over these Jordan algebras describe conformally covariant phase spaces. Following hep-th/0008063, we give a unified geometric realization of the quasiconformal groups that act on their conformal phase spaces extended by an extra 'cocycle' coordinate. For the generic Jordan family the quasiconformal groups are SO(d+2,4), whose minimal unitary realizations are given. The minimal unitary representations of the quasiconformal groups F 4(4) , E 6(2) , E 7(-5) and E 8(-24) of the simple Jordan family were given in our earlier work
Regarding the unitary theory of agonist and antagonist action at presynaptic adrenoceptors.
Kalsner, S; Abdali, S A
2001-06-01
1. The linkage between potentiation of field stimulation-induced noradrenaline release and blockade of the presynaptic inhibitory effect of exogenous noradrenaline by a presynaptic antagonist was examined in superfused rabbit aorta preparations. 2. Rauwolscine clearly potentiated the release of noradrenaline in response to 100 pulses at 2 Hz but reduced the capacity of noradrenaline to inhibit transmitter release to a questionable extent, and then only when comparisons were made with untreated, rather then to rauwolscine-treated, controls. 3. Aortic preparations exposed for 60 min to rauwolscine followed by superfusion with antagonist-free Krebs for 60 min retained the potentiation of stimulation-induced transmitter release but no antagonism of the noradrenaline-induced inhibition could be detected at either of two noradrenaline concentrations when comparisons were made with rauwolscine treated controls. 4. Comparisons of the inhibitory effect of exogenous noradrenaline (1.8 x 10-6 M) on transmitter efflux in the presence and absence of rauwolscine pretreatment revealed that the antagonist enhanced rather than antagonized the presynaptic inhibition by noradrenaline. 5 It is concluded that the unitary hypothesis that asserts that antagonist enhancement of transmitter release and its blockade of noradrenaline induced inhibition are manifestations of a unitary event are not supportable.
Unitary Supermultiplets of $OSp(8^{*}|4)$ and the $AdS_{7}/CFT_{6}$ Duality
Günaydin, M; Gunaydin, Murat; Takemae, Seiji
2000-01-01
We study the unitary supermultiplets of the N=4 d=7 anti-de Sitter (AdS_7) superalgebra OSp(8^*|4), with the even subalgebra SO(6,2) X USp(4), which is the symmetry superalgebra of M-theory on AdS_7 X S^4. We give a complete classification of the positive energy doubleton and massless supermultiplets of OSp(8^*|4) . The ultra-short doubleton supermultiplets do not have a Poincaré limit in AdS_7 and correspond to superconformal field theories on the boundary of AdS_7 which can be identified with d=6 Minkowski space. We show that the six dimensional Poincare mass operator vanishes identically for the doubleton representations. By going from the compact U(4) basis of SO^*(8)=SO(6,2) to the noncompact basis SU^*(4)XD (d=6 Lorentz group times dilatations) one can associate the positive (conformal) energy representations of SO^*(8) with conformal fields transforming covariantly under the Lorentz group in d=6. The oscillator method used for the construction of the unitary supermultiplets of OSp(8^*|4) can be given ...
Three-body unitary transformations, three-body forces, and trinucleon bound state properties
International Nuclear Information System (INIS)
Haftel, M.I.
1976-01-01
A three-body unitary transformation method for the study of three-body forces is presented. Starting with a three-body Hamiltonian with two-body forces, unitary transformations are introduced to generate Hamiltonians that have both two- and three-body forces. For cases of physical interest, the two-body forces of the altered Hamiltonians are phase equivalent (for two-body scattering) to the original and the three-body force vanishes when any interparticle distance is large. Specific examples are presented. Applications for studying the possible role of three-body forces in accounting for trinucleon bound state properties are examined. Calculations of the 3 He and 3 H charge form factors and Coulomb energy difference with hyperspherical radial transformations and with conventional N-N potentials are performed. The form factor calculations demonstrate how the proposed method can help obtain improved agreement with experiment by the introduction of appropriate three-body forces. Calculations of the Coulomb energy difference confirm previous estimates concerning charge symmetry breaking in the N-N interaction
Reconstitutable nuclear reactor fuel assembly with unitary removable top nozzle subassembly
International Nuclear Information System (INIS)
Shallenberger, J.M.
1987-01-01
A reconstitutable fuel assembly is described having at least one control rod guide thimble and a top nozzle, the guide thimble including an upper extension, the top nozzle including at least one hold-down spring, an upper hold-down plate and a lower adapter plate, an improved attaching structure removably mounting the top nozzle as a unitary subassembly on the guide thimble. The attaching structure comprises: (a) a coupling member interfitting the lower adapter plate, the upper hold-down plate and the hold-down spring disposed between the plates so as to capture and retain the plates and spring together as a unitary subassembly in which the upper plate is slidably moveable along the coupling member relative to the lower plate with the spring biasing the upper plate away from the lower plate. The coupling member has spaced apart upper and lower portions with a central passageway extending for slidably receiving the upper extension of the guide thimble in a nonattached relationship in which the coupling member is slidably movable relative to the guide thimble extension for respectively inserting and removing the coupling member on and from the guide thimble extension
Nonlinear Elliptic Differential Equations with Multivalued Nonlinearities
Indian Academy of Sciences (India)
In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all R R . Assuming the existence of an upper and of a lower ...
International Nuclear Information System (INIS)
Santos, Marcelo Franca
2005-01-01
We present a simple quantum circuit that allows for the universal and deterministic manipulation of the quantum state of confined harmonic oscillators. The scheme is based on the selective interactions of the referred oscillator with an auxiliary three-level system and a classical external driving source, and enables any unitary operations on Fock states, two by two. One circuit is equivalent to a single qubit unitary logical gate on Fock states qubits. Sequences of similar protocols allow for complete, deterministic, and state-independent manipulation of the harmonic oscillator quantum state
International Nuclear Information System (INIS)
Collins, David
2010-01-01
A general framework for regarding oracle-assisted quantum algorithms as tools for discriminating among unitary transformations is described. This framework is applied to the Deutsch-Jozsa problem and all possible quantum algorithms which solve the problem with certainty using oracle unitaries in a particular form are derived. It is also used to show that any quantum algorithm that solves the Deutsch-Jozsa problem starting with a quantum system in a particular class of initial, thermal equilibrium-based states of the type encountered in solution-state NMR can only succeed with greater probability than a classical algorithm when the problem size n exceeds ∼10 5 .
International Nuclear Information System (INIS)
Kiritsis, E.B.
1987-01-01
N = 2 superconformal-invariant theories are studied and their general structure is analyzed. The geometry of N = 2 complex superspace is developed as a tool to study the correlation functions of the theories above. The Ward identities of the global N = 2 superconformal symmetry are solved, to restrict the form of correlation functions. Advantage is taken of the existence of the degenerate operators to derive the ''fusion'' rules for the unitary minimal systems with c<1. In particular, the closure of the operator algebra for such systems is shown. The c = (1/3 minimal system is analyzed and its two-, three-, and four-point functions as well as its operator algebra are calculated explicitly
Some new aspects of the unitary and analytic VMD model for electromagnetic structure of hadrons
International Nuclear Information System (INIS)
Dubnickova, A.Z.; Dubnicka, S.
1991-01-01
Recent J/φ→π + π - data analyzed along with all existing pion form factor data by means of the unitary and analytic vector dominance model manifest a strong evidence of the third excited state of the ρ(770) meson with resonance parameters m ρ ''' =2169±46 MeV and Γ ρ ''' =319±136 MeV. A simultaneous analysis of all reliable proton and neutron form factor data in the space-like region along with data on the total cross section of electron-positron annihilation into a proton-antiproton pair by the same model predicts an unexpected inequality σ tot (e e- +→nn-bar)>>σ tot (e + e - →pp-bar) just above the nucleon-antinucleon threshold and also surprisingly large one-photon electromagnetic corrections to the strong J/φ→pp-bar and J/φ→nn-bar decay amplitudes. 21 refs.; 5 figs.; 1 tab
First and second sound of a unitary Fermi gas in highly oblate harmonic traps
International Nuclear Information System (INIS)
Hu, Hui; Dyke, Paul; Vale, Chris J; Liu, Xia-Ji
2014-01-01
We theoretically investigate first and second sound modes of a unitary Fermi gas trapped in a highly oblate harmonic trap at finite temperatures. Following the idea by Stringari and co-workers (2010 Phys. Rev. Lett. 105 150402), we argue that these modes can be described by the simplified two-dimensional two-fluid hydrodynamic equations. Two possible schemes—sound wave propagation and breathing mode excitation—are considered. We calculate the sound wave velocities and discretized sound mode frequencies, as a function of temperature. We find that in both schemes, the coupling between first and second sound modes is large enough to induce significant density fluctuations, suggesting that second sound can be directly observed by measuring in situ density profiles. The frequency of the second sound breathing mode is found to be highly sensitive to the superfluid density. (paper)
Stability of the Zagreb realization of the Carnegie-Mellon-Berkeley coupled-channels unitary model
Osmanović, H.; Ceci, S.; Švarc, A.; Hadžimehmedović, M.; Stahov, J.
2011-09-01
In Hadžimehmedović [Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.84.035204 84, 035204 (2011)] we have used the Zagreb realization of Carnegie-Melon-Berkeley coupled-channel, unitary model as a tool for extracting pole positions from the world collection of partial-wave data, with the aim of eliminating model dependence in pole-search procedures. In order that the method is sensible, we in this paper discuss the stability of the method with respect to the strong variation of different model ingredients. We show that the Zagreb CMB procedure is very stable with strong variation of the model assumptions and that it can reliably predict the pole positions of the fitted partial-wave amplitudes.
Stability of the Zagreb realization of the Carnegie-Mellon-Berkeley coupled-channels unitary model
International Nuclear Information System (INIS)
Osmanovic, H.; Hadzimehmedovic, M.; Stahov, J.; Ceci, S.; Svarc, A.
2011-01-01
In Hadzimehmedovicet al.[Phys. Rev. C 84, 035204 (2011)] we have used the Zagreb realization of Carnegie-Melon-Berkeley coupled-channel, unitary model as a tool for extracting pole positions from the world collection of partial-wave data, with the aim of eliminating model dependence in pole-search procedures. In order that the method is sensible, we in this paper discuss the stability of the method with respect to the strong variation of different model ingredients. We show that the Zagreb CMB procedure is very stable with strong variation of the model assumptions and that it can reliably predict the pole positions of the fitted partial-wave amplitudes.
11 Foot Unitary Plan Tunnel Facility Optical Improvement Large Window Analysis
Hawke, Veronica M.
2015-01-01
The test section of the 11 by 11-foot Unitary Plan Transonic Wind Tunnel (11-foot UPWT) may receive an upgrade of larger optical windows on both the North and South sides. These new larger windows will provide better access for optical imaging of test article flow phenomena including surface and off body flow characteristics. The installation of these new larger windows will likely produce a change to the aerodynamic characteristics of the flow in the Test Section. In an effort understand the effect of this change, a computational model was employed to predict the flows through the slotted walls, in the test section and around the model before and after the tunnel modification. This report documents the solid CAD model that was created and the inviscid computational analysis that was completed as a preliminary estimate of the effect of the changes.
Life-cycle cost and payback period analysis for commercial unitary air conditioners
Energy Technology Data Exchange (ETDEWEB)
Rosenquist, Greg; Coughlin, Katie; Dale, Larry; McMahon, James; Meyers, Steve
2004-03-31
This report describes an analysis of the economic impacts of possible energy efficiency standards for commercial unitary air conditioners and heat pumps on individual customers in terms of two metrics: life-cycle cost (LCC) and payback period (PBP). For each of the two equipment classes considered, the 11.5 EER provides the largest mean LCC savings. The results show how the savings vary among customers facing different electricity prices and other conditions. At 11.5 EER, at least 80% of the users achieve a positive LCC savings. At 12.0 EER, the maximum efficiency analyzed, mean LCC savings are lower but still positive. For the {ge} $65,000 Btu/h to <135,000 Btu/h equipment class, 59% of users achieve a positive LCC savings. For the $135,000 Btu/h to <240,000 Btu/h equipment class, 91% of users achieve a positive LCC savings.
Multiply-ionized atoms isolated at low energy in a unitary Penning trap
International Nuclear Information System (INIS)
Tan, Joseph N.; Hoogerheide, Shannon Fogwell; Guise, Nicholas D.; Brewer, Samuel M.
2015-01-01
Ions extracted from the EBIT at NIST are slowed and captured in a Penning trap that is made very compact (< 150 cm 3 ) by a unitary architecture [1]. Measurements after 1 ms of ion storage indicate that the isolated ions are distributed with 5.5(5) eV of energy spread, which is roughly 2 orders of magnitude lower than expected in the ion source, without implementing any active cooling [2]. Some experiments are discussed. One goal is to produce one-electron ions in high angular momentum states for studying optical transitions between Rydberg states that could potentially enable new tests of quantum electrodynamics (QED) and determinations of fundamental constants [3
Penning traps with unitary architecture for storage of highly charged ions
International Nuclear Information System (INIS)
Tan, Joseph N.; Guise, Nicholas D.; Brewer, Samuel M.
2012-01-01
Penning traps are made extremely compact by embedding rare-earth permanent magnets in the electrode structure. Axially-oriented NdFeB magnets are used in unitary architectures that couple the electric and magnetic components into an integrated structure. We have constructed a two-magnet Penning trap with radial access to enable the use of laser or atomic beams, as well as the collection of light. An experimental apparatus equipped with ion optics is installed at the NIST electron beam ion trap (EBIT) facility, constrained to fit within 1 meter at the end of a horizontal beamline for transporting highly charged ions. Highly charged ions of neon and argon, extracted with initial energies up to 4000 eV per unit charge, are captured and stored to study the confinement properties of a one-magnet trap and a two-magnet trap. Design considerations and some test results are discussed.
Penning traps with unitary architecture for storage of highly charged ions.
Tan, Joseph N; Brewer, Samuel M; Guise, Nicholas D
2012-02-01
Penning traps are made extremely compact by embedding rare-earth permanent magnets in the electrode structure. Axially-oriented NdFeB magnets are used in unitary architectures that couple the electric and magnetic components into an integrated structure. We have constructed a two-magnet Penning trap with radial access to enable the use of laser or atomic beams, as well as the collection of light. An experimental apparatus equipped with ion optics is installed at the NIST electron beam ion trap (EBIT) facility, constrained to fit within 1 meter at the end of a horizontal beamline for transporting highly charged ions. Highly charged ions of neon and argon, extracted with initial energies up to 4000 eV per unit charge, are captured and stored to study the confinement properties of a one-magnet trap and a two-magnet trap. Design considerations and some test results are discussed.
DEFF Research Database (Denmark)
Möllers, Jan
2013-01-01
(\\pi)\\subseteq\\mathfrak{p}_{\\mathbb{C}}^*$. The associated variety $Ass(\\pi)$ is the closure of a single nilpotent $K_{\\mathbb{C}}$-orbit $\\mathcal{O}^{K_{\\mathbb{C}}}\\subseteq\\mathfrak{p}_{\\mathbb{C}}^*$ which corresponds by the Kostant-Sekiguchi correspondence to a nilpotent coadjoint $G$-orbit $\\mathcal{O}^G\\subseteq\\mathfrak{g}^*$. The known Schr\\"odinger...... model of $\\pi$ is a realization on $L^2(\\mathcal{O})$, where $\\mathcal{O}\\subseteq\\mathcal{O}^G$ is a Lagrangian submanifold. We construct an intertwining operator from the Schr\\"odinger model to the new Fock model, the generalized Segal-Bargmann transform, which gives a geometric quantization...... and as integral kernel of the Segal-Bargmann transform. As a corollary to our construction we also obtain the integral kernel of the unitary inversion operator in the Schr\\"odinger model in terms of a multivariable $J$-Bessel function....
Unitary evolution and uniqueness of the Fock quantization in flat cosmologies
International Nuclear Information System (INIS)
Marugán, G A Mena; Błas, D Martín-de; Gomar, L Castelló
2013-01-01
We study the Fock quantization of scalar fields with a time dependent mass in cosmological scenarios with flat compact spatial sections. This framework describes physically interesting situations like, e.g., cosmological perturbations in flat Friedmann-Robertson-Walker spacetimes, generally including a suitable scaling of them by a background function. We prove that the requirements of vacuum invariance under the spatial isometries and of a unitary quantum dynamics select (a) a unique canonical pair of field variables among all those related by time dependent canonical transformations which scale the field configurations, and (b) a unique Fock representation for the canonical commutation relations of this pair of variables. The proof is generalizable to any compact spatial topology in three or less dimensions, though we focus on the case of the three-torus owing to the especially relevant implications.
On the ratio probability of the smallest eigenvalues in the Laguerre unitary ensemble
Atkin, Max R.; Charlier, Christophe; Zohren, Stefan
2018-04-01
We study the probability distribution of the ratio between the second smallest and smallest eigenvalue in the Laguerre unitary ensemble. The probability that this ratio is greater than r > 1 is expressed in terms of an Hankel determinant with a perturbed Laguerre weight. The limiting probability distribution for the ratio as is found as an integral over containing two functions q 1(x) and q 2(x). These functions satisfy a system of two coupled Painlevé V equations, which are derived from a Lax pair of a Riemann-Hilbert problem. We compute asymptotic behaviours of these functions as and , as well as large n asymptotics for the associated Hankel determinants in several regimes of r and x.
Unitary input DEA model to identify beef cattle production systems typologies
Directory of Open Access Journals (Sweden)
Eliane Gonçalves Gomes
2012-08-01
Full Text Available The cow-calf beef production sector in Brazil has a wide variety of operating systems. This suggests the identification and the characterization of homogeneous regions of production, with consequent implementation of actions to achieve its sustainability. In this paper we attempted to measure the performance of 21 livestock modal production systems, in their cow-calf phase. We measured the performance of these systems, considering husbandry and production variables. The proposed approach is based on data envelopment analysis (DEA. We used unitary input DEA model, with apparent input orientation, together with the efficiency measurements generated by the inverted DEA frontier. We identified five modal production systems typologies, using the isoefficiency layers approach. The results showed that the knowledge and the processes management are the most important factors for improving the efficiency of beef cattle production systems.
Fu, Y. B.; Ogden, R. W.
2001-05-01
This collection of papers by leading researchers in the field of finite, nonlinear elasticity concerns itself with the behavior of objects that deform when external forces or temperature gradients are applied. This process is extremely important in many industrial settings, such as aerospace and rubber industries. This book covers the various aspects of the subject comprehensively with careful explanations of the basic theories and individual chapters each covering a different research direction. The authors discuss the use of symbolic manipulation software as well as computer algorithm issues. The emphasis is placed firmly on covering modern, recent developments, rather than the very theoretical approach often found. The book will be an excellent reference for both beginners and specialists in engineering, applied mathematics and physics.
Rajasekar, Shanmuganathan
2016-01-01
This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...
Nilsen, Sven
2010-01-01
The purpose of the article is to study the development of educational policy in Norway in the field of the unitary school system and to analyse whether the development can be seen as a move towards increasing inclusion. The educational policy, when seen over a long time span, has progressively aimed towards the development of a common compulsory…
Mideros, A.; O'Donoghue, C.
2014-01-01
We examine the effect of unconditional cash transfers by a unitary discrete labour supply model. We argue that there is no negative income effect of social transfers in the case of poor adults because leisure could not be assumed to be a normal good under such conditions. Using data from the
Directory of Open Access Journals (Sweden)
Nikos Irges
2017-11-01
Full Text Available We perform an old school, one-loop renormalization of the Abelian–Higgs model in the Unitary and Rξ gauges, focused on the scalar potential and the gauge boson mass. Our goal is to demonstrate in this simple context the validity of the Unitary gauge at the quantum level, which could open the way for an until now (mostly avoided framework for loop computations. We indeed find that the Unitary gauge is consistent and equivalent to the Rξ gauge at the level of β-functions. Then we compare the renormalized, finite, one-loop Higgs potential in the two gauges and we again find equivalence. This equivalence needs not only a complete cancellation of the gauge fixing parameter ξ from the Rξ gauge potential but also requires its ξ-independent part to be equal to the Unitary gauge result. We follow the quantum behavior of the system by plotting Renormalization Group trajectories and Lines of Constant Physics, with the former the well known curves and with the latter, determined by the finite parts of the counter-terms, particularly well suited for a comparison with non-perturbative studies.
2010-10-01
... granted for a period of two years if the cost of capital for interstate exchange service is so low as to... required rate of return for interstate exchange access services. (b) A petition for exclusion from unitary... and for individual treatment in determining authorized return for interstate exchange access service...
Tonks-Girardeau and super-Tonks-Girardeau states of a trapped one-dimensional spinor Bose gas
International Nuclear Information System (INIS)
Girardeau, M. D.
2011-01-01
A harmonically trapped, ultracold, one-dimensional (1D) spin-1 Bose gas with strongly repulsive or attractive 1D even-wave interactions induced by a three-dimensional (3D) Feshbach resonance is studied. The exact ground state, a hybrid of Tonks-Girardeau (TG) and ideal Fermi gases, is constructed in the TG limit of infinite even-wave repulsion by a spinor Fermi-Bose mapping to a spinless ideal Fermi gas. It is then shown that in the limit of infinite even-wave attraction this same state remains an exact many-body eigenstate, now highly excited relative to the collapsed generalized McGuire-cluster ground state, showing that the hybrid TG state is completely stable against collapse to this cluster ground state under a sudden switch from infinite repulsion to infinite attraction. It is shown to be the TG limit of a hybrid super-Tonks-Girardeau (STG) state, which is metastable under a sudden switch from finite but very strong repulsion to finite but very strong attraction. It should be possible to create it experimentally by a sudden switch from strongly repulsive to strongly attractive interaction, as in the recent Innsbruck experiment on a spin-polarized bosonic STG gas. In the case of strong attraction, there should also exist another STG state of much lower energy, consisting of strongly bound dimers, a bosonic analog of a recently predicted STG state which is an ultracold gas of strongly bound bosonic dimers of fermionic atoms, but it is shown that this STG state cannot be created by such a switch from strong repulsion to strong attraction.
International Nuclear Information System (INIS)
Cagnazzo, Alessandra; Sorokin, Dmitri; Tseytlin, Arkady A; Wulff, Linus
2013-01-01
We demonstrate the equivalence between the worldsheet one-loop partition functions computed near classical string solutions in the Green–Schwarz and in the pure–spinor formulations of superstrings in AdS 5 × S 5 . While their bosonic sectors are the same in the conformal gauge, their fermionic sectors superficially appear to be very different (first versus second-derivative kinetic terms, presence versus absence of fermionic gauge symmetry). Still, we show that the quadratic fluctuation spectrum of 16 fermionic modes of the pure–spinor formulation is the same as in the Green–Schwarz superstring and the contribution of the extra ‘massless’ fermionic modes cancels against that of the pure–spinor ghosts. We also provide evidence for a similar semiclassical equivalence between the Green–Schwarz and the hybrid formulations of superstrings in AdS 2 × S 2 × T 6 by studying several particular examples of string solutions. (paper)
Geometric phases for nonlinear coherent and squeezed states
International Nuclear Information System (INIS)
Yang Dabao; Chen Ying; Chen Jingling; Zhang Fulin
2011-01-01
The geometric phases for standard coherent states which are widely used in quantum optics have attracted considerable attention. Nevertheless, few physicists consider the counterparts of nonlinear coherent states, which are useful in the description of the motion of a trapped ion. In this paper, the non-unitary and non-cyclic geometric phases for two nonlinear coherent and one squeezed states are formulated, respectively. Moreover, some of their common properties are discussed, such as gauge invariance, non-locality and nonlinear effects. The nonlinear functions have dramatic impacts on the evolution of the corresponding geometric phases. They speed the evolution up or down. So this property may have an application in controlling or measuring geometric phase. For the squeezed case, when the squeezed parameter r → ∞, the limiting value of the geometric phase is also determined by a nonlinear function at a given time and angular velocity. In addition, the geometric phases for standard coherent and squeezed states are obtained under a particular condition. When the time evolution undergoes a period, their corresponding cyclic geometric phases are achieved as well. And the distinction between the geometric phases of the two coherent states may be regarded as a geometric criterion.
Optimization of nonlinear wave function parameters
International Nuclear Information System (INIS)
Shepard, R.; Minkoff, M.; Chemistry
2006-01-01
An energy-based optimization method is presented for our recently developed nonlinear wave function expansion form for electronic wave functions. This expansion form is based on spin eigenfunctions, using the graphical unitary group approach (GUGA). The wave function is expanded in a basis of product functions, allowing application to closed-shell and open-shell systems and to ground and excited electronic states. Each product basis function is itself a multiconfigurational function that depends on a relatively small number of nonlinear parameters called arc factors. The energy-based optimization is formulated in terms of analytic arc factor gradients and orbital-level Hamiltonian matrices that correspond to a specific kind of uncontraction of each of the product basis functions. These orbital-level Hamiltonian matrices give an intuitive representation of the energy in terms of disjoint subsets of the arc factors, they provide for an efficient computation of gradients of the energy with respect to the arc factors, and they allow optimal arc factors to be determined in closed form for subspaces of the full variation problem. Timings for energy and arc factor gradient computations involving expansion spaces of > 10 24 configuration state functions are reported. Preliminary convergence studies and molecular dissociation curves are presented for some small molecules
[Nonlinear magnetohydrodynamics
International Nuclear Information System (INIS)
1994-01-01
Resistive MHD equilibrium, even for small resistivity, differs greatly from ideal equilibrium, as do the dynamical consequences of its instabilities. The requirement, imposed by Faraday's law, that time independent magnetic fields imply curl-free electric fields, greatly restricts the electric fields allowed inside a finite-resistivity plasma. If there is no flow and the implications of the Ohm's law are taken into account (and they need not be, for ideal equilibria), the electric field must equal the resistivity times the current density. The vanishing of the divergence of the current density then provides a partial differential equation which, together with boundary conditions, uniquely determines the scalar potential, the electric field, and the current density, for any given resistivity profile. The situation parallels closely that of driven shear flows in hydrodynamics, in that while dissipative steady states are somewhat more complex than ideal ones, there are vastly fewer of them to consider. Seen in this light, the vast majority of ideal MHD equilibria are just irrelevant, incapable of being set up in the first place. The steady state whose stability thresholds and nonlinear behavior needs to be investigated ceases to be an arbitrary ad hoc exercise dependent upon the whim of the investigator, but is determined by boundary conditions and choice of resistivity profile
Westra, H.J.R.
2012-01-01
In this Thesis, nonlinear dynamics and nonlinear interactions are studied from a micromechanical point of view. Single and doubly clamped beams are used as model systems where nonlinearity plays an important role. The nonlinearity also gives rise to rich dynamic behavior with phenomena like
Energy Technology Data Exchange (ETDEWEB)
Berkovits, Nathan [ICTP South American Institute for Fundamental Research,Instituto de Física Teórica, UNESP - Universidade Estadual Paulista,Rua Dr. Bento T. Ferraz 271, 01140-070, São Paulo, SP (Brazil)
2016-06-21
The pure spinor formalism for the superstring can be formulated as a twisted N=2 worldsheet theory with fermionic generators j{sub BRST} and composite b ghost. After untwisting the formalism to an N=1 worldsheet theory with fermionic stress tensor j{sub BRST}+b, the worldsheet variables combine into N=1 worldsheet superfields X{sup m} and Θ{sup α} together with a superfield constraint relating DX{sup m} and DΘ{sup α}. The constraint implies that the worldsheet superpartner of θ{sup α} is a bosonic twistor variable, and different solutions of the constraint give rise to the pure spinor or extended RNS formalisms, as well as a new twistor-string formalism with manifest N=1 worldsheet supersymmetry. These N=1 worldsheet methods generalize in curved Ramond-Ramond backgrounds, and a manifestly N=1 worldsheet supersymmetric action is proposed for the superstring in an AdS{sub 5}×S{sup 5} background in terms of the twistor superfields. This AdS{sub 5}×S{sup 5} worldsheet action is a remarkably simple fermionic coset model with manifest PSU(2,2|4) symmetry and might be useful for computing AdS{sub 5}×S{sup 5} superstring scattering amplitudes.
International Nuclear Information System (INIS)
Akemann, G.; Bender, M.
2010-01-01
We consider a family of chiral non-Hermitian Gaussian random matrices in the unitarily invariant symmetry class. The eigenvalue distribution in this model is expressed in terms of Laguerre polynomials in the complex plane. These are orthogonal with respect to a non-Gaussian weight including a modified Bessel function of the second kind, and we give an elementary proof for this. In the large n limit, the eigenvalue statistics at the spectral edge close to the real axis are described by the same family of kernels interpolating between Airy and Poisson that was recently found by one of the authors for the elliptic Ginibre ensemble. We conclude that this scaling limit is universal, appearing for two different non-Hermitian random matrix ensembles with unitary symmetry. As a second result we give an equivalent form for the interpolating Airy kernel in terms of a single real integral, similar to representations for the asymptotic kernel in the bulk and at the hard edge of the spectrum. This makes its structure as a one-parameter deformation of the Airy kernel more transparent.
Local unitary versus local Clifford equivalence of stabilizer and graph states
International Nuclear Information System (INIS)
Zeng, Bei; Chung, Hyeyoun; Cross, Andrew W.; Chuang, Isaac L.
2007-01-01
The equivalence of stabilizer states under local transformations is of fundamental interest in understanding properties and uses of entanglement. Two stabilizer states are equivalent under the usual stochastic local operations and classical communication criterion if and only if they are equivalent under local unitary (LU) operations. More surprisingly, under certain conditions, two LU-equivalent stabilizer states are also equivalent under local Clifford (LC) operations, as was shown by Van den Nest et al. [Phys. Rev. A 71, 062323 (2005)]. Here, we broaden the class of stabilizer states for which LU equivalence implies LC equivalence (LU LC) to include all stabilizer states represented by graphs with cycles of length neither 3 nor 4. To compare our result with Van den Nest et al.'s, we show that any stabilizer state of distance δ=2 is beyond their criterion. We then further prove that LU LC holds for a more general class of stabilizer states of δ=2. We also explicitly construct graphs representing δ>2 stabilizer states which are beyond their criterion: we identify all 58 graphs with up to 11 vertices and construct graphs with 2 m -1 (m≥4) vertices using quantum error-correcting codes which have non-Clifford transversal gates
Anatomy of the Higgs Boson Decay into Two Photons in the Unitary Gauge
Directory of Open Access Journals (Sweden)
Athanasios Dedes
2013-01-01
Full Text Available We review and clarify computational issues about the W -gauge boson one-loop contribution to the H → γ γ decay amplitude, in the unitary gauge and in the Standard Model. We find that highly divergent integrals depend upon the choice of shifting momenta with arbitrary vectors. One particular combination of these arbitrary vectors reduces the superficial divergency down to a logarithmic one. The remaining ambiguity is then fixed by exploiting gauge invariance and the Goldstone Boson Equivalence Theorem. Our method is strictly realised in four dimensions. The result for the amplitude agrees with the “famous” one obtained using dimensional regularisation (DR in the limit d → 4 , where d is the number of spatial dimensions in Euclidean space. At the exact equality d = 4 , a three-sphere surface term appears that renders the Ward Identities and the equivalence theorem inconsistent. We also examined a recently proposed four-dimensional regularisation scheme and found agreement with the DR outcome.
Schweiner, Frank; Laturner, Jeanine; Main, Jörg; Wunner, Günter
2017-11-01
Until now only for specific crossovers between Poissonian statistics (P), the statistics of a Gaussian orthogonal ensemble (GOE), or the statistics of a Gaussian unitary ensemble (GUE) have analytical formulas for the level spacing distribution function been derived within random matrix theory. We investigate arbitrary crossovers in the triangle between all three statistics. To this aim we propose an according formula for the level spacing distribution function depending on two parameters. Comparing the behavior of our formula for the special cases of P→GUE, P→GOE, and GOE→GUE with the results from random matrix theory, we prove that these crossovers are described reasonably. Recent investigations by F. Schweiner et al. [Phys. Rev. E 95, 062205 (2017)2470-004510.1103/PhysRevE.95.062205] have shown that the Hamiltonian of magnetoexcitons in cubic semiconductors can exhibit all three statistics in dependence on the system parameters. Evaluating the numerical results for magnetoexcitons in dependence on the excitation energy and on a parameter connected with the cubic valence band structure and comparing the results with the formula proposed allows us to distinguish between regular and chaotic behavior as well as between existent or broken antiunitary symmetries. Increasing one of the two parameters, transitions between different crossovers, e.g., from the P→GOE to the P→GUE crossover, are observed and discussed.
Macroscopicity of quantum superpositions on a one-parameter unitary path in Hilbert space
Volkoff, T. J.; Whaley, K. B.
2014-12-01
We analyze quantum states formed as superpositions of an initial pure product state and its image under local unitary evolution, using two measurement-based measures of superposition size: one based on the optimal quantum binary distinguishability of the branches of the superposition and another based on the ratio of the maximal quantum Fisher information of the superposition to that of its branches, i.e., the relative metrological usefulness of the superposition. A general formula for the effective sizes of these states according to the branch-distinguishability measure is obtained and applied to superposition states of N quantum harmonic oscillators composed of Gaussian branches. Considering optimal distinguishability of pure states on a time-evolution path leads naturally to a notion of distinguishability time that generalizes the well-known orthogonalization times of Mandelstam and Tamm and Margolus and Levitin. We further show that the distinguishability time provides a compact operational expression for the superposition size measure based on the relative quantum Fisher information. By restricting the maximization procedure in the definition of this measure to an appropriate algebra of observables, we show that the superposition size of, e.g., NOON states and hierarchical cat states, can scale linearly with the number of elementary particles comprising the superposition state, implying precision scaling inversely with the total number of photons when these states are employed as probes in quantum parameter estimation of a 1-local Hamiltonian in this algebra.
Directory of Open Access Journals (Sweden)
Tomas eVeloz
2015-11-01
Full Text Available Quantum models of concept combinations have been successful in representing various experimental situations that cannot be accommodated by traditional models based on classical probability or fuzzy set theory. In many cases, the focus has been on producing a representation that fits experimental results to validate quantum models. However, these representations are not always consistent with the cognitive modeling principles. Moreover, some important issues related to the representation of concepts such as the dimensionality of the realization space, the uniqueness of solutions, and the compatibility of measurements, have been overlooked.In this paper, we provide a dimensional analysis of the realization space for the two-sector Fock space model for conjunction of concepts focusing on the first and second sectors separately. We then introduce various representation of concepts that arise from the use of unitary operators in the realization space. In these concrete representations, a pair of concepts and their combination are modeled by a single conceptual state, and by a collection of exemplar-dependent operators. Therefore, they are consistent with cognitive modeling principles. %Moreover, we show that each representation is unique up to change of basis. This framework not only provides a uniform approach to model an entire data set, but, because all measurement operators are expressed in the same basis, allows us to address the question of compatibility of measurements. In particular, we present evidence that it may be possible to predict non-commutative effects from partial measurements of conceptual combinations.
Veloz, Tomas; Desjardins, Sylvie
2015-01-01
Quantum models of concept combinations have been successful in representing various experimental situations that cannot be accommodated by traditional models based on classical probability or fuzzy set theory. In many cases, the focus has been on producing a representation that fits experimental results to validate quantum models. However, these representations are not always consistent with the cognitive modeling principles. Moreover, some important issues related to the representation of concepts such as the dimensionality of the realization space, the uniqueness of solutions, and the compatibility of measurements, have been overlooked. In this paper, we provide a dimensional analysis of the realization space for the two-sector Fock space model for conjunction of concepts focusing on the first and second sectors separately. We then introduce various representation of concepts that arise from the use of unitary operators in the realization space. In these concrete representations, a pair of concepts and their combination are modeled by a single conceptual state, and by a collection of exemplar-dependent operators. Therefore, they are consistent with cognitive modeling principles. This framework not only provides a uniform approach to model an entire data set, but, because all measurement operators are expressed in the same basis, allows us to address the question of compatibility of measurements. In particular, we present evidence that it may be possible to predict non-commutative effects from partial measurements of conceptual combinations.
International Nuclear Information System (INIS)
Yao, Yao
2015-01-01
The deep sub-Ohmic spin–boson model shows a longstanding non-Markovian coherence at low temperature. Motivating to quench this robust coherence, the thermal effect is unitarily incorporated into the time evolution of the model, which is calculated by the adaptive time-dependent density matrix renormalization group algorithm combined with the orthogonal polynomials theory. Via introducing a unitary heating operator to the bosonic bath, the bath is heated up so that a majority portion of the bosonic excited states is occupied. It is found in this situation the coherence of the spin is quickly quenched even in the coherent regime, in which the non-Markovian feature dominates. With this finding we come up with a novel way to implement the unitary equilibration, the essential term of the eigenstate-thermalization hypothesis, through a short-time evolution of the model
International Nuclear Information System (INIS)
Kobe, D.H.
1989-01-01
The Berry phase is derived in a manifestly gauge-invariant way, without adiabatic or cyclic requirements. It is invariant under unitary transformations, contrary to recent assertions. A time-dependent generalized harmonic oscillator is taken as an example. The energy of the system is not in general the Hamiltonian. An energy, the time derivative of which is the power, is obtained from the equation of motion. When the system is quantized, the Berry phase is zero, and is invariant under unitary transformations. If the energy is chosen incorrectly to be the Hamiltonian, a nonzero Berry phase is obtained. In this case the total phase, the sun of the dynamical and Berry phases, is equal to the correct total phase through first order in perturbation theory. (author)
Wright, Barbara W
2010-01-01
The importance of nurses' participation in health policy leadership is discussed within the context of Rogers' science of unitary human beings, Barrett's power theory, and one nurse-politician's experience. Nurses have a major role to play in resolving public policy issues that influence the health of people. A brief review of the history of nurses in the political arena is presented. Research related to power and trust is reviewed. Suggested strategies for success in political situations are offered.
Ahmad Kamaruddin, Saadi Bin; Md Ghani, Nor Azura; Mohamed Ramli, Norazan
2013-04-01
The concept of Private Financial Initiative (PFI) has been implemented by many developed countries as an innovative way for the governments to improve future public service delivery and infrastructure procurement. However, the idea is just about to germinate in Malaysia and its success is still vague. The major phase that needs to be given main attention in this agenda is value for money whereby optimum efficiency and effectiveness of each expense is attained. Therefore, at the early stage of this study, estimating unitary charges or materials price indexes in each region in Malaysia was the key objective. This particular study aims to discover the best forecasting method to estimate unitary charges price indexes in construction industry by different regions in the central region of Peninsular Malaysia (Selangor, Federal Territory of Kuala Lumpur, Negeri Sembilan, and Melaka). The unitary charges indexes data used were from year 2002 to 2011 monthly data of different states in the central region Peninsular Malaysia, comprising price indexes of aggregate, sand, steel reinforcement, ready mix concrete, bricks and partition, roof material, floor and wall finishes, ceiling, plumbing materials, sanitary fittings, paint, glass, steel and metal sections, timber and plywood. At the end of the study, it was found that Backpropagation Neural Network with linear transfer function produced the most accurate and reliable results for estimating unitary charges price indexes in every states in central region Peninsular Malaysia based on the Root Mean Squared Errors, where the values for both estimation and evaluation sets were approximately zero and highly significant at p Malaysia. The estimated price indexes of construction materials will contribute significantly to the value for money of PFI as well as towards Malaysian economical growth.
Sen, Avijit; Sen, Sangita; Samanta, Pradipta Kumar; Mukherjee, Debashis
2015-04-05
We present here a comprehensive account of the formulation and pilot applications of the second-order perturbative analogue of the recently proposed unitary group adapted state-specific multireference coupled cluster theory (UGA-SSMRCC), which we call as the UGA-SSMRPT2. We also discuss the essential similarities and differences between the UGA-SSMRPT2 and the allied SA-SSMRPT2. Our theory, like its parent UGA-SSMRCC formalism, is size-extensive. However, because of the noninvariance of the theory with respect to the transformation among the active orbitals, it requires the use of localized orbitals to ensure size-consistency. We have demonstrated the performance of the formalism with a set of pilot applications, exploring (a) the accuracy of the potential energy surface (PES) of a set of small prototypical difficult molecules in their various low-lying states, using natural, pseudocanonical and localized orbitals and compared the respective nonparallelity errors (NPE) and the mean average deviations (MAD) vis-a-vis the full CI results with the same basis; (b) the efficacy of localized active orbitals to ensure and demonstrate manifest size-consistency with respect to fragmentation. We found that natural orbitals lead to the best overall PES, as evidenced by the NPE and MAD values. The MRMP2 results for individual states and of the MCQDPT2 for multiple states displaying avoided curve crossings are uniformly poorer as compared with the UGA-SSMRPT2 results. The striking aspect of the size-consistency check is the complete insensitivity of the sum of fragment energies with given fragment spin-multiplicities, which are obtained as the asymptotic limit of super-molecules with different coupled spins. © 2015 Wiley Periodicals, Inc.
Technical skills assessment toolbox: a review using the unitary framework of validity.
Ghaderi, Iman; Manji, Farouq; Park, Yoon Soo; Juul, Dorthea; Ott, Michael; Harris, Ilene; Farrell, Timothy M
2015-02-01
The purpose of this study was to create a technical skills assessment toolbox for 35 basic and advanced skills/procedures that comprise the American College of Surgeons (ACS)/Association of Program Directors in Surgery (APDS) surgical skills curriculum and to provide a critical appraisal of the included tools, using contemporary framework of validity. Competency-based training has become the predominant model in surgical education and assessment of performance is an essential component. Assessment methods must produce valid results to accurately determine the level of competency. A search was performed, using PubMed and Google Scholar, to identify tools that have been developed for assessment of the targeted technical skills. A total of 23 assessment tools for the 35 ACS/APDS skills modules were identified. Some tools, such as Operative Performance Rating System (OSATS) and Objective Structured Assessment of Technical Skill (OPRS), have been tested for more than 1 procedure. Therefore, 30 modules had at least 1 assessment tool, with some common surgical procedures being addressed by several tools. Five modules had none. Only 3 studies used Messick's framework to design their validity studies. The remaining studies used an outdated framework on the basis of "types of validity." When analyzed using the contemporary framework, few of these studies demonstrated validity for content, internal structure, and relationship to other variables. This study provides an assessment toolbox for common surgical skills/procedures. Our review shows that few authors have used the contemporary unitary concept of validity for development of their assessment tools. As we progress toward competency-based training, future studies should provide evidence for various sources of validity using the contemporary framework.
Plymen, Roger; Robinson, Paul
1995-01-01
Infinite-dimensional Clifford algebras and their Fock representations originated in the quantum mechanical study of electrons. In this book, the authors give a definitive account of the various Clifford algebras over a real Hilbert space and of their Fock representations. A careful consideration of the latter's transformation properties under Bogoliubov automorphisms leads to the restricted orthogonal group. From there, a study of inner Bogoliubov automorphisms enables the authors to construct infinite-dimensional spin groups. Apart from assuming a basic background in functional analysis and operator algebras, the presentation is self-contained with complete proofs, many of which offer a fresh perspective on the subject.
Lounesto, Pertti
1993-01-01
This volume contains a facsimile reproduction of Marcel Riesz's notes of a set of lectures he delivered at the University of Maryland, College Park, between October 1957 and January 1958, which has not been formally published to date This seminal material (arranged in four chapters), which contributed greatly to the start of modern research on Clifford algebras, is supplemented in this book by notes which Riesz dictated to E Folke Bolinder in the following year and which were intended to be a fifth chapter of the Riesz lecture notes In addition, Riesz's work on Clifford algebra is put into an historical perspective in a separate review by P Lounesto As well as providing an introduction to Clifford algebra, this volume will be of value to those interested in the history of mathematics
A new fourth-order Fourier-Bessel split-step method for the extended nonlinear Schroedinger equation
International Nuclear Information System (INIS)
Nash, Patrick L.
2008-01-01
Fourier split-step techniques are often used to compute soliton-like numerical solutions of the nonlinear Schroedinger equation. Here, a new fourth-order implementation of the Fourier split-step algorithm is described for problems possessing azimuthal symmetry in 3 + 1-dimensions. This implementation is based, in part, on a finite difference approximation Δ perpendicular FDA of 1/r (∂)/(∂r) r(∂)/(∂r) that possesses an associated exact unitary representation of e i/2λΔ perpendicular FDA . The matrix elements of this unitary matrix are given by special functions known as the associated Bessel functions. Hence the attribute Fourier-Bessel for the method. The Fourier-Bessel algorithm is shown to be unitary and unconditionally stable. The Fourier-Bessel algorithm is employed to simulate the propagation of a periodic series of short laser pulses through a nonlinear medium. This numerical simulation calculates waveform intensity profiles in a sequence of planes that are transverse to the general propagation direction, and labeled by the cylindrical coordinate z. These profiles exhibit a series of isolated pulses that are offset from the time origin by characteristic times, and provide evidence for a physical effect that may be loosely termed normal mode condensation. Normal mode condensation is consistent with experimentally observed pulse filamentation into a packet of short bursts, which may occur as a result of short, intense irradiation of a medium
On Poisson Nonlinear Transformations
Directory of Open Access Journals (Sweden)
Nasir Ganikhodjaev
2014-01-01
Full Text Available We construct the family of Poisson nonlinear transformations defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. We have proved that these nonlinear transformations are regular.
Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong
2015-01-01
This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.
Hanamura, Eiichi; Yamanaka, Akio
2007-01-01
This graduate-level textbook gives an introductory overview of the fundamentals of quantum nonlinear optics. Based on the quantum theory of radiation, Quantum Nonlinear Optics incorporates the exciting developments in novel nonlinear responses of materials (plus laser oscillation and superradiance) developed over the past decade. It deals with the organization of radiation field, interaction between electronic system and radiation field, statistics of light, mutual manipulation of light and matter, laser oscillation, dynamics of light, nonlinear optical response, and nonlinear spectroscopy, as well as ultrashort and ultrastrong laser pulse. Also considered are Q-switching, mode locking and pulse compression. Experimental and theoretical aspects are intertwined throughout.
Nonlinear dynamics and complexity
Luo, Albert; Fu, Xilin
2014-01-01
This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.
International Nuclear Information System (INIS)
Vyas, Manan; Kota, V.K.B.
2010-01-01
For m fermions in Ω number of single particle orbitals, each fourfold degenerate, we introduce and analyze in detail embedded Gaussian unitary ensemble of random matrices generated by random two-body interactions that are SU(4) scalar [EGUE(2)-SU(4)]. Here the SU(4) algebra corresponds to the Wigner's supermultiplet SU(4) symmetry in nuclei. Embedding algebra for the EGUE(2)-SU(4) ensemble is U(4Ω) contains U(Ω) x SU(4). Exploiting the Wigner-Racah algebra of the embedding algebra, analytical expression for the ensemble average of the product of any two m particle Hamiltonian matrix elements is derived. Using this, formulas for a special class of U(Ω) irreducible representations (irreps) {4 r , p}, p = 0, 1, 2, 3 are derived for the ensemble averaged spectral variances and also for the covariances in energy centroids and spectral variances. On the other hand, simplifying the tabulations of Hecht for SU(Ω) Racah coefficients, numerical calculations are carried out for general U(Ω) irreps. Spectral variances clearly show, by applying Jacquod and Stone prescription, that the EGUE(2)-SU(4) ensemble generates ground state structure just as the quadratic Casimir invariant (C 2 ) of SU(4). This is further corroborated by the calculation of the expectation values of C 2 [SU(4)] and the four periodicity in the ground state energies. Secondly, it is found that the covariances in energy centroids and spectral variances increase in magnitude considerably as we go from EGUE(2) for spinless fermions to EGUE(2) for fermions with spin to EGUE(2)-SU(4) implying that the differences in ensemble and spectral averages grow with increasing symmetry. Also for EGUE(2)-SU(4) there are, unlike for GUE, non-zero cross-correlations in energy centroids and spectral variances defined over spaces with different particle numbers and/or U(Ω) [equivalently SU(4)] irreps. In the dilute limit defined by Ω → ∞, r >> 1 and r/Ω → 0, for the {4 r , p} irreps, we have derived analytical
Distributed nonlinear optical response
DEFF Research Database (Denmark)
Nikolov, Nikola Ivanov
2005-01-01
of bound states of out of phase bright solitons and dark solitons. Also, the newly introduced analogy between the nonlocal cubic nonlinear and the quadratic nonlinear media, presented in paper B and Chapter 3 is discussed. In particular it supplies intuitive physical meaning of the formation of solitons...... in quadratic nonlinear media. In the second part of the report (Chapter 4), the possibility to obtain light with ultrabroad spectrum due to the interplay of many nonlinear effects based on cubic nonlinearity is investigated thoroughly. The contribution of stimulated Raman scattering, a delayed nonlinear...... a modified nonlinear Schroedinger model equation. Chapter 4 and papers D and E are dedicated to this part of the research....
Nonlinear quantum gravity on the constant mean curvature foliation
International Nuclear Information System (INIS)
Wang, Charles H-T
2005-01-01
A new approach to quantum gravity is presented based on a nonlinear quantization scheme for canonical field theories with an implicitly defined Hamiltonian. The constant mean curvature foliation is employed to eliminate the momentum constraints in canonical general relativity. It is, however, argued that the Hamiltonian constraint may be advantageously retained in the reduced classical system to be quantized. This permits the Hamiltonian constraint equation to be consistently turned into an expectation value equation on quantization that describes the scale factor on each spatial hypersurface characterized by a constant mean exterior curvature. This expectation value equation augments the dynamical quantum evolution of the unconstrained conformal three-geometry with a transverse traceless momentum tensor density. The resulting quantum theory is inherently nonlinear. Nonetheless, it is unitary and free from a nonlocal and implicit description of the Hamiltonian operator. Finally, by imposing additional homogeneity symmetries, a broad class of Bianchi cosmological models are analysed as nonlinear quantum minisuperspaces in the context of the proposed theory
International Nuclear Information System (INIS)
Dragunov, Yu.G.; Banyuk, G.F.; Denisov, V.P.; Sorokin, S.R.; Safonova, M.A.; Prodon, D.G.
2002-01-01
The texts of the reports at the Conference of the young specialists of the Federal State Unitary Enterprise GIDROPRESS Special Designers' Office (January 24-25, 2002, Podolsk) are presented. The subject field of the reports is related to the 0NPPs designing and operation. In particular, the following problems are discussed: the operational safety of the reactors and containers for the radioactive waste storage and transport; the analysis of the WWER-type reactor behavior under different emergency situations; the possibilities of increasing the service life of the reactors at the NPPs [ru
Directory of Open Access Journals (Sweden)
Lluís Gonzàlez Julià
2011-12-01
Full Text Available Lucian’s Dialogues of the Dead belong to a very specific genre and their order in manuscript transmission is very confused. For those reasons, they have been usually considered as individual scenes without interrelation to each other, apart from their main characters or the world they move in. Nevertheless, a detailed examination of their inner allusions and their typical structure in travel-novels allows us to reconsider all of them as belonging to a unitary and close wholeness, to propose an order change and even to point three of these dialogues as possible interpolations in the series.
Kushner, Laura K.; Drain, Bethany A.; Schairer, Edward T.; Heineck, James T.; Bell, James H.
2017-01-01
Both AoA and MDM measurements can be made using an optical system that relies on photogrammetry. Optical measurements are being requested by customers in wind tunnels with increasing frequency due to their non-intrusive nature and recent hardware and software advances that allow measurements to become near real time. The NASA Ames Research Center Unitary Plan Wind Tunnel is currently developing a system based on photogrammetry to measure model deformation and model angle of attack. This paper describes the new system, its development, its use on recent tests and plans to further develop the system.
Unitary representations of some infinite-dimensional Lie algebras motivated by string theory on AdS3
International Nuclear Information System (INIS)
Andreev, Oleg
1999-01-01
We consider some unitary representations of infinite-dimensional Lie algebras motivated by string theory on AdS 3 . These include examples of two kinds: the A,D,E type affine Lie algebras and the N=4 superconformal algebra. The first presents a new construction for free field representations of affine Lie algebras. The second is of a particular physical interest because it provides some hints that a hybrid of the NSR and GS formulations for string theory on AdS 3 exists
Energy Technology Data Exchange (ETDEWEB)
Rayos, C.
1999-08-01
A brief review is provided of the general problems of storm waters and how they are dealt with in Directive 91/27/EEC. An experiment in Asturias, Spain, is reported in which storm water storage tanks were designed to reduce the number and impact of discharges from the unitary sewer systems. The criteria for calculating the design flows in accordance with the guidelines of Spain`s Northern Hydrographic Confederation, the procedures used in determining the size of the overflows and the different elements employed in the equipment, control systems and safety systems are all described. (Author) 31 refs.
Time-dependent density functional theory for open quantum systems with unitary propagation.
Yuen-Zhou, Joel; Tempel, David G; Rodríguez-Rosario, César A; Aspuru-Guzik, Alán
2010-01-29
We extend the Runge-Gross theorem for a very general class of open quantum systems under weak assumptions about the nature of the bath and its coupling to the system. We show that for Kohn-Sham (KS) time-dependent density functional theory, it is possible to rigorously include the effects of the environment within a bath functional in the KS potential. A Markovian bath functional inspired by the theory of nonlinear Schrödinger equations is suggested, which can be readily implemented in currently existing real-time codes. Finally, calculations on a helium model system are presented.
Directory of Open Access Journals (Sweden)
Wei Khim Ng
2009-02-01
Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.
Ooi, Kelvin J. A.; Tan, Dawn T. H.
2017-10-01
The rapid development of graphene has opened up exciting new fields in graphene plasmonics and nonlinear optics. Graphene's unique two-dimensional band structure provides extraordinary linear and nonlinear optical properties, which have led to extreme optical confinement in graphene plasmonics and ultrahigh nonlinear optical coefficients, respectively. The synergy between graphene's linear and nonlinear optical properties gave rise to nonlinear graphene plasmonics, which greatly augments graphene-based nonlinear device performance beyond a billion-fold. This nascent field of research will eventually find far-reaching revolutionary technological applications that require device miniaturization, low power consumption and a broad range of operating wavelengths approaching the far-infrared, such as optical computing, medical instrumentation and security applications.
Cruikshank, Benjamin; Jacobs, Kurt
2017-07-21
von Neumann's classic "multiplexing" method is unique in achieving high-threshold fault-tolerant classical computation (FTCC), but has several significant barriers to implementation: (i) the extremely complex circuits required by randomized connections, (ii) the difficulty of calculating its performance in practical regimes of both code size and logical error rate, and (iii) the (perceived) need for large code sizes. Here we present numerical results indicating that the third assertion is false, and introduce a novel scheme that eliminates the two remaining problems while retaining a threshold very close to von Neumann's ideal of 1/6. We present a simple, highly ordered wiring structure that vastly reduces the circuit complexity, demonstrates that randomization is unnecessary, and provides a feasible method to calculate the performance. This in turn allows us to show that the scheme requires only moderate code sizes, vastly outperforms concatenation schemes, and under a standard error model a unitary implementation realizes universal FTCC with an accuracy threshold of p<5.5%, in which p is the error probability for 3-qubit gates. FTCC is a key component in realizing measurement-free protocols for quantum information processing. In view of this, we use our scheme to show that all-unitary quantum circuits can reproduce any measurement-based feedback process in which the asymptotic error probabilities for the measurement and feedback are (32/63)p≈0.51p and 1.51p, respectively.
International Nuclear Information System (INIS)
Yu, Terri M.; Brown, Kenneth R.; Chuang, Isaac L.
2005-01-01
The role of mixed-state entanglement in liquid-state nuclear magnetic resonance (NMR) quantum computation is not yet well understood. In particular, despite the success of quantum-information processing with NMR, recent work has shown that quantum states used in most of those experiments were not entangled. This is because these states, derived by unitary transforms from the thermal equilibrium state, were too close to the maximally mixed state. We are thus motivated to determine whether a given NMR state is entanglable - that is, does there exist a unitary transform that entangles the state? The boundary between entanglable and nonentanglable thermal states is a function of the spin system size N and its temperature T. We provide bounds on the location of this boundary using analytical and numerical methods; our tightest bound scales as N∼T, giving a lower bound requiring at least N∼22 000 proton spins to realize an entanglable thermal state at typical laboratory NMR magnetic fields. These bounds are tighter than known bounds on the entanglability of effective pure states
Stationary nonlinear Airy beams
International Nuclear Information System (INIS)
Lotti, A.; Faccio, D.; Couairon, A.; Papazoglou, D. G.; Panagiotopoulos, P.; Tzortzakis, S.; Abdollahpour, D.
2011-01-01
We demonstrate the existence of an additional class of stationary accelerating Airy wave forms that exist in the presence of third-order (Kerr) nonlinearity and nonlinear losses. Numerical simulations and experiments, in agreement with the analytical model, highlight how these stationary solutions sustain the nonlinear evolution of Airy beams. The generic nature of the Airy solution allows extension of these results to other settings, and a variety of applications are suggested.
Generalized Nonlinear Yule Models
Lansky, Petr; Polito, Federico; Sacerdote, Laura
2016-01-01
With the aim of considering models with persistent memory we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macrovolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth...
Uraltseva, N N
1995-01-01
This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p
Kono, Mitsuo
2010-01-01
A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.
Nonlinear optics at interfaces
International Nuclear Information System (INIS)
Chen, C.K.
1980-12-01
Two aspects of surface nonlinear optics are explored in this thesis. The first part is a theoretical and experimental study of nonlinear intraction of surface plasmons and bulk photons at metal-dielectric interfaces. The second part is a demonstration and study of surface enhanced second harmonic generation at rough metal surfaces. A general formulation for nonlinear interaction of surface plasmons at metal-dielectric interfaces is presented and applied to both second and third order nonlinear processes. Experimental results for coherent second and third harmonic generation by surface plasmons and surface coherent antiStokes Raman spectroscopy (CARS) are shown to be in good agreement with the theory
International Nuclear Information System (INIS)
Zelenyj, L.M.; Kuznetsova, M.M.
1989-01-01
Nonlinear study of magnetic perturbation development under single-mode conditions in collision-free plasma in configurations with the magnetic field shear is investigated. Results are obtained with regard of transverse component of electrical field and its effect on ion dynamics within wide range of ion Larmor radius value and values of magnetic field shear. Increments of nonlinear drift tearing mode are obtained and it is shown that excitation drastic conditions of even linearly stable modes are possible. Mechanism of instability nonlinear stabilization is considered and the value of magnetic island at the saturation threshold is estimeted. Energy of nonlinear drift tearing mode is discussed
Polarization Nonlinear Optics of Quadratically Nonlinear Azopolymers
International Nuclear Information System (INIS)
Konorov, S.O.; Akimov, D.A.; Ivanov, A.A.; Petrov, A.N.; Alfimov, M.V.; Yakimanskii, A.V.; Smirnov, N.N.; Ivanova, V.N.; Kudryavtsev, V.V.; Podshivalov, A.A.; Sokolova, I.M.; Zheltikov, A.M.
2005-01-01
The polarization properties of second harmonic and sum-frequency signals generated by femtosecond laser pulses in films of polymers containing covalent groups of an azobenzothiazole chromophore polarized by an external electric field are investigated. It is shown that the methods of polarization nonlinear optics make it possible to determine the structure of oriented molecular dipoles and reveal important properties of the motion of collectivized πelectrons in organic molecules with strong optical nonlinearities. The polarization measurements show that the tensor of quadratic nonlinear optical susceptibility of chromophore fragments oriented by an external field in macromolecules of the noted azopolymers has a degenerate form. This is indicative of a predominantly one-dimensional character of motion of collectivized π electrons along an extended group of atoms in such molecules
Four-level and two-qubit systems, subalgebras, and unitary integration
International Nuclear Information System (INIS)
Rau, A.R.P.; Selvaraj, G.; Uskov, D.
2005-01-01
Four-level systems in quantum optics, and for representing two qubits in quantum computing, are difficult to solve for general time-dependent Hamiltonians. A systematic procedure is presented which combines analytical handling of the algebraic operator aspects with simple solutions of classical, first-order differential equations. In particular, by exploiting su(2)+su(2) and su(2)+su(2)+u(1) subalgebras of the full SU(4) dynamical group of the system, the nontrivial part of the final calculation is reduced to a single Riccati (first-order, quadratically nonlinear) equation, itself simply solved. Examples are provided of two-qubit problems from the recent literature, including implementation of two-qubit gates with Josephson junctions
Nonlinear dynamics in Nuclotron
International Nuclear Information System (INIS)
Dinev, D.
1997-01-01
The paper represents an extensive study of the nonlinear beam dynamics in the Nuclotron. Chromatic effects, including the dependence of the betatron tunes on the amplitude, and chromatic perturbations have been investigated taking into account the measured field imperfections. Beam distortion, smear, dynamic aperture and nonlinear acceptance have been calculated for different particle energies and betatron tunes
Nonlinear Optics and Applications
Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)
2007-01-01
Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.
Kumar, Ravi; Bhaduri, Basanta; Nishchal, Naveen K.
2018-01-01
In this study, we propose a quick response (QR) code based nonlinear optical image encryption technique using spiral phase transform (SPT), equal modulus decomposition (EMD) and singular value decomposition (SVD). First, the primary image is converted into a QR code and then multiplied with a spiral phase mask (SPM). Next, the product is spiral phase transformed with particular spiral phase function, and further, the EMD is performed on the output of SPT, which results into two complex images, Z 1 and Z 2. Among these, Z 1 is further Fresnel propagated with distance d, and Z 2 is reserved as a decryption key. Afterwards, SVD is performed on Fresnel propagated output to get three decomposed matrices i.e. one diagonal matrix and two unitary matrices. The two unitary matrices are modulated with two different SPMs and then, the inverse SVD is performed using the diagonal matrix and modulated unitary matrices to get the final encrypted image. Numerical simulation results confirm the validity and effectiveness of the proposed technique. The proposed technique is robust against noise attack, specific attack, and brutal force attack. Simulation results are presented in support of the proposed idea.
Gessner, Manuel; Breuer, Heinz-Peter
2013-04-01
We obtain exact analytic expressions for a class of functions expressed as integrals over the Haar measure of the unitary group in d dimensions. Based on these general mathematical results, we investigate generic dynamical properties of complex open quantum systems, employing arguments from ensemble theory. We further generalize these results to arbitrary eigenvalue distributions, allowing a detailed comparison of typical regular and chaotic systems with the help of concepts from random matrix theory. To illustrate the physical relevance and the general applicability of our results we present a series of examples related to the fields of open quantum systems and nonequilibrium quantum thermodynamics. These include the effect of initial correlations, the average quantum dynamical maps, the generic dynamics of system-environment pure state entanglement and, finally, the equilibration of generic open and closed quantum systems.
Liao, Anwen
2017-11-01
Millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) with hybrid precoding is a promising technique for the future 5G wireless communications. Due to a large number of antennas but a much smaller number of radio frequency (RF) chains, estimating the high-dimensional mmWave massive MIMO channel will bring the large pilot overhead. To overcome this challenge, this paper proposes a super-resolution channel estimation scheme based on two-dimensional (2D) unitary ESPRIT algorithm. By exploiting the angular sparsity of mmWave channels, the continuously distributed angle of arrivals/departures (AoAs/AoDs) can be jointly estimated with high accuracy. Specifically, by designing the uplink training signals at both base station (BS) and mobile station (MS), we first use low pilot overhead to estimate a low-dimensional effective channel, which has the same shift-invariance of array response as the high-dimensional mmWave MIMO channel to be estimated. From the low-dimensional effective channel, the superresolution estimates of AoAs and AoDs can be jointly obtained by exploiting the 2D unitary ESPRIT channel estimation algorithm. Furthermore, the associated path gains can be acquired based on the least squares (LS) criterion. Finally, we can reconstruct the high-dimensional mmWave MIMO channel according to the obtained AoAs, AoDs, and path gains. Simulation results have confirmed that the proposed scheme is superior to conventional schemes with a much lower pilot overhead.
Liao, Anwen; Gao, Zhen; Wu, Yongpeng; Wang, Hua; Alouini, Mohamed-Slim
2017-01-01
Millimeter-wave (mmWave) massive multiple-input multiple-output (MIMO) with hybrid precoding is a promising technique for the future 5G wireless communications. Due to a large number of antennas but a much smaller number of radio frequency (RF) chains, estimating the high-dimensional mmWave massive MIMO channel will bring the large pilot overhead. To overcome this challenge, this paper proposes a super-resolution channel estimation scheme based on two-dimensional (2D) unitary ESPRIT algorithm. By exploiting the angular sparsity of mmWave channels, the continuously distributed angle of arrivals/departures (AoAs/AoDs) can be jointly estimated with high accuracy. Specifically, by designing the uplink training signals at both base station (BS) and mobile station (MS), we first use low pilot overhead to estimate a low-dimensional effective channel, which has the same shift-invariance of array response as the high-dimensional mmWave MIMO channel to be estimated. From the low-dimensional effective channel, the superresolution estimates of AoAs and AoDs can be jointly obtained by exploiting the 2D unitary ESPRIT channel estimation algorithm. Furthermore, the associated path gains can be acquired based on the least squares (LS) criterion. Finally, we can reconstruct the high-dimensional mmWave MIMO channel according to the obtained AoAs, AoDs, and path gains. Simulation results have confirmed that the proposed scheme is superior to conventional schemes with a much lower pilot overhead.
Nonlinear photonic metasurfaces
Li, Guixin; Zhang, Shuang; Zentgraf, Thomas
2017-03-01
Compared with conventional optical elements, 2D photonic metasurfaces, consisting of arrays of antennas with subwavelength thickness (the 'meta-atoms'), enable the manipulation of light-matter interactions on more compact platforms. The use of metasurfaces with spatially varying arrangements of meta-atoms that have subwavelength lateral resolution allows control of the polarization, phase and amplitude of light. Many exotic phenomena have been successfully demonstrated in linear optics; however, to meet the growing demand for the integration of more functionalities into a single optoelectronic circuit, the tailorable nonlinear optical properties of metasurfaces will also need to be exploited. In this Review, we discuss the design of nonlinear photonic metasurfaces — in particular, the criteria for choosing the materials and symmetries of the meta-atoms — for the realization of nonlinear optical chirality, nonlinear geometric Berry phase and nonlinear wavefront engineering. Finally, we survey the application of nonlinear photonic metasurfaces in optical switching and modulation, and we conclude with an outlook on their use for terahertz nonlinear optics and quantum information processing.
International Nuclear Information System (INIS)
Khoroshun, L.P.
1995-01-01
The characteristic features of the deformation and failure of actual materials in the vicinity of a crack tip are due to their physical nonlinearity in the stress-concentration zone, which is a result of plasticity, microfailure, or a nonlinear dependence of the interatomic forces on the distance. Therefore, adequate models of the failure mechanics must be nonlinear, in principle, although linear failure mechanics is applicable if the zone of nonlinear deformation is small in comparison with the crack length. Models of crack mechanics are based on analytical solutions of the problem of the stress-strain state in the vicinity of the crack. On account of the complexity of the problem, nonlinear models are bason on approximate schematic solutions. In the Leonov-Panasyuk-Dugdale nonlinear model, one of the best known, the actual two-dimensional plastic zone (the nonlinearity zone) is replaced by a narrow one-dimensional zone, which is then modeled by extending the crack with a specified normal load equal to the yield point. The condition of finite stress is applied here, and hence the length of the plastic zone is determined. As a result of this approximation, the displacement in the plastic zone at the abscissa is nonzero
Kobayashi, T
2002-01-01
Based on an embedding formula of the CAR algebra into the Cuntz algebra ${\\mathcal O}_{2^p}$, properties of the CAR algebra are studied in detail by restricting those of the Cuntz algebra. Various $\\ast$-endomorphisms of the Cuntz algebra are explicitly constructed, and transcribed into those of the CAR algebra. In particular, a set of $\\ast$-endomorphisms of the CAR algebra into its even subalgebra are constructed. According to branching formulae, which are obtained by composing representations and $\\ast$-endomorphisms, it is shown that a KMS state of the CAR algebra is obtained through the above even-CAR endomorphisms from the Fock representation. A $U(2^p)$ action on ${\\mathcal O}_{2^p}$ induces $\\ast$-automorphisms of the CAR algebra, which are given by nonlinear transformations expressed in terms of polynomials in generators. It is shown that, among such $\\ast$-automorphisms of the CAR algebra, there exists a family of one-parameter groups of $\\ast$-automorphisms describing time evolutions of fermions, i...
Li, Tatsien
2017-01-01
This book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.
Photostable nonlinear optical polycarbonates
Faccini, M.; Balakrishnan, M.; Diemeer, Mart; Torosantucci, Riccardo; Driessen, A.; Reinhoudt, David; Verboom, Willem
2008-01-01
Highly thermal and photostable nonlinear optical polymers were obtained by covalently incorporating the tricyanovinylidenediphenylaminobenzene (TCVDPA) chromophore to a polycarbonate backbone. NLO polycarbonates with different chromophore attachment modes and flexibilities were synthesized. In spite
Nonlinear singular elliptic equations
International Nuclear Information System (INIS)
Dong Minh Duc.
1988-09-01
We improve the Poincare inequality, the Sobolev imbedding theorem and the Trudinger imbedding theorem and prove a Mountain pass theorem. Applying these results we study a nonlinear singular mixed boundary problem. (author). 22 refs
Nonlinear Optical Terahertz Technology
National Aeronautics and Space Administration — We develop a new approach to generation of THz radiation. Our method relies on mixing two optical frequency beams in a nonlinear crystalline Whispering Gallery Mode...
Nonlinear differential equations
Struble, Raimond A
2017-01-01
Detailed treatment covers existence and uniqueness of a solution of the initial value problem, properties of solutions, properties of linear systems, stability of nonlinear systems, and two-dimensional systems. 1962 edition.
Terahertz semiconductor nonlinear optics
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias
2013-01-01
In this proceedings we describe our recent results on semiconductor nonlinear optics, investigated using single-cycle THz pulses. We demonstrate the nonlinear absorption and self-phase modulation of strong-field THz pulses in doped semiconductors, using n-GaAs as a model system. The THz...... nonlinearity in doped semiconductors originates from the near-instantaneous heating of free electrons in the ponderomotive potential created by electric field of the THz pulse, leading to ultrafast increase of electron effective mass by intervalley scattering. Modification of effective mass in turn leads...... to a decrease of plasma frequency in semiconductor and produces a substantial modification of THz-range material dielectric function, described by the Drude model. As a result, the nonlinearity of both absorption coefficient and refractive index of the semiconductor is observed. In particular we demonstrate...
Leburn, Christopher; Reid, Derryck
2013-01-01
The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrasho...