Toward a Nonlinear Acoustic Analogy: Turbulence as a Source of Sound and Nonlinear Propagation
Miller, Steven A. E.
2015-01-01
An acoustic analogy is proposed that directly includes nonlinear propagation effects. We examine the Lighthill acoustic analogy and replace the Green's function of the wave equation with numerical solutions of the generalized Burgers' equation. This is justified mathematically by using similar arguments that are the basis of the solution of the Lighthill acoustic analogy. This approach is superior to alternatives because propagation is accounted for directly from the source to the far-field observer instead of from an arbitrary intermediate point. Validation of a numerical solver for the generalized Burgers' equation is performed by comparing solutions with the Blackstock bridging function and measurement data. Most importantly, the mathematical relationship between the Navier-Stokes equations, the acoustic analogy that describes the source, and canonical nonlinear propagation equations is shown. Example predictions are presented for nonlinear propagation of jet mixing noise at the sideline angle.
Tracing Analytic Ray Curves for Light and Sound Propagation in Non-Linear Media.
Mo, Qi; Yeh, Hengchin; Manocha, Dinesh
2016-11-01
The physical world consists of spatially varying media, such as the atmosphere and the ocean, in which light and sound propagates along non-linear trajectories. This presents a challenge to existing ray-tracing based methods, which are widely adopted to simulate propagation due to their efficiency and flexibility, but assume linear rays. We present a novel algorithm that traces analytic ray curves computed from local media gradients, and utilizes the closed-form solutions of both the intersections of the ray curves with planar surfaces, and the travel distance. By constructing an adaptive unstructured mesh, our algorithm is able to model general media profiles that vary in three dimensions with complex boundaries consisting of terrains and other scene objects such as buildings. Our analytic ray curve tracer with the adaptive mesh improves the efficiency considerably over prior methods. We highlight the algorithm's application on simulation of visual and sound propagation in outdoor scenes.
Effects of nonlinear sound propagation on the characteristic timbres of brass instruments.
Myers, Arnold; Pyle, Robert W; Gilbert, Joël; Campbell, D Murray; Chick, John P; Logie, Shona
2012-01-01
The capacity of a brass instrument to generate sounds with strong high-frequency components is dependent on the extent to which its bore profile supports nonlinear sound propagation. At high dynamic levels some instruments are readily sounded in a "cuivré" (brassy) manner: this phenomenon is due to the nonlinear propagation of sound in ducts of the proportions typical of labrosones (lip-reed aerophones). The effect is also evident at lower dynamic levels and contributes to the overall tonal character of the various kinds of brass instrument. This paper defines a brassiness potential parameter derived from the bore geometries of brass instruments. The correlation of the brassiness potential parameter with spectral enrichment as measured by the spectral centroid of the radiated sound is examined in playing tests using musicians, experiments using sine-wave excitation of instruments, and simulations using a computational tool. The complementary effects of absolute bore size on spectral enrichment are investigated using sine-wave excitation of cylindrical tubes and of instruments, establishing the existence of a trade-off between bore size and brassiness potential. The utility of the brassiness potential parameter in characterizing labrosones is established, and the graphical presentation of results in a 2D space defined by bore size and brassiness potential demonstrated.
Kandula, Max
2012-01-01
The Sound attenuation and dispersion in saturated gas-vapor-droplet mixture in the presence of evaporation has been investigated theoretically. The theory is based on an extension of the work of Davidson to accommodate the effects of nonlinear particle relaxation processes of mass, momentum and energy transfer on sound attenuation and dispersion. The results indicate the existence of a spectral broadening effect in the attenuation coefficient (scaled with respect to the peak value) with a decrease in droplet mass concentration. It is further shown that for large values of the droplet concentration the scaled attenuation coefficient is characterized by a universal spectrum independent of droplet mass concentration.
DEFF Research Database (Denmark)
Wahlberg, Magnus; Larsen, Ole Næsbye
2017-01-01
As an acoustic signal travels from the source to a receiver, it is affected by a variety of physical processes, all dictated by properties of the signal and the environment. The signal energy is weakened by geometric attenuation as well as absorption by the medium. The temporal and spectral...... properties can be modified by sound absorption, refraction, and interference from multi paths caused by reflections.The path from the source to the receiver may be bent due to refraction. Besides geometrical attenuation, the ground effect and turbulence are the most important mechanisms to influence...... communication sounds for airborne acoustics and bottom and surface effects for underwater sounds. Refraction becomes very important close to shadow zones. For echolocation signals, geometric attenuation and sound absorption have the largest effects on the signals....
Nonlinear acoustic propagation in rectangular ducts
Nayfeh, A. H.; Tsai, M.-S.
1974-01-01
The method of multiple scales is used to obtain a second-order uniformly valid expansion for nonlinear acoustic wave propagation in a rectangular duct whose walls are treated with a nonlinear acoustic material. The wave propagation in the duct is characterized by the unsteady nonlinear Euler equations. The results show that nonlinear materials attenuate sound more than linear materials except at high acoustic frequencies. The nonlinear materials produce higher and combination tones which have higher attenuation rates than the fundamentals. Moreover, the attenuation rates of the fundamentals increase with increasing amplitude.
Sound propagation through nonuniform ducts
Nayfeh, A. H.
1976-01-01
Methods of determining the transmission and attenuation of sound propagating in nonuniform ducts with and without mean flows are discussed. The approaches reviewed include purely numerical techniques, quasi-one-dimensional approximations, solutions for slowly varying cross sections, solutions for weak wall undulations, approximation of the duct by a series of stepped uniform cross sections, variational methods and solutions for the mode envelopes.
Low Frequency Sound Propagation in Lipid Membranes
Mosgaard, Lars D; Heimburg, Thomas
2012-01-01
In the recent years we have shown that cylindrical biological membranes such as nerve axons under physiological conditions are able to support stable electromechanical pulses called solitons. These pulses share many similarities with the nervous impulse, e.g., the propagation velocity as well as the measured reversible heat production and changes in thickness and length that cannot be explained with traditional nerve models. A necessary condition for solitary pulse propagation is the simultaneous existence of nonlinearity and dispersion, i.e., the dependence of the speed of sound on density and frequency. A prerequisite for the nonlinearity is the presence of a chain melting transition close to physiological temperatures. The transition causes a density dependence of the elastic constants which can easily be determined by experiment. The frequency dependence is more difficult to determine. The typical time scale of a nerve pulse is 1 ms, corresponding to a characteristic frequency in the range up to one kHz. ...
Nonlinear acoustic propagation in two-dimensional ducts
Nayfeh, A. H.; Tsai, M.-S.
1974-01-01
The method of multiple scales is used to obtain a second-order uniformly valid expansion for the nonlinear acoustic wave propagation in a two-dimensional duct whose walls are treated with a nonlinear acoustic material. The wave propagation in the duct is characterized by the unsteady nonlinear Euler equations. The results show that nonlinear effects tend to flatten and broaden the absorption versus frequency curve, in qualitative agreement with the experimental observations. Moreover, the effect of the gas nonlinearity increases with increasing sound frequency, whereas the effect of the material nonlinearity decreases with increasing sound frequency.
Reconstruction of nonlinear wave propagation
Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie
2013-04-23
Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.
Anisotropy and sound propagation in glass wool
DEFF Research Database (Denmark)
Tarnow, Viggo
1999-01-01
Sound propagation in glass wool is studied theoretically and experimentally. Theoretical computation of attenuation and phase velocity for plane, harmonic waves will be presented. Glass wool is a highly anisotropic material, and sound waves propagating in different directions in the material...... by regarding it as a continuous medium described by its elastic moduli and mass density. The computed attenuation of sound waves, for frequencies 50–5000 Hz, will be compared with experimental results for glass wool with fiber diameters of 6.8 micrometers, mass density of 15 and 30 kg/m3, and elastic moduli...... of 2000 and 16 000 Pa (sound wave vector perpendicular to fibers)....
Propagation of sound in oceans
Digital Repository Service at National Institute of Oceanography (India)
Advilkar, P.J.
to him for motivating me towards new ideas and I take this opportunity to express my indebtedness and respect to him. I would like to thank The Director of NIO, Dr. Satish Shetye for giving me a golden opportunity to carry out my internship in such a..., scientists are able to find out structure and materials lying beneath the sea-floor. This is how sound is useful in scientific study. This is the motivation of the present project. 1.2 ACOUSTICS We hear different sounds around us, which includes bird...
Sound Propagation around Underwater Seamounts
2009-02-01
N00014-04-1-0124. Contents Table of Contents List of Figures List of Tables 1 Introduction 1.1 Hypotheses ................... 1.2 Experim ent...132 . . . . . . . 133 Chapter 1 Introduction Basin-scale acoustic propagation in the ocean has been utilized by tomography and teleme- try... magnetostriction , a process caused by magnetic forces acting on the core and back iron magnetic domains, and the square relationship between mechanical force and
Non-linear propagation in near sonic flows
Nayfeh, A. H.; Kelly, J. J.; Watson, L. T.
1981-01-01
A nonlinear analysis is developed for sound propagation in a variable-area duct in which the mean flow approaches choking conditions. A quasi-one-dimensional model is used and the nonlinear analysis represents the acoustic disturbance as a sum of interacting harmonics. The numerical procedure is stable for cases of strong interaction and is able to integrate through the throat region without any numerical instability.
Efficient Geometric Sound Propagation Using Visibility Culling
Chandak, Anish
2011-07-01
Simulating propagation of sound can improve the sense of realism in interactive applications such as video games and can lead to better designs in engineering applications such as architectural acoustics. In this thesis, we present geometric sound propagation techniques which are faster than prior methods and map well to upcoming parallel multi-core CPUs. We model specular reflections by using the image-source method and model finite-edge diffraction by using the well-known Biot-Tolstoy-Medwin (BTM) model. We accelerate the computation of specular reflections by applying novel visibility algorithms, FastV and AD-Frustum, which compute visibility from a point. We accelerate finite-edge diffraction modeling by applying a novel visibility algorithm which computes visibility from a region. Our visibility algorithms are based on frustum tracing and exploit recent advances in fast ray-hierarchy intersections, data-parallel computations, and scalable, multi-core algorithms. The AD-Frustum algorithm adapts its computation to the scene complexity and allows small errors in computing specular reflection paths for higher computational efficiency. FastV and our visibility algorithm from a region are general, object-space, conservative visibility algorithms that together significantly reduce the number of image sources compared to other techniques while preserving the same accuracy. Our geometric propagation algorithms are an order of magnitude faster than prior approaches for modeling specular reflections and two to ten times faster for modeling finite-edge diffraction. Our algorithms are interactive, scale almost linearly on multi-core CPUs, and can handle large, complex, and dynamic scenes. We also compare the accuracy of our sound propagation algorithms with other methods. Once sound propagation is performed, it is desirable to listen to the propagated sound in interactive and engineering applications. We can generate smooth, artifact-free output audio signals by applying
Fast reverse propagation of sound in the living cochlea.
He, Wenxuan; Fridberger, Anders; Porsov, Edward; Ren, Tianying
2010-06-02
The auditory sensory organ, the cochlea, not only detects but also generates sounds. Such sounds, otoacoustic emissions, are widely used for diagnosis of hearing disorders and to estimate cochlear nonlinearity. However, the fundamental question of how the otoacoustic emission exits the cochlea remains unanswered. In this study, emissions were provoked by two tones with a constant frequency ratio, and measured as vibrations at the basilar membrane and at the stapes, and as sound pressure in the ear canal. The propagation direction and delay of the emission were determined by measuring the phase difference between basilar membrane and stapes vibrations. These measurements show that cochlea-generated sound arrives at the stapes earlier than at the measured basilar membrane location. Data also show that basilar membrane vibration at the emission frequency is similar to that evoked by external tones. These results conflict with the backward-traveling-wave theory and suggest that at low and intermediate sound levels, the emission exits the cochlea predominantly through the cochlear fluids. Copyright (c) 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Electromagnetic beam propagation in nonlinear media
Institute of Scientific and Technical Information of China (English)
V.V.Semak; M.N.Shneider
2015-01-01
We deduce a complete wave propagation equation that includes inhomogeneity of the dielectric constant and present this propagation equation in compact vector form. Although similar equations are known in narrow fields such as radio wave propagation in the ionosphere and electromagnetic and acoustic wave propagation in stratified media, we develop here a novel approach of using such equations in the modeling of laser beam propagation in nonlinear media. Our approach satisfies the correspondence principle since in the limit of zero-length wavelength it reduces from physical to geometrical optics.
Polarization shaping for control of nonlinear propagation
Bouchard, Frédéric; Yao, Alison M; Travis, Christopher; De Leon, Israel; Rubano, Andrea; Karimi, Ebrahim; Oppo, Gian-Luca; Boyd, Robert W
2016-01-01
We study the nonlinear optical propagation of two different classes of space-varying polarized light beams -- radially symmetric vector beams and Poincar\\'e beams with lemon and star topologies -- in a rubidium vapour cell. Unlike Laguerre-Gauss and other types of beams that experience modulational instabilities, we observe that their propagation is not marked by beam breakup while still exhibiting traits such as nonlinear confinement and self-focusing. Our results suggest that by tailoring the spatial structure of the polarization, the effects of nonlinear propagation can be effectively controlled. These findings provide a novel approach to transport high-power light beams in nonlinear media with controllable distortions to their spatial structure and polarization properties.
Polarization Shaping for Control of Nonlinear Propagation.
Bouchard, Frédéric; Larocque, Hugo; Yao, Alison M; Travis, Christopher; De Leon, Israel; Rubano, Andrea; Karimi, Ebrahim; Oppo, Gian-Luca; Boyd, Robert W
2016-12-02
We study the nonlinear optical propagation of two different classes of light beams with space-varying polarization-radially symmetric vector beams and Poincaré beams with lemon and star topologies-in a rubidium vapor cell. Unlike Laguerre-Gauss and other types of beams that quickly experience instabilities, we observe that their propagation is not marked by beam breakup while still exhibiting traits such as nonlinear confinement and self-focusing. Our results suggest that, by tailoring the spatial structure of the polarization, the effects of nonlinear propagation can be effectively controlled. These findings provide a novel approach to transport high-power light beams in nonlinear media with controllable distortions to their spatial structure and polarization properties.
Modeling of nonlinear propagation in fiber tapers
DEFF Research Database (Denmark)
Lægsgaard, Jesper
2012-01-01
A full-vectorial nonlinear propagation equation for short pulses in tapered optical fibers is developed. Specific emphasis is placed on the importance of the field normalization convention for the structure of the equations, and the interpretation of the resulting field amplitudes. Different...... numerical schemes for interpolation of fiber parameters along the taper are discussed and tested in numerical simulations on soliton propagation and generation of continuum radiation in short photonic-crystal fiber tapers....
Modeling of Nonlinear Propagation in Multi-layer Biological Tissues for Strong Focused Ultrasound
Institute of Scientific and Technical Information of China (English)
FAN Ting-Bo; LIU Zhen-Bo; ZHANG Zhe; ZHANG DONG; GONG Xiu-Fen
2009-01-01
A theoretical model of the nonlinear propagation in multi-layered tissues for strong focused ultrasound is proposed. In this model, the spheroidal beam equation (SBE) is utilized to describe the nonlinear sound propagation in each layer tissue, and generalized oblique incidence theory is used to deal with the sound transmission between two layer tissues. Computer simulation is performed on a fat-muscle-liver tissue model under the irradiation of a 1 MHz focused transducer with a large aperture angle of 35°. The results demonstrate that the tissue layer would change the amplitude of sound pressure at the focal region and cause the increase of side petals.
Isogeometric analysis of sound propagation through laminar flow in 2-dimensional ducts
DEFF Research Database (Denmark)
Nørtoft, Peter; Gravesen, Jens; Willatzen, Morten
2015-01-01
We consider the propagation of sound through a slowly moving fluid in a 2-dimensional duct. A detailed description of a flow-acoustic model of the problem using B-spline based isogeometric analysis is given. The model couples the non-linear, steady-state, incompressible Navier-Stokes equation in ...
Longitudinal nonlinear wave propagation through soft tissue.
Valdez, M; Balachandran, B
2013-04-01
In this paper, wave propagation through soft tissue is investigated. A primary aim of this investigation is to gain a fundamental understanding of the influence of soft tissue nonlinear material properties on the propagation characteristics of stress waves generated by transient loadings. Here, for computational modeling purposes, the soft tissue is modeled as a nonlinear visco-hyperelastic material, the geometry is assumed to be one-dimensional rod geometry, and uniaxial propagation of longitudinal waves is considered. By using the linearized model, a basic understanding of the characteristics of wave propagation is developed through the dispersion relation and in terms of the propagation speed and attenuation. In addition, it is illustrated as to how the linear system can be used to predict brain tissue material parameters through the use of available experimental ultrasonic attenuation curves. Furthermore, frequency thresholds for wave propagation along internal structures, such as axons in the white matter of the brain, are obtained through the linear analysis. With the nonlinear material model, the authors analyze cases in which one of the ends of the rods is fixed and the other end is subjected to a loading. Two variants of the nonlinear model are analyzed and the associated predictions are compared with the predictions of the corresponding linear model. The numerical results illustrate that one of the imprints of the nonlinearity on the wave propagation phenomenon is the steepening of the wave front, leading to jump-like variations in the stress wave profiles. This phenomenon is a consequence of the dependence of the local wave speed on the local deformation of the material. As per the predictions of the nonlinear material model, compressive waves in the structure travel faster than tensile waves. Furthermore, it is found that wave pulses with large amplitudes and small elapsed times are attenuated over shorter spans. This feature is due to the elevated
Nonlinearities in mating sounds of American crocodiles.
Benko, Tina P; Perc, Matjaz
2009-09-01
We use nonlinear time series analysis methods to analyze the dynamics of the sound-producing apparatus of the American crocodile (Crocodylus acutus). We capture its dynamics by analyzing a recording of the singing activity during mating time. First, we reconstruct the phase space from the sound recording and thereby reveal that the attractor needs no less than five degrees of freedom to fully evolve in the embedding space, which suggests that a rather complex nonlinear dynamics underlies its existence. Prior to investigating the dynamics more precisely, we test whether the reconstructed attractor satisfies the notions of determinism and stationarity, as a lack of either of these properties would preclude a meaningful further analysis. After positively establishing determinism and stationarity, we proceed by showing that the maximal Lyapunov exponent of the recording is positive, which is a strong indicator for the chaotic behavior of the system, confirming that dynamical nonlinearities are an integral part of the examined sound-producing apparatus. At the end, we discuss that methods of nonlinear time series analysis could yield instructive insights and foster the understanding of vocal communication among certain reptile species.
A nonlinear acoustic metamaterial: Realization of a backwards-traveling second-harmonic sound wave.
Quan, Li; Qian, Feng; Liu, Xiaozhou; Gong, Xiufen
2016-06-01
An ordinary waveguide with periodic vibration plates and side holes can realize an acoustic metamaterial that simultaneously possesses a negative bulk modulus and a negative mass density. The study is further extended to a nonlinear case and it is predicted that a backwards-traveling second-harmonic sound wave can be obtained through the nonlinear propagation of a sound wave in such a metamaterial.
Pitch perception of complex sounds nonlinearity revisited
González, D L; Sportolari, F; Rosso, O; Cartwright, J H E; Piro, O
1995-01-01
The ability of the auditory system to perceive the fundamental frequency of a sound even when this frequency is removed from the stimulus is an interesting phenomenon related to the pitch of complex sounds. This capability is known as ``residue'' or ``virtual pitch'' perception and was first reported last century in the pioneering work of Seebeck. It is residue perception that allows one to listen to music with small transistor radios, which in general have a very poor and sometimes negligible response to low frequencies. The first attempt, due to Helmholtz, to explain the residue as a nonlinear effect in the ear considered it to originate from difference combination tones. However, later experiments have shown that the residue does not coincide with a difference combination tone. These results and the fact that dichotically presented signals also elicit residue perception have led to nonlinear theories being gradually abandoned in favour of central processor models. In this paper we use recent results from t...
Erik M. Salomons; Lohman, Walter J. A.; Han Zhou
2016-01-01
Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases: free-field propagation, propagation over porous and non-porous ground, propagation over a noise barrier, and propagation in an atmosphere with wind. LBM results are compared with solutions of the equation...
Wind Turbine Noise and Natural Sounds: Masking, Propagation and Modeling
Energy Technology Data Exchange (ETDEWEB)
Bolin, Karl
2009-05-15
Wind turbines are an environmentally friendly and sustainable power source. Unfortunately, the noise impact can cause deteriorated living conditions for nearby residents. The audibility of wind turbine sound is influenced by ambient sound. This thesis deals with some aspects of noise from wind turbines. Ambient sounds influence the audibility of wind turbine noise. Models for assessing two commonly occurring natural ambient sounds namely vegetation sound and sound from breaking waves are presented in paper A and B. A sound propagation algorithm has been compared to long range measurements of sound propagation in paper C. Psycho-acoustic tests evaluating the threshold and partial loudness of wind turbine noise when mixed with natural ambient sounds have been performed. These are accounted for in paper D. The main scientific contributions are the following.Paper A: A semi-empiric prediction model for vegetation sound is proposed. This model uses up-to-date simulations of wind profiles and turbulent wind fields to estimate sound from vegetation. The fluctuations due to turbulence are satisfactory estimated by the model. Predictions of vegetation sound also show good agreement to measured spectra. Paper B: A set of measurements of air-borne sound from breaking waves are reported. From these measurements a prediction method of sound from breaking waves is proposed. Third octave spectra from breaking waves are shown to depend on breaker type. Satisfactory agreement between predictions and measurements has been achieved. Paper C: Long range sound propagation over a sea surface was investigated. Measurements of sound transmission were coordinated with local meteorological measurements. A sound propagation algorithm has been compared to the measured sound transmission. Satisfactory agreement between measurements and predictions were achieved when turbulence were taken into consideration in the computations. Paper D: The paper investigates the interaction between wind
Isogeometric analysis of sound propagation through laminar flow in 2-dimensional ducts
DEFF Research Database (Denmark)
Nørtoft, Peter; Gravesen, Jens; Willatzen, Morten
2015-01-01
We consider the propagation of sound through a slowly moving fluid in a 2-dimensional duct. A detailed description of a flow-acoustic model of the problem using B-spline based isogeometric analysis is given. The model couples the non-linear, steady-state, incompressible Navier-Stokes equation...... in the laminar regime for the flow field, to a linear, time-harmonic acoustic equation in the low Mach number regime for the sound signal. B-splines are used both to represent the duct geometry and to approximate the flow and sound fields. This facilitates an exact representation of complex duct geometries...
The role of sound propagation in concentrated colloidal suspensions
Bakker, A.F.; Lowe, C.P.
2002-01-01
In a suspension, the hydrodynamic interactions between particles can propagate by two mechanisms: relatively slowly, by the diffusion of transverse momentum, or relatively rapidly, by the propagation of sound waves. Here we describe computer simulation results for the collective and single particle
Measurements of anisotropic sound propagation in glass wool
DEFF Research Database (Denmark)
Tarnow, Viggo
2000-01-01
The attenuation coefficient and phase velocity of plane sound waves propagating in three perpendicular directions in glass wool were measured in the frequency range 50–10 000 Hz. For glass wool of mass density 14 kg/m3 at the frequency 1000 Hz, the attenuation constant for propagation perpendicular...
Calculation of sound propagation in fibrous materials
DEFF Research Database (Denmark)
Tarnow, Viggo
1996-01-01
Calculations of attenuation and velocity of audible sound waves in glass wools are presented. The calculations use only the diameters of fibres and the mass density of glass wools as parameters. The calculations are compared with measurements.......Calculations of attenuation and velocity of audible sound waves in glass wools are presented. The calculations use only the diameters of fibres and the mass density of glass wools as parameters. The calculations are compared with measurements....
Propagation of sound waves in ducts
DEFF Research Database (Denmark)
Jacobsen, Finn
2000-01-01
Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described....
Propagation of sound waves in ducts
DEFF Research Database (Denmark)
Jacobsen, Finn
2000-01-01
Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described.......Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described....
Nonlinear Dynamics of the Perceived Pitch of Complex Sounds
Cartwright, J H E; Piro, O; Cartwright, Julyan H. E.; Gonzalez, Diego L.; Piro, Oreste
1999-01-01
We apply results from nonlinear dynamics to an old problem in acoustical physics: the mechanism of the perception of the pitch of sounds, especially the sounds known as complex tones that are important for music and speech intelligibility.
Time dependent wave envelope finite difference analysis of sound propagation
Baumeister, K. J.
1984-01-01
A transient finite difference wave envelope formulation is presented for sound propagation, without steady flow. Before the finite difference equations are formulated, the governing wave equation is first transformed to a form whose solution tends not to oscillate along the propagation direction. This transformation reduces the required number of grid points by an order of magnitude. Physically, the transformed pressure represents the amplitude of the conventional sound wave. The derivation for the wave envelope transient wave equation and appropriate boundary conditions are presented as well as the difference equations and stability requirements. To illustrate the method, example solutions are presented for sound propagation in a straight hard wall duct and in a two dimensional straight soft wall duct. The numerical results are in good agreement with exact analytical results.
Measurement of sound propagation in glass wool
DEFF Research Database (Denmark)
Tarnow, Viggo
1995-01-01
A new acoustic method for directly measuring the flow resistance, and the compressibility of fibrous materials such as glass wool, is given. Measured results for monochromatic sound in glass wool are presented and compared with theoretically calculated results. The agreement between experimental...... results and theory is good. Results of measurements of characteristic impedance, attenuation, and phase shift for plane monochromatic traveling waves are presented and compared with theoretically calculated ones. Good agreement between experimental and theoretical results was found....
Institute of Scientific and Technical Information of China (English)
Feng Yu-Lin; Liu Xiao-Zhou; Liu Jie-Hui; Ma Li
2009-01-01
Based on an equivalent medium approach,this paper presents a model describing the nonlinear propagation of acoustic waves in a viscoelastic medium containing cylindrical micropores. The influences of pores' nonlinear oscillations on sound attenuation,sound dispersion and an equivalent acoustic nonlinearity parameter are discussed. The calculated results show that the attenuation increases with an increasing volume fraction of mieropores. The peak of sound velocity and attenuation occurs at the resonant frequency of the micropores while the peak of the equivalent acoustic nonlinearity parameter occurs at the half of the resonant frequency of the micropores. Furthermore,multiple scattering has been taken into account,which leads to a modification to the effective wave number in the equivalent medium approach. We find that these linear and nonlinear acoustic parameters need to be corrected when the volume fraction of micropores is larger than 0.1%.
Salomons, E.M.; Lohman, W.J.A.; Zhou, H.
2016-01-01
Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases: free-fi
Resch, Janelle; Vanderkooy, John
2016-01-01
The length and bore geometry of musical instruments directly influences the quality of sound that can be produced. In brass instruments, nonlinear effects from finite-amplitude wave propagation can lead to wave distortion giving sounds a brassy timbre [3, 5, 14, 20, 26]. In this paper, we propose a three-dimensional model to describe nonlinear wave propagation in a trumpet and investigate the importance of the mouthpiece shank geometry. Time pressure waveforms corresponding to B_3(b) and B_4(b) notes were recorded at the mouthpiece shank and used as inputs for our model. To describe the motion of compressible inviscid fluid, we numerically solved the compressible Euler equations using the discontinuous Galerkin method. To validate our approach, the numerical results were compared to the recorded musical notes outside the bell of the trumpet. Simulations were performed on computational trumpets where different bore geometries were considered. Our results demonstrate that the shape of the narrow region near mou...
Monograph on propagation of sound waves in curved ducts
Rostafinski, Wojciech
1991-01-01
After reviewing and evaluating the existing material on sound propagation in curved ducts without flow, it seems strange that, except for Lord Rayleigh in 1878, no book on acoustics has treated the case of wave motion in bends. This monograph reviews the available analytical and experimental material, nearly 30 papers published on this subject so far, and concisely summarizes what has been learned about the motion of sound in hard-wall and acoustically lined cylindrical bends.
Validation of an Efficient Outdoor Sound Propagation Model Using BEM
DEFF Research Database (Denmark)
Quirós-Alpera, S.; Henriquez, Vicente Cutanda; Jacobsen, Finn
2001-01-01
An approximate, simple and practical model for prediction of outdoor sound propagation exists based on ray theory, diffraction theory and Fresnel-zone considerations [1]. This model, which can predict sound propagation over non-flat terrain, has been validated for combinations of flat ground, hills...... and barriers, but it still needs to be validated for configurations that involve combinations of valleys and barriers. In order to do this a boundary element model has been implemented in MATLAB to serve as a reliable reference....
DBEM crack propagation for nonlinear fracture problems
Directory of Open Access Journals (Sweden)
R. Citarella
2015-10-01
Full Text Available A three-dimensional crack propagation simulation is performed by the Dual Boundary Element Method (DBEM. The Stress Intensity Factors (SIFs along the front of a semi elliptical crack, initiated from the external surface of a hollow axle, are calculated for bending and press fit loading separately and for a combination of them. In correspondence of the latter loading condition, a crack propagation is also simulated, with the crack growth rates calculated using the NASGRO3 formula, calibrated for the material under analysis (steel ASTM A469. The J-integral and COD approaches are selected for SIFs calculation in DBEM environment, where the crack path is assessed by the minimum strain energy density criterion (MSED. In correspondence of the initial crack scenario, SIFs along the crack front are also calculated by the Finite Element (FE code ZENCRACK, using COD, in order to provide, by a cross comparison with DBEM, an assessment on the level of accuracy obtained. Due to the symmetry of the bending problem a pure mode I crack propagation is realised with no kinking of the propagating crack whereas for press fit loading the crack propagation becomes mixed mode. The crack growth analysis is nonlinear because of normal gap elements used to model the press fit condition with added friction, and is developed in an iterative-incremental procedure. From the analysis of the SIFs results related to the initial cracked configuration, it is possible to assess the impact of the press fit condition when superimposed to the bending load case.
SynCoPation: Interactive Synthesis-Coupled Sound Propagation.
Rungta, Atul; Schissler, Carl; Mehra, Ravish; Malloy, Chris; Lin, Ming; Manocha, Dinesh
2016-04-01
Recent research in sound simulation has focused on either sound synthesis or sound propagation, and many standalone algorithms have been developed for each domain. We present a novel technique for coupling sound synthesis with sound propagation to automatically generate realistic aural content for virtual environments. Our approach can generate sounds from rigid-bodies based on the vibration modes and radiation coefficients represented by the single-point multipole expansion. We present a mode-adaptive propagation algorithm that uses a perceptual Hankel function approximation technique to achieve interactive runtime performance. The overall approach allows for high degrees of dynamism - it can support dynamic sources, dynamic listeners, and dynamic directivity simultaneously. We have integrated our system with the Unity game engine and demonstrate the effectiveness of this fully-automatic technique for audio content creation in complex indoor and outdoor scenes. We conducted a preliminary, online user-study to evaluate whether our Hankel function approximation causes any perceptible loss of audio quality. The results indicate that the subjects were unable to distinguish between the audio rendered using the approximate function and audio rendered using the full Hankel function in the Cathedral, Tuscany, and the Game benchmarks.
Nonlinear biochemical signal processing via noise propagation.
Kim, Kyung Hyuk; Qian, Hong; Sauro, Herbert M
2013-10-14
Single-cell studies often show significant phenotypic variability due to the stochastic nature of intra-cellular biochemical reactions. When the numbers of molecules, e.g., transcription factors and regulatory enzymes, are in low abundance, fluctuations in biochemical activities become significant and such "noise" can propagate through regulatory cascades in terms of biochemical reaction networks. Here we develop an intuitive, yet fully quantitative method for analyzing how noise affects cellular phenotypes based on identifying a system's nonlinearities and noise propagations. We observe that such noise can simultaneously enhance sensitivities in one behavioral region while reducing sensitivities in another. Employing this novel phenomenon we designed three biochemical signal processing modules: (a) A gene regulatory network that acts as a concentration detector with both enhanced amplitude and sensitivity. (b) A non-cooperative positive feedback system, with a graded dose-response in the deterministic case, that serves as a bistable switch due to noise-induced ultra-sensitivity. (c) A noise-induced linear amplifier for gene regulation that requires no feedback. The methods developed in the present work allow one to understand and engineer nonlinear biochemical signal processors based on fluctuation-induced phenotypes.
Improved Green's function parabolic equation method for atmospheric sound propagation
Salomons, E.M.
1998-01-01
The numerical implementation of the Green's function parabolic equation (GFPE) method for atmospheric sound propagation is discussed. Four types of numerical errors are distinguished: (i) errors in the forward Fourier transform; (ii) errors in the inverse Fourier transform; (iii) errors in the refra
On the development of approximate models for outdoor sound propagation
DEFF Research Database (Denmark)
Rasmussen, Karsten Bo
1998-01-01
The suitable prediction model for outdoor sound propagation depends on the situation and the application. Computationally intensive method such as Parabolic Equation methods, FFP methods and Boundary Element Methods all have advantages in certain situations. None of these approaches are at present...
Noise barriers and the harmonoise sound propagation model
Salomons, E.M.; Maercke, D. van; Randrianoelina, A.
2009-01-01
The Harmonoise sound propagation model ('the Harmonoise engineering model') was developed in the European project Harmonoise (2001-2004) for road and rail traffic noise. In 2008, CSTB Grenoble and TNO Delft have prepared a detailed description of the various steps involved in a calculation with the
The parabolic equation method for outdoor sound propagation
DEFF Research Database (Denmark)
Arranz, Marta Galindo
The parabolic equation method is a versatile tool for outdoor sound propagation. The present study has focused on the Cranck-Nicolson type Parabolic Equation method (CNPE). Three different applications of the CNPE method have been investigated. The first two applications study variations...
A method for visualizing sound propagation in solids and liquids
Institute of Scientific and Technical Information of China (English)
SHEN Jian-guo; ZHANG Hong-min
2006-01-01
A new method for visualizing sound propagation in solids and liquids is described in this paper. The method can show the sound propagation process dynamically in two dimensions. Compared with Schlieren method and dynamic photo-elastic method, this method cannot only show the sound field distribution in liquid and solid at different time moments, but also can be applied to non-transparent solid. In addition, it does not strictly require small residual stress of the sample. The sample can, therefore, be easily made. Because the acoustic field is obtained by indirect measurements, the recording can be affected by the after-shock of the receiving sensor and is prone to the influence of the direct wave of the liquid. Putting an aluminum plate into a liquid, we recorded the compression wave, shear wave and surface wave in the aluminum and, in the liquid we also recorded the direct wave and three head waves, which are directly coupled with the compression wave, shear wave and surface wave respectively. The recording clearly depicts the coupling relationship of the sound waves through the interface between the aluminum and the liquid. Putting a plexiglass into a liquid, we also recorded the sound waves in the plexiglass and the coupling relationship between the sound waves in the two mediums.
Nonlinear and Dispersive Optical Pulse Propagation
Dijaili, Sol Peter
In this dissertation, there are basically four novel contributions to the field of picosecond pulse propagation and measurement. The first contribution is the temporal ABCD matrix which is an analog of the traditional ABCD ray matrices used in Gaussian beam propagation. The temporal ABCD matrix allows for the easy calculation of the effects of linear chirp or group velocity dispersion in the time domain. As with Gaussian beams in space, there also exists a complete Hermite-Gaussian basis in time whose propagation can be tracked with the temporal ABCD matrices. The second contribution is the timing synchronization between a colliding pulse mode-locked dye laser and a gain-switched Fabry-Perot type AlGaAs laser diode that has achieved less than 40 femtoseconds of relative timing jitter by using a pulsed optical phase lock loop (POPLL). The relative timing jitter was measured using the error voltage of the feedback loop. This method of measurement is accurate since the frequencies of all the timing fluctuations fall within the loop bandwidth. The novel element is a broad band optical cross-correlator that can resolve femtosecond time delay errors between two pulse trains. The third contribution is a novel dispersive technique of determining the nonlinear frequency sweep of a picosecond pulse with relatively good accuracy. All the measurements are made in the time domain and hence there is no time-bandwidth limitation to the accuracy. The fourth contribution is the first demonstration of cross -phase modulation in a semiconductor laser amplifier where a variable chirp was observed. A simple expression for the chirp imparted on a weak signal pulse by the action of a strong pump pulse is derived. A maximum frequency excursion of 16 GHz due to the cross-phase modulation was measured. A value of 5 was found for alpha _{xpm} which is a factor for characterizing the cross-phase modulation in a similar manner to the conventional linewidth enhancement factor, alpha.
Fan, Ting-Bo; Liu, Zhen-Bo; Zhang, Zhe; Zhang, Dong; Gong, Xiu-Fen
2009-08-01
A theoretical model of the nonlinear propagation in multi-layered tissues for strong focused ultrasound is proposed. In this model, the spheroidal beam equation (SBE) is utilized to describe the nonlinear sound propagation in each layer tissue, and generalized oblique incidence theory is used to deal with the sound transmission between two layer tissues. Computer simulation is performed on a fat-muscle-liver tissue model under the irradiation of a 1 MHz focused transducer with a large aperture angle of 35°. The results demonstrate that the tissue layer would change the amplitude of sound pressure at the focal region and cause the increase of side petals.
Nonlinear behavior of the tarka flute's distinctive sounds
Gérard, Arnaud; Yapu-Quispe, Luis; Sakuma, Sachiko; Ghezzi, Flavio; Ramírez-Ávila, Gonzalo Marcelo
2016-09-01
The Andean tarka flute generates multiphonic sounds. Using spectral techniques, we verify two distinctive musical behaviors and the nonlinear nature of the tarka. Through nonlinear time series analysis, we determine chaotic and hyperchaotic behavior. Experimentally, we observe that by increasing the blow pressure on different fingerings, peculiar changes from linear to nonlinear patterns are produced, leading ultimately to quenching.
Non-linear wave propagation in acoustically lined circular ducts
Nayfeh, A. H.; Tsai, M.-S.
1974-01-01
An analysis is presented of the nonlinear effects of the gas motion as well as of the acoustic lining material on the transmission and attenuation of sound in a circular duct with a uniform cross-section and no mean flow. The acoustic material is characterized by an empirical, nonlinear impedance in which the instantaneous resistance is a nonlinear function of both the frequency and the acoustic velocity. The results show that there exist frequency bandwidths around the resonant frequencies in which the nonlinearity decreases the attenuation rate, and outside which the nonlinearity increases the attenuation rate, in qualitative agreement with experimental observations. Moreover, the effect of the gas nonlinearity increases with increasing sound frequency, whereas the effect of the material nonlinearity decreases with increasing sound frequency.
Airborne sound propagation over sea during offshore wind farm piling.
Van Renterghem, T; Botteldooren, D; Dekoninck, L
2014-02-01
Offshore piling for wind farm construction has attracted a lot of attention in recent years due to the extremely high noise emission levels associated with such operations. While underwater noise levels were shown to be harmful for the marine biology, the propagation of airborne piling noise over sea has not been studied in detail before. In this study, detailed numerical calculations have been performed with the Green's Function Parabolic Equation (GFPE) method to estimate noise levels up to a distance of 10 km. Measured noise emission levels during piling of pinpiles for a jacket-foundation wind turbine were assessed and used together with combinations of the sea surface state and idealized vertical sound speed profiles (downwind sound propagation). Effective impedances were found and used to represent non-flat sea surfaces at low-wind sea states 2, 3, and 4. Calculations show that scattering by a rough sea surface, which decreases sound pressure levels, exceeds refractive effects, which increase sound pressure levels under downwind conditions. This suggests that the presence of wind, even when blowing downwind to potential receivers, is beneficial to increase the attenuation of piling sound over the sea. A fully flat sea surface therefore represents a worst-case scenario.
Sound propagation over screened ground under upwind conditions
DEFF Research Database (Denmark)
Rasmussen, Karsten Bo
1996-01-01
in the frequency domain. The meteorological data representing the wind conditions have been determined by means of hot-wire anemometry in positions on both sides of the screen as well as directly over the screen. The theoretical model used for comparison is a hybrid approach. The sound field without a barrier......A screen on an absorbing ground is investigated experimentally and theoretically under upwind conditions. The experimental data are the result of scale model experiments in a 1:25 scale model. The sound propagation is measured using a triggered spark source with signal spectrum averaging...
Directory of Open Access Journals (Sweden)
Erik M Salomons
Full Text Available Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases: free-field propagation, propagation over porous and non-porous ground, propagation over a noise barrier, and propagation in an atmosphere with wind. LBM results are compared with solutions of the equations of acoustics. It is found that the LBM works well for sound waves, but dissipation of sound waves with the LBM is generally much larger than real dissipation of sound waves in air. To circumvent this problem it is proposed here to use the LBM for assessing the excess sound level, i.e. the difference between the sound level and the free-field sound level. The effect of dissipation on the excess sound level is much smaller than the effect on the sound level, so the LBM can be used to estimate the excess sound level for a non-dissipative atmosphere, which is a useful quantity in atmospheric acoustics. To reduce dissipation in an LBM simulation two approaches are considered: i reduction of the kinematic viscosity and ii reduction of the lattice spacing.
Salomons, Erik M; Lohman, Walter J A; Zhou, Han
2016-01-01
Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases: free-field propagation, propagation over porous and non-porous ground, propagation over a noise barrier, and propagation in an atmosphere with wind. LBM results are compared with solutions of the equations of acoustics. It is found that the LBM works well for sound waves, but dissipation of sound waves with the LBM is generally much larger than real dissipation of sound waves in air. To circumvent this problem it is proposed here to use the LBM for assessing the excess sound level, i.e. the difference between the sound level and the free-field sound level. The effect of dissipation on the excess sound level is much smaller than the effect on the sound level, so the LBM can be used to estimate the excess sound level for a non-dissipative atmosphere, which is a useful quantity in atmospheric acoustics. To reduce dissipation in an LBM simulation two approaches are considered: i) reduction of the kinematic viscosity and ii) reduction of the lattice spacing.
Electrodynamic Approach for Visualization of Sound Propagation in Solids
Völz, U.; Mrasek, H.; Matthies, K.; Wü; stenberg, H.; Kreutzbruck, M.
2009-03-01
The visualization of sound propagation in solids is vital for transducer adaptation and better understanding of complex test samples and their wave propagation modeling. In this work we present an electrodynamic technique detecting the grazing sound beam with a 10 mm-sized electrodynamic probe. The particle displacement along the sample's surface was then measured as a function of time and position. Adapting the electrodynamic probe and its coil alignment allows for measuring the displacement components in all three dimensions. Thus horizontal and vertical particle displacement with respect to the surface can be detected. A SNR of up to 40 dB could be achieved within ferromagnetic and high conductive chrome steel when using a shear wave generated by an angle beam probe. When dealing with nonconductive materials such as PMMA we obtained a reduced SNR of 12 dB. We report on measurements of the sound field in complex weld joints. One example shows a narrow gap weld joining a nickel alloy with a chrome steel. The weld of the 80 mm-thick test block shows a distinct anisotropic texture. The system enables us to visualize the wave propagation within the weld and indicates the reflection and scattering scenario and the energy losses due to both the anisotropic structure and material defects.
WAVE: Interactive Wave-based Sound Propagation for Virtual Environments.
Mehra, Ravish; Rungta, Atul; Golas, Abhinav; Ming Lin; Manocha, Dinesh
2015-04-01
We present an interactive wave-based sound propagation system that generates accurate, realistic sound in virtual environments for dynamic (moving) sources and listeners. We propose a novel algorithm to accurately solve the wave equation for dynamic sources and listeners using a combination of precomputation techniques and GPU-based runtime evaluation. Our system can handle large environments typically used in VR applications, compute spatial sound corresponding to listener's motion (including head tracking) and handle both omnidirectional and directional sources, all at interactive rates. As compared to prior wave-based techniques applied to large scenes with moving sources, we observe significant improvement in runtime memory. The overall sound-propagation and rendering system has been integrated with the Half-Life 2 game engine, Oculus-Rift head-mounted display, and the Xbox game controller to enable users to experience high-quality acoustic effects (e.g., amplification, diffraction low-passing, high-order scattering) and spatial audio, based on their interactions in the VR application. We provide the results of preliminary user evaluations, conducted to study the impact of wave-based acoustic effects and spatial audio on users' navigation performance in virtual environments.
Nonlinear ultrasound wave propagation in thermoviscous fluids
DEFF Research Database (Denmark)
Sørensen, Mads Peter
coupled nonlinear partial differential equations, which resembles those of optical chi-2 materials. We think this result makes a remarkable link between nonlinear acoustics and nonlinear optics. Finally our analysis reveal an exact kink solution to the nonlinear acoustic problem. This kink solution...
Sound propagation from a ridge wind turbine across a valley
Van Renterghem, Timothy
2017-04-01
Sound propagation outdoors can be strongly affected by ground topography. The existence of hills and valleys between a source and receiver can lead to the shielding or focusing of sound waves. Such effects can result in significant variations in received sound levels. In addition, wind speed and air temperature gradients in the atmospheric boundary layer also play an important role. All of the foregoing factors can become especially important for the case of wind turbines located on a ridge overlooking a valley. Ridges are often selected for wind turbines in order to increase their energy capture potential through the wind speed-up effects often experienced in such locations. In this paper, a hybrid calculation method is presented to model such a case, relying on an analytical solution for sound diffraction around an impedance cylinder and the conformal mapping (CM) Green's function parabolic equation (GFPE) technique. The various aspects of the model have been successfully validated against alternative prediction methods. Example calculations with this hybrid analytical-CM-GFPE model show the complex sound pressure level distribution across the valley and the effect of valley ground type. The proposed method has the potential to include the effect of refraction through the inclusion of complex wind and temperature fields, although this aspect has been highly simplified in the current simulations. This article is part of the themed issue 'Wind energy in complex terrains'.
Nonlinear light propagation in fs laser-written waveguide arrays
Directory of Open Access Journals (Sweden)
Szameit A.
2013-11-01
Full Text Available We report on recent achievements in the field of nonlinear light propagation in fs laser-written waveguide lattices. Particular emphasis is thereby given on discrete solitons in such systems.
Dispersion of Sound in Dilute Suspensions with Nonlinear Particle Relaxation
Kandula, Max
2010-01-01
The theory accounting for nonlinear particle relaxation (viscous and thermal) has been applied to the prediction of dispersion of sound in dilute suspensions. The results suggest that significant deviations exist for sound dispersion between the linear and nonlinear theories at large values of Omega(Tau)(sub d), where Omega is the circular frequency, and Tau(sub d) is the Stokesian particle relaxation time. It is revealed that the nonlinear effect on the dispersion coefficient due to viscous contribution is larger relative to that of thermal conduction
Numerical Models for Sound Propagation in Long Spaces
Lai, Chenly Yuen Cheung
Both reverberation time and steady-state sound field are the key elements for assessing the acoustic condition in an enclosed space. They affect the noise propagation, speech intelligibility, clarity index, and definition. Since the sound field in a long space is non diffuse, classical room acoustics theory does not apply in this situation. The ray tracing technique and the image source methods are two common models to fathom both reverberation time and steady-state sound field in long enclosures nowadays. Although both models can give an accurate estimate of reverberation times and steady-state sound field directly or indirectly, they often involve time-consuming calculations. In order to simplify the acoustic consideration, a theoretical formulation has been developed for predicting both steady-state sound fields and reverberation times in street canyons. The prediction model is further developed to predict the steady-state sound field in a long enclosure. Apart from the straight long enclosure, there are other variations such as a cross junction, a long enclosure with a T-intersection, an U-turn long enclosure. In the present study, an theoretical and experimental investigations were conducted to develop formulae for predicting reverberation times and steady-state sound fields in a junction of a street canyon and in a long enclosure with T-intersection. The theoretical models are validated by comparing the numerical predictions with published experimental results. The theoretical results are also compared with precise indoor measurements and large-scale outdoor experimental results. In all of previous acoustical studies related to long enclosure, most of the studies are focused on the monopole sound source. Besides non-directional noise source, many noise sources in long enclosure are dipole like, such as train noise and fan noise. In order to study the characteristics of directional noise sources, a review of available dipole source was conducted. A dipole was
Nonlinear propagation and control of acoustic waves in phononic superlattices
Jiménez, Noé; Picó, Rubén; García-Raffi, Lluís M; Sánchez-Morcillo, Víctor J
2015-01-01
The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such as band-gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g. cubic) nonlinearities, or extremely linear media (where distortion can be cancelled). The presented ideas open a way towards the control of acoustic wave propagation in nonlinear regime.
Laser beam propagation in non-linearly absorbing media
CSIR Research Space (South Africa)
Forbes, A
2006-08-01
Full Text Available Many analytical techniques exist to explore the propagation of certain laser beams in free space, or in a linearly absorbing medium. When the medium is nonlinearly absorbing the propagation must be described by an iterative process using the well...
Nonlinear wave propagation in a rapidly-spun fiber.
McKinstrie, C J; Kogelnik, H
2006-09-04
Multiple-scale analysis is used to study linear wave propagation in a rapidly-spun fiber and its predictions are shown to be consistent with results obtained by other methods. Subsequently, multiple-scale analysis is used to derive a generalized Schroedinger equation for nonlinear wave propagation in a rapidly-spun fiber. The consequences of this equation for pulse propagation and four-wave mixing are discussed briefly.
Nonlinear propagation of short wavelength drift-Alfven waves
DEFF Research Database (Denmark)
Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens
1986-01-01
Making use of a kinetic ion and a hydrodynamic electron description together with the Maxwell equation, the authors derive a set of nonlinear equations which governs the dynamics of short wavelength ion drift-Alfven waves. It is shown that the nonlinear drift-Alfven waves can propagate as two...
Laboratory measurements of the effect of internal waves on sound propagation
Zhang, Likun; Swinney, Harry L.; Lin, Ying-Tsong
2016-11-01
The fidelity of acoustic signals used in communication and imaging in the oceans is limited by density fluctuations arising from many sources, particularly from internal waves. We present results from laboratory experiments on sound propagation through an internal wave field produced by a wave generator consisting of multiple oscillating plates. The fluid density as a function of height is measured and used to determine the sound speed as a function of the height. Sound pulses from a transducer propagate through the fluctuating stratified density field and are detected to determine sound refraction, pulse arrival time, and sound signal distortion. The results are compared with sound ray model and numerical models of underwater sound propagation. The laboratory experiments can explore the parameter dependence by varying the fluid density profile, the sound pulse signal, and the internal wave amplitude and frequency. The results lead to a better understanding of sound propagation through and scattered by internal waves.
SPP propagation in nonlinear glass-metal interface
Sagor, Rakibul Hasan
2011-12-01
The non-linear propagation of Surface-Plasmon-Polaritons (SPP) in single interface of metal and chalcogenide glass (ChG) is considered. A time domain simulation algorithm is developed using the Finite Difference Time Domain (FDTD) method. The general polarization algorithm incorporated in the auxiliary differential equation (ADE) is used to model frequency-dependent dispersion relation and third-order nonlinearity of ChG. The main objective is to observe the nonlinear behavior of SPP propagation and study the dynamics of the whole structure. © 2011 IEEE.
Non-planar and Non-linear Second Sound Waves in He Ⅱ
Institute of Scientific and Technical Information of China (English)
ZHANG Peng; KIMURA Seiji; MURAKAMI Masahide; WANG Ru-zhu
2000-01-01
Non-planar and non-linear second sound wave are experimentally investigated in an open He Ⅱ bath. It is found that second sound wave characterized by a negative tail part in an open He Ⅱ bath is different from that propagating through a channel, and the shape of the negative tail part of second sound wave varies at different location in an open He Ⅱ bath. Theoretical consideration is also carried out based on two-fluid model and vortex evolution equation. It is found that experimental and theoretical results agree rather well with each other. Second sound wave may develop into the thermal shock wave provided that the heat flux is large.
Strength and wave parameters for sound propagation in random media.
Ostashev, Vladimir E; Wilson, D Keith
2017-03-01
Line-of-sight sound propagation of plane and spherical waves in a statistically isotropic, random moving medium is considered. The variances of the phase and log-amplitude fluctuations of these waves are expressed in terms of the strength and wave parameters for arbitrary spectra of temperature and velocity fluctuations, and results are then derived specifically for the Gaussian and generalized von Kármán spectra. This representation of the variances reduces significantly the number of independent parameters of the problem and enables better understanding of sound scattering by plane and spherical waves, and due to temperature and velocity fluctuations. Using this representation, the boundary between the weak and strong scattering regimes is determined in terms of the strength and wave parameters. The results obtained are compared with the Λ - Φ diagram adopted in ocean acoustics. Other statistical moments of plane and spherical waves in a medium with arbitrary spectra of temperature and velocity fluctuations such as the mean sound field, the spatial and temporal mutual coherence functions, the coherence bandwidth, and the variance of the angle-of-arrival fluctuations are expressed in terms of the strength parameter and length scale of the fluctuations.
Extensions of nonlinear error propagation analysis for explicit pseudodynamic testing
Institute of Scientific and Technical Information of China (English)
Shuenn-Yih Chang
2009-01-01
Two important extensions of a technique to perform a nonlinear error propagation analysis for an explicit pseudodynamic algorithm (Chang, 2003) are presented. One extends the stability study from a given time step to a complete step-by-step integration procedure. It is analytically proven that ensuring stability conditions in each time step leads to a stable computation of the entire step-by-step integration procedure. The other extension shows that the nonlinear error propagation results, which are derived for a nonlinear single degree of freedom (SDOF) system, can be applied to a nonlinear multiple degree of freedom (MDOF) system. This application is dependent upon the determination of the natural frequencies of the system in each time step, since all the numerical properties and error propagation properties in the time step are closely related to these frequencies. The results are derived from the step degree of nonlinearity. An instantaneous degree of nonlinearity is introduced to replace the step degree of nonlinearity and is shown to be easier to use in practice. The extensions can be also applied to the results derived from a SDOF system based on the instantaneous degree of nonlinearity, and hence a time step might be appropriately chosen to perform a pseudodynamic test prior to testing.
Nonlinear wave propagation in constrained solids subjected to thermal loads
Nucera, Claudio; Lanza di Scalea, Francesco
2014-01-01
The classical mathematical treatment governing nonlinear wave propagation in solids relies on finite strain theory. In this scenario, a system of nonlinear partial differential equations can be derived to mathematically describe nonlinear phenomena such as acoustoelasticity (wave speed dependency on quasi-static stress), wave interaction, wave distortion, and higher-harmonic generation. The present work expands the topic of nonlinear wave propagation to the case of a constrained solid subjected to thermal loads. The origin of nonlinear effects in this case is explained on the basis of the anharmonicity of interatomic potentials, and the absorption of the potential energy corresponding to the (prevented) thermal expansion. Such "residual" energy is, at least, cubic as a function of strain, hence leading to a nonlinear wave equation and higher-harmonic generation. Closed-form solutions are given for the longitudinal wave speed and the second-harmonic nonlinear parameter as a function of interatomic potential parameters and temperature increase. The model predicts a decrease in longitudinal wave speed and a corresponding increase in nonlinear parameter with increasing temperature, as a result of the thermal stresses caused by the prevented thermal expansion of the solid. Experimental measurements of the ultrasonic nonlinear parameter on a steel block under constrained thermal expansion confirm this trend. These results suggest the potential of a nonlinear ultrasonic measurement to quantify thermal stresses from prevented thermal expansion. This knowledge can be extremely useful to prevent thermal buckling of various structures, such as continuous-welded rails in hot weather.
Anomalous sound propagation due to the horizontal variation of seabed acoustic properties
Institute of Scientific and Technical Information of China (English)
LI Zhenglin; ZHANG Renhe; PENG Zhaohui; LI Xilu
2004-01-01
The sound propagation in shallow water is greatly influenced by the acoustic properties of seabed. An anomalous transmission loss was observed in an experiment, and a range dependent bottom model with horizontal variation of seabed acoustic property is proposed and could be well used to explain the anomalous phenomena. It is shown that the horizontal variation of bottom properties has a great effect on underwater sound propagation, and it should be given much attention in sound propagation and geoacoustic inversion problems.
A nonlinear RDF model for waves propagating in shallow water
Institute of Scientific and Technical Information of China (English)
王厚杰; 杨作升; 李瑞杰; 张军
2001-01-01
In this paper, a composite explicit nonlinear dispersion relation is presented with reference to Stokes 2nd order dispersion relation and the empirical relation of Hedges. The explicit dispersion relation has such advantages that it can smoothly match the Stokes relation in deep and intermediate water and Hedgs’s relation in shallow water. As an explicit formula, it separates the nonlinear term from the linear dispersion relation. Therefore it is convenient to obtain the numerical solution of nonlinear dispersion relation. The present formula is combined with the modified mild-slope equation including nonlinear effect to make a Refraction-Diffraction (RDF) model for wave propagating in shallow water. This nonlinear model is verified over a complicated topography with two submerged elliptical shoals resting on a slope beach. The computation results compared with those obtained from linear model show that at present the nonlinear RDF model can predict the nonlinear characteristics and the combined refracti
Nonlinear Bubble Dynamics And The Effects On Propagation Through Near-Surface Bubble Layers
Leighton, Timothy G.
2004-11-01
Nonlinear bubble dynamics are often viewed as the unfortunate consequence of having to use high acoustic pressure amplitudes when the void fraction in the near-surface oceanic bubble layer is great enough to cause severe attenuation (e.g. >50 dB/m). This is seen as unfortunate since existing models for acoustic propagation in bubbly liquids are based on linear bubble dynamics. However, the development of nonlinear models does more than just allow quantification of the errors associated with the use of linear models. It also offers the possibility of propagation modeling and acoustic inversions which appropriately incorporate the bubble nonlinearity. Furthermore, it allows exploration and quantification of possible nonlinear effects which may be exploited. As a result, high acoustic pressure amplitudes may be desirable even in low void fractions, because they offer opportunities to gain information about the bubble cloud from the nonlinearities, and options to exploit the nonlinearities to enhance communication and sonar in bubbly waters. This paper presents a method for calculating the nonlinear acoustic cross-sections, scatter, attenuations and sound speeds from bubble clouds which may be inhomogeneous. The method allows prediction of the time dependency of these quantities, both because the cloud may vary and because the incident acoustic pulse may have finite and arbitrary time history. The method can be readily adapted for bubbles in other environments (e.g. clouds of interacting bubbles, sediments, structures, in vivo, reverberant conditions etc.). The possible exploitation of bubble acoustics by marine mammals, and for sonar enhancement, is explored.
Direct FVM Simulation for Sound Propagation in an Ideal Wedge
Directory of Open Access Journals (Sweden)
Hongyu Ji
2016-01-01
Full Text Available The sound propagation in a wedge-shaped waveguide with perfectly reflecting boundaries is one of the few range-dependent problems with an analytical solution. This provides a benchmark for the theoretical and computational studies on the simulation of ocean acoustic applications. We present a direct finite volume method (FVM simulation for the ideal wedge problem, and both time and frequency domain results are analyzed. We also study the broadband problem with large-scale parallel simulations. The results presented in this paper validate the accuracy of the numerical techniques and show that the direct FVM simulation could be applied to large-scale complex acoustic applications with a high performance computing platform.
Effect of a sloping bottom on sound propagation
Rutenko, A. N.; Kozitskii, S. B.; Manul'chev, D. S.
2015-01-01
The paper presents the results of field measurements of acoustic fields generated in autumn hydrological conditions of the Sea of Japan shelf by a TON-320Hz autonomous signal emitter, moored in the sea at a depth of 34 m, as well as by a low-frequency pulsed pneumoemitter lowered from from a ship to a horizon of 10 m. Reception was via a hydrophone moored at a depth of 41 m from a digital radio-hydroacoustic buoy and the hydrophone of an autonomous acoustic recorder lowered together with an autonomous hydrological sonde from a drifting ship. Sound propagation from these sources was simulated by a wide-angle parabolic equation taking into account the elastic properties of rocks making up the bottom, as well as by a 3-D mode parabolic equation in the adiabatic approximation for a "fluid" bottom.
Effects of wind turbine wake on atmospheric sound propagation
DEFF Research Database (Denmark)
Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong
2017-01-01
In this paper, we investigate the sound propagation from a wind turbine considering the effects of wake-induced velocity deficit and turbulence. In order to address this issue, an advanced approach was developed in which both scalar and vector parabolic equations in two dimensions are solved. Flow...... field input was obtained using the actuator line (AL) technique with Large Eddy Simulation (LES) to model the wind turbine and its wake and from an analytical wake model. The effect of incoming wind speed and atmospheric stability was investigated with the analytical wake input using a single point...... source. Unsteady acoustic simulations were carried out with the AL/LES input for three cases with different incoming turbulence intensity, and a moving source approach to mimic the rotating turbine blades. The results show a non-negligible effect of the wake on far-field noise prediction. Particularly...
On the propagation of sound waves in a stellar wind traversed by periodic strong shocks
Pijpers, F. P.
1994-01-01
It has been claimed that in stellar winds traversed by strong shocks the mechanism for driving the wind by sound wave pressure cannot operate because sound waves cannot propagate past the shocks. It is shown here that sound waves can propagate through shocks in one direction and that this is a sufficient condition for the sound wave pressure mechanism to work. A strong shock amplifies a sound wave passing through it and can drag the sound wave away from the star. It is immaterial for the soun...
Mcdaniel, Oliver Herbert
1975-01-01
The propagation of plane wave and higher order acoustic modes in both hard-walled and absorbent cylindrical ducts was studied at moderate sound intensities where the linear wave equation is valid, and at high intensities where nonlinear effects can be observed. The experiments were conducted with an anechoically terminated twelve-inch inside-diameter transite pipe. Various types of sound sources were mounted at one end of the duct to generate the desired acoustic fields within the duct. Arrays of conventional loudspeakers were used to generate plane waves and higher order acoustic modes at moderate intensities, and an array of four high intensity electro-pneumatic sound sources was used for the experiments in the nonlinear region. The attenuation of absorbent liners made of several different materials was obtained at moderate intensities for both plane waves and high order modes. It was found that the characteristics of the liners studied did not change appreciably at high intensities.
Nonlinear Biochemical Signal Processing via Noise Propagation
Kim, Kyung Hyuk; Qian, Hong; Sauro, Herbert M.
2013-01-01
Single-cell studies often show significant phenotypic variability due to the stochastic nature of intra-cellular biochemical reactions. When the numbers of molecules, e.g., transcription factors and regulatory enzymes, are in low abundance, fluctuations in biochemical activities become significant and such "noise" can propagate through regulatory cascades in terms of biochemical reaction networks. Here we develop an intuitive, yet fully quantitative method for analyzing how noise affects cell...
Numerical modelling of nonlinear full-wave acoustic propagation
Energy Technology Data Exchange (ETDEWEB)
Velasco-Segura, Roberto, E-mail: roberto.velasco@ccadet.unam.mx; Rendón, Pablo L., E-mail: pablo.rendon@ccadet.unam.mx [Grupo de Acústica y Vibraciones, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-186, C.P. 04510, México D.F., México (Mexico)
2015-10-28
The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.
Nonlinear pulse propagation in birefringent fiber Bragg gratings.
Pereira, S; Sipe, J
1998-11-23
We present two sets of equations to describe nonlinear pulse propagation in a birefringent fiber Bragg grating. The first set uses a coupled-mode formalism to describe light in or near the photonic band gap of the grating. The second set is a pair of coupled nonlinear Schroedinger equations. We use these equations to examine viable switching experiments in the presence of birefringence. We show how the birefringence can both aid and hinder device applications.
Wave Propagation In Strongly Nonlinear Two-Mass Chains
Wang, Si Yin; Herbold, Eric B.; Nesterenko, Vitali F.
2010-05-01
We developed experimental set up that allowed the investigation of propagation of oscillating waves generated at the entrance of nonlinear and strongly nonlinear two-mass granular chains composed of steel cylinders and steel spheres. The paper represents the first experimental data related to the propagation of these waves in nonlinear and strongly nonlinear chains. The dynamic compressive forces were detected using gauges imbedded inside particles at depths equal to 4 cells and 8 cells from the entrance gauge detecting the input signal. At these relatively short distances we were able to detect practically perfect transparency at low frequencies and cut off effects at higher frequencies for nonlinear and strongly nonlinear signals. We also observed transformation of oscillatory shocks into monotonous shocks. Numerical calculations of signal transformation by non-dissipative granular chains demonstrated transparency of the system at low frequencies and cut off phenomenon at high frequencies in reasonable agreement with experiments. Systems which are able to transform nonlinear and strongly nonlinear waves at small sizes of the system are important for practical applications such as attenuation of high amplitude pulses.
Sound propagation in areas with a complex meteorology: a meteorological-acoustical model
Eerden, F.J.M. van der; Berg, F. van den
2008-01-01
Long range sound propagation is largely affected by the vertical wind and temperature gradients. In areas where the meteorology can be complex, such as coastal areas, islands, and lake districts, the gradients usually vary as a function of the horizontal distance. As a result the sound propagation
Sound propagation in areas with a complex meteorology: a meteorological-acoustical model
Eerden, F.J.M. van der; Berg, F. van den
2008-01-01
Long range sound propagation is largely affected by the vertical wind and temperature gradients. In areas where the meteorology can be complex, such as coastal areas, islands, and lake districts, the gradients usually vary as a function of the horizontal distance. As a result the sound propagation i
Nonlinear evolution of parallel propagating Alfven waves: Vlasov - MHD simulation
Nariyuki, Y; Kumashiro, T; Hada, T
2009-01-01
Nonlinear evolution of circularly polarized Alfv\\'en waves are discussed by using the recently developed Vlasov-MHD code, which is a generalized Landau-fluid model. The numerical results indicate that as far as the nonlinearity in the system is not so large, the Vlasov-MHD model can validly solve time evolution of the Alfv\\'enic turbulence both in the linear and nonlinear stages. The present Vlasov-MHD model is proper to discuss the solar coronal heating and solar wind acceleration by Alfve\\'n waves propagating from the photosphere.
Uncertainty propagation for nonlinear vibrations: A non-intrusive approach
Panunzio, A. M.; Salles, Loic; Schwingshackl, C. W.
2017-02-01
The propagation of uncertain input parameters in a linear dynamic analysis is reasonably well established today, but with the focus of the dynamic analysis shifting towards nonlinear systems, new approaches is required to compute the uncertain nonlinear responses. A combination of stochastic methods (Polynomial Chaos Expansion, PCE) with an Asymptotic Numerical Method (ANM) for the solution of the nonlinear dynamic systems is presented to predict the propagation of random input uncertainties and assess their influence on the nonlinear vibrational behaviour of a system. The proposed method allows the computation of stochastic resonance frequencies and peak amplitudes based on multiple input uncertainties, leading to a series of uncertain nonlinear dynamic responses. One of the main challenges when using the PCE is thereby the Gibbs phenomenon, which can heavily impact the resulting stochastic nonlinear response by introducing spurious oscillations. A novel technique to avoid the Gibbs phenomenon is be presented in this paper, leading to high quality frequency response predictions. A comparison of the proposed stochastic nonlinear analysis technique to traditional Monte Carlo simulations, demonstrates comparable accuracy at a significantly reduced computational cost, thereby validating the proposed approach.
Generation and propagation of nonlinear internal waves in Massachusetts Bay
Scotti, A.; Beardsley, R.C.; Butman, B.
2007-01-01
During the summer, nonlinear internal waves (NLIWs) are commonly observed propagating in Massachusetts Bay. The topography of the area is unique in the sense that the generation area (over Stellwagen Bank) is only 25 km away from the shoaling area, and thus it represents an excellent natural laboratory to study the life cycle of NLIWs. To assist in the interpretation of the data collected during the 1998 Massachusetts Bay Internal Wave Experiment (MBIWE98), a fully nonlinear and nonhydrostatic model covering the generation/shoaling region was developed, to investigate the response of the system to the range of background and driving conditions observed. Simplified models were also used to elucidate the role of nonlinearity and dispersion in shaping the NLIW field. This paper concentrates on the generation process and the subsequent evolution in the basin. The model was found to reproduce well the range of propagation characteristics observed (arrival time, propagation speed, amplitude), and provided a coherent framework to interpret the observations. Comparison with a fully nonlinear hydrostatic model shows that during the generation and initial evolution of the waves as they move away from Stellwagen Bank, dispersive effects play a negligible role. Thus the problem can be well understood considering the geometry of the characteristics along which the Riemann invariants of the hydrostatic problem propagate. Dispersion plays a role only during the evolution of the undular bore in the middle of Stellwagen Basin. The consequences for modeling NLIWs within hydrostatic models are briefly discussed at the end.
Nonlinear pulse propagation: a time-transformation approach.
Xiao, Yuzhe; Agrawal, Govind P; Maywar, Drew N
2012-04-01
We present a time-transformation approach for studying the propagation of optical pulses inside a nonlinear medium. Unlike the conventional way of solving for the slowly varying amplitude of an optical pulse, our new approach maps directly the input electric field to the output one, without making the slowly varying envelope approximation. Conceptually, the time-transformation approach shows that the effect of propagation through a nonlinear medium is to change the relative spacing and duration of various temporal slices of the pulse. These temporal changes manifest as self-phase modulation in the spectral domain and self-steepening in the temporal domain. Our approach agrees with the generalized nonlinear Schrödinger equation for 100 fs pulses and the finite-difference time-domain solution of Maxwell's equations for two-cycle pulses, while producing results 20 and 50 times faster, respectively.
Energy Technology Data Exchange (ETDEWEB)
Romeo, Francesco [Dipartimento di Ingegneria Strutturale e Geotecnica, Universita di Roma ' La Sapienza' , Via Gramsci 53, 00197 Rome (Italy)] e-mail: francesco.romeo@uniromal.it; Rega, Giuseppe [Dipartimento di Ingegneria Strutturale e Geotecnica, Universita di Roma ' La Sapienza' , Via Gramsci 53, 00197 Rome (Italy)] e-mail: giuseppe.rega@uniromal.it
2006-02-01
Free wave propagation properties in one-dimensional chains of nonlinear oscillators are investigated by means of nonlinear maps. In this realm, the governing difference equations are regarded as symplectic nonlinear transformations relating the amplitudes in adjacent chain sites (n, n + 1) thereby considering a dynamical system where the location index n plays the role of the discrete time. Thus, wave propagation becomes synonymous of stability: finding regions of propagating wave solutions is equivalent to finding regions of linearly stable map solutions. Mechanical models of chains of linearly coupled nonlinear oscillators are investigated. Pass- and stop-band regions of the mono-coupled periodic system are analytically determined for period-q orbits as they are governed by the eigenvalues of the linearized 2D map arising from linear stability analysis of periodic orbits. Then, equivalent chains of nonlinear oscillators in complex domain are tackled. Also in this case, where a 4D real map governs the wave transmission, the nonlinear pass- and stop-bands for periodic orbits are analytically determined by extending the 2D map analysis. The analytical findings concerning the propagation properties are then compared with numerical results obtained through nonlinear map iteration.
Wave envelopes method for description of nonlinear acoustic wave propagation.
Wójcik, J; Nowicki, A; Lewin, P A; Bloomfield, P E; Kujawska, T; Filipczyński, L
2006-07-01
A novel, free from paraxial approximation and computationally efficient numerical algorithm capable of predicting 4D acoustic fields in lossy and nonlinear media from arbitrary shaped sources (relevant to probes used in medical ultrasonic imaging and therapeutic systems) is described. The new WE (wave envelopes) approach to nonlinear propagation modeling is based on the solution of the second order nonlinear differential wave equation reported in [J. Wójcik, J. Acoust. Soc. Am. 104 (1998) 2654-2663; V.P. Kuznetsov, Akust. Zh. 16 (1970) 548-553]. An incremental stepping scheme allows for forward wave propagation. The operator-splitting method accounts independently for the effects of full diffraction, absorption and nonlinear interactions of harmonics. The WE method represents the propagating pulsed acoustic wave as a superposition of wavelet-like sinusoidal pulses with carrier frequencies being the harmonics of the boundary tone burst disturbance. The model is valid for lossy media, arbitrarily shaped plane and focused sources, accounts for the effects of diffraction and can be applied to continuous as well as to pulsed waves. Depending on the source geometry, level of nonlinearity and frequency bandwidth, in comparison with the conventional approach the Time-Averaged Wave Envelopes (TAWE) method shortens computational time of the full 4D nonlinear field calculation by at least an order of magnitude; thus, predictions of nonlinear beam propagation from complex sources (such as phased arrays) can be available within 30-60 min using only a standard PC. The approximate ratio between the computational time costs obtained by using the TAWE method and the conventional approach in calculations of the nonlinear interactions is proportional to 1/N2, and in memory consumption to 1/N where N is the average bandwidth of the individual wavelets. Numerical computations comparing the spatial field distributions obtained by using both the TAWE method and the conventional approach
Adaptive Modeling of Details for Physically-Based Sound Synthesis and Propagation
2015-03-21
accurate measurements with binaural sound recordings and spatial sampling in complex environments are available. Additionally our approach and system...complements the visual sense. Physically-based sound simulation is a method to achieve this goal and automatically provides audio-visual correspondence...It simulates the physical process of sound : the pressure variations of a medium originated from some vibrating surface ( sound synthesis), propagating
Source and listener directivity for interactive wave-based sound propagation.
Mehra, Ravish; Antani, Lakulish; Kim, Sujeong; Manocha, Dinesh
2014-04-01
We present an approach to model dynamic, data-driven source and listener directivity for interactive wave-based sound propagation in virtual environments and computer games. Our directional source representation is expressed as a linear combination of elementary spherical harmonic (SH) sources. In the preprocessing stage, we precompute and encode the propagated sound fields due to each SH source. At runtime, we perform the SH decomposition of the varying source directivity interactively and compute the total sound field at the listener position as a weighted sum of precomputed SH sound fields. We propose a novel plane-wave decomposition approach based on higher-order derivatives of the sound field that enables dynamic HRTF-based listener directivity at runtime. We provide a generic framework to incorporate our source and listener directivity in any offline or online frequency-domain wave-based sound propagation algorithm. We have integrated our sound propagation system in Valve's Source game engine and use it to demonstrate realistic acoustic effects such as sound amplification, diffraction low-passing, scattering, localization, externalization, and spatial sound, generated by wave-based propagation of directional sources and listener in complex scenarios. We also present results from our preliminary user study.
Variational principle for nonlinear wave propagation in dissipative systems.
Dierckx, Hans; Verschelde, Henri
2016-02-01
The dynamics of many natural systems is dominated by nonlinear waves propagating through the medium. We show that in any extended system that supports nonlinear wave fronts with positive surface tension, the asymptotic wave-front dynamics can be formulated as a gradient system, even when the underlying evolution equations for the field variables cannot be written as a gradient system. The variational potential is simply given by a linear combination of the occupied volume and surface area of the wave front and changes monotonically over time.
A propagation model of computer virus with nonlinear vaccination probability
Gan, Chenquan; Yang, Xiaofan; Liu, Wanping; Zhu, Qingyi
2014-01-01
This paper is intended to examine the effect of vaccination on the spread of computer viruses. For that purpose, a novel computer virus propagation model, which incorporates a nonlinear vaccination probability, is proposed. A qualitative analysis of this model reveals that, depending on the value of the basic reproduction number, either the virus-free equilibrium or the viral equilibrium is globally asymptotically stable. The results of simulation experiments not only demonstrate the validity of our model, but also show the effectiveness of nonlinear vaccination strategies. Through parameter analysis, some effective strategies for eradicating viruses are suggested.
Moderately nonlinear ultrasound propagation in blood-mimicking fluid.
Kharin, Nikolay A; Vince, D Geoffrey
2004-04-01
In medical diagnostic ultrasound (US), higher than-in-water nonlinearity of body fluids and tissue usually does not produce strong nonlinearly distorted waves because of the high absorption. The relative influence of absorption and nonlinearity can be characterized by the Gol'dberg number Gamma. There are two limiting cases in nonlinear acoustics: weak waves (Gamma 1). However, at diagnostic frequencies in tissue and body fluids, the nonlinear effects and effects of absorption more likely are comparable (Gol'dberg number Gamma approximately 1). The aim of this work was to study the nonlinear propagation of a moderately nonlinear US second harmonic signal in a blood-mimicking fluid. Quasilinear solutions to the KZK equation are presented, assuming radiation from a flat and geometrically focused circular Gaussian source. The solutions are expressed in a new simplified closed form and are in very good agreement with those of previous studies measuring and modeling Gaussian beams. The solutions also show good agreement with the measurements of the beams produced by commercially available transducers, even without special Gaussian shading.
Nonlinear propagation of planet-generated tidal waves
Rafikov, Roman
2001-01-01
The propagation and evolution of planet-generated density waves in protoplanetary disks is considered. The evolution of waves, leading to the shock formation and wake dissipation, is followed in the weakly nonlinear regime. The local approach of Goodman & Rafikov (2001) is extended to include the effects of surface density and temperature variations in the disk as well as the disk cylindrical geometry and nonuniform shear. Wave damping due to shocks is demonstrated to be a nonlocal process sp...
Nonlinear Propagation of Light in One Dimensional Periodic Structures
Goodman, Roy H.; Weinstein, Michael I.; Philip J Holmes
2000-01-01
We consider the nonlinear propagation of light in an optical fiber waveguide as modeled by the anharmonic Maxwell-Lorentz equations (AMLE). The waveguide is assumed to have an index of refraction which varies periodically along its length. The wavelength of light is selected to be in resonance with the periodic structure (Bragg resonance). The AMLE system considered incorporates the effects non-instantaneous response of the medium to the electromagnetic field (chromatic or material dispersion...
Properties of nonreciprocal light propagation in a nonlinear optical isolator
Roy, Dibyendu
2016-01-01
Light propagation in a nonlinear optical medium is nonreciprocal for spatially asymmetric linear permittivity. We here examine physical mechanism and properties of such nonreciprocity (NR). For this, we calculate transmission of light through a two-level atom asymmetrically coupled to light inside open waveguides. We determine the critical intensity of incident light for maximum NR and a dependence of the corresponding NR on asymmetry in the coupling. Surprisingly, we find that it is mainly c...
Analytical Lie-algebraic solution of a 3D sound propagation problem in the ocean
Energy Technology Data Exchange (ETDEWEB)
Petrov, P.S., E-mail: petrov@poi.dvo.ru [Il' ichev Pacific Oceanological Institute, 43 Baltiyskaya str., Vladivostok, 690041 (Russian Federation); Prants, S.V., E-mail: prants@poi.dvo.ru [Il' ichev Pacific Oceanological Institute, 43 Baltiyskaya str., Vladivostok, 690041 (Russian Federation); Petrova, T.N., E-mail: petrova.tn@dvfu.ru [Far Eastern Federal University, 8 Sukhanova str., 690950, Vladivostok (Russian Federation)
2017-06-21
The problem of sound propagation in a shallow sea with variable bottom slope is considered. The sound pressure field produced by a time-harmonic point source in such inhomogeneous 3D waveguide is expressed in the form of a modal expansion. The expansion coefficients are computed using the adiabatic mode parabolic equation theory. The mode parabolic equations are solved explicitly, and the analytical expressions for the modal coefficients are obtained using a Lie-algebraic technique. - Highlights: • A group-theoretical approach is applied to a problem of sound propagation in a shallow sea with variable bottom slope. • An analytical solution of this problem is obtained in the form of modal expansion with analytical expressions of the coefficients. • Our result is the only analytical solution of the 3D sound propagation problem with no translational invariance. • This solution can be used for the validation of the numerical propagation models.
The Instagram: A Novel Sounding Technique for Enhanced HF Propagation Advice
2010-05-01
The Instagram : A Novel Sounding Technique for Enhanced HF Propagation Advice Rod I. Barnes, G. Fred Earl Riverside Research Organization Rosslyn...low transmit powers, is reduced over conventional methods by up to three orders of magnitude leading to the term ‘ Instagram ’. The technique is...TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE The Instagram : A Novel Sounding Technique for Enhanced HF Propagation Advice
Demonstrating Sound Wave Propagation with Candle Flame and Loudspeaker
Hrepic, Zdeslav; Nettles, Corey; Bonilla, Chelsea
2013-01-01
The motion of a candle flame in front of a loudspeaker has been suggested as a productive demonstration of the longitudinal wave nature of sound. The demonstration has been used also as a research tool to investigate students' understanding about sound. The underpinning of both applications is the expectation of a horizontal, back-and-forth…
Institute of Scientific and Technical Information of China (English)
WU; Shaoping(吴少平); YI; Fan(易帆)
2002-01-01
By using FICE scheme, a numerical simulation of nonlinear propagation of gravity wave packet in three-dimension compressible atmosphere is presented. The whole nonlinear propagation process of the gravity wave packet is shown; the basic characteristics of nonlinear propagation and the influence of the ambient winds on the propagation are analyzed. The results show that FICE scheme can be extended in three-dimension by which the calculation is steady and kept for a long time; the increase of wave amplitude is faster than the exponential increase according to the linear gravity theory; nonlinear propagation makes the horizontal perturbation velocity increase greatly which can lead to enhancement of the local ambient winds; the propagation path and the propagation velocity of energy are different from the results expected by the linear gravity waves theory, the nonlinearity causes the change in propagation characteristics of gravity wave; the ambient winds alter the propagation path and group velocity of gravity wave.
Directory of Open Access Journals (Sweden)
K. R. McCall
1996-01-01
Full Text Available The velocity of sound in rock is a strong function of pressure, indicating that wave propagation in rocks is very nonlinear. The quasistatic elastic properties of rocks axe hysteretic, possessing discrete memory. In this paper a new theory is developed, placing all of these properties (nonlinearity, hysteresis, and memory on equal footing. The starting point of the new theory is closer to a microscopic description of a rock than the starting point of the traditional five-constant theory of nonlinear elasticity. However, this starting point (the number density Ï? of generic mechanical elements in an abstract space is deliberately independent of a specific microscopic model. No prejudice is imposed as to the mechanism causing nonlinear response in the microscopic mechanical elements. The new theory (1 relates suitable stress-strain measurements to the number density Ï? and (2 uses the number density Ï? to find the behaviour of nonlinear elastic waves. Thus the new theory provides for the synthesis of the full spectrum of elastic behaviours of a rock. Early development of the new theory is sketched in this contribution.
High-frequency sound wave propagation in binary gas mixtures flowing through microchannels
Bisi, M.; Lorenzani, S.
2016-05-01
The propagation of high-frequency sound waves in binary gas mixtures flowing through microchannels is investigated by using the linearized Boltzmann equation based on a Bhatnagar-Gross-Krook (BGK)-type approach and diffuse reflection boundary conditions. The results presented refer to mixtures whose constituents have comparable molecular mass (like Ne-Ar) as well as to disparate-mass gas mixtures (composed of very heavy plus very light molecules, like He-Xe). The sound wave propagation model considered in the present paper allows to analyze the precise nature of the forced-sound modes excited in different gas mixtures.
Introducing random matrix theory into underwater sound propagation
Hegewisch, Katherine C
2011-01-01
Ocean acoustic propagation can be formulated as a wave guide with a weakly random medium generating multiple scattering. Twenty years ago, this was recognized as a quantum chaos problem, and yet random matrix theory, one pillar of quantum or wave chaos studies, has never been introduced into the subject. The modes of the wave guide provide a representation for the propagation, which in the parabolic approximation is unitary. Scattering induced by the ocean's internal waves leads to a power-law random banded unitary matrix ensemble for long-range deep ocean acoustic propagation. The ensemble has similarities, but differs, from those introduced for studying the Anderson metal-insulator transition. The resulting long-range propagation ensemble statistics agree well with those of full wave propagation using the parabolic equation.
Sound Propagation in Shallow Water. Volume 2. Unclassified Papers
1974-11-15
sounds generated either by beluga whales [Ref. 24J or by any other marine mammal indigenous to the Bering Sea [Ref. 25]. Beluga whales migrate ...34, "chirping" and "whistling" were recorded near the ice/water boundary predominantly at site I, and to some extent at sites Da and D«* Beluga whales ...34Production of Underwater Sound by the White Whale or Beluga , Delphinapterus leucas (Pallas), "Journal of Marine Research, 20(2), 149-162 (1962
Nonlocal description of sound propagation through an array of Helmholtz resonators
Nemati, Navid; Lafarge, Denis; Fang, Nicholas X
2015-01-01
A generalized macroscopic nonlocal theory of sound propagation in rigid-framed porous media saturated with a viscothermal fluid has been recently proposed, which takes into account both temporal and spatial dispersion. Here, we consider applying this theory capable to describe resonance effects, to the case of sound propagation through an array of Helmholtz resonators whose unusual metamaterial properties such as negative bulk moduli, have been experimentally demonstrated. Three different calculations are performed, validating the results of the nonlocal theory, relating to the frequency-dependent Bloch wavenumber and bulk modulus of the first normal mode, for 1D propagation in 2D or 3D periodic structures.
Evaluating a linearized Euler equations model for strong turbulence effects on sound propagation.
Ehrhardt, Loïc; Cheinet, Sylvain; Juvé, Daniel; Blanc-Benon, Philippe
2013-04-01
Sound propagation outdoors is strongly affected by atmospheric turbulence. Under strongly perturbed conditions or long propagation paths, the sound fluctuations reach their asymptotic behavior, e.g., the intensity variance progressively saturates. The present study evaluates the ability of a numerical propagation model based on the finite-difference time-domain solving of the linearized Euler equations in quantitatively reproducing the wave statistics under strong and saturated intensity fluctuations. It is the continuation of a previous study where weak intensity fluctuations were considered. The numerical propagation model is presented and tested with two-dimensional harmonic sound propagation over long paths and strong atmospheric perturbations. The results are compared to quantitative theoretical or numerical predictions available on the wave statistics, including the log-amplitude variance and the probability density functions of the complex acoustic pressure. The match is excellent for the evaluated source frequencies and all sound fluctuations strengths. Hence, this model captures these many aspects of strong atmospheric turbulence effects on sound propagation. Finally, the model results for the intensity probability density function are compared with a standard fit by a generalized gamma function.
Linear and nonlinear propagation of water wave groups
Pierson, W. J., Jr.; Donelan, M. A.; Hui, W. H.
1992-01-01
Results are presented from a study of the evolution of waveforms with known analytical group shapes, in the form of both transient wave groups and the cloidal (cn) and dnoidal (dn) wave trains as derived from the nonlinear Schroedinger equation. The waveforms were generated in a long wind-wave tank of the Canada Centre for Inland Waters. It was found that the low-amplitude transients behaved as predicted by the linear theory and that the cn and dn wave trains of moderate steepness behaved almost as predicted by the nonlinear Schroedinger equation. Some of the results did not fit into any of the available theories for waves on water, but they provide important insight on how actual groups of waves propagate and on higher-order effects for a transient waveform.
Computational Modeling of Ultrafast Pulse Propagation in Nonlinear Optical Materials
Goorjian, Peter M.; Agrawal, Govind P.; Kwak, Dochan (Technical Monitor)
1996-01-01
There is an emerging technology of photonic (or optoelectronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown together on the same chip. rib build such devices and subsystems, one needs to model the entire chip. Accurate computer modeling of electromagnetic wave propagation in semiconductors is necessary for the successful development of PICs. More specifically, these computer codes would enable the modeling of such devices, including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which there is femtosecond pulse propagation. Here, the computer simulations are made by solving the full vector, nonlinear, Maxwell's equations, coupled with the semiconductor Bloch equations, without any approximations. The carrier is retained in the description of the optical pulse, (i.e. the envelope approximation is not made in the Maxwell's equations), and the rotating wave approximation is not made in the Bloch equations. These coupled equations are solved to simulate the propagation of femtosecond optical pulses in semiconductor materials. The simulations describe the dynamics of the optical pulses, as well as the interband and intraband.
Nonlinear Propagation of Sound in Recently Settled Flocculated Sediments
Reed, A. H.; Sanders, W. M.
2016-12-01
Cohesive sediments undergo changes in a whirlwind. Dumped out of the river and into the estuary, they get bathed in salty water and subject to turbulent motion. During this sequence of events, the clay particles form clay aggregates of larger size with higher settling rates than the clay particles. Once the flocs have settled, cohesive sediments may form a sediment deposit of mud. Our interest is in the factors that control the development of soundspeed within these muds. This paper addresses organic matter influences on floc aggregation and settling rates. In laboratory studies, organic matter type differed in mixtures with either bentonite or kaolinite clays. The organic matter types used were guar gum, a net positive biopolymer, and xanthan gum, a net negative biopolymer derived from bacterial exudates, similar to those commonly found in estuaries. These biopolymers were dissolved into low salinity water (0-10 ppt). The biopolymer mixture was degassed and during the degassing process, either bentonite or kaolinite clay was added to the vessel. Surprisingly, different settling rates occurred in the clay-biopolymer mixtures. The settling rates of the clay-guar mixtures was more rapid (1-2 days) than the settling rate for the clay-xanthan mixtures. While clay-guar consolidated further, clay-xanthan maintained consistency for more than 2 weeks with density slowly increasing during that period. Compressional soundspeed (Vp) measurements were made with depth through the vessel using 0.5 mHz piezoelectric transducers. It was found that Vp in water was similar to that of the clay-xanthan. Vp was the same in the upper 6 cm of mud as it was in the overlying water and Vp decreased to become slower with increasing depth. Compressional wave velocity (Vp) also changed slightly with the guar complexes below the sediment water interface to the depth of the vessel. Vp was slightly slower in the mud than in the water column. Vp of the water was 1480-1495 m/s whereas Vp within the clay-biopolymer was below the minimum Vp in the water column. This slight decrease in Vp with depth is consistent for that of naturally occurring surficial mud deposits. This work suggests that organic matter type can play a critical role in the rate of consolidation within a mud deposit, which has implications for mud strength development and transport potential.
Mitigation and propagation of sound generated by heavy weapons
Berg, F. van den; Eerden, F.J.M. van der
2011-01-01
Much environmental research is performed on predicting the noise impact of heavy weapons or explosives, as the shock waves can propagate over large distances. In the densely populated area of the Netherlands this is of particular interest for the Ministry of Defense. In one research program the miti
Propagation of sound waves in tubes of noncircular cross section
Richards, W. B.
1986-01-01
Plane-acoustic-wave propagation in small tubes with a cross section in the shape of a flattened oval is described. Theoretical descriptions of a plane wave propagating in a tube with circular cross section and between a pair of infinite parallel plates, including viscous and thermal damping, are expressed in similar form. For a wide range of useful duct sizes, the propagation constant (whose real and imaginary parts are the amplitude attenuation rate and the wave number, respectively) is very nearly the same function of frequency for both cases if the radius of the circular tube is the same as the distance between the parallel plates. This suggests that either a circular-cross-section model or a flat-plate model can be used to calculate wave propagation in flat-oval tubing, or any other shape tubing, if its size is expressed in terms of an equivalent radius, given by g = 2 x (cross-sectional area)/(length of perimeter). Measurements of the frequency response of two sections of flat-oval tubing agree with calculations based on this idea. Flat-plate formulas are derived, the use of transmission-line matrices for calculations of plane waves in compound systems of ducts is described, and examples of computer programs written to carry out the calculations are shown.
Directory of Open Access Journals (Sweden)
Zdeslav Hrepic
2010-09-01
Full Text Available We investigated introductory physics students’ mental models of sound propagation. We used a phenomenographic method to analyze the data in the study. In addition to the scientifically accepted Wave model, students used the “Entity” model to describe the propagation of sound. In this latter model sound is a self-standing entity, different from the medium through which it propagates. All other observed alternative models contain elements of both Entity and Wave models, but at the same time are distinct from each of the constituent models. We called these models “hybrid” or “blend” models. We discuss how students use these models in various contexts before and after instruction and how our findings contribute to the understanding of conceptual change. Implications of our findings for teaching are summarized.
Non-Linear Back-propagation: Doing Back-Propagation withoutDerivatives of the Activation Function
DEFF Research Database (Denmark)
Hertz, John; Krogh, Anders Stærmose; Lautrup, Benny
1997-01-01
The conventional linear back-propagation algorithm is replaced by a non-linear version, which avoids the necessity for calculating the derivative of the activation function. This may be exploited in hardware realizations of neural processors. In this paper we derive the non-linear back-propagatio......-propagation algorithms in the framework of recurrent back-propagation and present some numerical simulations of feed-forward networks on the NetTalk problem. A discussion of implementation in analog VLSI electronics concludes the paper.......The conventional linear back-propagation algorithm is replaced by a non-linear version, which avoids the necessity for calculating the derivative of the activation function. This may be exploited in hardware realizations of neural processors. In this paper we derive the non-linear back...
Fast Reverse Propagation of Sound in the Living Cochlea
National Research Council Canada - National Science Library
He, Wenxuan; Fridberger, Anders; Porsov, Edward; Ren, Tianying
2010-01-01
... can be measured in the ear canal using a sensitive microphone. Since Kemp discovered the OAE ( 1 ), it has been increasingly used in clinics for diagnosing auditory disorders and in laboratories for estimating cochlear nonlinearity ( 2–6 ). To derive useful information from OAEs, it is critical to understand how they exit the cochlea. Based o...
DEFF Research Database (Denmark)
Santillan, Arturo Orozco; Bozhevolnyi, Sergey I.
2014-01-01
We present experimental results demonstrating the phenomenon of acoustic transparency with a significant slowdown of sound propagation realized with a series of paired detuned acoustic resonators (DAR) side-attached to a waveguide. The phenomenon mimics the electromagnetically induced transparency...... than 20 dB on both sides of the transparency window, and we quantify directly (using a pulse propagation) the acoustic slowdown effect, resulting in the sound group velocity of 9.8 m/s (i.e. in the group refractive index of 35). We find very similar values of the group refractive index by using...
Beam-displacement ray-mode theory of sound propagation in shallow water
Institute of Scientific and Technical Information of China (English)
张仁和; 李风华
1999-01-01
A normal mode method for propagation modeling in common horizontally stratified shallow water, which is called beam-displacement ray-mode (BDRM) theory, is introduced. The peculiarity of this method is that the boundary effects on the sound field can be expressed by the equivalent boundary reflection coefficient, so BDRM theory can be extended to elastic bottom easily. Theoretical calculations of shallow-water sound field show that BDRM has high accuracy and fast speed. The pulse propagation in shallow water is also calculated by BDRM, and the calculated waveforms are in good agreement with the measured waveforms.
Nonlinear Propagation of Planet-Generated Tidal Waves
Rafikov, R. R.
2002-01-01
The propagation and evolution of planet-generated density waves in protoplanetary disks is considered. The evolution of waves, leading to shock formation and wake dissipation, is followed in the weakly nonlinear regime. The 2001 local approach of Goodman and Rafikov is extended to include the effects of surface density and temperature variations in the disk as well as the disk cylindrical geometry and nonuniform shear. Wave damping due to shocks is demonstrated to be a nonlocal process spanning a significant fraction of the disk. Torques induced by the planet could be significant drivers of disk evolution on timescales of approx. 10(exp 6)-10(exp 7) yr, even in the absence of strong background viscosity. A global prescription for angular momentum deposition is developed that could be incorporated into the study of gap formation in a gaseous disk around the planet.
Nonlinear propagation of planet-generated tidal waves
Rafikov, R R
2002-01-01
The propagation and evolution of planet-generated density waves in protoplanetary disks is considered. The evolution of waves, leading to the shock formation and wake dissipation, is followed in the weakly nonlinear regime. The local approach of Goodman & Rafikov (2001) is extended to include the effects of surface density and temperature variations in the disk as well as the disk cylindrical geometry and nonuniform shear. Wave damping due to shocks is demonstrated to be a nonlocal process spanning a significant fraction of the disk. Torques induced by the planet could be significant drivers of disk evolution on timescales of the order 1-10 Myr even in the absence of strong background viscosity. A global prescription for angular momentum deposition is developed which could be incorporated into the study of gap formation in a gaseous disk around the planet.
Properties of nonreciprocal light propagation in a nonlinear optical isolator
Roy, Dibyendu
2016-01-01
Light propagation in a nonlinear optical medium is nonreciprocal for spatially asymmetric linear permittivity. We here examine physical mechanism and properties of such nonreciprocity (NR). For this, we calculate transmission of light through a two-level atom asymmetrically coupled to light inside open waveguides. We determine the critical intensity of incident light for maximum NR and a dependence of the corresponding NR on asymmetry in the coupling. Surprisingly, we find that it is mainly coherent elastic scattering compared to incoherent scattering of incident light which causes maximum NR near the critical intensity. We also show a higher NR of an incident light in the presence of an additional weak light at the opposite port.
Meteorological effects on the 3D sound propagation inside an inhomogeneous forest area
Directory of Open Access Journals (Sweden)
Astrid Ziemann
2016-06-01
Full Text Available The influence of trees on sound propagation is currently discussed to reduce the sound exposure near transport infrastructure or industrial areas. This influence is direct due to reflection and scattering at the trees themselves as well as indirect through meteorological and ground effects modified by the trees. Previous investigations provide a mixed picture of sound attenuation within forested areas, in particular for the temporally and spatially variable meteorological influence. Thus, a three-dimensional model chain of atmospheric and acoustic models was adapted and applied to special meteorological and vegetation-specific conditions. A meteorological mesoscale model was applied to simulate temperature and wind fields within an inhomogeneous forest site. The meteorological quantities are used as diurnally variable input data for the acoustic FDTD (finite-difference time-domain-model to simulate the sound propagation. Thereby, the effects of vegetation elements, impedance ground surface, and sound refraction are considered. The simulations are related to outdoor measurements, which were performed in early autumn 2011 near Dresden (Germany. The sound propagation of artificial signals was measured along sound paths of up to 190 m length through a clearing as well as through an old spruce stand. Results of the comparison between measurement and model simulations are presented and possible applications of these results with regard to noise protection aspects are discussed. The model results confirm the measured diurnal cycle of sound levels at the receiver positions. Simulations with and without trees suggest an excess attenuation of the trees by about 4 dB per 100 m already for low frequencies.
2008-09-01
showing shot locations (circles) and IMS hydrophone station locations ( triangles ), superimposed on a map of group velocities derived using average fall...E. McDonald (1991). Perth- Bermuda sound propagation (1960): Adiabatic mode interpretation, J. Acoust. Soc. Am. 90: 2586–2594. Jensen, F. B., W. A
Calik, Muammer; Okur, Murat; Taylor, Neil
2011-01-01
The purpose of this study was to compare different conceptual change methods within a topic on "sound propagation". The study was conducted with 80 grade 5 students (aged 11-12 year old) drawn from four cohort classes in an elementary school on the north coast of Black Sea Region in Turkey. While one class was assigned as a control…
A BEM approach to validate a model for predicting sound propagation over non-flat terrain
DEFF Research Database (Denmark)
Quirósy Alpera, S.; Jacobsen, Finn; Juhl, P.M.;
2003-01-01
A two-dimensional boundary element model for sound propagation in a homogeneous atmosphere above non-flat terrain has been constructed. An infinite impedance plane is taken into account in the Green's function in the underlying integral equation, so that only the nonflat parts of the terrain need....... Sound Vibrat. 223 (1999) 355]. The resulting BEM model, which can handle arbitrary combinations of barriers and hollows, has been used for validating a ray model for various difficult configurations, including combinations of valleys and barriers.......A two-dimensional boundary element model for sound propagation in a homogeneous atmosphere above non-flat terrain has been constructed. An infinite impedance plane is taken into account in the Green's function in the underlying integral equation, so that only the nonflat parts of the terrain need...
Effects of wind shear and temperature inversion on sound propagation from wind turbines.
Energy Technology Data Exchange (ETDEWEB)
Haan, Henk de [Golder Associates (Canada)], email: Henk_deHaan@golder.com
2011-07-01
Noise impact assessment of wind turbines usually takes into account sound speed and propagation at ground level, and those are influenced by wind shear and atmospheric temperature changes. This paper focuses on a week-long monitoring study and presents the observed and anticipated effects of wind shear and temperature on the level of ground sound emitted from a 65m high wind turbine. Working with anemometers at ground level and turbine height, it is shown that wind shear can influence sound propagation, and that atmospheric stability must be taken into account for accurate wind speed calculations to be made. Temperature must also be addressed and the heating of the earth by solar radiation and the re-radiation of that heat in a day-night cycle, resulting in temperature inversion in the atmosphere, must be taken into account. Observations of temperature changes over a week can then yield sound speed and sound power levels with respect to altitude, and show that sound power levels are higher at ground levels during the night.
Nonlocal description of sound propagation through an array of Helmholtz resonators
Nemati, Navid; Kumar, Anshuman; Lafarge, Denis; Fang, Nicholas X.
2015-12-01
A generalized macroscopic nonlocal theory of sound propagation in rigid-framed porous media saturated with a viscothermal fluid has been recently proposed, which takes into account both temporal and spatial dispersion. Here, we consider applying this theory, which enables the description of resonance effects, to the case of sound propagation through an array of Helmholtz resonators whose unusual metamaterial properties, such as negative bulk moduli, have been experimentally demonstrated. Three different calculations are performed, validating the results of the nonlocal theory, related to the frequency-dependent Bloch wavenumber and bulk modulus of the first normal mode, for 1D propagation in 2D or 3D periodic structures. xml:lang="fr"
Gusev, Vitalyi E; Ni, Chenyin; Lomonosov, Alexey; Shen, Zhonghua
2015-08-01
Theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous material on flexural wave in the plates of continuously varying thickness is developed. For the wedges with thickness increasing as a power law of distance from its edge strong modifications of the wave dynamics with propagation distance are predicted. It is found that nonlinear absorption progressively disappearing with diminishing wave amplitude leads to complete attenuation of acoustic waves in most of the wedges exhibiting black hole phenomenon. It is also demonstrated that black holes exist beyond the geometrical acoustic approximation. Applications include nondestructive evaluation of micro-inhomogeneous materials and vibrations damping. Copyright © 2015 Elsevier B.V. All rights reserved.
Liepmann, H. W.; Torczynski, J. R.
1983-01-01
Second sound techniques were used to study superfluid helium. Second sound shock waves produced relative velocities in the bulk fluid. Maximum counterflow velocities produced in this way are found to follow the Langer-Fischer prediction for the fundamental critical velocity in its functional dependence on temperature and pressure. Comparison of successive shock and rotating experiments provides strong evidence that breakdown results in vorticity production in the flow behind the shock. Schlieren pictures have verified the planar nature of second sound shocks even after multiple reflections. The nonlinear theory of second sound was repeatedly verified in its prediction of double shocks and other nonlinear phenomena.
Efficient techniques for wave-based sound propagation in interactive applications
Mehra, Ravish
Sound propagation techniques model the effect of the environment on sound waves and predict their behavior from point of emission at the source to the final point of arrival at the listener. Sound is a pressure wave produced by mechanical vibration of a surface that propagates through a medium such as air or water, and the problem of sound propagation can be formulated mathematically as a second-order partial differential equation called the wave equation. Accurate techniques based on solving the wave equation, also called the wave-based techniques, are too expensive computationally and memory-wise. Therefore, these techniques face many challenges in terms of their applicability in interactive applications including sound propagation in large environments, time-varying source and listener directivity, and high simulation cost for mid-frequencies. In this dissertation, we propose a set of efficient wave-based sound propagation techniques that solve these three challenges and enable the use of wave-based sound propagation in interactive applications. Firstly, we propose a novel equivalent source technique for interactive wave-based sound propagation in large scenes spanning hundreds of meters. It is based on the equivalent source theory used for solving radiation and scattering problems in acoustics and electromagnetics. Instead of using a volumetric or surface-based approach, this technique takes an object-centric approach to sound propagation. The proposed equivalent source technique generates realistic acoustic effects and takes orders of magnitude less runtime memory compared to prior wave-based techniques. Secondly, we present an efficient framework for handling time-varying source and listener directivity for interactive wave-based sound propagation. The source directivity is represented as a linear combination of elementary spherical harmonic sources. This spherical harmonic-based representation of source directivity can support analytical, data
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
An experiment concerning the sound propaga-tion in aerated open channel flow was designed and conductedin a variable slope chute. The acquisition of sound data wasdone by the hydro-phones installed into the bottom wall of thechute. The data were analyzed and processed by the tape re-corder and a 3562A analyzer. The primary experimetal resultsindicated that the sound speed in aerated flow is varied with the air concentration and highly lower than each of the soundspeed in pure water or air. As released by the derived theoryformula, the minimum sound of 24m/s in aerated flow hap-pened when the air concentration achieved to 50%. This resultshows that the compressibility of high speed aerated flowshould be considered when the air concentration is near to50%. A criterion of compressibility of high speed aerated flowwas also giv. En in this paper.
Analysis of sound propagation in ducts using the wave envelope concept
Baumeister, K. J.
1974-01-01
A finite difference formulation is presented for sound propagation in a rectangular two-dimensional duct without steady flow for plane wave input. Before the difference equations are formulated, the governing Helmholtz equation is first transformed to a form whose solution does not oscillate along the length of the duct. This transformation reduces the required number of grid points by an order of magnitude, and the number of grid points becomes independent of the sound frequency. Physically, the transformed pressure represents the amplitude of the conventional sound wave. Example solutions are presented for sound propagation in a one-dimensional straight hard-wall duct and in a two-dimensional straight soft-wall duct without steady flow. The numerical solutions show evidence of the existence along the duct wall of a developing acoustic pressure diffusion boundary layer which is similar in nature to the conventional viscous flow boundary layer. In order to better illustrate this concept, the wave equation and boundary conditions are written such that the frequency no longer appears explicitly in them. The frequency effects in duct propagation can be visualized solely as an expansion and stretching of the suppressor duct.
1988-07-01
of Texas at Austin 3(ARL:UT). 3 A. Background The problem of the scattering of sound by sound, as well as the terminology, was introduced3 by Ingard ...Texas at Austin, June 1987. [2] U. Ingard and D. C. Pridmore-Brown, "Scattering of Sound by Sound," J. Acoust. Soc. Am. 28, 367-369 (1956). [3] R. T
Hart, Carl R; Reznicek, Nathan J; Wilson, D Keith; Pettit, Chris L; Nykaza, Edward T
2016-05-01
Many outdoor sound propagation models exist, ranging from highly complex physics-based simulations to simplified engineering calculations, and more recently, highly flexible statistical learning methods. Several engineering and statistical learning models are evaluated by using a particular physics-based model, namely, a Crank-Nicholson parabolic equation (CNPE), as a benchmark. Narrowband transmission loss values predicted with the CNPE, based upon a simulated data set of meteorological, boundary, and source conditions, act as simulated observations. In the simulated data set sound propagation conditions span from downward refracting to upward refracting, for acoustically hard and soft boundaries, and low frequencies. Engineering models used in the comparisons include the ISO 9613-2 method, Harmonoise, and Nord2000 propagation models. Statistical learning methods used in the comparisons include bagged decision tree regression, random forest regression, boosting regression, and artificial neural network models. Computed skill scores are relative to sound propagation in a homogeneous atmosphere over a rigid ground. Overall skill scores for the engineering noise models are 0.6%, -7.1%, and 83.8% for the ISO 9613-2, Harmonoise, and Nord2000 models, respectively. Overall skill scores for the statistical learning models are 99.5%, 99.5%, 99.6%, and 99.6% for bagged decision tree, random forest, boosting, and artificial neural network regression models, respectively.
Properties and stability of freely propagating nonlinear density waves in accretion disks
Fromang, S
2007-01-01
In this paper, we study the propagation and stability of nonlinear sound waves in accretion disks. Using the shearing box approximation, we derive the form of these waves using a semi-analytic approach and go on to study their stability. The results are compared to those of numerical simulations performed using finite difference approaches such as employed by ZEUS as well as Godunov methods. When the wave frequency is between Omega and two Omega (where Omega is the disk orbital angular velocity), it can couple resonantly with a pair of linear inertial waves and thus undergo a parametric instability. Neglecting the disk vertical stratification, we derive an expression for the growth rate when the amplitude of the background wave is small. Good agreement is found with the results of numerical simulations performed both with finite difference and Godunov codes. During the nonlinear phase of the instability, the flow remains well organised if the amplitude of the background wave is small. However, strongly nonlin...
Optical Soliton Propagation in a Free-Standing Nonlinear Graphene Monolayer with Defects
Moxley, Frederick Ira; Radadia, Adarsh; Dai, Weizhong
2013-01-01
Recently, optical soliton propagation in an intrinsic nonlinear graphene monolayer configuration has been discovered. However, optical soliton behavior in a free-standing graphene monolayer with defects has not yet been studied. The objective of this article is to employ the generalized finite- difference time-domain (G-FDTD) method to efficiently simulate bright optical solitons, illustrating propagation of the electric field distribution in a free-standing nonlinear layer with variation in nonlinearity along its width. These variations of nonlinearity along the width represent graphene impurities, or defects. Results show that solitons propagate effectively even in the presence of strong spatial variations in the nonlinearity, implying the robustness of the medium with respect to optical propagation.
A BEM approach to validate a model for predicting sound propagation over non-flat terrain
DEFF Research Database (Denmark)
Quirós Alpera, Susana; Jacobsen, Finn; Juhl, Peter Møller
2003-01-01
A two-dimensional boundary element model for sound propagation in a homogeneous atmosphere above non-flat terrain has been constructed. An infinite impedance plane is taken into account in the Green's function in the underlying integral equation, so that only the nonflat parts of the terrain need....... Sound Vibrat. 223 (1999) 355]. The resulting BEM model, which can handle arbitrary combinations of barriers and hollows, has been used for validating a ray model for various difficult configurations, including combinations of valleys and barriers. (C) 2003 Elsevier Science Ltd. All rights reserved....
A BEM approach to validate a model for predicting sound propagation over non-flat terrain
DEFF Research Database (Denmark)
Quirósy Alpera, S.; Jacobsen, Finn; Juhl, P.M.
2003-01-01
A two-dimensional boundary element model for sound propagation in a homogeneous atmosphere above non-flat terrain has been constructed. An infinite impedance plane is taken into account in the Green's function in the underlying integral equation, so that only the nonflat parts of the terrain need....... Sound Vibrat. 223 (1999) 355]. The resulting BEM model, which can handle arbitrary combinations of barriers and hollows, has been used for validating a ray model for various difficult configurations, including combinations of valleys and barriers....
Numerical study of propagation properties of surface plasmon polaritons in nonlinear media
Sagor, Rakibul Hasan
2016-03-29
We present a time-domain algorithm for simulating nonlinear propagation of surface plasmon polaritons (SPPs) in chalcogenide glass. Due to the high non-linearity property and strong dispersion and confinement chalcogenide glasses are widely known as ultrafast nonlinear materials. We have used the finite difference time domain (FDTD) method to develop the simulation algorithm for the current analysis. We have modeled the frequency dependent dispersion properties and third order nonlinearity property of chalcogenide glass utilizing the general polarization algorithm merged in the auxiliary differential equation (ADE) method. The propagation dynamics of the whole structure with and without third order nonlinearity property of chalcogenide glass have been simulated and the effect of nonlinearity on the propagation properties of SPP has been investigated. © 2016 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.
Nonlinear Characteristics of an Intense Laser Pulse Propagating in Partially Stripped Plasmas
Institute of Scientific and Technical Information of China (English)
HU Qiang-Lin; LIU Shi-Bing; CHEN Tao; JIANG Yi-Jian
2005-01-01
The nonlinear optic characteristics of an intense laser pulse propagating in partially stripped plasmas are investigated analytically. The phase and group velocity of the laser pulse propagation as well as the three general expressions governing the nonlinear optic behavior, based on the photon number conservation, are obtained by considering the partially stripped plasma as a nonlinear optic medium. The numerical result shows that the presence of the bound electrons in partially stripped plasma can significantly change the propagating property of the intense laser pulse.
2006-10-01
equation for sound waves in inhomogeneous moving media”, Acustica united with Acta Acustica , Vol 83(3), pp 455-460,1997. [3] L. Dallois, Ph. Blanc...propagation in a turbulent atmosphere within the parabolic approximation”, Acustica united with Acta Acustica , Vol 87(1), pp 659-669, 2001 [6] M. Karweit...approaches", Acta Acustica united with Acustica , 89 (6), 980-991, (2003). [40] Ph. Voisin, Ph. Blanc-Benon, "The influence of meteorological
Nonlinear propagation of coupled electromagnetic waves in a circular cylindrical waveguide
Valovik, D. V.; Smol'kin, E. Yu.
2017-08-01
The problem of the propagation of coupled surface electromagnetic waves in a two-layer cylindrical circular waveguide filled with an inhomogeneous nonlinear medium is considered. A nonlinear coupled TE-TM wave is characterized by two (independent) frequencies ωe and ωm and two propagation constants {\\widehat γ _e} and {\\widehat γ _m}. The physical problem reduces to a nonlinear two-parameter eigenvalue problem for a system of nonlinear ordinary differential equations. The existence of eigenvalues ({\\widehat γ _e}, {\\widehat γ _m}) in proven and intervals of their localization are determined.
Trofimov, Vyacheslav A.; Lysak, T. M.
2016-05-01
We demonstrate a new possibility of a soliton velocity control at its propagation in a nonlinear layered structure (1D photonic crystal) which is placed in a nonlinear ambient medium. Nonlinear response of the ambient medium, as well as the PhC layers, is cubic. At the initial time moment, a soliton is spread over a few layers of PhC. Then, soliton propagates across the layered structure because of the initial wave-vector direction presence for the laser beam. The soliton reaches the PhC faces and reflects from them or passes through the face. As a nonlinear medium surrounds the PhC, the laser beam obtains additional impulse after interaction with this medium and accelerates (or slows down or stops near the PhC face). Nonlinear response of the ambient medium can be additionally created by another laser beam which shines near the PhC faces.
The study of sound wave propagation in rarefied gases using unified gas-kinetic scheme
Institute of Scientific and Technical Information of China (English)
Rui-Jie Wang; Kun Xu
2012-01-01
Sound wave propagation in rarefied monatomic gases is simulated using a newly developed unified gaskinetic scheme (UGKS).The numerical calculations are carried out for a wide range of wave oscillating frequencies.The corresponding rarefaction parameter is defined as the ratio of sound wave frequency to the intermolecular particle collision frequency.The simulation covers the flow regime from the continuum to free molecule one.The treatment of the oscillating wall boundary condition and the methods for evaluating the absorption coefficient and sound wave speed are presented in detail.The simulation results from the UGKS are compared to the Navier-Stokes solutions,the direct simulation Monte Carlo (DSMC) simulation,and experimental measurements.Good agreement with the experimental data has been obtained in the whole flow regimes for the corresponding Knudsen number from 0.08 to 32.The current study clearly demonstrates the capability of the UGKS method in capturing the sound wave propagation and its usefulness for the rarefied flow study.
Louisnard, Olivier
2013-01-01
The bubbles involved in sonochemistry and other applications of cavitation oscillate inertially. A correct estimation of the wave attenuation in such bubbly media requires a realistic estimation of the power dissipated by the oscillation of each bubble, by thermal diffusion in the gas and viscous friction in the liquid. Both quantities and calculated numerically for a single inertial bubble driven at 20 kHz, and are found to be several orders of magnitude larger than the linear prediction. Viscous dissipation is found to be the predominant cause of energy loss for bubbles small enough. Then, the classical nonlinear Caflish equations describing the propagation of acoustic waves in a bubbly liquid are recast and simplified conveniently. The main harmonic part of the sound field is found to fulfill a nonlinear Helmholtz equation, where the imaginary part of the squared wave number is directly correlated with the energy lost by a single bubble. For low acoustic driving, linear theory is recovered, but for larger ...
DEFF Research Database (Denmark)
Rasmussen, Christian Jørgen
2001-01-01
Presents a simple and fast method for determination of the step size that exactly leads to a prescribed accuracy when signal propagation through nonlinear optical fibres is computed using the split-step Fourier method.......Presents a simple and fast method for determination of the step size that exactly leads to a prescribed accuracy when signal propagation through nonlinear optical fibres is computed using the split-step Fourier method....
Nonlinear pulse propagation in a single- and a few-cycle regimes with Raman response
Indian Academy of Sciences (India)
Vimlesh Mishra; Ajit Kumar
2010-09-01
The propagation equation for a single- and a few-cycle pulses was derived in a cubic nonlinear medium including the Raman response. Using this equation, the propagation characteristics of a single- and a 4-cycle pulse, at 0.8 m wavelength, were studied numerically in one spatial dimension. It was shown that Raman term does influence the propagation characteristics of a single- as well as a few-cycle pulses by counteracting the self-steepening effect.
Nonlinear propagation of strong-field THz pulses in doped semiconductors
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.
2012-01-01
We report on nonlinear propagation of single-cycle THz pulses with peak electric fields reaching 300 kV/cm in n-type semiconductors at room temperature. Dramatic THz saturable absorption effects are observed in GaAs, GaP, and Ge, which are caused by the nonlinear electron transport in THz fields....
Exact solutions of optical pulse propagation in nonlinear meta-materials
Nanda, Lipsa
2017-01-01
An analytical and simulation based method has been used to exactly solve the nonlinear wave propagation in bulk media exhibiting frequency dependent dielectric susceptibility and magnetic permeability. The method has been further extended to investigate the intensity distribution in a nonlinear meta-material with negative refractive index where both ɛ and μ are dispersive and negative in nature.
Long Range Sound Propagation over Sea: Application to Wind Turbine Noise
Energy Technology Data Exchange (ETDEWEB)
Boue, Matieu
2007-12-13
The classical theory of spherical wave propagation is not valid at large distances from a sound source due to the influence of wind and temperature gradients that refract, i.e., bend the sound waves. This will in the downwind direction lead to a cylindrical type of wave spreading for large distances (> 1 km). Cylindrical spreading will give a smaller damping with distance as compared to spherical spreading (3 dB/distance doubling instead of 6 dB). But over areas with soft ground, i.e., grass land, the effect of ground reflections will increase the damping so that, if the effect of atmospheric damping is removed, a behavior close to a free field spherical spreading often is observed. This is the standard assumption used in most national recommendations for predicting outdoor sound propagation, e.g., noise from wind turbines. Over areas with hard surfaces, e.g., desserts or the sea, the effect of ground damping is small and therefore cylindrical propagation could be expected in the downwind direction. This observation backed by a limited number of measurements is the background for the Swedish recommendation, which suggests that cylindrical wave spreading should be assumed for distances larger than 200 m for sea based wind turbines. The purpose of this work was to develop measurement procedures for long range sound transmission and to apply this to investigate the occurrence of cylindrical wave spreading in the Baltic Sea. This work has been successfully finished and is described in this report. Another ambition was to develop models for long range sound transmission based on the parabolic equation. Here the work is not finished but must be continued in another project. Long term measurements were performed in the Kalmar strait, Sweden, located between the mainland and Oeland, during 2005 and 2006. Two different directive sound sources placed on a lighthouse in the middle of the strait produced low frequency tones at 80, 200 and 400 Hz. At the reception point on
An improved multimodal method for sound propagation in nonuniform lined ducts.
Bi, WenPing; Pagneux, Vincent; Lafarge, Denis; Aurégan, Yves
2007-07-01
An efficient method is proposed for modeling time harmonic acoustic propagation in a nonuniform lined duct without flow. The lining impedance is axially segmented uniform, but varies circumferentially. The sound pressure is expanded in term of rigid duct modes and an additional function that carries the information about the impedance boundary. The rigid duct modes and the additional function are known a priori so that calculations of the true liner modes, which are difficult, are avoided. By matching the pressure and axial velocity at the interface between different uniform segments, scattering matrices are obtained for each individual segment; these are then combined to construct a global scattering matrix for multiple segments. The present method is an improvement of the multimodal propagation method, developed in a previous paper [Bi et al., J. Sound Vib. 289, 1091-1111 (2006)]. The radial rate of convergence is improved from O(n(-2)), where n is the radial mode indices, to O(n(-4)). It is numerically shown that using the present method, acoustic propagation in the nonuniform lined intake of an aeroengine can be calculated by a personal computer for dimensionless frequency K up to 80, approaching the third blade passing frequency of turbofan noise.
Reciprocity breaking during nonlinear propagation of adapted beams through random media.
Palastro, J P; Peñano, J; Nelson, W; DiComo, G; Helle, M; Johnson, L A; Hafizi, B
2016-08-22
Adaptive optics (AO) systems rely on the principle of reciprocity, or symmetry with respect to the interchange of point sources and receivers. These systems use the light received from a low power emitter on or near a target to compensate phase aberrations acquired by a laser beam during linear propagation through random media. If, however, the laser beam propagates nonlinearly, reciprocity is broken, potentially undermining AO correction. Here we examine the consequences of this breakdown, providing the first analysis of AO applied to high peak power laser beams. While discussed for general random and nonlinear media, we consider specific examples of Kerr-nonlinear, turbulent atmosphere.
Institute of Scientific and Technical Information of China (English)
TAO Hua-xue; GUO Jin-yun
2005-01-01
The unknown parameter's variance-covariance propagation and calculation in the generalized nonlinear least squares remain to be studied now,which didn't appear in the internal and external referencing documents. The unknown parameter's variance-covariance propagation formula, considering the two-power terms, was concluded used to evaluate the accuracy of unknown parameter estimators in the generalized nonlinear least squares problem. It is a new variance-covariance formula and opens up a new way to evaluate the accuracy when processing data which have the multi-source,multi-dimensional, multi-type, multi-time-state, different accuracy and nonlinearity.
Reciprocity breaking during nonlinear propagation of adapted beams through random media
Palastro, J P; Nelson, W; DiComo, G; Johnson, L A; Helle, M H; Hafizi, B
2016-01-01
Adaptive optics (AO) systems rely on the principle of reciprocity, or symmetry with respect to the interchange of point sources and receivers. These systems use the light received from a low power emitter on or near a target to compensate profile aberrations acquired by a laser beam during linear propagation through random media. If, however, the laser beam propagates nonlinearly, reciprocity is broken, potentially undermining AO correction. Here we examine the consequences of this breakdown. While discussed for general random and nonlinear media, we consider specific examples of Kerr-nonlinear, turbulent atmosphere.
Underlying conservation and stability laws in nonlinear propagation of axicon-generated Bessel beams
Porras, Miguel A; Losada, Juan Carlos
2015-01-01
In light filamentation induced by axicon-generated, powerful Bessel beams, the spatial propagation dynamics in the nonlinear medium determines the geometry of the filament channel and hence its potential applications. We show that the observed steady and unsteady Bessel beam propagation regimes can be understood in a unified way from the existence of an attractor and its stability properties. The attractor is identified as the nonlinear unbalanced Bessel beam (NL-UBB) whose inward H\\"ankel beam amplitude equals the amplitude of the linear Bessel beam that the axicon would generate in linear propagation. A simple analytical formula that determines de NL-UBB attractor is given. Steady or unsteady propagation depends on whether the attracting NL-UBB has a small, exponentially growing, unstable mode. In case of unsteady propagation, periodic, quasi-periodic or chaotic dynamics after the axicon reproduces similar dynamics after the development of the small unstable mode into the large perturbation regime.
Propagation of a Laguerre-Gaussian correlated Schell-model beam in strongly nonlocal nonlinear media
Qiu, Yunli; Chen, Zhaoxi; He, Yingji
2017-04-01
Analytical expressions for the cross-spectral density function and the second-order moments of the Wigner distribution function of a Laguerre-Gaussian correlated Schell-model (LGCSM) beam propagating in strongly nonlocal nonlinear media are derived. The propagation properties, such as beam irradiance, beam width, the spectral degree of coherence and the propagation factor of a LGCSM beam inside the media are investigated in detail. The effect of the beam parameters and the input power on the evolution properties of a LGCSM is illustrated numerically. It is found that the beam width varies periodically or keeps invariant for a certain proper input power. And both the beam irradiance and the spectral degree of coherence of the LGCSM beam change periodically with the propagation distance for the arbitrary input power which however has no influence on the propagation factor. The coherent length and the mode order mainly affect the evolution speed of the LGCSM beam in strongly nonlocal nonlinear media.
Nonlinear light propagation in chalcogenide photonic crystal slow light waveguides.
Suzuki, Keijiro; Baba, Toshihiko
2010-12-06
Optical nonlinearity can be enhanced by the combination of highly nonlinear chalcogenide glass and photonic crystal waveguides (PCWs) providing strong optical confinement and slow-light effects. In a Ag-As(2)Se(3) chalcogenide PCW, the effective nonlinear parameter γeff reaches 6.3 × 10(4) W(-1)m(-1), which is 200 times larger than that in Si photonic wire waveguides. In this paper, we report the detailed design, fabrication process, and the linear and nonlinear characteristics of this waveguide at silica fiber communication wavelengths. We show that the waveguide exhibits negligible two-photon absorption, and also high-efficiency self-phase modulation and four-wave mixing, which are assisted by low-dispersion slow light.
Application of the PE method to up-slope sound propagation
DEFF Research Database (Denmark)
Rasmussen, Karsten Bo; Arranz, Marta Galindo
1995-01-01
velocity at the surface. The staircase PE method approximates the normal at the slope surface with the vertical component at the stair-step surface. A numerical correction can be included. Using a scale model facility [K. B. Rasmussen, 3617–3620 (1994)], a series of measurements is carried out. The results......The wide-angle PE method is applied to the prediction of sound propagation in a range-dependent environment. The finite-difference model treats the sloping ground by a staircase approximation. The method allows impedance and slope angle variations to be taken into account. The implementation...
Propagation of sound waves through a linear shear layer - A closed form solution
Scott, J. N.
1978-01-01
Closed form solutions are presented for sound propagation from a line source in or near a shear layer. The analysis is exact for all frequencies and is developed assuming a linear velocity profile in the shear layer. This assumption allows the solution to be expressed in terms of parabolic cylinder functions. The solution is presented for a line monopole source first embedded in the uniform flow and then in the shear layer. Solutions are also discussed for certain types of dipole and quadrupole sources. Asymptotic expansions of the exact solutions for small and large values of Strouhal number give expressions which correspond to solutions previously obtained for these limiting cases.
Propagation of sound waves through a linear shear layer: A closed form solution
Scott, J. N.
1978-01-01
Closed form solutions are presented for sound propagation from a line source in or near a shear layer. The analysis was exact for all frequencies and was developed assuming a linear velocity profile in the shear layer. This assumption allowed the solution to be expressed in terms of parabolic cyclinder functions. The solution is presented for a line monopole source first embedded in the uniform flow and then in the shear layer. Solutions are also discussed for certain types of dipole and quadrupole sources. Asymptotic expansions of the exact solutions for small and large values of Strouhal number gave expressions which correspond to solutions previously obtained for these limiting cases.
Albors, Gabriel O; Kyle, Aaron M; Wodicka, George R; Juan, Eduardo J
2007-01-01
A computer tool, based on an acoustic transmission line model, was developed for modeling and predicting sound propagation and reflections in cascaded tube segments. This subroutine considered the number of interconnected tubes, their dimensions and wall properties, as well as medium properties to create a network of cascaded transmission line model segments, from which the impulse response of the network was estimated. Acoustic propagation was examined in air-filled cascaded tube networks and model predictions were compared to measured acoustic pulse responses. The model was able to accurately predict the location and morphology of reflections. The developed code proved to be a useful design tool for applications such as the guidance of catheters through compliant air-filled biological conduits.
Nonlinear inverse modeling of sensor based on back-propagation fuzzy logical system
Institute of Scientific and Technical Information of China (English)
Li Jun; Liu Junhua
2007-01-01
Objective To correct the nonlinear error of sensor output, a new approach to sensor inverse modeling based on Back-Propagation Fuzzy Logical System (BP FS) is presented. Methods The BP FS is a computationally efficient nonlinear universal approximator, which is capable of implementing complex nonlinear mapping from its input pattern space to the output with fast convergence speed. Results The neuro-fuzzy hybrid system, i.e. BP FS, is then applied to construct nonlinear inverse model of pressure sensor. The experimental results show that the proposed inverse modeling method automatically compensates the associated nonlinear error in pressure estimation, and thus the performance of pressure sensor is significantly improved. Conclusion The proposed method can be widely used in nonlinearity correction of various kinds of sensors to compensate the effects of nonlinearity and temperature on sensor output.
Propagation of Quasi-plane Nonlinear Waves in Tubes
Directory of Open Access Journals (Sweden)
P. Koníček
2002-01-01
Full Text Available This paper deals with possibilities of using the generalized Burgers equation and the KZK equation to describe nonlinear waves in circular ducts. A new method for calculating of diffraction effects taking into account boundary layer effects is described. The results of numerical solutions of the model equations are compared. Finally, the limits of validity of the used model equations are discussed with respect to boundary conditions and the radius of the circular duct. The limits of applicability of the KZK equation and the GBE equation for describing nonlinear waves in tubes are discussed.
Propagation of Nonlinear Waves in Waveguides and Application to Nondestructive Stress Measurement
Nucera, Claudio
Propagation of nonlinear waves in waveguides is a field that has received an ever increasing interest in the last few decades. Nonlinear guided waves are excellent candidates for interrogating long waveguide like structures because they combine high sensitivity to structural conditions, typical of nonlinear parameters, with large inspection ranges, characteristic of wave propagation in bounded media. The primary topic of this dissertation is the analysis of ultrasonic waves, including ultrasonic guided waves, propagating in their nonlinear regime and their application to structural health monitoring problems, particularly the measurement of thermal stress in Continuous Welded Rail (CWR). Following an overview of basic physical principles generating nonlinearities in ultrasonic wave propagation, the case of higher-harmonic generation in multi-mode and dispersive guided waves is examined in more detail. A numerical framework is developed in order to predict favorable higher-order generation conditions (i.e. specific guided modes and frequencies) for waveguides of arbitrary cross-sections. This model is applied to various benchmark cases of complex structures. The nonlinear wave propagation model is then applied to the case of a constrained railroad track (CWR) subjected to thermal variations. This study is a direct response to the key need within the railroad transportation community to develop a technique able to measure thermal stresses in CWR, or determine the rail temperature corresponding to a null thermal stress (Neutral Temperature -- NT). The numerical simulation phase concludes with a numerical study performed using ABAQUS commercial finite element package. These analyses were crucial in predicting the evolution of the nonlinear parameter beta with thermal stress level acting in the rail. A novel physical model, based on interatomic potential, was developed to explain the origin of nonlinear wave propagation under constrained thermal expansion. In fact
Andreasen, J; Kolesik, M
2012-09-01
Unidirectional pulse propagation equations [UPPE, Phys. Rev. E 70, 036604 (2004)] have provided a theoretical underpinning for computer-aided investigations into dynamics of high-power ultrashort laser pulses and have been successfully utilized for almost a decade. Unfortunately, they are restricted to applications in bulk media or, with additional approximations, to simple waveguide geometries in which only a few guided modes can approximate the propagating waveform. The purpose of this work is to generalize the directional pulse propagation equations to structures characterized by strong refractive index differences and material interfaces. We also outline a numerical solution framework that draws on the combination of the bulk-media UPPE method with single-frequency beam-propagation techniques.
Nonlinear wave propagation studies, dispersion modeling, and signal parameters correction
Czech Academy of Sciences Publication Activity Database
Převorovský, Zdeněk
..: ..., 2004, 00. [European Workshop on FP6-AERONEWS /1./. Naples (IT), 13.09.2004-16.09.2004] EU Projects: European Commission(XE) 502927 - AERO-NEWS Institutional research plan: CEZ:AV0Z2076919 Keywords : nodestructive testing * nonlinear elastic wave spectroscopy Subject RIV: BI - Acoustics
Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele
2016-01-01
). In the present paper we use a single layer of quadratic (in 2D) and prismatic (in 3D) elements. The model has been stabilized through a combination of over-integration of the Galerkin projections and a mild modal filter. We present numerical tests of nonlinear waves serving as a proof-of-concept validation...
Stimulated Raman Scattering and Nonlinear Focusing of High-Power Laser Beams Propagating in Water
Hafizi, B; Penano, J R; Gordon, D F; Jones, T G; Helle, M H; Kaganovich, D
2015-01-01
The physical processes associated with propagation of a high-power (power > critical power for self-focusing) laser beam in water include nonlinear focusing, stimulated Raman scattering (SRS), optical breakdown and plasma formation. The interplay between nonlinear focusing and SRS is analyzed for cases where a significant portion of the pump power is channeled into the Stokes wave. Propagation simulations and an analytical model demonstrate that the Stokes wave can re-focus the pump wave after the power in the latter falls below the critical power. It is shown that this novel focusing mechanism is distinct from cross-phase focusing. While discussed here in the context of propagation in water, the gain-focusing phenomenon is general to any medium supporting nonlinear focusing and stimulated forward Raman scattering.
Propagation of zero sound in superfluid {sup 3}He-B under magnetic field
Energy Technology Data Exchange (ETDEWEB)
Ashida, Masami; Hara, Jun`ichiro [Yamaguchi Univ. (Japan); Nagai, Katsuhiko [Hiroshima Univ. (Japan)
1996-10-01
The authors present a theory of zero sound propagation in superfluid {sup 3}He-B with an order parameter strongly distorted by magnetic field. A general formula of the dispersion relation for arbitrary magnetic field in the collisionless regime is derived within the weak coupling theory and under the assumption of particle-hole symmetry. The Landau parameters are taken into account up to F{sub 2}{sup 2} and F{sub 0}{sup a}. Numerical results for the sound velocity and absorption spectrum are presented. The authors show that the collective mode J = 1, J{sub z} = 0 yields a sizable peak in the sound absorption spectrum under weak but finite magnetic field. The quasi-particle excitations under magnetic field also exhibit cusp-like fine structures in the absorption spectrum. The authors show that the anomalies discovered by Ling et al. and Saunders et al. near the pair breaking edge in the q {perpendicular} H geometry consist of the J = 1, J{sub z} = 0 collective mode and the pair breaking cusps in the J{sub z} = 0, {plus_minus} 2 channels.
Lebiedzik, Catherine
1995-01-01
Development of design tools to furnish optimal acoustic environments for lightweight aircraft demands the ability to simulate the acoustic system on a workstation. In order to form an effective mathematical model of the phenomena at hand, we have begun by studying the propagation of acoustic waves inside closed spherical shells. Using a fully-coupled fluid-structure interaction model based upon variational principles, we have written a finite element analysis program and are in the process of examining several test cases. Future investigations are planned to increase model accuracy by incorporating non-linear and viscous effects.
Linear and Nonlinear Infrasound Propagation to 1000 km
2015-12-15
and is the specific heat ratio, which is 1.4 in air. Equations (1), (6) and (9) form a complete set of governing equations for acoustic...propagation in an isentropic medium. In what follows, the second set of equations (6 and 8) is used to derive the coupled differential equations for linear...solutions to differential equations by replacing derivatives of continuous functions by their finite difference approximations formed over sets of discrete
Kleinert, Anne
2006-01-20
The detectors used in the cryogenic limb-emission sounder MIPAS-B2 (Michelson Interferometer for Passive Atmospheric Sounding) show a nonlinear response, which leads to radiometric errors in the calibrated spectra if the nonlinearity is not taken into account. In the case of emission measurements, the dominant error that arises from the nonlinearity is the changing detector responsivity as the incident photon load changes. The effect of the distortion of a single interferogram can be neglected. A method to characterize the variable responsivity and to correct for this effect is proposed. Furthermore, a detailed error estimation is presented.
Tajaldini, Mehdi; Mat Jafri, Mohd Zubir Mat
2013-05-01
In this study, we propose a novel approach that is called nonlinear modal propagation analysis method (NMPA) in MMI coupler via the enhances of nonlinear wave propagation in terms of guided modes interferences in nonlinear regimes, such that the modal fields are measurable at any point of coupler and output facets. Then, the ultra-short MMI coupler is optimized as a building block in micro ring resonator to investigate the method efficiency against the already used method. Modeling results demonstrate more efficiency and accuracy in shorter lengths of multimode interference coupler. Therefore, NMPA can be used as a method to study the compact dimension coupler and for developing the performance in applications. Furthermore, the possibility of access tothe all-optical switching is assumed due to one continuous MMI for proof of the development of performances in nonlinear regimes.
Non-Markovian random walks and nonlinear reactions: Subdiffusion and propagating fronts
Fedotov, Sergei
2010-01-01
The main aim of the paper is to incorporate the nonlinear kinetic term into non-Markovian transport equations described by a continuous time random walk (CTRW) with nonexponential waiting time distributions. We consider three different CTRW models with reactions. We derive nonlinear Master equations for the mesoscopic density of reacting particles corresponding to CTRW with arbitrary jump and waiting time distributions. We apply these equations to the problem of front propagation in the reaction-transport systems with Kolmogorov-Petrovskii-Piskunov kinetics and anomalous diffusion. We have found an explicit expression for the speed of a propagating front in the case of subdiffusive transport.
Propagation of Weakly Guided Waves in a Kerr Nonlinear Medium using a Perturbation Approach
Energy Technology Data Exchange (ETDEWEB)
Dacles-Mariani, J; Rodrigue, G
2004-10-06
The equations are represented in a simplified format with only a few leading terms needed in the expansion. The set of equations are then solved numerically using vector finite element method. To validate the algorithm, they analyzed a two-dimensional rectangular waveguide consisting of a linear core and nonlinear identical cladding. The exact nonlinear solutions for three different modes of propagations, TE0, TE1, and TE2 modes are generated and compared with the computed solutions. Next, they investigate the effect of a more intense monochromatic field on the propagation of a 'weak' optical field in a fully three-dimensional cylindrical waveguide.
Energy Technology Data Exchange (ETDEWEB)
Makse, Hernan A. [City College of New York, NY (United States). Levich Inst., Dept. of Physcis; Johnson, David L. [Schlumberger-Doll Research, Cambridge, MA (United States)
2014-09-03
This is the final report describing the results of DOE Grant # DE-FG02-03ER15458 with original termination date of April 31, 2013, which has been extended to April 31, 2014. The goal of this project is to develop a theoretical and experimental understanding of sound propagation, elasticity and dissipation in granular materials. The topic is relevant for the efficient production of hydrocarbon and for identifying and characterizing the underground formation for storage of either CO_{2} or nuclear waste material. Furthermore, understanding the basic properties of acoustic propagation in granular media is of importance not only to the energy industry, but also to the pharmaceutical, chemical and agricultural industries. We employ a set of experimental, theoretical and computational tools to develop a study of acoustics and dissipation in granular media. These include the concept effective mass of granular media, normal modes analysis, statistical mechanics frameworks and numerical simulations based on Discrete Element Methods. Effective mass measurements allow us to study the mechanisms of the elastic response and attenuation of acoustic modes in granular media. We perform experiments and simulations under varying conditions, including humidity and vacuum, and different interparticle force-laws to develop a fundamental understanding of the mechanisms of damping and acoustic propagation in granular media. A theoretical statistical approach studies the necessary phase space of configurations in pressure, volume fraction to classify granular materials.
2011-01-01
International audience; We study theoretically, numerically and experimentally the nonlinear propagation of partially incoherent optical waves in single mode optical fibers. We revisit the traditional treatment of the wave turbulence theory to provide a statistical kinetic description of the integrable scalar NLS equation. In spite of the formal reversibility and of the integrability of the NLS equation, the weakly nonlinear dynamics reveals the existence of an irreversible evolution toward a...
Nonlinear unified equations for water waves propagating over uneven bottoms in the nearshore region
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Considering the continuous characteristics for water waves propagating over complex topography in the nearshore region, the unified nonlinear equations, based on the hypothesis for a typical uneven bottom, are presented by employing the Hamiltonian variational principle for water waves. It is verified that the equations include the following special cases: the extension of Airy's nonlinear shallow-water equations, the generalized mild-slope equation, the dispersion relation for the second-order Stokes waves and the higher order Boussinesq-type equations.
Role of Density Profiles for the Nonlinear Propagation of Intense Laser Beam through Plasma Channel
Sonu Sen; Meenu Asthana Varshney; Dinesh Varshney
2014-01-01
In this work role of density profiles for the nonlinear propagation of intense laser beam through plasma channel is analyzed. By employing the expression for the dielectric function of different density profile plasma, a differential equation for beamwidth parameter is derived under WKB and paraxial approximation. The laser induces modifications of the dielectric function through nonlinearities. It is found that density profiles play vital role in laser-plasma interaction studies. To have num...
Exact solutions of optical wave propagation in nonlinear negative refractive medium
Nanda, Lipsa
2016-04-01
An analytical and simulation based method has been used to exactly solve the nonlinear Schrödinger's equation (NLSE) and study the solitonic forms in a medium which exhibits frequency dependent dielectric permittivity (ɛ) and magnetic permeability (μ). The model has been extended to describe the propagation of a wave in a nonlinear negative refractive medium (NRM) which is dispersive and negative in nature.
Effect of Tissue Inhomogeneity on Nonlinear Propagation of Focused Ultrasound
Institute of Scientific and Technical Information of China (English)
LIU Zhen-Bo; FAN Ting-Bo; GUO Xia-Sheng; ZHANG Dong
2010-01-01
@@ We study the influence of tissue inhomogeneity on the focused ultrasound based on the phase screen model and the acoustic nonlinear equation.The inhomogeneous tissue is considered as a combination of a homogeneous medium and a phase aberration screen.Six polyethylene(PE)plates with various correlation lengths and standard deviations are made to mimic the inhomogeneity induced by the human body abdominal.Results indicate that the correlation length affects the side lobe structure of the beam pattern; while the standard deviation is associated with the focusing capability.This study provides a theoretical and experimental basis for the development of a precise treatment plan for high intensity focused ultrasound.
Park, Jong M.; Eversman, W.
1992-01-01
2D sound propagation over an arbitrarily-shaped barrier situated on a locally reacting infinite plane in a homogeneous medium is treated utilizing the BEM. The BIE is formulated so that the integral along an infinite homogeneous plane disappears if the half space Green's function is selected to satisfy the boundary condition of this plane. Comparison of the BEM results with test results by Habault and by Kearns shows good agreement of the sound field utilizing the BEM.
Institute of Scientific and Technical Information of China (English)
W. Marques Jr.
2008-01-01
@@ We analyse the problem concerning the propagation of sound waves in gases by using the modified hydrodynamic theory proposed recently by Brenner for single-component fluids. The modifications introduced by Brenner are based on his proposal that the translational momentum in fluid motion is not given by the mass flux. Comparison of the sound propagation results derived from Brenner's theory with available experimental data for monatomic gases shows that this modified continuum theory is unable to describe the acoustic measurements not even in the low-frequency limit, a result that from our point of view makes Brenner's proposal questionable.
Institute of Scientific and Technical Information of China (English)
张洪生; 洪广文; 丁平兴; 曹振轶
2001-01-01
In this paper, the characteristics of different forms of mild slope equations for non-linear wave are analyzed, and new non-linear theoretic models for wave propagation are presented, with non-linear terms added to the mild slope equations for non-stationary linear waves and dissipative effects considered. Numerical simulation models are developed of non-linear wave propagation for waters of mildly varying topography with complicated boundary, and the effects are studied of different non-linear corrections on calculation results of extended mild slope equations. Systematical numerical simulation tests show that the present models can effectively reflect non-linear effects.
Institute of Scientific and Technical Information of China (English)
Zhu Xiao-Feng; Zhou Lin; Zhang Dong; Gong Xiu-Fen
2005-01-01
Nonlinear propagation of focused ultrasound in layered biological tissues is theoretically studied by using the angular spectrum approach (ASA), in which an acoustic wave is decomposed into its angular spectrum, and the distribution of nonlinear acoustic fields is calculated in arbitrary planes normal to the acoustic axis. Several biological tissues are used as specimens inserted into the focusing region illuminated by a focused piston source. The second harmonic components within or beyond the biological specimens are numerically calculated. Validity of the theoretical model is examined by measurements. This approach employing the fast Fourier transformation gives a clear visualization of the focused ultrasound, which is helpful for nonlinear ultrasonic imaging.
Propagation of Nonlinear Phenomena in a Measurement Sequence
Directory of Open Access Journals (Sweden)
Marija Marković
2012-02-01
Full Text Available Measurements provide one with results, in the form of both quantitative estimates of measured quantity along with attributed quantitative probabilistic analysis. Measurement is prescribed precisely in order to enable researchers, experts or other measurers to obtain maximum confidence in its results. In that way, the probability of obtaining unpredicted or unwanted consequences is minimised. Yet, owing to a rather large number of degrees of freedom in a typical measurement sequence, its nonlinear character and nonlinear couplings, in general it is not known in what amount a variation in measurement conditions brings about significantly larger variations in measured quantities or its derivatives.In this article we treat in some details the aforementioned influence of variations and argue about possible results. In order to illustrate the treated influences we present results of a rather simple and common measurement of surface roughness of solid state objects. It is argued that there is no significant augmentation of variations in results of initial measurements throughout measurement sequence.
Ostashev, Vladimir E.; Collier, Sandra L.; Keith Wilson, D.
Using the narrow-angle and Markov approximations, a formula for the transverse-longitudinal coherence function of a sound field propagating in a turbulent atmosphere with temperature and wind velocity fluctuations is derived. This function, which applies to observation points that are arbitrarily located in space, generalizes the transverse coherence function (coherence when the observation points are in a plane perpendicular to the sound propagation path), which has been studied extensively. The new result is expressed in terms of the transverse coherence function and the extinction coefficient of the mean sound field. The transverse-longitudinal coherence function of a plane sound wave is then calculated and studied in detail for the Gaussian and von Kármán spectra of temperature and wind velocity fluctuations. It is shown, for relatively small propagation distances, that the magnitude of the coherence function decreases in the longitudinal direction but remains almost constant in the transverse direction. On the other hand, for moderate and large propagation distances, the magnitude of the coherence decreases faster in the transverse direction than in the longitudinal. For some parameters of the problem, the coherence function has relatively large local maxima and minima as the transverse and longitudinal coordinates are varied. With small modifications, many results obtained in the paper can be applied to studies of electromagnetic wave propagation in a turbulent atmosphere.
Sound radiation from an infinite elastic cylinder with dual-wave propagation-intensity distributions
Fuller, C. R.
1988-01-01
The radiation of sound from an elastic cylindrical shell filled with fluid and supporting multiwave propagation is studied analytically. Combinations of supersonic and subsonic shell waves are considered. The radiated field is mapped by using acoustic intensity vectors evaluated at various locations. Both time averaged and instantaneous intensity are investigated. The acoustic intensity is seen to vary markedly with axial distance down the cylinder. The effect is shown to be associated with cross terms in the intensity relations, and its magnitude and location to depend upon the relative phase and amplitudes of individual waves. Subsonic shell waves are demonstrated to interact strongly with supersonic shell waves to cause a large modification in the radiated intensity distributions near the shell surface.
Nonlinear effects in propagation of radiation of X-ray free-electron lasers
Nosik, V. L.
2016-05-01
Nonlinear effects accompanying the propagation of high-intensity beams of X-ray free-electron lasers are considered. It is shown that the X-ray wave field in the crystal significantly changes due to the formation of "hollow" atomic shells as a result of the photoelectric effect.
Nonlinear propagation of a wave packet in a hard-walled circular duct
Nayfeh, A. H.
1975-01-01
The method of multiple scales is used to derive a nonlinear Schroedinger equation for the temporal and spatial modulation of the amplitudes and the phases of waves propagating in a hard-walled circular duct. This equation is used to show that monochromatic waves are stable and to determine the amplitude dependance of the cutoff frequencies.
Symmetry Breaking of Counter-Propagating Light in a Nonlinear Resonator
Del Bino, Leonardo; Silver, Jonathan M.; Stebbings, Sarah L.; Del'Haye, Pascal
2017-01-01
Spontaneous symmetry breaking is a concept of fundamental importance in many areas of physics, underpinning such diverse phenomena as ferromagnetism, superconductivity, superfluidity and the Higgs mechanism. Here we demonstrate nonreciprocity and spontaneous symmetry breaking between counter-propagating light in dielectric microresonators. The symmetry breaking corresponds to a resonance frequency splitting that allows only one of two counter-propagating (but otherwise identical) states of light to circulate in the resonator. Equivalently, this effect can be seen as the collapse of standing waves and transition to travelling waves within the resonator. We present theoretical calculations to show that the symmetry breaking is induced by Kerr-nonlinearity-mediated interaction between the counter-propagating light. Our findings pave the way for a variety of applications including optically controllable circulators and isolators, all-optical switching, nonlinear-enhanced rotation sensing, optical flip-flops for photonic memories as well as exceptionally sensitive power and refractive index sensors. PMID:28220865
(3+1)-dimensional nonlinear propagation equation for ultrashort pulsed beam in left-handed material
Institute of Scientific and Technical Information of China (English)
Hu Yong-Hua; Fu Xi-Quan; Wen Shuang-Chun; Su Wen-Hua; Fan Dian-Yuan
2006-01-01
In this paper a comprehensive framework for treating the nonlinear propagation of ultrashort pulse in metamaterial with dispersive dielectric susceptibility and magnetic permeability is presented. Under the slowly-evolving-wave approximation, a generalized (3+1)-dimensional wave equation first order in the propagation coordinate and suitable for both right-handed material (RHM) and left-handed material (LHM) is derived. By the commonly used Drude dispersive model for LHM, a (3+1)-dimensional nonlinear Schr(o)dinger equation describing ultrashort pulsed beam propagation in LHM is obtained, and its difference from that for conventional RHM is discussed. Particularly, the self-steeping effect of ultrashort pulse is found to be anomalous in LHM.
Nonlinear propagation of weakly relativistic ion-acoustic waves in electron–positron–ion plasma
Indian Academy of Sciences (India)
M G HAFEZ; M R TALUKDER; M HOSSAIN ALI
2016-11-01
This work presents theoretical and numerical discussion on the dynamics of ion-acoustic solitary wave for weakly relativistic regime in unmagnetized plasma comprising non-extensive electrons, Boltzmann positrons and relativistic ions. In order to analyse the nonlinear propagation phenomena, the Korteweg–de Vries(KdV) equation is derived using the well-known reductive perturbation method. The integration of the derived equation is carried out using the ansatz method and the generalized Riccati equation mapping method. The influenceof plasma parameters on the amplitude and width of the soliton and the electrostatic nonlinear propagation of weakly relativistic ion-acoustic solitary waves are described. The obtained results of the nonlinear low-frequencywaves in such plasmas may be helpful to understand various phenomena in astrophysical compact object and space physics.
Parakkal, Santosh; Gilbert, Kenneth E; Di, Xiao
2012-02-01
The Beilis-Tappert (1979) parabolic equation method is attractive for irregular terrain because it treats surface variations in terms of a simple multiplicative factor ("phase screen"). However, implementing the exact sloping-surface impedance condition is problematic if one wants the computational efficiency of a Fourier parabolic equation algorithm. This article investigates an approximate flat-ground impedance condition that allows the Beilis-Tappert phase screen method to be used with a Fourier algorithm without any added complications. The exact sloping-surface impedance condition is derived and applied to propagation predictions over hills with maximum slopes from 5° to 22°. The predictions with the exact impedance condition are compared to predictions using the approximate flat-ground impedance condition. It is found that for slopes less than 15°-20°, the flat-ground impedance condition is sufficiently accurate. For slopes greater than approximately 20°, the limiting factor on numerical accuracy is not the flat-ground impedance approximation, but rather the narrow-angle approximation required by the Beilis-Tappert method. Thus, within the 20° limitation and using the flat-ground impedance condition with a Fourier parabolic equation, sound propagation over irregular terrain can be computed simply, efficiently, and accurately.
Distress Propagation in Complex Networks: The Case of Non-Linear DebtRank.
Bardoscia, Marco; Caccioli, Fabio; Perotti, Juan Ignacio; Vivaldo, Gianna; Caldarelli, Guido
2016-01-01
We consider a dynamical model of distress propagation on complex networks, which we apply to the study of financial contagion in networks of banks connected to each other by direct exposures. The model that we consider is an extension of the DebtRank algorithm, recently introduced in the literature. The mechanics of distress propagation is very simple: When a bank suffers a loss, distress propagates to its creditors, who in turn suffer losses, and so on. The original DebtRank assumes that losses are propagated linearly between connected banks. Here we relax this assumption and introduce a one-parameter family of non-linear propagation functions. As a case study, we apply this algorithm to a data-set of 183 European banks, and we study how the stability of the system depends on the non-linearity parameter under different stress-test scenarios. We find that the system is characterized by a transition between a regime where small shocks can be amplified and a regime where shocks do not propagate, and that the overall stability of the system increases between 2008 and 2013.
Sound Propagation Experiments in a Magnetic Field in Superfluid HELIUM-3-B
Shivaram, Bellave S.
A high resolution acoustic impedance technique has been used to investigate the order parameter collective modes in superfluid ('3)He-B. Theoretically, a classification of the collective modes in the B-phase based on a total angular momentum quantum number, J, is appropriate. In agreement with earlier experiments the J = 2 real mode or the real squashing mode has been observed to split into five components in small magnetic fields. However, contrary to earlier theoretical estimates, the Zeeman shifts have been found to become extremely nonlinear as the magnetic field is increased. The extent of nonlinearity is larger at low pressures and at temperatures close to T(,c). The nonlinear Zeeman shifts have subsequently been explained as the result of the distortion of the B-phase energy gap. In addition to gap distortion the coupling between the same J(,z) substates of the different J modes are also found to contribute to the nonlinearity and in this sense the nonlinear evolution of the real squashing mode constitutes the observation of the Paschen-Back effect in ('3)He-B. A comparison of the observed Zeeman shifts with the theoretical expressions has yielded a wealth of information about particle -particle and particle-hole interaction effects in superfluid ('3)He. In the limit T (--->) T(,c) and in a large enough magnetic field the real squashing mode has been found to possess additional structure. The J(,z) = 0 substate of the real squashing mode has been observed to split into a doublet above a threshold field. The separation between the two components of the doublet is of the order of 100 -200 kHz and remains independent of the magnetic field. The origin of the doublet has remained a mystery and possibly indicates the presence of an additional degree of freedom in the superfluid order parameter. Further, at extremely small fields the effects due to dispersion of the real squashing modes have been found to be important. The magnitude of the dispersion induced mode
Impact of nonlinear absorption on propagation of microwave in a plasma filled rectangular waveguide
Sobhani, H.; Vaziri, M.; Rooholamininejad, H.; Bahrampour, A. R.
2016-07-01
In collisional and ponderomotive predominant regimes, the propagation of microwave in rectangular waveguide filled with collisional plasma is investigated numerically. The dominant mode is excited through an evacuated waveguide and then enters a similar and co-axis waveguide filled with plasma. In collisional predominant regime, the amplitude of electric field is oscillated along propagation path; outset of propagation path due to the electron-ion collision, the intensity oscillations are reduced. Afterward, under competition between the collisional nonlinearity and absorption, the intensity is increased, so the electron density peak is created in middle of waveguide. In ponderomotive predominant regime, the intensity is slowly decreased due to collision, so the electron density is ramped. Control parameters, like the frequency, input power, collision frequency, and background electron density are surveyed that can be used to control propagation characteristics of microwave. This method can be used to control heating of fusion plasma and accelerate charged particle.
Deliktaş, Ekin; Teymür, Mevlüt
2017-07-01
In this study, the propagation of shear horizontal (SH) waves in a nonlinear elastic half space covered by a nonlinear elastic layer with a slowly varying interface is examined. The constituent materials are assumed to be homogenous, isotropic, elastic and having different mechanical properties. By employing the method of multiple scales, a nonlinear Schrödinger equation (NLS) with variable coefficients is derived for the nonlinear self-modulation of SH waves. We examine the effects of dispersion, irregularity of the interface and nonlinearity on the propagation characteristics of SH waves.
Energy Technology Data Exchange (ETDEWEB)
Ljunggren, Sten [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Building Sciences
2000-10-01
This report describe results from a literature study concerning sound wave propagation around off-shore wind power plants influenced by wind speed gradients. The study show measurement results from three different campaigns (two of them unpublished) and from two different theoretical models (one unpublished). Both measurements and models clearly confirms that the sound propagation differs strongly from the conditions over land.
DEFF Research Database (Denmark)
Tarrero, A.I.; Martín, M.A.; González, J.
2008-01-01
to predict scattering effects when sound propagates in outdoor spaces with obstacles. The comparison of experimental results and predictions shows that the Nord 2000 model predicts the ground effect dip in forests with acceptable accuracy in about 60% of the cases if the flow resistivity of the ground......The purpose of the work described in this paper is twofold: (i) to present the results of an experimental investigation of the sound attenuation in different types of forest, and (ii) to validate a part of the Nord 2000 model. A number of measurements have been carried out in regular and irregular...... forests with trees with deciduous and evergreen leaves, different tree density, different trunk diameter, etc. The experimental results indicate that trees have a noticeable effect on sound propagation at medium and high frequencies at distances longer than 40m. The Nord 2000 model uses a simple algorithm...
Harmonic Propagation and Interaction Evaluation between Small-Scale Wind Farms and Nonlinear Loads
Directory of Open Access Journals (Sweden)
Cheng-Xiong Mao
2013-07-01
Full Text Available Distributed generation is a flexible and effective way to utilize renewable energy. The dispersed generators are quite close to the load, and pose some power quality problems such as harmonic current emissions. This paper focuses on the harmonic propagation and interaction between a small-scale wind farm and nonlinear loads in the distribution grid. Firstly, by setting the wind turbines as P – Q(V nodes, the paper discusses the expanding Newton-Raphson power flow method for the wind farm. Then the generalized gamma mixture models are proposed to study the non-characteristic harmonic propagation of the wind farm, which are based on Gaussian mixture models, improved phasor clustering and generalized Gamma models. After the integration of the small-scale wind farm, harmonic emissions of nonlinear loads will become random and fluctuating due to the non-stationary wind power. Furthermore, in this paper the harmonic coupled admittance matrix model of nonlinear loads combined with a wind farm is deduced by rigorous formulas. Then the harmonic propagation and interaction between a real wind farm and nonlinear loads are analyzed by the harmonic coupled admittance matrix and generalized gamma mixture models. Finally, the proposed models and methods are verified through the corresponding simulation models in MATLAB/SIMULINK and PSCAD/EMTDC.
Alberucci, Alessandro; Laudyn, Urszula A.; Piccardi, Armando; Kwasny, Michał; Klus, Bartlomiej; Karpierz, Mirosław A.; Assanto, Gaetano
2017-07-01
We investigate nonlinear optical propagation of continuous-wave (CW) beams in bulk nematic liquid crystals. We thoroughly analyze the competing roles of reorientational and thermal nonlinearity with reference to self-focusing/defocusing and, eventually, the formation of nonlinear diffraction-free wavepackets, the so-called spatial optical solitons. To this extent we refer to dye-doped nematic liquid crystals in planar cells excited by a single CW beam in the highly nonlocal limit. To adjust the relative weight between the two nonlinear responses, we employ two distinct wavelengths, inside and outside the absorption band of the dye, respectively. Different concentrations of the dye are considered in order to enhance the thermal effect. The theoretical analysis is complemented by numerical simulations in the highly nonlocal approximation based on a semi-analytic approach. Theoretical results are finally compared to experimental results in the Nematic Liquid Crystals (NLC) 4-trans-4'-n-hexylcyclohexylisothiocyanatobenzene (6CHBT) doped with Sudan Blue dye.
Nonlinear effects in propagation of long-range surface plasmon polaritons in gold strip waveguides
Lysenko, Oleg; Bache, Morten; Malureanu, Radu; Lavrinenko, Andrei
2016-04-01
This paper is devoted to experimental and theoretical studies of nonlinear propagation of a long-range surface plasmon polariton (LRSPP) in gold strip waveguides. The plasmonic waveguides are fabricated in house, and contain a gold layer, tantalum pentoxide adhesion layers, and silicon dioxide cladding. The optical characterization was performed using a high power picosecond laser at 1064 nm. The experiments reveal two nonlinear optical effects: nonlinear power transmission and spectral broadening of the LRSPP mode in the waveguides. Both nonlinear optical effects depend on the gold layer thickness. The theoretical model of these effects is based on the third-order susceptibility of the constituent materials. The linear and nonlinear parameters of the LRSPP mode are obtained, and the nonlinear Schrödinger equation is solved. The dispersion length is much larger than the waveguides length, and the chromatic dispersion does not affect the propagation of the plasmonic mode. We find that the third-order susceptibility of the gold layer has a dominant contribution to the effective third-order susceptibility of the LRSPP mode. The real part of the effective third-order susceptibility leads to the observed spectral broadening through the self-phase modulation effect, and its imaginary part determines the nonlinear absorption parameter and leads to the observed nonlinear power transmission. The experimental values of the third-order susceptibility of the gold layers are obtained. They indicate an effective enhancement of the third-order susceptibility for the gold layers, comparing to the bulk gold values. This enhancement is explained in terms of the change of the electrons motion.
Lugli, Marco; Fine, Michael L
2007-11-01
The most sensitive hearing and peak frequencies of courtship calls of the stream goby, Padogobius martensii, fall within a quiet window at around 100 Hz in the ambient noise spectrum. Acoustic pressure was previously measured although Padogobius likely responds to particle motion. In this study a combination pressure (p) and particle velocity (u) detector was utilized to describe ambient noise of the habitat, the characteristics of the goby's sounds and their attenuation with distance. The ambient noise (AN) spectrum is generally similar for p and u (including the quiet window at noisy locations), although the energy distribution of u spectrum is shifted up by 50-100 Hz. The energy distribution of the goby's sounds is similar for p and u spectra of the Tonal sound, whereas the pulse-train sound exhibits larger p-u differences. Transmission loss was high for sound p and u: energy decays 6-10 dB10 cm, and sound pu ratio does not change with distance from the source in the nearfield. The measurement of particle velocity of stream AN and P. martensii sounds indicates that this species is well adapted to communicate acoustically in a complex noisy shallow-water environment.
Nonlinear wave propagation through a ferromagnet with damping in (2+1) dimensions
Indian Academy of Sciences (India)
S G Bindu; V C Kuriakose
2000-02-01
We investigate how dissipation and nonlinearity can affect the electromagnetic wave propagating through a saturated ferromagnet in the presence of an external magnetic ﬁeld in (2+1) dimensions. The propagation of electromagnetic waves through a ferromagnet under an external magnetic ﬁeld in the presence of dissipative effect has been studied using reductive perturbation method. It is found that to the lowest order of perturbation the system of equations for the electromagnetic waves in a ferromagnet can be reduced to an integro-differential equation.
Light propagation in a Cole-Cole nonlinear medium via Burgers-Hopf equation
Konopelchenko, Boris; Moro, Antonio
2004-01-01
Recently, a new model of propagation of the light through the so-called weakly three-dimensional Cole-Cole nonlinear medium with short-range nonlocality has been proposed. In particular, it has been shown that in the geometrical optics limit, the model is integrable and it is governed by the dispersionless Veselov-Novikov (dVN) equation. Burgers-Hopf equation can be obtained as 1+1-dimensional reduction of dVN equation. We discuss its properties in the specific context of nonlinear geometrica...
Yesayan, G L
2001-01-01
The equations for the width and curvature radius of the wave front for a Gaussian beam of light propagating along the axis of the longitudinally inhomogeneous graded index waveguide with gain and losses in the presence of third-order nonlinearity are obtained. By means of numerical calculations it is shown that in such waveguides the mode of stabilization of the beam width is possible, when the absorption of radiation on the edges of the beam compensates its spreading caused by the longitudinal inhomogeneity and nonlinearity of the waveguide
Nonlinear Propagation of Coupling Optical Pulse under Compton Scattering in Laser Medium
Institute of Scientific and Technical Information of China (English)
HAO Dong-shan; ZHANG Xiao-fu
2006-01-01
After considering Kerr nonlinear effect,group velocity dispersion of host and gain distribution of active particle in laser amplifying medium,a basic equation describing propagation of the coupling optical pulse under the multi-photon nonlinear Compton scattering in the laser amplifying medium has been deduced. Besides,the profile and power spectrum of a picosecond-level super-Gaussian coupling pulse in the laser amplifying medium have been discussed when its central frequency coincides with the gain peak frequency of the laser amplifying medium.
Directory of Open Access Journals (Sweden)
C. Soumali
2016-06-01
Full Text Available Impact of nonlinear piezoelectric constants on surface acoustic wave propagation on a piezoelectric substrate is investigated in this work. Propagation of acoustic wave propagation under uniform stress is analyzed; the wave equation is obtained by incorporating the applied uniform stress in the equation of motion and taking account of the set of linear and nonlinear piezoelectric constants. A new method of separation between the different modes of propagation is proposed regarding the attenuation coefficients and not to the displacement vectors. Detail calculations and simulations have made for Lithium Niobate (LiNbO3; transformations between modes of propagation, under uniform stress, have been found. These results leads to conclusion that nonlinear terms affect the acoustic wave propagation and also we can make controllable acoustic devices.
Directory of Open Access Journals (Sweden)
Y. Srinivas
2012-09-01
Full Text Available The applications of intelligent techniques have increased exponentially in recent days to study most of the non-linear parameters. In particular, the behavior of earth resembles the non-linearity applications. An efficient tool is needed for the interpretation of geophysical parameters to study the subsurface of the earth. Artificial Neural Networks (ANN perform certain tasks if the structure of the network is modified accordingly for the purpose it has been used. The three most robust networks were taken and comparatively analyzed for their performance to choose the appropriate network. The single-layer feed-forward neural network with the back propagation algorithm is chosen as one of the well-suited networks after comparing the results. Initially, certain synthetic data sets of all three-layer curves have been taken for training the network, and the network is validated by the field datasets collected from Tuticorin Coastal Region (78°7′30"E and 8°48′45"N, Tamil Nadu, India. The interpretation has been done successfully using the corresponding learning algorithm in the present study. With proper training of back propagation networks, it tends to give the resistivity and thickness of the subsurface layer model of the field resistivity data concerning the synthetic data trained earlier in the appropriate network. The network is trained with more Vertical Electrical Sounding (VES data, and this trained network is demonstrated by the field data. Groundwater table depth also has been modeled.
PetClaw: A scalable parallel nonlinear wave propagation solver for Python
Alghamdi, Amal
2011-01-01
We present PetClaw, a scalable distributed-memory solver for time-dependent nonlinear wave propagation. PetClaw unifies two well-known scientific computing packages, Clawpack and PETSc, using Python interfaces into both. We rely on Clawpack to provide the infrastructure and kernels for time-dependent nonlinear wave propagation. Similarly, we rely on PETSc to manage distributed data arrays and the communication between them.We describe both the implementation and performance of PetClaw as well as our challenges and accomplishments in scaling a Python-based code to tens of thousands of cores on the BlueGene/P architecture. The capabilities of PetClaw are demonstrated through application to a novel problem involving elastic waves in a heterogeneous medium. Very finely resolved simulations are used to demonstrate the suppression of shock formation in this system.
Nonlinear chirped-pulse propagation and supercontinuum generation in photonic crystal fibers.
Hu, Xiaohong; Wang, Yishan; Zhao, Wei; Yang, Zhi; Zhang, Wei; Li, Cheng; Wang, Hushan
2010-09-10
Based on the generalized nonlinear Schrödinger equation and waveguiding properties typical of the photonic crystal fiber structure, nonlinear chirped-pulse propagation and supercontinua generation in the femtosecond and picosecond regimes are investigated numerically. The simulation results indicate that an input chirp parameter mainly affects the initial stage of spectral broadening caused by the self-phase modulation (SPM) effect. In the femtosecond regime where the SPM effect plays an important role in the process of spectral broadening, an input positive chirp can enhance the supercontinuum bandwidth through a modified pulse compression phase and a decreased propagation distance required by soliton fission. In the picosecond regime, where the SPM effect contributes less to the continuum bandwidth and four-wave mixing process or modulational instability dominates the initial stage of spectral and temporal evolution, the output spectral shape and bandwidths are less sensitive to the input chirp parameters.
Hafez, M. G.; Talukder, M. R.; Hossain Ali, M.
2017-04-01
The Burgers equation is obtained to study the characteristics of nonlinear propagation of ionacoustic shock, singular kink, and periodic waves in weakly relativistic plasmas containing relativistic thermal ions, nonextensive distributed electrons, Boltzmann distributed positrons, and kinematic viscosity of ions using the well-known reductive perturbation technique. This equation is solved by employing the ( G'/ G)-expansion method taking unperturbed positron-to-electron concentration ratio, electron-to-positron temperature ratio, strength of electrons nonextensivity, ion kinematic viscosity, and weakly relativistic streaming factor. The influences of plasma parameters on nonlinear propagation of ion-acoustic shock, periodic, and singular kink waves are displayed graphically and the relevant physical explanations are described. It is found that these parameters extensively modify the shock structures excitation. The obtained results may be useful in understanding the features of small but finite amplitude localized relativistic ion-acoustic shock waves in an unmagnetized plasma system for some astrophysical compact objects and space plasmas.
Time-Frequency (Wigner Analysis of Linear and Nonlinear Pulse Propagation in Optical Fibers
Directory of Open Access Journals (Sweden)
José Azaña
2005-06-01
Full Text Available Time-frequency analysis, and, in particular, Wigner analysis, is applied to the study of picosecond pulse propagation through optical fibers in both the linear and nonlinear regimes. The effects of first- and second-order group velocity dispersion (GVD and self-phase modulation (SPM are first analyzed separately. The phenomena resulting from the interplay between GVD and SPM in fibers (e.g., soliton formation or optical wave breaking are also investigated in detail. Wigner analysis is demonstrated to be an extremely powerful tool for investigating pulse propagation dynamics in nonlinear dispersive systems (e.g., optical fibers, providing a clearer and deeper insight into the physical phenomena that determine the behavior of these systems.
Propagation dynamics of finite-energy Airy beams in nonlocal nonlinear media
Wu, Zhen-Kun; Li, Peng; Gu, Yu-Zong
2017-10-01
We investigate periodic inversion and phase transition of normal and displaced finite-energy Airy beams propagating in nonlocal nonlinear media with the split-step Fourier method. Numerical simulation results show that parameters such as the degree of nonlocality and amplitude have profound effects on the intensity distribution of the period of an Airy beam. Nonlocal nonlinear media will reduce into a harmonic potential if the nonlocality is strong enough, which results in the beam fluctuating in an approximately cosine mode. The beam profile changes from an Airy profile to a Gaussian one at a critical point, and during propagation the process repeats to form an unusual oscillation. We also briefly discus the two-dimensional case, being equivalent to a product of two one-dimensional cases.
Adaptive control of the propagation of ultrafast light through random and nonlinear media
Moores, Mark David
2001-12-01
Ultrafast light sources generate coherent pulses with durations of less than one picosecond, and represent the next generation of illuminators for medical imaging and optical communications applications. Such sources are already widely used experimentally. Correction of temporal widths or pulse envelopes after traversal of optically non-ideal materials is critical for the delivery of optimal ultrashort pulses. It is important to investigate the physical mechanisms that distort pulses and to develop and implement methods for minimizing these effects. In this work, we investigate methods for characterizing and manipulating pulse propagation dynamics in random (scattering) and nonlinear optical media. In particular, we use pulse shaping to manipulate the light field of ultrashort infrared pulses. Application of spectral phase by a liquid crystal spatial light modulator is used to control the temporal pulse shape. The applied phase is controlled by a genetic algorithm that adaptively responds to the feedback from previous phase profiles. Experiments are detailed that address related aspects of the character of ultrafast pulses-the short timescales and necessarily wide frequency bandwidths. Material dispersion is by definition frequency dependent. Passage through an inhomogeneous system of randomly situated boundaries (scatterers) causes additional distortion of ballistic pulses due to multiple reflections. The reflected rays accumulate phase shifts that depend on the separation of the reflecting boundaries and the photon frequency. Ultrafast bandwidths present a wide range of frequencies for dispersion and interaction with macroscopic dielectric structure. The shaper and adaptive learning algorithm are used to reduce these effects, lessening the impact of the scattering medium on propagating pulses. The timescale of ultrashort pulses results in peak intensities that interact with the electronic structure of optical materials to induce polarization that is no longer
Wittig, A; Di Lizia, P.; Armellin, R.; Zazzera, FB; Makino, K; Berzş, M
2014-01-01
Current approaches to uncertainty propagation in astrodynamics mainly refer to linearized models or Monte Carlo simulations. Naive linear methods fail in nonlinear dynamics, whereas Monte Carlo simulations tend to be computationally intensive. Differential algebra has already proven to be an efficient compromise by replacing thousands of pointwise integrations of Monte Carlo runs with the fast evaluation of the arbitrary order Taylor expansion of the flow of the dynamics. However, the current...
The effects of nonlinear wave propagation on the stability of inertial cavitation
2009-01-01
In the context of forecasting temperature and pressure fields in high-intensity focussed ultrasound, the accuracy of predictive models is critical for the safety and efficacy of treatment. In such fields inertial cavitation is often observed. Classically, estimations of cavitation thresholds have been based on the assumption that the incident wave at the surface of a bubble was the same as in the far-field, neglecting the effect of nonlinear wave propagation. By modelling the incident wave as...
Propagation of Long-Wavelength Nonlinear Slow Sausage Waves in Stratified Magnetic Flux Tubes
Barbulescu, M.; Erdélyi, R.
2016-05-01
The propagation of nonlinear, long-wavelength, slow sausage waves in an expanding magnetic flux tube, embedded in a non-magnetic stratified environment, is discussed. The governing equation for surface waves, which is akin to the Leibovich-Roberts equation, is derived using the method of multiple scales. The solitary wave solution of the equation is obtained numerically. The results obtained are illustrative of a solitary wave whose properties are highly dependent on the degree of stratification.
Matda, Y.; Crawford, F. W.
1974-01-01
An economical low noise plasma simulation model is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation, to establish the low noise features and to verify the theoretical linear dispersion relation at wave energy levels as low as 0.000,001 of the plasma thermal energy. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories. The additional phenomena of sideband instability and satellite growth, stimulated by large amplitude wave propagation and the resulting particle trapping, are described.
Symmetry Breaking of Counter-Propagating Light in a Nonlinear Resonator
Del Bino, Leonardo; Stebbings, Sarah L; Del'Haye, Pascal
2016-01-01
Light is generally expected to travel through isotropic media independent of its direction. This makes it challenging to develop non-reciprocal optical elements like optical diodes or circulators, which currently rely on magneto-optical effects and birefringent materials. Here we present measurements of non-reciprocal transmission and spontaneous symmetry breaking between counter-propagating light in dielectric microresonators. The symmetry breaking corresponds to a resonance frequency splitting that allows only one of two counter-propagating (but otherwise identical) light waves to circulate in the resonator. Equivalently, the symmetry breaking can be seen as the collapse of standing waves and transition to travelling waves within the resonator. We present theoretical calculations to show that the symmetry breaking is induced by Kerr-nonlinearity-mediated interaction between the counter-propagating light. This effect is expected to take place in any dielectric ring-resonator and might constitute one of the m...
Kon'kov, L. E.; Makarov, D. V.; Sosedko, E. V.; Uleysky, M. Yu.
2014-01-01
We consider sound wave propagation in a range-periodic acoustic waveguide in the deep ocean. It is demonstrated that vertical oscillations of a sound-speed perturbation, induced by ocean internal waves, influence near-axial rays in a resonant way, producing ray chaos and forming a wide chaotic sea in the underlying phase space. We study interplay between chaotic ray dynamics and wave motion with signal frequencies of 50-100 Hz. The Floquet modes of the waveguide are calculated and visualized ...
Stable scalable control of soliton propagation in broadband nonlinear optical waveguides
Peleg, Avner; Huynh, Toan T
2015-01-01
We develop a method for achieving scalable transmission stabilization and switching of $N$ colliding soliton sequences in optical waveguides with broadband delayed Raman response and narrowband nonlinear gain-loss. We show that dynamics of soliton amplitudes in $N$-sequence transmission is described by a generalized $N$-dimensional predator-prey model. Stability and bifurcation analysis for the predator-prey model are used to obtain simple conditions on the physical parameters for robust transmission stabilization as well as on-off and off-on switching of $M$ out of $N$ soliton sequences. Numerical simulations with a system of $N$ coupled nonlinear Schr\\"odinger equations with $2 \\le N \\le 4$ show excellent agreement with the predator-prey model's predictions and stable propagation over significantly larger distances compared with other broadband nonlinear waveguides. Moreover, stable on-off and off-on switching of multiple soliton sequences and stable multiple transmission switching events are demonstrated b...
Huang, Shaoguang; Tian, Lan; Ma, Xiaojie; Wei, Ying
2016-04-01
Hearing impaired people have their own hearing loss characteristics and listening preferences. Therefore hearing aid system should become more natural, humanized and personalized, which requires the filterbank in hearing aids provides flexible sound wave decomposition schemes, so that patients are likely to use the most suitable scheme for their own hearing compensation strategy. In this paper, a reconfigurable sound wave decomposition filterbank is proposed. The prototype filter is first cosine modulated to generate uniform subbands. Then by non-linear transformation the uniform subbands are mapped to nonuniform subbands. By changing the control parameters, the nonlinear transformation changes which leads to different subbands allocations. It provides four different sound wave decomposition schemes without changing the structure of the filterbank. The performance of the proposed reconfigurable filterbank was compared with that of fixed filerbanks, fully customizable filterbanks and other existing reconfigurable filterbanks. It is shown that the proposed filterbank provides satisfactory matching performance as well as low complexity and delay, which make it suitable for real hearing aid applications.
Modeling of Propagation and Transformation of Transient Nonlinear Waves on A Current
Institute of Scientific and Technical Information of China (English)
Wojciech Sulisz; Maciej Paprota
2013-01-01
A novel theoretical approach is applied to predict the propagation and transformation of transient nonlinear waves on a current. The problem was solved by applying an eigenfunction expansion method and the derived semi-analytical solution was employed to study the transformation of wave profile and the evolution of wave spectrum arising from the nonlinear interactions of wave components in a wave train which may lead to the formation of very large waves. The results show that the propagation of wave trains is significantly affected by a current. A relatively small current may substantially affect wave train components and the wave train shape. This is observed for both opposing and following current. The results demonstrate that the application of the nonlinear model has a substantial effect on the shape of a wave spectrum. A train of originally linear and very narrow-banded waves changes its one-peak spectrum to a multi-peak one in a fairly short distance from an initial position. The discrepancies between the wave trains predicted by applying the linear and nonlinear models increase with the increasing wavelength and become significant in shallow water even for waves with low steepness. Laboratory experiments were conducted in a wave flume to verify theoretical results. The free-surface elevations recorded by a system of wave gauges are compared with the results provided by the nonlinear model. Additional verification was achieved by applying a Fourier analysis and comparing wave amplitude spectra obtained from theoretical results with experimental data. A reasonable agreement between theoretical results and experimental data is observed for both amplitudes and phases. The model predicts fairly well multi-peak spectra, including wave spectra with significant nonlinear wave components.
DEFF Research Database (Denmark)
Larsen, Ole Næsbye; Wahlberg, Magnus
2017-01-01
There is no difference in principle between the infrasonic and ultrasonic sounds, which are inaudible to humans (or other animals) and the sounds that we can hear. In all cases, sound is a wave of pressure and particle oscillations propagating through an elastic medium, such as air. This chapter...... is about the physical laws that govern how animals produce sound signals and how physical principles determine the signals’ frequency content and sound level, the nature of the sound field (sound pressure versus particle vibrations) as well as directional properties of the emitted signal. Many...... of these properties are dictated by simple physical relationships between the size of the sound emitter and the wavelength of emitted sound. The wavelengths of the signals need to be sufficiently short in relation to the size of the emitter to allow for the efficient production of propagating sound pressure waves...
Nonhydrostatic effects of nonlinear internal wave propagation in the South China Sea
Zhang, Z.; Fringer, O. B.
2007-05-01
It is well known that internal tides are generated over steep topography at the Luzon Strait on the eastern boundary of the South China Sea. These internal tides propagate westward and steepen into trains of weakly nonlinear internal waves that propagate relatively free of dissipation until they interact with the continental shelf on the western side of the South China Sea, some 350 km from their generation point. The rate at which the internal tide transforms into trains of nonlinear waves depends on the Froude number at the generation site, which is defined as the ratio of the barotropic current speed to the local internal wave speed. Large Froude numbers lead to rapid evolution of wave trains while low Froude numbers generate internal tides that may not evolve into wave trains before reaching the continental shelf. Although the evolution into trains of weakly nonlinear waves results from the delicate interplay between nonlinear steepening and nonhydrostatic dispersion, the steepening process is represented quite well, at least from a qualitative standpoint, by hydrostatic models, which contain no explicit nonhydrostatic dispersion. Furthermore, hydrostatic models predict the propagation speed of the leading wave in wave trains extremely well, indicating that its propagation speed depends very weakly on nonlinear or dispersive effects. In order to examine how hydrostatic models introduce dispersion that leads to the formation of wave trains, we simulate the generation and evolution of nonlinear waves in the South China Sea with and without the hydrostatic approximation using the nonhydrostatic model SUNTANS, which can be run in either hydrostatic or nonhydrostatic mode. We show that the dispersion leading to the formation of wave trains in the hydrostatic model results from numerically-induced dispersion that is implicit in the numerical formulation of the advection terms. While the speed of the leading wave in the wave trains is correct, the amplitude and number
Sound propagation in two-axis underwater channel based on beam-displacement ray-mode theory
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Sound propagation in a deep ocean two-axis underwater channel is often complex and difficult to simulate between surface channel and sound fixing and ranging (SOFAR) channel. The beam-displacement ray-mode (BDRM) theory is a normal mode method for propagation modeling in horizontally stratified shallow water. An improved method for computing the upper boundary reflection coefficient in the BDRM is proposed and applied to calculate the acoustic fields of a two-axis underwater channel. Transmission losses in the two-axis underwater channel are calculated in the new BDRM. The corresponding results are in good agreement with those from the Kraken code, and furthermore the computed speed of the new BDRM excels the other methods.
Baumeister, K. J.
1977-01-01
Finite difference equations are derived for sound propagation in a two dimensional, straight, soft wall duct with a uniform flow by using the wave envelope concept. This concept reduces the required number of finite difference grid points by one to two orders of magnitude depending on the length of the duct and the frequency of the sound. The governing acoustic difference equations in complex notation are derived. An exit condition is developed that allows a duct of finite length to simulate the wave propagation in an infinitely long duct. Sample calculations presented for a plane wave incident upon the acoustic liner show the numerical theory to be in good agreement with closed form analytical theory. Complete pressure and velocity printouts are given to some sample problems and can be used to debug and check future computer programs.
A model for calculating specular and diffuse reflections in outdoor sound propagation
Salomons, E.M.
2006-01-01
In many practical outdoor situations, the direct sound path between a noise source and a receiver is screened by an obstacle. In these situations indirect sound paths become important, in particular reflections of sound waves. Reflections may occur at objects such as a vertical wall, but also at the
Directory of Open Access Journals (Sweden)
Etienne Thoret
2016-06-01
Full Text Available In this paper, a flexible control strategy for a synthesis model dedicated to nonlinear friction phenomena is proposed. This model enables to synthesize different types of sound sources, such as creaky doors, singing glasses, squeaking wet plates or bowed strings. Based on the perceptual stance that a sound is perceived as the result of an action on an object we propose a genuine source/filter synthesis approach that enables to elude physical constraints induced by the coupling between the interacting objects. This approach makes it possible to independently control and freely combine the action and the object. Different implementations and applications related to computer animation, gesture learning for rehabilitation and expert gestures are presented at the end of this paper.
Knutsson, Magnus; Åbom, Mats
2009-02-01
Charge air coolers (CACs) are used on turbocharged internal combustion engines to enhance the overall gas-exchange performance. The cooling of the charged air results in higher density and thus volumetric efficiency. It is also important for petrol engines that the knock margin increases with reduced charge air temperature. A property that is still not very well investigated is the sound transmission through a CAC. The losses, due to viscous and thermal boundary layers as well as turbulence, in the narrow cooling tubes result in frequency dependent attenuation of the transmitted sound that is significant and dependent on the flow conditions. Normally, the cross-sections of the cooling tubes are neither circular nor rectangular, which is why no analytical solution accounting for a superimposed mean flow exists. The cross-dimensions of the connecting tanks, located on each side of the cooling tubes, are large compared to the diameters of the inlet and outlet ducts. Three-dimensional effects will therefore be important at frequencies significantly lower than the cut-on frequencies of the inlet/outlet ducts. In this study the two-dimensional finite element solution scheme for sound propagation in narrow tubes, including the effect of viscous and thermal boundary layers, originally derived by Astley and Cummings [Wave propagation in catalytic converters: Formulation of the problem and finite element scheme, Journal of Sound and Vibration 188 (5) (1995) 635-657] is used to extract two-ports to represent the cooling tubes. The approximate solutions for sound propagation, accounting for viscothermal and turbulent boundary layers derived by Dokumaci [Sound transmission in narrow pipes with superimposed uniform mean flow and acoustic modelling of automobile catalytic converters, Journal of Sound and Vibration 182 (5) (1995) 799-808] and Howe [The damping of sound by wall turbulent shear layers, Journal of the Acoustical Society of America 98 (3) (1995) 1723-1730], are
Simple illustrations of range-dependence and 3-D effects by normal-mode sound propagation modelling
Ivansson, Sven
2016-01-01
As is well known, the sound-speed profile has significant effects on underwater acoustic sound propagation. These effects can be quantified by normal-mode models, for example. The basic case is a laterally homogeneous medium, for which the sound speed and the density depend on depth only and not on horizontal position. Effects of horizontal medium-parameter variation can be quantified by coupled-mode models, with coupling between mode expansions for laterally homogeneous parts of the medium. In the present paper, these effects are illustrated for media with a particularly simple horizontal parameter variation such that mode shapes do not vary with horizontal position. The modal wavenumbers depend on horizontal position, however. At a vertical interface between regions with laterally homogeneous medium parameters, each mode is reflected as well as transmitted. For the media considered, reflection and transmission coefficients can be computed separately for each mode without mode coupling, and this is done recu...
Ke, Guoyi; Zheng, Zhongquan Charlie
2016-05-01
Sound propagation through sonic crystals has been widely studied both theoretically and experimentally, because of its potential applications in many areas such as environmental noise barriers and sound cloaking. In this paper, a finite-difference time-domain (FDTD) numerical simulation coupled with the immersed boundary method is used to investigate the transmission properties of sonic crystals modeled as arrays of cylinders. Arrays in free field as well as those arranged above a ground boundary are studied. In the latter case, the cylinder axes are parallel to the ground plane. By comparing with the semi-analytical solutions, the numerical scheme is validated for simple arrays of rigid cylinders. The effects of locations and materials of cylinders, along with the ground effect, are investigated. The results are presented with discussions on achieving optimized sonic crystals for sound blockage.
Till, Bernie C.; Driessen, Peter F.
2014-01-01
Starting from first principles, we derive the telegraph equation to describe the propagation of sound waves in rigid tubes by using a simple approach that yields a lossy transmission line model with frequency-independent parameters. The approach is novel in the sense that it has not been found in the literature or textbooks. To derive the lossy acoustic telegraph equation from the lossless wave equation, we need only to relax the assumption that the dynamical variables are constant over the entire cross-sectional area of the tube. In this paper, we do this by introducing a relatively narrow boundary layer at the wall of the tube, over which the dynamical variables decrease linearly from the constant value to zero. This allows us to make very simple corrections to the lossless case, and to express them in terms of two parameters, namely the viscous diffusion time constant and the thermal diffusion time constant. The coefficients of the resulting telegraph equation are frequency-independent. A comparison with the telegraph equation for the electrical transmission line establishes precise relationships between the electrical circuit elements and the physical properties of the fluid. These relationships are thus proven a posteriori rather than asserted a priori. In this way, we arrive at an instructive and useful derivation of the acoustic telegraph equation, which takes viscous damping and thermal dissipation into account, and is accessible to students at the undergraduate level. This derivation does not resort to the combined heavy machinery of fluid dynamics and thermodynamics, does not assume that the waveforms are sinusoidal, and does not assume any particular cross-sectional shape of the tube. Surprisingly, we have been unable to find a comparable treatment in the standard introductory physics and acoustics texts, or in the literature.
Kreider, Kevin L.; Baumeister, Kenneth J.
1996-01-01
An explicit finite difference real time iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for future large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable for a harmonic monochromatic sound field, a parabolic (in time) approximation is introduced to reduce the order of the governing equation. The analysis begins with a harmonic sound source radiating into a quiescent duct. This fully explicit iteration method then calculates stepwise in time to obtain the 'steady state' harmonic solutions of the acoustic field. For stability, applications of conventional impedance boundary conditions requires coupling to explicit hyperbolic difference equations at the boundary. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.
Stable scalable control of soliton propagation in broadband nonlinear optical waveguides
Peleg, Avner; Nguyen, Quan M.; Huynh, Toan T.
2017-02-01
We develop a method for achieving scalable transmission stabilization and switching of N colliding soliton sequences in optical waveguides with broadband delayed Raman response and narrowband nonlinear gain-loss. We show that dynamics of soliton amplitudes in N-sequence transmission is described by a generalized N-dimensional predator-prey model. Stability and bifurcation analysis for the predator-prey model are used to obtain simple conditions on the physical parameters for robust transmission stabilization as well as on-off and off-on switching of M out of N soliton sequences. Numerical simulations for single-waveguide transmission with a system of N coupled nonlinear Schrödinger equations with 2 ≤ N ≤ 4 show excellent agreement with the predator-prey model's predictions and stable propagation over significantly larger distances compared with other broadband nonlinear single-waveguide systems. Moreover, stable on-off and off-on switching of multiple soliton sequences and stable multiple transmission switching events are demonstrated by the simulations. We discuss the reasons for the robustness and scalability of transmission stabilization and switching in waveguides with broadband delayed Raman response and narrowband nonlinear gain-loss, and explain their advantages compared with other broadband nonlinear waveguides.
Maraghechi, Borna; Hasani, Mojtaba H; Kolios, Michael C; Tavakkoli, Jahan
2016-05-01
Ultrasound-based thermometry requires a temperature-sensitive acoustic parameter that can be used to estimate the temperature by tracking changes in that parameter during heating. The objective of this study is to investigate the temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various pulse transmit frequencies from 1 to 20 MHz. Simulations were conducted using an expanded form of the Khokhlov-Zabolotskaya-Kuznetsov nonlinear acoustic wave propagation model in which temperature dependence of the medium parameters was included. Measurements were performed using single-element transducers at two different transmit frequencies of 3.3 and 13 MHz which are within the range of frequencies simulated. The acoustic pressure signals were measured by a calibrated needle hydrophone along the axes of the transducers. The water temperature was uniformly increased from 26 °C to 46 °C in increments of 5 °C. The results show that the temperature dependence of the harmonic generation is different at various frequencies which is due to the interplay between the mechanisms of absorption, nonlinearity, and focusing gain. At the transmit frequencies of 1 and 3.3 MHz, the harmonic amplitudes decrease with increasing the temperature, while the opposite temperature dependence is observed at 13 and 20 MHz.
A flexible genuinely nonlinear approach for nonlinear wave propagation, breaking and run-up
Filippini, A. G.; Kazolea, M.; Ricchiuto, M.
2016-04-01
In this paper we evaluate hybrid strategies for the solution of the Green-Naghdi system of equations for the simulation of fully nonlinear and weakly dispersive free surface waves. We consider a two step solution procedure composed of: a first step where the non-hydrostatic source term is recovered by inverting the elliptic coercive operator associated to the dispersive effects; a second step which involves the solution of the hyperbolic shallow water system with the source term, computed in the previous phase, which accounts for the non-hydrostatic effects. Appropriate numerical methods, that can be also generalized on arbitrary unstructured meshes, are used to discretize the two stages: the standard C0 Galerkin finite element method for the elliptic phase; either third order Finite Volume or third order stabilized Finite Element method for the hyperbolic phase. The discrete dispersion properties of the fully coupled schemes obtained are studied, showing accuracy close to or better than that of a fourth order finite difference method. The hybrid approach of locally reverting to the nonlinear shallow water equations is used to recover energy dissipation in breaking regions. To this scope we evaluate two strategies: simply neglecting the non-hydrostatic contribution in the hyperbolic phase; imposing a tighter coupling of the two phases, with a wave breaking indicator embedded in the elliptic phase to smoothly turn off the dispersive effects. The discrete models obtained are thoroughly tested on benchmarks involving wave dispersion, breaking and run-up, showing a very promising potential for the simulation of complex near shore wave physics in terms of accuracy and robustness.
Sellitto, A.; Tibullo, V.; Dong, Y.
2017-03-01
By means of a nonlinear generalization of the Maxwell-Cattaneo-Vernotte equation, on theoretical grounds we investigate how nonlinear effects may influence the propagation of heat waves in isotropic thin layers which are not laterally isolated from the external environment. A comparison with the approach of the Thermomass Theory is made as well.
Gusev, Vitalyi E; Lomonosov, Alexey M; Ni, Chenyin; Shen, Zhonghua
2017-09-01
An analytical theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous plate material on the Lamb waves near the S1 zero group velocity point is developed. The theory predicts that the main effect of the hysteretic quadratic nonlinearity consists in the modification of the frequency and the induced absorption of the Lamb modes. The effects of the nonlinear self-action in the propagating and standing Lamb waves are expected to be, respectively, nearly twice and three times stronger than those in the plane propagating acoustic waves. The theory is restricted to the simplest hysteretic nonlinearity, which is influencing only one of the Lamé moduli of the materials. However, possible extensions of the theory to the cases of more general hysteretic nonlinearities are discussed as well as the perspectives of its experimental testing. Applications include nondestructive evaluation of micro-inhomogeneous and cracked plates. Copyright © 2017 Elsevier B.V. All rights reserved.
Robertson, William C
2003-01-01
Muddled about what makes music? Stuck on the study of harmonics? Dumbfounded by how sound gets around? Now you no longer have to struggle to teach concepts you really don t grasp yourself. Sound takes an intentionally light touch to help out all those adults science teachers, parents wanting to help with homework, home-schoolers seeking necessary scientific background to teach middle school physics with confidence. The book introduces sound waves and uses that model to explain sound-related occurrences. Starting with the basics of what causes sound and how it travels, you'll learn how musical instruments work, how sound waves add and subtract, how the human ear works, and even why you can sound like a Munchkin when you inhale helium. Sound is the fourth book in the award-winning Stop Faking It! Series, published by NSTA Press. Like the other popular volumes, it is written by irreverent educator Bill Robertson, who offers this Sound recommendation: One of the coolest activities is whacking a spinning metal rod...
Institute of Scientific and Technical Information of China (English)
Ao Sheng-Mei; Yan Jia-Ren; Yu Hui-You
2007-01-01
We solve the generalized nonlinear Schrodinger equation describing the propagation of femtosecond pulses in a nonlinear optical fibre with higher-order dispersions by using the direct approach to perturbation for bright solitons, and discuss the combined effects of the third- and fourth-order dispersions on velocity, temporal intensity distribution and peak intensity of femtosecond pulses. It is noticeable that the combined effects of the third- and fourth-order dispersions on an initial propagated soliton can partially compensate each other, which seems to be significant for the stability controlling of soliton propagation features.
Characterizing the propagation of gravity waves in 3D nonlinear simulations of solar-like stars
Alvan, L; Brun, A S; Mathis, S; Garcia, R A
2015-01-01
The revolution of helio- and asteroseismology provides access to the detailed properties of stellar interiors by studying the star's oscillation modes. Among them, gravity (g) modes are formed by constructive interferences between progressive internal gravity waves (IGWs), propagating in stellar radiative zones. Our new 3D nonlinear simulations of the interior of a solar-like star allows us to study the excitation, propagation, and dissipation of these waves. The aim of this article is to clarify our understanding of the behavior of IGWs in a 3D radiative zone and to provide a clear overview of their properties. We use a method of frequency filtering that reveals the path of {individual} gravity waves of different frequencies in the radiative zone. We are able to identify the region of propagation of different waves in 2D and 3D, to compare them to the linear raytracing theory and to distinguish between propagative and standing waves (g modes). We also show that the energy carried by waves is distributed in d...
Rosenthal, E W; Jhajj, N; Zahedpour, S; Wahlstrand, J K; Milchberg, H M
2014-01-01
The axial dependence of femtosecond filamentation in air is measured under conditions of varying laser pulsewidth, energy, and focusing f-number. Filaments are characterized by the ultrafast z-dependent absorption of energy from the laser pulse and diagnosed by measuring the local single cycle acoustic wave generated. Results are compared to 2D+1 simulations of pulse propagation, whose results are highly sensitive to the instantaneous (electronic) part of the nonlinear response of $N_2$ and $O_2$. We find that recent measurements of the nonlinear refractive index ($n_2$) in [J.K. Wahlstrand et al., Phys. Rev. A. 85, 043820 (2012)] provide the best match and an excellent fit between experiments and simulations.
Relativistic nonlinearity and wave-guide propagation of rippled laser beam in plasma
Indian Academy of Sciences (India)
R K Khanna; K Baheti
2001-06-01
In the present paper we have investigated the self-focusing behaviour of radially symmetrical rippled Gaussian laser beam propagating in a plasma. Considering the nonlinearity to arise from relativistic phenomena and following the approach of Akhmanov et al, which is based on the WKB and paraxial-ray approximation, the self-focusing behaviour has been investigated in some detail. The effect of the position and width of the ripple on the self-focusing of laser beam has been studied for arbitrary large magnitude of nonlinearity. Results indicate that the medium behaves as an oscillatory wave-guide. The self-focusing is found to depend on the position parameter of ripple as well as on the beam width. Values of critical power has been calculated for different values of the position parameter of ripple. Effects of axially and radially inhomogeneous plasma on self-focusing behaviour have been investigated and presented here.
Simulation of "Tsunami Waves" Propagating along Non-Linear Transmission Lines
Directory of Open Access Journals (Sweden)
J. Valsa
2005-09-01
Full Text Available The paper compares three methods for computer simulation oftransients on transmission lines with losses and nonlinear behavior,namely distributed LC model, FDTD (Finite-Difference Time-Domainmethod, and a new and very effective Method of Slices. The losses areresponsible for attenuation and shape changes of the waves as functionof time and distance from the source. Special behavior of the line dueto voltage-dependent capacitance of the line is considered in detail.The non-linear nature of the line causes that the higher is the voltagethe higher is the velocity of propagation. Then, the waves tend to tiltover so that their top moves faster than their base. As a result"tsunami waves" are created on the line. Fundamental algorithms arepresented in Matlab language. Several typical situations are solved asan illustration of individual methods.
Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi
2015-07-01
A loudspeaker for an auditory guiding system is proposed. This loudspeaker utilizes inclined sound transformed from a flexural wave in a honeycomb sandwich panel. We focused on the fact that the inclined sound propagates extensively with uniform level and direction. Furthermore, sound can be generated without group delay dispersion because the phase velocity of the flexural wave in the sandwich panel becomes constant with increasing frequency. These characteristics can be useful for an auditory guiding system in public spaces since voice-guiding navigation indicates the right direction regardless of position on a pathway. To design the proposed loudspeaker, the behavior of the sandwich panel is predicted using a theoretical equation in which the honeycomb core is assumed as an orthotropic continuum. We calculated the phase velocity dispersion of the flexural wave in the sandwich panel and compared the results obtained using the equation with those of a simulation based on the finite element method and an experiment in order to confirm the applicability of the theoretical equation. It was confirmed that the phase velocities obtained using the theoretical equation and by the simulation were in good agreement with that obtained experimentally. The obtained results suggest that the behavior of the sandwich panel can be predicted using the parameters of the panel. In addition, we designed an optimized honeycomb sandwich panel for radiating inclined sound by calculating the phase velocity characteristics of various panels that have different parameters of core height and cell size using the theoretical equation. Sound radiation from the optimized panel was simulated and compared with that of a homogeneous plate. It was clear that the variance of the radiation angle with varying frequency of the optimized panel was smaller than that of the homogeneous plate. This characteristic of sound radiation with a uniform angle is useful for indicating the destination direction. On
Nonlinear propagation of ion-acoustic waves in a degenerate dense plasma
Indian Academy of Sciences (India)
M M Masud; A A Mamun
2013-07-01
Nonlinear propagation of ion-acoustic (IA) waves in a degenerate dense plasma (with all the constituents being degenerate, for both the non-relativistic or ultrarelativistic cases) have been investigated by the reductive perturbation method. The linear dispersion relation and Korteweg de Vries (KdV) equation have been derived, and the numerical solutions of KdV equation have been analysed to identify the basic features of electrostatic solitary structures that may form in such a degenerate dense plasma. The implications of our results in compact astrophysical objects, particularly, in white dwarfs and neutron stars, have been briefly discussed.
Nonlinear propagation of high-frequency energy from blast waves as it pertains to bat hearing
Loubeau, Alexandra
Close exposure to blast noise from military weapons training can adversely affect the hearing of both humans and wildlife. One concern is the effect of high-frequency noise from Army weapons training on the hearing of endangered bats. Blast wave propagation measurements were conducted to investigate nonlinear effects on the development of blast waveforms as they propagate from the source. Measurements were made at ranges of 25, 50, and 100 m from the blast. Particular emphasis was placed on observation of rise time variation with distance. Resolving the fine shock structure of blast waves requires robust transducers with high-frequency capability beyond 100 kHz, hence the limitations of traditional microphones and the effect of microphone orientation were investigated. Measurements were made with a wide-bandwidth capacitor microphone for comparison with conventional 3.175-mm (⅛-in.) microphones with and without baffles. The 3.175-mm microphone oriented at 90° to the propagation direction did not have sufficient high-frequency response to capture the actual rise times at a range of 50 m. Microphone baffles eliminate diffraction artifacts on the rise portion of the measured waveform and therefore allow for a more accurate measurement of the blast rise time. The wide-band microphone has an extended high-frequency response and can resolve shorter rise times than conventional microphones. For a source of 0.57 kg (1.25 lb) of C-4 plastic explosive, it was observed that nonlinear effects steepened the waveform, thereby decreasing the shock rise time, from 25 to 50 m. At 100m, the rise times had increased slightly. For comparison to the measured blast waveforms, several models of nonlinear propagation are applied to the problem of finite-amplitude blast wave propagation. Shock front models, such as the Johnson and Hammerton model, and full-waveform marching algorithms, such as the Anderson model, are investigated and compared to experimental results. The models
Dogan, Hakan; Popov, Viktor
2016-05-01
We investigate the acoustic wave propagation in bubbly liquid inside a pilot sonochemical reactor which aims to produce antibacterial medical textile fabrics by coating the textile with ZnO or CuO nanoparticles. Computational models on acoustic propagation are developed in order to aid the design procedures. The acoustic pressure wave propagation in the sonoreactor is simulated by solving the Helmholtz equation using a meshless numerical method. The paper implements both the state-of-the-art linear model and a nonlinear wave propagation model recently introduced by Louisnard (2012), and presents a novel iterative solution procedure for the nonlinear propagation model which can be implemented using any numerical method and/or programming tool. Comparative results regarding both the linear and the nonlinear wave propagation are shown. Effects of bubble size distribution and bubble volume fraction on the acoustic wave propagation are discussed in detail. The simulations demonstrate that the nonlinear model successfully captures the realistic spatial distribution of the cavitation zones and the associated acoustic pressure amplitudes.
Nagatomo, Makoto; Kaya, Nobuyuki; Matsumoto, Hiroshi
The Microwave Ionosphere Nonlinear Interaction Experiment (MINIX) is a sounding rocket experiment to study possible effects of strong microwave fields in case it is used for energy transmission from the Solar Power Satellite (SPS) upon the Earth's atmosphere. Its secondary objective is to develop high power microwave technology for space use. Two rocket-borne magnetrons were used to emit 2.45 GHz microwave in order to make a simulated condition of power transmission from an SPS to a ground station. Sounding of the environment radiated by microwave was conducted by the diagnostic package onboard the daughter unit which was separated slowly from the mother unit. The main design drivers of this experiment were to build such high power equipments in a standard type of sounding rocket, to keep the cost within the budget and to perform a series of experiments without complete loss of the mission. The key technology for this experiment is a rocket-borne magnetron and high voltage converter. Location of position of the daughter unit relative to the mother unit was a difficult requirement for a spin-stabilized rocket. These problems were solved by application of such a low cost commercial products as a magnetron for microwave oven and a video tape recorder and camera.
Lin, Ying-Tsong; McMahon, Kara G; Lynch, James F; Siegmann, William L
2013-01-01
The acoustic ducting effect by curved nonlinear gravity waves in shallow water is studied through idealized models in this paper. The internal wave ducts are three-dimensional, bounded vertically by the sea surface and bottom, and horizontally by aligned wavefronts. Both normal mode and parabolic equation methods are taken to analyze the ducted sound field. Two types of horizontal acoustic modes can be found in the curved internal wave duct. One is a whispering-gallery type formed by the sound energy trapped along the outer and concave boundary of the duct, and the other is a fully bouncing type due to continual reflections from boundaries in the duct. The ducting condition depends on both internal-wave and acoustic-source parameters, and a parametric study is conducted to derive a general pattern. The parabolic equation method provides full-field modeling of the sound field, so it includes other acoustic effects caused by internal waves, such as mode coupling/scattering and horizontal Lloyd's mirror interference. Two examples are provided to present internal wave ducts with constant curvature and meandering wavefronts.
Fully Nonlinear Boussinesq-Type Equations with Optimized Parameters for Water Wave Propagation
Institute of Scientific and Technical Information of China (English)
荆海晓; 刘长根; 龙文; 陶建华
2015-01-01
For simulating water wave propagation in coastal areas, various Boussinesq-type equations with improved properties in intermediate or deep water have been presented in the past several decades. How to choose proper Boussinesq-type equations has been a practical problem for engineers. In this paper, approaches of improving the characteristics of the equations, i.e. linear dispersion, shoaling gradient and nonlinearity, are reviewed and the advantages and disadvantages of several different Boussinesq-type equations are compared for the applications of these Boussinesq-type equations in coastal engineering with relatively large sea areas. Then for improving the properties of Boussinesq-type equations, a new set of fully nonlinear Boussinseq-type equations with modified representative velocity are derived, which can be used for better linear dispersion and nonlinearity. Based on the method of minimizing the overall error in different ranges of applications, sets of parameters are determined with optimized linear dispersion, linear shoaling and nonlinearity, respectively. Finally, a test example is given for validating the results of this study. Both results show that the equations with optimized parameters display better characteristics than the ones obtained by matching with padé approximation.
Fully nonlinear Boussinesq-type equations with optimized parameters for water wave propagation
Jing, Hai-xiao; Liu, Chang-gen; Long, Wen; Tao, Jian-hua
2015-06-01
For simulating water wave propagation in coastal areas, various Boussinesq-type equations with improved properties in intermediate or deep water have been presented in the past several decades. How to choose proper Boussinesq-type equations has been a practical problem for engineers. In this paper, approaches of improving the characteristics of the equations, i.e. linear dispersion, shoaling gradient and nonlinearity, are reviewed and the advantages and disadvantages of several different Boussinesq-type equations are compared for the applications of these Boussinesq-type equations in coastal engineering with relatively large sea areas. Then for improving the properties of Boussinesq-type equations, a new set of fully nonlinear Boussinseq-type equations with modified representative velocity are derived, which can be used for better linear dispersion and nonlinearity. Based on the method of minimizing the overall error in different ranges of applications, sets of parameters are determined with optimized linear dispersion, linear shoaling and nonlinearity, respectively. Finally, a test example is given for validating the results of this study. Both results show that the equations with optimized parameters display better characteristics than the ones obtained by matching with padé approximation.
Nonlinear Wave Propagation and Solitary Wave Formation in Two-Dimensional Heterogeneous Media
Luna, Manuel
2011-05-01
Solitary wave formation is a well studied nonlinear phenomenon arising in propagation of dispersive nonlinear waves under suitable conditions. In non-homogeneous materials, dispersion may happen due to effective reflections between the material interfaces. This dispersion has been used along with nonlinearities to find solitary wave formation using the one-dimensional p-system. These solitary waves are called stegotons. The main goal in this work is to find two-dimensional stegoton formation. To do so we consider the nonlinear two-dimensional p-system with variable coefficients and solve it using finite volume methods. The second goal is to obtain effective equations that describe the macroscopic behavior of the variable coefficient system by a constant coefficient one. This is done through a homogenization process based on multiple-scale asymptotic expansions. We compare the solution of the effective equations with the finite volume results and find a good agreement. Finally, we study some stability properties of the homogenized equations and find they and one-dimensional versions of them are unstable in general.
2013-01-01
Sound has the power to soothe, excite, warn, protect, and inform. Indeed, the transmission and reception of audio signals pervade our daily lives. Readers will examine the mechanics and properties of sound and provides an overview of the "interdisciplinary science called acoustics." Also covered are functions and diseases of the human ear.
Analysis of S Wave Propagation Through a Nonlinear Joint with the Continuously Yielding Model
Cui, Zhen; Sheng, Qian; Leng, Xianlun
2017-01-01
Seismic wave propagation through joints that are embedded in a rock mass is a critical issue for aseismic issues of underground rock engineering. Few studies have investigated nonlinear joints with a continuously yielding model. In this paper, a time-domain recursive method (TDRM) for an S wave across a nonlinear Mohr-Coulomb (MC) slip model is extended to a continuously yielding (CY) model. Verification of the TDRM-based results is conducted by comparison with the simulated results via a built-in model of 3DEC code. Using parametric studies, the effect of normal stress level, amplitude of incident wave, initial joint shear stiffness, and joint spacing is discussed and interpreted for engineering applications because a proper in situ stress level (overburden depth) and acceptable quality of surrounding rock mass are beneficial for seismic stability issues of underground rock excavation. Comparison between the results from the MC model and the CY model is presented both for an idealized impulse excitation and a real ground motion record. Compared with the MC model, complex joint behaviors, such as tangential stiffness degradation, normal stress dependence, and the hysteresis effect, that occurred in the wave propagation can be described with the CY model. The MC model seems to underestimate the joint shear displacement in a high normal stress state and in a real ground motion excitation case.
Role of Density Profiles for the Nonlinear Propagation of Intense Laser Beam through Plasma Channel
Directory of Open Access Journals (Sweden)
Sonu Sen
2014-01-01
Full Text Available In this work role of density profiles for the nonlinear propagation of intense laser beam through plasma channel is analyzed. By employing the expression for the dielectric function of different density profile plasma, a differential equation for beamwidth parameter is derived under WKB and paraxial approximation. The laser induces modifications of the dielectric function through nonlinearities. It is found that density profiles play vital role in laser-plasma interaction studies. To have numerical appreciation of the results the propagation equation for plasma is solved using the fourth order Runge-Kutta method for the initial plane wave front of the beam, using boundary conditions. The spot size of the laser beam decreases as the beam penetrates into the plasma and significantly adds self-focusing in plasma. This causes the laser beam to become more focused by reduction of diffraction effect, which is an important phenomenon in inertial confinement fusion and also for the understanding of self-focusing of laser pulses. Numerical computations are presented and discussed in the form of graphs for typical parameters of laser-plasma interaction.
Speed of sound as a function of temperature for ultrasonic propagation in soybean oil
Oliveira, P. A.; Silva, R. M. B.; Morais, G. C.; Alvarenga, A. V.; Costa-Félix, R. P. B.
2016-07-01
Ultrasound has been used for characterization of liquid in several productive sectors and research. This work presents the studied about the behavior of the speed of sound in soybean oil with increasing temperature. The pulse echo technique allowed observing that the speed of sound decreases linearly with increasing temperature in the range 20 to 50 °C at 1 MHz. As result, a characteristic function capable to reproduce the speed of sound behavior in soybean oil, as a function of temperature was established, with the respective measurement uncertainty.
Kon'kov, L E; Makarov, D V; Sosedko, E V; Uleysky, M Yu
2007-11-01
We consider sound wave propagation in a range-periodic acoustic waveguide in the deep ocean. It is demonstrated that vertical oscillations of a sound-speed perturbation, induced by ocean internal waves, influence near-axial rays in a resonant way, producing ray chaos and forming a wide chaotic sea in the underlying phase space. We study interplay between chaotic ray dynamics and wave motion with signal frequencies of 50-100 Hz. The Floquet modes of the waveguide are calculated and visualized by means of the Husimi plots. Despite of irregular phase space distribution of periodic orbits, the Husimi plots display the presence of ordered peaks within the chaotic sea. These peaks, not being supported by certain periodic orbits, draw the specific "chainlike" pattern, reminiscent of KAM resonance. The link between the peaks and KAM resonance is confirmed by ray calculations with lower amplitude of the sound-speed perturbation, when the periodic orbits are well-ordered. We associate occurrence of the peaks with the recovery of ordered periodic orbits, corresponding to KAM resonance, due to suppressing of wave-field sensitivity to small-scale features of the sound-speed profile that take place with increasing wavelength.
Nonlinear physics of electrical wave propagation in the heart: a review
Alonso, Sergio; Bär, Markus; Echebarria, Blas
2016-09-01
The beating of the heart is a synchronized contraction of muscle cells (myocytes) that is triggered by a periodic sequence of electrical waves (action potentials) originating in the sino-atrial node and propagating over the atria and the ventricles. Cardiac arrhythmias like atrial and ventricular fibrillation (AF,VF) or ventricular tachycardia (VT) are caused by disruptions and instabilities of these electrical excitations, that lead to the emergence of rotating waves (VT) and turbulent wave patterns (AF,VF). Numerous simulation and experimental studies during the last 20 years have addressed these topics. In this review we focus on the nonlinear dynamics of wave propagation in the heart with an emphasis on the theory of pulses, spirals and scroll waves and their instabilities in excitable media with applications to cardiac modeling. After an introduction into electrophysiological models for action potential propagation, the modeling and analysis of spatiotemporal alternans, spiral and scroll meandering, spiral breakup and scroll wave instabilities like negative line tension and sproing are reviewed in depth and discussed with emphasis on their impact for cardiac arrhythmias.
DEFF Research Database (Denmark)
Santillan, Arturo Orozco; Pedersen, Christian Sejer; Lydolf, Morten
2007-01-01
An experimental implementation of a global sound equalization method in a rectangular room using active control is described in this paper. The main purpose of the work has been to provide experimental evidence that sound can be equalized in a continuous three-dimensional region, the listening zone......, which occupies a considerable part of the complete volume of the room. The equalization method, based on the simulation of a progressive plane wave, was implemented in a room with inner dimensions of 2.70 m x 2.74 m x 2.40 m. With this method,the sound was reproduced by a matrix of 4 x 5 loudspeakers...... filter for each transducer. The optimal arrangement of the loudspeakers and the maximum frequency that can be equalized is analyzed theoretically in this paper. The presented experimental results show that sound equalization was possible from 10 Hz to approximately 425 Hz in the listening zone. A flat...
Nonlinear Alfvén wave propagating in ideal MHD plasmas
Zheng, Jugao; Chen, Yinhua; Yu, Mingyang
2016-01-01
The behavior of nonlinear Alfvén waves propagating in ideal MHD plasmas is investigated numerically. It is found that in a one-dimensional weakly nonlinear system an Alfvén wave train can excite two longitudinal disturbances, namely an acoustic wave and a ponderomotively driven disturbance, which behave differently for β \\gt 1 and β \\lt 1, where β is the ratio of plasma-to-magnetic pressures. In a strongly nonlinear system, the Alfvén wave train is modulated and can steepen to form shocks, leading to significant dissipation due to appearance of current sheets at magnetic-pressure minima. For periodic boundary condition, we find that the Alfvén wave transfers its energy to the plasma and heats it during the shock formation. In two-dimensional systems, fast magneto-acoustic wave generation due to Alfvén wave phase mixing is considered. It is found that the process depends on the amplitude and frequency of the Alfvén waves, as well as their speed gradients and the pressure of the background plasma.
Pierce, Allan D.
1989-01-01
Transient sound propagation in an inhomogeneous moving medium is considered. For circumstances in which the medium is slowly varying over distances of a wavelength but possibly varying substantially over the propagation distance, a derivation is given of a new wave equation, which implicitly allows for diffraction and scattering and which also is consistent with earlier geometrical acoustics formulations. This wave equation is used as a starting point to derive a version of the Helmholtz-Kirchhoff integral relation that applies to inhomogeneous moving medium. It is suggested that a good approximation to the Green's function that appears in this relation is that derived from geometrical acoustics, the approximation becoming progressively better the shorter the distance between surfaces in the computation. It should also be at least as good as conventional ray acoustics, but can account for diffraction effects, such as at caustics.
Wave propagation in photonic crystals and metamaterials: Surface waves, nonlinearity and chirality
Energy Technology Data Exchange (ETDEWEB)
Wang, Bingnan [Iowa State Univ., Ames, IA (United States)
2009-01-01
Photonic crystals and metamaterials, both composed of artificial structures, are two interesting areas in electromagnetism and optics. New phenomena in photonic crystals and metamaterials are being discovered, including some not found in natural materials. This thesis presents my research work in the two areas. Photonic crystals are periodically arranged artificial structures, mostly made from dielectric materials, with period on the same order of the wavelength of the working electromagnetic wave. The wave propagation in photonic crystals is determined by the Bragg scattering of the periodic structure. Photonic band-gaps can be present for a properly designed photonic crystal. Electromagnetic waves with frequency within the range of the band-gap are suppressed from propagating in the photonic crystal. With surface defects, a photonic crystal could support surface modes that are localized on the surface of the crystal, with mode frequencies within the band-gap. With line defects, a photonic crystal could allow the propagation of electromagnetic waves along the channels. The study of surface modes and waveguiding properties of a 2D photonic crystal will be presented in Chapter 1. Metamaterials are generally composed of artificial structures with sizes one order smaller than the wavelength and can be approximated as effective media. Effective macroscopic parameters such as electric permittivity ϵ, magnetic permeability μ are used to characterize the wave propagation in metamaterials. The fundamental structures of the metamaterials affect strongly their macroscopic properties. By designing the fundamental structures of the metamaterials, the effective parameters can be tuned and different electromagnetic properties can be achieved. One important aspect of metamaterial research is to get artificial magnetism. Metallic split-ring resonators (SRRs) and variants are widely used to build magnetic metamaterials with effective μ < 1 or even μ < 0. Varactor based
Küchler, Sebastian; Meurer, Thomas; Jacobs, Laurence J; Qu, Jianmin
2009-03-01
This study investigates two-dimensional wave propagation in an elastic half-space with quadratic nonlinearity. The problem is formulated as a hyperbolic system of conservation laws, which is solved numerically using a semi-discrete central scheme. These numerical results are then analyzed in the frequency domain to interpret the nonlinear effects, specifically the excitation of higher-order harmonics. To quantify and compare the nonlinearity of different materials, a new parameter is introduced, which is similar to the acoustic nonlinearity parameter beta for one-dimensional longitudinal waves. By using this new parameter, it is found that the nonlinear effects of a material depend on the point of observation in the half-space, both the angle and the distance to the excitation source. Furthermore it is illustrated that the third-order elastic constants have a linear effect on the acoustic nonlinearity of a material.
Directory of Open Access Journals (Sweden)
Ohanyan G.G.
2010-09-01
Full Text Available The quasi-adiabatic and quasi-isotherm regimes of propagation of high-frequency perturbation are considered in a thermal relaxing gas–fluid mixture. The simplified non-linear equations are obtained. It is shown that in the absence of heat transfer and under the quasi-adiabatic regime the form of propagation is soliton, or the shock wave in quasi-isotherm regime.
Ohanyan G.G.
2010-01-01
The quasi-adiabatic and quasi-isotherm regimes of propagation of high-frequency perturbation are considered in a thermal relaxing gas–fluid mixture. The simplified non-linear equations are obtained. It is shown that in the absence of heat transfer and under the quasi-adiabatic regime the form of propagation is soliton, or the shock wave in quasi-isotherm regime.
Zhang, Lifu; Li, Chuxin; Zhong, Haizhe; Xu, Changwen; Lei, Dajun; Li, Ying; Fan, Dianyuan
2016-06-27
We have investigated the propagation dynamics of super-Gaussian optical beams in fractional Schrödinger equation. We have identified the difference between the propagation dynamics of super-Gaussian beams and that of Gaussian beams. We show that, the linear propagation dynamics of the super-Gaussian beams with order m > 1 undergo an initial compression phase before they split into two sub-beams. The sub-beams with saddle shape separate each other and their interval increases linearly with propagation distance. In the nonlinear regime, the super-Gaussian beams evolve to become a single soliton, breathing soliton or soliton pair depending on the order of super-Gaussian beams, nonlinearity, as well as the Lévy index. In two dimensions, the linear evolution of super-Gaussian beams is similar to that for one dimension case, but the initial compression of the input super-Gaussian beams and the diffraction of the splitting beams are much stronger than that for one dimension case. While the nonlinear propagation of the super-Gaussian beams becomes much more unstable compared with that for the case of one dimension. Our results show the nonlinear effects can be tuned by varying the Lévy index in the fractional Schrödinger equation for a fixed input power.
Wang, Luyun; Li, Lu; Li, Zhonghao; Zhou, Guosheng; Mihalache, Dumitru
2005-09-01
The generalized nonlinear Schrödinger model with distributed dispersion, nonlinearity, and gain or loss is considered and the explicit, analytical solutions describing the dynamics of bright solitons on a continuous-wave background are obtained in quadratures. Then, the generation, compression, and propagation of pulse trains are discussed in detail. The numerical results show that solitons can be compressed by choosing the appropriate control fiber system, and pulse trains generated by modulation instability can propagate undistorsted along fibers with distributed parameters by controlling appropriately the energy of each pulse in the pulse train.
Chobeau, Pierre; Guillaume, Gwenaël; Picaut, Judicaël; Ecotière, David; Dutilleux, Guillaume
2017-02-01
The present paper focuses on two of the acoustic phenomena involved in sound propagation through forested areas, namely multiple scattering caused by tree trunks at mid-frequencies and ground effect at low frequencies. The use of time domain methods can be of interest for the simulation of transient phenomena such as scattering. The study aims at evaluating the ability of an alternative time-domain approach, the Transmission Line Matrix (TLM) method, to model sound scattering by cylindrical scatterers. The TLM method is applied to the study of both single and multiple scattering coupled to ground effects, in two- and three-dimensional domains. Keeping in mind the initial purpose of this study, the size and the location of the scatterers (tree trunks), as well as the noise frequency range, are related to outdoor noise propagation in realistic forests. In order to validate the TLM method, numerical simulations are compared to analytical solutions as well as measurements on 1:10 scale-models. The most complete cases of cylinders arrays placed normal to impedance floors are in agreement with the measurement results.
Channel Sounding System for MM-Wave Bands and Characterization of Indoor Propagation at 28 GHz
DEFF Research Database (Denmark)
Hejselbæk, Johannes; Ji, Yilin; Fan, Wei
2017-01-01
The aim of this work is to present a vector network analyzer (VNA) based channel sounding sys- tem capable of performing measurements in the range from 2 to 50 GHz. Further, this paper describes an indoor measurement campaign performed at 26 to 30 GHz. The sounding system is capable of receiving...... way. The measurement has been conducted with 42 measurement positions dis- tributed along a 10 m long path through an indoor lab- oratory environment. The transmitter was positioned such that measurements were conducted both in line- of-sight (LOS) and non-line-of-sight (NLOS) scenarios...
A 2D spring model for the simulation of ultrasonic wave propagation in nonlinear hysteretic media.
Delsanto, P P; Gliozzi, A S; Hirsekorn, M; Nobili, M
2006-07-01
A two-dimensional (2D) approach to the simulation of ultrasonic wave propagation in nonclassical nonlinear (NCNL) media is presented. The approach represents the extension to 2D of a previously proposed one dimensional (1D) Spring Model, with the inclusion of a PM space treatment of the intersticial regions between grains. The extension to 2D is of great practical relevance for its potential applications in the field of quantitative nondestructive evaluation and material characterization, but it is also useful, from a theoretical point of view, to gain a better insight of the interaction mechanisms involved. The model is tested by means of virtual 2D experiments. The expected NCNL behaviors are qualitatively well reproduced.
Energy Technology Data Exchange (ETDEWEB)
Sazonov, S. V., E-mail: sazonov.sergey@gmail.com [National Research Centre “Kurchatov Institute,” (Russian Federation); Ustinov, N. V., E-mail: n-ustinov@mail.ru [Moscow State University of Railways, Kaliningrad Branch (Russian Federation)
2017-02-15
The nonlinear propagation of extremely short electromagnetic pulses in a medium of symmetric and asymmetric molecules placed in static magnetic and electric fields is theoretically studied. Asymmetric molecules differ in that they have nonzero permanent dipole moments in stationary quantum states. A system of wave equations is derived for the ordinary and extraordinary components of pulses. It is shown that this system can be reduced in some cases to a system of coupled Ostrovsky equations and to the equation intagrable by the method for an inverse scattering transformation, including the vector version of the Ostrovsky–Vakhnenko equation. Different types of solutions of this system are considered. Only solutions representing the superposition of periodic solutions are single-valued, whereas soliton and breather solutions are multivalued.
Institute of Scientific and Technical Information of China (English)
HUANG Chunming; ZHANG Shaodong; YI Fan
2005-01-01
By using a three-dimensional fully nonlinear numerical model in spherical coordinates and taking the linear steady solutions of the migrating diurnal and semidiurnal tides in January from the Global-Scale Wave Model (GSWM) as the initial values, we simulate the linear and nonlinear propagations of the migrating diurnal and semidiurnal tides in the atmosphere from the ground to the lower thermosphere. A comparison of our simulations with the results of GSWM is also presented. The simulation results show that affected by the nonlinearity, the migrating diurnal and semidiurnal tides propagating in the middle and upper atmosphere exhibit evident short-term variability. The nonlinear interactions between the migrating tides and the background atmosphere can obviously alter the background wind and temperature fields, which suggests that the nonlinear propagations of the migrating diurnal and semidiurnal tides impact significantly on the transient dynamical and thermal structures of the background middle and upper atmosphere and the nonlinear effect is an important cause of the difference between the results of GSWM and observations.
Kon'kov, L E; Sosedko, E V; Uleysky, M Yu
2014-01-01
We consider sound wave propagation in a range-periodic acoustic waveguide in the deep ocean. It is demonstrated that vertical oscillations of a sound-speed perturbation, induced by ocean internal waves, influence near-axial rays in a resonant way, producing ray chaos and forming a wide chaotic sea in the underlying phase space. We study interplay between chaotic ray dynamics and wave motion with signal frequencies of 50-100 Hz. The Floquet modes of the waveguide are calculated and visualized by means of the Husimi plots. Despite of irregular phase space distribution of periodic orbits, the Husimi plots display the presence of ordered peaks within the chaotic sea. These peaks, not being supported by certain periodic orbits, draw the specific "chainlike" pattern, reminiscent of KAM resonance. The link between the peaks and KAM resonance is confirmed by ray calculations with lower amplitude of the sound-speed perturbation, when the periodic orbits are well-ordered. We associate occurrence of the peaks with the r...
Outdoor sound propagation reference model developed in the European harmonoise project
Defrance, J.; Salomons, E.; Noordhoek, I.; Heimann, D.; Plovsing, B.; Watts, G.; Jonasson, H.; Xuetao, Z.; Premat, E.; Schmich, I.; Aballea, F.; Baulac, M.; Roo, F.de
2007-01-01
The Harmonoise reference model has been developed in order to predict long-term average sound levels in road and railway situations that are geometrically relatively simple but physically complex. The present paper describes all steps of calculations with this powerful model which includes several
Nonlinear propagation of positron-acoustic waves in a four component space plasma
Shah, M. G.; Hossen, M. R.; Mamun, A. A.
2015-10-01
> The nonlinear propagation of positron-acoustic waves (PAWs) in an unmagnetized, collisionless, four component, dense plasma system (containing non-relativistic inertial cold positrons, relativistic degenerate electron and hot positron fluids as well as positively charged immobile ions) has been investigated theoretically. The Korteweg-de Vries (K-dV), modified K-dV (mK-dV) and further mK-dV (fmK-dV) equations have been derived by using reductive perturbation technique. Their solitary wave solutions have been numerically analysed in order to understand the localized electrostatic disturbances. It is observed that the relativistic effect plays a pivotal role on the propagation of positron-acoustic solitary waves (PASW). It is also observed that the effects of degenerate pressure and the number density of inertial cold positrons, hot positrons, electrons and positively charged static ions significantly modify the fundamental features of PASW. The basic features and the underlying physics of PASW, which are relevant to some astrophysical compact objects (such as white dwarfs, neutron stars etc.), are concisely discussed.
Ultra-fast pulse propagation in nonlinear graphene/silicon ridge waveguide.
Liu, Ken; Zhang, Jian Fa; Xu, Wei; Zhu, Zhi Hong; Guo, Chu Cai; Li, Xiu Jian; Qin, Shi Qiao
2015-11-18
We report the femtosecond laser propagation in a hybrid graphene/silicon ridge waveguide with demonstration of the ultra-large Kerr coefficient of graphene. We also fabricated a slot-like graphene/silicon ridge waveguide which can enhance its effective Kerr coefficient 1.5 times compared with the graphene/silicon ridge waveguide. Both transverse-electric-like (TE-like) mode and transverse-magnetic-like (TM-like) mode are experimentally measured and numerically analyzed. The results show nonlinearity dependence on mode polarization not in graphene/silicon ridge waveguide but in slot-like graphene/silicon ridge waveguide. Great spectral broadening was observed due to self-phase modulation (SPM) after propagation in the hybrid waveguide with length of 2 mm. Power dependence property of the slot-like hybrid waveguide is also measured and numerically analyzed. The results also confirm the effective Kerr coefficient estimation of the hybrid structures. Spectral blue shift of the output pulse was observed in the slot-like graphene/silicon ridge waveguide. One possible explanation is that the blue shift was caused by the ultra-fast free carrier effect with the optical absorption of the doped graphene. This interesting effect can be used for soliton compression in femtosecond region. We also discussed the broadband anomalous dispersion of the Kerr coefficient of graphene.
Effects of water temperature inversion layer on underwater sound propagation in the East China Sea
Kim, Seong Hyeon; Kim, Byoung-Nam; Kim, Eung; Choi, Bok Kyoung; Kim, Dong Sun
2017-07-01
In this study, we investigated the effect of a water temperature inversion layer on the propagation of acoustic waves in the western coastal sea of Jeju Island in April 2015. When the acoustic source and receiver are simultaneously located within the water temperature inversion layer depth, the long-range propagation of acoustic waves is confirmed by numerical modeling. This is caused by the duct effect due to the water temperature inversion phenomenon. For the experimental area without the water temperature inversion layer, when the acoustic source and receiver are simultaneously located below thermocline depth, the long-range propagation of acoustic waves is also confirmed. This is generally caused by the seasonal water temperature profile.
Nonlinear phenomena in RF wave propagation in magnetized plasma: A review
Energy Technology Data Exchange (ETDEWEB)
Porkolab, Miklos
2015-12-10
Nonlinear phenomena in RF wave propagation has been observed from the earliest days in basic laboratory experiments going back to the 1960s [1], followed by observations of parametric instability (PDI) phenomena in large scale RF heating experiments in magnetized fusion plasmas in the 1970s and beyond [2]. Although not discussed here, the importance of PDI phenomena has also been central to understanding anomalous absorption in laser-fusion experiments (ICF) [3]. In this review I shall discuss the fundamentals of nonlinear interactions among waves and particles, and in particular, their role in PDIs. This phenomenon is distinct from quasi-linear phenomena that are often invoked in calculating absorption of RF power in wave heating experiments in the core of magnetically confined plasmas [4]. Indeed, PDIs are most likely to occur in the edge of magnetized fusion plasmas where the electron temperature is modest and hence the oscillating quiver velocity of charged particles can be comparable to their thermal speeds. Specifically, I will review important aspects of PDI theory and give examples from past experiments in the ECH/EBW, lower hybrid (LHCD) and ICRF/IBW frequency regimes. Importantly, PDI is likely to play a fundamental role in determining the so-called “density limit” in lower hybrid experiments that has persisted over the decades and still central to understanding present day experiments [5-7].
Doc, Jean-Baptiste; Conoir, Jean-Marc; Marchiano, Régis; Fuster, Daniel
2016-04-01
The weakly nonlinear propagation of acoustic waves in monodisperse bubbly liquids is investigated numerically. A hydrodynamic model based on the averaged two-phase fluid equations is coupled with the Rayleigh-Plesset equation to model the dynamics of bubbles at the local scale. The present model is validated in the linear regime by comparing with the Foldy approximation. The analysis of the pressure signals in the linear regime highlights two resonance frequencies: the Minnaert frequency and a multiple scattering resonance that strongly depends on the bubble concentration. For weakly nonlinear regimes, the generation of higher harmonics is observed only for the Minnaert frequency. Linear combinations between the Minnaert harmonics and the multiple scattering resonance are also observed. However, the most significant effect observed is the appearance of softening-hardening effects that share some similarities with those observed for sandstones or cracked materials. These effects are related to the multiple scattering resonance. Downward or upward resonance frequency shifts can be observed depending on the characteristic of the incident wave when increasing the excitation amplitude. It is shown that the frequency shift can be explained assuming that the acoustic wave velocity depends on a law different from those usually encountered for sandstones or cracked materials.
Galindo-Romero, Marta; Gavrilov, Alexander; Duncan, Alec J
2017-02-01
The theory of wave propagation and fluctuations in random media has been broadly studied; however the works studying the influence of a changing underwater acoustic environment on the spatial decay and fluctuations of the peak pressure in broadband and impulsive signals are limited. Using a method based on the formulation developed by Dyer and Makris to estimate intensity fluctuations of sound signals in the ocean in conditions of saturated multipath propagation, this paper presents an approach to model peak pressure fluctuations of transient signals propagating underwater. In contrast to the formulation of Dyer and Makris, the approach presented in this work applies extreme value theory using the properties of the peak pressure as a maximum value taken from a Rayleigh distributed amplitude. The location and scale parameters obtained from the best fit to a Gumbel distribution are used to estimate the probability of the peak pressure level staying below a certain threshold. The theory was applied to measurements of signals from an airgun array and offshore impact pile driving, resulting in good agreement in both cases.
A Backscattering and Propagation Model for Radar Sounding of Ice Sheets
DEFF Research Database (Denmark)
Dall, Jørgen
2016-01-01
. The scattering and propagation properties of the icesheets are characterized using an empirical approach. The model comprises surface scattering from the air/ice interfaceand the ice/bed interface as well as volume scattering from the firn and the ice. Also specular reflection from the internal layers is modeled...
Energy Technology Data Exchange (ETDEWEB)
Macias-Diaz, J.E. [Departamento de Matematicas y Fisica, Universidad Autonoma de Aguascalientes, Aguascalientes, Ags. 20100 (Mexico) and Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States)]. E-mail: jemacias@correo.uaa.mx; Puri, A. [Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States)]. E-mail: apuri@uno.edu
2007-07-02
In the present Letter, we simulate the propagation of binary signals in semi-infinite, mechanical chains of coupled oscillators harmonically driven at the end, by making use of the recently discovered process of nonlinear supratransmission. Our numerical results-which are based on a brand-new computational technique with energy-invariant properties-show an efficient and reliable transmission of information.
Modeling and measuring sound propagation of hooded crow calls in open field habitats
DEFF Research Database (Denmark)
Jensen, Kenneth Kragh; Larsen, Ole Næsbye; Attenborough, Keith
representative of crow territorial communication and taking into account ground effect and air turbulence, we predict an optimal transmission frequency range between 0,5-1.6 kHz. In a natural open field crow habitat we measure, with sender and receiver heights of 2.8 m and transmission distances up to 320 m...... composite measures of sound degradation during transmission without taking the ground effect into account....
Interaction of linear and nonlinear ion-sound waves with inclusions of dusty plasma
Energy Technology Data Exchange (ETDEWEB)
Grimalsky, V V [National Institute for Astrophysics, Optics, and Electronics (INAOE), Z.P. 72000, Puebla (Mexico); Koshevaya, S V [Autonomous University of Morelos (UAEM), FCQeI, CIICAp, Z.P. 62210, Cuernavaca, Mor. (Mexico); Enriquez, R Perez- [UNAM, Center of Geoscience, Juriquilla 1-742, Z.P. 76230, Que. (Mexico); Kotsarenko, A N [UNAM, Center of Geoscience, Juriquilla 1-742, Z.P. 76230, Que. (Mexico)
2006-09-15
Diverse phenomena exist in the ionosphere caused by the presence of dusty plasma objects. These have a bearing on problems of space communication and possibly on the Earth's weather, among others. Therefore, it is very important to study them so that many questions on the subject can be answered. In this paper, the interaction of plasma waves with these objects is studied and some instrumentation to measure such interactions is proposed. In particular, the interaction of ion-sound waves (ISW) by non-soliton and soliton pulses propagating in dusty plasma is investigated. It is shown that inclusions of dusty components of the ionosphere plasma behave as resonators for non-soliton pulses, so that ISW are excited. Korteveg-de Vries (KdV) solitons practically do not resonate with the inclusions of dusty plasma. Instead, the presence of dusty plasma inclusions can lead to the presence of transverse instabilities and the eventual destruction of the KdV solitons.
Theoretical Study of Wave Breaking for Nonlinear Water Waves Propagating on a Sloping Bottom
Chen, Y. Y.; Hsu, H. C.; Li, M. S.
2012-04-01
In this paper, a third-order asymptotic solution in a Lagrangian framework describing nonlinear water wave propagation on the surface of a uniform sloping bottom is presented. A two-parameter perturbation method is used to develop a new mathematical derivation. The particle trajectories, wave pressure and Lagrangian velocity potential are obtained as a function of the nonlinear wave steepness and the bottom slope perturbed to third order. This theoretical solution in Lagrangian form satisfies state of the normal pressure at the free surface. The condition of the conservation of mass flux is examined in detail for the first time. The two important properties in Lagrangian coordinates, Lagrangian wave frequency and Lagrangian mean level, are included in the third-order solution. The solution can also be used to estimate the mean return current for waves progressing over the sloping bottom. The Lagrangian solution untangle the description of the features of wave shoaling in the direction of wave propagation from deep to shallow water, as well as the process of successive deformation of a wave profile and water particle trajectories leading to wave breaking. A series of experiment was conducted to validate the obtained theoretical solution. The proposed solution will be used to determine the wave shoaling and breaking process and the comparisons between the experimental and theoretical results are excellent. For example, the variations of phase velocity on sloping bottom are obtained by 7 set of two close wave gauges and the theoretical result could accurately predict the measured phase velocity. The theoretical wave breaking index can be derived by use of the kinematic stability parameter (K.P.S). The comparisons between the theory, experiment (present study, Iwagali et al.(1974), Deo et al.(2003) and Tsai et al.(2005)) and empirical formula of Goda (2004) for the breaking index(u/C) versus the relative water depth(d/L) under two different bottom slopes shows that the
Crassous, Jérôme; Chasle, Patrick; Pierre, Juliette; Saint-Jalmes, Arnaud; Dollet, Benjamin
2016-03-01
We present an experimental method to measure oscillatory strains in turbid material. The material is illuminated with a laser, and the speckle patterns are recorded. The analysis of the deformations of the optical path length shows that the speckle patterns are modulated at the strain frequency. By recording those patterns synchronously with the strain source, we are able to measure the amplitude and the phase of the strain. This method is tested in the specific case of an aqueous foam where an acoustic wave propagates. The effects of material internal dynamics and heterogeneous deformations are also discussed.
Goodrich, John W.
2017-01-01
This paper presents results from numerical experiments for controlling the error caused by a damping layer boundary treatment when simulating the propagation of an acoustic signal from a continuous pressure source. The computations are with the 2D Linearized Euler Equations (LEE) for both a uniform mean flow and a steady parallel jet. The numerical experiments are with algorithms that are third, fifth, seventh and ninth order accurate in space and time. The numerical domain is enclosed in a damping layer boundary treatment. The damping is implemented in a time accurate manner, with simple polynomial damping profiles of second, fourth, sixth and eighth power. At the outer boundaries of the damping layer the propagating solution is uniformly set to zero. The complete boundary treatment is remarkably simple and intrinsically independant from the dimension of the spatial domain. The reported results show the relative effect on the error from the boundary treatment by varying the damping layer width, damping profile power, damping amplitude, propagtion time, grid resolution and algorithm order. The issue that is being addressed is not the accuracy of the numerical solution when compared to a mathematical solution, but the effect of the complete boundary treatment on the numerical solution, and to what degree the error in the numerical solution from the complete boundary treatment can be controlled. We report maximum relative absolute errors from just the boundary treatment that range from O[10-2] to O[10-7].
Collective modes and sound propagation in a magnetic field in superfluid3He-B
Shivaram, B. S.; Meisel, M. W.; Sarma, Bimal K.; Halperin, W. P.; Ketterson, J. B.
1986-04-01
A high-resolution, ultrasonic (12 89 MHz) acoustic impedance technique has been used to investigate the order parameter collective modes in superfluid3He-B over a pressure range of 0 15 bar and in magnetic fields up to 180 mT. In agreement with earlier experiments, the J=2 real squashing mode has been observed to split into five components in small magnetic fields. However, contrary to earlier theoretical estimates, the Zeeman shifts have been found to become extremely nonlinear as the magnetic field is increased. The extent of this nonlinearity is largest at low pressures and at temperatures close to T c. In comparison with recent theoretical work, the nonlinear Zeeman shifts may be explained as a result of two effects. First, there is a significant distortion of the B-phase energy gap in large magnetic fields. Second, there is an important coupling between the same J zsubstates of the different J modes. In this sense the nonlinear evolution of the real squashing mode constitutes the observation of the Paschen-Back effect in3He-B. A comparison of the observed Zeeman shifts with theoretical expressions has yielded information about particle-particle and particle-hole interaction effects in the superfluid. In the limit T → 0 and above a threshold field, the real squashing mode has been found to possess additional structure. The J z=0 substate has been observed to split into a doublet. The separation between the two components of the doublet is of the order of 100 200 kHz and remains independent of the magnetic field. The origin of the doublet may be understood in terms of a recent theory which postulates a texture-dependent collective mode frequency. Further, at extremely small fields the effects due to dispersion of the real squashing modes have been found to be important. The magnitude of the dispersion-induced mode splitting in zero field is found to be consistent with theoretical predictions. The J=2 squashing mode has also been studied in the presence of a
A comparison of experiment and theory for sound propagation in variable area ducts
Nayfeh, A. H.; Kaiser, J. E.; Marshall, R. L.; Hurst, C. J.
1980-01-01
An experimental and analytical program has been carried out to evaluate sound suppression techniques in ducts that produce refraction effects due to axial velocity gradients. The analytical program employs a computer code based on the method of multiple scales to calculate the influence of axial variations due to slow changes in the cross-sectional area as well as transverse gradients due to the wall boundary layers. Detailed comparisons between the analytical predictions and the experimental measurements have been made. The circumferential variations of pressure amplitudes and phases at several axial positions have been examined in straight and variable area ducts, with hard walls and lined sections, and with and without a mean flow. Reasonable agreement between the theoretical and experimental results has been found.
Charleston-Villalobos, S; Albuerne-Sanchez, L; Gonzalez-Camarena, R; Mejia-Avila, M; Carrillo-Rodriguez, G; Aljama-Corrales, T
2013-01-01
Pulmonary disorders are frequently characterized by the presence of adventitious sounds added to the breathing or base lung sound (BLS). The aim of this work was to assess the features of BLS in extrinsic allergic alveolitis (EAA) patients in comparison to healthy subjects, applying linear and nonlinear analysis techniques. We investigated the multichannel lung sounds on the posterior chest of 16 females, 8 healthy and 8 EAA patients, when breathing at 1.5 L/s. BLS linear features were obtained from the power spectral density (PSD) while nonlinear features were extracted by the concepts of irregularity and complexity, i.e., spectral, sample and multiscale entropy. The results demonstrated that spectral percentiles of BLS were lower in EAA patients than in healthy subjects but statistical significance (p<0.05) was obtained only for expiration at the left apical and both basal regions. Also, the maximum amplitude of the PSD in patients reached statistical significance ( p < 0.05) for the expiratory phase at basal regions. In the case of nonlinear techniques, significant lower values ( p < 0.05) were obtained for EAA patients during both respiratory phases at left apical and both basal regions. In conclusion, we found that BLS in chronic EAA patients is characterized by lower spectral percentiles, lower irregularity and lower complexity than in healthy subjects suggesting the feasibility of its clinical usefulness by screening its temporal alteration.
Beigy, Hamid; Ahmad, Ashar; Masoudi-Nejad, Ali; Fröhlich, Holger
2017-01-01
Inferring the structure of molecular networks from time series protein or gene expression data provides valuable information about the complex biological processes of the cell. Causal network structure inference has been approached using different methods in the past. Most causal network inference techniques, such as Dynamic Bayesian Networks and ordinary differential equations, are limited by their computational complexity and thus make large scale inference infeasible. This is specifically true if a Bayesian framework is applied in order to deal with the unavoidable uncertainty about the correct model. We devise a novel Bayesian network reverse engineering approach using ordinary differential equations with the ability to include non-linearity. Besides modeling arbitrary, possibly combinatorial and time dependent perturbations with unknown targets, one of our main contributions is the use of Expectation Propagation, an algorithm for approximate Bayesian inference over large scale network structures in short computation time. We further explore the possibility of integrating prior knowledge into network inference. We evaluate the proposed model on DREAM4 and DREAM8 data and find it competitive against several state-of-the-art existing network inference methods. PMID:28166542
New, Highly Accurate Propagator for the Linear and Nonlinear Schr\\"odinger Equation
Tal-Ezer, Hillel; Schaefer, Ido; 10.1007/s10915-012-9583-x
2012-01-01
A propagation method for the time dependent Schr\\"odinger equation was studied leading to a general scheme of solving ode type equations. Standard space discretization of time-dependent pde's usually results in system of ode's of the form u_t -Gu = s where G is a operator (matrix) and u is a time-dependent solution vector. Highly accurate methods, based on polynomial approximation of a modified exponential evolution operator, had been developed already for this type of problems where G is a linear, time independent matrix and s is a constant vector. In this paper we will describe a new algorithm for the more general case where s is a time-dependent r.h.s vector. An iterative version of the new algorithm can be applied to the general case where G depends on t or u. Numerical results for Schr\\"odinger equation with time-dependent potential and to non-linear Schr\\"odinger equation will be presented.
Energy Technology Data Exchange (ETDEWEB)
Klofai, Yerima [Department of Physics, Higher Teacher Training College, University of Maroua, PO Box 46 Maroua (Cameroon); Essimbi, B Z [Department of Physics, Faculty of Science, University of Yaounde 1, PO Box 812 Yaounde (Cameroon); Jaeger, D, E-mail: bessimb@yahoo.fr [ZHO, Optoelectronik, Universitaet Duisburg-Essen, D-47048 Duisburg (Germany)
2011-10-15
Pulse propagation on high-frequency dissipative nonlinear transmission lines (NLTLs)/resonant tunneling diode line cascaded maps is investigated for long-distance propagation of short pulses. Applying perturbative analysis, we show that the dynamics of each line is reduced to an expanded Korteweg-de Vries-Burgers equation. Moreover, it is found by computer experiments that the soliton developed in NLTLs experiences an exponential amplitude decay on the one hand and an exponential amplitude growth on the other. As a result, the behavior of a pulse in special electrical networks made of concatenated pieces of lines is closely similar to the transmission of information in optical/electrical communication systems.
Generalized Coupled-Mode Formulation for Sound Propagation in Range-Dependent Waveguides
Institute of Scientific and Technical Information of China (English)
LUO Wen-Yu; YANG Chun-Mei; ZHANG Ren-He
2012-01-01
An accurate and numerically stable method based on the coupled-mode theory is presented. By applying the direct global matrix approach to obtain the modal expansion coefficients, this method is numerically stable. In addition, appropriately normalized range solutions are introduced, which resolves the overflow problem entirely. Furthermore, we put forward source conditions appropriate for the line-source problem in plane geometry. As a result, this method is capabie of dealing with the scenario where a line source is located inside the region of a deformation. Closed-form expressions for coupling matrices are provided for ideal waveguides. Numerical results indicate that the present method is accurate and numerically stable. Consequently, this model can serve as a benchmark in range-dependent propagation modeling.%An accurate and numerically stable method based on the coupled-mode theory is presented.By applying the direct global matrix approach to obtain the modal expansion coefficients,this method is numerically stable.In addition,appropriately normalized range solutions are introduced,which resolves the overflow problem entirely.Furthermore,we put forward source conditions appropriate for the line-source problem in plane geometry.As a result,this method is capable of dealing with the scenario where a line source is located inside the region of a deformation.Closed-form expressions for coupling matrices are provided for ideal waveguides.Numerical results indicate that the present method is accurate and numerically stable.Consequently,this model can serve as a benchmark in range-dependent propagation modeling.
Energy Technology Data Exchange (ETDEWEB)
Mihalache, D.; Panoiu, N.-C.; Moldoveanu, F.; Baboiu, D.-M. [Dept. of Theor. Phys., Inst. of Atomic Phys., Bucharest (Romania)
1994-09-21
We used the Riemann problem method with a 3*3 matrix system to find the femtosecond single soliton solution for a perturbed nonlinear Schroedinger equation which describes bright ultrashort pulse propagation in properly tailored monomode optical fibres. Compared with the Gel'fand-Levitan-Marchenko approach, the major advantage of the Riemann problem method is that it provides the general single soliton solution in a simple and compact form. Unlike the standard nonlinear Schroedinger equation, here the single soliton solution exhibits periodic evolution patterns. (author)
The complex equivalent source method for sound propagation over an impedance plane.
Ochmann, Martin
2004-12-01
The sound field caused by a monopole source above an impedance plane can be calculated by using a superposition of equivalent point sources located along a line in the mirror space below the plane. Originally, such an approach for representing the half-space Green's function was described by Sommerfeld at the beginning of the last century, in order to treat half-space problems of heat conduction. However, the representation converges only for masslike impedances and cannot be used for the more important case of reflecting planes with springlike surface impedances. The singular part of the line integral can be transformed into a Hankel function, which shows that surface waves are contained in the whole solution. Unfortunately, this representation suffers from the lack of validity at certain receiver points and from restrictions on wave number and impedance range to ensure the necessary convergence. The main idea of the present method is to use also a superposition of equivalent point sources, but to allow that these sources can be located at complex source points. The corresponding form of the half-space Green's function is suitable for both masslike and springlike surface impedances, and can be used as a cornerstone for a boundary element method.
Sound propagation in slowly varying lined flow ducts of arbitrary cross-section
Rienstra, S. W.
2003-11-01
Sound transmission through ducts of constant cross-section with a uniform inviscid mean flow and a constant acoustic lining (impedance wall) is classically described by a modal expansion, where the modes are eigenfunctions of the corresponding Laplace eigenvalue problem along a duct cross-section. A natural extension for ducts with cross-section and wall impedance that are varying slowly (compared to a typical acoustic wavelength and a typical duct radius) in the axial direction is a multiple-scales solution. This has been done for the simpler problem of circular ducts with homentropic irrotational flow. In the present paper, this solution is generalized to the problem of ducts of arbitrary cross-section. It is shown that the multiple-scales problem allows an exact solution, given the cross-sectional Laplace eigensolutions. The formulation includes both hollow and annular geometries. In addition, the turning point analysis is given for a single hard-wall cut-on, cut-off transition. This appears to yield the same reflection and transmission coefficients as in the circular duct problem.
A wave-envelope of sound propagation in nonuniform circular ducts with compressible mean flows
Nayfeh, A. H.; Kaiser, J. E.; Shaker, B. S.
1979-01-01
An acoustic theory is developed to determine the sound transmission and attenuation through an infinite, hard-walled or lined circular duct carrying compressible, sheared, mean flows and having a variable cross section. The theory is applicable to large as well as small axial variations, as long as the mean flow does not separate. The technique is based on solving for the envelopes of the quasi-parallel acoustic modes that exist in the duct instead of solving for the actual wave, thereby reducing the computation time and the round-off error encountered in purely numerical techniques. The solution recovers the solution based on the method of multiple scales for slowly varying duct geometry. A computer program was developed based on the wave-envelope analysis for general mean flows. Results are presented for the reflection and transmission coefficients as well as the acoustic pressure distributions for a number of conditions: both straight and variable area ducts with and without liners and mean flows from very low to high subsonic speeds are considered.
Biswas, Piyali; Biswas, Abhijit; Pal, Bishnu P
2016-01-01
We numerically demonstrate self-similar propagation of parabolic optical pulses through a highly nonlinear and passive specialty photonic bandgap fiber at 2.8 micron. In this context, we have proposed a scheme endowed with a rapidly varying, but of nearly-mean-zero longitudinal dispersion and modulated nonlinear profile in order to achieve self-similarity of the formed parabolic pulse propagating over longer distances. To implement the proposed scheme, we have designed a segmented bandgap fiber with suitably tapered counterparts to realize such customized dispersion with chalchogenide glass materials. A self-similar parabolic pulse with full-width-at-half-maxima of 4.12 ps and energy of ~ 39 pJ as been achieved at the output. Along with a linear chirp spanning over the entire pulse duration, 3dB spectral broadening of about 38 nm at the output has been reported.
Mizuta, Yo; Nagasawa, Minoru; Ohtani, Morimasa; Yamashita, Mikio
2005-12-01
A numerical approach called Fourier direct method (FDM) is applied to nonlinear propagation of optical pulses with the central wavelength 800 nm, the width 2.67-12.00 fs, and the peak power 25-6870 kW in a fused-silica fiber. Bidirectional propagation, delayed Raman response, nonlinear dispersion (self-steepening, core dispersion), as well as correct linear dispersion are incorporated into “bidirectional propagation equations” which are derived directly from Maxwell’s equations. These equations are solved for forward and backward waves, instead of the electric-field envelope as in the nonlinear Schrödinger equation (NLSE). They are integrated as multidimensional simultaneous evolution equations evolved in space. We investigate, both theoretically and numerically, the validity and the limitation of assumptions and approximations used for deriving the NLSE. Also, the accuracy and the efficiency of the FDM are compared quantitatively with those of the finite-difference time-domain numerical approach. The time-domain size 500 fs and the number of grid points in time 2048 are chosen to investigate numerically intensity spectra, spectral phases, and temporal electric-field profiles up to the propagation distance 1.0 mm. On the intensity spectrum of a few-optical-cycle pulses, the self-steepening, core dispersion, and the delayed Raman response appear as dominant, middle, and slight effects, respectively. The delayed Raman response and the core dispersion reduce the effective nonlinearity. Correct linear dispersion is important since it affects the intensity spectrum sensitively. For the compression of femtosecond optical pulses by the complete phase compensation, the shortness and the pulse quality of compressed pulses are remarkably improved by the intense initial peak power rather than by the short initial pulse width or by the propagation distance longer than 0.1 mm. They will be compressed as short as 0.3 fs below the damage threshold of fused-silica fiber 6
Nonlinear phononics using atomically thin membranes
Midtvedt, Daniel; Isacsson, Andreas; Croy, Alexander
2014-09-01
Phononic crystals and acoustic metamaterials are used to tailor phonon and sound propagation properties by utilizing artificial, periodic structures. Analogous to photonic crystals, phononic band gaps can be created, which influence wave propagation and, more generally, allow engineering of the acoustic properties of a system. Beyond that, nonlinear phenomena in periodic structures have been extensively studied in photonic crystals and atomic Bose-Einstein condensates in optical lattices. However, creating nonlinear phononic crystals or nonlinear acoustic metamaterials remains challenging and only few examples have been demonstrated. Here, we show that atomically thin and periodically pinned membranes support coupled localized modes with nonlinear dynamics. The proposed system provides a platform for investigating nonlinear phononics.
Institute of Scientific and Technical Information of China (English)
Xueqiong; Chen; Xiaoyan; Li; Ziyang; Chen; Jixiong; Pu; Guowen; Zhang; Jianqiang; Zhu
2013-01-01
The intensity distributions of a high-power broadband laser beam passing through a nonlinear optical medium with defects and then propagating in free space are investigated based on the general nonlinear Schr¨odinger equation and the split-step Fourier numerical method. The influences of the bandwidth of the laser beam, the thickness of the medium,and the defects on the light intensity distribution are revealed. We find that the nonlinear optical effect can be suppressed and that the uniformity of the beam can be improved for a high-power broadband laser beam with appropriate wide bandwidth. It is also found that, under the same incident light intensity, a thicker medium will lead to a stronger self-focusing intensity, and that the influence of defects in the optical elements on the intensity is stronger for a narrowband beam than for a broadband beam.
Energy Technology Data Exchange (ETDEWEB)
Chabchoub, A., E-mail: achabchoub@swin.edu.au [Centre for Ocean Engineering Science and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Kibler, B.; Finot, C.; Millot, G. [Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS, Université de Bourgogne, 21078 Dijon (France); Onorato, M. [Dipartimento di Fisica, Università degli Studi di Torino, Torino 10125 (Italy); Istituto Nazionale di Fisica Nucleare, INFN, Sezione di Torino, Torino 10125 (Italy); Dudley, J.M. [Institut FEMTO-ST, UMR 6174 CNRS- Université de Franche-Comté, 25030 Besançon (France); Babanin, A.V. [Centre for Ocean Engineering Science and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)
2015-10-15
The dynamics of waves in weakly nonlinear dispersive media can be described by the nonlinear Schrödinger equation (NLSE). An important feature of the equation is that it can be derived in a number of different physical contexts; therefore, analogies between different fields, such as for example fiber optics, water waves, plasma waves and Bose–Einstein condensates, can be established. Here, we investigate the similarities between wave propagation in optical Kerr media and water waves. In particular, we discuss the modulation instability (MI) in both media. In analogy to the water wave problem, we derive for Kerr-media the Benjamin–Feir index, i.e. a nondimensional parameter related to the probability of formation of rogue waves in incoherent wave trains.
Musammil, N M; Porsezian, K; Subha, P A; Nithyanandan, K
2017-02-01
We investigate the dynamics of vector dark solitons propagation using variable coefficient coupled nonlinear Schrödinger (Vc-CNLS) equation. The dark soliton propagation and evolution dynamics in the inhomogeneous system are studied analytically by employing the Hirota bilinear method. It is apparent from our asymptotic analysis that the collision between the dark solitons is elastic in nature. The various inhomogeneous effects on the evolution and interaction between dark solitons are explored, with a particular emphasis on nonlinear tunneling. It is found that the tunneling of the soliton depends on a condition related to the height of the barrier and the amplitude of the soliton. The intensity of the tunneling soliton either forms a peak or a valley, thus retaining its shape after tunneling. For the case of exponential background, the soliton tends to compress after tunneling through the barrier/well. Thus, a comprehensive study of dark soliton pulse evolution and propagation dynamics in Vc-CNLS equation is presented in the paper.
1986-12-05
nonlinear oscillators described by a Duffing equation (e.g., a mass on a nonlinear spring,. The period-doubling transition to chaos is perhaps the more...resonance tube to exhibit characteristics similar to those of a mass-nonlinear spring oscillator . When driven hard, a hard spring oscillator , for example...same results was performed a bit later at the Naval Postgraduate School (NPS) by Ruff [30]. Coupled oscillators The work Breazeale began was taken up
Nonlinear Frequency Compression: Effects on Sound Quality Ratings of Speech and Music
National Research Council Canada - National Science Library
Parsa, Vijay; Scollie, Susan; Glista, Danielle; Seelisch, Andreas
2013-01-01
...) algorithm on perceived sound quality. In the first study, the cutoff frequency and compression ratio parameters of the NFC algorithm were varied, and their effect on the speech quality was measured subjectively with 12 normal hearing...
Non-linear Global Optimization using Interval Arithmetic and Constraint Propagation
DEFF Research Database (Denmark)
Kjøller, Steffen; Kozine, Pavel; Madsen, Kaj;
2006-01-01
In this Chapter a new branch-and-bound method for global optimization is presented. The method combines the classical interval global optimization method with constraint propagation techniques. The latter is used for including solutions of the necessary condition f'(x)=0. The constraint propagation...
Directory of Open Access Journals (Sweden)
P. Y. Rogov
2015-09-01
Full Text Available The paper deals with mathematical model of linear and nonlinear processes occurring at the propagation of femtosecond laser pulses in the vitreous of the human eye. Methods of computing modeling are applied for the nonlinear spectral equation solution describing the dynamics of a two-dimensional TE-polarized radiation in a homogeneous isotropic medium with cubic fast-response nonlinearity without the usage of slowly varying envelope approximation. Environments close to the optical media parameters of the eye were used for the simulation. The model of femtosecond radiation propagation takes into account the process dynamics for dispersion broadening of pulses in time and the occurence of the self-focusing near the retina when passing through the vitreous body of the eye. Dependence between the pulse duration on the retina has been revealed and the duration of the input pulse and the values of power density at which there is self-focusing have been found. It is shown that the main mechanism of radiation damage with the use of titanium-sapphire laser is photoionization. The results coincide with those obtained by the other scientists, and are usable for creation Russian laser safety standards for femtosecond laser systems.
Berjamin, Harold; Vergez, Christophe; Cottanceau, Emmanuel
2015-01-01
A time-domain numerical modeling of brass instruments is proposed. On one hand, outgoing and incoming waves in the resonator are described by the Menguy-Gilbert model, which incorporates three key issues: nonlinear wave propagation, viscothermal losses, and a variable section. The non-linear propagation is simulated by a TVD scheme well-suited to non-smooth waves. The fractional derivatives induced by the viscothermal losses are replaced by a set of local-in-time memory variables. A splitting strategy is followed to couple optimally these dedicated methods. On the other hand, the exciter is described by a one-mass model for the lips. The Newmark method is used to integrate the nonlinear ordinary differential equation so-obtained. At each time step, a coupling is performed between the pressure in the tube and the displacement of the lips. Finally, an extensive set of validation tests is successfully completed. In particular, self-sustained oscillations of the lips are simulated by taking into account the nonli...
Wang, Xiao-Yen; Chang, Sin-Chung; Jorgenson, Philip C. E.
2000-01-01
The benchmark problems in Category 1 (Internal Propagation) of the third Computational Aeroacoustics (CAA) Work-shop sponsored by NASA Glenn Research Center are solved using the space-time conservation element and solution element (CE/SE) method. The first problem addresses the propagation of sound waves through a nearly choked transonic nozzle. The second one concerns shock-sound interaction in a supersonic nozzle. A quasi one-dimension CE/SE Euler solver for a nonuniform mesh is developed and employed to solve both problems. Numerical solutions are compared with the analytical solution for both problems. It is demonstrated that the CE/SE method is capable of solving aeroacoustic problems with/without shock waves in a simple way. Furthermore, the simple nonreflecting boundary condition used in the CE/SE method which is not based on the characteristic theory works very well.
Bouchard, M
2001-01-01
In recent years, a few articles describing the use of neural networks for nonlinear active control of sound and vibration were published. Using a control structure with two multilayer feedforward neural networks (one as a nonlinear controller and one as a nonlinear plant model), steepest descent algorithms based on two distinct gradient approaches were introduced for the training of the controller network. The two gradient approaches were sometimes called the filtered-x approach and the adjoint approach. Some recursive-least-squares algorithms were also introduced, using the adjoint approach. In this paper, an heuristic procedure is introduced for the development of recursive-least-squares algorithms based on the filtered-x and the adjoint gradient approaches. This leads to the development of new recursive-least-squares algorithms for the training of the controller neural network in the two networks structure. These new algorithms produce a better convergence performance than previously published algorithms. Differences in the performance of algorithms using the filtered-x and the adjoint gradient approaches are discussed in the paper. The computational load of the algorithms discussed in the paper is evaluated for multichannel systems of nonlinear active control. Simulation results are presented to compare the convergence performance of the algorithms, showing the convergence gain provided by the new algorithms.
Linear and nonlinear modeling of light propagation in hollow-core photonic crystal fiber
DEFF Research Database (Denmark)
Roberts, John; Lægsgaard, Jesper
2009-01-01
Hollow core photonic crystal fibers (HC-PCFs) find applications which include quantum and non-linear optics, gas detection and short high-intensity laser pulse delivery. Central to most applications is an understanding of the linear and nonlinear optical properties. These require careful modeling...
Nonlinear effects in propagation of long-range surface plasmon polaritons in gold strip waveguides
DEFF Research Database (Denmark)
Lysenko, Oleg; Bache, Morten; Malureanu, Radu
2016-01-01
thickness. The theoretical model of these effects is based on the third-order susceptibility of the constituent materials. The linear and nonlinear parameters of the LRSPP mode are obtained, and the nonlinear Schrodinger equation is solved. The dispersion length is much larger than the waveguides length...
Modulation instability, solitons and beam propagation in spatially nonlocal nonlinear media
DEFF Research Database (Denmark)
Krolikowski, Wieslaw; Bang, Ole; Nikolov, Nikola Ivanov
2004-01-01
We present an overview of recent advances in the understanding of optical beams in nonlinear media with a spatially nonlocal nonlinear response. We discuss the impact of nonlocality on the modulational instability of plane waves, the collapse of finite-size beams, and the formation and interaction...
Kim, Kihong; Phung, D K; Rotermund, F; Lim, H
2008-01-21
We develop a generalized version of the invariant imbedding method, which allows us to solve the electromagnetic wave equations in arbitrarily inhomogeneous stratified media where both the dielectric permittivity and magnetic permeability depend on the strengths of the electric and magnetic fields, in a numerically accurate and efficient manner. We apply our method to a uniform nonlinear slab and find that in the presence of strong external radiation, an initially uniform medium of positive refractive index can spontaneously change into a highly inhomogeneous medium where regions of positive or negative refractive index as well as metallic regions appear. We also study the wave transmission properties of periodic nonlinear media and the influence of nonlinearity on the mode conversion phenomena in inhomogeneous plasmas. We argue that our theory is very useful in the study of the optical properties of a variety of nonlinear media including nonlinear negative index media fabricated using wires and split-ring resonators.
Maĭmistov, A. I.
2003-02-01
We discuss propagation of an ultimately short (single-cycle) pulse of an electromagnetic field in a medium whose dispersion and nonlinear properties can be described by the cubic-quintic Duffing model, i.e., by an oscillator with third-and fifth-order anharmonicity. A system of equations governing the evolution of a unidirectional electromagnetic wave is analyzed without using the approximation of slowly varying envelopes. Three types of solutions of this system describing stationary propagation of a pulse in such a medium are found. When the signs of the anharmonicity constants are different, then the amplitude of a steady-state pulse is limited, but its energy may grow on account of an increase in its duration. The characteristics of such a pulse, referred to as an electromagnetic domain, are discussed.
Hamedi, H. R.; Ruseckas, J.; Juzeliūnas, G.
2017-09-01
We consider propagation of a probe pulse in an atomic medium characterized by a combined tripod and Lambda (Λ) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by five light fields. It is demonstrated that dark states can be formed for such an atom-light coupling. This is essential for formation of the electromagnetically induced transparency (EIT) and slow light. In the limiting cases the scheme reduces to conventional Λ- or N-type atom-light couplings providing the EIT or absorption, respectively. Thus, the atomic system can experience a transition from the EIT to the absorption by changing the amplitudes or phases of control lasers. Subsequently the scheme is employed to analyze the nonlinear pulse propagation using the coupled Maxwell-Bloch equations. It is shown that a generation of stable slow light optical solitons is possible in such a five-level combined tripod and Λ atomic system.
Energy Technology Data Exchange (ETDEWEB)
Makarov, V A; Petnikova, V M; Potravkin, N N; Shuvalov, V V [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation)
2014-02-28
Using the linearization method, we obtain approximate solutions to a one-dimensional nonintegrable problem of propagation of elliptically polarised light waves in an isotropic gyrotropic medium with local and nonlocal components of the Kerr nonlinearity and group-velocity dispersion. The consistent evolution of two orthogonal circularly polarised components of the field is described analytically in the case when their phases vary linearly during propagation. The conditions are determined for the excitation of waves with a regular and 'chaotic' change in the polarisation state. The character of the corresponding nonlinear solutions, i.e., periodic analogues of multisoliton complexes, is analysed. (nonlinear optical phenomena)
Mateo, Eduardo F; Zhou, Xiang; Li, Guifang
2011-01-17
An improved split-step method (SSM) for digital backward propagation (DBP) applicable to wavelength-division multiplexed (WDM) transmission with polarization-division multiplexing (PDM) is presented. A coupled system of nonlinear partial differential equations, derived from the Manakov equations, is used for DBP. The above system enables the implementation of DBP on a channel-by-channel basis, where only the effect of phase-mismatched four-wave mixing (FWM) is neglected. A novel formulation of the SSM for PDM-WDM systems is presented where new terms are included in the nonlinear step to account for inter-polarization mixing effects. In addition, the effect of inter-channel walk-off is included. This substantially reduces the computational load compared to the conventional SSM.
Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis
Jeffrey, Alan
1971-01-01
The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)
Energy Technology Data Exchange (ETDEWEB)
Hau, Jan-Niklas, E-mail: hau@fdy.tu-darmstadt.de; Oberlack, Martin [Chair of Fluid Dynamics, Department of Mechanical Engineering, Technische Universität Darmstadt, Otto-Berndt-Strasse 2, 64287 Darmstadt (Germany); GSC CE, Technische Universität Darmstadt, Dolivostraße 15, 64293 Darmstadt (Germany); Chagelishvili, George [Chair of Fluid Dynamics, Department of Mechanical Engineering, Technische Universität Darmstadt, Otto-Berndt-Strasse 2, 64287 Darmstadt (Germany); Abastumani Astrophysical Observatory, Ilia State University, Tbilisi 0160, Georgia (United States); M. Nodia Institute of Geophysics, Tbilisi State University, Tbilisi 0128, Georgia (United States); Khujadze, George [Chair of Fluid Mechanics, Universität Siegen, Paul-Bonatz-Str. 9-11, 57068 Siegen (Germany); Tevzadze, Alexander [Faculty of Exact and Natural Sciences, Tbilisi State University, Tbilisi 0128, Georgia (United States)
2015-12-15
Aerodynamic sound generation in shear flows is investigated in the light of the breakthrough in hydrodynamics stability theory in the 1990s, where generic phenomena of non-normal shear flow systems were understood. By applying the thereby emerged short-time/non-modal approach, the sole linear mechanism of wave generation by vortices in shear flows was captured [G. D. Chagelishvili, A. Tevzadze, G. Bodo, and S. S. Moiseev, “Linear mechanism of wave emergence from vortices in smooth shear flows,” Phys. Rev. Lett. 79, 3178-3181 (1997); B. F. Farrell and P. J. Ioannou, “Transient and asymptotic growth of two-dimensional perturbations in viscous compressible shear flow,” Phys. Fluids 12, 3021-3028 (2000); N. A. Bakas, “Mechanism underlying transient growth of planar perturbations in unbounded compressible shear flow,” J. Fluid Mech. 639, 479-507 (2009); and G. Favraud and V. Pagneux, “Superadiabatic evolution of acoustic and vorticity perturbations in Couette flow,” Phys. Rev. E 89, 033012 (2014)]. Its source is the non-normality induced linear mode-coupling, which becomes efficient at moderate Mach numbers that is defined for each perturbation harmonic as the ratio of the shear rate to its characteristic frequency. Based on the results by the non-modal approach, we investigate a two-dimensional homentropic constant shear flow and focus on the dynamical characteristics in the wavenumber plane. This allows to separate from each other the participants of the dynamical processes — vortex and wave modes — and to estimate the efficacy of the process of linear wave-generation. This process is analyzed and visualized on the example of a packet of vortex modes, localized in both, spectral and physical, planes. Further, by employing direct numerical simulations, the wave generation by chaotically distributed vortex modes is analyzed and the involved linear and nonlinear processes are identified. The generated acoustic field is anisotropic in the wavenumber
Hau, Jan-Niklas; Chagelishvili, George; Khujadze, George; Oberlack, Martin; Tevzadze, Alexander
2015-12-01
Aerodynamic sound generation in shear flows is investigated in the light of the breakthrough in hydrodynamics stability theory in the 1990s, where generic phenomena of non-normal shear flow systems were understood. By applying the thereby emerged short-time/non-modal approach, the sole linear mechanism of wave generation by vortices in shear flows was captured [G. D. Chagelishvili, A. Tevzadze, G. Bodo, and S. S. Moiseev, "Linear mechanism of wave emergence from vortices in smooth shear flows," Phys. Rev. Lett. 79, 3178-3181 (1997); B. F. Farrell and P. J. Ioannou, "Transient and asymptotic growth of two-dimensional perturbations in viscous compressible shear flow," Phys. Fluids 12, 3021-3028 (2000); N. A. Bakas, "Mechanism underlying transient growth of planar perturbations in unbounded compressible shear flow," J. Fluid Mech. 639, 479-507 (2009); and G. Favraud and V. Pagneux, "Superadiabatic evolution of acoustic and vorticity perturbations in Couette flow," Phys. Rev. E 89, 033012 (2014)]. Its source is the non-normality induced linear mode-coupling, which becomes efficient at moderate Mach numbers that is defined for each perturbation harmonic as the ratio of the shear rate to its characteristic frequency. Based on the results by the non-modal approach, we investigate a two-dimensional homentropic constant shear flow and focus on the dynamical characteristics in the wavenumber plane. This allows to separate from each other the participants of the dynamical processes — vortex and wave modes — and to estimate the efficacy of the process of linear wave-generation. This process is analyzed and visualized on the example of a packet of vortex modes, localized in both, spectral and physical, planes. Further, by employing direct numerical simulations, the wave generation by chaotically distributed vortex modes is analyzed and the involved linear and nonlinear processes are identified. The generated acoustic field is anisotropic in the wavenumber plane, which
Nonlinear effects in the propagation of optically generated magnetostatic volume mode spin waves
van Tilburg, L. J. A.; Buijnsters, F. J.; Fasolino, A.; Rasing, T.; Katsnelson, M. I.
2017-08-01
Recent experimental work has demonstrated optical control of spin wave emission by tuning the shape of the optical pulse [Satoh et al., Nat. Photon. 6, 662 (2012), 10.1038/nphoton.2012.218]. We reproduce these results and extend the scope of the control by investigating nonlinear effects for large amplitude excitations. We observe an accumulation of spin wave power at the center of the initial excitation combined with short-wavelength spin waves. These kinds of nonlinear effects have not been observed in earlier work on nonlinearities of spin waves. Our observations pave the way for the manipulation of magnetic structures at a smaller scale than the beam focus, for instance in devices with all-optical control of magnetism.
Wave propagation in parallel-plate waveguides filled with nonlinear left-handed material
Institute of Scientific and Technical Information of China (English)
Burhan Zamir; Rashid Ali
2011-01-01
A theoretical investigation of field components for transverse electric mode in the parallel-plate waveguides has been studied. In this analysis two different types of waveguide structures have been discussed, i.e., (a) normal good/perfect conducting parallel-plate waveguide filled with nonlinear left-handed material and (b) high-temperature-superconducting parallel-plate waveguide filled with nonlinear left-handed material. The dispersion relations of transverse electric mode have also been discussed for these two types of waveguide structures.
Canonical and Singular Propagation of Ultrashort Pulses in a Nonlinear Medium
Karl Glasner; Miroslav Kolesik; Moloney, Jerome V.; Newell, Alan C.
2012-01-01
We examine the two types of singular behaviors of ultrashort pulses in a nonlinear medium, pulse steepening if the weak longitudinal dispersion is normal and collapse if it is anomalous. Connections with analogous behaviors of wave packets of almost monochromatic waves in strongly dispersive media are discussed.
Indian Academy of Sciences (India)
D P Acharya; Asit Kumar Mondal
2006-06-01
The object of the present paper is to investigate the propagation of quasi-transverse waves in a nonlinear perfectly conducting nonhomogeneous elastic medium in the presence of a uniform magnetic ﬁeld transverse to the direction of wave propagation. Different types of ﬁgures have been drawn to exhibit the distortion of waves due to the presence of magnetic ﬁeld and the nonhomogeneous nature of the medium. Formation of shocks has also been numerically discussed.
Paul, S. N.; Chatterjee, A.; Paul, Indrani
2017-01-01
Nonlinear propagation of ion-acoustic waves in self-gravitating multicomponent dusty plasma consisting of positive ions, non-isothermal two-temperature electrons and negatively charged dust particles with fluctuating charges and drifting ions has been studied using the reductive perturbation method. It has been shown that nonlinear propagation of ion-acoustic waves in gravitating dusty plasma is described by an uncoupled third order partial differential equation which is a modified form of Korteweg-deVries equation, in contraries to the coupled nonlinear equations obtained by earlier authors. Quasi-soliton solution for the ion-acoustic solitary wave has been obtained from this uncoupled nonlinear equation. Effects of non-isothermal two-temperature electrons, gravity, dust charge fluctuation and drift motion of ions on the ion-acoustic solitary waves have been discussed.
Directory of Open Access Journals (Sweden)
Véronique Vaillancourt
2013-01-01
Full Text Available A technology of backup alarms based on the use of a broadband signal has recently gained popularity in many countries. In this study, the performance of this broadband technology is compared to that of a conventional tonal alarm and a multi-tone alarm from a worker-safety standpoint. Field measurements of sound pressure level patterns behind heavy vehicles were performed in real work environments and psychoacoustic measurements (sound detection thresholds, equal loudness, perceived urgency and sound localization were carried out in the laboratory with human subjects. Compared with the conventional tonal alarm, the broadband alarm generates a much more uniform sound field behind vehicles, is easier to localize in space and is judged slighter louder at representative alarm levels. Slight advantages were found with the tonal alarm for sound detection and for perceived urgency at low levels, but these benefits observed in laboratory conditions would not overcome the detrimental effects associated with the large and abrupt variations in sound pressure levels (up to 15-20 dB within short distances observed in the field behind vehicles for this alarm, which are significantly higher than those obtained with the broadband alarm. Performance with the multi-tone alarm generally fell between that of the tonal and broadband alarms on most measures.
Nonlinear Propagation in Multimode and Multicore Fibers: Generalization of the Manakov Equations
Mumtaz, Sami; Agrawal, Govind P
2012-01-01
This paper starts by an investigation of nonlinear transmission in space-division multiplexed (SDM) systems using multimode fibers exhibiting a rapidly varying birefringence. A primary objective is to generalize the Manakov equations, well known in the case of single-mode fibers. We first investigate a reference case where linear coupling among the spatial modes of the fiber is weak and after averaging over birefringence fluctuations, we obtain new Manakov equations for multimode fibers. Such an averaging reduces the number of intermodal nonlinear terms drastically since all four-wave-mixing terms average out. Cross-phase modulation terms still affect multimode transmission but their effectiveness is reduced. We then verify the accuracy of our new Manakov equations by transmitting multiple PDM-QPSK signals over different modes of a multimode fiber and comparing the numerical results with those obtained by solving the full stochastic equation. The agreement is excellent in all cases studied. A great benefit of...
DEFF Research Database (Denmark)
Rasmussen, Anders Rønne; Sørensen, Mads Peter; Gaididei, Yuri Borisovich
2008-01-01
A wave equation, that governs nite amplitude acoustic disturbances in a thermoviscous Newtonian fluid, and includes nonlinear terms up to second order, is proposed. In contrast to the model known as the Kuznetsov equation, the proposed nonlinear wave equation preserves the Hamiltonian structure...... of the fundamental fluid dynamical equations in the non-dissipative limit. An exact traveling front solution is obtained from a generalized traveling wave assumption. This solution is, in an overall sense, equivalent to the Taylor shock solution of the Burgers equation. However, in contrast to the Burgers equation...... with respect to the fluid ahead of it, and subsonic speed with respect to the fluid behind it, similarly to the fluid dynamical shock. Linear stability analysis reveals that the front is stable when the acoustic pressure belongs to a critical interval, and is otherwise unstable. These results are veried...
DEFF Research Database (Denmark)
Mamaev, A.V.; Saffman, M.; Zozulya, A.A.
1996-01-01
We analyze the evolution of (1+1) dimensional dark stripe beams in bulk media with a photorefractive nonlinear response. These beams, including solitary wave solutions, are shown to be unstable with respect to symmetry breaking and formation of structure along the initially homogeneous coordinate....... Experimental results show the complete sequence of events starting from self-focusing of the stripe, its bending due to the snake instability, and subsequent decay into a set of optical vortices....
Identification and determination of solitary wave structures in nonlinear wave propagation
Energy Technology Data Exchange (ETDEWEB)
Newman, W.I.; Campbell, D.K.; Hyman, J.M.
1991-01-01
Nonlinear wave phenomena are characterized by the appearance of solitary wave coherent structures'' traveling at speeds determined by their amplitudes and morphologies. Assuming that these structures are briefly noninteracting, we propose a method for the identification of the number of independent features and their respective speeds. Using data generated from an exact two-soliton solution to the Korteweg-de-Vries equation, we test the method and discuss its strengths and limitations. 41 refs., 2 figs.
Institute of Scientific and Technical Information of China (English)
LIU Ming-Ping; LIU Bing-Bing; LIU San-Qiu; ZHANG Fu-Yang; LIU Jie
2013-01-01
Using a variational approach,the propagation of a moderately intense laser pulse in a parabolic preformed plasma channel is investigated.The effects of higher-order relativistic nonlinearity (HRN) and wakefield are included.The effect of HRN serves as an additional defocusing mechanism and has the same order of magnitude in the spot size as that of the transverse wakefield (TWF).The effect of longitudinal wakefield is much larger than those of HRN and TWF for an intense laser pulse with the pulse length equaling the plasma wavelength.The catastrophic focusing of the laser spot size would be prevented in the present of HRN and then it varies with periodic focusing oscillations.
Stormo, Arne; Lengliné, Olivier; Schmittbuhl, Jean; Hansen, Alex
2016-05-01
We compare experimental observations of a slow interfacial crack propagation along an heterogeneous interface to numerical simulations using a soft-clamped fiber bundle model. The model consists of a planar set of brittle fibers between a deformable elastic half-space and a rigid plate with a square root shape that imposes a non linear displacement around the process zone. The non-linear square-root rigid shape combined with the long range elastic interactions is shown to provide more realistic displacement and stress fields around the crack tip in the process zone and thereby significantly improving the predictions of the model. Experiments and model are shown to share a similar self-affine roughening of the crack front both at small and large scales and a similar distribution of the local crack front velocity. Numerical predictions of the Family-Viscek scaling for both regimes are discussed together with the local velocity distribution of the fracture front.
Nonlinear Quantum Optics in Optomechanical Nanoscale Waveguides
Zoubi, Hashem
2016-01-01
We explore the possibility of achieving a significant nonlinear phase shift among photons propagating in nanoscale waveguides exploiting interactions among photons that are mediated by vibrational modes and induced through Stimulated Brillouin Scattering (SBS). We introduce a configuration that allows slowing down the photons by several orders of magnitude via SBS involving sound waves and two pump fields. We extract the conditions for maintaining vanishing amplitude gain or loss for slowly propagating photons while keeping the influence of thermal phonons to the minimum. The nonlinear phase among two counter-propagating photons can be used to realize a deterministic phase gate.
Non-linear numerical simulations of magneto-acoustic wave propagation in small-scale flux tubes
Khomenko, E; Felipe, T
2007-01-01
We present results of non-linear 2D numerical simulations of magneto-acoustic wave propagation in the photosphere and chromosphere of small-scale flux tubes with internal structure. Waves with realistic periods of 3--5 min are studied, after applying horizontal and vertical oscillatory perturbations to the equilibrium situation. Spurious reflections of shock waves from the upper boundary are minimized thanks to a special boundary condition. This has allowed us to increase the duration of the simulations and to make it long enough to perform a statistical analysis of oscillations. The simulations show that deep horizontal motions of the flux tube generate a slow (magnetic) mode and a surface mode. These modes are efficiently transformed into a slow (acoustic) mode in the Va < Cs atmosphere. The slow (acoustic) mode propagates vertically along the field lines, forms shocks and remains always within the flux tube. It might deposit effectively the energy of the driver into the chromosphere. When the driver osc...
Guo, Shuqin; Le, Zichun; Quan, Bisheng
2006-01-01
By numerical simulation, we show that the fourth-order dispersion (FOD) makes sub-picosecond optical pulse broaden as second-order dispersion (SOD), makes optical pulse oscillate simultaneously as third-order dispersion (TOD). Based on above two reasons, sub-picosecond optical pulse will be widely broaden and lead to emission of continuum radiation during propagation. Here, resemble to two- and third-order dispersion compensation, fourth-order dispersion compensation is also suggested in a dispersion-managed optical fiber link, which is realized by arranging two kinds of fiber with opposite dispersion sign in each compensation cell. For sake of avoiding excessively broadening, ultra short scale dispersion compensation cell is required in ultra high speed optical communication system. In a full dispersion compensation optical fiber system which path average dispersion is zero about SOD, TOD, and FOD, even suffering from affection of high order nonlinear like self-steep effect and self-frequency shift, 200 fs gauss optical pulse can stable propagate over 1000 km with an optimal initial chirp. When space between neighboring optical pulse is only 2 picoseconds corresponding to 500 Gbit/s transmitting capacity, eye diagram is very clarity after 1000 km. The results demonstrate that ultra short scale dispersion compensation including FOD is need and effective in ultra-high speed optical communication.
Kwak, Yunsang; Lee, Sinyeob; Park, Jeongwon; Hwang, Dukyoung; Jeon, Jin Yong; Park, Junhong
2017-07-01
Experiments were performed to identify the mechanism of heavyweight floor impact sound transmission through floors in a high-rise apartment building. Vibration and sound levels on each floor of the multistory building were measured. The vibration generated at a given floor was transferred to multiple adjacent floors with decreasing amplitudes proportional to the distance from the excited floor. This vibration transfer introduced significant sound transmissions. The structural static load varied depending on the floor location due to differences in the weight of the structure above the floor, especially for wall construction buildings. The static load at the wall of the bottom floor was the largest among the different floors. The influence of this static load on the impact sound generation was investigated through tests in the actual building and the scale model, respectively. The results were numerically analyzed using the spectral element method. With the increasing static load, the resonance frequencies of the floor increased due to the change in the vibration modes of the structure. The modulated sound generation from the floor vibrations transmitted to multiple layers with larger magnitudes due to this static load.
On the effect of elastic nonlinearity on aquatic propulsion caused by propagating flexural waves
Krylov, Victor V
2016-01-01
In the present paper, the initial theoretical results on wave-like aquatic propulsion of marine craft by propagating flexural waves are reported. Recent experimental investigations of small model boats propelled by propagating flexural waves carried out by the present author and his co-workers demonstrated viability of this type of propulsion as an alternative to a well-known screw propeller. In the attempts of theoretical explanation of the obtained experimental results using the theory of Lighthill for fish locomotion, it was found that this theory predicts zero thrust for such model boats, which is in contradiction with the results of the experiments. One should note in this connection that the theory developed by Lighthill assumes that the amplitudes of propulsive waves created by fish body motion grow from zero on the front (at fish heads) to their maximum values at the tails. This is consistent with fish body motion in nature, but is not compatible with the behaviour of localised flexural waves used for...
Bednarik, Michal; Konicek, Petr
2002-07-01
This paper deals with using the generalized Burgers equation for description of nonlinear waves in circular ducts. Two new approximate solutions of the generalized Burgers equation (GBE) are presented. These solutions take into account the boundary layer effects. The first solution is valid for the preshock region and gives more precise results than the Fubini solution, whereas the second one is valid for the postshock (sawtooth) region and provides better results than the Fay solution. The approximate solutions are compared with numerical results of the GBE. Furthermore, the limits of validity of the used model equation are discussed with respect to boundary conditions and radius of a circular duct.
Nariyuki, Y; Nariyuki, Yasuhiro; Hada, Tohru
2006-01-01
Nonlinear relations among frequencies and phases in modulational instability of circularly polarized Alfven waves are discussed, within the context of one dimensional, dissipation-less, unforced fluid system. We show that generation of phase coherence is a natural consequence of the modulational instability of Alfven waves. Furthermore, we quantitatively evaluate intensity of wave-wave interaction by using bi-coherence, and also by computing energy flow among wave modes, and demonstrate that the energy flow is directly related to the phase coherence generation.
Directory of Open Access Journals (Sweden)
Wei Zhang
2016-06-01
Full Text Available In the aerospace and aviation sectors, the damage tolerance concept has been applied widely so that the modeling analysis of fatigue crack growth has become more and more significant. Since the process of crack propagation is highly nonlinear and determined by many factors, such as applied stress, plastic zone in the crack tip, length of the crack, etc., it is difficult to build up a general and flexible explicit function to accurately quantify this complicated relationship. Fortunately, the artificial neural network (ANN is considered a powerful tool for establishing the nonlinear multivariate projection which shows potential in handling the fatigue crack problem. In this paper, a novel fatigue crack calculation algorithm based on a radial basis function (RBF-ANN is proposed to study this relationship from the experimental data. In addition, a parameter called the equivalent stress intensity factor is also employed as training data to account for loading interaction effects. The testing data is then placed under constant amplitude loading with different stress ratios or overloads used for model validation. Moreover, the Forman and Wheeler equations are also adopted to compare with our proposed algorithm. The current investigation shows that the ANN-based approach can deliver a better agreement with the experimental data than the other two models, which supports that the RBF-ANN has nontrivial advantages in handling the fatigue crack growth problem. Furthermore, it implies that the proposed algorithm is possibly a sophisticated and promising method to compute fatigue crack growth in terms of loading interaction effects.
Influence of the abdominal wall on the nonlinear propagation of focused therapeutic ultrasound
Institute of Scientific and Technical Information of China (English)
Liu Zhen-Bo; Fan Ting-Bo; Zhang Dong; Gong Xiu-Fen
2009-01-01
y This article theoretically studies the influence of inhomogeneous abdominal walls on focused therapeutic ultrasound based on the phase screen model. An inhomogeneous tissue is considered as a combination of a homogeneous medium and a phase aberration screen. Variations of acoustic parameters such as peak positive pressure, peak negative pressure, and acoustic intensity are discussed with respect to the phase screen statistics of human abdominal walls. Results indicate that the abdominal wall can result in energy loss of the sound in the focal plane. For a typical human abdominal wall with correlation length of 7.9 mm and variance of 0.36, the peak acoustic intensity radiated from a 1 MHz transmitter with a radius of 30 mm can be reduced by about 14% at the focal plane.
Kandula, Max
2012-01-01
The Sound attenuation and dispersion in saturated gas-vapor-droplet mixtures with evaporation has been investigated theoretically. The theory is based on an extension of the work of Davidson (1975) to accommodate the effects of transpiration on the linear particle relaxation processes of mass, momentum and energy transfer. It is shown that the inclusion of transpiration in the presence of mass transfer improves the agreement between the theory and the experimental data of Cole and Dobbins (1971) for sound attenuation in air-water fogs at low droplet mass concentrations. The results suggest that transpiration has an appreciable effect on both sound absorption and dispersion for both low and high droplet mass concentrations.
Paolo Delsanto, Pier; Hirsekorn, Sigrun
2004-04-01
Recent experiments on rocks and other materials, such as soil, cement, concrete and damaged elastic materials, have led to the discovery of nonlinear (NL) hysteretic effects in their elastic behaviour. These observations suggest the existence of a NL mesoscopic elasticity universality class, to which all the aforementioned materials belong. The purpose of the present contribution is to search for the basic mathematical roots for nonclassical nonlinearity, in order to explain its universality, classify it and correlate it with the underlying meso- or microscopic interaction mechanisms. In our discussions we explicitly consider two quite different kinds of specimens: a two-bonded-elements structure and a thin multigrained bar. It is remarkable that, although the former includes only one interface and the latter very many interstices, the same "interaction box" formalism can be applied to both. Another important result of the proposed formalism is that the spectral contents of an arbitrary system for any input amplitude may be predicted, under certain assumptions, from the result of a single experiment at a higher amplitude.
Nonlinear Doppler - Free comb-spectroscopy in counter-propagating fields
Pulkin, S A; Arnautov, V; Uvarova, S V; Savel'eva, S
2014-01-01
The method of Doppler - free comb - spectroscopy for dipole transitions was proposed. The calculations for susceptibility spectrum for moving two-level atoms driving by strong counter propagating combs have been done. The used theoretical method based on the Fourier expansion of the components of density matrix on two rows on kv (v-velocity of group of atoms, k-projection of wave vector) and {\\Omega} (frequency between comb components). For testing of validity of this method the direct numerical integration was done. The narrow peaks with homogeneous width arise on the background of Doppler counter. The contrast of these peaks is large for largest amplitudes of comb-components. Power broadening is increasing with increase of field amplitudes. The spectral range of absorption spectrum is determined by the spectral range of comb generator and all homogeneous lines arise simultaneously. The spectral resolution is determined by the width of homogeneously-broadening lines. The physical nature of narrow peaks is in...
Non-linear Cosmic Ray propagation close to the acceleration site
Nava, Lara; Marcowith, Alexandre; Morlino, Giovanni; Ptuskin, Vladimir
2015-01-01
Recent advances on gamma-ray observations from SuperNova Remnants and Molecular Clouds offer the possibility to study in detail the properties of the propagation of escaping Cosmic Rays (CR). However, a complete theory for CR transport outside the acceleration site has not been developed yet. Two physical processes are thought to be relevant to regulate the transport: the growth of waves caused by streaming instability, and possible wave damping mechanisms that reduce the growth of the turbulence. Only a few attempts have been made so far to incorporate these mechanisms in the theory of CR diffusion. In this work we present recent advances in this subject. In particular, we show results obtained by solving the coupled equations for the diffusion of CRs and the evolution of Alfven waves. We discuss the importance of streaming instabilities and wave damping in different ISM phases.
Energy Technology Data Exchange (ETDEWEB)
Kanamori, Masashi, E-mail: kanamori.masashi@jaxa.jp; Takahashi, Takashi, E-mail: takahashi.takashi@jaxa.jp; Aoyama, Takashi, E-mail: aoyama.takashi@jaxa.jp [Japan Aerospace Exploration Agency, 7-44-1, Jindaijihigashi-machi, Chofu, Tokyo (Japan)
2015-10-28
Shown in this paper is an introduction of a prediction tool for the propagation of loud noise with the application to the aeronautics in mind. The tool, named SPnoise, is based on HOWARD approach, which can express almost exact multidimensionality of the diffraction effect at the cost of back scattering. This paper argues, in particular, the prediction of the effect of atmospheric turbulence on sonic boom as one of the important issues in aeronautics. Thanks to the simple and efficient modeling of the atmospheric turbulence, SPnoise successfully re-creates the feature of the effect, which often emerges in the region just behind the front and rear shock waves in the sonic boom signature.
Slowly moving matter-wave gap soliton propagation in weak random nonlinear potential
Institute of Scientific and Technical Information of China (English)
Zhang Ming-Rui; Zhang Yong-Liang; Jiang Xun-Ya; Zi Jian
2008-01-01
We systematically investigate the motion of slowly moving matter-wave gap solitons in a nonlinear potential, produced by the weak random spatial variation of the atomic scattering length. With the weak randomness, we construct an effective-particle theory to study the motion of gap solitons. Based on the effective-particle theory, the effect of the randomness on gap solitous is obtained, and the motion of gap solitons is finally solved. Moreover, the analytic results for the general behaviours of gap soliton motion, such as the ensemble-average speed and the reflection probability depending on the weak randomness are obtained. We find that with the increase of the random strength the ensemble-average speed of gap solitons decreases slowly where the reduction is proportional to the variance of the weak randomness, and the reflection probability becomes larger. The theoretical results are in good agreement with the numerical simulations based on the Gross-Pitaevskii equation.
A finite volume approach for the simulation of nonlinear dissipative acoustic wave propagation
Velasco-Segura, Roberto
2013-01-01
A form of the conservation equations for fluid dynamics is presented, deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A CLAWPACK based, 2D finite volume method using the Roe linearization was implemented to obtain numerically the solution of the proposed equations. In order to validate the code, two different tests have been performed: one against a special Taylor shock-like analytic solution, the other against published results on a HIFU system, both with satisfactory results. The code is based on CLAWPACK and is written for parallel execution on a GPU, thus improving performance by a factor of over 60 when compared to the standard CLAWPACK code.
Nonlinear propagation and decay of intense regular and random waves in relaxing media
Gurbatov, S. N.; Rudenko, O. V.; Demin, I. Yu.
2015-10-01
An integro-differential equation is written down that contains terms responsible for nonlinear absorption, visco-heat-conducting dissipation, and relaxation processes in a medium. A general integral expression is obtained for calculating energy losses of the wave with arbitrary characteristics—intensity, profile (frequency spectrum), and kernel describing the internal dynamics of the medium. Profiles of stationary solutions are constructed both for an exponential relaxation kernel and for other types of kernels. Energy losses at the front of week shock waves are calculated. General integral formulas are obtained for energy losses of intense noise, which are determined by the form of the kernel, the structure of the noise correlation function, and the mean square of the derivative of realization of a random process.
Directory of Open Access Journals (Sweden)
Paul C. Rivera
2006-01-01
Full Text Available A common approach in modeling the generation and propagation of tsunami is based on the assumption of a kinematic vertical displacement of ocean water that is analogous to the ocean bottom displacement during a submarine earthquake and the use of a non-dispersive long-wave model to simulate its physical transformation as it radiates outward from the source region. In this study, a new generation mechanism and the use of a highly-dispersive wave model to simulate tsunami inception, propagation and transformation are proposed. The new generation model assumes that transient ground motion during the earthquake can accelerate horizontal currents with opposing directions near the fault line whose successive convergence and divergence generate a series of potentially destructive oceanic waves. The new dynamic model incorporates the effects of earthquake moment magnitude, ocean compressibility through the buoyancy frequency, the effects of focal and water depths, and the orientation of ruptured fault line in the tsunami magnitude and directivity.For tsunami wave simulation, the nonlinear momentum-based wave model includes important wave propagation and transformation mechanisms such as refraction, diffraction, shoaling, partial reflection and transmission, back-scattering, frequency dispersion, and resonant wave-wave interaction. Using this model and a coarse-resolution bathymetry, the new mechanism is tested for the Indian Ocean tsunami of December 26, 2004. A new flooding and drying algorithm that consider waves coming from every direction is also proposed for simulation of inundation of low-lying coastal regions.It is shown in the present study that with the proposed generation model, the observed features of the Asian tsunami such as the initial drying of areas east of the source region and the initial flooding of western coasts are correctly simulated. The formation of a series of tsunami waves with periods and lengths comparable to observations
Indian Academy of Sciences (India)
R K Khanna; R C Chouhan
2003-10-01
A somewhat more general analysis for solving spatial propagation characteristics of intense Gaussian beam is presented and applied to the laser beam propagation in step-index proﬁle as well as parabolic proﬁle dielectric ﬁbers with Kerr non-linearity. Considering self-action due to saturating and non-saturating non-linearity in the refractive index, a general theory has been developed without any kind of power series expansion for the dielectric constant as is usually done in other theories that make use of paraxial approximation. Result of the steady state self-focusing analysis indicates that the Kerr non-linearity acts as a perturbation on the radial inhomogeneity due to ﬁber geometry. Analysis indicates that the paraxial rays and peripheral rays focus at different points, indicating aberration effect. Calculated critical power matches with the experimentally reported result.
A non-linear induced polarization effect on transient electromagnetic soundings
Hallbauer-Zadorozhnaya, Valeriya Yu.; Santarato, Giovanni; Abu Zeid, Nasser; Bignardi, Samuel
2016-10-01
In a TEM survey conducted for characterizing the subsurface for geothermal purposes, a strong induced polarization effect was recorded in all collected data. Surprisingly, anomalous decay curves were obtained in part of the sites, whose shape depended on the repetition frequency of the exciting square waveform, i.e. on current pulse length. The Cole-Cole model, besides being not directly related to physical parameters of rocks, was found inappropriate to model the observed distortion, due to induced polarization, because this model is linear, i.e. it cannot fit any dependence on current pulse. This phenomenon was investigated and explained as due to the presence of membrane polarization linked to constrictivity of (fresh) water-saturated pores. An algorithm for mathematical modeling of TEM data was then developed to fit this behavior. The case history is then discussed: 1D inversion, which accommodates non-linear effects, produced models that agree quite satisfactorily with resistivity and chargeability models obtained by an electrical resistivity tomography carried out for comparison.
On the nonlinear internal waves propagating in an inhomogeneous shallow sea
Directory of Open Access Journals (Sweden)
Stanisław R. Massel
2016-04-01
Full Text Available A concept of conservation of energy flux for the internal waves propagating in an inhomogeneous shallow water is examined. The emphasis is put on an application of solution of the Korteweg–de Vries (KdV equation in a prescribed form of the cnoidal and solitary waves. Numerical simulations were applied for the southern Baltic Sea, along a transect from the Bornholm Basin, through the Słupsk Sill and Słupsk Furrow to the Gdańsk Basin. Three-layer density structure typical for the Baltic Sea has been considered. An increase of wave height and decrease of phase speed with shallowing water depth was clearly demonstrated. The internal wave dynamics on both sides of the Słupsk Sill was found to be different due to different vertical density stratification in these areas. The bottom friction has only negligible influence on dynamics of internal waves, while shearing instability may be important only for very high waves. Area of possible instability, expressed in terms of the Richardson number Ri, is very small, and located within the non-uniform density layer, close to the interface with upper uniform layer. Kinematic breaking criteria have been examined and critical internal wave heights have been determined.
Institute of Scientific and Technical Information of China (English)
杨德森; 兰朝凤; 时胜国; 江薇
2012-01-01
In order to investigate the energy transfer under interaction among nonlinear acoustic variable parameters,the spectrum decomposition was used to study and simulate amplitude resolution after interaction of intefer-times frequency waves.The results showed that when a high-frequency source level is greater than a low-frequency source level and the high-frequency source level is fixed,the sound absorption of sound decreases as the frequency ratio increases; when the frequency ratio is not less than 3,the sound absorption effects of sound caused by the initial phase relationship between two sound waves can be ignored; As a high-frequency pump source is stronger,the absorption effects of higher frequency sound on lower frequency sound become weaker; in contrast,as a low-frequency pump source is stronger,the absorption effects of higher frequency sound on lower frequency sound become stronger,the nonlinear cumulative effect is maximum at break distances.%为研究声波非线性变参数相作用后的能量转移问题,利用谱分解方法对整倍频声波相互作用后的幅度解进行理论研究和仿真分析.研究表明:高频声源级大于低频声源级,且高频声源级取定值时,频率比N越大,声吸收声效果越小.频率比N≥3时,两列声波的初始相位关系对声吸收声的影响可忽略不计.高频泵源越强,高频对低频声的声吸收声效果越弱；相反,低频泵源越强,高频声波对低频声的声吸收声效果越强.非线性累积效应在间断距离处达到最强.
Effects of HPA-nonlinearity on a 4-DPSK/OFDM-signal for a digital sound broadcasting signal
Rapp, Christoph
1991-10-01
Orthogonal Frequency Division Multiplexing (OFDM) in conjunction with a 4 Differential Phase Shift Keying (DPSK) modulation format has been proposed for the future Digital Audio Broadcasting system (DAB), that should provide compact disk sound quality in portable, vehicular and fixed receivers. With properly chosen parameters, this system should be appropriate for both terrestrial and satellite transmission. The influence of the nonlinear distorsions introduced by the High Power Amplifier (HPA) of the transmitter is examined. In particular, the degradations in power efficiency due to intermodulation effects and backoff operating, as well as spectral degradations are investigated. It is shown for three different kinds of limiting amplifier models, that even with an output backoff in the region of 5 to 6 dB, the degradation of, for example a 512 carrier 4 DPSK/OFDM system relative to the linear case is below 1.7 dB (Pb = 0.0001), while the regenerated sidelobes of the transmitted spectrum are kept below -20 dB.
Wölfle, Stephanie E; Chaston, Daniel J; Goto, Kenichi; Sandow, Shaun L; Edwards, Frank R; Hill, Caryl E
2011-05-15
Blood flow is adjusted to tissue demand through rapidly ascending vasodilatations resulting from conduction of hyperpolarisation through vascular gap junctions. We investigated how these dilatations can spread without attenuation if mediated by an electrical signal. Cremaster muscle arterioles were studied in vivo by simultaneously measuring membrane potential and vessel diameter. Focal application of acetylcholine elicited hyperpolarisations which decayed passively with distance from the local site,while dilatation spread upstream without attenuation. Analysis of simultaneous recordings at the local site revealed that hyperpolarisation and dilatation were only linearly related over a restricted voltage range to a threshold potential, beyond which dilatation was maximal. Experimental data could be simulated in a computational model with electrotonic decay of hyperpolarisation but imposition of this threshold. The model was tested by reducing the amplitude of the local hyperpolarisation which led to entry into the linear range closer to the local site and decay of dilatation. Serial section electron microscopy and light dye treatment confirmed that the spread of dilatation occurred through the endothelium and that the two cell layers were tightly coupled. Generality of the mechanism was demonstrated by applying the model to the attenuated propagation of dilatation found in larger arteries.We conclude that long distance spread of locally initiated dilatations is not due to a regenerative electrical phenomenon, but rather a restricted linear relationship between voltage and vessel tone, which minimises the impact of electrotonic decay of voltage. Disease-related alterations in endothelial coupling or ion channel expression could therefore decrease the ability to adjust blood flow to meet metabolic demand.
Bhakta, Subrata; Ghosh, Uttam; Sarkar, Susmita
2017-02-01
In this paper, we have investigated the effect of secondary electron emission on nonlinear propagation of dust acoustic waves in a complex plasma where equilibrium dust charge is negative. The primary electrons, secondary electrons, and ions are Boltzmann distributed, and only dust grains are inertial. Electron-neutral and ion-neutral collisions have been neglected with the assumption that electron and ion mean free paths are very large compared to the plasma Debye length. Both adiabatic and nonadiabatic dust charge variations have been separately taken into account. In the case of adiabatic dust charge variation, nonlinear propagation of dust acoustic waves is governed by the KdV (Korteweg-de Vries) equation, whereas for nonadiabatic dust charge variation, it is governed by the KdV-Burger equation. The solution of the KdV equation gives a dust acoustic soliton, whose amplitude and width depend on the secondary electron yield. Similarly, the KdV-Burger equation provides a dust acoustic shock wave. This dust acoustic shock wave may be monotonic or oscillatory in nature depending on the fact that whether it is dissipation dominated or dispersion dominated. Our analysis shows that secondary electron emission increases nonadiabaticity induced dissipation and consequently increases the monotonicity of the dust acoustic shock wave. Such a dust acoustic shock wave may accelerate charge particles and cause bremsstrahlung radiation in space plasmas whose physical process may be affected by secondary electron emission from dust grains. The effect of the secondary electron emission on the stability of the equilibrium points of the KdV-Burger equation has also been investigated. This equation has two equilibrium points. The trivial equilibrium point with zero potential is a saddle and hence unstable in nature. The nontrivial equilibrium point with constant nonzero potential is a stable node up to a critical value of the wave velocity and a stable focus above it. This critical
SPH Simulation of Acoustic Waves: Effects of Frequency, Sound Pressure, and Particle Spacing
Directory of Open Access Journals (Sweden)
Y. O. Zhang
2015-01-01
Full Text Available Acoustic problems consisting of multiphase systems or with deformable boundaries are difficult to describe using mesh-based methods, while the meshfree, Lagrangian smoothed particle hydrodynamics (SPH method can handle such complicated problems. In this paper, after solving linearized acoustic equations with the standard SPH theory, the feasibility of the SPH method in simulating sound propagation in the time domain is validated. The effects of sound frequency, maximum sound pressure amplitude, and particle spacing on numerical error and time cost are then subsequently discussed based on the sound propagation simulation. The discussion based on a limited range of frequency and sound pressure demonstrates that the rising of sound frequency increases simulation error, and the increase is nonlinear, whereas the rising sound pressure has limited effects on the error. In addition, decreasing the particle spacing reduces the numerical error, while simultaneously increasing the CPU time. The trend of both changes is close to linear on a logarithmic scale.
Noise propagation in hybrid models of nonlinear systems: The Ginzburg–Landau equation
Energy Technology Data Exchange (ETDEWEB)
Taverniers, Søren [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Alexander, Francis J. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tartakovsky, Daniel M. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States)
2014-04-01
Every physical phenomenon can be described by multiple models with varying degrees of fidelity. The computational cost of higher fidelity models (e.g., molecular dynamics simulations) is invariably higher than that of their lower fidelity counterparts (e.g., a continuum model based on differential equations). While the former might not be suitable for large-scale simulations, the latter are not universally valid. Hybrid algorithms provide a compromise between the computational efficiency of a coarse-scale model and the representational accuracy of a fine-scale description. This is achieved by conducting a fine-scale computation in subdomains where it is absolutely required (e.g., due to a local breakdown of a continuum model) and coupling it with a coarse-scale computation in the rest of a computational domain. We analyze the effects of random fluctuations generated by the fine-scale component of a nonlinear hybrid on the hybrid's overall accuracy and stability. Two variants of the time-dependent Ginzburg–Landau equation (GLE) and their discrete representations provided by a nearest-neighbor Ising model serve as a computational testbed. Our analysis shows that coupling these descriptions in a one-dimensional simulation leads to erroneous results. Adding a random source term to the GLE provides accurate prediction of the mean behavior of the quantity of interest (magnetization). It also allows the two GLE variants to correctly capture the strength of the microscale fluctuations. Our work demonstrates the importance of fine-scale noise in hybrid simulations, and suggests the need for replacing an otherwise deterministic coarse-scale component of the hybrid with its stochastic counterpart.
Cartmell, Matthew P.
2016-09-01
The Editor wishes to make the reader aware that the paper "A new method for predicting nonlinear structural vibrations induced by ground impact loading" by Jun Liu, Yu Zhang, Bin Yun, Journal of Sound and Vibration, 331 (2012) 2129-2140, did not contain a direct citation of the fundamental and original work in this field by Dr. Mark Svinkin. The Editor regrets that this omission was not noted at the time that the above paper was accepted and published.
Rafique, Danish; Sygletos, Stylianos; Ellis, Andrew D
2013-02-25
We quantify the benefits of intra-channel nonlinear compensation in meshed optical networks, in view of network configuration, fibre design aspect, and dispersion management. We report that for a WDM optical transport network employing flexible 28Gbaud PM-mQAM transponders with no in-line dispersion compensation, intra-channel nonlinear compensation, for PM-16QAM through traffic, offers significant improvements of up to 4dB in nonlinear tolerance (Q-factor) irrespective of the co-propagating modulation format, and that this benefit is further enhanced (1.5dB) by increasing local link dispersion. For dispersion managed links, we further report that advantages of intra-channel nonlinear compensation increase with in-line dispersion compensation ratio, with 1.5dB improvements after 95% in-line dispersion compensation, compared to uncompensated transmission.
Anchal, Abhishek; Kumar, Pradeep; Landais, Pascal
2016-10-01
We propose and numerically verify a scheme of frequency-shift free mid-span spectral inversion (MSSI) for nonlinearity mitigation in an optical transmission system. Spectral inversion is accomplished by optical phase conjugation, realized by counter-propagating dual pumped four-wave mixing in a highly nonlinear fiber. We examine the performance of MSSI due to critical parameters such as nonlinear fiber length, pump and signal power. We demonstrate the near complete nonlinearity mitigation of 40 Gbps DQPSK modulated data transmitted over 1000 km standard single mode fiber using our method of MSSI. We perform simulation of bit-error rate as a function of optical signal to noise ratio to corroborate the effect of frequency-shift free MSSI.
Chakravarthy, S.
1978-01-01
An efficient, direct finite difference method is presented for computing sound propagation in non-stepped two-dimensional and axisymmetric ducts of arbitrarily varying cross section without mean flow. The method is not restricted by axial variation of acoustic impedance of the duct wall linings. The non-uniform two-dimensional or axisymmetric duct is conformally mapped numerically into a rectangular or cylindrical computational domain using a new procedure based on a method of fast direct solution of the Cauchy-Riemann equations. The resulting Helmholtz equation in the computational domain is separable. The solution to the governing equation and boundary conditions is expressed as a linear combination of fundamental solutions. The fundamental solutions are computed only once for each duct shape by means of the fast direct cyclic reduction method for the discrete solution of separable elliptic equations. Numerical results for several examples are presented to show the applicability and efficiency of the method.
Bingzhen, Xu; Wenzheng, Wang
1995-02-01
We give a traveling-wave method for obtaining exact solutions of the modified nonlinear Schrödinger equation iut+ɛuxx+2p||u||2u +2iq(||u||2u)x=0, describing the propagation of light pulses in optical fibers, where u represents a normalized complex amplitude of a pulse envelope, t is the normalized distance along a fiber, and x is the normalized time within the frame of reference moving along the fiber at the group velocity. With the help of the ``potential function'' we obtained by this method, we find a family of solutions that are finite everywhere, particularly including periodic solutions expressed in terms of Jacobi elliptic functions, stationary periodic solutions, and ``algebraic'' soliton solutions. Compared with previous work [D. Mihalache and N. C. Panoiu, J. Math. Phys. 33, 2323 (1992)] in which two kinds of the simplest solution were given, the physical meaning of the integration constants in the potential function we give is clearer and more easily fixed with the initial parameters of the light pulse.
Salusti, E; Garra, R
2016-01-01
We here analyze the propagation of transients of fluid-rock temperature and pressure through a thin boundary layer, where a steady trend is present, between two adjacent homogeneous rocks. We focus on the effect of convection on transients crossing such thin layer. In comparison with early models where this boundary was assumed a sharp mathematical plane separating the two rocks, here we show a realistic analysis of such boundary layer that implies a novel nonlinear model. Its solutions describe large amplitude, quick and sharp transients characterized by a novel drift and variations of the signal amplitude, leading to a nonlinear wave propagation. Possible applications are in volcanic, hydrologic, hydrothermal systems as well as for deep oil drilling. In addition, this formalism could easily be generalized for the case of a signal arriving in a rock characterized by a steady trend of pressure and/or temperature. These effects, being proportional to the initial conditions, can also give velocity variations no...
Institute of Scientific and Technical Information of China (English)
WEN Jing; JIANG Hong-Bing; YU Jing; YANG Hong; GONG Qi-Huang
2011-01-01
@@ We investigate the propagation of femtosecond laser pulses in a 5-mm-thick BBO crystal along the direction of type-Ⅰ phase-matched second-harmonic generation.An intensity-asymmetric broadband conical emission (500- 2000 nm) is demonstrated when a suitable chirp is introduced.It is generated by optical parametric amplification pumped by the second-harmonic light and seeded by the fundamental light which is broadened by cascaded nonlinear processes during second-harmonic generation.
Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.
2017-05-01
In deformable shells conveying pulsatile flow, oscillatory pressure changes cause local movements of the fluid and deformation of the shell wall, which propagate downstream in the form of a wave. In biomechanics, it is the propagation of the pulse that determines the pressure gradient during the flow at every location of the arterial tree. In this study, a woven Dacron aortic prosthesis is modelled as an orthotropic circular cylindrical shell described by means of the Novozhilov nonlinear shell theory. Flexible boundary conditions are considered to simulate connection with the remaining tissue. Nonlinear vibrations of the shell conveying pulsatile flow and subjected to pulsatile pressure are investigated taking into account the effects of the pulse-wave propagation. For the first time in literature, coupled fluid-structure Lagrange equations of motion for a non-material volume with wave propagation in case of pulsatile flow are developed. The fluid is modeled as a Newtonian inviscid pulsatile flow and it is formulated using a hybrid model based on the linear potential flow theory and considering the unsteady viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. Contributions of pressure and velocity propagation are also considered in the pressure drop along the shell and in the pulsatile frictional traction on the internal wall in the axial direction. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior of a pressurized Dacron aortic graft conveying blood flow. A pulsatile time-dependent blood flow model is considered by applying the first harmonic of the physiological waveforms of velocity and pressure during the heart beating period. Geometrically nonlinear vibration response to pulsatile flow and transmural pulsatile pressure, considering the propagation of pressure and velocity changes inside the shell, is here presented via frequency-response curves, time histories, bifurcation
d'Avila, Maria Paola Santisi
2016-01-01
In this paper, a model of one-directional propagation of three-component seismic waves in a nonlinear multilayered soil profile is coupled with a multi-story multi-span frame model to consider, in a simple way, the soil-structure interaction modelled in a finite element scheme. Modeling the three-component wave propagation enables the effects of a soil multiaxial stress state to be taken into account. These reduce soil strength and increase nonlinear effects, compared with the axial stress state. The simultaneous propagation of three components allows the prediction of the incident direction of seismic loading at the ground surface and the analysis of the behavior of a frame structure shaken by a three-component earthquake. A parametric study is carried out to characterize the changes in the ground motion due to dynamic features of the structure, for different incident wavefield properties and soil nonlinear effects. A seismic response depending on parameters such as the frequency content of soil and structur...
Manning, Robert M.
2012-01-01
The method of moments is used to define and derive expressions for laser beam deflection and beam radius broadening for high-energy propagation through the Earth s atmosphere. These expressions are augmented with the integral invariants of the corresponding nonlinear parabolic equation that describes the electric field of high-energy laser beam to propagation to yield universal equations for the aforementioned quantities; the beam deflection is a linear function of the propagation distance whereas the beam broadening is a quadratic function of distance. The coefficients of these expressions are then derived from a thin screen approximation solution of the nonlinear parabolic equation to give corresponding analytical expressions for a target located outside the Earth s atmospheric layer. These equations, which are graphically presented for a host of propagation scenarios, as well as the thin screen model, are easily amenable to the phase expansions of the wave front for the specification and design of adaptive optics algorithms to correct for the inherent phase aberrations. This work finds application in, for example, the analysis of beamed energy propulsion for space-based vehicles.
Nayfeh, A. H.; Kaiser, J. E.; Marshall, R. L.; Hurst, L. J.
1978-01-01
The performance of sound suppression techniques in ducts that produce refraction effects due to axial velocity gradients was evaluated. A computer code based on the method of multiple scales was used to calculate the influence of axial variations due to slow changes in the cross-sectional area as well as transverse gradients due to the wall boundary layers. An attempt was made to verify the analytical model through direct comparison of experimental and computational results and the analytical determination of the influence of axial gradients on optimum liner properties. However, the analytical studies were unable to examine the influence of non-parallel ducts on the optimum linear conditions. For liner properties not close to optimum, the analytical predictions and the experimental measurements were compared. The circumferential variations of pressure amplitudes and phases at several axial positions were examined in straight and variable-area ducts, hard-wall and lined sections with and without a mean flow. Reasonable agreement between the theoretical and experimental results was obtained.
1983-12-30
see Current Contents June 7, 1982, Vol. 13, No. 23). *~ * ~ .q, .* -* ** ~ .~ ~ * . . *c-. -4- 22. Exact Linearization of a Painleve Transcendent, M.J...1977. 21. Asymptotic Solutions of the Korteweg-deVries Equation, M.J. Ablowitz and H. Segur, Studies in Applied Math., 57, pp. 13-44, 1977. 22. Exact ... Linearization of a Painleve Transcendent, M.J. Ablowitz and H. Segur, Phys. Rev. Lett., Vol. 38, No. 20, p. 1103, 1977. 23. Solitons and Rational
2015-05-07
applied to the solution obtained by the inverse scattering transform. Recently we have investigated the KdV equation with step-like data. We found that the...long- time-asymptotic solution of the KdV equation for general, step-like data is a single-phase DSW; this DSW is the largest possible DSW based on...the data breaks up in to numerous DSWs in an intermediate long time limit, eventually the solution tends to one DSW. 3 ACCOMPLISHMENTS/NEW FINDINGS
Bernstein, D. R.; Dashen, R.; Flatte, S. M.
1983-01-01
A theory is developed which describes intensity moments for wave propagation through random media. It is shown using the path integral technique that these moments are significantly different from those of a Rayleigh distribution in certain asymptotic regions. The path integral approach is extended to inhomogeneous, anisotropic media possessing a strong deterministic velocity profile. The behavior of the corrections to Rayleigh statistics is examined, and it is shown that the important characteristics can be attributed to a local micropath focusing function. The correction factor gamma is a micropath focusing parameter defined in terms of medium fluctuations. The value of gamma is calculated for three ocean acoustic experiments, using internal waves as the medium fluctuations. It is found that all three experiments show excellent agreement as to the relative values of the intensity moments. The full curved ray is found to yield results that are significantly different from the straight-line approximations. It is noted that these methods are applicable to a variety of experimental situations, including atmospheric optics and radio waves through plasmas.
Schoch, Stefan; Nikiforakis, Nikolaos; Lee, Bok Jik
2013-08-01
Highly non-ideal condensed-phase explosives used by the mining industry have a strong detonation velocity dependence on the charge dimension. Detonation velocities can be as low as one third of the theoretically calculated ideal detonation velocity in charge radii close to the failure radius. Under these detonation conditions the flow in the confiner can become subsonic, a flow condition under which classical shock-polar analysis is not applicable. This restriction prohibits the use of popular engineering models like detonation shock dynamics and Wood-Kirkwood type models under these confinement conditions. In addition, it has been found in the literature that subsonic flow in the confiner will increase the influence of the confining material on the detonation performance. In this work, we use a multi-phase model coupled to an elastic-plastic model (for the representation of a confiner) to explore the interaction of detonations under these confiner conditions. An ammonium nitrate based mining emulsion is investigated in aluminium and steel confinement of finite and infinite thickness representing the confiner as either a fluid or an elastic-plastic material. It is found that the presence of elastic waves is negligible close to ideal detonation conditions, but is important close to the failure radius and in detonation conditions with subsonic flow in the confiner. High sound-speed confiners support the detonation through energy transport ahead of the detonation front if desensitisation effects are negligible. The detonation front profiles are found to remain convex even in the most non-ideal detonation conditions, and the detonation front curvature only becomes concave in a localised region close to the confiner edge.
Ferrarese, Giorgio
2011-01-01
Lectures: A. Jeffrey: Lectures on nonlinear wave propagation.- Y. Choquet-Bruhat: Ondes asymptotiques.- G. Boillat: Urti.- Seminars: D. Graffi: Sulla teoria dell'ottica non-lineare.- G. Grioli: Sulla propagazione del calore nei mezzi continui.- T. Manacorda: Onde nei solidi con vincoli interni.- T. Ruggeri: "Entropy principle" and main field for a non linear covariant system.- B. Straughan: Singular surfaces in dipolar materials and possible consequences for continuum mechanics
Discovery of Sound in the Sea (DOSITS) Website Development
2013-03-04
life affect ocean sound levels? • Science of Sound > Sounds in the Sea > How will ocean acidification affect ocean sound levels? • Science of Sound...Science of Sound > Sounds in the Sea > How does shipping affect ocean sound levels? • Science of Sound > Sounds in the Sea > How does marine...Advanced Topics > How does sound move? Wave propagation and Huygens’ Principle • Science of Sound > Advanced Topics > Statistical uncertainty aof
Institute of Scientific and Technical Information of China (English)
刘丹; 洪伟毅; 郭旗
2016-01-01
In this paper, the propagation of a few-cycle femtosecond pulse in a nonlinear Kerr medium is studied by the method of time-transformation. The time-transformation approach can greatly improve the computational eﬃciency. Because the width of electric field of the few-cycle femtosecond pulse is less than the characteristic time of Raman response in a nonlinear medium, it is observed that the electric field of the pulse experiences a significant deformation and breaks into a Raman soliton and the dispersion waves during the propagation, which can be attributed to strongly nonlocal nonlinearity. A deeper investigation of the time-frequency distributions for both the Raman soliton and the dispersion waves is also included. Since the pulse contains only few cycles, the carrier-envelope phase (CEP) of the pulse plays an important role in the process of nonlinear propagation. The numerical results show the CEP-dependence in the process of nonlinear propagation: the phase changes for both the Raman soliton and the dispersive waves are just equal to the CEP change of the initial pulse, which indicates that the CEP of the pulse is linearly transmitted in the process of nonlinear propagation. This phenomenon can be attributed to the fact that the phase change due to the nonlinearity is only dependent on the intensities of the fields of both the Raman soliton and the dispersion wave, which are unchanged for all the CEPs.
Alghamdi, Amal Mohammed
2012-04-01
Clawpack, a conservation laws package implemented in Fortran, and its Python-based version, PyClaw, are existing tools providing nonlinear wave propagation solvers that use state of the art finite volume methods. Simulations using those tools can have extensive computational requirements to provide accurate results. Therefore, a number of tools, such as BearClaw and MPIClaw, have been developed based on Clawpack to achieve significant speedup by exploiting parallel architectures. However, none of them has been shown to scale on a large number of cores. Furthermore, these tools, implemented in Fortran, achieve parallelization by inserting parallelization logic and MPI standard routines throughout the serial code in a non modular manner. Our contribution in this thesis research is three-fold. First, we demonstrate an advantageous use case of Python in implementing easy-to-use modular extensible scalable scientific software tools by developing an implementation of a parallelization framework, PetClaw, for PyClaw using the well-known Portable Extensible Toolkit for Scientific Computation, PETSc, through its Python wrapper petsc4py. Second, we demonstrate the possibility of getting acceptable Python code performance when compared to Fortran performance after introducing a number of serial optimizations to the Python code including integrating Clawpack Fortran kernels into PyClaw for low-level computationally intensive parts of the code. As a result of those optimizations, the Python overhead in PetClaw for a shallow water application is only 12 percent when compared to the corresponding Fortran Clawpack application. Third, we provide a demonstration of PetClaw scalability on up to the entirety of Shaheen; a 16-rack Blue Gene/P IBM supercomputer that comprises 65,536 cores and located at King Abdullah University of Science and Technology (KAUST). The PetClaw solver achieved above 0.98 weak scaling efficiency for an Euler application on the whole machine excluding the
Kiguchi, M
1999-09-20
The intrinsic error propagation in a technique that uses total reflection geometry for the measurement of chi(3) is calculated. The results show how accurately the parameters should be measured to obtain the chi(3) value with the required precision. The film thickness should be slightly less than the fundamental wavelength to reduce the chi(3) error that propagates from other parameters.
Non-linearity parameter / of binary liquid mixtures at elevated pressures
Indian Academy of Sciences (India)
J D Pandey; J Chhabra; R Dey; V Sanguri; R Verma
2000-09-01
When sound waves of high amplitude propagate, several non-linear effects occur. Ultrasonic studies in liquid mixtures provide valuable information about structure and interaction in such systems. The present investigation comprises of theoretical evaluation of the acoustic non-linearity parameter / of four binary liquid mixtures using Tong and Dong equation at high pressures and = 303.15 K. Thermodynamic method has also been used to calculate the non-linearity parameter after making certain approximations.
Dimensional analysis of acoustically propagated signals
Hansen, Scott D.; Thomson, Dennis W.
1993-01-01
Traditionally, long term measurements of atmospherically propagated sound signals have consisted of time series of multiminute averages. Only recently have continuous measurements with temporal resolution corresponding to turbulent time scales been available. With modern digital data acquisition systems we now have the capability to simultaneously record both acoustical and meteorological parameters with sufficient temporal resolution to allow us to examine in detail relationships between fluctuating sound and the meteorological variables, particularly wind and temperature, which locally determine the acoustic refractive index. The atmospheric acoustic propagation medium can be treated as a nonlinear dynamical system, a kind of signal processor whose innards depend on thermodynamic and turbulent processes in the atmosphere. The atmosphere is an inherently nonlinear dynamical system. In fact one simple model of atmospheric convection, the Lorenz system, may well be the most widely studied of all dynamical systems. In this paper we report some results of our having applied methods used to characterize nonlinear dynamical systems to study the characteristics of acoustical signals propagated through the atmosphere. For example, we investigate whether or not it is possible to parameterize signal fluctuations in terms of fractal dimensions. For time series one such parameter is the limit capacity dimension. Nicolis and Nicolis were among the first to use the kind of methods we have to study the properties of low dimension global attractors.
Afanasyev, A. N.; Uralov, A. M.
2012-10-01
We present the results of analytical modelling of fast-mode magnetohydrodynamic wave propagation near a 2D magnetic null point. We consider both a linear wave and a weak shock and analyse their behaviour in cold and warm plasmas. We apply the nonlinear geometrical acoustics method based on the Wentzel-Kramers-Brillouin approximation. We calculate the wave amplitude, using the ray approximation and the laws of solitary shock wave damping. We find that a complex caustic is formed around the null point. Plasma heating is distributed in space and occurs at a caustic as well as near the null point due to substantial nonlinear damping of the shock wave. The shock wave passes through the null point even in a cold plasma. The complex shape of the wave front can be explained by the caustic pattern.
Richoux, Olivier; Hardy, Jean
2009-01-01
This paper presents an application of time-frequency methods to characterize the dispersion of acoustic waves travelling in a one-dimensional periodic or disordered lattice made up of Helmholtz resonators connected to a cylindrical tube. These methods allow (1) to evaluate the velocity of the wave energy when the input signal is an acoustic pulse ; (2) to display the evolution of the spectral content of the transient signal ; (3) to show the role of the localized nonlinearities on the propagation .i.e the emergence of higher harmonics. The main result of this paper is that the time-frequency methods point out how the nonlinearities break the localization of the waves and/or the filter effects of the lattice.
Kardaś, Tomasz M.; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr
2017-01-01
Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media. PMID:28225007
Kardaś, Tomasz M; Nejbauer, Michał; Wnuk, Paweł; Resan, Bojan; Radzewicz, Czesław; Wasylczyk, Piotr
2017-02-22
Although new optical materials continue to open up access to more and more wavelength bands where femtosecond laser pulses can be generated, light frequency conversion techniques are still indispensable in filling the gaps on the ultrafast spectral scale. With high repetition rate, low pulse energy laser sources (oscillators) tight focusing is necessary for a robust wave mixing and the efficiency of broadband nonlinear conversion is limited by diffraction as well as spatial and temporal walk-off. Here we demonstrate a miniature third harmonic generator (tripler) with conversion efficiency exceeding 30%, producing 246 fs UV pulses via cascaded second order processes within a single laser beam focus. Designing this highly efficient and ultra compact frequency converter was made possible by full 3-dimentional modelling of propagation of tightly focused, broadband light fields in nonlinear and birefringent media.
Afanasyev, Andrey N
2012-01-01
We present the results of analytical modelling of fast-mode magnetohydrodynamic wave propagation near a 2D magnetic null point. We consider both a linear wave and a weak shock and analyse their behaviour in cold and warm plasmas. We apply the nonlinear geometrical acoustics method based on the Wentzel-Kramers-Brillouin approximation. We calculate the wave amplitude, using the ray approximation and the laws of solitary shock wave damping. We find that a complex caustic is formed around the null point. Plasma heating is distributed in space and occurs at a caustic as well as near the null point due to substantial nonlinear damping of the shock wave. The shock wave passes through the null point even in a cold plasma. The complex shape of the wave front can be explained by the caustic pattern.
Deymier, P A; Swinteck, N; Runge, K; Deymier-Black, A; Hoying, J B
2015-01-01
We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.
Sound propagation over curved barriers
Pierce, Allan D.; Main, Geoffrey L.; Kearns, James A.; Hsieh, H.-A.
1986-01-01
Wide barriers with curved tops are studied with emphasis placed on circumstances whereby the local radius of curvature R of the barrier is continuous along the surface and is large compared to a wavelength. Results analogous to those given by Hayek et al. (1978) are reviewed and extended to cases where the radius of curvature and the surface impedance may vary with position. Circumstances not easily interpreted within the framework of the model proposed by Keller (1956) and Hayek et al. are also considered.
Atmospheric Physics and Sound Propagation
1950-09-01
8217 £^^mnQt fchs average level dropsj^adualjly to about &$ db at 5>Q fee assd thsa rises- toabout-SS -ab -£t .10 fee© Höi;jsvsr:? in comparison...might be expected, was f«s53 to have sxial syaset^y assd feerefore the following discus^ sion will be confined to one plan« passing thycwghi the axis
Karni, Ouri; Eisenstein, Gad; Reithmaier, Johann Peter
2014-01-01
We study the interplay between coherent light-matter interactions and non-resonant pulse propagation effects when ultra-short pulses propagate in room-temperature quantum-dot (QD) semiconductor optical amplifiers (SOAs). The signatures observed on a pulse envelope after propagating in a transparent SOA, when coherent Rabi-oscillations are absent, highlight the contribution of two-photon absorption (TPA), and its accompanying Kerr-like effect, as well as of linear dispersion, to the modification of the pulse complex electric field profile. These effects are incorporated into our previously developed finite-difference time-domain comprehensive model that describes the interaction between the pulses and the QD SOA. The present, generalized, model is used to investigate the combined effect of coherent and non-resonant phenomena in the gain and absorption regimes of the QD SOA. It confirms that in the QD SOA we examined, linear dispersion in the presence of the Kerr-like effect causes pulse compression, which coun...
Zhao, Haonan; Guo, Zhaojie; Yu, Xiangjiang
2017-02-01
This paper focuses on the strain modelling of extensional fault-propagation folds to reveal the effects of key factors on the strain accumulation and the relationship between the geometry and strain distribution of fault-related folds. A velocity-geometry-strain method is proposed for the analysis of the total strain and its accumulation process within the trishear zone of an extensional fault-propagation fold. This paper improves the non-linear trishear model proposed by Jin and Groshong (2006). Based on the improved model, the distribution of the strain rate within the trishear zone and the total strain are obtained. The numerical simulations of different parameters performed in this study indicate that the shape factor R, the total apical angle, and the P/S ratio control the final geometry and strain distribution of extensional fault-propagation folds. A small P/S ratio, a small apical angle, and an R value far greater or far smaller than 1 produce an asymmetric, narrow, and strongly deformed trishear zone. The velocity-geometry-strain analysis method is applied to two natural examples from Big Brushy Canyon in Texas and the northwestern Red Sea in Egypt. The strain distribution within the trishear zone is closely related to the geometry of the folds.
2010-10-01
millimeter wave interferometer for remote vibration sensing, M. Smith, J. Scales, M. Weiss, B. Zadler, in press, Journal of Applied Physics List of...PIERS). Enhancing the nonlinear conversion in ultrasonic parametric arrays, to be submitted to Journal of Applied Physics . (d) Manuscripts Number of
BELDHUIS, HJA; SUZUKI, T; PIJN, JPM; TEISMAN, A; DASILVA, FHL; BOHUS, B
1993-01-01
The relationship between ipsi- and contralateral epileptiform electroencephalographic (EEG) activity was investigated in rats that were kindled daily in the amygdala. Two types of relationship-linear and non-linear associations-were studied and used to estimate time delays of EEG activity between ho
Gilding, B.H.; Kersner, R.
1996-01-01
A degenerate parabolic partial differential equation with a time derivative and first- and second-order derivatives with respect to one spatial variable is studied. The coefficients in the equation depend nonlinearly on both the unknown and the first spatial derivative of a function of the unknown.
Worm Warning and Optimization of Nonlinear Propagation Model%蠕虫预警及非线性传播模型优化
Institute of Scientific and Technical Information of China (English)
佟晓筠; 王翥
2011-01-01
At present there are some worm intrusion detection systems which detect network worms only by using worm propagation properties and have high false alarm rate.This paper analyzed worm non-linear propagation models, realized the optimization of worm model, and proposed distributed worm propagation model.Then a distributed worm detection technology was designed according to the distributed worm propagation model.The system uses rule-based detection method to monitor network worms, and the console side manages and coordinates detection work of the client sides.The experimental results show that the technology is a good solution to worm warning and worm detection, which can give an alarm with high detection rate and low false alarm rate.%目前已有一些蠕虫检测系统利用蠕虫传播特性进行检测,误报率高,不能对大范围网络进行检测.为此,首先对蠕虫传播模型进行了分析和优化,提出了新蠕虫分布式传播模型.针对该模型提出了分布式蠕虫检测技术,亦即采用基于规则的检测方法监控网络蠕虫,控制台管理和协调多个检测端的工作.实验结果表明,该方法能够很好地预警蠕虫的传播行为并进行监控和报警,具有高检测率和低误报率.
2015-05-31
was increased as the dislocation motion was impeded by the fine MX type of precipitates and this resistance was increased due to increase in...Code A: Approved for public release, distribution is unlimited. precipitate -matrix coherency strains generated during different tempering temperatures...linkage to form micro-cracks, and the propagation of micro-cracks until failure. During this process, the precipitation of the second phase particles
Nonlinear effects of the finite amplitude ultrasound wave in biological tissues
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Nonlinear effects will occur during the transmission of the finite amplitude wave in biological tissues.The theoretical prediction and experimental demonstration of the nonlinear effects on the propagation of the finite amplitude wave at the range of biomedical ultrasound frequency and intensity are studied.Results show that the efficiency factor and effective propagation distance will decrease while the attenuation coefficient increases due to the existence of nonlinear effects.The experimental results coincided quite well with the theory.This shows that the effective propagation distance and efficiency factor can be used to describe quantitatively the influence of nonlinear effects on the propagation of the finite amplitude sound wave in biological tissues.
Jiménez, Noé; Redondo, Javier; Sánchez-Morcillo, Víctor; Hou, Yi; Konofagou, Elisa E
2015-01-01
A time-domain numerical code based on the constitutive relations of nonlinear acoustics for simulating ultrasound propagation is presented. To model frequency power law attenuation, such as observed in biological media, multiple relaxation processes are included and relaxation parameters are fitted to both exact frequency power law attenuation and empirically measured attenuation of a variety of tissues that does not fit an exact power law. A computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the numerical method and to improve stability when shock waves are present. This technique avoids the use of high order finite difference schemes, leading to fast calculations. The numerical code is especially suitable to study high intensity and focused axisymmetric acoustic beams in tissue-like medium, as it is based on the full constitutive relations that overcomes the limitations of the parabolic approximations, while some specific effects not cont...
Propagation of acoustic wave in viscoelastic medium permeated with air bubbles
Institute of Scientific and Technical Information of China (English)
Liang Bin; Zhu Zhe-Min; Cheng Jian-Chun
2006-01-01
Based on the modification of the radial pulsation equation of an individual bubble, an effective medium method (EMM) is presented for studying propagation of linear and nonlinear longitudinal acoustic waves in viscoelastic medium permeated with air bubbles. A classical theory developed previously by Gaunaurd (Gaunaurd GC and (U)berall H, J. Acoust. Soc. Am., 1978; 63: 1699-1711) is employed to verify the EMM under linear approximation by comparing the dynamic (i.e. frequency-dependent) effective parameters, and an excellent agreement is obtained. The propagation of longitudinal waves is hereby studied in detail. The results illustrate that the nonlinear pulsation of bubbles serves as the source of second harmonic wave and the sound energy has the tendency to be transferred to second harmonic wave. Therefore the sound attenuation and acoustic nonlinearity of the viscoelastic matrix are remarkably enhanced due to the system's resonance induced by the existence of bubbles.
Politzer, David
2015-01-01
The volume of air that goes in and out of a musical instrument's sound hole is related to the sound hole's contribution to the volume of the sound. Helmholtz's result for the simplest case of steady flow through an elliptical hole is reviewed. Measurements on multiple holes in sound box geometries and scales relevant to real musical instruments demonstrate the importance of a variety of effects. Electric capacitance of single flat plates is a mathematically identical problem, offering an alternate way to understand the most important of those effects. The measurements also confirm and illuminate aspects of Helmholtz's "bottle" resonator model as applied to musical instrument sound boxes and sound holes.
Energy Technology Data Exchange (ETDEWEB)
Saberian, E. [Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, 53714-161 Tabriz (Iran, Islamic Republic of); Department of Physics, Faculty of Basic Sciences, University of Neyshabur, Neyshabur (Iran, Islamic Republic of); Esfandyari-Kalejahi, A.; Rastkar-Ebrahimzadeh, A.; Afsari-Ghazi, M. [Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, 53714-161 Tabriz (Iran, Islamic Republic of)
2013-03-15
The propagation of ion-acoustic (IA) solitons is studied in a plasma system, comprised of warm ions and superthermal (Kappa distributed) electrons in the presence of an electron-beam by using a hydrodynamic model. In the linear analysis, it is seen that increasing the superthermality lowers the phase speed of the IA waves. On the other hand, in a fully nonlinear investigation, the Mach number range and characteristics of IA solitons are analyzed, parametrically and numerically. It is found that the accessible region for the existence of IA solitons reduces with increasing the superthermality. However, IA solitons with both negative and positive polarities can coexist in the system. Additionally, solitary waves with both subsonic and supersonic speeds are predicted in the plasma, depending on the value of ion-temperature and the superthermality of electrons in the system. It is examined that there are upper critical values for beam parameters (i.e., density and velocity) after which, IA solitary waves could not propagate in the plasma. Furthermore, a typical interaction between IA waves and the electron-beam in the plasma is confirmed.
Rupper, Greg; Rudin, Sergey; Crowne, Frank J.
2012-12-01
In the Dyakonov-Shur terahertz detector the conduction channel of a heterostructure High Electron Mobility Transistor (HEMT) is used as a plasma wave resonator for density oscillations in electron gas. Nonlinearities in the plasma wave propagation lead to a constant source-to-drain voltage, providing the detector output. In this paper, we start with the quasi-classical Boltzmann equation and derive the hydrodynamic model with temperature dependent transport coefficients for a two-dimensional viscous flow. This derivation allows us to obtain the parameters for the hydrodynamic model from the band-structure of the HEMT channel. The treatment here also includes the energy balance equation into the analysis. By numerical solution of the hydrodynamic equations with a non-zero boundary current we evaluate the detector response function and obtain the temperature dependence of the plasma resonance. The present treatment extends the theory of Dyakonov-Shur plasma resonator and detector to account for the temperature dependence of viscosity, the effects of oblique wave propagation on detector response, and effects of boundary current in two-dimensional flow on quality of the plasma resonance. The numerical results are given for a GaN channel. We also investigated a stability of source to drain flow and formation of shock waves.
Mishra, M. K.; Jain, S. K.; Jain
2013-10-01
Ion-acoustic solitons in magnetized low-β plasma consisting of warm adiabatic positive and negative ions and non-thermal electrons have been studied. The reductive perturbation method is used to derive the Korteweg-de Vries (KdV) equation for the system, which admits an obliquely propagating soliton solution. It is found that due to the presence of finite ion temperature there exist two modes of propagation, namely fast and slow ion-acoustic modes. In the case of slow-mode if the ratio of temperature to mass of positive ion species is lower (higher) than the negative ion species, then there exist compressive (rarefactive) ion-acoustic solitons. It is also found that in the case of slow mode, on increasing the non-thermal parameter (γ) the amplitude of the compressive (rarefactive) soliton decreases (increases). In fast ion-acoustic mode the nature and characteristics of solitons depend on negative ion concentration. Numerical investigation in case of fast mode reveals that on increasing γ, the amplitude of compressive (rarefactive) soliton increases (decreases). The width of solitons increases with an increase in non-thermal parameters in both the modes for compressive as well as rarefactive solitons. There exists a value of critical negative ion concentration (α c ), at which both compressive and rarefactive ion-acoustic solitons appear as described by modified KdV soliton. The value of α c decreases with increase in γ.
Modeling seismic wave propagation and amplification in 1D/2D/3D linear and nonlinear unbounded media
Semblat, Jean-François
2011-01-01
To analyze seismic wave propagation in geological structures, it is possible to consider various numerical approaches: the finite difference method, the spectral element method, the boundary element method, the finite element method, the finite volume method, etc. All these methods have various advantages and drawbacks. The amplification of seismic waves in surface soil layers is mainly due to the velocity contrast between these layers and, possibly, to topographic effects around crests and hills. The influence of the geometry of alluvial basins on the amplification process is also know to be large. Nevertheless, strong heterogeneities and complex geometries are not easy to take into account with all numerical methods. 2D/3D models are needed in many situations and the efficiency/accuracy of the numerical methods in such cases is in question. Furthermore, the radiation conditions at infinity are not easy to handle with finite differences or finite/spectral elements whereas it is explicitely accounted in the B...
Directory of Open Access Journals (Sweden)
M. G. Hafez
2016-01-01
Full Text Available Two-dimensional three-component plasma system consisting of nonextensive electrons, positrons, and relativistic thermal ions is considered. The well-known Kadomtsev-Petviashvili-Burgers and Kadomtsev-Petviashvili equations are derived to study the basic characteristics of small but finite amplitude ion acoustic waves of the plasmas by using the reductive perturbation method. The influences of positron concentration, electron-positron and ion-electron temperature ratios, strength of electron and positrons nonextensivity, and relativistic streaming factor on the propagation of ion acoustic waves in the plasmas are investigated. It is revealed that the electrostatic compressive and rarefactive ion acoustic waves are obtained for superthermal electrons and positrons, but only compressive ion acoustic waves are found and the potential profiles become steeper in case of subthermal positrons and electrons.
Falzone, Tobias; Blair, Savanna; Robertson-Anderson, Rae
2015-03-01
The semiflexible biopolymer actin, a ubiquitous component of nearly all biological organisms, plays an important role in many mechanically-driven processes such as muscle contraction, cancer invasion and cell motility. As such, entangled actin networks, which possess unique and complex viscoelastic properties, have been the subject of much theoretical and experimental work. However, due to this viscoelastic complexity, much is still unknown regarding the correlation of the applied stress on actin networks to the induced filament strain at the molecular and micro scale. Here, we use simultaneous optical trapping and fluorescence microscopy to characterize the link between applied microscopic forces and strain propagation as a function of strain rate and concentration. Specifically, we track fiduciary markers on entangled actin filaments before, during and after actively driving embedded microspheres through the network. These measurements provide much needed insight into the molecular-level dynamics connecting stress and strain in semiflexible polymer networks.
Indian Academy of Sciences (India)
O Rahman; A A Mamun
2013-06-01
A theoretical investigation of dust-acoustic solitary waves in three-component unmagnetized dusty plasma consisting of trapped electrons, Maxwellian ions, and arbitrarily charged cold mobile dust was done. It has been found that, owing to the departure from the Maxwellian electron distribution to a vortex-like one, the dynamics of small but finite amplitude dust-acoustic (DA) waves is governed by a nonlinear equation of modified Korteweg–de Vries (mKdV) type (instead of KdV). The reductive perturbation method was employed to study the basic features (amplitude, width, speed, etc.) of DA solitary waves which are significantly modified by the presence of trapped electrons. The implications of our results in space and laboratory plasmas are briefly discussed.
Directory of Open Access Journals (Sweden)
R. Garra
2015-01-01
Full Text Available The evolution of strong transients of temperature and pressure in two adjacent fluid-saturated porous rocks is described by a Burgers equation in an early model of Natale and Salusti (1996. We here consider the effect of a realistic intermediate region between the two media and infer how transient processes can also happen, such as chemical reactions, diffusion of fine particles, and filter cake formations. This suggests enlarging our analysis and taking into account not only punctual quantities but also “time averaged” quantities. These boundary effects are here analyzed by using a “memory formalism”; that is, we replace the ordinary punctual time-derivatives with Caputo fractional time-derivatives. We therefore obtain a nonlinear fractional model, whose explicit solution is shown, and finally discuss its geological importance.
Directory of Open Access Journals (Sweden)
Arkoprovo Biswas
2011-07-01
Full Text Available In the presence of conducting inhomogeneities in near-surface structures, apparent resistivity data in magnetotelluric sounding can be severely distorted. This is due to electric fields generated from boundary charges on surficial inhomogeneities. Such distortion persists throughout the entire recording range and is known as static shift in magnetotellurics. Frequency-independent static shifts manifest as vertical, parallel shifts that occur in plots of the dual logarithmic scale of apparent resistivity versus time period. The phase of magnetotelluric sounding data remains unaffected by the static shift and can be used to remove the static shift to some extent. However, individual inversion of phase data yields highly nonunique results, and alone it will not work to correctly remove the static shift. Inversions of uncorrected magnetotelluric data yield erroneous and unreliable estimations, while static-shift-corrected magnetotelluric data provide better and reliable estimations of the resistivities and thicknesses of subsurface structures. In the present study, static shift (a frequency-independent real constant is also considered as one of the model parameters and is optimized together with other model parameters (resistivity and thickness using the very fast simulated annealing global inversion technique. This implies that model parameters are determined simultaneously with the estimate of the static shift in the data. Synthetic and noisy data generated for a number of models are interpreted, to demonstrate the efficacy of the approach to yield reliable estimates of subsurface structures when the apparent resistivity data are affected by static shift. Individual inversions of static-shift-affected apparent resistivity data and phase data yield unreliable estimations of the model parameters. Furthermore, the estimated model parameters after individual data inversions do not show any systematic correlations with the amount of static shift in the
Matsumoto, Takuma
2010-01-01
We have performed MHD simulations of Alfven wave propagation along an open flux tube in the solar atmosphere. In our numerical model, Alfven waves are generated by the photospheric granular motion. As the wave generator, we used a derived temporal spectrum of the photospheric granular motion from G-band movies of Hinode/SOT. It is shown that the total energy flux at the corona becomes larger and the transition region height becomes higher in the case when we use the observed spectrum rather than white/pink noise spectrum as the wave generator. This difference can be explained by the Alfven wave resonance between the photosphere and the transition region. After performing Fourier analysis on our numerical results, we have found that the region between the photosphere and the transition region becomes an Alfven wave resonant cavity. We have confirmed that there are at least three resonant frequencies, 1, 3 and 5 mHz, in our numerical model. Alfven wave resonance is one of the most effective mechanisms to explai...
Theoretical aspects of nonlinear echo image system
Institute of Scientific and Technical Information of China (English)
ZHANG Ruiquan; FENG Shaosong
2003-01-01
In order to develop the nonlinear echo image system to diagnose pathological changes in biological tissue , a simple physical model to analyse the character of nonlinear reflected wave in biological medium is postulated. The propagation of large amplitude plane sound wave in layered biological media is analysed for the one dimensional case by the method of successive approximation and the expression for the second order wave reflected from any interface of layered biological media is obtained. The relations between the second order reflection coefficients and the nonlinear parameters of medium below the interface are studied in three layers interfaces. Finally, the second order reflection coefficients of four layered media are calculated numerically. The results indicate that the nonlinear parameter B/A of each layer of biological media can be determined by the reflection method.
Institute of Scientific and Technical Information of China (English)
姜根山; 张荣英; 安连锁; 田静
2011-01-01
研究周期性管排阵列的声传播特性对于检测发生在炉内换热器管阵列中的泄漏故障具有重要意义。该文阐述了周期性管排阵列声传播物理机制。实验研究了周期性管排阵列的声传播特性。得出管阵列的纵向节距、横向节距和管径大小等几何参数对泄漏声辐射透射声谱的影响规律，揭示管阵列纵向节距影响透射声谱的“阻带”位置，横向节距影响透射声谱主极大的位置，以及管径大小影响透射声谱总能量的基本关系。指出充水管阵列与管内为空气的管阵列声透射特性的相同与差异，以及“通带”的位置。为炉内管阵列中的管道泄漏检测技术提供了实验依据。%It is important for detection of leakages faults in the boiler heat-exchanger tube array that the transmission characteristics of sound emission in the periodic tube arrays were studied. In this paper, the physical mechanism of sound transmission through any row within the periodic tube array was described. By experimentally studying on the sound propagation characteristics in the periodic tube array, the relationships between geometric parameters of the tube array and the transmission coefficients of leakage sound emission had been obtained. It was revealed that the longitudinal period of tube array would change the stop band frequencies, the transverse period of tube array would change the main maximum frequencies, and the diameter size of the tube would change the sound transmission energy. The sound transmission characteristics of water-filled tube array had been experimentally studied. The same and differences of sound transmission characteristics between water-filled tube array and air-filled tube array were given out, and the pass band frequencies were obtained. This paper provides an experimental basis for the tube leak detection technology in boilers.
On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation.
Directory of Open Access Journals (Sweden)
Sebastian Bach
Full Text Available Understanding and interpreting classification decisions of automated image classification systems is of high value in many applications, as it allows to verify the reasoning of the system and provides additional information to the human expert. Although machine learning methods are solving very successfully a plethora of tasks, they have in most cases the disadvantage of acting as a black box, not providing any information about what made them arrive at a particular decision. This work proposes a general solution to the problem of understanding classification decisions by pixel-wise decomposition of nonlinear classifiers. We introduce a methodology that allows to visualize the contributions of single pixels to predictions for kernel-based classifiers over Bag of Words features and for multilayered neural networks. These pixel contributions can be visualized as heatmaps and are provided to a human expert who can intuitively not only verify the validity of the classification decision, but also focus further analysis on regions of potential interest. We evaluate our method for classifiers trained on PASCAL VOC 2009 images, synthetic image data containing geometric shapes, the MNIST handwritten digits data set and for the pre-trained ImageNet model available as part of the Caffe open source package.
Photoacoustic Sounds from Meteors
Spalding, Richard; Tencer, John; Sweatt, William; Conley, Benjamin; Hogan, Roy; Boslough, Mark; Gonzales, GiGi; Spurný, Pavel
2017-01-01
Concurrent sound associated with very bright meteors manifests as popping, hissing, and faint rustling sounds occurring simultaneously with the arrival of light from meteors. Numerous instances have been documented with −11 to −13 brightness. These sounds cannot be attributed to direct acoustic propagation from the upper atmosphere for which travel time would be several minutes. Concurrent sounds must be associated with some form of electromagnetic energy generated by the meteor, propagated to the vicinity of the observer, and transduced into acoustic waves. Previously, energy propagated from meteors was assumed to be RF emissions. This has not been well validated experimentally. Herein we describe experimental results and numerical models in support of photoacoustic coupling as the mechanism. Recent photometric measurements of fireballs reveal strong millisecond flares and significant brightness oscillations at frequencies ≥40 Hz. Strongly modulated light at these frequencies with sufficient intensity can create concurrent sounds through radiative heating of common dielectric materials like hair, clothing, and leaves. This heating produces small pressure oscillations in the air contacting the absorbers. Calculations show that −12 brightness meteors can generate audible sound at ~25 dB SPL. The photoacoustic hypothesis provides an alternative explanation for this longstanding mystery about generation of concurrent sounds by fireballs. PMID:28145486
Energy Technology Data Exchange (ETDEWEB)
Moreira, Roger Matsumoto; Mendes, Andre Avelino de Oliveira; Bacchi, Raphael David Aquilino [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Escola de Engenharia. Lab. de Dinamica dos Fluidos Computacional (LabCFD)], e-mail: roger@vm.uff.br, e-mail: andreavelinoom@gmail.com, e-mail: raphael@esss.com.br
2006-07-01
The present work aims to model numerically the generation and propagation of waves in a reservoir, represented by a two-dimensional impermeable box, with a flat horizontal bottom and two vertical walls. The horizontal or vertical harmonic motion is imposed at the container, which is partially filled with water, with two possible initial conditions for the free surface: still water or a stationary sinusoidal wave. Two numerical methods are employed in the solution of the boundary value problem. The first is based on solving an integral equation that arises from Cauchy's integral theorem for functions of a complex variable. The transient nonlinear free surface flow is simulated using a boundary integral method. Numerical results are validated by comparing them with classical analytical solutions. The second method uses the commercial code ANSYS CFX with its homogeneous free surface model. In this case, results are compared with experiments done by Bredmose et al. (2003). In both models, interesting features at the free surface are obtained and discussed. (author)
Knippenberg, S; Rehn, D R; Wormit, M; Starcke, J H; Rusakova, I L; Trofimov, A B; Dreuw, A
2012-02-14
An earlier proposed approach to molecular response functions based on the intermediate state representation (ISR) of polarization propagator and algebraic-diagrammatic construction (ADC) approximations is for the first time employed for calculations of nonlinear response properties. The two-photon absorption (TPA) spectra are considered. The hierarchy of the first- and second-order ADC∕ISR computational schemes, ADC(1), ADC(2), ADC(2)-x, and ADC(3/2), is tested in applications to H(2)O, HF, and C(2)H(4) (ethylene). The calculated TPA spectra are compared with the results of coupled cluster (CC) models and time-dependent density-functional theory (TDDFT) calculations, using the results of the CC3 model as benchmarks. As a more realistic example, the TPA spectrum of C(8)H(10) (octatetraene) is calculated using the ADC(2)-x and ADC(2) methods. The results are compared with the results of TDDFT method and earlier calculations, as well as to the available experimental data. A prominent feature of octatetraene and other polyene molecules is the existence of low-lying excited states with increased double excitation character. We demonstrate that the two-photon absorption involving such states can be adequately studied using the ADC(2)-x scheme, explicitly accounting for interaction of doubly excited configurations. Observed peaks in the experimental TPA spectrum of octatetraene are assigned based on our calculations.
Directory of Open Access Journals (Sweden)
L. S. Konev
2015-09-01
Full Text Available Numerical method for calculation of forward and backward waves of intense few-cycle laser pulses propagating in an optical waveguide with dispersion and cubic nonlinearity of electronic and electronic-vibration nature is described. Simulations made with the implemented algorithm show that accounting for Raman nonlinearity does not lead to qualitative changes in behavior of the backward wave. Speaking about quantitative changes, the increase of efficiency of energy transfer from the forward wave to the backward wave is observed. Presented method can be also used to simulate interaction of counterpropagating pulses.
Nonlinear electrostatic drift Kelvin-Helmholtz instability
Sharma, Avadhesh C.; Srivastava, Krishna M.
1993-01-01
Nonlinear analysis of electrostatic drift Kelvin-Helmholtz instability is performed. It is shown that the analysis leads to the propagation of the weakly nonlinear dispersive waves, and the nonlinear behavior is governed by the nonlinear Burger's equation.
Computation of nonlinear one-dimensional waves in near-sonic flows
Nayfeh, A. H.; Kaiser, J. E.; Shaker, B. S.
1977-01-01
A nonlinear analysis is developed for sound propagation in a variable area duct in which the mean flow approaches choking conditions. A quasi-one-dimensional model is used; results of the standard linear theory are compared with the nonlinear results to assess the significance of the nonlinear terms. The nonlinear analysis represents the acoustic disturbance as a sum of interacting harmonics. Numerical results show that the basic signal is unaffected by the presence of higher harmonics if the throat Mach number is not too large, but as the Mach number approaches unity more harmonics are needed to describe the acoustic propagation. The strong interactions among harmonics in the numerical results occur in a region which is generally consistent with the nonlinear inner-expansion region of Callegari and Myers.
Evidence for the propagation of 2D pressure pulses in lipid monolayers near the phase transition
Griesbauer, J; Wixforth, A; Schneider, M F
2012-01-01
The existence and propagation of acoustic pressure pulses on lipid monolayers at the air/water-interfaces are directly observed by simple mechanical detection. The pulses are excited by small amounts of solvents added to the monolayer from the air phase. Employing a deliberate control of the lipid interface compressibility k, we can show that the pulses propagate at velocities, which are precisely reflecting the nonlinear behavior of the interface. This is manifested by a pronounced minimum of the sound velocity in the monolayer phase transition regime, while ranging up to 1.5 m/s at high lateral pressures. Motivated by the ubiquitous presence of lipid interfaces in biology, we propose the demonstrated sound propagation as an efficient and fast way of communication and protein modulation along nerves, between cells and biological units being controlled by the physical state of the interfaces.
Entropic "sound" in the atmosphere
Apostol, B F; Apostol, M
1996-01-01
It is shown that small, local disturbances of entropy in the atmosphere may give rise to "sound" waves propagating with a velocity which depends on the amplitude ratio of the local relative variations of temperature and volume. This velocity is much smaller than the mean molecular velocity and the usual, adiabatic sound velocity.
Hendrix, Rebecca; Eick, Charles
2014-01-01
Sound propagation is not easy for children to understand because of its abstract nature, often best represented by models such as wave drawings and particle dots. Teachers Rebecca Hendrix and Charles Eick wondered how science inquiry, when combined with an unlikely discipline like drama, could produce a better understanding among their…
Nonlinear Landau damping of Alfven waves.
Hollweg, J. V.
1971-01-01
Demonstration that large-amplitude linearly or elliptically polarized Alfven waves propagating parallel to the average magnetic field can be dissipated by nonlinear Landau damping. The damping is due to the longitudinal electric field associated with the ion sound wave which is driven (in second order) by the Alfven wave. The damping rate can be large even in a cold plasma (beta much less than 1, but not zero), and the mechanism proposed may be the dominant one in many plasmas of astrophysical interest.
Distributed nonlinear optical response
DEFF Research Database (Denmark)
Nikolov, Nikola Ivanov
2005-01-01
The purpose of the research presented here is to investigate basic physical properties in nonlinear optical materials with delayed or nonlocal nonlinearity. Soliton propagation, spectral broadening and the influence of the nonlocality or delay of the nonlinearity are the main focusses in the work...
A sonic boom propagation model including mean flow atmospheric effects
Salamone, Joe; Sparrow, Victor W.
2012-09-01
This paper presents a time domain formulation of nonlinear lossy propagation in onedimension that also includes the effects of non-collinear mean flow in the acoustic medium. The model equation utilized is an augmented Burgers equation that includes the effects of nonlinearity, geometric spreading, atmospheric stratification, and also absorption and dispersion due to thermoviscous and molecular relaxation effects. All elements of the propagation are implemented in the time domain and the effects of non-collinear mean flow are accounted for in each term of the model equation. Previous authors have presented methods limited to showing the effects of wind on ray tracing and/or using an effective speed of sound in their model equation. The present work includes the effects of mean flow for all terms included in the augmented Burgers equation with all of the calculations performed in the time-domain. The capability to include the effects of mean flow in the acoustic medium allows one to make predictions more representative of real-world atmospheric conditions. Examples are presented for nonlinear propagation of N-waves and shaped sonic booms. [Work supported by Gulfstream Aerospace Corporation.
Discrete vortex model of a Helmholtz resonator subjected to high-intensity sound and grazing flow.
Dai, Xiwen; Jing, Xiaodong; Sun, Xiaofeng
2012-11-01
In this paper, a theoretical model is developed to study the acoustical response of a Helmholtz resonator as a duct-branched acoustic absorber subjected to both high-intensity sound and grazing flow. The present model is comprised of a discrete vortex model in combination with a one-dimensional duct sound propagation model. The present work is to study the overall effect of incident sound interacting with grazing flow but putting emphasis on the nonlinear or intermediate regime where the sound intensity has a marked or non-negligible influence on the acoustic behavior of the Helmholtz resonator. The numerical results reveal that the flow field around the orifice is dominated by the evolution of the vortex sheet and the flow pattern is influenced by the ratio of the orifice flow velocity to the grazing flow velocity. When the incident sound pressure is high or the resonance occurs, the resonator shows nonlinearity, i.e., the acoustic impedance and absorption coefficient vary not only with duct flow Mach number buy also with incident frequency and incident sound pressure level.
DEFF Research Database (Denmark)
Trento, Stefano; Götzen, Amalia De
2011-01-01
This paper is an initial attempt to study the world of sound effects for motion pictures, also known as Foley sounds. Throughout several audio and audio-video tests we have compared both Foley and real sounds originated by an identical action. The main purpose was to evaluate if sound effects...
Duda, Timothy F; Lin, Ying-Tsong; Reeder, D Benjamin
2011-09-01
A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional parabolic equation computational code, and the results are compared to measured propagation along fixed 3 and 6 km source/receiver paths. The measurements were made on the shelf of the South China Sea northeast of Tung-Sha Island. Construction of the time-varying three-dimensional sound-speed fields used in the modeling simulations was guided by environmental data collected concurrently with the acoustic data. Computed three-dimensional propagation results compare well with field observations. The simulations allow identification of time-dependent sound forward scattering and ducting processes within the curved internal gravity waves. Strong acoustic intensity enhancement was observed during passage of high-amplitude nonlinear waves over the source/receiver paths, and is replicated in the model. The waves were typical of the region (35 m vertical displacement). Two types of ducting are found in the model, which occur asynchronously. One type is three-dimensional modal trapping in deep ducts within the wave crests (shallow thermocline zones). The second type is surface ducting within the wave troughs (deep thermocline zones).
Sound absorption mapping of highway noise barrier
Grosso, Andrea
2012-01-01
International audience; Sound propagation from highway to the urban areas can be reduced using noise barriers. The general computational modeling takes typically into account sound ray lines, reflection and diffraction, although the absorption distribution over the surface in not considered. The sound absorption coefficient can be calculated using a PU probe, by the impedance measured in situ close by the surface. Well known methods are available on the market for estimating the sound absor...
Nonlinear Pressure Wave Analysis by Concentrated Mass Model
Ishikawa, Satoshi; Kondou, Takahiro; Matsuzaki, Kenichiro
A pressure wave propagating in a tube often changes to a shock wave because of the nonlinear effect of fluid. Analyzing this phenomenon by the finite difference method requires high computational cost. To lessen the computational cost, a concentrated mass model is proposed. This model consists of masses, connecting nonlinear springs, connecting dampers, and base support dampers. The characteristic of a connecting nonlinear spring is derived from the adiabatic change of fluid, and the equivalent mass and equivalent damping coefficient of the base support damper are derived from the equation of motion of fluid in a cylindrical tube. Pressure waves generated in a hydraulic oil tube, a sound tube and a plane-wave tube are analyzed numerically by the proposed model to confirm the validity of the model. All numerical computational results agree very well with the experimental results carried out by Okamura, Saenger and Kamakura. Especially, the numerical analysis reproduces the phenomena that a pressure wave with large amplitude propagating in a sound tube or in a plane tube changes to a shock wave. Therefore, it is concluded that the proposed model is valid for the numerical analysis of nonlinear pressure wave problem.
基于混沌理论的心音信号非线性动力学分析%Nonlinear dynamic analysis of heart sound signals based on chaos theory
Institute of Scientific and Technical Information of China (English)
丁晓蓉; 郭兴明; 钟丽莎
2012-01-01
In order to get more valuable information from the perspective of nonlinear dynamics, a method based on chaos theory was proposed to analyze the heart sound signals. The correlation dimension and largest Lyapunov exponent were calculated, besides, the recurrence plot and its quantification analysis parameters were obtained and used to study the heart sounds of 13 cases of normal people and 13 cases of patients with mitral stenosis. The results show that the difference between the chaotic features of the normal heart sounds and of the sounds with mitral stenosis is significant. Thus, the method can be applied to assist the diagnosis of mitral stenosis.%为了从非线性动力学的角度对心音进行分析,提出一种基于混沌理论的心音信号的分析方法.首先,计算心音信号的关联维数及最大Lyapunov指数,获取了心音信号递归图和递归定量分析参数;然后,通过13例健康人和13例二尖瓣狭窄病人的心音对其进行分析验证.结果表明:正常及二尖瓣狭窄心音信号的混沌特征具有显著差异,该方法为实现二尖瓣狭窄的早期辅助诊断提供了依据.
DEFF Research Database (Denmark)
Grimshaw, Mark; Garner, Tom Alexander
2014-01-01
We make the case in this essay that sound that is imagined is both a perception and as much a sound as that perceived through external stimulation. To argue this, we look at the evidence from auditory science, neuroscience, and philosophy, briefly present some new conceptual thinking on sound...... that accounts for this view, and then use this to look at what the future might hold in the context of imagining sound and developing technology....
DEFF Research Database (Denmark)
Grimshaw, Mark; Garner, Tom Alexander
2014-01-01
We make the case in this essay that sound that is imagined is both a perception and as much a sound as that perceived through external stimulation. To argue this, we look at the evidence from auditory science, neuroscience, and philosophy, briefly present some new conceptual thinking on sound...... that accounts for this view, and then use this to look at what the future might hold in the context of imagining sound and developing technology....
Short period ionospheric perturbations from continuous Doppler sounding
Fiser, Jiri; Chum, Jaroslav; Lastovicka, Jan; Buresova, Dalia
2017-04-01
Results of recent observations of ionospheric perturbations on short time scales obtained by international network (Czech Republic, Argentina, Taiwan and South Africa) of multipoint continuous Doppler sounders with time resolution about 10 s are presented. Examples of observation and analysis of propagation of gravity waves (GWs), equatorial spread F (ESF), infrasound from earthquake and large convective systems, as well as ionospheric perturbations caused by solar flares will be shown. It is documented that roughly poleward propagation of GWs dominates in the local summer, whereas mainly equatorward propagation is observed in the local winter. The analysis of occurrences and zonal drifts of ESF based on Doppler sounding are consistent with optical and satellite measurements. The observations of co-seismic perturbations by Doppler sounders in the vicinity of ionosondes and seismic sensors proved that the co-seismic perturbations are caused by approximately vertically propagating infrasound waves triggered by vertical motion of the ground surface. Numerical simulations and Doppler measurements confirmed that in the vicinity (up to about 1000 km) from epicenters of strong earthquake, the infrasound propagates in nonlinear regime in the upper atmosphere, which results in the formation of N-shaped pulse. Solar flares are observed both as sudden frequency deviations and amplitude attenuations of Doppler signal.
Crova's Disc: A Way to Make Sound Waves "Visible."
Hastings, R. B.
1981-01-01
Explained are the differences between and offered are examples of longitudinal and transverse sound waves. Described is the construction of the Crova's Disc, a device used in the teaching of the propagation and properties of sound waves. (DS)
Model equation for strongly focused finite-amplitude sound beams
Kamakura; Ishiwata; Matsuda
2000-06-01
A model equation that describes the propagation of sound beams in a fluid is developed using the oblate spheroidal coordinate system. This spheroidal beam equation (SBE) is a parabolic equation and has a specific application to a theoretical prediction on focused, high-frequency beams from a circular aperture. The aperture angle does not have to be small. The theoretical background is basically along the same analytical lines as the composite method (CM) reported previously [B. Ystad and J. Berntsen, Acustica 82, 698-706 (1996)]. Numerical examples are displayed for the amplitudes of sound pressure along and across the beam axis when sinusoidal waves are radiated from the source with uniform amplitude distribution. The primitive approach to linear field analysis is readily extended to the case where harmonic generation in finite-amplitude sound beams becomes significant due to the inherent nonlinearity of the medium. The theory provides the propagation and beam pattern profiles that differ from the CM solution for each harmonic component.
Attenborough, Keith; Horoshenkov, Kirill
2014-01-01
1. Introduction 2. The Propagation of Sound Near Ground Surfaces in a Homogeneous Medium 3. Predicting the Acoustical Properties of Outdoor Ground Surfaces 4. Measurements of the Acoustical Properties of Ground Surfaces and Comparisons with Models 5. Predicting Effects of Source Characteristics on Outdoor Sound 6. Predictions, Approximations and Empirical Results for Ground Effect Excluding Meteorological Effects 7. Influence of Source Motion on Ground Effect and Diffraction 8. Predicting Effects of Mixed Impedance Ground 9. Predicting the Performance of Outdoor Noise Barriers 10. Predicting Effects of Vegetation, Trees and Turbulence 11. Analytical Approximations including Ground Effect, Refraction and Turbulence 12. Prediction Schemes 13. Predicting Sound in an Urban Environment.
Effect of Soliton Propagation in Fiber Amplifiers
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The propagation of optical solitons in fiber amplifiers is discussed by considering a model that includes linear high order dispersion, two-photon absorption, nonlinear high-order dispersion, self-induced Ramam and five-order nonlinear effects. Based on travelling wave method, the solutions of the nonlinear Schrdinger equations, and the influence on soliton propagation as well as high-order effect in the fiber amplifier are discussed in detail. It is found that because of existing five-order nonlinear effect, the solution is not of secant hyperbola type, but shows high gain state of the fiber amplifier which is very favourable to the propagation of solitons.
Institute of Scientific and Technical Information of China (English)
李旦望; 李晓东; 李小艳; 胡方强
2012-01-01
在管道后传声的数值模拟中,必须考虑平均流剪切层的散射效应,然而在非均匀剪切流动下时域求解线化欧拉方程会面临Kelvin-Helmholtz不稳定波产生和放大的难题。已有的不稳定波抑制技术通常很难获得令人满意的结果。本文采用一种混合方法,首先引入有限时段的宽频声源波包将声波和不稳定波分离,进而采用声源滤波器技术对不稳定波进行抑制。数值验证算例选择半无限长轴对称环形硬壁直管道,采用计算气动声学方法时域求解2.5维线化欧拉方程,无背景流动的数值解与解析解符合很好,验证了程序的精度与可靠性,非均匀流动算例则表明所采用波包加声源滤波器混合方法对不稳定波抑制效果明显,对声场影响很小,充分显示了该方法的精度与可行性。%The scattering effects from mean flow shear layer should be accounted for in the numerical simulation of sound propagation from aft ducts.However,the time domain simulation of the linearized Euler equation has to face the difficulties of the generation and amplification of Kelvin-Helmholtz instability waves in non-uniform shear flows.The available methods for the suppression of the instability waves are difficult to give satisfactory results.The main objective of this paper is to check the feasibility of a hybrid method.Firstly,a broadband sound source wave packet with limited time span is introduced for the separation of acoustic waves from instability waves.Then,a source filtering technique is adopted to suppress the instability waves.Half infinitely length annular ducts are selected for numerical validations.The 2.5D linearized Euler equations are solved in the time domain with a computational aeroacoustics approach.Numerical results agree fairly well with analytical solutions for no mean flow cases which show the accuracy and reliability.Furthermore,it is demonstrated that the wave packet method with the help of source
Directory of Open Access Journals (Sweden)
T. Eudes
2013-02-01
Full Text Available This paper presents an enlarged study about the 50-% propagation-time assessment of cascaded transmission lines (TLs. First and foremost, the accurate modeling and measurement technique of signal integrity (SI for high-rate microelectronic interconnection is recalled. This model is based on the reduced transfer function extracted from the electromagnetic (EM behavior of the interconnect line RLCG-parameters. So, the transfer function established takes into account both the frequency dispersion effects and the different propagation modes. In addition, the transfer function includes also the load and source impedance effects. Then, the SI analysis is proposed for high-speed digital signals through the developed model. To validate the model understudy, a prototype of microstrip interconnection with w = 500 µm and length d = 33 mm was designed, simulated, fabricated and tested. Then, comparisons between the frequency and time domain results from the model and from measurements are performed. As expected, good agreement between the S-parameters form measurements and the model proposed is obtained from DC to 8 GHz. Furthermore, a de-embedding method enabling to cancel out the connectors and the probe effects are also presented. In addition, an innovative time-domain characterization is proposed in order to validate the concept with a 2.38 Gbit/s-input data signal. Afterwards, the 50-% propagation-time assessment problem is clearly exposed. Consequently an extracting theory of this propagation-time with first order RC-circuits is presented. Finally, to show the relevance of this calculation, propagation-time simulations and an application to signal integrity issues are offered.
Spanner, M; Pshenichnikov, M; Olvo, [No Value; Ivanov, M
2003-01-01
We describe the virtues of the pump-probe approach for controlled supercontinuum generation in nonlinear media, using the example of pulse compression by cross-phase modulation in dielectrics. Optimization of a strong (pump) pulse and a weak (probe) pulse at the input into the medium opens the route
Offshore Dredger Sounds: Source Levels, Sound Maps, and Risk Assessment.
de Jong, Christ A F; Ainslie, Michael A; Heinis, Floor; Janmaat, Jeroen
2016-01-01
The underwater sound produced during construction of the Port of Rotterdam harbor extension (Maasvlakte 2) was measured, with emphasis on the contribution of the trailing suction hopper dredgers during their various activities: dredging, transport, and discharge of sediment. Measured source levels of the dredgers, estimated source levels of other shipping, and time-dependent position data from a vessel-tracking system were used as input for a propagation model to generate dynamic sound maps. Various scenarios were studied to assess the risk of possible effects of the sound from dredging activities on marine fauna, specifically on porpoises, seals, and fish.
Evidence for 2D Solitary Sound Waves in a Lipid Controlled Interface and its Biological Implications
Shrivastava, Shamit
2014-01-01
Biological membranes by virtue of their elastic properties should be capable of propagating localized perturbations analogous to sound waves. However, the existence and the possible role of such waves in communication in biology remains unexplored. Here we report the first observations of 2D solitary elastic pulses in lipid interfaces, excited mechanically and detected by FRET. We demonstrate that the nonlinearity near a maximum in the susceptibility of the lipid monolayer results in solitary pulses that also have a threshold for excitation. These experiments clearly demonstrate that the state of the interface regulates the propagation of pulses both qualitatively and quantitatively. We elaborate on the striking similarity of the observed phenomenon to nerve pulse propagation and a thermodynamic basis of cell signaling in general.
DEFF Research Database (Denmark)
Knakkergaard, Martin
2016-01-01
This article discusses the change in premise that digitally produced sound brings about and how digital technologies more generally have changed our relationship to the musical artifact, not simply in degree but in kind. It demonstrates how our acoustical conceptions are thoroughly challenged...... by the digital production of sound and, by questioning the ontological basis for digital sound, turns our understanding of the core term substance upside down....
Directory of Open Access Journals (Sweden)
Y. Y. Lee
2014-01-01
Full Text Available This study includes the first work about the absorption of a panel absorber under the effects of microperforation, air pumping, and linear and nonlinear vibrations. In practice, thin perforated panel absorber is backed by a flexible wall to enhance the acoustic performance within the room. The panel is easily excited to vibrate nonlinearly and the wall can vibrate linearly. However, the assumptions of linear panel vibration and no wall vibration are adopted in many research works. The development of the absorption formula is based on the classical approach and the electroacoustic analogy, in which the impedances of microperforation, air pumping, and linear and nonlinear vibrations are in parallel and connected to that of the air cavity in series. Unlike those finite element, numerical integration, and multiscale solution methods and so forth, the analytic formula to calculate the absorption of a panel absorber does not require heavy computation effort and is suitable for engineering calculation purpose. The theoretical result obtained from the proposed method shows reasonable agreement with that from a previous numerical integration method. It can be concluded that the overall absorption bandwidth of a panel absorber with an appropriate configuration can be optimized and widened by making use of the positive effects of microperforation, air pumping, and panel vibration.
Fuchs, H. V.; Möser, M.
Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.
Trirefringence in nonlinear metamaterials
De Lorenci, Vitorio A
2012-01-01
We study the propagation of electromagnetic waves in the limit of geometrical optics for a class of nearly transparent nonlinear uniaxial metamaterials for which their permittivity tensors present a negative principal component. Their permeability are assumed positive and dependent on the electric field. We show that light waves experience triple refraction -- trirefringence. Additionally to the ordinary wave, two extraordinary waves propagate in such media.
Sound absorption and reflection with coupled tubes
2000-01-01
This paper describes a special sound absorbing technique with an accompanying efficient numerical design tool. As a basis pressure waves in a single narrow tube or pore are considered. In such a tube the viscosity and the thermal conductivity of the air, or any other fluid, can have a significant effect on the wave propagation. An important aspect is that due to the viscothermal wave propagation sound energy is being dissipated. This has been applied to configurations consisting of a manifold...
Remarks on the parallel propagation of small-amplitude dispersive Alfvénic waves
Directory of Open Access Journals (Sweden)
S. Champeaux
1999-01-01
Full Text Available The envelope formalism for the description of a small-amplitude parallel-propagating Alfvén wave train is tested against direct numerical simulations of the Hall-MHD equations in one space dimension where kinetic effects are neglected. It turns out that the magnetosonic-wave dynamics departs from the adiabatic approximation not only near the resonance between the speed of sound and the Alfvén wave group velocity, but also when the speed of sound lies between the group and phase velocities of the Alfvén wave. The modulational instability then does not anymore affect asymptotically large scales and strong nonlinear effects can develop even in the absence of the decay instability. When the Hall-MHD equations are considered in the long-wavelength limit, the weakly nonlinear dynamics is accurately reproduced by the derivative nonlinear Schrödinger equation on the expected time scale, provided no decay instabilities are present. The stronger nonlinear regime which develops at later time is captured by including the coupling to the nonlinear dynamics of the magnetosonic waves.
Filamentation with nonlinear Bessel vortices.
Jukna, V; Milián, C; Xie, C; Itina, T; Dudley, J; Courvoisier, F; Couairon, A
2014-10-20
We present a new type of ring-shaped filaments featured by stationary nonlinear high-order Bessel solutions to the laser beam propagation equation. Two different regimes are identified by direct numerical simulations of the nonlinear propagation of axicon focused Gaussian beams carrying helicity in a Kerr medium with multiphoton absorption: the stable nonlinear propagation regime corresponds to a slow beam reshaping into one of the stationary nonlinear high-order Bessel solutions, called nonlinear Bessel vortices. The region of existence of nonlinear Bessel vortices is found semi-analytically. The influence of the Kerr nonlinearity and nonlinear losses on the beam shape is presented. Direct numerical simulations highlight the role of attractors played by nonlinear Bessel vortices in the stable propagation regime. Large input powers or small cone angles lead to the unstable propagation regime where nonlinear Bessel vortices break up into an helical multiple filament pattern or a more irregular structure. Nonlinear Bessel vortices are shown to be sufficiently intense to generate a ring-shaped filamentary ionized channel in the medium which is foreseen as opening the way to novel applications in laser material processing of transparent dielectrics.
Intrinsic nonlinear response of surface plasmon polaritons
Im, Song-Jin; Kim, Gum-Hyok
2015-01-01
We offer a model to describe the intrinsic nonlinear response of surface plasmon polaritons (SPPs). Relation of the complex nonlinear coefficient of SPPs to the third-order nonlinear susceptibility of the metal is provided. As reported in a recent study, gold is highly lossy and simultaneously highly nonlinear due to interband absorption and interband thermo-modulation at a wavelength shorter than 700 nm. The effect of the high loss of the metal on the SPP nonlinear propagation is taken into account in our model. With the model we show difference in sign of real and imaginary parts between the nonlinear propagation coefficient and the nonlinear susceptibility of component material for the first time to our knowledge. Our model could have practical importance in studying plasmonic devices utilizing the nonlinear phase modulation and the nonlinear absorption of SPPs. For example, it allows one to extract the complex nonlinear susceptibility of gold through a measurement of SPP nonlinear propagation at the visib...
Magnetic Fields Can Control Heat and Sound
2015-03-23
sound waves , which then propagate through the air until they hit a listener’s eardrums and make them vibrate as well. From these vibrations , the listener... vibrations as particles. This is similar to the concept of light as both a wave and a particle we call a photon. Physicists called the sound wave ...Physics, and Materials Science & Engineering at The Ohio State University Sound is carried by periodic vibrations of atoms in gases, liquids and
Directory of Open Access Journals (Sweden)
Rasolofosaon P.
2006-12-01
non-linéarité sous fort confinement, et qui pourraient engendrer un signal résultant d'une interaction onde-onde . Tempérant ce pessimisme, il faut noter qu'un éventuel signal d'interaction non linéaire présenterait l'avantage, quant à sa détection, d'être dans une bande de fréquence différente de celle des ondes utilisées pour l'engendrer. Bien que nous n'ayons pas connaissance d'essais d'application actuels, les perspectives paraissent plus encourageantes dans le domaine du génie civil ou minier. C'est dans le domaine diagraphique, où des distances de propagation sont très faibles, que des applications semblent possibles à moyen terme. Si l'on en juge par le dépôt très récent de plusieurs brevets, les compagnies de logging poursuivraient des recherches dans cette voie. A general and important characteristic of rocks is their elastically nonlinear behavior resulting in significant effects on wave propagation. The nonlinear response of rock is a direct consequence of the compliant nature of rock : the macro-and micro-structure of the material (microcracks, grain-to-grain contacts, etc. . As a result, the material modulus varies as a function of the applied pressure. Interest has grown significantly in the last several years, as illustrated by the increasing number of publications regarding this topic. Here we present a summary of the fundamentals of theory and of experimental observations characteristic of rock, and we address possible applications in geophysics. Two disciplines regarding the nonlinear elasticity of rock have been developed over recent years in tandem :- Acoustoelasticity where wave propagation in statically, prestressed materials is studied. Here one relates the variation in applied pressure to the elastic wavespeed in order to extract the nonlinear coefficients. This area of study includes the topic of stress-induced anisotropy. - Acoustic nonlinearity where we are interested in the temporary and local variation in the elastic
Spin current-induced by a sound wave.
Lyapilin, Igor I
2013-04-01
The interaction of conduction electrons with a longitudinal sound wave propagating in a crystal in a constant magnetic field is investigated. It is shown that the transverse spin current arises when the longitudinal sound wave propagation through the system. The average power absorbed by the spin subsystem of the conduction electrons and the spin-Hall conductivity have a resonant character.
Rotational Doppler effect in nonlinear optics
Li, Guixin; Zentgraf, Thomas; Zhang, Shuang
2016-08-01
The translational Doppler effect of electromagnetic and sound waves has been successfully applied in measurements of the speed and direction of vehicles, astronomical objects and blood flow in human bodies, and for the Global Positioning System. The Doppler effect plays a key role for some important quantum phenomena such as the broadened emission spectra of atoms and has benefited cooling and trapping of atoms with laser light. Despite numerous successful applications of the translational Doppler effect, it fails to measure the rotation frequency of a spinning object when the probing wave propagates along its rotation axis. This constraint was circumvented by deploying the angular momentum of electromagnetic waves--the so-called rotational Doppler effect. Here, we report on the demonstration of rotational Doppler shift in nonlinear optics. The Doppler frequency shift is determined for the second harmonic generation of a circularly polarized beam passing through a spinning nonlinear optical crystal with three-fold rotational symmetry. We find that the second harmonic generation signal with circular polarization opposite to that of the fundamental beam experiences a Doppler shift of three times the rotation frequency of the optical crystal. This demonstration is of fundamental significance in nonlinear optics, as it provides us with insight into the interaction of light with moving media in the nonlinear optical regime.
Sounds in the ocean at 1-100 Hz.
Wilcock, William S D; Stafford, Kathleen M; Andrew, Rex K; Odom, Robert I
2014-01-01
Very-low-frequency sounds between 1 and 100 Hz propagate large distances in the ocean sound channel. Weather conditions, earthquakes, marine mammals, and anthropogenic activities influence sound levels in this band. Weather-related sounds result from interactions between waves, bubbles entrained by breaking waves, and the deformation of sea ice. Earthquakes generate sound in geologically active regions, and earthquake T waves propagate throughout the oceans. Blue and fin whales generate long bouts of sounds near 20 Hz that can dominate regional ambient noise levels seasonally. Anthropogenic sound sources include ship propellers, energy extraction, and seismic air guns and have been growing steadily. The increasing availability of long-term records of ocean sound will provide new opportunities for a deeper understanding of natural and anthropogenic sound sources and potential interactions between them.
Sound and vision: visualization of music with a soap film
Gaulon, C.; Derec, C.; Combriat, T.; Marmottant, P.; Elias, F.
2017-07-01
A vertical soap film, freely suspended at the end of a tube, is vibrated by a sound wave that propagates in the tube. If the sound wave is a piece of music, the soap film ‘comes alive’: colours, due to iridescences in the soap film, swirl, split and merge in time with the music (see the snapshots in figure 1 below). In this article, we analyse the rich physics behind these fascinating dynamical patterns: it combines the acoustic propagation in a tube, the light interferences, and the static and dynamic properties of soap films. The interaction between the acoustic wave and the liquid membrane results in capillary waves on the soap film, as well as non-linear effects leading to a non-oscillatory flow of liquid in the plane of the film, which induces several spectacular effects: generation of vortices, diphasic dynamical patterns inside the film, and swelling of the soap film under certain conditions. Each of these effects is associated with a characteristic time scale, which interacts with the characteristic time of the music play. This article shows the richness of those characteristic times that lead to dynamical patterns. Through its artistic interest, the experiments presented in this article provide a tool for popularizing and demonstrating science in the classroom or to a broader audience.
DEFF Research Database (Denmark)
Crocker, M.J.; Jacobsen, Finn
1997-01-01
This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....
DEFF Research Database (Denmark)
Crocker, M.J.; Jacobsen, Finn
1997-01-01
This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique.......This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....
DEFF Research Database (Denmark)
Crocker, Malcolm J.; Jacobsen, Finn
1998-01-01
This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique.......This chapter is an overview, intended for readers with no special knowledge about this particular topic. The chapter deals with all aspects of sound intensity and its measurement from the fundamental theoretical background to practical applications of the measurement technique....
Nonlinear hyperbolic waves in multidimensions
Prasad, Phoolan
2001-01-01
The propagation of curved, nonlinear wavefronts and shock fronts are very complex phenomena. Since the 1993 publication of his work Propagation of a Curved Shock and Nonlinear Ray Theory, author Phoolan Prasad and his research group have made significant advances in the underlying theory of these phenomena. This volume presents their results and provides a self-contained account and gradual development of mathematical methods for studying successive positions of these fronts.Nonlinear Hyperbolic Waves in Multidimensions includes all introductory material on nonlinear hyperbolic waves and the theory of shock waves. The author derives the ray theory for a nonlinear wavefront, discusses kink phenomena, and develops a new theory for plane and curved shock propagation. He also derives a full set of conservation laws for a front propagating in two space dimensions, and uses these laws to obtain successive positions of a front with kinks. The treatment includes examples of the theory applied to converging wavefronts...
Nonlinear Approaches in Engineering Applications
Jazar, Reza
2012-01-01
Nonlinear Approaches in Engineering Applications focuses on nonlinear phenomena that are common in the engineering field. The nonlinear approaches described in this book provide a sound theoretical base and practical tools to design and analyze engineering systems with high efficiency and accuracy and with less energy and downtime. Presented here are nonlinear approaches in areas such as dynamic systems, optimal control and approaches in nonlinear dynamics and acoustics. Coverage encompasses a wide range of applications and fields including mathematical modeling and nonlinear behavior as applied to microresonators, nanotechnologies, nonlinear behavior in soil erosion,nonlinear population dynamics, and optimization in reducing vibration and noise as well as vibration in triple-walled carbon nanotubes. This book also: Provides a complete introduction to nonlinear behavior of systems and the advantages of nonlinearity as a tool for solving engineering problems Includes applications and examples drawn from the el...
Cuesta, Herman J Mosquera
2011-01-01
A few observational and/or experimental results have dramatically pushed forward the research program on gravity as those from the radio-metric Doppler tracking received from the Pioneer 10 and 11 spacecrafts when the space vehicles were at heliocentric distances between 20 and 70 Astronomical Units (AU). These data have conclusively demonstrated the presence of an anomalous, tiny and blue-shifted frequency drift that changes smoothly at a rate of $ \\sim 6 \\times 10^{-9}$ Hz s$^{-1}$. Those signals, if interpreted as a gravitational pull of the Sun on each Pioneer vehicle, translates into a deceleration of $a_P = (8.74\\pm 1.33) \\times 10^{-10}$ m s$^{-2}$. This Sunward acceleration appears to be a violation of Newton's inverse-square law of gravitation, and is referred to as the Pioneer anomaly, the nature of which remains still elusive to unveil. Within the theoretical framework of nonlinear electrodynamics (NLED) in what follows we will address this astrodynamics puzzle, which over the last fifteen years ha...
Backward Propagation of Otoacoustic Emissions
Institute of Scientific and Technical Information of China (English)
HE Wenxuan; REN Tianying
2006-01-01
Normal mammalian ears not only detect but also generate sounds. The ear-generated sounds, I.e., otoacoustic emissions (OAEs), can be measured in the external ear canal using a tiny sensitive microphone. In spite of wide applications of OAEs in diagnosis of hearing disorders and in studies of cochlear functions, the question of how the cochlea emits sounds remains unclear. The current dominating theory is that the OAE reaches the cochlear base through a backward traveling wave. However, recently published works, including experimental data on the spatial pattern ofbasilar membrane vibrations at the emission frequency, demonstrated only forward traveling waves and no signs of backward traveling waves. These new findings indicate that the cochlea emits sounds through cochlear fluids as compression waves rather than through the basilar membrane as backward traveling waves. This article reviews different mechanisms of the backward propagation of OAEs and summarizes recent experimental results.
Broadband sound pressure enhancement in passive metafluids
Popa, Bogdan-Ioan
2017-09-01
Acoustic sensors operating in lossy environments, such as water, require significant sensitivity to overcome the sound attenuation in the environment and thus see farther. We show here that a surprisingly large class of passive fluids has the ability to enhance the sound pressure propagating inside them without employing active actuation. Specifically, the general requirements for this remarkable property are fluid impedance higher than the impedance of the environment and negligible insertion loss as sound propagates from the environment into the high impedance fluid. We demonstrate the pressure enhancing effect by designing a broadband isotropic metafluid that increases the pressure of sound waves impinging from water. We validate the design in numerical simulations showing that significant sound pressure level increases are achievable in realistic metafluid structures in large bandwidths covering several octaves. Our approach opens up unexplored avenues towards improving acoustic transducer sensitivity, which is critical in applications, such as medical ultrasound imaging, sonar, and acoustic communications.
Energy Technology Data Exchange (ETDEWEB)
Luquet, David; Marchiano, Régis; Coulouvrat, François, E-mail: francois.coulouvrat@upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005, Paris (France)
2015-10-28
Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D
Kierkegaard, Axel; Boij, Susann; Efraimsson, Gunilla
2010-02-01
Acoustic wave propagation in flow ducts is commonly modeled with time-domain non-linear Navier-Stokes equation methodologies. To reduce computational effort, investigations of a linearized approach in frequency domain are carried out. Calculations of sound wave propagation in a straight duct are presented with an orifice plate and a mean flow present. Results of transmission and reflections at the orifice are presented on a two-port scattering matrix form and are compared to measurements with good agreement. The wave propagation is modeled with a frequency domain linearized Navier-Stokes equation methodology. This methodology is found to be efficient for cases where the acoustic field does not alter the mean flow field, i.e., when whistling does not occur.
ON INTERACTION OF SHOCK AND SOUND WAVE （I）
Institute of Scientific and Technical Information of China (English)
CHENSHUXING
1996-01-01
This paper studies the interaction of shock and gradient wave (sound wave) of solutions to the system of inviscid isentropic gas dynamics as a model for the corresponding problems for nonlinear hyperbolic systems. The problem can be reduced to a boundary value problem in a wedged dormain, By using the method of constructing asymptotic solutions and Newton'siteration process it is proved that if a weak shock hits a gradient wave, then the grandient wave will split into two gradient waves, while the shock continuses propagating. In this paper the author reduces the problem to a standard form and constructs asymptotic solution of the problem. The existence of the genuine solution will he given in the following paper.
DEFF Research Database (Denmark)
Kreutzfeldt, Jacob
2015-01-01
This article investigates how urban spaces and its noises are approached by radio reporters in the first decades of public radio production in Denmark. Focussing on the period before reel tape was incorporated in production by late 1940es, I ask how urban space and urban sounds are heard...... in Danish radio until early post-war years. Yet I trace early attempts at managing noisy urban conditions and demonstrate how reporters experimented with available technological repositories and developed techniques in order to make sense in and through urban environments. Inspired by Michel Serres idea...... of the parasite I analyse such techniques as ways of distinguishing between noise and meaningful sounds, and ultimately show how such ventures constituted auditory responses to modernity and let organised sound enter the public sphere....
DEFF Research Database (Denmark)
Du, Yigang; Fan, Rui; Li, Yong
2016-01-01
An ultrasound imaging framework modeled with the first order nonlinear pressure–velocity relations (NPVR) based simulation and implemented by a half-time staggered solution and pseudospectral method is presented in this paper. The framework is capable of simulating linear and nonlinear ultrasound...... propagation and reflections in a heterogeneous medium with different sound speeds and densities. It can be initialized with arbitrary focus, excitation and apodization for multiple individual channels in both 2D and 3D spatial fields. The simulated channel data can be generated using this framework......, and ultrasound image can be obtained by beamforming the simulated channel data. Various results simulated by different algorithms are illustrated for comparisons. The root mean square (RMS) errors for each compared pulses are calculated. The linear propagation is validated by an angular spectrum approach (ASA...
Simulations of nonlinear continuous wave pressure fields in FOCUS
Zhao, Xiaofeng; Hamilton, Mark F.; McGough, Robert J.
2017-03-01
The Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation is a parabolic approximation to the Westervelt equation that models the effects of diffraction, attenuation, and nonlinearity. Although the KZK equation is only valid in the far field of the paraxial region for mildly focused or unfocused transducers, the KZK equation is widely applied in medical ultrasound simulations. For a continuous wave input, the KZK equation is effectively modeled by the Bergen Code [J. Berntsen, Numerical Calculations of Finite Amplitude Sound Beams, in M. F. Hamilton and D. T. Blackstock, editors, Frontiers of Nonlinear Acoustics: Proceedings of 12th ISNA, Elsevier, 1990], which is a finite difference model that utilizes operator splitting. Similar C++ routines have been developed for FOCUS, the `Fast Object-Oriented C++ Ultrasound Simulator' (http://www.egr.msu.edu/˜fultras-web) to calculate nonlinear pressure fields generated by axisymmetric flat circular and spherically focused ultrasound transducers. This new routine complements an existing FOCUS program that models nonlinear ultrasound propagation with the angular spectrum approach [P. T. Christopher and K. J. Parker, J. Acoust. Soc. Am. 90, 488-499 (1991)]. Results obtained from these two nonlinear ultrasound simulation approaches are evaluated and compared for continuous wave linear simulations. The simulation results match closely in the farfield of the paraxial region, but the results differ in the nearfield. The nonlinear pressure field generated by a spherically focused transducer with a peak surface pressure of 0.2MPa radiating in a lossy medium with β = 3.5 is simulated, and the computation times are also evaluated. The nonlinear simulation results demonstrate acceptable agreement in the focal zone. These two related nonlinear simulation approaches are now included with FOCUS to enable convenient simulations of nonlinear pressure fields on desktop and laptop computers.
DEFF Research Database (Denmark)
Mortensen, Peder Duelund; Hornyanszky, Elisabeth Dalholm; Larsen, Jacob Norvig
2013-01-01
Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice......Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice...
DEFF Research Database (Denmark)
2016-01-01
are tempo, time, voice, sound and music. Our goal is to bring analytical and performative awareness to academic means of expression, and the audio paper provides us with a new and experimental platform to do so. Our thoughts about and definition of the audio paper is explained in the first text of the issue...... by introducing a new format: The Audio Paper. The purpose of the audio paper is to extend the written academic text: to present discussions and explorations of a certain argument or problem in sound. The audio paper is an extension of expressive means: Not only words and syntax are means of expression – so...
DEFF Research Database (Denmark)
Mortensen, Peder Duelund; Hornyanszky, Elisabeth Dalholm; Larsen, Jacob Norvig;
2013-01-01
Præsentation af projektresultater fra Interreg forskningen Sound Settlements om udvikling af bæredygtighed i det almene boligbyggerier i København, Malmø, Helsingborg og Lund samt europæiske eksempler på best practice...
Dorian Cazau; Olivier Adam; Thierry Aubin; Laitman, Jeffrey T.; Reidenberg, Joy S.
2016-01-01
International audience; Although mammalian vocalizations are predominantly harmonically structured, they can exhibit an acoustic complexity with nonlinear vocal sounds, including deterministic chaos and frequency jumps. Such sounds are normative events in mammalian vocalizations, and can be directly traceable to the nonlinear nature of vocal-fold dynamics underlying typical mammalian sound production. In this study, we give qualitative descriptions and quantitative analyses of nonlinearities ...
Study of Crack Distribution Effects on Sound Wave Propagation in Basalt%玄武岩中裂隙分布形式对声波传播的影响
Institute of Scientific and Technical Information of China (English)
邓向允; 徐松林; 李广场; 刘永贵; 郑文; 席道瑛
2009-01-01
Engineering rock mass contains lots of cracks and defects, whose size and distribution form have strong influence on elastic wave propagation. In this paper, wave velocities in basalt specimens with single, two and three prefabricated cracks were measured by using five different frequencies that is 25kHz, 50kHz, 400kHz, 600kHz and 1000kHz. Taking into account the cracks vertical or parallel to the wave propagation direction, the influence of different crack lengths and different crack distributions on elastic wave propagation, the dispersion effect and wave attenuation in basalt were analyzed based on these experimental results. Results show that the included angle between crack direction and wave propagation direction has intensive effect on wave propagation: when the crack direction is vertical to the wave propagation direction, the attenuation effect is most intensive; when the crack direction is parallel to the wave propagation direction, the attenuation affect is minimum. Above results may be helpful for theoretical and numerical analysis of elastic wave propagation in basalt.%复杂岩体含有大量的裂隙,这些裂隙尺寸及其分布形式等对弹性波传播都有很大的影响.本文加工了含单个裂隙、双裂隙和三个裂隙的玄武岩岩样单元对其进行组合,进行了25kHz、 50kHz、 400kHz、 600kHz和1000kHz 等5种频率的声波测试.通过考虑垂直或平行波传播方向的裂隙长度,来探索裂隙分布形式和不同裂隙长度对弹性波传播的影响,研究玄武岩的频散效应和波的衰减.结果表明:裂隙方向与波传播方向夹角对弹性波传播有很大的影响.当裂隙方向与波传播方向垂直时,散射效应最大;而当裂隙方向与波传播方向平行时,影响最小.上述结果可为理论模型和数值分析提供依据.
Topology optimization of nonlinear optical devices
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard
2011-01-01
This paper considers the design of nonlinear photonic devices. The nonlinearity stems from a nonlinear material model with a permittivity that depends on the local time-averaged intensity of the electric field. A finite element model is developed for time-harmonic wave propagation and an incremen......This paper considers the design of nonlinear photonic devices. The nonlinearity stems from a nonlinear material model with a permittivity that depends on the local time-averaged intensity of the electric field. A finite element model is developed for time-harmonic wave propagation...
Nonlinear Optics and Turbulence
1992-10-01
currently at Queen Mary College, London Patrick Dunne, (Ph.D., 1987, M.I.T., Hydrodynamic Stability, Nonlinear Waves), 1987-1988. Alecsander Dyachenko...U I I I U I I 3 9 3 V. BIOGRAPHIES A. FACULTY BRUCE BAYLY, 31, Ph.D. 1986, Princeton University. Postdoctoral visiting member 1986-88 at Courant...Caputo, A. C. Newell, and M. Shelley , "Nonlinear Wave Propagation Through a Random Medium and Soliton Tunneling", Integrable Systems and
DEFF Research Database (Denmark)
Explorations and analysis of soundscapes have, since Canadian R. Murray Schafer's work during the early 1970's, developed into various established research - and artistic disciplines. The interest in sonic environments is today present within a broad range of contemporary art projects and in arch...... are tempo, time, voice, sound and music. Our goal is to bring analytical and performative awareness to academic means of expression, and the audio paper provides us with a new and experimental platform to do so....... by introducing a new format: The Audio Paper. The purpose of the audio paper is to extend the written academic text: to present discussions and explorations of a certain argument or problem in sound. The audio paper is an extension of expressive means: Not only words and syntax are means of expression – so...
Kinetic treatment of nonlinear magnetized plasma motions - General geometry and parallel waves
Khabibrakhmanov, I. KH.; Galinskii, V. L.; Verheest, F.
1992-01-01
The expansion of kinetic equations in the limit of a strong magnetic field is presented. This gives a natural description of the motions of magnetized plasmas, which are slow compared to the particle gyroperiods and gyroradii. Although the approach is 3D, this very general result is used only to focus on the parallel propagation of nonlinear Alfven waves. The derivative nonlinear Schroedinger-like equation is obtained. Two new terms occur compared to earlier treatments, a nonlinear term proportional to the heat flux along the magnetic field line and a higher-order dispersive term. It is shown that kinetic description avoids the singularities occurring in magnetohydrodynamic or multifluid approaches, which correspond to the degenerate case of sound speeds equal to the Alfven speed, and that parallel heat fluxes cannot be neglected, not even in the case of low parallel plasma beta. A truly stationary soliton solution is derived.
Pole solutions for flame front propagation
Kupervasser, Oleg
2015-01-01
This book deals with solving mathematically the unsteady flame propagation equations. New original mathematical methods for solving complex non-linear equations and investigating their properties are presented. Pole solutions for flame front propagation are developed. Premixed flames and filtration combustion have remarkable properties: the complex nonlinear integro-differential equations for these problems have exact analytical solutions described by the motion of poles in a complex plane. Instead of complex equations, a finite set of ordinary differential equations is applied. These solutions help to investigate analytically and numerically properties of the flame front propagation equations.
Nonlinear elastic waves in materials
Rushchitsky, Jeremiah J
2014-01-01
The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...
The dynamics of rapid fracture: instabilities, nonlinearities and length scales.
Bouchbinder, Eran; Goldman, Tamar; Fineberg, Jay
2014-04-01
The failure of materials and interfaces is mediated by cracks, almost singular dissipative structures that propagate at velocities approaching the speed of sound. Crack initiation and subsequent propagation-the dynamic process of fracture-couples a wide range of time and length scales. Crack dynamics challenge our understanding of the fundamental physics processes that take place in the extreme conditions within the almost singular region where material failure occurs. Here, we first briefly review the classic approach to dynamic fracture, namely linear elastic fracture mechanics (LEFM), and discuss its successes and limitations. We show how, on the one hand, recent experiments performed on straight cracks propagating in soft brittle materials have quantitatively confirmed the predictions of this theory to an unprecedented degree. On the other hand, these experiments show how LEFM breaks down as the singular region at the tip of a crack is approached. This breakdown naturally leads to a new theoretical framework coined 'weakly nonlinear fracture mechanics', where weak elastic nonlinearities are incorporated. The stronger singularity predicted by this theory gives rise to a new and intrinsic length scale, ℓnl. These predictions are verified in detail through direct measurements. We then theoretically and experimentally review how the emergence of ℓnl is linked to a new equation for crack motion, which predicts the existence of a high-speed oscillatory crack instability whose wavelength is determined by ℓnl. We conclude by delineating outstanding challenges in the field.
Numerical analysis of sound transmission loss using FDTD method
Murakami, Keiichi; Aoyama, Takashi; 村上, 桂一; 青山, 剛史
2009-01-01
This paper provides the results of a numerical analysis on sound transmission loss of a thin aluminum plate. The finite difference time domain (FDTD) method is used in this study because it simultaneously solves both sound wave propagation in fluid and elastic wave propagation in solid. The calculated value of sound transmission loss gives good agreement with that of mass law. Sound transmission of saw-shaped wave approximated by the sum of sine waves is also calculated. As a result, it is co...
An aerodynamic noise propagation model for wind turbines
DEFF Research Database (Denmark)
Zhu, Wei Jun; Sørensen, Jens Nørkær; Shen, Wen Zhong
2005-01-01
A model based on 2-D sound ray theory for aerodynamic noise propagation from wind turbine rotating blades is introduced. The model includes attenuation factors from geometric spreading, sound directivity of source, air absorption, ground deflection and reflection, as well as effects from temperat......A model based on 2-D sound ray theory for aerodynamic noise propagation from wind turbine rotating blades is introduced. The model includes attenuation factors from geometric spreading, sound directivity of source, air absorption, ground deflection and reflection, as well as effects from...
Agrawal, Govind P
2001-01-01
The Optical Society of America (OSA) and SPIE - The International Society for Optical Engineering have awarded Govind Agrawal with an honorable mention for the Joseph W. Goodman Book Writing Award for his work on Nonlinear Fiber Optics, 3rd edition.Nonlinear Fiber Optics, 3rd Edition, provides a comprehensive and up-to-date account of the nonlinear phenomena occurring inside optical fibers. It retains most of the material that appeared in the first edition, with the exception of Chapter 6, which is now devoted to the polarization effects relevant for light propagation in optical
Pinton, Gianmarco F.; Trahey, Gregg E.; Dahl, Jeremy J.
2011-01-01
A full-wave equation that describes nonlinear propagation in a heterogeneous attenuating medium is solved numerically with finite differences in the time domain (FDTD). This numerical method is used to simulate propagation of a diagnostic ultrasound pulse through a measured representation of the human abdomen with heterogeneities in speed of sound, attenuation, density, and nonlinearity. Conventional delay-and-sum beamforming is used to generate point spread functions (PSF) that display the effects of these heterogeneities. For the particular imaging configuration that is modeled, these PSFs reveal that the primary source of degradation in fundamental imaging is due to reverberation from near-field structures. Compared to fundamental imaging, reverberation clutter in harmonic imaging is 27.1 dB lower. Simulated tissue with uniform velocity but unchanged impedance characteristics indicates that for fundamental imaging, the primary source of degradation is phase aberration. PMID:21507753
Pinton, Gianmarco F.; Trahey, Gregg E.; Dahl, Jeremy J.
2015-01-01
A full-wave equation that describes nonlinear propagation in a heterogeneous attenuating medium is solved numerically with finite differences in the time domain. This numerical method is used to simulate propagation of a diagnostic ultrasound pulse through a measured representation of the human abdomen with heterogeneities in speed of sound, attenuation, density, and nonlinearity. Conventional delay-and-sum beamforming is used to generate point spread functions (PSFs) that display the effects of these heterogeneities. For the particular imaging configuration that is modeled, these PSFs reveal that the primary source of degradation in fundamental imaging is due to reverberation from near-field structures. Compared with fundamental imaging, reverberation clutter in harmonic imaging is 27.1 dB lower. Simulated tissue with uniform velocity but unchanged impedance characteristics indicates that for harmonic imaging, the primary source of degradation is phase aberration. PMID:21693410
Effect of Nonlinearities on Orbit Covariance Propagation
2013-09-01
1 0 3 1 x m P 0 0 0, ,12i i k k i ab a bx x x x 0,12i i ab abP m 0 0 0 0 0 0 0, , , ,14ij i a j a i