WorldWideScience

Sample records for nonlinear scattering contributes

  1. Nonlinear scattering in plasmonic nanostructures

    Science.gov (United States)

    Chu, Shi-Wei

    2016-09-01

    Nonlinear phenomena provide novel light manipulation capabilities and innovative applications. Recently, we discovered nonlinear saturation on single-particle scattering of gold nanospheres by continuous-wave laser excitation and innovatively applied to improve microscopic resolution down to λ/8. However, the nonlinearity was limited to the green-orange plasmonic band of gold nanosphere, and the underlying mechanism has not yet been fully understood. In this work, we demonstrated that nonlinear scattering exists for various material/geometry combinations, thus expanding the applicable wavelength range. For near-infrared, gold nanorod is used, while for blue-violet, silver nanospheres are adopted. In terms of mechanism, the nonlinearity may originate from interband/intraband absorption, hot electron, or hot lattice, which are spectrally mixed in the case of gold nanosphere. For gold nanorod and silver nanosphere, nonlinear scattering occurs at plasmonic resonances, which are spectrally far from interband/intraband absorptions, so they are excluded. We found that the nonlinear index is much larger than possible contributions from hot electrons in literature. Therefore, we conclude that hot lattice is the major mechanism. In addition, we propose that similar to z-scan, which is the standard method to characterize nonlinearity of a thin sample, laser scanning microscopy should be adopted as the standard method to characterize nonlinearity from a nanostructure. Our work not only provides the physical mechanism of the nonlinear scattering, but also paves the way toward multi-color superresolution imaging based on non-bleaching plasmonic scattering.

  2. Observation of Nonlinear Compton Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kotseroglou, T.

    2003-12-19

    This experiment tests Quantum Electrodynamics in the strong field regime. Nonlinear Compton scattering has been observed during the interaction of a 46.6 GeV electron beam with a 10{sup 18} W/cm{sup 2} laser beam. The strength of the field achieved was measured by the parameter {eta} = e{var_epsilon}{sub rms}/{omega}mc = 0.6. Data were collected with infrared and green laser photons and circularly polarized laser light. The timing stabilization achieved between the picosecond laser and electron pulses has {sigma}{sub rms} = 2 ps. A strong signal of electrons that absorbed up to 4 infrared photons (or up to 3 green photons) at the same point in space and time, while emitting a single gamma ray, was observed. The energy spectra of the scattered electrons and the nonlinear dependence of the electron yield on the field strength agreed with the simulation over 3 orders of magnitude. The detector could not resolve the nonlinear Compton scattering from the multiple single Compton scattering which produced rates of scattered electrons of the same order of magnitude. Nevertheless, a simulation has studied this difference and concluded that the scattered electron rates observed could not be accounted for only by multiple ordinary Compton scattering; nonlinear Compton scattering processes are dominant for n {ge} 3.

  3. Nonlinear X-ray Compton Scattering

    CERN Document Server

    Fuchs, Matthias; Chen, Jian; Ghimire, Shambhu; Shwartz, Sharon; Kozina, Michael; Jiang, Mason; Henighan, Thomas; Bray, Crystal; Ndabashimiye, Georges; Bucksbaum, P H; Feng, Yiping; Herrmann, Sven; Carini, Gabriella; Pines, Jack; Hart, Philip; Kenney, Christopher; Guillet, Serge; Boutet, Sebastien; Williams, Garth; Messerschmidt, Marc; Seibert, Marvin; Moeller, Stefan; Hastings, Jerome B; Reis, David A

    2015-01-01

    X-ray scattering is a weak linear probe of matter. It is primarily sensitive to the position of electrons and their momentum distribution. Elastic X-ray scattering forms the basis of atomic structural determination while inelastic Compton scattering is often used as a spectroscopic probe of both single-particle excitations and collective modes. X-ray free-electron lasers (XFELs) are unique tools for studying matter on its natural time and length scales due to their bright and coherent ultrashort pulses. However, in the focus of an XFEL the assumption of a weak linear probe breaks down, and nonlinear light-matter interactions can become ubiquitous. The field can be sufficiently high that even non-resonant multiphoton interactions at hard X-rays wavelengths become relevant. Here we report the observation of one of the most fundamental nonlinear X-ray-matter interactions, the simultaneous Compton scattering of two identical photons producing a single photon at nearly twice the photon energy. We measure scattered...

  4. Bubble nonlinear dynamics and stimulated scattering process

    Science.gov (United States)

    Jie, Shi; De-Sen, Yang; Sheng-Guo, Shi; Bo, Hu; Hao-Yang, Zhang; Shi-Yong, Hu

    2016-02-01

    A complete understanding of the bubble dynamics is deemed necessary in order to achieve their full potential applications in industry and medicine. For this purpose it is first needed to expand our knowledge of a single bubble behavior under different possible conditions including the frequency and pressure variations of the sound field. In addition, stimulated scattering of sound on a bubble is a special effect in sound field, and its characteristics are associated with bubble oscillation mode. A bubble in liquid can be considered as a representative example of nonlinear dynamical system theory with its resonance, and its dynamics characteristics can be described by the Keller-Miksis equation. The nonlinear dynamics of an acoustically excited gas bubble in water is investigated by using theoretical and numerical analysis methods. Our results show its strongly nonlinear behavior with respect to the pressure amplitude and excitation frequency as the control parameters, and give an intuitive insight into stimulated sound scattering on a bubble. It is seen that the stimulated sound scattering is different from common dynamical behaviors, such as bifurcation and chaos, which is the result of the nonlinear resonance of a bubble under the excitation of a high amplitude acoustic sound wave essentially. The numerical analysis results show that the threshold of stimulated sound scattering is smaller than those of bifurcation and chaos in the common condition. Project supported by the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1228) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11204050 and 11204049).

  5. Nonlinear ion acoustic waves scattered by vortexes

    Science.gov (United States)

    Ohno, Yuji; Yoshida, Zensho

    2016-09-01

    The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.

  6. Nonlinear ion acoustic waves scattered by vortexes

    CERN Document Server

    Ohno, Yuji

    2015-01-01

    The Kadomtsev--Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes `scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are `ambient' because they do not receive reciprocal reactions from the waves (i.e.,...

  7. Pulsed Laser Nonlinear Thomson Scattering for General Scattering Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Geoffrey Krafft; A. Doyuran; James Rosenzweig

    2005-05-01

    In a recent paper it has been shown that single electron Thomson backscatter calculations can be performed including the effects of pulsed high intensity lasers. In this paper we present a more detailed treatment of the problem and present results for more general scattering geometries. In particular, we present new results for 90 degree Thomson scattering. Such geometries have been increasingly studied as X-ray sources of short-pulse radiation. Also, we present a clearer physical basis for these different cases.

  8. Focusing coherent light through a nonlinear scattering medium

    CERN Document Server

    Frostig, Hadas; Derevyanko, Stanislav; Silberberg, Yaron

    2016-01-01

    Wavefront shaping is a powerful technique that can be used to focus light through scattering media, with the limitation that the obtained focus contains a small fraction of the total power. The method is based on the assumption that the field at the output is a linear superposition of the modes traveling through different paths in the medium. However, when the scattering medium also exhibits nonlinearity, as may occur in multiphoton microscopy, this assumption is violated and the applicability of wavefront shaping becomes unclear. Here we show that using adaptive optimization of the wavefront light can still be controlled and focused through a nonlinear scattering medium, and that the focused fraction of power can be significantly enhanced in the presence of moderate positive nonlinearity. Our results suggest that the use of short pulses for focusing through scattering media with a mild self-focusing response might be favorable to the use of continuous-wave light.

  9. Nonlinear images of scatterers in chirped pulsed laser beams

    Institute of Scientific and Technical Information of China (English)

    Hu Yong-Hua; Wang You-Wen; Wen Shuang-Chun; Fan Dian-Yuan

    2010-01-01

    The bandwidth and the duration of incident pulsed beam are proved to play important roles in modifying the nonlinear image of amplitude-type scatterer.It is found that the initially positive chirp-type bandwidth can suppress the nonlinear image,while the negative one can enhance it,and that both effects are inversely proportional to the incident pulse duration.Numerical simulations further demonstrate that the location of nonlinear image is at the conjugate plane of the scatterer and that,for negatively pre-chirped pulsed beam,the nonlinear image peak intensity can be higher than that in the corresponding monochromatic case under certain conditions.Moreover the effect of group velocity dispersion on nonlinear image is found to be similar to that of chirp-type bandwidth.

  10. A Recursive Born Approach to Nonlinear Inverse Scattering

    CERN Document Server

    Kamilov, Ulugbek S; Mansour, Hassan; Boufounos, Petros T

    2016-01-01

    The Iterative Born Approximation (IBA) is a well-known method for describing waves scattered by semi-transparent objects. In this paper, we present a novel nonlinear inverse scattering method that combines IBA with an edge-preserving total variation (TV) regularizer. The proposed method is obtained by relating iterations of IBA to layers of a feedforward neural network and developing a corresponding error backpropagation algorithm for efficiently estimating the permittivity of the object. Simulations illustrate that, by accounting for multiple scattering, the method successfully recovers the permittivity distribution where the traditional linear inverse scattering fails.

  11. Fermionic NNLO contributions to Bhabha scattering

    CERN Document Server

    Actis, S; Gluza, J; Riemann, T

    2007-01-01

    We derive the two-loop corrections to Bhabha scattering from heavy fermions using dispersion relations. The double-box contributions are expressed by three kernel functions. Convoluting the perturbative kernels with fermionic threshold functions or with hadronic data allows to determine numerical results for small electron mass m_e, combined with arbitrary values of the fermion mass m_f in the loop, $m_e^2<

  12. The contribution of specific organelles to side scatter

    Science.gov (United States)

    Mourant, Judith R.; Marina, Oana C.; Sanders, Claire K.

    2013-02-01

    Knowledge of which cellular structures scatter light is needed to fully utilize the information available from light scattering measurements of cells and tissues. To determine how specific organelles contribute to light scattering, wide angle side scattering was imaged simultaneously with fluorescence from specific organelles for thousands of cells using flow cytometry. Images were obtained with different depth of field conditions and analyzed with different assumptions. Both sets of data demonstrated that mitochondria and lysosomes, contribute similarly to side scatter. The nucleus contributes as much or more light scatter than either the mitochondria or the lysosomes.

  13. Nonlinear single Compton scattering of an electron wave-packet

    CERN Document Server

    Angioi, A; Di Piazza, A

    2016-01-01

    In the presence of a sufficiently intense electromagnetic laser field, an electron can absorb on average a large number of photons from the laser and emit a high-energy one (nonlinear single Compton scattering). The case of nonlinear single Compton scattering by an electron with definite initial momentum has been thoroughly investigated in the literature. Here, we consider a more general initial state of the electron and use a wave-packet obtained as a superposition of Volkov wave functions. In particular, we investigate the energy spectrum of the emitted radiation at fixed observation direction and show that in typical experimental situations the sharply peaked structure of nonlinear single Compton scattering spectra of an electron with definite initial energy is almost completely washed out. Moreover, we show that at comparable uncertainties, the one in the momentum of the incoming electron has a larger impact on the photon spectra at a fixed observation direction than the one on the laser frequency, relate...

  14. Scattering in the nonlinear Lamb system

    Energy Technology Data Exchange (ETDEWEB)

    Komech, A.I. [Faculty of Mathematics of Vienna University, Vienna (Austria); Institute for the Information Transmission Problems of RAS, Moscow (Russian Federation)], E-mail: alexander.komech@univie.ac.at; Merzon, A.E. [Institute of Physics and Mathematics, University of Michoacan of San Nicolas de Hidalgo, Morelia, Michoacan (Mexico)], E-mail: anatoli@ifm.imich.mx

    2009-03-09

    We obtain long time asymptotics for the solutions to a string coupled to a nonlinear oscillator: each finite energy solution decays to a sum of a stationary state and a dispersive wave. The asymptotics hold in global energy norm. The dispersive waves are expressed via initial data and solution to an ordinary differential equation. The asymptotics give a mathematical model for the Bohr's transitions between quantum stationary states.

  15. Electron scattering and nonlinear trapping by oblique whistler waves: The critical wave intensity for nonlinear effects

    Energy Technology Data Exchange (ETDEWEB)

    Artemyev, A. V., E-mail: ante0226@gmail.com; Vasiliev, A. A. [Space Research Institute, RAS, Moscow (Russian Federation); Mourenas, D.; Krasnoselskikh, V. V. [LPC2E/CNRS—University of Orleans, Orleans (France); Agapitov, O. V. [Space Sciences Laboratory, University of California, Berkeley, California 94720 (United States)

    2014-10-15

    In this paper, we consider high-energy electron scattering and nonlinear trapping by oblique whistler waves via the Landau resonance. We use recent spacecraft observations in the radiation belts to construct the whistler wave model. The main purpose of the paper is to provide an estimate of the critical wave amplitude for which the nonlinear wave-particle resonant interaction becomes more important than particle scattering. To this aim, we derive an analytical expression describing the particle scattering by large amplitude whistler waves and compare the corresponding effect with the nonlinear particle acceleration due to trapping. The latter is much more rare but the corresponding change of energy is substantially larger than energy jumps due to scattering. We show that for reasonable wave amplitudes ∼10–100 mV/m of strong whistlers, the nonlinear effects are more important than the linear and nonlinear scattering for electrons with energies ∼10–50 keV. We test the dependencies of the critical wave amplitude on system parameters (background plasma density, wave frequency, etc.). We discuss the role of obtained results for the theoretical description of the nonlinear wave amplification in radiation belts.

  16. Nonlinear scattering of radio waves by metal objects

    Science.gov (United States)

    Shteynshleyger, V. B.

    1984-07-01

    Nonlinear scattering of radio waves by metal structures with resulting harmonic and intermodulation interference is analyzed from both theoretical and empirical standpoints, disregarding nonlinear effects associated with the nonlinear dependence of the electric or magnetic polarization vector on respectively the electric or magnetic field intensity in the wave propagating medium. Nonlinear characteristics of metal-oxide-metal contacts where the thin oxide film separation two metal surfaces has properties approximately those of a dielectric or a high-resistivity semiconductor are discussed. Tunneling was found to be the principal mechanism of charge carrier transfer through such a contact with a sufficiently thin film, the contact having usually a cubic or sometimes an integral sign current-voltage characteristic at 300 K and usually S-form or sometimes a cubic current-voltage characteristic at 77 K.

  17. Nonreciprocal wave scattering on nonlinear string-coupled oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Lepri, Stefano, E-mail: stefano.lepri@isc.cnr.it [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Pikovsky, Arkady [Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str 24/25, Potsdam (Germany); Department of Control Theory, Nizhni Novgorod State University, Gagarin Av. 23, 606950, Nizhni Novgorod (Russian Federation)

    2014-12-01

    We study scattering of a periodic wave in a string on two lumped oscillators attached to it. The equations can be represented as a driven (by the incident wave) dissipative (due to radiation losses) system of delay differential equations of neutral type. Nonlinearity of oscillators makes the scattering non-reciprocal: The same wave is transmitted differently in two directions. Periodic regimes of scattering are analyzed approximately, using amplitude equation approach. We show that this setup can act as a nonreciprocal modulator via Hopf bifurcations of the steady solutions. Numerical simulations of the full system reveal nontrivial regimes of quasiperiodic and chaotic scattering. Moreover, a regime of a “chaotic diode,” where transmission is periodic in one direction and chaotic in the opposite one, is reported.

  18. Noninvasive nonlinear imaging through strongly-scattering turbid layers

    CERN Document Server

    Katz, Ori; Guan, Yefeng; Silberberg, Yaron

    2014-01-01

    Diffraction-limited imaging through complex scattering media is a long sought after goal with important applications in biomedical research. In recent years, high resolution wavefront-shaping has emerged as a powerful approach to generate a sharp focus through highly scattering, visually opaque samples. However, it requires a localized feedback signal from the target point of interest, which necessitates an invasive procedure in all-optical techniques. Here, we show that by exploiting optical nonlinearities, a diffraction-limited focus can be formed inside or through a complex sample, even when the feedback signal is not localized. We prove our approach theoretically and numerically, and experimentally demonstrate it with a two-photon fluorescence signal through highly scattering biological samples. We use the formed focus to perform two-photon microscopy through highly scattering, visually opaque layers.

  19. Higher-dimensional catastrophes in nonlinear Compton scattering

    Science.gov (United States)

    Kharin, Vasily; Seipt, Daniel; Rykovanov, Sergey

    2016-10-01

    The Compton scattering of the light on the accelerated electron beam is a valuable tool for generating tunable wide range X- and γ-radiation.However, the cross-section of the scattering is relatively low. That is, in order to obtain bright X-rays one naturally may consider increasing the intensity of the incident light. Passing to relativistic values of laser intensity significantly changes scattering mechanism. Precise QED analysis of the scattered spectra leads to the study of the corresponding elements of S-matrix. Evaluation is usually performed numerically (except cases of specific pulse shapes and scattering angles). We argue that the problem of extracting the scattered spectra in nonlinear Compton scattering of the pulse can be reformulated in terms of studying properties of projection map of specific surfaces associated to the pulse. They are stable with respect to initial conditions, and the brightest regions of the spectrum appear to be in correspondence with the singularities of the projection map, also known as caustics in pure mathematics, diffraction optics and cosmology. Work was supported by the Helmholtz Association (Helmholtz Young Investigators group VH-NG-1037).

  20. Nonlinear Evolutions of Stimulated Raman and Brillouin Scattering Processes in Partially Stripped-Ion Plasmas

    Institute of Scientific and Technical Information of China (English)

    胡业民; 胡希伟

    2001-01-01

    Numerical analyses for the nonlinear evolutions of stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS) processes are given. Various effects of the second- and third-order nonlinear susceptibilities on the SRS and SBS processes are studied. The nonlinear evolutions of SRS and SBS processes are atfected more efficiently than their linear growth rates by the nonlinear susceptibility.

  1. Rayleigh scattering and nonlinear inversion of elastic waves

    Energy Technology Data Exchange (ETDEWEB)

    Gritto, R.

    1995-12-01

    Rayleigh scattering of elastic waves by an inclusion is investigated and the limitations determined. In the near field of the inhomogeneity, the scattered waves are up to a factor of 300 stronger than in the far field, excluding the application of the far field Rayleigh approximation for this range. The investigation of the relative error as a function of parameter perturbation shows a range of applicability broader than previously assumed, with errors of 37% and 17% for perturbations of {minus}100% and +100%, respectively. The validity range for the Rayleigh limit is controlled by large inequalities, and therefore, the exact limit is determined as a function of various parameter configurations, resulting in surprisingly high values of up to k{sub p}R = 0.9. The nonlinear scattering problem can be solved by inverting for equivalent source terms (moments) of the scatterer, before the elastic parameters are determined. The nonlinear dependence between the moments and the elastic parameters reveals a strong asymmetry around the origin, which will produce different results for weak scattering approximations depending on the sign of the anomaly. Numerical modeling of cross hole situations shows that near field terms are important to yield correct estimates of the inhomogeneities in the vicinity of the receivers, while a few well positioned sources and receivers considerably increase the angular coverage, and thus the model resolution of the inversion parameters. The pattern of scattered energy by an inhomogeneity is complicated and varies depending on the object, the wavelength of the incident wave, and the elastic parameters involved. Therefore, it is necessary to investigate the direction of scattered amplitudes to determine the best survey geometry.

  2. Magnetic field contribution to the last electron-photon scattering

    OpenAIRE

    Giovannini, Massimo

    2010-01-01

    When the cosmic microwave photons scatter electrons just prior to the decoupling of matter and radiation, magnetic fields do contribute to the Stokes matrix as well as to the scalar, vector and tensor components of the transport equations for the brightness perturbations. The magnetized electron-photon scattering is hereby discussed in general terms by including, for the first time, the contribution of magnetic fields with arbitrary direction and in the presence of the scalar, vector and tens...

  3. Nonlinear double Compton scattering in the full quantum regime

    CERN Document Server

    Mackenroth, F

    2012-01-01

    A detailed analysis of the process of two photon emission by an electron scattered from a high-intensity laser pulse is presented. The calculations are performed in the framework of strong-field QED and include exactly the presence of the laser field, described as a plane wave. We investigate the full quantum regime of interaction, where photon recoil plays an essential role in the emission process, and substantially alters the emitted photon spectra as compared to those in previously-studied regimes. We provide a semiclassical explanation for such differences, based on the possibility of assigning a trajectory to the electron in the laser field before and after each quantum photon emission. Our numerical results indicate the feasibility of investigating experimentally the full quantum regime of nonlinear double Compton scattering with already available plasma-based electron accelerator and laser technology.

  4. Peak intensity measurement of relativistic lasers via nonlinear Thomson scattering

    CERN Document Server

    Har-Shemesh, Omri

    2011-01-01

    The measurement of peak laser intensities exceeding $10^{20}\\;\\text{W/cm$^2$}$ is in general a very challenging task. We suggest a simple method to accurately measure such high intensities up to about $10^{23}\\,\\text{W/cm$^2$}$, by colliding a beam of ultrarelativistic electrons with the laser pulse. The method exploits the specific features of the angular distribution of the radiation emitted by ultrarelativistic electrons via nonlinear Thomson scattering. Initial electron energies well within the reach of laser wake-field accelerators are required, allowing in principle for an all-optical setup. Accuracies of the order of 10% are envisaged.

  5. The contribution of scattering to near-surface attenuation

    Science.gov (United States)

    Pilz, Marco; Fäh, Donat

    2017-01-01

    The rapid decrease of the acceleration spectral amplitude at high frequencies has widely been modeled by the spectral decay factor kappa (κ). Usually, the path-corrected component of κ, often called κ0, is believed to be a local and frequency-independent site characteristic, in turn representing attenuation related to waves propagating vertically through the very shallow layers beneath the study site. Despite the known relevance of κ0 in a wide range of seismological applications, most methods for its calculation do not fully consider the influence of the scattering component. To account for the scattering component, we present a summary of statistical observations of the seismic wavefield at sites of the Swiss seismic networks. The intrinsic properties of the wavefield show a clear dependency on the local shallow subsoil conditions with differences in the structural heterogeneity of the shallow subsoil layers producing different scattering regimes. Such deviations from the ballistic behavior (i.e., direct waves that sample only distinct directions) are indicative for local structural heterogeneities and the associated level of scatter. Albeit the attenuation term related to scattering depends nonlinearly on the intrinsic term, the results indicate that the commonly used explanation for the high-frequency decay spectrum might not be appropriate but involving the amount of scattering might allow better constrained estimates of κ0.

  6. The contribution of scattering to near-surface attenuation

    Science.gov (United States)

    Pilz, Marco; Fäh, Donat

    2017-07-01

    The rapid decrease of the acceleration spectral amplitude at high frequencies has widely been modeled by the spectral decay factor kappa (κ). Usually, the path-corrected component of κ, often called κ0, is believed to be a local and frequency-independent site characteristic, in turn representing attenuation related to waves propagating vertically through the very shallow layers beneath the study site. Despite the known relevance of κ0 in a wide range of seismological applications, most methods for its calculation do not fully consider the influence of the scattering component. To account for the scattering component, we present a summary of statistical observations of the seismic wavefield at sites of the Swiss seismic networks. The intrinsic properties of the wavefield show a clear dependency on the local shallow subsoil conditions with differences in the structural heterogeneity of the shallow subsoil layers producing different scattering regimes. Such deviations from the ballistic behavior (i.e., direct waves that sample only distinct directions) are indicative for local structural heterogeneities and the associated level of scatter. Albeit the attenuation term related to scattering depends nonlinearly on the intrinsic term, the results indicate that the commonly used explanation for the high-frequency decay spectrum might not be appropriate but involving the amount of scattering might allow better constrained estimates of κ0.

  7. A tale of two contribution mechanisms for nonlinear public goods.

    Science.gov (United States)

    Zhang, Yanling; Fu, Feng; Wu, Te; Xie, Guangming; Wang, Long

    2013-01-01

    Amounts of empirical evidence, ranging from microbial cooperation to collective hunting, suggests public goods produced often nonlinearly depend on the total amount of contribution. The implication of such nonlinear public goods for the evolution of cooperation is not well understood. There is also little attention paid to the divisibility nature of individual contribution amount, divisible vs. non-divisible ones. The corresponding strategy space in the former is described by a continuous investment while in the latter by a continuous probability to contribute all or nothing. Here, we use adaptive dynamics in finite populations to quantify and compare the roles nonlinearity of public-goods production plays in cooperation between these two contribution mechanisms. Although under both contribution mechanisms the population can converge into a coexistence equilibrium with an intermediate cooperation level, the branching phenomenon only occurs in the divisible contribution mechanism. The results shed insight into understanding observed individual difference in cooperative behavior.

  8. Optical scattering by a nonlinear medium, II: induced photonic crystal in a nonlinear slab of BBO

    CERN Document Server

    Godard, Pierre; Nicolet, Andre

    2010-01-01

    The purpose of this paper is to investigate the scattering by a nonlinear crystal whose depth is about the wavelength of the impinging field. More precisely, an infinite nonlinear slab is illuminated by an incident field which is the sum of three plane waves of the same frequency, but with different propagation vectors and amplitudes, in such a way that the resulting incident field is periodic. Moreover, the height of the slab is of the same order of the wavelength, and therefore the so-called slowly varying envelope approximation cannot be used. In our approach we take into account some retroactions of the scattered fields between them (for instance, we do not use the nondepletion of the pump beam). As a result, a system of coupled nonlinear partial differential equations has to be solved. To do this, the finite element method (FEM) associated with perfectly matched layers is well suited. Nevertheless, when using the FEM, the sources have to be located in the meshed area, which is of course impossible when d...

  9. Virtual hadronic and leptonic contributions to Bhabha scattering.

    Science.gov (United States)

    Actis, Stefano; Czakon, Michał; Gluza, Janusz; Riemann, Tord

    2008-04-04

    Using dispersion relations, we derive the complete virtual QED contributions to Bhabha scattering due to vacuum polarization effects. We apply our result to hadronic corrections and to heavy lepton and top quark loop insertions. We give the first complete estimate of their net numerical effects for both small and large angle scattering at typical beam energies of meson factories, the CERN Large Electron-Positron Collider, and the International Linear Collider. With a typical amount of 1-3 per mil they are of relevance for precision experiments.

  10. Magnetic field contribution to the last electron-photon scattering

    CERN Document Server

    Giovannini, Massimo

    2010-01-01

    When the cosmic microwave photons scatter electrons just prior to the decoupling of matter and radiation, magnetic fields do contribute to the Stokes matrix as well as to the scalar, vector and tensor components of the transport equations for the brightness perturbations. The magnetized electron-photon scattering is hereby discussed in general terms by including, for the first time, the contribution of magnetic fields with arbitrary direction and in the presence of the scalar, vector and tensor modes of the geometry. The propagation of relic vectors and relic gravitons is discussed for a varying magnetic field orientation and for different photon directions. The source terms of the transport equations in the presence of the relativistic fluctuations of the geometry are also explicitly averaged over the magnetic field orientations and the problem of a consistent account of the small-scale and large-scale magnetic field is briefly outlined.

  11. Magnetic field contribution to the last electron-photon scattering

    Energy Technology Data Exchange (ETDEWEB)

    Giovannini, Massimo, E-mail: massimo.giovannini@cern.c [Department of Physics, Theory Division, CERN, 1211 Geneva 23 (Switzerland); INFN, Section of Milan-Bicocca, 20126 Milan (Italy)

    2010-11-21

    When the cosmic microwave photons scatter electrons just prior to the decoupling of matter and radiation, magnetic fields do contribute to the Stokes matrix as well as to the scalar, vector and tensor components of the transport equations for the brightness perturbations. The magnetized electron-photon scattering is hereby discussed in general terms by including, for the first time, the contribution of magnetic fields with arbitrary direction and in the presence of the scalar, vector and tensor modes of the geometry. The propagation of relic vectors and relic gravitons is discussed for a varying magnetic field orientation and for different photon directions. The source terms of the transport equations in the presence of the relativistic fluctuations of the geometry are also explicitly averaged over the magnetic field orientations and the problem of a consistent account of the small-scale and large-scale magnetic field is briefly outlined.

  12. Magnetic field contribution to the last electron-photon scattering

    Science.gov (United States)

    Giovannini, Massimo

    2010-11-01

    When the cosmic microwave photons scatter electrons just prior to the decoupling of matter and radiation, magnetic fields do contribute to the Stokes matrix as well as to the scalar, vector and tensor components of the transport equations for the brightness perturbations. The magnetized electron-photon scattering is hereby discussed in general terms by including, for the first time, the contribution of magnetic fields with arbitrary direction and in the presence of the scalar, vector and tensor modes of the geometry. The propagation of relic vectors and relic gravitons is discussed for a varying magnetic field orientation and for different photon directions. The source terms of the transport equations in the presence of the relativistic fluctuations of the geometry are also explicitly averaged over the magnetic field orientations and the problem of a consistent account of the small-scale and large-scale magnetic field is briefly outlined.

  13. Nonlinear optical absorption and stimulated Mie scattering in metallic nanoparticle suspensions

    Science.gov (United States)

    He, Guang S.; Law, Wing-Cheung; Baev, Alexander; Liu, Sha; Swihart, Mark T.; Prasad, Paras N.

    2013-01-01

    The nonlinear optical properties of four metallic (Au-, Au/Ag-, Ag-, and Pt-) nanoparticle suspensions in toluene have been studied in both femtosecond and nanosecond regimes. Nonlinear transmission measurements in the femtosecond laser regime revealed two-photon absorption (2PA) induced nonlinear attenuation, while in the nanosecond laser regime a stronger nonlinear attenuation is due to both 2PA and 2PA-induced excited-state absorption. In the nanosecond regime, at input pump laser intensities above a certain threshold value, a new type of stimulated (Mie) scattering has been observed. Being essentially different from all other well known molecular (Raman, Brillouin) stimulated scattering effects, the newly observed stimulated Mie scattering from the metallic nanoparticles exhibits the features of no frequency shift and low pump threshold requirement. A physical model of induced Bragg grating initiated by the backward Mie scattering from metallic nanoparticles is proposed to explain the gain mechanism of the observed stimulated scattering effect.

  14. Weak Turbulence in the Magnetosphere: Formation of Whistler Wave Cavity by Nonlinear Scattering

    CERN Document Server

    Crabtree, C; Ganguli, G; Mithaiwala, M; Galinsky, V; Shevchenko, V

    2011-01-01

    We consider the weak turbulence of whistler waves in the in low-\\beta\\ inner magnetosphere of the Earth. Whistler waves with frequencies, originating in the ionosphere, propagate radially outward and can trigger nonlinear induced scattering by thermal electrons provided the wave energy density is large enough. Nonlinear scattering can substantially change the direction of the wave vector of whistler waves and hence the direction of energy flux with only a small change in the frequency. A portion of whistler waves return to the ionosphere with a smaller perpendicular wave vector resulting in diminished linear damping and enhanced ability to pitch-angle scatter trapped electrons. In addition, a portion of the scattered wave packets can be reflected near the ionosphere back into the magnetosphere. Through multiple nonlinear scatterings and ionospheric reflections a long-lived wave cavity containing turbulent whistler waves can be formed with the appropriate properties to efficiently pitch-angle scatter trapped e...

  15. The Scattering Problem for a Noncommutative Nonlinear Schrödinger Equation

    Directory of Open Access Journals (Sweden)

    Bergfinnur Durhuus

    2010-06-01

    Full Text Available We investigate scattering properties of a Moyal deformed version of the nonlinear Schrödinger equation in an even number of space dimensions. With rather weak conditions on the degree of nonlinearity, the Cauchy problem for general initial data has a unique globally defined solution, and also has solitary wave solutions if the interaction potential is suitably chosen. We demonstrate how to set up a scattering framework for equations of this type, including appropriate decay estimates of the free time evolution and the construction of wave operators defined for small scattering data in the general case and for arbitrary scattering data in the rotationally symmetric case.

  16. Proton polarizability contribution: Muonic hydrogen Lamb shift and elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Gerald A., E-mail: miller@phys.washington.edu [Department of Physics, Univ. of Washington, Seattle, WA 98195-3560 (United States)

    2013-01-08

    The uncertainty in the contribution to the Lamb shift in muonic hydrogen, {Delta}E{sup subt} arising from proton polarizability effects in the two-photon exchange diagram at large virtual photon momenta is shown large enough to account for the proton radius puzzle. This is because {Delta}E{sup subt} is determined by an integrand that falls very slowly with very large virtual photon momenta. We evaluate the necessary integral using a set of chosen form factors and also a dimensional regularization procedure which makes explicit the need for a low energy constant. The consequences of our two-photon exchange interaction for low-energy elastic lepton-proton scattering are evaluated and could be observable in a planned low energy lepton-proton scattering experiment planned to run at PSI.

  17. Virtual Hadronic and Leptonic Contributions to Bhabha Scattering

    CERN Document Server

    Actis, Stefano; Gluza, Janusz; Riemann, Tord

    2007-01-01

    Using dispersion relations, we derive the complete virtual QED contributions to Bhabha scattering due to vacuum polarization effects in photon propagation. We apply our result to hadronic corrections and to heavy lepton and top quark loop insertions. We give the first complete estimate of their net numerical effects for both small and large angle scattering at typical beam energies of meson factories, LEP, and the ILC. The effects turn out to be smaller, in most cases, than those corresponding to electron loop insertions, but stay, with amounts of typically one per mille, of relevance for precision experiments. Hadronic corrections themselves are typically about 2-3 times larger than those of intermediate muon pairs (the largest heavy leptonic terms).

  18. Properties of Differential Scattering Section Based on Multi-photon Nonlinear Compton Effect

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Properties of damping electrons in collision with photons based on multi-photon nonlinear Compton effect are investigated. The expressions of the differential scattering section are derived. Several useful conclusions are drawn.

  19. High frequency nonlinear scattering from a micrometer to submicrometer sized lipid encapsulated contrast agent

    NARCIS (Netherlands)

    Goertz, David E.; Frijlink, Martijn E.; de Jong, N.; van der Steen, A.F.W.

    2006-01-01

    An experimental lipid encapsulated contrast agent comprised substantially of micrometer to submicrometer diameter bubbles was evaluated for its capacity to produce nonlinear scattering in response to high transmit frequencies. Agent characterization experiments were conducted at transmit frequencies

  20. The Smoothness of Scattering Operators for Sinh-Gordon and Nonlinear Schrodinger Equations

    Institute of Scientific and Technical Information of China (English)

    Bao Xiang WANG

    2002-01-01

    We show that the scattering operator carries a band in Hs(Rn) × Hs-1(Rn) into Hs(Rn) ×Hs-1(Rn) for the sinh-Gordon equation and an analogous result also holds true for the nonlinearSchrodinger equation with an exponential nonlinearity, where s ≥ n/2 is arbitrary and n ≥ 2. Therefore,the scattering operators are infinitely smooth for the above two equations.

  1. Asymmetrically pumped Bragg scattering with the effects of nonlinear phase modulation

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; Friis, Søren Michael Mørk; Reddy, Dileep V.

    2014-01-01

    We derive exact solutions to asymmetrically pumped Bragg scattering with nonlinear phase-modulation (NPM) and show that this setup allows for the frequency conversion of many temporal modes, while reducing the effects due to NPM.......We derive exact solutions to asymmetrically pumped Bragg scattering with nonlinear phase-modulation (NPM) and show that this setup allows for the frequency conversion of many temporal modes, while reducing the effects due to NPM....

  2. Contributions of plasma physics to chaos and nonlinear dynamics

    Science.gov (United States)

    Escande, D. F.

    2016-11-01

    This topical review focusses on the contributions of plasma physics to chaos and nonlinear dynamics bringing new methods which are or can be used in other scientific domains. It starts with the development of the theory of Hamiltonian chaos, and then deals with order or quasi order, for instance adiabatic and soliton theories. It ends with a shorter account of dissipative and high dimensional Hamiltonian dynamics, and of quantum chaos. Most of these contributions are a spin-off of the research on thermonuclear fusion by magnetic confinement, which started in the fifties. Their presentation is both exhaustive and compact. [15 April 2016

  3. Prediction of biodegradation kinetics using a nonlinear group contribution method

    Energy Technology Data Exchange (ETDEWEB)

    Tabak, H.H. (Environmental Protection Agency, Cincinnati, OH (United States)); Govind, R. (Univ. of Cincinnati, OH (United States))

    1993-02-01

    The fate of organic chemicals in the environment depends on their susceptibility to biodegradation. Hence, development of regulations concerning their manufacture and use requires information on the extent and rate of biodegradation. Recent studies have attempted to correlate the kinetics of biodegradation with the molecular structure of the compound. This has led to the development of structure-biodegradation relationships (SBRs) using the group contribution approach. Each defined group present in the chemical structure of the compound is assigned a unique numerical contribution toward the calculation of the biodegradation kinetic constants. In this paper, a nonlinear group contribution method has been developed using neural networks; it is trained using literature data on the first-order biodegradation kinetic rate constant for a number of priority pollutants. The trained neural network is then used to predict the biodegradation kinetic constant for a new list of compounds, and results have been compared with the experimental values and the predictions obtained from a linear group contribution method. It has been shown that the nonlinear group contribution method using neural networks is able to provide a superior fit to the training set data and test data set and produce a lower prediction error than the previous linear method.

  4. Proton Polarizability Contribution: Muonic Hydrogen Lamb Shift and Elastic Scattering

    CERN Document Server

    Miller, Gerald A

    2012-01-01

    The uncertainty in the computed contribution to the Lamb shift in muonic hydrogen, DeltaE(subt) arising from proton polarizability effects entering in the two-photon exchange diagram at large virtual photon momenta is shown to be large enough to account for the proton radius puzzle. This is because the integral that determines DeltaE(subt) contains a logarithmic divergence. We evaluate this integral using a chosen form factor and also by using the dimensional regularization procedure which makes explicit the need for a low energy constant. The consequences of this new contribution to two photon exchange are approximately independent of the method of calculation and should be observable in a planned low energy lepton-proton scattering experiment planned to run at PSI.

  5. Optical Performance and Nonlinear Scattering of Soluble Polystyrene Grafted Multi-Walled Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    TONG Rui; WU Hui-Xia; QIU Xue-Qiong; QIAN Shi-Xiong; LIN Yang-Hui; CAI Rui-Fang

    2006-01-01

    @@ Three soluble polystyrene grafted multi-walled carbon nanotube (MWNT) samples are synthesized, and their optical performance and nonlinear scattering properties are investigated by z-scan method using nanosecond pulses of 532nm from a frequency-doubled Q-switched Nd:YLF laser. Analysis of the experimental results shows that other than nonlinear scattering, nonlinear absorption plays a major role in optical limiting performance of these stable and well-dispersed suspensions. These new synthesized materials which can be better dispersed in common organic solvents than MWNT itself can be considered as potential sources for further optical applications.

  6. The initial value problem, scattering and inverse scattering, for Schroedinger equations with a potential and a non-local nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Romero, MarIa de los Angeles Sandoval; Weder, Ricardo [Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-726, Mexico DF 01000 (Mexico)

    2006-09-15

    We consider nonlinear Schroedinger equations with a potential, and non-local nonlinearities, that are models in mesoscopic physics, for example of a quantum capacitor, and that are also models of molecular structure. We study in detail the initial value problem for these equations, in particular, existence and uniqueness of local and global solutions, continuous dependence on the initial data and regularity. We allow for a large class of unbounded potentials. We have no restriction on the growth at infinity of the positive part of the potential. We also construct the scattering operator in the case of potentials that go to zero at infinity. Furthermore, we give a method for the unique reconstruction of the potential from the small amplitude limit of the scattering operator. In the case of the quantum capacitor, our method allows us to uniquely reconstruct all the physical parameters from the small amplitude limit of the scattering operator.

  7. Enhanced nonlinear imaging through scattering media using transmission matrix based wavefront shaping

    CERN Document Server

    de Aguiar, Hilton B; Brasselet, Sophie

    2016-01-01

    Despite the tremendous progresses in wavefront control through or inside complex scattering media, several limitations prevent reaching practical feasibility for nonlinear imaging in biological tissues. While the optimization of nonlinear signals might suffer from low signal to noise conditions and from possible artifacts at large penetration depths, it has nevertheless been largely used in the multiple scattering regime since it provides a guide star mechanism as well as an intrinsic compensation for spatiotemporal distortions. Here, we demonstrate the benefit of Transmission Matrix (TM) based approaches under broadband illumination conditions, to perform nonlinear imaging. Using ultrashort pulse illumination with spectral bandwidth comparable but still lower than the spectral width of the scattering medium, we show strong nonlinear enhancements of several orders of magnitude, through thicknesses of a few transport mean free paths, which corresponds to millimeters in biological tissues. Linear TM refocusing ...

  8. Scattering in the ultrastrong regime: nonlinear optics with one photon

    OpenAIRE

    Sánchez-Burillo, Eduardo; Zueco, David; García-Ripoll, Juanjo; Martín-Moreno, Luis

    2014-01-01

    The scattering of a flying photon by a two-level system ultrastrongly coupled to a one-dimensional photonic waveguide is studied numerically. The photonic medium is modeled as an array of coupled cavities and the whole system is analyzed beyond the rotating wave approximation using Matrix Product States. It is found that the scattering is strongly influenced by the single- and multi-photon dressed bound states present in the system. In the ultrastrong coupling regime a new channel for inelast...

  9. Quantification and parametrization of non-linearity effects by higher-order sensitivity terms in scattered light differential optical absorption spectroscopy

    OpenAIRE

    J. Puķīte; T. Wagner

    2016-01-01

    We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer–Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, ...

  10. Global well-posedness and scattering for nonlinear Schrödinger equations with combined nonlinearities in the radial case

    Science.gov (United States)

    Cheng, Xing; Miao, Changxing; Zhao, Lifeng

    2016-09-01

    We consider the Cauchy problem for the nonlinear Schrödinger equation with combined nonlinearities, one of which is defocusing mass-critical and the other is focusing energy-critical or energy-subcritical. The threshold is given by means of variational argument. We establish the profile decomposition in H1 (Rd) and then utilize the concentration-compactness method to show the global wellposedness and scattering versus blowup in H1 (Rd) below the threshold for radial data when d ≤ 4.

  11. Contribution of double scattering to structural coloration in quasiordered nanostructures of bird feathers

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Heeso; Liew, Seng Fatt; Saranathan, Vinodkumar; Prum, Richard O.; Mochrie, Simon G.J.; Dufresne, Eric R.; Cao, Hui (Yale)

    2010-07-28

    We measured the polarization- and angle-resolved optical scattering and reflection spectra of the quasiordered nanostructures in the bird feather barbs. In addition to the primary peak that originates from single scattering, we observed a secondary peak which exhibits depolarization and distinct angular dispersion. We explained the secondary peak in terms of double scattering, i.e., light is scattered successively twice by the structure. The two sequential single-scattering events are considered uncorrelated. Using the Fourier power spectra of the nanostructures obtained from the small-angle x-ray scattering experiment, we calculated the double scattering of light in various directions. The double-scattering spectrum is broader than the single-scattering spectrum, and it splits into two subpeaks at larger scattering angle. The good agreement between the simulation results and the experimental data confirms that double scattering of light makes a significant contribution to the structural color.

  12. An explicit MOT-TDVIE scheme for analyzing electromagnetic field interactions on nonlinear scatterers

    KAUST Repository

    Ulku, Huseyin Arda

    2015-02-01

    An explicit marching on-in-time (MOT) based time domain electric field volume integral equation (TDVIE) solver for characterizing electromagnetic wave interactions on scatterers with nonlinear material properties is proposed. Discretization of the unknown electric field intensity and flux density is carried out by half and full Schaubert-Wilton-Glisson basis functions, respectively. Coupled system of spatially discretized TDVIE and the nonlinear constitutive relation between the field intensity and the flux density is integrated in time to compute the samples of the unknowns. An explicit PE(CE)m scheme is used for this purpose. Explicitness allows for \\'easy\\' incorporation of the nonlinearity as a function only to be evaluated on the right hand side of the coupled system of equations. A numerical example that demonstrates the applicability of the proposed MOT scheme to analyzing electromagnetic interactions on Kerr-nonlinear scatterers is presented. © 2015 IEEE.

  13. Nonlinear photoacoustic wavefront shaping (PAWS) for single speckle-grain optical focusing in scattering media

    CERN Document Server

    Lai, Puxiang; Tay, Jian Wei; Wang, Lihong V

    2014-01-01

    Non-invasively focusing light into strongly scattering media, such as biological tissue, is highly desirable but challenging. Recently, wavefront shaping technologies guided by ultrasonic encoding or photoacoustic sensing have been developed to address this limitation. So far, these methods provide only acoustic diffraction-limited optical focusing. Here, we introduce nonlinear photoacoustic wavefront shaping (PAWS), which achieves optical diffraction-limited (i.e. single-speckle-grain) focusing in scattering media. We develop an efficient dual-pulse excitation approach to generate strong nonlinear photoacoustic (PA) signals based on the Grueneisen memory effect. These nonlinear PA signals are used as feedback to guide iterative wavefront optimization. By maximizing the amplitude of the nonlinear PA signal, light is effectively focused to a single optical speckle grain. Experimental results demonstrate a clear optical focus on the scale of 5-7 micrometers, which is ~10 times smaller than the acoustic focus in...

  14. Nonlinear scattering in hard tissue studied with ultrashort laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Eichler, J. [Technische Fachhochschule Berlin, Univ. of Applied Sciences (Germany); Kim, B.M. [Yonsei Univ., Wonjoo, Kangwon-Do (Korea)

    2002-07-01

    The back-scattered spectrum of ultrashort laser pulses (800 nm, 0.2 ps) was studied in human dental and other hard tissues in vitro below the ablation threshold. Frequency doubled radiation (SHG), frequency tripled radiation and two-photon fluorescence were detected. The relative yield for these processes was measured for various pulse energies. The dependence of the SHG signal on probe thickness was determined in forward and back scattering geometry. SHG is sensitive to linear polarization of the incident laser radiation. SHG in human teeth was studied in vitro showing larger signals in dentin than in cementum and enamel. In carious areas no SHG signal could be detected. Possible applications of higher harmonic radiation for diagnostics and microscopy are discussed. (orig.)

  15. Inverse scattering solution of non-linear evolution equations in one space dimension: an introduction

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Estrada, R.F.

    1979-08-01

    A comprehensive review of the inverse scattering solution of certain non-linear evolution equations of physical interest in one space dimension is presented. We explain in some detail the interrelated techniques which allow to linearize exactly the following equations: (1) the Korteweg and de Vries equation; (2) the non-linear Schrodinger equation; (3) the modified Korteweg and de Vries equation; (4) the Sine-Gordon equation. We concentrate in discussing the pairs of linear operators which accomplish such an exact linearization and the solution of the associated initial value problem. The application of the method to other non-linear evolution equations is reviewed very briefly.

  16. Flow velocity measurement with the nonlinear acoustic wave scattering

    Science.gov (United States)

    Didenkulov, Igor; Pronchatov-Rubtsov, Nikolay

    2015-10-01

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  17. Flow velocity measurement with the nonlinear acoustic wave scattering

    Energy Technology Data Exchange (ETDEWEB)

    Didenkulov, Igor, E-mail: din@appl.sci-nnov.ru [Institute of Applied Physics, 46 Ulyanov str., Nizhny Novgorod, 603950 (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation); Pronchatov-Rubtsov, Nikolay, E-mail: nikvas@rf.unn.ru [Lobachevsky State University of Nizhny Novgorod, 23 Gagarin ave., Nizhny Novgorod, 603950 (Russian Federation)

    2015-10-28

    A problem of noninvasive measurement of liquid flow velocity arises in many practical applications. To this end the most often approach is the use of the linear Doppler technique. The Doppler frequency shift of signal scattered from the inhomogeneities distributed in a liquid relatively to the emitted frequency is proportional to the sound frequency and velocities of inhomogeneities. In the case of very slow flow one needs to use very high frequency sound. This approach fails in media with strong sound attenuation because acoustic wave attenuation increases with frequency and there is limit in increasing sound intensity, i.e. the cavitation threshold. Another approach which is considered in this paper is based on the method using the difference frequency Doppler Effect for flows with bubbles. This method is based on simultaneous action of two high-frequency primary acoustic waves with closed frequencies on bubbles and registration of the scattered by bubbles acoustic field at the difference frequency. The use of this method is interesting since the scattered difference frequency wave has much lower attenuation in a liquid. The theoretical consideration of the method is given in the paper. The experimental examples confirming the theoretical equations, as well as the ability of the method to be applied in medical diagnostics and in technical applications on measurement of flow velocities in liquids with strong sound attenuation is described. It is shown that the Doppler spectrum form depends on bubble concentration velocity distribution in the primary acoustic beams crossing zone that allows one to measure the flow velocity distribution.

  18. Nonlinear Schroedinger excitations scattering on local barrier in one dimension

    CERN Document Server

    Kovrizhin, D L

    2001-01-01

    The task on the excitations scattering of the Bose condensate under consideration on the unidimensional barrier is nontrivial one even in the case of a low barrier because the barrier itself and change in the condensate density in its vicinity play the similar important role. It is shown that if any repulsive barrier for a bare particle within the range of the waves high lengths is impermeable, than the coefficient of the delta-functional transmission for the phonons within this range strives to the unity and the barrier becomes transparent

  19. Effects of nonlinear phase modulation on Bragg scattering in the low-conversion regime

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; Cargill, D. S.; McKinstrie, C. J.

    2012-01-01

    In this paper, we consider the effects of nonlinear phase modulation on frequency conversion by four-wave mixing (Bragg scattering) in the low-conversion regime. We derive the Green functions for this process using the time-domain collision method, for partial collisions, in which the four fields...

  20. Non-Linear Rheological Properties and Neutron Scattering Investigation on Dilute Ring-Linear Blends

    DEFF Research Database (Denmark)

    Pyckhout-Hintzen, W.; Bras, A.R.; Wischnewski, A.;

    Linear and non-linear Rheology on dilute blends of polystyrene ring polymers in linear matrix is combined with Small Angle Neutron Scattering (SANS) investigations. In this way 2 different entanglement interactions become clear. After stretching the samples to different hencky strains up to 2 in ...

  1. Effects of nonlinear phase modulation on low-conversion four-wave mixing Bragg scattering

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; McKinstrie, C. J.; Rottwitt, Karsten

    We consider the effects of nonlinear phase modulation (NPM) on frequency converseon by Bragg scattering. Previously we found that arbitrary mode reshaping without temporal entanglement (separability) was possible. When NPM is included, the modes are chirped and the separability is no longer compl...

  2. Fractal scattering of Gaussian solitons in directional couplers with logarithmic nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Rafael M.P.; Cardoso, Wesley B., E-mail: wesleybcardoso@gmail.com

    2016-08-12

    In this paper we study the interaction of Gaussian solitons in a dispersive and nonlinear media with log-law nonlinearity. The model is described by the coupled logarithmic nonlinear Schrödinger equations, which is a nonintegrable system that allows the observation of a very rich scenario in the collision patterns. By employing a variational approach and direct numerical simulations, we observe a fractal-scattering phenomenon from the exit velocities of each soliton as a function of the input velocities. Furthermore, we introduce a linearization model to identify the position of the reflection/transmission window that emerges within the chaotic region. This enables us the possibility of controlling the scattering of solitons as well as the lifetime of bound states. - Highlights: • We study the interaction of Gaussian solitons in a system with log-law nonlinearity. • The model is described by the coupled logarithmic nonlinear Schrödinger equations. • We observe a fractal-scattering phenomenon of the solitons.

  3. Stimulated Raman Scattering and Nonlinear Focusing of High-Power Laser Beams Propagating in Water

    CERN Document Server

    Hafizi, B; Penano, J R; Gordon, D F; Jones, T G; Helle, M H; Kaganovich, D

    2015-01-01

    The physical processes associated with propagation of a high-power (power > critical power for self-focusing) laser beam in water include nonlinear focusing, stimulated Raman scattering (SRS), optical breakdown and plasma formation. The interplay between nonlinear focusing and SRS is analyzed for cases where a significant portion of the pump power is channeled into the Stokes wave. Propagation simulations and an analytical model demonstrate that the Stokes wave can re-focus the pump wave after the power in the latter falls below the critical power. It is shown that this novel focusing mechanism is distinct from cross-phase focusing. While discussed here in the context of propagation in water, the gain-focusing phenomenon is general to any medium supporting nonlinear focusing and stimulated forward Raman scattering.

  4. Scattering of time-harmonic elastic waves by an elastic inclusion with quadratic nonlinearity.

    Science.gov (United States)

    Tang, Guangxin; Jacobs, Laurence J; Qu, Jianmin

    2012-04-01

    This paper considers the scattering of a plane, time-harmonic wave by an inclusion with heterogeneous nonlinear elastic properties embedded in an otherwise homogeneous linear elastic solid. When the inclusion and the surrounding matrix are both isotropic, the scattered second harmonic fields are obtained in terms of the Green's function of the surrounding medium. It is found that the second harmonic fields depend on two independent acoustic nonlinearity parameters related to the third order elastic constants. Solutions are also obtained when these two acoustic nonlinearity parameters are given as spatially random functions. An inverse procedure is developed to obtain the statistics of these two random functions from the measured forward and backscattered second harmonic fields.

  5. A Time Marching Scheme for Solving Volume Integral Equations on Nonlinear Scatterers

    KAUST Repository

    Bagci, Hakan

    2015-01-07

    Transient electromagnetic field interactions on inhomogeneous penetrable scatterers can be analyzed by solving time domain volume integral equations (TDVIEs). TDVIEs are oftentimes solved using marchingon-in-time (MOT) schemes. Unlike finite difference and finite element schemes, MOT-TDVIE solvers require discretization of only the scatterers, do not call for artificial absorbing boundary conditions, and are more robust to numerical phase dispersion. On the other hand, their computational cost is high, they suffer from late-time instabilities, and their implicit nature makes incorporation of nonlinear constitutive relations more difficult. Development of plane-wave time-domain (PWTD) and FFT-based schemes has significantly reduced the computational cost of the MOT-TDVIE solvers. Additionally, latetime instability problem has been alleviated for all practical purposes with the development of accurate integration schemes and specially designed temporal basis functions. Addressing the third challenge is the topic of this presentation. I will talk about an explicit MOT scheme developed for solving the TDVIE on scatterers with nonlinear material properties. The proposed scheme separately discretizes the TDVIE and the nonlinear constitutive relation between electric field intensity and flux density. The unknown field intensity and flux density are expanded using half and full Schaubert-Wilton-Glisson (SWG) basis functions in space and polynomial temporal interpolators in time. The resulting coupled system of the discretized TDVIE and constitutive relation is integrated in time using an explicit P E(CE) m scheme to yield the unknown expansion coefficients. Explicitness of time marching allows for straightforward incorporation of the nonlinearity as a function evaluation on the right hand side of the coupled system of equations. Consequently, the resulting MOT scheme does not call for a Newton-like nonlinear solver. Numerical examples, which demonstrate the applicability

  6. Sir Clive Granger’s contributions to nonlinear time series and econometrics

    DEFF Research Database (Denmark)

    Terasvirta, Timo

    Clive Granger had a wide range of reseach interests and has worked in a number of areas. In this work the focus is on his contributions to nonlinear time series models and modelling. Granger's contributions to a few other aspects of nonlinearity are reviewed as well.......Clive Granger had a wide range of reseach interests and has worked in a number of areas. In this work the focus is on his contributions to nonlinear time series models and modelling. Granger's contributions to a few other aspects of nonlinearity are reviewed as well....

  7. Strong nonlinearity-induced correlations for counterpropagating photons scattering on a two-level emitter

    DEFF Research Database (Denmark)

    Nysteen, Anders; McCutcheon, Dara; Mørk, Jesper

    2015-01-01

    We analytically treat the scattering of two counterpropagating photons on a two-level emitter embedded in an optical waveguide. We find that the nonlinearity of the emitter can give rise to significant pulse-dependent directional correlations in the scattered photonic state, which could...... be quantified via a reduction in coincidence clicks in a Hong–Ou–Mandel measurement setup, analogous to a linear beam splitter. Changes to the spectra and phase of the scattered photons, however, would lead to reduced interference with other photons when implemented in a larger optical circuit. We introduce...... suitable fidelity measures which account for these changes and find that high values can still be achieved even when accounting for all properties of the scattered photonic state....

  8. Contribution to stability analysis of nonlinear control systems

    Directory of Open Access Journals (Sweden)

    Švarc Ivan

    2003-12-01

    Full Text Available The Popov criterion for the stability of nonlinear control systems is considered. The Popov criterion gives sufficient conditions for stability of nonlinear systems in the frequency domain. It has a direct graphical interpretation and is convenient for both design and analysis. In the article presented, a table of transfer functions of linear parts of nonlinear systems is constructed. The table includes frequency response functions and offers solutions to the stability of the given systems. The table makes a direct stability analysis of selected nonlinear systems possible. The stability analysis is solved analytically and graphically.Then it is easy to find out if the nonlinear system is or is not stable; the task that usually ranks among the difficult task in engineering practice.

  9. Inverse scattering transform for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions.

    Science.gov (United States)

    Chen, Xiang-Jun; Lam, Wa Kun

    2004-06-01

    An inverse scattering transform for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions is derived by introducing an affine parameter to avoid constructing Riemann sheets. A one-soliton solution simpler than that in the literature is obtained, which is a breather and degenerates to a bright or dark soliton as the discrete eigenvalue becomes purely imaginary. The solution is mapped to that of the modified nonlinear Schrödinger equation by a gaugelike transformation, predicting some sub-picosecond solitons in optical fibers.

  10. Nonlinear Propagation of Coupling Optical Pulse under Compton Scattering in Laser Medium

    Institute of Scientific and Technical Information of China (English)

    HAO Dong-shan; ZHANG Xiao-fu

    2006-01-01

    After considering Kerr nonlinear effect,group velocity dispersion of host and gain distribution of active particle in laser amplifying medium,a basic equation describing propagation of the coupling optical pulse under the multi-photon nonlinear Compton scattering in the laser amplifying medium has been deduced. Besides,the profile and power spectrum of a picosecond-level super-Gaussian coupling pulse in the laser amplifying medium have been discussed when its central frequency coincides with the gain peak frequency of the laser amplifying medium.

  11. Buried Object Detection by an Inexact Newton Method Applied to Nonlinear Inverse Scattering

    Directory of Open Access Journals (Sweden)

    Matteo Pastorino

    2012-01-01

    Full Text Available An approach to reconstruct buried objects is proposed. It is based on the integral equations of the electromagnetic inverse scattering problem, written in terms of the Green’s function for half-space geometries. The full nonlinearity of the problem is exploited in order to inspect strong scatterers. After discretization of the continuous model, the resulting equations are solved in a regularization sense by means of a two-step inexact Newton algorithm. The capabilities and limitations of the method are evaluated by means of some numerical simulations.

  12. Nonlinear coda wave analysis of hysteretic elastic behavior in strongly scattering media

    Science.gov (United States)

    Ouarabi, M. Ait; Boubenider, F.; Gliozzi, A. S.; Scalerandi, M.

    2016-10-01

    Strongly scattering elastic media, such as consolidated granular materials, respond to ultrasonic pulse excitations with a long response signal with peculiar properties. The portion of the signal at late times, termed coda, is due to multiple scattering. It contains information about the elastic properties of the material, and it has been proven to be very sensitive to small variations in the modulus. Here we propose a technique based on a nonlinear analysis of the coda of a signal, which might be applied to quantify the nonlinear elastic response in consolidated granular media exhibiting a hysteretic elastic behavior. The method proposed allows for an intrinsic definition of the reference signal which is normally needed for applying coda-based methods.

  13. Particle spectra and efficiency in nonlinear relativistic shock acceleration: survey of scattering models

    CERN Document Server

    Ellison, Donald C; Bykov, Andrei M

    2015-01-01

    We include a general form for the scattering mean free path in a nonlinear Monte Carlo model of relativistic shock formation and Fermi acceleration. Particle-in-cell (PIC) simulations, as well as analytic work, suggest that relativistic shocks tend to produce short-scale, self-generated magnetic turbulence that leads to a scattering mean free path (mfp) with a stronger momentum dependence than the mfp ~ p dependence for Bohm diffusion. In unmagnetized shocks, this turbulence is strong enough to dominate the background magnetic field so the shock can be treated as parallel regardless of the initial magnetic field orientation, making application to gamma-ray bursts (GRBs), pulsar winds, Type Ibc supernovae, and extra-galactic radio sources more straightforward and realistic. In addition to changing the scale of the shock precursor, we show that, when nonlinear effects from efficient Fermi acceleration are taken into account, the momentum dependence of the mfp has an important influence on the efficiency of cosm...

  14. Opto-mechanical measurement of micro-trap on atom chip via nonlinear cavity enhanced Raman scattering spectrum

    CERN Document Server

    Zhang, Lin

    2012-01-01

    High-gain resonant nonlinear Raman scattering on trapped cold atoms within a high-fineness ring optical cavity is simply explained under a nonlinear opto-mechanical mechanism, and a proposal using it to detect frequency of micro-trap on atom chip is presented. The enhancement of scattering spectrum is due to coherent Raman conversion between two different cavity modes mediated by collective vibrations of atoms through nonlinear opto-mechanical couplings. The physical conditions of this technique are roughly estimated on Rubidium atoms, and a simple quantum analysis as well as a multi-body semiclassical simulation on this nonlinear Raman process is conducted.

  15. Gamma ray vortices from nonlinear inverse Compton scattering of circularly polarized light

    CERN Document Server

    Taira, Yoshitaka; Katoh, Masahiro

    2016-01-01

    Inverse Compton scattering (ICS) is an elemental radiation process that produces high-energy photons both in nature and in the laboratory. Non-linear ICS is a process in which multiple photons are converted to a single high-energy photon. Here, we theoretically show that the photon produced by non-linear ICS of circularly polarized photons is a vortex, which means that it possesses a helical wave front and carries orbital angular momentum. Our work explains a recent experimental result regarding non-linear Compton scattering that clearly shows an annular intensity distribution as a remarkable feature of a vortex beam. Our work implies that gamma ray vortices should be produced in various situations in astrophysics in which high-energy electrons and intense circularly polarized light fields coexist. They should play a critical role in stellar nucleosynthesis. Non-linear ICS is the most promising radiation process for realizing a gamma ray vortex source based on currently available laser and accelerator technol...

  16. Generation of Attosecond X-Ray Pulse through Coherent Relativistic Nonlinear Thomson Scattering

    CERN Document Server

    Lee, K; Jeong, Y U; Lee, B C; Park, S H

    2005-01-01

    In contrast to some recent experimental results, which state that the Nonlinear Thomson Scattered (NTS) radiation is incoherent, a coherent condition under which the scattered radiation of an incident laser pulse by a bunch of electrons can be coherently superposed has been investigated. The Coherent Relativistic Nonlinear Thomson Scattered (C-RNTS) radiation makes it possible utilizing the ultra-short pulse nature of NTS radiation with a bunch of electrons, such as plasma or electron beams. A numerical simulation shows that a 25 attosecond X-ray pulse can be generated by irradiating an ultra-intense laser pulse of 4x10(19) W/cm2 on an ultra-thin solid target of 50 nm thickness, which is commercially available. The coherent condition can be easily extended to an electron beam from accelerators. Different from the solid target, much narrower electron beam is required for the generation of an attosecond pulse. Instead, this condition could be applied for the generation of intense Compton scattered X-rays with a...

  17. Analysis of several ways to minimize the scatter contribution in radiographic digital images of offshore pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Edmilson M.; Silva, Ademir X.; Lopes, Ricardo T., E-mail: emonteiro@nuclear.ufrj.b, E-mail: ademir@nuclear.ufrj.b, E-mail: Ricardo@lin.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Correa, Samanda C.A., E-mail: scorrea@cnen.gov.b [Comissao Nacional de Energia Nuclear (DIAPI/CGMI/CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao Geral de Instalacoes Medicas e Industriais. Div. de Aplicacoes Industriais

    2011-07-01

    The aim of this work is to evaluate, through MCNPX simulations, several ways to minimize the scatter contribution in radiographic digital images of offshore pipelines. The influence of liquid inside the pipes and water surrounded the pipelines in the scatter contribution will be analyzed. The use of lead screen behind the detector to reduce the backscattered radiation and filter between the radiation source and the pipes will be discussed. (author)

  18. Superstring one-loop and gravitino contributions to planckian scattering

    Science.gov (United States)

    Bellini, Alessandro; Ademollo, Marco; Ciafaloni, Marcello

    1993-03-01

    Corrections to the semiclassical approximation in nearly forward planckian energy collisions are reconsidered. Starting from the one-loop superstring amplitude, we are able to disentangle the first subleading high-energy contribution at large impact parameters, and we thus directly compute the one-loop correction to the superstring eikonal. By comparing this result with previous ones by Amati, Ciafaloni and Veneziano (ACV) for pure gravity, we identify one-loop gravitino contributions which agree with previous results by Lipatov. We finally argue, on the basis of analyticity and unitarity, that gravitinos do not contribute at all the large-distance two-loop ACV correction, which thus acquires a universal "classical" interpretation.

  19. Gravitino one-loop contribution to Planckian Scattering

    CERN Document Server

    Bellini, A; Ciafaloni, Marcello

    1993-01-01

    Corrections to the semiclassical approximation in nearly forward Planckian energy collisions are here reconsidered. Starting from the one-loop superstring amplitude, we are able to disentangle the first subleading high-energy contribution at large impact parameters, and we thus directly compute the one-loop correction to the superstring eikonal. We finally argue, on the basis of analyticity and unitarity, that gravitinos do not contribute at all to the large distance two-loop ACV correction, which thus acquires a universal ``classical'' interpretation.

  20. The two-photon exchange contribution to elastic electron-nucleon scattering at large momentum transfer

    Energy Technology Data Exchange (ETDEWEB)

    Andrei V. Afanasev; Stanley J. Brodsky; Carl E. Carlson; Yu-Chun Chen; Marc Vanderhaeghen

    2005-01-01

    We estimate the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer by using a quark-parton representation of virtual Compton scattering. We thus can relate the two-photon exchange amplitude to the generalized parton distributions which also enter in other wide angle scattering processes. We find that the interference of one- and two-photon exchange contribution is able to substantially resolve the difference between electric form factor measurements from Rosenbluth and polarization transfer experiments.

  1. Analysis of multiple scattering and multiphonon contributions in inelastic neutron scattering experiments

    CERN Document Server

    Dawidowski, J; Koza, M M; Blostein, J J; Aurelio, G; Fernández-Guillermet, A; Donato, P G

    2002-01-01

    We present a method of analysis of inelastic neutron scattering (INS) experiments aiming at obtaining the density of phonon states in an absolute scale, as well as a reliable value of the mean-square displacement of the atoms. This method requires the measurement of the neutron total cross section of the sample as a function of energy, which provides a normalization condition for the INS experiment, as well as a value of the mean-square displacement. The method is applied in the case of an incoherent neutron scattering system, viz. the Ti-52wt.% Zr alloy. The applicability of this method to the study of metal alloys and other systems is discussed.

  2. Particle sizing by dynamic light scattering: non-linear cumulant analysis.

    Science.gov (United States)

    Mailer, Alastair G; Clegg, Paul S; Pusey, Peter N

    2015-04-15

    We revisit the method of cumulants for analysing dynamic light scattering data in particle sizing applications. Here the data, in the form of the time correlation function of scattered light, is written as a series involving the first few cumulants (or moments) of the distribution of particle diffusion constants. Frisken (2001 Appl. Opt. 40 4087) has pointed out that, despite greater computational complexity, a non-linear, iterative, analysis of the data has advantages over the linear least-squares analysis used originally. In order to explore further the potential and limitations of cumulant methods we analyse, by both linear and non-linear methods, computer-generated data with realistic 'noise', where the parameters of the distribution can be set explicitly. We find that, with modern computers, non-linear analysis is straightforward and robust. The mean and variance of the distribution of diffusion constants can be obtained quite accurately for distributions of width (standard deviation/mean) up to about 0.6, but there appears to be little prospect of obtaining meaningful higher moments.

  3. Particle spectra and efficiency in nonlinear relativistic shock acceleration - survey of scattering models

    Science.gov (United States)

    Ellison, Donald C.; Warren, Donald C.; Bykov, Andrei M.

    2016-03-01

    We include a general form for the scattering mean free path, λmfp(p), in a nonlinear Monte Carlo model of relativistic shock formation and Fermi acceleration. Particle-in-cell simulations, as well as analytic work, suggest that relativistic shocks tend to produce short-scale, self-generated magnetic turbulence that leads to a scattering mean free path with a stronger momentum dependence than the λmfp ∝ p dependence for Bohm diffusion. In unmagnetized shocks, this turbulence is strong enough to dominate the background magnetic field so the shock can be treated as parallel regardless of the initial magnetic field orientation, making application to γ-ray bursts, pulsar winds, type Ibc supernovae, and extragalactic radio sources more straightforward and realistic. In addition to changing the scale of the shock precursor, we show that, when nonlinear effects from efficient Fermi acceleration are taken into account, the momentum dependence of λmfp(p) has an important influence on the efficiency of cosmic ray production as well as the accelerated particle spectral shape. These effects are absent in non-relativistic shocks and do not appear in relativistic shock models unless nonlinear effects are self-consistently described. We show, for limited examples, how the changes in Fermi acceleration translate to changes in the intensity and spectral shape of γ-ray emission from proton-proton interactions and pion-decay radiation.

  4. Nonlinear acoustic propagation in bubbly liquids: Multiple scattering, softening and hardening phenomena.

    Science.gov (United States)

    Doc, Jean-Baptiste; Conoir, Jean-Marc; Marchiano, Régis; Fuster, Daniel

    2016-04-01

    The weakly nonlinear propagation of acoustic waves in monodisperse bubbly liquids is investigated numerically. A hydrodynamic model based on the averaged two-phase fluid equations is coupled with the Rayleigh-Plesset equation to model the dynamics of bubbles at the local scale. The present model is validated in the linear regime by comparing with the Foldy approximation. The analysis of the pressure signals in the linear regime highlights two resonance frequencies: the Minnaert frequency and a multiple scattering resonance that strongly depends on the bubble concentration. For weakly nonlinear regimes, the generation of higher harmonics is observed only for the Minnaert frequency. Linear combinations between the Minnaert harmonics and the multiple scattering resonance are also observed. However, the most significant effect observed is the appearance of softening-hardening effects that share some similarities with those observed for sandstones or cracked materials. These effects are related to the multiple scattering resonance. Downward or upward resonance frequency shifts can be observed depending on the characteristic of the incident wave when increasing the excitation amplitude. It is shown that the frequency shift can be explained assuming that the acoustic wave velocity depends on a law different from those usually encountered for sandstones or cracked materials.

  5. Solution of the nonlinear inverse scattering problem by T -matrix completion. II. Simulations

    Science.gov (United States)

    Levinson, Howard W.; Markel, Vadim A.

    2016-10-01

    This is Part II of the paper series on data-compatible T -matrix completion (DCTMC), which is a method for solving nonlinear inverse problems. Part I of the series [H. W. Levinson and V. A. Markel, Phys. Rev. E 94, 043317 (2016), 10.1103/PhysRevE.94.043317] contains theory and here we present simulations for inverse scattering of scalar waves. The underlying mathematical model is the scalar wave equation and the object function that is reconstructed is the medium susceptibility. The simulations are relevant to ultrasound tomographic imaging and seismic tomography. It is shown that DCTMC is a viable method for solving strongly nonlinear inverse problems with large data sets. It provides not only the overall shape of the object, but the quantitative contrast, which can correspond, for instance, to the variable speed of sound in the imaged medium.

  6. Optical transistor action by nonlinear coupling of stimulated emission and coherent scattering

    Science.gov (United States)

    Andrews, David L.; Bradshaw, David S.

    2010-08-01

    In the pursuit of improved platforms for computing, communications and internet connectivity, all-optical systems offer excellent prospects for a speed and fidelity of data transmission that will greatly surpass conventional electronics, alongside the anticipated benefits of reduced energy loss. With a diverse range of sources and fiber optical connections already in production, much current effort is being devoted towards forging optical components for signal switching, such as an all-optical transistor. Achievement of the desired characteristics for any practicable device can be expected to depend crucially on the engagement of a strongly nonlinear optical response. The innovative scheme proposed in the present work is based upon a third-order nonlinearity - its effect enhanced by stimulated emission - operating within a system designed to exploit the highly nonlinear response observed at the threshold for laser emission. Here, stimulated emission is strongly driven by coupling to the coherent scattering of a signal input beam whose optical frequency is purposely off-set from resonance. An electrodynamical analysis of the all-optical coupling process shows that the signal beam can significantly modify the kinetics of emission, and so lead to a dramatically enhanced output of resonant radiation. The underlying nonlinear optical mechanism is analyzed, model calculations are performed for realizable three-level laser systems, and the results exhibited graphically. The advantages of implementing this all-optical transistor scheme, compared to several previously envisaged proposals, are then outlined.

  7. Investigation of X-Ray Harmonics in the Polarized Nonlinear Inverse Compton Scattering Experiment at UCLA

    CERN Document Server

    Doyuran, Adnan; Joshi, Chandrashekhar; Lim, Jae; Rosenzweig, James E; Tochitsky, Sergei Ya; Travish, Gil; Williams, Oliver

    2005-01-01

    An Inverse Compton Scattering (ICS) experiment investigating the polarized harmonic production in the nonlinear regime has begun which will utilize the existing terawatt CO2 laser system and 15 MeV photoinjector in the Neptune Laboratory at UCLA. A major motivation for a source of high brightness polarized x-rays is the production of polarized positrons for use in future linear collider experiments. Analytical calculations have been performed to predict the angular and frequency spectrums for various polarizations and different scattering angles. Currently, the experiment is running and we report the set-up and initial results. The advantages and limitations of using a high laser vector potential, ao, in an ICS-based polarized positron source are expected to be revealed with further measurement of the harmonic spectrum and angular characteristics.

  8. Analysis of key properties for optical power limiting and the influence of nonlinear scattering

    Science.gov (United States)

    Koerber, M.; Azarian, A.; Schwarz, B.; Eberle, B.

    2014-10-01

    In this paper, we propose ways to study the optical limiting behavior of dissolved nanoparticles. We want to present two different approaches. First, we identify the key properties responsible for the critical fluence threshold using a principal component analysis. For metallic nanoparticles, we found that the real part of the complex dielectric function must have a negative value as low as possible, while the imaginary part must be close to zero. Additionally, the solvent should have a low refractive index as well as a low absorption. Furthermore, nonlinear scattering seems to be an important limiting mechanism for nanoparticle limiters. Here, we present a thermal finite element model to predict the temporal evolution of the temperature profile in the nanoparticles and their vicinity. The temperature profile leads to vapor bubbles around the nanoparticles and Mie theory is used to calculate the induced scattering. We demonstrate the functionality of the model by simulating an Au-nanoparticle in an ethanol solution.

  9. Effects of nonlinear phase modulation on quantum frequency conversion using four-wave mixing Bragg scattering

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling; McKinstrie, C. J.; Rottwitt, Karsten

    2013-01-01

    Recently, we solved the coupled-mode equations for Bragg scattering (BS) in the low- and high-conversion regimes, but without the effects of nonlinear phase modulation (NPM). We now present solutions and Green functions in the low-conversion regime that include NPM. We find that NPM does not change...... are still possible, even when the effects of NPM are included. Finally, the effects of using different input signals are considered, and we conclude that using the natural input modes of the system drastically increases the efficiency. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers...

  10. Nonlinear scattering of acoustic waves by natural and artificially generated subsurface bubble layers in sea.

    Science.gov (United States)

    Ostrovsky, Lev A; Sutin, Alexander M; Soustova, Irina A; Matveyev, Alexander L; Potapov, Andrey I; Kluzek, Zigmund

    2003-02-01

    The paper describes nonlinear effects due to a biharmonic acoustic signal scattering from air bubbles in the sea. The results of field experiments in a shallow sea are presented. Two waves radiated at frequencies 30 and 31-37 kHz generated backscattered signals at sum and difference frequencies in a bubble layer. A motorboat propeller was used to generate bubbles with different concentrations at different times, up to the return to the natural subsurface layer. Theoretical consideration is given for these effects. The experimental data are in a reasonably good agreement with theoretical predictions.

  11. Nonlinear kinetic modeling and simulations of Raman scattering in a two-dimensional geometry

    Directory of Open Access Journals (Sweden)

    Bénisti Didier

    2013-11-01

    Full Text Available In this paper, we present our nonlinear kinetic modeling of stimulated Raman scattering (SRS by the means of envelope equations, whose coefficients have been derived using a mixture of perturbative and adiabatic calculations. First examples of the numerical resolution of these envelope equations in a two-dimensional homogeneous plasma are given, and the results are compared against those of particle-in-cell (PIC simulations. These preliminary comparisons are encouraging since our envelope code provides threshold intensities consistent with those of PIC simulations while requiring computational resources reduced by 4 to 5 orders of magnitude compared to full-kinetic codes.

  12. Contribution of σ meson exchange to elastic lepton-proton scattering

    Science.gov (United States)

    Koshchii, Oleksandr; Afanasev, Andrei

    2016-12-01

    Lepton mass effects play a decisive role in the description of elastic lepton-proton scattering when the beam's energy is comparable to the mass of the lepton. The future Muon Scattering Experiment (MUSE) experiment, which is devised to solve the "Proton Radius Puzzle," is going to cover the corresponding kinematic region for a scattering of muons by a proton target. We anticipate that helicity-flip meson exchanges will make a difference in the comparison of elastic electron-proton vs muon-proton scattering in MUSE. In this article, we estimate the σ meson exchange contribution in the t channel. This contribution, mediated by two-photon coupling of σ , is calculated to be at most ˜0.1 % for muons in the kinematics of MUSE, and it appears to be about 3 orders of magnitude larger than for electrons because of the lepton-mass difference.

  13. Acoustic vibrations contribute to the diffuse scatter produced by ribosome crystals

    Energy Technology Data Exchange (ETDEWEB)

    Polikanov, Yury S.; Moore, Peter B.

    2015-09-26

    The diffuse scattering pattern produced by frozen crystals of the 70S ribosome fromThermus thermophilusis as highly structured as it would be if it resulted entirely from domain-scale motions within these particles. However, the qualitative properties of the scattering pattern suggest that acoustic displacements of the crystal lattice make a major contribution to it.

  14. Analysis of electromagnetic wave interactions on nonlinear scatterers using time domain volume integral equations

    KAUST Repository

    Ulku, Huseyin Arda

    2014-07-06

    Effects of material nonlinearities on electromagnetic field interactions become dominant as field amplitudes increase. A typical example is observed in plasmonics, where highly localized fields “activate” Kerr nonlinearities. Naturally, time domain solvers are the method of choice when it comes simulating these nonlinear effects. Oftentimes, finite difference time domain (FDTD) method is used for this purpose. This is simply due to the fact that explicitness of the FDTD renders the implementation easier and the material nonlinearity can be easily accounted for using an auxiliary differential equation (J.H. Green and A. Taflove, Opt. Express, 14(18), 8305-8310, 2006). On the other hand, explicit marching on-in-time (MOT)-based time domain integral equation (TDIE) solvers have never been used for the same purpose even though they offer several advantages over FDTD (E. Michielssen, et al., ECCOMAS CFD, The Netherlands, Sep. 5-8, 2006). This is because explicit MOT solvers have never been stabilized until not so long ago. Recently an explicit but stable MOT scheme has been proposed for solving the time domain surface magnetic field integral equation (H.A. Ulku, et al., IEEE Trans. Antennas Propag., 61(8), 4120-4131, 2013) and later it has been extended for the time domain volume electric field integral equation (TDVEFIE) (S. B. Sayed, et al., Pr. Electromagn. Res. S., 378, Stockholm, 2013). This explicit MOT scheme uses predictor-corrector updates together with successive over relaxation during time marching to stabilize the solution even when time step is as large as in the implicit counterpart. In this work, an explicit MOT-TDVEFIE solver is proposed for analyzing electromagnetic wave interactions on scatterers exhibiting Kerr nonlinearity. Nonlinearity is accounted for using the constitutive relation between the electric field intensity and flux density. Then, this relation and the TDVEFIE are discretized together by expanding the intensity and flux - sing half

  15. Non-Linear Noise Contributions in Highly Dispersive Optical Transmission Systems

    Science.gov (United States)

    Matera, Francesco

    2016-01-01

    This article reports an analytical investigation, confirmed by numerical simulations, about the non-linear noise contribution in single-channel systems adopting generic modulation-detection formats in long links with both managed and unmanaged dispersion compensation and its impact in system performance. This noise contribution is expressed in terms of a pulse non-linear interaction length and permits a simple calculation of the Q-factor. Results point out the dependence of this non-linear noise on the number of amplifiers spans, N, according to the adopted chromatic dispersion compensation scheme, the modulation-detection format, and the signal baud rate. It is also shown how the effects of polarization multiplexing can be taken into account and how this single-channel non-linear noise contribution can be used in a wavelength-division multiplexing (WDM) environment.

  16. Low-frequency vibration modulation of guided waves to image nonlinear scatterers for structural health monitoring

    Science.gov (United States)

    Jiao, J. P.; Drinkwater, B. W.; Neild, S. A.; Wilcox, P. D.

    2009-06-01

    Guided wave structural health monitoring offers the prospect of continuous interrogation of large plate-like structures with a sparse network of permanently attached sensors. Currently, the most common approach is to monitor changes in the received signals by subtraction from a reference signal obtained when the structure was known to be defect-free. In this paper a comparison is made between this defect-free subtraction approach and a technique in which low-frequency vibration modulation of guided wave signals is used to detect nonlinear scatterers. The modulation technique potentially overcomes the need for the defect-free reference measurement as the subtraction is now made between different parts of an externally applied low-frequency vibration. Linear defects were simulated by masses bonded onto a plate and nonlinear scatterers were simulated by loading a similar mass against the plate. The experimental results show that the defect-free subtraction technique performs well in detecting the bonded mass whereas the modulation technique is able to discriminate between the bonded and loaded masses. Furthermore, because the modulation technique does not require a defect-free reference, it is shown to be relatively independent of temperature effects, a significant problem for reference based subtraction techniques.

  17. Heavy quark production in $pA$ collisions: the double parton scattering contribution

    CERN Document Server

    Cazaroto, E R; Navarra, F S

    2016-01-01

    In this paper we estimate the double parton scattering (DPS) contribution for the heavy quark production in $pA$ collisions at the LHC. The cross sections for the charm and bottom production are estimated using the dipole approach and taking into account the saturation effects, which are important for high energies and for the scattering with a large nucleus. We compare the DPS contribution with the single parton scattering one and demonstrate that both are similar in the kinematical range probed by the LHC. Predictions for the rapidity range analysed by the LHCb Collaboration are also presented. Our results indicate that the study of the DPS contribution for the heavy quark production in $pPb$ collisions at the LHC is feasible and can be useful to probe the main assumptions of the approach.

  18. Nonlinear kinetic modeling of stimulated Raman scattering in a multidimensional geometry

    Energy Technology Data Exchange (ETDEWEB)

    Benisti, D.; Morice, O.; Gremillet, L.; Friou, A.; Lefebvre, E. [CEA, DAM, DIF F-91297 Arpajon (France)

    2012-05-15

    In this paper, we derive coupled envelope equations modeling the growth of stimulated Raman scattering (SRS) in a multi-dimensional geometry and accounting for nonlinear kinetic effects. In particular, our envelope equations allow for the nonlinear reduction of the Landau damping rate, whose decrease with the plasma wave amplitude depends on the rate of side-loss. Account is also made of the variations in the extent of the plasma wave packet entailed by the collisionless dissipation due to trapping. The dephasing between the electron plasma wave (EPW) and the laser drive, as well as the self-focussing of the plasma wave, both induced by the EPW nonlinear frequency shift, are also included in our envelope equations. These equations are solved in a multi-dimensional geometry using our code dubbed BRAMA, whose predictions regarding the evolution of Raman reflectivity as a function of the laser intensity are compared against previously published particle in cell results, thus illustrating the ability of BRAMA simulations to provide the correct laser threshold intensity for SRS as well as the right order of magnitude of Raman reflectivity above threshold.

  19. Coupled force-balance and scattering equations for nonlinear transport in quantum wires

    Science.gov (United States)

    Huang, Danhong; Gumbs, Godfrey

    2009-07-01

    The coupled force-balance and scattering equations have been derived and applied to study nonlinear transport of electrons subjected to a strong dc electric field in an elastic-scattering-limited quantum wire. Numerical results have demonstrated both field-induced heating-up and cooling-down behaviors in the nonequilibrium part of the total electron-distribution function by varying the impurity density or the width of the quantum wire. The obtained asymmetric distribution function in momentum space invalidates the application of the energy-balance equation to our quantum-wire system in the center-of-mass frame. The experimentally observed suppression of mobility by a driving field for the center-of-mass motion in the quantum-wire system has been reproduced [see K. Tsubaki , Electr. Lett. 24, 1267 (1988); M. Hauser , Sci. Technol. 9, 951 (1994)]. In addition, the thermal enhancement of mobility in the elastic-scattering-limited system has been demonstrated, in accordance with a similar prediction made for graphene nanoribbons [see T. Fang , Phys. Rev. B 78, 205403 (2008)]. This thermal enhancement has been found to play a more and more significant role with higher lattice temperature and becomes stronger for a low-driving field.

  20. Quantifying the contributions of structure to annulus fibrosus mechanical function using a nonlinear, anisotropic, hyperelastic model.

    Science.gov (United States)

    Guerin, Heather Lynch; Elliott, Dawn M

    2007-04-01

    The annulus fibrosus of the intervertebral disc is comprised of concentric lamella of oriented collagen fibers embedded in a hydrated proteoglycan matrix with smaller amounts of minor collagens, elastin, and small proteoglycans. Its structure and composition enable the disc to withstand complex loads and result in inhomogeneous, anisotropic, and nonlinear mechanical behaviors. The specific contributions of the annulus fibrosus constituent structures to mechanical function remain unclear. Therefore, the objective of this study was to use a structurally motivated, anisotropic, nonlinear strain energy model of annulus fibrosus to determine the relative contributions of its structural components to tissue mechanical behavior. A nonlinear, orthotropic hyperelastic model was developed for the annulus fibrosus. Terms to describe fibers, matrix, and interactions between annulus fibrosus structures (shear and normal to the fiber directions) were explicitly included. The contributions of these structures were analyzed by including or removing terms and determining the effect on the fit to multidimensional experimental data. Correlation between experimental and model-predicted stress, a Bland-Altman analysis of bias and standard deviation of residuals, and the contribution of structural terms to overall tissue stress were calculated. Both shear and normal interaction terms were necessary to accurately model multidimensional behavior. Inclusion of shear interactions more accurately described annulus fibrosus nonlinearity. Fiber stretch and shear interactions dominated contributions to circumferential direction stress, while normal and shear interactions dominated axial stress. The results suggest that interactions between fibers and matrix, perhaps facilitated by crosslinks, elastin, or minor collagens, augment traditional (i.e., fiber-uncrimping) models of nonlinearity.

  1. Quantification and parametrization of non-linearity effects by higher-order sensitivity terms in scattered light differential optical absorption spectroscopy

    Science.gov (United States)

    Puķīte, Jānis; Wagner, Thomas

    2016-05-01

    We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer-Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, for scenarios with strong absorptions non-linear effects cannot always be neglected. This is especially the case for observation geometries, for which the light contributing to the measurement is crossing the atmosphere under spatially well-separated paths differing strongly in length and location, like in limb geometry. In these cases, often full retrieval algorithms are applied to address the non-linearities, requiring iterative forward modelling of absorption spectra involving time-consuming wavelength-by-wavelength radiative transfer modelling. In this study, we propose to describe the non-linear effects by additional sensitivity parameters that can be used e.g. to build up a lookup table. Together with widely used box air mass factors (effective light paths) describing the linear response to the increase in the trace gas amount, the higher-order sensitivity parameters eliminate the need for repeating the radiative transfer modelling when modifying the absorption scenario even in the presence of a strong absorption background. While the higher-order absorption structures can be described as separate fit parameters in the spectral analysis (so-called DOAS fit), in practice their quantitative evaluation requires good measurement quality (typically better than that available from current measurements). Therefore, we introduce an iterative retrieval algorithm correcting for the higher-order absorption structures not yet considered in the DOAS fit as well as the absorption dependence on

  2. Contribution of \\sigma-meson exchange to elastic lepton-proton scattering

    CERN Document Server

    Koshchii, O

    2016-01-01

    Lepton mass effects play a decisive role in description of elastic lepton-proton scattering when the beam's energy is comparable to the mass of the lepton. The future MUSE experiment, which is devised to solve the "Proton Radius Puzzle", is going to cover the corresponding kinematic region for a scattering of muons by a proton target. We anticipate that helicity-flip meson exchanges will make a difference in comparison of elastic electron-proton versus muon-proton scattering in MUSE. In this article, we estimate the $\\sigma$ meson exchange contribution in the $t$-channel. This contribution, mediated by two-photon coupling of $\\sigma$, is calculated to be at most $\\sim 0.1 \\%$ for muons in the kinematics of MUSE and it is about 3 orders in magnitude larger than for electrons because of the lepton-mass difference.

  3. Nonlinear fundamental and harmonic cyclotron resonant scattering of radiation belt ultrarelativistic electrons by oblique monochromatic EMIC waves

    Science.gov (United States)

    Wang, Geng; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Zhang, Min; Wang, Shui

    2017-02-01

    Cyclotron resonant scattering by electromagnetic ion cyclotron (EMIC) waves has been considered to be responsible for the rapid loss of radiation belt high-energy electrons. For parallel-propagating EMIC waves, the nonlinear character of cyclotron resonance has been revealed in recent studies. Here we present the first study on the nonlinear fundamental and harmonic cyclotron resonant scattering of radiation belt ultrarelativistic electrons by oblique EMIC waves on the basis of test particle simulations. Higher wave obliquity produces stronger nonlinearity of harmonic resonances but weaker nonlinearity of fundamental resonance. Compared to the quasi-linear prediction, these nonlinear resonances yield a more rapid loss of electrons over a wider pitch angle range. In the quasi-linear regime, the ultrarelativistic electrons are lost in the equatorial pitch angle range αeq87.5° at ψ = 20° and 40°. At the resonant pitch angles αeq<75°, the difference between quasi-linear and nonlinear loss timescales tends to decrease with the wave normal angle increasing. At ψ = 0° and 20°, the nonlinear electron loss timescale is 10% shorter than the quasi-linear prediction; at ψ = 40°, the difference in loss timescales is reduced to <5%.

  4. Single shot, double differential spectral measurements of inverse Compton scattering in the nonlinear regime

    Directory of Open Access Journals (Sweden)

    Y. Sakai

    2017-06-01

    Full Text Available Inverse Compton scattering (ICS is a unique mechanism for producing fast pulses—picosecond and below—of bright photons, ranging from x to γ rays. These nominally narrow spectral bandwidth electromagnetic radiation pulses are efficiently produced in the interaction between intense, well-focused electron and laser beams. The spectral characteristics of such sources are affected by many experimental parameters, with intense laser effects often dominant. A laser field capable of inducing relativistic oscillatory motion may give rise to harmonic generation and, importantly for the present work, nonlinear redshifting, both of which dilute the spectral brightness of the radiation. As the applications enabled by this source often depend sensitively on its spectra, it is critical to resolve the details of the wavelength and angular distribution obtained from ICS collisions. With this motivation, we present an experimental study that greatly improves on previous spectral measurement methods based on x-ray K-edge filters, by implementing a multilayer bent-crystal x-ray spectrometer. In tandem with a collimating slit, this method reveals a projection of the double differential angular-wavelength spectrum of the ICS radiation in a single shot. The measurements enabled by this diagnostic illustrate the combined off-axis and nonlinear-field-induced redshifting in the ICS emission process. The spectra obtained illustrate in detail the strength of the normalized laser vector potential, and provide a nondestructive measure of the temporal and spatial electron-laser beam overlap.

  5. Single shot, double differential spectral measurements of inverse Compton scattering in the nonlinear regime

    Science.gov (United States)

    Sakai, Y.; Gadjev, I.; Hoang, P.; Majernik, N.; Nause, A.; Fukasawa, A.; Williams, O.; Fedurin, M.; Malone, B.; Swinson, C.; Kusche, K.; Polyanskiy, M.; Babzien, M.; Montemagno, M.; Zhong, Z.; Siddons, P.; Pogorelsky, I.; Yakimenko, V.; Kumita, T.; Kamiya, Y.; Rosenzweig, J. B.

    2017-06-01

    Inverse Compton scattering (ICS) is a unique mechanism for producing fast pulses—picosecond and below—of bright photons, ranging from x to γ rays. These nominally narrow spectral bandwidth electromagnetic radiation pulses are efficiently produced in the interaction between intense, well-focused electron and laser beams. The spectral characteristics of such sources are affected by many experimental parameters, with intense laser effects often dominant. A laser field capable of inducing relativistic oscillatory motion may give rise to harmonic generation and, importantly for the present work, nonlinear redshifting, both of which dilute the spectral brightness of the radiation. As the applications enabled by this source often depend sensitively on its spectra, it is critical to resolve the details of the wavelength and angular distribution obtained from ICS collisions. With this motivation, we present an experimental study that greatly improves on previous spectral measurement methods based on x-ray K -edge filters, by implementing a multilayer bent-crystal x-ray spectrometer. In tandem with a collimating slit, this method reveals a projection of the double differential angular-wavelength spectrum of the ICS radiation in a single shot. The measurements enabled by this diagnostic illustrate the combined off-axis and nonlinear-field-induced redshifting in the ICS emission process. The spectra obtained illustrate in detail the strength of the normalized laser vector potential, and provide a nondestructive measure of the temporal and spatial electron-laser beam overlap.

  6. Non-Linear Compton Scattering in a Strong Rotating Electric Field

    CERN Document Server

    Raicher, Erez; Zigler, Arie

    2016-01-01

    The non-linear Compton scattering rate in a rotating electric field is explicitly calculated for the first time. For this purpose, a novel solution to the Klein-Gordon equation in the presence of a rotating electric field is applied. An analytical expression for the emission rate is obtained, as well as a simplified approximation adequate for emplementation in kinetic codes. The spectrum is numerically calculated for nowadays optical and X-ray laser parameters. The results are compared to the standard Volkov-Ritus rate for a particle in a plane wave, which is commonly assumed to be valid for a rotating electric field under certain conditions. Subsequent deviations between the two models, both in the radiated power and the spectral shape, are demonstrated. First, the typical number of photons participating in the scattering process is much smaller compared to the Volkov-Ritus rate, resulting in up to an order of magnitude lower emitted power. Furthermore, our model predicts a discrete harmonics spectrum for el...

  7. Role of orbital filling on nonlinear ionic Raman scattering in perovskite titanates

    Science.gov (United States)

    Gu, Mingqiang; Rondinelli, James M.

    2017-01-01

    The linear and nonlinear phononic interactions between an optically excited infrared (IR) or hyper-Raman mode and a driven Raman mode are computed for the d0 (CaTiO3) and d1 (LaTiO3) titanates within a first-principles density functional framework. We calculate the potential energy surface expanded in terms of the Ag or B1 g mode amplitudes coupled to the Au or the B3 u mode and determine the coupling coefficients for these multimode interactions. We find that the linear-quadratic coupling dominates the anharmonicities over the quadratic-quadratic interaction in the perovskite titanates. The IR and Raman modes both modify the electronic structure with the former being more significant but occurring on a different time scale; furthermore, the coupled-mode interactions lead to sizable perturbations to the valence bandwidth (˜100 meV ) and band gap (˜50 meV). By comparing the coupling coefficients of undoped CaTiO3 and LaTiO3 to those for electron-doped (CaTiO3) and hole-doped (LaTiO3) titanates, we isolate the role of orbital filling in the nonlinear coupling process. We find that with increasing occupancy of the d manifold, the linear-quadratic interaction decreases by approximately 30% with minor changes induced by the cation chemistry (that mainly affect the phonon mode frequencies) or by electron correlation. We identify the importance of the Ti-O bond stiffness, which depends on the orbital filling, in governing the lattice anharmonicitiy. This microscopic understanding can be used to increase the nonlinear coupling coefficient to facilitate more facile access of nonequilibrium structures and properties through ionic Raman scattering processes.

  8. Bragg-Scattering Four-Wave Mixing in Nonlinear Fibers with Intracavity Frequency-Shifted Laser Pumps

    Directory of Open Access Journals (Sweden)

    Katarzyna Krupa

    2012-01-01

    Full Text Available We experimentally study four-wave mixing in highly nonlinear fibers using two independent and partially coherent laser pumps and a third coherent signal. We focus our attention on the Bragg-scattering frequency conversion. The two pumps were obtained by amplifying two Intracavity frequency-shifted feedback lasers working in a continuous wave regime.

  9. Resonance Rayleigh scattering and resonance non-linear scattering method for the determination of aminoglycoside antibiotics with water solubility CdS quantum dots as probe

    Science.gov (United States)

    Liu, Zhengwen; Liu, Shaopu; Wang, Lei; Peng, Juanjuan; He, Youqiu

    2009-09-01

    In pH 6.6 Britton-Robinson buffer medium, the CdS quantum dots capped by thioglycolic acid could react with aminoglycoside (AGs) antibiotics such as neomycin sulfate (NEO) and streptomycin sulfate (STP) to form the large aggregates by virtue of electrostatic attraction and the hydrophobic force, which resulted in a great enhancement of resonance Rayleigh scattering (RRS) and resonance non-linear scattering such as second-order scattering (SOS) and frequency doubling scattering (FDS). The maximum scattering peak was located at 310 nm for RRS, 568 nm for SOS and 390 nm for FDS, respectively. The enhancements of scattering intensity (Δ I) were directly proportional to the concentration of AGs in a certain ranges. A new method for the determination of trace NEO and STP using CdS quantum dots probe was developed. The detection limits (3 σ) were 1.7 ng mL -1 (NEO) and 4.4 ng mL -1 (STP) by RRS method, were 5.2 ng mL -1 (NEO) and 20.9 ng mL -1 (STP) by SOS method and were 4.4 ng mL -1 (NEO) and 25.7 ng mL -1 (STP) by FDS method, respectively. The sensitivity of RRS method was the highest. The optimum conditions and influence factors were investigated. In addition, the reaction mechanism was discussed.

  10. Perturbation method for the second-order nonlinear effect of focused acoustic field around a scatterer in an ideal fluid.

    Science.gov (United States)

    Liu, Gang; Jayathilake, Pahala Gedara; Khoo, Boo Cheong

    2014-02-01

    Two nonlinear models are proposed to investigate the focused acoustic waves that the nonlinear effects will be important inside the liquid around the scatterer. Firstly, the one dimensional solutions for the widely used Westervelt equation with different coordinates are obtained based on the perturbation method with the second order nonlinear terms. Then, by introducing the small parameter (Mach number), a dimensionless formulation and asymptotic perturbation expansion via the compressible potential flow theory is applied. This model permits the decoupling between the velocity potential and enthalpy to second order, with the first potential solutions satisfying the linear wave equation (Helmholtz equation), whereas the second order solutions are associated with the linear non-homogeneous equation. Based on the model, the local nonlinear effects of focused acoustic waves on certain volume are studied in which the findings may have important implications for bubble cavitation/initiation via focused ultrasound called HIFU (High Intensity Focused Ultrasound). The calculated results show that for the domain encompassing less than ten times the radius away from the center of the scatterer, the non-linear effect exerts a significant influence on the focused high intensity acoustic wave. Moreover, at the comparatively higher frequencies, for the model of spherical wave, a lower Mach number may result in stronger nonlinear effects.

  11. Twist-4 contributions to semi-inclusive deeply inelastic scatterings with polarized beam and target

    CERN Document Server

    Wei, Shu-yi; Chen, Kai-bao; Liang, Zuo-tang

    2016-01-01

    We present for the first time the complete twist-4 result for the semi-inclusive deeply inelastic scattering $e^- N \\to e^-qX$ with polarized electron and proton beams at the tree level of pQCD. The calculations have been carried out using the formulism obtained after collinear expansion where the multiple gluon scattering are taken into account and gauge links are obtained automatically in a systematical way. The results show in particular that there are twist-4 contributions to all the eight twist-2 structure functions for $e^- N \\to e^-hX$ that correspond to the eight twist-2 transverse momentum dependent parton distribution functions. Such higher twist effects could be very significant and therefore have important impacts on extracting these three-dimensional parton distribution functions from the asymmetry data on $e^- N \\to e^-hX$. We suggest also an approximate way for a rough estimation of such higher twist contributions.

  12. Cascaded second-order contribution to the third-order nonlinear susceptibility

    Science.gov (United States)

    Kolleck, Christian

    2004-05-01

    Cascading of second-order nonlinear effects leads to an effective third-order nonlinearity. In addition to the macroscopic electric field at the intermediate frequencies another term has to be taken into account which is due to the locality of the intermediate polarization sources. Combining the correction terms at the three intermediate frequencies gives rise to a third-order susceptibility tensor, which exhibits the same symmetry properties as an intrinsic susceptibility. This particularly applies to the contributions from the rectified and the second-harmonic fields to the degenerate susceptibility.

  13. The contributions of interlocking loops and extensive nonlinearity to the properties of circadian clock models.

    Directory of Open Access Journals (Sweden)

    Treenut Saithong

    Full Text Available BACKGROUND: Sensitivity and robustness are essential properties of circadian clock systems, enabling them to respond to the environment but resist noisy variations. These properties should be recapitulated in computational models of the circadian clock. Highly nonlinear kinetics and multiple loops are often incorporated into models to match experimental time-series data, but these also impact on model properties for clock models. METHODOLOGY/PRINCIPAL FINDINGS: Here, we study the consequences of complicated structure and nonlinearity using simple Goodwin-type oscillators and the complex Arabidopsis circadian clock models. Sensitivity analysis of the simple oscillators implies that an interlocked multi-loop structure reinforces sensitivity/robustness properties, enhancing the response to external and internal variations. Furthermore, we found that reducing the degree of nonlinearity could sometimes enhance the robustness of models, implying that ad hoc incorporation of nonlinearity could be detrimental to a model's perceived credibility. CONCLUSION: The correct multi-loop structure and degree of nonlinearity are therefore critical in contributing to the desired properties of a model as well as its capacity to match experimental data.

  14. Generalized Wideband Harmonic Imaging of Nonlinearly Loaded Scatterers: Theory, Analysis, and Application for Forward-Looking Radar Target Detection

    Science.gov (United States)

    2014-09-01

    nonlinearly loaded, perfectly conducting scatterer) is assumed to be excited by infinitesimal electric dipoles at ’r transmitting time-harmonic fields at...that for the half-space problem, for the calculation of the dyadic and scalar Green’s functions within the integral equation solver, exact...and located at the center of the array—is a vertical infinitesimal electric dipole operating over the frequency band [300 MHz, 1.5 GHz] in 401P

  15. Geometry and quadratic nonlinearity of charge transfer complexes in solution using depolarized hyper-Rayleigh scattering.

    Science.gov (United States)

    Pandey, Ravindra; Ghosh, Sampa; Mukhopadhyay, S; Ramasesha, S; Das, Puspendu K

    2011-01-28

    We report large quadratic nonlinearity in a series of 1:1 molecular complexes between methyl substituted benzene donors and quinone acceptors in solution. The first hyperpolarizability, β(HRS), which is very small for the individual components, becomes large by intermolecular charge transfer (CT) interaction between the donor and the acceptor in the complex. In addition, we have investigated the geometry of these CT complexes in solution using polarization resolved hyper-Rayleigh scattering (HRS). Using linearly (electric field vector along X direction) and circularly polarized incident light, respectively, we have measured two macroscopic depolarization ratios D=I(2ω,X,X)/I(2ω,Z,X) and D(')=I(2ω,X,C)/I(2ω,Z,C) in the laboratory fixed XYZ frame by detecting the second harmonic scattered light in a polarization resolved fashion. The experimentally obtained first hyperpolarizability, β(HRS), and the value of macroscopic depolarization ratios, D and D('), are then matched with the theoretically deduced values from single and double configuration interaction calculations performed using the Zerner's intermediate neglect of differential overlap self-consistent reaction field technique. In solution, since several geometries are possible, we have carried out calculations by rotating the acceptor moiety around three different axes keeping the donor molecule fixed at an optimized geometry. These rotations give us the theoretical β(HRS), D and D(') values as a function of the geometry of the complex. The calculated β(HRS), D, and D(') values that closely match with the experimental values, give the dominant equilibrium geometry in solution. All the CT complexes between methyl benzenes and chloranil or 1,2-dichloro-4,5-dicyano-p-benzoquinone investigated here are found to have a slipped parallel stacking of the donors and the acceptors. Furthermore, the geometries are staggered and in some pairs, a twist angle as high as 30° is observed. Thus, we have demonstrated in

  16. A model-based approach of scatter dose contributions and efficiency of apron shielding for radiation protection in CT.

    Science.gov (United States)

    Weber, N; Monnin, P; Elandoy, C; Ding, S

    2015-12-01

    Given the contribution of scattered radiations to patient dose in CT, apron shielding is often used for radiation protection. In this study the efficiency of apron was assessed with a model-based approach of the contributions of the four scatter sources in CT, i.e. external scattered radiations from the tube and table, internal scatter from the patient and backscatter from the shielding. For this purpose, CTDI phantoms filled with thermoluminescent dosimeters were scanned without apron, and then with an apron at 0, 2.5 and 5 cm from the primary field. Scatter from the tube was measured separately in air. The scatter contributions were separated and mathematically modelled. The protective efficiency of the apron was low, only 1.5% in scatter dose reduction on average. The apron at 0 cm from the beam lowered the dose by 7.5% at the phantom bottom but increased the dose by 2% at the top (backscatter) and did not affect the centre. When the apron was placed at 2.5 or 5 cm, the results were intermediate to the one obtained with the shielding at 0 cm and without shielding. The apron effectiveness is finally limited to the small fraction of external scattered radiation.

  17. Linear and non-linear control of wind farms. Contribution to the grid stability

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, R.D. [Laboratorio de Electronica, Facultad de Ingenieria, Universidad Nacional de la Patagonia San Juan Bosco, Ciudad Universitaria, Km. 4, 9000, Comodoro Rivadavia (Argentina); Mantz, R.J. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC 91, 1900, La Plata (Argentina); Comision de Investigaciones Cientificas de la Provincia de Buenos Aires, CICpBA, La Plata (Argentina); Battaiotto, P.E. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC 91, 1900, La Plata (Argentina)

    2010-06-15

    This paper deals with linear and non-linear control of wind farms equipped with doubly-fed induction generators (DFIG). Both, active and reactive wind farm powers are employed in two independent control laws in order to increase the damping of the oscillation modes of a power system. In this way, it presented a general strategy where two correction terms are added, one by each independent control, to the normal operating condition of a wind farm. The proposed control laws are derived from the Lyapunov approach. Meanwhile for the reactive power a non-linear correction is presented, for the wind farm active power it is demonstrated that the classical proportional and inertial laws can be considered via the Lyapunov approach if wind farms are considered as real power plants, i.e. equivalent to conventional synchronous generation. Finally, some simulations are presented in order to support the theoretical considerations demonstrating the potential contributions of both control laws. (author)

  18. Inverse scattering transform for the defocusing nonlinear Schrödinger equation with fully asymmetric non-zero boundary conditions

    Science.gov (United States)

    Biondini, Gino; Fagerstrom, Emily; Prinari, Barbara

    2016-10-01

    We formulate the inverse scattering transform (IST) for the defocusing nonlinear Schrödinger (NLS) equation with fully asymmetric non-zero boundary conditions (i.e., when the limiting values of the solution at space infinities have different non-zero moduli). The theory is formulated without making use of Riemann surfaces, and instead by dealing explicitly with the branched nature of the eigenvalues of the associated scattering problem. For the direct problem, we give explicit single-valued definitions of the Jost eigenfunctions and scattering coefficients over the whole complex plane, and we characterize their discontinuous behavior across the branch cut arising from the square root behavior of the corresponding eigenvalues. We pose the inverse problem as a Riemann-Hilbert Problem on an open contour, and we reduce the problem to a standard set of linear integral equations. Finally, for comparison purposes, we present the single-sheet, branch cut formulation of the inverse scattering transform for the initial value problem with symmetric (equimodular) non-zero boundary conditions, as well as for the initial value problem with one-sided non-zero boundary conditions, and we also briefly describe the formulation of the inverse scattering transform when a different choice is made for the location of the branch cuts.

  19. A new approach to detect congestive heart failure using Teager energy nonlinear scatter plot of R-R interval series.

    Science.gov (United States)

    Kamath, Chandrakar

    2012-09-01

    A novel approach to distinguish congestive heart failure (CHF) subjects from healthy subjects is proposed. Heart rate variability (HRV) is impaired in CHF subjects. In this work hypothesizing that capturing moment to moment nonlinear dynamics of HRV will reveal cardiac patterning, we construct the nonlinear scatter plot for Teager energy of R-R interval series. The key feature of Teager energy is that it models the energy of the source that generated the signal rather than the energy of the signal itself. Hence, any deviations in the genesis of HRV, by complex interactions of hemodynamic, electrophysiological, and humoral variables, as well as by the autonomic and central nervous regulations, get manifested in the Teager energy function. Comparison of the Teager energy scatter plot with the second-order difference plot (SODP) for normal and CHF subjects reveals significant differences qualitatively and quantitatively. We introduce the concept of curvilinearity for central tendency measures of the plots and define a radial distance index that reveals the efficacy of the Teager energy scatter plot over SODP in separating CHF subjects from healthy subjects. The k-nearest neighbor classifier with RDI as feature showed almost 100% classification rate.

  20. Extrinsic contribution and non-linear response in lead-free KNN-modified piezoceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa, D A; Garcia, J E; Perez, R; Gomis, V; Albareda, A [Department of Applied Physics, Universitat Politecnica de Catalunya, 08034 Barcelona (Spain); Rubio-Marcos, F; Fernandez, J F, E-mail: jose@fa.upc.ed [Department of Electroceramics, Instituto de Ceramica y Vidrio, CSIC, 28049 Madrid (Spain)

    2009-01-21

    Finding lead-free ceramics with good piezoelectric properties is nowadays one of the most important challenges in materials science. The (K, Na, Li)(Nb, Ta, Sb)O{sub 3} system is one of the most promising candidates as a lead-free ceramic for transducer applications and is currently the object of important research work. In this paper, (K{sub 0.44}Na{sub 0.52}Li{sub 0.04})(Nb{sub 0.86}Ta{sub 0.10}Sb{sub 0.04})O{sub 3} was prepared by a conventional ceramic processing route. For this composition, orthorhombic-to-tetragonal phase transition was observed at temperatures very close to room temperature. As a consequence, good room temperature electromechanical properties were observed, displaying good thermal stability. We show that the most important contribution to dielectric, piezoelectric and elastic response comes from extrinsic effects, as was observed in other perovskite based materials. Nonlinearities in electromechanical properties induced by high electric field or mechanical stress were studied. Non-linear dielectric response was found to be less important than for soft PZT ceramics and was analysed within the Rayleigh framework. The results reveal that the non-linear response at room temperature in this material is mainly due to the irreversible wall domain movement.

  1. Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering: Determined by the OLYMPUS Experiment

    CERN Document Server

    Henderson, B S; Khaneft, D; O'Connor, C; Russell, R; Schmidt, A; Bernauer, J C; Kohl, M; Akopov, N; Alarcon, R; Ates, O; Avetisyan, A; Beck, R; Belostotski, S; Bessuille, J; Brinker, F; Calarco, J R; Carassiti, V; Cisbani, E; Ciullo, G; Contalbrigo, M; De Leo, R; Diefenbach, J; Donnelly, T W; Dow, K; Elbakian, G; Eversheim, P D; Frullani, S; Funke, Ch; Gavrilov, G; Gläser, B; Görrissen, N; Hasell, D K; Hauschildt, J; Hoffmeister, Ph; Holler, Y; Ihloff, E; Izotov, A; Kaiser, R; Karyan, G; Kelsey, J; Kiselev, A; Klassen, P; Krivshich, A; Lehmann, I; Lenisa, P; Lenz, D; Lumsden, S; Ma, Y; Maas, F; Marukyan, H; Miklukho, O; Milner, R G; Movsisyan, A; Murray, M; Naryshkin, Y; Benito, R Perez; Perrino, R; Redwine, R P; neiro, D Rodríguez Pi\\; Rosner, G; Schneekloth, U; Seitz, B; Statera, M; Thiel, A; Vardanyan, H; Veretennikov, D; Vidal, C; Winnebeck, A; Yeganov, V

    2016-01-01

    The OLYMPUS collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio $R_{2\\gamma}$, a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of $\\approx 20^\\circ$ to $80^\\circ$. The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved GEM and MWPC detectors at $12^\\circ$, as well as symmetric M{\\o}ller/Bhabha calorimeters at $1.29^\\circ$. A total integrated luminosity of 4.5 fb$^{-1}$ was collected. In the extraction of $R_{2\\gamma}$, radiative effects were taken into account using a Monte Carlo generator to ...

  2. Δ(1232) resonance contribution to two-photon exchange in electron-proton scattering revisited

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hai-Qing [Southeast University, Department of Physics, NanJing (China); Yang, Shin Nan [National Taiwan University, Department of Physics and Center for Theoretical Sciences, Taipei (China)

    2015-08-15

    We revisit the question of the contributions of the two-photon exchange with Δ(1232) excitation to the electron-proton scattering in a hadronic model. Three improvements over the previous calculations are made, namely, correct vertex function for γN→Δ, realistic γNΔ form factors, and coupling constants. The discrepancy between the values of R≡μ{sub p} G{sub E}/G{sub M} extracted from Rosenbluth technique and polarization transfer method can be reasonably accounted for if the data of Andivahis et al. (Phys. Rev. D 50, 5491 (1994)) are analyzed. However, substantial discrepancy remains if the data of Qattan et al. (nucl-ex/0610006) are used. For the ratio R{sup ±} between e{sup ±} p scatterings, our predictions appear to be in satisfactory agreement with the preliminary data from VEPP-3. The agreement between our model predictions and the recent measurements on single spin asymmetry, transverse and longitudinal recoil proton polarizations ranges from good to poor. (orig.)

  3. Measuring the leading hadronic contribution to the muon g-2 via μe scattering

    Energy Technology Data Exchange (ETDEWEB)

    Abbiendi, G.; Marconi, U. [INFN Bologna, Bologna (Italy); Calame, C.M.C.; Nicrosini, O.; Piccinini, F. [INFN Pavia, Pavia (Italy); Matteuzzi, C. [INFN Milano Bicocca, Milan (Italy); Montagna, G. [INFN Pavia, Pavia (Italy); Universita di Pavia, Dipartimento di Fisica, Pavia (Italy); Passera, M. [INFN Padova, Padua (Italy); Tenchini, R. [INFN Pisa, Pisa (Italy); Trentadue, L. [INFN Milano Bicocca, Milan (Italy); Dipartimento di Fisica e Scienze della Terra ' ' M. Melloni' ' , Parma (Italy); Venanzoni, G. [INFN, Laboratori Nazionali di Frascati, Frascati, RM (Italy)

    2017-03-15

    We propose a new experiment to measure the running of the electromagnetic coupling constant in the space-like region by scattering high-energy muons on atomic electrons of a low-Z target through the elastic process μe → μe. The differential cross section of this process, measured as a function of the squared momentum transfer t = q{sup 2} < 0, provides direct sensitivity to the leading-order hadronic contribution to the muon anomaly a{sub μ}{sup HLO}. By using a muon beam of 150 GeV, with an average rate of ∝1.3 x 10{sup 7} muon/s, currently available at the CERN North Area, a statistical uncertainty of ∝0.3% can be achieved on a{sub μ}{sup HLO} after two years of data taking. The direct measurement of a{sub μ}{sup HLO} via μe scattering will provide an independent determination, competitive with the time-like dispersive approach, and consolidate the theoretical prediction for the muon g-2 in the Standard Model. It will allow therefore a firmer interpretation of the measurements of the future muon g-2 experiments at Fermilab and J-PARC. (orig.)

  4. Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering Determined by the OLYMPUS Experiment

    Science.gov (United States)

    Henderson, B. S.; Ice, L. D.; Khaneft, D.; O'Connor, C.; Russell, R.; Schmidt, A.; Bernauer, J. C.; Kohl, M.; Akopov, N.; Alarcon, R.; Ates, O.; Avetisyan, A.; Beck, R.; Belostotski, S.; Bessuille, J.; Brinker, F.; Calarco, J. R.; Carassiti, V.; Cisbani, E.; Ciullo, G.; Contalbrigo, M.; de Leo, R.; Diefenbach, J.; Donnelly, T. W.; Dow, K.; Elbakian, G.; Eversheim, P. D.; Frullani, S.; Funke, Ch.; Gavrilov, G.; Gläser, B.; Görrissen, N.; Hasell, D. K.; Hauschildt, J.; Hoffmeister, Ph.; Holler, Y.; Ihloff, E.; Izotov, A.; Kaiser, R.; Karyan, G.; Kelsey, J.; Kiselev, A.; Klassen, P.; Krivshich, A.; Lehmann, I.; Lenisa, P.; Lenz, D.; Lumsden, S.; Ma, Y.; Maas, F.; Marukyan, H.; Miklukho, O.; Milner, R. G.; Movsisyan, A.; Murray, M.; Naryshkin, Y.; Perez Benito, R.; Perrino, R.; Redwine, R. P.; Rodríguez Piñeiro, D.; Rosner, G.; Schneekloth, U.; Seitz, B.; Statera, M.; Thiel, A.; Vardanyan, H.; Veretennikov, D.; Vidal, C.; Winnebeck, A.; Yeganov, V.; Olympus Collaboration

    2017-03-01

    The OLYMPUS Collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, R2 γ , a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of ≈20 ° to 80°. The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved gas electron multiplier and multiwire proportional chamber detectors at 12°, as well as symmetric Møller or Bhabha calorimeters at 1.29°. A total integrated luminosity of 4.5 fb-1 was collected. In the extraction of R2 γ, radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R2 γ, presented here for a wide range of virtual photon polarization 0.456 <ɛ <0.978 , are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.

  5. A silica based highly nonlinear fibre with improved threshold for stimulated brillouin scattering

    DEFF Research Database (Denmark)

    Grüner-Nielsen, Lars; Dasguta, Sonali; D. Mermelstein, Marc

    2010-01-01

    8.8 dB improvement in figure of merit for SBS limited highly nonlinear fibres is reported by using a combination of Al-doping and straining of the fibre......8.8 dB improvement in figure of merit for SBS limited highly nonlinear fibres is reported by using a combination of Al-doping and straining of the fibre...

  6. On Asymptotic Completeness of Scattering in the Nonlinear Lamb System, II

    CERN Document Server

    Komech, A I

    2012-01-01

    We establish the asymptotic completeness in the nonlinear Lamb system for hyperbolic stationary states. For the proof we construct a trajectory of a reduced equation (which is a nonlinear nonautonomous ODE) converging to a hyperbolic stationary point using the Inverse Function Theorem in a Banach space. We give the counterexamples showing nonexistence of such trajectories for nonhyperbolic stationary points.

  7. Communication: Significant contributions of Albrecht's $A$ term to non-resonant Raman scattering processes

    CERN Document Server

    Duan, Sai; Luo, Yi

    2015-01-01

    The Raman intensity can be well described by the famous Albrecht equation that consists of $A$ and $B$ terms. It has become a textbook knowledge that the contribution from Albrecht's $A$ term can be neglected without loss of accuracy for non-resonant Raman scattering processes. However, as demonstrated in this study, we have found that this widely accepted long-standing assumption fails drastically for totally symmetric vibration modes of molecules. Perturbed first principles calculations for water molecule show that strong constructive interference between the $A$ and $B$ terms occurs for the Raman intensity of the symmetric O-H stretching mode, which can account for about 40% of the total intensity. Meanwhile, a minor destructive interference is found for the angle bending mode. The state to state mapping between the Albrecht's theory and the perturbation theory allows us to verify the accuracy of the widely employed perturbation method for the dynamic/resonant Raman intensities. The model calculations show...

  8. A contribution to the development of wide band-gap nonlinear optical laser materials

    Science.gov (United States)

    Stone-Sundberg, Jennifer Leigh

    The primary focus of this work is on examining structure-property relationships of interest for high-power nonlinear optical and laser crystals. An intuitive and simply illustrated method for assessing the nonlinear optical potential of structurally characterized noncentrosymmetric materials is introduced. This method is applied to materials including common quartz and tourmaline and then extended to synthetic materials including borates, silicates, aluminates, and phosphates. Particularly, the contributions of symmetric tetrahedral and triangular anionic groups are inspected. It is shown that both types of groups significantly contribute to the optical frequency converting abilities of noncentrosymmetric crystals. In this study, several known materials are included as well as several new materials. The roles of the orientation, composition, and packing density of these anionic groups are also discussed. The structures and optical properties of the known materials BPO 4, NaAlO2, LaCa4O(BO3)3, and tourmaline; the new compounds La0.8Y0.2Sc3 (BO3)4 and Ba2B10O 17; and the laser host Sr3Y0.75Yb0.25(BO 3)3 are described.

  9. Nonlinear development of stimulated Raman scattering from electrostatic modes excited by self-consistent non-Maxwellian velocity distributions.

    Science.gov (United States)

    Yin, L; Daughton, W; Albright, B J; Bezzerides, B; DuBois, D F; Kindel, J M; Vu, H X

    2006-02-01

    The parametric coupling involving backward stimulated scattering of a laser and electron beam acoustic modes (BAM) is described as observed in particle-in-cell (PIC) simulations. The BAM modes evolve from Langmuir waves (LW) as the electron velocity distribution is nonlinearly modified to be non-Maxwellian by backward stimulated Raman scattering (BSRS). With a marginal damping rate, BAM can be easily excited and allow an extended chirping in frequency to occur as later SRS pulses encounter modified distributions. Coincident with the emergence of this non-Maxwellian distribution is a rapid increase in BSRS reflectivities with laser intensities. Both the reflectivity scaling with laser intensity and the observed spectral features from PIC simulations are consistent with recent Trident experiments.

  10. Global well-posedness and scattering for the focusing nonlinear Schrödinger equation in the nonradial case

    Directory of Open Access Journals (Sweden)

    Pigong Han

    2012-01-01

    Full Text Available The energy-critical, focusing nonlinear Schrödinger equation in the nonradial case reads as follows: \\[i\\partial_t u = -\\Delta u -|u|^{\\frac{4}{N-2}}u,\\quad (x,0=u_0 \\in H^1 (\\mathbb{R}^N,\\quad N\\geq 3.\\] Under a suitable assumption on the maximal strong solution, using a compactness argument and a virial identity, we establish the global well-posedness and scattering in the nonradial case, which gives a positive answer to one open problem proposed by Kenig and Merle [Invent. Math. 166 (2006, 645–675].

  11. Direct measurements of multi-photon induced nonlinear lattice dynamics in semiconductors via time-resolved x-ray scattering

    Science.gov (United States)

    Williams, G. Jackson; Lee, Sooheyong; Walko, Donald A.; Watson, Michael A.; Jo, Wonhuyk; Lee, Dong Ryeol; Landahl, Eric C.

    2016-12-01

    Nonlinear optical phenomena in semiconductors present several fundamental problems in modern optics that are of great importance for the development of optoelectronic devices. In particular, the details of photo-induced lattice dynamics at early time-scales prior to carrier recombination remain poorly understood. We demonstrate the first integrated measurements of both optical and structural, material-dependent quantities while also inferring the bulk impulsive strain profile by using high spatial-resolution time-resolved x-ray scattering (TRXS) on bulk crystalline gallium arsenide. Our findings reveal distinctive laser-fluence dependent crystal lattice responses, which are not described by previous TRXS experiments or models. The initial linear expansion of the crystal upon laser excitation stagnates at a laser fluence corresponding to the saturation of the free carrier density before resuming expansion in a third regime at higher fluences where two-photon absorption becomes dominant. Our interpretations of the lattice dynamics as nonlinear optical effects are confirmed by numerical simulations and by additional measurements in an n-type semiconductor that allows higher-order nonlinear optical processes to be directly observed as modulations of x-ray diffraction lineshapes.

  12. Non-Linear Compton Scattering of Ultrashort and Ultraintense Laser Pulses

    CERN Document Server

    Seipt, D

    2010-01-01

    The scattering of temporally shaped intense laser pulses off electrons is discussed by means of manifestly covariant quantum electrodynamics. We employ a framework based on Volkov states with a time dependent laser envelope in light-cone coordinates within the Furry picture. An expression for the cross section is constructed, which is independent of the considered pulse shape and pulse length. A broad distribution of scatted photons with a rich pattern of subpeaks like that obtained in Thomson scattering is found. These broad peaks may overlap at sufficiently high laser intensity, rendering inappropriate the notion of individual harmonics. The limit of monochromatic plane waves as well as the classical limit of Thomson scattering are discussed. As a main result, a scaling law is presented connecting the Thomson limit with the general result for arbitrary kinematics. In the overlapping regions of the spectral density, the classical and quantum calculations give different results, even in the Thomson limit. Thu...

  13. NONLINEAR OPTICS: Stimulated resonant hyper-Raman scattering of light by polaritons in alkali metal vapors

    Science.gov (United States)

    Galaĭchuk, Yu A.; Yashkir, Yu N.

    1989-12-01

    A theory is developed for the calculation of the gain g due to stimulated resonant hyper-Raman scattering of light by polaritons in gaseous media. It is shown that throughout the tuning range of the pump frequency (including one- and two-photon resonances) a maximum of g corresponds to a dispersion curve of polaritons plotted ignoring attenuation. Theoretical results are used to analyze characteristics of hyper-Raman scattering in sodium vapor. It is shown that under normal experimental conditions the splitting of polariton branches is considerable (amounting to tens of reciprocal centimeters on the frequency scale and several angular degrees). The value of g is estimated for two-photon resonances in the case when the pump frequency is tunable in a wide range. The optimal conditions for stimulated hyper-Raman scattering are identified.

  14. Spatiotemporal focusing in opaque scattering media by wave front shaping with nonlinear feedback.

    Science.gov (United States)

    Aulbach, Jochen; Gjonaj, Bergin; Johnson, Patrick; Lagendijk, Ad

    2012-12-31

    We experimentally demonstrate spatiotemporal focusing of light on single nanocrystals embedded inside a strongly scattering medium. Our approach is based on spatial wave front shaping of short pulses, using second harmonic generation inside the target nanocrystals as the feedback signal. We successfully develop a model both for the achieved pulse duration as well as the observed enhancement of the feedback signal. The approach enables exciting opportunities for studies of light propagation in the presence of strong scattering as well as for applications in imaging, micro- and nanomanipulation, coherent control and spectroscopy in complex media.

  15. Measuring the leading hadronic contribution to the muon g-2 via $\\mu\\,e$ scattering

    CERN Document Server

    Abbiendi, G; Marconi, U; Matteuzzi, C; Montagna, G; Nicrosini, O; Passera, M; Piccinini, F; Tenchini, R; Trentadue, L; Venanzoni, G

    2016-01-01

    We propose a new experiment to measure the running of the fine-structure constant in the space-like region by scattering high-energy muons on atomic electrons of a low-Z target through the process $\\mu e \\to \\mu e$. The differential cross section of this process, measured as a function of the squared momentum transfer $t=q^2<0$, provides direct sensitivity to the leading-order hadronic contribution to the muon anomaly $a^{\\rm{HLO}}_{\\mu}$. By using a muon beam of 150 GeV, with an average rate of $\\sim1.3\\times 10^7$ muon/s, currently available at the CERN North Area, a statistical uncertainty of $\\sim 0.3\\%$ can be achieved on $a^{\\rm{HLO}}_{\\mu}$ after two years of data taking. This direct measurement of $a^{\\rm{HLO}}_{\\mu}$ will provide an independent determination, competitive with the time-like dispersive approach, and consolidate the theoretical prediction for the muon $g$-2 in the Standard Model. It will allow therefore a firmer interpretation of the measurements of the future muon $g$-2 experiments ...

  16. Dynamic Thomson Scattering from Nonlinear Electron Plasma Waves in a Raman Plasma Amplifier

    Science.gov (United States)

    Davies, A.; Katz, J.; Bucht, S.; Haberberger, D.; Bromage, J.; Zuegel, J. D.; Froula, D. H.; Trines, R.; Bingham, R.; Sadler, J.; Norreys, P. A.

    2016-10-01

    Electron plasma waves (EPW's) can be used to transfer significant energy from a long-pulse laser to a short-pulse seed laser through the Raman scattering instability. Successful implementation of Raman amplification could open an avenue to producing high-intensity pulses beyond the capabilities of current laser technology ( 1022 W / cm 2). This three-wave interaction takes advantage of the plasma's ability to sustain large-amplitude plasma waves. Having complete knowledge of the EPW amplitude is essential to establishing optimal parameters for high-efficiency Raman amplification. A dynamic Thomson-scattering diagnostic is being developed to spatially and temporally resolve the amplitude of the driven and thermal EPW's. By imaging the scattered probe light onto a novel pulse-front tilt compensated streaked optical spectrometer, the diffraction efficiency of this plasma wave can be measured as a function of space and time. These data will be used in conjunction with particle-in-cell simulations to determine the EPW's spatial and temporal profile. This will allow the effect of the EPW profile on Raman scattering to be experimentally determined. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  17. The optimal antenna for nonlinear spectroscopy of weakly and strongly scattering nanoobjects

    Science.gov (United States)

    Schumacher, Thorsten; Brandstetter, Matthias; Wolf, Daniela; Kratzer, Kai; Hentschel, Mario; Giessen, Harald; Lippitz, Markus

    2016-04-01

    Optical nanoantennas, i.e., arrangements of plasmonic nanostructures, promise to enhance the light-matter interaction on the nanoscale. In particular, nonlinear optical spectroscopy of single nanoobjects would profit from such an antenna, as nonlinear optical effects are already weak for bulk material, and become almost undetectable for single nanoobjects. We investigate the design of optical nanoantennas for transient absorption spectroscopy in two different cases: the mechanical breathing mode of a metal nanodisk and the quantum-confined carrier dynamics in a single CdSe nanowire. In the latter case, an antenna with a resonance at the desired wavelength optimally increases the light intensity at the nanoobject. In the first case, the perturbation of the antenna by the investigated nanosystem cannot be neglected and off-resonant antennas become most efficient.

  18. Fully band-resolved scattering rate in MgB2 revealed by the nonlinear hall effect and magnetoresistance measurements.

    Science.gov (United States)

    Yang, Huan; Liu, Yi; Zhuang, Chenggang; Shi, Junren; Yao, Yugui; Massidda, Sandro; Monni, Marco; Jia, Ying; Xi, Xiaoxing; Li, Qi; Liu, Zi-Kui; Feng, Qingrong; Wen, Hai-Hu

    2008-08-01

    We have measured the normal state temperature dependence of the Hall effect and magnetoresistance in epitaxial MgB2 thin films with variable disorders characterized by the residual resistance ratio RRR ranging from 4.0 to 33.3. A strong nonlinearity of the Hall effect and magnetoresistance have been found in clean samples, and they decrease gradually with the increase of disorders or temperature. By fitting the data to the theoretical model based on the Boltzmann equation and ab initio calculations for a four-band system, for the first time, we derived the scattering rates of these four bands at different temperatures and magnitude of disorders. Our method provides a unique way to derive these important parameters in multiband systems.

  19. Evolution of Electron Phase Orbits of Multi-photon Nonlinear Compton Scattering in High Power Laser-plasma

    Institute of Scientific and Technical Information of China (English)

    HAO Dong-shan; L(U) Jian

    2005-01-01

    The evolution of the electron phase orbits based on the multi-photon nonlinear Compton scattering with the high power laser-plasma is discussed by using Kroll-Morton-Rosenbluth theory. The random evolution of the un-captured electron phase orbits from periodicity to non-periodicity is found after the energy has been exchanged between the electron and photons. With the increase of the absorbed photon number n by an electron,this evolution will be more and more intense, while which is rapidly decreased with the enhancement of the collision non-flexibility ξ and their initial speeds of the electrons and photons, but this evolution is lower than that in the high power laser field. When the electrons are captured by the laser field, the evolution is finished, and the electrons will stably transport,and the photons don't provide the energy for these electrons any more.

  20. Contributions to the nonlinear integrated Sachs-Wolfe effect: Birkinshaw-Gull effect and gravitational self-energy density

    CERN Document Server

    Merkel, Philipp

    2012-01-01

    In this paper, we recompute contributions to the spectrum of the nonlinear integrated Sachs-Wolfe (iSW)/Rees-Sciama effect in a dark energy cosmology. Focusing on the moderate nonlinear regime, all dynamical fields involved are derived from the density contrast in Eulerian perturbation theory. Shape and amplitude of the resulting angular power spectrum are similar to that derived in previous work. With our purely analytical approach we identify two distinct contributions to the signal of the nonlinear iSW-effect: the change of the gravitational self-energy density of the large scale structure with (conformal) time and gravitational lenses moving with the large scale matter stream. In the latter we recover the Birkinshaw-Gull effect. As the nonlinear iSW-effect itself is inherently hard to detect, observational discrimination between its individual contributions is almost excluded. Our analysis, however, yields valuable insights into the theory of the nonlinear iSW-effect as a post-Newtonian relativistic effec...

  1. Quark, Gluon, Odderon Contributions to Total Cross Section of Proton-Proton Elastic Scattering at High Energies

    Institute of Scientific and Technical Information of China (English)

    TAN Jia-Jin; LU Juan; CHENG Yan; ZHOU Li-Huan; ZHU Wen-Jun; MA Wei-Xing; GOU Qing-Quan

    2008-01-01

    Based on the quark-gluon structure of nucleon and the existence of Odderon in nucleon via gluon self-interaction, the elastic scattering of pp at high energies is studied. Our theoretical predictions reproduce experimental data perfectly. The contributions from individual terms of quark-quark, gluon-gluon interactions, quark-gluon interfer-ence and the Odderon terms to total cross section are analyzed. In addition to the leading quark-quark contribution, the Odderon contribution is quite important. In particular, the Odderon plays an essential role in fitting to data. Therefore, We may claim that the high energy lap and pp elastic scattering may be good processes to search for the Odderon, the three Reggeized gluon bound states.

  2. Time-Domain Volume Integral Equation for TM-Case Scattering from Nonlinear Penetrable Objects

    Institute of Scientific and Technical Information of China (English)

    WANG Jianguo; Eric Michielssen

    2001-01-01

    This paper presents the time-domainvolume integral equation (TDVIE) method to analyzescattering from nonlinear penetrable objects, whichare illuminated by the transverse magnetic (TM) in-cident pulse. The time-domain volume integral equa-tion is formulated in terms of two-dimensional (2D)Green's function, and solved by using the march-on-in time (MOT) technique. Some numerical results aregiven to validate this method, and comparisons aremade with the results obtained by using the finite-difference time-domain (FDTD) method.

  3. Electronic and nuclear contributions in sub-GeV dark matter scattering: A case study with hydrogen

    CERN Document Server

    Chen, Jiunn-Wei; Liu, C -P; Wu, Chih-Liang; Wu, Chih-Pan

    2015-01-01

    Scattering of sub-GeV dark matter (DM) particles with hydrogen atoms is studied in this paper. The interactions of DM with electrons and nucleons are both included and formulated in a general framework based on nonrelativistic effective field theory. On the assumption of same dark matter coupling strengths, it is found that DM-electron interactions dominate the inelastic atomic transitions to discrete excited states and ionization continuum around the threshold regions, and DM-nucleon interactions become more important with increasing energy and dominate in elastic scattering. The conclusion should apply, qualitatively, to practical detector species so that electronic and nuclear contributions in DM scattering processes can be disentangled, while issues including binding effects and recoil mechanism in many-body systems will require further detailed calculations.

  4. J/ψ -pair production at large momenta: Indications for double parton scatterings and large α$_s^5$ contributions

    CERN Document Server

    Lansberg, Jean-Philippe

    2015-01-01

    The recent observations of prompt J/psi-pair production by CMS at the LHC and by D0 at the Tevatron reveal the presence of different production mechanisms in different kinematical regions. We find out that next-to-leading-order single-parton-scattering contributions at alpha_s^5 dominate the yield at large transverse momenta of the pair. Our analysis further emphasises the importance of double-parton-scatterings --which are expected to dominate the yield at large rapidity differences-- at large invariant masses of the pair in the CMS acceptance. In addition, we provide the first exact --gauge-invariant and infrared-safe-- evaluation of a class of leading-P_T next-to-next-to-leading-order contributions, which are dominant in the region of large sub-leading transverse momenta, precisely where the colour-octet contributions can be non-negligible. Finally, we discuss the contribution from decays of excited charmonium states within both single- and double-parton scatterings and suggest measurements to distinguish ...

  5. Calculation of the nonlinear relativistic Thomson scattering fields and Its application to electron distribution function diagnostic

    Science.gov (United States)

    Guasp, J.; Pastor, I.; Álvarez-Estrada, R. F.; Castejón, F.

    2015-02-01

    Analytical results obtained recently of the ab-initio classical incoherent Thomson Scattering (TS) spectrum from a single-electron (Alvarez-Estrada et al 2012 Phys. Plasmas 19 062302) have been numerically implemented in a paralelized code to efficiently compute the TS emission from a given electron distribution function, irrespective of its characteristics and/or the intensity of the incoming radiation. These analytical results display certain differences, when compared with other authors, in the general case of incoming linearly and circularly polarized radiation and electrons with arbitrary initial directions. We regard such discrepancies and the ubiquitous interest in TS as motivations for this work. Here, we implement some analytical advances (like generalized Bessel functions for incoming linearly polarized radiation) in TS. The bulk of this work reports on the efficient computation of TS spectra (based upon our analytical approach), for an electron population having an essentially arbitrary distribution function and for both incoming linearly and circularly polarized radiation. A detailed comparison between the present approach and a previous Monte Carlo one (Pastor et al 2011 Nuclear Fusion 51 043011), dealing with the ab-initio computation of TS spectra, is reported. Both approaches are shown to fully agree with each other. As key computational improvements, the analytical technique yields a × 30 to × 100 gain in computation time and is a very flexible tool to compute the scattered spectrum and eventually the scattered electromagnetic fields in the time domain. The latter are computed explicitly here for the first time, as far as we know. Scaling laws for the power integrated over frequency versus initial kinetic energy are studied for the case of isotropic and monoenergetic electron distribution functions and their potential application as diagnostic tools for high-energy populations is briefly discussed. Finally, we discuss the application of these

  6. Weakly nonlinear models for internal waves: inverse scattering transform and solitary wave contents

    CERN Document Server

    Chen, Shengqian

    2016-01-01

    The time evolution emanating from ``internal dam-break'' initial conditions is studied for a class of models of stratified Euler fluids in configurations close to two-homogeneous layers separated by a thin diffused interface. Direct numerical simulations and experiments in wave tanks show that such initial conditions eventually give rise to coherent structures that are close to solitary-wave solutions moving ahead of a region of dispersive wave motion and turbulent mixing close to the location of the initial dam step. A priori theoretical predictions of the main features of these solitary waves, such as their amplitudes and speeds, appear to be unavailable, even for simplified models of wave evolution in stratified fluids. With the aim of providing estimates of the existence, amplitude and speed of such solitary waves, an approach based on Inverse Scattering Transform (IST) for completely integrable models is developed here and tested against direct numerical simulations of Euler fluids and some of their mode...

  7. Attosecond gamma-ray pulses via nonlinear Compton scattering in the radiation dominated regime

    CERN Document Server

    Li, Jian-Xing; Galow, Benjamin J; Keitel, Christoph H

    2015-01-01

    The interaction of a relativistic electron bunch with a counter-propagating tightly-focused laser beam is investigated for intensities when the dynamics is strongly affected by its own radiation. The Compton scattering spectra of gamma-radiation are evaluated employing a semiclassical description for the laser-driven electron dynamics and a quantum electrodynamical description for the photon emissions. We show for laser facilities under construction that gamma-ray bursts of few hundred attoseconds and dozens of megaelectronvolt photon energies may be detected in the near-backwards direction of the initial electron motion. Tight focussing of the laser beam and radiation reaction are demonstrated to be jointly responsible for such short gamma-ray bursts which are independent of both duration of electron bunch and laser pulse. Furthermore, the stochastic nature of the gamma-photon emission features signatures in the resulting gamma-ray comb in the case of the application of a multi-cycle laser pulse.

  8. Measurement of the two-photon exchange contribution in elastic ep scattering at VEPP-3

    Energy Technology Data Exchange (ETDEWEB)

    Gramolin, A.V. [Budker Institute of Nuclear Physics of SB RAS, Novosibirsk (Russian Federation); Arrington, J. [Argonne National Laboratory, Argonne (United States); Barkov, L.M. [Budker Institute of Nuclear Physics of SB RAS, Novosibirsk (Russian Federation); Dmitriev, V.F. [Budker Institute of Nuclear Physics of SB RAS, Novosibirsk (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Gauzshtein, V.V. [Nuclear Physics Institute of Tomsk Polytechnic University, Tomsk (Russian Federation); Golovin, R.A. [Budker Institute of Nuclear Physics of SB RAS, Novosibirsk (Russian Federation); Holt, R.J. [Argonne National Laboratory, Argonne (United States); Kaminsky, V.V.; Lazarenko, B.A.; Mishnev, S.I. [Budker Institute of Nuclear Physics of SB RAS, Novosibirsk (Russian Federation); Muchnoi, N.Yu. [Budker Institute of Nuclear Physics of SB RAS, Novosibirsk (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Neufeld, V.V.; Nikolenko, D.M.; Rachek, I.A.; Sadykov, R.Sh. [Budker Institute of Nuclear Physics of SB RAS, Novosibirsk (Russian Federation); Shestakov, Yu.V. [Budker Institute of Nuclear Physics of SB RAS, Novosibirsk (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Stibunov, V.N. [Nuclear Physics Institute of Tomsk Polytechnic University, Tomsk (Russian Federation); Toporkov, D.K. [Budker Institute of Nuclear Physics of SB RAS, Novosibirsk (Russian Federation); Novosibirsk State University, Novosibirsk (Russian Federation); Vries, H. de [NIKHEF, Amsterdam (Netherlands); Zevakov, S.A. [Budker Institute of Nuclear Physics of SB RAS, Novosibirsk (Russian Federation); and others

    2012-04-15

    We report on the status of the Novosibirsk experiment on a precision measurement of the ratio R of the elastic e{sup +}p and e{sup -}p scattering cross sections. Such measurements determine the two-photon exchange effect in elastic electron-proton scattering. The experiment is conducted at the VEPP-3 storage ring using a hydrogen internal gas target. The ratio R is measured with a beam energy of 1.6 GeV (electron/positron scattering angles are {theta}=55 Division-Sign 75 Degree-Sign and {theta}=15 Division-Sign 25 Degree-Sign ) and 1 GeV ({theta}=65 Division-Sign 105 Degree-Sign ). We briefly describe the experimental method, paying special attention to the radiative corrections. Some preliminary results are presented.

  9. Measurement of the two-photon exchange contribution in elastic $ep$ scattering at VEPP-3

    CERN Document Server

    Gramolin, A V; Barkov, L M; Dmitriev, V F; Gauzshtein, V V; Golovin, R A; Holt, R J; Kaminsky, V V; Lazarenko, B A; Mishnev, S I; Muchnoi, N Yu; Neufeld, V V; Nikolenko, D M; Rachek, I A; Sadykov, R Sh; Shestakov, Yu V; Stibunov, V N; Toporkov, D K; de Vries, H; Zevakov, S A; Zhilich, V N

    2011-01-01

    We report on the status of the Novosibirsk experiment on a precision measurement of the ratio $R$ of the elastic $e^+ p$ and $e^- p$ scattering cross sections. Such measurements determine the two-photon exchange effect in elastic electron-proton scattering. The experiment is conducted at the VEPP-3 storage ring using a hydrogen internal gas target. The ratio $R$ is measured with a beam energy of 1.6 GeV (electron/positron scattering angles are $\\theta = 55 \\div 75^{\\circ}$ and $\\theta = 15 \\div 25^{\\circ}$) and 1 GeV ($\\theta = 65 \\div 105^{\\circ}$). We briefly describe the experimental method, paying special attention to the radiative corrections. Some preliminary results are presented.

  10. Electron-hole pair contributions to scattering, sticking, and surface diffusion: CO on Cu(100)

    Energy Technology Data Exchange (ETDEWEB)

    Kindt, J.T.; Tully, J.C. [Department of Chemistry, Yale University, New Haven, Connecticut 06511 (United States); Head-Gordon, M. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Gomez, M.A. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1998-09-01

    To assess the importance of coupling to electron-hole pair (ehp) excitations for molecular sticking, scattering, and diffusion dynamics at metal surfaces, simulations of the CO/Cu(100) system were performed using the {open_quotes}molecular dynamics with electronic frictions{close_quotes} method. Over a range of incident translational energies, energy losses to ehp excitations produce a moderate increase in sticking probability and account for 5{percent}{endash}10{percent} of initial translational energy in scattered molecules, significantly less than phonon losses. Vibrational excitation and deexcitation of scattered molecules, while remaining a minor pathway for energy flow, is strongly affected by the inclusion of ehp excitations. Finally, although equilibrium diffusion constants are unaffected by the inclusion of coupling to ehp, it causes a significant quenching of transient mobility following adsorption of translationally hot molecules. {copyright} {ital 1998 American Institute of Physics.}

  11. Strange Quark Contributions to Parity-Violating Asymmetries in the Forward G0 Electron-Proton Scattering Experiment

    CERN Document Server

    Armstrong, D S; Asaturyan, R; Averett, T; Bailey, S L; Batigne, G; Beck, D H; Beise, E J; Benesch, J; Bimbot, L; Birchall, J; Biselli, A; Bosted, P; Boukobza, E; Breuer, H; Carlini, R; Carr, R; Chant, N; Chao Yu Chiu; Chattopadhyay, S; Clark, R; Covrig, S D; Cowley, A; Dale, D; Davis, C; Falk, W; Finn, J M; Forest, T; Franklin, G; Furget, C; Gaskell, D; Grames, J; Griffioen, K A; Grimm, K; Guillon, B; Guler, H; Hannelius, L; Hasty, R; Hawthorne Allen, A; Horn, T; Johnston, K; Jones, M; Kammel, P; Kazimi, R; King, P M; Kolarkar, A; Korkmaz, E; Korsch, W; Kox, S; Kühn, J; Lachniet, J; Lee, L; Lenoble, J; Liatard, E; Liu, J; Loupias, B; Lung, A; MacLachlan, G A; Marchand, D; Martin, J W; McFarlane, K W; McKee, D W; McKeown, R D; Merchez, F; Mkrtchyan, H G; Moffit, B; Morlet, M; Nakagawa, I; Nakahara, K; Nakos, M; Neveling, R; Niccolai, S; Ong, S; Page, S; Papavassiliou, V; Pate, S F; Phillips, S K; Pitt, M L; Poelker, M; Porcelli, T A; Quéméner, G; Quinn, B; Ramsay, W D; Rauf, A W; Real, J S; Roche, J; Roos, P; Rutledge, G A; Secrest, J; Simicevic, N; Smith, G R; Spayde, D T; Stepanyan, S; Stutzman, M; Sulkosky, V; Tadevosyan, V; Tieulent, R; Van der Wiele, J; Van Oers, W T H; Voutier, E; Vulcan, W; Warren, G; Wells, S P; Williamson, S E; Wood, S A; Yan, C; Yun, J; Zeps, V

    2005-01-01

    We have measured parity-violating asymmetries in elastic electron-proton scattering over the range of momentum transfers 0.12 < Q^2 < 1.0 GeV^2. These asymmetries, arising from interference of the electromagnetic and neutral weak interactions, are sensitive to strange quark contributions to the currents of the proton. The measurements were made at JLab using a toroidal spectrometer to detect the recoiling protons from a liquid hydrogen target. The results indicate non-zero, Q^2 dependent, strange quark contributions and provide new information beyond that obtained in previous experiments.

  12. Strange Quark Contributions to Parity-Violating Asymmetries in the Forward G0 Electron-Proton Scattering Experiment

    Energy Technology Data Exchange (ETDEWEB)

    David Armstrong; Francois Arvieux; Razmik Asaturyan; Todd Averett; Stephanie Bailey; Guillaume Batigne; Douglas Beck; Elizabeth Beise; Jay Benesch; Louis Bimbot; James Birchall; Angela Biselli; Peter Bosted; Elodie Boukobza; Herbert Breuer; Roger Carlini; R. Carr; Nicholas Chant; Yu-Chiu Chao; Swapan Chattopadhyay; Russell Clark; Silviu Covrig; Anthony Cowley; Daniel Dale; C. Davis; Willie Falk; John Finn; Tony Forest; Gregg Franklin; Christophe Furget; David Gaskell; Joseph Grames; Keith Griffioen; Klaus Grimm; Benoit Guillon; Hayko Guler; Lars Hannelius; R. Hasty; A. Hawthorne Allen; Tanja Horn; Kathleen Johnston; Mark Jones; Peter Kammel; Reza Kazimi; Paul King; Ameya Kolarkar; Elie Korkmaz; Wolfgang Korsch; Serge Kox; Joachim Kuhn; Jeff Lachniet; Lawrence Lee; Jason Lenoble; Eric Liatard; J. Liu; Berenice Loupias; A. Lung; Glen MacLachlan; Dominique Marchand; J.W. Martin; Kenneth McFarlane; Daniella Mckee; Robert McKeown; Fernand Merchez; Hamlet Mkrtchyan; Bryan Moffit; M. Morlet; Itaru Nakagawa; Kazutaka Nakahara; Melissa Nakos; Retief Neveling; Silvia Niccolai; S. Ong; Shelley Page; Vassilios Papavassiliou; Stephen Pate; Sarah Phillips; Mark Pitt; Benard Poelker; Tracy Porcelli; Gilles Quemener; Brian Quinn; William Ramsay; Aamer Rauf; Jean-Sebastien Real; Julie Roche; Philip Roos; Gary Rutledge; Jeffery Secrest; Neven Simicevic; G.R. Smith; Damon Spayde; Samuel Stepanyan; Marcy Stutzman; Vincent Sulkosky; Vardan Tadevosyan; Raphael Tieulent; Jacques Van de Wiele; Willem van Oers; Eric Voutier; William Vulcan; G. Warren; S.P. Wells; Steven Williamson; S.A. Wood; Chen Yan; Junho Yun; Valdis Zeps

    2005-06-01

    We have measured parity-violating asymmetries in elastic electron-proton scattering over the range of momentum transfers 0.12 < Q{sup 2} < 1.0 GeV{sup 2}. These asymmetries, arising from interference of the electromagnetic and neutral weak interactions, are sensitive to strange quark contributions to the currents of the proton. The measurements were made at JLab using a toroidal spectrometer to detect the recoiling protons from a liquid hydrogen target. The results indicate non-zero, Q{sup 2} dependent, strange quark contributions and provide new information beyond that obtained in previous experiments.

  13. Asymptotic approximations, with error estimates, of the scattering matrix for quantal Coulomb excitation by means of a nonlinear (Riccati) matrix differential equation

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, C.H.; Rawitscher, G.H.

    1977-03-01

    A scattering matrix function is defined, which obeys a nonlinear (Riccati) matrix differential equation, containing two coupling potential matrices U and W, which are slowly vanishing, and which are mildly oscillatory and rapidly oscillatory, respectively. The scattering matrix is the limiting value of this scattering function. The equation is first transformed to separate the effects of U and W, this transformation yielding separate equations in each. The long range effects of U and W are included in approximations for the scattering matrix, errors are assessed, and a prescription is outlined for the numerical computation of these approximations. In the case where the effect of W is entirely neglected beyond a certain point, the approximation obtained by Alder and Pauli (Nucl. Phys. 128, 193 (1969)) is recovered. An assessment of the error in this approximation is obtained.

  14. Influence of Guided Waves in Tibia on Non-linear Scattering of Contrast Agents.

    Science.gov (United States)

    Wang, Diya; Zhong, Hui; Zhai, Yu; Hu, Hong; Jin, Bowen; Wan, Mingxi

    2016-02-01

    The aim of this study was to elucidate the linear and non-linear responses of ultrasound contrast agent (UCA) to frequency-dispersive guided waves from the tibia cortex, particularly two individual modes, S0 (1.23 MHz) and A1 (2.06 MHz). The UCA responses to guided waves were illustrated through the Marmottant model derived from measured guided waves, and then verified by continuous infusion experiments in a vessel-tibia flow phantom. These UCA responses were further evaluated by the enhanced ratio of peak values and the resolutions of UCA backscattered echoes. Because of the individual modes S0 and A1 in the tibia, the peak values of the UCA backscattered echoes were enhanced by 83.57 ± 7.35% (p < 0.05) and 80.77 ± 6.60% (p < 0.01) in the UCA subharmonic frequency and subharmonic imaging, respectively. However, corresponding resolutions were 0.78 ± 0.07 (p < 0.05) and 0.72 ± 0.12 (p < 0.01) times those without guided wave disturbances, respectively. Even though the resolution was partly degenerated, the subharmonic detection sensitivity of UCA was improved by the guided waves. Thus, UCA responses to the double-frequency guided waves should be further explored to benefit the detection of capillary perfusion in tissue layers near the bone cortex, particularly for perfusion imaging in the free flaps and skeletal muscles.

  15. Measuring the leading hadronic contribution to the muon g-2 via μ e scattering

    Science.gov (United States)

    Abbiendi, G.; Calame, C. M. Carloni; Marconi, U.; Matteuzzi, C.; Montagna, G.; Nicrosini, O.; Passera, M.; Piccinini, F.; Tenchini, R.; Trentadue, L.; Venanzoni, G.

    2017-03-01

    We propose a new experiment to measure the running of the electromagnetic coupling constant in the space-like region by scattering high-energy muons on atomic electrons of a low- Z target through the elastic process μ e → μ e. The differential cross section of this process, measured as a function of the squared momentum transfer t=q^2Area, a statistical uncertainty of ˜ 0.3% can be achieved on a^{HLO}_{μ } after two years of data taking. The direct measurement of a^{HLO}_{μ } via μ e scattering will provide an independent determination, competitive with the time-like dispersive approach, and consolidate the theoretical prediction for the muon g-2 in the Standard Model. It will allow therefore a firmer interpretation of the measurements of the future muon g-2 experiments at Fermilab and J-PARC.

  16. The contribution of small angle and quasi-elastic scattering to the physics of liquid water

    Science.gov (United States)

    Teixeira, José

    2017-05-01

    Many properties of liquid water at low temperature show anomalous behaviour. For example, density, isothermal compressibility, heat capacity pass by maxima or minima and transport properties show a super-Arrhenius behaviour. Extrapolations performed beyond the homogeneous nucleation temperature are at the origin of models that predict critical points, liquid-liquid transitions or dynamic cross-overs in the large domain of temperature and pressure not accessible to experiments because of ice nucleation. A careful analysis of existing data can be used to test some of these models. Small angle X-ray or neutron scattering data are incompatible with models where two liquids or heterogeneities are present. Quasi-elastic neutron scattering, taking advantage and combining both coherent and incoherent scattering show that two relaxation times are present in liquid water and that one of them, related to hydrogen bond dynamics, has an Arrhenian behaviour, suggesting that the associated dynamics of the bonds, similar to the β relaxation of polymers, determines the glass transition temperature of water.

  17. Solitons and Scattering for the Cubic-Quintic Nonlinear Schrödinger Equation on R^3

    Science.gov (United States)

    Killip, Rowan; Oh, Tadahiro; Pocovnicu, Oana; Vişan, Monica

    2017-07-01

    We consider the cubic-quintic nonlinear Schrödinger equation: ipartial_t u = -Δ u - |u|^2u + |u|^4u. In the first part of the paper, we analyze the one-parameter family of ground state solitons associated to this equation with particular attention to the shape of the associated mass/energy curve. Additionally, we are able to characterize the kernel of the linearized operator about such solitons and to demonstrate that they occur as optimizers for a one-parameter family of inequalities of Gagliardo-Nirenberg type. Building on this work, in the latter part of the paper we prove that scattering holds for solutions belonging to the region R of the mass/energy plane where the virial is positive. We show that this region is partially bounded by solitons also by rescalings of solitons (which are not soliton solutions in their own right). The discovery of rescaled solitons in this context is new and highlights an unexpected limitation of any virial-based methodology.

  18. Nonlinear coherent Thomson scattering from relativistic electron sheets as a means to produce isolated ultrabright attosecond x-ray pulses

    Directory of Open Access Journals (Sweden)

    H.-C. Wu (武慧春

    2011-07-01

    Full Text Available A new way to generate intense attosecond x-ray pulses is discussed. It relies on coherent Thomson scattering (CTS from relativistic electron sheets. A double layer technique is used to generate planar solid-density sheets of monochromatic high-γ electrons with zero transverse momentum such that coherently backscattered light is frequency upshifted by factors up to 4γ^{2}. Here previous work [H.-C. Wu et al., Phys. Rev. Lett. 104, 234801 (2010PRLTAO0031-900710.1103/PhysRevLett.104.234801] is extended to the regime of high-intensity probe light with normalized amplitude a_{0}>1 leading to nonlinear CTS effects such as pulse contraction and steepening. The results are derived both by particle-in-cell (PIC simulation in a boosted frame and by analytic theory. PIC simulation shows that powerful x-ray pulses (1 keV, 10   gigawatt can be generated. They call for experimental verification. Required prerequisites such as manufacture of nanometer-thick target foils is ready and ultrahigh contrast laser pulses should be within reach in the near future.

  19. Two-photon exchange contribution in elastic electron-proton scattering, experiment at the VEPP-3 storage ring

    Directory of Open Access Journals (Sweden)

    Nikolenko D.M.

    2014-03-01

    Full Text Available We describe a precise measurement of the ratio of the (e+ p to (e− p elastic scattering cross sections. This comparison is sensitive to the effect of two-photon exchange contributions which may be the cause for inconsistent extractions of the proton form factors obtained using different methods. The experiment was performed at storage ring VEPP–3, Novosibirsk at energies of positron/electron beams of 1.0 and 1.6 GeV with electron/positron scattering angles θ = 65÷105° for the first case and 15÷25° and 55÷75° for the second case. Details of the experiment and the preliminary results are presented.

  20. Tenth-order lepton g-2: Contribution from diagrams containing sixth-order light-by-light-scattering subdiagram internally

    CERN Document Server

    Aoyama, T; Hayakawa, M; Kinoshita, T; Nio, M; Watanabe, N

    2010-01-01

    This paper reports the result of our evaluation of the tenth-order QED correction to the lepton g-2 from Feynman diagrams which have sixth-order light-by-light-scattering subdiagrams, none of whose vertices couples to the external magnetic field. The gauge-invariant set of these diagrams, called Set II(e), consists of 180 vertex diagrams. In the case of the electron g-2 (a_e) where the light-by-light subdiagram consists of the electron loop, the contribution to a_e is found to be $-1.344 9 (10) (\\alpha /\\pi)^5$. The contribution of the muon loop to a_e is $-0.000 465 (4) (\\alpha /\\pi)^5$. The contribution of the tau-lepton loop is about two orders of magnitudes smaller than that of the muon loop and hence negligible. The sum of all these contributions to a_e is $-1.345 (1) (\\alpha/\\pi)^5$. We have also evaluated the contribution of Set II(e) to the muon g-2 (a_\\mu). The contribution to a_\\mu from the electron loop is $3.265 (12) (\\alpha /\\pi)^5$, while the contribution of the tau-lepton loop is $-0.038 06 (13...

  1. Neutral weak-current two-body contributions in inclusive scattering from {sup 12}C

    Energy Technology Data Exchange (ETDEWEB)

    Lovato, Alessandro [ANL; Gandolfi, Stefano [LANL; Carlson, Joseph [LANL; Pieper, S. C. [ANL; Schiavilla, Rocco [JLAB, ODU

    2014-05-01

    An {\\it ab initio} calculation of the sum rules of the neutral weak response functions in $^{12}$C is reported, based on a realistic Hamiltonian, including two- and three-nucleon potentials, and on realistic currents, consisting of one- and two-body terms. We find that the sum rules of the response functions associated with the longitudinal and transverse components of the (space-like) neutral current are largest and that a significant portion ($\\simeq 30$\\%) of the calculated strength is due to two-body terms. This fact may have implications for the MiniBooNE and other neutrino quasi-elastic scattering data on nuclei.

  2. Towards an optical far-field measurement of higher-order multipole contributions to the scattering response of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Thomas; Orlov, Sergej [Max Planck Institute for the Science of Light, Guenther-Scharowsky-Str. 1/Bldg. 24, 91058 Erlangen (Germany); Institute of Optics, Information and Photonics, University Erlangen-Nuremberg, Staudtstr. 7/B2, 91058 Erlangen (Germany); Leuchs, Gerd; Banzer, Peter, E-mail: peter.banzer@mpl.mpg.de [Max Planck Institute for the Science of Light, Guenther-Scharowsky-Str. 1/Bldg. 24, 91058 Erlangen (Germany); Institute of Optics, Information and Photonics, University Erlangen-Nuremberg, Staudtstr. 7/B2, 91058 Erlangen (Germany); Department of Physics, University of Ottawa, 25 Templeton St., Ottawa, Ontario K1N 6N5 (Canada)

    2015-03-02

    We experimentally show an all-optical multipolar decomposition of the lowest-order eigenmodes of a single gold nanoprism using azimuthally and radially polarized cylindrical vector beams. By scanning the particle through these tailored field distributions, the multipolar character of the eigenmodes gets encoded into 2D-scanning intensity maps even for higher-order contributions to the eigenmode that are too weak to be discerned in the direct far-field scattering response. This method enables a detailed optical mode analysis of individual nanoparticles.

  3. Towards an optical far-field measurement of higher-order multipole contributions to the scattering response of nanoparticles

    CERN Document Server

    Bauer, Thomas; Leuchs, Gerd; Banzer, Peter

    2014-01-01

    We experimentally show an all-optical multipolar decomposition of the lowest-order Eigenmodes of a single gold nanoprism using azimuthally and radially polarized cylindrical vector beams. By scanning the particle through these tailored field distributions, the multipolar character of the Eigenmodes gets encoded into 2D-scanning intensity maps even for higher-order contributions to the Eigenmode that are too weak to be discerned in the direct far-field scattering response. This method enables a detailed optical mode analysis of individual nanoparticles.

  4. SU-E-I-55: The Contribution to Skin Dose Due to Scatter From the Patient Table and the Head Holder During Fluoroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Islam, N; Xiong, Z; Vijayan, S; Rudin, S; Bednarek, D [Toshiba Stroke and Vascular Research Center, University at Buffalo, Buffalo, NY (United States)

    2015-06-15

    Purpose: To determine contributions to skin dose due to scatter from the table and head holder used during fluoroscopy, and also to explore alternative design material to reduce the scatter dose. Methods: Measurements were made of the primary and scatter components of the xray beam exiting the patient table and a cylindrical head holder used on a Toshiba Infinix c-arm unit as a function of kVp for the various beam filters on the machine and for various field sizes. The primary component of the beam was measured in air with the object placed close to the x-ray tube with an air gap between it and a 6 cc parallel-plate ionization chamber and with the beam collimated to a size just larger than the chamber. The primary plus scatter radiation components were measured with the object moved to a position in the beam next to the chamber for larger field sizes. Both sets of measurements were preformed while keeping the source-to-chamber distance fixed. The scatter fraction was estimated by taking the ratio of the difference between the two measurements and the reading that included both primary and scatter. Similar measurements were also made for a 2.3 cm thick Styrofoam block which could substitute for the patient support. Results: The measured scatter fractions indicate that the patient table as well as the head holder contributes an additional 10–16% to the patient entrance dose depending on field size. Forward scatter was reduced with the Styrofoam block so that the scatter fraction was about 4–5%. Conclusion: The results of this investigation demonstrated that scatter from the table and head holder used in clinical fluoroscopy contribute substantially to the skin dose. The lower contribution of scatter from Styrofoam suggests that there is an opportunity to redesign patient support accessories to reduce the skin dose. Partial support from NIH grant R01EB002873 and Toshiba Medical Systems Corporation Equipment Grant.

  5. Aerosol single scattering albedo and its contribution to radiative forcing dung EAST- AIRE

    Science.gov (United States)

    Lee, K.; Li, Z.

    2007-12-01

    Quantification of aerosol single scattering albedo (SSA) can improve determining aerosol radiative property. Combination technique using MODIS and ground-based Hazemeter measurement data by the East Asian Study of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE) over China is proposed to retrieve SSA. The accuracy of the retrieval of SSA increases with the aerosol loading and the uncertainties in the SSA retrieval are 0.02~0.03 (AOT=1.0) and up to 0.03~0.05 (AOT=0.5) at 0.47¥ìm, respectively. The comparison of one- year data of retrieved SSA values with those from AERONET inversion product are ~0.03 (RMSD) and ~0.02 (mean bias), respectively. Estimated SSA values were range from 0.89 to 0.93 over the study area. Since SSA is an important factor of aerosol radiative forcing, these will help to understood the study of aerosol climate effects.

  6. Surface scattering contribution to the plasmon width in embedded Ag nanospheres

    CERN Document Server

    Monreal, R Carmina; Antosiewicz, Tomasz J

    2014-01-01

    Nanometer-sized metal particles exhibit broadening of the localized surface plasmon resonance (LSPR) in comparison to its value predicted by the classical Mie theory. Using our model for the LSPR dependence on non-local surface screening and size quantization, we quantitatively relate the observed plasmon width to the nanoparticle radius $R$ and the permittivity of the surrounding medium $\\epsilon_m$. For Ag nanospheres larger than 8 nm only the non-local dynamical effects occurring at the surface are important and, up to a diameter of 25 nm, dominate over the bulk scattering mechanism. Qualitatively, the LSPR width is inversely proportional to the particle size and has a nonmonotonic dependence on the permittivity of the host medium, exhibiting for Ag a maximum at $\\epsilon_m\\approx2.5$. Our calculated LSPR width is compared with recent experimental data.

  7. Contributed Review: A new synchronized source solution for coherent Raman scattering microscopy

    Science.gov (United States)

    Wang, Ke; Wang, Yuxin; Liang, Runfu; Wang, Jiaqi; Qiu, Ping

    2016-07-01

    Based on vibrational spectroscopy, coherent Raman Scattering (CRS) microscopy allows label-free imaging of biological and chemical samples with endogenous image contrast. Two-color, synchronized picosecond pulses are typically used for high spectral resolution imaging, which in turn constitutes a dramatic laser source challenge for CRS microscopy. Recently, synchronized time-lens source, inspired from ultrafast optical signal processing, has emerged as a promising laser source solution and has found application in various modalities of CRS microscopy. Time-lens is based on space-time analogy, which uses a "lens" in the time domain to compress long optical pulses or even continuous waves to ultrashort pulses, mimicking a lens in the space domain. Phase and intensity modulators driven with electrical signals are used in the time-lens source for picosecond pulse generation. As a result, the time-lens source is highly versatile and naturally compatible with modulation capabilities. More importantly, if the electrical signals used to drive the time-lens source are derived from other laser sources, such as mode-locked lasers, then synchronization between them can be realized, underlying the physics of a synchronized time-lens source. In this paper, we review recent progress on the basic principle, design of the synchronized time-lens source, and its applications to CRS microscopy of both biological and chemical samples.

  8. Contribution of third-harmonic and negative frequency polarization fields to self-phase modulation in nonlinear media

    CERN Document Server

    Loures, Cristian Redondo; Biancalana, Fabio

    2014-01-01

    We study the influence of third-harmonic generation (THG) and negative frequency polarization terms in the self-phase modulation (SPM) of short and intense pulses in Kerr media. We find that THG induces additional symmetric lobes in the SPM process. The amplitude of these new sidebands are greatly enhanced by the contributions of the negative frequency Kerr (NFK) term and the shock operator. We compare our theoretical predictions based on the analytical nonlinear phase with simulations carried out by using the full unidirectional pulse propagation equation (UPPE).

  9. The Self-Organizing Psyche: Nonlinear and Neurobiological Contributions to Psychoanalysis

    Science.gov (United States)

    Stein, A. H.

    Sigmund Freud attempted to align nineteenth century biology (and the dynamically conservative, continuous, Newtonian mechanics that underlie it) with discontinuous conscious experience. His tactics both set the future course for psychoanalytic development and introduced seemingly intractable complications into its metapsychology. In large part, these arose from what we now recognize were biological errors and dynamical oversimplifications amid his physical assumptions. Their correction, brought about by integrating nonlinear dynamics and neuro-biological research findings with W. Bion's reading of metapsychology, fundamentally supports a psychoanalysis based upon D. W. Winnicott's ideas surrounding play within transitional space.

  10. Contribution of hidden modes to nonlinear epidemic dynamics in urban human proximity networks

    CERN Document Server

    Fujiwara, Naoya; Iwayama, Koji; Aihara, Kazuyuki

    2015-01-01

    Recently developed techniques to acquire high-quality human mobility data allow large-scale simulations of the spread of infectious diseases with high spatial and temporal resolution.Analysis of such data has revealed the oversimplification of existing theoretical frameworks to infer the final epidemic size or influential nodes from the network topology. Here we propose a spectral decomposition-based framework for the quantitative analysis of epidemic processes on realistic networks of human proximity derived from urban mobility data. Common wisdom suggests that modes with larger eigenvalues contribute more to the epidemic dynamics. However, we show that hidden dominant structures, namely modes with smaller eigenvalues but a greater contribution to the epidemic dynamics, exist in the proximity network. This framework provides a basic understanding of the relationship between urban human motion and epidemic dynamics, and will contribute to strategic mitigation policy decisions.

  11. Problems in Nonlinear Acoustics: Scattering of Sound by Sound, Parametric Arrays, Focused Sound Beams, and Noncollinear Tone-Noise Interactions

    Science.gov (United States)

    1988-07-01

    of Texas at Austin 3(ARL:UT). 3 A. Background The problem of the scattering of sound by sound, as well as the terminology, was introduced3 by Ingard ...Texas at Austin, June 1987. [2] U. Ingard and D. C. Pridmore-Brown, "Scattering of Sound by Sound," J. Acoust. Soc. Am. 28, 367-369 (1956). [3] R. T

  12. Influence of intrapulse Raman scattering on the stationary pulses in the presence of linear and nonlinear gain as well as spectral filtering

    Science.gov (United States)

    Uzunov, Ivan M.; Georgiev, Zhivko D.; Arabadzhev, Todor N.

    2015-01-01

    In this paper we present numerical investigation of the influence of intrapulse Raman scattering (IRS) on the stable stationary pulses. Our basic equation, namely cubic-quintic Ginzburg-Landau equation describes the propagation of ultra-short optical pulses under the effect of IRS in the presence of linear and nonlinear gain as well as spectral filtering. Our aim is to examine numerically the influence of IRS, on the stable stationary pulses in the presence of constant linear and nonlinear gain as well as spectral filtering. Numerical solution of our basic equation is performed by means of the "fourth-order Runge-Kutta method in the interaction picture method" method. We found that the small change of the value of the parameter which describes IRS leads to qualitatively different behavior of the evolution of pulse amplitudes. In order to study the observed strong dependence on the IRS, the perturbation method of conserved quantities of the nonlinear Schrodinger equation is applied. The numerical analysis of the derived nonlinear system of ordinary differential equations has shown that our numerical findings are related to the existence of the Poincare-Andronov-Hopf bifurcation.

  13. Analysis of contributions of nonlinear material constants to temperature-induced velocity shifts of quartz surface acoustic wave resonators.

    Science.gov (United States)

    Zhang, Haifeng; Kosinski, John A; Zuo, Lei

    2016-09-01

    In this paper, we examine the significance of the various higher-order effects regarding calculating temperature behavior from a set of material constants and their temperature coefficients. Temperature-induced velocity shifts have been calculated for quartz surface acoustic wave (SAW) resonators and the contributions of different groups of nonlinear material constants (third-order elastic constants (TOE), third-order piezoelectric constants (TOP), third-order dielectric constants (TOD) and electrostrictive constants (EL)) to the temperature-induced velocity shifts have been analyzed. The analytical methodology has been verified through the comparison of experimental and analytical results for quartz resonators. In general, the third-order elastic constants were found to contribute most significantly to the temperature-induced shifts in the SAW velocity. The contributions from the third-order dielectric constants and electrostrictive constants were found to be negligible. For some specific cases, the third-order piezoelectric constants were found to make a significant contribution to the temperature-induced shifts. The significance of each third-order elastic constant as a contributor to the temperature-velocity effect was analyzed by applying a 10% variation to each of the third-order elastic constants separately. Additionally, we have considered the issues arising from the commonly used thermoelastic expansions that provide a good but not exact description of the temperature effects on frequency in piezoelectric resonators as these commonly used expansions do not include the effects of higher-order material constants.

  14. Continuum contribution to excitonic four-wave mixing due to interaction-induced nonlinearities

    DEFF Research Database (Denmark)

    Birkedal, Dan; Vadim, Lyssenko; Hvam, Jørn Märcher

    1996-01-01

    We present an experimental and theoretical investigation of ultrafast transient four-wave mixing of GaAs/AlxGa1-xAs quantum wells for coherent excitation of exciton and continuum states. The signal appears at the exciton resonance and is shown to consist of two contributions: an intense spectrally...

  15. One-photon controlled two-photon not gate contributed by weak cross-Kerr nonlinearities

    Science.gov (United States)

    Xiu, Xiao-Ming; Li, Qing-Yang; Lin, Yan-Fang; Dong, Li; Dong, Hai-Kuan; Gao, Ya-Jun

    2017-06-01

    A quantum logic gate is an indispensable fundamental element for completing tasks of quantum information processing, such as quantum computation and scalable quantum networks. With the help of weak cross-Kerr nonlinearities, we propose an efficient optical one-photon controlled two-photon not gate, where polarization modes of photons act as quantum bits, aiming to construct the practical and scalable quantum logic circuits. By adopting one-time nondestructive measurement, this gate can realize the function of two two-photon controlled-not gates, where the polarization bits of two target photons will be flipped when the controlled photon is in the vertical polarization state. After measuring on the coherent state, the suitable operations including swapping of photon states and single-photon transformations are carried out by classical feed forward, conditioned on the measurement outcomes. Simple linear optical elements, and mature techniques containing Homodyne measurement and classical feed forward are applied to enhance the feasibility of the scheme presented here and other scalable logic gates.

  16. Investigation of nonlinear optical (NLO) properties by charge transfer contributions of amine functionalized tetraphenylethylene

    Science.gov (United States)

    Rana, Meenakshi; Singla, Nidhi; Chatterjee, Amrita; Shukla, Abhishek; Chowdhury, Papia

    2016-12-01

    Nonlinear Optical (NLO) properties of amine functionalized tetraphenylethylene (TPE-NH2) have been recorded and analyzed. The structural geometry, bonding features, harmonic vibrational frequencies (FTIR and Raman) of TPE-NH2 have been investigated by B3LYP density functional theory (DFT). Charge (Mulliken and natural) analysis, natural bond orbital (NBO) analysis, frontier molecular orbitals (FMOs), 13C and 1H nuclear magnetic resonance (NMR) and molecular electrostatic potential (MEP) indicate the delocalization of charges over the donor-acceptor region by the increase of C-N bond length. The vibrational analysis on the basis of potential energy distribution (PED) confirms the charge transfer interaction between donor and acceptor groups, and that in turn validates the presence of the larger dipole moment (μ), polarizability and hyperpolarizabilities (α, β and γ) in TPE-NH2. Higher value of ionization potential (IP), electronegativity (χ), hardness (η), chemical potential (CP) and smaller HOMO-LUMO energy gap (Δε) validate TPE-NH2's strong candidature to be used as an NLO active material.

  17. Nonlinear amygdala response to face trustworthiness: contributions of high and low spatial frequency information.

    Science.gov (United States)

    Said, Christopher P; Baron, Sean G; Todorov, Alexander

    2009-03-01

    Previous neuroimaging research has shown amygdala sensitivity to the perceived trustworthiness of neutral faces, with greater responses to untrustworthy compared with trustworthy faces. This observation is consistent with the common view that the amygdala encodes fear and is preferentially responsive to negative stimuli. However, some studies have shown greater amygdala activation to positive compared with neutral stimuli. The first goal of this study was to more fully characterize the amygdala response to face trustworthiness by modeling its activation with both linear and nonlinear predictors. Using fMRI, we report a nonmonotonic response profile, such that the amygdala responds strongest to highly trustworthy and highly untrustworthy faces. This finding complicates future attempts to make inferences about mental states based on activation in the amygdala. The second goal of the study was to test for modulatory effects of image spatial frequency filtering on the amygdala response. We predicted greater amygdala sensitivity to face trustworthiness for low spatial frequency images compared with high spatial frequency images. Instead, we found that both frequency ranges provided sufficient information for the amygdala to differentiate faces on trustworthiness. This finding is consistent with behavioral results and suggests that trustworthiness information may reach the amygdala through pathways carrying both coarse and fine resolution visual signals.

  18. Analytic structure of the $n=7$ scattering amplitude in $\\mathcal{N}=4$ SYM theory at multi-Regge kinematics: Conformal Regge Pole Contribution

    CERN Document Server

    Bartels, Jochen; Lipatov, Lev

    2013-01-01

    We investigate the analytic structure of the $2\\to5$ scattering amplitude in the planar limit of $\\mathcal{N}=4$ SYM in multi-Regge kinematics in all physical regions. We demonstrate the close connection between Regge pole and Regge cut contributions: in a selected class of kinematic regions (Mandelstam regions) the usual factorizing Regge pole formula develops unphysical singularities which have to be absorbed and compensated by Regge cut contributions. This leads, in the corrections to the BDS formula, to conformal invariant 'renormalized' Regge pole expressions in the remainder function. We compute these renormalized Regge poles for the $2\\to5$ scattering amplitude.

  19. Next-to-next-to-leading order contributions to inclusive jet production in deep-inelastic scattering and determination of α{sub s}

    Energy Technology Data Exchange (ETDEWEB)

    Biekoetter, Thomas; Klasen, Michael [Muenster Univ. (Germany). Institut fuer Theoretische Physik; Kramer, Gustav [Hamburg Univ. (Germany). 2. Institut fuer Theoretische Physik

    2015-09-15

    We present the first calculation of inclusive jet production in deep-inelastic scattering with approximate next-to-next-to-leading order (aNNLO) contributions, obtained from a unified threshold resummation formalism. The leading coefficients are computed analytically. We show that the aNNLO contributions reduce the theoretical prediction for jet production in deep-inelastic scattering, improve the description of the final HERA data in particular at high photon virtuality Q{sup 2} and increase the central fit value of the strong coupling constant.

  20. Next-to-next-to-leading order contributions to inclusive jet production in deep-inelastic scattering and determination of αs

    Science.gov (United States)

    Biekötter, Thomas; Klasen, Michael; Kramer, Gustav

    2015-10-01

    We present the first calculation of inclusive jet production in deep-inelastic scattering with approximate next-to-next-to-leading order (aNNLO) contributions, obtained from a unified threshold resummation formalism. The leading coefficients are computed analytically. We show that the aNNLO contributions reduce the theoretical prediction for jet production in deep-inelastic scattering, improve the description of the final HERA data in particular at high photon virtuality Q2 and increase the central fit value of the strong coupling constant.

  1. Analytic structure of the n=7 scattering amplitude in N=4 SYM theory at multi-Regge kinematics. Conformal Regge pole contribution

    Energy Technology Data Exchange (ETDEWEB)

    Bartels, Jochen; Kormilitzin, Andrey [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Lipatov, Lev [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; St. Petersburg Nuclear Physics Institute, St. Petersburg (Russian Federation)

    2013-11-15

    We investigate the analytic structure of the 2 {yields} 5 scattering amplitude in the planar limit of N=4 SYM in multi-Regge kinematics in all physical regions. We demonstrate the close connection between Regge pole and Regge cut contributions: in a selected class of kinematic regions (Mandelstam regions) the usual factorizing Regge pole formula develops unphysical singularities which have to be absorbed and compensated by Regge cut contributions. This leads, in the corrections to the BDS formula, to conformal invariant 'renormalized' Regge pole expressions in the remainder function. We compute these renormalized Regge poles for the 2 {yields} 5 scattering amplitude.

  2. Quantitative assessment of scattering contributions in high energy cone-beam computed tomography; Quantitative Untersuchung der Streubeitraege in Hochenergie-Roentgencomputertomografie

    Energy Technology Data Exchange (ETDEWEB)

    Stritt, Carina; Schuetz, Philipp; Plamondon, Mathieu; Hofmann, Juergen; Sennhauser, Urs [Empa, Duebendorf (Switzerland). Reliability Science and Technology Laboratory; Flisch, Alexander [Empa, Duebendorf (Switzerland). Reliability Science and Technology Laboratory; Empa, Duebendorf (Switzerland). Center for X-Ray Analytics

    2016-02-01

    X-ray computed tomography (CT) is an established method in the fields of failure analysis and quality control. The energy of the X-ray beam determines the penetration length of the radiation and hereby limits the size and the density of the object that is investigated. For the case of large, dense and heavy objects, X-ray energies exceeding one mega electronvolt (MeV) are needed to achieve measureable transmission values. An important factor for the quality of X-ray CT is the contribution of scattered radiation in the radiographies. X-ray photons can be scattered from the object as well as the instrumentation and the environment which leads to a distorted transmission image. Besides scattered radiation, the physical effect of pair production has to be taken into account for radiation in the range of MeV. This work investigates the impact of each of the scattering processes on the radiography. Detailed Monte Carlo simulations help to distinguish the physical interactions as well as scattered radiation from system components. In contrast to previous studies, not only a set of simple geometric objects made of different materials is examined, but also models of the components of a CT scanner are used to estimate the contribution of scattering of various system components.

  3. Measurement of $D^{*\\pm}$ production and the charm contribution to $F_{2}$ in deep inelastic scattering at HERA

    CERN Document Server

    Abbiendi, G; Abramowicz, H; Acosta, D; Adamczyk, L; Adamus, M; Ahn, S H; Amelung, C; An Shiz Hong; Anselmo, F; Antonioli, P; Arneodo, M; Bacon, Trevor C; Badgett, W F; Bailey, D C; Bailey, D S; Bamberger, A; Barbagli, G; Bari, G; Barreiro, F; Barret, O; Bashindzhagian, G L; Bashkirov, V; Basile, M; Bauerdick, L A T; Bednarek, B; Behrens, U; Bellagamba, L; Bertolin, A; Bhadra, S; Bienlein, J K; Blaikley, H E; Bohnet, I; Bokel, C; Boogert, S; Bornheim, A; Borzemski, P; Boscherini, D; Botje, M; Breitweg, J; Brock, I; Brook, N H; Brugnera, R; Bruni, A; Bruni, G; Brümmer, N; Burgard, C; Burow, B D; Bussey, P J; Butterworth, J M; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carlin, R; Cartiglia, N; Cashmore, R J; Castellini, G; Catterall, C D; Chapin, D; Chekanov, S; Chwastowski, J; Ciborowski, J; Cifarelli, Luisa; Cindolo, F; Cirio, R; Cloth, P; Coboken, K; Coldewey, C; Cole, J E; Contin, A; Cooper-Sarkar, A M; Coppola, N; Cor, M; Cormack, C; Corriveau, F; Costa, M; Cottingham, W N; Crittenden, J; Cross, R; D'Agostini, G; Dagan, S; Dal Corso, F; Dardo, M; De Pasquale, S; De Wolf, E; Deffner, R; Del Peso, J; Deppe, O; Derrick, M; Deshpande, Abhay A; Desler, K; Devenish, R C E; Dhawan, S; Dolgoshein, B A; Dondana, S; Dosselli, U; Doyle, A T; Drews, G; Dulinski, Z; Durkin, L S; Dusini, S; Eckert, M; Edmonds, J K; Eisenberg, Y; Eisenhardt, S; Engelen, J; Epperson, D E; Ermolov, P F; Eskreys, Andrzej; Fagerstroem, C P; Fernández, J P; Ferrero, M I; Figiel, J; Filges, D; Foster, B; Foudas, C; Fox-Murphy, A; Fricke, U; Frisken, W R; Fusayasu, T; Gadaj, T; Galea, R; Gallo, E; García, G; Garfagnini, A; Gendner, N; Gialas, I; Gilmore, J; Ginsburg, C M; Giusti, P; Gladilin, L K; Glasman, C; Göbel, F; Golubkov, Yu A; Grabosch, H J; Graciani, R; Grosse-Knetter, J; Grzelak, G; Göttlicher, P; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hanna, D S; Harnew, N; Hart, H; Hart, J C; Hartmann, J; Hartner, G F; Hasell, D; Hayes, M E; Heaphy, E A; Heath, G P; Heath, H F; Hebbel, K; Heinloth, K; Heinz, L; Hernández, J M; Heusch, C A; Hilger, E; Hirose, T; Hochman, D; Holm, U; Homma, K; Hong, S J; Howell, G; Hughes, V W; Iacobucci, G; Iannotti, L; Iga, Y; Inuzuka, M; Ishii, T; Jakob, H P; Jelen, K; Jeoung, H Y; Jing, Z; Johnson, K F; Jones, T W; Kananov, S; Kappes, A; Karshon, U; Kasemann, M; Katz, U F; Kcira, D; Kerger, R; Khakzad, M; Khein, L A; Kim, C L; Kim, J Y; Kisielewska, D; Kitamura, S; Klanner, Robert; Klimek, K; Ko, I A; Koch, W; Koffeman, E; Kooijman, P; Koop, T; Korotkova, N A; Kotanski, A; Kowal, A M; Kowalski, H; Kowalski, T; Krakauer, D; Kreisel, A; Kuze, M; Kuzmin, V A; Kötz, U; Labarga, L; Lamberti, L; Lane, J B; Laurenti, G; Lee, J H; Lee, S B; Lee, S W; Levi, G; Levman, G M; Levy, A; Lim, H; Lim, I T; Limentani, S; Lindemann, L; Ling, T Y; Liu, W; Lohrmann, E; Long, K R; Lopez-Duran Viani, A; Lukina, O Yu; Löhr, B; Ma, K J; MacDonald, N; Maccarrone, G; Magill, S; Mallik, U; Margotti, A; Marini, G; Markun, P; Martin, J F; Martínez, M; Maselli, S; Massam, Thomas; Mastroberardino, A; Matsushita, T; Mattingly, M C K; Mattingly, S E K; McCance, G J; McCubbin, N A; McFall, J D; Mellado, B; Menary, S R; Meyer, A; Meyer-Larsen, A; Milewski, J; Milite, M; Miller, D B; Monaco, V; Monteiro, T; Morandin, M; Moritz, M; Murray, W N; Musgrave, B; Mönig, K; Nagano, K; Nam, S W; Nania, R; Nigro, A; Nishimura, T; Notz, D; Nowak, R J; Noyes, V A; Nylander, P; Ochs, A; Oh, B Y; Okrasinski, J R; Olkiewicz, K; Orr, R S; Pac, M Y; Padhi, S; Palmonari, F; Park, I H; Park, S K; Parsons, J A; Paul, E; Pavel, N; Pawlak, J M; Pawlak, R; Pelfer, Pier Giovanni; Pellegrino, A; Pelucchi, F; Peroni, C; Pesci, A; Petrucci, M C; Pfeiffer, M; Pic, D; Piotrzkowski, K; Poelz, G; Polenz, S; Polini, A; Posocco, M; Prinias, A; Proskuryakov, A S; Przybycien, M B; Puga, J; Quadt, A; Raach, H; Raso, M; Rautenberg, J; Re, J; Redondo, I; Reeder, D D; Ritz, S; Riveline, M; Rohde, M; Rulikowska-Zarebska, E; Ruske, O; Ruspa, M; Sabetfakhri, A; Sacchi, R; Sadrozinski, H F W; Saint-Laurent, M; Salehi, H; Samp, S; Sartorelli, G; Saull, P R B; Savin, A A; Saxon, D H; Schechter, A; Schioppa, M; Schlenstedt, S; Schmidke, W B; Schneekloth, U; Schnurbusch, H; Schwarzer, O; Sciulli, F; Scott, J; Sedgbeer, J K; Seiden, A; Selonke, F; Shah, T P; Shcheglova, L M; Sideris, D; Sievers, M; Simmons, D; Sinclair, L E; Skillicorn, I O; Smalska, B; Smith, W H; Solano, A; Solomin, A N; Son, D; Staiano, A; Stairs, D G; Stanco, L; Stanek, R; Stifutkin, A; Stonjek, S; Straub, P B; Strickland, E; Stroili, R; Susinno, G; Suszycki, L; Sutton, M R; Suzuki, I; Tandler, J; Tapper, A D; Tapper, R J; Tassi, E; Terron, J; Tiecke, H G; Tokushuku, K; Toothacker, W S; Tsurugai, T; Tuning, N; Tymieniecka, T; Umemori, K; Vaiciulis, A W; Van Sighem, A; Velthuis, J J; Verkerke, W; Voci, C; Vossebeld, Joost Herman; Votano, L; Walczak, R; Walker, R; Wang, S M; Waters, D S; Waugh, R; Weber, A; Whitmore, J J; Wichmann, R; Wick, K; Wieber, H; Wiggers, L; Wildschek, T; Williams, D C; Wing, M; Wodarczyk, M; Wolf, G; Wollmer, U; Wróblewski, A K; Wölfle, S; Yamada, S; Yamashita, T; Yamauchi, K; Yamazaki, Y; Yoshida, R; Youngman, C; Zajac, J; Zakrzewski, J A; Zamora Garcia, Y; Zawiejski, L; Zetsche, F; Zeuner, W; Zhu, Q; Zichichi, A; Zotkin, S A

    2000-01-01

    The production of D*+-(2010) mesons in deep inelastic scattering has been measured in the ZEUS detector at HERA using an integrated luminosity of 37 pb^-1. The decay channels D*+ -> D0 pi+(+c.c.), with D0 -> K- pi+ or D0 ->K- pi- pi+ pi+, have been used to identify the D mesons. The e+p cross section for inclusive D*+- production with 1contribution, F^ccbar_2(x,Q^2), to the proton structure function. The ratio F^ccbar_2/F_2 rises from ~10% at Q^2 ~1.8 GeV^2 to ~30% at Q^2 ~130 GeV^2 for x values in the ra...

  4. On the design of experiments for determining ternary mixture free energies from static light scattering data using a nonlinear partial differential equation.

    Science.gov (United States)

    Wahle, Chris W; Ross, David S; Thurston, George M

    2012-07-21

    We mathematically design sets of static light scattering experiments to provide for model-independent measurements of ternary liquid mixing free energies to a desired level of accuracy. A parabolic partial differential equation (PDE), linearized from the full nonlinear PDE [D. Ross, G. Thurston, and C. Lutzer, J. Chem. Phys. 129, 064106 (2008)], describes how data noise affects the free energies to be inferred. The linearized PDE creates a net of spacelike characteristic curves and orthogonal, timelike curves in the composition triangle, and this net governs diffusion of information coming from light scattering measurements to the free energy. Free energy perturbations induced by a light scattering perturbation diffuse along the characteristic curves and towards their concave sides, with a diffusivity that is proportional to the local characteristic curvature radius. Consequently, static light scattering can determine mixing free energies in regions with convex characteristic curve boundaries, given suitable boundary data. The dielectric coefficient is a Lyapunov function for the dynamical system whose trajectories are PDE characteristics. Information diffusion is heterogeneous and system-dependent in the composition triangle, since the characteristics depend on molecular interactions and are tangent to liquid-liquid phase separation coexistence loci at critical points. We find scaling relations that link free energy accuracy, total measurement time, the number of samples, and the interpolation method, and identify the key quantitative tradeoffs between devoting time to measuring more samples, or fewer samples more accurately. For each total measurement time there are optimal sample numbers beyond which more will not improve free energy accuracy. We estimate the degree to which many-point interpolation and optimized measurement concentrations can improve accuracy and save time. For a modest light scattering setup, a sample calculation shows that less than two

  5. Quantitative analysis of artifacts in 4D DSA: the relative contributions of beam hardening and scatter to vessel dropout behind highly attenuating structures

    Science.gov (United States)

    Hermus, James; Szczykutowicz, Timothy P.; Strother, Charles M.; Mistretta, Charles

    2014-03-01

    When performing Computed Tomographic (CT) image reconstruction on digital subtraction angiography (DSA) projections, loss of vessel contrast has been observed behind highly attenuating anatomy, such as dental implants and large contrast filled aneurysms. Because this typically occurs only in a limited range of projection angles, the observed contrast time course can potentially be altered. In this work, we have developed a model for acquiring DSA projections that models both the polychromatic nature of the x-ray spectrum and the x-ray scattering interactions to investigate this problem. In our simulation framework, scatter and beam hardening contributions to vessel dropout can be analyzed separately. We constructed digital phantoms with large clearly defined regions containing iodine contrast, bone, soft issue, titanium (dental implants) or combinations of these materials. As the regions containing the materials were large and rectangular, when the phantoms were forward projected, the projections contained uniform regions of interest (ROI) and enabled accurate vessel dropout analysis. Two phantom models were used, one to model the case of a vessel behind a large contrast filled aneurysm and the other to model a vessel behind a dental implant. Cases in which both beam hardening and scatter were turned off, only scatter was turned on, only beam hardening was turned on, and both scatter and beam hardening were turned on, were simulated for both phantom models. The analysis of this data showed that the contrast degradation is primarily due to scatter. When analyzing the aneurysm case, 90.25% of the vessel contrast was lost in the polychromatic scatter image, however only 50.5% of the vessel contrast was lost in the beam hardening only image. When analyzing the teeth case, 44.2% of the vessel contrast was lost in the polychromatic scatter image and only 26.2% of the vessel contrast was lost in the beam hardening only image.

  6. Multiple and double scattering contributions to depth resolution and low energy background in hydrogen elastic recoil detection

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L.S. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1996-12-31

    The sensitivity of hydrogen elastic recoil detection ( ERD ) is usually limited by the low energy background in the ERD spectrum. A number of 4.5 MeV He{sup ++} hydrogen ERD spectra from different hydrogen implanted samples are compared. The samples are chosen with different atomic numbers from low Z (carbon) to high Z (tungsten carbide) to observe the effects of multiple scattering and double scattering within the sample material. The experimental depth resolution and levels of the low energy background in ERD spectra are compared with theoretical predictions from multiple and double scattering. 10 refs., 2 tabs., 5 figs.

  7. Non-linear photoelectron effect contributes to the formation of negative matrix ions in UV-MALDI.

    Science.gov (United States)

    Alonso, E; Zenobi, R

    2016-07-20

    The mechanism of negative ion formation in matrix-assisted laser desorption/ionization (MALDI) is less well understood than that of positive ions: electron capture, disproportionation, and liberation of negatively charged sample molecules or clusters have been proposed to produce the initial anions in MALDI. Here, we propose that the non-linear photoelectric effect can explain the emission of electrons from the metallic target material. Moreover, electrons with sufficient kinetic energy (0-10 eV) could be responsible for the formation of initial negative ions. Gas-phase electron capture by neutral 2,5-dihydroxy benzoic acid (DHB) to yield M(-) is investigated on the basis of a coupled physical and chemical dynamics (CPCD) theory from the literature. A three-layer energy mass balance model is utilized to calculate the surface temperature of the matrix, which is used to determine the translational temperature, the number of desorbed matrix molecules per unit area, and the ion velocity. Calculations of dissociative attachment and autoionization rates of DHB are presented. It was found that both processes contribute significantly to the formation of [M - H](-) and [M - H2](-), although the predicted yield in the fluence range of 5-100 mJ cm(-2) is low, certainly less than that for positive ions M(+). This work represents the first proposal for a comprehensive theoretical description of negative ion formation in UV-MALDI.

  8. Silica-glass contribution to the effective nonlinearity of hollow-core photonic band-gap fibers.

    Science.gov (United States)

    Hensley, Christopher J; Ouzounov, Dimitre G; Gaeta, Alexander L; Venkataraman, Natesan; Gallagher, Michael T; Koch, Karl W

    2007-03-19

    We measure the effective nonlinearity of various hollow-core photonic band-gap fibers. Our findings indicate that differences of tens of nanometers in the fiber structure result in significant changes to the power propagating in the silica glass and thus in the effective nonlinearity of the fiber. These results show that it is possible to engineer the nonlinear response of these fibers via small changes to the glass structure.

  9. A high-energy, high-flux source of gamma-rays from all-optical non-linear Thomson scattering

    Science.gov (United States)

    Corvan, D. J.; Zepf, M.; Sarri, G.

    2016-09-01

    γ-Ray sources are among the most fundamental experimental tools currently available to modern physics. As well as the obvious benefits to fundamental research, an ultra-bright source of γ-rays could form the foundation of scanning of shipping containers for special nuclear materials and provide the bases for new types of cancer therapy. However, for these applications to prove viable, γ-ray sources must become compact and relatively cheap to manufacture. In recent years, advances in laser technology have formed the cornerstone of optical sources of high energy electrons which already have been used to generate synchrotron radiation on a compact scale. Exploiting the scattering induced by a second laser, one can further enhance the energy and number of photons produced provided the problems of synchronisation and compact γ-ray detection are solved. Here, we report on the work that has been done in developing an all-optical and hence, compact non-linear Thomson scattering source, including the new methods of synchronisation and compact γ-ray detection. We present evidence of the generation of multi-MeV (maximum 16-18 MeV) and ultra-high brilliance (exceeding 1020 photons s-1mm-2mrad-2 0.1% BW at 15 MeV) γ-ray beams. These characteristics are appealing for the paramount practical applications mentioned above.

  10. Nonlinear phase shifts of modulated light waves with slow and superluminal group delay in stimulated Brillouin scattering.

    Science.gov (United States)

    Arditi, Tal; Granot, Er'el; Sternklar, Shmuel

    2007-09-15

    Brillouin amplification with counterpropagating modulated pump and Stokes light leads to nonlinear modulation-phase shifts of the interacting intensity waves. This is due to a partial transformation of the nonmodulated light component at the input into modulated light at the output as a result of a mixing process with the counterpropagating modulated component of the pump and results in an advance or delay of the input modulation. This occurs for interactions over less than half of a modulation wavelength. Milliwatts of power in a kilometer of standard single-mode fiber give significant tunability of the modulation phase.

  11. Primary and secondary contributions to aerosol light scattering and absorption in Mexico City during the MILAGRO 2006 campaign

    Science.gov (United States)

    Paredes-Miranda, G.; Arnott, W. P.; Jimenez, J. L.; Aiken, A. C.; Gaffney, J. S.; Marley, N. A.

    2009-06-01

    A photoacoustic spectrometer, a nephelometer, an aethalometer, and an aerosol mass spectrometer were used to measure at ground level real-time aerosol light absorption, scattering, and chemistry at an urban site located in North East Mexico City (Instituto Mexicano del Petroleo, Mexican Petroleum Institute, denoted by IMP), as part of the Megacity Impact on Regional and Global Environments field experiment, MILAGRO, in March 2006. Photoacoustic and reciprocal nephelometer measurements at 532 nm accomplished with a single instrument compare favorably with conventional measurements made with an aethalometer and a TSI nephelometer. The diurnally averaged single scattering albedo at 532 nm was found to vary from 0.60 to 0.85 with the peak value at midday and the minimum value at 07:00 a.m. local time, indicating that the Mexico City plume is likely to have a net warming effect on local climate. The peak value is associated with strong photochemical generation of secondary aerosol. It is estimated that the photochemical production of secondary aerosol (inorganic and organic) is approximately 75% of the aerosol mass concentration and light scattering in association with the peak single scattering albedo. A strong correlation of aerosol scattering at 532 nm and total aerosol mass concentration was found, and an average mass scattering efficiency factor of 3.8 m2/g was determined. Comparisons of photoacoustic and aethalometer light absorption with oxygenated organic aerosol concentration (OOA) indicate a very small systematic bias of the filter based measurement associated with OOA and the peak aerosol single scattering albedo.

  12. Primary and secondary contributions to aerosol light scattering and absorption in Mexico City during the MILAGRO 2006 campaign

    Directory of Open Access Journals (Sweden)

    G. Paredes-Miranda

    2009-06-01

    Full Text Available A photoacoustic spectrometer, a nephelometer, an aethalometer, and an aerosol mass spectrometer were used to measure at ground level real-time aerosol light absorption, scattering, and chemistry at an urban site located in North East Mexico City (Instituto Mexicano del Petroleo, Mexican Petroleum Institute, denoted by IMP, as part of the Megacity Impact on Regional and Global Environments field experiment, MILAGRO, in March 2006. Photoacoustic and reciprocal nephelometer measurements at 532 nm accomplished with a single instrument compare favorably with conventional measurements made with an aethalometer and a TSI nephelometer. The diurnally averaged single scattering albedo at 532 nm was found to vary from 0.60 to 0.85 with the peak value at midday and the minimum value at 07:00 a.m. local time, indicating that the Mexico City plume is likely to have a net warming effect on local climate. The peak value is associated with strong photochemical generation of secondary aerosol. It is estimated that the photochemical production of secondary aerosol (inorganic and organic is approximately 75% of the aerosol mass concentration and light scattering in association with the peak single scattering albedo. A strong correlation of aerosol scattering at 532 nm and total aerosol mass concentration was found, and an average mass scattering efficiency factor of 3.8 m2/g was determined. Comparisons of photoacoustic and aethalometer light absorption with oxygenated organic aerosol concentration (OOA indicate a very small systematic bias of the filter based measurement associated with OOA and the peak aerosol single scattering albedo.

  13. Primary and secondary contributions to aerosol light scattering and absorption in Mexico City during the MILAGRO 2006 campaign

    Directory of Open Access Journals (Sweden)

    G. Paredes-Miranda

    2008-09-01

    Full Text Available A photoacoustic spectrometer, a nephelometer, an aetholemeter, and an aerosol mass spectrometer were used to measure at ground level real-time aerosol light absorption, scattering, and chemistry at an urban site located in north east Mexico City (Instituto Mexicano del Petroleo, Mexican Petroleum Institute, denoted by IMP, as part of the Megacity Impact on Regional and Global Environments field experiment, MILAGRO, in March 2006. Photoacoustic and reciprocal nephelometer measurements at 532 nm accomplished with a single instrument compare favorably with conventional measurements made with an aethelometer and a TSI nephelometer. The diurnally averaged single scattering albedo at 532 nm was found to vary from 0.60 to 0.85 with the peak value at midday and the minimum value at 7 a.m. local time, indicating that the Mexico City plume is likely to have a net warming effect on local climate. The peak value is associated with strong photochemical generation of secondary aerosol. It is estimated that the same-day photochemical production of secondary aerosol (inorganic and organic is approximately 40 percent of the aerosol mass concentration and light scattering in association with the peak single scattering albedo. A strong correlation of aerosol scattering at 532 nm and total aerosol mass concentration was found, and an average mass scattering efficiency factor of 3.8 m2/g was determined. Comparisons of photoacoustic and aethalometer light absorption with oxygenated organic aerosol concentration (OOA indicate a very small systematic bias of the filter based measurement associated with OOA and the peak aerosol single scattering albedo.

  14. Accurate Calculation of the Differential Cross Section of Bhabha Scattering with Photon Chain Loops Contribution in QED

    Institute of Scientific and Technical Information of China (English)

    JIANG Min; FANG Zhen-Yun; SANG Wen-Long; GAO Fei

    2006-01-01

    @@ In the minimum electromagnetism coupling model of interaction between photon and electron (positron), we accurately calculate photon chain renormalized propagator and obtain the accurate result of differential cross section of Bhabha scattering with a photon chain renormalized propagator in quantum electrodynamics. The related radiative corrections are briefly reviewed and discussed.

  15. Tenth-Order QED Contribution to the Lepton Anomalous Magnetic Moment -- Sixth-Order Vertices Containing an Internal Light-by-Light-Scattering Subdiagram

    CERN Document Server

    Aoyama, T; Kinoshita, T; Nio, M

    2012-01-01

    This paper reports the tenth-order QED contribution to the lepton g-2 from the gauge-invariant set, called Set III(c), which consists of 390 Feynman vertex diagrams containing an internal fourth-order light-by-light-scattering subdiagram. The mass-independent contribution of Set III(c) to the electron g-2 (a_e) is 4.9210(103) in units of (alpha/pi)^5. The mass-dependent contributions to a_e from diagrams containing a muon loop is 0.00370(37) (alpha/pi)^5. The tau-lepton loop contribution is negligible at present. Altogether the contribution of Set III(c) to a_e is 4.9247 (104) (alpha/pi)^5. We have also evaluated the contribution of the closed electron loop to the muon g-2 (a_mu). The result is 7.435(134) (alpha/pi)^5. The contribution of the tau-lepton loop to a_mu is 0.1999(28)(alpha/pi)^5. The total contribution of variousleptonic loops (electron, muon, and tau-lepton) of Set III(c) to a_mu is 12.556 (135) (alpha/pi)^5.

  16. A high-energy, high-flux source of gamma-rays from all-optical non-linear Thomson scattering

    Energy Technology Data Exchange (ETDEWEB)

    Corvan, D.J., E-mail: dcorvan01@qub.ac.uk; Zepf, M.; Sarri, G.

    2016-09-01

    γ-Ray sources are among the most fundamental experimental tools currently available to modern physics. As well as the obvious benefits to fundamental research, an ultra-bright source of γ-rays could form the foundation of scanning of shipping containers for special nuclear materials and provide the bases for new types of cancer therapy. However, for these applications to prove viable, γ-ray sources must become compact and relatively cheap to manufacture. In recent years, advances in laser technology have formed the cornerstone of optical sources of high energy electrons which already have been used to generate synchrotron radiation on a compact scale. Exploiting the scattering induced by a second laser, one can further enhance the energy and number of photons produced provided the problems of synchronisation and compact γ-ray detection are solved. Here, we report on the work that has been done in developing an all-optical and hence, compact non-linear Thomson scattering source, including the new methods of synchronisation and compact γ-ray detection. We present evidence of the generation of multi-MeV (maximum 16–18 MeV) and ultra-high brilliance (exceeding 10{sup 20} photons s{sup −1}mm{sup −2}mrad{sup −2} 0.1% BW at 15 MeV) γ-ray beams. These characteristics are appealing for the paramount practical applications mentioned above. - Highlights: • How synchrotron radiation can be produced in an all optical setting using laser-plasmas. • Generating high-energy, high-flux gamma ray beams. • Presenting results from a recent NLTS experimental campaign. • Reveal insight into the experimental techniques employed.

  17. Automated classification of single airborne particles from two-dimensional angle-resolved optical scattering (TAOS) patterns by non-linear filtering

    Science.gov (United States)

    Crosta, Giovanni Franco; Pan, Yong-Le; Aptowicz, Kevin B.; Casati, Caterina; Pinnick, Ronald G.; Chang, Richard K.; Videen, Gorden W.

    2013-12-01

    Measurement of two-dimensional angle-resolved optical scattering (TAOS) patterns is an attractive technique for detecting and characterizing micron-sized airborne particles. In general, the interpretation of these patterns and the retrieval of the particle refractive index, shape or size alone, are difficult problems. By reformulating the problem in statistical learning terms, a solution is proposed herewith: rather than identifying airborne particles from their scattering patterns, TAOS patterns themselves are classified through a learning machine, where feature extraction interacts with multivariate statistical analysis. Feature extraction relies on spectrum enhancement, which includes the discrete cosine FOURIER transform and non-linear operations. Multivariate statistical analysis includes computation of the principal components and supervised training, based on the maximization of a suitable figure of merit. All algorithms have been combined together to analyze TAOS patterns, organize feature vectors, design classification experiments, carry out supervised training, assign unknown patterns to classes, and fuse information from different training and recognition experiments. The algorithms have been tested on a data set with more than 3000 TAOS patterns. The parameters that control the algorithms at different stages have been allowed to vary within suitable bounds and are optimized to some extent. Classification has been targeted at discriminating aerosolized Bacillus subtilis particles, a simulant of anthrax, from atmospheric aerosol particles and interfering particles, like diesel soot. By assuming that all training and recognition patterns come from the respective reference materials only, the most satisfactory classification result corresponds to 20% false negatives from B. subtilis particles and classification method may be adapted into a real-time operation technique, capable of detecting and characterizing micron-sized airborne particles.

  18. Contribution of higher multiplicity collisions to elastic p{sup 6,8}He and p{sup 8,9}Li scattering within Glauber theory

    Energy Technology Data Exchange (ETDEWEB)

    Ibraeva, E. T., E-mail: ibraeva.elena@gmail.com [National Nuclear Center of Republic of Kazakhstan, Institute of Nuclear Physics (Kazakhstan); Imambekov, O. [Al-Farabi Kazakh National University (Kazakhstan)

    2015-07-15

    Differential cross sections for elastic p{sup 6,8}He and p{sup 8,9}Li scattering at energies between 60 and 70 MeV per nucleon and at the energy of 700 MeV per nucleon were calculated. The calculations in question were performed with the wave functions found on the basis of the α–n–n (for {sup 6}He), α–t–n (for {sup 8}Li), and α–t–2n (for {sup 9}Li) three-body models and with the density from the large-scale shell model for the {sup 8}He nucleus. The respective matrix elements were derived either upon taking fully into account the multiple-scattering operator or in the optical-limit approximation. A comparison of the results of the precise and approximate calculations made it possible to estimate reliably the contribution of higher multiplicity collisions to the differential cross sections.

  19. Eighth-Order Vacuum-Polarization Function Formed by Two Light-by-Light-Scattering Diagrams and its Contribution to the Tenth-Order Electron g-2

    CERN Document Server

    Aoyama, T; Kinoshita, T; Nio, M; Watanabe, N

    2008-01-01

    We have evaluated the contribution to the anomalous magnetic moment of the electron from six tenth-order Feynman diagrams which contain eighth-order vacuum-polarization function formed by two light-by-light scattering diagrams connected by three photons. The integrals are constructed by two different methods. In the first method the subtractive counter terms are used to deal with ultraviolet (UV) singularities together with the requirement of gauge-invariance. In the second method, the Ward-Takahashi identity is applied to the light-by-light scattering amplitudes to eliminate UV singularities. Numerical evaluation confirms that the two methods are consistent with each other within their numerical uncertainties. Combining the two results statistically and adding small contribution from the muons and/or tau leptons, we obtain $ 0.000 399 9 (18) (\\alpha/\\pi)^5$. We also evaluated the contribution to the muon $g-2$ from the same set of diagrams and found $ -1.263 44 (14) (\\alpha/\\pi)^5$.

  20. Are There Frame-Distortion Contributions to Collision-Induced Absorption and Collision-Induced Light Scattering?

    Science.gov (United States)

    Hohm, Uwe

    2007-12-01

    Collision-induced spectroscopy, such as collision-induced absorption (CIA) and collision-induced light scattering (CILS), can give valuable information on permanent electric moments, polarizabilities and intermolecular-interaction potentials. In general the collision-induced spectra of the pure rare-gases and their binary mixtures are understood fairly well. However if at least one of the collision partners is a molecule then in some cases the spectra show features which can hardly be explained by current theories which deal with the case of undistorted molecules. Here we discuss the possibility of collision-induced frame distortion as an additional effect to be considered in collision-induced spectroscopy.

  1. Separation of contributions from deeply virtual Compton scattering and its interference with the Bethe-Heitler process in measurements on a hydrogen target

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor MI (United States). Randall Lab. of Physics; Akopov, N. [Yerevan Physics Institue (Armenia); Akopov, Z. [DESY, Hamburg (DE)](and others)

    2009-09-15

    Hard exclusive leptoproduction of real photons from an unpolarized proton target is studied in an effort to elucidate generalized parton distributions. The data accumulated during the years 1996-2005 with the HERMES spectrometer are analyzed to yield asymmetries with respect to the combined dependence of the cross section on beam helicity and charge, thereby revealing previously unseparated contributions from deeply virtual Compton scattering and its interference with the Bethe-Heitler process. The integrated luminosity is sufficient to show correlated dependences on two kinematic variables, and provides the most precise determination of the dependence on only the beam charge. (orig.)

  2. Resource Letter NO-1: Nonlinear Optics

    Science.gov (United States)

    Garmire, Elsa

    2011-03-01

    This Resource Letter provides a guide to the literature on nonlinear optics. Books, journals, and websites are introduced that cover the general subject. Journal articles and websites are cited covering the following topics: second-order nonlinearities in transparent media including second-harmonic generation and optical parametric oscillation, third-order and higher nonlinearities, nonlinear refractive index, absorptive nonlinearities such as saturable absorption and multiphoton absorption, and scattering nonlinearities such as stimulated Raman scattering and stimulated Brillouin scattering. Steady-state and transient phenomena, fiber optics, solitons, nonlinear wave mixing, optical phase conjugation, nonlinear spectroscopy, and multiphoton microscopy are all outlined.

  3. High--Energy Photon--Hadron Scattering in Holographic QCD

    CERN Document Server

    Nishio, Ryoichi

    2011-01-01

    This article provides an in-depth look at hadron high energy scattering by using gravity dual descriptions of strongly coupled gauge theories. Just like deeply inelastic scattering (DIS) and deeply virtual Compton scattering (DVCS) serve as clean experimental probes into non-perturbative internal structure of hadrons, elastic scattering amplitude of a hadron and a (virtual) "photon" in gravity dual can be exploited as a theoretical probe. Since the scattering amplitude at sufficiently high energy (small Bjorken x) is dominated by parton contributions (= Pomeron contributions) even in strong coupling regime, there is a chance to learn a lesson for generalized parton distribution (GPD) by using gravity dual models. We begin with refining derivation of Brower-Polchinski-Strassler-Tan (BPST) Pomeron kernel in gravity dual, paying particular attention to the role played by complex spin variable j. The BPST Pomeron on warped spacetime consists of a Kaluza-Klein tower of 4D Pomerons with non-linear trajectories, and...

  4. Continuum contribution to excitonic four-wave mixing due to interaction-induced nonlinearities: A numerical study

    DEFF Research Database (Denmark)

    Sayed, Karim El; Birkedal, Dan; Vadim, Lyssenko;

    1997-01-01

    of the exciton line in the FWM spectrum and in the decay of the time-resolved FWM signal in real time are governed by the intrinsic excitonic dephasing rate. It is shown that for pulse durations of similar to 100 fs (for GaAs quantum wells) this behavior can be explained as the influence of the Coulomb exchange...... interaction, while for even shorter pulses this behavior is dominantly caused by nonlinear polarization decay....

  5. Possibility of T-violating P-conserving magnetism and its contribution to the T-odd P-even neutron-nucleus forward elastic scattering amplitude

    CERN Document Server

    Cherkas, S L

    2001-01-01

    T-violating P-even magnetism is considered. The magnetism arises from the T-violating P-conserving vertex of a spin 1/2 particle interaction with the electromagnetic field. The vertex varnishes for a particle on the mass shell. Considering the particle interaction with a point electric charge we have obtained the T-violating P-even spin dependent potential which is inversely proportional to the cubed distance from the charge. The matrix element of this potential is zero for particle states on the mass shell, nevertheless, the potential contributes to the T-odd P-even neutron forward elastic scattering amplitude by a deformed nucleus with spin S>1/2. The contribution arises if we take into account incident neutron plane wave distortion by the strong neutron interaction with the nucleus.

  6. The role of nonlinear torsional contributions on the stability of flexural-torsional oscillations of open-cross section beams

    Science.gov (United States)

    Di Egidio, Angelo; Contento, Alessandro; Vestroni, Fabrizio

    2015-12-01

    An open-cross section thin-walled beam model, already developed by the authors, has been conveniently simplified while maintaining the capacity of accounting for the significant nonlinear warping effects. For a technical range of geometrical and mechanical characteristics of the beam, the response is characterized by the torsional curvature prevailing over the flexural ones. A Galerkin discretization is performed by using a suitable expansion of displacements based on shape functions. The attention is focused on the dynamic response of the beam to a harmonic force, applied at the free end of the cantilever beam. The excitation is directed along the symmetry axis of the beam section. The stability of the one-component oscillations has been investigated using the analytical model, showing the importance of the internal resonances due to the nonlinear warping coupling terms. Comparison with the results provided by a computational finite element model has been performed. The good agreement among the results of the analytical and the computational models confirms the effectiveness of the simplified model of a nonlinear open-cross section thin-walled beam and overall the important role of the warping and of the torsional elongation in the study of the one-component dynamic oscillations and their stability.

  7. Two-photon contributions to the elastic electron-nucleon scattering in the Skyrme model; Zwei-Photon-Beitraege zur elastischen Elektron-Nukleon-Streuung im Skyrme-Modell

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Markus

    2008-09-23

    The electromagnetic form factors are crucial for our understanding of the inner structure of the proton. Recently it has become feasible to measure them by the use of polarisation transfer techniques in addition to the traditional Rosenbluth separation method. Thereby emerged an incompatibility of the results obtained by these two different experimental methods. It is commonly assumed that the discrepance is induced by higher order corrections to the cross section, especially through two-photon exchange processes. Unfortunately these processes cannot be calculated in a model independent manner because off-shell photon nucleon vertices arise. Effective chiral lagrangians contain already local two-photon couplings and therefore seem exceptionally well suited to study the anomaly contribution to the two-photon exchange. These couplings give two-photon exchange contributions that can be understood as the coupling of the nucleon to pions, decaying into two virtual photons. A particular contribution emerges from the chiral anomaly of QCD, that describes the two-photon decay of the neutral pion. The most important goal of this work is the calculation of the contribution arising from the anomaly to the elastic electron-proton scattering. The results are expected to be widely model independent since the anomaly directly reflects a QCD property. Based on the Skyrme model the protons are realized as soliton solutions in effective chiral theories. The next to leading order contribution to the cross section is given by the interference between the one- and two-photon exchange. The latter contains an ultraviolet divergence, which is renormalized by a local effective counterterm. This counterterm contributes to the width of the neutral pion decay which determines the finite part of the counterterm coefficient. The affect of the anomaly to the Rosenbluth separation of the electromagnetic form factors as well as the discrepance regarding the polarization measurements is extensively

  8. Contributions to nonlinear elliptic equations and systems a tribute to Djairo Guedes de Figueiredo on the occasion of his 80th birthday

    CERN Document Server

    Ruf, Bernhard; Santos, Ederson; Gossez, Jean-Pierre; Soares, Sergio; Cazenave, Thierry

    2015-01-01

    This volume of contributions pays tribute to the life and work of Djairo Guedes de Figueiredo on the occasion of his 80th birthday. The articles it contains were born out of the ICMC Summer Meeting on Differential Equations – 2014 Chapter, also dedicated to de Figueiredo and held at the Universidade de São Paulo at São Carlos, Brazil from February 3-7, 2014. The contributing authors represent a group of international experts in the field and discuss recent trends and new directions in nonlinear elliptic partial differential equations and systems. Djairo Guedes de Figueiredo has had a very active scientific career, publishing 29 monographs and over one hundred research articles. His influence on Brazilian mathematics has made him one of the pillars of the subject in that country. He had a major impact on the development of analysis, especially in its application to nonlinear elliptic partial differential equations and systems throughout the entire world. The articles collected here pay tribute to him and h...

  9. Some contributions to non-linear physic: Mathematical problems; Contribuciones a problemas matematicos en fisica no-lineal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-07-01

    The main results contained in this report are the following: i ) Lagrangian universality holds in a precisely defined weak sense. II ) Isolation of 5th order polynomial evolution equations having high order conservation laws. III ) Hamiltonian formulation of a wide class of non-linear evolution equations. IV) Some properties of the symmetries of Gardner-like systems. v) Characterization of the range and Kernel of {zeta}/{zeta} u{sub {alpha}}, |{alpha} | - 1. vi) A generalized variational approach and application to the anharmonic oscillator. v II ) Relativistic correction and quasi-classical approximation to the anechoic oscillator. VII ) Properties of a special class of 6th-order anharmonic oscillators. ix) A new method for constructing conserved densities In PDE. (Author) 97 refs.

  10. Analysis of Nonlinear Pharmacokinetics of a Highly Albumin-Bound Compound: Contribution of Albumin-Mediated Hepatic Uptake Mechanism.

    Science.gov (United States)

    Fukuchi, Yukina; Toshimoto, Kota; Mori, Takanori; Kakimoto, Keisuke; Tobe, Yoshifusa; Sawada, Takeshi; Asaumi, Ryuta; Iwata, Takeyuki; Hashimoto, Yoshitaka; Nunoya, Ken-Ichi; Imawaka, Haruo; Miyauchi, Seiji; Sugiyam, Yuichi

    2017-09-01

    The cause of nonlinear pharmacokinetics (PK) (more than dose-proportional increase in exposure) of a urea derivative under development (compound A: anionic compound [pKa: 4.4]; LogP: 6.5; and plasma protein binding: 99.95%) observed in a clinical trial was investigated. Compound A was metabolized by CYP3A4, UGT1A1, and UGT1A3 with unbound Km of 3.3-17.8 μmol/L. OATP1B3-mediated uptake of compound A determined in the presence of human serum albumin (HSA) showed that unbound Km and Vmax decreased with increased HSA concentration. A greater decrease in unbound Km than in Vmax resulted in increased uptake clearance (Vmax/unbound Km) with increased HSA concentration, the so-called albumin-mediated uptake. At 2% HSA concentration, unbound Km was 0.00657 μmol/L. A physiologically based PK model assuming saturable hepatic uptake nearly replicated clinical PK of compound A. Unbound Km for hepatic uptake estimated from the model was 0.000767 μmol/L, lower than the in vitro unbound Km at 2% HSA concentration, whereas decreased Km with increased concentration of HSA in vitro indicated lower Km at physiological HSA concentration (4%-5%). In addition, unbound Km values for metabolizing enzymes were much higher than unbound Km for OATP1B3, indicating that the nonlinear PK of compound A is primarily attributed to saturated OATP1B3-mediated hepatic uptake of compound A. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. Nonlinear lepton-photon interactions in external background fields

    Energy Technology Data Exchange (ETDEWEB)

    Akal, Ibrahim [DESY, Hamburg (Germany). Theory Group; Moortgat-Pick, Gudrid [DESY, Hamburg (Germany). Theory Group; Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2016-02-09

    Nonlinear phenomena of lepton-photon interactions in external backgrounds with a generalised periodic plane-wave geometry are studied. We discuss nonlinear Compton scattering in head-on lepton-photon collisions extended properly to beyond the soft-photon regime. In addition, our results are applied to stimulated lepton-antilepton pair production in photon collisions with unrestricted energies. Derivations are considered semi-classically based on unperturbed fermionic Volkov representations encoding the full interaction with the background field. Closed expressions for total probabilities considering S-matrix elements have been derived. The general formula is applied to Compton scattering by an electron propagating in an external laser-like background. We obtain additive contributions in the extended unconstrained result which turns out to be stringently required in the highly nonlinear regime. A detailed comparison of contributing harmonics is discussed for various field parameters.

  12. Contribution to Experimental Validation of Linear and Non-Linear Dynamic Models for Representing Rotor-Blade Parametric Coupled Vibrations

    DEFF Research Database (Denmark)

    Santos, Ilmar; Saracho, C.M.; Smith, J.T.

    2004-01-01

    This work gives a theoretical and experimental contribution to the problem of rotor-blades dynamic interaction. A validation procedure of mathematical models is carried out with help of a simple test rig, built by a mass-spring system attached to four flexible rotating blades. With this test rig,...

  13. Tenth-order lepton g-2: Contribution of some fourth-order radiative corrections to the sixth-order g-2 containing light-by-light-scattering subdiagrams

    CERN Document Server

    Aoyama, T; Kinoshita, T; Nio, M

    2010-01-01

    This paper reports the tenth-order QED contribution to lepton g-2 from diagrams of three gauge-invariant sets VI(d), VI(g), and VI(h), which are obtained by including various fourth-order radiative corrections to the sixth-order g-2 containing light-by-light-scattering subdiagrams. In the case of electron g-2, they consist of 492, 480, and 630 vertex Feynman diagrams, respectively. The results of numerical integration, including mass-dependent terms containing muon loops, are 1.8418(95) (alpha/pi)^5 for the Set VI(d), -1.5918(65) (alpha/pi)^5 for the Set VI(g), and 0.1797(40) (alpha/pi)^5 for the Set VI(h), respectively. We also report the contributions to the muon g-2, which derive from diagrams containing an electron, muon or tau lepton loop: Their sums are -5.876(802) (alpha/pi)^5 for the Set VI(d), 5.710(490) (alpha/pi)^5 for the Set VI(g), and -8.361(232) (alpha/pi)^5 for the Set VI(h), respectively.

  14. Neutrino-driven explosion of a 20 solar-mass star in three dimensions enabled by strange-quark contributions to neutrino-nucleon scattering

    CERN Document Server

    Melson, Tobias; Bollig, Robert; Hanke, Florian; Marek, Andreas; Mueller, Bernhard

    2015-01-01

    Interactions with neutrons and protons play a crucial role for the neutrino opacity of matter in the supernova core. Their current implementation in many simulation codes, however, is rather schematic and ignores not only modifications for the correlated nuclear medium of the nascent neutron star, but also free-space corrections from nucleon recoil, weak magnetism or strange quarks, which can easily add up to changes of several 10% for neutrino energies in the spectral peak. In the Garching supernova simulations with the Prometheus-Vertex code, such sophistications have been included for a long time except for the strange-quark contributions to the nucleon spin, which affect neutral-current neutrino scattering. We demonstrate on the basis of a 20 Msun progenitor star that a moderate strangeness-dependent contribution of g_a^s = -0.2 to the axial-vector coupling constant g_a = 1.26 can turn an unsuccessful three-dimensional (3D) model into a successful explosion. Such a modification is well compatible with cur...

  15. Nobel Prize in Physics 1994 "for pioneering contributions to the development of neutron scattering techniques for studies of condensed matter" : Bertram N. Brockhouse and Clifford G. Shull

    CERN Document Server

    1995-01-01

    Prof. C. G. Shull presents "Early development of neutron scattering". A description of the early experiments and instrumentation problems starting in 1946 that led to the use of neutron scattering as a tool in augmenting and extending x-ray scattering from materials.

  16. The exact solutions for a nonisospectral nonlinear Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Ning Tongke [Finance College, Shanghai Normal University, Shanghai 200234 (China)], E-mail: tkning@shnu.edu.cn; Zhang Weiguo; Jia Gao [Science College, University of Shanghai for Science and Technology, Shanghai 200093 (China)

    2009-10-30

    In this paper, lax pair for the nonisospectral nonlinear Schroedinger hierarchy is given, the time dependence of nonisospectral scattering data is derived and exact solutions for the nonisospectral nonlinear Schroedinger hierarchy are obtained through the inverse scattering transform.

  17. Study on the resonance Rayleigh scattering spectra and resonance non-linear spectra of congo red-amikacin system and its analytical application

    Institute of Scientific and Technical Information of China (English)

    LIU; Shaopu; HU; Xiaoli; LIU; Zhongfang

    2006-01-01

    The interaction between congo red (CR) and amikacin (AMK) was studied by resonance Rayleigh scattering (RRS), frequency doubling scattering (FDS) and second-order scattering (SOS) combining with absorption spectrum. In a weak acidic medium, CR combined with AMK to form an ion association complex with the composition ratio of 1∶1 by electrostatic interaction, hydrophobicity and charge transferring effect. As a result, the new spectra of RRS, FDS, and SOS appeared and their intensities were enhanced greatly. The maximum wavelengths of RRS, FDS and SOS were located at 563 nm, 475 nm and 940 nm, and the scattering intensities were proportional to the concentration of AMK. These three methods have very high sensitivities, and the detection limits were 4.0 ng·mL(1 for RRS, 3.6 ng·mL(1 for FDS and 1.9 ng·mL-1 for SOS, respectively. At the same time, the methods have better selectivity. A new method for the determination of trace amounts of AMK with congo red by resonance scattering technique has been developed. The recovery for the determination of AMK in blood serum and urine sample was between 95.5% and 105.5%. In this study, the properties, such as enthalpy of formation, charge distribution and mean polarizability, were calculated by AM1 quantum chemistry method. In addition, the reaction mechanism and the reasons for the enhancement of scattering spectra were discussed.

  18. New developments in classical chaotic scattering.

    Science.gov (United States)

    Seoane, Jesús M; Sanjuán, Miguel A F

    2013-01-01

    Classical chaotic scattering is a topic of fundamental interest in nonlinear physics due to the numerous existing applications in fields such as celestial mechanics, atomic and nuclear physics and fluid mechanics, among others. Many new advances in chaotic scattering have been achieved in the last few decades. This work provides a current overview of the field, where our attention has been mainly focused on the most important contributions related to the theoretical framework of chaotic scattering, the fractal dimension, the basins boundaries and new applications, among others. Numerical techniques and algorithms, as well as analytical tools used for its analysis, are also included. We also show some of the experimental setups that have been implemented to study diverse manifestations of chaotic scattering. Furthermore, new theoretical aspects such as the study of this phenomenon in time-dependent systems, different transitions and bifurcations to chaotic scattering and a classification of boundaries in different types according to symbolic dynamics are also shown. Finally, some recent progress on chaotic scattering in higher dimensions is also described.

  19. Scattering-angle based filtering of the waveform inversion gradients

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-11-22

    Full waveform inversion (FWI) requires a hierarchical approach to maneuver the complex non-linearity associated with the problem of velocity update. In anisotropic media, the non-linearity becomes far more complex with the potential trade-off between the multiparameter description of the model. A gradient filter helps us in accessing the parts of the gradient that are suitable to combat the potential non-linearity and parameter trade-off. The filter is based on representing the gradient in the time-lag normalized domain, in which the low scattering angle of the gradient update is initially muted out in the FWI implementation, in what we may refer to as a scattering angle continuation process. The result is a low wavelength update dominated by the transmission part of the update gradient. In this case, even 10 Hz data can produce vertically near-zero wavenumber updates suitable for a background correction of the model. Relaxing the filtering at a later stage in the FWI implementation allows for smaller scattering angles to contribute higher-resolution information to the model. The benefits of the extended domain based filtering of the gradient is not only it\\'s ability in providing low wavenumber gradients guided by the scattering angle, but also in its potential to provide gradients free of unphysical energy that may correspond to unrealistic scattering angles.

  20. Application of the Banach Fixed-Point Theorem to the Scattering Problem at a Nonlinear Three-Layer Structure with Absorption

    Directory of Open Access Journals (Sweden)

    V. S. Serov

    2010-01-01

    Full Text Available A method based on the Banach fixed-point theorem is proposed for obtaining certain solutions (TE-polarized electromagnetic waves of the Helmholtz equation describing the reflection and transmission of a plane monochromatic wave at a nonlinear lossy dielectric film situated between two lossless linear semiinfinite media. All three media are assumed to be nonmagnetic and isotropic. The permittivity of the film is modelled by a continuously differentiable function of the transverse coordinate with a saturating Kerr nonlinearity. It is shown that the solution of the Helmholtz equation exists in form of a uniformly convergent sequence of iterations of the equivalent Volterra integral equation. Numerical results are presented.

  1. Phase-locking in cascaded stimulated Brillouin scattering

    CERN Document Server

    Büttner, Thomas F S; Steel, M J; Hudson, Darren D; Eggleton, Benjamin J

    2015-01-01

    Cascaded stimulated Brillouin scattering (SBS) is a complex nonlinear optical process that results in the generation of several optical waves that are frequency shifted by an acoustic resonance frequency. Four-wave mixing (FWM) between these Brillouin shifted optical waves can create an equally spaced optical frequency comb with a stable spectral phase, i.e. a Brillouin frequency comb (BFC). Here, we investigate phase-locking of the spectral components of BFCs, considering FWM interactions arising from the Kerr-nonlinearity as well as from coupling by the acoustic field. Deriving for the first time the coupled-mode equations that include all relevant nonlinear interactions, we examine the contribution of the various nonlinear processes to phase-locking, and show that different regimes can be obtained that depend on the length scale on which the field amplitudes vary.

  2. Phase-locking in cascaded stimulated Brillouin scattering

    Science.gov (United States)

    Büttner, Thomas F. S.; Poulton, Christopher G.; Steel, M. J.; Hudson, Darren D.; Eggleton, Benjamin J.

    2016-02-01

    Cascaded stimulated Brillouin scattering is a complex nonlinear optical process that results in the generation of several optical waves that are frequency shifted by an acoustic resonance frequency. Four-wave mixing (FWM) between these Brillouin shifted optical waves can create an equally spaced optical frequency comb with a stable spectral phase, i.e. a Brillouin frequency comb (BFC). Here, we investigate phase-locking of the spectral components of BFCs, considering FWM interactions arising from the Kerr-nonlinearity as well as from coupling by the acoustic field. Deriving for the first time the coupled-mode equations that include all relevant nonlinear interactions, we examine the contribution of the various nonlinear processes to phase-locking, and show that different regimes can be obtained that depend on the length scale on which the field amplitudes vary.

  3. Spermatozoa scattering by a microchannel feature: an elastohydrodynamic model

    CERN Document Server

    Montenegro-Johnson, Thomas; Smith, David J

    2014-01-01

    Sperm traverse their microenvironment through viscous fluid by propagating flagellar waves; the waveform emerges as a consequence of elastic structure, internal active moments, and low Reynolds number fluid dynamics. Engineered microchannels have recently been proposed as a method of sorting and manipulating motile cells; the interaction of cells with these artificial environments therefore warrants investigation. A numerical method is presented for the geometrically nonlinear elastohydrodynamic interaction of active swimmers with domain features. This method is employed to examine hydrodynamic scattering by a model microchannel backstep feature. Scattering is shown to depend on backstep height and the relative strength of viscous and elastic forces in the flagellum. In a 'high viscosity' parameter regime corresponding to human sperm in cervical mucus analogue, this hydrodynamic contribution to scattering is comparable in magnitude to recent data on contact effects, being of the order of 5-10 degrees. Scatter...

  4. The Method of Fixed Point on the Nonlinear Inversion for Seismic Scattering%地震波散射非线性反演的不动点方法

    Institute of Scientific and Technical Information of China (English)

    杨晓春; 李小凡; 张美根

    2007-01-01

    旨在构造一种新的地震波散射非线性反演方法.将函数论中的不动点理论引入到地震波散射非线性反演中,并构造出了波相空间里关于速度参数的具体的压缩映射算子,从而从理论上保证了速度参数不动点的存在性和寻找途径.在此基础上还证明了利用此速度参数的不动点和正演所得到的相应的波值也是波函数本身的不动点,并利用不动点的稳定属性得出此不动点是一个最优的点.最后,文中还用该方法给出了具体的数值算例,间接地证实了本方法的实用性.%The work described in this paper focuses on making a new method of nonlinear inversion for seismic scattering. The fixed-point theory is incorporated into the nonlinear seismic scattering inversion and the method to create a series of contractive mappings of velocity parameter's in the mapping space of wave is given. The existence of fixed point of velocity parameter is testified by the results and the method to find it is given. Furthermore, it is proved that the value obtained by taking the fixed point of velocity parameter into wave equation is the fixed point of the wave of the contractive mapping. Because of the stabilities quality of the fixed point, it is the global optimum. The given numerical example shows the validity of the method.

  5. Two-gluon exchange contribution to elastic $\\gamma \\gamma \\to \\gamma \\gamma$ scattering and production of two-photons in ultraperipheral ultrarelativistic heavy ion and proton-proton collisions

    CERN Document Server

    Klusek-Gawenda, Mariola; Szczurek, Antoni

    2016-01-01

    We discuss the two-gluon exchange contribution (formally three-loops) to elastic photon-photon scattering in the high-energy approximation. The elastic $\\gamma\\gamma \\to \\gamma \\gamma$ amplitude is given in the impact-factor representation for all helicity configurations and finite quark masses. We discuss the importance of including the charm quark, which contribution, due to interference, can enhance the cross section considerably. We investigate the contribution to the $\\gamma \\gamma \\to \\gamma \\gamma$ amplitude from the soft region, by studying its dependence on nonperturbative gluon mass. Helicity-flip contributions are shown to be much smaller than helicity-conserving ones. We identify region(s) of phase space where the two-gluon exchange contribution becomes important ingredient compared to box and nonperturbative VDM-Regge mechanisms considered in the literature. Consequences for the $A A \\to A A \\gamma \\gamma$ reaction are discussed. Several differential distributions are shown. A feasibility study t...

  6. Full quantification of frequency-dependent interfacial thermal conductance contributed by two- and three-phonon scattering processes from nonequilibrium molecular dynamics simulations

    Science.gov (United States)

    Zhou, Yanguang; Hu, Ming

    2017-03-01

    Understanding phonon transport across interfaces serves as a major tool to advance a diverse spectrum of fundamental and applied research. Unlike bulk materials, where the three-phonon scattering process is relatively straightforward to investigate, little research has been dedicated to the detailed analysis of the three-phonon scattering process at interfaces due to the complexity of interfaces and the mismatch of phonon dispersions of the two connecting parts. Based on the nonequilibrium molecular dynamics simulation, which is one of the most popular approaches to investigate the thermal conductance, we develop an explicit theoretical framework by considering the full third-order force constants field to quantify the two- and three-phonon scattering at interfaces. Bulk Ar is used as a benchmark to validate the computational scheme by comparing the results with those using the all-order phonon scattering method [frequency-dependent directly decomposed method; Y. Zhou and M. Hu, Phys. Rev. B 92, 195205 (2015), 10.1103/PhysRevB.92.195205]. Then, Ar-heavy Ar and Si-Ge interfaces are studied and the respective role of two- and three-phonon scattering processes is quantitatively characterized at different temperatures. Moreover, all four different types of the three-phonon scattering process are explicitly evaluated. The method developed herein for splitting the two- and three-phonon scattering processes in the interfacial heat transport is expected to advance our understanding of the phonon process at interfaces, and will facilitate designing high-performance interfacial structures in terms of efficient thermal management.

  7. Primary and scattering contributions to beta scaled dose point kernels by means of Monte Carlo simulations; Contribuicoes primaria e espalhada para dosimetria beta calculadas pelo dose point kernels empregando simulacoes pelo Metodo Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Valente, Mauro [CONICET - Consejo Nacional de Investigaciones Cientificas y Tecnicas de La Republica Argentina (Conicet), Buenos Aires, AR (Brazil); Botta, Francesca; Pedroli, Guido [European Institute of Oncology, Milan (Italy). Medical Physics Department; Perez, Pedro, E-mail: valente@famaf.unc.edu.ar [Universidad Nacional de Cordoba, Cordoba (Argentina). Fac. de Matematica, Astronomia y Fisica (FaMAF)

    2012-07-01

    Beta-emitters have proved to be appropriate for radioimmunotherapy. The dosimetric characterization of each radionuclide has to be carefully investigated. One usual and practical dosimetric approach is the calculation of dose distribution from a unit point source emitting particles according to any radionuclide of interest, which is known as dose point kernel. Absorbed dose distributions are due to primary and radiation scattering contributions. This work presented a method capable of performing dose distributions for nuclear medicine dosimetry by means of Monte Carlo methods. Dedicated subroutines have been developed in order to separately compute primary and scattering contributions to the total absorbed dose, performing particle transport up to 1 keV or least. Preliminarily, the suitability of the calculation method has been satisfactory, being tested for monoenergetic sources, and it was further applied to the characterization of different beta-minus radionuclides of nuclear medicine interests for radioimmunotherapy. (author)

  8. High-order finite difference solution for 3D nonlinear wave-structure interaction

    DEFF Research Database (Denmark)

    Ducrozet, Guillaume; Bingham, Harry B.; Engsig-Karup, Allan Peter;

    2010-01-01

    This contribution presents our recent progress on developing an efficient fully-nonlinear potential flow model for simulating 3D wave-wave and wave-structure interaction over arbitrary depths (i.e. in coastal and offshore environment). The model is based on a high-order finite difference scheme...... OceanWave3D presented in [1, 2]. A nonlinear decomposition of the solution into incident and scattered fields is used to increase the efficiency of the wave-structure interaction problem resolution. Application of the method to the diffraction of nonlinear waves around a fixed, bottom mounted circular...

  9. Nonlinear heat transport in mesoscopic conductors: Rectification, Peltier effect, and Wiedemann-Franz law

    Science.gov (United States)

    López, Rosa; Sánchez, David

    2013-07-01

    We investigate nonlinear heat properties in mesoscopic conductors using a scattering theory of transport. Our approach is based on a leading-order expansion in both the electrical and thermal driving forces. Beyond linear response, the transport coefficients are functions of the nonequilibrium screening potential that builds up in the system due to interactions. Within a mean-field approximation, we self-consistently calculate the heat rectification properties of a quantum dot attached to two terminals. We discuss nonlinear contributions to the Peltier effect and find departures from the Wiedemann-Franz law in the nonlinear regime of transport.

  10. Scattering angle base filtering of the inversion gradients

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-01-01

    Full waveform inversion (FWI) requires a hierarchical approach based on the availability of low frequencies to maneuver the complex nonlinearity associated with the problem of velocity inversion. I develop a model gradient filter to help us access the parts of the gradient more suitable to combat this potential nonlinearity. The filter is based on representing the gradient in the time-lag normalized domain, in which low scattering angles of the gradient update are initially muted. The result are long-wavelength updates controlled by the ray component of the wavefield. In this case, even 10 Hz data can produce near zero wavelength updates suitable for a background correction of the model. Allowing smaller scattering angle to contribute provides higher resolution information to the model.

  11. Incoherent subharmonic light scattering in isotropic media.

    Science.gov (United States)

    Feng, D H; Xu, Z Z; Feng, X L; Jia, T Q; Li, X X; Liu, J S

    2005-02-01

    Incoherent subharmonic light scattering in isotropic media is a new kind of nonlinear light scattering, which involves single input photon and multiple output photons of equal frequency. We investigate theoretically the dependence of the subharmonic scattering intensity on the hyperpolarizability of molecules and the incident intensity using nonlinear optics theory similar to that used for Hyper-Rayleigh scattering and degenerate optical parametric oscillators. It is derived that the subharmonic scattering intensities grow exponentially or superexponentially with the hyperpolarizability of molecules and the incident intensity.

  12. Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study.

    Science.gov (United States)

    Novo, Carolina; Gomez, Daniel; Perez-Juste, Jorge; Zhang, Zhenyuan; Petrova, Hristina; Reismann, Maximilian; Mulvaney, Paul; Hartland, Gregory V

    2006-08-14

    The scattering spectra of single gold nanorods with aspect ratios between 2 and 4 have been examined by dark field microscopy. The results show that the longitudinal plasmon resonance (electron oscillation along the long axis of the rod) broadens as the width of the rods decreases from 14 to 8 nm. This is attributed to electron surface scattering. Analysis of the data using gamma = gamma(bulk) + Anu(F)/L(eff), where L(eff) is the effective path length of the electrons and nu(F) is the Fermi velocity, allows us to determine a value for the surface scattering parameter of A = 0.3. Larger rods with widths of 19 and 30 nm were also examined. These samples also show spectral broadening, which is attributed to radiation damping. The relative strengths of the surface scattering and radiation damping effects are in excellent agreement with recent work on spherical gold nanoparticles by Sönnichsen et al., Phys. Rev. Lett., 2002, 88, 077402; and by Berciaud et al., Nano Lett., 2005, 5, 515.

  13. Multiorder nonlinear diffraction in frequency doubling processes

    DEFF Research Database (Denmark)

    Saltiel, Solomon M.; Neshev, Dragomir N.; Krolikowski, Wieslaw

    2009-01-01

    We analyze experimentally light scattering from 2 nonlinear gratings and observe two types of second-harmonic frequency-scattering processes. The first process is identified as Raman–Nath type nonlinear diffraction that is explained by applying only transverse phase-matching conditions. The angular...... position of this type of diffraction is defined by the ratio of the second-harmonic wavelength and the grating period. In contrast, the second type of nonlinear scattering process is explained by the longitudinal phase matching only, being insensitive to the nonlinear grating...

  14. Nonlinear Hamiltonian systems

    DEFF Research Database (Denmark)

    Jørgensen, Michael Finn

    1995-01-01

    It is generally very difficult to solve nonlinear systems, and such systems often possess chaotic solutions. In the rare event that a system is completely solvable, it is said to integrable. Such systems never have chaotic solutions. Using the Inverse Scattering Transform Method (ISTM) two...

  15. Terahertz semiconductor nonlinear optics

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias

    2013-01-01

    nonlinearity in doped semiconductors originates from the near-instantaneous heating of free electrons in the ponderomotive potential created by electric field of the THz pulse, leading to ultrafast increase of electron effective mass by intervalley scattering. Modification of effective mass in turn leads...

  16. 多光子非线性 Compton 散射对等离子体平面反射电磁波的影响%Influence of multi-photon nonlinear Compton scattering on plasma planar reflect electromagnetic wave

    Institute of Scientific and Technical Information of China (English)

    郝东山; 冯光辉

    2016-01-01

    By using the model of multi -photon nonlinear Compton scattering and the model of the effect between the electromagnetic wave and particle , the influence of Compton scattering on the characteristic of plasma planar reflect electromagnetic wave is studied , a mechanism of Compton scattering on the electromagnetic of plasma pla-nar reflect electromagnetic wave is produced , a revised equation of Compton scattering on the reflect rate of plas-ma planar reflect electromagnetic wave has been given out , and the equation is simulated by used the replica ex-perimentation.The results show that the plasma density in the low frequency part is quickly increased along with the increasing of the electric field intensity under the different frequencies , the time reached a parity is clearly cut, and the cause is that this field intensity is quickly increased by Compton scattering , the ionization probabili-ty of the particle in the plasma is increased.The reflect wave intensity is cut down at the most by the high fre-quency incident wave , the final intensity almost is 0, and the cause is that the high plasma frequency produced by Compton scattering than the incident light frequency.The reflect wave frequencies of the different frequencies incident waves are meagerly increased , the cause is that the gap of the time measure between the signal and the complex and diffusion of the plasma is decreased by Compton scattering , and the nonlinear effect of the reflect wave is progressively appeared.The density of the low density plasma is fastest increased along the collision fre-quency increasing , and the time to parity is the minimum , the cause is that the plasma collision frequency is in-creased by scattering , and the more particles are ionized.%应用多光子非线性Compton散射模型和电磁波与等离子体相互作用模型,研究了Compton散射对等离子体平面反射电磁波特性的影响,提出了将Compton散射作为影响等离子体

  17. Two-gluon exchange contribution to elastic γγ → γγ scattering and production of two-photons in ultraperipheral ultrarelativistic heavy ion and proton-proton collisions

    Science.gov (United States)

    Kłusek-Gawenda, Mariola; Schäfer, Wolfgang; Szczurek, Antoni

    2016-10-01

    We discuss the two-gluon exchange contribution (formally three-loops) to elastic photon-photon scattering in the high-energy approximation. The elastic γγ → γγ amplitude is given in the impact-factor representation for all helicity configurations and finite quark masses. We discuss the importance of including the charm quark, which contribution, due to interference, can enhance the cross section considerably. We investigate the contribution to the γγ → γγ amplitude from the soft region, by studying its dependence on nonperturbative gluon mass. Helicity-flip contributions are shown to be much smaller than helicity-conserving ones. We identify region(s) of phase space where the two-gluon exchange contribution becomes important ingredient compared to box and nonperturbative VDM-Regge mechanisms considered in the literature. Consequences for the AA → AAγγ reaction are discussed. Several differential distributions are shown. A feasibility study to observe the effect of two-gluon exchange is presented. We perform a similar analysis for the pp → ppγγ reaction. Only by imposing severe cuts on Mγγ and a narrow window on photon transverse momenta the two gluon contribution becomes comparable to the box contribution but the corresponding cross section is rather small.

  18. Density functional theory study on Herzberg-Teller contribution in Raman scattering from 4-aminothiophenol-metal complex and metal-4-aminothiophenol-metal junction

    Science.gov (United States)

    Liu, Shasha; Zhao, Xiuming; Li, Yuanzuo; Zhao, Xiaohong; Chen, Maodu

    2009-06-01

    Density functional theory (DFT) and time-dependent DFT calculations have been performed to investigate the Raman scattering spectra of metal-molecule complex and metal-molecule-metal junction architectures interconnected with 4-aminothiophenol (PATP) molecule. The simulated profiles of normal Raman scattering (NRS) spectra for the two complexes (Ag2-PATP and PATP-Au2) and the two junctions (Ag2-PATP-Au2 and Au2-PATP-Ag2) are similar to each other, but exhibit obviously different Raman intensities. Due to the lager static polarizabilities of the two junctions, which directly influence the ground state chemical enhancement in NRS spectra, the calculated normal Raman intensities of them are stronger than those of two complexes by the factor of 102. We calculate preresonance Raman scattering (RRS) spectra with incident light at 1064 nm, which is much lower than the S1 electronic transition energy of complexes and junctions. Ag2-PATP-Au2 and Au2-PATP-Ag2 junctions yield higher Raman intensities than those of Ag2-PATP and PATP-Au2 complexes, especially for b2 modes. This effect is mainly attributed to charge transfer (CT) between the metal gap and the PAPT molecule which results in the occurrence of CT resonance enhancement. The calculated pre-RRS spectra strongly depend on the electronic transition state produced by new structures. With excitation at 514.5 nm, the calculated pre-RRS spectra of two complexes and two junctions are stronger than those of with excitation at 1064 nm. A charge difference densities methodology has been used to visually describe chemical enhancement mechanism of RRS spectrum. This methodology aims at visualizing intermolecular CT which provides direct evidence of the Herzberg-Teller mechanism.

  19. Multipolar nonlinear nanophotonics

    CERN Document Server

    Smirnova, Daria

    2016-01-01

    Nonlinear nanophotonics is a rapidly developing field with many useful applications for a design of nonlinear nanoantennas, light sources, nanolasers, sensors, and ultrafast miniature metadevices. A tight confinement of the local electromagnetic fields in resonant photonic nanostructures can boost nonlinear optical effects, thus offering versatile opportunities for subwavelength control of light. To achieve the desired functionalities, it is essential to gain flexible control over the near- and far-field properties of nanostructures. Thus, both modal and multipolar analyses are widely exploited for engineering nonlinear scattering from resonant nanoscale elements, in particular for enhancing the near-field interaction, tailoring the far-field multipolar interference, and optimization of the radiation directionality. Here, we review the recent advances in this recently emerged research field ranging from metallic structures exhibiting localized plasmonic resonances to hybrid metal-dielectric and all-dielectric...

  20. Invariant Scattering Convolution Networks

    CERN Document Server

    Bruna, Joan

    2012-01-01

    A wavelet scattering network computes a translation invariant image representation, which is stable to deformations and preserves high frequency information for classification. It cascades wavelet transform convolutions with non-linear modulus and averaging operators. The first network layer outputs SIFT-type descriptors whereas the next layers provide complementary invariant information which improves classification. The mathematical analysis of wavelet scattering networks explains important properties of deep convolution networks for classification. A scattering representation of stationary processes incorporates higher order moments and can thus discriminate textures having the same Fourier power spectrum. State of the art classification results are obtained for handwritten digits and texture discrimination, using a Gaussian kernel SVM and a generative PCA classifier.

  1. Diffuse scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kostorz, G. [Eidgenoessische Technische Hochschule, Angewandte Physik, Zurich (Switzerland)

    1996-12-31

    While Bragg scattering is characteristic for the average structure of crystals, static local deviations from the average lattice lead to diffuse elastic scattering around and between Bragg peaks. This scattering thus contains information on the occupation of lattice sites by different atomic species and on static local displacements, even in a macroscopically homogeneous crystalline sample. The various diffuse scattering effects, including those around the incident beam (small-angle scattering), are introduced and illustrated by typical results obtained for some Ni alloys. (author) 7 figs., 41 refs.

  2. Nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2012-01-01

    Since the 4e appeared, a fast evolution of the field has occurred. The 5e of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure as well as being used in the medical field. Reflecting the big developments in research, this new edition includes major new content: slow light effects, which offers a reduction in noise and power consumption and more ordered network traffic-stimulated Brillouin scattering; vectorial treatment of highly nonlinear fibers; and a brand new chapter o

  3. The interference effects of multi-channel pion-pion scattering contributions to the final states of $\\Psi$- and $\\Upsilon$-meson family decays

    CERN Document Server

    Surovtsev, Yu S; Gutsche, T; Kamiński, R; Lyubovitskij, V E; Nagy, M

    2016-01-01

    It is shown that the basic shape of dipion mass distributions in the two-pion transitions of both charmonia and bottomonia states are explained by an unified mechanism based on the contribution of the $\\pi\\pi$, $K\\overline{K}$ and $\\eta\\eta$ coupled channels including their interference.

  4. Measurements of bubbles in sea water by nonstationary sound scattering.

    Science.gov (United States)

    Akulichev, V A; Bulanov, V A

    2011-11-01

    Methods for the characterization of bubbles in sea water by acoustic scattering are analyzed. Nonstationary linear and nonlinear sound scattering methods are proposed. The transient linear and nonlinear sound scattering allows the scattering by resonant gas bubbles to be distinguished from the scattering by other microinhomogeneities. The application of parametric arrays in oceanic experiments, together with the broadband frequency analysis of the backscattering coefficient, allows information about bubbles in sea water to be obtained. Experimental results on sound scattering and gas bubble distribution functions are presented for different conditions in the ocean.

  5. Modeling the contributions of phytoplankton and non-algal particles to spectral scattering properties in near-shore and lagoon waters

    Science.gov (United States)

    Vadakke-Chanat, Sayoob; Shanmugam, Palanisamy

    2017-03-01

    Particular attention was focused on modeling the spectral scattering properties of phytoplankton (bph(λ)) and non-algal particles (detrital organic and inorganic sediments bNAP(λ)) from absorption and attenuation measurements in near-shore and lagoon waters. The absorption line height (aLH(676)) measured above a linear background between 648 nm and 714 nm in particulate and dissolved organic matter absorption spectra (ap(λ)) is a spectral feature that is primarily associated with the chlorophyll with significantly less pigment package effect compared to the blue peak, and hence it is solely attributed to the phytoplankton absorption (aph). The correlation of aph(λ) with bph(λ) in terms of the spectral shape and the relation of aLH(676) with chlorophyll concentration hold the key to derive bph(648) from the aLH(676) measurements. bNAP(648) values are then determined by subtracting the bph(648) from bp(648), allowing the power-law model to derive the bNAP(λ). In-situ determination of bph (λ) is subsequently achieved by subtracting the featureless bNAP(λ) from bp(λ) provided by the ac-s sensor. These data form the basis for the development of models for independent estimates of bph(λ) and bNAP(λ) based on the measurements of aLH and suspended sediment concentration or turbidity. The validity of this method was demonstrated in a wide variety of samples from coastal and inland environments. Comparison of the modeled and measured spectral variations of bph(λ) showed the mean relative percent difference between these two data to be within 20%. bNAP(λ) predictions also had an error a few percent and the correlation coefficient close to unity. When comparing the modeled bph(λ) with laboratory culture data, the results were exceptionally good although discrepancies in size and refractive index of cells of monospecific lab culture samples and natural assemblages due to the simultaneous presence of different species. The proposed approach and models are highly

  6. Light scattering experiments on aqueous solutions of selected cellulose ethers: contribution to the study of polymer-mineral interactions in a new injectable biomaterial

    Science.gov (United States)

    Bohic, Sylvain; Weiss, Pierre; Roger, Philippe; Daculsi, Guy

    2001-01-01

    Hydroxypropylmethylcellulose (HPMC) is used as a ligand for a bioactive calcium phosphate ceramic (the filler) in a ready-to-use injectable sterilized biomaterial for bone and dental surgery. Light scattering experiments were usually used to study high water-soluble polymers and to determine the basic macromolecular parameters. In order to gain a deeper understanding of polymer/mineral interactions in this type of material, we have investigated the effect of divalent and trivalent ions (Ca2+, PO43−) and steam sterilization on dilute solutions of HPMC and HEC. The sterilization process may cause some degradation of HEC taking into account its high molecular weight and some rigidity of the polymer chain. Moreover, in the case of HPMC, the changes in the conformations rather than degradation process are supposed. These effects of degradation and flocculation are strengthened in alkaline medium. Experimental data suggested the formation of chelate complexes between Ca2+ and HPMC which improve its affinity to the mineral blend and consolidate the injectable biomaterial even in the case of its hydration by biological fluid. PMID:15348303

  7. Contributions to the theory of electron spectroscopy. Applications of the relativistic multiple-scattering theory; Beitraege zur Theorie der Elektronenspektroskopie. Anwendungen der relativistischen Vielfachstreutheorie

    Energy Technology Data Exchange (ETDEWEB)

    Henk, J.

    2004-12-17

    Electron spectroscopy provides access to fundamental properties of solids, such as the geometric, electronic, and the magnetic structure. The latter are necessary for the understanding of a variety of basic but nevertheless important effects. The present work outlines recently developed theoretical approaches to electron spectroscopies. Most of the collected results rely on first-principles calculations, as formulated in multiple-scattering theory, and are contrasted with experimental findings. One topic involves spin- and angle-resolved photoelectron spectroscopy which is addressed for magnetic surfaces and ultrathin films. Exemplary results comprise magnetic dichroism in both valence-band and core-level photoemission as well as the temperature dependence of magnetic properties of ultrathin films. Another topic is spin-dependent ballistic transport through planar tunnel junctions, focusing here on the zero-bias anomaly. In most of the cases, spin-orbit coupling (SOC) is an essential ingredient and, hence, favors a relativistic description. Prominent effects of SOC are illustrated by means of the electronic structure of rare gases adsorbed on a substrate and by the splitting of surface states on Au(111). Concerning magnetism, the magnetic anisotropy of Ni films on Cu(001) is discussed, focusing in particular on the spin reorientation transition induced by lattice distortions in ultrathin films. (orig.)

  8. Third-order optical nonlinearities of PVP/Pd nanohybrids

    Science.gov (United States)

    Papagiannouli, I.; Potamianos, D.; Krasia-Christoforou, T.; Couris, S.

    2017-10-01

    Pd nanoparticles stabilized by polyvinylpyrrolidone were synthesized following mild reduction of palladium ion complexes. Their morphology and optical properties were characterized using Transmission Electron Microscopy, Dynamic Light Scattering and UV-Vis absorption spectroscopy to confirm the existence of monodispersed, low-dimensional single nanoparticles. Furthermore, their third-order nonlinear optical properties were investigated by means of the Z-scan technique, using 35 ps and 4 ns laser pulses, both in the visible (532 nm) and in the infrared (1064 nm). These results denote that the surface plasmon resonance is not significantly contributing to the nonlinear optical response of Pd nanoparticles. In contrast, a two photon absorption process was found to contribute to the observed response. The present results are discussed and compared with previous literature findings.

  9. Simulation of non-linear ultrasound fields

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Fox, Paul D.; Wilhjelm, Jens E.

    2002-01-01

    An approach for simulating non-linear ultrasound imaging using Field II has been implemented using the operator splitting approach, where diffraction, attenuation, and non-linear propagation can be handled individually. The method uses the Earnshaw/Poisson solution to Burgcrs' equation for the non......-linear ultrasound imaging in 3D using filters or pulse inversion for any kind of transducer, focusing, apodization, pulse emission and scattering phantom. This is done by first simulating the non-linear emitted field and assuming that the scattered field is weak and linear. The received signal is then the spatial...

  10. Inelastic Light Scattering Processes

    Science.gov (United States)

    Fouche, Daniel G.; Chang, Richard K.

    1973-01-01

    Five different inelastic light scattering processes will be denoted by, ordinary Raman scattering (ORS), resonance Raman scattering (RRS), off-resonance fluorescence (ORF), resonance fluorescence (RF), and broad fluorescence (BF). A distinction between fluorescence (including ORF and RF) and Raman scattering (including ORS and RRS) will be made in terms of the number of intermediate molecular states which contribute significantly to the scattered amplitude, and not in terms of excited state lifetimes or virtual versus real processes. The theory of these processes will be reviewed, including the effects of pressure, laser wavelength, and laser spectral distribution on the scattered intensity. The application of these processes to the remote sensing of atmospheric pollutants will be discussed briefly. It will be pointed out that the poor sensitivity of the ORS technique cannot be increased by going toward resonance without also compromising the advantages it has over the RF technique. Experimental results on inelastic light scattering from I(sub 2) vapor will be presented. As a single longitudinal mode 5145 A argon-ion laser line was tuned away from an I(sub 2) absorption line, the scattering was observed to change from RF to ORF. The basis, of the distinction is the different pressure dependence of the scattered intensity. Nearly three orders of magnitude enhancement of the scattered intensity was measured in going from ORF to RF. Forty-seven overtones were observed and their relative intensities measured. The ORF cross section of I(sub 2) compared to the ORS cross section of N2 was found to be 3 x 10(exp 6), with I(sub 2) at its room temperature vapor pressure.

  11. Elastic scattering of hadrons

    Science.gov (United States)

    Dremin, I. M.

    2013-01-01

    Colliding high-energy hadrons either produce new particles or scatter elastically with their quantum numbers conserved and no other particles produced. We consider the latter case here. Although inelastic processes dominate at high energies, elastic scattering contributes considerably (18-25%) to the total cross section. Its share first decreases and then increases at higher energies. Small-angle scattering prevails at all energies. Some characteristic features can be seen that provide information on the geometrical structure of the colliding particles and the relevant dynamical mechanisms. The steep Gaussian peak at small angles is followed by the exponential (Orear) regime with some shoulders and dips, and then by a power-law decrease. Results from various theoretical approaches are compared with experimental data. Phenomenological models claiming to describe this process are reviewed. The unitarity condition predicts an exponential fall for the differential cross section with an additional substructure to occur exactly between the low momentum transfer diffraction cone and a power-law, hard parton scattering regime under high momentum transfer. Data on the interference of the Coulomb and nuclear parts of amplitudes at extremely small angles provide the value of the real part of the forward scattering amplitude. The real part of the elastic scattering amplitude and the contribution of inelastic processes to the imaginary part of this amplitude (the so-called overlap function) are also discussed. Problems related to the scaling behavior of the differential cross section are considered. The power-law regime at highest momentum transfer is briefly described.

  12. Nonlinear plasmonics at high temperatures

    Directory of Open Access Journals (Sweden)

    Sivan Yonatan

    2017-01-01

    Full Text Available We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.

  13. Nonlinear plasmonics at high temperatures

    Science.gov (United States)

    Sivan, Yonatan; Chu, Shi-Wei

    2017-01-01

    We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW) illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.

  14. Nonlinear Metamaterials for Holography

    CERN Document Server

    Almeida, Euclides; Prior, Yehiam

    2015-01-01

    A hologram is an optical element storing phase and possibly amplitude information enabling the reconstruction of a three dimensional image of an object by illumination and scattering of a coherent beam of light, and the image is generated at the same wavelength as the input laser beam. In recent years it was shown that information can be stored in nanometric antennas giving rise to ultrathin components. Here we demonstrate nonlinear multi-layer metamaterial holograms where by the nonlinear process of Third Harmonic Generation, a background free image is formed at a new frequency which is the third harmonic of the illuminating beam. Using e-beam lithography of multilayer plasmonic nanoantennas, we fabricate polarization-sensitive nonlinear elements such as blazed gratings, lenses and other computer-generated holograms. These holograms are analyzed and prospects for future device applications are discussed.

  15. AN IMPROVED NONLINEAR APPROACH TO ELECTROMAGNETIC SCATTERING

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    ANIMPROVEDNONLINEARAPPROACHTOELECTROMAGNETICSCATTERINGZhangRongfengHeJishanWenPeilin(DepartmentofGeology,CentralSouthUniversi...

  16. Spatial solitons in nonlinear liquid waveguides

    Indian Academy of Sciences (India)

    R Barillé; G Rivoire

    2001-11-01

    Spatial solitons are studied in a planar waveguide filled with nonlinear liquids. Spectral and spatial measurements for different geometries and input power of the laser beam show the influence of different nonlinear effects as stimulated scatterings on the soliton propagation and in particular on the beam polarization. The stimulated scattering can be used advantageously to couple the two polarization components. This effect can lead to multiple applications in optical switching.

  17. Nonlinear effects in Thomson backscattering

    Science.gov (United States)

    Maroli, C.; Petrillo, V.; Tomassini, P.; Serafini, L.

    2013-03-01

    We analyze the nonlinear classical effects of the X/γ radiation produced by Thomson/Compton sources. We confirm the development of spectral fringes of the radiation on axis, which comports broadening, shift, and deformation of the spectrum. For the nominal parameters of the SPARC-LAB Thomson scattering and of the European Proposal for the gamma source ELI-NP, however, the radiation, when collected in the suitable acceptance angle, does not reveal many differences from that predicted by the linear model and the nonlinear redshift is subdominant with respect to the quantum recoil. An experiment aimed to the study of the nonlinearities is proposed on the SPARC-LAB source.

  18. Geometric scaling in ultrahigh energy neutrinos and nonlinear perturbative QCD

    CERN Document Server

    Machado, M V T

    2011-01-01

    The ultrahigh energy neutrino cross section is a crucial ingredient in the calculation of the event rate in high energy neutrino telescopes. Currently there are several approaches which predict different behaviors for its magnitude for ultrahigh energies. In this contribution is presented a summary of current predictions based on the non-linear QCD evolution equations, the so-called perturbative saturation physics. In particular, predictions are shown based on the parton saturation approaches and the consequences of geometric scaling property at high energies are discussed. The scaling property allows an analytical computation of the neutrino scattering on nucleon/nucleus at high energies, providing a theoretical parameterization.

  19. Physiologically based pharmacokinetic model for ethyl tertiary-butyl ether and tertiary-butyl alcohol in rats: Contribution of binding to α2u-globulin in male rats and high-exposure nonlinear kinetics to toxicity and cancer outcomes.

    Science.gov (United States)

    Borghoff, Susan J; Ring, Caroline; Banton, Marcy I; Leavens, Teresa L

    2017-05-01

    In cancer bioassays, inhalation, but not drinking water exposure to ethyl tertiary-butyl ether (ETBE), caused liver tumors in male rats, while tertiary-butyl alcohol (TBA), an ETBE metabolite, caused kidney tumors in male rats following exposure via drinking water. To understand the contribution of ETBE and TBA kinetics under varying exposure scenarios to these tumor responses, a physiologically based pharmacokinetic model was developed based on a previously published model for methyl tertiary-butyl ether, a structurally similar chemical, and verified against the literature and study report data. The model included ETBE and TBA binding to the male rat-specific protein α2u-globulin, which plays a role in the ETBE and TBA kidney response observed in male rats. Metabolism of ETBE and TBA was described as a single, saturable pathway in the liver. The model predicted similar kidney AUC0-∞ for TBA for various exposure scenarios from ETBE and TBA cancer bioassays, supporting a male-rat-specific mode of action for TBA-induced kidney tumors. The model also predicted nonlinear kinetics at ETBE inhalation exposure concentrations above ~2000 ppm, based on blood AUC0-∞ for ETBE and TBA. The shift from linear to nonlinear kinetics at exposure concentrations below the concentration associated with liver tumors in rats (5000 ppm) suggests the mode of action for liver tumors operates under nonlinear kinetics following chronic exposure and is not relevant for assessing human risk. Copyright © 2016 The Authors Journal of Applied Toxicology Published by John Wiley & Sons Ltd.

  20. Nonlinear optics

    CERN Document Server

    Bloembergen, Nicolaas

    1996-01-01

    Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe

  1. Quark contribution to the small-x evolution of color dipole

    Energy Technology Data Exchange (ETDEWEB)

    Ian Balitsky

    2006-09-11

    The small-x deep inelastic scattering in the saturation region is governed by the non-linear evolution of Wilson-lines operators. In the leading logarithmic approximation it is given by the BK equation for the evolution of color dipoles. In the NLO the nonlinear equation gets contributions from quark and gluon loops. In this paper I calculate the quark-loop contribution to small-x evolution of Wilson lines in the NLO. It turns out that there are no new operators at the one-loop level--just as at the tree level, the high-energy scattering can be described in terms of Wilson lines. In addition, from the analysis of quark loops I find that the argument of coupling constant in the BK equation is determined by the size of the parent dipole rather than by the size of produced dipoles. These results are to be supported by future calculation of gluon loops.

  2. Nonlinear fiber optics formerly quantum electronics

    CERN Document Server

    Agrawal, Govind

    1995-01-01

    The field of nonlinear fiber optics has grown substantially since the First Edition of Nonlinear Fiber Optics, published in 1989. Like the First Edition, this Second Edition is a comprehensive, tutorial, and up-to-date account of nonlinear optical phenomena in fiber optics. It synthesizes widely scattered research material and presents it in an accessible manner for students and researchers already engaged in or wishing to enter the field of nonlinear fiber optics. Particular attention is paid to the importance of nonlinear effects in the design of optical fiber communication systems. This is

  3. Fast Numerical Nonlinear Fourier Transforms

    CERN Document Server

    Wahls, Sander

    2014-01-01

    The nonlinear Fourier transform, which is also known as the forward scattering transform, decomposes a periodic signal into nonlinearly interacting waves. In contrast to the common Fourier transform, these waves no longer have to be sinusoidal. Physically relevant waveforms are often available for the analysis instead. The details of the transform depend on the waveforms underlying the analysis, which in turn are specified through the implicit assumption that the signal is governed by a certain evolution equation. For example, water waves generated by the Korteweg-de Vries equation can be expressed in terms of cnoidal waves. Light waves in optical fiber governed by the nonlinear Schr\\"dinger equation (NSE) are another example. Nonlinear analogs of classic problems such as spectral analysis and filtering arise in many applications, with information transmission in optical fiber, as proposed by Yousefi and Kschischang, being a very recent one. The nonlinear Fourier transform is eminently suited to address them ...

  4. Analysis of Nonlinear Electromagnetic Metamaterials

    CERN Document Server

    Poutrina, Ekaterina; Smith, David R

    2010-01-01

    We analyze the properties of a nonlinear metamaterial formed by integrating nonlinear components or materials into the capacitive regions of metamaterial elements. A straightforward homogenization procedure leads to general expressions for the nonlinear susceptibilities of the composite metamaterial medium. The expressions are convenient, as they enable inhomogeneous system of scattering elements to be described as a continuous medium using the standard notation of nonlinear optics. We illustrate the validity and accuracy of our theoretical framework by performing measurements on a fabricated metamaterial sample composed of an array of split ring resonators (SRRs) with packaged varactors embedded in the capacitive gaps in a manner similar to that of Wang et al. [Opt. Express 16, 16058 (2008)]. Because the SRRs exhibit a predominant magnetic response to electromagnetic fields, the varactor-loaded SRR composite can be described as a magnetic material with nonlinear terms in its effective magnetic susceptibility...

  5. Nonlinear supratransmission

    Energy Technology Data Exchange (ETDEWEB)

    Geniet, F; Leon, J [Physique Mathematique et Theorique, CNRS-UMR 5825, 34095 Montpellier (France)

    2003-05-07

    A nonlinear system possessing a natural forbidden band gap can transmit energy of a signal with a frequency in the gap, as recently shown for a nonlinear chain of coupled pendulums (Geniet and Leon 2002 Phys. Rev. Lett. 89 134102). This process of nonlinear supratransmission, occurring at a threshold that is exactly predictable in many cases, is shown to have a simple experimental realization with a mechanical chain of pendulums coupled by a coil spring. It is then analysed in more detail. First we go to different (nonintegrable) systems which do sustain nonlinear supratransmission. Then a Josephson transmission line (a one-dimensional array of short Josephson junctions coupled through superconducting wires) is shown to also sustain nonlinear supratransmission, though being related to a different class of boundary conditions, and despite the presence of damping, finiteness, and discreteness. Finally, the mechanism at the origin of nonlinear supratransmission is found to be a nonlinear instability, and this is briefly discussed here.

  6. Phase-Insensitive Scattering of Terahertz Radiation

    Directory of Open Access Journals (Sweden)

    Mihail Petev

    2017-01-01

    Full Text Available The nonlinear interaction between Near-Infrared (NIR and Terahertz pulses is principally investigated as a means for the detection of radiation in the hardly accessible THz spectral region. Most studies have targeted second-order nonlinear processes, given their higher efficiencies, and only a limited number have addressed third-order nonlinear interactions, mainly investigating four-wave mixing in air for broadband THz detection. We have studied the nonlinear interaction between THz and NIR pulses in solid-state media (specifically diamond, and we show how the former can be frequency-shifted up to UV frequencies by the scattering from the nonlinear polarisation induced by the latter. Such UV emission differs from the well-known electric field-induced second harmonic (EFISH one, as it is generated via a phase-insensitive scattering, rather than a sum- or difference-frequency four-wave-mixing process.

  7. Critical scattering

    Energy Technology Data Exchange (ETDEWEB)

    Stirling, W.G. [Liverpool Univ., Dep. of Physics, Liverpool (United Kingdom); Perry, S.C. [Keele Univ. (United Kingdom). Dept. of Physics

    1996-12-31

    We outline the theoretical and experimental background to neutron scattering studies of critical phenomena at magnetic and structural phase transitions. The displacive phase transition of SrTiO{sub 3} is discussed, along with examples from recent work on magnetic materials from the rare-earth (Ho, Dy) and actinide (NpAs, NpSb, USb) classes. The impact of synchrotron X-ray scattering is discussed in conclusion. (author) 13 figs., 18 refs.

  8. Phase-shift effect of amplitude spread function on spectrum and image formation in coherent Raman scattering microspectroscopy.

    Science.gov (United States)

    Fukutake, Naoki

    2016-03-01

    Coherent Raman scattering microspectroscopy, which includes coherent anti-Stokes Raman scattering (CARS) and stimulated Raman scattering (SRS) microspectroscopy, permits label-free hyperspectral imaging. We report the theoretical study of the phase-shift effect of the impulse response function on the spectral and image-forming properties of coherent Raman scattering microspectroscopy. We show that the spectrum and image are influenced by not only the NA of objective for excitation (NA(ex)) but also that for signal collection (NA(col)), in association with the phase-shift effect. We discuss that, under the condition NA(ex)≠NA(col), both the spectrum and the image become deformed by the phase-shift effect, which can be applied to the direct measurement of the imaginary part of the nonlinear susceptibility in CARS spectroscopy. We point out that, even in SRS microscopy, the nonresonant background can contribute to the image formation and cause the artifact in the image.

  9. Nonlinear plasmonics at high temperatures

    CERN Document Server

    Sivan, Yonatan

    2016-01-01

    We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW) illumination. Unlike previous studies, we rely on {\\em experimentally}-measured data for the metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution, and thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modelling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high temperature non...

  10. Practical Nonlinearities

    Science.gov (United States)

    2016-07-01

    Advanced Research Projects Agency (DARPA) Dynamics-Enabled Frequency Sources (DEFYS) program is focused on the convergence of nonlinear dynamics and...Early work in this program has shown that nonlinear dynamics can provide performance advantages. However, the pathway from initial results to...dependent nonlinear stiffness observed in these devices. This work is ongoing, and will continue through the final period of this program . Reference 9

  11. Nonlinear data assimilation

    CERN Document Server

    Van Leeuwen, Peter Jan; Reich, Sebastian

    2015-01-01

    This book contains two review articles on nonlinear data assimilation that deal with closely related topics but were written and can be read independently. Both contributions focus on so-called particle filters. The first contribution by Jan van Leeuwen focuses on the potential of proposal densities. It discusses the issues with present-day particle filters and explorers new ideas for proposal densities to solve them, converging to particle filters that work well in systems of any dimension, closing the contribution with a high-dimensional example. The second contribution by Cheng and Reich discusses a unified framework for ensemble-transform particle filters. This allows one to bridge successful ensemble Kalman filters with fully nonlinear particle filters, and allows a proper introduction of localization in particle filters, which has been lacking up to now.

  12. Nonlinear oscillations

    CERN Document Server

    Nayfeh, Ali Hasan

    1995-01-01

    Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

  13. Nonlinear Science

    CERN Document Server

    Yoshida, Zensho

    2010-01-01

    This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl

  14. Nonlinear analysis

    CERN Document Server

    Nanda, Sudarsan

    2013-01-01

    "Nonlinear analysis" presents recent developments in calculus in Banach space, convex sets, convex functions, best approximation, fixed point theorems, nonlinear operators, variational inequality, complementary problem and semi-inner-product spaces. Nonlinear Analysis has become important and useful in the present days because many real world problems are nonlinear, nonconvex and nonsmooth in nature. Although basic concepts have been presented here but many results presented have not appeared in any book till now. The book could be used as a text for graduate students and also it will be useful for researchers working in this field.

  15. Stimulated Brillouin Scattering Microscopic Imaging.

    Science.gov (United States)

    Ballmann, Charles W; Thompson, Jonathan V; Traverso, Andrew J; Meng, Zhaokai; Scully, Marlan O; Yakovlev, Vladislav V

    2015-01-01

    Two-dimensional stimulated Brillouin scattering microscopy is demonstrated for the first time using low power continuous-wave lasers tunable around 780 nm. Spontaneous Brillouin spectroscopy has much potential for probing viscoelastic properties remotely and non-invasively on a microscopic scale. Nonlinear Brillouin scattering spectroscopy and microscopy may provide a way to tremendously accelerate the data aquisition and improve spatial resolution. This general imaging setup can be easily adapted for specific applications in biology and material science. The low power and optical wavelengths in the water transparency window used in this setup provide a powerful bioimaging technique for probing the mechanical properties of hard and soft tissue.

  16. Stimulated Brillouin Scattering Microscopic Imaging

    Science.gov (United States)

    Ballmann, Charles W.; Thompson, Jonathan V.; Traverso, Andrew J.; Meng, Zhaokai; Scully, Marlan O.; Yakovlev, Vladislav V.

    2015-12-01

    Two-dimensional stimulated Brillouin scattering microscopy is demonstrated for the first time using low power continuous-wave lasers tunable around 780 nm. Spontaneous Brillouin spectroscopy has much potential for probing viscoelastic properties remotely and non-invasively on a microscopic scale. Nonlinear Brillouin scattering spectroscopy and microscopy may provide a way to tremendously accelerate the data aquisition and improve spatial resolution. This general imaging setup can be easily adapted for specific applications in biology and material science. The low power and optical wavelengths in the water transparency window used in this setup provide a powerful bioimaging technique for probing the mechanical properties of hard and soft tissue.

  17. Studies of Rigid Rotor-Rigid Surface Scattering in Dynamical Lie Algebraic Method

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Yan; DING Shi-Liang

    2004-01-01

    The dynamical Lie algebraic method is used for the description of statistical mechanics of rotationally inelastic molecule-surface scattering. It can give the time-evolution operators about the low power of a+ and a by solving a set of coupled nonlinear differential equations. For considering the contribution of the high power of a+ and a, we use the Magnus formula. Thus, with the time-evolution operators we can get the statistical average values of the measurable quantities in terms of the density operator formalism in statistical mechanics. The method is applied to the scattering of N2 (rigid rotor) by a flat, rigid surface to illustrate its general procedure. The results demonstrate that the method is useful for describing the statistical dynamics of gas-surface scattering.

  18. Nonlinear metamaterials for holography

    Science.gov (United States)

    Almeida, Euclides; Bitton, Ora; Prior, Yehiam

    2016-08-01

    A hologram is an optical element storing phase and possibly amplitude information enabling the reconstruction of a three-dimensional image of an object by illumination and scattering of a coherent beam of light, and the image is generated at the same wavelength as the input laser beam. In recent years, it was shown that information can be stored in nanometric antennas giving rise to ultrathin components. Here we demonstrate nonlinear multilayer metamaterial holograms. A background free image is formed at a new frequency--the third harmonic of the illuminating beam. Using e-beam lithography of multilayer plasmonic nanoantennas, we fabricate polarization-sensitive nonlinear elements such as blazed gratings, lenses and other computer-generated holograms. These holograms are analysed and prospects for future device applications are discussed.

  19. Nonlinear metamaterials for holography

    Science.gov (United States)

    Almeida, Euclides; Bitton, Ora

    2016-01-01

    A hologram is an optical element storing phase and possibly amplitude information enabling the reconstruction of a three-dimensional image of an object by illumination and scattering of a coherent beam of light, and the image is generated at the same wavelength as the input laser beam. In recent years, it was shown that information can be stored in nanometric antennas giving rise to ultrathin components. Here we demonstrate nonlinear multilayer metamaterial holograms. A background free image is formed at a new frequency—the third harmonic of the illuminating beam. Using e-beam lithography of multilayer plasmonic nanoantennas, we fabricate polarization-sensitive nonlinear elements such as blazed gratings, lenses and other computer-generated holograms. These holograms are analysed and prospects for future device applications are discussed. PMID:27545581

  20. Monte Carlo and nonlinearities

    CERN Document Server

    Dauchet, Jérémi; Blanco, Stéphane; Caliot, Cyril; Charon, Julien; Coustet, Christophe; Hafi, Mouna El; Eymet, Vincent; Farges, Olivier; Forest, Vincent; Fournier, Richard; Galtier, Mathieu; Gautrais, Jacques; Khuong, Anaïs; Pelissier, Lionel; Piaud, Benjamin; Roger, Maxime; Terrée, Guillaume; Weitz, Sebastian

    2016-01-01

    The Monte Carlo method is widely used to numerically predict systems behaviour. However, its powerful incremental design assumes a strong premise which has severely limited application so far: the estimation process must combine linearly over dimensions. Here we show that this premise can be alleviated by projecting nonlinearities on a polynomial basis and increasing the configuration-space dimension. Considering phytoplankton growth in light-limited environments, radiative transfer in planetary atmospheres, electromagnetic scattering by particles and concentrated-solar-power-plant productions, we prove the real world usability of this advance on four test-cases that were so far regarded as impracticable by Monte Carlo approaches. We also illustrate an outstanding feature of our method when applied to sharp problems with interacting particles: handling rare events is now straightforward. Overall, our extension preserves the features that made the method popular: addressing nonlinearities does not compromise o...

  1. LIDAR Thomson scattering for advanced tokamaks. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Molvik, A.W.; Lerche, R.A.; Nilson, D.G. [and others

    1996-03-18

    The LIDAR Thomson Scattering for Advanced Tokamaks project made a valuable contribution by combining LLNL expertise from the MFE Program: tokamak design and diagnostics, and the ICF Program and Physics Dept.: short-pulse lasers and fast streak cameras. This multidisciplinary group evaluated issues involved in achieving a factor of 20 higher high spatial resolution (to as small as 2-3 mm) from the present state of the art in LIDAR Thomson scattering, and developed conceptual designs to apply LIDAR Thomson scattering to three tokamaks: Upgraded divertor measurements in the existing DIII-D tokamak; Both core and divertor LIDAR Thomson scattering in the proposed (now cancelled) TPX; and core, edge, and divertor LIDAR Thomson scattering on the presently planned International Tokamak Experimental Reactor, ITER. Other issues were evaluated in addition to the time response required for a few millimeter spatial resolution. These include the optimum wavelength, 100 Hz operation of the laser and detectors, minimizing stray light - always the Achilles heel of Thomson scattering, and time dispersion in optics that could prevent good spatial resolution. Innovative features of our work included: custom short pulsed laser concepts to meet specific requirements, use of a prism spectrometer to maintain a constant optical path length for high temporal and spatial resolution, the concept of a laser focus outside the plasma to ionize gas and form an external fiducial to use in locating the plasma edge as well as to spread the laser energy over a large enough area of the inner wall to avoid laser ablation of wall material, an improved concept for cleaning windows between shots by means of laser ablation, and the identification of a new physics issue - nonlinear effects near a laser focus which could perturb the plasma density and temperature that are to be measured.

  2. Nonlinear silicon photonics

    Science.gov (United States)

    Tsia, Kevin K.; Jalali, Bahram

    2010-05-01

    An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.

  3. Nonlinear optics and organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Y.R.

    1994-07-01

    We shall consider an interesting topic relating nonlinear optics and organic materials: how nonlinear optics can be used to study organic materials. One of the main differences between linear and nonlinear responses of a medium to incoming radiation is in their symmetries. It leads to the possibility that some properties of the medium could be more sensitively probed by nonlinear, rather than linear, optical means, or vise versa. A well-known example is that some vibrational modes of a medium could be Raman-active but infrared-inactive, and would be more readily observed by Raman scattering, which is a two-photon transition process. In this paper, we shall discuss, with the help of three examples, how we can use second harmonic generation (SHG) and sum frequency generation (SFG) to obtain unique information about a material. We shall focus on thin films, surfaces, and interfaces.

  4. Global Analysis of Nonlinear Dynamics

    CERN Document Server

    Luo, Albert

    2012-01-01

    Global Analysis of Nonlinear Dynamics collects chapters on recent developments in global analysis of non-linear dynamical systems with a particular emphasis on cell mapping methods developed by Professor C.S. Hsu of the University of California, Berkeley. This collection of contributions prepared by a diverse group of internationally recognized researchers is intended to stimulate interests in global analysis of complex and high-dimensional nonlinear dynamical systems, whose global properties are largely unexplored at this time. This book also: Presents recent developments in global analysis of non-linear dynamical systems Provides in-depth considerations and extensions of cell mapping methods Adopts an inclusive style accessible to non-specialists and graduate students Global Analysis of Nonlinear Dynamics is an ideal reference for the community of nonlinear dynamics in different disciplines including engineering, applied mathematics, meteorology, life science, computational science, and medicine.  

  5. Nonlinear evolution of drift instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, W.W.; Krommes, J.A.; Oberman, C.R.; Smith, R.A.

    1984-01-01

    The nonlinear evolution of collisionless drift instabilities in a shear-free magnetic field has been studied by means of gyrokinetic particle simulation as well as numerical integration of model mode-coupling equations. The purpose of the investigation is to identify relevant nonlinear mechanisms responsible for the steady-state drift wave fluctuations. It is found that the saturation of the instability is mainly caused by the nonlinear E x B convection of the resonant electrons and their associated velocity space nonlinearity. The latter also induces energy exchange between the competing modes, which, in turn, gives rise to enhanced diffusion. The nonlinear E x B convection of the ions, which contributes to the nonlinear frequency shift, is also an important ingredient for the saturation.

  6. What is Double Parton Scattering?

    CERN Document Server

    Manohar, Aneesh V

    2012-01-01

    Processes such as double Drell-Yan and same-sign WW production have contributions from double parton scattering, which are not well-defined because of a delta(z_\\perp=0) singularity that is generated by QCD evolution. We study the single and double parton contributions to these processes, and show how to handle the singularity using factorization and operator renormalization.

  7. Processing Approach of Non-linear Adjustment Models in the Space of Non-linear Models

    Institute of Scientific and Technical Information of China (English)

    LI Chaokui; ZHU Qing; SONG Chengfang

    2003-01-01

    This paper investigates the mathematic features of non-linear models and discusses the processing way of non-linear factors which contributes to the non-linearity of a nonlinear model. On the basis of the error definition, this paper puts forward a new adjustment criterion, SGPE.Last, this paper investigates the solution of a non-linear regression model in the non-linear model space and makes the comparison between the estimated values in non-linear model space and those in linear model space.

  8. Nonlinear Reconstruction

    CERN Document Server

    Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Yu, Hao-Ran

    2016-01-01

    We present a direct approach to non-parametrically reconstruct the linear density field from an observed non-linear map. We solve for the unique displacement potential consistent with the non-linear density and positive definite coordinate transformation using a multigrid algorithm. We show that we recover the linear initial conditions up to $k\\sim 1\\ h/\\mathrm{Mpc}$ with minimal computational cost. This reconstruction approach generalizes the linear displacement theory to fully non-linear fields, potentially substantially expanding the BAO and RSD information content of dense large scale structure surveys, including for example SDSS main sample and 21cm intensity mapping.

  9. Nonlinear optics

    CERN Document Server

    Boyd, Robert W

    2013-01-01

    Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q

  10. Linear versus non-linear structural information limit in high-resolution transmission electron microscopy.

    Science.gov (United States)

    Van Aert, S; Chen, J H; Van Dyck, D

    2010-10-01

    A widely used performance criterion in high-resolution transmission electron microscopy (HRTEM) is the information limit. It corresponds to the inverse of the maximum spatial object frequency that is linearly transmitted with sufficient intensity from the exit plane of the object to the image plane and is limited due to partial temporal coherence. In practice, the information limit is often measured from a diffractogram or from Young's fringes assuming a weak phase object scattering beyond the inverse of the information limit. However, for an aberration corrected electron microscope, with an information limit in the sub-angstrom range, weak phase objects are no longer applicable since they do not scatter sufficiently in this range. Therefore, one relies on more strongly scattering objects such as crystals of heavy atoms observed along a low index zone axis. In that case, dynamical scattering becomes important such that the non-linear and linear interaction may be equally important. The non-linear interaction may then set the experimental cut-off frequency observed in a diffractogram. The goal of this paper is to quantify both the linear and the non-linear information transfer in terms of closed form analytical expressions. Whereas the cut-off frequency set by the linear transfer can be directly related with the attainable resolution, information from the non-linear transfer can only be extracted using quantitative, model-based methods. In contrast to the historic definition of the information limit depending on microscope parameters only, the expressions derived in this paper explicitly incorporate their dependence on the structure parameters as well. In order to emphasize this dependence and to distinguish from the usual information limit, the expressions derived for the inverse cut-off frequencies will be referred to as the linear and non-linear structural information limit. The present findings confirm the well-known result that partial temporal coherence has

  11. Linearizing nonlinear optics

    CERN Document Server

    Schmidt, Bruno E; Ernotte, Guilmot; Clerici, Matteo; Morandotti, Roberto; Ibrahim, Heide; Legare, Francois

    2016-01-01

    In the framework of linear optics, light fields do not interact with each other in a medium. Yet, when their field amplitude becomes comparable to the electron binding energies of matter, the nonlinear motion of these electrons emits new dipole radiation whose amplitude, frequency and phase differ from the incoming fields. Such high fields are typically achieved with ultra-short, femtosecond (1fs = 10-15 sec.) laser pulses containing very broad frequency spectra. Here, the matter not only couples incoming and outgoing fields but also causes different spectral components to interact and mix through a convolution process. In this contribution, we describe how frequency domain nonlinear optics overcomes the shortcomings arising from this convolution in conventional time domain nonlinear optics1. We generate light fields with previously inaccessible properties because the uncontrolled coupling of amplitudes and phases is turned off. For example, arbitrary phase functions are transferred linearly to the second har...

  12. Scattering theory

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Harald [Technische Univ. Muenchen, Garching (Germany). Physik-Department

    2013-08-01

    Written by the author of the widely acclaimed textbook. Theoretical Atomic Physics Includes sections on quantum reflection, tunable Feshbach resonances and Efimov states. Useful for advanced students and researchers. This book presents a concise and modern coverage of scattering theory. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. The level of abstraction is kept as low as at all possible, and deeper questions related to mathematical foundations of scattering theory are passed by. The book should be understandable for anyone with a basic knowledge of nonrelativistic quantum mechanics. It is intended for advanced students and researchers, and it is hoped that it will be useful for theorists and experimentalists alike.

  13. Scattering theory

    CERN Document Server

    Friedrich, Harald

    2016-01-01

    This corrected and updated second edition of "Scattering Theory" presents a concise and modern coverage of the subject. In the present treatment, special attention is given to the role played by the long-range behaviour of the projectile-target interaction, and a theory is developed, which is well suited to describe near-threshold bound and continuum states in realistic binary systems such as diatomic molecules or molecular ions. It is motivated by the fact that experimental advances have shifted and broadened the scope of applications where concepts from scattering theory are used, e.g. to the field of ultracold atoms and molecules, which has been experiencing enormous growth in recent years, largely triggered by the successful realization of Bose-Einstein condensates of dilute atomic gases in 1995. The book contains sections on special topics such as near-threshold quantization, quantum reflection, Feshbach resonances and the quantum description of scattering in two dimensions. The level of abstraction is k...

  14. Nonlinear optimization

    CERN Document Server

    Ruszczynski, Andrzej

    2011-01-01

    Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates t

  15. Light scattering by marine heterotrophic bacteria

    Science.gov (United States)

    Ulloa, Osvaldo; Sathyendranath, Shubha; Platt, Trevor; Quinones, Renato A.

    1992-01-01

    Mie theory is applied to estimate scattering by polydispersions of marine heterotrophic bacteria, and a simple expression is derived for the bacterial scattering coefficient. The error incurred in deriving bacterial optical properties by use of the van de Hulst approximations is computed. The scattering properties of natural bacterial assemblages in three marine environments, Georges Bank, Northeast Channel, and Sargasso Sea, are assessed by applying Mie theory to field data on bacterial size and abundance. Results are used to examine the potential contribution of bacteria to the scattering properties of seawater. The utility of using pigment data to predict the magnitude of scattering by bacteria is discussed.

  16. Nonlinear Effects in the Cosmic Microwave Background

    CERN Document Server

    Maartens, R

    2000-01-01

    Major advances in the observation and theory of cosmic microwave background anisotropies have opened up a new era in cosmology. This has encouraged the hope that the fundamental parameters of cosmology will be determined to high accuracy in the near future. However, this optimism should not obscure the ongoing need for theoretical developments that go beyond the highly successful but simplified standard model. Such developments include improvements in observational modelling (e.g. foregrounds, non-Gaussian features), extensions and alternatives to the simplest inflationary paradigm (e.g. non-adiabatic effects, defects), and investigation of nonlinear effects. In addition to well known nonlinear effects such as the Rees-Sciama and Ostriker-Vishniac effects, further nonlinear effects have recently been identified. These include a Rees-Sciama-type tensor effect, time-delay effects of scalar and tensor lensing, nonlinear Thomson scattering effects and a nonlinear shear effect. Some of the nonlinear effects and th...

  17. Nonlinear Photonics 2014: introduction.

    Science.gov (United States)

    Akhmediev, N; Kartashov, Yaroslav

    2015-01-12

    International Conference "Nonlinear Photonics-2014" took place in Barcelona, Spain on July 27-31, 2014. It was a part of the "Advanced Photonics Congress" which is becoming a traditional notable event in the world of photonics. The current focus issue of Optics Express contains contributions from the participants of the Conference and the Congress. The articles in this focus issue by no means represent the total number of the congress contributions (around 400). However, it demonstrates wide range of topics covered at the event. The next conference of this series is to be held in 2016 in Australia, which is the home of many researchers working in the field of photonics in general and nonlinear photonics in particular.

  18. Nonlinear channelizer

    Science.gov (United States)

    In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D.; Leung, Daniel; Liu, Norman; Meadows, Brian K.; Gordon, Frank; Bulsara, Adi R.; Palacios, Antonio

    2012-12-01

    The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.

  19. Superradiant Forward Scattering in Multiple Scattering

    CERN Document Server

    Chabe, Julien; Bienaime, Tom; Bachelard, Romain; Piovella, Nicola; Kaiser, Robin

    2012-01-01

    We report on an interference effect in multiple scattering by resonant scatterers resulting in enhanced forward scattering, violating Ohm's law for photons. The underlying mechanism of this wave effect is superradiance, which we have investigated using cold atoms as a toy model. We present numerical and experimental evidences for this superradiant forward scattering, which is robust against disorder and configuration averaging.

  20. Nonlinear Acoustic Characterization of Targets

    Science.gov (United States)

    2008-01-01

    matching so as to transmit as much energy as possible into the test object. In addition to this limitation, ultrasound is only able to measure range by...metric arrays for standoff analysis of targets. In 1982, Yoneyama[4] discussed the nonlinear interaction of ultrasound with air as the “scattering of... cavitation effect. This produces a rectification at higher frequencies just as a diode does in an electrical circuit. This natural rectification allows

  1. Nonlinear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Turchetti, G. (Bologna Univ. (Italy). Dipt. di Fisica)

    1989-01-01

    Research in nonlinear dynamics is rapidly expanding and its range of applications is extending beyond the traditional areas of science where it was first developed. Indeed while linear analysis and modelling, which has been very successful in mathematical physics and engineering, has become a mature science, many elementary phenomena of intrinsic nonlinear nature were recently experimentally detected and investigated, suggesting new theoretical work. Complex systems, as turbulent fluids, were known to be governed by intrinsically nonlinear laws since a long time ago, but received purely phenomenological descriptions. The pioneering works of Boltzmann and Poincare, probably because of their intrinsic difficulty, did not have a revolutionary impact at their time; it is only very recently that their message is reaching a significant number of mathematicians and physicists. Certainly the development of computers and computer graphics played an important role in developing geometric intuition of complex phenomena through simple numerical experiments, while a new mathematical framework to understand them was being developed.

  2. SPARSE ELECTROMAGNETIC IMAGING USING NONLINEAR LANDWEBER ITERATIONS

    KAUST Repository

    Desmal, Abdulla

    2015-07-29

    A scheme for efficiently solving the nonlinear electromagnetic inverse scattering problem on sparse investigation domains is described. The proposed scheme reconstructs the (complex) dielectric permittivity of an investigation domain from fields measured away from the domain itself. Least-squares data misfit between the computed scattered fields, which are expressed as a nonlinear function of the permittivity, and the measured fields is constrained by the L0/L1-norm of the solution. The resulting minimization problem is solved using nonlinear Landweber iterations, where at each iteration a thresholding function is applied to enforce the sparseness-promoting L0/L1-norm constraint. The thresholded nonlinear Landweber iterations are applied to several two-dimensional problems, where the ``measured\\'\\' fields are synthetically generated or obtained from actual experiments. These numerical experiments demonstrate the accuracy, efficiency, and applicability of the proposed scheme in reconstructing sparse profiles with high permittivity values.

  3. Monolayer sorption of neon in mesoporous silica glass as monitored by wide-angle x-ray scattering.

    Science.gov (United States)

    Kilburn, Duncan; Sokol, Paul E

    2008-02-01

    We report measurements of the x-ray scattering intensity as mesoporous silica glasses are filled with neon. The intensity of the first peak in the liquidlike diffraction pattern increases nonlinearly with mass adsorbed. We outline a simple model assuming that the major coherent contribution to the first peak in the scattering function S(Q) is due to interference from nearest-neighbor scatterers. This allows us to demonstrate an approach for surface area determination which does not rely on thermodynamic models -- and is therefore complementary to existing methods. We also suggest that the overestimation of surface area by the traditional Brunauer-Emmett-Teller method may be resolved by using the capillary, and not the bulk, condensation pressure as the reference pressure p(0). Furthermore, the alternative analysis offers an insight into the atomic structure of monatomic sorption, which may be of use for further studies on materials with different surface properties.

  4. SPHERICAL NONLINEAR PULSES FOR THE SOLUTIONS OF NONLINEAR WAVE EQUATIONS Ⅱ, NONLINEAR CAUSTIC

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This article discusses spherical pulse like solutions of the system of semilinear wave equations with the pulses focusing at a point and emerging outgoing in three space variables. In small initial data case, it shows that the nonlinearities have a strong effect at the focal point. Scattering operator is introduced to describe the caustic crossing. With the aid of the L∞ norms, it analyzes the relative errors in approximate solutions.

  5. Integration Rules for Scattering Equations

    CERN Document Server

    Baadsgaard, Christian; Bourjaily, Jacob L; Damgaard, Poul H

    2015-01-01

    As described by Cachazo, He and Yuan, scattering amplitudes in many quantum field theories can be represented as integrals that are fully localized on solutions to the so-called scattering equations. Because the number of solutions to the scattering equations grows quite rapidly, the contour of integration involves contributions from many isolated components. In this paper, we provide a simple, combinatorial rule that immediately provides the result of integration against the scattering equation constraints for any M\\"obius-invariant integrand involving only simple poles. These rules have a simple diagrammatic interpretation that makes the evaluation of any such integrand immediate. Finally, we explain how these rules are related to the computation of amplitudes in the field theory limit of string theory.

  6. Integration rules for scattering equations

    Science.gov (United States)

    Baadsgaard, Christian; Bjerrum-Bohr, N. E. J.; Bourjaily, Jacob L.; Damgaard, Poul H.

    2015-09-01

    As described by Cachazo, He and Yuan, scattering amplitudes in many quantum field theories can be represented as integrals that are fully localized on solutions to the so-called scattering equations. Because the number of solutions to the scattering equations grows quite rapidly, the contour of integration involves contributions from many isolated components. In this paper, we provide a simple, combinatorial rule that immediately provides the result of integration against the scattering equation constraints fo any Möbius-invariant integrand involving only simple poles. These rules have a simple diagrammatic interpretation that makes the evaluation of any such integrand immediate. Finally, we explain how these rules are related to the computation of amplitudes in the field theory limit of string theory.

  7. Broadband Brillouin Scatter from CO2-Laser-Target Interactions

    Science.gov (United States)

    Mitchel, G. R.; Grek, B.; Johnston, T. W.; Pépin, H.; Church, P.; Lavigne, P.; Martin, F.; Décoste, R.

    1982-05-01

    Light scattered near the incident wavelength from CO2 laser-solid target interactions in oblique incidence shows the spectral signature of Brillouin scattering both in the backward and in the near specular directions. This instability is apparently seeded by broadband scatter from the critical density surface and then amplified in the underdense plasma. 60% of the incident light is scattered, and the Brillouin contribution to total scatter may be large if the source is also large.

  8. Nonlinear Systems.

    Science.gov (United States)

    Seider, Warren D.; Ungar, Lyle H.

    1987-01-01

    Describes a course in nonlinear mathematics courses offered at the University of Pennsylvania which provides an opportunity for students to examine the complex solution spaces that chemical engineers encounter. Topics include modeling many chemical processes, especially those involving reaction and diffusion, auto catalytic reactions, phase…

  9. An exploration in acoustic radiation force experienced by cylindrical shells via resonance scattering theory.

    Science.gov (United States)

    Rajabi, Majid; Behzad, Mehdi

    2014-04-01

    In nonlinear acoustic regime, a body insonified by a sound field is known to experience a steady force that is called the acoustic radiation force (RF). This force is a second-order quantity of the velocity potential function of the ambient medium. Exploiting the sufficiency of linear solution representation of potential function in RF formulation, and following the classical resonance scattering theorem (RST) which suggests the scattered field as a superposition of the resonant field and a background (non-resonant) component, we will show that the radiation force is a composition of three components: background part, resonant part and their interaction. Due to the nonlinearity effects, each part contains the contribution of pure partial waves in addition to their mutual interaction. The numerical results propose the residue component (i.e., subtraction of the background component from the RF) as a good indicator of the contribution of circumferential surface waves in RF. Defining the modal series of radiation force function and its components, it will be shown that within each partial wave, the resonance contribution can be synthesized as the Breit-Wigner form for adequately none-close resonant frequencies. The proposed formulation may be helpful essentially due to its inherent value as a canonical subject in physical acoustics. Furthermore, it may make a tunnel through the circumferential resonance reducing effects on radiation forces.

  10. Generalized solutions of nonlinear partial differential equations

    CERN Document Server

    Rosinger, EE

    1987-01-01

    During the last few years, several fairly systematic nonlinear theories of generalized solutions of rather arbitrary nonlinear partial differential equations have emerged. The aim of this volume is to offer the reader a sufficiently detailed introduction to two of these recent nonlinear theories which have so far contributed most to the study of generalized solutions of nonlinear partial differential equations, bringing the reader to the level of ongoing research.The essence of the two nonlinear theories presented in this volume is the observation that much of the mathematics concernin

  11. Photon Polarization in Photonic Crystal Fibers under Compton Scattering

    Institute of Scientific and Technical Information of China (English)

    HAO Dong-shan; ZHANG Xiao-fu

    2007-01-01

    Using the quantum invariant theory and unitary transformation means, we study the influences of multi-photon nonlinear Compton scattering on the photon polarization in photonic crystal fibers(PCF). The results show that the photon polarization of the incident photon changes a lot due to scattered optical, and its general geometric phase factor, Hamiton number and evolution operator are definited both by the incident and scattered optical.

  12. Modified Scattering for the Boson Star Equation

    Science.gov (United States)

    Pusateri, Fabio

    2014-12-01

    We consider the question of scattering for the boson star equation in three space dimensions. This is a semi-relativistic Klein-Gordon equation with a cubic nonlinearity of Hartree type. We combine weighted estimates, obtained by exploiting a special null structure present in the equation, and a refined asymptotic analysis performed in Fourier space, to obtain global solutions evolving from small and localized Cauchy data. We describe the behavior of such solutions at infinity by identifying a suitable nonlinear asymptotic correction to scattering. As a byproduct of the weighted energy estimates alone, we also obtain global existence and (linear) scattering for solutions of semi-relativistic Hartree equations with potentials decaying faster than Coulomb.

  13. Optical rogue waves and soliton turbulence in nonlinear fibre optics

    DEFF Research Database (Denmark)

    Genty, G.; Dudley, J. M.; de Sterke, C. M.

    2009-01-01

    We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required.......We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required....

  14. Generalized Nonlinear Yule Models

    Science.gov (United States)

    Lansky, Petr; Polito, Federico; Sacerdote, Laura

    2016-10-01

    With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.

  15. Generalized Nonlinear Yule Models

    Science.gov (United States)

    Lansky, Petr; Polito, Federico; Sacerdote, Laura

    2016-11-01

    With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.

  16. Lossless synthesis of graphene nanosheets decorated with tiny cadmium sulfide quantum dots with excellent nonlinear optical properties.

    Science.gov (United States)

    Feng, Miao; Sun, Ruiqing; Zhan, Hongbing; Chen, Yu

    2010-02-19

    The implantation and growth of metal nanoparticles on graphene nanosheets (GNS) leads directly to severe damage to the regular structure of the graphene sheets, which disrupts the extended pi conjugation, resulting in an impaired device performance. In this paper, we describe a facile approach for achieving the lossless formation of graphene composite decorated with tiny cadmium sulfide quantum dots (QDs) with excellent nonlinear optical properties by using benzyl mercaptan (BM) as the interlinker. The mercapto substituent of BM binds to the CdS QDs during their nucleation and growth process, and then the phenyl comes into contact with the GNS via the pi-pi stacking interaction. Using this strategy, CdS QDs with an average diameter of 3 nm are uniformly dispersed over the surface of graphene, and the resulting QD-graphene composite exhibits excellent optical limiting properties, mainly contributed by nonlinear scattering and nonlinear absorption, upon both 532 and 1064 nm excitations, in the nanosecond laser pulse regime.

  17. Investigation on the formation of intense fringe near nonlinear medium slab in nonlinear imaging

    Science.gov (United States)

    Hu, Yonghua; Qiu, Yaqiong; Peng, Xue

    2016-11-01

    It is well known that hot images of small-scale scatterers can be formed. For phase-typed scatterers, hot image and second-order hot-image can be formed. However, when the number of scatterer is larger than one, the interaction between the scatterered waves will lead to new nonlinear propagation results. In this paper, the propagation of flat-topped intense laser beam through Kerr medium slab is investigated, with the incident beam modulated by two parallel wirelike phase-typed scatterers. We demonstrate that an intense fringe together with hot image and second-order hot image can be formed when the distance of the two scatterers is several millimeters. It is found that the on-axis position of the plane of this intense fringe is in the middle part between the exit surface of the Kerr medium slab and the secondorder hot image plane. This intense fringe shows the following basic properties: Firstly, its intensity is apparently higher than that of corresponding second-order hot image and can be comparable with that of corresponding hot image; Secondly, the distances between it and the in-beam positions of the scatterers are identical. The intensity profile shows that this intense fringe is the only prominent bright fringe in the corresponding plane, and thus it is not a nonlinear image of any scatterer. Besides, the influences of the properties of scatterer on the intensity of the fringe are discussed.

  18. Nonlinear transmission sputtering

    Science.gov (United States)

    Bitensky, I. S.; Sigmund, P.

    1996-05-01

    General expressions have been derived for the nonlinear yield of transmission sputtering for an incident polyatomic ion under the assumption that the molecule breaks up on entering the target and that sputter yields are enhanced due to proximity of atomic trajectories. Special attention is given to the case of negligible Coulomb explosion where projectile atoms penetrate independently. For weakly overlapping trajectories, the yield enhancement factor of a polyatomic molecule can be expressed by that of a diatom, amended with a correction for triple correlations if necessary. This expression is in good agreement with recent experimental findings on phenylalanine targets. Pertinent results on multiple scattering of atomic ions are reviewed and applied to independently-moving fragment atoms. The merits of measurements at variable layer thickness in addition to variable projectile energy are mentioned.

  19. Perspectives on stimulated Brillouin scattering

    Science.gov (United States)

    Garmire, Elsa

    2017-01-01

    This collection of papers describes research that goes into detail on some of the more important issues in the physics of stimulated Brillouin scattering. This perspective describes the earliest years of the physics of stimulated Brillouin scattering, along with key developments that have led to this technically and physically rich field of today’s nonlinear optics. Stimulated Brillouin has a profound effect in optical fiber communications, initially discovered by its limit on the transmitted power. By controlling SBS in fibers and making use of its phase conjugation properties in both fibers and bulk media, a wide range of applications have been enabled. Today ring Brillouin lasers in fibers, whispering gallery modes and in photonic integrated circuits provide optical delay lines and switches, pulse shapers and components for increasingly complex and important optical systems.

  20. Sparse Reconstruction Schemes for Nonlinear Electromagnetic Imaging

    KAUST Repository

    Desmal, Abdulla

    2016-03-01

    Electromagnetic imaging is the problem of determining material properties from scattered fields measured away from the domain under investigation. Solving this inverse problem is a challenging task because (i) it is ill-posed due to the presence of (smoothing) integral operators used in the representation of scattered fields in terms of material properties, and scattered fields are obtained at a finite set of points through noisy measurements; and (ii) it is nonlinear simply due the fact that scattered fields are nonlinear functions of the material properties. The work described in this thesis tackles the ill-posedness of the electromagnetic imaging problem using sparsity-based regularization techniques, which assume that the scatterer(s) occupy only a small fraction of the investigation domain. More specifically, four novel imaging methods are formulated and implemented. (i) Sparsity-regularized Born iterative method iteratively linearizes the nonlinear inverse scattering problem and each linear problem is regularized using an improved iterative shrinkage algorithm enforcing the sparsity constraint. (ii) Sparsity-regularized nonlinear inexact Newton method calls for the solution of a linear system involving the Frechet derivative matrix of the forward scattering operator at every iteration step. For faster convergence, the solution of this matrix system is regularized under the sparsity constraint and preconditioned by leveling the matrix singular values. (iii) Sparsity-regularized nonlinear Tikhonov method directly solves the nonlinear minimization problem using Landweber iterations, where a thresholding function is applied at every iteration step to enforce the sparsity constraint. (iv) This last scheme is accelerated using a projected steepest descent method when it is applied to three-dimensional investigation domains. Projection replaces the thresholding operation and enforces the sparsity constraint. Numerical experiments, which are carried out using

  1. Nonlinear PDEs

    OpenAIRE

    2015-01-01

    From the Back Cover: The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications re...

  2. Poster contributions; Contributions par affiches

    Energy Technology Data Exchange (ETDEWEB)

    Allegraud, K.; Gatilova, I.; Guaitella, O.; Ionikh, Y.; Roepcke, J.; Rousseau, A.; Aranchuk, L.E.; Larour, J.; Asad, S.; Tendero, C.; Tixier, C.; Jaoul, C.; Tristant, P.; Boisse-Laporte, C.; Leprince, P.; Leniniven, C.; Assouar, M.B.; Jimenez Rioboo, R.J.; Aubert, X.; Rousseau, A.; Sadeghi, N.; Bekstein, A.; Benhenni, M.; Yousfi, M.; Bousquet, A.; Granier, A.; Cartry, G.; Calafat, M.; Escaich, D.; Raynaud, P.; Clergereaux, R.; Cardoso, R.P.; Belmonte, T.; Henrion, G.; Sadeghi, N.; Cavarroc, M.; Mikikian, M.; Tessier, Y.; Boufendi, I.; Celestin, S.; Guaitella, O.; Bourdon, A.; Rousseau, A.; Cernogora, G.; Szopa, C.; Cavarroc, M.; Boufendi, I.; Commaux, N.; Geraud, A.; Pegourie, B.; Clairet, F.; Gil, C.; Gros, G.; Gunn, J.; Joffrin, E.; Hertout, P.; Costin, C.; Choimet, J.B.; Minea, T.; Couedel, L.; Mikikian, M.; Tessier, Y.; Boufendi, I.; Samarian, A.A.; Cousin, R.; Larour, J.; Gouard, P.; Raymond, P.; Curley, G.A.; Booth, J.P.; Corr, C.S.; Foldes, T.; Guillon, J.; Czarny, O.; Huysmans, G.; Daniel, A.; Belmonte, T.; Poucques, L. de; Imbert, J.C.; Teule-Gay, L.; Boisse-Laporte, C.; Devaux, S.; Manfredi, G.; Dif-Pradalier, G.; Grandgirard, V.; Sarazin, Y.; Garbet, X.; Ghendrih, Ph.; Dong, B.; Bauchire, J.M.; Pouvesle, J.M.; Magnier, P.; Hong, D.; Duluard, C.; Tillocher, T.; Mekkakia Maaza, N.; Dussart, R.; Mellhaoui, X.; Lefaucheux, P.; Puech, M.; Ranson, P.; Faudot, E.; Heuraux, S.; Colas, L.; Fubiani, G.; Boilson, D.; Hemsworth, R.S.; Gatilova, L.; Allegraud, K.; Ionikh, Y.; Roepcke, J.; Cartry, G.; Rousseau, A.; Gauthier, J.C.; Fourment, C.; Schurtz, G.; Nicolai, Ph.; Peyrusse, O.; Feugeas, J.L

    2006-07-01

    This document gathers the poster contributions among which 11 are relevant for fusion plasmas or particle acceleration: 1) the spectral study of a micro plasma from an X-pinch explosion; 2) experiments with a plasma density greater than the Greenwald value via the injection of icicles in Tore-Supra; 3) Bezier's surfaces and finite elements method for non-linear MHD; 4) 2-dimensional simulation of the RF casings before the ICRF antennas in tokamaks; 5) negative ion sources for ITER; 6) experimental characterization of electron heat transport on the laser integration line; 7) comparison of fluctuation measurement methods of plasma density via reflectometry in mode-o and mode-x in Tore-Supra; 8) water-bag model applied to kinetics equations of magnetic fusion plasmas; 9) computerized simulation of electron acceleration in plasma waves generated in a capillary pipe through laser wakefield; 10) the slowing-down of an alpha particle in a strongly magnetized dense plasma; and 11) stochastic processes of particle trapping by a wave in a magnetized plasma. (A.C.)

  3. On scattered subword complexity

    CERN Document Server

    Kása, Zoltán

    2011-01-01

    Special scattered subwords, in which the gaps are of length from a given set, are defined. The scattered subword complexity, which is the number of such scattered subwords, is computed for rainbow words.

  4. Linear and nonlinear magneto-optics of ferritin.

    Science.gov (United States)

    Pankowska, M; Dobek, A

    2009-07-07

    Measurements of Rayleigh light scattering and Cotton-Mouton (CM) effect are carried out at room temperature for 100 mM NaCl solutions of apoferritin/ferritin loaded with 0, 90, 100, 500, 700, and 1500 Fe atoms/molecule. Because of the spherical shape, ferritin macromolecule should not manifest magnetic anisotropy; however, in solution it shows the induced magnetic birefringence (CM effect) and changes in intensity of the scattered light components. The newly obtained data support the previously reported conclusions indicating that the deformation of linear optical polarizability induced in the ferritin by a magnetic field and the orientation of the induced magnetic dipole moment by this field are the main sources of the magneto-optical phenomena observed. Nevertheless, it is also found that the orientation of the permanent magnetic dipole moment contributes to both effects. The magnetic field induced changes in the light scattering and the CM effect theoretically depend on the linear magneto-optical polarizability, chi, on the nonlinear magneto-optical polarizability, eta, and square of the permanent magnetic dipole moment value of the macromolecule, mu(2). On the basis of the theory describing both effects as well as the experimental data, the values of the anisotropy of linear magneto-optical polarizabilities components, the values of the linear optical polarizability and its anisotropy, nonlinear magneto-optical polarizability and its anisotropy, are estimated. Also the magnetic dipole moment of the ferritin macromolecule is found. Interestingly, not all iron atoms in the ferritin are indicated to be in the superparamagnetic state, some of them occur in the diamagnetic form.

  5. Effect of anisotropic scattering on radiative heat transfer in two-dimensional rectangular media

    CERN Document Server

    Hao Jin Bo

    2003-01-01

    Effect of scattering on radiative heat transfer in two-dimensional rectangular media by the finite-volume method has been studied. Compared with the existing solutions, it shows that the result obtained by the finite-volume method is reliable. Furthermore, relative errors caused by the approximation that linear and nonlinear anisotropic scattering media is simplified to isotropic scattering media have been studied.

  6. Bidirectional optical scattering facility

    Data.gov (United States)

    Federal Laboratory Consortium — Goniometric optical scatter instrument (GOSI)The bidirectional reflectance distribution function (BRDF) quantifies the angular distribution of light scattered from a...

  7. Bidirectional optical scattering facility

    Data.gov (United States)

    Federal Laboratory Consortium — Goniometric optical scatter instrument (GOSI) The bidirectional reflectance distribution function (BRDF) quantifies the angular distribution of light scattered from...

  8. Soil-structure interaction including nonlinear soil

    OpenAIRE

    Gicev, Vlado

    2008-01-01

    There are two types of models of soil-structure system depending upon the rigidity of foundation: models with rigid and models with flexible foundation. Main features of the soil-structure interaction phenomenon: -wave scattering, -radiation damping, -reduction of the system frequencies. In this presentation, the influence of interaction on the development of nonlinear zones in the soil is studied.

  9. American Conference on Neutron Scattering 2014

    Energy Technology Data Exchange (ETDEWEB)

    Dillen, J. Ardie [Materials Research Society, Warrendale, PA (United States)

    2014-12-31

    Scientists from the around the world converged in Knoxville, TN to have share ideas, present technical information and contribute to the advancement of neutron scattering. Featuring over 400 oral/poster presentations, ACNS 2014 offered a strong program of plenary, invited and contributed talks and poster sessions covering topics in soft condensed matter, hard condensed matter, biology, chemistry, energy and engineering applications in neutron physics – confirming the great diversity of science that is enabled by neutron scattering.

  10. Nonlinear opto-mechanical pressure

    CERN Document Server

    Conti, Claudio

    2014-01-01

    A transparent material exhibits ultra-fast optical nonlinearity and is subject to optical pressure if irradiated by a laser beam. However, the effect of nonlinearity on optical pressure is often overlooked, even if a nonlinear optical pressure may be potentially employed in many applications, as optical manipulation, biophysics, cavity optomechanics, quantum optics, optical tractors, and is relevant in fundamental problems as the Abraham-Minkoswky dilemma, or the Casimir effect. Here we show that an ultra-fast nonlinear polarization gives indeed a contribution to the optical pressure that also is negative in certain spectral ranges; the theoretical analysis is confirmed by first-principles simulations. An order of magnitude estimate shows that the effect can be observable by measuring the deflection of a membrane made by graphene.

  11. Predicting nonlinear properties of metamaterials from the linear response.

    Science.gov (United States)

    O'Brien, Kevin; Suchowski, Haim; Rho, Junsuk; Salandrino, Alessandro; Kante, Boubacar; Yin, Xiaobo; Zhang, Xiang

    2015-04-01

    The discovery of optical second harmonic generation in 1961 started modern nonlinear optics. Soon after, R. C. Miller found empirically that the nonlinear susceptibility could be predicted from the linear susceptibilities. This important relation, known as Miller's Rule, allows a rapid determination of nonlinear susceptibilities from linear properties. In recent years, metamaterials, artificial materials that exhibit intriguing linear optical properties not found in natural materials, have shown novel nonlinear properties such as phase-mismatch-free nonlinear generation, new quasi-phase matching capabilities and large nonlinear susceptibilities. However, the understanding of nonlinear metamaterials is still in its infancy, with no general conclusion on the relationship between linear and nonlinear properties. The key question is then whether one can determine the nonlinear behaviour of these artificial materials from their exotic linear behaviour. Here, we show that the nonlinear oscillator model does not apply in general to nonlinear metamaterials. We show, instead, that it is possible to predict the relative nonlinear susceptibility of large classes of metamaterials using a more comprehensive nonlinear scattering theory, which allows efficient design of metamaterials with strong nonlinearity for important applications such as coherent Raman sensing, entangled photon generation and frequency conversion.

  12. NONLINEAR OPTICS: Nonlinear optical processes in planar waveguides and excitation of surface polaritons

    Science.gov (United States)

    Yashkir, O. V.; Yashkir, Yu N.

    1987-11-01

    An investigation is made of nonlinear optical interaction of light propagating in a planar waveguide with surface polaritons. Reduced wave equations for the amplitudes of the waveguide modes and surface polaritons are used to study the characteristics of generation of surface polaritons of difference frequency, parametric frequency up-conversion of the polaritons, and stimulated Raman scattering by the polaritons. An analysis is made of the characteristic properties of the investigated nonlinear optical processes.

  13. An improved algorithm for cloud multiple scattering

    Institute of Scientific and Technical Information of China (English)

    Guibin Yuan; Xiaogang Sun; Jingmin Dai

    2006-01-01

    @@ Clouds' radiation characteristics are very important in clouds scene simulation, weather forecasting, pattern recognition, and other fields. Radiation of a cloud mainly comes from its multiple scattering. A new algorithm to calculate multiple scattering, called build-up factor algorithm, is proposed in this paper. In this algorithm, a modified gamma distribution is assumed to describe droplets distribution inside a cloud, then the radiation transport equation is calculated to get the solution of single scattering, and finally, a build-up factor is defined to estimate the multiple scattering contributions. This algorithm considers both single scattered radiance and multiple scattered radiance and needs shorter computing time. It can be used in real time simulations.

  14. Polarization phenomena in hyperon-nucleon scattering

    CERN Document Server

    Ishikawa, S; Iseri, Y; Yamamoto, Y

    2004-01-01

    We investigate polarization observables in hyperon-nucleon scattering by decomposing scattering amplitudes into spin-space tensors, where each component describes scattering by corresponding spin-dependent interactions, so that contributions of the interactions in the observables are individually identified. In this way, for elastic scattering we find some linear combinations of the observables sensitive to particular spin-dependent interactions such as symmetric spin-orbit (LS) interactions and antisymmetric LS ones. These will be useful to criticize theoretical predictions of the interactions when the relevant observables are measured. We treat vector analyzing powers, depolarizations, and coefficients of polarization transfers and spin correlations, a part of which is numerically examined in $\\Sigma^{+} p$ scattering as an example. Total cross sections are studied for polarized beams and targets as well as for unpolarized ones to investigate spin dependence of imaginary parts of forward scattering amplitud...

  15. Symposium on quantum electronics. Extended abstracts of contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    1981-02-01

    Extended abstracts are provided for papers presented in these subject areas: lasers; quantum optics; nonlinear optics; laser photochemistry; laser spectroscopy; laser scattering; laser produced plasma; and laser applications. (GHT)

  16. Simple aerosol correction technique based on the spectral relationships of the aerosol multiple-scattering reflectances for atmospheric correction over the oceans.

    Science.gov (United States)

    Ahn, Jae-Hyun; Park, Young-Je; Kim, Wonkook; Lee, Boram

    2016-12-26

    An estimation of the aerosol multiple-scattering reflectance is an important part of the atmospheric correction procedure in satellite ocean color data processing. Most commonly, the utilization of two near-infrared (NIR) bands to estimate the aerosol optical properties has been adopted for the estimation of the effects of aerosols. Previously, the operational Geostationary Color Ocean Imager (GOCI) atmospheric correction scheme relies on a single-scattering reflectance ratio (SSE), which was developed for the processing of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data to determine the appropriate aerosol models and their aerosol optical thicknesses. The scheme computes reflectance contributions (weighting factor) of candidate aerosol models in a single scattering domain then spectrally extrapolates the single-scattering aerosol reflectance from NIR to visible (VIS) bands using the SSE. However, it directly applies the weight value to all wavelengths in a multiple-scattering domain although the multiple-scattering aerosol reflectance has a non-linear relationship with the single-scattering reflectance and inter-band relationship of multiple scattering aerosol reflectances is non-linear. To avoid these issues, we propose an alternative scheme for estimating the aerosol reflectance that uses the spectral relationships in the aerosol multiple-scattering reflectance between different wavelengths (called SRAMS). The process directly calculates the multiple-scattering reflectance contributions in NIR with no residual errors for selected aerosol models. Then it spectrally extrapolates the reflectance contribution from NIR to visible bands for each selected model using the SRAMS. To assess the performance of the algorithm regarding the errors in the water reflectance at the surface or remote-sensing reflectance retrieval, we compared the SRAMS atmospheric correction results with the SSE atmospheric correction using both simulations and in situ match-ups with the

  17. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, symmetry of crystals, diffraction, nanostructures investigated by small-angle neutron scattering, the structure of macromolecules, spin dependent and magnetic scattering, structural analysis, neutron reflectometry, magnetic nanostructures, inelastic scattering, strongly correlated electrons, dynamics of macromolecules, applications of neutron scattering. (HSI)

  18. Dynamics of liquid N2 studied by neutron inelastic scattering

    DEFF Research Database (Denmark)

    Pedersen, Karen Schou; Carneiro, Kim; Hansen, Flemming Yssing

    1982-01-01

    Neutron inelastic-scattering data from liquid N2 at wave-vector transfer κ between 0.18 and 2.1 Å-1 and temperatures ranging from T=65-77 K are presented. The data are corrected for the contribution from multiple scattering and incoherent scattering. The resulting dynamic structure factor S (κ,ω)...

  19. Neutron scattering. Lectures

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas; Heger, Gernot; Richter, Dieter; Roth, Georg; Zorn, Reiner (eds.)

    2010-07-01

    The following topics are dealt with: Neutron sources, neutron properties and elastic scattering, correlation functions measured by scattering experiments, symmetry of crystals, applications of neutron scattering, polarized-neutron scattering and polarization analysis, structural analysis, magnetic and lattice excitation studied by inelastic neutron scattering, macromolecules and self-assembly, dynamics of macromolecules, correlated electrons in complex transition-metal oxides, surfaces, interfaces, and thin films investigated by neutron reflectometry, nanomagnetism. (HSI)

  20. Imaging with Scattered Neutrons

    OpenAIRE

    Ballhausen, H.; Abele, H.; Gaehler, R.; Trapp, M.; Van Overberghe, A.

    2006-01-01

    We describe a novel experimental technique for neutron imaging with scattered neutrons. These scattered neutrons are of interest for condensed matter physics, because they permit to reveal the local distribution of incoherent and coherent scattering within a sample. In contrast to standard attenuation based imaging, scattered neutron imaging distinguishes between the scattering cross section and the total attenuation cross section including absorption. First successful low-noise millimeter-re...

  1. Size Dependence of First-order Hyperpolarizability of CdS Nanoparticles Studied by Hyper-Rayleigh Scattering

    Institute of Scientific and Technical Information of China (English)

    Yu ZHANG; Kun Ji CHEN; Xin WANG; Ming MA; De Gang FU; Ning GU; Ju Zheng LIU; Zu Hong LU; Ling XU; Jun XU

    2003-01-01

    The second-order optical nonlinearity of CdS nanoparticles with different diameters of28.0, 30.0, 31.5, 50.0, and 91.0 3 was studied by hyper-Rayleigh scattering technique. Resultsshow that the first-order hyperpolarizability β value per CdS particle decreases as size is reduced todiameter of 31.5 A; however, as CdS size further decreases, this trend is reversed and β valueincreases. Substantially, the normalized β value per CdS formula unit, β0, exhibits systematicenhancement with decreasing size. This phenomenon is interpreted in terms of a so-calledsurface contribution mechanism.

  2. Nonlinear Photonics and Novel Optical Phenomena

    CERN Document Server

    Morandotti, Roberto

    2012-01-01

    Nonlinear Photonics and Novel Optical Phenomena contains contributed chapters from leading experts in nonlinear optics and photonics, and provides a comprehensive survey of fundamental concepts as well as hot topics in current research on nonlinear optical waves and related novel phenomena. The book covers self-accelerating airy beams, integrated photonics based on high index doped-silica glass, linear and nonlinear spatial beam dynamics in photonic lattices and waveguide arrays, polariton solitons and localized structures in semiconductor microcavities, terahertz waves, and other novel phenomena in different nanophotonic and optical systems.

  3. Nonlinear resonances

    CERN Document Server

    Rajasekar, Shanmuganathan

    2016-01-01

    This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...

  4. Nonlinear Dynamics

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    3.1 A Unified Nonlinear Feedback Functional Method for Study Both Control and Synchronization of Spatiotemporal Chaos Fang Jinqing Ali M. K. (Department of Physics, The University of Lethbridge,Lethbridge, Alberta T1K 3M4,Canada) Two fundamental questions dominate future chaos control theories.The first is the problem of controlling hyperchaos in higher dimensional systems.The second question has yet to be addressed:the problem of controlling spatiotemporal chaos in a spatiotemporal system.In recent years, control and synchronization of spatiotemporal chaos and hyperchaos have became a much more important and challenging subject. The reason for this is the control and synchronism of such behaviours have extensive and great potential of interdisciplinary applications, such as security communication, information processing, medicine and so on. However, this subject is not much known and remains an outstanding open.

  5. Review of two-photon exchange in electron scattering

    Energy Technology Data Exchange (ETDEWEB)

    J. Arrington, P. G. Blunden, W. Melnitchouk

    2011-10-01

    We review the role of two-photon exchange (TPE) in electron-hadron scattering, focusing in particular on hadronic frameworks suitable for describing the low and moderate Q^2 region relevant to most experimental studies. We discuss the effects of TPE on the extraction of nucleon form factors and their role in the resolution of the proton electric to magnetic form factor ratio puzzle. The implications of TPE on various other observables, including neutron form factors, electroproduction of resonances and pions, and nuclear form factors, are summarized. Measurements seeking to directly identify TPE effects, such as through the angular dependence of polarization measurements, nonlinear epsilon contributions to the cross sections, and via e+p to e-p cross section ratios, are also outlined. In the weak sector, we describe the role of TPE and gamma-Z interference in parity-violating electron scattering, and assess their impact on the extraction of the strange form factors of the nucleon and the weak charge of the proton.

  6. PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena

    Science.gov (United States)

    Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo

    2010-10-01

    Back in 1967, Clifford Gardner, John Greene, Martin Kruskal and Robert Miura published a seminal paper in Physical Review Letters which was to become a cornerstone in the theory of integrable systems. In 2006, the authors of this paper received the AMS Steele Prize. In this award the AMS pointed out that `In applications of mathematics, solitons and their descendants (kinks, anti-kinks, instantons, and breathers) have entered and changed such diverse fields as nonlinear optics, plasma physics, and ocean, atmospheric, and planetary sciences. Nonlinearity has undergone a revolution: from a nuisance to be eliminated, to a new tool to be exploited.' From this discovery the modern theory of integrability bloomed, leading scientists to a deep understanding of many nonlinear phenomena which is by no means reachable by perturbation methods or other previous tools from linear theories. Nonlinear phenomena appear everywhere in nature, their description and understanding is therefore of great interest both from the theoretical and applicative point of view. If a nonlinear phenomenon can be represented by an integrable system then we have at our disposal a variety of tools to achieve a better mathematical description of the phenomenon. This special issue is largely dedicated to investigations of nonlinear phenomena which are related to the concept of integrability, either involving integrable systems themselves or because they use techniques from the theory of integrability. The idea of this special issue originated during the 18th edition of the Nonlinear Evolution Equations and Dynamical Systems (NEEDS) workshop, held at Isola Rossa, Sardinia, Italy, 16-23 May 2009 (http://needs-conferences.net/2009/). The issue benefits from the occasion offered by the meeting, in particular by its mini-workshops programme, and contains invited review papers and contributed papers. It is worth pointing out that there was an open call for papers and all contributions were peer reviewed

  7. Scattering Correction For Image Reconstruction In Flash Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Liangzhi; Wang, Mengqi; Wu, Hongchun; Liu, Zhouyu; Cheng, Yuxiong; Zhang, Hongbo [Xi' an Jiaotong Univ., Xi' an (China)

    2013-08-15

    Scattered photons cause blurring and distortions in flash radiography, reducing the accuracy of image reconstruction significantly. The effect of the scattered photons is taken into account and an iterative deduction of the scattered photons is proposed to amend the scattering effect for image restoration. In order to deduct the scattering contribution, the flux of scattered photons is estimated as the sum of two components. The single scattered component is calculated accurately together with the uncollided flux along the characteristic ray, while the multiple scattered component is evaluated using correction coefficients pre-obtained from Monte Carlo simulations.The arbitrary geometry pretreatment and ray tracing are carried out based on the customization of AutoCAD. With the above model, an Iterative Procedure for image restORation code, IPOR, is developed. Numerical results demonstrate that the IPOR code is much more accurate than the direct reconstruction solution without scattering correction and it has a very high computational efficiency.

  8. Gradient-based optimization in nonlinear structural dynamics

    DEFF Research Database (Denmark)

    Dou, Suguang

    The intrinsic nonlinearity of mechanical structures can give rise to rich nonlinear dynamics. Recently, nonlinear dynamics of micro-mechanical structures have contributed to developing new Micro-Electro-Mechanical Systems (MEMS), for example, atomic force microscope, passive frequency divider, fr...

  9. Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials

    CERN Document Server

    Seren, Huseyin R; Keiser, George R; Maddox, Scott J; Zhao, Xiaoguang; Fan, Kebin; Bank, Seth R; Zhang, Xin; Averitt, Richard D

    2015-01-01

    The development of responsive metamaterials has enabled the realization of compact tunable photonic devices capable of manipulating the amplitude, polarization, wave vector, and frequency of light. Integration of semiconductors into the active regions of metallic resonators is a proven approach for creating nonlinear metamaterials through optoelectronic control of the semiconductor carrier density. Metal-free subwavelength resonant semiconductor structures offer an alternative approach to create dynamic metamaterials. We present InAs plasmonic disk arrays as a viable resonant metamaterial at terahertz frequencies. Importantly, InAs plasmonic disks exhibit a strong nonlinear response arising from electric field induced intervalley scattering resulting in a reduced carrier mobility thereby damping the plasmonic response. We demonstrate nonlinear perfect absorbers configured as either optical limiters or saturable absorbers, including flexible nonlinear absorbers achieved by transferring the disks to polyimide f...

  10. Nonlinear parallel momentum transport in strong turbulence

    CERN Document Server

    Wang, Lu; Diamond, P H

    2015-01-01

    Most existing theoretical studies of momentum transport focus on calculating the Reynolds stress based on quasilinear theory, without considering the \\emph{nonlinear} momentum flux-$$. However, a recent experiment on TORPEX found that the nonlinear toroidal momentum flux induced by blobs makes a significant contribution as compared to the Reynolds stress [Labit et al., Phys. Plasmas {\\bf 18}, 032308 (2011)]. In this work, the nonlinear parallel momentum flux in strong turbulence is calculated by using three dimensional Hasegawa-Mima equation. It is shown that nonlinear diffusivity is smaller than quasilinear diffusivity from Reynolds stress. However, the leading order nonlinear residual stress can be comparable to the quasilinear residual stress, and so could be important to intrinsic rotation in tokamak edge plasmas. A key difference from the quasilinear residual stress is that parallel fluctuation spectrum asymmetry is not required for nonlinear residual stress.

  11. Multiple scattering of ultrasound in weakly inhomogeneous media: application to human soft tissues

    CERN Document Server

    Aubry, Alexandre

    2010-01-01

    Waves scattered by a weakly inhomogeneous random medium contain a predominant single scattering contribution as well as a multiple scattering contribution which is usually neglected, especially for imaging purposes. We propose a method, based on random matrix theory, in order to separate the single and multiple scattering contributions. The experimental set up uses an array of programmable sources/receivers placed in front of the medium. The impulse responses between every couple of transducers are measured and form a matrix. Single-scattering contributions are shown to exhibit a deterministic coherence along the antidiagonals of the array response matrix, whatever the distribution of inhomogeneities. This property is taken advantage of to discriminate single from multiple-scattered waves. This allows one to evaluate the absorption losses and the scattering losses separately, by comparing the multiple scattering intensity with a radiative transfer model. Moreover, the relative contribution of multiple scatter...

  12. A nonlinear plasma retroreflector for single pulse Compton backscattering

    CERN Document Server

    Palastro, J P; Gordon, D; Hafizi, B; Helle, M; Penano, J; Ting, A

    2014-01-01

    Compton scattered x-rays can be generated using a configuration consisting of a single, ultra-intense laser pulse, and a shaped gas target. The gas target incorporates a hydrodynamically formed density spike, which nonlinearly scatters the incident pump radiation, to produce a counter-propagating electromagnetic wiggler. This self-generated wiggler field Compton scatters from electrons accelerated in the laser wakefield of the pump radiation. The nonlinear scattering mechanism in the density spike is examined theoretically and numerically in order to optimize the Compton scattered radiation. It is found that narrow-band x-rays are produced by moderate intensity pump radiation incident on the quarter-critical surface of the density spike, while high fluence, broadband x-rays are produced by high intensity pump radiation reflected near the critical surface.

  13. Nonlinear Materials Characterization Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Nonlinear Materials Characterization Facility conducts photophysical research and development of nonlinear materials operating in the visible spectrum to protect...

  14. Tailorable Stimulated Brillouin Scattering in Nanoscale Silicon Waveguides

    CERN Document Server

    Shin, Heedeuk; Jarecki, Robert; Cox, Jonathan A; Olsson, Roy H; Starbuck, Andrew; Wang, Zheng; Rakich, Peter T

    2013-01-01

    While nanoscale modal confinement radically enhances a variety of nonlinear light-matter interactions within silicon waveguides, traveling-wave stimulated Brillouin scattering nonlinearities have never been observed in silicon nanophotonics. Through a new class of hybrid photonic-phononic waveguides, we demonstrate tailorable traveling-wave forward stimulated Brillouin scattering in nanophotonic silicon waveguides for the first time, yielding 3000 times stronger forward SBS responses than any previous waveguide system. Simulations reveal that a coherent combination of electrostrictive forces and radiation pressures are responsible for greatly enhanced photon-phonon coupling at nano-scales. Highly tailorable Brillouin nonlinearities are produced by engineering the structure of a membrane-suspended waveguide to yield Brillouin resonances from 1 to 18 GHz through high quality-factor (>1000) phonon modes. Such wideband and tailorable stimulated Brillouin scattering in silicon photonics could enable practical real...

  15. Coherence effects in scattering order expansion of light by atomic clouds

    CERN Document Server

    Rouabah, Mohamed-Taha; Bachelard, Romain; Courteille, Philippe W; Kaiser, Robin; Piovella, Nicola

    2014-01-01

    We interpret cooperative scattering by a collection of cold atoms as a multiple scattering process. Starting from microscopic equations describing the response of $N$ atoms to a probe light beam, we represent the total scattered field as an infinite series of multiple scattering events. As an application of the method, we obtain analytical expressions of the coherent intensity in the double scattering approximation for Gaussian density profiles. In particular, we quantify the contributions of coherent backward and forward scattering.

  16. Coherence effects in scattering order expansion of light by atomic clouds.

    Science.gov (United States)

    Rouabah, Mohamed-Taha; Samoylova, Marina; Bachelard, Romain; Courteille, Philippe W; Kaiser, Robin; Piovella, Nicola

    2014-05-01

    We interpret cooperative scattering by a collection of cold atoms as a multiple-scattering process. Starting from microscopic equations describing the response of N atoms to a probe light beam, we represent the total scattered field as an infinite series of multiple-scattering events. As an application of the method, we obtain analytical expressions of the coherent intensity in the double-scattering approximation for Gaussian density profiles. In particular, we quantify the contributions of coherent backward and forward scattering.

  17. Probing hysteretic elasticity in weakly nonlinear materials

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Paul A [Los Alamos National Laboratory; Haupert, Sylvain [UPMC UNIV PARIS; Renaud, Guillaume [UPMC UNIV PARIS; Riviere, Jacques [UPMC UNIV PARIS; Talmant, Maryline [UPMC UNIV PARIS; Laugier, Pascal [UPMC UNIV PARIS

    2010-12-07

    Our work is aimed at assessing the elastic and dissipative hysteretic nonlinear parameters' repeatability (precision) using several classes of materials with weak, intermediate and high nonlinear properties. In this contribution, we describe an optimized Nonlinear Resonant Ultrasound Spectroscopy (NRUS) measuring and data processing protocol applied to small samples. The protocol is used to eliminate the effects of environmental condition changes that take place during an experiment, and that may mask the intrinsic elastic nonlinearity. As an example, in our experiments, we identified external temperature fluctuation as a primary source of material resonance frequency and elastic modulus variation. A variation of 0.1 C produced a frequency variation of 0.01 %, which is similar to the expected nonlinear frequency shift for weakly nonlinear materials. In order to eliminate environmental effects, the variation in f{sub 0} (the elastically linear resonance frequency proportional to modulus) is fit with the appropriate function, and that function is used to correct the NRUS calculation of nonlinear parameters. With our correction procedure, we measured relative resonant frequency shifts of 10{sup -5} , which are below 10{sup -4}, often considered the limit to NRUS sensitivity under common experimental conditions. Our results show that the procedure is an alternative to the stringent control of temperature often applied. Applying the approach, we report nonlinear parameters for several materials, some with very small nonclassical nonlinearity. The approach has broad application to NRUS and other Nonlinear Elastic Wave Spectroscopy approaches.

  18. Sparse electromagnetic imaging using nonlinear iterative shrinkage thresholding

    KAUST Repository

    Desmal, Abdulla

    2015-04-13

    A sparse nonlinear electromagnetic imaging scheme is proposed for reconstructing dielectric contrast of investigation domains from measured fields. The proposed approach constructs the optimization problem by introducing the sparsity constraint to the data misfit between the scattered fields expressed as a nonlinear function of the contrast and the measured fields and solves it using the nonlinear iterative shrinkage thresholding algorithm. The thresholding is applied to the result of every nonlinear Landweber iteration to enforce the sparsity constraint. Numerical results demonstrate the accuracy and efficiency of the proposed method in reconstructing sparse dielectric profiles.

  19. Insight into the skew-scattering mechanism of the spin Hall effect: Potential scattering versus spin-orbit scattering

    Science.gov (United States)

    Herschbach, Christian; Fedorov, Dmitry V.; Mertig, Ingrid; Gradhand, Martin; Chadova, Kristina; Ebert, Hubert; Ködderitzsch, Diemo

    2013-11-01

    We present a detailed analysis of the skew-scattering contribution to the spin Hall conductivity using an extended version of the resonant scattering model of Fert and Levy [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.106.157208 106, 157208 (2011)]. For 5d impurities in a Cu host, the proposed phase shift model reproduces the corresponding first-principles calculations. Crucial for that agreement is the consideration of two scattering channels related to p and d impurity states since the discussed mechanism is governed by a subtle interplay between the spin-orbit and potential scattering in both angular-momentum channels. It is shown that the potential scattering strength plays a decisive role for the magnitude of the spin Hall conductivity.

  20. Evaluation of hydrogen-bonding distance in organic nonlinear optical crystals for high-output terahertz-wave generation

    Science.gov (United States)

    Matsukawa, Takeshi; Hoshikawa, Akinori; Ishikawa, Yoshihisa; Ishigaki, Toru

    2017-04-01

    The crystal structure of deuterated 4-dimethylamino-N-methyl-4-stilbazolium tosylate (DAST-d26) was obtained by powder X-ray and neutron diffraction measurements. The scattering length density distributions of deuterium atoms were successfully obtained from neutron diffraction data using the maximum-entropy method. From the density distributions, we estimated the hydrogen-bonding distances, which contribute significantly to the vibrational modes of DAST at 1 THz. Inhibition of these hydrogen bonds could allow the development of new nonlinear optical materials with low THz absorption.

  1. Contribution to the experimental study of the critical scattering of cold neutrons in iron; Contriiution a l'etude experimentale de la diffusion critique des neutrons froids par le fer

    Energy Technology Data Exchange (ETDEWEB)

    Konstantinovic, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-03-15

    The aim of the present work is a study of magnetic fluctuations which are produced in iron in the neighbourhood of the Curie temperature, by neutron scattering. We start by briefly recalling the theory of scattering of neutrons by magnetic substances and Landau's theory of second order phase transitions which enables one to derive the magnetic cross section near the Curie temperature. Following this is a description of the experimental apparatus after which we present the experimental results. The analysis of the results confirms the four-third law obeyed by the magnetic susceptibility near the Curie point, predicted by recent theories based on the Heisenberg model. However, the analysis reveals a non-zero relaxation time for the magnetic fluctuations at the Curie point, which is in disagreement with theoretical conclusions. (author) [French] L'objet du present travail est l'etude des fluctuations d'aimantation qui prennent naissance dans le fer au voisinage de sa temperature de Curie par la diffusion des neutrons. Nous commencons par rappeler brievement les generalites sur la diffusion des neutrons par les substances magnetiques et la theorie de Landau des transitions de phase du second ordre qui permet de deriver une expression de la section efficace magnetique pres de la temperature de Curie. Ensuite, apres la description du dispositif experimental, nous presentons les resultats experimentaux. L'analyse de ces resultats confirme les theories recentes suivant le modele d'Heisenberg en ce qui concerne la 'loi en 4/3' de la susceptibilite magnetique au voisinage du point de Curie; mais par ailleurs elle revele l'existence d'un temps de relaxation des fluctuations d'aimantation non nul en ce point, ce qui est en desaccord avec les previsions theoriques actuelles. (auteur)

  2. Scattering and absorption differential cross sections for double photon Compton scattering

    Indian Academy of Sciences (India)

    B S Sandhu; M B Saddi; B Singh; B S Ghumman

    2001-10-01

    The scattering and absorption differential cross sections for nonlinear QED process such as double photon Compton scattering have been measured as a function of independent final photon energy. The incident gamma photons are of 0.662 MeV in energy as produced by an 8 Ci137Cs radioactive source and thin aluminum foils are used as scatterer. The two simultaneously emitted photons in this process are detected in coincidence using two NaI(T1) scintillation detectors and a slow-fast coincidence set-up of 30 nsec resolving time. The measured values of scattering and absorption differential cross sections agree with theory within experimental estimated error.

  3. Nonlinear singular vectors and nonlinear singular values

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel concept of nonlinear singular vector and nonlinear singular value is introduced, which is a natural generalization of the classical linear singular vector and linear singular value to the nonlinear category. The optimization problem related to the determination of nonlinear singular vectors and singular values is formulated. The general idea of this approach is demonstrated by a simple two-dimensional quasigeostrophic model in the atmospheric and oceanic sciences. The advantage and its applications of the new method to the predictability, ensemble forecast and finite-time nonlinear instability are discussed. This paper makes a necessary preparation for further theoretical and numerical investigations.

  4. Polarized Scattering and Biosignatures in Exoplanetary Atmospheres

    CERN Document Server

    Berdyugina, S V

    2016-01-01

    Polarized scattering in planetary atmospheres is computed in the context of exoplanets. The problem of polarized radiative transfer is solved for a general case of absorption and scattering, while Rayleigh and Mie polarized scattering are considered as most relevant examples. We show that (1) relative contributions of single and multiple scattering depend on the stellar irradiation and opacities in the planetary atmosphere; (2) cloud (particle) physical parameters can be deduced from the wavelength-dependent measurements of the continuum polarization and from a differential analysis of molecular band absorption; (3) polarized scattering in molecular bands increases the reliability of their detections in exoplanets; (4) photosynthetic life can be detected on other planets in visible polarized spectra with high sensitivity. These examples demonstrate the power of spectropolarimetry for exoplanetary research and for searching for life in the universe.

  5. Optics as Scattering

    Science.gov (United States)

    di Francia, Giuliano Toraldo

    1973-01-01

    The art of deriving information about an object from the radiation it scatters was once limited to visible light. Now due to new techniques, much of the modern physical science research utilizes radiation scattering. (DF)

  6. Neutron scattering from fractals

    DEFF Research Database (Denmark)

    Kjems, Jørgen; Freltoft, T.; Richter, D.

    1986-01-01

    The scattering formalism for fractal structures is presented. Volume fractals are exemplified by silica particle clusters formed either from colloidal suspensions or by flame hydrolysis. The determination of the fractional dimensionality through scattering experiments is reviewed, and recent small...

  7. Pump spectral linewidth influence on stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) and self-termination behavior of SRS in liquids

    Energy Technology Data Exchange (ETDEWEB)

    He, Guang S.; Kuzmin, Andrey; Prasad, Paras N. [The Institute for Lasers, Photonics and Biophotonics, State University of New York, Buffalo, NY (United States)

    2016-12-15

    The threshold, temporal behavior, and conversion efficiency of stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SBS) in three liquids (benzene, hexane, and dimethyl sulfoxide) and two crystals (calcite and barium nitrate) have been investigated under three largely different spectral linewidth conditions. Pumped with 532-nm and nanosecond duration laser pulses of ≤ 0.01 cm{sup -1} linewidth, only SBS can be generated in all tested liquids with a high nonlinear reflectivity. However when the pump spectral linewidth is ∝0.07 cm{sup -1} or ∝0.8 cm{sup -1}, both SBS and SRS can be observed in benzene while only SRS can be generated in dimethyl sulfoxide; in all these cases SRS is the dominant contribution to the stimulated scattering but the efficiency values are drastically decreased due to the self-termination behavior of SRS in liquids, which arises from the thermal self-defocusing of both pump beam and SRS beam owing to Stokes-shift related opto-heating effect. In contrast, for SRS process in the two crystals, the thermal self-defocusing influence is negligible benefitting from their much greater thermal conductivity, and a higher conversion efficiency of SRS generation can be retained under all three pump conditions. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Nonlinear dynamics in biological systems

    CERN Document Server

    Carballido-Landeira, Jorge

    2016-01-01

    This book presents recent research results relating to applications of nonlinear dynamics, focusing specifically on four topics of wide interest: heart dynamics, DNA/RNA, cell mobility, and proteins. The book derives from the First BCAM Workshop on Nonlinear Dynamics in Biological Systems, held in June 2014 at the Basque Center of Applied Mathematics (BCAM). At this international meeting, researchers from different but complementary backgrounds, including molecular dynamics, physical chemistry, bio-informatics and biophysics, presented their most recent results and discussed the future direction of their studies using theoretical, mathematical modeling and experimental approaches. Such was the level of interest stimulated that the decision was taken to produce this publication, with the organizers of the event acting as editors. All of the contributing authors are researchers working on diverse biological problems that can be approached using nonlinear dynamics. The book will appeal especially to applied math...

  9. Light scattering studies of an electrorheological fluid in oscillatory shear

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.E.; Odinek, J.

    1995-12-31

    We have conducted a real time, two-dimensional light scattering study of the nonlinear dynamics of field-induced structures in an electrorheological fluid subjected to oscillatory shear. We have developed a kinetic chain model of the observed dynamics by considering the response of a fragmenting/aggregating particle chain to the prevailing hydrodynamic and electrostatic forces. This structural theory is then used to describe the nonlinear rheology of ER fluids.

  10. Derivation of an Applied Nonlinear Schroedinger Equation.

    Energy Technology Data Exchange (ETDEWEB)

    Pitts, Todd Alan; Laine, Mark Richard; Schwarz, Jens; Rambo, Patrick K.; Karelitz, David B.

    2015-01-01

    We derive from first principles a mathematical physics model useful for understanding nonlinear optical propagation (including filamentation). All assumptions necessary for the development are clearly explained. We include the Kerr effect, Raman scattering, and ionization (as well as linear and nonlinear shock, diffraction and dispersion). We explain the phenomenological sub-models and each assumption required to arrive at a complete and consistent theoretical description. The development includes the relationship between shock and ionization and demonstrates why inclusion of Drude model impedance effects alters the nature of the shock operator. Unclassified Unlimited Release

  11. Nonlinear Quantum Optics in Optomechanical Nanoscale Waveguides

    CERN Document Server

    Zoubi, Hashem

    2016-01-01

    We explore the possibility of achieving a significant nonlinear phase shift among photons propagating in nanoscale waveguides exploiting interactions among photons that are mediated by vibrational modes and induced through Stimulated Brillouin Scattering (SBS). We introduce a configuration that allows slowing down the photons by several orders of magnitude via SBS involving sound waves and two pump fields. We extract the conditions for maintaining vanishing amplitude gain or loss for slowly propagating photons while keeping the influence of thermal phonons to the minimum. The nonlinear phase among two counter-propagating photons can be used to realize a deterministic phase gate.

  12. Derivation of an applied nonlinear Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Pitts, Todd Alan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Laine, Mark Richard [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Schwarz, Jens [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rambo, Patrick K. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Karelitz, David B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    We derive from first principles a mathematical physics model useful for understanding nonlinear optical propagation (including filamentation). All assumptions necessary for the development are clearly explained. We include the Kerr effect, Raman scattering, and ionization (as well as linear and nonlinear shock, diffraction and dispersion). We explain the phenomenological sub-models and each assumption required to arrive at a complete and consistent theoretical description. The development includes the relationship between shock and ionization and demonstrates why inclusion of Drude model impedance effects alters the nature of the shock operator. Unclassified Unlimited Release

  13. Scattering by Black Holes

    CERN Document Server

    Andersson, N

    2000-01-01

    This is a chapter on Black-hole Scattering that was commissioned for an Encyclopaedia on Scattering edited by Pike and Sabatier, to be published by Academic Press. The chapter surveys wave propagation in black-hole spacetimes, diffraction effects in wave scattering, resonances, quasinormal modes and related topics.

  14. Inverse Scattering in a Multipath Environment

    Directory of Open Access Journals (Sweden)

    A. Cuccaro

    2016-09-01

    Full Text Available In this contribution an inverse scattering problem is ad- dressed in a multipath environment. In particular, multipath is created by known ”extra” point-like scatterers (passive elements expressely deployed between the scene under in- vestigation and the source/measurement domains. Through a back-projection imaging scheme, the role of the passive elements on the achievable performance is shown and com- pared to the free-space case.

  15. Nonlinear Giant Magnetoresistance in Dual Spin Valves

    Science.gov (United States)

    Aziz, A.; Wessely, O. P.; Ali, M.; Edwards, D. M.; Marrows, C. H.; Hickey, B. J.; Blamire, M. G.

    2009-12-01

    Giant magnetoresistance (GMR) arises from differential scattering of the majority and minority spin electrons by a ferromagnet (FM) so that the resistance of a heterostructure depends on the relative magnetic orientation of the FM layers within it separated by nonmagnetic spacers. Here, we show that highly nonequilibrium spin accumulation in metallic heterostructures results in a current-dependent nonlinear GMR which is not predicted within the present understanding of GMR. The behavior can be explained by allowing the scattering asymmetries in an ultrathin FM layer to be current dependent.

  16. Isospin odd pi K scattering length

    CERN Document Server

    Schweizer, J

    2005-01-01

    We make use of the chiral two-loop representation of the pi K scattering amplitude [J. Bijnens, P. Dhonte and P. Talavera, JHEP 0405 (2004) 036] to investigate the isospin odd scattering length at next-to-next-to-leading order in the SU(3) expansion. This scattering length is protected against contributions of m_s in the chiral expansion, in the sense that the corrections to the current algebra result are of order M_pi^2. In view of the planned lifetime measurement on pi K atoms at CERN it is important to understand the size of these corrections.

  17. Local orbitals in electron scattering calculations*

    Science.gov (United States)

    Winstead, Carl L.; McKoy, Vincent

    2016-05-01

    We examine the use of local orbitals to improve the scaling of calculations that incorporate target polarization in a description of low-energy electron-molecule scattering. After discussing the improved scaling that results, we consider the results of a test calculation that treats scattering from a two-molecule system using both local and delocalized orbitals. Initial results are promising. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  18. Isospin odd {pi}K scattering length

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, J. [Institut fuer Theoretische Physik, University of Vienna, A-1090 Vienna (Austria)]. E-mail: julia.schweizer@univie.ac.at

    2005-10-13

    We make use of the chiral two-loop representation of the {pi}K scattering amplitude [J. Bijnens, P. Dhonte, P. Talavera, JHEP 0405 (2004) 036] to investigate the isospin odd scattering length at next-to-next-to-leading order in the SU(3) expansion. This scattering length is protected against contributions of m{sub s} in the chiral expansion, in the sense that the corrections to the current algebra result are of order M{sub {pi}}{sup 2}. In view of the planned lifetime measurement on {pi}K atoms at CERN it is important to understand the size of these corrections.

  19. Contribution to the study of the molecular scattering of light. Use of a laser as light source (1963); Contribution a l'etude de la diffusion moleculaire de la lumiere. Utilisation d'un laser comme source lumineuse (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Slama, L. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The experiments of the molecular scattering of light have been repeated using a ruby laser as a light source. The angular distribution of the scattered light intensity has been measured when the electric vector of the incident beam is either in the plane of observation or perpendicular to that plane. In the first case a good agreement with the Rayleigh theory has been found but this is not true in the second case. The differential cross sections for scattering have been measured for various gases. The values found are two or three times larger than the ones deduced from the classical theory. The possible effect of a variation of the beam intensity upon the linearity of the scattering process has been looked for. (author) [French] Les experiences sur la diffusion moleculaire de la lumiere ont ete reprises en utilisant un laser a rubis comme source lumineuse. La distribution angulaire de l'intensite diffusee a ete mesuree dans le cas ou le vecteur electrique de l'onde lumineuse incidente est soit dans le plan, soit perpendiculaire a ce plan. Dans le premier cas un bon accord est observe avec la theorie de Rayleigh, ce qui n'est plus vrai dans le second cas. Des sections efficaces differentielles de diffusion ont ete mesurees pour differents gaz. Les valeurs trouvees sont 2 a 3 fois plus grandes que celles prevues par la theorie classique. On a recherche enfin l'effet d'une variation d'intensite du faisceau du laser sur la linearite du phenomene de diffusion. (auteur)

  20. Nonlinear graphene plasmonics (Conference Presentation)

    Science.gov (United States)

    Cox, Joel D.; Marini, Andrea; Garcia de Abajo, Javier F.

    2016-09-01

    The combination of graphene's intrinsically-high nonlinear optical response with its ability to support long-lived, electrically tunable plasmons that couple strongly with light has generated great expectations for application of the atomically-thin material to nanophotonic devices. These expectations are mainly reinforced by classical analyses performed using the response derived from extended graphene, neglecting finite-size and nonlocal effects that become important when the carbon layer is structured on the nanometer scale in actual device designs. Based on a quantum-mechanical description of graphene using tight-binding electronic states combined with the random-phase approximation, we show that finite-size effects produce large contributions that increase the nonlinear response associated with plasmons in nanostructured graphene to significantly higher levels than previously thought, particularly in the case of Kerr-type optical nonlinearities. Motivated by this finding, we discuss and compare saturable absorption in extended and nanostructured graphene, with or without plasmonic enhancement, within the context of passive mode-locking for ultrafast lasers. We also explore the possibility of high-harmonic generation in doped graphene nanoribbons and nanoislands, where illumination by an infrared pulse of moderate intensity, tuned to a plasmon resonance, is predicted to generate light at harmonics of order 13 or higher, extending over the visible and UV regimes. Our atomistic description of graphene's nonlinear optical response reveals its complex nature in both extended and nanostructured systems, while further supporting the exceptional potential of this material for nonlinear nanophotonic devices.

  1. THEORETICAL-MODEL FOR THE SCATTERING OF LIGHT BY DENTIN AND COMPARISON WITH MEASUREMENTS

    NARCIS (Netherlands)

    ZIJP, [No Value; TENBOSCH, JJ

    1993-01-01

    A theoretical model of the scattering of light by dentin is presented. The model that results is a superposition of several scattering contributions, i.e., scattering by mineral crystals, collagen fibrils, and dentinal tubules. These tubules are oriented so that they cause an asymmetrical scattering

  2. Experimental characterization of nonlinear processes of whistler branch waves

    Science.gov (United States)

    Tejero, E. M.; Crabtree, C.; Blackwell, D. D.; Amatucci, W. E.; Ganguli, G.; Rudakov, L.

    2016-05-01

    Experiments in the Space Physics Simulation Chamber at the Naval Research Laboratory isolated and characterized important nonlinear wave-wave and wave-particle interactions that can occur in the Earth's Van Allen radiation belts by launching predominantly electrostatic waves in the intermediate frequency range with wave normal angle greater than 85 ° and measuring the nonlinearly generated electromagnetic scattered waves. The scattered waves have a perpendicular wavelength that is nearly an order of magnitude larger than that of the pump wave. Calculations of scattering efficiency from experimental measurements demonstrate that the scattering efficiency is inversely proportional to the damping rate and trends towards unity as the damping rate approaches zero. Signatures of both wave-wave and wave-particle scatterings are also observed in the triggered emission process in which a launched wave resonant with a counter-propagating electron beam generates a large amplitude chirped whistler wave. The possibility of nonlinear scattering or three wave decay as a saturation mechanism for the triggered emission is suggested. The laboratory experiment has inspired the search for scattering signatures in the in situ data of chorus emission in the radiation belts.

  3. An iterative fullwave simulation approach to multiple scattering in media with randomly distributed microbubbles.

    Science.gov (United States)

    Joshi, Aditya; Lindsey, Brooks; Dayton, Paul; Pinton, Gianmarco; Muller, Marie

    2017-03-07

    - Ultrasound contrast agents (UCA), such as microbubbles, enhance the scattering properties of blood, which is otherwise hypoechoic. The multiple scattering interactions of the acoustic field with UCA's are poorly understood due to the complexity of the multiple scattering theories and the nonlinear microbubble response. The majority of bubble models describe the behavior of UCA's as single, isolated microbubbles suspended in infinite medium. Multiple scattering models such as the Independent Scattering Approximation can approximate phase velocity and attenuation for low scatterer volume fraction. However, all current models and simulations approach only describe multiple scattering and nonlinear bubble dynamics separately. Here we present an approach that combines two existing models: 1) a full-wave model that describes nonlinear propagation and scattering interactions in a heterogeneous attenuating medium and 2) a Paul-Sarkar model that describes the nonlinear interactions between an acoustic field and microbubbles. These two models were solved numerically and combined with an iterative approach. The convergence of this combined model was explored in silico for 0.5%, 1% and 2% bubble concentration by volume. The backscattering predicted by our modeling approach was verified experimentally with water tank measurements performed with a 128-element linear array transducer. An excellent agreement in terms of the fundamental and harmonic acoustic fields is shown. Additionally, our model correctly predicts the phase velocity and attenuation measured using through transmission and predicted by the Independent Scattering Approximation.

  4. Proposal for detection of QED vacuum nonlinearities in Maxwell's equations by the use of waveguides.

    Science.gov (United States)

    Brodin, G; Marklund, M; Stenflo, L

    2001-10-22

    We present a novel method for detecting nonlinearities, due to quantum electrodynamics through photon-photon scattering, in Maxwell's equation. The photon-photon scattering gives rise to self-interaction terms which are similar to the nonlinearities due to the polarization in nonlinear optics. These self-interaction terms vanish in the limit of parallel propagating waves, but if, instead of parallel propagating waves, the modes generated in waveguides are used, there will be a nonzero total effect. Based on this idea, we calculate the nonlinear excitation of new modes and estimate the strength of this effect. Furthermore, we suggest a principal experimental setup.

  5. NONLINEAR EXPECTATIONS AND NONLINEAR MARKOV CHAINS

    Institute of Scientific and Technical Information of China (English)

    PENG SHIGE

    2005-01-01

    This paper deals with nonlinear expectations. The author obtains a nonlinear generalization of the well-known Kolmogorov's consistent theorem and then use it to construct filtration-consistent nonlinear expectations via nonlinear Markov chains. Compared to the author's previous results, i.e., the theory of g-expectations introduced via BSDE on a probability space, the present framework is not based on a given probability measure. Many fully nonlinear and singular situations are covered. The induced topology is a natural generalization of Lp-norms and L∞-norm in linear situations.The author also obtains the existence and uniqueness result of BSDE under this new framework and develops a nonlinear type of von Neumann-Morgenstern representation theorem to utilities and present dynamic risk measures.

  6. Narrowband inverse Compton scattering x-ray sources at high laser intensities

    CERN Document Server

    Seipt, D; Surzhykov, A; Fritzsche, S

    2014-01-01

    Narrowband x- and gamma-ray sources based on the inverse Compton scattering of laser pulses suffer from a limitation of the allowed laser intensity due to the onset of nonlinear effects that increase their bandwidth. It has been suggested that laser pulses with a suitable frequency modulation could compensate this ponderomotive broadening and reduce the bandwidth of the spectral lines, which would allow to operate narrowband Compton sources in the high-intensity regime. In this paper we, therefore, present the theory of nonlinear Compton scattering in a frequency modulated intense laser pulse. We systematically derive the optimal frequency modulation of the laser pulse from the scattering matrix element of nonlinear Compton scattering, taking into account the electron spin and recoil. We show that, for some particular scattering angle, an optimized frequency modulation completely cancels the ponderomotive broadening for all harmonics of the backscattered light. We also explore how sensitive this compensation ...

  7. Nonlinear Light-Matter Interactions in Metamaterials

    Science.gov (United States)

    O'Brien, Kevin Patrick

    Metamaterials possess extraordinary linear optical properties never observed in natural materials such as a negative refractive index, enabling exciting applications such as super resolution imaging and cloaking. In this thesis, we explore the equally extraordinary nonlinear properties of metamaterials. Nonlinear optics, the study of light-matter interactions where the optical fields are strong enough to change material properties, has fundamental importance to physics, chemistry, and material science as a non-destructive probe of material properties and has important technological applications such as entangled photon generation and frequency conversion. Due to their ability to manipulate both linear and nonlinear light matter interactions through sub-wavelength structuring, metamaterials are a promising direction for both fundamental and applied nonlinear optics research. We perform the first experiments on nonlinear propagation in bulk zero and negative index optical metamaterials and demonstrate that a zero index material can phase match four wave mixing processes in ways not possible in finite index materials. In addition, we demonstrate the ability of nonlinear scattering theory to describe the geometry dependence of second and third harmonic generation in plasmonic nanostructures. As an application of nonlinear metamaterials, we propose a phase matching technique called "resonant phase matching" to increase the gain and bandwidth of Josephson junction traveling wave parametric amplifiers. With collaborators, we demonstrate a best in class amplifier for superconducting qubit readout--over 20 dB gain with near quantum limited noise performance with a bandwidth and dynamic range an order of magnitude larger than alternative devices. In conclusion, we have demonstrated several ways in which nonlinear metamaterials surpass their natural counterparts. We look forward to the future of the field where nonlinear and quantum metamaterials will enable further new

  8. Riemann–Hilbert problem approach for two-dimensional flow inverse scattering

    Energy Technology Data Exchange (ETDEWEB)

    Agaltsov, A. D., E-mail: agalets@gmail.com [Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Novikov, R. G., E-mail: novikov@cmap.polytechnique.fr [CNRS (UMR 7641), Centre de Mathématiques Appliquées, Ecole Polytechnique, 91128 Palaiseau (France); IEPT RAS, 117997 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation)

    2014-10-15

    We consider inverse scattering for the time-harmonic wave equation with first-order perturbation in two dimensions. This problem arises in particular in the acoustic tomography of moving fluid. We consider linearized and nonlinearized reconstruction algorithms for this problem of inverse scattering. Our nonlinearized reconstruction algorithm is based on the non-local Riemann–Hilbert problem approach. Comparisons with preceding results are given.

  9. Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems

    Directory of Open Access Journals (Sweden)

    Banga Julio R

    2006-11-01

    Full Text Available Abstract Background We consider the problem of parameter estimation (model calibration in nonlinear dynamic models of biological systems. Due to the frequent ill-conditioning and multi-modality of many of these problems, traditional local methods usually fail (unless initialized with very good guesses of the parameter vector. In order to surmount these difficulties, global optimization (GO methods have been suggested as robust alternatives. Currently, deterministic GO methods can not solve problems of realistic size within this class in reasonable computation times. In contrast, certain types of stochastic GO methods have shown promising results, although the computational cost remains large. Rodriguez-Fernandez and coworkers have presented hybrid stochastic-deterministic GO methods which could reduce computation time by one order of magnitude while guaranteeing robustness. Our goal here was to further reduce the computational effort without loosing robustness. Results We have developed a new procedure based on the scatter search methodology for nonlinear optimization of dynamic models of arbitrary (or even unknown structure (i.e. black-box models. In this contribution, we describe and apply this novel metaheuristic, inspired by recent developments in the field of operations research, to a set of complex identification problems and we make a critical comparison with respect to the previous (above mentioned successful methods. Conclusion Robust and efficient methods for parameter estimation are of key importance in systems biology and related areas. The new metaheuristic presented in this paper aims to ensure the proper solution of these problems by adopting a global optimization approach, while keeping the computational effort under reasonable values. This new metaheuristic was applied to a set of three challenging parameter estimation problems of nonlinear dynamic biological systems, outperforming very significantly all the methods previously

  10. Spectral theory and nonlinear functional analysis

    CERN Document Server

    Lopez-Gomez, Julian

    2001-01-01

    This Research Note addresses several pivotal problems in spectral theory and nonlinear functional analysis in connection with the analysis of the structure of the set of zeroes of a general class of nonlinear operators. It features the construction of an optimal algebraic/analytic invariant for calculating the Leray-Schauder degree, new methods for solving nonlinear equations in Banach spaces, and general properties of components of solutions sets presented with minimal use of topological tools. The author also gives several applications of the abstract theory to reaction diffusion equations and systems.The results presented cover a thirty-year period and include recent, unpublished findings of the author and his coworkers. Appealing to a broad audience, Spectral Theory and Nonlinear Functional Analysis contains many important contributions to linear algebra, linear and nonlinear functional analysis, and topology and opens the door for further advances.

  11. Nonlinear plasmonic amplification via dissipative soliplasmons

    CERN Document Server

    Ferrando, Albert

    2016-01-01

    In this contribution we introduce a new strategy for the compensation of plasmonic losses based on a recently proposed nonlinear mechanism: the resonant interaction between surface plasmon polaritons and spatial solitons propagating in parallel along a metal/dielectric/Kerr structure. This mechanism naturally leads to the generation of a quasi-particle excitation, the so-called soliplasmon resonance. We analyze the role played by the effective nonlinear coupling inherent to this system and how this can be used to provide a new mechanism of quasi-resonant nonlinear excitation of surface plasmon polaritons. We will pay particular attention to the introduction of asymmetric linear gain in the Kerr medium. The unique combination of nonlinear propagation, nonlinear coupling and gain give rise to a new scenario for the excitation of long- range surface plasmon polaritons with distinguishing characteristics. The connection between plasmonic losses and soliplasmon resonances in the presence of gain will be discussed.

  12. Momentum-space optical potential SND elastic scattering calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, D.H.; Hynes, M.V.; Picklesimer, A.; Tandy, P.C.; Thaler, R.M.

    1983-01-01

    Initial results are presented for proton-nucleus elastic scattering observables calculated with a newly developed microscopic momentum-space code. This is the first phase of a program to treat elastic and inelastic scattering consistently via an integral equation approach. A number of microscopic features which are often approximated or ignored are quite amenable to exact treatment within this approach, e.g. non-local effects in elastic scattering, and inelastic effects which are non-linear in the NN t-matrix and target densities but nevertheless confined to one participating nucleon. 3 references.

  13. Optimizing optical Bragg scattering for single-photon frequency conversion

    CERN Document Server

    Lefrancois, Simon; Eggleton, Benjamin J

    2014-01-01

    We develop a systematic theory for optimising single-photon frequency conversion using optical Bragg scattering. The efficiency and phase-matching conditions for the desired Bragg scattering conversion as well as spurious scattering and modulation instability are identified. We find that third-order dispersion can suppress unwanted processes, while dispersion above the fourth order limits the maximum conversion efficiency. We apply the optimisation conditions to frequency conversion in highly nonlinear fiber, silicon nitride waveguides and silicon nanowires. Efficient conversion is confirmed using full numerical simulations. These design rules will assist the development of efficient quantum frequency conversion between multicolour single photon sources for integration in complex quantum networks.

  14. Brillouin Scattering Self-Cancellation

    CERN Document Server

    Florez, Omar; Espinel, Yovanny A V; Cordeiro, Cristiano M B; Alegre, Thiago P Mayer; Wiederhecker, Gustavo S; Dainese, Paulo

    2016-01-01

    The interaction between light and acoustic phonons is strongly modified in sub-wavelength confinement, and has led to the demonstration and control of Brillouin scattering in photonic structures such as nano-scale optical waveguides and cavities. Besides the small optical mode volume, two physical mechanisms come into play simultaneously: a volume effect caused by the strain induced refractive index perturbation (known as photo-elasticity), and a surface effect caused by the shift of the optical boundaries due to mechanical vibrations. As a result proper material and structure engineering allows one to control each contribution individually. In this paper, we experimentally demonstrate the perfect cancellation of Brillouin scattering by engineering a silica nanowire with exactly opposing photo-elastic and moving-boundary effects. This demonstration provides clear experimental evidence that the interplay between the two mechanisms is a promising tool to precisely control the photon-phonon interaction, enhancin...

  15. Dissipation-induced optical nonlinearity at low light levels

    CERN Document Server

    Greenberg, Joel A

    2011-01-01

    We observe a dissipation-induced nonlinear optical process in a gas of cold atoms that gives rise to large nonlinear coupling strengths with high transparency. The nonlinearity results from the simultaneous cooling and crystallization of the gas, and can give rise to efficient Bragg scattering in the form of a six-wave-mixing process at low-light-levels with an extremely large effective fifth-order nonlinear susceptibility of \\chi^(5)= 7.6 x 10-15 (m/V)^4. For large optical gains, collective scattering due to the strong light-matter coupling leads to slow group velocities (~c/105) and long atomic coherence times (~100 {\\mu}s).

  16. Nonlinear terahertz metamaterials with active electrical control

    Science.gov (United States)

    Keiser, G. R.; Karl, N.; Liu, P. Q.; Tulloss, C.; Chen, H.-T.; Taylor, A. J.; Brener, I.; Reno, J. L.; Mittleman, D. M.

    2017-09-01

    We present a study of an electrically modulated nonlinear metamaterial consisting of an array of split-ring resonators fabricated on n-type gallium arsenide. The resonant metamaterial nonlinearity appears as an intensity-dependent transmission minimum at terahertz frequencies and arises from the interaction between local electric fields in the split-ring resonator (SRR) capacitive gaps and charge carriers in the n-type substrate. We investigate the active tuning range of the metamaterial device as the incident terahertz field intensity is increased and conversely the effect of an applied DC bias on the terahertz field-induced nonlinear modulation of the metamaterial response. Applying a DC bias to the metamaterial sample alters the nonlinear response and reduces the net nonlinear modulation. Similarly, increasing the incident terahertz field intensity decreases the net modulation induced by an applied DC bias. We interpret these results in terms of DC and terahertz-field-assisted carrier acceleration, scattering, and multiplication processes, highlighting the unique nature of this DC-field modulated terahertz nonlinearity.

  17. Nonlinear plasmonic imaging techniques and their biological applications

    Science.gov (United States)

    Deka, Gitanjal; Sun, Chi-Kuang; Fujita, Katsumasa; Chu, Shi-Wei

    2017-01-01

    Nonlinear optics, when combined with microscopy, is known to provide advantages including novel contrast, deep tissue observation, and minimal invasiveness. In addition, special nonlinearities, such as switch on/off and saturation, can enhance the spatial resolution below the diffraction limit, revolutionizing the field of optical microscopy. These nonlinear imaging techniques are extremely useful for biological studies on various scales from molecules to cells to tissues. Nevertheless, in most cases, nonlinear optical interaction requires strong illumination, typically at least gigawatts per square centimeter intensity. Such strong illumination can cause significant phototoxicity or even photodamage to fragile biological samples. Therefore, it is highly desirable to find mechanisms that allow the reduction of illumination intensity. Surface plasmon, which is the collective oscillation of electrons in metal under light excitation, is capable of significantly enhancing the local field around the metal nanostructures and thus boosting up the efficiency of nonlinear optical interactions of the surrounding materials or of the metal itself. In this mini-review, we discuss the recent progress of plasmonics in nonlinear optical microscopy with a special focus on biological applications. The advancement of nonlinear imaging modalities (including incoherent/coherent Raman scattering, two/three-photon luminescence, and second/third harmonic generations that have been amalgamated with plasmonics), as well as the novel subdiffraction limit imaging techniques based on nonlinear behaviors of plasmonic scattering, is addressed.

  18. Nonlinear plasmonic imaging techniques and their biological applications

    Directory of Open Access Journals (Sweden)

    Deka Gitanjal

    2016-07-01

    Full Text Available Nonlinear optics, when combined with microscopy, is known to provide advantages including novel contrast, deep tissue observation, and minimal invasiveness. In addition, special nonlinearities, such as switch on/off and saturation, can enhance the spatial resolution below the diffraction limit, revolutionizing the field of optical microscopy. These nonlinear imaging techniques are extremely useful for biological studies on various scales from molecules to cells to tissues. Nevertheless, in most cases, nonlinear optical interaction requires strong illumination, typically at least gigawatts per square centimeter intensity. Such strong illumination can cause significant phototoxicity or even photodamage to fragile biological samples. Therefore, it is highly desirable to find mechanisms that allow the reduction of illumination intensity. Surface plasmon, which is the collective oscillation of electrons in metal under light excitation, is capable of significantly enhancing the local field around the metal nanostructures and thus boosting up the efficiency of nonlinear optical interactions of the surrounding materials or of the metal itself. In this mini-review, we discuss the recent progress of plasmonics in nonlinear optical microscopy with a special focus on biological applications. The advancement of nonlinear imaging modalities (including incoherent/coherent Raman scattering, two/three-photon luminescence, and second/third harmonic generations that have been amalgamated with plasmonics, as well as the novel subdiffraction limit imaging techniques based on nonlinear behaviors of plasmonic scattering, is addressed.

  19. Gravitational contribution to fermion masses

    CERN Document Server

    Tiemblo, A; Tiemblo, Alfredo; Tresguerres, Romualdo

    2005-01-01

    In the context of a nonlinear gauge theory of the Poincar\\'e group, we show that covariant derivatives of Dirac fields include a coupling to the translational connections, manifesting itself in the matter action as a universal background mass contribution to fermions.

  20. Gravitational contribution to fermion masses

    OpenAIRE

    Tiemblo, Alfredo; Tresguerres, Romualdo

    2005-01-01

    In the context of a nonlinear gauge theory of the Poincar\\'e group, we show that covariant derivatives of Dirac fields include a coupling to the translational connections, manifesting itself in the matter action as a universal background mass contribution to fermions.

  1. Gravitational contribution to fermion masses

    Energy Technology Data Exchange (ETDEWEB)

    Tiemblo, A.; Tresguerres, R. [Consejo Superior de Investigaciones Cientificas, Instituto de Matematicas y Fisica Fundamental, Madrid (Spain)

    2005-08-01

    In the context of a non-linear gauge theory of the Poincare group, we show that covariant derivatives of Dirac fields include a coupling to the translational connections, manifesting itself in the matter action as a universal background mass contribution to fermions. (orig.)

  2. NONLINEARLY VIBRATIONAL ENERGY-SPECTRA OF MOLECULAR CRYSTALS

    Institute of Scientific and Technical Information of China (English)

    PANG XIAO-FENG; CHEN XIANG-RONG

    2000-01-01

    The nonlinear quantum vibrational energy spectra of amide-I in the molecular crystals acetanilide are calculatedby using the discrete nonlinear Schrodinger equation appropriate to this kind of crystals. The numerical results obtainedby this method are in good agreement with the experimental values. Meanwhile, the energy levels at high excited stateshave also been obtained for the acetanilide, which is helpful in researching the Raman scattering and infrared absorptionproperties of the this kind of crystals.

  3. A time domain sampling method for inverse acoustic scattering problems

    Science.gov (United States)

    Guo, Yukun; Hömberg, Dietmar; Hu, Guanghui; Li, Jingzhi; Liu, Hongyu

    2016-06-01

    This work concerns the inverse scattering problems of imaging unknown/inaccessible scatterers by transient acoustic near-field measurements. Based on the analysis of the migration method, we propose efficient and effective sampling schemes for imaging small and extended scatterers from knowledge of time-dependent scattered data due to incident impulsive point sources. Though the inverse scattering problems are known to be nonlinear and ill-posed, the proposed imaging algorithms are totally "direct" involving only integral calculations on the measurement surface. Theoretical justifications are presented and numerical experiments are conducted to demonstrate the effectiveness and robustness of our methods. In particular, the proposed static imaging functionals enhance the performance of the total focusing method (TFM) and the dynamic imaging functionals show analogous behavior to the time reversal inversion but without solving time-dependent wave equations.

  4. Cascaded forward Brillouin scattering to all Stokes orders

    CERN Document Server

    Wolff, Christian; Eggleton, Benjamin J; Steel, Michael J; Poulton, Christopher G

    2016-01-01

    Inelastic scattering processes such as Brillouin scattering can often function in cascaded regimes and this is likely to occur in certain integrated opto-acoustic devices. We develop a Hamiltonian formalism for cascaded Brillouin scattering valid for both quantum and classical regimes. By regarding Brillouin scattering as the interaction of a single acoustic envelope and a single optical envelope that covers all Stokes and anti-Stokes orders, we obtain a compact model that is well suited for numerical implementation, extension to include other optical nonlinearities or short pulses, and application in the quantum-optics domain. We then theoretically analyze intra-mode forward Brillouin scattering (FBS) for arbitrary waveguides with and without optical dispersion. In the absence of optical dispersion, we find an exact analytical solution. With a perturbative approach, we furthermore solve the case of weak optical dispersion. Our work leads to several key results on intra-mode FBS. For negligible dispersion, we...

  5. Resonant scattering of surface plasmon polaritons by dressed quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Danhong; Cardimona, Dave [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Easter, Michelle [Department of Mechanical Engineering, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, New Jersey 07030 (United States); Gumbs, Godfrey [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Maradudin, A. A. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Lin, Shawn-Yu [Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States); Zhang, Xiang [Department of Mechanical Engineering, 3112 Etcheverry Hall, University of California at Berkeley, Berkeley, California 94720 (United States)

    2014-06-23

    The resonant scattering of surface plasmon-polariton waves (SPP) by embedded semiconductor quantum dots above the dielectric/metal interface is explored in the strong-coupling regime. In contrast to non-resonant scattering by a localized dielectric surface defect, a strong resonant peak in the spectrum of the scattered field is predicted that is accompanied by two side valleys. The peak height depends nonlinearly on the amplitude of SPP waves, reflecting the feedback dynamics from a photon-dressed electron-hole plasma inside the quantum dots. This unique behavior in the scattered field peak strength is correlated with the occurrence of a resonant dip in the absorption spectrum of SPP waves due to the interband photon-dressing effect. Our result on the scattering of SPP waves may be experimentally observable and applied to spatially selective illumination and imaging of individual molecules.

  6. Obtaining breathers in nonlinear Hamiltonian lattices

    CERN Document Server

    Flach, S

    1995-01-01

    Abstract We present a numerical method for obtaining high-accuracy numerical solutions of spatially localized time-periodic excitations on a nonlinear Hamiltonian lattice. We compare these results with analytical considerations of the spatial decay. We show that nonlinear contributions have to be considered, and obtain very good agreement between the latter and the numerical results. We discuss further applications of the method and results.

  7. CISM-course on Computational Nonlinear Mechanics

    CERN Document Server

    Advances in Computational Nonlinear Mechanics

    1989-01-01

    Advanced computational methods in nonlinear mechanics of solids and fluids are dealt with in this volume. Contributions consider large deformations of structures and solids, problems in nonlinear dynamics, aspects of earthquake analysis, coupled problems, convection-dominated phenomena, and compressible and incompressible viscous flows. Selected applications indicate the relevance of the analysis to the demands of industry and science. The contributors are from research institutions well-known for their work in this field.

  8. Scattering anomaly in optics

    CERN Document Server

    Silveirinha, Mario G

    2016-01-01

    In time-reversal invariant electronic systems the scattering matrix is anti-symmetric. This property enables an effect, designated here as "scattering anomaly", such that the electron transport does not suffer from back reflections, independent of the specific geometry of the propagation path or the presence of time-reversal invariant defects. In contrast, for a generic time-reversal invariant photonic system the scattering matrix is symmetric and there is no similar anomaly. Here, it is theoretically proven that despite these fundamental differences there is a wide class of photonic platforms - in some cases formed only by time-reversal invariant media - in which the scattering anomaly can occur. It is shown that an optical system invariant under the action of the composition of the time-reversal, parity and duality operators is characterized by an anti-symmetric scattering matrix. Specific examples of photonic platforms wherein the scattering anomaly occurs are given, and it is demonstrated with full wave n...

  9. Quantum Information Processing using Nonlinear Optical Effects

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling

    of the converted idler depends on the other pump. This allows for temporal-mode-multiplexing. When the effects of nonlinear phase modulation (NPM) are included, the phases of the natural input and output modes are changed, reducing the separability. These effects are to some degree mediated by pre......This PhD thesis treats applications of nonlinear optical effects for quantum information processing. The two main applications are four-wave mixing in the form of Bragg scattering (BS) for quantum-state-preserving frequency conversion, and sum-frequency generation (SFG) in second-order nonlinear...... to obtain a 100 % conversion efficiency is to use multiple stages of frequency conversion, but this setup suffers from the combined effects of NPM. This problem is circumvented by using asymmetrically pumped BS, where one pump is continuous wave. For this setup, NPM is found to only lead to linear phase...

  10. Introduction to neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.E. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-11-01

    We give here an introduction to the theoretical principles of neutron scattering. The relationship between scattering- and correlation-functions is particularly emphasized. Within the framework of linear response theory (justified by the weakness of the basic interaction) the relation between fluctuation and dissipation is discussed. This general framework explains the particular power of neutron scattering as an experimental method. (author) 4 figs., 4 refs.

  11. Robust authentication through stochastic femtosecond laser filament induced scattering surfaces

    Science.gov (United States)

    Zhang, Haisu; Tzortzakis, Stelios

    2016-05-01

    We demonstrate a reliable authentication method by femtosecond laser filament induced scattering surfaces. The stochastic nonlinear laser fabrication nature results in unique authentication robust properties. This work provides a simple and viable solution for practical applications in product authentication, while also opens the way for incorporating such elements in transparent media and coupling those in integrated optical circuits.

  12. Inelastic scattering and local heating in atomic gold wires

    DEFF Research Database (Denmark)

    Frederiksen, Thomas; Brandbyge, Mads; Lorente, N.;

    2004-01-01

    We present a method for including inelastic scattering in a first-principles density-functional computational scheme for molecular electronics. As an application, we study two geometries of four-atom gold wires corresponding to two different values of strain and present results for nonlinear...

  13. Elastic scattering phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Mackintosh, R.S. [The Open University, School of Physical Sciences, Milton Keynes (United Kingdom)

    2017-04-15

    We argue that, in many situations, fits to elastic scattering data that were historically, and frequently still are, considered ''good'', are not justifiably so describable. Information about the dynamics of nucleon-nucleus and nucleus-nucleus scattering is lost when elastic scattering phenomenology is insufficiently ambitious. It is argued that in many situations, an alternative approach is appropriate for the phenomenology of nuclear elastic scattering of nucleons and other light nuclei. The approach affords an appropriate means of evaluating folding models, one that fully exploits available empirical data. It is particularly applicable for nucleons and other light ions. (orig.)

  14. Coherent anti-Stokes Raman scattering microscopy for pharmaceutics: a shift in the right direction

    NARCIS (Netherlands)

    Fussell, Andrew Luke

    2014-01-01

    This dissertation demonstrates coherent anti-Stokes Raman scattering (CARS) microscopy as a tool in pharmaceutical solid state development. CARS microscopy is a nonlinear optical imaging technique that uses inelastic scattering of light to provide chemically specific imaging. CARS microscopy is suit

  15. Polarization effects in the non-linear Compton scattering

    CERN Document Server

    Ivanov, D Y; Serbo, V G

    2005-01-01

    We consider emission of a photon by an electron in the field of a strong laser wave. A probability of this process for circularly or linearly polarized laser photons and for arbitrary polarization of all other particles is calculated. We obtain the complete set of functions which describe such a probability in a compact invariant form. Besides, we discuss in some detail the polarization effects in the kinematics relevant to the problem of electron to photon conversion at photon-photon and electron-photon colliders.

  16. Nonlinear Scattering of Acoustic Waves by Vibrating Obstacles.

    Science.gov (United States)

    1983-06-01

    usual to simplify Eq. (14) under the assumption of adiabatic compressibility. According to Morse & Ingard [41], adiabatic compressibility is achieved...standard 58 acoustic text, such as Morse and Ingard [44]. They are w r cc r P Po[Jo(-R-) + 2 mcosOJa( T) , (107) 0 2ll 0 a D( 1 ) w r i Pscatt Am ) pt...Comments on the Interaction of Sound With Sound," presentation at 98th Mtg. of Acoust. Soc. Am., Nov 1979. 29. P.M. Morse & K.U. Ingard , Theoretical

  17. Determination of Turbulent Velocities by Nonlinear Acoustic Scattering

    Science.gov (United States)

    1992-05-08

    COMMAND. WITHOUT THE DELAYS. THý L-- jG; AM WILL CRASH ’ 98 REM 1300 - TURNS ON IEEE 1600 - TURNS OFF I•EE "WT" - COMMAND TO IEEE "RD" - IEEE ODTPUT TO...34PR#1’" ia6f ’rP IN’f "SCAN POS= "’JJ `7 0 PRINT "’P CURSOR- " 7-86 •PRINT -0 CURSO - ;C’ 8𔃿 REM XF IS THE VOLTAGE ATTENuJAT!ON FACFCR WHIC• IS

  18. Phaseless tomographic inverse scattering in Banach spaces

    Science.gov (United States)

    Estatico, C.; Fedeli, A.; Pastorino, M.; Randazzo, A.; Tavanti, E.

    2016-10-01

    In conventional microwave imaging, a hidden dielectric object under test is illuminated by microwave incident waves and the field it scatters is measured in magnitude and phase in order to retrieve the dielectric properties by solving the related non-homogenous Helmholtz equation or its Lippmann-Schwinger integral formulation. Since the measurement of the phase of electromagnetic waves can be still considered expensive in real applications, in this paper only the magnitude of the scattering wave fields is measured in order to allow a reduction of the cost of the measurement apparatus. In this respect, we firstly analyse the properties of the phaseless scattering nonlinear forward modelling operator in its integral form and we provide an analytical expression for computing its Fréchet derivative. Then, we propose an inexact Newton method to solve the associated nonlinear inverse problems, where any linearized step is solved by a Lp Banach space iterative regularization method which acts on the dual space Lp* . Indeed, it is well known that regularization in special Banach spaces, such us Lp with 1 < p < 2, allows to promote sparsity and to reduce Gibbs phenomena and over-smoothness. Preliminary results concerning numerically computed field data are shown.

  19. Scattered Radiation Emission Imaging: Principles and Applications

    Directory of Open Access Journals (Sweden)

    M. K. Nguyen

    2011-01-01

    Full Text Available Imaging processes built on the Compton scattering effect have been under continuing investigation since it was first suggested in the 50s. However, despite many innovative contributions, there are still formidable theoretical and technical challenges to overcome. In this paper, we review the state-of-the-art principles of the so-called scattered radiation emission imaging. Basically, it consists of using the cleverly collected scattered radiation from a radiating object to reconstruct its inner structure. Image formation is based on the mathematical concept of compounded conical projection. It entails a Radon transform defined on circular cone surfaces in order to express the scattered radiation flux density on a detecting pixel. We discuss in particular invertible cases of such conical Radon transforms which form a mathematical basis for image reconstruction methods. Numerical simulations performed in two and three space dimensions speak in favor of the viability of this imaging principle and its potential applications in various fields.

  20. Scatter integration with right triangular fields.

    Science.gov (United States)

    Siddon, R L; Dewyngaert, J K; Bjärngard, B E

    1985-01-01

    The concept of the equivalent field is used extensively in radiotherapy dose calculation algorithms. The rationale for using equivalent fields is to allow dose calculations for a wide variety of field shapes, while maintaining dose calculational data for only a few, very regularly shaped fields. A common example is the table of equivalent squares of rectangular fields presented by Day in the British Journal of Radiology. Recently, in searching for fast dose calculation algorithms for irregular fields, we introduced the concept of the equivalent square of a right triangular field. It is shown that an arbitrary irregular field of N vertices may be decomposed into 2N right triangular fields, each with a precalculated equivalent square. The scatter at the point of calculation due to the irregular field is then obtained as a sum of the scatter contributions from the equivalent squares. The scatter integration with right triangles is compared with scatter integration using program IRREG.

  1. Broadband Brillouin scatter from CO/sub 2/-laser--target interactions

    Energy Technology Data Exchange (ETDEWEB)

    Mitchel, G.R.; Grek, B.; Johnston, T.W.; Pepin, H.; Church, P.; Lavigne, P.; Martin, F.; Decoste, R.

    1982-05-24

    Light scattered near the incident wavelength from CO/sub 2/ laser--solid target interactions in oblique incidence shows the spectral signature of Brillouin scattering both in the backward and in the near specular directions. This instability is apparently seeded by broadband scatter from the critical density surface and then amplified in the underdense plasma. 60% of the incident light is scattered, and the Brillouin contribution to total scatter may be large if the source is also large.

  2. Light scattering near phase transitions

    CERN Document Server

    Cummins, HZ

    1983-01-01

    Since the development of the laser in the early 1960's, light scattering has played an increasingly crucial role in the investigation of many types of phase transitions and the published work in this field is now widely dispersed in a large number of books and journals.A comprehensive overview of contemporary theoretical and experimental research in this field is presented here. The reviews are written by authors who have actively contributed to the developments that have taken place in both Eastern and Western countries.

  3. Optical scatter: an overview

    Science.gov (United States)

    Stover, John C.

    1991-12-01

    Optical scatter is a bothersome source of optical noise, limits resolution and reduces system throughput. However, it is also an extremely sensitive metrology tool. It is employed in a wide variety of applications in the optics industry (where direct scatter measurement is of concern) and is becoming a popular indirect measurement in other industries where its measurement in some form is an indicator of another component property - like roughness, contamination or position. This paper presents a brief review of the current state of this technology as it emerges from university and government laboratories into more general industry use. The bidirectional scatter distribution function (or BSDF) has become the common format for expressing scatter data and is now used almost universally. Measurements made at dozens of laboratories around the country cover the spectrum from the uv to the mid- IR. Data analysis of optical component scatter has progressed to the point where a variety of analysis tools are becoming available for discriminating between the various sources of scatter. Work has progressed on the analysis of rough surface scatter and the application of these techniques to some challenging problems outside the optical industry. Scatter metrology is acquiring standards and formal test procedures. The available scatter data base is rapidly expanding as the number and sophistication of measurement facilities increases. Scatter from contaminants is continuing to be a major area of work as scatterometers appear in vacuum chambers at various laboratories across the country. Another area of research driven by space applications is understanding the non-topographic sources of mid-IR scatter that are associated with Beryllium and other materials. The current flurry of work in this growing area of metrology can be expected to continue for several more years and to further expand to applications in other industries.

  4. Advances in nonlinear optics

    CERN Document Server

    Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong

    2015-01-01

    This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.

  5. Distributed nonlinear optical response

    DEFF Research Database (Denmark)

    Nikolov, Nikola Ivanov

    2005-01-01

    The purpose of the research presented here is to investigate basic physical properties in nonlinear optical materials with delayed or nonlocal nonlinearity. Soliton propagation, spectral broadening and the influence of the nonlocality or delay of the nonlinearity are the main focusses in the work...

  6. Noncommutative Nonlinear Supersymmetry

    CERN Document Server

    Nishino, H; Nishino, Hitoshi; Rajpoot, Subhash

    2002-01-01

    We present noncommutative nonlinear supersymmetric theories. The first example is a non-polynomial Akulov-Volkov-type lagrangian with noncommutative nonlinear global supersymmetry in arbitrary space-time dimensions. The second example is the generalization of this lagrangian to Dirac-Born-Infeld lagrangian with nonlinear supersymmetry realized in dimensions D=2,3,4 and 6 (mod 8).

  7. Fiber Nonlinearities: A Tutorial

    Institute of Scientific and Technical Information of China (English)

    Govind P. Agrawal

    2003-01-01

    Fiber nonlinearities have long been regarded as being mostly harmful for fiber-optic communication systems. Over the last few years, however, the nonlinear effects are increasingly being used for practical telecommunications applications,the Raman amplification being only one of the recent examples. In this tutorial I review the vario us nonlinear effects occurring in optical fibers from both standpoints..

  8. Fiber Nonlinearities: A Tutorial

    Institute of Scientific and Technical Information of China (English)

    Govind; P.; Agrawal

    2003-01-01

    Fiber nonlinearities have long been regarded as being mostly harmful for fiber-optic communication systems. Over the last few years, however, the nonlinear effects are increasingly being used for practical telecommunications applications, the Raman amplification being only one of the recent examples. In this tutorial I review the various nonlinear effects occurring in optical fibers from both standpoints..

  9. Delta excitation in deuteron-proton elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Ladygina, N.B. [Joint Institute for Nuclear Research, LHEP, Dubna (Russian Federation)

    2016-07-15

    Deuteron-proton elastic scattering is studied in the multiple scattering expansion formalism. The four contributions are taken into account: one-nucleon exchange, single and double scattering, and Δ-isobar excitation. The presented approach was applied to describe the differential cross sections at deuteron energies between 500 and 1300 MeV in a whole angular range. The obtained results are compared with the experimental data. (orig.)

  10. PBH tests for nonlinear systems

    NARCIS (Netherlands)

    Kawano, Yu; Ohtsuka, Toshiyuki

    2017-01-01

    Recently, concepts of nonlinear eigenvalues and eigenvectors are introduced. In this paper, we establish connections between the nonlinear eigenvalues and nonlinear accessibility/observability. In particular, we provide a generalization of Popov- Belevitch-Hautus (PBH) test to nonlinear accessibilit

  11. Wavelet neural network based fault diagnosis in nonlinear analog circuits

    Institute of Scientific and Technical Information of China (English)

    Yin Shirong; Chen Guangju; Xie Yongle

    2006-01-01

    The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studied. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility.

  12. Advances in chemical physics modern nonlinear optics, pt.1

    CERN Document Server

    Rice, Stuart A

    2009-01-01

    Partial table of contents: Hyper-Rayleigh and Hyper-Raman Rotational and Vibrational Spectroscopy (T. Bancewicz & Z. Ożgo). Polarization Properties of Hyper-Rayleigh and Hyper-Raman Scatterings (M. Kozierowski). Fast Molecular Reorientation in Liquid Crystals Probed by Nonlinear Optics (J. Lalanne, et al.). Nonlinear Propagation of Laser Light of Different Polarizations (G. Rivoire). Nonlinear Magneto-Optics of Magnetically Ordered Crystals (R. Zawodny). Dynamical Questions in Quantum Optics (A. Shumovsky). Quantum Resonance Fluorescence from Mutually Correlated Atoms (Z. Fi

  13. Extra phase noise from thermal fluctuations in nonlinear optical crystals

    DEFF Research Database (Denmark)

    César, J. E. S.; Coelho, A.S.; Cassemiro, K.N.

    2009-01-01

    We show theoretically and experimentally that scattered light by thermal phonons inside a second-order nonlinear crystal is the source of additional phase noise observed in optical parametric oscillators. This additional phase noise reduces the quantum correlations and has hitherto hindered the d...... the direct production of multipartite entanglement in a single nonlinear optical system. We cooled the nonlinear crystal and observed a reduction in the extra noise. Our treatment of this noise can be successfully applied to different systems in the literature....

  14. Nonlinear time reversal in a wave chaotic system.

    Science.gov (United States)

    Frazier, Matthew; Taddese, Biniyam; Antonsen, Thomas; Anlage, Steven M

    2013-02-01

    Exploiting the time-reversal invariance and reciprocal properties of the lossless wave equation enables elegantly simple solutions to complex wave-scattering problems and is embodied in the time-reversal mirror. Here we demonstrate the implementation of an electromagnetic time-reversal mirror in a wave chaotic system containing a discrete nonlinearity. We demonstrate that the time-reversed nonlinear excitations reconstruct exclusively upon the source of the nonlinearity. As an example of its utility, we demonstrate a new form of secure communication and point out other applications.

  15. Nonlinearities in vegetation functioning

    Science.gov (United States)

    Ceballos-Núñez, Verónika; Müller, Markus; Metzler, Holger; Sierra, Carlos

    2016-04-01

    Given the current drastic changes in climate and atmospheric CO2 concentrations, and the role of vegetation in the global carbon cycle, there is increasing attention to the carbon allocation component in biosphere terrestrial models. Improving the representation of C allocation in models could be the key to having better predictions of the fate of C once it enters the vegetation and is partitioned to C pools of different residence times. C allocation has often been modeled using systems of ordinary differential equations, and it has been hypothesized that most models can be generalized with a specific form of a linear dynamical system. However, several studies have highlighted discrepancies between empirical observations and model predictions, attributing these differences to problems with model structure. Although efforts have been made to compare different models, the outcome of these qualitative assessments has been a conceptual categorization of them. In this contribution, we introduce a new effort to identify the main properties of groups of models by studying their mathematical structure. For this purpose, we performed a literature research of the relevant models of carbon allocation in vegetation and developed a database with their representation in symbolic mathematics. We used the Python package SymPy for symbolic mathematics as a common language and manipulated the models to calculate their Jacobian matrix at fixed points and their eigenvalues, among other mathematical analyses. Our preliminary results show a tendency of inverse proportionality between model complexity and size of time/space scale; complex interactions between the variables controlling carbon allocation in vegetation tend to operate at shorter time/space scales, and vice-versa. Most importantly, we found that although the linear structure is common, other structures with non-linearities have been also proposed. We, therefore, propose a new General Model that can accommodate these

  16. Nonlinear field space cosmology

    Science.gov (United States)

    Mielczarek, Jakub; Trześniewski, Tomasz

    2017-08-01

    We consider the FRW cosmological model in which the matter content of the Universe (playing the role of an inflaton or quintessence) is given by a novel generalization of the massive scalar field. The latter is a scalar version of the recently introduced nonlinear field space theory, where the physical phase space of a given field is assumed to be compactified at large energies. For our analysis, we choose the simple case of a field with the spherical phase space and endow it with the generalized Hamiltonian analogous to the XXZ Heisenberg model, normally describing a system of spins in condensed matter physics. Subsequently, we study both the homogenous cosmological sector and linear perturbations of such a test field. In the homogenous sector, we find that nonlinearity of the field phase space is becoming relevant for large volumes of the Universe and can lead to a recollapse, and possibly also at very high energies, leading to the phase of a bounce. Quantization of the field is performed in the limit where the nontrivial nature of its phase space can be neglected, while there is a nonvanishing contribution from the Lorentz symmetry breaking term of the Hamiltonian. As a result, in the leading order of the XXZ anisotropy parameter, we find that the inflationary spectral index remains unmodified with respect to the standard case but the total amplitude of perturbations is subject to a correction. The Bunch-Davies vacuum state also becomes appropriately corrected. The proposed new approach is bringing cosmology and condensed matter physics closer together, which may turn out to be beneficial for both disciplines.

  17. Shaping the nonlinear near field

    Science.gov (United States)

    Wolf, Daniela; Schumacher, Thorsten; Lippitz, Markus

    2016-01-01

    Light scattering at plasmonic nanoparticles and their assemblies has led to a wealth of applications in metamaterials and nano-optics. Although shaping of fields around nanostructures is widely studied, the influence of the field inside the nanostructures is often overlooked. The linear field distribution inside the structure taken to the third power causes third-harmonic generation, a nonlinear optical response of matter. Here we demonstrate by a far field Fourier imaging method how this simple fact can be used to shape complex fields around a single particle alone. We employ this scheme to switch the third-harmonic emission from a single point source to two spatially separated but coherent sources, as in Young's double-slit assembly. We envision applications as diverse as coherently feeding antenna arrays and optical spectroscopy of spatially extended electronic states.

  18. Nonlinear dynamics and complexity

    CERN Document Server

    Luo, Albert; Fu, Xilin

    2014-01-01

    This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.

  19. Instability and dynamics of two nonlinearly coupled laser beams in a plasma

    CERN Document Server

    Shukla, P K; Marklund, M; Stenflo, L; Kourakis, I; Parviainen, M; Dieckmann, M E

    2006-01-01

    We investigate the nonlinear interaction between two laser beams in a plasma in the weakly nonlinear and relativistic regime. The evolution of the laser beams is governed by two nonlinear Schroedinger equations that are coupled with the slow plasma density response. We study the growth rates of the Raman forward and backward scattering instabilities as well of the Brillouin and self-focusing/modulational instabilities. The nonlinear evolution of the instabilities is investigated by means of direct simulations of the time-dependent system of nonlinear equations.

  20. On the Prediction of the Number of Solitons Excited by an Arbitrary Potential: An Observation from Inverse Scattering

    Science.gov (United States)

    Hansen, P. J.; Lonngren, K. E.

    1993-01-01

    A heuristic estimate for the soliton production rate by a pulse is verified for the Korteweg - de Vries equation using inverse scattering. An observation from this result, which is shown to hold for some other nonlinear equations and for the case of the 'forced' nonlinear Schroedinger equation, is that production is determined by quantities that are invariant under rescaling of the original nonlinear equations. We speculate that this result may be useful to the development of an inverse scattering theory for 'forced' nonlinear systems.

  1. Studies of double parton scattering in ATLAS

    CERN Document Server

    Lobodzinska, Ewelina Maria; The ATLAS collaboration

    2017-01-01

    In this contribution, Double Parton Scattering processes observed with the ATLAS detector at LHC are discussed. Results of five analyses are presented: production of W boson in association with 2 jets, production of $J/\\psi$ meson in association with W boson, $J/\\psi$ production with Z boson, $J/\\psi$ pair production and four jet events.

  2. Nonlinear Approach in Nuclear Dynamics

    Science.gov (United States)

    Gridnev, K. A.; Kartavenko, V. G.; Greiner, W.

    2002-11-01

    Attention is focused on the various approaches that use the concept of nonlinear dispersive waves (solitons) in nonrelativistic nuclear physics. The problem of dynamical instability and clustering (stable fragments formation) in a breakup of excited nuclear systems are considered from the points of view of the soliton concept. It is shown that the volume (spinodal) instability can be associated with nonlinear terms, and the surface (Rayleigh-Taylor type) instability, with the dispersion terms in the evolution equations. The both instabilities may compensate each other and lead to stable solutions (solitons). A static scission configuration in cold ternary fission is considered in the framework of mean field approach. We suggest to use the inverse mean field method to solve single-particle Schrödinger equation, instead of constrained selfconsistent Hartree-Fock equations. It is shown, that it is possible to simulate one-dimensional three-center system in the approximation of reflectless single-particle potentials. The soliton-like solutions of the Korteweg-de Vries equation are using to describe collective excitations of nuclei observed in inelastic alpha-particle and proton scattering. The analogy between fragmentation into parts of nuclei and buckyballs has led us to the idea of light nuclei as quasi-crystals. We establish that the quasi-crystalline structure can be formed when the distance between the alpha-particles is comparable with the length of the De Broglia wave of the alpha-particle. Applying this model to the scattering of alpha-particles we obtain that the form factor of the clusterized nucleus can be factorized into the formfactor of the cluster and the density of clusters in the nucleus. It gives possibility to study the distribution of clusters in nuclei and to resolve what kind of distribution we are dealing with: a surface or volume one.

  3. L2-gain and passivity techniques in nonlinear control

    CERN Document Server

    van der Schaft, Arjan

    2017-01-01

    This standard text gives a unified treatment of passivity and L2-gain theory for nonlinear state space systems, preceded by a compact treatment of classical passivity and small-gain theorems for nonlinear input-output maps. The synthesis between passivity and L2-gain theory is provided by the theory of dissipative systems. Specifically, the small-gain and passivity theorems and their implications for nonlinear stability and stabilization are discussed from this standpoint. The connection between L2-gain and passivity via scattering is detailed. Feedback equivalence to a passive system and resulting stabilization strategies are discussed. The passivity concepts are enriched by a generalised Hamiltonian formalism, emphasising the close relations with physical modeling and control by interconnection, and leading to novel control methodologies going beyond passivity. The potential of L2-gain techniques in nonlinear control, including a theory of all-pass factorizations of nonlinear systems, and of parametrization...

  4. Modulational instability arising from collective Rayleigh scattering.

    Science.gov (United States)

    Robb, G R M; McNeil, B W J

    2003-02-01

    It is shown that under certain conditions a collection of dielectric Rayleigh particles suspended in a viscous medium and enclosed in a bidirectional ring cavity pumped by a strong laser field can produce a new modulational instability transverse to the wave-propagation direction. The source of the instability is collective Rayleigh scattering i.e., the spontaneous formation of periodic longitudinal particle-density modulations and a backscattered optical field. Using a linear stability analysis a dispersion relation is derived which determines the region of parameter space in which modulational instability of the backscattered field and the particle distribution occurs. In the linear regime the pump is modulationally stable. A numerical analysis is carried out to observe the dynamics of the interaction in the nonlinear regime. In the nonlinear regime the pump field also becomes modulationally unstable and strong pump depletion occurs.

  5. Dispersion Properties of TIRPCF under Compton Scattering

    Institute of Scientific and Technical Information of China (English)

    HAO Dong-shan; YU Ding-chen

    2006-01-01

    The dispersion properties in the short wavelength region of total internal reflective photonic crystal fiber(TIRPCF) in Compton scattering have been studied by using the model of the equivalent twin waveguide soliton coupling,dispersion management solitons and effective refractive index. It is shown that the positive dispersion of the cladding waveguide of TIRPCF and the negative dispersion of its core waveguide are quickly increased by the square of the collision non-elastic composition between the electron and photons,and they are lessened by the increase of the electron absorption photon number. Under the one-photon nonlinear Compton scattering,the method of the compensated probing laser diffraction by the phase hole induced by the stationary pumping laser in the cladding waveguide enables the average dispersion value of TIRPCF to be close to zero,and the zero dispersion point quickly shifts to the short wavelength region.

  6. Long-time asymptotics for the defocusing integrable discrete nonlinear Schrödinger equation

    OpenAIRE

    YAMANE, HIDESHI

    2014-01-01

    We investigate the long-time asymptotics for the defocusing integrable discrete nonlinear Schrödinger equation of Ablowitz-Ladik by means of the inverse scattering transform and the Deift-Zhou nonlinear steepest descent method. The leading part is a sum of two terms that oscillate with decay of order $t^{-1/2}$.

  7. Optimal spatiotemporal focusing through complex scattering media

    CERN Document Server

    Aulbach, Jochen; Fink, Mathias; Tanter, Mickaël; Tourin, Arnaud; 10.1103/PhysRevE.85.016605

    2013-01-01

    We present a new approach for spatiotemporal focusing through complex scattering media by wave front shaping. Using a nonlinear feedback signal to shape the incident pulsed wave front, we show that the limit of a spatiotemporal matched filter can be achieved, i.e., the wave amplitude at the intended time and focus position is maximized for a given input energy. It is exactly what is also achieved with time-reversal. Demonstrated with ultrasound experiments, our method is generally applicable to all types of waves.

  8. On cavity modification of stimulated Raman scattering

    CERN Document Server

    Matsko, A B; Letargat, R J; Ilchenko, V S; Maleki, L

    2003-01-01

    We study theoretically stimulated Raman scattering (SRS) in a nonlinear dielectric microcavity and compare SRS thresholds for the cavity and the bulk material it is made of. We show that cavity SRS enhancement results solely from the intensity build up in the cavity and from the differences of the SRS dynamics in free and confined space. There is no significant modification of the Raman gain due to cavity QED effects. We show that the SRS threshold depends significantly on the nature of the dominating cavity decay as well as on the coupling technique with the cavity used for SRS measurements.

  9. Scattering of strong electromagnetic wave by relativistic electrons: Thomson and Compton regimes

    Science.gov (United States)

    Potylitsyn, A. P.; Kolchuzhkin, A. M.

    2017-04-01

    The processes of the nonlinear Compton and the nonlinear Thomson scattering in a field of intense plane electromagnetic wave in terms of photon yield have been considered. The quantum consideration of the Compton scattering process allows us to calculate the probability of a few successive collisions k of an electron with laser photons accompanied by the absorption of n photons (nonlinear regime) when the number of collisions and the number of absorbed photons are of random quantities. The photon spectrum of the nonlinear Thomson scattering process was obtained from the classical formula for intensity using the Planck's law. The conditions for which the difference between the classical and the quantum regimes is manifested was obtained. Such a condition is determined by a discrete quantum radiation mechanism, namely, by the mean number of photons k bar emitted by an electron passing through the laser pulse.

  10. A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry

    DEFF Research Database (Denmark)

    Madsen, Per A.; Fuhrman, David R.; Wang, Benlong

    2006-01-01

    and class II Bragg scattering from an undular sea bottom. The computations are verified against measurements, theoretical solutions and numerical models from the literature. Finally, we make a detailed investigation of nonlinear class III Bragg scattering and results are given for the sub-harmonic and super...

  11. Experimental observations of the characteristics of hot electron and nonlinear processes produced in special material

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Making use of disk targets composed of several peculiar materials (foam Au, foam C8H8)and hohlraum with a special structure, experiments have been done at"Xing Guang - II" laser facility,which study the characteristics of hot electrons and therelated nonlinear processes such as StimulatedRaman Scattering (SRS), Two Plasma Decay (TPD), StimulatedBrillouin Scattering (SBS), etc.

  12. Nonlinear Elliptic Differential Equations with Multivalued Nonlinearities

    Indian Academy of Sciences (India)

    Antonella Fiacca; Nikolaos Matzakos; Nikolaos S Papageorgiou; Raffaella Servadei

    2001-11-01

    In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all $\\mathbb{R}$. Assuming the existence of an upper and of a lower solution, we prove the existence of a solution between them. Also for a special version of the problem, we prove the existence of extremal solutions in the order interval formed by the upper and lower solutions. Then we drop the requirement that the monotone nonlinearity is defined on all of $\\mathbb{R}$. This case is important because it covers variational inequalities. Using the theory of operators of monotone type we show that the problem has a solution. Finally in the last part we consider an eigenvalue problem with a nonmonotone multivalued nonlinearity. Using the critical point theory for nonsmooth locally Lipschitz functionals we prove the existence of at least two nontrivial solutions (multiplicity theorem).

  13. Comparative study of bowtie and patient scatter in diagnostic CT

    Science.gov (United States)

    Prakash, Prakhar; Boudry, John M.

    2017-03-01

    A fast, GPU accelerated Monte Carlo engine for simulating relevant photon interaction processes over the diagnostic energy range in third-generation CT systems was developed to study the relative contributions of bowtie and object scatter to the total scatter reaching an imaging detector. Primary and scattered projections for an elliptical water phantom (major axis set to 300mm) with muscle and fat inserts were simulated for a typical diagnostic CT system as a function of anti-scatter grid (ASG) configurations. The ASG design space explored grid orientation, i.e. septa either a) parallel or b) parallel and perpendicular to the axis of rotation, as well as septa height. The septa material was Tungsten. The resulting projections were reconstructed and the scatter induced image degradation was quantified using common CT image metrics (such as Hounsfield Unit (HU) inaccuracy and loss in contrast), along with a qualitative review of image artifacts. Results indicate object scatter dominates total scatter in the detector channels under the shadow of the imaged object with the bowtie scatter fraction progressively increasing towards the edges of the object projection. Object scatter was shown to be the driving factor behind HU inaccuracy and contrast reduction in the simulated images while shading artifacts and elevated loss in HU accuracy at the object boundary were largely attributed to bowtie scatter. Because the impact of bowtie scatter could not be sufficiently mitigated with a large grid ratio ASG, algorithmic correction may be necessary to further mitigate these artifacts.

  14. Nonlinear photothermal mid-infrared spectroscopy

    Science.gov (United States)

    Totachawattana, Atcha; Erramilli, Shyamsunder; Sander, Michelle Y.

    2016-10-01

    Mid-infrared photothermal spectroscopy is a pump-probe technique for label-free and non-destructive sample characterization by targeting intrinsic vibrational modes. In this method, the mid-infrared pump beam excites a temperature-induced change in the refractive index of the sample. This laser-induced change in the refractive index is measured by a near-infrared probe laser using lock-in detection. At increased pump powers, emerging nonlinear phenomena not previously demonstrated in other mid-infrared techniques are observed. Nonlinear study of a 6 μm-thick 4-Octyl-4'-Cyanobiphenyl (8CB) liquid crystal sample is conducted by targeting the C=C stretching band at 1606 cm-1. At high pump powers, nonlinear signal enhancement and multiple pitchfork bifurcations of the spectral features are observed. An explanation of the nonlinear peak splitting is provided by the formation of bubbles in the sample at high pump powers. The discontinuous refractive index across the bubble interface results in a decrease in the forward scatter of the probe beam. This effect can be recorded as a bifurcation of the absorption peak in the photothermal spectrum. These nonlinear effects are not present in direct measurements of the mid-infrared beam. Evolution of the nonlinear photothermal spectrum of 8CB liquid crystal with increasing pump power shows enhancement of the absorption peak at 1606 cm-1. Multiple pitchfork bifurcations and spectral narrowing of the photothermal spectrum are demonstrated. This novel nonlinear regime presents potential for improved spectral resolution as well as a new regime for sample characterization in mid-infrared photothermal spectroscopy.

  15. UV Nano-Lights - Nonlinear Quantum Dot-Plasmon Coupling

    Science.gov (United States)

    2016-06-20

    nanomaterials systems for nonlinear optics. PROJECT TIMELINE The project timeline was segmented into 3 monthly intervals. The PhD students, assisted by...technique to remove the scattering component of light from the fluorescence emission with commonly-used fluorometers [Shortell, Optics Express...nanostructure light interaction and also has helped understand and remove unwanted signal contamination through optical element interference effects as

  16. Extraction of information about periodic orbits from scattering functions

    CERN Document Server

    Bütikofer, T; Seligman, T H; Bütikofer, Thomas; Jung, Christof; Seligman, Thomas H.

    1999-01-01

    As a contribution to the inverse scattering problem for classical chaotic systems, we show that one can select sequences of intervals of continuity, each of which yields the information about period, eigenvalue and symmetry of one unstable periodic orbit.

  17. Measurement of the Kerr nonlinear refractive index of Cs vapor

    CERN Document Server

    Araújo, Michelle O; Oriá, Marcos; Chevrollier, Martine; de Silans, Thierry Passerat; Castro, Romeu; Moretti, Danieverton

    2014-01-01

    Atomic vapors are systems well suited for nonlinear optics studies but very few direct measurements of their nonlinear refractive index have been reported. Here we use the z-scan technique to measure the Kerr coefficient, $n_2$, for a Cs vapor. Our results are analyzed through a four-level model, and we show that coherence between excited levels as well as cross-population effects contribute to the Kerr-nonlinearity.

  18. Scattering in an environment

    CERN Document Server

    Polonyi, Janos

    2011-01-01

    The cross section of elastic electron-proton scattering taking place in an electron gas is calculated within the Closed Time Path method. It is found to be the sum of two terms, one being the expression in the vacuum except that it involves dressing due to the electron gas. The other term is due to the scattering particles-electron gas entanglement. This term dominates the usual one when the exchange energy is in the vicinity of the Fermi energy. Furthermore it makes the trajectories of the colliding particles more consistent and the collision more irreversible, rendering the scattering more classical in this regime.

  19. Manipulating scattering features by metamaterials

    Directory of Open Access Journals (Sweden)

    Lu Cui

    2016-01-01

    Full Text Available We present a review on manipulations of electromagnetic scattering features by using metamaterials or metasurfaces. Several approaches in controlling the scattered fields of objects are presented, including invisibility cloaks and radar illusions based on transformation optics, carpet cloak using gradient metamaterials, dc cloaks, mantle cloaks based on scattering cancellation, “skin” cloaks using phase compensation, scattering controls with coding/programmable metasurfaces, and scattering reductions by multilayered structures. Finally, the future development of metamaterials on scattering manipulation is predicted.

  20. Manipulating scattering features by metamaterials

    Directory of Open Access Journals (Sweden)

    Lu Cui

    2016-01-01

    Full Text Available We present a review on manipulations of electromagnetic scattering features by using metamaterials or metasurfaces. Several approaches in controlling the scattered fields of objects are presented, including invisibility cloaks and radar illusions based on transformation optics, carpet cloak using gradient metamaterials, dc cloaks, mantle cloaks based on scattering cancellation, “skin” cloaks using phase compensation, scattering controls with coding/programmable metasurfaces, and scattering reductions by multilayered structures. Finally, the future development of metamaterials on scattering manipulation is predicted.

  1. Advances and applications in nonlinear control systems

    CERN Document Server

    Volos, Christos

    2016-01-01

    The book reports on the latest advances and applications of nonlinear control systems. It consists of 30 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought out in the broad areas of nonlinear control systems such as robotics, nonlinear circuits, power systems, memristors, underwater vehicles, chemical processes, observer design, output regulation, backstepping control, sliding mode control, time-delayed control, variables structure control, robust adaptive control, fuzzy logic control, chaos, hyperchaos, jerk systems, hyperjerk systems, chaos control, chaos synchronization, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in nonlinear control systems. This book will serve as a reference book for graduate students and researchers with a basic knowledge of electrical and control systems engineering. The resulting design proce...

  2. Nonlinear optical model for strip plasmonic waveguides

    DEFF Research Database (Denmark)

    Lysenko, Oleg; Bache, Morten; Lavrinenko, Andrei

    2016-01-01

    This paper presents a theoretical model of nonlinear optical properties for strip plasmonic waveguides. The particular waveguides geometry that we investigate contains a gold core, adhesion layers, and silicon dioxide cladding. It is shown that the third-order susceptibility of the gold core...... significantly depends on the layer thickness and has the dominant contribution to the effective third-order susceptibility of the long-range plasmon polariton mode. This results in two nonlinear optical effects in plasmonic waveguides, which we experimentally observed and reported in [Opt. Lett. 41, 317 (2016......)]. The first effect is the nonlinear power saturation of the plasmonic mode, and the second effect is the spectral broadening of the plasmonic mode. Both nonlinear plasmonic effects can be used for practical applications and their appropriate model will be important for further developments in communication...

  3. PT-symmetric ladders with a scattering core

    Energy Technology Data Exchange (ETDEWEB)

    D' Ambroise, J. [Department of Mathematics, Amherst College, Amherst, MA 01002-5000 (United States); Lepri, S. [CNR – Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del piano 10, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Malomed, B.A. [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Kevrekidis, P.G. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-9305 (United States)

    2014-08-01

    We consider a PT-symmetric chain (ladder-shaped) system governed by the discrete nonlinear Schrödinger equation where the cubic nonlinearity is carried solely by two central “rungs” of the ladder. Two branches of scattering solutions for incident plane waves are found. We systematically construct these solutions, analyze their stability, and discuss non-reciprocity of the transmission associated with them. To relate the results to finite-size wavepacket dynamics, we also perform direct simulations of the evolution of the wavepackets, which confirm that the transmission is indeed asymmetric in this nonlinear system with the mutually balanced gain and loss. - Highlights: • We model a PT-symmetric ladder system with cubic nonlinearity on two central rungs. • We examine non-reciprocity and stability of incident plane waves. • Simulations of wavepackets confirm our results.

  4. Detecting nonlinear acoustic waves in liquids with nonlinear dipole optical antennae

    CERN Document Server

    Maksymov, Ivan S

    2015-01-01

    Ultrasound is an important imaging modality for biological systems. High-frequency ultrasound can also (e.g., via acoustical nonlinearities) be used to provide deeply penetrating and high-resolution imaging of vascular structure via catheterisation. The latter is an important diagnostic in vascular health. Typically, ultrasound requires sources and transducers that are greater than, or of order the same size as the wavelength of the acoustic wave. Here we design and theoretically demonstrate that single silver nanorods, acting as optical nonlinear dipole antennae, can be used to detect ultrasound via Brillouin light scattering from linear and nonlinear acoustic waves propagating in bulk water. The nanorods are tuned to operate on high-order plasmon modes in contrast to the usual approach of using fundamental plasmon resonances. The high-order operation also gives rise to enhanced optical third-harmonic generation, which provides an important method for exciting the higher-order Fabry-Perot modes of the dipole...

  5. Non-linear quantum dynamics in strong and short electromagnetic fields

    CERN Document Server

    Titov, Alexander I; Hosaka, Atsushi; Takabe, Hideaki

    2016-01-01

    In our contribution we give a brief overview of two widely discussed quantum processes: electron-positron pairs production off a probe photon propagating through a polarized short-pulsed electromagnetic (e.m.) (e.g.\\ laser) wave field or generalized Breit-Wheeler process and a single a photon emission off an electron interacting with the laser pules, so-called non-linear Compton scattering. We show that at small and moderate laser field intensities the shape and duration of the pulse are very important for the probability of considered processes. However, at high intensities the multi-photon interactions of the fermions with laser field are decisive and completely determined all aspects of subthreshold electron-positron pairs and photon production

  6. Using Compton scattering for random coincidence rejection

    Science.gov (United States)

    Kolstein, M.; Chmeissani, M.

    2016-12-01

    The Voxel Imaging PET (VIP) project presents a new approach for the design of nuclear medicine imaging devices by using highly segmented pixel CdTe sensors. CdTe detectors can achieve an energy resolution of ≈ 1% FWHM at 511 keV and can be easily segmented into submillimeter sized voxels for optimal spatial resolution. These features help in rejecting a large part of the scattered events from the PET coincidence sample in order to obtain high quality images. Another contribution to the background are random events, i.e., hits caused by two independent gammas without a common origin. Given that 60% of 511 keV photons undergo Compton scattering in CdTe (i.e. 84% of all coincidence events have at least one Compton scattering gamma), we present a simulation study on the possibility to use the Compton scattering information of at least one of the coincident gammas within the detector to reject random coincidences. The idea uses the fact that if a gamma undergoes Compton scattering in the detector, it will cause two hits in the pixel detectors. The first hit corresponds to the Compton scattering process. The second hit shall correspond to the photoelectric absorption of the remaining energy of the gamma. With the energy deposition of the first hit, one can calculate the Compton scattering angle. By measuring the hit location of the coincident gamma, we can construct the geometric angle, under the assumption that both gammas come from the same origin. Using the difference between the Compton scattering angle and the geometric angle, random events can be rejected.

  7. Nonlinear spectral imaging of biological tissues

    Science.gov (United States)

    Palero, J. A.

    2007-07-01

    The work presented in this thesis demonstrates live high resolution 3D imaging of tissue in its native state and environment. The nonlinear interaction between focussed femtosecond light pulses and the biological tissue results in the emission of natural autofluorescence and second-harmonic signal. Because biological intrinsic emission is generally very weak and extends from the ultraviolet to the visible spectral range, a broad-spectral range and high sensitivity 3D spectral imaging system is developed. Imaging the spectral characteristics of the biological intrinsic emission reveals the structure and biochemistry of the cells and extra-cellular components. By using different methods in visualizing the spectral images, discrimination between different tissue structures is achieved without the use of any stain or fluorescent label. For instance, RGB real color spectral images of the intrinsic emission of mouse skin tissues show blue cells, green hair follicles, and purple collagen fibers. The color signature of each tissue component is directly related to its characteristic emission spectrum. The results of this study show that skin tissue nonlinear intrinsic emission is mainly due to the autofluorescence of reduced nicotinamide adenine dinucleotide (phosphate), flavins, keratin, melanin, phospholipids, elastin and collagen and nonlinear Raman scattering and second-harmonic generation in Type I collagen. In vivo time-lapse spectral imaging is implemented to study metabolic changes in epidermal cells in tissues. Optical scattering in tissues, a key factor in determining the maximum achievable imaging depth, is also investigated in this work.

  8. Applied electromagnetic scattering theory

    CERN Document Server

    Osipov, Andrey A

    2017-01-01

    Besides classical applications (radar and stealth, antennas, microwave engineering), scattering and diffraction are enabling phenomena for some emerging research fields (artificial electromagnetic materials or metamaterials, terahertz technologies, electromagnetic aspects of nano-science). This book is a tutorial for advanced students who need to study diffraction theory. The textbook gives fundamental knowledge about scattering and diffraction of electromagnetic waves and provides some working examples of solutions for practical high-frequency scattering and diffraction problems. The book focuses on the most important diffraction effects and mechanisms influencing the scattering process and describes efficient and physically justified simulation methods - physical optics (PO) and the physical theory of diffraction (PTD) - applicable in typical remote sensing scenarios. The material is presented in a comprehensible and logical form, which relates the presented results to the basic principles of electromag...

  9. Modelling Hyperboloid Sound Scattering

    DEFF Research Database (Denmark)

    Burry, Jane; Davis, Daniel; Peters, Brady;

    2011-01-01

    The Responsive Acoustic Surfaces workshop project described here sought new understandings about the interaction between geometry and sound in the arena of sound scattering. This paper reports on the challenges associated with modelling, simulating, fabricating and measuring this phenomenon using...

  10. Elastic scattering of hadrons

    CERN Document Server

    Dremin, I M

    2012-01-01

    When colliding, the high energy hadrons can either produce new particles or scatter elastically without change of their quantum num- bers and other particles produced. Namely elastic scattering of hadrons is considered in this review paper. Even though the inelastic processes dominate at high energies, the elastic scattering constitutes the notice- able part of the total cross section ranging between 18 and 25% with some increase at higher energies. The scattering proceeds mostly at small angles and reveals peculiar dependences at larger angles disclos- ing the geometrical structure of the colliding particles and di?erent dynamical mechanisms. The fast decreasing Gaussian peak at small angles is followed by the exponential (Orear) regime with some shoul- ders and dips and then by the power-like decrease. Results of various theoretical approaches are compared with exper- imental data. Phenomenological models pretending to describe this process are reviewed. The unitarity condition requires the exponen- tial re...

  11. Environment scattering in GADRAS.

    Energy Technology Data Exchange (ETDEWEB)

    Thoreson, Gregory G.; Mitchell, Dean J; Theisen, Lisa Anne; Harding, Lee T.

    2013-09-01

    Radiation transport calculations were performed to compute the angular tallies for scattered gamma-rays as a function of distance, height, and environment. Greens Functions were then used to encapsulate the results a reusable transformation function. The calculations represent the transport of photons throughout scattering surfaces that surround sources and detectors, such as the ground and walls. Utilization of these calculations in GADRAS (Gamma Detector Response and Analysis Software) enables accurate computation of environmental scattering for a variety of environments and source configurations. This capability, which agrees well with numerous experimental benchmark measurements, is now deployed with GADRAS Version 18.2 as the basis for the computation of scattered radiation.

  12. Kinetic equation for nonlinear resonant wave-particle interaction

    Science.gov (United States)

    Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.

    2016-09-01

    We investigate the nonlinear resonant wave-particle interactions including the effects of particle (phase) trapping, detrapping, and scattering by high-amplitude coherent waves. After deriving the relationship between probability of trapping and velocity of particle drift induced by nonlinear scattering (phase bunching), we substitute this relation and other characteristic equations of wave-particle interaction into a kinetic equation for the particle distribution function. The final equation has the form of a Fokker-Planck equation with peculiar advection and collision terms. This equation fully describes the evolution of particle momentum distribution due to particle diffusion, nonlinear drift, and fast transport in phase-space via trapping. Solutions of the obtained kinetic equation are compared with results of test particle simulations.

  13. Nonlinear transmission of an intense terahertz field through monolayer graphene

    Directory of Open Access Journals (Sweden)

    H. A. Hafez

    2014-11-01

    Full Text Available We report nonlinear terahertz (THz effects in monolayer graphene, giving rise to transmission enhancement of a single-cycle THz pulse when the incident THz peak electric field is increased. This transmission enhancement is attributed to reduced photoconductivity, due to saturation effects in the field-induced current and increased intraband scattering rates arising from transient heating of electrons. We have developed a tight-binding model of the response using the length gauge interaction Hamiltonian that provides good qualitative agreement. The model fully accounts for the nonlinear response arising from the linear dispersion energy spectrum in graphene. The results reveal a strong dependence of the scattering time on the THz field, which is at the heart of the observed nonlinear response.

  14. Nonlinear Dirac Equations

    Directory of Open Access Journals (Sweden)

    Wei Khim Ng

    2009-02-01

    Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.

  15. Neutron scattering in dimers

    DEFF Research Database (Denmark)

    Gudel, H. U.; Furrer, A.; Kjems, Jørgen

    1986-01-01

    Insulating compounds containing dimers of transition metal and rare earth ions have been studied by inelastic neutron scattering (INS). Energy splittings can be directly determined, and the corresponding parameters are easily extracted from the experimental data. The intensities of dimer excitati......Insulating compounds containing dimers of transition metal and rare earth ions have been studied by inelastic neutron scattering (INS). Energy splittings can be directly determined, and the corresponding parameters are easily extracted from the experimental data. The intensities of dimer...

  16. Modified wave operators for nonlinear Schrodinger equations in one and two dimensions

    Directory of Open Access Journals (Sweden)

    Nakao Hayashi

    2004-04-01

    Full Text Available We study the asymptotic behavior of solutions, in particular the scattering theory, for the nonlinear Schr"{o}dinger equations with cubic and quadratic nonlinearities in one or two space dimensions. The nonlinearities are summation of gauge invariant term and non-gauge invariant terms. The scattering problem of these equations belongs to the long range case. We prove the existence of the modified wave operators to those equations for small final data. Our result is an improvement of the previous work [13

  17. Alpha resonant scattering for astrophysical reaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, H.; Kahl, D.; Nakao, T. [Center for Nuclear Study (CNS), University of Tokyo, RIKEN campus, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Wakabayashi, Y.; Kubano, S. [The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Hashimoto, T. [Research Center for Nuclear Physics (RCNP), Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Hayakawa, S. [Istituto Nazionale Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS), Via S. Sofia 62, 95125 Catania (Italy); Kawabata, T. [Department of Physics, Kyoto University, Kita-Shirakawa, Kyoto 606-8502 (Japan); Iwasa, N. [Department of Physics, Tohoku University, Aoba, Sendai, Miyagi 980-8578 (Japan); Teranishi, T. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Kwon, Y. K. [Institute for Basic Science, 70, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon 305-811 (Korea, Republic of); Binh, D. N. [30 MeV Cyclotron Center, Tran Hung Dao Hospital, Hoan Kiem District, Hanoi (Viet Nam); Khiem, L. H.; Duy, N. G. [Institute of Physics, Vietnam Academy of Science and Technology, 18 Hong Quoc Viet, Nghia do, Hanoi (Viet Nam)

    2014-05-02

    Several alpha-induced astrophysical reactions have been studied at CRIB (CNS Radioactive Ion Beam separator), which is a low-energy RI beam separator at Center for Nuclear Study (CNS) of the University of Tokyo. One of the methods to study them is the α resonant scattering using the thick-target method in inverse kinematics. Among the recent studies at CRIB, the measurement of {sup 7}Be+α resonant scattering is discussed. Based on the result of the experiment, we evaluated the contributions of high-lying resonances for the {sup 7}Be(α,γ) reaction, and proposed a new cluster band in {sup 11}C.

  18. Noninertial effects on nonrelativistic topological quantum scattering

    Science.gov (United States)

    Mota, H. F.; Bakke, K.

    2017-08-01

    We investigate noninertial effects on the scattering problem of a nonrelativistic particle in the cosmic string spacetime. By considering the nonrelativistic limit of the Dirac equation we are able to show, in the regime of small rotational frequencies, that the phase shift has two contribution: one related to the noninertial reference frame, and the other, due to the cosmic string conical topology. We also show that both the incident wave and the scattering amplitude are altered as a consequence of the noninertial reference frame and depend on the rotational frequency.

  19. HADRONIC SCATTERING IN THE COLOR GLASS CONDENSATE.

    Energy Technology Data Exchange (ETDEWEB)

    VENUGOPALAN, R.

    2005-05-15

    Multi-particle production in QCD is dominated by higher twist contributions. The operator product expansion is not very effective here because the number of relevant operators grow rapidly with increasing twist. The Color Glass Condensate (CGC) provides a framework in QCD to systematically discuss ''classical'' (multiple scattering) and ''quantum'' evolution (shadowing) effects in multi-particle production. The apparently insuperable problem of nucleus-nucleus scattering in QCD simplifies greatly in the CGC. A few examples are discussed with emphasis on open problems.

  20. Exploring lipids with nonlinear optical microscopy in multiple biological systems

    Science.gov (United States)

    Alfonso-Garcia, Alba

    Lipids are crucial biomolecules for the well being of humans. Altered lipid metabolism may give rise to a variety of diseases that affect organs from the cardiovascular to the central nervous system. A deeper understanding of lipid metabolic processes would spur medical research towards developing precise diagnostic tools, treatment methods, and preventive strategies for reducing the impact of lipid diseases. Lipid visualization remains a complex task because of the perturbative effect exerted by traditional biochemical assays and most fluorescence markers. Coherent Raman scattering (CRS) microscopy enables interrogation of biological samples with minimum disturbance, and is particularly well suited for label-free visualization of lipids, providing chemical specificity without compromising on spatial resolution. Hyperspectral imaging yields large datasets that benefit from tailored multivariate analysis. In this thesis, CRS microscopy was combined with Raman spectroscopy and other label-free nonlinear optical techniques to analyze lipid metabolism in multiple biological systems. We used nonlinear Raman techniques to characterize Meibum secretions in the progression of dry eye disease, where the lipid and protein contributions change in ratio and phase segregation. We employed similar tools to examine lipid droplets in mice livers aboard a spaceflight mission, which lose their retinol content contributing to the onset of nonalcoholic fatty-liver disease. We also focused on atherosclerosis, a disease that revolves around lipid-rich plaques in arterial walls. We examined the lipid content of macrophages, whose variable phenotype gives rise to contrasting healing and inflammatory activities. We also proposed new label-free markers, based on lifetime imaging, for macrophage phenotype, and to detect products of lipid oxidation. Cholesterol was also detected in hepatitis C virus infected cells, and in specific strains of age-related macular degeneration diseased cells by

  1. XXIII International Conference on Nonlinear Dynamics of Electronic Systems

    CERN Document Server

    Stoop, Ruedi; Stramaglia, Sebastiano

    2017-01-01

    This book collects contributions to the XXIII international conference “Nonlinear dynamics of electronic systems”. Topics range from non-linearity in electronic circuits to synchronisation effects in complex networks to biological systems, neural dynamics and the complex organisation of the brain. Resting on a solid mathematical basis, these investigations address highly interdisciplinary problems in physics, engineering, biology and biochemistry.

  2. Nonlinear Cross Gramians

    Science.gov (United States)

    Ionescu, Tudor C.; Scherpen, Jacquelien M. A.

    We study the notion of cross Gramians for nonlinear gradient systems, using the characterization in terms of prolongation and gradient extension associated to the system. The cross Gramian is given for the variational system associated to the original nonlinear gradient system. We obtain linearization results that correspond to the notion of a cross Gramian for symmetric linear systems. Furthermore, first steps towards relations with the singular value functions of the nonlinear Hankel operator are studied and yield promising results.

  3. Nonlinear functional analysis

    Directory of Open Access Journals (Sweden)

    W. L. Fouché

    1983-03-01

    Full Text Available In this article we discuss some aspects of nonlinear functional analysis. It included reviews of Banach’s contraction theorem, Schauder’s fixed point theorem, globalising techniques and applications of homotopy theory to nonlinear functional analysis. The author emphasises that fundamentally new ideas are required in order to achieve a better understanding of phenomena which contain both nonlinear and definite infinite dimensional features.

  4. Nonlinear Electrodynamics and QED

    OpenAIRE

    2003-01-01

    The limits of linear electrodynamics are reviewed, and possible directions of nonlinear extension are explored. The central theme is that the qualitative character of the empirical successes of quantum electrodynamics must be used as a guide for understanding the nature of the nonlinearity of electrodynamics at the subatomic level. Some established theories of nonlinear electrodynamics, namely, those of Mie, Born, and Infeld are presented in the language of the modern geometrical and topologi...

  5. Nonlinear Physics of Plasmas

    CERN Document Server

    Kono, Mitsuo

    2010-01-01

    A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.

  6. Nonlinear magnetic metamaterials.

    Science.gov (United States)

    Shadrivov, Ilya V; Kozyrev, Alexander B; van der Weide, Daniel W; Kivshar, Yuri S

    2008-12-08

    We study experimentally nonlinear tunable magnetic metamaterials operating at microwave frequencies. We fabricate the nonlinear metamaterial composed of double split-ring resonators where a varactor diode is introduced into each resonator so that the magnetic resonance can be tuned dynamically by varying the input power. We demonstrate that at higher powers the transmission of the metamaterial becomes power-dependent and, as a result, such metamaterial can demonstrate various nonlinear properties. In particular, we study experimentally the power-dependent shift of the transmission band and demonstrate nonlinearity-induced enhancement (or suppression) of wave transmission. (c) 2008 Optical Society of America

  7. Organic nonlinear optical materials

    Science.gov (United States)

    Umegaki, S.

    1987-01-01

    Recently, it became clear that organic compounds with delocalized pi electrons show a great nonlinear optical response. Especially, secondary nonlinear optical constants of more than 2 digits were often seen in the molecular level compared to the existing inorganic crystals such as LiNbO3. The crystallization was continuously tried. Organic nonlinear optical crystals have a new future as materials for use in the applied physics such as photomodulation, optical frequency transformation, opto-bistabilization, and phase conjugation optics. Organic nonlinear optical materials, e.g., urea, O2NC6H4NH2, I, II, are reviewed with 50 references.

  8. Nonlinearity-reduced interferometer

    Science.gov (United States)

    Wu, Chien-ming

    2007-12-01

    Periodic nonlinearity is a systematic error limiting the accuracy of displacement measurements at the nanometer level. It results from many causes such as the frequency mixing, polarization mixing, polarization-frequency mixing, and the ghost reflections. An interferometer having accuracy in displacement measurement of less than one-nanometer is necessary in nanometrology. To meet the requirement, the periodic nonlinearity should be less than deep sub-nanometer. In this paper, a nonlinearity-reduced interferometry has been proposed. Both the linear- and straightness-interferometer were tested. The developed interferometer demonstrated of a residual nonlinearity less than 25 pm.

  9. Optical Torque from Enhanced Scattering by Multipolar Plasmonic Resonance

    CERN Document Server

    Lee, Yoonkyung E; Jin, Dafei; Fang, Nicholas

    2014-01-01

    We present a theoretical study of the optical angular momentum transfer from a circularly polarized plane wave to thin metal nanoparticles of different rotational symmetries. While absorption has been regarded as the predominant mechanism of torque generation on the nanoscale, we demonstrate numerically how the contribution from scattering can be enhanced by using multipolar plasmon resonance. The multipolar modes in non-circular particles can convert the angular momentum carried by the scattered field, thereby producing scattering-dominant optical torque, while a circularly symmetric particle cannot. Our results show that the optical torque induced by resonant scattering can contribute to 80% of the total optical torque in gold particles. This scattering-dominant torque generation is extremely mode-specific, and deserves to be distinguished from the absorption-dominant mechanism. Our findings might have applications in optical manipulation on the nanoscale as well as new designs in plasmonics and metamateria...

  10. Measuring the Contribution of Atmospheric Scatter to Laser Eye Dazzle

    Science.gov (United States)

    2015-09-01

    Directorate, Bioeffects Division, Optical Radiation Bioeffects Branch, 4141 Petroleum Rd, JBSA Fort Sam Houston, Texas 78234-2644, USA 3Engility, 4141... Petroleum Rd, JBSA Fort Sam Houston, Texas 78234-2644, USA WAMRU-SA HJF, 4141 Petroleum Rd, JBSA Fort Sam Houston, Texas 78234-2644, USA ’Corresponding...Human Performance Wing Human Effectiveness Directorate Bioeffects Division Optical Radiation Bioeffects Branch TASC, Inc. 4141 Petroleum Rd

  11. Experimental study of multiple scattering in anisotropic titanium alloys

    Science.gov (United States)

    Baelde, Aurelien; Laurent, Jérôme; Coulette, Richard; Khalifa, Warida Ben; Duclos, Daniel; Jenson, Frédéric; Fink, Mathias; Prada, Claire

    2017-02-01

    Ultrasonic testing of jet engine titanium alloys is of high importance for the aircraft manufacturing industry. The quality of ultrasonic non-destructive testing is severely impacted by the titanium complex microstructure. These alloys have been extensively studied and single scattering models are now well known and implemented in ultrasonic propagation simulators. In addition, titanium billets and forged parts have been known to exhibit a highly anisotropic microstructure. We studied ultrasonic wave scattering in Ti17 forged disk, through statistical analysis of the backscattered noise generated by the microstructure. More specifically, we focused on the quantification of multiple scattering relative to single scattering in the backscattered wave. To that end, we used the full matrix capture acquisition with a linear transducer array. Two phenomena were used to quantify the proportion of single scattering with respect to multiple scattering. The first is the coherent backscattering effect, used as a binary indicator of multiple scattering. The second is a repurposed version of the multiple scattering filter, recently developed on random rod forest and applied on Inconel alloys. With these methods, significant level of multiple scattering was consistently measured in Ti17 forged disks, showing that ultrasonic testing could be enhanced by filtering the multiple scattering contribution.

  12. Strong Scattering of High Power Millimeter Waves in Tokamak Plasmas with Tearing Modes

    DEFF Research Database (Denmark)

    Westerhof, E.; Nielsen, Stefan Kragh; Oosterbeek, J.W.;

    2009-01-01

    In tokamak plasmas with a tearing mode, strong scattering of high power millimeter waves, as used for heating and noninductive current drive, is shown to occur. This new wave scattering phenomenon is shown to be related to the passage of the O point of a magnetic island through the high power...... heating beam. The density determines the detailed phasing of the scattered radiation relative to the O-point passage. The scattering power depends strongly nonlinearly on the heating beam power. ©2009 The American Physical Society...

  13. Medium corrections within a multiple scattering theory

    Energy Technology Data Exchange (ETDEWEB)

    Chinn, C.R. [Oak Ridge National Lab., TN (United States)]|[Vanderbilt Univ., Nashville, TN (United States); Elster, Ch.; Thaler, R.M.

    1993-04-01

    A systematic formalism to include the effects of the nuclear medium into a multiple scattering expansion is developed. Although the use of a free nucleon-nucleon (NN) t-matrix accounts in an impulse approximation for the short-range interaction between the projectile and a target nucleon, the influence of the interactions between this target nucleon on the rest of the nucleus is often ignored. In the first order Watson expansion such higher order effects arise from the difference between the free NN propagator and the propagator in the nuclear medium. A formal framework consistent with a multiple scattering expansion has been constructed to include these contributions by using a nuclear mean field potential. The application of this formalism to nucleon scattering from various nuclei employing different local and nonlocal Hartree-Fock mean field potentials will be discussed.

  14. Light-like Scattering in Quantum Gravity

    CERN Document Server

    Bjerrum-Bohr, N E J; Holstein, Barry R; Plante, Ludovic; Vanhove, Pierre

    2016-01-01

    We consider scattering in quantum gravity and derive long-range classical and quantum contributions to the scattering of light-like bosons and fermions (spin-0, spin-1/2, spin-1) from an external massive scalar field, such as the Sun or a black hole. This is achieved by treating general relativity as an effective field theory and identifying the non-analytic pieces of the one-loop gravitational scattering amplitude. It is emphasized throughout the paper how modern amplitude techniques, involving spinor-helicity variables, unitarity, and squaring relations in gravity enable much simplified computations. We directly verify, as predicted by general relativity, that all classical effects in our computation are universal (in the context of matter type and statistics). Using an eikonal procedure we confirm the post-Newtonian general relativity correction for light-like bending around large stellar objects. We also comment on treating effects from quantum hbar dependent terms using the same eikonal method.

  15. Peripheral scattering of nucleons by isoscalar targets

    Energy Technology Data Exchange (ETDEWEB)

    Higa, R. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica. Grupo de Fenomenologia de Particulas Elementares e Teoria Nuclear]. E-mail: higa@if.usp.br

    2001-07-01

    As is well known, the exchange of a single pion does not contribute to scattering of nucleons by isoscalar targets, since the pion is an isovector. This simple idea were employed in a recent work in order to probe the next layer of NN interaction and we showed that a clear dependence of phase shifts on the NN potential is obtained. As N{alpha} scattering data is still not free of ambiguity, few conclusions can be extracted. Motivated by more precise Nd scattering data recently available, we began a new study of Nd system. This give us more information about the intermediate region of NN potential, but first we need to study the techniques involved in extracting phase shifts and mixing parameters. (author)

  16. Light-like scattering in quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bjerrum-Bohr, N.E.J. [Niels Bohr International Academy & Discovery Center, Niels Bohr Institute,University of Copenhagen, Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark); Donoghue, John F. [Department of Physics-LGRT, University of Massachusetts,Amherst, MA, 01003 (United States); Holstein, Barry R. [Department of Physics-LGRT, University of Massachusetts,Amherst, MA, 01003 (United States); Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA, 93016 (United States); Planté, Ludovic; Vanhove, Pierre [CEA, DSM, Institut de Physique Théorique, IPhT, CNRS MPPU, URA2306,Saclay, Gif-sur-Yvette, F-91191 (France)

    2016-11-21

    We consider scattering in quantum gravity and derive long-range classical and quantum contributions to the scattering of light-like bosons and fermions (spin-0, spin-(1/2), spin-1) from an external massive scalar field, such as the Sun or a black hole. This is achieved by treating general relativity as an effective field theory and identifying the non-analytic pieces of the one-loop gravitational scattering amplitude. It is emphasized throughout the paper how modern amplitude techniques, involving spinor-helicity variables, unitarity, and squaring relations in gravity enable much simplified computations. We directly verify, as predicted by general relativity, that all classical effects in our computation are universal (in the context of matter type and statistics). Using an eikonal procedure we confirm the post-Newtonian general relativity correction for light-like bending around large stellar objects. We also comment on treating effects from quantum ℏ dependent terms using the same eikonal method.

  17. Light-like scattering in quantum gravity

    Science.gov (United States)

    Bjerrum-Bohr, N. E. J.; Donoghue, John F.; Holstein, Barry R.; Planté, Ludovic; Vanhove, Pierre

    2016-11-01

    We consider scattering in quantum gravity and derive long-range classical and quantum contributions to the scattering of light-like bosons and fermions (spin-0, spin- 1/2 , spin-1) from an external massive scalar field, such as the Sun or a black hole. This is achieved by treating general relativity as an effective field theory and identifying the non-analytic pieces of the one-loop gravitational scattering amplitude. It is emphasized throughout the paper how modern amplitude techniques, involving spinor-helicity variables, unitarity, and squaring relations in gravity enable much simplified computations. We directly verify, as predicted by general relativity, that all classical effects in our computation are universal (in the context of matter type and statistics). Using an eikonal procedure we confirm the post-Newtonian general relativity correction for light-like bending around large stellar objects. We also comment on treating effects from quantum ℏ dependent terms using the same eikonal method.

  18. Numerical Analysis of Nonlinear Rotor-bearing-seal System

    Institute of Scientific and Technical Information of China (English)

    CHENG Mei; MENG Guang; JING Jian-ping

    2008-01-01

    The system state trajectory, Poincaré maps, largest Lyapunov exponents, frequency spectra and bifurcation diagrams were used to investigate the non-linear dynamic behaviors of a rotor-bearing-seal coupled system and to analyze the influence of the seal and bearing on the nonlinear characteristics of the rotor system. Various nonlinear phenomena in the rotor-bearing-seal system, such as periodic motion, double-periodicmotion, multi-periodic motion and quasi-periodic motion were investigated. The results may contribute to a further understanding of the non-linear dynamics of the rotor-bearing-seal coupled system.

  19. Robust stabilization of general nonlinear systems with structural uncertainty

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper deals with the robust stabilization and passivity of general nonlinear systems with structural uncertainty. By using Lyapunov function, it verifies that under some conditions the robust passivity implies the zero-state detectability, Furthermore, it also implies the robust stabilization for such nonlinear systems. We then establish a stabilization method for the nonlinear systems with structural uncertainty. The smooth state feedback law can be constructed with the solution of an equation. Finally, it is worth noting that the main contribution of the paper establishes the relation between robust passivity and feedback stabilization for the general nonlinear systems with structural uncertainty. The simulation shows the effectiveness of the method.

  20. Scaling up Echo-State Networks with multiple light scattering

    CERN Document Server

    Dong, Jonathan; Krzakala, Florent; Wainrib, Gilles

    2016-01-01

    Echo-State Networks and Reservoir Computing have been studied for more than a decade. As they provide an elegant yet powerful alternative to traditional computing, researchers have tried to implement them using physical systems, in particular non-linear optical elements, achieving high bandwidth and low power consumption. Here we present a completely different optical implementation of Echo-State Networks using light-scattering materials. As a proof of concept, binary networks have been successfully trained to perform non-linear operations on time series and memory of such networks has been evaluated. This new method is fast, power efficient and easily scalable to very large networks.