Leitao, J C; Gerlach, M; Altmann, E G
2016-01-01
One of the most celebrated findings in complex systems in the last decade is that different indexes y (e.g., patents) scale nonlinearly with the population~x of the cities in which they appear, i.e., $y\\sim x^\\beta, \\beta \
Scale-invariant nonlinear optics in gases
Heyl, C M; Miranda, M; Louisy, M; Kovacs, K; Tosa, V; Balogh, E; Varjú, K; L'Huillier, A; Couairon, A; Arnold, C L
2015-01-01
Nonlinear optical methods are becoming ubiquitous in many areas of modern photonics. They are, however, often limited to a certain range of input parameters, such as pulse energy and average power, since restrictions arise from, for example, parasitic nonlinear effects, damage problems and geometrical considerations. Here, we show that many nonlinear optics phenomena in gaseous media are scale-invariant if spatial coordinates, gas density and laser pulse energy are scaled appropriately. We develop a general scaling model for (3+1)-dimensional wave equations, demonstrating the invariant scaling of nonlinear pulse propagation in gases. Our model is numerically applied to high-order harmonic generation and filamentation as well as experimentally verified using the example of pulse post-compression via filamentation. Our results provide a simple recipe for up-or downscaling of nonlinear processes in gases with numerous applications in many areas of science.
Some Nonlinear Dynamic Inequalities on Time Scales
Indian Academy of Sciences (India)
Wei Nian Li; Weihong Sheng
2007-11-01
The aim of this paper is to investigate some nonlinear dynamic inequalities on time scales, which provide explicit bounds on unknown functions. The inequalities given here unify and extend some inequalities in (B G Pachpatte, On some new inequalities related to a certain inequality arising in the theory of differential equation, J. Math. Anal. Appl. 251 (2000) 736--751).
Some Nonlinear Integral Inequalities on Time Scales
Directory of Open Access Journals (Sweden)
Li Wei Nian
2007-01-01
Full Text Available The purpose of this paper is to investigate some nonlinear integral inequalities on time scales. Our results unify and extend some continuous inequalities and their corresponding discrete analogues. The theoretical results are illustrated by a simple example at the end of this paper.
Universal nonlinear small-scale dynamo.
Beresnyak, A
2012-01-20
We consider astrophysically relevant nonlinear MHD dynamo at large Reynolds numbers (Re). We argue that it is universal in a sense that magnetic energy grows at a rate which is a constant fraction C(E) of the total turbulent dissipation rate. On the basis of locality bounds we claim that this "efficiency of the small-scale dynamo", C(E), is a true constant for large Re and is determined only by strongly nonlinear dynamics at the equipartition scale. We measured C(E) in numerical simulations and observed a value around 0.05 in the highest resolution simulations. We address the issue of C(E) being small, unlike the Kolmogorov constant which is of order unity.
Nonlinear helicons bearing multi-scale structures
Abdelhamid, Hamdi M.; Yoshida, Zensho
2017-02-01
The helicon waves exhibit varying characters depending on plasma parameters, geometry, and wave numbers. Here, we elucidate an intrinsic multi-scale property embodied by the combination of the dispersive effect and nonlinearity. The extended magnetohydrodynamics model (exMHD) is capable of describing a wide range of parameter space. By using the underlying Hamiltonian structure of exMHD, we construct an exact nonlinear solution, which turns out to be a combination of two distinct modes, the helicon and Trivelpiece-Gould (TG) waves. In the regime of relatively low frequency or high density, however, the combination is made of the TG mode and an ion cyclotron wave (slow wave). The energy partition between these modes is determined by the helicities carried by the wave fields.
Non-linear Frequency Scaling Algorithm for FMCW SAR Data
Meta, A.; Hoogeboom, P.; Ligthart, L.P.
2006-01-01
This paper presents a novel approach for processing data acquired with Frequency Modulated Continuous Wave (FMCW) dechirp-on-receive systems by using a non-linear frequency scaling algorithm. The range frequency non-linearity correction, the Doppler shift induced by the continuous motion and the ran
MULTISCALE HOMOGENIZATION OF NONLINEAR HYPERBOLIC EQUATIONS WITH SEVERAL TIME SCALES
Institute of Scientific and Technical Information of China (English)
Jean Louis Woukeng; David Dongo
2011-01-01
We study the multiscale homogenization of a nonlinear hyperbolic equation in a periodic setting. We obtain an accurate homogenization result. We also show that as the nonlinear term depends on the microscopic time variable, the global homogenized problem thus obtained is a system consisting of two hyperbolic equations. It is also shown that in spite of the presence of several time scales, the global homogenized problem is not a reiterated one.
Nonlinear interactions isolated through scale synthesis in experimental wall turbulence
Duvvuri, Subrahmanyam; McKeon, Beverley
2016-07-01
An experimental investigation of nonlinear scale interactions in a forced turbulent boundary layer is presented here. A dynamic wall perturbation mechanism was used to externally force two distinct large-scale synthetic modes with well-defined spatial and temporal wave numbers in a fully turbulent flow. The focus is on characterizing the nonlinear flow response at triadically consistent wave numbers that arises from the direct interactions of the two synthetic modes. These experimental results isolate triadic scale interactions in wall turbulence in a unique fashion, and provide the ability to explore the dynamics of scale coupling in a systematic and detailed manner. The ideas advanced here are intended to contribute towards modeling efforts of high-Reynolds-number wall turbulence.
Quantized pressure control in large-scale nonlinear hydraulic networks
Persis, Claudio De; Kallesøe, Carsten Skovmose; Jensen, Tom Nørgaard
2010-01-01
It was shown previously that semi-global practical pressure regulation at designated points of a large-scale nonlinear hydraulic network is guaranteed by distributed proportional controllers. For a correct implementation of the control laws, each controller, which is located at these designated poin
Nonlinear wave mechanics from classical dynamics and scale covariance
Energy Technology Data Exchange (ETDEWEB)
Hammad, F. [Departement TC-SETI, Universite A.Mira de Bejaia, Route Targa Ouzemmour, 06000 Bejaia (Algeria)], E-mail: fayhammad@yahoo.fr
2007-10-29
Nonlinear Schroedinger equations proposed by Kostin and by Doebner and Goldin are rederived from Nottale's prescription for obtaining quantum mechanics from classical mechanics in nondifferentiable spaces; i.e., from hydrodynamical concepts and scale covariance. Some soliton and plane wave solutions are discussed.
Geometric scaling in ultrahigh energy neutrinos and nonlinear perturbative QCD
Machado, M V T
2011-01-01
The ultrahigh energy neutrino cross section is a crucial ingredient in the calculation of the event rate in high energy neutrino telescopes. Currently there are several approaches which predict different behaviors for its magnitude for ultrahigh energies. In this contribution is presented a summary of current predictions based on the non-linear QCD evolution equations, the so-called perturbative saturation physics. In particular, predictions are shown based on the parton saturation approaches and the consequences of geometric scaling property at high energies are discussed. The scaling property allows an analytical computation of the neutrino scattering on nucleon/nucleus at high energies, providing a theoretical parameterization.
Nonlinear triple-point problems on time scales
Directory of Open Access Journals (Sweden)
Douglas R. Anderson
2004-04-01
Full Text Available We establish the existence of multiple positive solutions to the nonlinear second-order triple-point boundary-value problem on time scales, $$displaylines{ u^{Delta abla}(t+h(tf(t,u(t=0, cr u(a=alpha u(b+delta u^Delta(a,quad eta u(c+gamma u^Delta(c=0 }$$ for $tin[a,c]subsetmathbb{T}$, where $mathbb{T}$ is a time scale, $eta, gamma, deltage 0$ with $Beta+gamma>0$, $0
Nonlinear closures for scale separation in supersonic magnetohydrodynamic turbulence
Grete, Philipp; Schmidt, Wolfram; Schleicher, Dominik R G; Federrath, Christoph
2015-01-01
Turbulence in compressible plasma plays a key role in many areas of astrophysics and engineering. The extreme plasma parameters in these environments, e.g. high Reynolds numbers, supersonic and super-Alfvenic flows, however, make direct numerical simulations computationally intractable even for the simplest treatment -- magnetohydrodynamics (MHD). To overcome this problem one can use subgrid-scale (SGS) closures -- models for the influence of unresolved, subgrid-scales on the resolved ones. In this work we propose and validate a set of constant coefficient closures for the resolved, compressible, ideal MHD equations. The subgrid-scale energies are modeled by Smagorinsky-like equilibrium closures. The turbulent stresses and the electromotive force (EMF) are described by expressions that are nonlinear in terms of large scale velocity and magnetic field gradients. To verify the closures we conduct a priori tests over 137 simulation snapshots from two different codes with varying ratios of thermal to magnetic pre...
A parametrisation of modified gravity on nonlinear cosmological scales
Lombriser, Lucas
2016-11-01
Viable modifications of gravity on cosmological scales predominantly rely on screening mechanisms to recover Einstein's Theory of General Relativity in the Solar System, where it has been well tested. A parametrisation of the effects of such modifications in the spherical collapse model is presented here for the use of modelling the modified nonlinear cosmological structure. The formalism allows an embedding of the different screening mechanisms operating in scalar-tensor theories through large values of the gravitational potential or its first or second derivatives as well as of linear suppression effects or more general transitions between modified and Einstein gravity limits. Each screening or suppression mechanism is parametrised by a time, mass, and environment dependent screening scale, an effective modified gravitational coupling in the fully unscreened limit that can be matched to linear theory, the exponent of a power-law radial profile of the screened coupling, determined by derivatives, symmetries, and potentials in the scalar field equation, and an interpolation rate between the screened and unscreened limits. Along with generalised perturbative methods, the parametrisation may be used to formulate a nonlinear extension to the linear parametrised post-Friedmannian framework to enable generalised tests of gravity with the wealth of observations from the nonlinear cosmological regime.
Bonus algorithm for large scale stochastic nonlinear programming problems
Diwekar, Urmila
2015-01-01
This book presents the details of the BONUS algorithm and its real world applications in areas like sensor placement in large scale drinking water networks, sensor placement in advanced power systems, water management in power systems, and capacity expansion of energy systems. A generalized method for stochastic nonlinear programming based on a sampling based approach for uncertainty analysis and statistical reweighting to obtain probability information is demonstrated in this book. Stochastic optimization problems are difficult to solve since they involve dealing with optimization and uncertainty loops. There are two fundamental approaches used to solve such problems. The first being the decomposition techniques and the second method identifies problem specific structures and transforms the problem into a deterministic nonlinear programming problem. These techniques have significant limitations on either the objective function type or the underlying distributions for the uncertain variables. Moreover, these ...
Nonlinear Helicons ---an analytical solution elucidating multi-scale structure
Abdelhamid, Hamdi M
2016-01-01
The helicon waves exhibit varying characters depending on plasma parameters, geometry, and wave numbers. Here we elucidate an intrinsic multi-scale property embodied by the combination of dispersive effect and nonlinearity. The extended magnetohydrodynamics model (exMHD) is capable of describing wide range of parameter space. By using the underlying Hamiltonian structure of exMHD, we construct an exact nonlinear solution which turns out to be a combination of two distinct modes, the helicon and Trivelpiece-Gould (TG) waves. In the regime of relatively low frequency or high density, however, the combination is made of the TG mode and an ion cyclotron wave (slow wave). The energy partition between these modes is determined by the helicities carried by the wave fields.
A parametrisation of modified gravity on nonlinear cosmological scales
Lombriser, Lucas
2016-01-01
Viable modifications of gravity on cosmological scales predominantly rely on screening mechanisms to recover Einstein's Theory of General Relativity in the Solar System, where it has been well tested. A parametrisation of the effects of such modifications in the spherical collapse model is presented here for the use of modelling the modified nonlinear cosmological structure. The formalism allows an embedding of the different screening mechanisms operating in scalar-tensor theories through large values of the gravitational potential or its first or second derivatives as well as of linear suppression effects or more general transitions between modified and Einstein gravity limits. Each screening or suppression mechanism is parametrised by a time, mass, and environment dependent screening scale, an effective modified gravitational coupling in the fully unscreened limit that can be matched to linear theory, the exponent of a power-law radial profile of the screened coupling, determined by derivatives, symmetries,...
Nonlinear effects of dark energy clustering beyond the acoustic scales
Energy Technology Data Exchange (ETDEWEB)
Anselmi, Stefano [Department of Physics/CERCA/ISO, Case Western Reserve University, Cleveland, OH 44106-7079 (United States); Nacir, Diana López [The Abdus Salam International Center for Theoretical Physics, Strada costiera 11, I-34151 Trieste (Italy); Sefusatti, Emiliano, E-mail: stefano.anselmi@case.edu, E-mail: dlopez_n@ictp.it, E-mail: emiliano.sefusatti@brera.inaf.it [INAF - Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Saint Lucia) (Italy)
2014-07-01
We extend the resummation method of Anselmi and Pietroni (2012) to compute the total density power spectrum in models of quintessence characterized by a vanishing speed of sound. For standard ΛCDM cosmologies, this resummation scheme allows predictions with an accuracy at the few percent level beyond the range of scales where acoustic oscillations are present, therefore comparable to other, common numerical tools. In addition, our theoretical approach indicates an approximate but valuable and simple relation between the power spectra for standard quintessence models and models where scalar field perturbations appear at all scales. This, in turn, provides an educated guess for the prediction of nonlinear growth in models with generic speed of sound, particularly valuable since no numerical results are yet available.
Nonlinear analysis of anesthesia dynamics by Fractal Scaling Exponent.
Gifani, P; Rabiee, H R; Hashemi, M R; Taslimi, P; Ghanbari, M
2006-01-01
The depth of anesthesia estimation has been one of the most research interests in the field of EEG signal processing in recent decades. In this paper we present a new methodology to quantify the depth of anesthesia by quantifying the dynamic fluctuation of the EEG signal. Extraction of useful information about the nonlinear dynamic of the brain during anesthesia has been proposed with the optimum Fractal Scaling Exponent. This optimum solution is based on the best box sizes in the Detrended Fluctuation Analysis (DFA) algorithm which have meaningful changes at different depth of anesthesia. The Fractal Scaling Exponent (FSE) Index as a new criterion has been proposed. The experimental results confirm that our new Index can clearly discriminate between aware to moderate and deep anesthesia levels. Moreover, it significantly reduces the computational complexity and results in a faster reaction to the transients in patients' consciousness levels in relations with the other algorithms.
Quantum noise in large-scale coherent nonlinear photonic circuits
Santori, Charles; Beausoleil, Raymond G; Tezak, Nikolas; Hamerly, Ryan; Mabuchi, Hideo
2014-01-01
A semiclassical simulation approach is presented for studying quantum noise in large-scale photonic circuits incorporating an ideal Kerr nonlinearity. A netlist-based circuit solver is used to generate matrices defining a set of stochastic differential equations, in which the resonator field variables represent random samplings of the Wigner quasi-probability distributions. Although the semiclassical approach involves making a large-photon-number approximation, tests on one- and two-resonator circuits indicate satisfactory agreement between the semiclassical and full-quantum simulation results in the parameter regime of interest. The semiclassical model is used to simulate random errors in a large-scale circuit that contains 88 resonators and hundreds of components in total, and functions as a 4-bit ripple counter. The error rate as a function of on-state photon number is examined, and it is observed that the quantum fluctuation amplitudes do not increase as signals propagate through the circuit, an important...
The dynamics of rapid fracture: instabilities, nonlinearities and length scales.
Bouchbinder, Eran; Goldman, Tamar; Fineberg, Jay
2014-04-01
The failure of materials and interfaces is mediated by cracks, almost singular dissipative structures that propagate at velocities approaching the speed of sound. Crack initiation and subsequent propagation-the dynamic process of fracture-couples a wide range of time and length scales. Crack dynamics challenge our understanding of the fundamental physics processes that take place in the extreme conditions within the almost singular region where material failure occurs. Here, we first briefly review the classic approach to dynamic fracture, namely linear elastic fracture mechanics (LEFM), and discuss its successes and limitations. We show how, on the one hand, recent experiments performed on straight cracks propagating in soft brittle materials have quantitatively confirmed the predictions of this theory to an unprecedented degree. On the other hand, these experiments show how LEFM breaks down as the singular region at the tip of a crack is approached. This breakdown naturally leads to a new theoretical framework coined 'weakly nonlinear fracture mechanics', where weak elastic nonlinearities are incorporated. The stronger singularity predicted by this theory gives rise to a new and intrinsic length scale, ℓnl. These predictions are verified in detail through direct measurements. We then theoretically and experimentally review how the emergence of ℓnl is linked to a new equation for crack motion, which predicts the existence of a high-speed oscillatory crack instability whose wavelength is determined by ℓnl. We conclude by delineating outstanding challenges in the field.
Small-scale nonlinear dynamics of K-mouflage theories
Brax, Philippe; Valageas, Patrick
2014-12-01
We investigate the small-scale static configurations of K-mouflage models defined by a general function K (χ ) of the kinetic terms. The fifth force is screened by the nonlinear K-mouflage mechanism if K'(χ ) grows sufficiently fast for large negative χ . In the general nonspherically symmetric case, the fifth force is not aligned with the Newtonian force. For spherically symmetric static matter density profiles, we show that the results depend on the potential function W-(y )=y K'(-y2/2 ) ; i.e., W-(y ) must be monotonically increasing to +∞ for y ≥0 to guarantee the existence of a single solution throughout space for any matter density profile. Small radial perturbations around these static profiles propagate as travelling waves with a velocity greater than the speed of light. Starting from vanishing initial conditions for the scalar field and for a time-dependent matter density corresponding to the formation of an overdensity, we numerically check that the scalar field converges to the static solution. If W- is bounded, for high-density objects there are no static solutions throughout space, but one can still define a static solution restricted to large radii. Our dynamical study shows that the scalar field relaxes to this static solution at large radii, whereas spatial gradients keep growing with time at smaller radii. If W- is not bounded but nonmonotonic, there is an infinite number of discontinuous static solutions. However, the Klein-Gordon equation is no longer a well-defined hyperbolic equation, which leads to complex characteristic speeds and exponential instabilities. Therefore, these discontinuous static solutions are not physical, and these models are not theoretically sound. Such K-mouflage scenarios provide an example of theories that can appear viable at the cosmological level, for the cosmological background and perturbative analysis, while being meaningless at a nonlinear level for small-scale configurations. This shows the importance of
Robust large-scale parallel nonlinear solvers for simulations.
Energy Technology Data Exchange (ETDEWEB)
Bader, Brett William; Pawlowski, Roger Patrick; Kolda, Tamara Gibson (Sandia National Laboratories, Livermore, CA)
2005-11-01
This report documents research to develop robust and efficient solution techniques for solving large-scale systems of nonlinear equations. The most widely used method for solving systems of nonlinear equations is Newton's method. While much research has been devoted to augmenting Newton-based solvers (usually with globalization techniques), little has been devoted to exploring the application of different models. Our research has been directed at evaluating techniques using different models than Newton's method: a lower order model, Broyden's method, and a higher order model, the tensor method. We have developed large-scale versions of each of these models and have demonstrated their use in important applications at Sandia. Broyden's method replaces the Jacobian with an approximation, allowing codes that cannot evaluate a Jacobian or have an inaccurate Jacobian to converge to a solution. Limited-memory methods, which have been successful in optimization, allow us to extend this approach to large-scale problems. We compare the robustness and efficiency of Newton's method, modified Newton's method, Jacobian-free Newton-Krylov method, and our limited-memory Broyden method. Comparisons are carried out for large-scale applications of fluid flow simulations and electronic circuit simulations. Results show that, in cases where the Jacobian was inaccurate or could not be computed, Broyden's method converged in some cases where Newton's method failed to converge. We identify conditions where Broyden's method can be more efficient than Newton's method. We also present modifications to a large-scale tensor method, originally proposed by Bouaricha, for greater efficiency, better robustness, and wider applicability. Tensor methods are an alternative to Newton-based methods and are based on computing a step based on a local quadratic model rather than a linear model. The advantage of Bouaricha's method is that it can use any
Nonlinear evolution of large-scale structure in the universe
Energy Technology Data Exchange (ETDEWEB)
Frenk, C.S.; White, S.D.M.; Davis, M.
1983-08-15
Using N-body simulations we study the nonlinear development of primordial density perturbation in an Einstein--de Sitter universe. We compare the evolution of an initial distribution without small-scale density fluctuations to evolution from a random Poisson distribution. These initial conditions mimic the assumptions of the adiabatic and isothermal theories of galaxy formation. The large-scale structures which form in the two cases are markedly dissimilar. In particular, the correlation function xi(r) and the visual appearance of our adiabatic (or ''pancake'') models match better the observed distribution of galaxies. This distribution is characterized by large-scale filamentary structure. Because the pancake models do not evolve in a self-similar fashion, the slope of xi(r) steepens with time; as a result there is a unique epoch at which these models fit the galaxy observations. We find the ratio of cutoff length to correlation length at this time to be lambda/sub min//r/sub 0/ = 5.1; its expected value in a neutrino dominated universe is 4(..cap omega..h)/sup -1/ (H/sub 0/ = 100h km s/sup -1/ Mpc/sup -1/). At early epochs these models predict a negligible amplitude for xi(r) and could explain the lack of measurable clustering in the Ly..cap alpha.. absorption lines of high-redshift quasars. However, large-scale structure in our models collapses after z = 2. If this collapse precedes galaxy formation as in the usual pancake theory, galaxies formed uncomfortably recently. The extent of this problem may depend on the cosmological model used; the present series of experiments should be extended in the future to include models with ..cap omega..<1.
Nonlinear phenomena of acridine orange in inorganic glasses at nanosecond scale
Gaponenko, S. V.; Gribkovskii, V. P.; Zimin, L. G.; Lebed, V. Yu.; Malinovskii, I. E.; Graham, S.; Klingshirn, C.; Eyal, M.; Brusilovsky, D.; Reisfeld, R.
1993-04-01
Nonlinear optical behavior of acridine orange dye has been studied in lead-tin-flouride glass. We found that this material possess nonlinear saturable absorption and power-dependent lifetimes, both on nanosecond time scale. This short response is explained by an efficient S-T transfer induced by the heavy atoms of the glass. The glass has a good potential as a nonlinear material on a nanosecond time scale.
Parameter Scaling in Non-Linear Microwave Tomography
DEFF Research Database (Denmark)
Jensen, Peter Damsgaard; Rubæk, Tonny; Talcoth, Oskar;
2012-01-01
Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when the imag......Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when...... the imaging problem is formulated. Under such conditions, microwave imaging systems will most often be considerably more sensitive to changes in the electromagnetic properties in certain regions of the breast. The result is that the parameters might not be reconstructed correctly in the less sensitive regions...... introduced as a measure of the sensitivity. The scaling of the parameters is shown to improve performance of the microwave imaging system when applied to reconstruction of images from 2-D simulated data and measurement data....
Scaling properties of weakly nonlinear coefficients in the Faraday problem.
Skeldon, A C; Porter, J
2011-07-01
Interesting and exotic surface wave patterns have regularly been observed in the Faraday experiment. Although symmetry arguments provide a qualitative explanation for the selection of some of these patterns (e.g., superlattices), quantitative analysis is hindered by mathematical difficulties inherent in a time-dependent, free-boundary Navier-Stokes problem. More tractable low viscosity approximations are available, but these do not necessarily capture the moderate viscosity regime of the most interesting experiments. Here we focus on weakly nonlinear behavior and compare the scaling results derived from symmetry arguments in the low viscosity limit with the computed coefficients of appropriate amplitude equations using both the full Navier-Stokes equations and a reduced set of partial differential equations due to Zhang and Vinãls. We find the range of viscosities over which one can expect "low viscosity" theories to hold. We also find that there is an optimal viscosity range for locating superlattice patterns experimentally-large enough that the region of parameters giving stable patterns is not impracticably small, yet not so large that crucial resonance effects are washed out. These results help explain some of the discrepancies between theory and experiment.
Nonlinear density fluctuation field theory for large scale structure
Institute of Scientific and Technical Information of China (English)
Yang Zhang; Hai-Xing Miao
2009-01-01
We develop an effective field theory of density fluctuations for a Newtonian self-gravitating N-body system in quasi-equilibrium and apply it to a homogeneous uni-verse with small density fluctuations. Keeping the density fluctuations up to second or-der, we obtain the nonlinear field equation of 2-pt correlation ξ(r), which contains 3-pt correlation and formal ultra-violet divergences. By the Groth-Peebles hierarchical ansatz and mass renormalization, the equation becomes closed with two new terms beyond the Gaussian approximation, and their coefficients are taken as parameters. The analytic solu-tion is obtained in terms of the hypergeometric functions, which is checked numerically.With one single set of two fixed parameters, the correlation ξ(r) and the corresponding power spectrum P(k) simultaneously match the results from all the major surveys, such as APM, SDSS, 2dfGRS, and REFLEX. The model gives a unifying understanding of several seemingly unrelated features of large scale structure from a field-theoretical per-spective. The theory is worth extending to study the evolution effects in an expanding universe.
Parameter Scaling in Non-Linear Microwave Tomography
DEFF Research Database (Denmark)
Jensen, Peter Damsgaard; Rubæk, Tonny; Talcoth, Oskar
2012-01-01
Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when the imag......Non-linear microwave tomographic imaging of the breast is a challenging computational problem. The breast is heterogeneous and contains several high-contrast and lossy regions, resulting in large differences in the measured signal levels. This implies that special care must be taken when...... the imaging problem is formulated. Under such conditions, microwave imaging systems will most often be considerably more sensitive to changes in the electromagnetic properties in certain regions of the breast. The result is that the parameters might not be reconstructed correctly in the less sensitive regions...... introduced as a measure of the sensitivity. The scaling of the parameters is shown to improve performance of the microwave imaging system when applied to reconstruction of images from 2-D simulated data and measurement data....
Multiple scales analysis and travelling wave solutions for KdV type nonlinear evolution equations
Ayhan, Burcu; Ozer, M. Naci; Bekir, Ahmet
2017-01-01
Nonlinear evolution equations are the mathematical models of problems that arise in many field of science. These equations has become an important field of study in applied mathematics in recent years. We apply exact solution methods and multiple scale method which is known as a perturbation method to nonlinear evolution equations. Using exact solution methods we get travelling wave solutions expressed by hyperbolic functions, trigonometric functions and rational functions. Also we derive Nonlinear Schrödinger (NLS) type equations from Korteweg-de Vries (KdV) type nonlinear evolution equations and we get approximate solutions for KdV type equations using multiple scale method. The proposed methods are direct and effective and can be used for many nonlinear evolution equations. It is shown that these methods provide a powerful mathematical tool to solve nonlinear evolution equations in mathematical physics.
Solving Large Scale Nonlinear Eigenvalue Problem in Next-Generation Accelerator Design
Energy Technology Data Exchange (ETDEWEB)
Liao, Ben-Shan; Bai, Zhaojun; /UC, Davis; Lee, Lie-Quan; Ko, Kwok; /SLAC
2006-09-28
A number of numerical methods, including inverse iteration, method of successive linear problem and nonlinear Arnoldi algorithm, are studied in this paper to solve a large scale nonlinear eigenvalue problem arising from finite element analysis of resonant frequencies and external Q{sub e} values of a waveguide loaded cavity in the next-generation accelerator design. They present a nonlinear Rayleigh-Ritz iterative projection algorithm, NRRIT in short and demonstrate that it is the most promising approach for a model scale cavity design. The NRRIT algorithm is an extension of the nonlinear Arnoldi algorithm due to Voss. Computational challenges of solving such a nonlinear eigenvalue problem for a full scale cavity design are outlined.
Piecewise compensation for the nonlinear error of fiber-optic gyroscope scale factor
Zhang, Yonggang; Wu, Xunfeng; Yuan, Shun; Wu, Lei
2013-08-01
Fiber-Optic Gyroscope (FOG) scale factor nonlinear error will result in errors in Strapdown Inertial Navigation System (SINS). In order to reduce nonlinear error of FOG scale factor in SINS, a compensation method is proposed in this paper based on curve piecewise fitting of FOG output. Firstly, reasons which can result in FOG scale factor error are introduced and the definition of nonlinear degree is provided. Then we introduce the method to divide the output range of FOG into several small pieces, and curve fitting is performed in each output range of FOG to obtain scale factor parameter. Different scale factor parameters of FOG are used in different pieces to improve FOG output precision. These parameters are identified by using three-axis turntable, and nonlinear error of FOG scale factor can be reduced. Finally, three-axis swing experiment of SINS verifies that the proposed method can reduce attitude output errors of SINS by compensating the nonlinear error of FOG scale factor and improve the precision of navigation. The results of experiments also demonstrate that the compensation scheme is easy to implement. It can effectively compensate the nonlinear error of FOG scale factor with slightly increased computation complexity. This method can be used in inertial technology based on FOG to improve precision.
OSCILLATION FOR NONLINEAR SECOND-ORDER DYNAMIC EQUATIONS ON TIME SCALES
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Through the use of generalized Riccati transformation techniques, we establish some oscillation criteria for one type of nonlinear dynamic equation on time scales. Several examples, including a semilinear dynamic equation and a nonlinear Emden-Fowler dynamic equation, are also given to illustrate these criteria and to improve the results obtained in some references.
Oscillation Criteria for Fourth-Order Nonlinear Dynamic Equations on Time Scales
Directory of Open Access Journals (Sweden)
Xin Wu
2013-01-01
Full Text Available We establish some new oscillation criteria for nonlinear dynamic equation of the form on an arbitrary time scale with , where are positive rd-continuous functions. An example illustrating the importance of our result is included.
2013-01-01
This book consists of twenty seven chapters, which can be divided into three large categories: articles with the focus on the mathematical treatment of non-linear problems, including the methodologies, algorithms and properties of analytical and numerical solutions to particular non-linear problems; theoretical and computational studies dedicated to the physics and chemistry of non-linear micro-and nano-scale systems, including molecular clusters, nano-particles and nano-composites; and, papers focused on non-linear processes in medico-biological systems, including mathematical models of ferments, amino acids, blood fluids and polynucleic chains.
Oscillation of Second-order Nonlinear Dynamic Equation on Time Scales
Institute of Scientific and Technical Information of China (English)
YANG Jia-shan
2013-01-01
The oscillation for a class of second order nonlinear variable delay dynamic equation on time scales with nonlinear neutral term and damping term was discussed in this article.By using the generalized Riccati technique,integral averaging technique and the time scales theory,some new sufficient conditions for oscillation of the equation are proposed.These results generalize and extend many known results for second order dynamic equations.Some examples are given to illustrate the main results of this article.
Variance in population firing rate as a measure of slow time-scale correlation
Directory of Open Access Journals (Sweden)
Adam C. Snyder
2013-12-01
Full Text Available Correlated variability in the spiking responses of pairs of neurons, also known as spike count correlation, is a key indicator of functional connectivity and a critical factor in population coding. Underscoring the importance of correlation as a measure for cognitive neuroscience research is the observation that spike count correlations are not fixed, but are rather modulated by perceptual and cognitive context. Yet while this context fluctuates from moment to moment, correlation must be calculated over multiple trials. This property undermines its utility as a dependent measure for investigations of cognitive processes which fluctuate on a trial-to-trial basis, such as selective attention. A measure of functional connectivity that can be assayed on a moment-to-moment basis is needed to investigate the single-trial dynamics of populations of spiking neurons. Here, we introduce the measure of population variance in normalized firing rate for this goal. We show using mathematical analysis, computer simulations and in vivo data how population variance in normalized firing rate is inversely related to the latent correlation in the population, and how this measure can be used to reliably classify trials from different typical correlation conditions, even when firing rate is held constant. We discuss the potential advantages for using population variance in normalized firing rate as a dependent measure for both basic and applied neuroscience research.
On the non-linear scale of cosmological perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Blas, Diego [Theory Division, CERN, 1211 Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas, E-mail: diego.blas@cern.ch, E-mail: mathias.garny@desy.de, E-mail: Thomas.Konstandin@desy.de [DESY, Notkestr. 85, 22607 Hamburg (Germany)
2013-09-01
We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections at any order in perturbation theory. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.
On the non-linear scale of cosmological perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Blas, Diego [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-04-15
We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.
Study of unsteady cavitation on NACA66 hydrofoil using dynamic cubic nonlinear subgrid-scale model
Directory of Open Access Journals (Sweden)
Xianbei Huang
2015-11-01
Full Text Available In this article, we describe the use of a new dynamic cubic nonlinear model, a new nonlinear subgrid-scale model, for simulating the cavitating flow around an NACA66 series hydrofoil. For comparison, the dynamic Smagorinsky model is also used. It is found that the dynamic cubic nonlinear model can capture the turbulence spectrum, while the dynamic Smagorinsky model fails. Both models reproduce the cavity growth/destabilization cycle, but the results of the dynamic cubic nonlinear model are much smoother. The re-entrant jet is clearly captured by the models, and it is shown that the re-entrant jet cuts the cavity into two parts. In general, the dynamic cubic nonlinear model provides improvement over the dynamic Smagorinsky model for the calculation of cavitating flow.
Scaling of ac susceptibility and the nonlinear response function of high-temperature superconductors
Institute of Scientific and Technical Information of China (English)
CHEN; Kaixuan; NING; Zhenhua; XU; Hengyi; QI; Zhi; LU; Guo
2005-01-01
The amplitude-dependent ac susceptibility of high-temperature superconductors is shown to obey some empirical scaling relations. We try to analyze this behavior by extending a dc nonlinear response function of mixed state to the ac cases. The derived equations for critical current and ac susceptibility x(T) agree with the scaling relations of experimental data.
Imprint of non-linear effects on HI intensity mapping on large scales
Umeh, Obinna
2016-01-01
Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We consider how non-linear effects associated with the HI bias and redshift space distortions contribute to the clustering of cosmic neutral Hydrogen on large scales. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result to show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortions leads to about 10\\% modulation of the HI power spectrum on large scales.
Imprint of non-linear effects on HI intensity mapping on large scales
Umeh, Obinna
2017-06-01
Intensity mapping of the HI brightness temperature provides a unique way of tracing large-scale structures of the Universe up to the largest possible scales. This is achieved by using a low angular resolution radio telescopes to detect emission line from cosmic neutral Hydrogen in the post-reionization Universe. We use general relativistic perturbation theory techniques to derive for the first time the full expression for the HI brightness temperature up to third order in perturbation theory without making any plane-parallel approximation. We use this result and the renormalization prescription for biased tracers to study the impact of nonlinear effects on the power spectrum of HI brightness temperature both in real and redshift space. We show how mode coupling at nonlinear order due to nonlinear bias parameters and redshift space distortion terms modulate the power spectrum on large scales. The large scale modulation may be understood to be due to the effective bias parameter and effective shot noise.
Non-linear scaling of a musculoskeletal model of the lower limb using statistical shape models.
Nolte, Daniel; Tsang, Chui Kit; Zhang, Kai Yu; Ding, Ziyun; Kedgley, Angela E; Bull, Anthony M J
2016-10-03
Accurate muscle geometry for musculoskeletal models is important to enable accurate subject-specific simulations. Commonly, linear scaling is used to obtain individualised muscle geometry. More advanced methods include non-linear scaling using segmented bone surfaces and manual or semi-automatic digitisation of muscle paths from medical images. In this study, a new scaling method combining non-linear scaling with reconstructions of bone surfaces using statistical shape modelling is presented. Statistical Shape Models (SSMs) of femur and tibia/fibula were used to reconstruct bone surfaces of nine subjects. Reference models were created by morphing manually digitised muscle paths to mean shapes of the SSMs using non-linear transformations and inter-subject variability was calculated. Subject-specific models of muscle attachment and via points were created from three reference models. The accuracy was evaluated by calculating the differences between the scaled and manually digitised models. The points defining the muscle paths showed large inter-subject variability at the thigh and shank - up to 26mm; this was found to limit the accuracy of all studied scaling methods. Errors for the subject-specific muscle point reconstructions of the thigh could be decreased by 9% to 20% by using the non-linear scaling compared to a typical linear scaling method. We conclude that the proposed non-linear scaling method is more accurate than linear scaling methods. Thus, when combined with the ability to reconstruct bone surfaces from incomplete or scattered geometry data using statistical shape models our proposed method is an alternative to linear scaling methods.
Stability analysis of nonlinear systems by multiple time scaling. [using perturbation methods
Morino, L.
1974-01-01
The asymptotic solution for the transient analysis of a general nonlinear system in the neighborhood of the stability boundary was obtained by using the multiple-time-scaling asymptotic-expansion method. The nonlinearities are assumed to be of algebraic nature. Terms of order epsilon to the 3rd power (where epsilon is the order of amplitude of the unknown) are included in the solution. The solution indicates that there is always a limit cycle which is stable (unstable) and exists above (below) the stability boundary if the nonlinear terms are stabilizing (destabilizing). Extension of the solution to include fifth order nonlinear terms is also presented. Comparisons with harmonic balance and with multiple-time-scaling solution of panel flutter equations are also included.
On the importance of nonlinear couplings in large-scale neutrino streams
Dupuy, Hélène
2015-01-01
We propose a procedure to evaluate the impact of nonlinear couplings on the evolution of massive neutrino streams in the context of large-scale structure growth. Such streams can be described by general nonlinear conservation equations, derived from a multiple-flow perspective, which generalize the conservation equations of non-relativistic pressureless fluids. The relevance of the nonlinear couplings is quantified with the help of the eikonal approximation applied to the subhorizon limit of this system. It highlights the role played by the relative displacements of different cosmic streams and it specifies, for each flow, the spatial scales at which the growth of structure is affected by nonlinear couplings. We found that, at redshift zero, such couplings can be significant for wavenumbers as small as $k=0.2\\,h$/Mpc for most of the neutrino streams.
Nonlinear dynamics of magnetic islands imbedded in small-scale turbulence.
Muraglia, M; Agullo, O; Benkadda, S; Garbet, X; Beyer, P; Sen, A
2009-10-02
The nonlinear dynamics of magnetic tearing islands imbedded in a pressure gradient driven turbulence is investigated numerically in a reduced magnetohydrodynamic model. The study reveals regimes where the linear and nonlinear phases of the tearing instability are controlled by the properties of the pressure gradient. In these regimes, the interplay between the pressure and the magnetic flux determines the dynamics of the saturated state. A secondary instability can occur and strongly modify the magnetic island dynamics by triggering a poloidal rotation. It is shown that the complex nonlinear interaction between the islands and turbulence is nonlocal and involves small scales.
Nonlinear Dynamics of Magnetic Islands Imbedded in Small-Scale Turbulence
Muraglia, Magali; Benkadda, Sadruddin; Garbet, Xavier; Beyer, P; Sen, Abhijit; 10.1103/PhysRevLett.103.145001
2011-01-01
The nonlinear dynamics of magnetic tearing islands imbedded in a pressure gradient driven turbulence is investigated numerically in a reduced magnetohydrodynamic model. The study reveals regimes where the linear and nonlinear phases of the tearing instability are controlled by the properties of the pressure gradient. In these regimes, the interplay between the pressure and the magnetic flux determines the dynamics of the saturated state. A secondary instability can occur and strongly modify the magnetic island dynamics by triggering a poloidal rotation. It is shown that the complex nonlinear interaction between the islands and turbulence is nonlocal and involves small scales.
Nonlinear and linear timescales near kinetic scales in solar wind turbulence
Energy Technology Data Exchange (ETDEWEB)
Matthaeus, W. H.; Wan, M.; Shay, M. A. [Department of Physics and Astronomy, University of Delaware, DE 19716 (United States); Oughton, S. [Department of Mathematics, University of Waikato, Hamilton (New Zealand); Osman, K. T.; Chapman, S. C. [Centre for Fusion, Space, and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Servidio, S.; Valentini, F. [Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza (Italy); Gary, S. P. [Space Sciences Institute, Boulder, CO 80301 (United States); Roytershteyn, V.; Karimabadi, H., E-mail: whm@udel.edu [Sciberquest, Inc., Del Mar, CA 92014 (United States)
2014-08-01
The application of linear kinetic treatments to plasma waves, damping, and instability requires favorable inequalities between the associated linear timescales and timescales for nonlinear (e.g., turbulence) evolution. In the solar wind these two types of timescales may be directly compared using standard Kolmogorov-style analysis and observational data. The estimated local (in scale) nonlinear magnetohydrodynamic cascade times, evaluated as relevant kinetic scales are approached, remain slower than the cyclotron period, but comparable to or faster than the typical timescales of instabilities, anisotropic waves, and wave damping. The variation with length scale of the turbulence timescales is supported by observations and simulations. On this basis the use of linear theory—which assumes constant parameters to calculate the associated kinetic rates—may be questioned. It is suggested that the product of proton gyrofrequency and nonlinear time at the ion gyroscales provides a simple measure of turbulence influence on proton kinetic behavior.
Non-linear variability in geophysics scaling and fractals
Lovejoy, S
1991-01-01
consequences of broken symmetry -here parity-is studied. In this model, turbulence is dominated by a hierarchy of helical (corkscrew) structures. The authors stress the unique features of such pseudo-scalar cascades as well as the extreme nature of the resulting (intermittent) fluctuations. Intermittent turbulent cascades was also the theme of a paper by us in which we show that universality classes exist for continuous cascades (in which an infinite number of cascade steps occur over a finite range of scales). This result is the multiplicative analogue of the familiar central limit theorem for the addition of random variables. Finally, an interesting paper by Pasmanter investigates the scaling associated with anomolous diffusion in a chaotic tidal basin model involving a small number of degrees of freedom. Although the statistical literature is replete with techniques for dealing with those random processes characterized by both exponentially decaying (non-scaling) autocorrelations and exponentially decaying...
Nonlinear Scaling Laws for Parametric Receiving Arrays. Part II. Numerical Analysis
1976-06-30
8217" " .’Ml’.1 ’.■■’: ■ ’ ^ t- Nonlinear Scaling Laws for Parametric Receiving Arrays Part II Numerical Analysis » - m • o prepared ...8217 ’ ■ — Nonlinear Scaling Laws for Parametric Receiving Arrays » z Part II. Numerical Analysis prepared under: A ——^ N0ÖJ339- 7 5 - C -J02 59, //V-ARPA Order...IF ’IP ,6T, 10 .HNO. IR .I_E. £0> riELTI = LiELTrJ IF ’IP .GT. 3 0 .HMD. IP .LE. 3 0;. [ IELT I = IiELT3 IF
Wan, W. M. V.; Lee, H. C.; Hui, P. M.; Yu, K. W.
1996-08-01
The effective response of random media consisting of two different kinds of strongly nonlinear materials with strong power-law nonlinearity is studied. Each component satisfies current density and electric-field relation of the form J=χ\\|E\\|βE. A simple self-consistent mean-field theory, which leads to a simple way in determining the average local electric field in each constituent, is introduced. Each component is assumed to have a conductivity depending on the averaged local electric field. The averaged local electric field is then determined self-consistently. Numerical simulations of the system are carried out on random nonlinear resistor networks. Theoretical results are compared with simulation data, and excellent agreements are found. Results are also compared with the Hashin-Shtrikman lower bound proposed by Ponte Castaneda et al. [Phys. Rev. B 46, 4387 (1992)]. It is found that the present theory, at small contrasts of χ between the two components, gives a result identical to that of Ponte Castaneda et al. up to second order of the contrast. The crossover and scaling behavior of the effective response near the percolation threshold as suggested by the present theory are discussed and demonstrated.
Multiple time scale based reduction scheme for nonlinear chemical dynamics
Das, D.; Ray, D. S.
2013-07-01
A chemical reaction is often characterized by multiple time scales governing the kinetics of reactants, products and intermediates. We eliminate the fast relaxing intermediates in autocatalytic reaction by transforming the original system into a new one in which the linearized part is diagonal. This allows us to reduce the dynamical system by identifying the associated time scales and subsequent adiabatic elimination of the fast modes. It has been shown that the reduced system sustains the robust qualitative signatures of the original system and at times the generic form of the return map for the chaotic system from which complex dynamics stems out in the original system can be identified. We illustrate the scheme for a three-variable cubic autocatalytic reaction and four-variable peroxidase-oxidase reaction.
Nonlinear scale space with spatially varying stopping time.
Gilboa, Guy
2008-12-01
A general scale space algorithm is presented for denoising signals and images with spatially varying dominant scales. The process is formulated as a partial differential equation with spatially varying time. The proposed adaptivity is semi-local and is in conjunction with the classical gradient-based diffusion coefficient, designed to preserve edges. The new algorithm aims at maximizing a local SNR measure of the denoised image. It is based on a generalization of a global stopping time criterion presented recently by the author and colleagues. Most notably, the method works well also for partially textured images and outperforms any selection of a global stopping time. Given an estimate of the noise variance, the procedure is automatic and can be applied well to most natural images.
Chip scale low dimensional materials: optoelectronics & nonlinear optics
Gu, Tingyi
The CMOS foundry infrastructure enables integration of high density, high performance optical transceivers. We developed integrated devices that assemble resonators, waveguide, tapered couplers, pn junction and electrodes. Not only the volume standard manufacture in silicon foundry is promising to low-lost optical components operating at IR and mid-IR range, it also provides a robust platform for revealing new physical phenomenon. The thesis starts from comparison between photonic crystal and micro-ring resonators based on chip routers, showing photonic crystal switches have small footprint, consume low operation power, but its higher linear loss may require extra energy for signal amplification. Different designs are employed in their implementation in optical signal routing on chip. The second part of chapter 2 reviews the graphene based optoelectronic devices, such as modulators, lasers, switches and detectors, potential for group IV optoelectronic integrated circuits (OEIC). In chapter 3, the highly efficient thermal optic control could act as on-chip switches and (transmittance) tunable filters. Local temperature tuning compensates the wavelength differences between two resonances, and separate electrode is used for fine tuning of optical pathways between two resonators. In frequency domain, the two cavity system also serves as an optical analogue of Autler-Towns splitting, where the cavity-cavity resonance detuning is controlled by the length of pathway (phase) between them. The high thermal sensitivity of cavity resonance also effectively reflects the heat distribution around the nanoheaters, and thus derives the thermal conductivity in the planar porous suspended silicon membrane. Chapter 4 & 5 analyze graphene-silicon photonic crystal cavities with high Q and small mode volume. With negligible nonlinear response to the milliwatt laser excitation, the monolithic silicon PhC turns into highly nonlinear after transferring the single layer graphene with
Nonlinear saturation of electrostatic waves mobile ions modify trapping scaling
Crawford, J D; Crawford, John David; Jayaraman, Anandhan
1996-01-01
The amplitude equation for an unstable electrostatic wave in a multi-species Vlasov plasma has been derived. The dynamics of the mode amplitude $\\rho(t)$ is studied using an expansion in $\\rho$; in particular, in the limit analyzed to predict the asymptotic dependence of the electric field on the linear growth rate $\\gamma$. Generically $|E_k|\\sim \\gamma^{5/2}$, as instabilities in reflection-symmetric systems due to real eigenvalues the more familiar trapping scaling $|E_k|\\sim \\gamma^{2}$ is predicted.
Nonlinear and Linear Timescales near Kinetic Scales in Solar Wind Turbulence
Matthaeus, W H; Osman, K T; Servidio, S; Wan, M; Gary, S P; Shay, M A; Valentini, F; Roytershteyn, V; Karimabadi, H; Chapman, S C
2014-01-01
The application of linear kinetic treatments to plasma waves, damping, and instability requires favorable inequalities between the associated linear timescales and timescales for nonlinear (e.g., turbulence) evolution. In the solar wind these two types of timescales may be directly compared using standard Kolmogorov-style analysis and observational data. The estimated local nonlinear magnetohydrodynamic cascade times, evaluated as relevant kinetic scales are approached, remain slower than the cyclotron period, but comparable to, or faster than, the typical timescales of instabilities, anisotropic waves, and wave damping. The variation with length scale of the turbulence timescales is supported by observations and simulations. On this basis the use of linear theory - which assumes constant parameters to calculate the associated kinetic rates - may be questioned. It is suggested that the product of proton gyrofrequency and nonlinear time at the ion gyroscales provides a simple measure of turbulence influence on...
Institute of Scientific and Technical Information of China (English)
Yepeng Xing; Qiong Wang; Valery G. Romanovski
2009-01-01
We prove several new comparison results and develop the monotone iterative tech-nique to show the existence of extremal solutions to a kind of periodic boundary value problem (PBVP) for nonlinear integro-differential equation of mixed type on time scales.
Existence of Solutions for Nonlinear Four-Point -Laplacian Boundary Value Problems on Time Scales
Directory of Open Access Journals (Sweden)
Topal SGulsan
2009-01-01
Full Text Available We are concerned with proving the existence of positive solutions of a nonlinear second-order four-point boundary value problem with a -Laplacian operator on time scales. The proofs are based on the fixed point theorems concerning cones in a Banach space. Existence result for -Laplacian boundary value problem is also given by the monotone method.
On the slow time geomagnetic field modulation of galactic cosmic rays
Okpala, Kingsley
2016-07-01
Cosmic rays of galactic origin are modulated by both heliospheric and geomagnetic conditions. The mutual (and mutually exclusive) contribution of both heliospheric and geomagnetic conditions to galactic cosmic rays (GCR) modulation is still an open question. While the rapid-time association of the galactic cosmic ray variation with different heliophysical and geophysical phenomena has been well studied, not so much attention has been paid to slow-time variations especially with regards to local effects. In this work, we employed monthly means of cosmic ray count rates from two mid latitude (Hermanus and Rome), and two higher latitude (Inuvik and Oulu) neutron monitors (NM), and compared their variability with geomagnetic stations that are in close proximity to the NMs. The data spans 1966 to 2008 and covers four (4) solar cycles. The difference (DeltaCR)between the mean count rate of all days and the mean of the five quietest days for each month was compared with the Dst-related disturbance (DeltaH) derived from the nearby geomagnetic stations. Zeroth- and First- correlation between the cosmic ray parameters and geomagnetic parameters was performed to ascertain statistical association and test for spurious association. Our results show that solar activity is generally strongly correlated (>0.75) with mean strength of GCR count rate and geomagnetic field during individual solar cycles. The correlation between mean strength of cosmic ray intensity and Geomagnetic field strength is spurious and is basically moderated by the solar activity. The signature of convection driven disturbances at high latitude geomagnetic stations was evident during the declining phase of the solar cycles close to the solar minimum. The absence of this feature in the slow-time varying cosmic ray count rates in all stations, and especially in the mid latitude geomagnetic stations suggest that the local geomagnetic disturbance contributes much less in modulating the cosmic ray flux.
Nonlinear interaction of two trapped-mode resonances in a bilayer "fish-scale" metamaterial
Tuz, Vladimir R; Mladyonov, Pavel L; Prosvirnin, Sergey L; Novitsky, Andrey V
2014-01-01
We report on a bistable light transmission through a bilayer "fish-scale" (meander-line) metamaterial. It is demonstrated that an all-optical switching may be achieved nearly the frequency of the high-quality-factor Fano-shaped trapped-mode resonance excitation. The nonlinear interaction of two closely spaced trapped-mode resonances in the bilayer structure composed with a Kerr-type nonlinear dielectric slab is analyzed in both frequency and time domains. It is demonstrated that these two resonances react differently on the applied intense light which leads to destination of a multistable transmission.
Dimensional Reduction for Filters of Nonlinear Systems with Time-Scale Separation
2013-03-01
Rapp, Edwin Kreuzer and N. Sri Namachchivaya, “Reduced Nor- mal Forms for Nonlinear Control of Underactuated Hoisting Systems ,” Archive of Applied Mechanics , Vol.82, 2012, pp. 297 - 315. 7 ... Mechanics , Vol. 78(6), 2011, pp. 61001-1 - 61001-10. 8. Lee DeVille, N. Sri Namachchivaya and Zoi Rapti, “Noisy Two Dimensional Non-Hamiltonian System ...AFRL-OSR-VA-TR-2013-0009 Dimensional Reduction for Filters of Nonlinear Systems with Time- Scale Separation Namachchivaya, N
Perez-Moreno, Javier; Kuzyk, Mark G
2016-01-01
The scaling of the fundamental limits of the second hyperpolarizability is used to define the intrinsic second hyperpolarizability, which aids in identifying material classes with ultralarge nonlinear-optical response per unit of molecular size. The intrinsic nonlinear response is a size-independent metric that we apply to comparing classes of molecular homologues, which are made by adding repeat units to extend their lengths. Several new figures of merit are proposed that quantify not only the intrinsic nonlinear response, but also how the second hyperpolarizability increases with size within a molecular class. Scaling types can be classified into sub-scaling, nominal scaling that follows the theory of limits, and super-scaling behavior. Super-scaling homologues that have large intrinsic nonlinearity are the most promising because they efficiently take advantage of increased size. We apply our approach to data in the literature to identify the best super-scaling molecular paradigms and articulate the importa...
Tong, Shaocheng; Xu, Yinyin; Li, Yongming
2015-06-01
This paper is concerned with the problem of adaptive fuzzy decentralised output-feedback control for a class of uncertain stochastic nonlinear pure-feedback large-scale systems with completely unknown functions, the mismatched interconnections and without requiring the states being available for controller design. With the help of fuzzy logic systems approximating the unknown nonlinear functions, a fuzzy state observer is designed estimating the unmeasured states. Therefore, the nonlinear filtered signals are incorporated into the backstepping recursive design, and an adaptive fuzzy decentralised output-feedback control scheme is developed. It is proved that the filter system converges to a small neighbourhood of the origin based on appropriate choice of the design parameters. Simulation studies are included illustrating the effectiveness of the proposed approach.
Linear and Nonlinear Optical Properties of Micrometer-Scale Gold Nanoplates
Institute of Scientific and Technical Information of China (English)
LIU Xiao-Lan; PENG Xiao-Niu; YANG Zhong-Jian; LI Min; ZHOU Li
2011-01-01
Micrometer-scale gold nanoplates have been synthesized in high yield through a polyol process.The morphology, crystal structure and linear optical extinction of the gold nanoplates have been characterized.These gold nanoplates are single-crystalline with triangular, truncated triangular and hexagonal shapes, exhibiting strong surface plasmon resonance (SPR) extinction in the visible and near-infrared (NIR) region.The linear optical properties of gold nanoplates are also investigated by theoretical calculations.We further investigate the nonlinear opticai properties of the gold nanoplates in solution by Z-scan technique.The nonlinear absorption (NLA )coefficient and nonlinear refraction (NLR) index are measured to be 1.18 × 102 cm/GW and - 1.04 × 10-3 cm2/GW,respectively.%@@ Micrometer-scale gold nanoplates have been synthesized in high yield through a polyol process.The morphology,crystal structure and linear optical extinction of the gold nanoplates have been characterized.These gold nanoplates are single-crystalline with triangular,truncated triangular and hexagonal shapes,exhibiting strong surface plasmon resonance(SPR) extinction in the visible and near-infrared(NIR) region.The linear optical properties of gold nanoplates are also investigated by theoretical calculations.We further investigate the nonlinear optical properties of the gold nanoplates in solution by Z-scan technique.The nonlinear absorption(NLA)coefficient and nonlinear refraction(NLR) index are measured to be 1.18 × 102 cm/GW and - 1.04 × 10-3 cm2/GW,respectively.
Harmonic Propagation and Interaction Evaluation between Small-Scale Wind Farms and Nonlinear Loads
Directory of Open Access Journals (Sweden)
Cheng-Xiong Mao
2013-07-01
Full Text Available Distributed generation is a flexible and effective way to utilize renewable energy. The dispersed generators are quite close to the load, and pose some power quality problems such as harmonic current emissions. This paper focuses on the harmonic propagation and interaction between a small-scale wind farm and nonlinear loads in the distribution grid. Firstly, by setting the wind turbines as P – Q(V nodes, the paper discusses the expanding Newton-Raphson power flow method for the wind farm. Then the generalized gamma mixture models are proposed to study the non-characteristic harmonic propagation of the wind farm, which are based on Gaussian mixture models, improved phasor clustering and generalized Gamma models. After the integration of the small-scale wind farm, harmonic emissions of nonlinear loads will become random and fluctuating due to the non-stationary wind power. Furthermore, in this paper the harmonic coupled admittance matrix model of nonlinear loads combined with a wind farm is deduced by rigorous formulas. Then the harmonic propagation and interaction between a real wind farm and nonlinear loads are analyzed by the harmonic coupled admittance matrix and generalized gamma mixture models. Finally, the proposed models and methods are verified through the corresponding simulation models in MATLAB/SIMULINK and PSCAD/EMTDC.
A multiple-scale power series method for solving nonlinear ordinary differential equations
Directory of Open Access Journals (Sweden)
Chein-Shan Liu
2016-02-01
Full Text Available The power series solution is a cheap and effective method to solve nonlinear problems, like the Duffing-van der Pol oscillator, the Volterra population model and the nonlinear boundary value problems. A novel power series method by considering the multiple scales $R_k$ in the power term $(t/R_k^k$ is developed, which are derived explicitly to reduce the ill-conditioned behavior in the data interpolation. In the method a huge value times a tiny value is avoided, such that we can decrease the numerical instability and which is the main reason to cause the failure of the conventional power series method. The multiple scales derived from an integral can be used in the power series expansion, which provide very accurate numerical solutions of the problems considered in this paper.
A Nonlinear Small-Gain Theorem for Large-Scale Time Delay Systems
Tiwari, Shanaz; Jiang, Zhong-Ping
2009-01-01
This paper extends the nonlinear ISS small-gain theorem to a large-scale time delay system composed of three or more subsystems. En route to proving this small-gain theorem for systems of differential equations with delays, a small-gain theorem for operators is examined. The result developed for operators allows applications to a wide class of systems, including state space systems with delays.
Institute of Scientific and Technical Information of China (English)
Xiaowu MU; Haijun LIU
2007-01-01
In this paper,a state feedback adaptive stabilization for a class of large-scale stochastic nonlinear systems is designed with Lyapunov and Backstepping method.In the systems there are uncertain terms,whose bounds are governed by a set of unknown parameters.The designed controllers would make the close-loop systems asymptotically stable and adaptive for the unknown parameters.As an application,a second order example is delivered to illustrate the approach.
Femtojoule-Scale All-Optical Latching and Modulation via Cavity Nonlinear Optics
Kwon, Yeong-Dae; Armen, Michael A.; Mabuchi, Hideo
2013-11-01
We experimentally characterize Hopf bifurcation phenomena at femtojoule energy scales in a multiatom cavity quantum electrodynamical (cavity QED) system and demonstrate how such behaviors can be exploited in the design of all-optical memory and modulation devices. The data are analyzed by using a semiclassical model that explicitly treats heterogeneous coupling of atoms to the cavity mode. Our results highlight the interest of cavity QED systems for ultralow power photonic signal processing as well as for fundamental studies of mesoscopic nonlinear dynamics.
Smith, Robert E; Seljak, Uros
2009-01-01
We investigate the impact of nonlinear evolution of the gravitational potentials in the LCDM model on the Integrated Sachs-Wolfe (ISW) contribution to the CMB temperature power spectrum, and on the cross-power spectrum of the CMB and a set of biased tracers of the mass. We use an ensemble of N-body simulations to directly follow the potentials and compare results to perturbation theory (PT). The predictions from PT match the results to high precision for k100 the departures are more significant, however the CMB signal is more than a factor 10^3 larger at this scale. Nonlinear ISW effects therefore play no role in shaping the CMB power spectrum for l<1500. We analyze the CMB--density tracer cross-spectrum using simulations and renormalized bias PT, and find good agreement. The usual assumption is that nonlinear evolution enhances the growth of structure and counteracts linear ISW on small scales, leading to a change in sign of the CMB-LSS cross-spectrum at small scales. However, PT analysis suggests that th...
Institute of Scientific and Technical Information of China (English)
Chunxia Jia; Detong Zhu
2008-01-01
In this paper we propose an affine scaling interior algorithm via conjugate gradient path for solving nonlinear equality systems subject to bounds on variables.By employing the affine scaling conjugate gradient path search strategy,we obtain an iterative direction by solving the linearize model.By using the line search technique,we will find an acceptable trial step length along this direction which is strictly feasible and makes the objective function nonmonotonically decreasing.The global convergence and fast local convergence rate of the proposed algorithm are established under some reasonable conditions.Furthermore,the numerical results of the proposed algorithm indicate to be effective.
Institute of Scientific and Technical Information of China (English)
Qin Ni
2001-01-01
An NGTN method was proposed for solving large-scale sparse nonlinear programming (NLP) problems. This is a hybrid method of a truncated Newton direction and a modified negative gradient direction, which is suitable for handling sparse data structure and possesses Q-quadratic convergence rate. The global convergence of this new method is proved,the convergence rate is further analysed, and the detailed implementation is discussed in this paper. Some numerical tests for solving truss optimization and large sparse problems are reported. The theoretical and numerical results show that the new method is efficient for solving large-scale sparse NLP problems.
A Reduced Basis Framework: Application to large scale non-linear multi-physics problems
Directory of Open Access Journals (Sweden)
Daversin C.
2013-12-01
Full Text Available In this paper we present applications of the reduced basis method (RBM to large-scale non-linear multi-physics problems. We first describe the mathematical framework in place and in particular the Empirical Interpolation Method (EIM to recover an affine decomposition and then we propose an implementation using the open-source library Feel++ which provides both the reduced basis and finite element layers. Large scale numerical examples are shown and are connected to real industrial applications arising from the High Field Resistive Magnets development at the Laboratoire National des Champs Magnétiques Intenses.
Scaling effects in a non-linear electromagnetic energy harvester for wearable sensors
Geisler, M.; Boisseau, S.; Perez, M.; Ait-Ali, I.; Perraud, S.
2016-11-01
In the field of inertial energy harvesters targeting human mechanical energy, the ergonomics of the solutions impose to find the best compromise between dimensions reduction and electrical performance. In this paper, we study the properties of a non-linear electromagnetic generator at different scales, by performing simulations based on an experimentally validated model and real human acceleration recordings. The results display that the output power of the structure is roughly proportional to its scaling factor raised to the power of five, which indicates that this system is more relevant at lengths over a few centimetres.
Salient region detection Using Wasserstein distance measure based on nonlinear scale space
Zhu, Lei; Cao, Zhiguo
2013-10-01
Many existing bottom-up saliency detection methods measure the multi-scale local prominence by building the Gaussian scale space. As a kind of linear scale space, it is a natural representation of human perception. However the Gaussian filtering does not respect the boundaries of proto-objects and smooth both noises and details. In this paper, we compute the pixel level center-surround difference in a nonlinear scale space which makes blurring locally adaptive to the image regions. The nonlinear scale space is built by a efficient evolution techniques and extended to represent color images. In contrast to some widely used region-based measures, we represent feature statistics by multivariate normal distributions and compare them with the Wasserstein distance on l2 norm (W2 distance). From the perspective of visual organization in imaging, many priors are proved to be efficient in global consideration. In order to further precisely locate the proper salient object, we also use the background prior as a global cue to refine the obtained local saliency map. The experimental results show that our approach outperforms 5 recent state of the art saliency detection methods in terms of precision and recall on a newly published benchmark.
The velocity shear and vorticity across redshifts and non-linear scales
Libeskind, Noam I; Gottlöber, Stefan
2013-01-01
The evolution of the large scale distribution of matter in the universe is often characterized by the density field. Here we take a complimentary approach and characterize it using the cosmic velocity field, specifically the deformation of the velocity field. The deformation tensor is decomposed into its symmetric component (known as the "shear tensor") and its anti-symmetric part (the "vorticity"). Using a high resolution cosmological simulation we examine the relative orientations of the shear and the vorticity as a function of spatial scale and redshift. The shear is found to be remarkable stable to the choice of scale, while the vorticity is found to quickly decay with increasing spatial scale or redshift. The vorticity emerges out of the linear regime randomly oriented with respect to the shear eigenvectors. Non-linear evolution drives the vorticity to lie within the plane defined by the eigenvector of the fastest collapse. Within that plane the vorticity first gets aligned with the middle eigenvector an...
The missing link: a nonlinear post-Friedmann framework for small and large scales
Milillo, Irene; Bruni, Marco; Maselli, Andrea
2015-01-01
We present a nonlinear post-Friedmann framework for structure formation, generalizing to cosmology the weak-field (post-Minkowskian) approximation, unifying the treatment of small and large scales. We consider a universe filled with a pressureless fluid and a cosmological constant $\\Lambda$, the theory of gravity is Einstein's general relativity and the background is the standard flat $\\Lambda$CDM cosmological model. We expand the metric and the energy-momentum tensor in powers of $1/c$, keeping the matter density and peculiar velocity as exact fundamental variables. We assume the Poisson gauge, including scalar and tensor modes up to $1/c^4$ order and vector modes up to $1/c^5$ terms. Through a redefinition of the scalar potentials as a resummation of the metric contributions at different orders, we obtain a complete set of nonlinear equations, providing a unified framework to study structure formation from small to superhorizon scales, from the nonlinear Newtonian to the linear relativistic regime. We expli...
Parallel Solutions for Large—Scale General Sparse Nonlinear Systems of Equations
Institute of Scientific and Technical Information of China (English)
胡承毅
1996-01-01
In solving application problems,many large-scale nonlinear systems of equaions result in sparse Jacobian matrices.Such nonlinear systems are called sparse nonlinear systems.The irregularity of the locations of nonzrero elements of a general sparse matrix makes it very difficult to generally map sparse matrix computations to multiprocessors for parallel processing in a well balanced manner.To overcome this difficulty,we define a new storage scheme for general sparse matrices in this paper,With the new storage scheme,we develop parallel algorithms to solve large-scale general sparse systems of equations by interval Newton/Generalized bisection methods which reliably find all numerical solutions within a given domain.I n Section 1,we provide an introduction to the addressed problem and the interval Newton's methods.In Section 2,some currently used storage schemes for sparse systems are reviewed.In Section 3,new index schemes to store general sparse matrices are reported.In Section 4,we present a parallel algorithm to evaluate a general sparse Jacobian matrix.In Section 5,we present a parallel algorithm to solve the corresponding interval linear system by the all-row preconditioned scheme.Conclusions and future work are discussed in Section 6.
A nonlinear kp-εp particle two-scale turbulence model and its application
Institute of Scientific and Technical Information of China (English)
Zhuoxiong Zeng; Zhuozhi Zeng; Yihua Xu
2007-01-01
A particle nonlinear two-scale Kp-εp turbulence model is proposed for simulating the anisotropic turbulent two-phase flow. The particle kinetic energy equation for two-scale fluctuation, particle energy transfer rate equation for large-scale fluctuation, and particle turbulent kinetic energy dissipation rate equation for small-scale fluctuation are deri-ved and closed. This model is used to simulate gas-particle flows in a sudden-expansion chamber. The simulation is com-pared with the experiment and with those obtained by using another two kinds of tow-phase turbulence model, such as the single-scale k-ε two-phase turbulence model and the particle two-scale second-order moment (USM) two-phase turbulence model. It is shown that the present model gives simulation in much better agreement with the experiment than the single-scale k-ε two-phase turbulence model does and is almost as good as the particle two-scale USM turbu-lence model.
Hartmann, Armin; Van Der Kooij, Anita J; Zeeck, Almut
2009-07-01
In explorative regression studies, linear models are often applied without questioning the linearity of the relations between the predictor variables and the dependent variable, or linear relations are taken as an approximation. In this study, the method of regression with optimal scaling transformations is demonstrated. This method does not require predefined nonlinear functions and results in easy-to-interpret transformations that will show the form of the relations. The method is illustrated using data from a German multicenter project on the indication criteria for inpatient or day clinic psychotherapy treatment. The indication criteria to include in the regression model were selected with the Lasso, which is a tool for predictor selection that overcomes the disadvantages of stepwise regression methods. The resulting prediction model indicates that treatment status is (approximately) linearly related to some criteria and nonlinearly related to others.
Pakdemirli, Mehmet; Boyacı, Hakan
1999-01-01
A general model of cubic and fifth order nonlinearities is considered. The linear part as well as the nonlinearities are expressed in terms of arbitrary operators. Two different versions of the method of multiple scales are used in constructing the general transient and steady-state solutions of the model: Modified Rahman-Burton method and the Reconstitution method. It is found that the usual ordering of reconstitution can be used, if at higher orders of approximation, the time scale correspo...
Large-scale weakly nonlinear perturbations of convective magnetic dynamos in a rotating layer
Chertovskih, Roman
2015-01-01
We present a new mechanism for generation of large-scale magnetic field by thermal convection which does not involve the alpha-effect. We consider weakly nonlinear perturbations of space-periodic steady convective magnetic dynamos in a rotating layer that were identified in our previous work. The perturbations have a spatial scale in the horizontal direction that is much larger than the period of the perturbed convective magnetohydrodynamic state. Following the formalism of the multiscale stability theory, we have derived the system of amplitude equations governing the evolution of the leading terms in expansion of the perturbations in power series in the scale ratio. This asymptotic analysis is more involved than in the cases considered earlier, because the kernel of the operator of linearisation has zero-mean neutral modes whose origin lies in the spatial invariance of the perturbed regime, the operator reduced on the generalised kernel has two Jordan normal form blocks of size two, and simplifying symmetri...
Large-Scale Structure Formation: from the first non-linear objects to massive galaxy clusters
Planelles, S; Bykov, A M
2014-01-01
The large-scale structure of the Universe formed from initially small perturbations in the cosmic density field, leading to galaxy clusters with up to 10^15 Msun at the present day. Here, we review the formation of structures in the Universe, considering the first primordial galaxies and the most massive galaxy clusters as extreme cases of structure formation where fundamental processes such as gravity, turbulence, cooling and feedback are particularly relevant. The first non-linear objects in the Universe formed in dark matter halos with 10^5-10^8 Msun at redshifts 10-30, leading to the first stars and massive black holes. At later stages, larger scales became non-linear, leading to the formation of galaxy clusters, the most massive objects in the Universe. We describe here their formation via gravitational processes, including the self-similar scaling relations, as well as the observed deviations from such self-similarity and the related non-gravitational physics (cooling, stellar feedback, AGN). While on i...
Self-similarity matrix based slow-time feature extraction for human target in high-resolution radar
He, Y.; Aubry, P.; Le Chevalier, F.; Yarovoy, A.
2014-01-01
A new approach is proposed to extract the slow-time feature of human motion in high-resolution radars. The approach is based on the self-similarity matrix (SSM) of the radar signals. The Mutual Information is used as a measure of similarity. The SSMs of different radar signals (high-resolution range
Scaling Laws for the Response of Nonlinear Elastic Media with Implications for Cell Mechanics
Shokef, Yair; Safran, Samuel A.
2012-04-01
We show how strain stiffening affects the elastic response to internal forces, caused either by material defects and inhomogeneities or by active forces that molecular motors generate in living cells. For a spherical force dipole in a material with a strongly nonlinear strain energy density, strains change sign with distance, indicating that, even around a contractile inclusion or molecular motor, there is radial compression; it is only at a long distance that one recovers the linear response in which the medium is radially stretched. Scaling laws with irrational exponents relate the far-field renormalized strain to the near-field strain applied by the inclusion or active force.
Heteroscedastic nonlinear regression models based on scale mixtures of skew-normal distributions.
Lachos, Victor H; Bandyopadhyay, Dipankar; Garay, Aldo M
2011-08-01
An extension of some standard likelihood based procedures to heteroscedastic nonlinear regression models under scale mixtures of skew-normal (SMSN) distributions is developed. We derive a simple EM-type algorithm for iteratively computing maximum likelihood (ML) estimates and the observed information matrix is derived analytically. Simulation studies demonstrate the robustness of this flexible class against outlying and influential observations, as well as nice asymptotic properties of the proposed EM-type ML estimates. Finally, the methodology is illustrated using an ultrasonic calibration data.
Methods for accurate analysis of galaxy clustering on non-linear scales
Vakili, Mohammadjavad
2017-01-01
Measurements of galaxy clustering with the low-redshift galaxy surveys provide sensitive probe of cosmology and growth of structure. Parameter inference with galaxy clustering relies on computation of likelihood functions which requires estimation of the covariance matrix of the observables used in our analyses. Therefore, accurate estimation of the covariance matrices serves as one of the key ingredients in precise cosmological parameter inference. This requires generation of a large number of independent galaxy mock catalogs that accurately describe the statistical distribution of galaxies in a wide range of physical scales. We present a fast method based on low-resolution N-body simulations and approximate galaxy biasing technique for generating mock catalogs. Using a reference catalog that was created using the high resolution Big-MultiDark N-body simulation, we show that our method is able to produce catalogs that describe galaxy clustering at a percentage-level accuracy down to highly non-linear scales in both real-space and redshift-space.In most large-scale structure analyses, modeling of galaxy bias on non-linear scales is performed assuming a halo model. Clustering of dark matter halos has been shown to depend on halo properties beyond mass such as halo concentration, a phenomenon referred to as assembly bias. Standard large-scale structure studies assume that halo mass alone is sufficient in characterizing the connection between galaxies and halos. However, modeling of galaxy bias can face systematic effects if the number of galaxies are correlated with other halo properties. Using the Small MultiDark-Planck high resolution N-body simulation and the clustering measurements of Sloan Digital Sky Survey DR7 main galaxy sample, we investigate the extent to which the dependence of galaxy bias on halo concentration can improve our modeling of galaxy clustering.
Towards a self-consistent halo model for the nonlinear large-scale structure
Schmidt, Fabian
2015-01-01
The halo model is a theoretically and empirically well-motivated framework for predicting the statistics of the nonlinear matter distribution in the Universe. However, current incarnations of the halo model suffer from two major deficiencies: $(i)$ they do not enforce the stress-energy conservation of matter; $(ii)$ they are not guaranteed to recover exact perturbation theory results on large scales. Here, we provide a formulation of the halo model ("EHM") that remedies both drawbacks in a consistent way, while attempting to maintain the predictivity of the approach. In the formulation presented here, mass and momentum conservation are guaranteed, and results of perturbation theory and the effective field theory can in principle be matched to any desired order on large scales. We find that a key ingredient in the halo model power spectrum is the halo stochasticity covariance, which has been studied to a much lesser extent than other ingredients such as mass function, bias, and profiles of halos. As written he...
Dahl, Milo D.; Hixon, Ray; Mankbadi, Reda R.
2003-01-01
An approximate technique is presented for the prediction of the large-scale turbulent structure sound source in a supersonic jet. A linearized Euler equations code is used to solve for the flow disturbances within and near a jet with a given mean flow. Assuming a normal mode composition for the wave-like disturbances, the linear radial profiles are used in an integration of the Navier-Stokes equations. This results in a set of ordinary differential equations representing the weakly nonlinear self-interactions of the modes along with their interaction with the mean flow. Solutions are then used to correct the amplitude of the disturbances that represent the source of large-scale turbulent structure sound in the jet.
An inertia-free filter line-search algorithm for large-scale nonlinear programming
Energy Technology Data Exchange (ETDEWEB)
Chiang, Nai-Yuan; Zavala, Victor M.
2016-02-15
We present a filter line-search algorithm that does not require inertia information of the linear system. This feature enables the use of a wide range of linear algebra strategies and libraries, which is essential to tackle large-scale problems on modern computing architectures. The proposed approach performs curvature tests along the search step to detect negative curvature and to trigger convexification. We prove that the approach is globally convergent and we implement the approach within a parallel interior-point framework to solve large-scale and highly nonlinear problems. Our numerical tests demonstrate that the inertia-free approach is as efficient as inertia detection via symmetric indefinite factorizations. We also demonstrate that the inertia-free approach can lead to reductions in solution time because it reduces the amount of convexification needed.
Directory of Open Access Journals (Sweden)
W. Dzwinel
2005-01-01
Full Text Available We present a novel technique based on a multi-resolutional clustering and nonlinear multi-dimensional scaling of earthquake patterns to investigate observed and synthetic seismic catalogs. The observed data represent seismic activities around the Japanese islands during 1997-2003. The synthetic data were generated by numerical simulations for various cases of a heterogeneous fault governed by 3-D elastic dislocation and power-law creep. At the highest resolution, we analyze the local cluster structures in the data space of seismic events for the two types of catalogs by using an agglomerative clustering algorithm. We demonstrate that small magnitude events produce local spatio-temporal patches delineating neighboring large events. Seismic events, quantized in space and time, generate the multi-dimensional feature space characterized by the earthquake parameters. Using a non-hierarchical clustering algorithm and nonlinear multi-dimensional scaling, we explore the multitudinous earthquakes by real-time 3-D visualization and inspection of the multivariate clusters. At the spatial resolutions characteristic of the earthquake parameters, all of the ongoing seismicity both before and after the largest events accumulates to a global structure consisting of a few separate clusters in the feature space. We show that by combining the results of clustering in both low and high resolution spaces, we can recognize precursory events more precisely and unravel vital information that cannot be discerned at a single resolution.
Perez-Moreno, Javier; Kuzyk, Mark G
2016-01-01
We apply scaling and the theory of the fundamental limits of the second-order molecular susceptibility to identify material classes with ultralarge nonlinear-optical response. Size effects are removed by normalizing all nonlinearities to get intrinsic values so that the scaling behavior of a series of molecular homologues can be determined. Several new figures of merit are proposed that quantify the desirable properties for molecules that can be designed by adding a sequence of repeat units, and used in the assessment of the data. Three molecular classes are found. They are characterized by sub-scaling, nominal scaling, or super-scaling. Super-scaling homologues most efficiently take advantage of increased size. We apply our approach to data currently available in the literature to identify the best super-scaling molecular paradigms with the aim of identifying desirable traits of new materials.
Sreekantamurthy, Tham; Gaspar, James L.; Mann, Troy; Behun, Vaughn; Pearson, James C., Jr.; Scarborough, Stephen
2007-01-01
Ultra-light weight and ultra-thin membrane inflatable antenna concepts are fast evolving to become the state-of-the-art antenna concepts for deep-space applications. NASA Langley Research Center has been involved in the structural dynamics research on antenna structures. One of the goals of the research is to develop structural analysis methodology for prediction of the static and dynamic response characteristics of the inflatable antenna concepts. This research is focused on the computational studies to use nonlinear large deformation finite element analysis to characterize the ultra-thin membrane responses of the antennas. Recently, structural analyses have been performed on a few parabolic reflector antennas of varying size and shape, which are referred in the paper as 0.3 meters subscale, 2 meters half-scale, and 4 meters full-scale antenna. The various aspects studied included nonlinear analysis methodology and solution techniques, ways to speed convergence in iterative methods, the sensitivities of responses with respect to structural loads, such as inflation pressure, gravity, and pretension loads in the ground and in-space conditions, and the ultra-thin membrane wrinkling characteristics. Several such intrinsic aspects studied have provided valuable insight into evaluation of structural characteristics of such antennas. While analyzing these structural characteristics, a quick study was also made to assess the applicability of dynamics scaling of the half-scale antenna. This paper presents the details of the nonlinear structural analysis results, and discusses the insight gained from the studies on the various intrinsic aspects of the analysis methodology. The predicted reflector surface characteristics of the three inflatable ultra-thin membrane parabolic reflector antenna concepts are presented as easily observable displacement fringe patterns with associated maximum values, and normal mode shapes and associated frequencies. Wrinkling patterns are
A Non-linear Scaling Algorithm Based on chirp-z Transform for Squint Mode FMCW-SAR
Directory of Open Access Journals (Sweden)
Yu Bin-bin
2012-03-01
Full Text Available A non-linear scaling chirp-z imaging algorithm for squint mode Frequency Modulated Continuous Wave Synthetic Aperture Radar (FMCW-SAR is presented to solve the problem of the focus accuracy decline. Based on the non-linear characteristics in range direction for the echo signal in Doppler domain, a non-linear modulated signal is introduced to perform a non-linear scaling based on chirp-z transform. Then the error due to range compression and range migration correction can be reduced, therefore the range resolution of radar image is improved. By using the imaging algorithm proposed, the imaging performances for point targets, compared with that from the original chirp-z algorithm, are demonstrated to be improved in range resolution and image contrast, and to be maintained the same in azimuth resolution.
Non-local and nonlinear background suppression method controlled by multi-scale clutter metric
Gong, Jinnan; Hou, Qingyu; Zhang, Wei; Zhi, Xiyang
2015-07-01
To improve the detection performance for non-morphological multi-scale target in IR image containing complex cloud clutter, on basis of cloud scenario self-similarity feature, a non-local and nonlinear background suppression algorithm controlled by multi-scale clutter metric is presented. According to the classical achievements on cloud structure, self-similarity and relativity of cloud clutter on image for target detection is deeply analyzed by classical indicators firstly. Then we establish multi-scale clutter metric method based on LoG operator to describe scenes feature for controlled suppression method. After that, non-local means based on optimal strength similarity metric as non-local processing, and multi-scale median filter and on minimum gradient direction as local processing are set up. Finally linear fusing principle adopting clutter metric for local and non-local processing is put forward. Experimental results by two kinds of infrared imageries show that compared with classical and similar methods, the proposed method solves the existing problems of targets energy attenuation and suppression degradation in strongly evolving regions in previous methods. By evaluating indicators, the proposed method has a superior background suppression performance by increasing the BSF and ISCR 2 times at least.
Directory of Open Access Journals (Sweden)
Xiaocui Wu
2015-02-01
Full Text Available The reliable simulation of gross primary productivity (GPP at various spatial and temporal scales is of significance to quantifying the net exchange of carbon between terrestrial ecosystems and the atmosphere. This study aimed to verify the ability of a nonlinear two-leaf model (TL-LUEn, a linear two-leaf model (TL-LUE, and a big-leaf light use efficiency model (MOD17 to simulate GPP at half-hourly, daily and 8-day scales using GPP derived from 58 eddy-covariance flux sites in Asia, Europe and North America as benchmarks. Model evaluation showed that the overall performance of TL-LUEn was slightly but not significantly better than TL-LUE at half-hourly and daily scale, while the overall performance of both TL-LUEn and TL-LUE were significantly better (p < 0.0001 than MOD17 at the two temporal scales. The improvement of TL-LUEn over TL-LUE was relatively small in comparison with the improvement of TL-LUE over MOD17. However, the differences between TL-LUEn and MOD17, and TL-LUE and MOD17 became less distinct at the 8-day scale. As for different vegetation types, TL-LUEn and TL-LUE performed better than MOD17 for all vegetation types except crops at the half-hourly scale. At the daily and 8-day scales, both TL-LUEn and TL-LUE outperformed MOD17 for forests. However, TL-LUEn had a mixed performance for the three non-forest types while TL-LUE outperformed MOD17 slightly for all these non-forest types at daily and 8-day scales. The better performance of TL-LUEn and TL-LUE for forests was mainly achieved by the correction of the underestimation/overestimation of GPP simulated by MOD17 under low/high solar radiation and sky clearness conditions. TL-LUEn is more applicable at individual sites at the half-hourly scale while TL-LUE could be regionally used at half-hourly, daily and 8-day scales. MOD17 is also an applicable option regionally at the 8-day scale.
On large-scale nonlinear programming techniques for solving optimal control problems
Energy Technology Data Exchange (ETDEWEB)
Faco, J.L.D.
1994-12-31
The formulation of decision problems by Optimal Control Theory allows the consideration of their dynamic structure and parameters estimation. This paper deals with techniques for choosing directions in the iterative solution of discrete-time optimal control problems. A unified formulation incorporates nonlinear performance criteria and dynamic equations, time delays, bounded state and control variables, free planning horizon and variable initial state vector. In general they are characterized by a large number of variables, mostly when arising from discretization of continuous-time optimal control or calculus of variations problems. In a GRG context the staircase structure of the jacobian matrix of the dynamic equations is exploited in the choice of basic and super basic variables and when changes of basis occur along the process. The search directions of the bound constrained nonlinear programming problem in the reduced space of the super basic variables are computed by large-scale NLP techniques. A modified Polak-Ribiere conjugate gradient method and a limited storage quasi-Newton BFGS method are analyzed and modifications to deal with the bounds on the variables are suggested based on projected gradient devices with specific linesearches. Some practical models are presented for electric generation planning and fishery management, and the application of the code GRECO - Gradient REduit pour la Commande Optimale - is discussed.
Exponents of non-linear clustering in scale-free one dimensional cosmological simulations
Benhaiem, David; Sicard, François
2012-01-01
One dimensional versions of cosmological N-body simulations have been shown to share many qualitative behaviours of the three dimensional problem. They can resolve a large range of time and length scales, and admit exact numerical integration. We use such models to study how non-linear clustering depends on initial conditions and cosmology. More specifically, we consider a family of models which, like the 3D EdS model, lead for power-law initial conditions to self-similar clustering characterized in the strongly non-linear regime by power-law behaviour of the two point correlation function. We study how the corresponding exponent \\gamma depends on the initial conditions, characterized by the exponent n of the power spectrum of initial fluctuations, and on a single parameter \\kappa controlling the rate of expansion. The space of initial conditions/cosmology divides very clearly into two parts: (1) a region in which \\gamma depends strongly on both n and \\kappa and where it agrees very well with a simple general...
A Mechanism for Stabilization of Dynamics in Nonlinear Systems with Different Time Scales
Lopez, Raquel M; Camacho, Erika T
2009-01-01
There are many natural, physical, and biological systems that exhibit multiple time scales. For example, the dynamics of a population of ticks can be described in continuous time during their individual life cycle yet discrete time is used to describe the generation of offspring. These characteristics cause the population levels to be reset periodically. A similar phenomenon can be observed in a sociological college drinking model in which the population is reset by the incoming class each year, as described in the 2006 work of Camacho et al. With the latter as our motivation we analytically and numerically investigate the mechanism by which solutions in certain systems with this resetting conditions stabilize. We further utilize the sociological college drinking model as an analogue to analyze certain one-dimensional and two-dimensional nonlinear systems, as we attempt to generalize our results to higher dimensions.
Non-linear shrinkage estimation of large-scale structure covariance
Joachimi, Benjamin
2017-03-01
In many astrophysical settings, covariance matrices of large data sets have to be determined empirically from a finite number of mock realizations. The resulting noise degrades inference and precludes it completely if there are fewer realizations than data points. This work applies a recently proposed non-linear shrinkage estimator of covariance to a realistic example from large-scale structure cosmology. After optimizing its performance for the usage in likelihood expressions, the shrinkage estimator yields subdominant bias and variance comparable to that of the standard estimator with a factor of ∼50 less realizations. This is achieved without any prior information on the properties of the data or the structure of the covariance matrix, at a negligible computational cost.
HIGH-PRECISION PREDICTIONS FOR THE ACOUSTIC SCALE IN THE NONLINEAR REGIME
Energy Technology Data Exchange (ETDEWEB)
Seo, Hee-Jong; Eckel, Jonathan; Eisenstein, Daniel J.; Mehta, Kushal; Metchnik, Marc; Padmanabhan, Nikhil; Pinto, Phillip; Takahashi, Ryuichi; White, Martin; Xu, Xiaoying
2010-09-10
We measure shifts of the acoustic scale due to nonlinear growth and redshift distortions to a high precision using a very large volume of high-force-resolution simulations. We compare results from various sets of simulations that differ in their force, volume, and mass resolution. We find a consistency within 1.5-sigma for shift values from different simulations and derive shift alpha(z) -1 = (0.300\\pm 0.015)% [D(z)/D(0)]^{2} using our fiducial set. We find a strong correlation with a non-unity slope between shifts in real space and in redshift space and a weak correlation between the initial redshift and low redshift. Density-field reconstruction not only removes the mean shifts and reduces errors on the mean, but also tightens the correlations: after reconstruction, we recover a slope of near unity for the correlation between the real and redshift space and restore a strong correlation between the low and the initial redshifts. We derive propagators and mode-coupling terms from our N-body simulations and compared with Zeldovich approximation and the shifts measured from the chi^2 fitting, respectively. We interpret the propagator and the mode-coupling term of a nonlinear density field in the context of an average and a dispersion of its complex Fourier coefficients relative to those of the linear density field; from these two terms, we derive a signal-to-noise ratio of the acoustic peak measurement. We attempt to improve our reconstruction method by implementing 2LPT and iterative operations: we obtain little improvement. The Fisher matrix estimates of uncertainty in the acoustic scale is tested using 5000 (Gpc/h)^3 of cosmological PM simulations from Takahashi et al. (2009). (abridged)
Denz, Cornelia; Simoni, Francesco
2009-03-01
Nonlinearities are becoming more and more important for a variety of applications in nanosciences, bio-medical sciences, information processing and photonics. For applications at the crossings of these fields, especially microscopic and nanoscopic imaging and manipulation, nonlinearities play a key role. They may range from simple nonlinear parameter changes up to applications in manipulating, controlling and structuring material by light, or the manipulation of light by light itself. It is this area between basic nonlinear optics and photonic applications that includes `hot' topics such as ultra-resolution optical microscopy, micro- and nanomanipulation and -structuring, or nanophotonics. This special issue contains contributions in this field, many of them from the International Conference on Nonlinear Microscopy and Optical Control held in conjunction with a network meeting of the ESF COST action MP0604 `Optical Micromanipulation by Nonlinear Nanophotonics', 19-22 February 2008, Münster, Germany. Throughout this special issue, basic investigations of material structuring by nonlinear light--matter interaction, light-induced control of nanoparticles, and novel nonlinear material investigation techniques, are presented, covering the basic field of optical manipulation and control. These papers are followed by impressive developments of optical tweezers. Nowadays, optical phase contrast tweezers, twin and especially multiple beam traps, develop particle control in a new dimension: particles can be arranged, sorted and identified with high throughput. One of the most prominent forthcoming applications of optical tweezers is in the field of microfluidics. The action of light on fluids will open new horizons in microfluidic manipulation and control. The field of optical manipulation and control is a very broad field that has developed in an impressive way, in a short time, in Europe with the installation of the MP0604 network. Top researchers from 19 countries are
A note on nonlinear aspects of large-scale atmospheric instabilities
Energy Technology Data Exchange (ETDEWEB)
Wiin-Nielsen, A [The Royal Danish Academy of Sciences and Letters, Copenhagen (Denmark)
2001-04-01
A barotropic model with momentum transport, a simple baroclinic model with transports of heat only and a baroclinic model with both momentum and heat transports are used to illustrate the instabilities and the nonlinear longer term behavior of barotropic, baroclinic and mixed barotropic-baroclinic processes in models without forcing and frictional dissipation. While the instabilities of such models are well known thorough analytical studies of the linear perturbation equations, it is obvious that these studies give no information on the long term behavior which can be studied only by nonlinear equations. Numerical integration of low order nonlinear equations will be used to illustrate the long term behavior of the two models. The mains aspects of the observed atmospheric energy processes maybe reproduce by the most general low-order model used in this study give no information on the long term behavior, which can be studied only by nonlinear equations. Numerical integrations of low order nonlinear equations will be used to illustrate the long term behavior of the two models. The main aspects of the observed atmospheric energy processes may be reproduce by the most general low-order model used in this study. This model contains meridional transports of sensible heat and momentum by the Eddies which are included in the model. The reproduce the atmospheric energy diagram based on observational studies it is necessary to include heating and frictional dissipations. The latter two processes will be excluded in the present study in order to obtain the long term behavior is observed with rather large time scales. The most periodic variations are obtained from initial states with moderate values of the zonal parameters. [Spanish] Para ilustrar las inestabilidades y el comportamiento a largo plazo de procesos barotropicos-baroclinicos, mezclados en modelos sin disipaciones de friccion y forzamiento, se usan: un simple modelo baroclinico con transporte de momentum, un modelo
Beigy, Hamid; Ahmad, Ashar; Masoudi-Nejad, Ali; Fröhlich, Holger
2017-01-01
Inferring the structure of molecular networks from time series protein or gene expression data provides valuable information about the complex biological processes of the cell. Causal network structure inference has been approached using different methods in the past. Most causal network inference techniques, such as Dynamic Bayesian Networks and ordinary differential equations, are limited by their computational complexity and thus make large scale inference infeasible. This is specifically true if a Bayesian framework is applied in order to deal with the unavoidable uncertainty about the correct model. We devise a novel Bayesian network reverse engineering approach using ordinary differential equations with the ability to include non-linearity. Besides modeling arbitrary, possibly combinatorial and time dependent perturbations with unknown targets, one of our main contributions is the use of Expectation Propagation, an algorithm for approximate Bayesian inference over large scale network structures in short computation time. We further explore the possibility of integrating prior knowledge into network inference. We evaluate the proposed model on DREAM4 and DREAM8 data and find it competitive against several state-of-the-art existing network inference methods. PMID:28166542
Directory of Open Access Journals (Sweden)
Hassan A. Agwa
2016-01-01
Full Text Available We are concerned with the interval oscillation of general type of forced second-order nonlinear dynamic equation with oscillatory potential of the form rtg1xt,xΔtΔ+p(tg2(x(t,xΔ(txΔ(t+q(tf(x(τ(t=e(t, on a time scale T. We will use a unified approach on time scales and employ the Riccati technique to establish some oscillation criteria for this type of equations. Our results are more general and extend the oscillation criteria of Erbe et al. (2010. Also our results unify the oscillation of the forced second-order nonlinear delay differential equation and the forced second-order nonlinear delay difference equation. Finally, we give some examples to illustrate our results.
Institute of Scientific and Technical Information of China (English)
谢腊兵; 江福汝
2003-01-01
The method of boundary layer with multiple scales and computer algebra were applied to study the asymptotic behavior of solution of boundary value problems for a class of system of nonlinear differential equations. The asymptotic expansions of solution were constructed. The remainders were estimated. And an example was analysed. It provides a new foreground for the application of the method of boundary layer with multiple scales.
Two-fluid sub-grid-scale viscosity in nonlinear simulation of ballooning modes in a heliotron device
Miura, H.; Hamba, F.; Ito, A.
2017-07-01
A large eddy simulation (LES) approach is introduced to enable the study of the nonlinear growth of ballooning modes in a heliotron-type device, by solving fully 3D two-fluid magnetohydrodynamic (MHD) equations numerically over a wide range of parameter space, keeping computational costs as low as possible. A model to substitute the influence of scales smaller than the grid size, at sub-grid scale (SGS), and at the scales larger than it—grid scale (GS)—has been developed for LES. The LESs of two-fluid MHD equations with SGS models have successfully reproduced the growth of the ballooning modes in the GS and nonlinear saturation. The numerical results show the importance of SGS effects on the GS components, or the effects of turbulent fluctuation at small scales in low-wavenumber unstable modes, over the course of the nonlinear saturation process. The results also show the usefulness of the LES approach in studying instability in a heliotron device. It is shown through a parameter survey over many SGS model coefficients that turbulent small-scale components in experiments can contribute to keeping the plasma core pressure from totally collapsing.
Two-oscillator model of trapped-modes interaction in a nonlinear bilayer fish-scale metamaterial
Tuz, Vladimir R; Kochetova, Lyudmila A; Mladyonov, Pavel L; Prosvirnin, Sergey L
2014-01-01
We discuss the similarity between the nature of resonant oscillations in two nonlinear systems, namely, a chain of coupled Duffing oscillators and a bilayer fish-scale metamaterial. In such systems two different resonant states arise which differ in their spectral lines. The spectral line of the first resonant state has a Lorentzian form, while the second one has a Fano form. This difference leads to a specific nonlinear response of the systems which manifests itself in appearance of closed loops in spectral lines and bending and overlapping of resonant curves. Conditions of achieving bistability and multistability are found out.
Ayhan, Burcu; Özer, M. Naci; Bekir, Ahmet
2016-08-01
In this article, we applied the method of multiple scales for Korteweg-de Vries (KdV) type equations and we derived nonlinear Schrödinger (NLS) type equations. So we get a relation between KdV type equations and NLS type equations. In addition, exact solutions were found for KdV type equations. The ( G'} over G )-expansion methods and the ( {G'} over G, {1 over G}} )-expansion methods were proposed to establish new exact solutions for KdV type differential equations. We obtained periodic and hyperbolic function solutions for these equations. These methods are very effective for getting travelling wave solutions of nonlinear evolution equations (NEEs).
DEFF Research Database (Denmark)
Wang, Zhaohui; Folsø, Rasmus; Bondini, Francesca;
1999-01-01
presents the results from the performed full scale measurements, and compares these to results from calculations performed with 3 different software systems: I-SHIP, SGN80 and SHIPSTAR.SGN80 is a linear strip theory software system in frequency domain, I-SHIP is a more advanced system, which allows...... the user to compare several linear and nonlinear strip theories, and SHIPSTAR is an advanced non-linear time-domain strip theory sea-keeping code.The calculations agree well with the measurements at Fn=0.32, whereas the agreement is less satisfying at Fn=0.55. Various reasons for this disagreement......, full-scale measurements have been performed on board a 128 m monohull fast ferry. This paper deals with the results from these full-scale measurements. The primary results considered are pitch motion, midship vertical bending moment and vertical acceleration at the bow. Previous comparisons between...
Iterative approach to modeling subsurface stormflow based on nonlinear, hillslope-scale physics
Directory of Open Access Journals (Sweden)
J. H. Spaaks
2009-08-01
Full Text Available Soil water transport in small, humid, upland catchments is often dominated by subsurface stormflow. Recent studies of this process suggest that at the plot scale, generation of transient saturation may be governed by threshold behavior, and that transient saturation is a prerequisite for lateral flow. The interaction between these plot scale processes yields complex behavior at the hillslope scale. We argue that this complexity should be incorporated into our models. We take an iterative approach to developing our model, starting with a very simple representation of hillslope rainfall-runoff. Next, we design new virtual experiments with which we test our model, while adding more structural complexity. In this study, we present results from three such development cycles, corresponding to three different hillslope-scale, lumped models. Model_{1} is a linear tank model, which assumes transient saturation to be homogeneously distributed over the hillslope. Model_{2} assumes transient saturation to be heterogeneously distributed over the hillslope, and that the spatial distribution of the saturated zone does not vary with time. Model_{3} assumes that transient saturation is heterogeneous both in space and in time. We found that the homogeneity assumption underlying Model_{1} resulted in hillslope discharge being too steep during the first part of the rising limb, but not steep enough on the second part. Also, peak height was underestimated. The additional complexity in Model_{2} improved the simulations in terms of the fit, but not in terms of the dynamics. The threshold-based Model_{3} captured most of the hydrograph dynamics (Nash-Sutcliffe efficiency of 0.98. After having assessed our models in a lumped setup, we then compared Model_{1} to Model_{3} in a spatially explicit setup, and evaluated what patterns of subsurface flow were possible with model elements of each type. We found
Xu, Jialiang; Semin, Sergey; Rasing, Theo; Rowan, Alan E
2015-03-01
Photonic circuits are expected to greatly contribute to the next generation of integrated chips, as electronic integrated circuits become confronted with bottlenecks such as heat generation and bandwidth limitations. One of the main challenges for the state-of-the-art photonic circuits lies in the development of optical materials with high nonlinear optical (NLO) susceptibilities, in particular in the wavelength and subwavelength dimensions which are compatible with on-chip technologies. In this review, the varied approaches to micro-/nanosized NLO materials based on building blocks of bio- and biomimetic molecules, as well as synthetic D-π-A chromophores, have been categorized as supramolecular self-assemblies, molecular scaffolds, and external force directed assemblies. Such molecular and supramolecular NLO materials have intrinsic advantages, such as structural diversities, high NLO susceptibilities, and clear structure-property relationships. These "bottom-up" fabrication approaches are proposed to be combined with the "top-down" techniques such as lithography, etc., to generate multifunctionality by coupling light and matter on the (sub)wavelength scale. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Directory of Open Access Journals (Sweden)
Junjie Wu
2016-10-01
Full Text Available Bistatic Synthetic Aperture Radar (SAR has attracted increasing attention in recent years due to its unique advantages, such as the ability of forward-looking imaging. In translational variant bistatic forward-looking SAR (TV-BFSAR, it is difficult to get a well focused image due to large range cell migration (RCM and 2-D variation of both Doppler characteristics and RCM. In this paper, an extended azimuth nonlinear chirp scaling (NLCS algorithm is proposed to deal with these problems. Firstly, Keystone Transform (KT is introduced to remove the spatial-variant linear RCM, which is of great significance in TV-BFSAR. Secondly, a correction factor is multiplied to the signal in range frequency domain to compensate for the residual RCM. At last, a fourth-order filtering together with azimuth NLCS is performed in every range gate to equalize both the azimuth-variant Doppler centroid and frequency modulation rate based on the azimuth numerical fitting. The proposed method is verified by simulation and real data processing. Multiple targets are generated and focused by the method, of which the peak sidelobe ratio (PSLR is around −13 dB and integrated sidelobe ratio (ISLR is around −10 dB. The method is accurate and can achieve high-resolution focusing for TV-BFSAR data.
Barber, A J; Valageas, P; Barber, Andrew J.; Munshi, Dipak; Valageas, Patrick
2004-01-01
Weak lensing convergence can be used directly to map and probe the dark mass distribution in the universe. Building on earlier studies, we recall how the statistics of the convergence field are related to the statistics of the underlying mass distribution, in particular to the many-body density correlations. We describe two model-independent approximations which provide two simple methods to compute the probability distribution function, pdf, of the convergence. We apply one of these to the case where the density field can be described by a log-normal pdf. Next, we discuss two hierarchical models for the high-order correlations which allow one to perform exact calculations and evaluate the previous approximations in such specific cases. Finally, we apply these methods to a very simple model for the evolution of the density field from linear to highly non-linear scales. Comparisons with the results obtained from numerical simulations, obtained from a number of different realizations, show excellent agreement w...
Decentralized Adaptive Neural Output-Feedback DSC for Switched Large-Scale Nonlinear Systems.
Long, Lijun; Zhao, Jun
2016-03-08
In this paper, for a class of switched large-scale uncertain nonlinear systems with unknown control coefficients and unmeasurable states, a switched-dynamic-surface-based decentralized adaptive neural output-feedback control approach is developed. The approach proposed extends the classical dynamic surface control (DSC) technique for nonswitched version to switched version by designing switched first-order filters, which overcomes the problem of multiple ``explosion of complexity.'' Also, a dual common coordinates transformation of all subsystems is exploited to avoid individual coordinate transformations for subsystems that are required when applying the backstepping recursive design scheme. Nussbaum-type functions are utilized to handle the unknown control coefficients, and a switched neural network observer is constructed to estimate the unmeasurable states. Combining with the average dwell time method and backstepping and the DSC technique, decentralized adaptive neural controllers of subsystems are explicitly designed. It is proved that the approach provided can guarantee the semiglobal uniformly ultimately boundedness for all the signals in the closed-loop system under a class of switching signals with average dwell time, and the tracking errors to a small neighborhood of the origin. A two inverted pendulums system is provided to demonstrate the effectiveness of the method proposed.
Institute of Scientific and Technical Information of China (English)
ZHENG Qiang; SHEN Lie; LI Wenchun; SONG Yihu; YI Xiaosu
2005-01-01
The blends prepared by incorporation of carbon black (CB) or graphite powder (GP) inHto high-density polyethylene (HDPE) matrix have been novel and extensively applied polymeric positive temperature coefficient (PTC) composites. A phenomenological model was proposed on the basis of the GEM equation and the dilution effect of filler volume fraction due to the thermal volume expansion of the polymer matrix. Accordingly, the contribution of the thermal expansion of the matrix to the jump-like PTC transition of the composites was quantitatively estimated and a mechanical explanation was given. It was proved that the contribution of the volume expansion to PTC effect decreased for HDPE/CB composites crosslinked through electron-beam irradiation. Furthermore, the influences of the filler content, temperature and crosslinking on the self-heating behavior as well as the nonlinear conduction characteristics at electrical-thermal equilibrium state were examined. Based on the electric-field and initial resistivity dependence of the self-heating temperature and resistance dependence of the critical field, the mechanisms of the self-heating of the polymeric PTC materials were evaluated. The intrinsic relations between macroscopic electrical properties and microscopic percolation network at electrical-thermal equilibrium state were discussed according to the scaling relationship between the self-heating critical parameter and the conductivity of materials.
Directory of Open Access Journals (Sweden)
Elaheh Saeedi
2014-07-01
Full Text Available In this paper, a decentralized adaptive controller with using wavelet neural network is used for a class of large-scale nonlinear systems with time- delay unknown nonlinear non- affine subsystems. The entered interruptions in subsystems are considered nonlinear with time delay, this is closer the reality, compared with the case in which the delay is not considered for interruptions. In this paper, the output weights of wavelet neural network and the other parameters of wavelet are adjusted online. The stability of close loop system is guaranteed with using the Lyapanov- Krasovskii method. Moreover the stability of close loop systems, guaranteed tracking error is converging to neighborhood zero and also all of the signals in the close loop system are bounded. Finally, the proposed method, simulated and applied for the control of two inverted pendulums that connected by a spring and the computer results, show that the efficiency of suggested method in this paper.
Shen, B. W.
2016-12-01
In this study, we construct a seven-dimensional Lorenz model (7DLM) to discuss the impact of an extended nonlinear feedback loop on solutions' stability and illustrate the hierarchical scale dependence of chaotic solutions. Compared to the 5DLM, the 7DLM includes two additional high wavenumber modes that are selected based on an analysis of the nonlinear temperature advection term. Fourier modes that represent temperature in the 7DLM can be categorized into three major scales as the primary (the largest scale), secondary, and tertiary (the smallest scale) modes. Further extension of the nonlinear feedback loop within the 7DLM can provide negative nonlinear feedback to stabilize solutions, thus leading to a much larger critical value for the Rayleigh parameter (rc ˜ 116.9) for the onset of chaos, as compared to an rc of 42.9 for the 5DLM as well as an rc of 24.74 for the 3DLM. The rc is determined by an analysis of ensemble Lyapunov exponents (eLEs) with a Prandtl number (σ) of 10. To examine the dependence of rc on the value of the Prandtl number, a linear stability analysis is performed by solving for the analytical solutions of the critical points and by calculating the eigenvalues of the linearized system. Within the range of (5 ≤ σ ≤ 25), the 7DLM requires a larger rc for the onset of chaos than the 5DLM. In addition to the negative nonlinear feedback illustrated and emulated by the quasi-equilibrium state solutions for high wavenumber modes, the 7DLM reveals the hierarchical scale dependence of chaotic solutions. For solutions with r = 120, the Pearson correlation coefficients (PCCs) between the primary and secondary modes (i.e., Z and Z1) and between the secondary and tertiary modes (i.e., Z1 and Z2) are 0.988 and 0.998, respectively. Here, Z, Z1, and Z2 represent the time-varying amplitudes of the primary, secondary, and tertiary modes, respectively. High PCCs indicate a strong linear relationship among the modes at various scales and a hierarchy of
Luo, Dehai; Cha, Jing; Zhong, Linhao; Dai, Aiguo
2014-05-01
In this paper, a nonlinear multi-scale interaction (NMI) model is used to propose an eddy-blocking matching (EBM) mechanism to account for how synoptic eddies reinforce or suppress a blocking flow. It is shown that the spatial structure of the eddy vorticity forcing (EVF) arising from upstream synoptic eddies determines whether an incipient block can grow into a meandering blocking flow through its interaction with the transient synoptic eddies from the west. Under certain conditions, the EVF exhibits a low-frequency oscillation on timescales of 2-3 weeks. During the EVF phase with a negative-over- positive dipole structure, a blocking event can be resonantly excited through the transport of eddy energy into the incipient block by the EVF. As the EVF changes into an opposite phase, the blocking decays. The NMI model produces life cycles of blocking events that resemble observations. Moreover, it is shown that the eddy north-south straining is a response of the eddies to a dipole- or Ω-type block. In our model, as in observations, two synoptic anticyclones (cyclones) can attract and merge with one another as the blocking intensifies, but only when the feedback of the blocking on the eddies is included. Thus, we attribute the eddy straining and associated vortex interaction to the feedback of the intensified blocking on synoptic eddies. The results illustrate the concomitant nature of the eddy deformation, whose role as a PV source for the blocking flow becomes important only during the mature stage of a block. Our EBM mechanism suggests that an incipient block flow is amplified (or suppressed) under certain conditions by the EVF coming from the upstream of the blocking region.
Thermal, size and surface effects on the nonlinear pull-in of small-scale piezoelectric actuators
SoltanRezaee, Masoud; Ghazavi, Mohammad-Reza
2017-09-01
Electrostatically actuated miniature wires/tubes have many operational applications in the high-tech industries. In this research, the nonlinear pull-in instability of piezoelectric thermal small-scale switches subjected to Coulomb and dissipative forces is analyzed using strain gradient and modified couple stress theories. The discretized governing equation is solved numerically by means of the step-by-step linearization method. The correctness of the formulated model and solution procedure is validated through comparison with experimental and several theoretical results. Herein, the length-scale, surface energy, van der Waals attraction and nonlinear curvature are considered in the present comprehensive model and the thermo-electro-mechanical behavior of cantilever piezo-beams are discussed in detail. It is found that the piezoelectric actuation can be used as a design parameter to control the pull-in phenomenon. The obtained results are applicable in stability analysis, practical design and control of actuated miniature intelligent devices.
Vlaykov, Dimitar G; Schmidt, Wolfram; Schleicher, Dominik R G
2016-01-01
Compressible magnetohydrodynamic (MHD) turbulence is ubiquitous in astrophysical phenomena ranging from the intergalactic to the stellar scales. In studying them, numerical simulations are nearly inescapable, due to the large degree of nonlinearity involved. However the dynamical ranges of these phenomena are much larger than what is computationally accessible. In large eddy simulations (LES), the resulting limited resolution effects are addressed explicitly by introducing to the equations of motion additional terms associated with the unresolved, subgrid-scale (SGS) dynamics. This renders the system unclosed. We derive a set of nonlinear structural closures for the ideal MHD LES equations with particular emphasis on the effects of compressibility. The closures are based on a gradient expansion of the finite-resolution operator (W.K. Yeo CUP 1993, ed. Galperin & Orszag) and require no assumptions about the nature of the flow or magnetic field. Thus the scope of their applicability ranges from the sub- to ...
Protogenov, A P
2001-01-01
The brief review of events, conditioned by the nonlinear modes strong correlations in the planar systems is presented. The analysis is limited by the Schroedinger nonlinear equation model. The fields stationary distributions are determined. The dependence of the particles number on the parameter characterizing the degree of looking, of the universal oscillation lines, is obtained. It is shown that by small values of this parameter there exists on the two-dimensional lattice the universal gravitation, which may be the dynamic cause of transition to the coherent state. The connection of the chiral nonlinear boundary modes with the violations of the Galilean-invariance of the considered system is discussed
Young, Hsu-Wen Vincent; Hsu, Ke-Hsin; Pham, Van-Truong; Tran, Thi-Thao; Lo, Men-Tzung
2017-09-01
A new method for signal decomposition is proposed and tested. Based on self-consistent nonlinear wave equations with self-sustaining physical mechanisms in mind, the new method is adaptive and particularly effective for dealing with synthetic signals consisting of components of multiple time scales. By formulating the method into an optimization problem and developing the corresponding algorithm and tool, we have proved its usefulness not only for analyzing simulated signals, but, more importantly, also for real clinical data.
Nonlinear systems identification and control via dynamic multitime scales neural networks.
Fu, Zhi-Jun; Xie, Wen-Fang; Han, Xuan; Luo, Wei-Dong
2013-11-01
This paper deals with the adaptive nonlinear identification and trajectory tracking via dynamic multilayer neural network (NN) with different timescales. Two NN identifiers are proposed for nonlinear systems identification via dynamic NNs with different timescales including both fast and slow phenomenon. The first NN identifier uses the output signals from the actual system for the system identification. In the second NN identifier, all the output signals from nonlinear system are replaced with the state variables of the NNs. The online identification algorithms for both NN identifier parameters are proposed using Lyapunov function and singularly perturbed techniques. With the identified NN models, two indirect adaptive NN controllers for the nonlinear systems containing slow and fast dynamic processes are developed. For both developed adaptive NN controllers, the trajectory errors are analyzed and the stability of the systems is proved. Simulation results show that the controller based on the second identifier has better performance than that of the first identifier.
Real-time nonlinear MPC and MHE for a large-scale mechatronic application
DEFF Research Database (Denmark)
Vukov, Milan; Gros, S.; Horn, G.
2015-01-01
Progress in optimization algorithms and in computational hardware made deployment of Nonlinear Model Predictive Control (NMPC) and Moving Horizon Estimation (MHE) possible to mechatronic applications. This paper aims to assess the computational performance of NMPC and MHE for rotational start...
Institute of Scientific and Technical Information of China (English)
LIU Zheng-Feng; WANG Xiao-Hong
2008-01-01
Adopting Yoshizawa's two-scale expansion technique,the fluctuating field is expanded around the isotropic field.The renormalization group method is applied for calculating the covariance of the fluctuating field at the lower order expansion,A nonlinear Reynolds stress model is derived and the turbulent constants inside are evaluated analytically.Compared with the two-scale direct interaction approximation analysis for turbulent shear flows proposed by Yoshizawa,the calculation is much more simple.The analytical model presented here is close to the Speziale model,which is widely applied in the numerical simulations for the complex turbulent flows.
Schertzer, D.; Lovejoy, S.
1. The conference The third conference on "Nonlinear VAriability in Geophysics: scaling and multifractal processes" (NVAG 3) was held in Cargese, Corsica, Sept. 10-17, 1993. NVAG3 was joint American Geophysical Union Chapman and European Geophysical Society Richardson Memorial conference, the first specialist conference jointly sponsored by the two organizations. It followed NVAG1 (Montreal, Aug. 1986), NVAG2 (Paris, June 1988; Schertzer and Lovejoy, 1991), five consecutive annual sessions at EGS general assemblies and two consecutive spring AGU meeting sessions. As with the other conferences and workshops mentioned above, the aim was to develop confrontation between theories and experiments on scaling/multifractal behaviour of geophysical fields. Subjects covered included climate, clouds, earthquakes, atmospheric and ocean dynamics, tectonics, precipitation, hydrology, the solar cycle and volcanoes. Areas of focus included new methods of data analysis (especially those used for the reliable estimation of multifractal and scaling exponents), as well as their application to rapidly growing data bases from in situ networks and remote sensing. The corresponding modelling, prediction and estimation techniques were also emphasized as were the current debates about stochastic and deterministic dynamics, fractal geometry and multifractals, self-organized criticality and multifractal fields, each of which was the subject of a specific general discussion. The conference started with a one day short course of multifractals featuring four lectures on a) Fundamentals of multifractals: dimension, codimensions, codimension formalism, b) Multifractal estimation techniques: (PDMS, DTM), c) Numerical simulations, Generalized Scale Invariance analysis, d) Advanced multifractals, singular statistics, phase transitions, self-organized criticality and Lie cascades (given by D. Schertzer and S. Lovejoy, detailed course notes were sent to participants shortly after the conference). This
Directory of Open Access Journals (Sweden)
D. Schertzer
1994-01-01
Full Text Available 1. The conference The third conference on "Nonlinear VAriability in Geophysics: scaling and multifractal processes" (NVAG 3 was held in Cargese, Corsica, Sept. 10-17, 1993. NVAG3 was joint American Geophysical Union Chapman and European Geophysical Society Richardson Memorial conference, the first specialist conference jointly sponsored by the two organizations. It followed NVAG1 (Montreal, Aug. 1986, NVAG2 (Paris, June 1988; Schertzer and Lovejoy, 1991, five consecutive annual sessions at EGS general assemblies and two consecutive spring AGU meeting sessions. As with the other conferences and workshops mentioned above, the aim was to develop confrontation between theories and experiments on scaling/multifractal behaviour of geophysical fields. Subjects covered included climate, clouds, earthquakes, atmospheric and ocean dynamics, tectonics, precipitation, hydrology, the solar cycle and volcanoes. Areas of focus included new methods of data analysis (especially those used for the reliable estimation of multifractal and scaling exponents, as well as their application to rapidly growing data bases from in situ networks and remote sensing. The corresponding modelling, prediction and estimation techniques were also emphasized as were the current debates about stochastic and deterministic dynamics, fractal geometry and multifractals, self-organized criticality and multifractal fields, each of which was the subject of a specific general discussion. The conference started with a one day short course of multifractals featuring four lectures on a Fundamentals of multifractals: dimension, codimensions, codimension formalism, b Multifractal estimation techniques: (PDMS, DTM, c Numerical simulations, Generalized Scale Invariance analysis, d Advanced multifractals, singular statistics, phase transitions, self-organized criticality and Lie cascades (given by D. Schertzer and S. Lovejoy, detailed course notes were sent to participants shortly after the
Grete, P; Schmidt, W; Schleicher, D R G
2016-01-01
Even though compressible plasma turbulence is encountered in many astrophysical phenomena, its effect is often not well understood. Furthermore, direct numerical simulations are typically not able to reach the extreme parameters of these processes. For this reason, large-eddy simulations (LES), which only simulate large and intermediate scales directly, are employed. The smallest, unresolved scales and the interactions between small and large scales are introduced by means of a subgrid-scale (SGS) model. We propose and verify a new set of nonlinear SGS closures for future application as an SGS model in LES of compressible magnetohydrodynamics (MHD). We use 15 simulations (without explicit SGS model) of forced, isotropic, homogeneous turbulence with varying sonic Mach number $\\mathrm{M_s} = 0.2$ to $20$ as reference data for the most extensive \\textit{a priori} tests performed so far in literature. In these tests we explicitly filter the reference data and compare the performance of the new closures against th...
Shih, C. C.
1973-01-01
In order to establish a foundation of scaling laws for the highly nonlinear waves associated with the launch vehicle, the basic knowledge of the relationships among the paramaters pertinent to the energy dissipation process associated with the propagation of nonlinear pressure waves in thermoviscous media is required. The problem of interest is to experimentally investigate the temporal and spacial velocity profiles of fluid flow in a 3-inch open-end pipe of various lengths, produced by the propagation of nonlinear pressure waves for various diaphragm burst pressures of a pressure wave generator. As a result, temporal and spacial characteristics of wave propagation for a parametric set of nonlinear pressure waves in the pipe containing air under atmospheric conditions were determined. Velocity measurements at five sections along the pipes of up to 210 ft. in length were made with hot-film anemometers for five pressure waves produced by a piston. The piston was derived with diaphragm burst pressures at 20, 40, 60, 80 and 100 psi in the driver chamber of the pressure wave generator.
A nonlinear generalized continuum approach for electro-elasticity including scale effects
Skatulla, S.; Arockiarajan, A.; Sansour, C.
2009-01-01
Materials characterized by an electro-mechanically coupled behaviour fall into the category of so-called smart materials. In particular, electro-active polymers (EAP) recently attracted much interest, because, upon electrical loading, EAP exhibit a large amount of deformation while sustaining large forces. This property can be utilized for actuators in electro-mechanical systems, artificial muscles and so forth. When it comes to smaller structures, it is a well-known fact that the mechanical response deviates from the prediction of classical mechanics theory. These scale effects are due to the fact that the size of the microscopic material constituents of such structures cannot be considered to be negligible small anymore compared to the structure's overall dimensions. In this context so-called generalized continuum formulations have been proven to account for the micro-structural influence to the macroscopic material response. Here, we want to adopt a strain gradient approach based on a generalized continuum framework [Sansour, C., 1998. A unified concept of elastic-viscoplastic Cosserat and micromorphic continua. J. Phys. IV Proc. 8, 341-348; Sansour, C., Skatulla, S., 2007. A higher gradient formulation and meshfree-based computation for elastic rock. Geomech. Geoeng. 2, 3-15] and extend it to also encompass the electro-mechanically coupled behaviour of EAP. The approach introduces new strain and stress measures which lead to the formulation of a corresponding generalized variational principle. The theory is completed by Dirichlet boundary conditions for the displacement field and its derivatives normal to the boundary as well as the electric potential. The basic idea behind this generalized continuum theory is the consideration of a micro- and a macro-space which together span the generalized space. As all quantities are defined in this generalized space, also the constitutive law, which is in this work conventional electro-mechanically coupled nonlinear
De, Saumyendu; Sahai, Atul Kumar; Nath Goswami, Bhupendra
2013-04-01
energy and the scale interactions in terms of the wave-wave exchanges among nonlinear triads are formulated and the above hypothesis is tested through a diagnostic analysis of the error energetics in two different model predictions at the lower troposphere (850hPa). It has been revealed that nonlinear triad interactions lead to advection of errors from short and synoptic waves (wave number >10) to long waves (wave numbers 5 - 10) and from long waves to ultra-long waves (wave numbers 1 - 4) and is responsible for the rapid growth of errors in the planetary waves. The continuous generation and then, non-linear propagation of error upto the planetary scales in the course of prediction increase the uncertainty in ultra-long scales which actually inhibit to predict accurately the planetary scale waves in tropics during medium range forecasts. Unraveling this exact mechanism through which upscale transfer of errors take place may help us devising a method to limit the mixing of small scale error with the error in forecast of tropical Intra-seasonal Oscillations and improve the prediction of lower tropospheric ISOs. Keywords: Predictability, Systematic error energetics, Scale interactions, Triads, Intra-seasonal Oscillations. Reference: The YOTC Science Plan (2008) prepared by Duane Waliser and Mitch Moncrieff. A joint WCRP-WWRP/THORPEX International Initiative, WMO/TD-No. 1452, pp. 20. Baumhefner D P and Downey P 1978 Forecast intercomparisons from three numerical weather prediction models; Mon. Weather Rev. 106 1245 - 1279. Krishnamurti T N, Subramanium M, Oosteroff D K, Daughenbaugh G. 1990 Predictability of low frequency modes. Meteorol. Atmos. phys. 44 63 - 83.
Directory of Open Access Journals (Sweden)
2007-01-01
Full Text Available Hysteresis is a rate-independent non-linearity that is expressed through thresholds, switches, and branches. Exceedance of a threshold, or the occurrence of a turning point in the input, switches the output onto a particular output branch. Rate-independent branching on a very large set of switches with non-local memory is the central concept in the new definition of hysteresis. Hysteretic loops are a special case. A self-consistent mathematical description of hydrological systems with hysteresis demands a new non-linear systems theory of adequate generality. The goal of this paper is to establish this and to show how this may be done. Two results are presented: a conceptual model for the hysteretic soil-moisture characteristic at the pedon scale and a hysteretic linear reservoir at the catchment scale. Both are based on the Preisach model. A result of particular significance is the demonstration that the independent domain model of the soil moisture characteristic due to Childs, Poulavassilis, Mualem and others, is equivalent to the Preisach hysteresis model of non-linear systems theory, a result reminiscent of the reduction of the theory of the unit hydrograph to linear systems theory in the 1950s. A significant reduction in the number of model parameters is also achieved. The new theory implies a change in modelling paradigm.
Energy Technology Data Exchange (ETDEWEB)
Reutter, B.W.; Algazi, V.R.; Huesman, R.H.
2000-10-11
Nonlinear edge preserving smoothing often is performed prior to medical image segmentation. The goal of the nonlinear smoothing is to improve the accuracy of the segmentation by preserving changes in image intensity at the boundaries of structures of interest, while smoothing random variations due to noise in the interiors of the structures. Methods include median filtering and morphology operations such as gray scale erosion and dilation, as well as spatially varying smoothing driven by local contrast measures. Rather than irreversibly altering the image data prior to segmentation, the approach described here has the potential to unify nonlinear edge preserving smoothing with segmentation based on differential edge detection at multiple scales. The analysis of n-D image data is decomposed into independent 1-D problems that can be solved quickly. Smoothing in various directions along 1-D profiles through the n-D data is driven by a measure of local structure separation, rather than by a local contrast measure. Isolated edges are preserved independent of their contrast, given an adequate contrast to noise ratio.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A new type controller, BP neural-networks-based sliding mode controller is developed for a class of large-scale nonlinear systems with unknown bounds of high-order interconnections in this paper. It is shown that decentralized BP neural networks are used to adaptively learn the uncertainty bounds of interconnected subsystems in the Lyapunov sense, and the outputs of the decentralized BP neural networks are then used as the parameters of the sliding mode controller to compensate for the effects of subsystems uncertainties. Using this scheme, not only strong robustness with respect to uncertainty dynamics and nonlinearities can be obtained, but also the output tracking error between the actual output of each subsystem and the corresponding desired reference output can asymptotically converge to zero. A simulation example is presented to support the validity of the proposed BP neural-networks-based sliding mode controller.
Institute of Scientific and Technical Information of China (English)
Shen Qikun; Zhang Tianping
2007-01-01
The problem of adaptive fuzzy control for a class of large-scale, time-delayed systems with unknown nonlinear dead-zone is discussed here. Based on the principle of variable structure control, a design scheme of adaptive, decentralized, variable structure control is proposed. The approach removes the conditions that the dead-zone slopes and boundaries are equal and symmetric, respectively. In addition, it does not require that the assumptions that all parameters of the nonlinear dead-zone model and the lumped uncertainty are known constants. The adaptive compensation terms of the approximation errors are adopted to minimize the influence of modeling errors and parameter estimation errors. By theoretical analysis, the closed-loop control system is proved to be semiglobally uniformly ultimately bounded, with tracking errors converging to zero. Simulation results demonstrate the effectiveness of the approach.
AN APPLICATION OF DOUBLE-SCALE METHOD TO THE STUDY OF NON-LINEAR DISSIPATIVE WAVES IN JEFFREYS MEDIA
Directory of Open Access Journals (Sweden)
Adelina Georgescu
2011-07-01
Full Text Available In previous papers we sketched out the general use of the doublescalemethod to nonlinear hyperbolic partial differential equations(PDEs in order to study the asymptotic waves and as an examplethe model governing the motion of a rheological medium (Maxwellmedium with one mechanical internal variable was studied. In thispaper the double scale method is applied to investigate non-linear dissipative waves in viscoanelastic media without memory of order one(Jeffreys media, that were studied by one of the authors (L. R. inmore classical way. For these media the equations of motion includesecond order derivative terms multiplied by a very small parameter. We give a physical interpretation of the new (fast variable, related to the surfaces across which the solutions or/and some of their derivatives vary steeply. The paper concludes with one-dimensional application containing original results.
Manisera, M.; Kooij, A.J. van der; Dusseldorp, E.
2010-01-01
The component structure of 14 Likert-type items measuring different aspects of job satisfaction was investigated using nonlinear Principal Components Analysis (NLPCA). NLPCA allows for analyzing these items at an ordinal or interval level. The participants were 2066 workers from five types of social
Nishimichi, Takahiro; Nakamichi, Masashi; Taruya, Atsushi; Yahata, Kazuhiro; Shirata, Akihito; Saito, Shun; Nomura, Hidenori; Yamamoto, Kazuhiro; Suto, Yasushi
2007-01-01
An acoustic oscillation of the primeval photon-baryon fluid around the decoupling time imprints a characteristic scale in the galaxy distribution today, known as the baryon acoustic oscillation (BAO) scale. Several on-going and/or future galaxy surveys aim at detecting and precisely determining the BAO scale so as to trace the expansion history of the universe. We consider nonlinear and redshift-space distortion effects on the shifts of the BAO scale in $k$-space using perturbation theory. The resulting shifts are indeed sensitive to different choices of the definition of the BAO scale, which needs to be kept in mind in the data analysis. We present a toy model to explain the physical behavior of the shifts. We find that the BAO scale defined as in Percival et al. (2007) indeed shows very small shifts ($\\lesssim$ 1%) relative to the prediction in {\\it linear theory} in real space. The shifts can be predicted accurately for scales where the perturbation theory is reliable.
Cheng, Wanyou; Xiao, Yunhai; Hu, Qing-Jie
2009-02-01
In this paper, we propose a family of derivative-free conjugate gradient methods for large-scale nonlinear systems of equations. They come from two modified conjugate gradient methods [W.Y. Cheng, A two term PRP based descent Method, Numer. Funct. Anal. Optim. 28 (2007) 1217-1230; L. Zhang, W.J. Zhou, D.H. Li, A descent modified Polak-Ribiére-Polyak conjugate gradient method and its global convergence, IMA J. Numer. Anal. 26 (2006) 629-640] recently proposed for unconstrained optimization problems. Under appropriate conditions, the global convergence of the proposed method is established. Preliminary numerical results show that the proposed method is promising.
Directory of Open Access Journals (Sweden)
F. Kwasniok
2012-11-01
Full Text Available A stochastic Duffing-type oscillator model, i.e noise-driven motion with inertia in a potential landscape, is considered for glacial millennial-scale climate transitions. The potential and noise parameters are estimated from a Greenland ice-core record using a nonlinear Kalman filter. For the period from 60 to 20 ky before present, a bistable potential with a deep well corresponding to a cold stadial state and a shallow well corresponding to a warm interstadial state is found. The system is in the strongly dissipative regime and can be very well approximated by an effective one-dimensional Langevin equation.
Directory of Open Access Journals (Sweden)
Chen Qi
2013-07-01
Full Text Available Non-linear chirp scaling (NLCS is a feasible method to deal with time-variant frequency modulation (FM rate problem in synthetic aperture radar (SAR imaging. However, approximations in derivation of NLCS spectrum lead to performance decline in some cases. Presented is the exact spectrum of the NLCS function. Simulation with a geosynchronous synthetic aperture radar (GEO-SAR configuration is implemented. The results show that using the presented spectrum can significantly improve imaging performance, and the NLCS algorithm is suitable for GEO-SAR imaging after modification.
Nonlinear Analysis and Scaling Laws for Noncircular Composite Structures Subjected to Combined Loads
Hilburger, Mark W.; Rose, Cheryl A.; Starnes, James H., Jr.
2001-01-01
Results from an analytical study of the response of a built-up, multi-cell noncircular composite structure subjected to combined internal pressure and mechanical loads are presented. Nondimensional parameters and scaling laws based on a first-order shear-deformation plate theory are derived for this noncircular composite structure. The scaling laws are used to design sub-scale structural models for predicting the structural response of a full-scale structure representative of a portion of a blended-wing-body transport aircraft. Because of the complexity of the full-scale structure, some of the similitude conditions are relaxed for the sub-scale structural models. Results from a systematic parametric study are used to determine the effects of relaxing selected similitude conditions on the sensitivity of the effectiveness of using the sub-scale structural model response characteristics for predicting the full-scale structure response characteristics.
Scaling and synchronization in a ring of diffusively coupled nonlinear oscillators
Senthilkumar, D. V.; Muruganandam, P.; Lakshmanan, M.; Kurths, J.
2010-01-01
Chaos synchronization in a ring of diffusively coupled nonlinear oscillators driven by an external identical oscillator is studied. Based on numerical simulations we show that by introducing additional couplings at $(mN_c+1)$-th oscillators in the ring, where $m$ is an integer and $N_c$ is the maximum number of synchronized oscillators in the ring with a single coupling, the maximum number of oscillators that can be synchronized can be increased considerably beyond the limit restricted by siz...
Non-linear and scale-invariant analysis of the Heart Rate Variability
Kalda, J; Vainu, M; Laan, M
2003-01-01
Human heart rate fluctuates in a complex and non-stationary manner. Elaborating efficient and adequate tools for the analysis of such signals has been a great challenge for the researchers during last decades. Here, an overview of the main research results in this field is given. The following question are addressed: (a) what are the intrinsic features of the heart rate variability signal; (b) what are the most promising non-linear measures, bearing in mind clinical diagnostic and prognostic applications.
Yoshida, Zensho
2010-01-01
This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl
Stable evaluation of differential operators and linear and nonlinear multi-scale filtering
Directory of Open Access Journals (Sweden)
Otmar Scherzer
1997-09-01
Full Text Available Diffusion processes create multi--scale analyses, which enable the generation of simplified pictures, where for increasing scale the image gets sketchier. In many practical applications the ``scaled image'' can be characterized via a variational formulation as the solution of a minimization problem involving unbounded operators. These unbounded operators can be evaluated by regularization techniques. We show that the theory of stable evaluation of unbounded operators can be applied to efficiently solve these minimization problems.
Integral Invariance and Non-linearity Reduction for Proliferating Vorticity Scales in Fluid Dynamics
Lam, F
2013-01-01
A vorticity theory for incompressible fluid flows in the absence of solid boundaries is proposed. Some apriori bounds are established. They are used in an interpolation theory to show the well-posedness of the vorticity Cauchy problem. A non-linear integral equation for vorticity is derived and its solution is expressed in an expansion. Interpretations of flow evolutions starting from given initial data are given and elaborated. The kinetic theory for Maxwellian molecules with cut-off is revisited in order to link microscopic properties to flow characters on the continuum.
Energy Technology Data Exchange (ETDEWEB)
Greco, A.; Servidio, S. [Dipartimento di Fisica, Universita della Calabria, Rende (Italy); Matthaeus, W. H. [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, DE (United States); D' Amicis, R. [INAF-Istituto di Fisica dello Spazio Interplanetario, Rome (Italy); Dmitruk, P. [Departamento de Fisica, FCEyN, Universidad de Buenos Aires and IFIBA, CONICET, Pabellon 1, Ciudad Universitaria, Buenos Aires (Argentina)
2012-04-20
The formation of coherent structures in turbulence is a signature of a developing cascade and therefore might be observable by analyzing inner heliospheric solar wind turbulence. To test this idea, data from the Helios 2 mission, for six streams of solar wind at different heliocentric distances and of different velocities, were subjected to statistical analysis using the partial variance of increments (PVI) approach. We see a clear increase of the PVI distribution function versus solar wind age for higher PVI cutoff, indicating development of non-Gaussian coherent structures. The plausibility of this interpretation is confirmed by a similar behavior observed in two-dimensional magnetohydrodynamics simulation data at corresponding dimensionless nonlinear times.
Smirnov, Sergey V; Kobtsev, Sergey M; Kukarin, Sergey V
2014-01-13
For the first time we report the results of both numerical simulation and experimental observation of second-harmonic generation as an example of non-linear frequency conversion of pulses generated by passively mode-locked fiber master oscillator in different regimes including conventional (stable) and double-scale (partially coherent and noise-like) ones. We show that non-linear frequency conversion efficiency of double-scale pulses is slightly higher than that of conventional picosecond laser pulses with the same energy and duration despite strong phase fluctuations of double-scale pulses.
Huang, Yi-Shao; Liu, Wel-Ping; Wu, Min; Wang, Zheng-Wu
2014-09-01
This paper presents a novel observer-based decentralized hybrid adaptive fuzzy control scheme for a class of large-scale continuous-time multiple-input multiple-output (MIMO) uncertain nonlinear systems whose state variables are unmeasurable. The scheme integrates fuzzy logic systems, state observers, and strictly positive real conditions to deal with three issues in the control of a large-scale MIMO uncertain nonlinear system: algorithm design, controller singularity, and transient response. Then, the design of the hybrid adaptive fuzzy controller is extended to address a general large-scale uncertain nonlinear system. It is shown that the resultant closed-loop large-scale system keeps asymptotically stable and the tracking error converges to zero. The better characteristics of our scheme are demonstrated by simulations. Copyright © 2014. Published by Elsevier Ltd.
Non-linear optics of nano-scale pentacene thin film
Yahia, I. S.; Alfaify, S.; Jilani, Asim; Abdel-wahab, M. Sh.; Al-Ghamdi, Attieh A.; Abutalib, M. M.; Al-Bassam, A.; El-Naggar, A. M.
2016-07-01
We have found the new ways to investigate the linear/non-linear optical properties of nanostructure pentacene thin film deposited by thermal evaporation technique. Pentacene is the key material in organic semiconductor technology. The existence of nano-structured thin film was confirmed by atomic force microscopy and X-ray diffraction. The wavelength-dependent transmittance and reflectance were calculated to observe the optical behavior of the pentacene thin film. It has been observed the anomalous dispersion at wavelength λ 800. The non-linear refractive index of the deposited films was investigated. The linear optical susceptibility of pentacene thin film was calculated, and we observed the non-linear optical susceptibility of pentacene thin film at about 6 × 10-13 esu. The advantage of this work is to use of spectroscopic method to calculate the liner and non-liner optical response of pentacene thin films rather than expensive Z-scan. The calculated optical behavior of the pentacene thin films could be used in the organic thin films base advanced optoelectronic devices such as telecommunications devices.
A large-scale nonlinear eigensolver for the analysis of dispersive nanostructures
Guo, Hua; Arbenz, Peter; Oswald, Benedikt
2013-08-01
We introduce the electromagnetic eigenmodal solver code FemaxxNano for the numerical analysis of nanometer structured optical systems, a scientific field generally know as nanooptics. FemaxxNano solves the electric field vector wave equation and calculates the electromagnetic eigenmodes of nearly arbitrary 3-dimensional resonators, embedded either in free-space, vacuum or a background medium. Here, the study of the interaction between nanometer sized metallic structures and light is at the heart of the physical problem. Since metals in the optical region of the electromagnetic spectrum are highly dispersive and, thus, dissipative, dielectric media, we eventually obtain a nonlinear eigenvalue problem. We discretize the electromagnetic eigenvalue problem with the finite element method (FEM) in 3-dimensional space and on unstructured tetrahedral grids. We introduce a fully iterative scheme to solve the nonlinear problem for complex coefficient matrices that depend on wavelength. We investigate the properties of the algorithm in detail and demonstrate its performance by analyzing a nanometer sized optical dimer structure, a specific type of optical antenna, on distributed-memory parallel computers.
2014-10-01
Theoretical physics is the first step for the development of science and technology. For more than 100 years it has delivered new and sophisticated discoveries which have changed human views of their surroundings and universe. Theoretical physics has also revealed that the governing law in our universe is not deterministic, and it is undoubtedly the foundation of our modern civilization. Contrary to its importance, research in theoretical physics is not well advanced in some developing countries such as Indonesia. This workshop provides the formal meeting in Indonesia devoted to the field of theoretical physics and is organized to cover all subjects of theoretical physics as well as nonlinear phenomena in order to create a gathering place for the theorists in Indonesia and surrounding countries, to motivate young physicists to keep doing active researches in the field and to encourage constructive communication among the community members. Following the success of the tenth previous meetings in this conference series, the eleventh conference was held in Sebelas Maret University (UNS), Surakarta, Indonesia on 15 February 2014. In addition, the conference was proceeded by School of Advance Physics at Gadjah Mada University (UGM), Yogyakarta, on 16-17 February 2014. The conference is expected to provide distinguished experts and students from various research fields of theoretical physics and nonlinear phenomena in Indonesia as well as from other continents the opportunities to present their works and to enhance contacts among them. The introduction to the conference is continued in the pdf.
Li, Bo; Liu, Richeng; Jiang, Yujing
2016-07-01
Fluid flow tests were conducted on two crossed fracture models for which the geometries of fracture segments and intersections were measured by utilizing a visualization technique using a CCD (charged coupled device) camera. Numerical simulations by solving the Navier-Stokes equations were performed to characterize the fluid flow at fracture intersections. The roles of hydraulic gradient, surface roughness, intersecting angle, and scale effect in the nonlinear fluid flow behavior through single fracture intersections were investigated. The simulation results of flow rate agreed well with the experimental results for both models. The experimental and simulation results showed that with the increment of the hydraulic gradient, the ratio of the flow rate to the hydraulic gradient, Q/J, decreases and the relative difference of Q/J between the calculation results employing the Navier-Stokes equations and the cubic law, δ, increases. When taking into account the fracture surface roughness quantified by Z2 ranging 0-0.42 for J = 1, the value of δ would increase by 0-10.3%. The influences of the intersecting angle on the normalized flow rate that represents the ratio of the flow rate in a segment to the total flow rate, Ra, and the ratio of the hydraulic aperture to the mechanical aperture, e/E, are negligible when J 10-2. Based on the regression analysis on simulation results, a mathematical expression was proposed to quantify e/E, involving variables of J and Rr, where Rr is the radius of truncating circles centered at an intersection. For E/Rr > 10-2, e/E varies significantly and the scale of model has large impacts on the nonlinear flow behavior through intersections, while for E/Rr < 10-3, the scale effect is negligibly small. Finally, a necessary condition to apply the cubic law to fluid flow through fracture intersections is suggested as J < 10-3, E/Rr < 10-3, and Z2 = 0.
Scaling functional patterns of skeletal and cardiac muscles: New non-linear elasticity approach
Kokshenev, Valery B
2009-01-01
Responding mechanically to environmental requests, muscles show a surprisingly large variety of functions. The studies of in vivo cycling muscles qualified skeletal muscles into four principal locomotor patterns: motor, brake, strut, and spring. While much effort of has been done in searching for muscle design patterns, no fundamental concepts underlying empirically established patterns were revealed. In this interdisciplinary study, continuum mechanics is applied to the problem of muscle structure in relation to function. The ability of a powering muscle, treated as a homogenous solid organ, tuned to efficient locomotion via the natural frequency is illuminated through the non-linear elastic muscle moduli controlled by contraction velocity. The exploration of the elastic force patterns known in solid state physics incorporated in activated skeletal and cardiac muscles via the mechanical similarity principle yields analytical rationalization for locomotor muscle patterns. Besides the explanation of the origin...
Nonlinear Model-Based Predictive Control applied to Large Scale Cryogenic Facilities
Blanco Vinuela, Enrique; de Prada Moraga, Cesar
2001-01-01
The thesis addresses the study, analysis, development, and finally the real implementation of an advanced control system for the 1.8 K Cooling Loop of the LHC (Large Hadron Collider) accelerator. The LHC is the next accelerator being built at CERN (European Center for Nuclear Research), it will use superconducting magnets operating below a temperature of 1.9 K along a circumference of 27 kilometers. The temperature of these magnets is a control parameter with strict operating constraints. The first control implementations applied a procedure that included linear identification, modelling and regulation using a linear predictive controller. It did improve largely the overall performance of the plant with respect to a classical PID regulator, but the nature of the cryogenic processes pointed out the need of a more adequate technique, such as a nonlinear methodology. This thesis is a first step to develop a global regulation strategy for the overall control of the LHC cells when they will operate simultaneously....
Crouseilles, Nicolas; Lemou, Mohammed
2016-01-01
We introduce a new numerical strategy to solve a class of oscillatory transport PDE models which is able to captureaccurately the solutions without numerically resolving the high frequency oscillations {\\em in both space and time}.Such PDE models arise in semiclassical modeling of quantum dynamics with band-crossings, and otherhighly oscillatory waves. Our first main idea is to use the nonlinear geometric optics ansatz, which builds theoscillatory phase into an independent variable. We then choose suitable initial data, based on the Chapman-Enskog expansion, for the new model. For a scalar model, we prove that so constructed model will have certain smoothness, and consequently, for a first order approximation scheme we prove uniform error estimates independent of the (possibly small) wave length. The method is extended to systems arising from a semiclassical model for surface hopping, a non-adiabatic quantum dynamic phenomenon. Numerous numerical examples demonstrate that the method has the desired properties...
Nonlinear scaling analysis approach of agent-based Potts financial dynamical model.
Hong, Weijia; Wang, Jun
2014-12-01
A financial agent-based price model is developed and investigated by one of statistical physics dynamic systems-the Potts model. Potts model, a generalization of the Ising model to more than two components, is a model of interacting spins on a crystalline lattice which describes the interaction strength among the agents. In this work, we investigate and analyze the correlation behavior of normalized returns of the proposed financial model by the power law classification scheme analysis and the empirical mode decomposition analysis. Moreover, the daily returns of Shanghai Composite Index and Shenzhen Component Index are considered, and the comparison nonlinear analysis of statistical behaviors of returns between the actual data and the simulation data is exhibited.
Yi, Liang; Shi, Zhengguo; Tan, Liangcheng; Deng, Chenglong
2017-06-01
We conducted a statistical study to characterize the nonlinear response of the East Asian summer monsoon (EASM) to its potential forcing factors over the last 260 ka on orbital timescales. We find that both variation in solar insolation and global ice volume were responsible for the nonlinear forcing of orbital-scale monsoonal variations, accounting for 80% of the total variance. Specifically, EASM records with dominated precession variance exhibit a more sensitive response to changes in solar insolation during intervals of enhanced monsoon strength, but are less sensitive during intervals of reduced monsoon strength. In the case of global ice volume with 100-ka variance, this difference is not one of sensitivity but rather a difference in baseline conditions, such as the relative areas of land and sea which affected the land-sea thermal gradient. We therefore suggest that EASM records with dominated precession variance recorded the signal of a shift in the location of the Inter-tropical Convergence Zone, and the associated changes in the incidence of torrential rainfall; while for proxies with dominated 100-ka variance, it recorded changes in the land-sea thermal gradient via its effects on non-torrential precipitation.
Energy Technology Data Exchange (ETDEWEB)
Jain, Neeraj; Büchner, Jörg [Max Planck/Princeton Center for Plasma Physics, Göttingen (Germany); Max Planck Institute for Solar System Research, Justus-Von-Liebig-Weg-3, Göttingen (Germany)
2014-07-15
Nonlinear evolution of three dimensional electron shear flow instabilities of an electron current sheet (ECS) is studied using electron-magnetohydrodynamic simulations. The dependence of the evolution on current sheet thickness is examined. For thin current sheets (half thickness =d{sub e}=c/ω{sub pe}), tearing mode instability dominates. In its nonlinear evolution, it leads to the formation of oblique current channels. Magnetic field lines form 3-D magnetic spirals. Even in the absence of initial guide field, the out-of-reconnection-plane magnetic field generated by the tearing instability itself may play the role of guide field in the growth of secondary finite-guide-field instabilities. For thicker current sheets (half thickness ∼5 d{sub e}), both tearing and non-tearing modes grow. Due to the non-tearing mode, current sheet becomes corrugated in the beginning of the evolution. In this case, tearing mode lets the magnetic field reconnect in the corrugated ECS. Later thick ECS develops filamentary structures and turbulence in which reconnection occurs. This evolution of thick ECS provides an example of reconnection in self-generated turbulence. The power spectra for both the thin and thick current sheets are anisotropic with respect to the electron flow direction. The cascade towards shorter scales occurs preferentially in the direction perpendicular to the electron flow.
Shvarts, D.; Oron, D.; Kartoon, D.; Rikanati, A.; Sadot, O.; Srebro, Y.; Yedvab, Y.; Ofer, D.; Levin, A.; Sarid, E.; Ben-Dor, G.; Erez, L.; Erez, G.; Yosef-Hai, A.; Alon, U.; Arazi, L.
2016-10-01
The late-time nonlinear evolution of the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities for random initial perturbations is investigated using a statistical mechanics model based on single-mode and bubble-competition physics at all Atwood numbers (A) and full numerical simulations in two and three dimensions. It is shown that the RT mixing zone bubble and spike fronts evolve as h ~ α · A · gt2 with different values of a for the bubble and spike fronts. The RM mixing zone fronts evolve as h ~ tθ with different values of θ for bubbles and spikes. Similar analysis yields a linear growth with time of the Kelvin-Helmholtz mixing zone. The dependence of the RT and RM scaling parameters on A and the dimensionality will be discussed. The 3D predictions are found to be in good agreement with recent Linear Electric Motor (LEM) experiments.
Directory of Open Access Journals (Sweden)
Jiuping Xu
2012-01-01
Full Text Available The aim of this study is to deal with a minimum cost network flow problem (MCNFP in a large-scale construction project using a nonlinear multiobjective bilevel model with birandom variables. The main target of the upper level is to minimize both direct and transportation time costs. The target of the lower level is to minimize transportation costs. After an analysis of the birandom variables, an expectation multiobjective bilevel programming model with chance constraints is formulated to incorporate decision makers’ preferences. To solve the identified special conditions, an equivalent crisp model is proposed with an additional multiobjective bilevel particle swarm optimization (MOBLPSO developed to solve the model. The Shuibuya Hydropower Project is used as a real-world example to verify the proposed approach. Results and analysis are presented to highlight the performances of the MOBLPSO, which is very effective and efficient compared to a genetic algorithm and a simulated annealing algorithm.
Directory of Open Access Journals (Sweden)
Kang Shugui
2009-01-01
Full Text Available Abstract By using fixed point theorems in cones, the existence of multiple positive solutions is considered for nonlinear -point boundary value problem for the following second-order boundary value problem on time scales , , , , where is an increasing homeomorphism and homomorphism and . Some new results are obtained for the existence of twin or an arbitrary odd number of positive solutions of the above problem by applying Avery-Henderson and Leggett-Williams fixed point theorems, respectively. In particular, our criteria generalize and improve some known results by Ma and Castaneda (2001. We must point out for readers that there is only the -Laplacian case for increasing homeomorphism and homomorphism. As an application, one example to demonstrate our results is given.
DEFF Research Database (Denmark)
Wu, Xiaocui; Ju, Weimin; Zhou, Yanlian;
2015-01-01
two-leaf model (TL-LUE), and a big-leaf light use efficiency model (MOD17) to simulate GPP at half-hourly, daily and 8-day scales using GPP derived from 58 eddy-covariance flux sites in Asia, Europe and North America as benchmarks. Model evaluation showed that the overall performance of TL...
Concept for power scaling second harmonic generation using a cascade of nonlinear crystals
DEFF Research Database (Denmark)
Hansen, Anders Kragh; Tawfieq, Mahmoud; Jensen, Ole Bjarlin;
2015-01-01
Within the field of high-power second harmonic generation (SHG), power scaling is often hindered by adverse crystal effects such as thermal dephasing arising from the second harmonic (SH) light, which imposes limits on the power that can be generated in many crystals. Here we demonstrate a concept...
Nonlinear nano-scale localized breather modes in a discrete weak ferromagnetic spin lattice
Energy Technology Data Exchange (ETDEWEB)
Kavitha, L., E-mail: louiskavitha@yahoo.co.in [Department of Physics, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur 610 101, Tamil Nadu (India); Max-Planck Institute for the Physics of Complex Systems, Dresden (Germany); The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Parasuraman, E. [Department of Physics, Periyar University, Salem 636 011, Tamil Nadu (India); Center for Nanoscience and Nanotechnology, Periyar University, Salem 636 011, Tamil Nadu (India); Gopi, D. [Department of Chemistry, Periyar University, Salem 636 011, Tamil Nadu (India); Center for Nanoscience and Nanotechnology, Periyar University, Salem 636 011, Tamil Nadu (India); Prabhu, A. [Department of Physics, Periyar University, Salem 636 011, Tamil Nadu (India); Vicencio, Rodrigo A. [Departamento de Física and MSI-Nucleus on Advanced Optics, Center for Optics and Photonics (CEFOP), Facultad de Ciencias, Universidad de Chile, Santiago 7800003 (Chile); Max-Planck Institute for the Physics of Complex Systems, Dresden (Germany)
2016-03-01
We investigate the propagation dynamics of highly localized discrete breather modes in a weak ferromagnetic spin lattice with on-site easy axis anisotropy due to crystal field effect. We derive the discrete nonlinear equation of motion by employing boson mappings and p-representation. We explore the onset of modulational instability both analytically in the framework of linear stability analysis and numerically by means of molecular dynamics (MD) simulations, and a perfect agreement was demonstrated. It is also explored that how the antisymmetric nature of the canted ferromagnetic lattice supports highly localized discrete breather (DBs) modes as shown in the stability/instability windows. The energy exchange between low amplitude discrete breathers favours the growth of higher amplitude DBs, resulting eventually in the formation of few long-lived high amplitude DBs. - Highlights: • The effects of DM and anisotropy interaction on the DB modes are studied. • The antisymmetric nature of the canted ferromagnetic medium supports the DB modes. • Dynamics of ferromagnetic chain is governed by boson mappings and p-representation.
Energy Technology Data Exchange (ETDEWEB)
Carlberg, Kevin Thomas [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Quantitative Modeling and Analysis; Drohmann, Martin [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Quantitative Modeling and Analysis; Tuminaro, Raymond S. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Computational Mathematics; Boggs, Paul T. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Quantitative Modeling and Analysis; Ray, Jaideep [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Quantitative Modeling and Analysis; van Bloemen Waanders, Bart Gustaaf [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Optimization and Uncertainty Estimation
2014-10-01
Model reduction for dynamical systems is a promising approach for reducing the computational cost of large-scale physics-based simulations to enable high-fidelity models to be used in many- query (e.g., Bayesian inference) and near-real-time (e.g., fast-turnaround simulation) contexts. While model reduction works well for specialized problems such as linear time-invariant systems, it is much more difficult to obtain accurate, stable, and efficient reduced-order models (ROMs) for systems with general nonlinearities. This report describes several advances that enable nonlinear reduced-order models (ROMs) to be deployed in a variety of time-critical settings. First, we present an error bound for the Gauss-Newton with Approximated Tensors (GNAT) nonlinear model reduction technique. This bound allows the state-space error for the GNAT method to be quantified when applied with the backward Euler time-integration scheme. Second, we present a methodology for preserving classical Lagrangian structure in nonlinear model reduction. This technique guarantees that important properties--such as energy conservation and symplectic time-evolution maps--are preserved when performing model reduction for models described by a Lagrangian formalism (e.g., molecular dynamics, structural dynamics). Third, we present a novel technique for decreasing the temporal complexity --defined as the number of Newton-like iterations performed over the course of the simulation--by exploiting time-domain data. Fourth, we describe a novel method for refining projection-based reduced-order models a posteriori using a goal-oriented framework similar to mesh-adaptive h -refinement in finite elements. The technique allows the ROM to generate arbitrarily accurate solutions, thereby providing the ROM with a 'failsafe' mechanism in the event of insufficient training data. Finally, we present the reduced-order model error surrogate (ROMES) method for statistically quantifying reduced- order
Scaling statistics in a critical, nonlinear physical model of tropical oceanic rainfall
Directory of Open Access Journals (Sweden)
K. M. Nordstrom
2003-01-01
Full Text Available Over the last two decades, concepts of scale invariance have come to the fore in both modeling and data analysis in hydrological precipitation research. With the advent of the use of the multiplicative random cascade model, these concepts have become increasingly more important. However, unifying this statistical view of the phenomenon with the physics of rainfall has proven to be a rather nontrivial task. In this paper, we present a simple model, developed entirely from qualitative physical arguments, without invoking any statistical assumptions, to represent tropical atmospheric convection over the ocean. The model is analyzed numerically. It shows that the data from the model rainfall look very spiky, as if generated from a random field model. They look qualitatively similar to real rainfall data sets from Global Atmospheric Research Program (GARP Atlantic Tropical Experiment (GATE. A critical point is found in a model parameter corresponding to the Convective Inhibition (CIN, at which rainfall changes abruptly from non-zero to a uniform zero value over the entire domain. Near the critical value of this parameter, the model rainfall field exhibits multifractal scaling determined from a fractional wetted area analysis and a moment scaling analysis. It therefore must exhibit long-range spatial correlations at this point, a situation qualitatively similar to that shown by multiplicative random cascade models and GATE rainfall data sets analyzed previously (Over and Gupta, 1994; Over, 1995. However, the scaling exponents associated with the model data are different from those estimated with real data. This comparison identifies a new theoretical framework for testing diverse physical hypotheses governing rainfall based in empirically observed scaling statistics.
Scaling statistics in a critical, nonlinear physical model of tropical oceanic rainfall
Nordstrom, K. M.; Gupta, V. K.
Over the last two decades, concepts of scale invariance have come to the fore in both modeling and data analysis in hydrological precipitation research. With the advent of the use of the multiplicative random cascade model, these concepts have become increasingly more important. However, unifying this statistical view of the phenomenon with the physics of rainfall has proven to be a rather nontrivial task. In this paper, we present a simple model, developed entirely from qualitative physical arguments, without invoking any statistical assumptions, to represent tropical atmospheric convection over the ocean. The model is analyzed numerically. It shows that the data from the model rainfall look very spiky, as if generated from a random field model. They look qualitatively similar to real rainfall data sets from Global Atmospheric Research Program (GARP) Atlantic Tropical Experiment (GATE). A critical point is found in a model parameter corresponding to the Convective Inhibition (CIN), at which rainfall changes abruptly from non-zero to a uniform zero value over the entire domain. Near the critical value of this parameter, the model rainfall field exhibits multifractal scaling determined from a fractional wetted area analysis and a moment scaling analysis. It therefore must exhibit long-range spatial correlations at this point, a situation qualitatively similar to that shown by multiplicative random cascade models and GATE rainfall data sets analyzed previously (Over and Gupta, 1994; Over, 1995). However, the scaling exponents associated with the model data are different from those estimated with real data. This comparison identifies a new theoretical framework for testing diverse physical hypotheses governing rainfall based in empirically observed scaling statistics.
Gu, Zhiping
This paper extends Riccati transfer matrix method to the transient and stability analysis of large scale rotor-bearing systems with strong nonlinear elements, and proposes a mode summation-transfer matrix method, in which the field transfer matrix of a distributed mass uniform shaft segment is obtained with the aid of the idea of mode summation and Newmark beta formulation, and the Riccati transfer matrix method is adopted to stablize the boundary value problem of the nonlinear systems. In this investigation, the real nonlinearity of the strong nonlinear elements is considered, not linearized, and the advantages of the Riccati transfer matrix are retained. So, this method is especially applicable to analyze the transient response and stability of large-scale rotor-bear systems with strong nonlinear elements. One example, a single-spool rotating system with strong nonlinear elements, is given. The obtained results show that this method is superior to that of Gu and Chen (1990) in accuracy, stability, and economy.
On optimal performance of nonlinear energy sinks in multiple-degree-of-freedom systems
Tripathi, Astitva; Grover, Piyush; Kalmár-Nagy, Tamás
2017-02-01
We study the problem of optimizing the performance of a nonlinear spring-mass-damper attached to a class of multiple-degree-of-freedom systems. We aim to maximize the rate of one-way energy transfer from primary system to the attachment, and focus on impulsive excitation of a two-degree-of-freedom primary system with an essentially nonlinear attachment. The nonlinear attachment is shown to be able to perform as a 'nonlinear energy sink' (NES) by taking away energy from the primary system irreversibly for some types of impulsive excitations. Using perturbation analysis and exploiting separation of time scales, we perform dimensionality reduction of this strongly nonlinear system. Our analysis shows that efficient energy transfer to nonlinear attachment in this system occurs for initial conditions close to homoclinic orbit of the slow time-scale undamped system, a phenomenon that has been previously observed for the case of single-degree-of-freedom primary systems. Analytical formulae for optimal parameters for given impulsive excitation input are derived. Generalization of this framework to systems with arbitrary number of degrees-of-freedom of the primary system is also discussed. The performance of both linear and nonlinear optimally tuned attachments is compared. While NES performance is sensitive to magnitude of the initial impulse, our results show that NES performance is more robust than linear tuned mass damper to several parametric perturbations. Hence, our work provides evidence that homoclinic orbits of the underlying Hamiltonian system play a crucial role in efficient nonlinear energy transfers, even in high dimensional systems, and gives new insight into robustness of systems with essential nonlinearity.
Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Yu, Hao-Ran
2016-01-01
We present a direct approach to non-parametrically reconstruct the linear density field from an observed non-linear map. We solve for the unique displacement potential consistent with the non-linear density and positive definite coordinate transformation using a multigrid algorithm. We show that we recover the linear initial conditions up to $k\\sim 1\\ h/\\mathrm{Mpc}$ with minimal computational cost. This reconstruction approach generalizes the linear displacement theory to fully non-linear fields, potentially substantially expanding the BAO and RSD information content of dense large scale structure surveys, including for example SDSS main sample and 21cm intensity mapping.
Nonlinear model of short-scale electrodynamics in the auroral ionosphere
Directory of Open Access Journals (Sweden)
J.-M. A. Noël
Full Text Available The optical detection of auroral subarcs a few tens of m wide as well as the direct observation of shears several m/s per m over km to sub km scales by rocket instrumentation both indicate that violent and highly localized electrodynamics can occur at times in the auroral ionosphere over scales 100 m or less in width. These observations as well as the detection of unstable ion-acoustic waves observed by incoherent radars along the geomagnetic field lines has motivated us to develop a detailed time-dependent two-dimensional model of short-scale auroral electrodynamics that uses current continuity, Ohm's law, and 8-moment transport equations for the ions and electrons in the presence of large ambient electric fields to describe wide auroral arcs with sharp edges in response to sharp cut-offs in precipitation (even though it may be possible to describe thin arcs and ultra-thin arcs with our model, we have left such a study for future work. We present the essential elements of this new model and illustrate the model's usefulness with a sample run for which the ambient electric field is 100 mV/m away from the arc and for which electron precipitation cuts off over a region 100 m wide. The sample run demonstrates that parallel current densities of the order of several hundred µA m^{-2} can be triggered in these circumstances, together with shears several m/s per m in magnitude and parallel electric fields of the order of 0.1 mV/m around 130 km altitude. It also illustrates that the local ionospheric properties like densities, temperature and composition can strongly be affected by the violent localized electrodynamics and vice-versa.
Key words: Ionosphere (auroral ionosphere, electric fields and currents, ionosphere-magnetosphere interactions
Modeling Topology and Nonlinear Dynamical Behavior of the Weighted Scale-Free Networks
Institute of Scientific and Technical Information of China (English)
YANG Qiu-Ying; ZHANG Gui-Qing; ZHANG Ying-Yue; CHEN Tian-Lun
2008-01-01
An improved weighted scale-free network,which has two evolution mechanisms:topological growth and strength dynamics,has been introduced.The topology structure of the model will be explored in details in this work.The evolution driven mechanism of Olami-Feder-Christensen (OFC) model is added to our model to study the self-organized criticality and the dynamical behavior.We also.consider attack mechanism and the study of the model with attack is also investigated in this paper.We find there axe differences between the model with attack and without attack.
Ata, Metin; Müller, Volker
2014-01-01
We present a Bayesian reconstruction algorithm to generate unbiased samples of the underlying dark matter field from galaxy redshift data. Our new contribution consists of implementing a non-Poisson likelihood including a deterministic non-linear and scale-dependent bias. In particular we present the Hamiltonian equations of motions for the negative binomial (NB) probability distribution function. This permits us to efficiently sample the posterior distribution function of density fields given a sample of galaxies using the Hamiltonian Monte Carlo technique implemented in the Argo code. We have tested our algorithm with the Bolshoi N-body simulation, inferring the underlying dark matter density field from a subsample of the halo catalogue. Our method shows that we can draw closely unbiased samples (compatible within 1-$\\sigma$) from the posterior distribution up to scales of about k~1 h/Mpc in terms of power-spectra and cell-to-cell correlations. We find that a Poisson likelihood yields reconstructions with p...
Garcia-Melendo, E.; Legarreta, J.; Sanchez-Lavega, A.
2012-12-01
Direct measurements of the structure of the zonal winds of Jupiter and Saturn below the upper cloud layer are very difficult to retrieve. Except from the vertical profile at a Jupiter hot spot obtained from the Galileo probe in 1995 and measurements from cloud tracking by Cassini instruments just below the upper cloud, no other data are available. We present here our inferences of the vertical structure of Jupiter and Saturn zonal wind across the upper troposphere (deep down to about 10 bar level) obtained from nonlinear simulations using the EPIC code of the stability and interactions of large-scale vortices and planetary-scale disturbances in both planets. Acknowledgements: This work has been funded by Spanish MICIIN AYA2009-10701 with FEDER support, Grupos Gobierno Vasco IT-464-07 and UPV/EHU UFI11/55. [1] García-Melendo E., Sánchez-Lavega A., Dowling T.., Icarus, 176, 272-282 (2005). [2] García-Melendo E., Sánchez-Lavega A., Hueso R., Icarus, 191, 665-677 (2007). [3] Sánchez-Lavega A., et al., Nature, 451, 437- 440 (2008). [4] Sánchez-Lavega A., et al., Nature, 475, 71-74 (2011).
Twork, Sabine; Wiesmeth, Susanne; Spindler, Milena; Wirtz, Markus; Schipper, Sabine; Pöhlau, Dieter; Klewer, Jörg; Kugler, Joachim
2010-06-07
Progression in disability as measured by increase in the Expanded Disability Status Scale (EDSS) is commonly used as outcome variable in clinical trials concerning multiple sclerosis (MS). In this study, we addressed the question, whether there is a linear relationship between disability status and health related quality of life (HRQOL) in MS. 7305 MS patients were sent a questionnaire containing a German version of the "Multiple Sclerosis Quality of Life (MSQOL)-54" and an assessment of self-reported disability status analogous to the EDSS. 3157 patients participated in the study. Patients were allocated to three groups according to disability status. Regarding the physical health composite and the mental health composite as well as most MSQOL-54 subscales, the differences between EDSS 4.5-6.5 and EDSS > or = 7 were clearly smaller than the differences between EDSS EDSS 4.5-6.5. These results indicate a non-linear relationship between disability status and HRQOL in MS. The EDSS does not seem to be interval scaled as is commonly assumed. Consequently, absolute increase in EDSS does not seem to be a suitable outcome variable in MS studies.
Albert, Carlo; Ulzega, Simone; Stoop, Ruedi
2016-04-01
Parameter inference is a fundamental problem in data-driven modeling. Given observed data that is believed to be a realization of some parameterized model, the aim is to find parameter values that are able to explain the observed data. In many situations, the dominant sources of uncertainty must be included into the model for making reliable predictions. This naturally leads to stochastic models. Stochastic models render parameter inference much harder, as the aim then is to find a distribution of likely parameter values. In Bayesian statistics, which is a consistent framework for data-driven learning, this so-called posterior distribution can be used to make probabilistic predictions. We propose a novel, exact, and very efficient approach for generating posterior parameter distributions for stochastic differential equation models calibrated to measured time series. The algorithm is inspired by reinterpreting the posterior distribution as a statistical mechanics partition function of an object akin to a polymer, where the measurements are mapped on heavier beads compared to those of the simulated data. To arrive at distribution samples, we employ a Hamiltonian Monte Carlo approach combined with a multiple time-scale integration. A separation of time scales naturally arises if either the number of measurement points or the number of simulation points becomes large. Furthermore, at least for one-dimensional problems, we can decouple the harmonic modes between measurement points and solve the fastest part of their dynamics analytically. Our approach is applicable to a wide range of inference problems and is highly parallelizable.
Shi, Huaitao; Liu, Jianchang; Wu, Yuhou; Zhang, Ke; Zhang, Lixiu; Xue, Peng
2016-04-01
It is pretty significant for fault diagnosis timely and accurately to improve the dependability of industrial processes. In this study, fault diagnosis of nonlinear and large-scale processes by variable-weighted kernel Fisher discriminant analysis (KFDA) based on improved biogeography-based optimisation (IBBO) is proposed, referred to as IBBO-KFDA, where IBBO is used to determine the parameters of variable-weighted KFDA, and variable-weighted KFDA is used to solve the multi-classification overlapping problem. The main contributions of this work are four-fold to further improve the performance of KFDA for fault diagnosis. First, a nonlinear fault diagnosis approach with variable-weighted KFDA is developed for maximising separation between the overlapping fault samples. Second, kernel parameters and features selection of variable-weighted KFDA are simultaneously optimised using IBBO. Finally, a single fitness function that combines erroneous diagnosis rate with feature cost is created, a novel mixed kernel function is introduced to improve the classification capability in the feature space and diagnosis accuracy of the IBBO-KFDA, and serves as the target function in the optimisation problem. Moreover, an IBBO approach is developed to obtain the better quality of solution and faster convergence speed. On the one hand, the proposed IBBO-KFDA method is first used on Tennessee Eastman process benchmark data sets to validate the feasibility and efficiency. On the other hand, IBBO-KFDA is applied to diagnose faults of automation gauge control system. Simulation results demonstrate that IBBO-KFDA can obtain better kernel parameters and feature vectors with a lower computing cost, higher diagnosis accuracy and a better real-time capacity.
Institute of Scientific and Technical Information of China (English)
康盛亮
2001-01-01
Using the modified method of multiple scales, the nonlinear stability of a truncated shallow spherical shell of variable thickness with a nondeformable rigid body at the center under compound loads is investigated. When the geometrical parameter k is larger,the uniformly valid asymptotic solutions of this problem are obtained and the remainder terms are estimated.
Zou, Rui; Riverson, John; Liu, Yong; Murphy, Ryan; Sim, Youn
2015-03-01
Integrated continuous simulation-optimization models can be effective predictors of a process-based responses for cost-benefit optimization of best management practices (BMPs) selection and placement. However, practical application of simulation-optimization model is computationally prohibitive for large-scale systems. This study proposes an enhanced Nonlinearity Interval Mapping Scheme (NIMS) to solve large-scale watershed simulation-optimization problems several orders of magnitude faster than other commonly used algorithms. An efficient interval response coefficient (IRC) derivation method was incorporated into the NIMS framework to overcome a computational bottleneck. The proposed algorithm was evaluated using a case study watershed in the Los Angeles County Flood Control District. Using a continuous simulation watershed/stream-transport model, Loading Simulation Program in C++ (LSPC), three nested in-stream compliance points (CP)—each with multiple Total Maximum Daily Loads (TMDL) targets—were selected to derive optimal treatment levels for each of the 28 subwatersheds, so that the TMDL targets at all the CP were met with the lowest possible BMP implementation cost. Genetic Algorithm (GA) and NIMS were both applied and compared. The results showed that the NIMS took 11 iterations (about 11 min) to complete with the resulting optimal solution having a total cost of 67.2 million, while each of the multiple GA executions took 21-38 days to reach near optimal solutions. The best solution obtained among all the GA executions compared had a minimized cost of 67.7 million—marginally higher, but approximately equal to that of the NIMS solution. The results highlight the utility for decision making in large-scale watershed simulation-optimization formulations.
Jha, Sanjeev Kumar
2015-07-21
A geostatistical framework is proposed to downscale daily precipitation and temperature. The methodology is based on multiple-point geostatistics (MPS), where a multivariate training image is used to represent the spatial relationship between daily precipitation and daily temperature over several years. Here, the training image consists of daily rainfall and temperature outputs from the Weather Research and Forecasting (WRF) model at 50 km and 10 km resolution for a twenty year period ranging from 1985 to 2004. The data are used to predict downscaled climate variables for the year 2005. The result, for each downscaled pixel, is daily time series of precipitation and temperature that are spatially dependent. Comparison of predicted precipitation and temperature against a reference dataset indicates that both the seasonal average climate response together with the temporal variability are well reproduced. The explicit inclusion of time dependence is explored by considering the climate properties of the previous day as an additional variable. Comparison of simulations with and without inclusion of time dependence shows that the temporal dependence only slightly improves the daily prediction because the temporal variability is already well represented in the conditioning data. Overall, the study shows that the multiple-point geostatistics approach is an efficient tool to be used for statistical downscaling to obtain local scale estimates of precipitation and temperature from General Circulation Models. This article is protected by copyright. All rights reserved.
Strong and nonlinear effects of fragmentation on ecosystem service provision at multiple scales
Mitchell, Matthew G. E.; Bennett, Elena M.; Gonzalez, Andrew
2015-09-01
Human actions, such as converting natural land cover to agricultural or urban land, result in the loss and fragmentation of natural habitat, with important consequences for the provision of ecosystem services. Such habitat loss is especially important for services that are supplied by fragments of natural land cover and that depend on flows of organisms, matter, or people across the landscape to produce benefits, such as pollination, pest regulation, recreation and cultural services. However, our quantitative knowledge about precisely how different patterns of landscape fragmentation might affect the provision of these types of services is limited. We used a simple, spatially explicit model to evaluate the potential impact of natural land cover loss and fragmentation on the provision of hypothetical ecosystem services. Based on current literature, we assumed that fragments of natural land cover provide ecosystem services to the area surrounding them in a distance-dependent manner such that ecosystem service flow depended on proximity to fragments. We modeled seven different patterns of natural land cover loss across landscapes that varied in the overall level of landscape fragmentation. Our model predicts that natural land cover loss will have strong and unimodal effects on ecosystem service provision, with clear thresholds indicating rapid loss of service provision beyond critical levels of natural land cover loss. It also predicts the presence of a tradeoff between maximizing ecosystem service provision and conserving natural land cover, and a mismatch between ecosystem service provision at landscape versus finer spatial scales. Importantly, the pattern of landscape fragmentation mitigated or intensified these tradeoffs and mismatches. Our model suggests that managing patterns of natural land cover loss and fragmentation could help influence the provision of multiple ecosystem services and manage tradeoffs and synergies between services across different human
Hydrological connectivity of hillslopes and streams: Characteristic time scales and nonlinearities
McGuire, Kevin J.; McDonnell, Jeffrey J.
2010-10-01
Subsurface flow from hillslopes is widely recognized as an important contributor to streamflow generation; however, processes that control how and when hillslopes connect to streams remain unclear. We investigated stream and hillslope runoff dynamics through a wet-up period in watershed 10 of the H. J. Andrews Experimental Forest in the western Cascades of Oregon where the riparian zone has been removed by debris flows. We examined the controls on hillslope-stream connectivity on the basis of observations of hydrometric, stable isotope, and applied tracer responses and computed transit times for multiple runoff components for a series of storms during the wet-up phase of the 2002-2003 winter rainy season. Hillslope discharge was distinctly threshold-like with a near linear response and average quick flow ratio of 0.58 when antecedent rainfall was greater than 20 mm. Hillslope and stream stormflow varied temporally and showed strong hysteretic relationships. Event water mean transit times (8-34 h) and rapid breakthrough from applied hillslope tracer additions demonstrated that subsurface contributing areas extend far upslope during events. Despite rapid hillslope transport processes during events, soil water and runoff mean transit times during nonstorm conditions were greater than the time scale of storm events. Soil water mean transit times ranged between 10 and 25 days. Hillslope seepage and catchment base flow mean transit times were between 1 and 2 years. We describe a conceptual model that captures variable physical flow pathways, their synchronicity, threshold activation, hysteresis, and transit times through changing antecedent wetness conditions that illustrate the different stages of hillslope and stream connectivity.
Doerry, Armin W.; Heard, Freddie E.; Cordaro, J. Thomas
2010-08-17
Motion measurement errors that extend beyond the range resolution of a synthetic aperture radar (SAR) can be corrected by effectively decreasing the range resolution of the SAR in order to permit measurement of the error. Range profiles can be compared across the slow-time dimension of the input data in order to estimate the error. Once the error has been determined, appropriate frequency and phase correction can be applied to the uncompressed input data, after which range and azimuth compression can be performed to produce a desired SAR image.
SIMULATION OF COMPOSITE NON-LINEAR MECHANICAL BEHAVIOR OF CMCS BY FEM-BASED MULTI-SCALE APPROACH
Institute of Scientific and Technical Information of China (English)
高希光; 王绍华; 宋迎东
2013-01-01
The non-linear behavior of continuous fiber reinforced C/SiC ceramic matrix composites (CMCs) under tensile loading is modeled by three-dimensional representative volume element (RVE) models of the composite . The theoretical background of the multi-scale approach solved by the finite element method (FEM ) is recalled first-ly .Then the geometric characters of three kinds of damage mechanisms ,i .e .micro matrix cracks ,fiber/matrix interface debonding and fiber fracture ,are studied .Three kinds of RVE are proposed to model the microstructure of C/SiC with above damage mechanisms respectively .The matrix cracking is modeled by critical matrix strain en-ergy (CMSE) principle while a maximum shear stress criterion is used for modeling fiber/matrix interface debond-ing .The behavior of fiber fracture is modeled by the famous Weibull statistic theory .A numerical example of con-tinuous fiber reinforced C/SiC composite under tensile loading is performed .The results show that the stress/strain curve predicted by the developed model agrees with experimental data .
Non-linear numerical simulations of magneto-acoustic wave propagation in small-scale flux tubes
Khomenko, E; Felipe, T
2007-01-01
We present results of non-linear 2D numerical simulations of magneto-acoustic wave propagation in the photosphere and chromosphere of small-scale flux tubes with internal structure. Waves with realistic periods of 3--5 min are studied, after applying horizontal and vertical oscillatory perturbations to the equilibrium situation. Spurious reflections of shock waves from the upper boundary are minimized thanks to a special boundary condition. This has allowed us to increase the duration of the simulations and to make it long enough to perform a statistical analysis of oscillations. The simulations show that deep horizontal motions of the flux tube generate a slow (magnetic) mode and a surface mode. These modes are efficiently transformed into a slow (acoustic) mode in the Va < Cs atmosphere. The slow (acoustic) mode propagates vertically along the field lines, forms shocks and remains always within the flux tube. It might deposit effectively the energy of the driver into the chromosphere. When the driver osc...
Liu, Rengli; Wang, Yanfei
2016-04-01
An extended nonlinear chirp scaling (NLCS) algorithm is proposed to process data of highly squinted, high-resolution, missile-borne synthetic aperture radar (SAR) diving with a constant acceleration. Due to the complex diving movement, the traditional signal model and focusing algorithm are no longer suited for missile-borne SAR signal processing. Therefore, an accurate range equation is presented, named as the equivalent hyperbolic range model (EHRM), which is more accurate and concise compared with the conventional fourth-order polynomial range equation. Based on the EHRM, a two-dimensional point target reference spectrum is derived, and an extended NLCS algorithm for missile-borne SAR image formation is developed. In the algorithm, a linear range walk correction is used to significantly remove the range-azimuth cross coupling, and an azimuth NLCS processing is adopted to solve the azimuth space variant focusing problem. Moreover, the operations of the proposed algorithm are carried out without any interpolation, thus having small computational loads. Finally, the simulation results and real-data processing results validate the proposed focusing algorithm.
Bandyopadhyay, Saptarshi
guidance algorithms using results from numerical simulations and closed-loop hardware experiments on multiple quadrotors. In the second part of this dissertation, we present two novel discrete-time algorithms for distributed estimation, which track a single target using a network of heterogeneous sensing agents. The Distributed Bayesian Filtering (DBF) algorithm, the sensing agents combine their normalized likelihood functions using the logarithmic opinion pool and the discrete-time dynamic average consensus algorithm. Each agent's estimated likelihood function converges to an error ball centered on the joint likelihood function of the centralized multi-sensor Bayesian filtering algorithm. Using a new proof technique, the convergence, stability, and robustness properties of the DBF algorithm are rigorously characterized. The explicit bounds on the time step of the robust DBF algorithm are shown to depend on the time-scale of the target dynamics. Furthermore, the DBF algorithm for linear-Gaussian models can be cast into a modified form of the Kalman information filter. In the Bayesian Consensus Filtering (BCF) algorithm, the agents combine their estimated posterior pdfs multiple times within each time step using the logarithmic opinion pool scheme. Thus, each agent's consensual pdf minimizes the sum of Kullback-Leibler divergences with the local posterior pdfs. The performance and robust properties of these algorithms are validated using numerical simulations. In the third part of this dissertation, we present an attitude control strategy and a new nonlinear tracking controller for a spacecraft carrying a large object, such as an asteroid or a boulder. If the captured object is larger or comparable in size to the spacecraft and has significant modeling uncertainties, conventional nonlinear control laws that use exact feed-forward cancellation are not suitable because they exhibit a large resultant disturbance torque. The proposed nonlinear tracking control law guarantees
Global sea surface temperature (SST) anomalies can affect terrestrial precipitation via ocean-atmosphere interaction known as climate teleconnection. Non-stationary and non-linear characteristics of the ocean-atmosphere system make the identification of the teleconnection signals...
Scaling Calculations for a Relativistic Gyrotron.
2014-09-26
a relativistic gyrotron. The results of calculations are given in Section 3. The non- linear , slow-time-scale equations of motion used for these...corresponds to a cylindrical resonator and a thin annular electron beam ;, " with the beam radius chosen to coincide with a maximum of the resonator...entering the cavity. A tractable set of non- linear equations based on a slow-time-scale formulation developed previously was used. For this
Manfredi, Sabato
2016-06-01
Large-scale dynamic systems are becoming highly pervasive in their occurrence with applications ranging from system biology, environment monitoring, sensor networks, and power systems. They are characterised by high dimensionality, complexity, and uncertainty in the node dynamic/interactions that require more and more computational demanding methods for their analysis and control design, as well as the network size and node system/interaction complexity increase. Therefore, it is a challenging problem to find scalable computational method for distributed control design of large-scale networks. In this paper, we investigate the robust distributed stabilisation problem of large-scale nonlinear multi-agent systems (briefly MASs) composed of non-identical (heterogeneous) linear dynamical systems coupled by uncertain nonlinear time-varying interconnections. By employing Lyapunov stability theory and linear matrix inequality (LMI) technique, new conditions are given for the distributed control design of large-scale MASs that can be easily solved by the toolbox of MATLAB. The stabilisability of each node dynamic is a sufficient assumption to design a global stabilising distributed control. The proposed approach improves some of the existing LMI-based results on MAS by both overcoming their computational limits and extending the applicative scenario to large-scale nonlinear heterogeneous MASs. Additionally, the proposed LMI conditions are further reduced in terms of computational requirement in the case of weakly heterogeneous MASs, which is a common scenario in real application where the network nodes and links are affected by parameter uncertainties. One of the main advantages of the proposed approach is to allow to move from a centralised towards a distributed computing architecture so that the expensive computation workload spent to solve LMIs may be shared among processors located at the networked nodes, thus increasing the scalability of the approach than the network
Institute of Scientific and Technical Information of China (English)
CHENMou; JIANGChang-sheng; CHENWen-hua
2004-01-01
A new decentralized robust control method is discussed for a class of nonlinear interconnected largescale system with unknown bounded disturbance and unknown nonlinear function term. A decentralized control law is proposed which combines the approximation method of neural network with sliding mode control. The decentralized controller consists of an equivalent controller and an adaptive sliding mode controller. The sliding mode controller is a robust controller used to reduce the track error of the control system. The neural networks are used to approximate the unknown nonlinear functions, meanwhile the approximation errors of the neural networks are applied to the weight value updated law to improve performance of the system. Finally, an example demonstrates the availability of the decentralized control method.
Wierschem, Nicholas E.; Hubbard, Sean A.; Luo, Jie; Fahnestock, Larry A.; Spencer, Billie F.; McFarland, D. Michael; Quinn, D. Dane; Vakakis, Alexander F.; Bergman, Lawrence A.
2017-02-01
Limiting peak stresses and strains in a structure subjected to high-energy, short-duration transient loadings, such as blasts, is a challenging problem, largely due to the well-known insensitivity of the first few cycles of the structural response to damping. Linear isolation, while a potential solution, requires a very low fundamental natural frequency to be effective, resulting in large nearly-rigid body displacement of the structure, while linear vibration absorbers have little or no effect on the early-time response where relative motions, and thus stresses and strains, are at their highest levels. The problem has become increasingly important in recent years with the expectation of blast-resistance as a design requirement in new construction. In this paper, the problem is examined experimentally and computationally in the context of offset-blast loading applied to a custom-built nine story steel frame structure. A fully-passive response mitigation system consisting of six lightweight, essentially nonlinear vibration absorbers (termed nonlinear energy sinks - NESs) is optimized and deployed on the upper two floors of this structure. Two NESs have vibro-impact nonlinearities and the other four possess smooth but essentially nonlinear stiffnesses. Results of the computational and experimental study demonstrate the efficacy of the proposed passive nonlinear mitigation system to rapidly and efficiently attenuate the global structural response, even at early time (i.e., starting at the first response cycle), thus minimizing the peak demand on the structure. This is achieved by nonlinear redistribution of the blast energy within the modal space through low-to-high energy scattering due to the action of the NESs. The experimental results validate the theoretical predictions.
Energy Technology Data Exchange (ETDEWEB)
Zhao, J. S.; Wu, D. J. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing (China); Voitenko, Y.; De Keyser, J., E-mail: js_zhao@pmo.ac.cn [Solar-Terrestrial Centre of Excellence, Space Physics Division, Belgian Institute for Space Aeronomy, Ringlaan-3-Avenue Circulaire, B-1180 Brussels (Belgium)
2014-04-20
We study the nonlocal nonlinear coupling and generation of kinetic Alfvén waves (KAWs) and kinetic slow waves (KSWs) by magnetohydrodynamic Alfvén waves (MHD AWs) in conditions typical for the solar wind in the inner heliosphere. This cross-scale process provides an alternative to the turbulent energy cascade passing through many intermediate scales. The nonlinearities we study are proportional to the scalar products of wave vectors and hence are called 'scalar' ones. Despite the strong Landau damping of kinetic waves, we found fast growing KAWs and KSWs at perpendicular wavelengths close to the ion gyroradius. Using the parametric decay formalism, we investigate two independent decay channels for the pump AW: forward decay (involving co-propagating product waves) and backward decay (involving counter-propagating product waves). The growth rate of the forward decay is typically 0.05 but can exceed 0.1 of the pump wave frequency. The resulting spectral transport is nonlocal and anisotropic, sharply increasing perpendicular wavenumbers but not parallel ones. AWs and KAWs propagating against the pump AW grow with about the same rate and contribute to the sunward wave flux in the solar wind. Our results suggest that the nonlocal decay of MHD AWs into KAWs and KSWs is a robust mechanism for the cross-scale spectral transport of the wave energy from MHD to dissipative kinetic scales in the solar wind and similar media.
Jin, Chao; Glawdel, Tomasz; Ren, Carolyn L.; Emelko, Monica B.
2015-12-01
Deposition of colloidal- and nano-scale particles on surfaces is critical to numerous natural and engineered environmental, health, and industrial applications ranging from drinking water treatment to semi-conductor manufacturing. Nano-scale surface roughness-induced hydrodynamic impacts on particle deposition were evaluated in the absence of an energy barrier to deposition in a parallel plate system. A non-linear, non-monotonic relationship between deposition surface roughness and particle deposition flux was observed and a critical roughness size associated with minimum deposition flux or “sag effect” was identified. This effect was more significant for nanoparticles (surface roughness on particle deposition by unifying hydrodynamic forces (using the most current approaches for describing flow field profiles and hydrodynamic retardation effects) with appropriately modified expressions for DLVO interaction energies, and gravity forces in one model and 2) a foundation for further describing the impacts of more complicated scales of deposition surface roughness on particle deposition.
Jilani, Asim; Abdel-wahab, M. Sh.; Zahran, H. Y.; Yahia, I. S.; Al-Ghamdi, Attieh A.
2016-09-01
Pure and Si-doped ZnO (SZO) thin films at different concentration of Si (1.9 and 2.4 wt%) were deposited on highly cleaned glass substrate by radio frequency (DC/RF) magnetron sputtering. The morphological and structural investigations have been performed by atomic force electron microscope (AFM) and X-ray diffraction (XRD). The X-ray photoelectron spectroscopy was employed to study the composition and the change in the chemical state of Si-doped ZnO thin films. The optical observations like transmittance, energy band gap, extinction coefficient, refractive index, dielectric loss of pure and Si-doped ZnO thin films have been calculated. The linear optical susceptibility, nonlinear refractive index, and nonlinear optical susceptibility were also studied by the spectroscopic approach rather than conventional Z-scan method. The energy gap of Si-doped ZnO thin films was found to increase as compared to pure ZnO thin films. The crystallinity of the ZnO thin films was effected by the Si doping. The O1s spectra in pure and Si-doped ZnO revealed the bound between O-2 and Zn+2 ions and reduction in the surface oxygen with the Si doping. The chemical state analysis of Si 2p showed the conversation of Si to SiOx and SiO2. The increase in the first-order linear optical susceptibility χ (1) and third-order nonlinear optical susceptibility χ (3) was observed with the Si doping. The nonlinear studies gave some details about the applications of metal oxides in nonlinear optical devices. In short, this study showed that Si doping through sputtering has effected on the structural, surface and optical properties of ZnO thin films which could be quite useful for advanced applications such as metal-oxide-based optical devices.
Institute of Scientific and Technical Information of China (English)
唐功友; 孙亮
2005-01-01
The optimal control problem for nonlinear interconnected large-scale dynamic systems is considered. A successive approximation approach for designing the optimal controller is proposed with respect to quadratic performance indexes. By using the approach, the high order, coupling,nonlinear two-point boundary value (TPBV) problem is transformed into a sequence of linear decoupling TPBV problems. It is proven that the TPBV problem sequence uniformly converges to the optimal control for nonlinear interconnected large-scale systems. A suboptimal control law is obtained by using a finite iterative result of the optimal control sequence.
Directory of Open Access Journals (Sweden)
Daniel Guyomar
2011-06-01
Full Text Available This paper aims at providing an up-to-date review of nonlinear electronic interfaces for energy harvesting from mechanical vibrations using piezoelectric coupling. The basic principles and the direct application to energy harvesting of nonlinear treatment of the output voltage of the transducers for conversion enhancement will be recalled, and extensions of this approach presented. Latest advances in this field will be exposed, such as the use of intermediate energy tanks for decoupling or initial energy injection for conversion magnification. A comparative analysis of each of these techniques will be performed, highlighting the advantages and drawbacks of the methods, in terms of efficiency, performance under several excitation conditions, complexity of implementation and so on. Finally, a special focus of their implementation in the case of low voltage output transducers (as in the case of microsystems will be presented.
Thompson, C. J.; Croke, J. C.; Grove, J. R.
2012-04-01
Non-linearity in physical systems provides a conceptual framework to explain complex patterns and form that are derived from complex internal dynamics rather than external forcings, and can be used to inform modeling and improve landscape management. One process that has been investigated previously to explore the existence of self-organised critical system (SOC) in river systems at the basin-scale is bank failure. Spatial trends in bank failure have been previously quantified to determine if the distribution of bank failures at the basin scale exhibit the necessary power law magnitude/frequency distributions. More commonly bank failures are investigated at a small-scale using several cross-sections with strong emphasis on local-scale factors such as bank height, cohesion and hydraulic properties. Advancing our understanding of non-linearity in such processes, however, requires many more studies where both the spatial and temporal measurements of the process can be used to investigate the existence or otherwise of non-linearity and self-organised criticality. This study presents measurements of bank failure throughout the Lockyer catchment in southeast Queensland, Australia, which experienced an extreme flood event in January 2011 resulting in the loss of human lives and geomorphic channel change. The most dominant form of fluvial adjustment consisted of changes in channel geometry and notably widespread bank failures, which were readily identifiable as 'scalloped' shaped failure scarps. The spatial extents of these were mapped using high-resolution LiDAR derived digital elevation model and were verified by field surveys and air photos. Pre-flood event LiDAR coverage for the catchment also existed allowing direct comparison of the magnitude and frequency of bank failures from both pre and post-flood time periods. Data were collected and analysed within a GIS framework and investigated for power-law relationships. Bank failures appeared random and occurred
DEFF Research Database (Denmark)
Jeong, Min-Soo; Cha, Myung-Chan; Kim, Sang-Woo
2014-01-01
Modern horizontal axis wind turbine blades are long, slender, and flexible structures that can undergo considerable deformation, leading to blade failures (e.g., blade-tower collision). For this reason, it is important to estimate blade behaviors accurately when designing large-scale wind turbines....... In this study, a numerical analysis considering blade torsional degree of freedom, geometric nonlinearity, and gravity was utilized to examine the effects of these factors on the aeroelastic blade behavior of a large-scale horizontal axis wind turbine. The results predicted that flapwise deflection is mainly...... affected by the torsional degree of freedom, which causes the blade bending deflections to couple to torsional deformation, thereby varying the aerodynamic loads through changes in the effective angle of attack. Edgewise deflection and torsional deformation are mostly influenced by the periodic...
Schmitt, Daniel T
2007-01-01
We analyze heartbeat interval recordings from two independent databases: (a) 19 healthy young (avg. age 25.7 years) and 16 healthy elderly subjects (avg. age 73.8 years) during 2h under resting conditions from the Fantasia database; and (b) 29 healthy elderly subjects (avg. age 75.9 years) during $\\approx{}8$h of sleep from the SHHS database, and the same subjects recorded 5 years later. We quantify: (1) The average heart rate ; (2) the SD $\\sigma_{RR}$ and $\\sigma_{\\Delta{}RR}$ of the heartbeat intervals RR and their increments $\\Delta{}RR$; (3) the long-range correlations in RR as measured by the scaling exponent $\\alpha_{RR}$ using the Detrended Fluctuation Analysis; (4) fractal linear and nonlinear properties as represented by the scaling exponents $\\alpha^{sign}$ and $\\alpha^{mag}$ for the time series of the sign and magnitude of $\\Delta{}RR$; (5) the nonlinear fractal dimension $D(k)$ of $RR$ using the Fractal Dimension Analysis. We find: (1) No significant difference in $\\left$ (P>0.05); (2) a signific...
Streicher, Jeffrey W; Cox, Christian L; Birchard, Geoffrey F
2012-04-01
Although well documented in vertebrates, correlated changes between metabolic rate and cardiovascular function of insects have rarely been described. Using the very large cockroach species Gromphadorhina portentosa, we examined oxygen consumption and heart rate across a range of body sizes and temperatures. Metabolic rate scaled positively and heart rate negatively with body size, but neither scaled linearly. The response of these two variables to temperature was similar. This correlated response to endogenous (body mass) and exogenous (temperature) variables is likely explained by a mutual dependence on similar metabolic substrate use and/or coupled regulatory pathways. The intraspecific scaling for oxygen consumption rate showed an apparent plateauing at body masses greater than about 3 g. An examination of cuticle mass across all instars revealed isometric scaling with no evidence of an ontogenetic shift towards proportionally larger cuticles. Published oxygen consumption rates of other Blattodea species were also examined and, as in our intraspecific examination of G. portentosa, the scaling relationship was found to be non-linear with a decreasing slope at larger body masses. The decreasing slope at very large body masses in both intraspecific and interspecific comparisons may have important implications for future investigations of the relationship between oxygen transport and maximum body size in insects.
Subramanian, Aneesh C.
2012-11-01
This paper investigates the role of the linear analysis step of the ensemble Kalman filters (EnKF) in disrupting the balanced dynamics in a simple atmospheric model and compares it to a fully nonlinear particle-based filter (PF). The filters have a very similar forecast step but the analysis step of the PF solves the full Bayesian filtering problem while the EnKF analysis only applies to Gaussian distributions. The EnKF is compared to two flavors of the particle filter with different sampling strategies, the sequential importance resampling filter (SIRF) and the sequential kernel resampling filter (SKRF). The model admits a chaotic vortical mode coupled to a comparatively fast gravity wave mode. It can also be configured either to evolve on a so-called slow manifold, where the fast motion is suppressed, or such that the fast-varying variables are diagnosed from the slow-varying variables as slaved modes. Identical twin experiments show that EnKF and PF capture the variables on the slow manifold well as the dynamics is very stable. PFs, especially the SKRF, capture slaved modes better than the EnKF, implying that a full Bayesian analysis estimates the nonlinear model variables better. The PFs perform significantly better in the fully coupled nonlinear model where fast and slow variables modulate each other. This suggests that the analysis step in the PFs maintains the balance in both variables much better than the EnKF. It is also shown that increasing the ensemble size generally improves the performance of the PFs but has less impact on the EnKF after a sufficient number of members have been used.
DEFF Research Database (Denmark)
Wang, Zhaohui; Folsø, Rasmus; Bondini, Francesca
1999-01-01
, full-scale measurements have been performed on board a 128 m monohull fast ferry. This paper deals with the results from these full-scale measurements. The primary results considered are pitch motion, midship vertical bending moment and vertical acceleration at the bow. Previous comparisons between...
Nonlinear Marangoni instability of a liquid jet in the presence of electric field
Energy Technology Data Exchange (ETDEWEB)
Zakaria, Kadry; Sirwah, Magdy A.; Assaf, Achmed [Tanta Univ. (Egypt). Dept. of Mathematics
2009-11-15
The work discusses the linear and nonlinear stability of cylindrical surface deformations between two incompressible fluids. The interface is carrying a uniform surface charge. The inner fluid is assumed to be a liquid jet. Both fluids are modeled as a special type of a Newtonian viscous fluid. Furthermore, the effect of surface adsorption is taken into account. Both fluids are assumed to be dielectric and the stability is discussed in the presence of a constant electric field in axial direction. The analysis is performed along the lines of a multiple scale perturbation expansion with additional slow time and space variables. The various stability criteria are discussed both analytically and numerically. The results are displayed in many plots showing the stability criteria in various parameter planes. The results show the dual role of the electric field and the negative rate of change of surface tension with the concentration of surfactant on the system stability, in both the linear and nonlinear steps. The nonlinear theory, when used to investigate the stability of liquid jet, appears accurately to predict new unstable regions. (orig.)
修改引力宇宙学下的大尺度结构非线性演化%Modified Gravity (MG) Model on Nonlinear Scale
Institute of Scientific and Technical Information of China (English)
崔伟广
2011-01-01
主要研究了修改引力论在非线性尺度上的表现.现在已经存在很多修改引力论的模型,如f(R),DGP,Mond等,但是在工作中并没有使用别人已经提出的修改引力论方法,因为首先不可能去对所有的修改引力论模型都进行研究;其次重点研究的是修改引力对于宇宙中的物质分布在非线性尺度上的影响,而各种修改引力论对于物质聚集的影响是相似的,都可以通过一个参数表达出来.因此笔者提出一种修改引力论的方法,引进了一个简单参数ζ.这个参Geff/G数ζ定义为-φ/ψ,这里Geff是有效牛顿常数,G是牛顿常数,φ和ψ则是时空度规的标量扰动方程中的两个势.这个ζ参数在广义相对论的基础上修改了物质粒子受到的加速度,加大或者减小这个参数会相应地改变物质粒子的加速度,进而会加快或者减慢大尺度结构的形成.这种对大尺度结构在线性尺度上的影响可以通过理论计算得到,但是大尺度结构的非线性增长无法通过理论计算得出,现在只有借助已经发展得比较成熟的数值模拟方法来研究这个广问题.该文修改了现在已经比较成熟的数值模拟程序GADGET-2,加入了ζ参数.在进行数值模拟之前,首先检验了数值模拟的质量分辨率、模拟尺度,以及初始红移对最终物质功率谱的影响,并且证实修改后的GADGET-2程序是正确的.设定不同ζ参数的值,ζ=0.8,0.9,1.0,1.1,1.2,1.5,这里ζ=1.0对应标准宇宙学,然后对每个ζ值运行了一组数值模拟.%This thesis mainly focuses on the effects of modified gravity (MG) model on nonlinear scale. There are many different modified gravity models at present, e.g. f(R), DGP, MOND, etc.We do not use other's model directly, because most of those modified gravity models have similar effect on the matter distribution. Here, we proposed a different model. This model is based on a new parameter ζ, which is defined as Geff
Directory of Open Access Journals (Sweden)
Julie Vercelloni
Full Text Available Recently, attempts to improve decision making in species management have focussed on uncertainties associated with modelling temporal fluctuations in populations. Reducing model uncertainty is challenging; while larger samples improve estimation of species trajectories and reduce statistical errors, they typically amplify variability in observed trajectories. In particular, traditional modelling approaches aimed at estimating population trajectories usually do not account well for nonlinearities and uncertainties associated with multi-scale observations characteristic of large spatio-temporal surveys. We present a Bayesian semi-parametric hierarchical model for simultaneously quantifying uncertainties associated with model structure and parameters, and scale-specific variability over time. We estimate uncertainty across a four-tiered spatial hierarchy of coral cover from the Great Barrier Reef. Coral variability is well described; however, our results show that, in the absence of additional model specifications, conclusions regarding coral trajectories become highly uncertain when considering multiple reefs, suggesting that management should focus more at the scale of individual reefs. The approach presented facilitates the description and estimation of population trajectories and associated uncertainties when variability cannot be attributed to specific causes and origins. We argue that our model can unlock value contained in large-scale datasets, provide guidance for understanding sources of uncertainty, and support better informed decision making.
Vercelloni, Julie; Caley, M Julian; Kayal, Mohsen; Low-Choy, Samantha; Mengersen, Kerrie
2014-01-01
Recently, attempts to improve decision making in species management have focussed on uncertainties associated with modelling temporal fluctuations in populations. Reducing model uncertainty is challenging; while larger samples improve estimation of species trajectories and reduce statistical errors, they typically amplify variability in observed trajectories. In particular, traditional modelling approaches aimed at estimating population trajectories usually do not account well for nonlinearities and uncertainties associated with multi-scale observations characteristic of large spatio-temporal surveys. We present a Bayesian semi-parametric hierarchical model for simultaneously quantifying uncertainties associated with model structure and parameters, and scale-specific variability over time. We estimate uncertainty across a four-tiered spatial hierarchy of coral cover from the Great Barrier Reef. Coral variability is well described; however, our results show that, in the absence of additional model specifications, conclusions regarding coral trajectories become highly uncertain when considering multiple reefs, suggesting that management should focus more at the scale of individual reefs. The approach presented facilitates the description and estimation of population trajectories and associated uncertainties when variability cannot be attributed to specific causes and origins. We argue that our model can unlock value contained in large-scale datasets, provide guidance for understanding sources of uncertainty, and support better informed decision making.
Hu, Kun; Lo, Men-Tzung; Peng, Chung-Kang; Liu, Yanhui; Novak, Vera
2012-01-01
Cerebral autoregulation (CA) is an important vascular control mechanism responsible for relatively stable cerebral blood flow despite changes of systemic blood pressure (BP). Impaired CA may leave brain tissue unprotected against potentially harmful effects of BP fluctuations. It is generally accepted that CA is less effective or even inactive at frequencies >∼0.1 Hz. Without any physiological foundation, this concept is based on studies that quantified the coupling between BP and cerebral blood flow velocity (BFV) using transfer function analysis. This traditional analysis assumes stationary oscillations with constant amplitude and period, and may be unreliable or even invalid for analysis of nonstationary BP and BFV signals. In this study we propose a novel computational tool for CA assessment that is based on nonlinear dynamic theory without the assumption of stationary signals. Using this method, we studied BP and BFV recordings collected from 39 patients with chronic ischemic infarctions and 40 age-matched non-stroke subjects during baseline resting conditions. The active CA function in non-stroke subjects was associated with an advanced phase in BFV oscillations compared to BP oscillations at frequencies from ∼0.02 to 0.38 Hz. The phase shift was reduced in stroke patients even at > = 6 months after stroke, and the reduction was consistent at all tested frequencies and in both stroke and non-stroke hemispheres. These results provide strong evidence that CA may be active in a much wider frequency region than previously believed and that the altered multiscale CA in different vascular territories following stroke may have important clinical implications for post-stroke recovery. Moreover, the stroke effects on multiscale cerebral blood flow regulation could not be detected by transfer function analysis, suggesting that nonlinear approaches without the assumption of stationarity are more sensitive for the assessment of the coupling of nonstationary
Energy Technology Data Exchange (ETDEWEB)
Chudej, K.; Petzet, V.; Scherdel, S.; Pesch, H.J. [Univ. Bayreuth, Lehrstuhl fuer Ingenieurmathematik (Germany); Heidebrecht, P. [Univ. Magdeburg, Lehrstuhl fuer Systemverfahrenstechnik (Germany); Schittkowski, K. [Univ. Bayreuth, Fachgruppe Informatik (Germany); Sundmacher, K. [Univ. Magdeburg, Lehrstuhl fuer Systemverfahrenstechnik (Germany); Max-Planck-Inst. fuer Dynamik Komplexer Technischer Systeme, Magdeburg (Germany)
2005-02-01
This paper deals with the efficient simulation of the dynamical behaviour of molten carbonate fuel cells (MCFCs). MCFCs allow an efficient and environmentally friendly energy production via electrochemical reactions. Their dynamics can be described by large scale systems of up to currently 22 nonlinear partial differential algebraic equations (PDAE). The paper also serves as a basis for later parameter identification and optimal control purposes. Therefore, the numerical simulations are particularly based on hierarchically embedded systems of PDAE, first of all in one space dimension. The PDAE are of mixed parabolic-hyperbolic type and are completed by nonlinear initial and boundary conditions of mixed type. For a series of embedded models in one space dimension, the vertical method of lines (MOL) is used throughout this paper. For the semi-discretization in space appropriate difference schemes are applied depending on the type of equations. The resulting system of ordinary differential algebraic equations (DAE) in time is then solved by a standard RADAU5 method. In order to justify the numerical procedure, a detailed index analysis of the PDAE systems with respect to time index, spatial index and MOL index is carried through. Because of the nonlinearity of the PDAE system, the existing theory has to be generalized. Moreover, MOL is especially suited for near optimal real time control on the basis of a sensitivity analysis of the semi-discretized DAE system, since a theoretically safeguarded sensitivity analysis does not exist so far for PDAE constrained optimal control problems of the above type. Numerical results complete the paper and show their correspondence with the expected dynamical behaviour of MCFCs. (orig.)
Jang, Jinwoo; Smyth, Andrew W.
2017-01-01
The objective of structural model updating is to reduce inherent modeling errors in Finite Element (FE) models due to simplifications, idealized connections, and uncertainties of material properties. Updated FE models, which have less discrepancies with real structures, give more precise predictions of dynamic behaviors for future analyses. However, model updating becomes more difficult when applied to civil structures with a large number of structural components and complicated connections. In this paper, a full-scale FE model of a major long-span bridge has been updated for improved consistency with real measured data. Two methods are applied to improve the model updating process. The first method focuses on improving the agreement of the updated mode shapes with the measured data. A nonlinear inequality constraint equation is used to an optimization procedure, providing the capability to regulate updated mode shapes to remain within reasonable agreements with those observed. An interior point algorithm deals with nonlinearity in the objective function and constraints. The second method finds very efficient updating parameters in a more systematic way. The selection of updating parameters in FE models is essential to have a successful updating result because the parameters are directly related to the modal properties of dynamic systems. An in-depth sensitivity analysis is carried out in an effort to precisely understand the effects of physical parameters in the FE model on natural frequencies. Based on the sensitivity analysis, cluster analysis is conducted to find a very efficient set of updating parameters.
Nercessian, Shahan C; Panetta, Karen A; Agaian, Sos S
2013-09-01
Image enhancement is a crucial pre-processing step for various image processing applications and vision systems. Many enhancement algorithms have been proposed based on different sets of criteria. However, a direct multi-scale image enhancement algorithm capable of independently and/or simultaneously providing adequate contrast enhancement, tonal rendition, dynamic range compression, and accurate edge preservation in a controlled manner has yet to be produced. In this paper, a multi-scale image enhancement algorithm based on a new parametric contrast measure is presented. The parametric contrast measure incorporates not only the luminance masking characteristic, but also the contrast masking characteristic of the human visual system. The formulation of the contrast measure can be adapted for any multi-resolution decomposition scheme in order to yield new human visual system-inspired multi-scale transforms. In this article, it is exemplified using the Laplacian pyramid, discrete wavelet transform, stationary wavelet transform, and dual-tree complex wavelet transform. Consequently, the proposed enhancement procedure is developed. The advantages of the proposed method include: 1) the integration of both the luminance and contrast masking phenomena; 2) the extension of non-linear mapping schemes to human visual system inspired multi-scale contrast coefficients; 3) the extension of human visual system-based image enhancement approaches to the stationary and dual-tree complex wavelet transforms, and a direct means of; 4) adjusting overall brightness; and 5) achieving dynamic range compression for image enhancement within a direct multi-scale enhancement framework. Experimental results demonstrate the ability of the proposed algorithm to achieve simultaneous local and global enhancements.
Karimi, Samaneh; Abdulkhani, Ali; Tahir, Paridah Md; Dufresne, Alain
2016-10-01
Cellulosic nanofibers (NFs) from kenaf bast were used to reinforce glycerol plasticized thermoplastic starch (TPS) matrices with varying contents (0-10wt%). The composites were prepared by casting/evaporation method. Raw fibers (RFs) reinforced TPS films were prepared with the same contents and conditions. The aim of study was to investigate the effects of filler dimension and loading on linear and non-linear mechanical performance of fabricated materials. Obtained results clearly demonstrated that the NF-reinforced composites had significantly greater mechanical performance than the RF-reinforced counterparts. This was attributed to the high aspect ratio and nano dimension of the reinforcing agents, as well as their compatibility with the TPS matrix, resulting in strong fiber/matrix interaction. Tensile strength and Young's modulus increased by 313% and 343%, respectively, with increasing NF content from 0 to 10wt%. Dynamic mechanical analysis (DMA) revealed an elevational trend in the glass transition temperature of amylopectin-rich domains in composites. The most eminent record was +18.5°C shift in temperature position of the film reinforced with 8% NF. This finding implied efficient dispersion of nanofibers in the matrix and their ability to form a network and restrict mobility of the system.
Non-Linear Integral Equation and excited-states scaling functions in the sine-Gordon model
Destri, C
1997-01-01
The NLIE (the non-linear integral equation equivalent to the Bethe Ansatz equations for finite size) is generalized to excited states, that is states with holes and complex roots over the antiferromagnetic ground state. We consider the sine-Gordon/massive Thirring model (sG/mT) in a periodic box of length L using the light-cone approach, in which the sG/mT model is obtained as the continuum limit of an inhomogeneous six vertex model. This NLIE is an useful starting point to compute the spectrum of excited states both analytically in the large L (perturbative) and small L (conformal) regimes as well as numerically. We derive the conformal weights of the Bethe states with holes and non-string complex roots (close and wide roots) in the UV limit. These weights agree with the Coulomb gas description, yielding a UV conformal spectrum related by duality to the IR conformal spectrum of the six vertex model.
Chakraborty, D.; Nandi, U. N.; Jana, D.; Dasgupta, P.; Poddar, A.
2017-01-01
Scaling analysis of nonOhmic electrical transport in double perovskite (DP) compounds like La2NiMnO6 and Sr2Fe0.3Mn0.7MoO6 is presented over a wide range of electric bias and temperatures. It is shown that the voltage V0(T) at which conductance deviates from its Ohmic value Σ0(T) scales with Σ0(T) as V0(T) ∼Σ0(T) xT , xT being the onset exponent characterizing the onset of nonOhmic conduction. Interestingly, it was found that xT is negative and insensitive to the nature of conduction mechanism in DPs but is related to the characteristic temperature T0 and the mean hopping length Hm. We provide a scaling formalism in terms of the parameters V0(T) and xT in DPs for deeper understanding of the spintronic application and the electrode functioning in solid oxide fuel cells (SOFC). Inelastic multi-step tunneling is found to be the suitable mechanism of electronic transport characterized completely by these two parameters.
Ishikawa, Takashi; Totani, Tomonori; Nishimichi, Takahiro; Takahashi, Ryuichi; Yoshida, Naoki; Tonegawa, Motonari
2014-10-01
Redshift-space distortion (RSD) observed in galaxy redshift surveys is a powerful tool to test gravity theories on cosmological scales, but the systematic uncertainties must carefully be examined for future surveys with large statistics. Here we employ various analytic models of RSD and estimate the systematic errors on measurements of the structure growth-rate parameter, fσ8, induced by non-linear effects and the halo bias with respect to the dark matter distribution, by using halo catalogues from 40 realizations of 3.4 × 108 comoving h-3 Mpc3 cosmological N-body simulations. We consider hypothetical redshift surveys at redshifts z = 0.5, 1.35 and 2, and different minimum halo mass thresholds in the range of 5.0 × 1011-2.0 × 1013 h-1 M⊙. We find that the systematic error of fσ8 is greatly reduced to ˜5 per cent level, when a recently proposed analytical formula of RSD that takes into account the higher order coupling between the density and velocity fields is adopted, with a scale-dependent parametric bias model. Dependence of the systematic error on the halo mass, the redshift and the maximum wavenumber used in the analysis is discussed. We also find that the Wilson-Hilferty transformation is useful to improve the accuracy of likelihood analysis when only a small number of modes are available in power spectrum measurements.
Franklin, Erick de Moraes
2016-01-01
Granular media are frequently found in nature and in industry and their transport by a fluid flow is of great importance to human activities. One case of particular interest is the transport of sand in open-channel and river flows. In many instances, the shear stresses exerted by the fluid flow are bounded to certain limits and some grains are entrained as bed-load: a mobile layer which stays in contact with the fixed part of the granular bed. Under these conditions, an initially flat granular bed may be unstable, generating ripples and dunes such as those observed on the bed of rivers. In free-surface water flows, dunes are bedforms that scale with the flow depth, while ripples do not scale with it. This article presents a model for the formation of ripples and dunes based on the proposition that ripples are primary linear instabilities and that dunes are secondary instabilities formed from the competition between the coalescence of ripples and free surface effects. Although simple, the model is able to expl...
Focus issue introduction: nonlinear optics 2013.
Dadap, Jerry I; Karlsson, Magnus; Panoiu, Nicolae C
2013-12-16
Nonlinear Optics has continued to develop over the last few years at an extremely fast pace, with significant advances being reported in nonlinear optical metamaterials, optical signal processing, quantum optics, nonlinear optics at subwavelength scale, and biophotonics. These exciting new developments have generated significant potential for a broad spectrum of technological applications in which nonlinear-optical processes play a central role.
Purkayastha, Archak; Dhar, Abhishek; Kulkarni, Manas
2016-11-01
Recent experiments in hybrid-quantum systems facilitate the potential realization of one of the most fundamental interacting Hamiltonian-reservoir systems, namely the single-site Bose-Hubbard model coupled to two reservoirs at different temperatures. Using Redfield equations in a Born-Markov approximation, we compute nonequilibrium average particle number, energy, and currents beyond linear response regime, both time dynamics and steady state, and investigate its dependence on various tunable parameters analytically. We find interesting scaling laws in high-temperature regimes that are independent of choice of bath spectral functions. We also demonstrate that the system shows very interesting particle and energy current rectification properties which can be controlled via the relative strength of interaction and temperatures, as well as via the degree of asymmetry in system-bath coupling. Specifically, we find inversion of direction of energy rectification as a function of the relative strength of the interaction strength and the temperatures. We also show that, in the limit of low-temperature and high interaction strength, our results are consistent with the nonequilibrium spin-Boson model. Our results are experimentally relevant not only to hybrid quantum systems but also in other areas such as molecular junctions.
Star Formation On Sub-kpc Scale Triggered By Non-linear Processes In Nearby Spiral Galaxies
Momose, Rieko; Kennicutt, Robert C; Egusa, Fumi; Calzetti, Daniela; Liu, Guilin; Meyer, Jennifer Donovan; Okumura, Sachiko K; Scoville, Nick Z; Sawada, Tsuyoshi; Kuno, Nario
2013-01-01
We report a super-linear correlation for the star formation law based on new CO($J$=1-0) data from the CARMA and NOBEYAMA Nearby-galaxies (CANON) CO survey. The sample includes 10 nearby spiral galaxies, in which structures at sub-kpc scales are spatially resolved. Combined with the star formation rate surface density traced by H$\\alpha$ and 24 $\\mu$m images, CO($J$=1-0) data provide a super-linear slope of $N$ = 1.3. The slope becomes even steeper ($N$ = 1.8) when the diffuse stellar and dust background emission is subtracted from the H$\\alpha$ and 24 $\\mu$m images. In contrast to the recent results with CO($J$=2-1) that found a constant star formation efficiency (SFE) in many spiral galaxies, these results suggest that the SFE is not independent of environment, but increases with molecular gas surface density. We suggest that the excitation of CO($J$=2-1) is likely enhanced in the regions with higher star formation and does not linearly trace the molecular gas mass. In addition, the diffuse emission contami...
Directory of Open Access Journals (Sweden)
Shakeeb Bin Hasan
2014-12-01
Full Text Available Contrary to traditional optical elements, plasmonic antennas made from nanostructured metals permit the localization of electromagnetic fields on length scales much smaller than the wavelength of light. This results in huge amplitudes for the electromagnetic field close to the antenna being conducive for the observation of nonlinear effects already at moderate pump powers. Thus, these antennas exhibit a promising potential to achieve optical frequency conversion and all-optical control of light at the nano-scale. This opens unprecedented opportunities for ultrafast nonlinear spectroscopy, sensing devices, on-chip optical frequency conversion, nonlinear optical metamaterials, and novel photon sources. Here, we review some of the recent advances in exploiting the potential of plasmonic antennas to realize robust nonlinear applications.
Fuss, Franz Konstantin
2013-01-01
Standard methods for computing the fractal dimensions of time series are usually tested with continuous nowhere differentiable functions, but not benchmarked with actual signals. Therefore they can produce opposite results in extreme signals. These methods also use different scaling methods, that is, different amplitude multipliers, which makes it difficult to compare fractal dimensions obtained from different methods. The purpose of this research was to develop an optimisation method that computes the fractal dimension of a normalised (dimensionless) and modified time series signal with a robust algorithm and a running average method, and that maximises the difference between two fractal dimensions, for example, a minimum and a maximum one. The signal is modified by transforming its amplitude by a multiplier, which has a non-linear effect on the signal's time derivative. The optimisation method identifies the optimal multiplier of the normalised amplitude for targeted decision making based on fractal dimensions. The optimisation method provides an additional filter effect and makes the fractal dimensions less noisy. The method is exemplified by, and explained with, different signals, such as human movement, EEG, and acoustic signals.
Directory of Open Access Journals (Sweden)
Franz Konstantin Fuss
2013-01-01
Full Text Available Standard methods for computing the fractal dimensions of time series are usually tested with continuous nowhere differentiable functions, but not benchmarked with actual signals. Therefore they can produce opposite results in extreme signals. These methods also use different scaling methods, that is, different amplitude multipliers, which makes it difficult to compare fractal dimensions obtained from different methods. The purpose of this research was to develop an optimisation method that computes the fractal dimension of a normalised (dimensionless and modified time series signal with a robust algorithm and a running average method, and that maximises the difference between two fractal dimensions, for example, a minimum and a maximum one. The signal is modified by transforming its amplitude by a multiplier, which has a non-linear effect on the signal’s time derivative. The optimisation method identifies the optimal multiplier of the normalised amplitude for targeted decision making based on fractal dimensions. The optimisation method provides an additional filter effect and makes the fractal dimensions less noisy. The method is exemplified by, and explained with, different signals, such as human movement, EEG, and acoustic signals.
Ishikawa, Takashi; Nishimichi, Takahiro; Takahashi, Ryuichi; Yoshida, Naoki; Tonegawa, Motonari
2013-01-01
Redshift space distortion (RSD) observed in galaxy redshift surveys is a powerful tool to test gravity theories on cosmological scales, but the systematic uncertainties must carefully be examined for future surveys with large statistics. Here we employ various analytic models of RSD and estimate the systematic errors on measurements of the structure growth-rate parameter, f\\sigma_8, induced by non-linear effects and the halo bias with respect to the dark matter distribution, by using halo catalogues from 40 realisations of 3.4 \\times 10^8 comoving h^{-3}Mpc^3 cosmological N-body simulations. We consider hypothetical redshift surveys at redshifts z=0.5, 1.35 and 2, and different minimum halo mass thresholds in the range of 5.0 \\times 10^{11} -- 2.0 \\times 10^{13} h^{-1} M_\\odot. We find that the systematic error of f\\sigma_8 is greatly reduced to ~4 per cent level, when a recently proposed analytical formula of RSD that takes into account the higher-order coupling between the density and velocity fields is ado...
Directory of Open Access Journals (Sweden)
Wei Han
2009-01-01
Full Text Available By using fixed point theorems in cones, the existence of multiple positive solutions is considered for nonlinear m-point boundary value problem for the following second-order boundary value problem on time scales (ϕ(uΔ∇+a(tf(t,u(t=0, t∈(0,T, ϕ(uΔ(0=∑i=1m−2aiϕ(uΔ(ξi, u(T=∑i=1m−2biu(ξi, where ϕ:R→R is an increasing homeomorphism and homomorphism and ϕ(0=0. Some new results are obtained for the existence of twin or an arbitrary odd number of positive solutions of the above problem by applying Avery-Henderson and Leggett-Williams fixed point theorems, respectively. In particular, our criteria generalize and improve some known results by Ma and Castaneda (2001. We must point out for readers that there is only the p-Laplacian case for increasing homeomorphism and homomorphism. As an application, one example to demonstrate our results is given.
Qian, Hong; Ao, Ping; Tu, Yuhai; Wang, Jin
2016-11-01
By integrating four lines of thoughts: symmetry breaking originally advanced by Anderson, bifurcation from nonlinear dynamical systems, Landau's phenomenological theory of phase transition, and the mechanism of emergent rare events first studied by Kramers, we introduce a possible framework for understanding mesoscopic dynamics that links (i) fast microscopic (lower level) motions, (ii) movements within each basin-of-attraction at the mid-level, and (iii) higher-level rare transitions between neighboring basins, which have slow rates that decrease exponentially with the size of the system. In this mesoscopic framework, the fast dynamics is represented by a rapidly varying stochastic process and the mid-level by a nonlinear dynamics. Multiple attractors arise as emergent properties of the nonlinear systems. The interplay between the stochastic element and nonlinearity, the essence of Kramers' theory, leads to successive jump-like transitions among different basins. We argue each transition is a dynamic symmetry breaking, with the potential of exhibiting Thom-Zeeman catastrophe as well as phase transition with the breakdown of ergodicity (e.g., cell differentiation). The slow-time dynamics of the nonlinear mesoscopic system is not deterministic, rather it is a discrete stochastic jump process. The existence of these discrete states and the Markov transitions among them are both emergent phenomena. This emergent stochastic jump dynamics then serves as the stochastic element for the nonlinear dynamics of a higher level aggregates on an even larger spatial and slower time scales (e.g., evolution). This description captures the hierarchical structure outlined by Anderson and illustrates two distinct types of limit of a mesoscopic dynamics: A long-time ensemble thermodynamics in terms of time t → ∞ followed by the size of the system N → ∞ , and a short-time trajectory steady state with N → ∞ followed by t → ∞ . With these limits, symmetry breaking and cusp
DEFF Research Database (Denmark)
Darula, Radoslav; Sorokin, Sergey
2013-01-01
An electro-magneto-mechanical system combines three physical domains - a mechanical structure, a magnetic field and an electric circuit. The interaction between these domains is analysed for a structure with two degrees of freedom (translational and rotational) and two electrical circuits. Each...... electrical circuit is described by a differential equation of the 1st order, which is considered to contribute to the coupled system by 0.5 DOF. The electrical and mechanical systems are coupled via a magnetic circuit, which is inherently non-linear, due to a non-linear nature of the electro-magnetic force....... To study the non-linear behaviour of the coupled problem analytically, the classical multiple scale method is applied. The response at each mode in resonant as well as in sub-harmonic excitation conditions is analysed in the cases of internal resonance and internal parametric resonance....
Bloembergen, Nicolaas
1996-01-01
Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe
Energy Technology Data Exchange (ETDEWEB)
Geniet, F; Leon, J [Physique Mathematique et Theorique, CNRS-UMR 5825, 34095 Montpellier (France)
2003-05-07
A nonlinear system possessing a natural forbidden band gap can transmit energy of a signal with a frequency in the gap, as recently shown for a nonlinear chain of coupled pendulums (Geniet and Leon 2002 Phys. Rev. Lett. 89 134102). This process of nonlinear supratransmission, occurring at a threshold that is exactly predictable in many cases, is shown to have a simple experimental realization with a mechanical chain of pendulums coupled by a coil spring. It is then analysed in more detail. First we go to different (nonintegrable) systems which do sustain nonlinear supratransmission. Then a Josephson transmission line (a one-dimensional array of short Josephson junctions coupled through superconducting wires) is shown to also sustain nonlinear supratransmission, though being related to a different class of boundary conditions, and despite the presence of damping, finiteness, and discreteness. Finally, the mechanism at the origin of nonlinear supratransmission is found to be a nonlinear instability, and this is briefly discussed here.
2016-07-01
Advanced Research Projects Agency (DARPA) Dynamics-Enabled Frequency Sources (DEFYS) program is focused on the convergence of nonlinear dynamics and...Early work in this program has shown that nonlinear dynamics can provide performance advantages. However, the pathway from initial results to...dependent nonlinear stiffness observed in these devices. This work is ongoing, and will continue through the final period of this program . Reference 9
Nayfeh, Ali Hasan
1995-01-01
Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim
Nanda, Sudarsan
2013-01-01
"Nonlinear analysis" presents recent developments in calculus in Banach space, convex sets, convex functions, best approximation, fixed point theorems, nonlinear operators, variational inequality, complementary problem and semi-inner-product spaces. Nonlinear Analysis has become important and useful in the present days because many real world problems are nonlinear, nonconvex and nonsmooth in nature. Although basic concepts have been presented here but many results presented have not appeared in any book till now. The book could be used as a text for graduate students and also it will be useful for researchers working in this field.
Yang, Qianli; Pitkow, Xaq
2015-03-01
Most interesting natural sensory stimuli are encoded in the brain in a form that can only be decoded nonlinearly. But despite being a core function of the brain, nonlinear population codes are rarely studied and poorly understood. Interestingly, the few existing models of nonlinear codes are inconsistent with known architectural features of the brain. In particular, these codes have information content that scales with the size of the cortical population, even if that violates the data processing inequality by exceeding the amount of information entering the sensory system. Here we provide a valid theory of nonlinear population codes by generalizing recent work on information-limiting correlations in linear population codes. Although these generalized, nonlinear information-limiting correlations bound the performance of any decoder, they also make decoding more robust to suboptimal computation, allowing many suboptimal decoders to achieve nearly the same efficiency as an optimal decoder. Although these correlations are extremely difficult to measure directly, particularly for nonlinear codes, we provide a simple, practical test by which one can use choice-related activity in small populations of neurons to determine whether decoding is suboptimal or optimal and limited by correlated noise. We conclude by describing an example computation in the vestibular system where this theory applies. QY and XP was supported by a grant from the McNair foundation.
DEFF Research Database (Denmark)
Mosegaard, Klaus
2012-01-01
For non-linear inverse problems, the mathematical structure of the mapping from model parameters to data is usually unknown or partly unknown. Absence of information about the mathematical structure of this function prevents us from presenting an analytical solution, so our solution depends on our......-heuristics are inefficient for large-scale, non-linear inverse problems, and that the 'no-free-lunch' theorem holds. We discuss typical objections to the relevance of this theorem. A consequence of the no-free-lunch theorem is that algorithms adapted to the mathematical structure of the problem perform more efficiently than...
Boyd, Robert W
2013-01-01
Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q
DEFF Research Database (Denmark)
Troen, Ib; Bechmann, Andreas; Kelly, Mark C.
2014-01-01
Using the Wind Atlas methodology to predict the average wind speed at one location from measured climatological wind frequency distributions at another nearby location we analyse the relative prediction errors using a linearized flow model (IBZ) and a more physically correct fully non-linear 3D...
Ruszczynski, Andrzej
2011-01-01
Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates t
The Nonlinear Magnetosphere: Expressions in MHD and in Kinetic Models
Hesse, Michael; Birn, Joachim
2011-01-01
Like most plasma systems, the magnetosphere of the Earth is governed by nonlinear dynamic evolution equations. The impact of nonlinearities ranges from large scales, where overall dynamics features are exhibiting nonlinear behavior, to small scale, kinetic, processes, where nonlinear behavior governs, among others, energy conversion and dissipation. In this talk we present a select set of examples of such behavior, with a specific emphasis on how nonlinear effects manifest themselves in MHD and in kinetic models of magnetospheric plasma dynamics.
Nonlinear Interaction of Waves in Geomaterials
Ostrovsky, L. A.
2009-05-01
Progress of 1990s - 2000s in studying vibroacoustic nonlinearities in geomaterials is largely related to experiments in resonance samples of rock and soils. It is now a common knowledge that many such materials are very strongly nonlinear, and they are characterized by hysteresis in the dependence between the stress and strain tensors, as well as by nonlinear relaxation ("slow time"). Elastic wave propagation in such media has many peculiarities; for example, third harmonic amplitude is a quadratic (not cubic as in classical solids) function of the main harmonic amplitude, and average wave velocity is linearly (not quadratically as usual) dependent on amplitude. The mechanisms of these peculiarities are related to complex structure of a material typically consisting of two phases: a hard matrix and relatively soft inclusions such as microcracks and grain contacts. Although most informative experimental results have been obtained in rock in the form of resonant bars, few theoretical models are yet available to describe and calculate waves interacting in such samples. In this presentation, a brief overview of structural vibroacoustic nonlinearities in rock is given first. Then, a simple but rather general approach to the description of wave interaction in solid resonators is developed based on accounting for resonance nonlinear perturbations which are cumulating from period to period. In particular, the similarity and the differences between traveling waves and counter-propagating waves are analyzed for materials with different stress-strain dependences. These data can be used for solving an inverse problem, i.e. characterizing nonlinear properties of a geomaterial by its measured vibroacoustic parameters. References: 1. L. Ostrovsky and P. Johnson, Riv. Nuovo Chimento, v. 24, 1-46, 2007 (a review); 2. L. Ostrovsky, J. Acoust. Soc. Amer., v. 116, 3348-3353, 2004.
In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D.; Leung, Daniel; Liu, Norman; Meadows, Brian K.; Gordon, Frank; Bulsara, Adi R.; Palacios, Antonio
2012-12-01
The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.
Saturation at low x and nonlinear evolution
Stasto, A. M.
2002-01-01
In this talk the results of the analytical and numerical analysis of the nonlinear Balitsky-Kovchegov equation are presented. The characteristic BFKL diffusion into infrared regime is suppressed by the generation of the saturation scale. We identify the scaling and linear regimes for the solution. We also study the impact of subleading corrections onto the nonlinear evolution.
Energy Technology Data Exchange (ETDEWEB)
Turchetti, G. (Bologna Univ. (Italy). Dipt. di Fisica)
1989-01-01
Research in nonlinear dynamics is rapidly expanding and its range of applications is extending beyond the traditional areas of science where it was first developed. Indeed while linear analysis and modelling, which has been very successful in mathematical physics and engineering, has become a mature science, many elementary phenomena of intrinsic nonlinear nature were recently experimentally detected and investigated, suggesting new theoretical work. Complex systems, as turbulent fluids, were known to be governed by intrinsically nonlinear laws since a long time ago, but received purely phenomenological descriptions. The pioneering works of Boltzmann and Poincare, probably because of their intrinsic difficulty, did not have a revolutionary impact at their time; it is only very recently that their message is reaching a significant number of mathematicians and physicists. Certainly the development of computers and computer graphics played an important role in developing geometric intuition of complex phenomena through simple numerical experiments, while a new mathematical framework to understand them was being developed.
Seider, Warren D.; Ungar, Lyle H.
1987-01-01
Describes a course in nonlinear mathematics courses offered at the University of Pennsylvania which provides an opportunity for students to examine the complex solution spaces that chemical engineers encounter. Topics include modeling many chemical processes, especially those involving reaction and diffusion, auto catalytic reactions, phase…
Nonlinear Observers for Gyro Calibration
Thienel, Julie; Sanner, Robert M.
2003-01-01
Nonlinear observers for gyro calibration are presented. The first observer estimates a constant gyro bias. The second observer estimates scale factor errors. The third observer estimates the gyro alignment for three orthogonal gyros. The convergence properties of all three observers are discussed. Additionally, all three observers are coupled with a nonlinear control algorithm. The stability of each of the resulting closed loop systems is analyzed. Simulated test results are presented for each system.
Nonlinear evolution equations in QCD
Stasto, A. M.
2004-01-01
The following lectures are an introduction to the phenomena of partonic saturation and nonlinear evolution equations in Quantum Chromodynamics. After a short introduction to the linear evolution, the problems of unitarity bound and parton saturation are discussed. The nonlinear Balitsky-Kovchegov evolution equation in the high energy limit is introduced, and the progress towards the understanding of the properties of its solution is reviewed. We discuss the concepts of the saturation scale, g...
Nonlinear acoustic propagation in rectangular ducts
Nayfeh, A. H.; Tsai, M.-S.
1974-01-01
The method of multiple scales is used to obtain a second-order uniformly valid expansion for nonlinear acoustic wave propagation in a rectangular duct whose walls are treated with a nonlinear acoustic material. The wave propagation in the duct is characterized by the unsteady nonlinear Euler equations. The results show that nonlinear materials attenuate sound more than linear materials except at high acoustic frequencies. The nonlinear materials produce higher and combination tones which have higher attenuation rates than the fundamentals. Moreover, the attenuation rates of the fundamentals increase with increasing amplitude.
Energy Technology Data Exchange (ETDEWEB)
Deguchi, H; Shoho, T; Kato, Y; Ashida, T; Mito, M; Takagi, S [Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550 (Japan); Hagiwara, M [Faculty of Engineering and Design, Kyoto Institute of Technology, Kyoto 606-8585 (Japan); Koyama, K, E-mail: deguchi@tobata.isc.kyutech.ac.jp [Faculty of Integrated Arts and Science, The University of Tokushima 770-8502 (Japan)
2011-07-20
The d-wave ceramic YBa{sub 2}Cu{sub 4}O{sub 8} superconductor composed of sub-micron size grains is considered as random Josephson-coupled network of 0 and {pi} junctions and shows successive phase transitions. The upper transition occurs inside each grain at T{sub c1} = 82 K and the lower transition occurs among the grains at T{sub c2} = 66 K. We measured the temperature dependence of the current-voltage characteristics of the ceramic YBa{sub 2}Cu{sub 4}O{sub 8} and derived the linear and nonlinear resistivity. The nonlinear resistivity {rho}{sub 2} and {rho}{sub 4} have finite values between T{sub c1} and T{sub c2} and have the peak at the same temperature T{sub p} = 70 K above T{sub c2}. The result agrees with the theoretical one obtained by Li and DomInguez. They interpreted T{sub p} as the crossover temperature from the normal state phase to a chiral paramagnetic one.
Tsia, Kevin K.; Jalali, Bahram
2010-05-01
An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.
2015-01-01
From the Back Cover: The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications re...
Edge detection by nonlinear dynamics
Energy Technology Data Exchange (ETDEWEB)
Wong, Yiu-fai
1994-07-01
We demonstrate how the formulation of a nonlinear scale-space filter can be used for edge detection and junction analysis. By casting edge-preserving filtering in terms of maximizing information content subject to an average cost function, the computed cost at each pixel location becomes a local measure of edgeness. This computation depends on a single scale parameter and the given image data. Unlike previous approaches which require careful tuning of the filter kernels for various types of edges, our scheme is general enough to be able to handle different edges, such as lines, step-edges, corners and junctions. Anisotropy in the data is handled automatically by the nonlinear dynamics.
Ginn, T. R.; Murphy, E. M.; Chilakapati, A.; Seeboonruang, U.
2001-03-01
Aerobic biodegradation of benzoate by Pseudomonas cepacia sp. in a saturated heterogeneous porous medium was simulated using the stochastic-convective reaction (SCR) approach. A laboratory flow cell was randomly packed with low permeability silt-size inclusions in a high permeability sand matrix. In the SCR upscaling approach, the characteristics of the flow field are determined by the breakthrough of a conservative tracer. Spatial information on the actual location of the heterogeneities is not used. The mass balance equations governing the nonlinear and multicomponent reactive transport are recast in terms of reactive transports in each of a finite number of discrete streamtubes. The streamtube ensemble members represent transport via a steady constant average velocity per streamtube and a conventional Fickian dispersion term, and their contributions to the observed breakthroughs are determined by flux-averaging the streamtube solute concentrations. The resulting simulations were compared to those from a high-resolution deterministic simulation of the reactive transport, and to alternative ensemble representations involving (i) effective Fickian travel time distribution function, (ii) purely convective streamtube transport, and (iii) streamtube ensemble subset simulations. The results of the SCR simulation compare favorably to that of a sophisticated high-resolution deterministic approach.
Iqbal, Javed; Yahia, I. S.; Zahran, H. Y.; AlFaify, S.; AlBassam, A. M.; El-Naggar, A. M.
2016-12-01
2‧,7‧ dichloro-Fluorescein (DCF) is a promising organic semiconductor material in different technological aspects such as solar cell, photodiode, Schottky diode. DCF thin film/conductive glass (FTO glass) was prepared by a low-cost spin coating technique. The spectrophotometric data such as the absorbance, reflectance and transmittance were cogitated in the 350-2500 nm wavelength range, at the normal incidence. The absorption (n) and linear refractive indices (k) were computed using the Fresnel's equations. The optical band gap was evaluated and it was found that there is two band gap described as follows: (1) It is related to the band gap of FTO/glass which is equal 3.4 eV and (2) the second one is related to the absorption edge of DCF equals 2.25 eV. The non-linear parameters such as the refractive index (n2) and optical susceptibility χ(3) were evaluated by the spectroscopic method based on the refractive index. Both (n2) and χ(3) increased rapidly on increasing the wavelength with redshift absorption. Our work represents a new idea about using FTO glass for a new generation of the optical device and technology.
Institute of Scientific and Technical Information of China (English)
HANG Chao; HUANG Guo-Xiang
2006-01-01
We investigate the nonlinear localized structures of optical pulses propagating in a one-dimensional photonic crystal with a quadratic nonlinearity. Using a method of multiple scales we show that the nonlinear evolution of a wave packet, formed by the superposition of short-wavelength excitations, and long-wavelength mean fields, generated by the self-interaction of the wave packet, are governed by a set of coupled high-dimensional nonlinear envelope equations, which can be reduced to Davey-Stewartson equations and thus support dromionlike high-dimensional nonlinear excitations in the system.
Franz Konstantin Fuss
2013-01-01
Standard methods for computing the fractal dimensions of time series are usually tested with continuous nowhere differentiable functions, but not benchmarked with actual signals. Therefore they can produce opposite results in extreme signals. These methods also use different scaling methods, that is, different amplitude multipliers, which makes it difficult to compare fractal dimensions obtained from different methods. The purpose of this research was to develop an optimisation method that co...
Non-linear canonical correlation
van der Burg, Eeke; de Leeuw, Jan
1983-01-01
Non-linear canonical correlation analysis is a method for canonical correlation analysis with optimal scaling features. The method fits many kinds of discrete data. The different parameters are solved for in an alternating least squares way and the corresponding program is called CANALS. An
Rajasekar, Shanmuganathan
2016-01-01
This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...
Institute of Scientific and Technical Information of China (English)
1996-01-01
3.1 A Unified Nonlinear Feedback Functional Method for Study Both Control and Synchronization of Spatiotemporal Chaos Fang Jinqing Ali M. K. (Department of Physics, The University of Lethbridge,Lethbridge, Alberta T1K 3M4,Canada) Two fundamental questions dominate future chaos control theories.The first is the problem of controlling hyperchaos in higher dimensional systems.The second question has yet to be addressed:the problem of controlling spatiotemporal chaos in a spatiotemporal system.In recent years, control and synchronization of spatiotemporal chaos and hyperchaos have became a much more important and challenging subject. The reason for this is the control and synchronism of such behaviours have extensive and great potential of interdisciplinary applications, such as security communication, information processing, medicine and so on. However, this subject is not much known and remains an outstanding open.
Homogenization of a nonlinear degenerate parabolic equation
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
The homogenization of one kind of nonlinear parabolic equation is studied. The weak convergence and corrector results are obtained by combining carefully the compactness method and two-scale convergence method in the homogenization theory.
Nonlinear Materials Characterization Facility
Federal Laboratory Consortium — The Nonlinear Materials Characterization Facility conducts photophysical research and development of nonlinear materials operating in the visible spectrum to protect...
Nonlinear magnetohydrodynamics of edge localized mode precursors
Energy Technology Data Exchange (ETDEWEB)
Guo, Z. B., E-mail: guozhipku@gmail.com [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing (China); WCI Center for Fusion Theory, NFRI, Gwahangno 113, Yusung-gu, Daejeon 305-333 (Korea, Republic of); Wang, Lu [SEEE, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang, X. G. [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing (China)
2015-02-15
A possible origin of edge-localized-mode (ELM) precursors based on nonlinear ideal peeling-ballooning mode is reported. Via nonlinear variational principle, a nonlinear evolution equation of the radial displacement is derived and solved, analytically. Besides an explosive growth in the initial nonlinear phase, it is found that the local displacement evolves into an oscillating state in the developed nonlinear phase. The nonlinear frequency of the ELM precursors scales as ω{sub pre}∼x{sup 1/3}ξ{sup ^}{sub ψ,in}{sup 2/3}n, with x position in radial direction, ξ{sup ^}{sub ψ,in} strength of initial perturbation, and n toroidal mode number.
Nonlinear Landau damping in quark-gluon plasma
Xiaofei, Zhang; Jiarong, Li
1995-08-01
The semiclassical kinetic equations for the quark-gluon plasma (QGP) are discussed by the multiple time-scale method. The mechanism of nonlinear Landau damping owing to non-Abelian and nonlinear wave-particle interactions in QGP is investigated, and the nonlinear Landau damping rate for the longitudinal color eigenwaves in the long-wavelength limit is calculated.
Time Series with Tailored Nonlinearities
Raeth, C
2015-01-01
It is demonstrated how to generate time series with tailored nonlinearities by inducing well- defined constraints on the Fourier phases. Correlations between the phase information of adjacent phases and (static and dynamic) measures of nonlinearities are established and their origin is explained. By applying a set of simple constraints on the phases of an originally linear and uncor- related Gaussian time series, the observed scaling behavior of the intensity distribution of empirical time series can be reproduced. The power law character of the intensity distributions being typical for e.g. turbulence and financial data can thus be explained in terms of phase correlations.
Nonlinear acoustic propagation in two-dimensional ducts
Nayfeh, A. H.; Tsai, M.-S.
1974-01-01
The method of multiple scales is used to obtain a second-order uniformly valid expansion for the nonlinear acoustic wave propagation in a two-dimensional duct whose walls are treated with a nonlinear acoustic material. The wave propagation in the duct is characterized by the unsteady nonlinear Euler equations. The results show that nonlinear effects tend to flatten and broaden the absorption versus frequency curve, in qualitative agreement with the experimental observations. Moreover, the effect of the gas nonlinearity increases with increasing sound frequency, whereas the effect of the material nonlinearity decreases with increasing sound frequency.
A nonlinear Schroedinger wave equation with linear quantum behavior
Energy Technology Data Exchange (ETDEWEB)
Richardson, Chris D.; Schlagheck, Peter; Martin, John; Vandewalle, Nicolas; Bastin, Thierry [Departement de Physique, University of Liege, 4000 Liege (Belgium)
2014-07-01
We show that a nonlinear Schroedinger wave equation can reproduce all the features of linear quantum mechanics. This nonlinear wave equation is obtained by exploring, in a uniform language, the transition from fully classical theory governed by a nonlinear classical wave equation to quantum theory. The classical wave equation includes a nonlinear classicality enforcing potential which when eliminated transforms the wave equation into the linear Schroedinger equation. We show that it is not necessary to completely cancel this nonlinearity to recover the linear behavior of quantum mechanics. Scaling the classicality enforcing potential is sufficient to have quantum-like features appear and is equivalent to scaling Planck's constant.
Nonlinear singular vectors and nonlinear singular values
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A novel concept of nonlinear singular vector and nonlinear singular value is introduced, which is a natural generalization of the classical linear singular vector and linear singular value to the nonlinear category. The optimization problem related to the determination of nonlinear singular vectors and singular values is formulated. The general idea of this approach is demonstrated by a simple two-dimensional quasigeostrophic model in the atmospheric and oceanic sciences. The advantage and its applications of the new method to the predictability, ensemble forecast and finite-time nonlinear instability are discussed. This paper makes a necessary preparation for further theoretical and numerical investigations.
Institute of Scientific and Technical Information of China (English)
周靖; 陈凯亮; 黄靓
2011-01-01
Nonlinear displacement biases in response of a single-degree-of-freedom (SDOF) systems were studied,they were induced by scaled pulse-like ground motion velocity records. Based on response time-history analysis of a SDOF system subjected to 30 pulse-like ground motions, the variation laws of the nonlinear displacement biases versus the structural vibration period (T) and the strength reduction factor (R) with scaling the earthquake records to the levels of target spectral acceleration ( Sa ), peak ground acceleration ( PGA ), peak ground velocity ( PGV ), and peak ground displacement (PGD) were studied. The variation trends of the displacement biases were determined with log-linear regression of scattered points, and the stability of the biases under the condition of scaling different ground motion intensities was comparatively analyzed. The results demonstrated that the amount of the displacement biases greatly depends on the scaling factor, the first modal period of the vibration, and the overall strength of the structure; reasonably selecting the scaling factor and the ground motion intensity presenting parameter of the pulse-like ground motion velocity records can reduce the displacement bias in structural seismic responses.%研究缩放速度脉冲型地震动强度水平引起的单自由度(SDOF)体系非线性位移反应的偏差.采用30条速度脉冲地震记录,通过SDOF的体系动力时程分析,分析了速度脉冲型地震动分别缩放到不同目标谱加速度(Sα)、峰值加速度(PGA)、峰值速度(PGV)、峰值位移(PGD)水平时,SDOF体系非线性位移反应偏差随系统自振周期和强度折减系数变化的规律;通过对散点数据的对数线性回归确定了位移反应偏差的变化趋势,并比较了不同地面运动强度表征参数下位移偏差的稳定性.分析结果表明:位移偏差对地震动缩放系数、系统的基阶自振周期和系统的强度有一定的依赖性,合理选
Nonlinear Multigrid for Reservoir Simulation
DEFF Research Database (Denmark)
Christensen, Max la Cour; Eskildsen, Klaus Langgren; Engsig-Karup, Allan Peter
2016-01-01
A feasibility study is presented on the effectiveness of applying nonlinear multigrid methods for efficient reservoir simulation of subsurface flow in porous media. A conventional strategy modeled after global linearization by means of Newton’s method is compared with an alternative strategy...... modeled after local linearization, leading to a nonlinear multigrid method in the form of the full-approximation scheme (FAS). It is demonstrated through numerical experiments that, without loss of robustness, the FAS method can outperform the conventional techniques in terms of algorithmic and numerical...... efficiency for a black-oil model. Furthermore, the use of the FAS method enables a significant reduction in memory usage compared with conventional techniques, which suggests new possibilities for improved large-scale reservoir simulation and numerical efficiency. Last, nonlinear multilevel preconditioning...
Nonlinear photoacoustic spectroscopy of hemoglobin
Energy Technology Data Exchange (ETDEWEB)
Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P.; Xia, Jun; Wang, Lihong V., E-mail: LHWANG@WUSTL.EDU [Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130 (United States)
2015-05-18
As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography.
Liu, Chang
2015-01-01
The nonlinear frequency shift is derived in a transparent asymptotic form for intense Langmuir waves in general collisionless plasma. The formula describes both fluid and kinetic effects simultaneously. The fluid nonlinearity is expressed, for the ?first time, through the plasma dielectric function, and the kinetic nonlinearity accounts for both smooth distributions and trapped-particle beams. Various known limiting scalings are reproduced as special cases. The calculation avoids differential equations and can be extended straightforwardly to other nonlinear plasma waves.
Institute of Scientific and Technical Information of China (English)
仉志余; 韩强; 俞元洪
2016-01-01
源于电子工程、机械工程、生态工程和航天工程等领域的许多问题均可用时间尺度上的动力方程来描述，因此，研究这类方程有着重要的理论价值和实际意义。本文利用广义Riccati变换，积分平均和比较原理，研究了一类时间尺度上三阶非线性中立型时滞动力方程的振动性和渐近性，给出了这类方程新的Kamenev型振动准则和Philos型振动准则。本文成果推广了已知文献的多个相应结果并给出了例证。%Many practical problems, such as those from electronic engineering, mechanical engineering, ecological engineering, aerospace engineering and so on, need to be described by dynamic equations on time scales, so it is important in theory and practical significance to study these equations. In this paper, the oscillation and asymptotic behavior of third-order nonlinear neutral delay dynamic equations on time scales are studied by using generalized Riccati transformation technique, inte-gral averaging methods and comparison theorems. The main purpose of this paper is to establish some new oscillation criteria for such dynamic equations. The new Kamenev criteria and Philos criteria are given, and an example is considered to illustrate our main results.
Nonlinear graphene plasmonics (Conference Presentation)
Cox, Joel D.; Marini, Andrea; Garcia de Abajo, Javier F.
2016-09-01
The combination of graphene's intrinsically-high nonlinear optical response with its ability to support long-lived, electrically tunable plasmons that couple strongly with light has generated great expectations for application of the atomically-thin material to nanophotonic devices. These expectations are mainly reinforced by classical analyses performed using the response derived from extended graphene, neglecting finite-size and nonlocal effects that become important when the carbon layer is structured on the nanometer scale in actual device designs. Based on a quantum-mechanical description of graphene using tight-binding electronic states combined with the random-phase approximation, we show that finite-size effects produce large contributions that increase the nonlinear response associated with plasmons in nanostructured graphene to significantly higher levels than previously thought, particularly in the case of Kerr-type optical nonlinearities. Motivated by this finding, we discuss and compare saturable absorption in extended and nanostructured graphene, with or without plasmonic enhancement, within the context of passive mode-locking for ultrafast lasers. We also explore the possibility of high-harmonic generation in doped graphene nanoribbons and nanoislands, where illumination by an infrared pulse of moderate intensity, tuned to a plasmon resonance, is predicted to generate light at harmonics of order 13 or higher, extending over the visible and UV regimes. Our atomistic description of graphene's nonlinear optical response reveals its complex nature in both extended and nanostructured systems, while further supporting the exceptional potential of this material for nonlinear nanophotonic devices.
NONLINEAR EXPECTATIONS AND NONLINEAR MARKOV CHAINS
Institute of Scientific and Technical Information of China (English)
PENG SHIGE
2005-01-01
This paper deals with nonlinear expectations. The author obtains a nonlinear generalization of the well-known Kolmogorov's consistent theorem and then use it to construct filtration-consistent nonlinear expectations via nonlinear Markov chains. Compared to the author's previous results, i.e., the theory of g-expectations introduced via BSDE on a probability space, the present framework is not based on a given probability measure. Many fully nonlinear and singular situations are covered. The induced topology is a natural generalization of Lp-norms and L∞-norm in linear situations.The author also obtains the existence and uniqueness result of BSDE under this new framework and develops a nonlinear type of von Neumann-Morgenstern representation theorem to utilities and present dynamic risk measures.
Energy Technology Data Exchange (ETDEWEB)
Lallart, Mickael; Guyomar, Daniel, E-mail: mickael.lallart@insa-lyon.fr [LGEF, INSA-Lyon, Universite de Lyon, 8 rue de la Physique, F-69621 (France)
2011-10-29
The proliferation of wearable and left-behind devices has raised the issue of powering such systems. While primary batteries have been widely used in order to address this issue, recent trends have focused on energy harvesting products that feature high reliability and low maintenance issues. Among all the ambient sources available for energy harvesting, vibrations and heat have been of significant interest among the research community for small-scale devices. However, the conversion abilities of materials are still limited when dealing with systems featuring small dimensions. The purpose of this paper is to presents an up-to-date view of nonlinear approaches for increasing the efficiency of electromechanical and electrocaloric conversion mechanisms. From the modeling of the operation principles of the different architectures, a comparative analysis will be exposed, emphasizing the advantages and drawbacks of the presented concepts, in terms of maximal output power (under constant vibration magnitude or taking into account the damping effect), load independence, and implementation easiness.
Perspectives on Nonlinear Filtering
Law, Kody
2015-01-07
The solution to the problem of nonlinear filtering may be given either as an estimate of the signal (and ideally some measure of concentration), or as a full posterior distribution. Similarly, one may evaluate the fidelity of the filter either by its ability to track the signal or its proximity to the posterior filtering distribution. Hence, the field enjoys a lively symbiosis between probability and control theory, and there are plenty of applications which benefit from algorithmic advances, from signal processing, to econometrics, to large-scale ocean, atmosphere, and climate modeling. This talk will survey some recent theoretical results involving accurate signal tracking with noise-free (degenerate) dynamics in high-dimensions (infinite, in principle, but say d between 103 and 108 , depending on the size of your application and your computer), and high-fidelity approximations of the filtering distribution in low dimensions (say d between 1 and several 10s).
Nonlinearities in vegetation functioning
Ceballos-Núñez, Verónika; Müller, Markus; Metzler, Holger; Sierra, Carlos
2016-04-01
Given the current drastic changes in climate and atmospheric CO2 concentrations, and the role of vegetation in the global carbon cycle, there is increasing attention to the carbon allocation component in biosphere terrestrial models. Improving the representation of C allocation in models could be the key to having better predictions of the fate of C once it enters the vegetation and is partitioned to C pools of different residence times. C allocation has often been modeled using systems of ordinary differential equations, and it has been hypothesized that most models can be generalized with a specific form of a linear dynamical system. However, several studies have highlighted discrepancies between empirical observations and model predictions, attributing these differences to problems with model structure. Although efforts have been made to compare different models, the outcome of these qualitative assessments has been a conceptual categorization of them. In this contribution, we introduce a new effort to identify the main properties of groups of models by studying their mathematical structure. For this purpose, we performed a literature research of the relevant models of carbon allocation in vegetation and developed a database with their representation in symbolic mathematics. We used the Python package SymPy for symbolic mathematics as a common language and manipulated the models to calculate their Jacobian matrix at fixed points and their eigenvalues, among other mathematical analyses. Our preliminary results show a tendency of inverse proportionality between model complexity and size of time/space scale; complex interactions between the variables controlling carbon allocation in vegetation tend to operate at shorter time/space scales, and vice-versa. Most importantly, we found that although the linear structure is common, other structures with non-linearities have been also proposed. We, therefore, propose a new General Model that can accommodate these
Institute of Scientific and Technical Information of China (English)
肖靖; 胡学成; 章宏
2013-01-01
在斜视成像模式下,合成孔径雷达回波信号的距离向和方位向之间存在严重的相位耦合效应,影响高分辨聚焦.非线性调频变标(NCS)算法在二维频域进行三次相位滤波,并补偿二次距离压缩(SRC)随距离的线性变化,在一定程度上改善了斜视成像的聚焦性能.但随着斜视角的进一步增大,三次以上的高阶相位以及SRC随距离的非线性变化对高分辨聚焦的影响也逐渐加大,从而降低成像性能.文中提出基于回波四次相位多项式模型的改进NCS算法,该算法通过两维频域中的三次及四次相位滤波以补偿参考距离处的相位耦合项,并且考虑了SRC随距离的非线性变化对聚焦的影响.通过仿真及实测数据的成像效果验证了该方法的可行性及有效性.%On the condition of the squint mode imaging,there exits the serious phase coupling effect between the range and azimuth dimension in the echoes of synthetic aperture radar (SAR),which will have bad impact on high-resolution focusing.Nonlinear chirp scaling (NCS) algorithm performs a three-order phase filtering in the two-dimensional frequency and compensates the linear range variance on secondary range compression (SRC),which ameliorates the focusing performance to a certain extent.But with the increase of the squint angle,the influence that four-order and above phase and nonlinear range variance on SRC exert on highresolution focusing is also augmented,which will deteriorate the imaging effect.A refined NCS based on the four-order phase polynomial model is prepesed in this paper.The algorithm performs the three and four-order phase filtering in the two-dimensional frequency to compensate the phase coupling at the reference range and meanwhile compensates nonlinear range variance on SRC.The imaging results of simulation and live data demonstrate the feasibility and validity of the method are proposed in this paper.
Lagrangian Space Nonlinear $E$-mode clustering
Yu, Hao-Ran; Zhu, Hong-Ming
2016-01-01
We study the nonlinear $E$-mode clustering in Lagrangian space by using large scale structure (LSS) $N$-body simulations and use the displacement field information in Lagrangian space to recover the primordial linear density field. We find that, compared to Eulerian nonlinear density fields, the $E$-mode displacement fields in Lagrangian space improves the cross-correlation scale $k$ with initial density field by factor of 6 $\\sim$ 7, containing 2 orders of magnitude more primordial information. This illustrates ability of potential density reconstruction algorithms, to improve the baryonic acoustic oscillation (BAO) measurements from current and future large scale structure surveys.
Parametrically Driven Nonlinear Oscillators with an Impurity
Institute of Scientific and Technical Information of China (English)
张卓; 唐翌
2002-01-01
By virtue of the method of multiple scales, we study a chain of parametrically driven nonlinear oscillators with a mass impurity. An equation is presented to describe the nonlinear wave of small amplitude in the chain.In our derivation, the equation is applicable to any eigenmode of coupled pendulum. Our result shows that a nonpropagation soliton emerges as the lowest or highest eigenmode of coupled pendulum is excited, and the impurity tends to pin the nonpropagation soliton excitation.
Nonlinear wave interactions in quantum magnetoplasmas
Shukla, P K; Marklund, M; Stenflo, L
2006-01-01
Nonlinear interactions involving electrostatic upper-hybrid (UH), ion-cyclotron (IC), lower-hybrid (LH), and Alfven waves in quantum magnetoplasmas are considered. For this purpose, the quantum hydrodynamical equations are used to derive the governing equations for nonlinearly coupled UH, IC, LH, and Alfven waves. The equations are then Fourier analyzed to obtain nonlinear dispersion relations, which admit both decay and modulational instabilities of the UH waves at quantum scales. The growth rates of the instabilities are presented. They can be useful in applications of our work to diagnostics in laboratory and astrophysical settings.
Nonlinear and Variable Structure Excitation Controller for Power System Stability
Institute of Scientific and Technical Information of China (English)
Wang Ben; Ronnie Belmans
2006-01-01
A new nonlinear variable structure excitation controller is proposed. Its design combines the differential geometry theory and the variable structure controlling theory. The mathematical model in the form of "an affine nonlinear system" is set up for the control of a large-scale power system. The static and dynamic performances of the nonlinear variable structure controller are simulated. The response of system with the controller proposed is compared to that of the nonlinear optimal controller when the system is subjected to a variety of disturbances. Simulation results show that the nonlinear variable structure excitation controller gives more satisfactorily static and dynamic performance and better robustness.
Saturation and geometrical scaling
Praszalowicz, Michal
2016-01-01
We discuss emergence of geometrical scaling as a consequence of the nonlinear evolution equations of QCD, which generate a new dynamical scale, known as the saturation momentum: Qs. In the kinematical region where no other energy scales exist, particle spectra exhibit geometrical scaling (GS), i.e. they depend on the ratio pT=Qs, and the energy dependence enters solely through the energy dependence of the saturation momentum. We confront the hypothesis of GS in different systems with experimental data.
Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong
2015-01-01
This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.
Distributed nonlinear optical response
DEFF Research Database (Denmark)
Nikolov, Nikola Ivanov
2005-01-01
The purpose of the research presented here is to investigate basic physical properties in nonlinear optical materials with delayed or nonlocal nonlinearity. Soliton propagation, spectral broadening and the influence of the nonlocality or delay of the nonlinearity are the main focusses in the work...
Noncommutative Nonlinear Supersymmetry
Nishino, H; Nishino, Hitoshi; Rajpoot, Subhash
2002-01-01
We present noncommutative nonlinear supersymmetric theories. The first example is a non-polynomial Akulov-Volkov-type lagrangian with noncommutative nonlinear global supersymmetry in arbitrary space-time dimensions. The second example is the generalization of this lagrangian to Dirac-Born-Infeld lagrangian with nonlinear supersymmetry realized in dimensions D=2,3,4 and 6 (mod 8).
Fiber Nonlinearities: A Tutorial
Institute of Scientific and Technical Information of China (English)
Govind P. Agrawal
2003-01-01
Fiber nonlinearities have long been regarded as being mostly harmful for fiber-optic communication systems. Over the last few years, however, the nonlinear effects are increasingly being used for practical telecommunications applications,the Raman amplification being only one of the recent examples. In this tutorial I review the vario us nonlinear effects occurring in optical fibers from both standpoints..
Fiber Nonlinearities: A Tutorial
Institute of Scientific and Technical Information of China (English)
Govind; P.; Agrawal
2003-01-01
Fiber nonlinearities have long been regarded as being mostly harmful for fiber-optic communication systems. Over the last few years, however, the nonlinear effects are increasingly being used for practical telecommunications applications, the Raman amplification being only one of the recent examples. In this tutorial I review the various nonlinear effects occurring in optical fibers from both standpoints..
Nonlinear wavetrains in viscous conduits
Maiden, Michelle; Hoefer, Mark
2016-11-01
Viscous fluid conduits provide an ideal system for the study of dissipationless, dispersive hydrodynamics. A dense, viscous fluid serves as the background medium through which a lighter, less viscous fluid buoyantly rises. If the interior fluid is continuously injected, a deformable pipe forms. The long wave interfacial dynamics are well-described by a dispersive nonlinear partial differential equation. In this talk, experiments, numerics, and asymptotics of the viscous fluid conduit system will be presented. Structures at multiple length scales are discussed, including solitons, dispersive shock waves, and periodic waves. Modulations of periodic waves will be explored in the weakly nonlinear regime with the Nonlinear Schrödinger (NLS) equation. Modulational instability (stability) is identified for sufficiently short (long) periodic waves due to a change in dispersion curvature. These asymptotic results are confirmed by numerical simulations of perturbed nonlinear periodic wave solutions. Also, numerically observed are envelope bright and dark solitons well approximated by NLS. This work was partially supported by NSF CAREER DMS-1255422 (M.A.H.) and NSF GRFP (M.D.M.).
PBH tests for nonlinear systems
Kawano, Yu; Ohtsuka, Toshiyuki
2017-01-01
Recently, concepts of nonlinear eigenvalues and eigenvectors are introduced. In this paper, we establish connections between the nonlinear eigenvalues and nonlinear accessibility/observability. In particular, we provide a generalization of Popov- Belevitch-Hautus (PBH) test to nonlinear accessibilit
The Nonlinear Evolution of Galaxy Intrinsic Alignments
Lee, Jounghun; Pen, Ue-Li
2007-01-01
The non-Gaussian contribution to the intrinsic halo spin alignments is analytically modeled and numerically detected. Assuming that the growth of non-Gaussianity in the density fluctuations caused the tidal field to have nonlinear-order effect on the orientations of the halo angular momentum, we model the intrinsic halo spin alignments as a linear scaling of the density correlations on large scales, which is different from the previous quadratic-scaling model based on the linear tidal torque ...
Nonlinear dynamics and complexity
Luo, Albert; Fu, Xilin
2014-01-01
This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.
Theory and design of nonlinear metamaterials
Rose, Alec Daniel
If electronics are ever to be completely replaced by optics, a significant possibility in the wake of the fiber revolution, it is likely that nonlinear materials will play a central and enabling role. Indeed, nonlinear optics is the study of the mechanisms through which light can change the nature and properties of matter and, as a corollary, how one beam or color of light can manipulate another or even itself within such a material. However, of the many barriers preventing such a lofty goal, the narrow and limited range of properties supported by nonlinear materials, and natural materials in general, stands at the forefront. Many industries have turned instead to artificial and composite materials, with homogenizable metamaterials representing a recent extension of such composites into the electromagnetic domain. In particular, the inclusion of nonlinear elements has caused metamaterials research to spill over into the field of nonlinear optics. Through careful design of their constituent elements, nonlinear metamaterials are capable of supporting an unprecedented range of interactions, promising nonlinear devices of novel design and scale. In this context, I cast the basic properties of nonlinear metamaterials in the conventional formalism of nonlinear optics. Using alternately transfer matrices and coupled mode theory, I develop two complementary methods for characterizing and designing metamaterials with arbitrary nonlinear properties. Subsequently, I apply these methods in numerical studies of several canonical metamaterials, demonstrating enhanced electric and magnetic nonlinearities, as well as predicting the existence of nonlinear magnetoelectric and off-diagonal nonlinear tensors. I then introduce simultaneous design of the linear and nonlinear properties in the context of phase matching, outlining five different metamaterial phase matching methods, with special emphasis on the phase matching of counter propagating waves in mirrorless parametric amplifiers
Ultrafast nonlinear dynamics of thin gold films due to an intrinsic delayed nonlinearity
Bache, Morten; Lavrinenko, Andrei V.
2017-09-01
Using long-range surface plasmon polaritons light can propagate in metal nano-scale waveguides for ultracompact opto-electronic devices. Gold is an important material for plasmonic waveguides, but although its linear optical properties are fairly well understood, the nonlinear response is still under investigation. We consider the propagation of pulses in ultrathin gold strip waveguides, modeled by the nonlinear Schrödinger equation. The nonlinear response of gold is accounted for by the two-temperature model, revealing it as a delayed nonlinearity intrinsic in gold. The consequence is that the measured nonlinearities are strongly dependent on pulse duration. This issue has so far only been addressed phenomenologically, but we provide an accurate estimate of the quantitative connection as well as a phenomenological theory to understand the enhanced nonlinear response as the gold thickness is reduced. In comparison with previous works, the analytical model for the power-loss equation has been improved, and can be applied now to cases with a high laser peak power. We show new fits to experimental data from the literature and provide updated values for the real and imaginary parts of the nonlinear susceptibility of gold for various pulse durations and gold layer thicknesses. Our simulations show that the nonlinear loss is inhibiting efficient nonlinear interaction with low-power laser pulses. We therefore propose to design waveguides suitable for the mid-IR, where the ponderomotive instantaneous nonlinearity can dominate over the delayed hot-electron nonlinearity and provide a suitable plasmonics platform for efficient ultrafast nonlinear optics.
Nonlinear Elliptic Differential Equations with Multivalued Nonlinearities
Indian Academy of Sciences (India)
Antonella Fiacca; Nikolaos Matzakos; Nikolaos S Papageorgiou; Raffaella Servadei
2001-11-01
In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all $\\mathbb{R}$. Assuming the existence of an upper and of a lower solution, we prove the existence of a solution between them. Also for a special version of the problem, we prove the existence of extremal solutions in the order interval formed by the upper and lower solutions. Then we drop the requirement that the monotone nonlinearity is defined on all of $\\mathbb{R}$. This case is important because it covers variational inequalities. Using the theory of operators of monotone type we show that the problem has a solution. Finally in the last part we consider an eigenvalue problem with a nonmonotone multivalued nonlinearity. Using the critical point theory for nonsmooth locally Lipschitz functionals we prove the existence of at least two nontrivial solutions (multiplicity theorem).
Review of the Study of Nonlinear Atmospheric Dynamics in China (1999-2002)
Institute of Scientific and Technical Information of China (English)
刁一娜; 封国林; 刘式达; 刘式适; 罗德海; 黄思训; 陆维松; 丑纪范
2004-01-01
Researches on nonlinear atmospheric dynamics in China (1999-2002) are briefly surveyed. This review includes the major achievements in the following branches of nonlinear dynamics: nonlinear stability theory,nonlinear blocking dynamics, 3D spiral structure in the atmosphere, traveling wave solution of the nonlinear evolution equation, numerical predictability in a chaotic system, and global analysis of climate dynamics.Some applications of nonlinear methods such as hierarchy structure of climate and scaling invariance, the spatial-temporal series predictive method, the nonlinear inverse problem, and a new difference scheme with multi-time levels are also introduced.
Dynamics of Nonlinear Waves on Bounded Domains
Maliborski, Maciej
2016-01-01
This thesis is concerned with dynamics of conservative nonlinear waves on bounded domains. In general, there are two scenarios of evolution. Either the solution behaves in an oscillatory, quasiperiodic manner or the nonlinear effects cause the energy to concentrate on smaller scales leading to a turbulent behaviour. Which of these two possibilities occurs depends on a model and the initial conditions. In the quasiperiodic scenario there exist very special time-periodic solutions. They result for a delicate balance between dispersion and nonlinear interaction. The main body of this dissertation is concerned with construction (by means of perturbative and numerical methods) of time-periodic solutions for various nonlinear wave equations on bounded domains. While turbulence is mainly associated with hydrodynamics, recent research in General Relativity has also revealed turbulent phenomena. Numerical studies of a self-gravitating massless scalar field in spherical symmetry gave evidence that anti-de Sitter space ...
Directory of Open Access Journals (Sweden)
Wei Khim Ng
2009-02-01
Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.
DEFF Research Database (Denmark)
Darula, Radoslav; Sorokin, Sergey
2013-01-01
An electro-magneto-mechanical system combines three physical domains - a mechanical structure, a magnetic field and an electric circuit. The interaction between these domains is analysed for a structure with two degrees of freedom (translational and rotational) and two electrical circuits. Each...... electrical circuit is described by a differential equation of the 1st order, which is considered to contribute to the coupled system by 0.5 DOF. The electrical and mechanical systems are coupled via a magnetic circuit, which is inherently non-linear, due to a non-linear nature of the electro-magnetic force...
Ionescu, Tudor C.; Scherpen, Jacquelien M. A.
We study the notion of cross Gramians for nonlinear gradient systems, using the characterization in terms of prolongation and gradient extension associated to the system. The cross Gramian is given for the variational system associated to the original nonlinear gradient system. We obtain linearization results that correspond to the notion of a cross Gramian for symmetric linear systems. Furthermore, first steps towards relations with the singular value functions of the nonlinear Hankel operator are studied and yield promising results.
Directory of Open Access Journals (Sweden)
W. L. Fouché
1983-03-01
Full Text Available In this article we discuss some aspects of nonlinear functional analysis. It included reviews of Banach’s contraction theorem, Schauder’s fixed point theorem, globalising techniques and applications of homotopy theory to nonlinear functional analysis. The author emphasises that fundamentally new ideas are required in order to achieve a better understanding of phenomena which contain both nonlinear and definite infinite dimensional features.
Nonlinear Electrodynamics and QED
2003-01-01
The limits of linear electrodynamics are reviewed, and possible directions of nonlinear extension are explored. The central theme is that the qualitative character of the empirical successes of quantum electrodynamics must be used as a guide for understanding the nature of the nonlinearity of electrodynamics at the subatomic level. Some established theories of nonlinear electrodynamics, namely, those of Mie, Born, and Infeld are presented in the language of the modern geometrical and topologi...
Nonlinear Observers for Gyro Calibration Coupled with a Nonlinear Control Algorithm
Thienel, Julie; Sanner, Robert M.
2003-01-01
Nonlinear observers for gyro calibration are presented. The first observer estimates a constant gyro bias. The second observer estimates scale factor errors. The third observer estimates the gyro alignment for three orthogonal gyros. The observers are then combined. The convergence properties of all three observers, and the combined observers, are discussed. Additionally, all three observers are coupled with a nonlinear control algorithm. The stability of each of the resulting closed loop systems is analyzed. Simulated test results are presented for each system.
Kono, Mitsuo
2010-01-01
A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.
Nonlinear magnetic metamaterials.
Shadrivov, Ilya V; Kozyrev, Alexander B; van der Weide, Daniel W; Kivshar, Yuri S
2008-12-08
We study experimentally nonlinear tunable magnetic metamaterials operating at microwave frequencies. We fabricate the nonlinear metamaterial composed of double split-ring resonators where a varactor diode is introduced into each resonator so that the magnetic resonance can be tuned dynamically by varying the input power. We demonstrate that at higher powers the transmission of the metamaterial becomes power-dependent and, as a result, such metamaterial can demonstrate various nonlinear properties. In particular, we study experimentally the power-dependent shift of the transmission band and demonstrate nonlinearity-induced enhancement (or suppression) of wave transmission. (c) 2008 Optical Society of America
Organic nonlinear optical materials
Umegaki, S.
1987-01-01
Recently, it became clear that organic compounds with delocalized pi electrons show a great nonlinear optical response. Especially, secondary nonlinear optical constants of more than 2 digits were often seen in the molecular level compared to the existing inorganic crystals such as LiNbO3. The crystallization was continuously tried. Organic nonlinear optical crystals have a new future as materials for use in the applied physics such as photomodulation, optical frequency transformation, opto-bistabilization, and phase conjugation optics. Organic nonlinear optical materials, e.g., urea, O2NC6H4NH2, I, II, are reviewed with 50 references.
Nonlinearity-reduced interferometer
Wu, Chien-ming
2007-12-01
Periodic nonlinearity is a systematic error limiting the accuracy of displacement measurements at the nanometer level. It results from many causes such as the frequency mixing, polarization mixing, polarization-frequency mixing, and the ghost reflections. An interferometer having accuracy in displacement measurement of less than one-nanometer is necessary in nanometrology. To meet the requirement, the periodic nonlinearity should be less than deep sub-nanometer. In this paper, a nonlinearity-reduced interferometry has been proposed. Both the linear- and straightness-interferometer were tested. The developed interferometer demonstrated of a residual nonlinearity less than 25 pm.
Influence of storm magnitude and watershed size on runoff nonlinearity
Lee, Kwan Tun; Huang, Jen-Kuo
2016-06-01
The inherent nonlinear characteristics of the watershed runoff process related to storm magnitude and watershed size are discussed in detail in this study. The first type of nonlinearity is referred to rainfall-runoff dynamic process and the second type is with respect to a Power-law relation between peak discharge and upstream drainage area. The dynamic nonlinearity induced by storm magnitude was first demonstrated by inspecting rainfall-runoff records at three watersheds in Taiwan. Then the derivation of the watershed unit hydrograph (UH) using two linear hydrological models shows that the peak discharge and time to peak discharge that characterize the shape of UH vary event-to-event. Hence, the intention of deriving a unique and universal UH for all rainfall-runoff simulation cases is questionable. In contrast, the UHs by the other two adopted nonlinear hydrological models were responsive to rainfall intensity without relying on linear proportion principle, and are excellent in presenting dynamic nonlinearity. Based on the two-segment regression, the scaling nonlinearity between peak discharge and drainage area was investigated by analyzing the variation of Power-law exponent. The results demonstrate that the scaling nonlinearity is particularly significant for a watershed having larger area and subjecting to a small-size of storm. For three study watersheds, a large tributary that contributes relatively great drainage area or inflow is found to cause a transition break in scaling relationship and convert the scaling relationship from linearity to nonlinearity.
Lasers for nonlinear microscopy.
Wise, Frank
2013-03-01
Various versions of nonlinear microscopy are revolutionizing the life sciences, almost all of which are made possible because of the development of ultrafast lasers. In this article, the main properties and technical features of short-pulse lasers used in nonlinear microscopy are summarized. Recent research results on fiber lasers that will impact future instruments are also discussed.
Eaton, D F
1991-07-19
The current state of materials development in nonlinear optics is summarized, and the promise of these materials is critically evaluated. Properties and important materials constants of current commercial materials and of new, promising, inorganic and organic molecular and polymeric materials with potential in second- and third-order nonlinear optical applications are presented.
Billings, S. A.
1988-03-01
Time and frequency domain identification methods for nonlinear systems are reviewed. Parametric methods, prediction error methods, structure detection, model validation, and experiment design are discussed. Identification of a liquid level system, a heat exchanger, and a turbocharge automotive diesel engine are illustrated. Rational models are introduced. Spectral analysis for nonlinear systems is treated. Recursive estimation is mentioned.
Ionescu, T. C.; Scherpen, J. M. A.; Korytowski, A; Malanowski, K; Mitkowski, W; Szymkat, M
2009-01-01
We study the notion of cross Gramians for nonlinear gradient systems, using the characterization in terms of prolongation and gradient extension associated to the system. The cross Gramian is given for the variational system associated to the original nonlinear gradient system. We obtain
DEFF Research Database (Denmark)
Clausen, Carl A. Balslev; Christiansen, Peter Leth; Torner, L.
1999-01-01
We show that with the quasi-phase-matching technique it is possible to fabricate stripes of nonlinearity that trap and guide light like waveguides. We investigate an array of such stripes and find that when the stripes are sufficiently narrow, the beam dynamics is governed by a quadratic nonlinear...
Controllability in nonlinear systems
Hirschorn, R. M.
1975-01-01
An explicit expression for the reachable set is obtained for a class of nonlinear systems. This class is described by a chain condition on the Lie algebra of vector fields associated with each nonlinear system. These ideas are used to obtain a generalization of a controllability result for linear systems in the case where multiplicative controls are present.
Menon, P. K. A.; Badgett, M. E.; Walker, R. A.
1992-01-01
Trajectory-control laws based on singular-perturbation theory and nonlinear dynamical modeling. Nonlinear maneuver autopilot commands flight-test trajectories of F-15 airplane. Underlying theory of controller enables separation of variables processed in fast and slow control loops, reducing amount of computation required.
Universities Scale Like Cities
van Raan, Anthony F J
2012-01-01
Recent studies of urban scaling show that important socioeconomic city characteristics such as wealth and innovation capacity exhibit a nonlinear, particularly a power law scaling with population size. These nonlinear effects are common to all cities, with similar power law exponents. These findings mean that the larger the city, the more disproportionally they are places of wealth and innovation. Local properties of cities cause a deviation from the expected behavior as predicted by the power law scaling. In this paper we demonstrate that universities show a similar behavior as cities in the distribution of the gross university income in terms of total number of citations over size in terms of total number of publications. Moreover, the power law exponents for university scaling are comparable to those for urban scaling. We find that deviations from the expected behavior can indeed be explained by specific local properties of universities, particularly the field-specific composition of a university, and its ...
Institute of Scientific and Technical Information of China (English)
阮小娥; 陈凤敏; 万百五
2008-01-01
In hierarchical steady-state optimization programming for large-scale industrial processes, a feasible technique is to use information of the real system so as to modify the model-based optimum. In this circumstance, a sequence of step function-type control decisions with distinct magnitudes is computed, by which the real system is stimulated consecutively. In this paper, a set of iterative learning controllers is embedded into the procedure of hierarchical steady-state optimization in decentralized mode for a class of large-scale nonlinear industrial processes. The controller for each subsystem is used to generate a sequence of upgraded control signals so as to take responsibilities of the sequential step control decisions with distinct scales. The aim of the learning control design is to consecutively refine the transient performance of the system. By means of the Hausdorff-Young inequality of convolution integral, the convergence of the updating rule is analyzed in the sense of Lebesgne-p norm. Invention of the nonlinearity and the interaction on convergence are discussed. Validity and effectiveness of the proposed control scheme are manifested by some simulations.
Nonlinear optics and photonics
He, Guang S
2015-01-01
This book provides a comprehensive presentation on most of the major topics in nonlinear optics and photonics, with equal emphasis on principles, experiments, techniques, and applications. It covers many major new topics including optical solitons, multi-photon effects, nonlinear photoelectric effects, fast and slow light , and Terahertz photonics. Chapters 1-10 present the fundamentals of modern nonlinear optics, and could be used as a textbook with problems provided at the end of each chapter. Chapters 11-17 cover the more advanced topics of techniques and applications of nonlinear optics and photonics, serving as a highly informative reference for researchers and experts working in related areas. There are also 16 pages of color photographs to illustrate the visual appearances of some typical nonlinear optical effects and phenomena. The book could be adopted as a textbook for both undergraduates and graduate students, and serve as a useful reference work for researchers and experts in the fields of physics...
Lugiato, Luigi; Brambilla, Massimo
2015-01-01
Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.
Nonlinear frequency response analysis of structural vibrations
Weeger, Oliver; Wever, Utz; Simeon, Bernd
2014-12-01
In this paper we present a method for nonlinear frequency response analysis of mechanical vibrations of 3-dimensional solid structures. For computing nonlinear frequency response to periodic excitations, we employ the well-established harmonic balance method. A fundamental aspect for allowing a large-scale application of the method is model order reduction of the discretized equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. For an efficient spatial discretization of continuum mechanics nonlinear partial differential equations, including large deformations and hyperelastic material laws, we employ the concept of isogeometric analysis. Isogeometric finite element methods have already been shown to possess advantages over classical finite element discretizations in terms of higher accuracy of numerical approximations in the fields of linear vibration and static large deformation analysis. With several computational examples, we demonstrate the applicability and accuracy of the modal derivative reduction method for nonlinear static computations and vibration analysis. Thus, the presented method opens a promising perspective on application of nonlinear frequency analysis to large-scale industrial problems.
Bednarcyk, Brett A.; Arnold, Steven M.
2012-01-01
A framework for the multiscale design and analysis of composite materials and structures is presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at the structural scale. Example applications of the multiscale framework are presented for the stochastic progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on the nonlinear response of woven polymer matrix composites.
Multiscale empirical interpolation for solving nonlinear PDEs
Calo, Victor M.
2014-12-01
In this paper, we propose a multiscale empirical interpolation method for solving nonlinear multiscale partial differential equations. The proposed method combines empirical interpolation techniques and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM). To solve nonlinear equations, the GMsFEM is used to represent the solution on a coarse grid with multiscale basis functions computed offline. Computing the GMsFEM solution involves calculating the system residuals and Jacobians on the fine grid. We use empirical interpolation concepts to evaluate these residuals and Jacobians of the multiscale system with a computational cost which is proportional to the size of the coarse-scale problem rather than the fully-resolved fine scale one. The empirical interpolation method uses basis functions which are built by sampling the nonlinear function we want to approximate a limited number of times. The coefficients needed for this approximation are computed in the offline stage by inverting an inexpensive linear system. The proposed multiscale empirical interpolation techniques: (1) divide computing the nonlinear function into coarse regions; (2) evaluate contributions of nonlinear functions in each coarse region taking advantage of a reduced-order representation of the solution; and (3) introduce multiscale proper-orthogonal-decomposition techniques to find appropriate interpolation vectors. We demonstrate the effectiveness of the proposed methods on several nonlinear multiscale PDEs that are solved with Newton\\'s methods and fully-implicit time marching schemes. Our numerical results show that the proposed methods provide a robust framework for solving nonlinear multiscale PDEs on a coarse grid with bounded error and significant computational cost reduction.
Nonlinear, tunable and active metamaterials
Lapine, Mikhail; Kivshar, Yuri
2015-01-01
Metamaterials, artificial electromagnetic media achieved by structuring on the subwave-length-scale were initially suggested for the negative index and superlensing. They became a paradigm for engineering electromagnetic space and controlling propagation of waves. The research agenda is now shifting on achieving tuneable, switchable, nonlinear and sensing functionalities. The time has come to talk about the emerging research field of metadevices employing active and tunable metamaterials with unique functionalities achieved by structuring of functional matter on the subwave-length scale. This book presents the first systematic and comprehensive summary of the reviews written by the pioneers and top-class experts in the field of metamaterials. It addresses many grand challenges of the cutting edge research for creating smaller and more efficient photonic structures and devices.
Institute of Scientific and Technical Information of China (English)
王俊俊; 刘展
2013-01-01
It is the purpose of this paper to give oscillation criteria for third order nonlinear neutral delay dynamic equations.Our results are not only new for third order nonlinear delay dynamic equations but also extend many known results for oscillation of third order equations.And some examples are given.%利用广义Riccati代换给出了时标上一类三阶中立型动力方程的振动准则,其结果不仅得到了几个振动解存在的条件,也拓展了一些已有的结论,在最后还给出了几个例子来验证结论.
Influence of storm magnitude and watershed size on runoff nonlinearity
Indian Academy of Sciences (India)
Kwan Tun Lee; Jen-Kuo Huang
2016-06-01
The inherent nonlinear characteristics of the watershed runoff process related to storm magnitude andwatershed size are discussed in detail in this study. The first type of nonlinearity is referred to rainfallrunoffdynamic process and the second type is with respect to a Power-law relation between peakdischarge and upstream drainage area. The dynamic nonlinearity induced by storm magnitude was firstdemonstrated by inspecting rainfall-runoff records at three watersheds in Taiwan. Then the derivation ofthe watershed unit hydrograph (UH) using two linear hydrological models shows that the peak dischargeand time to peak discharge that characterize the shape of UH vary event-to-event. Hence, the intentionof deriving a unique and universal UH for all rainfall-runoff simulation cases is questionable. In contrast,the UHs by the other two adopted nonlinear hydrological models were responsive to rainfall intensitywithout relying on linear proportion principle, and are excellent in presenting dynamic nonlinearity.Based on the two-segment regression, the scaling nonlinearity between peak discharge and drainagearea was investigated by analyzing the variation of Power-law exponent. The results demonstrate thatthe scaling nonlinearity is particularly significant for a watershed having larger area and subjecting toa small-size of storm. For three study watersheds, a large tributary that contributes relatively greatdrainage area or inflow is found to cause a transition break in scaling relationship and convert the scalingrelationship from linearity to nonlinearity.
Nonlinear normal modes and their application in structural dynamics
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available Recent progress in the area of nonlinear modal analysis for structural systems is reported. Systematic methods are developed for generating minimally sized reduced-order models that accurately describe the vibrations of large-scale nonlinear engineering structures. The general approach makes use of nonlinear normal modes that are defined in terms of invariant manifolds in the phase space of the system model. An efficient Galerkin projection method is developed, which allows for the construction of nonlinear modes that are accurate out to large amplitudes of vibration. This approach is successfully extended to the generation of nonlinear modes for systems that are internally resonant and for systems subject to external excitation. The effectiveness of the Galerkin-based construction of the nonlinear normal modes is also demonstrated for a realistic model of a rotating beam.
Sridhar, Upasana Manimegalai; Govindarajan, Anand; Rhinehart, R Russell
2016-01-01
This work reveals the applicability of a relatively new optimization technique, Leapfrogging, for both nonlinear regression modeling and a methodology for nonlinear model-predictive control. Both are relatively simple, yet effective. The application on a nonlinear, pilot-scale, shell-and-tube heat exchanger reveals practicability of the techniques.
Zweig, George
2016-05-01
An earlier paper characterizing the linear mechanical response of the organ of Corti [J. Acoust. Soc. Am. 138, 1102-1121 (2015)] is extended to the nonlinear domain. Assuming the existence of nonlinear oscillators nonlocally coupled through the pressure they help create, the oscillator equations are derived and examined when the stimuli are modulated tones and clicks. The nonlinearities are constrained by the requirements of oscillator stability and the invariance of zero crossings in the click response to changes in click amplitude. The nonlinear oscillator equations for tones are solved in terms of the fluid pressure that drives them, and its time derivative, presumably a proxy for forces created by outer hair cells. The pressure equation is reduced to quadrature, the integrand depending on the oscillators' responses. The resulting nonlocally coupled nonlinear equations for the pressure, and oscillator amplitudes and phases, are solved numerically in terms of the fluid pressure at the stapes. Methods for determining the nonlinear damping directly from measurements are described. Once the oscillators have been characterized from their tone and click responses, the mechanical response of the cochlea to natural sounds may be computed numerically. Signal processing inspired by cochlear mechanics opens up a new area of nonlocal nonlinear time-frequency analysis.
Nonlinear analysis of lipid tubules by nonlocal beam model.
Shen, Hui-Shen
2011-05-07
Postbuckling, nonlinear bending and nonlinear vibration analyses are presented for lipid tubules. The lipid tubule is modeled as a nonlocal micro/nano-beam which contains small scale effect. The material properties are assumed to be size-dependent. The governing equation is solved by a two-step perturbation technique. The numerical results reveal that the small scale parameter e₀a reduces the postbuckling equilibrium paths, the static large deflections and natural frequencies of lipid tubules. In contrast, it increases the nonlinear to linear frequency ratios slightly for the lipid tubule with immovable end conditions.
Nonlinear physics of shear Alfvén waves
Energy Technology Data Exchange (ETDEWEB)
Zonca, Fulvio [Associazione EURATOM-ENEA sulla Fusione, C.P. 65-00044 Frascati, Italy and Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 31007 (China); Chen, Liu [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 31007, P.R.C. and Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)
2014-02-12
Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These 'nonlinear equilibria' or 'phase-space zonal structures' dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results.
Singular asymptotic expansions in nonlinear rotordynamics
Day, W. B.
1985-01-01
During hot firing ground testing of the Space shuttle's Main Engine, vibrations of the liquid oxygen pump occur at frequencies which cannot be explained by the linear Jeffcott model of the rotor. The model becomes nonlinear after accounting for deadband, side forces, and rubbing. Two phenomena present in the numerical solutions of the differential equations are unexpected periodic orbits of the rotor and tracking of the nonlinear frequency. A multiple scale asymptotic expansion of the differential equations is used to give an analytic explanation of these characteristics.
Agrawal, Govind P
2001-01-01
The Optical Society of America (OSA) and SPIE - The International Society for Optical Engineering have awarded Govind Agrawal with an honorable mention for the Joseph W. Goodman Book Writing Award for his work on Nonlinear Fiber Optics, 3rd edition.Nonlinear Fiber Optics, 3rd Edition, provides a comprehensive and up-to-date account of the nonlinear phenomena occurring inside optical fibers. It retains most of the material that appeared in the first edition, with the exception of Chapter 6, which is now devoted to the polarization effects relevant for light propagation in optical
Will Nonlinear Backcalculation Help?
DEFF Research Database (Denmark)
Ullidtz, Per
2000-01-01
demonstrates, that treating the subgrade as a nonlinear elastic material, can result in more realistic moduli and a much better agreement between measured and calculated stresses and strains.The response of nonlinear elastic materials can be calculated using the Finite Element Method (FEM). A much simpler...... approach is to use the Method of Equivalent Thicknesses (MET), modified for a nonlinear subgrade. The paper includes an example where moduli backcalculated using FEM, linear elastic theory and MET are compared. Stresses and strains predicted by the three methods are also compared to measured values...
Nonlinear graphene metamaterial
Nikolaenko, Andrey E; Atmatzakis, Evangelos; Luo, Zhiqiang; Shen, Ze Xiang; De Angelis, Francesco; Boden, Stuart A; Di Fabrizio, Enzo; Zheludev, Nikolay I
2012-01-01
We demonstrate that the broadband nonlinear optical response of graphene can be resonantly enhanced by more than an order of magnitude through hybridization with a plasmonic metamaterial,while retaining an ultrafast nonlinear response time of ~1 ps. Transmission modulation close to ~1% is seen at a pump uence of ~0.03 mJ/cm^2 at the wavelength of ~1600 nm. This approach allows to engineer and enhance graphene's nonlinearity within a broad wavelength range enabling applications in optical switching, mode-locking and pulse shaping.
Multipolar nonlinear nanophotonics
Smirnova, Daria
2016-01-01
Nonlinear nanophotonics is a rapidly developing field with many useful applications for a design of nonlinear nanoantennas, light sources, nanolasers, sensors, and ultrafast miniature metadevices. A tight confinement of the local electromagnetic fields in resonant photonic nanostructures can boost nonlinear optical effects, thus offering versatile opportunities for subwavelength control of light. To achieve the desired functionalities, it is essential to gain flexible control over the near- and far-field properties of nanostructures. Thus, both modal and multipolar analyses are widely exploited for engineering nonlinear scattering from resonant nanoscale elements, in particular for enhancing the near-field interaction, tailoring the far-field multipolar interference, and optimization of the radiation directionality. Here, we review the recent advances in this recently emerged research field ranging from metallic structures exhibiting localized plasmonic resonances to hybrid metal-dielectric and all-dielectric...
Solitons in nonlinear lattices
Kartashov, Yaroslav V; Torner, Lluis
2010-01-01
This article offers a comprehensive survey of results obtained for solitons and complex nonlinear wave patterns supported by purely nonlinear lattices (NLs), which represent a spatially periodic modulation of the local strength and sign of the nonlinearity, and their combinations with linear lattices. A majority of the results obtained, thus far, in this field and reviewed in this article are theoretical. Nevertheless, relevant experimental settings are surveyed too, with emphasis on perspectives for implementation of the theoretical predictions in the experiment. Physical systems discussed in the review belong to the realms of nonlinear optics (including artificial optical media, such as photonic crystals, and plasmonics) and Bose-Einstein condensation (BEC). The solitons are considered in one, two, and three dimensions (1D, 2D, and 3D). Basic properties of the solitons presented in the review are their existence, stability, and mobility. Although the field is still far from completion, general conclusions c...
Leburn, Christopher; Reid, Derryck
2013-01-01
The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrasho...
DEFF Research Database (Denmark)
Nguyen-Duy, Khiem
and remains the prime source of energy in non-terrestrial applications such as those in sky-explorers. However, a renewable energy source is expensive, bulky, and its performance is weather dependent, which make testing of downstream converters very difficult. As a result, a nonlinear source emulator (NSE......) is a good solution to solve the problems associated with the use of real nonlinear sources in testing phases. However, a recent technical survey conducted during this work shows that most existing NSEs have only been concerned with simulating nonlinear systems in terrestrial applications. Furthermore......, their dynamic performance were not fast enough in order to imitate how a real nonlinear energy source would react under extreme conditions and operation modes. Particularly, a system in the sky can experience a step change of sunlight irradiation. Moreover, operation modes may include load step between nominal...
Introduction to nonlinear science
Nicolis, G
1995-01-01
One of the most unexpected results in science in recent years is that quite ordinary systems obeying simple laws can give rise to complex, nonlinear or chaotic, behavior. In this book, the author presents a unified treatment of the concepts and tools needed to analyze nonlinear phenomena and to outline some representative applications drawn from the physical, engineering, and biological sciences. Some of the interesting topics covered include: dynamical systems with a finite number of degrees of freedom, linear stability analysis of fixed points, nonlinear behavior of fixed points, bifurcation analysis, spatially distributed systems, broken symmetries, pattern formation, and chaotic dynamics. The author makes a special effort to provide a logical connection between ordinary dynamical systems and spatially extended systems, and to balance the emphasis on chaotic behavior and more classical nonlinear behavior. He also develops a statistical approach to complex systems and compares it to traditional deterministi...
Nonlinear magnetoinductive transmission lines
Lazarides, Nikos; Tsironis, G P
2011-01-01
Power transmission in one-dimensional nonlinear magnetic metamaterials driven at one end is investigated numerically and analytically in a wide frequency range. The nonlinear magnetic metamaterials are composed of varactor-loaded split-ring resonators which are coupled magnetically through their mutual inductances, forming thus a magnetoiductive transmission line. In the linear limit, significant power transmission along the array only appears for frequencies inside the linear magnetoinductive wave band. We present analytical, closed form solutions for the magnetoinductive waves transmitting the power in this regime, and their discrete frequency dispersion. When nonlinearity is important, more frequency bands with significant power transmission along the array may appear. In the equivalent circuit picture, the nonlinear magnetoiductive transmission line driven at one end by a relatively weak electromotive force, can be modeled by coupled resistive-inductive-capacitive (RLC) circuits with voltage-dependent cap...
Optimization under Nonlinear Constraints
1982-01-01
In this paper a timesaving method is proposed for maximizing likelihood functions when the parameter space is subject to nonlinear constraints, expressible as second order polynomials. The suggested approach is especially attractive when dealing with systems with many parameters.
Nonlinearity in nanomechanical cantilevers
DEFF Research Database (Denmark)
Villanueva Torrijo, Luis Guillermo; Karabalin, R. B.; Matheny, M. H.
2013-01-01
Euler-Bernoulli beam theory is widely used to successfully predict the linear dynamics of micro-and nanocantilever beams. However, its capacity to characterize the nonlinear dynamics of these devices has not yet been rigorously assessed, despite its use in nanoelectromechanical systems development....... These findings underscore the delicate balance between inertial and geometric nonlinear effects in the fundamental mode, and strongly motivate further work to develop theories beyond the Euler-Bernoulli approximation. DOI: 10.1103/PhysRevB.87.024304....... In this article, we report the first highly controlled measurements of the nonlinear response of nanomechanical cantilevers using an ultralinear detection system. This is performed for an extensive range of devices to probe the validity of Euler-Bernoulli theory in the nonlinear regime. We find that its...
Nonlinear Stokes Mueller Polarimetry
Samim, Masood; Barzda, Virginijus
2015-01-01
The Stokes Mueller polarimetry is generalized to include nonlinear optical processes such as second- and third-harmonic generation, sum- and difference-frequency generations. The overall algebraic form of the polarimetry is preserved, where the incoming and outgoing radiations are represented by column vectors and the intervening medium is represented by a matrix. Expressions for the generalized nonlinear Stokes vector and the Mueller matrix are provided in terms of coherency and correlation matrices, expanded by higher-dimensional analogues of Pauli matrices. In all cases, the outgoing radiation is represented by the conventional $4\\times 1$ Stokes vector, while dimensions of the incoming radiation Stokes vector and Mueller matrix depend on the order of the process being examined. In addition, relation between nonlinear susceptibilities and the measured Mueller matrices are explicitly provided. Finally, the approach of combining linear and nonlinear optical elements is discussed within the context of polarim...
Adaptive and Nonlinear Control
1992-02-29
in [22], we also applied the concept of zero dynamics to the problem of exact linearization of a nonlinear control system by dynamic feedback. Exact ...nonlinear systems, although it was well-known that the conditions for exact linearization are very stringent and consequently do not apply to a broad...29th IEEE Conference n Decision and Control, Invited Paper delivered by Dr. Gilliam. Exact Linearization of Zero Dynamics, 29th IEEE Conference on
Nonlinear Optics and Turbulence
1992-10-01
currently at Queen Mary College, London Patrick Dunne, (Ph.D., 1987, M.I.T., Hydrodynamic Stability, Nonlinear Waves), 1987-1988. Alecsander Dyachenko...U I I I U I I 3 9 3 V. BIOGRAPHIES A. FACULTY BRUCE BAYLY, 31, Ph.D. 1986, Princeton University. Postdoctoral visiting member 1986-88 at Courant...Caputo, A. C. Newell, and M. Shelley , "Nonlinear Wave Propagation Through a Random Medium and Soliton Tunneling", Integrable Systems and
Particle astrophysics of nonlinear supersymmetric general relativity
Energy Technology Data Exchange (ETDEWEB)
Shima, K.; Tsuda, M. [Laboratory of Physics, Saitama Institute of Technology, Fukaya, Saitama (Japan)
2009-05-15
An explanation of relations between the large scale structure of the universe and the tiny scale structure of the particle physics, e.g. the observed mysterious relation between the (dark) energy density and the dark matter of the universe and the neutrino mass and the SUSY breaking mass scale of the particle physics may be given by the nonlinear supersymmetric general relativity (NLSUSY GR). NLSUSY GR shows that considering the physics before/of the big bang (BB) of the universe may be significant and may give new insight to unsolved problems of the low energy particle physics, cosmology and their relations. (Abstract Copyright [2009], Wiley Periodicals, Inc.)
Ageing of the nonlinear optical susceptibility in soft matter
Energy Technology Data Exchange (ETDEWEB)
Ghofraniha, N [SMC-INFM-CNR, c/o Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185, Rome (Italy); Conti, C [Research Centre ' Enrico Fermi' , Via Panisperna 89/A, 00184 Rome (Italy); Leonardo, R Di [SOFT-INFM-CNR, c/o Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185, Rome (Italy); Ruzicka, B [SOFT-INFM-CNR, c/o Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185, Rome (Italy); Ruocco, G [SOFT-INFM-CNR, c/o Universita di Roma ' La Sapienza' , Piazzale Aldo Moro 2, 00185, Rome (Italy)
2007-05-23
We investigate the nonlinear optics response of a colloidal dispersion undergoing dynamics slowing down with age, by using Z-scan and dynamic light scattering measurements. We study the high optical nonlinearity of an organic dye (rhodamine B) dispersed in a water-clay (laponite) suspension. We consider different clay concentrations (2.0-2.6 wt%) experiencing dynamics arrest. We find that (i) the concentration dependent exponential growth of both mean relaxation time and nonlinear absorption coefficient can be individually scaled to a master curve and (ii) the scaling times are the same for the two physical quantities. These findings indicate that the optical nonlinear susceptibility exhibits the same ageing universal scaling behaviour, typical of disordered out of equilibrium systems.
Nonlinear Multiantenna Detection Methods
Directory of Open Access Journals (Sweden)
Chen Sheng
2004-01-01
Full Text Available A nonlinear detection technique designed for multiple-antenna assisted receivers employed in space-division multiple-access systems is investigated. We derive the optimal solution of the nonlinear spatial-processing assisted receiver for binary phase shift keying signalling, which we refer to as the Bayesian detector. It is shown that this optimal Bayesian receiver significantly outperforms the standard linear beamforming assisted receiver in terms of a reduced bit error rate, at the expense of an increased complexity, while the achievable system capacity is substantially enhanced with the advent of employing nonlinear detection. Specifically, when the spatial separation expressed in terms of the angle of arrival between the desired and interfering signals is below a certain threshold, a linear beamformer would fail to separate them, while a nonlinear detection assisted receiver is still capable of performing adequately. The adaptive implementation of the optimal Bayesian detector can be realized using a radial basis function network. Two techniques are presented for constructing block-data-based adaptive nonlinear multiple-antenna assisted receivers. One of them is based on the relevance vector machine invoked for classification, while the other on the orthogonal forward selection procedure combined with the Fisher ratio class-separability measure. A recursive sample-by-sample adaptation procedure is also proposed for training nonlinear detectors based on an amalgam of enhanced -means clustering techniques and the recursive least squares algorithm.
Nonlinear systems in medicine.
Higgins, John P
2002-01-01
Many achievements in medicine have come from applying linear theory to problems. Most current methods of data analysis use linear models, which are based on proportionality between two variables and/or relationships described by linear differential equations. However, nonlinear behavior commonly occurs within human systems due to their complex dynamic nature; this cannot be described adequately by linear models. Nonlinear thinking has grown among physiologists and physicians over the past century, and non-linear system theories are beginning to be applied to assist in interpreting, explaining, and predicting biological phenomena. Chaos theory describes elements manifesting behavior that is extremely sensitive to initial conditions, does not repeat itself and yet is deterministic. Complexity theory goes one step beyond chaos and is attempting to explain complex behavior that emerges within dynamic nonlinear systems. Nonlinear modeling still has not been able to explain all of the complexity present in human systems, and further models still need to be refined and developed. However, nonlinear modeling is helping to explain some system behaviors that linear systems cannot and thus will augment our understanding of the nature of complex dynamic systems within the human body in health and in disease states.
Nonlinear principal component analysis and its applications
Mori, Yuichi; Makino, Naomichi
2016-01-01
This book expounds the principle and related applications of nonlinear principal component analysis (PCA), which is useful method to analyze mixed measurement levels data. In the part dealing with the principle, after a brief introduction of ordinary PCA, a PCA for categorical data (nominal and ordinal) is introduced as nonlinear PCA, in which an optimal scaling technique is used to quantify the categorical variables. The alternating least squares (ALS) is the main algorithm in the method. Multiple correspondence analysis (MCA), a special case of nonlinear PCA, is also introduced. All formulations in these methods are integrated in the same manner as matrix operations. Because any measurement levels data can be treated consistently as numerical data and ALS is a very powerful tool for estimations, the methods can be utilized in a variety of fields such as biometrics, econometrics, psychometrics, and sociology. In the applications part of the book, four applications are introduced: variable selection for mixed...
Non-Linear Relativity in Position Space
Kimberly, D; Medeiros-Neto, J F; Kimberly, Dagny; Magueijo, João; Medeiros, João
2003-01-01
We propose two methods for obtaining the dual of non-linear relativity as previously formulated in momentum space. In the first we allow for the (dual) position space to acquire a non-linear representation of the Lorentz group independently of the chosen representation in momentum space. This requires a non-linear definition for the invariant contraction between momentum and position spaces. The second approach, instead, respects the linearity of the invariant contraction. This fully fixes the dual of momentum space and dictates a set of energy-dependent space-time Lorentz transformations. We discuss a variety of physical implications that would distinguish these two strategies. We also show how they point to two rather distinct formulations of theories of gravity with an invariant energy and/or length scale.
Handbook of nonlinear optical crystals
Dmitriev, Valentin G; Nikogosyan, David N
1991-01-01
This Handbook of Nonlinear Optical Crystals provides a complete description of the properties and applications of nonlinear crystals In addition, it presents the most important equations for calculating the main parameters of nonlinear frequency converters This comprehensive reference work will be of great value to all scientists and engineers working in nonlinear optics, quantum electronics and laser physics
Helicity, geostrophic balance and mixing in rotating stratified turbulence: a multi-scale problem
Pouquet, A.; Marino, R.; Mininni, P.; Rorai, C.; Rosenberg, D. L.
2012-12-01
Helicity, geostrophic balance and mixing in rotating stratified turbulence: a multi-scale problem A. Pouquet, R. Marino, P. D. Mininni, C. Rorai & D. Rosenberg, NCAR Interactions between winds and waves have important roles in planetary and oceanic boundary layers, affecting momentum, heat and CO2 transport. Within the Abyssal Southern Ocean at Mid latitude, this may result in a mixed layer which is too shallow in climate models thereby affecting the overall evolution because of poor handling of wave breaking as in Kelvin-Helmoltz instabilities: gravity waves couple nonlinearly on slow time scales and undergo steepening through resonant interactions, or due to the presence of shear. In the oceans, sub-mesoscale frontogenesis and significant departure from quasi-geostrophy can be seen as turbulence intensifies. The ensuing anomalous vertical dispersion may not be simply modeled by a random walk, due to intermittent structures, wave propagation and to their interactions. Conversely, the energy and seeds required for such intermittent events to occur, say in the stable planetary boundary layer, may come from the wave field that is perturbed, or from winds and the effect of topography. Under the assumption of stationarity, weak nonlinearities, dissipation and forcing, one obtains large-scale geostrophic balance linking pressure gradient, gravity and Coriolis force. The role of helicity (velocity-vorticity correlations) has not received as much attention, outside the realm of astrophysics when considering the growth of large-scale magnetic fields. However, it is measured routinely in the atmosphere in order to gauge the likelihood of supercell convective storms to strengthen, and it may be a factor to consider in the formation of hurricanes. In this context, we examine the transition from a wave-dominated regime to an isotropic small-scale turbulent one in rotating flows with helical forcing. Using a direct numerical simulation (DNS) on a 3072^3 grid with Rossby and
Scales, scales and more scales.
Weitzenhoffer, Andre M
2002-01-01
This article examines the nature, uses, and limitations of the large variety of existing, so-called, hypnosis scales; that is, instruments that have been proposed for the assessment of hypnotic behavior. Although the major aim of most of the scales ostensively seems to be to assess several aspects of hypnotic states, they are found generally to say little about these and much more about responses to suggestions. The greatest application of these scales is to be found in research, but they also have a limited place in clinical work.
Nonlinear Approaches in Engineering Applications
Jazar, Reza
2012-01-01
Nonlinear Approaches in Engineering Applications focuses on nonlinear phenomena that are common in the engineering field. The nonlinear approaches described in this book provide a sound theoretical base and practical tools to design and analyze engineering systems with high efficiency and accuracy and with less energy and downtime. Presented here are nonlinear approaches in areas such as dynamic systems, optimal control and approaches in nonlinear dynamics and acoustics. Coverage encompasses a wide range of applications and fields including mathematical modeling and nonlinear behavior as applied to microresonators, nanotechnologies, nonlinear behavior in soil erosion,nonlinear population dynamics, and optimization in reducing vibration and noise as well as vibration in triple-walled carbon nanotubes. This book also: Provides a complete introduction to nonlinear behavior of systems and the advantages of nonlinearity as a tool for solving engineering problems Includes applications and examples drawn from the el...
Seljak, Uros
2012-01-01
On large scales a nonlinear transformation of matter density field can be viewed as a biased tracer of the density field itself. A nonlinear transformation also modifies the redshift space distortions in the same limit, giving rise to a velocity bias. In models with primordial nongaussianity a nonlinear transformation generates a scale dependent bias on large scales. We derive analytic expressions for these for a general nonlinear transformation. These biases can be expressed entirely in terms of the one point distribution function (PDF) of the final field and the parameters of the transformation. Our analysis allows one to devise nonlinear transformations with nearly arbitrary bias properties, which can be used to increase the signal in the large scale clustering limit. We apply the results to the ionizing equilibrium model of Lyman-alpha forest, in which Lyman-alpha flux F is related to the density perturbation delta via a nonlinear transformation. Velocity bias can be expressed as an average over the Lyman...
Law of nonlinear flow in saturated clays and radial consolidation
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
It was derived that micro-scale amount level of average pore radius of clay changed from 0.01 to 0.1 micron by an equivalent concept of flow in porous media. There is good agreement between the derived results and test ones. Results of experiments show that flow in micro-scale pore of saturated clays follows law of nonlinear flow. Theoretical analyses demonstrate that an interaction of solid-liquid interfaces varies inversely with permeability or porous radius. The interaction is an important reason why nonlinear flow in saturated clays occurs. An exact mathematical model was presented for nonlinear flow in micro-scale pore of saturated clays. Dimension and physical meanings of parameters of it are definite. A new law of nonlinear flow in saturated clays was established. It can describe characteristics of flow curve of the whole process of the nonlinear flow from low hydraulic gradient to high one. Darcy law is a special case of the new law. A mathematical model was presented for consolidation of nonlinear flow in radius direction in saturated clays with constant rate based on the new law of nonlinear flow. Equations of average mass conservation and moving boundary, and formula of excess pore pressure distribution and average degree of consolidation for nonlinear flow in saturated clay were derived by using an idea of viscous boundary layer, a method of steady state in stead of transient state and a method of integral of an equation. Laws of excess pore pressure distribution and changes of average degree of consolidation with time were obtained. Results show that velocity of moving boundary decreases because of the nonlinear flow in saturated clay. The results can provide geology engineering and geotechnical engineering of saturated clay with new scientific bases. Calculations of average degree of consolidation of the Darcy flow are a special case of that of the nonlinear flow.
Kraft, R. E.
1999-01-01
Single-degree-of-freedom resonators consisting of honeycomb cells covered by perforated facesheets are widely used as acoustic noise suppression liners in aircraft engine ducts. The acoustic resistance and mass reactance of such liners are known to vary with the intensity of the sound incident upon the panel. Since the pressure drop across a perforated liner facesheet increases quadratically with the flow velocity through the facesheet, this is known as the nonlinear resistance effect. In the past, two different empirical frequency domain models have been used to predict the Sound Pressure Level effect of the incident wave on the perforated liner impedance, one that uses the incident particle velocity in isolated narrowbands, and one that models the particle velocity as the overall velocity. In the absence of grazing flow, neither frequency domain model is entirely accurate in predicting the nonlinear effect that is measured for typical perforated sheets. The time domain model is developed in an attempt to understand and improve the model for the effect of spectral shape and amplitude of multi-frequency incident sound pressure on the liner impedance. A computer code for the time-domain finite difference model is developed and predictions using the models are compared to current frequency-domain models.
Nonlinear characteristics of an autoparametric vibration system
Yan, Zhimiao; Taha, Haithem E.; Tan, Ting
2017-03-01
The nonlinear characteristics of an autoparametric vibration system are investigated. This system consists of a base structure and a cantilever beam with a tip mass. The dynamic equations for the system are derived using the extended Hamilton's principle. The method of multiple scales (MMS) is used to determine an approximate analytical solution of the nonlinear governing equations and, hence, analyze the stability and bifurcation of the system. Compared with the numerical simulation, the first-order MMS is not sufficient. A Lagrangian-based approach is proposed to perform a second-order analysis, which is applicable to a large class of nonlinear systems. The effects of the amplitude and frequency of the external force, damping and frequency of the attached cantilever beam, and the tip mass on the nonlinear responses of the autoparametric vibration system are determined. The results show that this system exhibits many interesting nonlinear phenomena including saturation, jumps, hysteresis and different kinds of bifurcations, such as saddle-node, supercritical pitchfork and subcritical pitchfork bifurcations. Power spectra, phase portraits and Poincare maps are employed to analyze the unstable behavior and the associated Hopf bifurcation and chaos. Depending on the application of such a system, its dynamical behaviors could be exploited or avoided.
Energy Technology Data Exchange (ETDEWEB)
Davis, C.G.
1990-01-01
The advent of nonlinear pulsation theory really coincides with the development of the large computers after the second world war. Christy and Stobbie were the first to make use of finite difference techniques on computers to model the bumps'' observed in the classical Cepheid light and velocity curves, the so-called Hertzsprung'' sequence. Following this work a more sophisticated analysis of the light and velocity curves from the models was made by Simon and Davis using Fourier techniques. Recently a simpler amplitude equation formalism has been developed that helps explain this resonance mechanism. The determination of Population I Cepheid masses by nonlinear methods will be discussed. For the lower mass objects, such as RR Lyrae and BL Her. stars, we find general agreement using evolutionary masses and nonlinear pulsation theory. An apparent difficulty of nonlinear pulsation theory occurs in the understanding of double'' mode pulsation, which will also be discussed. Recent studies in nonlinear pulsation theory have dealt with the question of mode selection, period doubling and the trends towards chaotic behavior such as is observed in the transition from W Virginis to RV Tauri-like stars. 10 refs., 1 fig., 2 tabs.
BOOK REVIEW: Nonlinear Magnetohydrodynamics
Shafranov, V.
1998-08-01
Nonlinear magnetohydrodynamics by Dieter Biskamp is a thorough introduction to the physics of the most impressive non-linear phenomena that occur in conducting magnetoplasmas. The basic systems, in which non-trivial dynamic processes are observed, accompanied by changes of geometry of the magnetic field and the effects of energy transformation (magnetic energy into kinetic energy or the opposite effect in magnetic dynamos), are the plasma magnetic confinement systems for nuclear fusion and space plasmas, mainly the solar plasma. A significant number of the examples of the dynamic processes considered are taken from laboratory plasmas, for which an experimental check of the theory is possible. Therefore, though the book is intended for researchers and students interested in both laboratory, including nuclear fusion, and astrophysical plasmas, it is most probably closer to the first category of reader. In the Introduction the author notes that unlike the hydrodynamics of non-conducting fluids, where the phenomena caused by rapid fluid motions are the most interesting, for plasmas in a strong magnetic field the quasi-static configurations inside which the local dynamic processes occur are often the most important. Therefore, the reader will also find in this book rather traditional material on the theory of plasma equilibrium and stability in magnetic fields. In addition, it is notable that, as opposed to a linear theory, the non-linear theory, as a rule, cannot give quite definite explanations or predictions of phenomena, and consequently there are in the book many results obtained by consideration of numerical models with the use of supercomputers. The treatment of non-linear dynamics is preceded by Chapters 2 to 4, in which the basics of MHD theory are presented with an emphasis on the role of integral invariants of the magnetic helicity type, a derivation of the reduced MHD equations is given, together with examples of the exact solutions of the equilibrium
Nonlinear elastic waves in materials
Rushchitsky, Jeremiah J
2014-01-01
The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...
Institute of Scientific and Technical Information of China (English)
郑黎明; 林宇; 陈严; 吴捷
2012-01-01
建立了基于功率/桨距敏感性的变桨系统模型,综合出桨距非线性PID控制方法.通过Bladed软件计算不同桨距角下功率变化的敏感性,在Bladed外部控制器条件下,获得该方法和固有方法下系统输出的对照结果并进行分析和总结.%A new pitch regulation model based on power-pitch sensitivity was derived, and pitch nonlinear PID control was designed. Sensitivity of power variation under different pitch angle were figured out by mean of Bladed. System control results under Bladed external controllers of renovated and conventional approach were compared and analyzed, which is benefit to wind turbine control design.
Nonlinear Dynamic Force Spectroscopy
Björnham, Oscar
2016-01-01
Dynamic force spectroscopy (DFS) is an experimental technique that is commonly used to assess information of the strength, energy landscape, and lifetime of noncovalent bio-molecular interactions. DFS traditionally requires an applied force that increases linearly with time so that the bio-complex under investigation is exposed to a constant loading rate. However, tethers or polymers can modulate the applied force in a nonlinear regime. For example, bacterial adhesion pili and polymers with worm-like chain properties are examples of structures that show nonlinear force responses. In these situations, the theory for traditional DFS cannot be readily applied. In this work we expand the theory for DFS to also include nonlinear external forces while still maintaining compatibility with the linear DFS theory. To validate the theory we modeled a bio-complex expressed on a stiff, an elastic and a worm-like chain polymer, using Monte Carlo methods, and assessed the corresponding rupture force spectra. It was found th...
Nonlinear optomechanical paddle nanocavities
Kaviani, Hamidreza; Wu, Marcelo; Ghobadi, Roohollah; Barclay, Paul E
2014-01-01
A photonic crystal optomechanical system combining strong nonlinear optomechanical coupling, low effective mass and large optical mode spacing is introduced. This nanoscale "paddle nanocavity" device supports mechanical resonances with effective mass of 300--600 fg which couple nonlinearly to co-localized optical modes with a quadratic optomechanical coupling coefficient $g^{(2)} > 2\\pi\\times400$ MHz/nm$^2$, and a two phonon to single photon optomechanical coupling rate $\\Delta \\omega_0 > 2\\pi\\times 16$ Hz. This coupling relies on strong phonon-photon interactions in a structure whose optical mode spectrum is highly non--degenerate. Simulations indicate that nonlinear optomechanical readout of thermally driven motion in these devices should be observable for T $> 50 $ mK, and that measurement of phonon shot noise is achievable.
Nonlinear dynamics of structures
Oller, Sergio
2014-01-01
This book lays the foundation of knowledge that will allow a better understanding of nonlinear phenomena that occur in structural dynamics. This work is intended for graduate engineering students who want to expand their knowledge on the dynamic behavior of structures, specifically in the nonlinear field, by presenting the basis of dynamic balance in non‐linear behavior structures due to the material and kinematics mechanical effects. Particularly, this publication shows the solution of the equation of dynamic equilibrium for structure with nonlinear time‐independent materials (plasticity, damage and frequencies evolution), as well as those time dependent non‐linear behavior materials (viscoelasticity and viscoplasticity). The convergence conditions for the non‐linear dynamic structure solution are studied, and the theoretical concepts and its programming algorithms are presented.
Nonlinear Photonic Crystal Fibers
DEFF Research Database (Denmark)
Hansen, Kim Per
2004-01-01
, leading to reduced mode confinement and dispersion flexibility. In this thesis, we treat the nonlinear photonic crystal fiber – a special sub-class of photonic crystal fibers, the core of which has a diameter comparable to the wavelength of the light guided in the fiber. The small core results in a large...... nonlinear coefficient and in various applications, it is therefore possible to reduce the required fiber lengths quite dramatically, leading to increased stability and efficiency. Furthermore, it is possible to design these fibers with zero-dispersion at previously unreachable wavelengths, paving the way...... for completely new applications, especially in and near the visible wavelength region. One such application is supercontinuum generation. Supercontinuum generation is extreme broadening of pulses in a nonlinear medium (in this case a small-core fiber), and depending on the dispersion of the fiber, it is possible...
Schmidt, Bruno E; Ernotte, Guilmot; Clerici, Matteo; Morandotti, Roberto; Ibrahim, Heide; Legare, Francois
2016-01-01
In the framework of linear optics, light fields do not interact with each other in a medium. Yet, when their field amplitude becomes comparable to the electron binding energies of matter, the nonlinear motion of these electrons emits new dipole radiation whose amplitude, frequency and phase differ from the incoming fields. Such high fields are typically achieved with ultra-short, femtosecond (1fs = 10-15 sec.) laser pulses containing very broad frequency spectra. Here, the matter not only couples incoming and outgoing fields but also causes different spectral components to interact and mix through a convolution process. In this contribution, we describe how frequency domain nonlinear optics overcomes the shortcomings arising from this convolution in conventional time domain nonlinear optics1. We generate light fields with previously inaccessible properties because the uncontrolled coupling of amplitudes and phases is turned off. For example, arbitrary phase functions are transferred linearly to the second har...
Nonlinear optomechanics with graphene
Shaffer, Airlia; Patil, Yogesh Sharad; Cheung, Hil F. H.; Wang, Ke; Vengalattore, Mukund
2016-05-01
To date, studies of cavity optomechanics have been limited to exploiting the linear interactions between the light and mechanics. However, investigations of quantum signal transduction, quantum enhanced metrology and manybody physics with optomechanics each require strong, nonlinear interactions. Graphene nanomembranes are an exciting prospect for realizing such studies due to their inherently nonlinear nature and low mass. We fabricate large graphene nanomembranes and study their mechanical and optical properties. By using dark ground imaging techniques, we correlate their eigenmode shapes with the measured dissipation. We study their hysteretic response present even at low driving amplitudes, and their nonlinear dissipation. Finally, we discuss ongoing efforts to use these resonators for studies of quantum optomechanics and force sensing. This work is supported by the DARPA QuASAR program through a Grant from the ARO.
Nonlinear Analysis of Buckling
Directory of Open Access Journals (Sweden)
Psotný Martin
2014-06-01
Full Text Available The stability analysis of slender web loaded in compression was presented. To solve this problem, a specialized computer program based on FEM was created. The nonlinear finite element method equations were derived from the variational principle of minimum of potential energy. To obtain the nonlinear equilibrium paths, the Newton-Raphson iteration algorithm was used. Corresponding levels of the total potential energy were defined. The peculiarities of the effects of the initial imperfections were investigated. Special attention was focused on the influence of imperfections on the post-critical buckling mode. The stable and unstable paths of the nonlinear solution were separated. Obtained results were compared with those gained using ANSYS system.
Nonlinear Metamaterials for Holography
Almeida, Euclides; Prior, Yehiam
2015-01-01
A hologram is an optical element storing phase and possibly amplitude information enabling the reconstruction of a three dimensional image of an object by illumination and scattering of a coherent beam of light, and the image is generated at the same wavelength as the input laser beam. In recent years it was shown that information can be stored in nanometric antennas giving rise to ultrathin components. Here we demonstrate nonlinear multi-layer metamaterial holograms where by the nonlinear process of Third Harmonic Generation, a background free image is formed at a new frequency which is the third harmonic of the illuminating beam. Using e-beam lithography of multilayer plasmonic nanoantennas, we fabricate polarization-sensitive nonlinear elements such as blazed gratings, lenses and other computer-generated holograms. These holograms are analyzed and prospects for future device applications are discussed.
Multidimensional nonlinear descriptive analysis
Nishisato, Shizuhiko
2006-01-01
Quantification of categorical, or non-numerical, data is a problem that scientists face across a wide range of disciplines. Exploring data analysis in various areas of research, such as the social sciences and biology, Multidimensional Nonlinear Descriptive Analysis presents methods for analyzing categorical data that are not necessarily sampled randomly from a normal population and often involve nonlinear relations. This reference not only provides an overview of multidimensional nonlinear descriptive analysis (MUNDA) of discrete data, it also offers new results in a variety of fields. The first part of the book covers conceptual and technical preliminaries needed to understand the data analysis in subsequent chapters. The next two parts contain applications of MUNDA to diverse data types, with each chapter devoted to one type of categorical data, a brief historical comment, and basic skills peculiar to the data types. The final part examines several problems and then concludes with suggestions for futu...
Nonlinear airship aeroelasticity
Bessert, N.; Frederich, O.
2005-12-01
The aeroelastic derivatives for today's aircraft are calculated in the concept phase using a standard procedure. This scheme has to be extended for large airships, due to various nonlinearities in structural and aerodynamic behaviour. In general, the structural model of an airship is physically as well as geometrically nonlinear. The main sources of nonlinearity are large deformations and the nonlinear material behaviour of membranes. The aerodynamic solution is also included in the nonlinear problem, because the deformed airship influences the surrounding flow. Due to these nonlinearities, the aeroelastic problem for airships can only be solved by an iterative procedure. As one possibility, the coupled aerodynamic and structural dynamic problem was handled using linked standard solvers. On the structural side, the Finite-Element program package ABAQUS was extended with an interface to the aerodynamic solver VSAERO. VSAERO is based on the aerodynamic panel method using potential flow theory. The equilibrium of the internal structural and the external aerodynamic forces leads to the structural response and a trimmed flight state for the specified flight conditions (e.g. speed, altitude). The application of small perturbations around a trimmed state produces reaction forces and moments. These constraint forces are then transferred into translational and rotational acceleration fields by performing an inertia relief analysis of the disturbed structural model. The change between the trimmed flight state and the disturbed one yields the respective aeroelastic derivatives. By including the calculated derivatives in the linearised equation of motion system, it is possible to judge the stability and controllability of the investigated airship.
Nonlinear shallow ocean-wave soliton interactions on flat beaches.
Ablowitz, Mark J; Baldwin, Douglas E
2012-09-01
Ocean waves are complex and often turbulent. While most ocean-wave interactions are essentially linear, sometimes two or more waves interact in a nonlinear way. For example, two or more waves can interact and yield waves that are much taller than the sum of the original wave heights. Most of these shallow-water nonlinear interactions look like an X or a Y or two connected Ys; at other times, several lines appear on each side of the interaction region. It was thought that such nonlinear interactions are rare events: they are not. Here we report that such nonlinear interactions occur every day, close to low tide, on two flat beaches that are about 2000 km apart. These interactions are closely related to the analytic, soliton solutions of a widely studied multidimensional nonlinear wave equation. On a much larger scale, tsunami waves can merge in similar ways.
NON-LINEAR FORCED VIBRATION OF AXIALLY MOVING VISCOELASTIC BEAMS
Institute of Scientific and Technical Information of China (English)
Yang Xiaodong; Chen Li-Qun
2006-01-01
The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is derived from the dynamical, constitutive equations and geometrical relations. By referring to the quasi-static stretch assumption, the partial-differential non-linearity is reduced to an integro-partial-differential one. The method of multiple scales is directly applied to the governing equations with the two types of non-linearity, respectively. The amplitude of near- and exact-resonant steady state is analyzed by use of the solvability condition of eliminating secular terms. Numerical results are presented to show the contributions of foundation vibration amplitude, viscoelastic damping, and nonlinearity to the response amplitude for the first and the second mode.
Ultra-sensitive atomic spin measurements with a nonlinear interferometer
Sewell, R J; Behbood, N; Colangelo, G; Ciurana, F Martin; Mitchell, M W
2013-01-01
Quantum metrology studies and improves quantum-limited ultra-sensitive measurements. Both linear interferometers, e.g. gravitational wave observatories, and nonlinear interferometers, e.g. optical magnetometers, have been enhanced by quantum metrology. The sensitivities of nonlinear interferometers scale better with system size than even quantum-enhanced linear interferometers, so-called `super-Heisenberg scaling', but it is actively debated whether this scaling can lead to better absolute sensitivity. Here we demonstrate a nonlinear measurement that surpasses, through super-Heisenberg scaling, the best possible linear measurement of the same quantity. We use alignment-to-orientation conversion, a practical magnetometry technique, to make a quantum non-demolition measurement of the spin alignment of a sample of $^{87}$Rb atoms. We observe absolute sensitivity 9 dB beyond the best comparable linear measurement and measurement-induced spin squeezing. The results provide insight into ultra-sensitive magnetometer...
Agrawal, Govind
2012-01-01
Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field. Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter o
Fundamentals of nonlinear optics
Powers, Peter E
2011-01-01
Peter Powers's rigorous but simple description of a difficult field keeps the reader's attention throughout. … All chapters contain a list of references and large numbers of practice examples to be worked through. … By carefully working through the proposed problems, students will develop a sound understanding of the fundamental principles and applications. … the book serves perfectly for an introductory-level course for second- and third-order nonlinear optical phenomena. The author's writing style is refreshing and original. I expect that Fundamentals of Nonlinear Optics will fast become pop
Tunable nonlinear graphene metasurfaces
Smirnova, Daria A; Kivshar, Yuri S; Khanikaev, Alexander B
2015-01-01
We introduce the concept of nonlinear graphene metasurfaces employing the controllable interaction between a graphene layer and a planar metamaterial. Such hybrid metasurfaces support two types of subradiant resonant modes, asymmetric modes of structured metamaterial elements ("metamolecules") and graphene plasmons exhibiting strong mutual coupling and avoided dispersion crossing. High tunability of graphene plasmons facilitates strong interaction between the subradiant modes, modifying the spectral position and lifetime of the associated Fano resonances. We demonstrate that strong resonant interaction, combined with the subwavelength localization of plasmons, leads to the enhanced nonlinear response and high efficiency of the second-harmonic generation.
Optimization-Based Robust Nonlinear Control
2006-08-01
IEEE Transactions on Automatic Control , vol. 51, no. 4, pp. 661...systems with two time scales", A.R. Teel, L. Moreau and D. Nesic, IEEE Transactions on Automatic Control , vol. 48, no. 9, pp. 1526-1544, September 2003...Turner, L. Zaccarian, IEEE Transactions on Automatic Control , vol. 48, no. 9, pp. 1509- 1525, September 2003. 5. "Nonlinear Scheduled anti-windup
Nonlinear effects in optical fibers
Ferreira, Mario F
2011-01-01
Cutting-edge coverage of nonlinear phenomena occurring inside optical fibers Nonlinear fiber optics is a specialized part of fiber optics dealing with optical nonlinearities and their applications. As fiber-optic communication systems have become more advanced and complex, the nonlinear effects in optical fibers have increased in importance, as they adversely affect system performance. Paradoxically, the same nonlinear phenomena also offer the promise of addressing the bandwidth bottleneck for signal processing for future ultra-high speed optical networks. Nonlinear Effects in Optical Fiber
Streamflow disaggregation: a nonlinear deterministic approach
Directory of Open Access Journals (Sweden)
B. Sivakumar
2004-01-01
Full Text Available This study introduces a nonlinear deterministic approach for streamflow disaggregation. According to this approach, the streamflow transformation process from one scale to another is treated as a nonlinear deterministic process, rather than a stochastic process as generally assumed. The approach follows two important steps: (1 reconstruction of the scalar (streamflow series in a multi-dimensional phase-space for representing the transformation dynamics; and (2 use of a local approximation (nearest neighbor method for disaggregation. The approach is employed for streamflow disaggregation in the Mississippi River basin, USA. Data of successively doubled resolutions between daily and 16 days (i.e. daily, 2-day, 4-day, 8-day, and 16-day are studied, and disaggregations are attempted only between successive resolutions (i.e. 2-day to daily, 4-day to 2-day, 8-day to 4-day, and 16-day to 8-day. Comparisons between the disaggregated values and the actual values reveal excellent agreements for all the cases studied, indicating the suitability of the approach for streamflow disaggregation. A further insight into the results reveals that the best results are, in general, achieved for low embedding dimensions (2 or 3 and small number of neighbors (less than 50, suggesting possible presence of nonlinear determinism in the underlying transformation process. A decrease in accuracy with increasing disaggregation scale is also observed, a possible implication of the existence of a scaling regime in streamflow.
Yupapin, Preecha
2013-01-01
The behavior of light in small scale optics or nano/micro optical devices has shown promising results, which can be used for basic and applied research, especially in nanoelectronics. Small Scale Optics presents the use of optical nonlinear behaviors for spins, antennae, and whispering gallery modes within micro/nano devices and circuits, which can be used in many applications. This book proposes a new design for a small scale optical device-a microring resonator device. Most chapters are based on the proposed device, which uses a configuration know as a PANDA ring resonator. Analytical and nu
Robust receding horizon control for networked and distributed nonlinear systems
Li, Huiping
2017-01-01
This book offers a comprehensive, easy-to-understand overview of receding-horizon control for nonlinear networks. It presents novel general strategies that can simultaneously handle general nonlinear dynamics, system constraints, and disturbances arising in networked and large-scale systems and which can be widely applied. These receding-horizon-control-based strategies can achieve sub-optimal control performance while ensuring closed-loop stability: a feature attractive to engineers. The authors address the problems of networked and distributed control step-by-step, gradually increasing the level of challenge presented. The book first introduces the state-feedback control problems of nonlinear networked systems and then studies output feedback control problems. For large-scale nonlinear systems, disturbance is considered first, then communication delay separately, and lastly the simultaneous combination of delays and disturbances. Each chapter of this easy-to-follow book not only proposes and analyzes novel ...
Nonlinear elliptic systems with exponential nonlinearities
Directory of Open Access Journals (Sweden)
Said El Manouni
2002-12-01
Full Text Available In this paper we investigate the existence of solutions for {gather*} -mathop{m div}( a(| abla u | ^N| abla u |^{N-2}u = f(x,u,v quad mbox{in } Omega -mathop{m div}(a(| abla v| ^N| abla v |^{N-2}v = g(x,u,v quad mbox{in } Omega u(x = v(x = 0 quad mbox{on }partial Omega. end{gather*} Where $Omega$ is a bounded domain in ${mathbb{R}}^N$, $Ngeq 2$, $f$ and $g$ are nonlinearities having an exponential growth on $Omega$ and $a$ is a continuous function satisfying some conditions which ensure the existence of solutions.
Nonlinearity and disorder: Classification and stability of nonlinear impurity modes
DEFF Research Database (Denmark)
Sukhorukov, Andrey A.; Kivshar, Yuri S.; Bang, Ole
2001-01-01
We study the effects produced by competition of two physical mechanisms of energy localization in inhomogeneous nonlinear systems. As an example, we analyze spatially localized modes supported by a nonlinear impurity in the generalized nonlinear Schrödinger equation and describe three types of no...
Generalized Nonlinear Yule Models
Lansky, Petr; Polito, Federico; Sacerdote, Laura
2016-10-01
With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.
Ritz, Christian; Parmigiani, Giovanni
2009-01-01
R is a rapidly evolving lingua franca of graphical display and statistical analysis of experiments from the applied sciences. This book provides a coherent treatment of nonlinear regression with R by means of examples from a diversity of applied sciences such as biology, chemistry, engineering, medicine and toxicology.
Gorban, A. N.; Karlin, I.V.
2003-01-01
Nonlinear kinetic equations are reviewed for a wide audience of specialists and postgraduate students in physics, mathematical physics, material science, chemical engineering and interdisciplinary research. Contents: The Boltzmann equation, Phenomenology and Quasi-chemical representation of the Boltzmann equation, Kinetic models, Discrete velocity models, Direct simulation, Lattice Gas and Lattice Boltzmann models, Minimal Boltzmann models for flows at low Knudsen number, Other kinetic equati...
Intramolecular and nonlinear dynamics
Energy Technology Data Exchange (ETDEWEB)
Davis, M.J. [Argonne National Laboratory, IL (United States)
1993-12-01
Research in this program focuses on three interconnected areas. The first involves the study of intramolecular dynamics, particularly of highly excited systems. The second area involves the use of nonlinear dynamics as a tool for the study of molecular dynamics and complex kinetics. The third area is the study of the classical/quantum correspondence for highly excited systems, particularly systems exhibiting classical chaos.
DEFF Research Database (Denmark)
Jørgensen, Michael Finn
1995-01-01
It is generally very difficult to solve nonlinear systems, and such systems often possess chaotic solutions. In the rare event that a system is completely solvable, it is said to integrable. Such systems never have chaotic solutions. Using the Inverse Scattering Transform Method (ISTM) two...
Nonlinear phased array imaging
Croxford, Anthony J.; Cheng, Jingwei; Potter, Jack N.
2016-04-01
A technique is presented for imaging acoustic nonlinearity within a specimen using ultrasonic phased arrays. Acoustic nonlinearity is measured by evaluating the difference in energy of the transmission bandwidth within the diffuse field produced through different focusing modes. The two different modes being classical beam forming, where delays are applied to different element of a phased array to physically focus the energy at a single location (parallel firing) and focusing in post processing, whereby one element at a time is fired and a focused image produced in post processing (sequential firing). Although these two approaches are linearly equivalent the difference in physical displacement within the specimen leads to differences in nonlinear effects. These differences are localized to the areas where the amplitude is different, essentially confining the differences to the focal point. Direct measurement at the focal point are however difficult to make. In order to measure this the diffuse field is used. It is a statistical property of the diffuse field that it represents the total energy in the system. If the energy in the diffuse field for both the sequential and parallel firing case is measured then the difference between these, within the input signal bandwidth, is largely due to differences at the focal spot. This difference therefore gives a localized measurement of where energy is moving out of the transmission bandwidth due to nonlinear effects. This technique is used to image fatigue cracks and other damage types undetectable with conventional linear ultrasonic measurements.
Generalized Nonlinear Yule Models
Lansky, Petr; Polito, Federico; Sacerdote, Laura
2016-11-01
With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.
Trirefringence in nonlinear metamaterials
De Lorenci, Vitorio A
2012-01-01
We study the propagation of electromagnetic waves in the limit of geometrical optics for a class of nearly transparent nonlinear uniaxial metamaterials for which their permittivity tensors present a negative principal component. Their permeability are assumed positive and dependent on the electric field. We show that light waves experience triple refraction -- trirefringence. Additionally to the ordinary wave, two extraordinary waves propagate in such media.
Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.
2017-09-01
Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.
Nonlinear fibre optics overview
DEFF Research Database (Denmark)
Travers, J. C.; Frosz, Michael Henoch; Dudley, J. M.
2010-01-01
, provides a background to the associated nonlinear optical processes, treats the generation mechanisms from continuous wave to femtosecond pulse pump regimes and highlights the diverse applications. A full discussion of numerical methods and comprehensive computer code are also provided, enabling readers...
Nonlinear Gravitational Lagrangians revisited
Magnano, Guido
2016-01-01
The Legendre transformation method, applied in 1987 to deal with purely metric gravitational Lagrangians with nonlinear dependence on the Ricci tensor, is extended to metric-affine models and is shown to provide a concise and insightful comparison of the dynamical content of the two variational frameworks.
Nonlinearities in Microwave Superconductivity
Ledenyov, Dimitri O.; Ledenyov, Viktor O.
2012-01-01
The research is focused on the modeling of nonlinear properties of High Temperature Superconducting (HTS) thin films, using Bardeen, Cooper, Schrieffer and Lumped Element Circuit theories, with purpose to enhance microwave power handling capabilities of microwave filters and optimize design of microwave circuits in micro- and nano- electronics.
Nonlinear tsunami generation mechanism
Directory of Open Access Journals (Sweden)
M. A. Nosov
2001-01-01
Full Text Available The nonlinear mechanism of long gravitational surface water wave generation by high-frequency bottom oscillations in a water layer of constant depth is investigated analytically. The connection between the surface wave amplitude and the parameters of bottom oscillations and source length is investigated.
DEFF Research Database (Denmark)
Mosekilde, Erik
Through a significant number of detailed and realistic examples this book illustrates how the insights gained over the past couple of decades in the fields of nonlinear dynamics and chaos theory can be applied in practice. Aomng the topics considered are microbiological reaction systems, ecological...
Terahertz semiconductor nonlinear optics
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias
2013-01-01
nonlinearity in doped semiconductors originates from the near-instantaneous heating of free electrons in the ponderomotive potential created by electric field of the THz pulse, leading to ultrafast increase of electron effective mass by intervalley scattering. Modification of effective mass in turn leads...
A Collection of Nonlinear Aircraft Simulations in MATLAB
Garza, Frederico R.; Morelli, Eugene A.
2003-01-01
Nonlinear six degree-of-freedom simulations for a variety of aircraft were created using MATLAB. Data for aircraft geometry, aerodynamic characteristics, mass / inertia properties, and engine characteristics were obtained from open literature publications documenting wind tunnel experiments and flight tests. Each nonlinear simulation was implemented within a common framework in MATLAB, and includes an interface with another commercially-available program to read pilot inputs and produce a three-dimensional (3-D) display of the simulated airplane motion. Aircraft simulations include the General Dynamics F-16 Fighting Falcon, Convair F-106B Delta Dart, Grumman F-14 Tomcat, McDonnell Douglas F-4 Phantom, NASA Langley Free-Flying Aircraft for Sub-scale Experimental Research (FASER), NASA HL-20 Lifting Body, NASA / DARPA X-31 Enhanced Fighter Maneuverability Demonstrator, and the Vought A-7 Corsair II. All nonlinear simulations and 3-D displays run in real time in response to pilot inputs, using contemporary desktop personal computer hardware. The simulations can also be run in batch mode. Each nonlinear simulation includes the full nonlinear dynamics of the bare airframe, with a scaled direct connection from pilot inputs to control surface deflections to provide adequate pilot control. Since all the nonlinear simulations are implemented entirely in MATLAB, user-defined control laws can be added in a straightforward fashion, and the simulations are portable across various computing platforms. Routines for trim, linearization, and numerical integration are included. The general nonlinear simulation framework and the specifics for each particular aircraft are documented.
Short Pulse Dynamics in Strongly Nonlinear Dissipative Granular Chains
Rosas, Alexandre; Romero, Aldo H.; Nesterenko, Vitali F.; Lindenberg, Katja
2008-01-01
We study the energy decay properties of a pulse propagating in a strongly nonlinear granular chain with damping proportional to the relative velocity of the grains. We observe a wave disturbance that at low viscosities consists of two parts exhibiting two entirely different time scales of dissipation. One part is an attenuating solitary wave, is dominated by discreteness and nonlinearity effects as in a dissipationless chain, and has the shorter lifetime. The other is a purely dissipative sho...
Silicon Nanoridge Array Waveguides for Nonlinear and Sensing Applications
Puckett, Matthew W; Vallini, Felipe; Shahin, Shiva; Monifi, Faraz; Barrina, Peter N; Mehravar, Soroush; Kieu, Khanh; Fainman, Yeshaiahu
2015-01-01
We fabricate and characterize waveguides composed of closely spaced and longitudinally oriented silicon ridges etched into silicon-on-insulator wafers. Through both guided mode and bulk measurements, we demonstrate that the patterning of silicon waveguides on such a deeply subwavelength scale is desirable for nonlinear and sensing applications alike. The proposed waveguide geometry simultaneously exhibits comparable propagation loss to similar schemes proposed in literature, an enhanced effective third-order nonlinear susceptibility, and high sensitivity to perturbations in its environment.
A Hybrid of DL and WYL Nonlinear Conjugate Gradient Methods
Directory of Open Access Journals (Sweden)
Shengwei Yao
2014-01-01
Full Text Available The conjugate gradient method is an efficient method for solving large-scale nonlinear optimization problems. In this paper, we propose a nonlinear conjugate gradient method which can be considered as a hybrid of DL and WYL conjugate gradient methods. The given method possesses the sufficient descent condition under the Wolfe-Powell line search and is globally convergent for general functions. Our numerical results show that the proposed method is very robust and efficient for the test problems.
Nonlinear interferometry approach to photonic sequential logic
Mabuchi, Hideo
2011-01-01
Motivated by rapidly advancing capabilities for extensive nanoscale patterning of optical materials, I propose an approach to implementing photonic sequential logic that exploits circuit-scale phase coherence for efficient realizations of fundamental components such as a NAND-gate-with-fanout and a bistable latch. Kerr-nonlinear optical resonators are utilized in combination with interference effects to drive the binary logic. Quantum-optical input-output models are characterized numerically using design parameters that yield attojoule-scale energy separation between the latch states.
Analysis and design of robust decentralized controllers for nonlinear systems
Energy Technology Data Exchange (ETDEWEB)
Schoenwald, D.A.
1993-07-01
Decentralized control strategies for nonlinear systems are achieved via feedback linearization techniques. New results on optimization and parameter robustness of non-linear systems are also developed. In addition, parametric uncertainty in large-scale systems is handled by sensitivity analysis and optimal control methods in a completely decentralized framework. This idea is applied to alleviate uncertainty in friction parameters for the gimbal joints on Space Station Freedom. As an example of decentralized nonlinear control, singular perturbation methods and distributed vibration damping are merged into a control strategy for a two-link flexible manipulator.
Nonlinear system identification and control based on modular neural networks.
Puscasu, Gheorghe; Codres, Bogdan
2011-08-01
A new approach for nonlinear system identification and control based on modular neural networks (MNN) is proposed in this paper. The computational complexity of neural identification can be greatly reduced if the whole system is decomposed into several subsystems. This is obtained using a partitioning algorithm. Each local nonlinear model is associated with a nonlinear controller. These are also implemented by neural networks. The switching between the neural controllers is done by a dynamical switcher, also implemented by neural networks, that tracks the different operating points. The proposed multiple modelling and control strategy has been successfully tested on simulated laboratory scale liquid-level system.
Minimax theory for a class of nonlinear statistical inverse problems
Ray, Kolyan; Schmidt-Hieber, Johannes
2016-06-01
We study a class of statistical inverse problems with nonlinear pointwise operators motivated by concrete statistical applications. A two-step procedure is proposed, where the first step smoothes the data and inverts the nonlinearity. This reduces the initial nonlinear problem to a linear inverse problem with deterministic noise, which is then solved in a second step. The noise reduction step is based on wavelet thresholding and is shown to be minimax optimal (up to logarithmic factors) in a pointwise function-dependent sense. Our analysis is based on a modified notion of Hölder smoothness scales that are natural in this setting.
Nonlinear Optical Terahertz Technology Project
National Aeronautics and Space Administration — Our approach is based on high-Q optical WGM resonators made with a nonlinear crystal. Such resonators have been demonstrated to dramatically enhance nonlinear...
Phase retrieval using nonlinear diversity.
Lu, Chien-Hung; Barsi, Christopher; Williams, Matthew O; Kutz, J Nathan; Fleischer, Jason W
2013-04-01
We extend the Gerchberg-Saxton algorithm to phase retrieval in a nonlinear system. Using a tunable photorefractive crystal, we experimentally demonstrate the noninterferometric technique by reconstructing an unknown phase object from optical intensity measurements taken at different nonlinear strengths.
Strong nonlinear oscillators analytical solutions
Cveticanin, Livija
2017-01-01
This book outlines an analytical solution procedure of the pure nonlinear oscillator system, offering a solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter. Includes exercises.
Nonlinear plasmonic imaging techniques and their biological applications
Deka, Gitanjal; Sun, Chi-Kuang; Fujita, Katsumasa; Chu, Shi-Wei
2017-01-01
Nonlinear optics, when combined with microscopy, is known to provide advantages including novel contrast, deep tissue observation, and minimal invasiveness. In addition, special nonlinearities, such as switch on/off and saturation, can enhance the spatial resolution below the diffraction limit, revolutionizing the field of optical microscopy. These nonlinear imaging techniques are extremely useful for biological studies on various scales from molecules to cells to tissues. Nevertheless, in most cases, nonlinear optical interaction requires strong illumination, typically at least gigawatts per square centimeter intensity. Such strong illumination can cause significant phototoxicity or even photodamage to fragile biological samples. Therefore, it is highly desirable to find mechanisms that allow the reduction of illumination intensity. Surface plasmon, which is the collective oscillation of electrons in metal under light excitation, is capable of significantly enhancing the local field around the metal nanostructures and thus boosting up the efficiency of nonlinear optical interactions of the surrounding materials or of the metal itself. In this mini-review, we discuss the recent progress of plasmonics in nonlinear optical microscopy with a special focus on biological applications. The advancement of nonlinear imaging modalities (including incoherent/coherent Raman scattering, two/three-photon luminescence, and second/third harmonic generations that have been amalgamated with plasmonics), as well as the novel subdiffraction limit imaging techniques based on nonlinear behaviors of plasmonic scattering, is addressed.
Nonlinear plasmonic imaging techniques and their biological applications
Directory of Open Access Journals (Sweden)
Deka Gitanjal
2016-07-01
Full Text Available Nonlinear optics, when combined with microscopy, is known to provide advantages including novel contrast, deep tissue observation, and minimal invasiveness. In addition, special nonlinearities, such as switch on/off and saturation, can enhance the spatial resolution below the diffraction limit, revolutionizing the field of optical microscopy. These nonlinear imaging techniques are extremely useful for biological studies on various scales from molecules to cells to tissues. Nevertheless, in most cases, nonlinear optical interaction requires strong illumination, typically at least gigawatts per square centimeter intensity. Such strong illumination can cause significant phototoxicity or even photodamage to fragile biological samples. Therefore, it is highly desirable to find mechanisms that allow the reduction of illumination intensity. Surface plasmon, which is the collective oscillation of electrons in metal under light excitation, is capable of significantly enhancing the local field around the metal nanostructures and thus boosting up the efficiency of nonlinear optical interactions of the surrounding materials or of the metal itself. In this mini-review, we discuss the recent progress of plasmonics in nonlinear optical microscopy with a special focus on biological applications. The advancement of nonlinear imaging modalities (including incoherent/coherent Raman scattering, two/three-photon luminescence, and second/third harmonic generations that have been amalgamated with plasmonics, as well as the novel subdiffraction limit imaging techniques based on nonlinear behaviors of plasmonic scattering, is addressed.
Energy Technology Data Exchange (ETDEWEB)
Markovic, B.; Tamborini, D.; Villa, F.; Tisa, S.; Tosi, A.; Zappa, F. [Politecnico di Milano, Dipartimento di Elettronica e Informazione, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)
2012-07-15
We present a compact high performance time-to-digital converter (TDC) module that provides 10 ps timing resolution, 160 ns dynamic range and a differential non-linearity better than 1.5% LSB{sub rms}. The TDC can be operated either as a general-purpose time-interval measurement device, when receiving external START and STOP pulses, or in photon-timing mode, when employing the on-chip SPAD (single photon avalanche diode) detector for detecting photons and time-tagging them. The instrument precision is 15 ps{sub rms} (i.e., 36 ps{sub FWHM}) and in photon timing mode it is still better than 70 ps{sub FWHM}. The USB link to the remote PC allows the easy setting of measurement parameters, the fast download of acquired data, and their visualization and storing via an user-friendly software interface. The module proves to be the best candidate for a wide variety of applications such as: fluorescence lifetime imaging, time-of-flight ranging measurements, time-resolved positron emission tomography, single-molecule spectroscopy, fluorescence correlation spectroscopy, diffuse optical tomography, optical time-domain reflectometry, quantum optics, etc.
Nonlinear dynamics of hydrostatic internal gravity waves
Energy Technology Data Exchange (ETDEWEB)
Stechmann, Samuel N.; Majda, Andrew J. [New York University, Courant Institute of Mathematical Sciences, NY (United States); Khouider, Boualem [University of Victoria, Department of Mathematics and Statistics, Victoria, BC (Canada)
2008-11-15
Stratified hydrostatic fluids have linear internal gravity waves with different phase speeds and vertical profiles. Here a simplified set of partial differential equations (PDE) is derived to represent the nonlinear dynamics of waves with different vertical profiles. The equations are derived by projecting the full nonlinear equations onto the vertical modes of two gravity waves, and the resulting equations are thus referred to here as the two-mode shallow water equations (2MSWE). A key aspect of the nonlinearities of the 2MSWE is that they allow for interactions between a background wind shear and propagating waves. This is important in the tropical atmosphere where horizontally propagating gravity waves interact together with wind shear and have source terms due to convection. It is shown here that the 2MSWE have nonlinear internal bore solutions, and the behavior of the nonlinear waves is investigated for different background wind shears. When a background shear is included, there is an asymmetry between the east- and westward propagating waves. This could be an important effect for the large-scale organization of tropical convection, since the convection is often not isotropic but organized on large scales by waves. An idealized illustration of this asymmetry is given for a background shear from the westerly wind burst phase of the Madden-Julian oscillation; the potential for organized convection is increased to the west of the existing convection by the propagating nonlinear gravity waves, which agrees qualitatively with actual observations. The ideas here should be useful for other physical applications as well. Moreover, the 2MSWE have several interesting mathematical properties: they are a system of nonconservative PDE with a conserved energy, they are conditionally hyperbolic, and they are neither genuinely nonlinear nor linearly degenerate over all of state space. Theory and numerics are developed to illustrate these features, and these features are
Cubication of Conservative Nonlinear Oscillators
Belendez, Augusto; Alvarez, Mariela L.; Fernandez, Elena; Pascual, Immaculada
2009-01-01
A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear…
Terahertz Nonlinear Optics in Semiconductors
DEFF Research Database (Denmark)
Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.
2013-01-01
We demonstrate the nonlinear optical effects – selfphase modulation and saturable absorption of a single-cycle THz pulse in a semiconductor. Resulting from THz-induced modulation of Drude plasma, these nonlinear optical effects, in particular, lead to self-shortening and nonlinear spectral...
Fault Detection for Nonlinear Systems
DEFF Research Database (Denmark)
Stoustrup, Jakob; Niemann, H.H.
1998-01-01
The paper describes a general method for designing fault detection and isolation (FDI) systems for nonlinear processes. For a rich class of nonlinear systems, a nonlinear FDI system can be designed using convex optimization procedures. The proposed method is a natural extension of methods based...
Theory and application of nonlinear river dynamics
Institute of Scientific and Technical Information of China (English)
Yu-chuan BAI; Zhao-yin WANG
2014-01-01
A theoretical model for river evolution including riverbed formation and meandering pattern formation is presented in this paper. Based on nonlinear mathematic theory, the nonlinear river dynamic theory is set up for river dynamic process. Its core content includes the stability and tropism characteristics of flow motion in river and river selves’ evolution. The stability of river dynamic process depends on the response of river selves to the external disturbance, if the disturbance and the resulting response will eventually attenuate, and the river dynamics process can be restored to new equilibrium state, the river dynamic process is known as stable;otherwise, the river dynamic process is unstable. The river dynamic process tropism refers to that the evolution tendency of river morphology after the disturbance. As an application of this theory, the dynamical stability of the constant curvature river bend is calculated for its coherent vortex disturbance and response. In addition, this paper discusses the nonlinear evolution of the river peristaltic process under a large-scale disturbance, showing the nonlinear tendency of river dynamic processes, such as river filtering and butterfly effect.
Nonlinear and Nonlocal Feedbacks in an Aquaplanet
Feldl, N.; Roe, G.
2012-12-01
The power of the feedback framework lies in its ability to reveal the energy pathways by which the climate system adjusts to an imposed forcing. By understanding the closure of the energy budget in as much detail and precision as possible, and within as clean an experimental set-up as possible, we are also able to isolate nonlinear interactions between feedbacks. For an aquaplanet simulation under perpetual equinox conditions, we account for rapid tropospheric adjustments to CO2 and diagnose radiative kernels for this precise model set-up. We characterize the contributions of feedbacks, heat transport, and nonlinearities in controlling the meridional structure of the climate response. The presence of strongly positive subtropical feedbacks, combined with polar amplification, implies a critical role for transport and nonlinear effects, with the latter acting to substantially reduce global climate sensitivity. At the hemispheric scale, a rich picture emerges: net heat divergence away from strong positive feedbacks in the tropics; nonlinearities induced by circulation changes that cool the tropics and warm the high-latitudes; and strong ice-line feedbacks that drive further amplification of polar warming. Overall, these results highlight how spatial patterns in feedbacks affect both the local and nonlocal climate response, with implications for regional predictability.
Nonlinear electrostatic drift Kelvin-Helmholtz instability
Sharma, Avadhesh C.; Srivastava, Krishna M.
1993-01-01
Nonlinear analysis of electrostatic drift Kelvin-Helmholtz instability is performed. It is shown that the analysis leads to the propagation of the weakly nonlinear dispersive waves, and the nonlinear behavior is governed by the nonlinear Burger's equation.
Local H\\"older continuity for doubly nonlinear parabolic equations
Kuusi, Tuomo; Urbano, José Miguel
2010-01-01
We give a proof of the H\\"older continuity of weak solutions of certain degenerate doubly nonlinear parabolic equations in measure spaces. We only assume the measure to be a doubling non-trivial Borel measure which supports a Poincar\\'e inequality. The proof discriminates between large scales, for which a Harnack inequality is used, and small scales, that require intrinsic scaling methods.
2016-12-13
their mitigation with applications in scaling of pulsed and continuous- wave high- energy lasers Balaji Srinivasan INDIAN INSTITUTE OF TECHNOLOGY...high- energy lasers 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-15-1-5044 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) Balaji Srinivasan 5d...use of vortex beams to mitigate thermal mode instability in high energy fiber amplifiers. The investigation is carried out through (1) the
Nonlinear evolution of oblique whistler waves in radiation belts
Sharma, R. P.; Nandal, P.; Yadav, N.; Sharma, Swati
2017-02-01
Magnetic power spectrum and formation of coherent structures have been investigated in the present work applicable to Van Allen radiation belt. The nonlinear interaction of high frequency oblique whistler wave and low frequency magnetosonic wave has been investigated. Simulation was performed of the coupled equation of these two waves. The nonlinear interaction of these waves leads to the formation of the localized structures. These resulting localized structures are of complex nature. The associated magnetic power spectrum has also been studied. Dispersive nonlinear processes account for the high frequency part of the spectrum. The resulting magnetic power spectrum shows a scaling of k^{ - 4.5}. The energy transfer process from injection scales to smaller scales is explained by the results.
Optothermal nonlinearity of silica aerogel
Braidotti, Maria Chiara; Fleming, Adam; Samuels, Michiel C; Di Falco, Andrea; Conti, Claudio
2016-01-01
We report on the characterization of silica aerogel thermal optical nonlinearity, obtained by z-scan technique. The results show that typical silica aerogels have nonlinear optical coefficient similar to that of glass $(\\simeq 10^{-12} $m$^2/$W), with negligible optical nonlinear absorption. The non\\-li\\-near coefficient can be increased to values in the range of $10^{-10} $m$^2/$W by embedding an absorbing dye in the aerogel. This value is one order of magnitude higher than that observed in the pure dye and in typical highly nonlinear materials like liquid crystals.
Institute of Scientific and Technical Information of China (English)
施继忠; 张继业
2012-01-01
为研究车辆建模导致的随机误差对自动化公路车辆系统等关联大系统的影响,将确定性箱体理论推广到随机箱体理论,利用M-矩阵理论和随机箱体理论,构造适当的向量Lyapunov函数,通过分析相应随机微分不等式的稳定性,利用随机大系统的系数矩阵以及与大系统关联的Lyapunov矩阵方程的解构造判定矩阵,得到该类大系统全局指数稳定性的充分性判据,即当判定矩阵为M-矩阵时,大系统是全局指数稳定的.仿真结果表明:本文算法收敛速度快,在20 s内系统状态就能达到稳定.%In order to study the effects of random errors caused by vehicle modeling on interconnected large-scale systems like the automated highway vehicle system, the deterministic theory was extended to the random case theory, and a proper vector Lyapunov function was constructed using the matrix theory and the random case theory. By analyzing the stability of stochastic differential inequalities, a coefficient matrix of the random large-scale system and the solutions of the Lyapunov matrix function interconnected with large-scale system are used to construct a judgment matrix, and then obtain the sufficiency criterion for global exponential stability of the large-scale system: when the judgment matrix is a quasi-Af-matrix, the global index of the large-scale system is stable. Simulation results show that the algorithm proposed in the paper has a rapid convergence rate, and the system can achieve stability in 20 s.
Essentials of nonlinear optics
Murti, Y V G S
2014-01-01
Current literature on Nonlinear Optics varies widely in terms of content, style, and coverage of specific topics, relative emphasis of areas and the depth of treatment. While most of these books are excellent resources for the researchers, there is a strong need for books appropriate for presenting the subject at the undergraduate or postgraduate levels in Universities. The need for such a book to serve as a textbook at the level of the bachelors and masters courses was felt by the authors while teaching courses on nonlinear optics to students of both science and engineering during the past two decades. This book has emerged from an attempt to address the requirement of presenting the subject at college level. A one-semester course covering the essentials can effectively be designed based on this.
Nonlinear metamaterials for holography
Almeida, Euclides; Bitton, Ora; Prior, Yehiam
2016-08-01
A hologram is an optical element storing phase and possibly amplitude information enabling the reconstruction of a three-dimensional image of an object by illumination and scattering of a coherent beam of light, and the image is generated at the same wavelength as the input laser beam. In recent years, it was shown that information can be stored in nanometric antennas giving rise to ultrathin components. Here we demonstrate nonlinear multilayer metamaterial holograms. A background free image is formed at a new frequency--the third harmonic of the illuminating beam. Using e-beam lithography of multilayer plasmonic nanoantennas, we fabricate polarization-sensitive nonlinear elements such as blazed gratings, lenses and other computer-generated holograms. These holograms are analysed and prospects for future device applications are discussed.
Nonlinear metamaterials for holography
Almeida, Euclides; Bitton, Ora
2016-01-01
A hologram is an optical element storing phase and possibly amplitude information enabling the reconstruction of a three-dimensional image of an object by illumination and scattering of a coherent beam of light, and the image is generated at the same wavelength as the input laser beam. In recent years, it was shown that information can be stored in nanometric antennas giving rise to ultrathin components. Here we demonstrate nonlinear multilayer metamaterial holograms. A background free image is formed at a new frequency—the third harmonic of the illuminating beam. Using e-beam lithography of multilayer plasmonic nanoantennas, we fabricate polarization-sensitive nonlinear elements such as blazed gratings, lenses and other computer-generated holograms. These holograms are analysed and prospects for future device applications are discussed. PMID:27545581
Van Leeuwen, Peter Jan; Reich, Sebastian
2015-01-01
This book contains two review articles on nonlinear data assimilation that deal with closely related topics but were written and can be read independently. Both contributions focus on so-called particle filters. The first contribution by Jan van Leeuwen focuses on the potential of proposal densities. It discusses the issues with present-day particle filters and explorers new ideas for proposal densities to solve them, converging to particle filters that work well in systems of any dimension, closing the contribution with a high-dimensional example. The second contribution by Cheng and Reich discusses a unified framework for ensemble-transform particle filters. This allows one to bridge successful ensemble Kalman filters with fully nonlinear particle filters, and allows a proper introduction of localization in particle filters, which has been lacking up to now.
Nonlinearity without Superluminality
Kent, A
2002-01-01
Quantum theory is compatible with special relativity. In particular, though measurements on entangled systems are correlated in a way that cannot be reproduced by local hidden variables, they cannot be used for superluminal signalling. As Gisin and Polchinski first pointed out, this is not true for general nonlinear modifications of the Schroedinger equation. Excluding superluminal signalling has thus been taken to rule out most nonlinear versions of quantum theory. The no superluminal signalling constraint has also been used for alternative derivations of the optimal fidelities attainable for imperfect quantum cloning and other operations. These results apply to theories satisfying the rule that their predictions for widely separated and slowly moving entangled systems can be approximated by non-relativistic equations of motion with respect to a preferred time coordinate. This paper describes a natural way in which this rule might fail to hold. In particular, it is shown that quantum readout devices which di...
Monte Carlo and nonlinearities
Dauchet, Jérémi; Blanco, Stéphane; Caliot, Cyril; Charon, Julien; Coustet, Christophe; Hafi, Mouna El; Eymet, Vincent; Farges, Olivier; Forest, Vincent; Fournier, Richard; Galtier, Mathieu; Gautrais, Jacques; Khuong, Anaïs; Pelissier, Lionel; Piaud, Benjamin; Roger, Maxime; Terrée, Guillaume; Weitz, Sebastian
2016-01-01
The Monte Carlo method is widely used to numerically predict systems behaviour. However, its powerful incremental design assumes a strong premise which has severely limited application so far: the estimation process must combine linearly over dimensions. Here we show that this premise can be alleviated by projecting nonlinearities on a polynomial basis and increasing the configuration-space dimension. Considering phytoplankton growth in light-limited environments, radiative transfer in planetary atmospheres, electromagnetic scattering by particles and concentrated-solar-power-plant productions, we prove the real world usability of this advance on four test-cases that were so far regarded as impracticable by Monte Carlo approaches. We also illustrate an outstanding feature of our method when applied to sharp problems with interacting particles: handling rare events is now straightforward. Overall, our extension preserves the features that made the method popular: addressing nonlinearities does not compromise o...
Nonlinear Photonics 2014: introduction.
Akhmediev, N; Kartashov, Yaroslav
2015-01-12
International Conference "Nonlinear Photonics-2014" took place in Barcelona, Spain on July 27-31, 2014. It was a part of the "Advanced Photonics Congress" which is becoming a traditional notable event in the world of photonics. The current focus issue of Optics Express contains contributions from the participants of the Conference and the Congress. The articles in this focus issue by no means represent the total number of the congress contributions (around 400). However, it demonstrates wide range of topics covered at the event. The next conference of this series is to be held in 2016 in Australia, which is the home of many researchers working in the field of photonics in general and nonlinear photonics in particular.
Nonlinear fractional relaxation
Indian Academy of Sciences (India)
A Tofighi
2012-04-01
We deﬁne a nonlinear model for fractional relaxation phenomena. We use -expansion method to analyse this model. By studying the fundamental solutions of this model we ﬁnd that when → 0 the model exhibits a fast decay rate and when → ∞ the model exhibits a power-law decay. By analysing the frequency response we ﬁnd a logarithmic enhancement for the relative ratio of susceptibility.
Indian Academy of Sciences (India)
Ramaswamy Jaganathan; Sudeshna Sinha
2005-03-01
Motivated by studies on -deformed physical systems related to quantum group structures, and by the elements of Tsallis statistical mechanics, the concept of -deformed nonlinear maps is introduced. As a specific example, a -deformation procedure is applied to the logistic map. Compared to the canonical logistic map, the resulting family of -logistic maps is shown to have a wider spectrum of interesting behaviours, including the co-existence of attractors – a phenomenon rare in one-dimensional maps.
Controllability of nonlinear systems.
Sussmann, H. J.; Jurdjevic, V.
1972-01-01
Discussion of the controllability of nonlinear systems described by the equation dx/dt - F(x,u). Concepts formulated by Chow (1939) and Lobry (1970) are applied to establish criteria for F and its derivatives to obtain qualitative information on sets which can be obtained from x which denotes a variable of state in an arbitrary, real, analytical manifold. It is shown that controllability implies strong accessibility for a large class of manifolds including Euclidean spaces.-
Stochastic Nonlinear Aeroelasticity
2009-01-01
STOCHASTIC NONLINEAR AEROELASTICITY 5a. CONTRACT NUMBER In- house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 0601102 6. AUTHOR(S) Philip S...ABSTRACT This report documents the culmination of in- house work in the area of uncertainty quantification and probabilistic techniques for... coff U∞ cs ea lw cw Figure 6: Wing and store geometry (left), wing box structural model (middle), flutter distribution (right
2007-03-01
IEEE Transactions on Automatic Control , AC- 48, pp. 1712-1723, (2003). [14] C.I. Byrnes, A. Isidori...Nonlinear internal models for output regulation,” IEEE Transactions on Automatic Control , AC-49, pp. 2244-2247, (2004). [15] C.I. Byrnes, F. Celani, A...approach,” IEEE Transactions on Automatic Control , 48 (Dec. 2003), 2172–2190. 2. C. I. Byrnes, “Differential Forms and Dynamical Systems,” to appear
Filamentation with nonlinear Bessel vortices.
Jukna, V; Milián, C; Xie, C; Itina, T; Dudley, J; Courvoisier, F; Couairon, A
2014-10-20
We present a new type of ring-shaped filaments featured by stationary nonlinear high-order Bessel solutions to the laser beam propagation equation. Two different regimes are identified by direct numerical simulations of the nonlinear propagation of axicon focused Gaussian beams carrying helicity in a Kerr medium with multiphoton absorption: the stable nonlinear propagation regime corresponds to a slow beam reshaping into one of the stationary nonlinear high-order Bessel solutions, called nonlinear Bessel vortices. The region of existence of nonlinear Bessel vortices is found semi-analytically. The influence of the Kerr nonlinearity and nonlinear losses on the beam shape is presented. Direct numerical simulations highlight the role of attractors played by nonlinear Bessel vortices in the stable propagation regime. Large input powers or small cone angles lead to the unstable propagation regime where nonlinear Bessel vortices break up into an helical multiple filament pattern or a more irregular structure. Nonlinear Bessel vortices are shown to be sufficiently intense to generate a ring-shaped filamentary ionized channel in the medium which is foreseen as opening the way to novel applications in laser material processing of transparent dielectrics.
Strongly nonlinear oscillators analytical solutions
Cveticanin, Livija
2014-01-01
This book provides the presentation of the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. The book presents the original author’s method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter is considered. Special attention is given to the one and two mass oscillatory systems with two-degrees-of-freedom. The criteria for the deterministic chaos in ideal and non-ideal pure nonlinear oscillators are derived analytically. The method for suppressing chaos is developed. Important problems are discussed in didactic exercises. The book is self-consistent and suitable as a textbook for students and also for profess...
Quantum well nonlinear microcavities
Oudar, J. L.; Kuszelewicz, R.; Sfez, B.; Pellat, D.; Azoulay, R.
We report on recent progress in reducing the power threshold of all-optical bistable quantum well vertical microcavities. Significant improvements are achieved through an increase of the cavity finesse, together with a reduction of the device active layer thickness. A critical intensity of 5 μW/μm 2 has been observed on a microcavity of finesse 250, with a nonlinear medium of only 18 GaAs quantum wells of 10 nm thickness. Further improvements of the Bragg mirror quality resulted in a finesse of 700 and a power-lifetime product of 15 fJ/μm 2. Microresonator pixellation allows to obtain 2-dimensional arrays. A thermally-induced alloy-mixing technique is described, which produced a 110 meV carrier confinement energy, together with a refractive index change of -.012, averaged over the 2.6 μm nonlinear medium thickness. The resulting electrical and optical confinement is shown to improve the nonlinear characteristics, by limiting lateral carrier diffusion and light diffraction.
Nonlinear and stochastic dynamics in the heart
Energy Technology Data Exchange (ETDEWEB)
Qu, Zhilin, E-mail: zqu@mednet.ucla.edu [Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, CA 90095 (United States); Hu, Gang [Department of Physics, Beijing Normal University, Beijing 100875 (China); Garfinkel, Alan [Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, CA 90095 (United States); Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095 (United States); Weiss, James N. [Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, CA 90095 (United States); Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095 (United States)
2014-10-10
In a normal human life span, the heart beats about 2–3 billion times. Under diseased conditions, a heart may lose its normal rhythm and degenerate suddenly into much faster and irregular rhythms, called arrhythmias, which may lead to sudden death. The transition from a normal rhythm to an arrhythmia is a transition from regular electrical wave conduction to irregular or turbulent wave conduction in the heart, and thus this medical problem is also a problem of physics and mathematics. In the last century, clinical, experimental, and theoretical studies have shown that dynamical theories play fundamental roles in understanding the mechanisms of the genesis of the normal heart rhythm as well as lethal arrhythmias. In this article, we summarize in detail the nonlinear and stochastic dynamics occurring in the heart and their links to normal cardiac functions and arrhythmias, providing a holistic view through integrating dynamics from the molecular (microscopic) scale, to the organelle (mesoscopic) scale, to the cellular, tissue, and organ (macroscopic) scales. We discuss what existing problems and challenges are waiting to be solved and how multi-scale mathematical modeling and nonlinear dynamics may be helpful for solving these problems.
Simple nonlinear models suggest variable star universality
Lindner, John F; Kia, Behnam; Hippke, Michael; Learned, John G; Ditto, William L
2015-01-01
Dramatically improved data from observatories like the CoRoT and Kepler spacecraft have recently facilitated nonlinear time series analysis and phenomenological modeling of variable stars, including the search for strange (aka fractal) or chaotic dynamics. We recently argued [Lindner et al., Phys. Rev. Lett. 114 (2015) 054101] that the Kepler data includes "golden" stars, whose luminosities vary quasiperiodically with two frequencies nearly in the golden ratio, and whose secondary frequencies exhibit power-law scaling with exponent near -1.5, suggesting strange nonchaotic dynamics and singular spectra. Here we use a series of phenomenological models to make plausible the connection between golden stars and fractal spectra. We thereby suggest that at least some features of variable star dynamics reflect universal nonlinear phenomena common to even simple systems.
Progress in nonlinear nano-optics
Lienau, Christoph; Grunwald, Rüdiger
2015-01-01
This book presents the state of the art in nonlinear nanostructures for ultrafast laser applications. Most recent results in two emerging fields are presented: (i) generation of laser-induced nanostructures in materials like metals, metal oxides and semiconductors, and (ii) ultrafast excitation and energy transfer in nanoscale physical, chemical and hybrid systems. Particular emphasis is laid on the up-to-date controversially discussed mechanisms of sub-wavelength ripple formation including models of self-organized material transport and multiphoton excitation channels, nonlinear optics of plasmonic structures (nanotips, nanowires, 3D-metamaterials), and energy localization and transport on ultrafast time scale and spatial nanoscale. High-resolution spectroscopy, simulation and characterization techniques are reported. New applications of ultrashort-pulsed lasers for materials processing and the use of nanostructured materials for characterizing laser fields and laser-matter-interactions are discussed.
Denoising and robust nonlinear wavelet analysis
Bruce, Andrew G.; Donoho, David L.; Gao, Hong-Ye; Martin, R. D.
1994-03-01
In a series of papers, Donoho and Johnstone develop a powerful theory based on wavelets for extracting non-smooth signals from noisy data. Several nonlinear smoothing algorithms are presented which provide high performance for removing Gaussian noise from a wide range of spatially inhomogeneous signals. However, like other methods based on the linear wavelet transform, these algorithms are very sensitive to certain types of non-Gaussian noise, such as outliers. In this paper, we develop outlier resistant wavelet transforms. In these transforms, outliers and outlier patches are localized to just a few scales. By using the outlier resistant wavelet transform, we improve upon the Donoho and Johnstone nonlinear signal extraction methods. The outlier resistant wavelet algorithms are included with the 'S+WAVELETS' object-oriented toolkit for wavelet analysis.
Perturbation analysis of nonlinear matrix population models
Directory of Open Access Journals (Sweden)
Hal Caswell
2008-03-01
Full Text Available Perturbation analysis examines the response of a model to changes in its parameters. It is commonly applied to population growth rates calculated from linear models, but there has been no general approach to the analysis of nonlinear models. Nonlinearities in demographic models may arise due to density-dependence, frequency-dependence (in 2-sex models, feedback through the environment or the economy, and recruitment subsidy due to immigration, or from the scaling inherent in calculations of proportional population structure. This paper uses matrix calculus to derive the sensitivity and elasticity of equilibria, cycles, ratios (e.g. dependency ratios, age averages and variances, temporal averages and variances, life expectancies, and population growth rates, for both age-classified and stage-classified models. Examples are presented, applying the results to both human and non-human populations.
Optics in a nonlinear gravitational wave
Harte, Abraham I
2015-01-01
Gravitational waves can act like gravitational lenses, affecting the observed positions, brightnesses, and redshifts of distant objects. Exact expressions for such effects are derived here, allowing for arbitrarily-moving sources and observers in the presence of plane-symmetric gravitational waves. The commonly-used predictions of linear perturbation theory are shown to be generically overshadowed---even for very weak gravitational waves---by nonlinear effects when considering observations of sufficiently distant sources; higher-order perturbative corrections involve secularly-growing terms which cannot necessarily be neglected. Even on more moderate scales where linear effects remain at least marginally dominant, nonlinear corrections are qualitatively different from their linear counterparts. There is a sense in which they can, for example, mimic the existence of a third type of gravitational wave polarization.
Optics in a nonlinear gravitational plane wave
Harte, Abraham I.
2015-09-01
Gravitational waves can act like gravitational lenses, affecting the observed positions, brightnesses, and redshifts of distant objects. Exact expressions for such effects are derived here in general relativity, allowing for arbitrarily-moving sources and observers in the presence of plane-symmetric gravitational waves. At least for freely falling sources and observers, it is shown that the commonly-used predictions of linear perturbation theory can be generically overshadowed by nonlinear effects; even for very weak gravitational waves, higher-order perturbative corrections involve secularly-growing terms which cannot necessarily be neglected when considering observations of sufficiently distant sources. Even on more moderate scales where linear effects remain at least marginally dominant, nonlinear corrections are qualitatively different from their linear counterparts. There is a sense in which they can, for example, mimic the existence of a third type of gravitational wave polarization.
3-D nonlinear evolution of MHD instabilities
Energy Technology Data Exchange (ETDEWEB)
Bateman, G.; Hicks, H. R.; Wooten, J. W.
1977-03-01
The nonlinear evolution of ideal MHD internal instabilities is investigated in straight cylindrical geometry by means of a 3-D initial-value computer code. These instabilities are characterized by pairs of velocity vortex cells rolling off each other and helically twisted down the plasma column. The cells persist until the poloidal velocity saturates at a few tenths of the Alfven velocity. The nonlinear phase is characterized by convection around these essentially fixed vortex cells. For example, the initially centrally peaked temperature profile is convected out and around to form an annulus of high temperature surrounding a small region of lower temperature. Weak, centrally localized instabilities do not alter the edge of the plasma. Strong, large-scale instabilities, resulting from a stronger longitudinal equilibrium current, drive the plasma against the wall. After three examples of instability are analyzed in detail, the numerical methods and their verification are discussed.
Nonextensivity, Complexity and Nonlinearity in Space Plasmas
Pavlos, G. P.
2017-01-01
Experimental time series, extracted from many and different space plasma systems corresponding to, solar wind, magnetospheric and other space plasma systems reveal common dynamical, geometrical, or statistical characteristics. Such characteristics are the low dimensionality, the typical intermittent turbulence multifractality, the temporal or spatial multiscale correlations and power laws scale invariance, non Gaoussianity and others. This universal aspect of experimental time series profiles was understood in the past as the chaos or SOC universality. However, after two or three decades of theoretical development in understanding of the nonlinearity and complexity, we can give a more compact theoretical description of the underline universal physical processes that produce the experimental time series complexity. Finally, in this study, we present and explain the modern complex set of theoretical concepts from the point of view of physics as the unification theory of nonlinear theory of non-equilibrium plasma systems as well as the presupposed theoretical framework of time series analysis of space plasma charachteristics.
Characterization of nonlinear ultrasonic effects using the dynamic wavelet fingerprint technique
Lv, Hongtao; Jiao, Jingpin; Meng, Xiangji; He, Cunfu; Wu, Bin
2017-02-01
An improved dynamic wavelet fingerprint (DWFP) technique was developed to characterize nonlinear ultrasonic effects. The white area in the fingerprint was used as the nonlinear feature to quantify the degree of damage. The performance of different wavelet functions, the effect of scale factor and white subslice ratio on the nonlinear feature extraction were investigated, and the optimal wavelet function, scale factor and white subslice ratio for maximum damage sensitivity were determined. The proposed DWFP method was applied to the analysis of experimental signals obtained from nonlinear ultrasonic harmonic and wave-mixing experiments. It was demonstrated that the proposed DWFP method can be used to effectively extract nonlinear features from the experimental signals. Moreover, the proposed nonlinear fingerprint coefficient was sensitive to micro cracks and correlated well with the degree of damage.
Nonlinear robust hierarchical control for nonlinear uncertain systems
Directory of Open Access Journals (Sweden)
Leonessa Alexander
1999-01-01
Full Text Available A nonlinear robust control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving nominal system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear system over a prescribed range of system uncertainty by robustly stabilizing a collection of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller architecture is designed based on a generalized (lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized nominal system equilibria. The proposed framework robustly stabilizes a compact positively invariant set of a given nonlinear uncertain dynamical system with structured parametric uncertainty. Finally, the efficacy of the proposed approach is demonstrated on a jet engine propulsion control problem with uncertain pressure-flow map data.
Nonlinear scattering in plasmonic nanostructures
Chu, Shi-Wei
2016-09-01
Nonlinear phenomena provide novel light manipulation capabilities and innovative applications. Recently, we discovered nonlinear saturation on single-particle scattering of gold nanospheres by continuous-wave laser excitation and innovatively applied to improve microscopic resolution down to λ/8. However, the nonlinearity was limited to the green-orange plasmonic band of gold nanosphere, and the underlying mechanism has not yet been fully understood. In this work, we demonstrated that nonlinear scattering exists for various material/geometry combinations, thus expanding the applicable wavelength range. For near-infrared, gold nanorod is used, while for blue-violet, silver nanospheres are adopted. In terms of mechanism, the nonlinearity may originate from interband/intraband absorption, hot electron, or hot lattice, which are spectrally mixed in the case of gold nanosphere. For gold nanorod and silver nanosphere, nonlinear scattering occurs at plasmonic resonances, which are spectrally far from interband/intraband absorptions, so they are excluded. We found that the nonlinear index is much larger than possible contributions from hot electrons in literature. Therefore, we conclude that hot lattice is the major mechanism. In addition, we propose that similar to z-scan, which is the standard method to characterize nonlinearity of a thin sample, laser scanning microscopy should be adopted as the standard method to characterize nonlinearity from a nanostructure. Our work not only provides the physical mechanism of the nonlinear scattering, but also paves the way toward multi-color superresolution imaging based on non-bleaching plasmonic scattering.
Multiphase Weakly Nonlinear Geometric Optics for Schrödinger Equations
Carles, Rémi
2010-01-01
We describe and rigorously justify the nonlinear interaction of highly oscillatory waves in nonlinear Schrödinger equations, posed on Euclidean space or on the torus. Our scaling corresponds to a weakly nonlinear regime where the nonlinearity affects the leading order amplitude of the solution, but does not alter the rapid oscillations. We consider initial states which are superpositions of slowly modulated plane waves, and use the framework of Wiener algebras. A detailed analysis of the corresponding nonlinear wave mixing phenomena is given, including a geometric interpretation of the resonance structure for cubic nonlinearities. As an application, we recover and extend some instability results for the nonlinear Schrödinger equation on the torus in negative order Sobolev spaces. © 2010 Society for Industrial and Applied Mathematics.
Discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities
DEFF Research Database (Denmark)
Khare, A.; Rasmussen, Kim Ø; Salerno, M.
2006-01-01
A class of discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrodinger equation and the Ablowi......-Ladik equation. As a common property, these equations possess three kinds of exact analytical stationary solutions for which the Peierls-Nabarro barrier is zero. Several properties of these solutions, including stability, discrete breathers, and moving solutions, are investigated....
Dichromatic nonlinear eigenmodes in slab waveguide with chi(2) nonlinearity.
Darmanyan, S A; Nevière, M
2001-03-01
The existence of purely nonlinear eigenmodes in a waveguiding structure composed of a slab with quadratic nonlinearity surrounded by (non)linear claddings is reported. Modes having bright and dark solitonlike shapes and consisting of two mutually locked harmonics are identified. Asymmetrical modes are shown to exist in symmetrical environments. Constraints for the existence of the modes are derived in terms of parameters of guiding structure materials.
Wygant, J. R.
2016-12-01
Evidence has accumulated that most energy conversion structures in space plasmas are characterized by intense small-scale size electric fields with strong parallel components, which are prime suspects in the rapid and efficient bulk acceleration of electrons. The proposed MPEX mission will provide, for the first time, 1 ms measurements of electrons capable of resolving the acceleration process due to these small-scale structures. These structures include Time Domain Structures (TDS) which are often organized into wave trains of hundreds of discrete structures propagating along magnetic fields lines. Recent measurements in the near Earth tail on auroral field lines indicate these wave trains are associated with electron acceleration in layers of strong energy flow in the form of particle energy flux and Poynting flux. Also coincident are kinetic Alfven waves which may be capable of driving the time domain structures or directly accelerating electrons. Other waves that may be important include lower hybrid wave packets, electron cyclotron waves, and large amplitude whistler waves. High time resolution field measurements show that such structures occur within dayside and tail reconnection regions, at the bow shock, at interplanetary shocks, and at other structures in the solar wind. The MPEX mission will be a multiphase mission with apogee boosts, which will explore all these regions. An array of electron ESAs will provide a 1 millisecond measurement of electron flux variations with nearly complete pitch angle coverage over a programmable array of selected energy channels. The electric field detector will provide measurement a fully 3-D measurement of the electric field with the benefit of an extremely large ratio of boom length to spacecraft radius and an improved sensor design. 2-D ion distribution functions will be provided by ion mass spectrometer and energetic electrons will be measured by a solid-state telescope.
Nonlinear Distortion Mechanisms and Efficiency of Balanced-Armature Loudspeakers
DEFF Research Database (Denmark)
Jensen, Joe
) and the linearity of the magnetic material is therefore of great importance. This thesis describes the inherent nonlinear parameters of the balanced-armature loudspeaker and demonstrates how the nonlinearity of these parameters may be reduced by design. A sim- ple technique for incorporating magnetic leakage...... and to validate simpler equivalent circuit models. A large scale model of a balanced-armature loudspeaker has been developed and its inherent nonlinear parameters have been measured and compared to the theoretically predicted values. A measurement setup for determining the magnetic properties of soft magnetic...... materials has also been developed, since it is of great importance to understand what kind of linear and nonlinear transformations the magnetic materials impose on the signal. In hearing aid applications the power efficiency of the loudspeaker is important because every reduction in power consumption...
Phase mixing and nonlinearity in geodesic acoustic modes
Energy Technology Data Exchange (ETDEWEB)
Hung, C. P.; Hassam, A. B. [University of Maryland at College Park, College Park, Maryland 20742 (United States)
2013-09-15
Phase mixing and nonlinear resonance detuning of geodesic acoustic modes in a tokamak plasma are examined. Geodesic acoustic modes (GAMs) are tokamak normal modes with oscillations in poloidal flow constrained to lie within flux surfaces. The mode frequency is sonic, dependent on the local flux surface temperature. Consequently, mode oscillations between flux surfaces get rapidly out of phase, resulting in enhanced damping from the phase mixing. Damping rates are shown to scale as the negative 1/3 power of the large viscous Reynolds number. The effect of convective nonlinearities on the normal modes is also studied. The system of nonlinear GAM equations is shown to resemble the Duffing oscillator, which predicts resonance detuning of the oscillator. Resonant amplification is shown to be suppressed nonlinearly. All analyses are verified by numerical simulation. The findings are applied to a recently proposed GAM excitation experiment on the DIII-D tokamak.
Nonlinear Schrodinger equation with chaotic, random, and nonperiodic nonlinearity
Cardoso, W B; Avelar, A T; Bazeia, D; Hussein, M S
2009-01-01
In this paper we deal with a nonlinear Schr\\"{o}dinger equation with chaotic, random, and nonperiodic cubic nonlinearity. Our goal is to study the soliton evolution, with the strength of the nonlinearity perturbed in the space and time coordinates and to check its robustness under these conditions. Comparing with a real system, the perturbation can be related to, e.g., impurities in crystalline structures, or coupling to a thermal reservoir which, on the average, enhances the nonlinearity. We also discuss the relevance of such random perturbations to the dynamics of Bose-Einstein Condensates and their collective excitations and transport.
Compressible hydromagnetic nonlinearities in the predecoupling plasma
Giovannini, Massimo
2012-01-01
The adiabatic inhomogeneities of the scalar curvature lead to a compressible flow affecting the dynamics of the hydromagnetic nonlinearities. The influence of the plasma on the evolution of a putative magnetic field is explored with the aim of obtaining an effective description valid for sufficiently large scales. The bulk velocity of the plasma, computed in the framework of the LambdaCDM scenario, feeds back into the evolution of the magnetic power spectra leading to a (nonlocal) master equation valid in Fourier space and similar to the ones discussed in the context of wave turbulence. Conversely, in physical space, the magnetic power spectra obey a Schroedinger-like equation whose effective potential depends on the large-scale curvature perturbations. Explicit solutions are presented both in physical space and in Fourier space. It is argued that curvature inhomogeneities, compatible with the WMAP 7yr data, shift to lower wavenumbers the magnetic diffusivity scale.
Nonlinear Analysis of Spur Gear Pair with Time-varying Mesh Stiffness
Rao T. V. V. L. N.; Awang M.; Lias M. R.; Rani A. M. A.
2014-01-01
This study presents nonlinear analysis of single degree of freedom spur gear pair with time-varying mesh stiffness. The backlash is approximated using nonlinear term. The periodic steady-state solutions of the nonlinear system are obtained by closed-form expressions using the method of multiple scales. The stability and forced vibration response of the gear system are analyzed. The effect of mesh stiffness variation on the amplitude parameter of nondimensional dynamic transmission error for p...
Universities scale like cities.
Directory of Open Access Journals (Sweden)
Anthony F J van Raan
Full Text Available Recent studies of urban scaling show that important socioeconomic city characteristics such as wealth and innovation capacity exhibit a nonlinear, particularly a power law scaling with population size. These nonlinear effects are common to all cities, with similar power law exponents. These findings mean that the larger the city, the more disproportionally they are places of wealth and innovation. Local properties of cities cause a deviation from the expected behavior as predicted by the power law scaling. In this paper we demonstrate that universities show a similar behavior as cities in the distribution of the 'gross university income' in terms of total number of citations over 'size' in terms of total number of publications. Moreover, the power law exponents for university scaling are comparable to those for urban scaling. We find that deviations from the expected behavior can indeed be explained by specific local properties of universities, particularly the field-specific composition of a university, and its quality in terms of field-normalized citation impact. By studying both the set of the 500 largest universities worldwide and a specific subset of these 500 universities--the top-100 European universities--we are also able to distinguish between properties of universities with as well as without selection of one specific local property, the quality of a university in terms of its average field-normalized citation impact. It also reveals an interesting observation concerning the working of a crucial property in networked systems, preferential attachment.
Stolz, A; Markey, L; Francs, G Colas des; Bouhelier, A
2013-01-01
We introduce strongly-coupled optical gap antennas to interface optical radiation with current-carrying electrons at the nanoscale. The transducer relies on the nonlinear optical and electrical properties of an optical antenna operating in the tunneling regime. We discuss the underlying physical mechanisms controlling the conversion and demonstrate that a two-wire optical antenna can provide advanced optoelectronic functionalities beyond tailoring the electromagnetic response of a single emitter. Interfacing an electronic command layer with a nanoscale optical device may thus be facilitated by the optical rectennas discussed here.
Nonlinear surface electromagnetic phenomena
Ponath, H-E
1991-01-01
In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are
Nonlinear electrodynamics with birefringence
Kruglov, S I
2015-01-01
A new model of nonlinear electrodynamics with three parameters is suggested. The phenomena of vacuum birefringence takes place when there is the external constant magnetic field. We calculate the indices of refraction for two polarizations of electromagnetic waves, parallel and perpendicular to the magnetic induction field. From the Bir\\'{e}fringence Magn\\'{e}tique du Vide (BMV) experiment one of the coefficients, $\\gamma\\approx 10^{-20}$ T$^{-2}$, was estimated. The canonical, symmetrical Belinfante energy-momentum tensors and dilatation current were obtained. The dilatation symmetry and the dual symmetry are broken in the model considered.
Wu Zhuo Qun; Li Hui Lai; Zhao Jun Ning
2001-01-01
Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which
Nonlinear dynamics in psychology
Directory of Open Access Journals (Sweden)
Stephen J. Guastello
2001-01-01
Full Text Available This article provides a survey of the applications of nonlinear dynamical systems theory to substantive problems encountered in the full scope of psychological science. Applications are organized into three topical areas – cognitive science, social and organizational psychology, and personality and clinical psychology. Both theoretical and empirical studies are considered with an emphasis on works that capture the broadest scope of issues that are of substantive interest to psychological theory. A budding literature on the implications of NDS principles in professional practice is reported also.
2009-11-18
analytic semigroup T(t) ~ eAl is exponentially stable (Notice that it is also a contraction semigroup ). 3. Be 3(U, Z) and P e £(W, 2) are bounded. 4. Ce...quite often in practice, .4 is self-adjoint. We also note that, since we assume (—A) is sectorial, we work with the semigroup exp(.4f) rather than...Uniform Output Regulation of Nonlinear Sys- tems: A convergent Dynamics Approach, Birkhauser, Boston, 2006. 23 135] A. Pazy, Semigroups of Linear
Directory of Open Access Journals (Sweden)
DJAIRO G. DEFIGUEIREDO
2000-12-01
Full Text Available In this paper we treat the question of the existence of solutions of boundary value problems for systems of nonlinear elliptic equations of the form - deltau = f (x, u, v,Ñu,Ñv, - deltav = g(x, u, v, Ñu, Ñv, in omega, We discuss several classes of such systems using both variational and topological methods. The notion of criticality takes into consideration the coupling, which plays important roles in both a priori estimates for the solutions and Palais-Smale conditions for the associated functional in the variational case.
Reduced Noise Effect in Nonlinear Model Estimation Using Multiscale Representation
Directory of Open Access Journals (Sweden)
Mohamed N. Nounou
2010-01-01
Full Text Available Nonlinear process models are widely used in various applications. In the absence of fundamental models, it is usually relied on empirical models, which are estimated from measurements of the process variables. Unfortunately, measured data are usually corrupted with measurement noise that degrades the accuracy of the estimated models. Multiscale wavelet-based representation of data has been shown to be a powerful data analysis and feature extraction tool. In this paper, these characteristics of multiscale representation are utilized to improve the estimation accuracy of the linear-in-the-parameters nonlinear model by developing a multiscale nonlinear (MSNL modeling algorithm. The main idea in this MSNL modeling algorithm is to decompose the data at multiple scales, construct multiple nonlinear models at multiple scales, and then select among all scales the model which best describes the process. The main advantage of the developed algorithm is that it integrates modeling and feature extraction to improve the robustness of the estimated model to the presence of measurement noise in the data. This advantage of MSNL modeling is demonstrated using a nonlinear reactor model.
Measurement of Localized Nonlinear Microwave Response of Superconductors
Lee, Sheng-Chiang; Palmer, Benjamin; Maiorov, B.
2005-03-01
We measure the local harmonic generation from superconducting thin films at microwave frequencies to investigate the intrinsic nonlinear Meissner effect near T/c in zero magnetic field. Both second and third harmonic generation are measured to identify time-reversal symmetry breaking (TRSB) and time-reversal symmetric (TRS) nonlinearities. The microscope can measure the local nonlinear response of a bicrystal grain boundary [Sheng-Chiang Lee and Steven M. Anlage, Physica C 408-410, 324 (2004); cond-mat/0408170]. We also performed a systematic doping-dependent study of the nonlinear response and find that the TRS characteristic nonlinearity current density scale follows the doping dependence of the de-pairing critical current density [cond-mat/0405595]. We extract a spontaneous TRSB characteristic current density scale that onsets at T/c, grows with decreasing temperature, and systematically decreases in magnitude (at fixed T/T/c) with under-doping. The origin of this current scale could be Josephson circulating currents or the spontaneous magnetization associated with a TRSB order parameter.
Global Analysis of Nonlinear Dynamics
Luo, Albert
2012-01-01
Global Analysis of Nonlinear Dynamics collects chapters on recent developments in global analysis of non-linear dynamical systems with a particular emphasis on cell mapping methods developed by Professor C.S. Hsu of the University of California, Berkeley. This collection of contributions prepared by a diverse group of internationally recognized researchers is intended to stimulate interests in global analysis of complex and high-dimensional nonlinear dynamical systems, whose global properties are largely unexplored at this time. This book also: Presents recent developments in global analysis of non-linear dynamical systems Provides in-depth considerations and extensions of cell mapping methods Adopts an inclusive style accessible to non-specialists and graduate students Global Analysis of Nonlinear Dynamics is an ideal reference for the community of nonlinear dynamics in different disciplines including engineering, applied mathematics, meteorology, life science, computational science, and medicine.
Nonlinear evolution of drift instabilities
Energy Technology Data Exchange (ETDEWEB)
Lee, W.W.; Krommes, J.A.; Oberman, C.R.; Smith, R.A.
1984-01-01
The nonlinear evolution of collisionless drift instabilities in a shear-free magnetic field has been studied by means of gyrokinetic particle simulation as well as numerical integration of model mode-coupling equations. The purpose of the investigation is to identify relevant nonlinear mechanisms responsible for the steady-state drift wave fluctuations. It is found that the saturation of the instability is mainly caused by the nonlinear E x B convection of the resonant electrons and their associated velocity space nonlinearity. The latter also induces energy exchange between the competing modes, which, in turn, gives rise to enhanced diffusion. The nonlinear E x B convection of the ions, which contributes to the nonlinear frequency shift, is also an important ingredient for the saturation.
Rashidian Vaziri, Mohammad Reza
2013-07-10
In this paper, the Z-scan theory for nonlocal nonlinear media has been further developed when nonlinear absorption and nonlinear refraction appear simultaneously. To this end, the nonlinear photoinduced phase shift between the impinging and outgoing Gaussian beams from a nonlocal nonlinear sample has been generalized. It is shown that this kind of phase shift will reduce correctly to its known counterpart for the case of pure refractive nonlinearity. Using this generalized form of phase shift, the basic formulas for closed- and open-aperture beam transmittances in the far field have been provided, and a simple procedure for interpreting the Z-scan results has been proposed. In this procedure, by separately performing open- and closed-aperture Z-scan experiments and using the represented relations for the far-field transmittances, one can measure the nonlinear absorption coefficient and nonlinear index of refraction as well as the order of nonlocality. Theoretically, it is shown that when the absorptive nonlinearity is present in addition to the refractive nonlinearity, the sample nonlocal response can noticeably suppress the peak and enhance the valley of the Z-scan closed-aperture transmittance curves, which is due to the nonlocal action's ability to change the beam transverse dimensions.
Topics on nonlinear generalized functions
Colombeau, J F
2011-01-01
The aim of this paper is to give the text of a recent introduction to nonlinear generalized functions exposed in my talk in the congress gf2011, which was asked by several participants. Three representative topics were presented: two recalls "Nonlinear generalized functions and their connections with distribution theory", "Examples of applications", and a recent development: "Locally convex topologies and compactness: a functional analysis of nonlinear generalized functions".
Nonlinear Ultrasonic Phased Array Imaging
Potter, J. N.; Croxford, A. J.; Wilcox, P. D.
2014-10-01
This Letter reports a technique for the imaging of acoustic nonlinearity. By contrasting the energy of the diffuse field produced through the focusing of an ultrasonic array by delayed parallel element transmission with that produced by postprocessing of sequential transmission data, acoustic nonlinearity local to the focal point is measured. Spatially isolated wave distortion is inferred without requiring interrogation of the wave at the inspection point, thereby allowing nonlinear imaging through depth.
Nonlinear ultrasonic phased array imaging
Potter, J N; Croxford, A.J.; Wilcox, P. D.
2014-01-01
This Letter reports a technique for the imaging of acoustic nonlinearity. By contrasting the energy of the diffuse field produced through the focusing of an ultrasonic array by delayed parallel element transmission with that produced by postprocessing of sequential transmission data, acoustic nonlinearity local to the focal point is measured. Spatially isolated wave distortion is inferred without requiring interrogation of the wave at the inspection point, thereby allowing nonlinear imaging t...
Research on Nonlinear Dynamical Systems.
1983-01-10
investigated fundamental aspects of functional differential equations, including qualitative questions (stability, nonlinear oscillations ), in 142,45,47,52...Bifurcation in the Duffing equation with several parameters, II. Proc. of the Royal Society of Edinburgh, Series A, 79A (1977), pp.317-326. 1I.J (with ;Ibtoas...Lecture Notes in Mathematics, Vol. 730 (1979). [54] Nonlinear oscillations in equations with delays. Proc. at A.M.S. 10th Summer Seminar on Nonlinear
Nonlinear ultrasonic phased array imaging.
Potter, J N; Croxford, A J; Wilcox, P D
2014-10-03
This Letter reports a technique for the imaging of acoustic nonlinearity. By contrasting the energy of the diffuse field produced through the focusing of an ultrasonic array by delayed parallel element transmission with that produced by postprocessing of sequential transmission data, acoustic nonlinearity local to the focal point is measured. Spatially isolated wave distortion is inferred without requiring interrogation of the wave at the inspection point, thereby allowing nonlinear imaging through depth.
Remote Atmospheric Nonlinear Optical Magnetometry
2014-04-28
Boyd , Nonlinear Optics (Elsevier, Burlington, MA, 2008). [13] M. Scully and S. Zubairy, Quantum Optics (Cambridge U. Press, Cambridge, UK, 1997...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6703--14-9548 Remote Atmospheric Nonlinear Optical Magnetometry PhilliP SPrangle...b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Remote Atmospheric Nonlinear Optical Magnetometry Phillip Sprangle, Luke
Applications of nonlinear fiber optics
Agrawal, Govind
2008-01-01
* The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo
Linearization of conservative nonlinear oscillators
Energy Technology Data Exchange (ETDEWEB)
Belendez, A; Alvarez, M L [Departamento de Fisica, IngenierIa de Sistemas y TeorIa de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, E; Pascual, I [Departamento de Optica, FarmacologIa y AnatomIa, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es
2009-03-11
A linearization method of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force which allows us to obtain a frequency-amplitude relation which is valid not only for small but also for large amplitudes and, sometimes, for the complete range of oscillation amplitudes. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of the technique.
Nonlinear dynamics in human behavior
Energy Technology Data Exchange (ETDEWEB)
Huys, Raoul [Centre National de la Recherche Scientifique (CNRS), 13 - Marseille (France); Marseille Univ. (France). Movement Science Inst.; Jirsa, Viktor K. (eds.) [Centre National de la Recherche Scientifique (CNRS), 13 - Marseille (France); Marseille Univ. (France). Movement Science Inst.; Florida Atlantic Univ., Boca Raton, FL (United States). Center for Complex Systems and Brain Sciences
2010-07-01
Humans engage in a seemingly endless variety of different behaviors, of which some are found across species, while others are conceived of as typically human. Most generally, behavior comes about through the interplay of various constraints - informational, mechanical, neural, metabolic, and so on - operating at multiple scales in space and time. Over the years, consensus has grown in the research community that, rather than investigating behavior only from bottom up, it may be also well understood in terms of concepts and laws on the phenomenological level. Such top down approach is rooted in theories of synergetics and self-organization using tools from nonlinear dynamics. The present compendium brings together scientists from all over the world that have contributed to the development of their respective fields departing from this background. It provides an introduction to deterministic as well as stochastic dynamical systems and contains applications to motor control and coordination, visual perception and illusion, as well as auditory perception in the context of speech and music. (orig.)
Nonlinear Dynamical Analysis of Fibrillation
Kerin, John A.; Sporrer, Justin M.; Egolf, David A.
2013-03-01
The development of spatiotemporal chaotic behavior in heart tissue, termed fibrillation, is a devastating, life-threatening condition. The chaotic behavior of electrochemical signals, in the form of spiral waves, causes the muscles of the heart to contract in an incoherent manner, hindering the heart's ability to pump blood. We have applied the mathematical tools of nonlinear dynamics to large-scale simulations of a model of fibrillating heart tissue to uncover the dynamical modes driving this chaos. By studying the evolution of Lyapunov vectors and exponents over short times, we have found that the fibrillating tissue is sensitive to electrical perturbations only in narrow regions immediately in front of the leading edges of spiral waves, especially when these waves collide, break apart, or hit the edges of the tissue sample. Using this knowledge, we have applied small stimuli to areas of varying sensitivity. By studying the evolution of the effects of these perturbations, we have made progress toward controlling the electrochemical patterns associated with heart fibrillation. This work was supported by the U.S. National Science Foundation (DMR-0094178) and Research Corporation.
Nonlinear forecasting of intertidal shoreface evolution
Grimes, D. J.; Cortale, N.; Baker, K.; McNamara, D. E.
2015-10-01
Natural systems dominated by sediment transport are notoriously difficult to forecast. This is particularly true along the ocean coastline, a region that draws considerable human attention as economic investment and infrastructure are threatened by both persistent, long-term and acute, event driven processes (i.e., sea level rise and storm damage, respectively). Forecasting the coastline's evolution over intermediate time (daily) and space (tens of meters) scales is hindered by the complexity of sediment transport and hydrodynamics, and limited access to the detailed local forcing that drives fast scale processes. Modern remote sensing systems provide an efficient, economical means to collect data within these regions. A solar-powered digital camera installation is used to capture the coast's evolution, and machine learning algorithms are implemented to extract the shoreline and estimate the daily mean intertidal coastal profile. Methods in nonlinear time series forecasting and genetic programming applied to these data corroborate that coastal morphology at these scales is predominately driven by nonlinear internal dynamics, which partially mask external forcing signatures. Results indicate that these forecasting techniques achieve nontrivial predictive skill for spatiotemporal forecast of the upper coastline profile (as much as 43% of variance in data explained for one day predictions). This analysis provides evidence that societally relevant coastline forecasts can be achieved without knowing the forcing environment or the underlying dynamical equations that govern coastline evolution.
Scafetta, Nicola
2013-01-01
Herein we adopt a multi-scale dynamical spectral analysis technique to compare and study the dynamical evolution of the harmonic components of the overlapping ACRIMSAT/ACRIM3, SOHO/VIRGO and SORCE/TIM total solar irradiance (TSI) records during 2003.15 to 2013.16 in solar cycles 23 and 24. The three TSI time series present highly correlated patterns. Significant power spectral peaks are common to these records and are observed at the following periods: 0.070 year, 0.097 year, 0.20 year, 0.25 year, 0.30-0.34 year, 0.39 year. Less certain spectral peaks occur at about 0.55 year, 0.60-0.65 year and 0.7-0.9 year. Four main frequency periods at 24.8 days (0.068 year), 27.3 days (0.075 year), at 34-35 days (0.093-0.096 year) and 36-38 days (0.099-0.104 year) characterize the solar rotation cycle. The amplitude of these oscillations, in particular of those with periods larger than 0.5 year, appears to be modulated by the 11-year solar cycle. Similar harmonics have been found in other solar indices. The observed peri...
Problems in nonlinear resistive MHD
Energy Technology Data Exchange (ETDEWEB)
Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L. [General Atomics, San Diego, CA (United States)
1998-12-31
Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1.
Asymptotics for dissipative nonlinear equations
Hayashi, Nakao; Kaikina, Elena I; Shishmarev, Ilya A
2006-01-01
Many of problems of the natural sciences lead to nonlinear partial differential equations. However, only a few of them have succeeded in being solved explicitly. Therefore different methods of qualitative analysis such as the asymptotic methods play a very important role. This is the first book in the world literature giving a systematic development of a general asymptotic theory for nonlinear partial differential equations with dissipation. Many typical well-known equations are considered as examples, such as: nonlinear heat equation, KdVB equation, nonlinear damped wave equation, Landau-Ginzburg equation, Sobolev type equations, systems of equations of Boussinesq, Navier-Stokes and others.
Focus issue introduction: nonlinear optics.
Boulanger, Benoît; Cundiff, Steven T; Gauthier, Daniel J; Karlsson, Magnus; Lu, Yan-Qing; Norwood, Robert A; Skryabin, Dmitry; Taira, Takunori
2011-11-07
It is now fifty years since the original observation of second harmonic generation ushered in the field of nonlinear optics, close on the heels of the invention of the laser. This feature issue celebrates this anniversary with papers that span the range from new nonlinear optical materials, through the increasingly novel methods that have been developed for phase matching, to emerging areas such as nonlinear metamaterials and plasmonic enhancement of optical properties. It is clear that the next fifty years of nonlinear optics will witness a proliferation of new applications with increasing technological impact.
Nonlocal homogenization for nonlinear metamaterials
Gorlach, Maxim A; Lapine, Mikhail; Kivshar, Yuri S; Belov, Pavel A
2016-01-01
We present a consistent theoretical approach for calculating effective nonlinear susceptibilities of metamaterials taking into account both frequency and spatial dispersion. Employing the discrete dipole model, we demonstrate that effects of spatial dispersion become especially pronounced in the vicinity of effective permittivity resonance where nonlinear susceptibilities reach their maxima. In that case spatial dispersion may enable simultaneous generation of two harmonic signals with the same frequency and polarization but different wave vectors. We also prove that the derived expressions for nonlinear susceptibilities transform into the known form when spatial dispersion effects are negligible. In addition to revealing new physical phenomena, our results provide useful theoretical tools for analysing resonant nonlinear metamaterials.
Nonlinear Peltier effect in semiconductors
Zebarjadi, Mona; Esfarjani, Keivan; Shakouri, Ali
2007-09-01
Nonlinear Peltier coefficient of a doped InGaAs semiconductor is calculated numerically using the Monte Carlo technique. The Peltier coefficient is also obtained analytically for single parabolic band semiconductors assuming a shifted Fermi-Dirac electronic distribution under an applied bias. Analytical results are in agreement with numerical simulations. Key material parameters affecting the nonlinear behavior are doping concentration, effective mass, and electron-phonon coupling. Current density thresholds at which nonlinear behavior is observable are extracted from numerical data. It is shown that the nonlinear Peltier effect can be used to enhance cooling of thin film microrefrigerator devices especially at low temperatures.
Nonlinearities in Behavioral Macroeconomics.
Gomes, Orlando
2017-07-01
This article undertakes a journey across the literature on behavioral macroeconomics, with attention concentrated on the nonlinearities that the behavioral approach typically suggests or implies. The emphasis is placed on thinking the macro economy as a living organism, composed of many interacting parts, each one having a will of its own, which is in sharp contrast with the mechanism of the orthodox view (well represented by the neoclassical or new Keynesian dynamic stochastic general equilibrium - DSGE - model). The paper advocates that a thorough understanding of individual behavior in collective contexts is the only possible avenue to further explore macroeconomic phenomena and the often observed 'anomalies' that the benchmark DSGE macro framework is unable to explain or justify. After a reflection on the role of behavioral traits as a fundamental component of a new way of thinking the economy, the article proceeds with a debate on some of the most relevant frameworks in the literature that somehow link macro behavior and nonlinearities; covered subjects include macro models with disequilibrium rules, agent-based models that highlight interaction and complexity, evolutionary switching frameworks, and inattention based decision problems. These subjects have, as a fundamental point in common, the use of behavioral elements to transform existing interpretations of the economic reality, making it more evident how irregular fluctuations emerge and unfold on the aggregate.
Improved nonlinear prediction method
Adenan, Nur Hamiza; Md Noorani, Mohd Salmi
2014-06-01
The analysis and prediction of time series data have been addressed by researchers. Many techniques have been developed to be applied in various areas, such as weather forecasting, financial markets and hydrological phenomena involving data that are contaminated by noise. Therefore, various techniques to improve the method have been introduced to analyze and predict time series data. In respect of the importance of analysis and the accuracy of the prediction result, a study was undertaken to test the effectiveness of the improved nonlinear prediction method for data that contain noise. The improved nonlinear prediction method involves the formation of composite serial data based on the successive differences of the time series. Then, the phase space reconstruction was performed on the composite data (one-dimensional) to reconstruct a number of space dimensions. Finally the local linear approximation method was employed to make a prediction based on the phase space. This improved method was tested with data series Logistics that contain 0%, 5%, 10%, 20% and 30% of noise. The results show that by using the improved method, the predictions were found to be in close agreement with the observed ones. The correlation coefficient was close to one when the improved method was applied on data with up to 10% noise. Thus, an improvement to analyze data with noise without involving any noise reduction method was introduced to predict the time series data.
Asymptotic behaviour for Schrodinger equations with a quadratic nonlinearity in one-space dimension
Directory of Open Access Journals (Sweden)
Nakao Hayashi
2001-07-01
Full Text Available We consider the Cauchy problem for the Schr"{o}dinger equation with a quadratic nonlinearity in one space dimension $$ iu_{t}+frac{1}{2}u_{xx}=t^{-alpha}| u_x| ^2,quad u(0,x = u_0(x, $$ where $alpha in (0,1$. From the heuristic point of view, solutions to this problem should have a quasilinear character when $alpha in (1/2,1$. We show in this paper that the solutions do not have a quasilinear character for all $alpha in (0,1$ due to the special structure of the nonlinear term. We also prove that for $alpha in [1/2,1$ if the initial data $u_0in H^{3,0}cap H^{2,2}$ are small, then the solution has a slow time decay such as $t^{-alpha /2}$. For $alpha in (0,1/2$, if we assume that the initial data $u_0$ are analytic and small, then the same time decay occurs.
Nonlinear processes in the strong wave-plasma interaction
Pegoraro, Francesco; Califano, Francesco; Attico, Nicola; Bulanov, Sergei
2000-10-01
Nonlinear interactions in hot laboratory and/or astrophysical plasmas are a very efficient mechanism able to transfer the energy from the large to the small spatial scales of the system. As a result, kinetic processes are excited and play a key role in the plasma dynamics since the typical fluid dissipative length scales (where the nonlinear cascade is stopped) are (much) smaller then the kinetic length scales. Then, the key point is the role of the kinetic effects in the global plasma dynamics, i.e. whether the kinetic effects remains confined to the small scales of the system or whether there is a significant feedback on the large scales. Here we will address this problem by discussing the nonlinear kinetic evolution of the electromagnetic beam plasma instability where phase space vortices, as well as large scale vortex like magnetic structures in the physical space, are generated by wave - particle interactions. The role and influence of kinetic effects on the large scale plasma dynamics will be also discussed by addressing the problem of collisionless magnetic reconection.
Double symbolic joint entropy in nonlinear dynamic complexity analysis
Yao, Wenpo; Wang, Jun
2017-07-01
Symbolizations, the base of symbolic dynamic analysis, are classified as global static and local dynamic approaches which are combined by joint entropy in our works for nonlinear dynamic complexity analysis. Two global static methods, symbolic transformations of Wessel N. symbolic entropy and base-scale entropy, and two local ones, namely symbolizations of permutation and differential entropy, constitute four double symbolic joint entropies that have accurate complexity detections in chaotic models, logistic and Henon map series. In nonlinear dynamical analysis of different kinds of heart rate variability, heartbeats of healthy young have higher complexity than those of the healthy elderly, and congestive heart failure (CHF) patients are lowest in heartbeats' joint entropy values. Each individual symbolic entropy is improved by double symbolic joint entropy among which the combination of base-scale and differential symbolizations have best complexity analysis. Test results prove that double symbolic joint entropy is feasible in nonlinear dynamic complexity analysis.