Nonlinearity-reduced interferometer
Wu, Chien-ming
2007-12-01
Periodic nonlinearity is a systematic error limiting the accuracy of displacement measurements at the nanometer level. It results from many causes such as the frequency mixing, polarization mixing, polarization-frequency mixing, and the ghost reflections. An interferometer having accuracy in displacement measurement of less than one-nanometer is necessary in nanometrology. To meet the requirement, the periodic nonlinearity should be less than deep sub-nanometer. In this paper, a nonlinearity-reduced interferometry has been proposed. Both the linear- and straightness-interferometer were tested. The developed interferometer demonstrated of a residual nonlinearity less than 25 pm.
Nonlinear Michelson interferometer for improved quantum metrology
Luis, Alfredo; Rivas, Ángel
2015-08-01
We examine quantum detection via a Michelson interferometer embedded in a gas with Kerr nonlinearity. This nonlinear interferometer is illuminated by pulses of classical light. This strategy combines the robustness against practical imperfections of classical light with the improvement provided by nonlinear processes. Regarding ultimate quantum limits, we stress that, as a difference with linear schemes, the nonlinearity introduces pulse duration as a new variable into play along with the energy resources.
Nonlinear Michelson interferometer for improved quantum metrology
Luis Aina, Alfredo; Rivas Vargas, Ángel
2015-01-01
We examine quantum detection via a Michelson interferometer embedded in a gas with Kerr nonlinearity. This nonlinear interferometer is illuminated by pulses of classical light. This strategy combines the robustness against practical imperfections of classical light with the improvement provided by nonlinear processes. Regarding ultimate quantum limits, we stress that, as a difference with linear schemes, the nonlinearity introduces pulse duration as a new variable into play along with the ene...
Naturally stable Sagnac-Michelson nonlinear interferometer
Lukens, Joseph M.; Peters, Nicholas A.; Pooser, Raphael C.
2016-12-01
Interferometers measure a wide variety of dynamic processes by converting a phase change into an intensity change. Nonlinear interferometers, making use of nonlinear media in lieu of beamsplitters, promise substantial improvement in the quest to reach the ultimate sensitivity limits. Here we demonstrate a new nonlinear interferometer utilizing a single parametric amplifier for mode mixing---conceptually, a nonlinear version of the conventional Michelson interferometer with its arms collapsed together. We observe up to 99.9\\% interference visibility and find evidence for noise reduction based on phase-sensitive gain. Our configuration utilizes fewer components than previous demonstrations and requires no active stabilization, offering new capabilities for practical nonlinear interferometric-based sensors.
A naturally stable Sagnac-Michelson nonlinear interferometer
Lukens, Joseph M.; Peters, Nicholas A.; Pooser, Raphael C.
2016-01-01
Interferometers measure a wide variety of dynamic processes by converting a phase change into an intensity change. Nonlinear interferometers, making use of nonlinear media in lieu of beamsplitters, promise substantial improvement in the quest to reach the ultimate sensitivity limits. Here we demonstrate a new nonlinear interferometer utilizing a single parametric amplifier for mode mixing---conceptually, a nonlinear version of the conventional Michelson interferometer with its arms collapsed ...
An all-optical switch of Mach-Zehnder interferometer type using an active fibre ring resonator
Institute of Scientific and Technical Information of China (English)
Li Jun-Qing; Alireza Bananej; Li Qiang-Hua; Chen Qiang; Li Chun-Fei
2004-01-01
We propose an all-optical switch of the Mach-Zehnder interferometer type using an active nonlinear ring resonatorand analyse the significance of the parameter A, a product of gain and total loss, for performing an ideal 1 by 2switch. We found that in the range of 1 - κ≤ A ≤√/1 - k, the increment of A can compensate the losses insidethe ring, therefore increase the finesse of the ring and enhance the nonlinearity contribution to reduce the switchingpower threshold effectively. We also emphasize the importance of the initial switching point and discuss the feasibilityof utilizing a high-nonlinear fibre in the ring.
A naturally stable Sagnac-Michelson nonlinear interferometer
Lukens, Joseph M; Pooser, Raphael C
2016-01-01
Interferometers measure a wide variety of dynamic processes by converting a phase change into an intensity change. Nonlinear interferometers, making use of nonlinear media in lieu of beamsplitters, promise substantial improvement in the quest to reach the ultimate sensitivity limits. Here we demonstrate a new nonlinear interferometer utilizing a single parametric amplifier for mode mixing---conceptually, a nonlinear version of the conventional Michelson interferometer with its arms collapsed together. We observe up to 99.9\\% interference visibility and find evidence for noise reduction based on phase-sensitive gain. Our configuration utilizes fewer components than previous demonstrations and requires no active stabilization, offering new capabilities for practical nonlinear interferometric-based sensors.
Nanoscale nonlinear PANDA ring resonator
Yupapin, Preecha
2012-01-01
Microring/nanoring resonator is an interesting device that has been widely studied and investigated by researchers from a variety of specializations. This book begins with the basic background of linear and nonlinear ring resonators. A novel design of nano device known as a PANDA ring resonator is proposed. The use of the device in the form of a PANDA in applications such as nanoelectronics, measurement, communication, sensors, optical and quantum computing, drug delivery, hybrid transistor and a new concept of electron-hole pair is discussed in detail.
Ultra-sensitive atomic spin measurements with a nonlinear interferometer
Sewell, R J; Behbood, N; Colangelo, G; Ciurana, F Martin; Mitchell, M W
2013-01-01
Quantum metrology studies and improves quantum-limited ultra-sensitive measurements. Both linear interferometers, e.g. gravitational wave observatories, and nonlinear interferometers, e.g. optical magnetometers, have been enhanced by quantum metrology. The sensitivities of nonlinear interferometers scale better with system size than even quantum-enhanced linear interferometers, so-called `super-Heisenberg scaling', but it is actively debated whether this scaling can lead to better absolute sensitivity. Here we demonstrate a nonlinear measurement that surpasses, through super-Heisenberg scaling, the best possible linear measurement of the same quantity. We use alignment-to-orientation conversion, a practical magnetometry technique, to make a quantum non-demolition measurement of the spin alignment of a sample of $^{87}$Rb atoms. We observe absolute sensitivity 9 dB beyond the best comparable linear measurement and measurement-induced spin squeezing. The results provide insight into ultra-sensitive magnetometer...
Switching behaviour of a nonlinear Mach–Zehnder interferometer
Indian Academy of Sciences (India)
Arpita Srivastava; Punya Prasanna Paltani; S Medhekar
2010-04-01
In the present paper, a detailed investigation on the switching behaviour of a nonlinear Mach–Zehnder interferometer (NMZI) has been carried out using beam propagation method (BPM). A thorough investigation on input vs. output characteristic has been carried out by varying different parameters like length of the arms, refractive index of the linear/nonlinear arm, wavelength of the input beams and nonlinear coefficient of the material of the nonlinear arm. The input vs. output characteristic has also been investigated by shifting the balance point of the NMZI. The present paper provides a physically intuitive understanding of the effect of change in different parameters of the NMZI on its switching behaviour.
Nonlinear analysis of ring oscillator circuits
Ge, Xiaoqing
2010-06-01
Using nonlinear systems techniques, we analyze the stability properties and synchronization conditions for ring oscillator circuits, which are essential building blocks in digital systems. By making use of its cyclic structure, we investigate local and global stability properties of an n-stage ring oscillator. We present a sufficient condition for global asymptotic stability of the origin and obtain necessity if the ring oscillator consists of identical inverter elements. We then give a synchronization condition for identical interconnected ring oscillators.
Ring vortex solitons in nonlocal nonlinear media
DEFF Research Database (Denmark)
Briedis, D.; Petersen, D.E.; Edmundson, D.;
2005-01-01
or higher charge fundamental vortices as well as higher order (multiple ring) vortex solitons. Our results pave the way for experimental observation of stable vortex rings in other nonlocal nonlinear systems including Bose-Einstein condensates with pronounced long-range interparticle interaction....
On the nonlinear modeling of ring oscillators
Elwakil, Ahmed S.
2009-06-01
We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.
Avron, Joseph; Kenneth, Oded
2016-12-01
We derive the relativistically exact eikonal equation for ring interferometers undergoing deformation. For ring interferometers that undergo slow deformation we describe the two leading terms in the adiabatic expansion of the phase shift. The leading term is independent of the refraction index n and is given by a line integral generalizing results going back to Sagnac for nondeforming interferometers to all orders in β =|v |/c . In the nonrelativistic limit this term is O (β ) . The next term in the adiabaticity has the form of a double integral, it is of order β0 and depends on the refractive index n . It accounts for nonreciprocity due to changing circumstances in the fiber. The adiabatic correction is often comparable to the Sagnac term. In particular, this is the case in Fizeau's interferometer. Besides providing a mathematical framework that puts all ring interferometers under a single umbrella, our results strengthen earlier results and generalize them to fibers with chromatic dispersion.
Tunable bistability and asymmetric line shape in ring cavity-coupled Michelson interferometer
Li, Li; Zhang, Xinlu; Chen, Lixue
2008-01-01
A novel configuration of ring cavity-coupled Michelson interferometer is proposed to create sharp asymmetric multiple-resonance line shape, in which a ring cavity is side-coupled to one arm and a phase shifter is introduced into the other arm for static phase compensation. Such asymmetric line shape allows the tuning of the system between zero and complete transmission, with a phase offset much narrower than the full width of the cavity resonance itself. As tuning between resonance peak and notch of such asymmetric profile, optical transmission becomes much more sensitive to the round-trip phase shift of ring cavity than that in the case of symmetric Lorentzian line shape. By cooperating Kerr nonlinearity and cavity feedback, novel hysteresis loops and intrinsic bistability are achievable by adjusting incident power. The shapes of hysteresis curves associated with asymmetric resonance line shape are different from those arising from symmetric line shape. By adjusting the static phase compensation of phase shifter, tunable hysteresis loop and asymmetric multiple-resonance transmission can be easy performed. The simply constructed device is a good reference for sensitive optical switch, filter and sensor.
Hu, Juju; Hu, Haijiang; Ji, Yinghua
2010-03-15
Periodic nonlinearity that ranges from tens of nanometers to a few nanometers in heterodyne interferometer limits its use in high accuracy measurement. A novel method is studied to detect the nonlinearity errors based on the electrical subdivision and the analysis method of statistical signal in heterodyne Michelson interferometer. Under the movement of micropositioning platform with the uniform velocity, the method can detect the nonlinearity errors by using the regression analysis and Jackknife estimation. Based on the analysis of the simulations, the method can estimate the influence of nonlinearity errors and other noises for the dimensions measurement in heterodyne Michelson interferometer.
Ramette, Joshua; Kasprzack, Marie; Brooks, Aidan; Blair, Carl; Wang, Haoyu; Heintze, Matthew
2016-04-01
Advanced laser interferometer gravitational-wave detectors use high laser power to achieve design sensitivity. A small part of this power is absorbed in the interferometer cavity mirrors where it creates thermal lenses, causing aberrations in the main laser beam that must be minimized by the actuation of "ring heaters," which are additional heater elements that are aimed to reduce the temperature gradients in the mirrors. In this article we derive the first, to the best of our knowledge, analytical model of the temperature field generated by an ideal ring heater. We express the resulting optical aberration contribution to the main laser beam in this axisymmetric case. Used in conjunction with wavefront measurements, our model provides a more complete understanding of the thermal state of the cavity mirrors and will allow a more efficient use of the ring heaters in the Advanced Laser Interferometer Gravitational-wave Observatory.
Energy Technology Data Exchange (ETDEWEB)
Venediktov, V Yu [Department of Physics, St. Petersburg State University, St. Petersburg (Russian Federation); Filatov, Yu V; Shalymov, E V [St. Petersburg Electrotechnical University " LETI" , St. Petersburg (Russian Federation)
2014-12-31
The prototype schemes of a microoptical gyroscope (MOG) developed to date on the basis of passive ring cavities imply the use of the amplitude characteristic only, since they operate using the dip in the transmission coefficient. We have analysed the possibility of creating a MOG, in which the phase characteristic is used as well. The phase characteristic of a ring interferometer has distinctive features in the vicinity of the cavity eigenfrequencies, which may be used to determine the angular velocity. A method for the angular velocity determination using both the phase and the amplitude characteristics of the interferometer is considered. (laser gyroscopes)
Non-Linear Dynamics of Saturn's Rings
Esposito, L. W.
2015-12-01
Non-linear processes can explain why Saturn's rings are so active and dynamic. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average: 2-10x is possible. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like 'straw' that can explain the halo structure and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; Surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km); We propose 'straw', as observed ny Cassini cameras. Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing. Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn's rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. This confirms the triple architecture of ring particles: a broad size distribution of particles; these aggregate into temporary rubble piles; coated by a regolith of dust. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from
Refractive Index Sensing Using a Three-Port Interferometer and Comparison with Ring Resonators
Gulik, R.J.J. van; Boer, B.M. de; Harmsma, P.J.
2017-01-01
In this paper, we compare ring resonator and three-port Mach-Zehnder Interferometer (MZI) devices fabricated on silicon-on-insulator for the purpose of refractive index sensing. Their respective sensitivities and limits of detection (LOD) were determined with NaCl solutions. A sensitivity of 113.07
Avron, Joseph
2016-01-01
We derive the relativistically exact Eikonal equation for ring interferometers undergoing adiabatic deformations. The leading term in the adiabatic expansion of the phase shift is independent of the refraction index $n$ and is given by a line integral generalizing results going back to Sagnac to all orders in $\\beta$. The next term in the adiabaticity is of lower order in $\\beta$ and may be as important as the first in nonrelativistic cases. This term is proportional to $n^2$ and has the form of a double integral. It generalizes previous results to fibers with chromatic dispersion and puts Sagnac and Fizeau interferometers under a single umbrella.
Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA.
Kravtsov, Konstantin; Prucnal, Paul R; Bubnov, Mikhail M
2007-10-01
We present an experimental demonstration of an ultrafast all-optical thresholder based on a nonlinear Sagnac interferometer. The proposed design is intended for operation at very small nonlinear phase shifts. Therefore, it requires an in-loop nonlinearity lower than for the classical nonlinear loop mirror scheme. Only 15 meters of conventional (non-holey) silica-based fiber is used as a nonlinear element. The proposed thresholder is polarization insensitive and is good for multi-wavelength operation, meeting all the requirements for autocorrelation detection in various optical CDMA communication systems. The observed cubic transfer function is superior to the quadratic transfer function of second harmonic generation-based thresholders.
Erbium-doped CW and Q-switched fiber ring laser with fiber grating Michelson interferometer
Institute of Scientific and Technical Information of China (English)
Anting Wang(王安廷); Meishu Xing(邢美术); Hai Ming(明海); Jianping Xie(谢建平); Lixin Xu(许立新); Wencai Huang(黄文财); Liang Lü(吕亮); Xiyao Chen(陈曦曜); Feng Li(李锋); Yunxia Wu(吴云霞)
2003-01-01
The band-pass characteristic of fiber grating Michelson interferometer is analyzed, which acts as both band-pass filter and Q-switch. An erbium-doped fiber ring laser based on fiber grating Michelson interferometer is implemented for producing single longitudinal mode CW operation with 5 MHz spectral linewidth and up to 6 mW output power. In Q-switched operation, stable fiber laser output pulses with repetition rate of 800 Hz, pulse width of 0.6μs, average power of 1.8 mW and peak power of 3.4 W are demonstrated. The peak power and average power of the Q-switched pulses are varied with the repetition rate.
Erbium-doped CW and Q-switched fiber ring laser with fiber grating Michelson interferometer
Wang, Anting; Ming, Hai; Xie, Jianping; Xu, Lixin; Huang, Wencai; Lv, Liang; Chen, Xiyao; Li, Feng; Wu, Yunxia; Xing, Meishu
2003-01-01
The band-pass characteristic of fiber grating Michelson interferometer is analyzed, which acts as both band-pass filter and Q-switch. An erbium-doped fiber ring laser based on fiber grating Michelson interferometer is implemented for producing single longitudinal mode CW operation with 5 MHz spectral linewidth and up to 6 mW output power. In Q-switched operation, stable fiber laser output pulses with repetition rate of 800 Hz, pulse width of 0.6 ?s, average power of 1.8 mW and peak power of 3.4 W are demonstrated. The peak power and average power of the Q-switched pulses are varied with the repetitionrate.
Nonlinear interferometer for tailoring the frequency spectrum of bright squeezed vacuum
Iskhakov, T Sh; Perez, A; Boyd, R W; Leuchs, G; Chekhova, M
2015-01-01
We propose a method for tailoring the frequency spectrum of bright squeezed vacuum by generating it in a nonlinear interferometer, consisting of two down-converting nonlinear crystals separated by a dispersive medium. Due to a faster dispersive spreading of higher-order Schmidt modes, the spectral width of the radiation at the output is reduced as the length of the dispersive medium is increased. Preliminary results show 30\\% spectral narrowing.
A versatile all-optical modulator based on nonlinear Mach-Zehnder interferometers
Krijnen, G.J.M.; Villeneuve, A.; Stegeman, G.I.; Lambeck, P.V.; Hoekstra, H.J.W.M.
1994-01-01
A device based on a Nonlinear Mach-Zehnder interferometer (NMI) which exploits cross-phase modulation of two co-propagating modes in bimodal branches has been described in this paper. The advantage of this device is that it becomes polarisation independent while keeping phase insensitive by using di
Aharonov-Casher Effect in Bi2Se3 Square-Ring Interferometers
Qu, Fanming; Yang, Fan; Chen, Jun; Shen, Jie; Ding, Yue; Lu, Jiangbo; Song, Yuanjun; Yang, Huaixin; Liu, Guangtong; Fan, Jie; Li, Yongqing; Ji, Zhongqing; Yang, Changli; Lu, Li
2011-07-01
Electrical control of spin dynamics in Bi2Se3 was investigated in ring-type interferometers. Aharonov-Bohm and Altshuler-Aronov-Spivak resistance oscillations against a magnetic field, and Aharonov-Casher resistance oscillations against the gate voltage were observed in the presence of a Berry phase of π. A very large tunability of spin precession angle by the gate voltage has been obtained, indicating that Bi2Se3-related materials with strong spin-orbit coupling are promising candidates for constructing novel spintronic devices.
Jiang, Xianxin; Tang, Longhua; Song, Jinyan; Li, Mingyu; He, Jian-Jun
2014-03-01
Optical waveguide biosensors based on silicon-on-insulator (SOI) have been extensively investigated owing to its various advantages and many potential applications. In this article, we demonstrate a novel highly sensitive biosensor based on cascaded Mach-Zehnder interferometer (MZI) and ring resonator with the Vernier effect using wavelength interrogation. The experimental results show that the sensitivity reached 1,960 nm/RIU and 19,100 nm/RIU for sensors based on MZI alone and cascaded MZI-ring with Vernier effect, respectively. A biosensing application was also demonstrated by monitoring the interaction between goat and antigoat immunoglobulin G (IgG) pairs. This integrated high sensitivity biosensor has great potential for medical diagnostic applications.
Cui, Junning; He, Zhangqiang; Jiu, Yuanwei; Tan, Jiubin; Sun, Tao
2016-09-01
The demand for minimal cyclic nonlinearity error in laser interferometry is increasing as a result of advanced scientific research projects. Research shows that the quadrature phase error is the main effect that introduces cyclic nonlinearity error, and polarization-mixing cross talk during beam splitting is the main error source that causes the quadrature phase error. In this paper, a new homodyne quadrature laser interferometer configuration based on nonpolarization beam splitting and balanced interference between two circularly polarized laser beams is proposed. Theoretical modeling indicates that the polarization-mixing cross talk is elaborately avoided through nonpolarizing and Wollaston beam splitting, with a minimum number of quadrature phase error sources involved. Experimental results show that the cyclic nonlinearity error of the interferometer is up to 0.6 nm (peak-to-valley value) without any correction and can be further suppressed to 0.2 nm with a simple gain and offset correction method.
Kleinert, Anne
2006-01-20
The detectors used in the cryogenic limb-emission sounder MIPAS-B2 (Michelson Interferometer for Passive Atmospheric Sounding) show a nonlinear response, which leads to radiometric errors in the calibrated spectra if the nonlinearity is not taken into account. In the case of emission measurements, the dominant error that arises from the nonlinearity is the changing detector responsivity as the incident photon load changes. The effect of the distortion of a single interferogram can be neglected. A method to characterize the variable responsivity and to correct for this effect is proposed. Furthermore, a detailed error estimation is presented.
Nonlinear Sagnac interferometer based on the four-wave mixing process.
Xin, Jun; Liu, Jinming; Jing, Jietai
2017-01-23
A new nonlinear Sagnac interferometer (NSI) is proposed by replacing the beam-splitter in the traditional Sagnac interferometer (TSI) with a four-wave mixing process. Such a NSI has better angular velocity sensitivity than the one of the TSI. The standard quantum limit can be beaten and the Heisenberg Limit can even be reached for the ideal case by the NSI. We study the effect of the losses on the angular velocity sensitivity of the NSI and find that the optimal angular velocity, where the best angular velocity sensitivity can be obtained, of the NSI may be dependent on the losses inside the interferometer. Such a NSI has its advantages compared with the TSI and may find its potential applications in quantum metrology.
Switching behaviour of nonlinear Mach–Zehnder interferometer based on photonic crystal geometry
Indian Academy of Sciences (India)
Man Mohan Gupta; S Medhekar
2014-06-01
Nonlinear Mach–Zehnder interferometer (NMZI) created with photonic crystal waveguides (PCW) and with Kerr-type nonlinearity has been investigated in this paper. The NMZI has been simulated using two-dimensional finite difference time domain (2D-FDTD) method. Input verses output (I/O) characteristics have been obtained for different lengths of the nonlinear arm, nonlinear coefficients of the nonlinear arm, wavelengths of the input beam, sizes of defect rods and NMZI offset. The results obtained are compared with earlier published results of NMZI created with conventional step index waveguides (SIW). It is shown that all useful features of light switching offered by SIW-based NMZIs are also possible with PCW-based NMZIs of extremely small dimensions. Moreover, PCW-based NMZIs offer additional useful feature not available with SIW-based NMZIs.
Roy, Vincent; Piche, Michel; Babin, Francois; Schinn, Gregory W.
2000-12-01
The coherence properties of a widely tunable, multilongitudinal-mode erbium-doped fiber ring laser are investigated by means of an extremely long-arm scanning Michelson interferometer. A return of the coherence is observed at each integer multiple ofthe cavity length with a slowly decaying envelope over several kilometres.
A Fabry-Perot interferometer with quantum mirrors: nonlinear light transport and rectification
Fratini, F; Safari, L; Poizat, J-Ph; Valente, D; Auffèves, A; Gerace, D; Santos, M F
2014-01-01
Optical transport represents a natural route towards fast communications, and it is currently used in large scale data transfer. The progressive miniaturization of devices for information processing calls for the microscopic tailoring of light transport and confinement at length scales appropriate for the upcoming technologies. With this goal in mind, we present a theoretical analysis of a one-dimensional Fabry-Perot interferometer built with two highly saturable nonlinear mirrors: a pair of two-level systems. Our approach captures non-linear and non-reciprocal effects of light transport that were not reported previously. Remarkably, we show that such an elementary device can operate as a microscopic integrated optical rectifier.
Hamiltonian theory of nonlinear waves in planetary rings
Stewart, G. R.
1987-01-01
The derivation of a Hamiltonian field theory for nonlinear density waves in Saturn's rings is discussed. Starting with a Hamiltonian for a discrete system of gravitating streamlines, an averaged Hamiltonian is obtained by successive applications of Lie transforms. The transformation may be carried out to any desired order in q, where q is the nonlinearity parameter defined in the work of Shu, et al (1985) and Borderies et al (1985). Subsequent application of the Wentzel-Kramer-Brillouin Method approximation yields an asymptotic field Hamiltonian. Both the nonlinear dispersion relation and the wave action transport equation are easily derived from the corresponding Lagrangian by the standard variational principle.
Coriolis effects on nonlinear oscillations of rotating cylinders and rings
Padovan, J.
1976-01-01
The effects which moderately large deflections have on the frequency spectrum of rotating rings and cylinders are considered. To develop the requisite solution, a variationally constrained version of the Lindstedt-Poincare procedure is employed. Based on the solution developed, in addition to considering the effects of displacement induced nonlinearity, the role of Coriolis forces is also given special consideration.
A multi-wavelength erbium-doped fiber ring laser using an intrinsic Fabry-Perot interferometer
Jauregui-Vazquez, D.; Rojas-Laguna, R.; Estudillo-Ayala, J. M.; Hernandez-Garcia, J. C.; Lopez-Dieguez, Y.; Sierra-Hernandez, J. M.
2016-10-01
In this experimental paper, a multi-wavelength erbium-doped ring fiber laser based on an all fiber intrinsic Fabry-Perot interferometer is presented and demonstrated. The interferometer was fabricated by an arc and splicing technique using hollow core photonic crystal fiber (HCPCF) and conventional single mode fiber (SMF28). The fiber laser can be operated in single, dual and triple lasing mode by applying a transversal load over the all fiber interferometer. The laser spectrums present minimal mode spacing of 1 nm, high wavelength stability and power fluctuations around 0.5 dB. The average signal to noise ratio (SNR) of the laser emissions spectrum is around 35 dB. This fiber laser offers low cost, compactness and high wavelength stability.
Non-Linear Dynamics of Saturn’s Rings
Esposito, Larry W.
2015-11-01
Non-linear processes can explain why Saturn’s rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states.Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit.Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like ‘straw’ that can explain the halo structure and spectroscopy: This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn’s rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects
Ma, Mingxiang; Hu, Zhengliang; Xu, Pan; Wang, Wei; Hu, Yongming
2012-10-20
A method of detecting mode hopping for single-longitudinal-mode (SLM) fiber ring lasers has been proposed and experimentally demonstrated. The method that is based on an unbalanced Michelson interferometer (MI) utilizing phase generated carrier modulation instantly transforms mode-hopping dynamics into steep phase changes of the interferometer. Multiform mode hops in an SLM erbium-doped fiber ring laser with an 18.6 MHz mode spacing have been detected exactly in real-time domain and discussed in detail. Numerical results show that the MI-based method has a high testing sensitivity for identifying mode hopping, which will play a significant role in evaluating the output stability of SLM fiber lasers.
Zhang, Hao; Chen, Jiayang; Jin, Junjie; Lin, Jian; Zhao, Long; Bi, Zhuanfang; Huang, Anping; Xiao, Zhisong
2016-01-01
An improving structure for resonance optical gyro inserting a Mach-Zehnder Interferomete (MZI) into coupler region between ring resonator and straight waveguide was proposed. The different reference phase shift parameters in the MZI arms are tunable by thermo-optic effect and can be optimized at every rotation angular rate point without additional phase bias. Four optimum paths are formed to make the gyroscope to work always at the highest sensitivity.
Institute of Scientific and Technical Information of China (English)
Fufei Pang; Xiuyou Han; Haiwen Cai; Ronghui Qu; Zujie Fang
2005-01-01
@@ A planar lightwave circuit (PLC) add-drop filter is proposed and analyzed, which consists of a symmetric Mach-Zehnder interferometer (MZI) combined with double microring resonators. A critical coupling condition is derived for a better box-like drop spectrum. Comparisons of its characteristics with other schemes,such as a MZI with a single ring resonator, are presented, and some of the issues about device design and fabrication are also discussed.
Tackling excess noise from bilinear and nonlinear couplings in gravitational-wave interferometers
Bose, Sukanta; Mazumder, Nairwita; Dhurandhar, Sanjeev; Gupta, Anuradha; Lundgren, Andrew
2016-01-01
We describe a tool we improved to detect excess noise in the gravitational wave (GW) channel arising from its bilinear or nonlinear coupling with fluctuations of various components of a GW interferometer and its environment. We also describe a higher-order statistics tool we developed to characterize these couplings, e.g., by unraveling the frequencies of the fluctuations contributing to such noise, and demonstrate its utility by applying it to understand nonlinear couplings in Advanced LIGO engineering data. Once such noise is detected, it is highly desirable to remove it or correct for it. Such action in the past has been shown to improve the sensitivity of the instrument in searches of astrophysical signals. If this is not possible, then steps must be taken to mitigate its influence, e.g., by characterizing its effect on astrophysical searches. We illustrate this through a study of the effect of transient sine-Gaussian noise artifacts on a compact binary coalescence template bank.
Vortices and ring dark solitons in nonlinear amplifying waveguides
Zhang, Jie-Fang; Li, Lu; Mihalache, Dumitru; Malomed, Boris A
2010-01-01
We consider the generation and propagation of (2+1)-dimensional beams in a nonlinear waveguide with the linear gain. Simple self-similar evolution of the beams is achieved at the asymptotic stage, if the input beams represent the fundamental mode. On the contrary, if they carry vorticity or amplitude nodes (or phase slips), vortex tori and ring dark solitons (RDSs) are generated, featuring another type of the self-similar evolution, with an exponentially shrinking vortex core or notch of the RDS. Numerical and analytical considerations reveal that these self-similar structures are robust entities in amplifying waveguides, being \\emph{stable} against azimuthal perturbations.
Dynamic nonlinear thermal optical effects in coupled ring resonators
Directory of Open Access Journals (Sweden)
Chenguang Huang
2012-09-01
Full Text Available We investigate the dynamic nonlinear thermal optical effects in a photonic system of two coupled ring resonators. A bus waveguide is used to couple light in and out of one of the coupled resonators. Based on the coupling from the bus to the resonator, the coupling between the resonators and the intrinsic loss of each individual resonator, the system transmission spectrum can be classified by three different categories: coupled-resonator-induced absorption, coupled-resonator-induced transparency and over coupled resonance splitting. Dynamic thermal optical effects due to linear absorption have been analyzed for each category as a function of the input power. The heat power in each resonator determines the thermal dynamics in this coupled resonator system. Multiple “shark fins” and power competition between resonators can be foreseen. Also, the nonlinear absorption induced thermal effects have been discussed.
Aharonov-Casher effect in Bi$_{\\rm 2}$Se$_{\\rm 3}$ square-ring interferometers
Qu, Fanming; Yang, Fan; Chen, Jun; Shen, Jie; Ding, Yue; Lu, Jiangbo; Song, Yuanjun; Yang, Huaixin; Liu, Guangtong; Fan, Jie; Li, Yongqing; Ji, Zhongqing; Yang, Changli; Lu, Li
2011-01-01
Electrical control of spin dynamics in Bi$_{\\rm 2}$Se$_{\\rm 3}$ was investigated in ring-type interferometers. Aharonov-Bohm and Altshuler-Aronov-Spivak resistance oscillations against magnetic field, and Aharorov-Casher resistance oscillations against gate voltage were observed in the presence of a Berry phase of $\\pi$. A very large tunability of spin precession angle by gate voltage has been obtained, indicating that Bi$_{\\rm 2}$Se$_{\\rm 3}$-related materials with strong spin-orbit coupling...
Huttner, S. H.; Danilishin, S. L.; Barr, B. W.; Bell, A. S.; Gräf, C.; Hennig, J. S.; Hild, S.; Houston, E. A.; Leavey, S. S.; Pascucci, D.; Sorazu, B.; Spencer, A. P.; Steinlechner, S.; Wright, J. L.; Zhang, T.; Strain, K. A.
2017-01-01
Speedmeters are known to be quantum non-demolition devices and, by potentially providing sensitivity beyond the standard quantum limit, become interesting for third generation gravitational wave detectors. Here we introduce a new configuration, the sloshing-Sagnac interferometer, and compare it to the more established ring-Sagnac interferometer. The sloshing-Sagnac interferometer is designed to provide improved quantum noise limited sensitivity and lower coating thermal noise than standard position meter interferometers employed in current gravitational wave detectors. We compare the quantum noise limited sensitivity of the ring-Sagnac and the sloshing-Sagnac interferometers, in the frequency range, from 5 Hz to 100 Hz, where they provide the greatest potential benefit. We evaluate the improvement in terms of the unweighted noise reduction below the standard quantum limit, and by finding the range up to which binary black hole inspirals may be observed. The sloshing-Sagnac was found to give approximately similar or better sensitivity than the ring-Sagnac in all cases. We also show that by eliminating the requirement for maximally-reflecting cavity end mirrors with correspondingly-thick multi-layer coatings, coating noise can be reduced by a factor of approximately 2.2 compared to conventional interferometers.
Wang, Lutang; Fang, Nian; Wu, Chunxu; Qin, Haijuan; Huang, Zhaoming
2014-05-12
A novel fiber-optic acoustic sensor using an erbium-doped fiber amplifier (EDFA)-based fiber ring laser and a balanced Sagnac interferometer for acoustic sensing of the partial discharge (PD) in power transformers is proposed and demonstrated. As a technical background, an experimental investigation on how the variations of the fiber birefringence affect the sensor performances was carried out, and the results are discussed. The operation principles are described, and the relevant formulas are derived. The analytical results show that an EDFA-based fiber ring laser operating in chaotic mode can provide a degree of polarization (DOP) tunable light beam for effectively suppressing polarization fading noises. The balanced Sagnac interferometer can eliminate command intensity noises and enhance the signal-to-noise ratio (SNR). Furthermore, it inherently operates at the quadrature point of the response curve without any active stabilizations. Several experiments are conducted for evaluating the performances of the sensor system, as well as for investigating the ability of the detection of high-frequency acoustic emission signals. The experimental results demonstrate that the DOP of the laser beam can be continuously tuned from 0.2% to 100%, and the power fluctuation in the whole DOP tuning range is less than 0.05 dBm. A high-frequency response up to 300 kHz is reached, and the high sensing sensitivity for detections of weak corona discharges, as well as partial discharges also is verified.
Directory of Open Access Journals (Sweden)
Lutang Wang
2014-05-01
Full Text Available A novel fiber-optic acoustic sensor using an erbium-doped fiber amplifier (EDFA-based fiber ring laser and a balanced Sagnac interferometer for acoustic sensing of the partial discharge (PD in power transformers is proposed and demonstrated. As a technical background, an experimental investigation on how the variations of the fiber birefringence affect the sensor performances was carried out, and the results are discussed. The operation principles are described, and the relevant formulas are derived. The analytical results show that an EDFA-based fiber ring laser operating in chaotic mode can provide a degree of polarization (DOP tunable light beam for effectively suppressing polarization fading noises. The balanced Sagnac interferometer can eliminate command intensity noises and enhance the signal-to-noise ratio (SNR. Furthermore, it inherently operates at the quadrature point of the response curve without any active stabilizations. Several experiments are conducted for evaluating the performances of the sensor system, as well as for investigating the ability of the detection of high-frequency acoustic emission signals. The experimental results demonstrate that the DOP of the laser beam can be continuously tuned from 0.2% to 100%, and the power fluctuation in the whole DOP tuning range is less than 0.05 dBm. A high-frequency response up to 300 kHz is reached, and the high sensing sensitivity for detections of weak corona discharges, as well as partial discharges also is verified.
Wang, Lutang; Fang, Nian; Wu, Chunxu; Qin, Haijuan; Huang, Zhaoming
2014-01-01
A novel fiber-optic acoustic sensor using an erbium-doped fiber amplifier (EDFA)-based fiber ring laser and a balanced Sagnac interferometer for acoustic sensing of the partial discharge (PD) in power transformers is proposed and demonstrated. As a technical background, an experimental investigation on how the variations of the fiber birefringence affect the sensor performances was carried out, and the results are discussed. The operation principles are described, and the relevant formulas are derived. The analytical results show that an EDFA-based fiber ring laser operating in chaotic mode can provide a degree of polarization (DOP) tunable light beam for effectively suppressing polarization fading noises. The balanced Sagnac interferometer can eliminate command intensity noises and enhance the signal-to-noise ratio (SNR). Furthermore, it inherently operates at the quadrature point of the response curve without any active stabilizations. Several experiments are conducted for evaluating the performances of the sensor system, as well as for investigating the ability of the detection of high-frequency acoustic emission signals. The experimental results demonstrate that the DOP of the laser beam can be continuously tuned from 0.2% to 100%, and the power fluctuation in the whole DOP tuning range is less than 0.05 dBm. A high-frequency response up to 300 kHz is reached, and the high sensing sensitivity for detections of weak corona discharges, as well as partial discharges also is verified. PMID:24824371
Extending the Interaction Time of Linear and Ring-Shaped Condensate Interferometers
2011-09-06
ADDRESSES U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS atom interferometry, Bose - Einstein condensate Charles...150403. doi: 09/01/2011 2.00 J. H. T. Burke, C. A. Sackett. Scalable Bose - Einstein - condensate Sagnac interferometer in a linear trap, Physical Review A...7.00 John Burke, Cass Sackett. Implementation of a Bose Einstein condensate gyroscope, 40th Annual Meeting of the APS Division of Atomic, Molecular
Hybrid interferometer with nonlinear four-wave mixing process and linear beam splitter.
Liu, Shengshuai; Jing, Jietai
2017-07-10
Optical interferometer has played an important role in optics. Up to now, many kinds of interferometers have been realized and found their applications. In this letter, we experimentally construct an interferometer by using parametric amplifier as a wave splitter and beam splitter as a wave combiner. We make measurements of interference fringes and explore the relationships between the interference visibility of the interferometer and various system parameters, such as the gain of the parametric amplifier, the one-photon detuning and the temperature of the Rb-85 vapor cell.
A Novel All-Optical Switch in a Double-Loop Sagnac Ring Coupled with a Nonlinear Ring Resonator
Institute of Scientific and Technical Information of China (English)
LI Jun-Qing; LI Li; ZHAO Jia-Qun; LI Chun-Fei
2004-01-01
@@ We propose a novel configuration of all-optical switch based on a double-loop Sagnac ring coupled with a nonlinear ring resonator. In the case of self-phase modulation, the reducing switching threshold power down to mW is predicted, which is the improvement of earlier works on all-optical switches. The switch optimization is analysed.A way to increase the response speed of all-optical switches is suggested.
Yang, Zhongming; Wang, Kailiang; Cheng, Jinlong; Gao, Zhishan; Yuan, Qun
2016-06-10
We have proposed a virtual quadratic Newton rings phase-shifting moiré-fringes measurement method in a nonnull interferometer to measure the large radius of curvature for a spherical surface. In a quadratic polar coordinate system, linear carrier testing Newton rings interferogram and virtual Newton rings interferogram form the moiré fringes. It is possible to retrieve the wavefront difference data between the testing and standard spherical surface from the moiré fringes after low-pass filtering. Based on the wavefront difference data, we deduced a precise formula to calculate the radius of curvature in the quadratic polar coordinate system. We calculated the retrace error in the nonnull interferometer using the multi-configuration model of the nonnull interferometric system in ZEMAX. Our experimental results indicate that the measurement accuracy is better than 0.18% for a spherical mirror with a radius of curvature of 41,400 mm.
Theory and analysis of nonlinear dynamics and stability in storage rings: A working group summary
Energy Technology Data Exchange (ETDEWEB)
Chattopadhyay, S.; Audy, P.; Courant, E.D.; Forest, E.; Guignard, G.; Hagel, J.; Heifets, S.; Keil, E.; Kheifets, S.; Mais, H.; Moshammer, H.; Pellegrini, C.; Pilat, F.; Suzuki, T.; Turchetti, G.; Warnock, R.L.
1988-07-01
A summary and commentary of the available theoretical and analytical tools and recent advances in the nonlinear dynamics, stability and aperture issues in storage rings are presented. 11 refs., 4 figs.
Scaling and synchronization in a ring of diffusively coupled nonlinear oscillators
Senthilkumar, D. V.; Muruganandam, P.; Lakshmanan, M.; Kurths, J.
2010-01-01
Chaos synchronization in a ring of diffusively coupled nonlinear oscillators driven by an external identical oscillator is studied. Based on numerical simulations we show that by introducing additional couplings at $(mN_c+1)$-th oscillators in the ring, where $m$ is an integer and $N_c$ is the maximum number of synchronized oscillators in the ring with a single coupling, the maximum number of oscillators that can be synchronized can be increased considerably beyond the limit restricted by siz...
Calibration of the Nonlinear Accelerator Model at the Diamond Storage Ring
Bartolini, Riccardo; Rowland, James; Martin, Ian; Schmidt, Frank
2010-01-01
The correct implementation of the nonlinear ring model is crucial to achieve the top performance of a synchrotron light source. Several dynamics quantities can be used to compare the real machine with the model and eventually to correct the accelerator. Most of these methods are based on the analysis of turn-by-turn data of excited betatron oscillations. We present the experimental results of the campaign of measurements carried out at the Diamond. A combination of Frequency Map Analysis (FMA) and detuning with momentum measurements has allowed a precise calibration of the nonlinear model capable of reproducing the nonlinear beam dynamics in the storage ring
Calibration of the nonlinear ring model at the Diamond Light Source
Bartolini, R; Rehm, G; Martin, I P S
2011-01-01
Nonlinear beam dynamics plays a crucial role in defining the performance of a storage ring. The beam lifetime, the injection efficiency, and the dynamic and momentum apertures available to the beam are optimized during the design phase by a proper optimization of the linear lattice and of the distribution of sextupole families. The correct implementation of the design model, especially the nonlinear part, is a nontrivial accelerator physics task. Several parameters of the nonlinear dynamics can be used to compare the real machine with the model and eventually to correct the accelerator. Most of these parameters are extracted from the analysis of turn-by-turn data after the excitation of betatron oscillations of the particles in the ring. We present the experimental results of the campaign of measurements carried out at the Diamond storage ring to characterize the nonlinear beam dynamics. A combination of frequency map analysis with the detuning with momentum measurements has allowed for a precise calibration ...
Energy Technology Data Exchange (ETDEWEB)
Turner, D. D. [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.; Knuteson, R. O. [Univ. of Wisconsin, Madison, WI (United States); Revercomb, H. E. [Univ. of Wisconsin, Madison, WI (United States); Dedecker, R. G. [Univ. of Wisconsin, Madison, WI (United States); Feltz, W. F. [Univ. of Wisconsin, Madison, WI (United States)
2004-09-01
Mercury Cadmium Telluride (MCT) detectors provide excellent sensitivity to infrared radiation and are used in passive infrared remote sensors such as the Atmospheric Emitted Radiance Interferometer (AERI). However, MCT detectors have a nonlinear response and thus this nonlinearity must be characterized and corrected to provide accurate infrared radiance observations. This paper discusses the significance of the nonlinearity correction applied to AERI data and its impacts on the parameters retrieved from the AERI spectra. It also evaluates the accuracy of the scheme used to determine the nonlinearity of the MCT detectors used in the Atmospheric Radiation Measurement (ARM) Program’s AERIs.
Multistability in nonlinearly coupled ring of Duffing systems
Jaros, P.; Kapitaniak, T.; Perlikowski, P.
2016-11-01
In this paper we consider dynamics of three unidirectionally coupled Duffing oscillators with nonlinear coupling function in the form of third degree polynomial. We focus on the influence of the coupling on the occurrence of different bifurcation's scenarios. The stability of equilibria, using Routh-Hurwitz criterion, is investigated. Moreover, we check how coefficients of the nonlinear coupling influence an appearance of different types of periodic solutions. The stable periodic solutions are computed using path-following. Finally, we show the two parameters' bifurcation diagrams with marked areas where one can observe the coexistence of solutions.
Calibration of the nonlinear ring model at the Diamond Light Source
Bartolini, R.; Martin, I. P. S.; Rehm, G.; Schmidt, F.
2011-05-01
Nonlinear beam dynamics plays a crucial role in defining the performance of a storage ring. The beam lifetime, the injection efficiency, and the dynamic and momentum apertures available to the beam are optimized during the design phase by a proper optimization of the linear lattice and of the distribution of sextupole families. The correct implementation of the design model, especially the nonlinear part, is a nontrivial accelerator physics task. Several parameters of the nonlinear dynamics can be used to compare the real machine with the model and eventually to correct the accelerator. Most of these parameters are extracted from the analysis of turn-by-turn data after the excitation of betatron oscillations of the particles in the ring. We present the experimental results of the campaign of measurements carried out at the Diamond storage ring to characterize the nonlinear beam dynamics. A combination of frequency map analysis with the detuning with momentum measurements has allowed for a precise calibration of the nonlinear model that can accurately reproduce the nonlinear beam dynamics in Diamond.
Non-Linear Rheological Properties and Neutron Scattering Investigation on Dilute Ring-Linear Blends
DEFF Research Database (Denmark)
Pyckhout-Hintzen, W.; Bras, A.R.; Wischnewski, A.;
Linear and non-linear Rheology on dilute blends of polystyrene ring polymers in linear matrix is combined with Small Angle Neutron Scattering (SANS) investigations. In this way 2 different entanglement interactions become clear. After stretching the samples to different hencky strains up to 2 in ...
Multiple four-wave mixing and Kerr combs in a bichromatically pumped nonlinear fiber ring cavity.
Ceoldo, D; Bendahmane, A; Fatome, J; Millot, G; Hansson, T; Modotto, D; Wabnitz, S; Kibler, B
2016-12-01
We report numerical and experimental studies of multiple four-wave mixing processes emerging from dual-frequency pumping of a passive nonlinear fiber ring cavity. We observe the formation of a periodic train of nearly background-free soliton pulses associated with Kerr frequency combs. The generation of resonant dispersive waves is also reported.
Nonlinear Analysis of Ring Oscillator and Cross-Coupled Oscillator Circuits
Ge, Xiaoqing
2010-12-01
Hassan Khalil’s research results and beautifully written textbook on nonlinear systems have influenced generations of researchers, including the authors of this paper. Using nonlinear systems techniques, this paper analyzes ring oscillator and cross-coupled oscillator circuits, which are essential building blocks in digital systems. The paper first investigates local and global stability properties of an n-stage ring oscillator by making use of its cyclic structure. It next studies global stability properties of a class of cross-coupled oscillators which admit the representation of a dynamic system in feedback with a static nonlinearity, and presents su cient conditions for almost global convergence of the solutions to a limit cycle when the feedback gain is in the vicinity of a bifurcation point. The result are also extended to the synchronization of interconnected identical oscillator circuits.
Harding, Brian J; Gehrels, Thomas W; Makela, Jonathan J
2014-02-01
The Earth's thermosphere plays a critical role in driving electrodynamic processes in the ionosphere and in transferring solar energy to the atmosphere, yet measurements of thermospheric state parameters, such as wind and temperature, are sparse. One of the most popular techniques for measuring these parameters is to use a Fabry-Perot interferometer to monitor the Doppler width and breadth of naturally occurring airglow emissions in the thermosphere. In this work, we present a technique for estimating upper-atmospheric winds and temperatures from images of Fabry-Perot fringes captured by a CCD detector. We estimate instrument parameters from fringe patterns of a frequency-stabilized laser, and we use these parameters to estimate winds and temperatures from airglow fringe patterns. A unique feature of this technique is the model used for the laser and airglow fringe patterns, which fits all fringes simultaneously and attempts to model the effects of optical defects. This technique yields accurate estimates for winds, temperatures, and the associated uncertainties in these parameters, as we show with a Monte Carlo simulation.
Phase sensitivity of two nonlinear interferometers with inputting entangled coherent states
Wei, Chao-Ping; Xiao-Yu, Hu; Ya-Fei, Yu; Zhi-Ming, Zhang
2016-04-01
We investigate the phase sensitivity of the SU(1,1) interfereometer [SU(1,1)I] and the modified Mach-Zehnder interferometer (MMZI) with the entangled coherent states (ECS) as inputs. We consider the ideal case and the situations in which the photon losses are taken into account. We find that, under ideal conditions, the phase sensitivity of both the MMZI and the SU(1,1)I can beat the shot-noise limit (SNL) and approach the Heisenberg limit (HL). In the presence of photon losses, the ECS can beat the coherent and squeezed states as inputs in the SU(1,1)I, and the MMZI is more robust against internal photon losses than the SU(1,1)I. Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91121023), the National Natural Science Foundation of China (Grant Nos. 11574092, 61378012, and 60978009), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20124407110009), the National Basic Research Program of China (Grant Nos. 2011CBA00200 and 2013CB921804), and the Program for Innovative Research Team in University (Grant No. IRT1243).
A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2016-10-01
In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.
Enhanced all-optical switching by use of a nonlinear fiber ring resonator.
Heebner, J E; Boyd, R W
1999-06-15
We predict dramatically reduced switching thresholds for nonlinear optical devices incorporating fiber ring resonators. The circulating power in such a resonator is much larger than the incident power; also, the phase of the transmitted light varies rapidly with the single-pass phase shift. The combined action of these effects leads to a finesse-squared reduction in the switching threshold, allowing for photonic switching devices that operate at milliwatt power levels in ordinary optical fibers.
Linear and nonlinear optical susceptibilities in a laterally coupled quantum-dot–quantum-ring system
Energy Technology Data Exchange (ETDEWEB)
Zeng, Zaiping; Garoufalis, Christos S.; Baskoutas, Sotirios, E-mail: bask@upatras.gr
2014-07-18
Linear and nonlinear optical susceptibilities in a laterally coupled quantum-dot–quantum-ring system have been theoretically studied. In general, we find that the structure parameters of the coupled system significantly affect the optical susceptibilities. The enhancement of the coupling effects between the dot and ring is found to increase considerably the optical susceptibilities and redshift drastically the transition energies. Comparing to the linear susceptibility, the nonlinear optical susceptibility is found to be more sensitive to the variation of the structure parameters. A comprehensive analysis of the electron probability density movement with respect to the modification of the structure parameters is provided, which offers a unique perspective of the ground-state localization. - Highlights: • Optical susceptibilities in a quantum-dot–quantum-ring system are studied. • The structure parameters significantly affect the optical susceptibilities. • The enhancement of the coupling effects increases the optical susceptibilities. • The nonlinear susceptibility is more sensitive to the change in structure parameters. • A comprehensive analysis of the electron probability density movement is provided.
Hu, Zhan; Zheng, Gangtie
2016-08-01
A combined analysis method is developed in the present paper for studying the dynamic properties of a type of geometrically nonlinear vibration isolator, which is composed of push-pull configuration rings. This method combines the geometrically nonlinear theory of curved beams and the Harmonic Balance Method to overcome the difficulty in calculating the vibration and vibration transmissibility under large deformations of the ring structure. Using the proposed method, nonlinear dynamic behaviors of this isolator, such as the lock situation due to the coulomb damping and the usual jump resulting from the nonlinear stiffness, can be investigated. Numerical solutions based on the primary harmonic balance are first verified by direct integration results. Then, the whole procedure of this combined analysis method is demonstrated and validated by slowly sinusoidal sweeping experiments with different amplitudes of the base excitation. Both numerical and experimental results indicate that this type of isolator behaves as a hardening spring with increasing amplitude of the base excitation, which makes it suitable for isolating both steady-state vibrations and transient shocks.
Notes on the nonlinear beam dynamics with strong damping in the CLIC Damping Ring
Levichev, Eugene; Shatilov, Dmitry
2010-01-01
The beam is injected into the CLIC damping ring with the relatively large emittance and energy spread and then is damped to the extremely low phase volume. During the damping process the betatron frequency of each particle changes due to the space charge tune shift and nonlinear dependence of the betatron tune on the amplitude. This nonlinearity is produced by the strong chromatic sextupoles, wiggler nonlinear field components and, again, by the space charge force. During the damping, the particle cross resonances, which can trap some fraction of the beam, cause the loss of intensity, the beam blow up and degrade the beam quality. In this paper we study the evolution of the beam distribution in time during the damping for the original lattice of the CLIC DR (May 2005). Geneva, Switzerland June 2010 CLIC – Note – 850
Institute of Scientific and Technical Information of China (English)
GAO Jie
2009-01-01
In this paper we treat first some nonlinear beam dynamics problems in storage rings, such as beam dynamic apertures due to magnetic multipoles, wiggles, beam-beam effects, nonlinear space charge effect, and then nonlinear electron cloud effect combined with beam-beam and space charge effects, analytically. This analytical treatment is applied to BEPC Ⅱ. The corresponding analytical expressions developed in this paper are useful both in understanding the physics behind these problems and also in making practical quick hand estimations.
Zhang, Juanjuan; Wen, Jianbiao; Gao, Yuanwen
2016-06-01
In previous works, most of them employ a linear constitutive model to describe magnetocapacitance (MC) effect in magnetoelectric (ME) composites, which lead to deficiency in their theoretical results. In view of this, based on a nonlinear magnetostrictive constitutive relation and a linear piezoelectric constitutive relation, we establish a nonlinear model for MC effect in PZT-ring/Terfenol-D-strip ME composites. The numerical results in this paper coincide better with experimental data than that of a linear model, thus, it's essential to utilize a nonlinear constitutive model for predicting MC effect in ME composites. Then the influences of external magnetic fields, pre-stresses, frequencies, and geometric sizes on the MC effect are discussed, respectively. The results show that the external magnetic field is responsible for the resonance frequency shift. And the resonance frequency is sensitive to the ratio of outer and inner radius of the PZT ring. Moreover, some other piezoelectric materials are employed in this model and the corresponding MC effects are calculated, and we find that different type of piezoelectric materials affect the MC effect obviously. The proposed model is more accurate for multifunction devices designing.
Nonlinear and long-term beam dynamics in low energy storage rings
Papash, A. I.; Smirnov, A. V.; Welsch, C. P.
2013-06-01
Electrostatic storage rings operate at very low energies in the keV range and have proven to be invaluable tools for atomic and molecular physics. Because of the mass independence of electric rigidity, these machines are able to store a wide range of different particles, from light ions to heavy singly charged biomolecules, opening up unique research opportunities. However, earlier measurements have shown strong limitations in maximum beam intensity, fast decay of the stored ion current, and reduced beam lifetime. The nature of these effects has not been fully understood and an improved understanding of the physical processes influencing beam motion and stability in such rings is needed. In this paper, a comprehensive study into nonlinear and long-term beam dynamics studies is presented on the examples of a number of existing and planned electrostatic storage rings using the BETACOOL, OPERA-3D, and MAD-X simulation software. A detailed investigation into ion kinetics, under consideration of effects from electron cooling and multiple scattering of the beam on a supersonic gas jet target, is carried out and yields a consistent explanation of the physical effects in a whole class of storage rings. The lifetime, equilibrium momentum spread, and equilibrium lateral spread during collisions with the target are estimated. In addition, the results from experiments at the Test Storage Ring, where a low-intensity beam of CF+ ions at 93keV/u has been shrunk to extremely small dimensions, are reproduced. Based on these simulations, the conditions for stable ring operation with an extremely low-emittance beam are presented. Finally, results from studies into the interaction of 3-30 keV ions with a gas jet target are summarized.
Nonlinear and long-term beam dynamics in low energy storage rings
Directory of Open Access Journals (Sweden)
A. I. Papash
2013-06-01
Full Text Available Electrostatic storage rings operate at very low energies in the keV range and have proven to be invaluable tools for atomic and molecular physics. Because of the mass independence of electric rigidity, these machines are able to store a wide range of different particles, from light ions to heavy singly charged biomolecules, opening up unique research opportunities. However, earlier measurements have shown strong limitations in maximum beam intensity, fast decay of the stored ion current, and reduced beam lifetime. The nature of these effects has not been fully understood and an improved understanding of the physical processes influencing beam motion and stability in such rings is needed. In this paper, a comprehensive study into nonlinear and long-term beam dynamics studies is presented on the examples of a number of existing and planned electrostatic storage rings using the BETACOOL, OPERA-3D, and MAD-X simulation software. A detailed investigation into ion kinetics, under consideration of effects from electron cooling and multiple scattering of the beam on a supersonic gas jet target, is carried out and yields a consistent explanation of the physical effects in a whole class of storage rings. The lifetime, equilibrium momentum spread, and equilibrium lateral spread during collisions with the target are estimated. In addition, the results from experiments at the Test Storage Ring, where a low-intensity beam of CF^{+} ions at 93 keV/u has been shrunk to extremely small dimensions, are reproduced. Based on these simulations, the conditions for stable ring operation with an extremely low-emittance beam are presented. Finally, results from studies into the interaction of 3–30 keV ions with a gas jet target are summarized.
Nonlinear quantum piston for the controlled generation of vortex rings and soliton trains
Pinsker, Florian
2013-05-29
We propose a simple way to generate nonlinear excitations in a controllable way by managing interactions in Bose-Einstein condensates. Under the action of a quantum analog of a classical piston, the condensed atoms are pushed through the trap, generating vortex rings infully three-dimensional condensates or soliton trains in quasi-one-dimensional scenarios. The vortex rings form due to transverse instability of the shock-wave train, enhanced and supported by the energy transfer between waves. We elucidate in what sense the self-interactions within the atom cloud define the properties of the generated vortex rings and soliton trains. Based on the quantum-piston scheme we study the behavior of two-component Bose-Einstein condensates and analyze how the presence of an additional superfluid influences the generation of vortex rings or solitons in the other component, and vice versa. Finally, we show the dynamical emergence of skyrmions within two-component systems in the immiscible regime. © 2013 American Physical Society.
All optical NAND gate based on nonlinear photonic crystal ring resonator
Directory of Open Access Journals (Sweden)
Somaye Serajmohammadi
2016-06-01
Full Text Available In this paper we proposed a new design for all optical NAND gate. By combining nonlinear Kerr effect with photonic crystal ring resonators, we designed an all optical NAND gate. A typical NAND gate is a logic device with one bias and two logic input and one output ports. It has four different combinations for its logic input ports. The output port of the NAND gate is OFF, when both logic ports are ON, otherwise the output port will be ON. The switching power threshold obtained for this structure equals to 1.5 kW/μm2. For designing the proposed optical logic gate we employed one resonant ring whose resonant wavelength is at 1554 nm. The functionality of the proposed NAND gate depends on the operation of this resonant ring. When the power intensity of optical waves is less than the switching threshold the ring will couple optical waves into drop waveguide otherwise the optical waves will propagate on the bus waveguide.
Impurity-related nonlinear optical properties in delta-doped quantum rings: Electric field effects
Energy Technology Data Exchange (ETDEWEB)
Restrepo, R.L., E-mail: rrestre@gmail.com [Escuela de Ingeniería de Antioquia-EIA, Medellín (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Morales, A.L. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Martínez-Orozco, J.C. [Unidad Académica de Física, Universidad Autónoma de Zacatecas, CP 98060, Zacatecas (Mexico); Baghramyan, H.M.; Barseghyan, M.G. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Mora-Ramos, M.E. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)
2014-11-15
Using a variational procedure within the effective mass approximation, we have calculated the donor impurity binding energy for the ground (1s-like) and the excited (2p{sub z}-like) states as well as the impurity-related nonlinear optical absorption and relative changes in the refraction index in a GaAs single quantum ring with axial n-type delta-doping. The delta-like potential along the z-direction is an approximate model analytically described using a Lorentzian function with two parameters. Additionally we consider the application of an electric field along the z-direction. It is found that the changes in the geometry of the quantum ring, the change in the 2D impurity density of the delta-like doping, and different values of the electric field lead to a shifting of the resonant peaks of the optical responses spectrum.
Improved nonlinear optimization in the storage ring of the modern synchrotron radiation light source
Institute of Scientific and Technical Information of China (English)
TIAN Shun-Qiang; LIU Gui-Min; HOU Jie; CHEN Guang-Ling; CHEN Sen-Yu
2009-01-01
In the storage ring of the third generation light sources,nonlinear optimization is an indispensable course in order to obtain ample dynamic acceptances and to reach high injection efficiency and long beam lifetime,especially in a low emittance lattice.An improved optimization algorithm based on the single resonance approach,which takes relative weight and initial Harmonic Sextupole Integral Strength (HSIS) as search variables,is discussed in this paper.Applications of the improved method in several test lattices are presented.Detailed analysis of the storage ring of the Shanghai Synchrotron Radiation Facility (SSRF) is particularly emphasized.Furthermore,cancellation of the driving terms is investigated to reveal the physical mechanism of the harmonic sextupole compensation.Sensitivity to the weight and the initial HSIS as well as dependence of the optimum solution on the convergent factor is analyzed.
Chimera regimes in a ring of oscillators with local nonlinear interaction
Shepelev, Igor A.; Zakharova, Anna; Vadivasova, Tatiana E.
2017-03-01
One of important problems concerning chimera states is the conditions of their existence and stability. Until now, it was assumed that chimeras could arise only in ensembles with nonlocal character of interactions. However, this assumption is not exactly right. In some special cases chimeras can be realized for local type of coupling [1-3]. We propose a simple model of ensemble with local coupling when chimeras are realized. This model is a ring of linear oscillators with the local nonlinear unidirectional interaction. Chimera structures in the ring are found using computer simulations for wide area of values of parameters. Diagram of the regimes on plane of control parameters is plotted and scenario of chimera destruction are studied when the parameters are changed.
Synthesis and nonlinearity of triene chromophores containing the cyclohexene ring structure
Energy Technology Data Exchange (ETDEWEB)
Ermer, S.; Lovejoy, S.M.; Leung, D.S.; Warren, H.; Moylan, C.R.; Twieg, R.J.
1998-07-01
A series of conjugated donor-acceptor trienes in which the central double bond is incorporated into an unsaturated isophorone, verbenone or chromone ring has been synthesized. In each case, the donor group consists of an amine and an aromatic or heterocyclic ring system, and the acceptor is the dicyanomethylidene group. The nonlinear optical properties of each of the compounds has been measured and correlated with its structure. The dipole moments and molecular hyperpolarizabilities of these compounds, like those of other conjugated polyenes, are large enough to be used as the active components of electro-optic polymers. Unlike other donor-acceptor polyenes, however, these compounds exhibit the thermal stability required for such applications.
Measurement of the Beam Longitudinal Profile in a Storage Ring by Non-Linear Laser Mixing
Beche, J.-F.; Byrd, J.; De Santis, S.; Denes, P.; Placidi, M.; Turner, W.; Zolotorev, M.
2004-11-01
We report on the development of a new technique for the measurement of the longitudinal beam profile in storage rings. This technique, which has been successfully demonstrated at the Advanced Light Source, mixes the synchrotron radiation with the light from a mode-locked solid-state laser oscillator in a non-linear crystal. The up-converted radiation is then detected with a photomultiplier and processed to extract, store, and display the required information. The available choices of laser repetition frequency, pulse width, and phase modulation give a wide range of options for matching the bunch configuration of a particular storage ring. Besides the dynamic measurement of the longitudinal profile of each bunch, the instrument can monitor the evolution of the bunch tails, the presence of un trapped particles, and their diffusion into nominally empty RF buckets ("ghost bunches").
Directory of Open Access Journals (Sweden)
Jianli Li
2013-01-01
Full Text Available In order to improve the precision of Strapdown Inertial Navigation System (SINS and reduce the complexity of the traditional calibration method, a novel calibration and compensation scheme is proposed. An optimization calibration method with four-direction rotations is designed to calculate all error coefficients of Ring Laser Gyroscope (RLG SINS in a series of constant temperatures. According to the actual working environment, the temperature errors of RLG SINS are compensated by a nonlinear interpolation compensation algorithm. The experimental results show that the inertial navigation errors of the proposed method are reduced.
Institute of Scientific and Technical Information of China (English)
TIAN Shun-Qiang; ZHANG Wen-Zhi; LI Hao-Hu; ZHANG Man-Zhou; HOU Jie; ZHOU xue-Mei; LIU Gui-Min
2009-01-01
Phase Ⅰ commissioning of the SSRF storage ring on 3.0 GeV beam energy was started at the end of December 2007.A lot of encouraging results have been obtained so far.In this paper,calibrations of the linear optics during the commissioning are discussed,and some measured results about the nonlinearity given.Calibration procedure emphasizes correcting quadrupole magnetic coefficients with the Linear Optics from Closed Orbit(LOCO)technique.After fitting the closed orbit response matrix,the linear optics of the four test modes is substantially corrected,and the measured physical parameters agree well with the designed ones.
Non-Linear Beam Dynamics Studies of the Diamond Storage Ring
Bartolini, Riccardo; Belgroune, Mahdia; Henry Rowland, James; Jones, James; Martin, Ian; Singh, Beni
2005-01-01
The non-linear beam dynamics have been investigated for the non-zero dispersion lattice of the Diamond storage ring. Effects in realistic lattice configurations such as the introduction of coupling errors, beta beating, closed orbit correction, quadrupole fringe field and in-vacuum and helical insertion devices have been studied in the presence of realistic physical aperture limitations. Frequency map analysis together with 6D tracking allows identification of the limiting resonances as well as the loss locations and calculation of the influence of non-linear longitudinal motion on the Touschek lifetime. The sensitivity of the lattice to some of these effects leads to the identification of a better working point for the machine.
Nonlinear electrodynamics of electrons in a quasi-one-dimensional ballistic ring
Energy Technology Data Exchange (ETDEWEB)
Epshtein, E.M. [Institute for Radioengineering and Electronics, Russian Academy of Sciences, Moscow (Russian Federation); Shmelev, G.M.; Maglevanny, I.I. [Volgograd State Pedagogical University, Volgograd (Russian Federation)
2000-09-01
We consider ballistic electron motion in a quasi-one-dimensional ring under the uniform high-frequency electric field induced by an electromagnetic field. The electron satisfies a nonlinear equation of motion which is formally identical to that for a pendulum with a vibrating suspension point. The averaging method of Kapitza is used. The electromagnetic emission spectrum is calculated. The spectrum consists of low-frequency radiation, scattered radiation at the incident radiation frequency and combination scattered radiation; the intensities and frequencies of all components depend nonlinearly on the incident radiation frequency. At a certain value of that intensity the spontaneous symmetry breakdown occurs. As a result, the system acquires some static electric dipole moment. (author)
Nonlinear electrodynamics of electrons in a quasi-one-dimensional ballistic ring
Epshtein, E. M.; Shmelev, G. M.; Maglevanny, I. I.
2000-09-01
We consider ballistic electron motion in a quasi-one-dimensional ring under the uniform high-frequency electric field induced by an electromagnetic field. The electron satisfies a nonlinear equation of motion which is formally identical to that for a pendulum with a vibrating suspension point. The averaging method of Kapitza is used. The electromagnetic emission spectrum is calculated. The spectrum consists of low-frequency radiation, scattered radiation at the incident radiation frequency and combination scattered radiation; the intensities and frequencies of all components depend nonlinearly on the incident radiation frequency. At a certain value of that intensity the spontaneous symmetry breakdown occurs. As a result, the system acquires some static electric dipole moment.
RF Spectrum Sensing Based on an Overdamped Nonlinear Oscillator Ring for Cognitive Radios
Tang, Zhi-Ling; Li, Si-Min; Yu, Li-Juan
2016-01-01
Existing spectrum-sensing techniques for cognitive radios require an analog-to-digital converter (ADC) to work at high dynamic range and a high sampling rate, resulting in high cost. Therefore, in this paper, a spectrum-sensing method based on a unidirectionally coupled, overdamped nonlinear oscillator ring is proposed. First, the numerical model of such a system is established based on the circuit of the nonlinear oscillator. Through numerical analysis of the model, the critical condition of the system’s starting oscillation is determined, and the simulation results of the system’s response to Gaussian white noise and periodic signal are presented. The results show that once the radio signal is input into the system, it starts oscillating when in the critical region, and the oscillating frequency of each element is fo/N, where fo is the frequency of the radio signal and N is the number of elements in the ring. The oscillation indicates that the spectrum resources at fo are occupied. At the same time, the sampling rate required for an ADC is reduced to the original value, 1/N. A prototypical circuit to verify the functionality of the system is designed, and the sensing bandwidth of the system is measured. PMID:27294928
Gumber, Sukirti; Gambhir, Monica; Jha, Pradip Kumar; Mohan, Man
2016-10-01
We study the combined effect of hydrostatic pressure and magnetic field on electromagnetically induced transparency in quantum ring. The high flexibility in size and shape of ring makes it possible to fabricate a nearly perfect two-dimensional quantum structure. We also explore the dependence of frequency conversion, measured in terms of third order nonlinear susceptibility χ(3) , on coupling field, hydrostatic pressure and magnetic field. Although, a dip in χ(3) is observed with the introduction of strong coupling field, it renders the ring structure transparent to generated wave thus effectively enhancing the output of nonlinear frequency conversion process. At a fixed coupling strength, the output can be further enhanced by increasing the magnetic field while it shows an inverse relationship with pressure. These parameters, being externally controlled, provide an easy handle to control the output of quantum ring which can be used as frequency converter in communication networks.
Yang, X; Li, Z; Tangdiongga, E; Lenstra, D; Khoe, G; Dorren, H
2004-05-31
We demonstrate the generation of sub-picosecond optical pulses using a semiconductor optical amplifier (SOA) and a linear polarizer placed in a ring-laser configuration. Nonlinear polarization rotation in the SOA serves as the passive mode-locking mechanism. The ring cavity generates pulses with duration below 800 fs (FWHM) at a repetition rate of 14 MHz. The time -bandwidth product is 0.48. Simulation results in good agreement with the experimental results are presented.
Institute of Scientific and Technical Information of China (English)
Wu Li-Jun; Han Yu
2013-01-01
The spin-polarized linear conductance spectrum and current-voltage characteristics in a four-quantum-dot ring embodied into Aharonov-Bohm (AB) interferometer are investigated theoretically by considering a local Rashba spin-orbit interaction.It shows that the spin-polarized linear conductance and the corresponding spin polarization are each a function of magnetic flux phase at zero bias voltage with a period of 2π,and that Hubbard U cannot influence the electron transport properties in this case.When adjusting appropriately the structural parameter of inter-dot coupling and dot-lead coupling strength,the electronic spin polarization can reach a maximum value.Furthermore,by adjusting the bias voltages applied to the leads,the spin-up and spin-down currents move in opposite directions and pure spin current exists in the configuration space in appropriate situations.Based on the numerical results,such a model can be applied to the design of a spin filter device.
Brillouin/Raman compensation of the Kerr-effect-induced bias in a nonlinear ring laser gyroscope.
Luo, Zhang; Yuan, Xiaodong; Zhu, Zhihong; Liu, Ken; Ye, Weimin; Zeng, Chun; Ji, Jiarong
2013-04-01
In this Letter, the beat frequency at rest of a ring laser gyroscope with nonlinear effects is discussed in detail. Even without an additional intensity-stabilizing system, the random nullshift bias induced by the Kerr effect is compensated by the phase shift associated with the stimulated Brillouin/Raman scattering. And the nonlinear stimulated scattering also serves as the gain mechanism of the gyroscope. And thus the influence of the fluctuation of the injected pump intensity on the beat frequency is eliminated.
Controlling the dynamical behavior of nonlinear fiber ring resonators with balanced loss and gain
Deka, Jyoti P; Sarma, Amarendra K
2015-01-01
We show the possibility of controlling the dynamical behavior of a single fiber ring (SFR) resonator system with the fiber being an amplified (gain) channel and the ring being attenuated (loss) nonlinear dielectric medium. The system considered here is a simple alteration in the basic building block of the parity time (PT) symmetric synthetic coupler structures reported in A. Regensburger et al., Nature 488, 167 (2012). We find that this result in a dynamically controllable algorithm for the chaotic dynamics inherent in the system. We have also shown the dependence of the period doubling point upon the input amplitude, emphasizing on the dynamical aspects of our system. Moreover, the fact that the resonator essentially plays the role of a damped harmonic oscillator has been elucidated with the non-zero intensity inside the resonator due to constant influx of input light. This study may be a step forward to further investigations in regard to the inter-connectivity between the PT symmetry and chaos along with ...
Energy Technology Data Exchange (ETDEWEB)
Adolf, D.
1997-11-01
Butyl rubber, unfortunately, has pronounced nonlinear viscoelastic behavior, which may be modelled by a separable KBKZ formalism. While these effects seem to have minimal impact on accelerated sealing force measurements, they do severely impact compression set tests. Therefore, a new test is suggested for evaluating field-return o-rings which is free from such confounding effects.
Matsas, V J; Richardson, D J; Newson, T P; Payne, D N
1993-03-01
A full characterization of a self-starting, passively mode-locked soliton ring fiber laser in terms of its various modes of mode-locked operation, cavity length, and type of fiber used is presented. Direct evidence, based on state-of-polarization measurements, that nonlinear polarization evolution is the responsible mode-locking mechanism is also given.
Caplan, Ronald Meyer
We numerically study the dynamics and interactions of vortex rings in the nonlinear Schrodinger equation (NLSE). Single ring dynamics for both bright and dark vortex rings are explored including their traverse velocity, stability, and perturbations resulting in quadrupole oscillations. Multi-ring dynamics of dark vortex rings are investigated, including scattering and merging of two colliding rings, leapfrogging interactions of co-traveling rings, as well as co-moving steady-state multi-ring ensembles. Simulations of choreographed multi-ring setups are also performed, leading to intriguing interaction dynamics. Due to the inherent lack of a close form solution for vortex rings and the dimensionality where they live, efficient numerical methods to integrate the NLSE have to be developed in order to perform the extensive number of required simulations. To facilitate this, compact high-order numerical schemes for the spatial derivatives are developed which include a new semi-compact modulus-squared Dirichlet boundary condition. The schemes are combined with a fourth-order Runge-Kutta time-stepping scheme in order to keep the overall method fully explicit. To ensure efficient use of the schemes, a stability analysis is performed to find bounds on the largest usable time step-size as a function of the spatial step-size. The numerical methods are implemented into codes which are run on NVIDIA graphic processing unit (GPU) parallel architectures. The codes running on the GPU are shown to be many times faster than their serial counterparts. The codes are developed with future usability in mind, and therefore are written to interface with MATLAB utilizing custom GPU-enabled C codes with a MEX-compiler interface. Reproducibility of results is achieved by combining the codes into a code package called NLSEmagic which is freely distributed on a dedicated website.
Linear and nonlinear intersubband optical properties in a triangular quantum ring
Energy Technology Data Exchange (ETDEWEB)
Nasri, Djillali [Faculté des Sciences Appliquées, Département de Génie Electrique, Université Ibn-Khaldoun de Tiaret, Zaaroura BP No.78, Tiaret 14000 (Algeria); Laboratoire de Microphysique et de Nanophysique (LaMiN), Ecole Nationale Polytechnique d’Oran, BP 1523 EL M’Naouer, Oran 31000 (Algeria); Bettahar, N [Faculté des Sciences de la matière, Département de Physique, Université Ibn-Khaldoun de Tiaret, Zaaroura, BP No.78, Tiaret 14000 (Algeria)
2015-12-01
Using the effective mass approximation, within the plane wave expansion, the linear and nonlinear coefficients absorption and the refractive index changes relative to the intersubband transitions in the conduction band of an Al{sub x}Ga{sub 1−x}As/ GaAs/Al{sub x}Ga{sub 1−x}As triangular quantum ring for an x-polarization and an y-polarization of the incident light are calculated. It is found that the transition energy between the ground state and the first two excited states and their related optical matrix are strongly influenced by the length of the side of the inner triangle, leading to a red-shift and blue-shift of the resonant peaks of the intersubband optical absorption, for an x-polarized light absorption and an y-polarized light absorption respectively. Our results are qualitatively similar to those of a triangular quantum wire in the presence of an intense laser field in recent literature.
A procedure to analyze nonlinear density waves in Saturn's rings using several occultation profiles
Rappaport, N J; French, R G; Marouf, E A; McGhee, C A
2010-01-01
Cassini radio science experiments have provided multiple occultation optical depth profiles of Saturn's rings that can be used in combination to analyze density waves. This paper establishes an accurate procedure of inversion of the wave profiles to reconstruct the wave kinematic parameters as a function of semi-major axis, in the nonlinear regime. This procedure is achieved from simulated data in the presence of realistic noise perturbations, to control the reconstruction error. By way of illustration we have applied our procedure to the Mimas 5:3 density wave. We were able to recover precisely the kinematic parameters from the radio experiment occultation data in most of the propagation region; a preliminary analysis of the pressure-corrected dispersion allowed us to determine new but still uncertain values for the opacity ($K\\simeq 0.02$ cm$^2$/g) and velocity dispersion of ($c_o\\simeq 0.6$ cm/s) in the wave region. Our procedure constitutes the first step in our planned analysis of the density waves of Sa...
Remote synchronization of amplitudes across an experimental ring of non-linear oscillators
Minati, Ludovico
2015-12-01
In this paper, the emergence of remote synchronization in a ring of 32 unidirectionally coupled non-linear oscillators is reported. Each oscillator consists of 3 negative voltage gain stages connected in a loop to which two integrators are superimposed and receives input from its preceding neighbour via a "mixing" stage whose gains form the main system control parameters. Collective behaviour of the network is investigated numerically and experimentally, based on a custom-designed circuit board featuring 32 field-programmable analog arrays. A diverse set of synchronization patterns is observed depending on the control parameters. While phase synchronization ensues globally, albeit imperfectly, for certain control parameter values, amplitudes delineate subsets of non-adjacent but preferentially synchronized nodes; this cannot be trivially explained by synchronization paths along sequences of structurally connected nodes and is therefore interpreted as representing a form of remote synchronization. Complex topology of functional synchronization thus emerges from underlying elementary structural connectivity. In addition to the Kuramoto order parameter and cross-correlation coefficient, other synchronization measures are considered, and preliminary findings suggest that generalized synchronization may identify functional relationships across nodes otherwise not visible. Further work elucidating the mechanism underlying this observation of remote synchronization is necessary, to support which experimental data and board design materials have been made freely downloadable.
Heterodyne Interferometer Angle Metrology
Hahn, Inseob; Weilert, Mark A.; Wang, Xu; Goullioud, Renaud
2010-01-01
A compact, high-resolution angle measurement instrument has been developed that is based on a heterodyne interferometer. The common-path heterodyne interferometer metrology is used to measure displacements of a reflective target surface. In the interferometer setup, an optical mask is used to sample the measurement laser beam reflecting back from a target surface. Angular rotations, around two orthogonal axes in a plane perpendicular to the measurement- beam propagation direction, are determined simultaneously from the relative displacement measurement of the target surface. The device is used in a tracking telescope system where pitch and yaw measurements of a flat mirror were simultaneously performed with a sensitivity of 0.1 nrad, per second, and a measuring range of 0.15 mrad at a working distance of an order of a meter. The nonlinearity of the device is also measured less than one percent over the measurement range.
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
This paper reports the synthesis and the nonlinear optical property of a series of new chromophores which contain furan ring as the only conjugation bridge for the first time. They are characterized by UV-VIS, FT-IR, 1H NMR, MS and elemental analysis. Their dipole moment and the first-order molecular hyperpolarizability (β) are calculated and compared with those of the analogues containing either benzene or thiophene as the conjugation bridge.
Zlenko, A. S.; Akhmetshin, U. G.; Bogatyrjov, V. A.; Bulatov, L. I.; Dvoyrin, V. V.; Firstov, S. V.; Dianov, E. M.
2009-10-01
A germanium-doped silica-core fiber with an active region in the form of a thin ring of silica doped with bismuth ions was fabricated. Bismuth doping in the ring surrounding the core allows to stabilize bismuth in silica glass, and it does not impose any restrictions on the composition of the core. The bismuth concentration in the ring is less than 0.2 wt.%. The GeO2 concentration in the core is more than 15 mol.%. A high germanium concentration in the core allows to shift the zero dispersion wavelength to 1860 nm and to obtain a high nonlinear refractive index (n2 more than 3,2*10-20 m2/W). Spectroscopic investigations were carried out in the visible and near infrared (800-1700 nm) spectral range. Despite the small concentration of bismuth, we observed the absorption and luminescence characteristic bands, confirming the presence of bismuth active centers in silica glass. Upon pumping at 1350 nm the on/off gain spectrum was measured on a 20-m fiber. The gain was observed throughout investigated range of 1430-1530 nm. The maximal gain of ~9.5 dB was obtained near 1430 nm. The results of the spectroscopic investigations of the fiber with a thin active Bi-doped ring showed prospects of the creation and application of such fiber type for laser and nonlinear optics.
Lee, Ju Han; Takushima, Yuichi; Kikuchi, Kazuro
2005-10-01
We experimentally demonstrate a novel erbium-doped fiber based continuous-wave (cw) supercontinuum laser. The laser has a simple ring-cavity structure incorporating an erbium-doped fiber and a highly nonlinear dispersion-shifted fiber (HNL-DSF). Differently from previously demonstrated cw supercontinuum sources based on single propagation of a strong Raman pump laser beam through a highly nonlinear fiber, erbium gain inside the cavity generates a seed light oscillation, and the oscillated light subsequently evolves into a supercontinuum by nonlinear effects such as modulation instability and stimulated Raman scattering in the HNL-DSF. High quality of the depolarized supercontinuum laser output with a spectral bandwidth larger than 250 nm is readily achieved.
Indian Academy of Sciences (India)
Aditi Ghosh; R Vijaya
2014-07-01
The continuous-wave output of a single-mode erbium-doped fibre ring laser when subjected to cavity-loss modulation is found to exhibit linear as well as nonlinear resonances. At sufficiently low driving amplitude, the system resembles a linear damped oscillator. At higher amplitudes, the dynamical study of these resonances shows that the behaviour of the system exhibits features of a nonlinear damped oscillator under harmonic modulation. These nonlinear dynamical features, including harmonic and subharmonic resonances, have been studied experimentally and analysed with the help of a simple time-domain and frequency-domain information obtained from the output of the laser. All the studies are restricted to the modulation frequency lying in a regime near the relaxation oscillation frequency.
Michelson interferometer for measuring temperature
Xie, Dong; Xu, Chunling; Wang, Anmin
2016-01-01
We investigate that temperature can be measured by a modified Michelson interferometer, where at least one reflected mirror is replaced by a thermalized sample. Both of two mirrors replaced by the corresponding two thermalized samples can help to approximatively improve the resolution of temperature up to twice than only one mirror replaced by a thermalized sample. For further improving the precision, a nonlinear medium can be employed. The Michelson interferometer is embedded in a gas displa...
Malykin, Grigorii B; Zhurov, Alexei
2013-01-01
This monograph is devoted to the creation of a comprehensive formalism for quantitative description of polarized modes' linear interaction in modern single-mode optic fibers. The theory of random connections between polarized modes, developed in the monograph, allows calculations of the zero shift deviations for a fiber ring interferometer. The monograph addresses also the
Heterodyne displacement interferometer, insensitive for input polarization
Meskers, A.J.H.; Spronck, J.W.; Munnig Schmidt, R.H.
2014-01-01
Periodic nonlinearity (PNL) in displacement interferometers is a systematic error source that limits measurement accuracy. The PNL of coaxial heterodyne interferometers is highly influenced by the polarization state and orientation of the source frequencies. In this Letter, we investigate this error
Sangac interferometer on the holographic bragg grating
Tikhonov, E A
2015-01-01
The ring interferometer with zero optical path difference known as Sagnac one is offered with a diffraction splitting of the entering light beam. As the beamsplitter, a transmission holographic Bragg grating is used. Conditions of normal operation of this interferometer achieve under the equal intensity of beam copies and the adjustable phase shift between them in its two interferometer shoulders. These conditions are met with the holographic grating, which provides the phase shift 180^0 on the central Bragg wavelength. Experimental approbation of the modified interferometer validates the expected results.
Non-linear dynamics, entanglement and the quantum-classical crossover of two coupled SQUID rings
Everitt, M J
2009-01-01
We explore the quantum-classical crossover of two coupled, identical, superconducting quantum interference device (SQUID) rings. We note that the motivation for this work is based on a study of a similar system comprising two coupled Duffing oscillators. In that work we showed that the entanglement characteristics of chaotic and periodic (entrained) solutions differed significantly and that in the classical limit entanglement was preserved only in the chaotic-like solutions. However, Duffing oscillators are a highly idealised toy model. Motivated by a wish to explore more experimentally realisable systems we now extend our work to an analysis of two coupled SQUID rings. We observe some differences in behaviour between the system that is based on SQUID rings rather than on Duffing oscillators. However, we show that the two systems share a common feature. That is, even when the SQUID ring's trajectories appear to follow (semi) classical orbits entanglement persists.
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2017-06-01
We investigate the influence of collective self-gravity forces on the nonlinear evolution of the viscous overstability in Saturn's dense rings. Local N-body simulations, incorporating vertical and radial collective self-gravity are performed. Vertical self-gravity is mimicked through an increased frequency of vertical oscillations, while radial self-gravity is approximated by solving the Poisson equation for a thin disk in Fourier space. Direct particle-particle forces are omitted, while the magnitude of radial self gravity is controlled by assigning a variable surface mass density to the system's homogeneous ground state. We compare our simulations with large-scale isothermal and non-isothermal hydrodynamic model calculations, including radial self-gravity and employing transport coefficients derived in Salo et al. (2001). We concentrate on optical depths τ=1.5-2, appropriate to model Saturn's dense rings. Our isothermal and non isothermal hydrodynamic results in the limit of vanishing self-gravity compare very well with the studies of Latter&Ogilvie (2010) and Rein&latter (2013), respectively.With non-vanishing radial self-gravity we find that the wavelengths of saturated overstable wave trains are located in close vicinity of the local minimum of the nonlinear dispersion relation for a particular surface density. Good agreement is found between non-isothermal hydrodynamics and N-body simulations for disks with strong radial self-gravity, while the largest deviations occur for a weak but non-vanishing self-gravity.The resulting saturation wavelengths of the viscous overstability for moderate and strong radial self-gravity (λ~ 200-300m) agree reasonably well with the length scale of periodic micro structure in Saturn's inner A and B ring, as found by Cassini.
Antoniou, F.
2014-06-23
The theoretical minimum emittance cells are the optimal configurations for achieving the absolute minimum emittance, if specific optics constraints are satisfied at the middle of the cell's dipole. Linear lattice design options based on an analytical approach for the theoretical minimum emittance cells are presented in this paper. In particular the parametrization of the quadrupole strengths and optics functions with respect to the emittance and drift lengths is derived. A multi-parametric space can be then created with all the cell parameters, from which one can chose any of them to be optimized. An application of this approach are finally presented for the linear and non-linear optimization of the CLIC Pre-damping rings.
Energy Technology Data Exchange (ETDEWEB)
Belendez, A. [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es; Fernandez, E. [Departamento de Optica, Farmacologia y Anatomia, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Rodes, J.J. [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fuentes, R.; Pascual, I. [Departamento de Optica, Farmacologia y Anatomia, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)
2009-02-16
The harmonic balance method is used to construct approximate frequency-amplitude relations and periodic solutions to an oscillating charge in the electric field of a ring. By combining linearization of the governing equation with the harmonic balance method, we construct analytical approximations to the oscillation frequencies and periodic solutions for the oscillator. To solve the nonlinear differential equation, firstly we make a change of variable and secondly the differential equation is rewritten in a form that does not contain the square-root expression. The approximate frequencies obtained are valid for the complete range of oscillation amplitudes and excellent agreement of the approximate frequencies and periodic solutions with the exact ones are demonstrated and discussed.
Ring-Interferometric Sol-Gel Bio-Sensor
Bearman, Gregory (Inventor); Cohen, David (Inventor)
2006-01-01
A biosensor embodying the invention includes a sensing volume having an array of pores sized for immobilizing a first biological entity tending to bind to a second biological entity in such a manner as to change an index of refraction of the sensing volume. The biosensor further includes a ring interferometer, one volumetric section of the ring interferometer being the sensing volume, a laser for supplying light to the ring interferometer, and a photodetector for receiving light from the interferometer.
Progress on optimization of the nonlinear beam dynamics in the MEIC collider rings
Energy Technology Data Exchange (ETDEWEB)
Nosochkov, Y. M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Cai, Y. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Sullivan, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wang, M-H [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wienands, U. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Morozov, V. S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Ya. S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, F. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Pilat, F. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Y. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2015-07-13
One of the key design features of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is a small beta function at the interaction point (IP) allowing one to achieve a high luminosity of up to 10^{34} cm^{-2}s^{-1}. The required strong beam focusing unavoidably causes large chromatic effects such as chromatic tune spread and beam smear at the IP, which need to be compensated. This paper reports recent progress in our development of a chromaticity correction scheme for the ion ring including optimization of dynamic aperture and momentum acceptance.
Progress on Optimization of the Nonlinear Beam Dynamics in the MEIC Collider Rings
Energy Technology Data Exchange (ETDEWEB)
Morozov, Vasiliy S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Lin, Fanglei [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Pilat, Fulvia [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Cai, Y. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nosochkov, Y. M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Sullivan, Michael [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wang, M.-H. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wienands, Uli [SLAC National Accelerator Lab., Menlo Park, CA (United States)
2015-09-01
One of the key design features of the Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is a small beta function at the interaction point (IP) allowing one to achieve a high luminosity of up to 10^{34} cm^{-2}s^{-1}. The required strong beam focusing unavoidably causes large chromatic effects such as chromatic tune spread and beam smear at the IP, which need to be compensated. This paper reports recent progress in our development of a chromaticity correction scheme for the ion ring including optimization of dynamic aperture and momentum acceptance.
Nonlinear optical signatures of ultraviolet light-induced ring opening in α-terpinene
West, Brantley A.; Molesky, Brian P.; Montoni, Nicholas P.; Moran, Andrew M.
2013-02-01
Photoinduced electrocyclic ring opening reactions in conjugated cylcoalkenes are among the most elementary processes in organic chemistry. One prototypical ring opening reaction transforms cyclohexadiene into hexatriene. It is known that a sequence of sub-100 fs internal conversion transitions precedes bond breaking in cyclohexadiene and some of its derivatives. However, these excited state dynamics have never been directly monitored in solution because of insufficient time resolution. Here we aim to uncover the extraordinary photophysics behind related ultrafast internal conversion processes in a derivative of cyclohexadiene, α-terpinene (α-TP), solvated in cyclohexane. Transient absorption anisotropy experiments conducted with 20 fs laser pulses at 267 nm expose non-exponential depopulation kinetics for the ππ* electronic state of α-TP. Our data show that population transfer rapidly accelerates within the first 100 fs after photoexcitation. In addition, recurrences in two-dimensional photon echo (2DPE) line shapes reveal strong vibronic coupling in a normal mode near 523 cm-1, which involves torsions of the C=C bonds and hydrogen out-of-plane (HOOP) wagging on a vinyl group. With the support of several experiments, we hypothesize that the excited state wavepacket in α-TP undergoes several recurrences in the C=C stretching coordinate before displacement along the C=C torsion/vinyl HOOP coordinate finally sets it free from the Franck-Condon region of the potential energy surface. The unconfined wavepacket departs the ππ* electronic state by way of a conical intersection with a lower energy excited state. The present observations are made possible by recent improvements to both the time resolution and detection sensitivity of our experimental setup. This work demonstrates that it is now possible to acquire 2DPE signals in the deep ultraviolet, which are comparable with high-quality measurements in the visible spectral region. These technical developments
Janjua, Muhammad Ramzan Saeed Ashraf
2012-11-05
This work was inspired by a previous report (Janjua et al. J. Phys. Chem. A 2009, 113, 3576-3587) in which the nonlinear-optical (NLO) response strikingly improved with an increase in the conjugation path of the ligand and the nature of hexamolybdates (polyoxometalates, POMs) was changed into a donor by altering the direction of charge transfer with a second aromatic ring. Herein, the first theoretical framework of POM-based heteroaromatic rings is found to be another class of excellent NLO materials having double heteroaromatic rings. First hyperpolarizabilities of a large number of push-pull-substituted conjugated systems with heteroaromatic rings have been calculated. The β components were computed at the density functional theory (DFT) level (BP86 geometry optimizations and LB94 time-dependent DFT). The largest β values are obtained with a donor (hexamolybdates) on the benzene ring and an acceptor (-NO(2)) on pyrrole, thiophene, and furan rings. The pyrrole imido-substituted hexamolybdate (system 1c) has a considerably large first hyperpolarizability, 339.00 × 10(-30) esu, and it is larger than that of (arylimido)hexamolybdate, calculated as 0.302 × 10(-30) esu (reference system 1), because of the double aromatic rings in the heteroaromatic imido-substituted hexamolybdates. The heteroaromatic rings act as a conjugation bridge between the electron acceptor (-NO(2)) and donor (polyanion). The introduction of an electron donor into heteroaromatic rings significantly enhances the first hyperpolarizabilities because the electron-donating ability is substantially enhanced when the electron donor is attached to the heterocyclic aromatic rings. Interposing five-membered auxiliary fragments between strong donor (polyanion) or acceptor (-NO(2)) groups results in a large computed second-order NLO response. The present investigation provides important insight into the NLO properties of (heteroaromatic) imido-substituted hexamolybdate derivatives because these compounds
Rogers, Ryan
2007-01-01
The Michelson Interferometer is a device used in many applications, but here it was used to measure small differences in distance, in the milli-inch range, specifically for defects in the Orbiter windows. In this paper, the method of using the Michelson Interferometer for measuring small distances is explained as well as the mathematics of the system. The coherence length of several light sources was calculated in order to see just how small a defect could be measured. Since white light is a very broadband source, its coherence length is very short and thus can be used to measure small defects in glass. After finding the front and back reflections from a very thin glass slide with ease and calculating the thickness of it very accurately, it was concluded that this system could find and measure small defects on the Orbiter windows. This report also discusses a failed attempt for another use of this technology as well as describes an area of promise for further analysis. The latter of these areas has applications for finding possible defects in Orbiter windows without moving parts.
Khazanov, G. V.
2004-01-01
The excitation of lower hybrid waves (LHWs) is a widely discussed mechanism of interaction between plasma species in space, and is one of the unresolved questions of magnetospheric multi-ion plasmas. In this paper we present the morphology, dynamics, and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7, 1998 storm period on the global scale. The LHWs were calculated based on a newly developed self-consistent model (Khazanov et. al., 2002, 2003) that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.
Luo, Ai-Ping; Xu, Wen-Cheng
2010-01-01
A tunable and switchable multi-wavelength erbium-doped fiber ring laser based on a new type tunable comb filter is proposed and demonstrated. By adjusting the polarization controllers, dual-function operation of the channel spacing tunability and the wavelength switching (interleaving) can be readily achieved. Up to 29 stable lasing lines with 0.4 nm spacing and 14 lasing wavelengths with 0.8 nm spacing in 3 dB bandwidth were obtained at room temperature. In addition, the lasing output, including the number of the lasing lines, the lasing evenness and the lasing locations, can also be flexibly adjusted through the wavelength-dependent polarization rotation mechanism.
Energy Technology Data Exchange (ETDEWEB)
Belendez, A., E-mail: a.belendez@ua.e [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)] [Instituto Universitario de Fisica Aplicada a las Ciencias y las Tecnologias, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, E. [Departamento de Optica, Farmacologia y Anatomia, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Rodes, J.J. [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fuentes, R.; Pascual, I. [Instituto Universitario de Fisica Aplicada a las Ciencias y las Tecnologias, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)] [Departamento de Optica, Farmacologia y Anatomia, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)
2009-11-09
In a previous short communication [A. Belendez, E. Fernandez, J.J. Rodes, R. Fuentes, I. Pascual, Phys. Lett. A 373 (2009) 735] the nonlinear oscillations of a punctual charge in the electric field of a charged ring were analyzed. Approximate frequency-amplitude relations and periodic solutions were obtained using the harmonic balance method. Now we clarify an important aspect about of this oscillation charge. Taking into account Earnshaw's theorem, this punctual charge cannot be a free charge and so it must be confined, for example, on a finite conducting wire placed along the axis of the ring. Then, the oscillatory system may consist of a punctual charge on a conducting wire placed along the axis of the uniformly charged ring.
Tavousi, Alireza; Mansouri-Birjandi, Mohammad Ali; Saffari, Mehdi
2016-09-01
Implementing of photonic sampling and quantizing analog-to-digital converters (ADCs) enable us to extract a single binary word from optical signals without need for extra electronic assisting parts. This would enormously increase the sampling and quantizing time as well as decreasing the consumed power. To this end, based on the concept of successive approximation method, a 4-bit full-optical ADC that operates using the intensity-dependent Kerr-like nonlinearity in a two dimensional photonic crystal (2DPhC) platform is proposed. The Silicon (Si) nanocrystal is chosen because of the suitable nonlinear material characteristic. An optical limiter is used for the clamping and quantization of each successive levels that represent the ADC bits. In the proposal, an energy efficient optical ADC circuit is implemented by controlling the system parameters such as ring-to-waveguide coupling coefficients, the ring's nonlinear refractive index, and the ring's length. The performance of the ADC structure is verified by the simulation using finite difference time domain (FDTD) method.
Special relativity and interferometers
Han, D.; Kim, Y. S.
1988-01-01
A new generation of gravitational wave detectors is expected to be based on interferometers. Yurke et al. (1986) introduced a class of interferometers characterized by SU(1,1) which can in principle achieve a phase sensitivity approaching 1/N, where N is thte total number of photons entering the interferometer. It is shown here that the SU(1,1) interferometer can serve as an analog computer for Wigner's little group of the Poincare\\'| group.
The Palomar Testbed Interferometer
Colavita, M. M.; Wallace, J. K.
1998-01-01
The Palomar Testbed Interferometer (PTI) is a long-baseline infrared interferometer located at Palomar Observatory, California. It was built as a testbed for interferometric techniques applicable to the Keck Interferometer. First fringes were obtained in July 1995. PTI implements a dual-star architecture, tracking two stars simultaneously for phase referencing and narrow-angle astrometry. The three fixed 40-cm apertures can be combined pair-wise to provide baselines to 110 m. The interferomet...
Special relativity and interferometers
Han, D.; Kim, Y. S.
1988-01-01
A new generation of gravitational wave detectors is expected to be based on interferometers. Yurke et al. (1986) introduced a class of interferometers characterized by SU(1,1) which can in principle achieve a phase sensitivity approaching 1/N, where N is thte total number of photons entering the interferometer. It is shown here that the SU(1,1) interferometer can serve as an analog computer for Wigner's little group of the Poincare\\'| group.
Energy Technology Data Exchange (ETDEWEB)
Pusterla, M.; Servizi, G.; Turchetti, G.
1985-10-01
Theoretical models, suitable for description of the long behaviour of bunched and unbunched beams of particles in accelerators and storage rings, are becoming more and more appreciated by physicists that want a high luminosity joined with the stability of the beams. Such a point is going to be particulary important for the next generation machines as L.E.P., S.S.C. and L.H.C. In this note we are giving a simplified analysis of the beam-beam non-linear effects for proton colliders on the basis of the latest designs (we think of S.S.C. and L.H.C.). Before doing that, however, we like to consider the general features of the dynamical approaches that describe the beam-beam forces both for the proton proton rings (fixed angle collision) and for proton-antiproton or electronpositron rings (head-on collisions): they follow directly from the recent developments of non-linear classical mechanics, namely the K.A.M. theorem and the transition to a chaotic motion in deterministic mechanical systems.
Energy Technology Data Exchange (ETDEWEB)
Welsch, Dominic Markus
2010-03-10
The High-Energy Storage Ring (HESR) is part of the upcoming Facility for Antiproton and Ion Research (FAIR) which is planned as a major extension to the present facility of the Helmholtzzentrum fuer Schwerionenforschung (GSI) in Darmstadt. The HESR will provide antiprotons in the momentum range from 1.5 to 15 GeV/c for the internal target experiment PANDA. The demanding requirements of PANDA in terms of beam quality and luminosity together with a limited production rate of antiprotons call for a long beam life time and a minimum of beam loss. Therefore, an effective closed orbit correction and a sufficiently large dynamic aperture of the HESR are crucial. With this thesis I present my work on both of these topics. The expected misalignments of beam guiding magnets have been estimated and used to simulate the closed orbit in the HESR. A closed orbit correction scheme has been developed for different ion optical settings of the HESR and numerical simulations have been performed to validate the scheme. The proposed closed orbit correction method which uses the orbit response matrix has been benchmarked at the Cooler Synchrotron COSY of the Forschungszentrum Juelich. A chromaticity correction scheme for the HESR consisting of sextupole magnets has been developed to reduce tune spread and thus to minimize the emittance growth caused by betatron resonances. The chromaticity correction scheme has been optimized through dynamic aperture calculations. The estimated field errors of the HESR dipole and quadrupole magnets have been included in the non-linear beam dynamics studies. Investigations concerning their optimization have been carried out. The ion optical settings of the HESR have been improved using dynamic aperture calculations and the technique of frequency map analysis. The related diffusion coefficient was also used to predict long-term stability based on short-term particle tracking. With a reasonable reduction of the quadrupole magnets field errors and a
Quantum Spin Transport in Mesoscopic Interferometer
Directory of Open Access Journals (Sweden)
Zein W. A.
2007-10-01
Full Text Available Spin-dependent conductance of ballistic mesoscopic interferometer is investigated. The quantum interferometer is in the form of ring, in which a quantum dot is embedded in one arm. This quantum dot is connected to one lead via tunnel barrier. Both Aharonov- Casher and Aharonov-Bohm e ects are studied. Our results confirm the interplay of spin-orbit coupling and quantum interference e ects in such confined quantum systems. This investigation is valuable for spintronics application, for example, quantum information processing.
Institute of Scientific and Technical Information of China (English)
Yan Wang; Qing Wang; Wei Zhang; Xiaoming Liu; Jiangde Peng
2005-01-01
@@ A broadband multiwavelength Raman fiber ring laser (RFRL) covering the whole C-band at room temperature are presented. The effect of the intracavity highly nonlinear dispersion-shifted fiber on broadening and flattening the output spectrum envelope is discussed and experimentally demonstrated. More than 45-dB extinction-ratio multiwavelength output from 1527.76 to 1566.86 nm with 100-GHz channel spacing and 2.1-dB power ripple has been achieved by carefully controlling the individual powers of three pump lasers.
Institute of Scientific and Technical Information of China (English)
冯素春; 许鸥; 鲁韶华; 宁提纲; 简水生
2009-01-01
Multi-wavelength fiber ring laser based on the semiconductor optical amplifier(SOA)with sampled fiber Bragg grating(SFBG)in a Sagnac loop interferometer as the wavelength-selective filter is proposed.Four lasing wavelengths with 1.8 nm spacing have been generated stably at room temperature.The proposed laser has the advan-tages such as removal of the high-cost circulator,flexibility in channel-spacing tuning,and simple all-optical fiber configuration,which has potential applications in high-capacity wavelength-division-multiplexed(WDM)systems and mechanical sensors.
Multiple reflection Michelson interferometer with picometer resolution.
Pisani, Marco
2008-12-22
A Michelson interferometer based on an optical set-up allowing multiple reflection between two plane mirrors performs the multiplication of the optical path by a factor N, proportionally increasing the resolution of the measurement. A multiplication factor of almost two orders of magnitude has been demonstrated with a simple set-up. The technique can be applied to any interferometric measurement where the classical interferometer limits due to fringe nonlinearities and quantum noise are an issue. Applications in precision engineering, vibration analysis, nanometrology, and spectroscopy are foreseen.
Superconducting on-chip microwave interferometers
Energy Technology Data Exchange (ETDEWEB)
Menzel, Edwin P.; Fischer, Michael; Schneider, Christian; Baust, Alexander; Eder, Peter; Goetz, Jan; Haeberlein, Max; Schwarz, Manuel; Wulschner, Karl Friedrich; Xie, Edwar; Zhong, Ling; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Marx, Achim; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany)
2015-07-01
In the realm of all-microwave quantum computation, information is encoded in itinerant microwave photons propagating along transmission lines. In such a system unitary operations are implemented by linear elements such as beam splitters or interferometers. However, for two-qubit operations non-linear gates, e.g., c-phase gates are required. In this work, we investigate superconducting interferometers as a building block of a c-phase gate. We experimentally characterize their scattering properties and compare them to simulation results. Finally, we discuss our progress towards the realization of a c-phase gate.
Barseghyan, Manuk G; Restrepo, Ricardo L; Mora-Ramos, Miguel E; Kirakosyan, Albert A; Duque, Carlos A
2012-09-28
: The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum.
Min, K.; Liu, K.; Gary, S. P.
2015-12-01
In the inner magnetosphere, the energy-dependent convection of ring current ions can lead to the ring-type proton velocity distributions with ∂fp(vperp)/∂vperp > 0 and ring speeds around the Alfvén speed. This ring-type velocity distribution is known to drive fast magnetosonic waves at propagation quasi-perpendicular to the background magnetic field B0 and, with sufficient temperature anisotropy, electromagnetic ion cyclotron (EMIC) waves at propagation parallel to B0. While there is an abundant literature on linear theory and computer simulations of EMIC waves driven by bi-Maxwellian ion distributions, the literature on the instabilities associated with ring-type proton velocity distributions in the inner magnetosphere is less substantial. Even less studied is the interplay of the two instabilities which lead to the growth of EMIC and fast magnetosonic waves, respectively. The goal of this paper is to provide a comprehensive picture of the instabilities responsible for the two types of waves and their interplay in the conditions of the inner magnetosphere, using linear dispersion theory and self-consistent particle-in-cell (PIC) simulations. For systematic analyses, two-component proton distributions fp = fr + fb are used, where fr represents a tenuous energetic proton velocity distribution with ∂fr(vperp)/∂vperp > 0 providing free energy and fb represents a dense Maxwellian background with sufficiently small beta corresponding to the inner magnetospheric condition. Both an ideal velocity ring and a partial shell with sinn-type pitch angle dependence will be considered for the fr component.
Enhanced linear and nonlinear optical phase response of AlGaAs microring resonators.
Heebner, John E; Lepeshkin, Nick N; Schweinsberg, Aaron; Wicks, G W; Boyd, Robert W; Grover, Rohit; Ho, P T
2004-04-01
We have constructed and characterized several optical microring resonators with scale sizes of the order of 10 microm. These devices are intended to serve as building blocks for engineerable linear and nonlinear photonic media. Light is guided vertically by an epitaxially grown structure and transversely by deeply etched air-clad sidewalls. We report on the spectral phase transfer characteristics of such resonators. We also report the observation of a pi-rad Kerr nonlinear phase shift accumulated in a single compact ring resonator evidenced by all-optical switching between output ports of a resonator-enhanced Mach-Zehnder interferometer.
Wang, Yunzheng; Zhang, Liqiang; Zhuo, Zhuang; Guo, Songzhen
2016-07-20
We propose a cross-splicing method, for the first time to our knowledge, to compensate the effect of fiber birefringence in a polarization-maintaining fiber ring laser mode locked by nonlinear polarization evolution. This method has been investigated numerically and experimentally. The results indicate that stable mode-locking pulses can be obtained in the cavity with this method; otherwise, no mode-locking states are achieved. The design processes of the laser cavity are presented. Pulses with single pulse energy of 2.1 nJ are generated at pump power of 460 mW. The spectral bandwidth and pulse duration are 17.5 nm and 11.7 ps, respectively. The tunability of the laser is also studied. The central wavelength can be tuned from 1023.2 to 1045.9 nm.
Michelson and His Interferometer
Shankland, Robert S.
1974-01-01
Presents a brief historical account of Michelson's invention of his interferometer with some subsequent ingenious applications of its capabilities for precise measurement discussed in details, including the experiment on detrmination of the diameters for heavenly bodies. (CC)
Thermal Conductance of Andreev Interferometers
Jiang, Z.; Chandrasekhar, V.
2005-04-01
We calculate the thermal conductance GT of diffusive Andreev interferometers, which are hybrid loops with one superconducting arm and one normal-metal arm. The presence of the superconductor suppresses GT; however, unlike a conventional superconductor, GT/GTN does not vanish as the temperature T→0, but saturates at a finite value that depends on the resistance of the normal-superconducting interfaces, and their distance from the path of the temperature gradient. The reduction of GT is determined primarily by the suppression of the density of states in the proximity-coupled normal metal along the path of the temperature gradient. GT is also a strongly nonlinear function of the thermal current, as found in recent experiments.
Sola, I. J.; Martín, J. C.; Álvarez, J. M.
2002-11-01
The response of a unidirectional erbium-doped fiber ring laser, excited by a sinusoidally modulated pump power, is analyzed both experimentally and theoretically. Experimentally, several resonance peaks are observed, as well as different frequency ranges showing bistable behaviour. Appearance of all resonance peaks obtained can be explained taking into account simple relations between the pump modulation frequency and the system natural frequency. Theoretically, it is shown how a model which combines the theory of erbium-doped fibers and the semiclassical laser treatment can account for all phenomena observed, with good agreement. In particular, it is demonstrated that a correct description of the bistable regions requires taking into account powers and population distributions along the laser active medium.
Mariner 9 Michelson interferometer.
Hanel, R.; Schlachman, B.; Rodgers, D.; Breihan, E.; Bywaters, R.; Chapman, F.; Rhodes, M.; Vanous, D.
1972-01-01
The Michelson interferometer on Mariner 9 measures the thermal emission spectrum of Mars between 200 and 2000 per cm (between 5 and 50 microns) with a spectral resolution of 2.4 per cm in the apodized mode. A noise equivalent radiance of 0.5 x 10 to the minus 7th W/sq cm/ster/cm is deduced from data recorded in orbit around Mars. The Mariner interferometer deviates in design from the Nimbus 3 and 4 interferometers in several areas, notably, by a cesium iodide beam splitter and certain aspects of the digital information processing. Special attention has been given to the problem of external vibration. The instrument performance is demonstrated by calibration data and samples of Mars spectra.
Michelson interferometer for precision angle measurement.
Ikram, M; Hussain, G
1999-01-01
An angle-measuring technique based on an optical interferometer is reported. The technique exploits a Michelson interferometric configuration in which a right-angle prism and a glass strip are introduced into a probe beam. Simultaneous rotation of both components along an axis results in an optical path difference between the reference and the probe beams. In a second arrangement two right-angle prisms and glass strips are introduced into two beams of a Michelson interferometer. The prisms and the strips are rotated simultaneously to introduce an optical path difference between the two beams. In our arrangement, optimization of various parameters makes the net optical path difference between the two beams approximately linear for a rotation as great as +/-20 degrees . Results are simulated that show an improvement of 2-3 orders of magnitude in error and nonlinearity compared with a previously reported technique.
Japanese large-scale interferometers
Kuroda, K; Miyoki, S; Ishizuka, H; Taylor, C T; Yamamoto, K; Miyakawa, O; Fujimoto, M K; Kawamura, S; Takahashi, R; Yamazaki, T; Arai, K; Tatsumi, D; Ueda, A; Fukushima, M; Sato, S; Shintomi, T; Yamamoto, A; Suzuki, T; Saitô, Y; Haruyama, T; Sato, N; Higashi, Y; Uchiyama, T; Tomaru, T; Tsubono, K; Ando, M; Takamori, A; Numata, K; Ueda, K I; Yoneda, H; Nakagawa, K; Musha, M; Mio, N; Moriwaki, S; Somiya, K; Araya, A; Kanda, N; Telada, S; Sasaki, M; Tagoshi, H; Nakamura, T; Tanaka, T; Ohara, K
2002-01-01
The objective of the TAMA 300 interferometer was to develop advanced technologies for kilometre scale interferometers and to observe gravitational wave events in nearby galaxies. It was designed as a power-recycled Fabry-Perot-Michelson interferometer and was intended as a step towards a final interferometer in Japan. The present successful status of TAMA is presented. TAMA forms a basis for LCGT (large-scale cryogenic gravitational wave telescope), a 3 km scale cryogenic interferometer to be built in the Kamioka mine in Japan, implementing cryogenic mirror techniques. The plan of LCGT is schematically described along with its associated R and D.
Realization of an Ultrasensitive Heisenberg-Limited Interferometer
2006-07-31
used a Monte Carlo simulation program to examine the effect of losses on this highly nonlinear detection scheme, with its experimental imple...is below since many authors do not follow the 200 word limit 14. SUBJECT TERMS quantum optics, nonlinear optics, squeezed states, Heisenberg -limited...Programs 1001 N. Emmett St. P.O. Box 400195 Charlottesville, VA 22904 -4195 Realization of an Ultrasensitive Heisenberg -Limited Interferometer REPORT
Integrated fiber Michelson interferometer based on poled hollow twin-core fiber.
Liu, Zhihai; Bo, Fusen; Wang, Lei; Tian, Fengjun; Yuan, Libo
2011-07-01
We propose an integrated fiber Michelson interferometer based on a poled hollow twin-core fiber. The Michelson interferometer can be used as an electro-optic modulator by thermal poling one core of the twin-core fiber and introducing second-order nonlinearity in the fiber. The proposed fiber Michelson interferometer is experimentally demonstrated under driving voltages at the frequency range of 149 to 1000 Hz. The half-wave voltage of the poled fiber is 135 V, and the effective second-order nonlinear coefficient χ² is 1.23 pm/V.
Mora-Hernandez, G
1988-01-01
This book describes the Fabry-Perot interferometer and its variants as well as its use, optimisation and applications. The author begins with an historical perspective on the development of the instrument. Because of the quantitative uses of the device, the text tends to be mostly mathematical in its treatment. However, there is also much practical detail on the use and optimization of the Fabry-Perot interferometer and discussion of its classical uses (such as in metrology) and its contemporary applications (such as in lasers). In addition the book contains a comprehensive bibliography summarizing the extensive literature on the subject. This book will appeal both to high-resolution practitioners, such as spectroscopists, and to the laser community, since the Fabrv-Perot is not only an integral part of the laser but is also usea to characterize its optical and spectroscopic behaviour.
Energy Technology Data Exchange (ETDEWEB)
Jain, N. [Pittsford Sutherland High School, NY (United States)
1999-03-01
Phase-shifting interferometry has many advantages, and the phase shifting nature of the Liquid Crystal Point Diffraction Interferometer (LCPDI) promises to provide significant improvement over other current OMEGA wavefront sensors. However, while phase-shifting capabilities improve its accuracy as an interferometer, phase-shifting itself introduces errors. Phase-shifting algorithms are designed to eliminate certain types of phase-shift errors, and it is important to chose an algorithm that is best suited for use with the LCPDI. Using polarization microscopy, the authors have observed a correlation between LC alignment around the microsphere and fringe behavior. After designing a procedure to compare phase-shifting algorithms, they were able to predict the accuracy of two particular algorithms through computer modeling of device-specific phase shift-errors.
Guided magnonic Michelson interferometer
Muhammad H. Ahmed; Jeske, Jan; Greentree, Andrew D.
2015-01-01
Magnonics is an emerging field with potential applications in classical and quantum information processing. Freely propagating magnons in two-dimensional media suffer from dispersion, which limits their effective range and fidelity. We show the design of controllable magnonic circuitry, that utilise surface current carrying wires to create magnonic waveguides. We also show the design of a magnonic directional coupler and controllable Michelson interferometer to demonstrate its utility for inf...
Atom-Light Hybrid Interferometer.
Chen, Bing; Qiu, Cheng; Chen, Shuying; Guo, Jinxian; Chen, L Q; Ou, Z Y; Zhang, Weiping
2015-07-24
A new type of hybrid atom-light interferometer is demonstrated with atomic Raman amplification processes replacing the beam splitting elements in a traditional interferometer. This nonconventional interferometer involves correlated optical and atomic waves in the two arms. The correlation between atoms and light developed with the Raman process makes this interferometer different from conventional interferometers with linear beam splitters. It is observed that the high-contrast interference fringes are sensitive to the optical phase via a path change as well as the atomic phase via a magnetic field change. This new atom-light correlated hybrid interferometer is a sensitive probe of the atomic internal state and should find wide applications in precision measurement and quantum control with atoms and photons.
Electron Sagnac gyroscope in an array of mesoscopic quantum rings
Energy Technology Data Exchange (ETDEWEB)
Toland, John R.E. [Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Search, Chris P., E-mail: csearch@stevens.ed [Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, NJ 07030 (United States)
2010-02-01
The Sagnac effect is an important phase coherent effect in optical and atom interferometers where rotations with respect to an inertial frame are measured in the interference pattern. We analyze the Sagnac effect in a serial array of mesoscopic ring shaped electron interferometers comprised of rings with half-circumferences comparable to the mean free path. The entire array is, however, much larger than the phase coherence length. Phase coherent transport at the level of individual rings leads to a measurable Sagnac effect in the conductance of the chain. We use the signal to noise ratio (SNR) to determine the number of rings needed to measure a desired rotation rate.
Naval Prototype Optical Interferometer (NPOI)
Federal Laboratory Consortium — FUNCTION: Used for astrometry and astronomical imaging, the Naval Prototype Optical Interferometer (NPOI) is a distributed aperture optical telescope. It is operated...
Energy Technology Data Exchange (ETDEWEB)
Baghramyan, H.M. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Barseghyan, M.G., E-mail: mbarsegh@ysu.am [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Kirakosyan, A.A. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Restrepo, R.L. [Escuela de Ingenieria de Antioquia, AA 7516 Medellin (Colombia); Duque, C.A. [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia)
2013-02-15
The linear and nonlinear intra-band optical absorption coefficients in GaAs/Ga{sub 1-x}Al{sub x}As two-dimensional concentric double quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and aluminum concentration the energies of the ground (n=1,l=0) and the first excited state (n=2,l=1) have been found using the effective mass approximation and the transfer matrix formalism. The energies of these states and the corresponding threshold energy of the intra-band optical transitions are examined as a function of hydrostatic pressure and aluminum concentration for different sizes of the structure. We also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as functions of the incident photon energy for different values of hydrostatic pressure, aluminum concentration, sizes of the structure, and incident optical intensity. Its is found that the effects of the hydrostatic pressure and the aluminum concentration lead to a shifting of the resonant peaks of the intra-band optical spectrum. - Highlights: Black-Right-Pointing-Pointer Linear and nonlinear intra-band absorption in quantum rings. Black-Right-Pointing-Pointer Threshold energy strongly depends on the hydrostatic pressure. Black-Right-Pointing-Pointer Threshold energy strongly depends on the stoichiometry and sizes of structure. Black-Right-Pointing-Pointer Optical absorption is affected by the incident optical intensity.
Very small beam-size measurement by a reflective synchrotron radiation interferometer
Directory of Open Access Journals (Sweden)
T. Naito
2006-12-01
Full Text Available A synchrotron radiation (SR interferometer with Herschelian reflective optics has been developed for the measurement of beams of several μm in size. In a conventional refractive SR interferometer, the dispersion effect of the objective lens limits the instrument to a smaller range of beam-size measurements. To avoid this problem, we designed a Herschelian arrangement of reflective optics for the interferometer. The effectiveness of the reflective SR interferometer was confirmed at the KEK Accelerator Test Facility (ATF damping ring. The measured vertical beam size obtained using the reflective SR interferometer was 4.7 μm and the estimated vertical emittance was 0.97×10^{-11} m.
Folding gravitational-wave interferometers
Sanders, J. R.; Ballmer, Stefan W.
2017-01-01
The sensitivity of kilometer-scale terrestrial gravitational wave interferometers is limited by mirror coating thermal noise. Alternative interferometer topologies can mitigate the impact of thermal noise on interferometer noise curves. In this work, we explore the impact of introducing a single folding mirror into the arm cavities of dual-recycled Fabry–Perot interferometers. While simple folding alone does not reduce the mirror coating thermal noise, it makes the folding mirror the critical mirror, opening up a variety of design and upgrade options. Improvements to the folding mirror thermal noise through crystalline coatings or cryogenic cooling can increase interferometer range by as much as a factor of two over the Advanced LIGO reference design.
... subclavian and left ligamentum ateriosus; Congenital heart defect - vascular ring; Birth defect heart - vascular ring ... Vascular ring is rare. It accounts for less than 1% of all congenital heart problems. The condition ...
Energy Technology Data Exchange (ETDEWEB)
Baghramyan, H.M.; Barseghyan, M.G.; Kirakosyan, A.A. [Department of Solid State Physics, Yerevan State University, Al. Manookian 1, 0025 Yerevan (Armenia); Restrepo, R.L. [Física Teórica y Aplicada, Escuela de Ingeniería de Antioquia, AA 7516, Medellín (Colombia); Grupo de Materia Condensada-UdeA, Instituto de Física, Facultadde Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21,Medellín (Colombia); Mora-Ramos, M.E. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultadde Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21,Medellín (Colombia); Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque@fisica.udea.edu.co [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultadde Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21,Medellín (Colombia)
2014-01-15
The linear and nonlinear optical absorption associated with the transition between 1s and 2s states corresponding to the electron-donor-impurity complex in GaAs/Ga{sub 1−x}Al{sub x}As three-dimensional concentric double quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and the variation of the aluminum concentration, the energies of the ground and first excited s-like states of a donor impurity in such a system have been calculated using the effective mass approximation and a variational method. The energies of these states and the corresponding threshold energy of the optical transitions are examined as functions of hydrostatic pressure, aluminum concentration, radial impurity position, as well as the geometrical dimensions of the structure. The dependencies of the linear, nonlinear and total optical absorption coefficients as functions of the incident photon energy are investigated for different values of those mentioned parameters. It is found that the influences mentioned above lead to either redshifts or blueshifts of the resonant peaks of the optical absorption spectrum. It is particularly discussed the unusual property exhibited by the third-order nonlinear of becoming positive for photon energies below the resonant transition one. It is shown that this phenomenon is associated with the particular features of the system under study, which determine the values of the electric dipole moment matrix elements. -- Highlights: • Intra-band optical absorption associated to impurity states in double quantum rings. • Combined effects of hydrostatic pressure and aluminum concentration are studied. • The influences mentioned above lead to shifts of resonant peaks. • It is discussed an unusual property exhibited by the third-order nonlinear absorption.
Integrated Optical Interferometers with Micromachined Diaphragms for Pressure Sensing
DeBrabander, Gregory N.; Boyd, Joseph T.
1996-01-01
Optical pressure sensors have been fabricated which use an integrated optical channel waveguide that is part of an interferometer to measure the pressure-induced strain in a micromachined silicon diaphragm. A silicon substrate is etched from the back of the wafer leaving a rectangular diaphragm. On the opposite side of the wafer, ring resonator and Mach-Zehnder interferometers are formed with optical channel waveguides made from a low pressure chemical vapor deposited film of silicon oxynitride. The interferometer's phase is altered by pressure-induced stress in a channel segment positioned over the long edge of the diaphragm. The phase change in the ring resonator is monitored using a link-insensitive swept frequency laser diode, while in the Mach-Zehnder it is determined using a broad band super luminescent diode with subsequent wavelength separation. The ring resonator was found to be highly temperature sensitive, while the Mach-Zehnder, which had a smaller optical path length difference, was proportionally less so. The quasi-TM mode was more sensitive to pressure, in accord with calculations. Waveguide and sensor theory, sensitivity calculations, a fabrication sequence, and experimental results are presented.
Ring-Resonator/Sol-Gel Interferometric Immunosensor
Bearman, Gregory; Cohen, David
2007-01-01
A proposed biosensing system would be based on a combination of (1) a sensing volume containing antibodies immobilized in a sol-gel matrix and (2) an optical interferometer having a ring resonator configuration. The antibodies would be specific to an antigen species that one seeks to detect. In the ring resonator of the proposed system, light would make multiple passes through the sensing volume, affording greater interaction length and, hence, greater antibody- detection sensitivity.
The Fizeau Interferometer Testbed
Zhang, X; Lyon, R G; Huet, H; Marzouk, J; Solyar, G; Zhang, Xiaolei; Carpenter, Kenneth G.; Lyon, Richard G.; Huet, Hubert; Marzouk, Joe; Solyar, Gregory
2002-01-01
The Fizeau Interferometer Testbed (FIT) is a collaborative effort between NASA's Goddard Space Flight Center, the Naval Research Laboratory, Sigma Space Corporation, and the University of Maryland. The testbed will be used to explore the principles of and the requirements for the full, as well as the pathfinder, Stellar Imager mission concept. It has a long term goal of demonstrating closed-loop control of a sparse array of numerous articulated mirrors to keep optical beams in phase and optimize interferometric synthesis imaging. In this paper we present the optical and data acquisition system design of the testbed, and discuss the wavefront sensing and control algorithms to be used. Currently we have completed the initial design and hardware procurement for the FIT. The assembly and testing of the Testbed will be underway at Goddard's Instrument Development Lab in the coming months.
Guided magnonic Michelson interferometer
Ahmed, Muhammad H.; Jeske, Jan; Greentree, Andrew D.
2017-01-01
Magnonics is an emerging field with potential applications in classical and quantum information processing. Freely propagating magnons in two-dimensional media are subject to dispersion, which limits their effective range and utility as information carriers. We show the design of a confining magnonic waveguide created by two surface current carrying wires placed above a spin-sheet, which can be used as a primitive for reconfigurable magnonic circuitry. We theoretically demonstrate the ability of such guides to counter the transverse dispersion of the magnon in a spin-sheet, thus extending the range of the magnon. A design of a magnonic directional coupler and controllable Michelson interferometer is shown, demonstrating its utility for information processing tasks.
THE KECK INTERFEROMETER NULLER
Energy Technology Data Exchange (ETDEWEB)
Serabyn, E.; Mennesson, B.; Colavita, M. M. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Koresko, C. [Argon ST, Inc., 1386 Connellsville Road, Lemont Furnace, PA 15456 (United States); Kuchner, M. J., E-mail: Gene.Serabyn@jpl.nasa.gov [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
2012-03-20
The Keck Interferometer Nuller (KIN), the first operational separated-aperture infrared nulling interferometer, was designed to null the mid-infrared emission from nearby stars so as to ease the measurement of faint circumstellar emission. This paper describes the basis of the KIN's four-beam, two-stage measurement approach and compares it to the simpler case of a two-beam nuller. In the four-beam KIN system, the starlight is first nulled in a pair of nullers operating on parallel 85 m Keck-Keck baselines, after which 'cross-combination' on 4 m baselines across the Keck apertures is used to modulate and detect residual coherent off-axis emission. Comparison to the constructive stellar fringe provides calibration. The response to an extended source is similar in the two cases, except that the four-beam response includes a term due to the visibility of the source on the cross-combiner baseline-a small effect for relatively compact sources. The characteristics of the dominant null depth errors are also compared for the two cases. In the two-beam nuller, instrumental imperfections and asymmetries lead to a series of quadratic, positive-definite null leakage terms. For the four-beam nuller, the leakage is instead a series of correlation cross-terms combining corresponding errors in each of the two nullers, which contribute offsets only to the extent that these errors are correlated on the timescale of the measurement. This four-beam architecture has allowed a significant ({approx}order of magnitude) improvement in mid-infrared long-baseline fringe-visibility accuracies.
MIT's interferometer CST testbed
Hyde, Tupper; Kim, Ed; Anderson, Eric; Blackwood, Gary; Lublin, Leonard
1990-12-01
The MIT Space Engineering Research Center (SERC) has developed a controlled structures technology (CST) testbed based on one design for a space-based optical interferometer. The role of the testbed is to provide a versatile platform for experimental investigation and discovery of CST approaches. In particular, it will serve as the focus for experimental verification of CSI methodologies and control strategies at SERC. The testbed program has an emphasis on experimental CST--incorporating a broad suite of actuators and sensors, active struts, system identification, passive damping, active mirror mounts, and precision component characterization. The SERC testbed represents a one-tenth scaled version of an optical interferometer concept based on an inherently rigid tetrahedral configuration with collecting apertures on one face. The testbed consists of six 3.5 meter long truss legs joined at four vertices and is suspended with attachment points at three vertices. Each aluminum leg has a 0.2 m by 0.2 m by 0.25 m triangular cross-section. The structure has a first flexible mode at 31 Hz and has over 50 global modes below 200 Hz. The stiff tetrahedral design differs from similar testbeds (such as the JPL Phase B) in that the structural topology is closed. The tetrahedral design minimizes structural deflections at the vertices (site of optical components for maximum baseline) resulting in reduced stroke requirements for isolation and pointing of optics. Typical total light path length stability goals are on the order of lambda/20, with a wavelength of light, lambda, of roughly 500 nanometers. It is expected that active structural control will be necessary to achieve this goal in the presence of disturbances.
The photothermal effect in interferometers
Rao, S R
2002-01-01
We have measured the photothermal effect in a single cross-polarized interferometer at audio frequencies (5 Hz - 4 kHz). In a Fabry-Perot interferometer, light in one polarization is chopped to periodically heat the interferometer mirrors, while light in the orthogonal polarization measures the mirror length changes. Tests of a polished solid metal mirror show good agreement with relevant proposed theories by Braginsky et al. ["Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae," Physics Letters A 264, 1-10 (1999)] and Cerdonio et al. ["Thermoelastic effects at low temperatures and quantum limits in displacement measurements," Physical Review D 63 082003 (2001)] describing uncoated optics.
Energy Technology Data Exchange (ETDEWEB)
Nakahara, Y.; Okamura, T.; Takahashi, M. (Fuji Electric Co. Ltd., Tokyo (Japan))
1991-06-10
Features, structures and several products of ring blowers were outlined. The ring blower is featured by its medium characteristics because it is higher in air pressure than a turboblower and larger in airflow than a vane blower, and it is applicable flexibly to not only air blasting but various industrial fields such as suction transfer. As several products corresponding to various fields, the followings were outlined: the low noise type with optimum shapes of inlet, outlet and casing cover for reducing noises by 10 dB or more, the heat resistant, water-tight and explosion-proof types suitable for severe environmental conditions, the multi-voltage type for every country served at different voltages, the high air pressure type with two pressure rise stages, and the large airflow type with a wide impeller. In addition, as special use products, the glass fiber reinforced unsatulated polyester ring blower for respiration apparatus, and the variable speed blushless DC motor-driven one for medical beds were outlined. 2 refs., 9 figs., 1 tab.
$T^3$-interferometer for atoms
Zimmermann, M; Roura, A; Schleich, W P; DeSavage, S A; Davis, J P; Srinivasan, A; Narducci, F A; Werner, S A; Rasel, E M
2016-01-01
The quantum mechanical propagator of a massive particle in a linear gravitational potential derived already in 1927 by Earle H. Kennard \\cite{Kennard,Kennard2} contains a phase that scales with the third power of the time $T$ during which the particle experiences the corresponding force. Since in conventional atom interferometers the internal atomic states are all exposed to the same acceleration $a$, this $T^3$-phase cancels out and the interferometer phase scales as $T^2$. In contrast, by applying an external magnetic field we prepare two different accelerations $a_1$ and $a_2$ for two internal states of the atom, which translate themselves into two different cubic phases and the resulting interferometer phase scales as $T^3$. We present the theoretical background for, and summarize our progress towards experimentally realizing such a novel atom interferometer.
Balloon Exoplanet Nulling Interferometer (BENI)
Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Ford, Holland; Petro, Larry; Herman, Jay; Rinehart, Stephen; Carpenter, Kenneth; Marzouk, Joe
2009-01-01
We evaluate the feasibility of using a balloon-borne nulling interferometer to detect and characterize exosolar planets and debris disks. The existing instrument consists of a 3-telescope Fizeau imaging interferometer with 3 fast steering mirrors and 3 delay lines operating at 800 Hz for closed-loop control of wavefront errors and fine pointing. A compact visible nulling interferometer is under development which when coupled to the imaging interferometer would in-principle allow deep suppression of starlight. We have conducted atmospheric simulations of the environment above 100,000 feet and believe balloons are a feasible path forward towards detection and characterization of a limited set of exoplanets and their debris disks. Herein we will discuss the BENI instrument, the balloon environment and the feasibility of such as mission.
Zimmermann, M.; Efremov, M. A.; Roura, A.; Schleich, W. P.; DeSavage, S. A.; Davis, J. P.; Srinivasan, A.; Narducci, F. A.; Werner, S. A.; Rasel, E. M.
2017-04-01
The quantum mechanical propagator of a massive particle in a linear gravitational potential derived already in 1927 by Kennard [2, 3] contains a phase that scales with the third power of the time T during which the particle experiences the corresponding force. Since in conventional atom interferometers the internal atomic states are all exposed to the same acceleration a, this T^3-phase cancels out and the interferometer phase scales as T^2. In contrast, by applying an external magnetic field we prepare two different accelerations a_1 and a_2 for two internal states of the atom, which translate themselves into two different cubic phases and the resulting interferometer phase scales as T^3. We present the theoretical background for, and summarize our progress towards experimentally realizing such a novel atom interferometer.
Michelson Interferometer (MINT)
Lacis, Andrew; Carlson, Barbara
1993-01-01
MINT is a Michelson interferometer designed to measure the thermal emission from the earth at high spectral resolution (2/cm) over a broad spectral range (250-1700/cm, 6-40 mu m) with contiguous 3-pixel wide (12 mrad, 8 km field of view) along-track sampling. MINT is particularly well suited for monitoring cloud properties (cloud cover, effective temperature, optical thickness, ice/water phase, and effective particle size) both day and night, as well as tropospheric water vapor, ozone, and temperature. The key instrument characteristics that make MINT ideally suited for decadal monitoring purposes are: high wavelength to wavelength precision across the full IR spectrum with high spectral resolution; space-proven long-term durability and calibration stability; and small size, low cost, low risk instrument incorporating the latest detector and electronics technology. MINT also incorporates simplicity in design and operation by utilizing passively cooled DTGS detectors and nadir viewing geometry (with target motion compensation). MINT measurement objectives, instrument characteristics, and key advantages are summarized in this paper.
Cuzzi, J. N.
2014-12-01
The rings are changing before our eyes; structure varies on all timescales and unexpected things have been discovered. Many questions have been answered, but some answers remain elusive (see Cuzzi et al 2010 for a review). Here we highlight the major ring science progress over the mission to date, and describe new observations planned for Cassini's final three years. Ring Composition and particle sizes: The rings are nearly all water ice with no other ices - so why are they reddish? The C Ring and Cassini Division are "dirtier" than the more massive B and A Rings, as shown by near-IR and, recently, microwave observations. Particle sizes, from stellar and radio occultations, vary from place to place. Ring structure, micro and macro: numerous spiral density waves and ubiquitous "self-gravity wakes" reveal processes which fostered planet formation in the solar system and elsewhere. However, big puzzles remain regarding the main ring divisions, the C Ring plateau structures, and the B Ring irregular structure. Moonlets, inside and out, seen and unseen: Two gaps contain sizeable moonlets, but more gaps seem to contain none; even smaller embedded "propeller" objects wander, systematically or randomly, through the A ring. Rubble pile ringmoons just outside the rings may escaped from the rings, and the recently discovered "Peggy" may be trying this as we watch. Impact bombardment of the rings: Comet fragments set the rings to rippling on century-timescales, and boulders crash through hourly; meanwhile, the constant hail of infalling Kuiper belt material has a lower mass flux than previously thought. Origin and Age of the Rings: The ring mass and bombardment play key roles. The ring mass is well known everywhere but in the B Ring (where most of it is). New models suggest how tidal breakup of evolving moons may have formed massive ancient rings, of which the current ring is just a shadow. During its last three years, the Cassini tour profile will allow entirely new
Energy Technology Data Exchange (ETDEWEB)
Akhmetov, D.G. [Lavrentiev Institute of Hydrodynamics, Novosibirsk (Russian Federation)
2009-07-01
This book presents a comprehensive coverage of the wide field of vortex rings. The book presents the results of systematic experimental investigations, theoretical foundation, as well as the practical applications of vortex rings, such as the extinction of fires at gushing gas and oil wells. All the basic properties of vortex rings as well as their hydrodynamic structures are presented. Special attention is paid to the formation and motion of turbulent vortex rings. (orig.)
Rowen, Louis H
1991-01-01
This is an abridged edition of the author's previous two-volume work, Ring Theory, which concentrates on essential material for a general ring theory course while ommitting much of the material intended for ring theory specialists. It has been praised by reviewers:**""As a textbook for graduate students, Ring Theory joins the best....The experts will find several attractive and pleasant features in Ring Theory. The most noteworthy is the inclusion, usually in supplements and appendices, of many useful constructions which are hard to locate outside of the original sources....The audience of non
Liquid-helium-cooled Michelson interferometer
Augason, G. C.; Young, N.
1972-01-01
Interferometer serves as a rocket-flight spectrometer for examination of the far infrared emission spectra of astronomical objects. The double beam interferometer is readily adapted to make spectral scans and for use as a detector of discrete line emissions.
Tiscareno, Matthew S
2011-01-01
Planetary rings are the only nearby astrophysical disks, and the only disks that have been investigated by spacecraft. Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 1e-7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close-range and in real-time in planetary rings. We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The main rings of Saturn comprise our system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty...
Standing waves in fiber-optic interferometers
De Haan, V.; Santbergen, R.; Tijssen, M.; Zeman, M.
2011-01-01
A study is presented giving the response of three types of fiber-optic interferometers by which a standing wave through an object is investigated. The three types are a Sagnac, Mach–Zehnder and Michelson–Morley interferometer. The response of the Mach–Zehnder interferometer is similar to the Sagnac
Hosseinzadeh, Arash; Middlebrook, Christopher T.
2016-02-01
Efficient modulation of electrical signals onto an optical carrier remains the main challenge in full implementation of microwave photonic links (MPLs) for applications such as antenna remoting and wireless access networks. Current MPLs utilize Mach-Zehnder Interferometers (MZI) with sinusoidal transfer function as electro-optic modulators causing nonlinear distortions in the link. Recently ring resonator modulators (RRM) consisting of a ring resonator coupled to a base waveguide attracted interest to enhance linearity, reduce the size and power consumption in MPLs. Fabrication of a RRM is more challenging than the MZI not only in fabrication process but also in designing and optimization steps. Although RRM can be analyzed theoretically for MPLs, physical structures need to be designed and optimized utilizing simulation techniques in both optical and microwave regimes with consideration of specific material properties. Designing and optimization steps are conducted utilizing full-wave simulation software package and RRM function analyzed in both passive and active forms and confirmed through theoretical analysis. It is shown that RRM can be completely designed and analyzed utilizing full-wave simulation techniques and as a result linearity effect of the modulator on MPLs can be studied and optimized. The material nonlinearity response can be determined computationally and included in modulator design and readily adaptable for analyzing other materials such as silicon or structures where theoretical analysis is not easily achieved.
Khazanov, G. V.; Krivorutsky, E.; Gamayunov, K.; Avanov, L.
2003-01-01
The excitation of lower hybrid waves (LHWs) is a widely discussed mechanism of interaction between plasma species in space, and is one of the unresolved questions of magnetospheric multi-ion plasmas. In this paper we present the morphology, dynamics, and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7, 1998 storm period on the global scale. The LHWs were calculated based on our newly developed self-consistent model that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.
Slow light Mach-Zehnder fiber interferometer
Institute of Scientific and Technical Information of China (English)
Yundong Zhang; Jinfang Wang; Xuenan Zhang; Hao Wu; Yuanxue Cai; Jing Zhang; Ping Yuan
2012-01-01
A slow light structure Mach-Zehnder fiber interferometer is theoretically demonstrated.The sensitivity of the interferometer is significantly enhanced by the dispersion of the slow light structure.The numerical results show that the sensitivity enhancement factor varies with the coupling coefficient and reaches its maximum under critical coupling conditions.Interferometers have been investigated in relation to their applications in fields such as metrology[1],optical sensing[2],optical communication[3,4],quantum information processing[5],and biomedical engineering[6].A number of schemes have been proposed to improve the performance of interferometers[7],such as using photonic crystal structures to minimize the size of on-chip devices[8],utilizing the dispersive property of semiconductor to enhance the spectral sensitivity of interferometers[9,10],utilizing slow light medium to enhance the resolution of Fourier transform interferometer[11],exploiting fast light medium or slow light structure to increase the rotation sensitivity of a Sagnac interferometer[12,13],enhancing the transmittance of the Mach-Zehnder interferometer (MZI) in the slow light region by gratings[14],and using liquid crystal light valve to derive high sensitivity interferometers[15].%A slow light structure Mach-Zehnder fiber interferometer is theoretically demonstrated. The sensitivity of the interferometer is significantly enhanced by the dispersion of the slow light structure. The numerical results show that the sensitivity enhancement factor varies with the coupling coefficient and reaches its maximum under critical coupling conditions.
Standing waves in fiber-optic interferometers.
de Haan, V; Santbergen, R; Tijssen, M; Zeman, M
2011-10-10
A study is presented giving the response of three types of fiber-optic interferometers by which a standing wave through an object is investigated. The three types are a Sagnac, Mach-Zehnder and Michelson-Morley interferometer. The response of the Mach-Zehnder interferometer is similar to the Sagnac interferometer. However, the Sagnac interferometer is much harder to study because of the fact that one input port and output port coincide. Further, the Mach-Zehnder interferometer has the advantage that the output ports are symmetric, reducing the systematic effects. Examples of standing wave light absorption in several simple objects are given. Attention is drawn to the influence of standing waves in fiber-optic interferometers with weak-absorbing layers incorporated. A method is described for how these can be theoretically analyzed and experimentally measured. Further experiments are needed for a thorough comparison between theory and experiment.
Nonlinear magnetic metamaterials.
Shadrivov, Ilya V; Kozyrev, Alexander B; van der Weide, Daniel W; Kivshar, Yuri S
2008-12-08
We study experimentally nonlinear tunable magnetic metamaterials operating at microwave frequencies. We fabricate the nonlinear metamaterial composed of double split-ring resonators where a varactor diode is introduced into each resonator so that the magnetic resonance can be tuned dynamically by varying the input power. We demonstrate that at higher powers the transmission of the metamaterial becomes power-dependent and, as a result, such metamaterial can demonstrate various nonlinear properties. In particular, we study experimentally the power-dependent shift of the transmission band and demonstrate nonlinearity-induced enhancement (or suppression) of wave transmission. (c) 2008 Optical Society of America
Cuzzi, Jeffrey N.
1994-01-01
Just over two decades ago, Jim Pollack made a critical contribution to our understanding of planetary ring particle properties, and resolved a major apparent paradox between radar reflection and radio emission observations. At the time, particle properties were about all there were to study about planetary rings, and the fundamental questions were, why is Saturn the only planet with rings, how big are the particles, and what are they made of? Since then, we have received an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems into the complex webs of structure that we now know them to display. Insights gained from studies of these giant dynamical analogs have carried over into improved understanding of the formation of the planets themselves from particle disks, a subject very close to Jim's heart. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is ark emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system
Control of the phase characteristics of Stokes waves in a Michelson interferometer with SBS mirrors
Gordeev, A. A.; Efimkov, V. F.; Zubarev, I. G.; Mikhailov, S. I.
2016-12-01
It is found that, when using stimulated Brillouin scattering (SBS) mirrors (mounted in a ring Michelson interferometer) with counterfocusing, under pumping by pulses with steep (2 - 3 {\\text{ns}}) leading edges and applying Freon FC-75 as an active medium, the phase difference of the Stokes waves on the semitransparent interferometer mirror obeys the dependence Δ \\varphi = 2Δ k Δ l (Δ k is the difference in the magnitudes of the pump and Stokes component wave vectors and Δ l is the difference in the optical arm lengths).
Gündüzalp, Ayla Balaban; Özsen, İffet; Alyar, Hamit; Alyar, Saliha; Özbek, Neslihan
2016-09-01
Schiff bases; 1,8-bis(thiophene-2-carboxaldimine)-p-menthane (L1) and 1,8-bis(furan-2-carboxaldimine)-p-menthane (L2) have been synthesized and characterized by elemental analysis, 1Hsbnd 13C NMR, UV-vis, FT-IR and LC-MS methods. 1H and 13C shielding tensors for L1 and L2 were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The vibrational band assignments, nonlinear optical (NLO) activities, frontier molecular orbitals (FMOs) and absorption spectrum have been investigated by the same basis set. Schiff base-copper(II) complexes have been synthesized and structurally characterized with spectroscopic methods, magnetic and conductivity measurements. The spectroscopic data suggest that Schiff base ligands coordinate through azomethine-N and thiophene-S/furan-O donors (as SNNS and ONNO chelating systems) to give a tetragonal geometry around the copper(II) ions. Schiff bases and Cu(II) complexes have been screened for their biological activities on different species of pathogenic bacteria, those are, Gram positive bacteria: Bacillus subtitilus, Yersinia enterotica, Bacillus cereus, Listeria monocytogenes, Micrococcus luteus and Gram negative bacteria: Escherichia coli, Pseudomonas aeroginosa, Shigella dysenteriae, Salmonella typhi, Klebsiella pseudomonas by using microdilution technique (MIC values in mM). Biological activity results show that Cu(II) complexes have higher activities than parent ligands and metal chelation may affect significantly the antibacterial behavior of the organic ligands.
Atomic pair-state interferometer
DEFF Research Database (Denmark)
Nipper, J.; Balewski, Jonathan B.; Krupp, Alexander T.
2012-01-01
to measure the phase shift. Although the coupling between pair states is coherent on the time scale of the experiment, a loss of visibility occurs as a pair-state interferometer involves three simultaneously interfering paths and only one of them is phase shifted by the mutual interaction. Despite additional...... dephasing mechanisms, a pulsed Förster coupling sequence allows for observation of coherent dynamics around the Förster resonance....
Stellar Interferometer Technology Experiment (SITE)
Crawley, Edward F.; Miller, David; Laskin, Robert; Shao, Michael
1995-02-01
The MIT Space Engineering Research Center and the Jet Propulsion Laboratory stand ready to advance science sensor technology for discrete-aperture astronomical instruments such as space-based optical interferometers. The objective of the Stellar Interferometer Technology Experiment (SITE) is to demonstrate system-level functionality of a space-based stellar interferometer through the use of enabling and enhancing Controlled-Structures Technologies (CST). SITE mounts to the Mission Peculiar Experiment Support System inside the Shuttle payload bay. Starlight, entering through two apertures, is steered to a combining plate where it is interferred. Interference requires 27 nanometer pathlength (phasing) and 0.29 archsecond wavefront-tilt (pointing) control. The resulting 15 milli-archsecond angular resolution exceeds that of current earth-orbiting telescopes while maintaining low cost by exploiting active optics and structural control technologies. With these technologies, unforeseen and time-varying disturbances can be rejected while relaxing reliance on ground alignment and calibration. SITE will reduce the risk and cost of advanced optical space systems by validating critical technologies in their operational environment. Moreover, these technologies are directly applicable to commercially driven applications such as precision matching, optical scanning, and vibration and noise control systems for the aerospace, medical, and automotive sectors. The SITE team consists of experienced university, government, and industry researchers, scientists, and engineers with extensive expertise in optical interferometry, nano-precision opto-mechanical control and spaceflight experimentation. The experience exists and the technology is mature. SITE will validate these technologies on a functioning interferometer science sensor in order to confirm definitely their readiness to be baselined for future science missions.
Directory of Open Access Journals (Sweden)
Rajesh G
2011-11-01
Full Text Available Supra mitral ring is a rare cause for congenital mitral valve obstr uction. The reported incidence of supramitral ring is 0.2-0.4% in general population and 8% in patients with congenital mitral valve disease. The condition is characterized by an abnormal ridge of connective tissue often circumferential in shape ,on the atrial side of the mitral valve encroaching on the orifice of the mitral valve. It may adhere to the leaflets of the valve and restrict their movements. Although a supramitral ring may be rarely nonobstructive, it often results in mitral valve inflow obstruction.
Integrated Mach-Zehnder interferometer for Bose-Einstein condensates.
Berrada, T; van Frank, S; Bücker, R; Schumm, T; Schaff, J-F; Schmiedmayer, J
2013-01-01
Particle-wave duality enables the construction of interferometers for matter waves, which complement optical interferometers in precision measurement devices. This requires the development of atom-optics analogues to beam splitters, phase shifters and recombiners. Integrating these elements into a single device has been a long-standing goal. Here we demonstrate a full Mach-Zehnder sequence with trapped Bose-Einstein condensates confined on an atom chip. Particle interactions in our Bose-Einstein condensate matter waves lead to a nonlinearity, absent in photon optics. We exploit it to generate a non-classical state having reduced number fluctuations inside the interferometer. Making use of spatially separated wave packets, a controlled phase shift is applied and read out by a non-adiabatic matter-wave recombiner. We demonstrate coherence times a factor of three beyond what is expected for coherent states, highlighting the potential of entanglement as a resource for metrology. Our results pave the way for integrated quantum-enhanced matter-wave sensors.
Unequal-Arms Michelson Interferometers
Tinto, Massimo; Armstrong, J. W.
2000-01-01
Michelson interferometers allow phase measurements many orders of magnitude below the phase stability of the laser light injected into their two almost equal-length arms. If, however, the two arms are unequal, the laser fluctuations can not be removed by simply recombining the two beams. This is because the laser jitters experience different time delays in the two arms, and therefore can not cancel at the photo detector. We present here a method for achieving exact laser noise cancellation, even in an unequal-arm interferometer. The method presented in this paper requires a separate readout of the relative phase in each arm, made by interfering the returning beam in each arm with a fraction of the outgoing beam. By linearly combining the two data sets with themselves, after they have been properly time shifted, we show that it is possible to construct a new data set that is free of laser fluctuations. An application of this technique to future planned space-based laser interferometer detector3 of gravitational radiation is discussed.
Polarized-interferometer feasibility study
Raab, F. H.
1983-01-01
The feasibility of using a polarized-interferometer system as a rendezvous and docking sensor for two cooperating spacecraft was studied. The polarized interferometer is a radio frequency system for long range, real time determination of relative position and attitude. Range is determined by round trip signal timing. Direction is determined by radio interferometry. Relative roll is determined from signal polarization. Each spacecraft is equipped with a transponder and an antenna array. The antenna arrays consist of four crossed dipoles that can transmit or receive either circularly or linearly polarized signals. The active spacecraft is equipped with a sophisticated transponder and makes all measurements. The transponder on the passive spacecraft is a relatively simple repeater. An initialization algorithm is developed to estimate position and attitude without any a priori information. A tracking algorithm based upon minimum variance linear estimators is also developed. Techniques to simplify the transponder on the passive spacecraft are investigated and a suitable configuration is determined. A multiple carrier CW signal format is selected. The dependence of range accuracy and ambiguity resolution error probability are derived and used to design a candidate system. The validity of the design and the feasibility of the polarized interferometer concept are verified by simulation.
Ringing phenomenon in silica microspheres
Institute of Scientific and Technical Information of China (English)
Chunhua Dong; Changling Zou; Jinming Cui; Yong Yang; Zhengfu Han; Guangcan Guo
2009-01-01
Whispering gallery modes in silica microspheres are excited by a tunable continuous-wave laser through the fiber taper. Ringing phenomenon can be observed with high frequency sweeping speed. The thermal nonlinearity in the microsphere can enhance this phenomenon. Our measurement results agree very well with the theoretical predictions by the dynamic equation.
Bruns, Winfried
1988-01-01
Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. Their study has attracted many prominent researchers and has motivated the creation of theories which may now be considered part of general commutative ring theory. The book gives a first coherent treatment of the structure of determinantal rings. The main approach is via the theory of algebras with straightening law. This approach suggest (and is simplified by) the simultaneous treatment of the Schubert subvarieties of Grassmannian. Other methods have not been neglected, however. Principal radical systems are discussed in detail, and one section is devoted to each of invariant and representation theory. While the book is primarily a research monograph, it serves also as a reference source and the reader requires only the basics of commutative algebra together with some supplementary material found in the appendix. The text may be useful for seminars following a course in commutative ring theory since a ...
Application of fiber optic interferometers for Cook-off measurements
Cheng, L.K.; Smorenburg, C.; Scholtes, J.H.G.; Meer, B.J. van der
2000-01-01
A fiber optic interferometer comprising of a Sagnac interferometer and a Mach-Zehnder interferometer was developed. The interferometer enabled detection of explosive subtonic expansion velocities during the Cook-off test. The system enabled a comparison between the results of the two interferometer
2010-10-13
hypothesis, that cave rings are formed in the same manner as coffee rings[3], that is, due to the enhanced deposition at the edges of sessile drops ...ring’ is the deposit formed when a sessile drop of a solution containing dissolved particles, such as coffee or salt, dries. This was investigated by...who expanded on Deegan et al.[3] to find an exact form for the evaporation flux over a sessile drop . It turns out that solving 179 for the flux is
Backer, Carl L; Mongé, Michael C; Popescu, Andrada R; Eltayeb, Osama M; Rastatter, Jeffrey C; Rigsby, Cynthia K
2016-06-01
The term vascular ring refers to congenital vascular anomalies of the aortic arch system that compress the esophagus and trachea, causing symptoms related to those two structures. The most common vascular rings are double aortic arch and right aortic arch with left ligamentum. Pulmonary artery sling is rare and these patients need to be carefully evaluated for frequently associated tracheal stenosis. Another cause of tracheal compression occurring only in infants is the innominate artery compression syndrome. In the current era, the diagnosis of a vascular ring is best established by CT imaging that can accurately delineate the anatomy of the vascular ring and associated tracheal pathology. For patients with a right aortic arch there recently has been an increased recognition of a structure called a Kommerell diverticulum which may require resection and transfer of the left subclavian artery to the left carotid artery. A very rare vascular ring is the circumflex aorta that is now treated with the aortic uncrossing operation. Patients with vascular rings should all have an echocardiogram because of the incidence of associated congenital heart disease. We also recommend bronchoscopy to assess for additional tracheal pathology and provide an assessment of the degree of tracheomalacia and bronchomalacia. The outcomes of surgical intervention are excellent and most patients have complete resolution of symptoms over a period of time. Copyright © 2016 Elsevier Inc. All rights reserved.
Two all-optical logic gates in a single photonic interferometer
Araújo, Antônio; Oliveira, Antônio; Martins, Francisco; Coelho, Amarílio; Fraga, Wilton; Nascimento, José
2015-11-01
In this paper is presented the all-optical AND and OR gates with high contrast ratio in a single interferometric configuration, i.e., when two logic signals are modulated in the input of the interferometer, so we have the OR gate in the first output and the AND gate in the second output. These logic gates were obtained by numerical investigation of the Mach-Zehnder interferometer constituted of dual-core nonlinear photonic crystal fiber operating with ultrashort fundamental solitons of 100 fs. To represent the logic information, pulse amplitude modulation by amplitude shift-keying was used.
Cryogenic Michelson Interferometer on the Space Shuttle
Wellard, Stan; Blakeley, Jeff; Brown, Steven; Bartschi, Brent
1993-01-01
A helium-cooled interferometer was flown aboard shuttle ifight STS-39. This interferometer, along with its sister radiometer, set new benchmarks for the quantity and quality of data collected. The interferometer generated approximately 150,000 interferograms during the course of the ifight. Data was collected at tangent heights from the earth's surface to celestial targets. The interferograms encoded spectral data from aurora, earth limb, and earth terminator scenes. The interfemmeter collect...
The WIND-HAARP-HIPAS Interferometer Experiment
1999-04-22
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6750--99-8349 The WIND- HAARP -HIPAS Interferometer Experiment P. RODRIGUEZ AND M. J...1999 3. REPORT TYPE AND DATES COVERED Interim Report 4. TITLE AND SUBTITLE The WIND- HAARP -HIPAS Interferometer Experiment 5. FUNDING NUMBERS JO...frequency transmitting facilities in a bistatic, interferometer mode. The HAARP and HIPAS facilities in Alaska radiated at 4525 kHz with total combined
Monolithically integrated interferometer for optical displacement measurement
Hofstetter, Daniel; Zappe, Hans P.
1996-01-01
We discuss the fabrication of a monolithically integrated optical displacement sensors using III-V semiconductor technology. The device is configured as a Michelson interferometer and consists of a distributed Bragg reflector laser, a photodetector and waveguides forming a directional coupler. Using this interferometer, displacements in the 100 nm range could be measured at distances of up to 45 cm. We present fabrication, device results and characterization of the completed interferometer, problems, limitations and future applications will also be discussed.
Dissipative optomechanics in a Michelson-Sagnac interferometer.
Xuereb, André; Schnabel, Roman; Hammerer, Klemens
2011-11-18
Dissipative optomechanics studies the coupling of the motion of an optical element to the decay rate of a cavity. We propose and theoretically explore a realization of this system in the optical domain, using a combined Michelson-Sagnac interferometer, which enables a strong and tunable dissipative coupling. Quantum interference in such a setup results in the suppression of the lower motional sideband, leading to strongly enhanced cooling in the non-sideband-resolved regime. With state-of-the-art parameters, ground-state cooling and low-power quantum-limited position transduction are both possible. The possibility of a strong, tunable dissipative coupling opens up a new route towards observation of such fundamental optomechanical effects as nonlinear dynamics. Beyond optomechanics, the suggested method can be readily transferred to other setups involving nonlinear media, atomic ensembles, or single atoms.
Ring Model for Pneumatic Tires
Institute of Scientific and Technical Information of China (English)
危银涛; 范成建; 管迪华
2002-01-01
This paper reviews the state-of-the-art of the ring modeling method for tires, emphasizing the differences among the various tire ring models. A general tire ring model was then developed including all the nonlinear terms in the ring strain and the initial stresses induced by the internal pressure and rotation. The general equations of motion were derived from the Hamilton principle whth the geometric parameters for the model directly obtained from the tire design. The physical parameters were calculated from experimental mode parameters. A numerical example is given for a 195/70 R14-type tire. The analysis shows that the predicted natural frequencies and the tire mode shape agree well with experimental results.
Warner, S
1993-01-01
This text brings the reader to the frontiers of current research in topological rings. The exercises illustrate many results and theorems while a comprehensive bibliography is also included. The book is aimed at those readers acquainted with some very basic point-set topology and algebra, as normally presented in semester courses at the beginning graduate level or even at the advanced undergraduate level. Familiarity with Hausdorff, metric, compact and locally compact spaces and basic properties of continuous functions, also with groups, rings, fields, vector spaces and modules, and with Zorn''s Lemma, is also expected.
In-fiber integrated Michelson interferometer
Yuan, Libo; Yang, Jun; Liu, Zhihai; Sun, Jiaxing
2006-09-01
A novel fiber-optic in-fiber integrated Michelson interferometer has been proposed and demonstrated. It consists of a segment of two-core fiber with a mirrored fiber end. The sensing characteristics based on the two-core fiber bending, corresponding to the shift of the phase of the two-core in-fiber integrated Michelson interferometer, are investigated.
In-fiber integrated Michelson interferometer.
Yuan, Libo; Yang, Jun; Liu, Zhihai; Sun, Jiaxing
2006-09-15
A novel fiber-optic in-fiber integrated Michelson interferometer has been proposed and demonstrated. It consists of a segment of two-core fiber with a mirrored fiber end. The sensing characteristics based on the two-core fiber bending, corresponding to the shift of the phase of the two-core in-fiber integrated Michelson interferometer, are investigated.
Multimode interferometer for guided matter waves.
Andersson, Erika; Calarco, Tommaso; Folman, Ron; Andersson, Mauritz; Hessmo, Björn; Schmiedmayer, Jörg
2002-03-11
Atoms can be trapped and guided with electromagnetic fields, using nanofabricated structures. We describe the fundamental features of an interferometer for guided matter waves, built of two combined Y-shaped beam splitters. We find that such a device is expected to exhibit high contrast fringes even in a multimode regime, analogous to a white light interferometer.
Graphic method for analyzing common path interferometers
DEFF Research Database (Denmark)
Glückstad, J.
1998-01-01
Common path interferometers are widely used for visualizing phase disturbances and fluid flows. They are attractive because of the inherent simplicity and robustness in the setup. A graphic method will be presented for analyzing and optimizing filter parameters in common path interferometers....
Algorithms for Unequal-Arm Michelson Interferometers
Giampieri, Giacomo; Hellings, Ronald W.; Tinto, Massimo; Bender, Peter L.; Faller, James E.
1994-01-01
A method of data acquisition and data analysis is described in which the performance of Michelson-type interferometers with unequal arms can be made nearly the same as interferometers with equal arms. The method requires a separate readout of the relative phase in each arm, made by interfering the returning beam in each arm with a fraction of the outgoing beam.
Interferometer Techniques for Gravitational-Wave Detection
Directory of Open Access Journals (Sweden)
Andreas Freise
2010-02-01
Full Text Available Several km-scale gravitational-wave detectors have been constructed world wide. These instruments combine a number of advanced technologies to push the limits of precision length measurement. The core devices are laser interferometers of a new kind; developed from the classical Michelson topology these interferometers integrate additional optical elements, which significantly change the properties of the optical system. Much of the design and analysis of these laser interferometers can be performed using well-known classical optical techniques, however, the complex optical layouts provide a new challenge. In this review we give a textbook-style introduction to the optical science required for the understanding of modern gravitational wave detectors, as well as other high-precision laser interferometers. In addition, we provide a number of examples for a freely available interferometer simulation software and encourage the reader to use these examples to gain hands-on experience with the discussed optical methods.
Interferometer techniques for gravitational-wave detection
Bond, Charlotte; Brown, Daniel; Freise, Andreas; Strain, Kenneth A.
2016-12-01
Several km-scale gravitational-wave detectors have been constructed worldwide. These instruments combine a number of advanced technologies to push the limits of precision length measurement. The core devices are laser interferometers of a new kind; developed from the classical Michelson topology these interferometers integrate additional optical elements, which significantly change the properties of the optical system. Much of the design and analysis of these laser interferometers can be performed using well-known classical optical techniques; however, the complex optical layouts provide a new challenge. In this review, we give a textbook-style introduction to the optical science required for the understanding of modern gravitational wave detectors, as well as other high-precision laser interferometers. In addition, we provide a number of examples for a freely available interferometer simulation software and encourage the reader to use these examples to gain hands-on experience with the discussed optical methods.
The next linear collider damping ring lattices
Energy Technology Data Exchange (ETDEWEB)
Wolski, Andrzej; Corlett, John N.
2001-06-20
We report on the lattice design of the Next Linear Collider (NLC) damping rings. The damping rings are required to provide low emittance electron and positron bunch trains to the NLC linacs, at a rate of 120 Hz. We present an optical design, based on a theoretical minimum emittance (TME) lattice, to produce the required normalized extracted beam emittances gex = 3 mm-mrad and gey = 0.02 mm mrad. An assessment of dynamic aperture and non-linear effects is given. The positron pre-damping ring, required to reduce the emittance of the positron beam such that it may be accepted by a main damping ring, is also described.
Zhixiang, Wu
2006-01-01
The rings whose simple right modules are absolutely pure are called right $SAP$-rings. We give a new characterization of right $SAP$ rings, right $V$ rings, and von Neumann regular rings. We also obtain a new decomposition theory of right selfinjective von Neumann regular rings. The relationships between $SAP$-rings, $V$-rings, and von Neumann regular rings are explored. Some recent results obtained by Faith are generalized and the results of Wu-Xia are strengthened.
Analytical Model for Ring Heater Thermal Compensation in Advanced LIGO
Ramette, Joshua; Brooks, Aidan; Blair, Carl; Wang, Haoyu; Heintze, Matthew
2015-01-01
Advanced laser interferometer gravitational-wave detectors use high laser power to achieve design sensitivity. A small part of this power is absorbed in the interferometer cavity mirrors where it creates thermal lenses, causing aberrations in the main laser beam that must be minimized by the actuation of "ring heaters," additional heater elements that are aimed to reduce the temperature gradients in the mirrors. In this article we derive the first analytical model of the temperature field generated by an ideal ring heater. We express the resulting optical aberration contribution to the main laser beam in this axisymmetric case. Used in conjunction with wavefront measurements, our model provides a more complete understanding of the thermal state of the cavity mirrors and will allow a more efficient use of the ring heaters in Advanced LIGO.
Interferometer for measuring dynamic corneal topography
Micali, Jason Daniel
The cornea is the anterior most surface of the eye and plays a critical role in vision. A thin fluid layer, the tear film, coats the outer surface of the cornea and serves to protect, nourish, and lubricate the cornea. At the same time, the tear film is responsible for creating a smooth continuous surface where the majority of refraction takes place in the eye. A significant component of vision quality is determined by the shape of the cornea and stability of the tear film. It is desirable to possess an instrument that can measure the corneal shape and tear film surface with the same accuracy and resolution that is currently performed on common optical elements. A dual interferometer system for measuring the dynamic corneal topography is designed, built, and verified. The completed system is validated by testing on human subjects. The system consists of two co-aligned polarization splitting Twyman-Green interferometers designed to measure phase instantaneously. The primary interferometer measures the surface of the tear film while the secondary interferometer simultaneously tracks the absolute position of the cornea. Eye motion, ocular variation, and a dynamic tear film surface will result in a non-null configuration of the surface with respect to the interferometer system. A non-null test results in significant interferometer induced errors that add to the measured phase. New algorithms are developed to recover the absolute surface topography of the tear film and corneal surface from the simultaneous interferometer measurements. The results are high-resolution and high-accuracy surface topography measurements of the in vivo cornea that are captured at standard camera frame rates. This dissertation will cover the development and construction of an interferometer system for measuring the dynamic corneal topography of the human eye. The discussion starts with the completion of an interferometer for measuring the tear film. The tear film interferometer is part of an
Filamentation with nonlinear Bessel vortices.
Jukna, V; Milián, C; Xie, C; Itina, T; Dudley, J; Courvoisier, F; Couairon, A
2014-10-20
We present a new type of ring-shaped filaments featured by stationary nonlinear high-order Bessel solutions to the laser beam propagation equation. Two different regimes are identified by direct numerical simulations of the nonlinear propagation of axicon focused Gaussian beams carrying helicity in a Kerr medium with multiphoton absorption: the stable nonlinear propagation regime corresponds to a slow beam reshaping into one of the stationary nonlinear high-order Bessel solutions, called nonlinear Bessel vortices. The region of existence of nonlinear Bessel vortices is found semi-analytically. The influence of the Kerr nonlinearity and nonlinear losses on the beam shape is presented. Direct numerical simulations highlight the role of attractors played by nonlinear Bessel vortices in the stable propagation regime. Large input powers or small cone angles lead to the unstable propagation regime where nonlinear Bessel vortices break up into an helical multiple filament pattern or a more irregular structure. Nonlinear Bessel vortices are shown to be sufficiently intense to generate a ring-shaped filamentary ionized channel in the medium which is foreseen as opening the way to novel applications in laser material processing of transparent dielectrics.
Study on talbot pattern for grating interferometer
Energy Technology Data Exchange (ETDEWEB)
Kim, Young Ju; Oh, Oh Sung; Lee, Seung Wook [Dept. of School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of); Kim, Jong Yul [Neutron Instrument Division, Korea Atomic Energy Reserch Institute, Daejeon (Korea, Republic of)
2015-04-15
One of properties which X-ray and Neutron can be applied nondestructive test is penetration into the object with interaction leads to decrease in intensity. X-ray interaction with the matter caused by electrons, Neutron caused by atoms. They share applications in nondestructive test area because of their similarities of interaction mechanism. Grating interferometer is the one of applications produces phase contrast image and dark field image. It is defined by Talbot interferometer and Talbot-Lau interferometer according to Talbot effect and Talbot-Lau effect respectively. Talbot interferometer works with coherence beam like X-ray, and Talbot-Lau has an effect with incoherence beam like Neutron. It is important to expect the interference in grating interferometer compared normal nondestructive system. In this paper, simulation works are conducted according to Talbot and Talbot-Lau interferometer in case of X-ray and Neutron. Variation of interference intensity with X-ray and Neutron based on wave theory is constructed and calculate elements consist the system. Additionally, Talbot and Talbot-Lau interferometer is simulated in different kinds of conditions.
Interferometer predictions with triangulated images
DEFF Research Database (Denmark)
Brinch, Christian; Dullemond, C. P.
2014-01-01
Interferometers play an increasingly important role for spatially resolved observations. If employed at full potential, interferometry can probe an enormous dynamic range in spatial scale. Interpretation of the observed visibilities requires the numerical computation of Fourier integrals over...... the synthetic model images. To get the correct values of these integrals, the model images must have the right size and resolution. Insufficient care in these choices can lead to wrong results. We present a new general-purpose scheme for the computation of visibilities of radiative transfer images. Our method...... requires a model image that is a list of intensities at arbitrarily placed positions on the image-plane. It creates a triangulated grid from these vertices, and assumes that the intensity inside each triangle of the grid is a linear function. The Fourier integral over each triangle is then evaluated...
Handheld ESPI-speckle interferometer
DEFF Research Database (Denmark)
Skov Hansen, René
2003-01-01
reference. The reference wave is established by reflecting a part of the diffuse object illumination from a glass plate located just in front of the object. The glass plate is mounted on a piezoelectric translator in order to control the phase of the reference wave when using phase stepping algorithms....... The coherent light source is a laser diode. A web camera with a Universal Serial Bus (USB) interface is employed as the image-capturing device. Likewise, is the piezoelectric translator controlled through the USB interface. The necessary size of the optical set-up depends on the size of the object....... The interferometer presented here is a compact version of the set-up, Which is capable of measuring displacements of small objects, having either a specularly reflecting-or a diffusely scattering surface. The small optical set-up together with the use of the popular USB-communication for acquiring the images...
Multiple spacecraft Michelson stellar interferometer
Stachnik, R. V.; Arnold, D.; Melroy, P.; Mccormack, E. F.; Gezari, D. Y.
1984-01-01
Results of an orbital analysis and performance assessment of SAMSI (Spacecraft Array for Michelson Spatial Interferometry) are presented. The device considered includes two one-meter telescopes in orbits which are identical except for slightly different inclinations; the telescopes achieve separations as large as 10 km and relay starlight to a central station which has a one-meter optical delay line in one interferometer arm. It is shown that a 1000-km altitude, zero mean inclination orbit affords natural scanning of the 10-km baseline with departures from optical pathlength equality which are well within the corrective capacity of the optical delay line. Electric propulsion is completely adequate to provide the required spacecraft motions, principally those needed for repointing. Resolution of 0.00001 arcsec and magnitude limits of 15 to 20 are achievable.
Lebedev, M V
2001-01-01
The method for measuring the line homogeneous width without application of the nonlinear-optical effects is proposed in this work. The method is based on applying the new interferometer scheme with a diffraction lattice. The diffraction lattices are successfully used in the interferometry for separating the beams and additional radiation monochromatization. The lattice in the proposed scheme makes it possible to obtain the independence of the phases difference between the interference beams on the wavelength. The interferometer optical scheme is shown
Baker, John G.; Thorpe, J. I.
2012-01-01
We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe. Whether this potential advantage outweighs the additional complexity associated with including atom interferometers will require further study.
Optimization of all-optical EDFA-based Sagnac-interferometer switch.
Wang, Fei; Li, Chunfei
2007-10-17
We perform optimization of all-optical EDFA-based Sagnac - interferometer switch through an analytical model and numerical simulations by solving nonlinear Schrödinger equations. The effects of the performance of EDFA on the bit rate and the switching power are investigated for all-optical switch based on self-phase or cross-phase modulation. The simulated results show that ultra-low switching power (EDFA.
A stable pulsed picosecond GSGG:Nd(3+) laser with a resonator based on the Sagnac interferometer
Energy Technology Data Exchange (ETDEWEB)
Prokhorenko, V.I.; Surovtsev, D.V.; Tikhonov, E.A.; Iatskiv, D.IA. (Institut Fiziki, Kiev (Ukrainian SSR))
1990-03-01
A study is made of a passively mode-locked laser based on chromium-doped gadolinium-scandium-gallium garnet operating in the ultrashort-pulse emission mode. Statistical expressions are presented which relate the width, energy, and repeatability of the generated pulses as a function of the position of a cell with a saturable absorbent (dye 3274 in ethanol) in the interferometer and its initial transmission. A new resonator scheme with asymmetric positioning of the active element with the interferometer ring is described which makes it possible to achieve stable generation at the lower transverse mode without additional spatial selection. 8 refs.
Double-grating interferometer with a one-to-one correspondence with a Michelson interferometer.
Xu, Yande; Sasaki, Osami; Suzuki, Takamasa
2003-10-01
We describe a double-grating interferometer that has a one-to-one correspondence with a Michelson interferometer. The half spatial periods of the gratings are equivalent to the wavelengths of the interferometer. The widths of the interference fringes can be changed easily. The intensity distribution of the interference pattern is independent of the wavelength of the light source used. The surface profile of an object can be measured because two interference beams can coincide precisely on the image plane of the object. The measuring range is much larger than that of a Michelson interferometer.
An Optimal Design for Universal Multiport Interferometers
Clements, William R; Metcalf, Benjamin J; Kolthammer, W Steven; Walmsley, Ian A
2016-01-01
Universal multiport interferometers, which can be programmed to implement any linear transformation between multiple channels, are emerging as a powerful tool for both classical and quantum photonics. These interferometers are typically composed of a regular mesh of beam splitters and phase shifters, allowing for straightforward fabrication using integrated photonic architectures and ready scalability. The current, standard design for universal multiport interferometers is based on work by Reck et al (Phys. Rev. Lett. 73, 58, 1994). We demonstrate a new design for universal multiport interferometers based on an alternative arrangement of beam splitters and phase shifters, which outperforms that by Reck et al. Our design occupies half the physical footprint of the Reck design and is significantly more robust to optical losses.
Improved double-pass michelson interferometer
Schindler, R. A.
1978-01-01
Interferometer design separates beams by offsetting centerlines of cat's-eye retroreflectors vertically rather than horizontally. Since beam splitter is insensitive to minimum-thickness condition in this geometry, relatively-low-cost, optically flat plate can be used.
The effect of rotations on Michelson interferometers
Maraner, Paolo
2014-11-01
In the contest of the special theory of relativity, it is shown that uniform rotations induce a phase shift in Michelson interferometers. The effect is second order in the ratio of the interferometer's speed to the speed of light, further suppressed by the ratio of the interferometer's arms length to the radius of rotation and depends on the interferometer's position in the co-rotating frame. The magnitude of the phase shift is just beyond the sensitivity of turntable rotated optical resonators used in present tests of Lorentz invariance. It grows significantly large in Earth's rotated kilometer-scale Fabry-Perot enhanced interferometric gravitational-wave detectors where it appears as a constant bias. The effect can provide the means of sensing center and radius of rotations.
Optical Fiber Bragg Grating Michelson Interferometer
Institute of Scientific and Technical Information of China (English)
JIANG Yi; JIANG Tian-fu; LIU Li
2006-01-01
A new Michelson interferometer based on fiber Bragg grating(FBG) is demonstrated. FBGs are used as reflectors, and the laser is replaced by a broadband source as input light in this interferometer. To demodulate the signals, a 3×3 coupler is used as a splitter. By combining with software demodulation, the outer inter ference can be obtained from the outputs of the interferometer. This kind of in terferometer can also be wavelength-multiplexed easily by composing a series Michelson interferometer. The experiment results show that the clear interference fringe can be obtained by adjusting the path difference to make it less than interference length of FBG. The signals are also demodulated.
Interferometer measurements in pulsed plasma experiments
Energy Technology Data Exchange (ETDEWEB)
Lisitsyn, I.V.; Kohno, Susumu; Kawauchi, Toshinori; Sueda, Tsuyoshi; Katsuki, Sunao; Akiyama, Hidenori [Kumamoto Univ. (Japan). Faculty of Engineering
1997-11-01
The interferometer measurements are extremely informative in plasma experiments allowing direct evaluations of the electron density. The primary goal of the work presented, is to build a laser interferometer which meets the requirements of the highest possible simplicity, economy, convenience and ease of construction. These requirements are successfully satisfied while maintaining high sensitivity ({+-}0.5deg - of phase shift) and a wide density range (10{sup 14} and 10{sup 19} cm{sup -2} - line-integrated) of the interferometer. In our experiments we used a low average power (5 mW) He-Ne laser without complicated and costly stabilization or detection environments. The He-Ne laser interferometer with the Michelson arrangement was used to measure the line-integrated plasma densities in various plasma experiments. Time- and spatially-resolved density measurements were performed for a plasma opening switch, a laser produced plasma, an electrothermal launcher and railgun plasmas. (author)
Step index fibre using laser interferometer
Indian Academy of Sciences (India)
A M Hamed
2014-03-01
model is suggested to describe the fringe shift which occurs due to the phase variations of cladded glass fibre introduced between the two plates of the liquid wedge interferometer illuminated with a He–Ne laser. The fringe shift of the phase object which appears in the denominator of the Airy distribution formula of the multiple beam interference is represented in the harmonic term. An experiment is conducted using liquid wedge interferometer where the step index glass fibre of a nearly quadratic thickness variation is introduced between the two plates of the interferometer. The obtained fringe shift shows a good agreement with the proposed quadratic model. The Matlab code is written to plot the interferometer fringes comprising the shift of the step index fibre. Secondly, recognition of elliptical fibres is outlined using tomographic imaging. Finally, results and concluding remarks are given.
Amplitude-modulated fiber-ring laser
DEFF Research Database (Denmark)
Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter
2000-01-01
Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self-starting......Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...
Amplitude-modulated fiber-ring laser
DEFF Research Database (Denmark)
Caputo, J. G.; Clausen, Carl A. Balslev; Sørensen, Mads Peter
2000-01-01
Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self-starting......Soliton pulses generated by a fiber-ring laser are investigated by numerical simulation and perturbation methods. The mathematical modeling is based on the nonlinear Schrödinger equation with perturbative terms. We show that active mode locking with an amplitude modulator leads to a self......-starting of stable solitonic pulses from small random noise, provided the modulation depth is small. The perturbative analysis leads to a nonlinear coupled return map for the amplitude, phase, and position of the soliton pulses circulating in the fiber-ring laser. We established the validity of this approach...
Laser in-cavity Michelson interferometer
Energy Technology Data Exchange (ETDEWEB)
Robertson, C.M.
1978-09-01
A new laser interferometer is proposed which can be regarded as an in-cavity Michelson interferometer. It utilizes a polarizing beam splitter in conjunction with two quarter-wave plates to produce oscillations between three mirrors. It would measure a change in length of 10/sup -3/ A that, if used for plasma diagnostics, is equivalent to measuring an electron density of 10/sup 9/ cm/sup -3/ over a plasma length of 1 cm.
Energy Technology Data Exchange (ETDEWEB)
Ritboon, Atirach, E-mail: atirach.3.14@gmail.com [School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand); Daengngam, Chalongrat, E-mail: chalongrat.d@psu.ac.th [Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand); Pengpan, Teparksorn, E-mail: teparksorn.p@psu.ac.th [Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112 (Thailand)
2016-08-15
Biakynicki-Birula introduced a photon wave function similar to the matter wave function that satisfies the Schrödinger equation. Its second quantization form can be applied to investigate nonlinear optics at nearly full quantum level. In this paper, we applied the photon wave function formalism to analyze both linear optical processes in the well-known Mach–Zehnder interferometer and nonlinear optical processes for sum-frequency generation in dispersive and lossless medium. Results by photon wave function formalism agree with the well-established Maxwell treatments and existing experimental verifications.
First On-Sky Fringes with an Up-Conversion Interferometer Tested on a Telescope Array.
Darré, P; Baudoin, R; Gomes, J-T; Scott, N J; Delage, L; Grossard, L; Sturmann, J; Farrington, C; Reynaud, F; Brummelaar, T A Ten
2016-12-02
The Astronomical Light Optical Hybrid Analysis project investigates the combined use of a telescope array interferometer and nonlinear optics to propose a new generation of instruments dedicated to high-resolution imaging for infrared astronomy. The nonlinear process of optical frequency conversion transfers the astronomical light to a shorter wavelength domain. Here, we report on the first fringes obtained on the sky with the prototype operated at 1.55 μm in the astronomical H band and implemented on the Center for High Angular Resolution Astronomy telescope array. This seminal result allows us to foresee a future extension to the challenging midinfrared spectral domain.
Nonlinear magnetoinductive transmission lines
Lazarides, Nikos; Tsironis, G P
2011-01-01
Power transmission in one-dimensional nonlinear magnetic metamaterials driven at one end is investigated numerically and analytically in a wide frequency range. The nonlinear magnetic metamaterials are composed of varactor-loaded split-ring resonators which are coupled magnetically through their mutual inductances, forming thus a magnetoiductive transmission line. In the linear limit, significant power transmission along the array only appears for frequencies inside the linear magnetoinductive wave band. We present analytical, closed form solutions for the magnetoinductive waves transmitting the power in this regime, and their discrete frequency dispersion. When nonlinearity is important, more frequency bands with significant power transmission along the array may appear. In the equivalent circuit picture, the nonlinear magnetoiductive transmission line driven at one end by a relatively weak electromotive force, can be modeled by coupled resistive-inductive-capacitive (RLC) circuits with voltage-dependent cap...
The VLA Atmospheric Phase Interferometer
Morris, Keith
2014-05-01
The Atmospheric Phase Interferometer (API) is a two-element atmospheric seeing monitor located at the Very Large Array (VLA) site. The instrument measures turbulent refractive index variation through the atmosphere by examining phase differences in a satellite beacon signal detected at two (or more) antennas. With this measurement, the VLA scheduling software is able to consider atmospheric stability when determining which frequency observation to schedule next. We are in the process of extending this two-element interferometer to four elements, which will allow us to measure the turbulence in two dimensions and at multiple length scales. This thesis will look at some statistical properties of turbulence, the effects of atmospheric stability on radio interferometric observations, and discuss details of the instrument and the data that it collects. The thesis will also cover some techniques and principles of signal processing, and an analysis of some data from the instrument. The results demonstrate that other surface atmospheric variables (e.g. windspeed, water vapor pressure) show the same structure function exponent as the atmospheric phase fluctuations. In particular, the structure functions of water vapor partial pressure and wind speed show the same exponent as the phase. Though the agreement between meteorological variables and atmospheric phase is scientifically satisfying, these surface measurements are not nearly as sensitive as the API saturation phase measurement, and therefore cannot be used to schedule telescope time in its stead. What is informative about these results is that the similar structure functions for API and meteorological data are detecting reinforce the claim that both measurements represent turbulent transport, and not instrumental noise. Data from the instrument reveals that measurements are consistent with both Kolmogorov turbulence theory, and with prior observations. The API predominately measures three-dimensional isotropic
Buhler, Joe; de Launey, Warwick; Graham, Ron
2010-01-01
Motivated by a question in origami, we consider sets of points in the complex plane constructed in the following way. Let $L_\\alpha(p)$ be the line in the complex plane through $p$ with angle $\\alpha$ (with respect to the real axis). Given a fixed collection $U$ of angles, let $\\RU$ be the points that can be obtained by starting with $0$ and $1$, and then recursively adding intersection points of the form $L_\\alpha(p) \\cap L_\\beta(q)$, where $p, q$ have been constructed already, and $\\alpha, \\beta$ are distinct angles in $U$. Our main result is that if $U$ is a group with at least three elements, then $\\RU$ is a subring of the complex plane, i.e., it is closed under complex addition and multiplication. This enables us to answer a specific question about origami folds: if $n \\ge 3$ and the allowable angles are the $n$ equally spaced angles $k\\pi/n$, $0 \\le k < n$, then $\\RU$ is the ring $\\Z[\\zeta_n]$ if $n$ is prime, and the ring $\\Z[1/n,\\zeta_{n}]$ if $n$ is not prime, where $\\zeta_n := \\exp(2\\pi i/n)$ is ...
LIGO - The Laser Interferometer Gravitational-Wave Observatory
Abramovici, Alex; Althouse, William E.; Drever, Ronald W. P.; Gursel, Yekta; Kawamura, Seiji; Raab, Frederick J.; Shoemaker, David; Sievers, Lisa; Spero, Robert E.; Thorne, Kip S.
1992-01-01
The goal of the Laser Interferometer Gravitational-Wave Observatory (LIGO) Project is to detect and study astrophysical gravitational waves and use data from them for research in physics and astronomy. LIGO will support studies concerning the nature and nonlinear dynamics for gravity, the structures of black holes, and the equation of state of nuclear matter. It will also measure the masses, birth rates, collisions, and distributions of black holes and neutron stars in the universe and probe the cores of supernovae and the very early universe. The technology for LIGO has been developed during the past 20 years. Construction will begin in 1992, and under the present schedule, LIGO's gravitational-wave searches will begin in 1998.
LIGO: The Laser Interferometer Gravitational-Wave Observatory.
Abramovici, A; Althouse, W E; Drever, R W; Gürsel, Y; Kawamura, S; Raab, F J; Shoemaker, D; Sievers, L; Spero, R E; Thorne, K S; Vogt, R E; Weiss, R; Whitcomb, S E; Zucker, M E
1992-04-17
The goal of the Laser Interferometer Gravitational-Wave Observatory (LIGO) Project is to detect and study astrophysical gravitational waves and use data from them for research in physics and astronomy. LIGO will support studies concerning the nature and nonlinear dynamics of gravity, the structures of black holes, and the equation of state of nuclear matter. It will also measure the masses, birth rates, collisions, and distributions of black holes and neutron stars in the universe and probe the cores of supernovae and the very early universe. The technology for LIGO has been developed during the past 20 years. Construction will begin in 1992, and under the present schedule, LIGO's gravitational-wave searches will begin in 1998.
LIGO - The Laser Interferometer Gravitational-Wave Observatory
Abramovici, Alex; Althouse, William E.; Drever, Ronald W. P.; Gursel, Yekta; Kawamura, Seiji; Raab, Frederick J.; Shoemaker, David; Sievers, Lisa; Spero, Robert E.; Thorne, Kip S.
1992-01-01
The goal of the Laser Interferometer Gravitational-Wave Observatory (LIGO) Project is to detect and study astrophysical gravitational waves and use data from them for research in physics and astronomy. LIGO will support studies concerning the nature and nonlinear dynamics for gravity, the structures of black holes, and the equation of state of nuclear matter. It will also measure the masses, birth rates, collisions, and distributions of black holes and neutron stars in the universe and probe the cores of supernovae and the very early universe. The technology for LIGO has been developed during the past 20 years. Construction will begin in 1992, and under the present schedule, LIGO's gravitational-wave searches will begin in 1998.
Demonstration of a refractometric sensor based on an optical micro-fiber three-beam interferometer
Han, Chunyang; Ding, Hui; Lv, Fangxing
2014-12-01
With diameter close to the wavelength of the guided light and high index contrast between the fiber and the surrounding, an optical micro-fiber shows a variety of interesting waveguiding properties, including widely tailorable optical confinement, strong evanescent fields and waveguide dispersion. Among various micro-fiber applications, optical sensing has been attracting increasing research interest due to its possibilities of realizing miniaturized fiber optic sensors with small footprint, high sensitivity, and low optical power consumption. Typical micro-fiber based sensing structures, including Michelson interferometer, Mach-Zenhder interferometer, Fabry-Perot interferometer, micro-fiber ring resonator, have been proposed. The sensitivity of these structures heavily related to the fraction of evanescent field outside micro-fiber. In this paper, we report the first theoretical and experimental study of a new type of refractometric sensor based on micro-fiber three-beam interferometer. Theoretical and experimental analysis reveals that the sensitivity is not only determined by the fraction of evanescent field outside the micro-fiber but also related to the values of interferometric arms. The sensitivity can be enhanced significantly when the effective lengths of the interferometric arms tends to be equal. We argue that this has great potential for increasing the sensitivity of refractive index detection.
Sensing system with Michelson-type fiber optical interferometer based on single FBG reflector
Institute of Scientific and Technical Information of China (English)
Xueliang Zhang; Zhou Meng; Zhengliang Hu
2011-01-01
A sensing system, with Michelson-type fiber optical interferometer based on single fiber Bragg grating (FBG) as the reflector, is demonstrated. The system used a frequency-matched ring fiber optical laser as the source. The closed Michelson-type fiber optical interferometer system will be helpful in simplifying the developed interferometric sensor by replacing the double reflectors with only one FBG reflecting the double-side light. The basic sensing properties of the system are demonstrated, with a fiber optic piezoelectric ceramic transducer embedded in the arm of the interferometer simulating the sensing signal.%As a simple fiber optic component,fiber Bragg grating (FBG) has been used frequently as a sensor,filter or reflector[1-4],etc.Meanwhile,the Michelson-type fiber optical interferometric sensor has achieved a high level of development in the acoustic,electric,and magnetic field sensors because of its simple and low-cost structure as well as multiplexing advantages.The Michelsontype interferometer has been widely applied with Faraday rotating mirrors (FRMs) or polarization maintaining fiber reflectors particularly in the fiber optic hydrophone system[5,6].At present,further research is aimed at simplifying fiber optical interferometric sensors.
Demonstration of a refractometric sensor based on an optical micro-fiber three-beam interferometer.
Han, Chunyang; Ding, Hui; Lv, Fangxing
2014-12-16
With diameter close to the wavelength of the guided light and high index contrast between the fiber and the surrounding, an optical micro-fiber shows a variety of interesting waveguiding properties, including widely tailorable optical confinement, strong evanescent fields and waveguide dispersion. Among various micro-fiber applications, optical sensing has been attracting increasing research interest due to its possibilities of realizing miniaturized fiber optic sensors with small footprint, high sensitivity, and low optical power consumption. Typical micro-fiber based sensing structures, including Michelson interferometer, Mach-Zenhder interferometer, Fabry-Perot interferometer, micro-fiber ring resonator, have been proposed. The sensitivity of these structures heavily related to the fraction of evanescent field outside micro-fiber. In this paper, we report the first theoretical and experimental study of a new type of refractometric sensor based on micro-fiber three-beam interferometer. Theoretical and experimental analysis reveals that the sensitivity is not only determined by the fraction of evanescent field outside the micro-fiber but also related to the values of interferometric arms. The sensitivity can be enhanced significantly when the effective lengths of the interferometric arms tends to be equal. We argue that this has great potential for increasing the sensitivity of refractive index detection.
Dream of Isochronous Ring Again
Hama, H
2005-01-01
More than 20 years ago, D.A.G. Deacon proposed an isochronous storage ring for FEL to avoid bunch heating and decreasing instantaneous gain [1]. Some of low momentum compaction (alpha) operations have been carried out, and recently coherent infrared radiation are observed on a 3rd generation light source. Because the 3rd generation rings are optimized to obtain very low emittance beam, the dispersion function in the arc sections are much reduced by introducing large bending radius, so that those are very big machines. Meanwhile N.A. Vinokurov et al. recently proposed a ring type SASE FEL based on a complete isochronous bending transport [2]. At least, experimental and theoretical study of the isochronous ring so far suggests nonlinear effects resulted from higher order dispersion and chromaticity declines the "complete" isochronous system. On the other hand, in a wavelength region of THz, tolerance of the path length along a turn of the ring seems to be within our reach. A concept to preserve of a form factor...
Baker, John G.
2012-01-01
We consider a class of proposed gravitational wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, non-inertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g. multiple arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.
Baker, John G; Thorpe, J I
2012-05-25
We consider a class of proposed gravitational-wave detectors based on multiple atomic interferometers separated by large baselines and referenced by common laser systems. We compute the sensitivity limits of these detectors due to intrinsic phase noise of the light sources, noninertial motion of the light sources, and atomic shot noise and compare them to sensitivity limits for traditional light interferometers. We find that atom interferometers and light interferometers are limited in a nearly identical way by intrinsic phase noise and that both require similar mitigation strategies (e.g., multiple-arm instruments) to reach interesting sensitivities. The sensitivity limit from motion of the light sources is slightly different and, in principle, favors the atom interferometers in the low-frequency limit, although the limit in both cases is severe.
Michelson interferometer based spatial phase shift shearography.
Xie, Xin; Yang, Lianxiang; Xu, Nan; Chen, Xu
2013-06-10
This paper presents a simple spatial phase shift shearography based on the Michelson interferometer. The Michelson interferometer based shearographic system has been widely utilized in industry as a practical nondestructive test tool. In the system, the Michelson interferometer is used as a shearing device to generate a shearing distance by tilting a small angle in one of the two mirrors. In fact, tilting the mirror in the Michelson interferometer also generates spatial frequency shift. Based on this feature, we introduce a simple Michelson interferometer based spatial phase shift shearography. The Fourier transform (FT) method is applied to separate the spectrum on the spatial frequency domain. The phase change due to the loading can be evaluated using a properly selected windowed inverse-FT. This system can generate a phase map of shearography by using only a single image. The effects of shearing angle, spatial resolution of couple charge device camera, and filter methods are discussed in detail. The theory and the experimental results are presented.
The AEI 10 m prototype interferometer
Energy Technology Data Exchange (ETDEWEB)
Gossler, S; Bertolini, A; Born, M; Dahl, K; Kranz, O; Lueck, H; Schnabel, R; Wanner, A; Westphal, T [Leibniz Universitaet Hannover, D-30167 Hannover (Germany); Chen, Y; Somiya, K [California Institute of Technology, Theoretical Astrophysics 130-33, Pasadena, CA 91125 (United States); Gering, D; Graef, C; Heinzel, G; Kawazoe, F; Kuehn, G; Mossavi, K; Taylor, J R [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik, D-30167 Hannover (Germany); Hild, S; Strain, K A, E-mail: stefan.gossler@aei.mpg.d [University of Glasgow, Glasgow, G12 8QQ (United Kingdom)
2010-04-21
A 10 m prototype interferometer facility is currently being set up at the AEI in Hannover, Germany. The prototype interferometer will be housed inside a 100 m{sup 3} ultra-high vacuum envelope. Seismically isolated optical tables inside the vacuum system will be interferometrically interconnected via a suspension platform interferometer. Advanced isolation techniques will be used, such as inverted pendulums and geometrical anti-spring filters in combination with multiple-cascaded pendulum suspensions, containing an all-silica monolithic last stage. The light source is a 35 W Nd:YAG laser, geometrically filtered by passing it through a photonic crystal fibre and a rigid pre-modecleaner cavity. Laser frequency stabilisation will be achieved with the aid of a high finesse suspended reference cavity in conjunction with a molecular iodine reference. Coating thermal noise will be reduced by the use of Khalili cavities as compound end mirrors. Data acquisition and control of the experiments is based on the AdvLIGO digital control and data system. The aim of the project is to test advanced techniques for GEO 600 as well as to conduct experiments in macroscopic quantum mechanics. Reaching standard quantum-limit sensitivity for an interferometer with 100 g mirrors and subsequently breaching this limit, features most prominently among these experiments. In this paper we present the layout and current status of the AEI 10 m Prototype Interferometer project.
Perfect crystal interferometer and its applications
Energy Technology Data Exchange (ETDEWEB)
Hasegawa, Yuji [Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria)
1996-08-01
The interferometry with angstrom scale wavelength has developed steadily, and various types of interferometers have been investigated. Among them, LLL interferometers are widely used. The first neutron interferometry was achieved in 1962 by Maier-Leibnitz et al. A new type of neutron interferometers was constructed with a perfect crystal, and experimentally performed in 1974 by Rauch et al. The precise measurements with LLL neutron interferometers were performed on scattering length, gravitational effect, coherence, Fizeau effects, spin superposition, complementarity, and post-selection effects. Since the early stage of quantum physics, the double-slit experiment has served as the example of the epistemologically strange features of quantum phenomena, and its course of study is described. The time-delayed interferometry with nuclear resonant scattering of synchrotron radiation and phase transfer in time-delayed interferometry with nuclear resonant scattering were experimented, and are briefly reported. A geometric phase factor was derived for a split beam experiment as an example of cyclic evolution. The geometric phase was observed with a two-loop neutron interferometer. All the experimental results showed complete agreement with the theoretical treatment. (K.I.)
Multiple-path Quantum Interference Effects in a Double-Aharonov-Bohm Interferometer
Directory of Open Access Journals (Sweden)
Yang XF
2010-01-01
Full Text Available Abstract We investigate quantum interference effects in a double-Aharonov-Bohm (AB interferometer consisting of five quantum dots sandwiched between two metallic electrodes in the case of symmetric dot-electrode couplings by the use of the Green’s function equation of motion method. The analytical expression for the linear conductance at zero temperature is derived to interpret numerical results. A three-peak structure in the linear conductance spectrum may evolve into a double-peak structure, and two Fano dips (zero conductance points may appear in the quantum system when the energy levels of quantum dots in arms are not aligned with one another. The AB oscillation for the magnetic flux threading the double-AB interferometer is also investigated in this paper. Our results show the period of AB oscillation can be converted from 2π to π by controlling the difference of the magnetic fluxes threading the two quantum rings.
Prime rings with PI rings of constants
Kharchenko, V K; Rodríguez-Romo, S
1996-01-01
It is shown that if the ring of constants of a restricted differential Lie algebra with a quasi-Frobenius inner part satisfies a polynomial identity (PI) then the original prime ring has a generalized polynomial identitiy (GPI). If additionally the ring of constants is semiprime then the original ring is PI. The case of a non-quasi-Frobenius inner part is also considered.
Wide Angle Michelson Doppler Imaging Interferometer (WAMDII)
Roberts, B.
1986-01-01
The wide angle Michelson Doppler imaging interferometer (WAMDII) is a specialized type of optical Michelson interferometer working at sufficiently long path difference to measure Doppler shifts and to infer Doppler line widths of naturally occurring upper atmospheric Gaussian line emissions. The instrument is intended to measure vertical profiles of atmospheric winds and temperatures within the altitude range of 85 km to 300 km. The WAMDII consists of a Michelson interferometer followed by a camera lens and an 85 x 106 charge coupled device photodiode array. Narrow band filters in a filter wheel are used to isolate individual line emissions and the lens forms an image of the emitting region on the charge coupled device array.
Fourier Transform Fabry-Perot Interferometer
Snell, Hilary E.; Hays, Paul B.
1992-01-01
We are developing a compact, rugged, high-resolution remote sensing instrument with wide spectral scanning capabilities. This relatively new type of instrument, which we have chosen to call the Fourier-Transform Fabry-Perot Interferometer (FT-FPI), is accomplished by mechanically scanning the etalon plates of a Fabry-Perot interferometer (FPI) through a large optical distance while examining the concomitant signal with a Fourier-transform analysis technique similar to that employed by the Michelson interferometer. The FT-FPI will be used initially as a ground-based instrument to study near-infrared atmospheric absorption lines of trace gases using the techniques of solar absorption spectroscopy. Future plans include modifications to allow for measurements of trace gases in the stratosphere using spectral lines at terahertz frequencies.
Two-wavelength HeNe laser interferometer
Energy Technology Data Exchange (ETDEWEB)
Granneman, E.H.A.
1981-03-24
This paper presents an interferometer set-up in which two wavelengths are used simultaneously. This enables one to determine separately the phase shifts caused by changes in plasma density and by mechanical vibrations of the interferometer structure.
Atom gyroscope with disordered arrays of quantum rings
Energy Technology Data Exchange (ETDEWEB)
Dayon, Daniel J; Toland, John R E; Search, Chris P, E-mail: csearch@stevens.ed [Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, NJ 07030 (United States)
2010-06-14
Atom interferometry is of considerable interest in part because of the ability to interferometrically detect inertial rotations via the Sagnac effect with a potential sensitivity 10{sup 10} greater than optical gyroscopes. It has been shown recently that a coherently coupled array of identical interferometers can significantly enhance the sensitivity to rotations due to the appearance of transmission bands as a function of the inertial rotation rate {Omega}. Here we consider phase coherent transport of atomic matter waves in a chain of ring interferometers with a single occupied transverse mode in the presence of a rotation, {Omega}, and study the effect of variations in the size of the rings. We show that for randomly sized rings, the entire array functions as a highly sensitive Sagnac interferometer provided the level of random size fluctuations does not exceed a few per cent of the mean size. We also analyse how the use of individual defect states and controlled variations of the sizes in the array can be used to further enhance the sensitivity by creating narrow transmission resonances inside of a zero transmission gap.
Gardner, JW
2003-01-01
Radical Theory of Rings distills the most noteworthy present-day theoretical topics, gives a unified account of the classical structure theorems for rings, and deepens understanding of key aspects of ring theory via ring and radical constructions. Assimilating radical theory's evolution in the decades since the last major work on rings and radicals was published, the authors deal with some distinctive features of the radical theory of nonassociative rings, associative rings with involution, and near-rings. Written in clear algebraic terms by globally acknowledged authorities, the presentation
Digital holographic Michelson interferometer for nanometrology
Sevrygin, Alexander A.; Korotkov, V. I.; Pulkin, S. A.; Tursunov, I. M.; Venediktov, D. V.; Venediktov, V. Yu.; Volkov, O. V.
2014-11-01
The paper considers the dynamic holographic interferometry schemes with amplification (multiplication) of holographic fringes and with correction for distortions, imposed by the interferometer scheme elements. The use of digital microscope and of the matrix light modulator with direct addressing provides the completely digital closed-loop performance of the overall system for real-time evaluation of nano-scale objects size. Considered schemes were verified in the laboratory experiment, using the Michelson micro-interferometer, equipped by the USB-microscope and digital holography stage, equipped by the Holoeye spatial light modulator.
Continuous phase amplification with a Sagnac interferometer
Starling, David J; Williams, Nathan S; Jordan, Andrew N; Howell, John C
2009-01-01
We describe a weak value inspired phase amplification technique in a Sagnac interferometer. We monitor the relative phase between two paths of a slightly misaligned interferometer by measuring the average position of a split-Gaussian mode in the dark port. Although we monitor only the dark port, we show that the signal varies linearly with phase and that we can obtain similar sensitivity to balanced homodyne detection. We derive the source of the amplification both with classical wave optics and as an inverse weak value.
Bifurcation structure of an optical ring cavity
DEFF Research Database (Denmark)
Kubstrup, C.; Mosekilde, Erik
1996-01-01
One- and two-dimensional continuation techniques are applied to determine the basic bifurcation structure for an optical ring cavity with a nonlinear absorbing element (the Ikeda Map). By virtue of the periodic structure of the map, families of similar solutions develop in parameter space. Within...
Generation of logic gates based on a photonic crystal fiber Michelson interferometer
Sousa, J. R. R.; Filho, A. F. G. F.; Ferreira, A. C.; Batista, G. S.; Sobrinho, C. S.; Bastos, A. M.; Lyra, M. L.; Sombra, A. S. B.
2014-07-01
We present a numerical investigation of all-optical logical gates based in a Michelson interferometer (MI) of micro structured fibers, also known as photonic crystal fibers (PCF). We considered an ultra-short pulse propagating along the system in three distinct regimes of pump power. We determine several relevant quantities to characterize the system performance such as transmission, extinction ratio and crosstalk as a function of the dephasing added to one of the Bragg gratings of the Michelson interferometer (MI). High-order effects, such as third-order dispersion, intrapulse Raman scattering and self-steepening were included in the nonlinear generalized Schrödinger equation governing the pulse propagation. Our results show that the proposed device can be used to obtain all-optical XOR, OR and NOT logic gates.
Ceus, Damien; Tonello, Alessandro; Grossard, Ludovic; Delage, Laurent; Reynaud, François; Herrmann, Harald; Sohler, Wolfgang
2011-04-25
This paper demonstrates the use of a nonlinear upconversion process to observe an infrared source through a telescope array detecting the interferometric signal in the visible domain. We experimentally demonstrate the possibility to retrieve information on the phase of the object spectrum of an infrared source by using a three-arm upconversion interferometer. We focus our study on the acquisition of phase information of the complex visibility by means of the phase closure technique. In our experimental demonstration, a laboratory binary star with an adjustable photometric ratio is used as a test source. A real time comparison between a standard three-arm interferometer and our new concept using upconversion by sum-frequency generation demonstrates the preservation of phase information which is essential for image reconstruction.
Unidirectional ring-laser operation using sum-frequency mixing
DEFF Research Database (Denmark)
Tidemand-Lichtenberg, Peter; Cheng, Haynes Pak Hay; Pedersen, Christian
2010-01-01
A technique enforcing unidirectional operation of ring lasers is proposed and demonstrated. The approach relies on sum-frequency mixing between a single-pass laser and one of the two counterpropagating intracavity fields of the ring laser. Sum-frequency mixing introduces a parametric loss for the...... where lossless second-order nonlinear materials are available. Numerical modeling and experimental demonstration of parametric-induced unidirectional operation of a diode-pumped solid-state 1342 nm cw ring laser are presented....
Smart photogalvanic running-grating interferometer
DEFF Research Database (Denmark)
Kukhtarev, N. V.; Kukhtareva, T.; Edwards, M. E.
2005-01-01
Photogalvanic effect produces actuation of periodic motion of macroscopic LiNbO3 crystal. This effect was applied to the development of an all-optical moving-grating interferometer usable for optical trapping and transport of algae chlorella microorganisms diluted in water with a concentration of...
Absolute distance metrology for space interferometers
Swinkels, B.L.; Latoui, A.; Bhattacharya, N.; Wielders, A.A.; Braat, J.J.M.
2005-01-01
Future space missions, among which the Darwin Space Interferometer, will consist of several free flying satellites. A complex metrology system is required to have all the components fly accurately in formation and have it operate as a single instrument. Our work focuses on a possible implementation
Thermoluminescence spectra measured with a Michelson interferometer
Energy Technology Data Exchange (ETDEWEB)
Haschberger, P. (Technische Univ. Muenchen (Germany). Lehrstuhl fuer Elektrische Messtechnik)
1991-01-01
A Michelson interferometer was redesigned to prove its capabilities in the measurement of short-lived, low-intensity thermoluminescence spectra. Interferograms are collected during heating up the thermoluminescent probe in a heater plate. A personal computer controls the data acquisition and processes the Fourier transform. As the results show, even a comparatively simple and limited setup leads to relevant and reproducible spectra. (author).
Method and device for aligning and interferometer
Somers, P.A.A.
2005-01-01
Method and device for the alignment of an interferometer arrangement, which comprises an object beam part (4), a beam splitting part (5) and a beam combination part (6). A detector unit (2) is arranged to detect an interference pattern for two beams that can be differentiated, via each of n optical
The effect of rotations on Michelson interferometers
Energy Technology Data Exchange (ETDEWEB)
Maraner, Paolo, E-mail: pmaraner@unibz.it
2014-11-15
In the contest of the special theory of relativity, it is shown that uniform rotations induce a phase shift in Michelson interferometers. The effect is second order in the ratio of the interferometer’s speed to the speed of light, further suppressed by the ratio of the interferometer’s arms length to the radius of rotation and depends on the interferometer’s position in the co-rotating frame. The magnitude of the phase shift is just beyond the sensitivity of turntable rotated optical resonators used in present tests of Lorentz invariance. It grows significantly large in Earth’s rotated kilometer-scale Fabry–Perot enhanced interferometric gravitational-wave detectors where it appears as a constant bias. The effect can provide the means of sensing center and radius of rotations. - Highlights: • Rotations induce a phase shift in Michelson interferometers. • Earth’s rotation induces a constant bias in Michelson interferometers. • Michelson interferometers can be used to sense center and radius of rotations.
FIRI-A far-infrared interferometer
Helmich, Frank P.; Ivison, R. J.
2009-01-01
Half of the energy ever emitted by stars and accreting objects comes to us in the far-infrared (FIR) waveband and has yet to be properly explored. We propose a powerful Far-InfraRed Interferometer mission, FIRI, to carry out high-resolution imaging spectroscopy in the FIR. This key observational cap
Berkeley heterodyne interferometer. [for IR stellar observations
Betz, A.
1975-01-01
A prototype heterodyne stellar interferometer has been built in order to demonstrate the feasibility of heterodyne techniques in measuring angular diameters of bright infrared stars. The first system tests were performed in December 1972. Attention is given to investigations concerning the possibility that optical air turbulence within the structure of the solar telescope employed can possibly destroy the phase coherence of the fringe signals.
Ring exchange in lanthanum cuprate
Energy Technology Data Exchange (ETDEWEB)
Goff, J.P. [Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Liverpool L69 7ZE (United Kingdom)]. E-mail: jpgoff@liv.ac.uk; Toader, A.M. [Department of Physics, University of Liverpool, Oliver Lodge Laboratory, Liverpool L69 7ZE (United Kingdom); Roger, M. [Service de Physique del ' Etat Condense, Commissariat a l' Energie Atomique, Centre d' Etudes de Saclay, 91191, Gif sur Yvette Cedex (France); Shannon, N. [HH Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Stewart, J.R. [Institut Laue-Langevin, 156X, 38402 Grenoble Cedex (France); Enderle, M. [Institut Laue-Langevin, 156X, 38402 Grenoble Cedex (France); Fak, B. [Service de Physique Statistique, Magnetisme et Supraconductivite, Commissariat a l' Energie Atomique, Centre d' Etudes de Grenoble, 38054, Grenoble Cedex (France)
2007-03-15
We have measured the diffuse scattering of polarized neutrons in the paramagnetic phase of La{sub 2}CuO{sub 4} using the IN20 spectrometer at the Institut Laue-Langevin. The dynamical response is shown to be in full agreement with the predictions of the quantum nonlinear sigma model. The staggered susceptibilty has been placed on an absolute scale to facilitate the comparison of our data with theoretical models. New calculations of the high-temperature series expansion of the spin correlations in the paramagnetic phase provide compelling, quantitative evidence for the existence of four-particle ring exchange.
Howarth, Roy B.
1983-01-01
A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.
... Loss Surgery? A Week of Healthy Breakfasts Shyness Birth Control Ring KidsHealth > For Teens > Birth Control Ring A A A What's in this article? ... español Anillo vaginal anticonceptivo What Is It? The birth control ring is a soft, flexible, doughnut-shaped ring ...
Wan, Xiaoke; Wang, Ji; Ge, Jian
2010-10-10
Interferometers are key elements in radial velocity (RV) experiments in astronomy observations, and accurate calibration of the group delay of an interferometer is required for high precision measurements. A novel field-compensated white light scanning Michelson interferometer is introduced as an interferometer calibration tool. The optical path difference (OPD) scanning was achieved by translating a compensation prism, such that even if the light source were in low spatial coherence, the interference stays spatially phase coherent over a large interferometer scanning range. In the wavelength region of 500-560 nm, a multimode fiber-coupled LED was used as the light source, and high optical efficiency was essential in elevating the signal-to-noise ratio of the interferogram signal. The achromatic OPD scanning required a one-time calibration, and two methods using dual-laser wavelength references and an iodine absorption spectrum reference were employed and cross-verified. In an experiment measuring the group delay of a fixed Michelson interferometer, Fourier analysis was employed to process the interferogram data. The group delay was determined at an accuracy of 1×10(-5), and the phase angle precision was typically 2.5×10(-6) over the wide wavelength region.
Schwayer, Cornelia; Sikora, Mateusz; Slováková, Jana; Kardos, Roland; Heisenberg, Carl-Philipp
2016-06-20
Circular or ring-like actin structures play important roles in various developmental and physiological processes. Commonly, these rings are composed of actin filaments and myosin motors (actomyosin) that, upon activation, trigger ring constriction. Actomyosin ring constriction, in turn, has been implicated in key cellular processes ranging from cytokinesis to wound closure. Non-constricting actin ring-like structures also form at cell-cell contacts, where they exert a stabilizing function. Here, we review recent studies on the formation and function of actin ring-like structures in various morphogenetic processes, shedding light on how those different rings have been adapted to fulfill their specific roles.
Goodaire, EG; Polcino Milies, C
1996-01-01
For the past ten years, alternative loop rings have intrigued mathematicians from a wide cross-section of modern algebra. As a consequence, the theory of alternative loop rings has grown tremendously. One of the main developments is the complete characterization of loops which have an alternative but not associative, loop ring. Furthermore, there is a very close relationship between the algebraic structures of loop rings and of group rings over 2-groups. Another major topic of research is the study of the unit loop of the integral loop ring. Here the interaction between loop rings and group ri
Atomic multiwave interferometer for Aharonov-Casher-phase measurements
Zhou, Min-Kang; Zhang, Ke; Duan, Xiao-Chun; Ke, Yi; Shao, Cheng-Gang; Hu, Zhong-Kun
2016-02-01
We present an atomic multiwave interferometer with magnetic sublevels to precisely determine the Aharonov-Casher (AC) geometric phase. Simulations show that this interferometer has sharper fringes than a normal two-wave interferometer, which means a higher phase resolution can be achieved. Moreover, atoms evolving in a single hyperfine structure state make the interferometer insensitive to the dc Stark phase shift. This dc Stark shift is one of the main noise sources in AC phase measurements. The constraint of the photon rest mass is also discussed when using this atomic interferometer to measure the Aharonov-Casher phase.
Localized modes in nonlinear binary kagome ribbons
Belicev, P. P.; Gligoric, G.; Radosavljevic, A; Maluckov, A.; Stepic, M.; Vicencio, R. A.; Johansson, Magnus
2015-01-01
The localized mode propagation in binary nonlinear kagome ribbons is investigated with the premise to ensure controlled light propagation through photonic lattice media. Particularity of the linear system characterized by the dispersionless flat band in the spectrum is the opening of new minigaps due to the "binarism." Together with the presence of nonlinearity, this determines the guiding mode types and properties. Nonlinearity destabilizes the staggered rings found to be nondiffracting in t...
Analysis of Nonlinear Electromagnetic Metamaterials
Poutrina, Ekaterina; Smith, David R
2010-01-01
We analyze the properties of a nonlinear metamaterial formed by integrating nonlinear components or materials into the capacitive regions of metamaterial elements. A straightforward homogenization procedure leads to general expressions for the nonlinear susceptibilities of the composite metamaterial medium. The expressions are convenient, as they enable inhomogeneous system of scattering elements to be described as a continuous medium using the standard notation of nonlinear optics. We illustrate the validity and accuracy of our theoretical framework by performing measurements on a fabricated metamaterial sample composed of an array of split ring resonators (SRRs) with packaged varactors embedded in the capacitive gaps in a manner similar to that of Wang et al. [Opt. Express 16, 16058 (2008)]. Because the SRRs exhibit a predominant magnetic response to electromagnetic fields, the varactor-loaded SRR composite can be described as a magnetic material with nonlinear terms in its effective magnetic susceptibility...
What and how does a Michelson interferometer measure?
Demjanov, V V
2010-01-01
Michelson interferometer is very complicated and capricious instrument. Even more mysterious and difficult to understand the nature of electrodynamic phenomena in moving media, which was studied by rotating the interferometer with two orthogonal coherent beams. Its idea was proposed, as is known, by Maxwell. Undertaking in 1881 the implementation of this idea, Michelson (since then the interferometer bears his name) assumed that the interferometer can measure the shift of the interference fringe when you turn the interferometer in vacuum, in the absence of media in zones of propagation of rays. Not at once there have been comprehended (after 1881 the misunderstanding lasted almost 90 years) that the shift of interference fringe in the Michelson interferometer is absent in vacuum and arises only when light's carriers of the interferometer are formed by dielectric media with the refractive index (n) exceeding unity (n>1). Intricacies of the relations of optically transparent media with the structural elements o...
Laser-Ranging Long Baseline Differential Atom Interferometers for Space
Chiow, Sheng-wey; Yu, Nan
2015-01-01
High sensitivity differential atom interferometers are promising for precision measurements in science frontiers in space, including gravity field mapping for Earth science studies and gravitational wave detection. We propose a new configuration of twin atom interferometers connected by a laser ranging interferometer (LRI-AI) to provide precise information of the displacements between the two AI reference mirrors and a means to phase-lock the two independent interferometer lasers over long distances, thereby further enhancing the feasibility of long baseline differential atom interferometers. We show that a properly implemented LRI-AI can achieve equivalent functionality to the conventional differential atom interferometer measurement system. LRI-AI isolates the laser requirements for atom interferometers and for optical phase readout between distant locations, thus enabling optimized allocation of available laser power within a limited physical size and resource budget. A unique aspect of LRI-AI also enables...
A Traveling Feature in Saturn's Rings
Rehnberg, Morgan E; Brown, Zarah L; Albers, Nicole; Sremčević, Miodrag; Stewart, Glen R
2016-01-01
The co-orbital satellites of Saturn, Janus and Epimetheus, swap radial positions every 4.0 years. Since \\textit{Cassini} has been in orbit about Saturn, this has occurred on 21 January in 2006, 2010, and 2014. We describe the effects of this radial migration in the Lindblad resonance locations of Janus within the rings. When the swap occurs such that Janus moves towards Saturn and Epimetheus away, nonlinear interference between now-relocated density waves launches a solitary wave that travels through the rings with a velocity approximately twice that of the local spiral density wave group velocity in the A ring and commensurate with the spiral density wave group velocity in the B ring.
Simulation of Spin-orbit Dynamics in Storage Rings
Ivanov, A.; Andrianov, S.; Senichev, Yu.
2016-09-01
In the article a mapping approach based on nonlinear matrix integration for longterm spin-orbit dynamics simulation is briefly described. Using this technique the nonlinear effects of spin dynamics in an electrostatics storage ring are investigated. Namely, the fringe fields, the energy conservation law and the random field errors are considered. The necessity of examination of such effects arises, for example, in the storage ring design for search the Electrical Dipole Moment of proton and deuteron. The EDM ring is proposed to measure EDM using the spin transformation of polarized particle in the magneto-electrostatic elements of the ring. The article consists of short description of the spin-orbit simulation results based on the nonlinear model.
Institute of Scientific and Technical Information of China (English)
Huanyin CHEN
2007-01-01
A ring R is a QB-ring provided that aR + bR = R with a, b ∈ R implies that there exists a y ∈ R such that a+by ∈ R-1q. It is said that a ring R is a JB-ring provided that R/J(R) is a QB-ring, where J(R) is the Jacobson radical of R. In this paper, various necessary and sufficient conditions, under which a ring is a JB-ring, are established. It is proved that JB-rings can be characterized by pseudo-similarity. Furthermore, the author proves that R is a J B-ring iff so is R/J(R)2.
Quadrature phase-shift error analysis using a homodyne laser interferometer.
Gregorcic, Peter; Pozar, Tomaz; Mozina, Janez
2009-08-31
The influence of quadrature phase shift on the measured displacement error was experimentally investigated using a two-detector polarizing homodyne laser interferometer with a quadrature detection system. Common nonlinearities, including the phase-shift error, were determined and effectively corrected by a robust data-processing algorithm. The measured phase-shift error perfectly agrees with the theoretically determined phase-shift error region. This error is systematic, periodic and severely asymmetrical around the nominal displacement value. The main results presented in this paper can also be used to assess and correct the detector errors of other interferometric and non-interferometric displacement-measuring devices based on phase-quadrature detection.
Imran, A. N.; Rakhimov, I. S.; Husain, Sh. K. Said
2016-06-01
Our main focus in this work is to introduce new structure bornological semi rings. This generalizes the theory of algebraic semi rings from the algebraic setting to the framework of bornological sets. We give basic properties for this new structure. As well as, We study the fundamental construction of bornological semi ring as product, inductive limits and projective limits and their extensions on bornological semi ring. Additionally, we introduce the category of bornological semi rings and study product and pullback (fiber product) in the category of bornological semi rings.
Bloembergen, Nicolaas
1996-01-01
Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe
Adaptive DFT-based Interferometer Fringe Tracking
Wilson, Edward; Pedretti, Ettore; Bregman, Jesse; Mah, Robert W.; Traub, Wesley A.
2004-01-01
An automatic interferometer fringe tracking system has been developed, implemented, and tested at the Infrared Optical Telescope Array (IOTA) observatory at Mt. Hopkins, Arizona. The system can minimize the optical path differences (OPDs) for all three baselines of the Michelson stellar interferometer at IOTA. Based on sliding window discrete Fourier transform (DFT) calculations that were optimized for computational efficiency and robustness to atmospheric disturbances, the algorithm has also been tested extensively on off-line data. Implemented in ANSI C on the 266 MHz PowerPC processor running the VxWorks real-time operating system, the algorithm runs in approximately 2.0 milliseconds per scan (including all three interferograms), using the science camera and piezo scanners to measure and correct the OPDs. The adaptive DFT-based tracking algorithm should be applicable to other systems where there is a need to detect or track a signal with an approximately constant-frequency carrier pulse.
Line-imaging Fabry-Perot interferometer
Energy Technology Data Exchange (ETDEWEB)
Mathews, A.R.; Warnes, R.H.; Hemsing, W.F.; Whittemore, G.R.
1990-01-01
A method for measuring the velocity history of a line element on a shock-loaded solid has been demonstrated. Light from single-frequency laser is focused through a cylindrical lens to a line on a moving target. The return Doppler-shifted image is passed through a Fabry-Perot interferometer. Because only specific combinations of incident light angle and frequency can pass through the interferometer the output is an incomplete image of the moving target appearing as a set of fringes. This image is focused onto an electronic streak camera and swept in time. The fringe pattern changes with time as the target surface moves, allowing determination of velocity for each point on the target that forms a fringe. Because the velocity can only be measured at the fringe positions, it is necessary to use an interpolating polynomial to obtain a continuous function of time and velocity along the sampled lien. 9 refs., 7 figs.
Interferometer for Low-Uncertainty Vector Metrology
Toland, Ronald W.; Leviton, Douglas B.
2006-01-01
A simplified schematic diagram of a tilt-sensing unequal-path interferometer set up to measure the orientation of the normal vector of one surface of a cube mounted on a structure under test is described herein. This interferometer has been named a "theoferometer" to express both its interferometric nature and the intention to use it instead of an autocollimating theodolite. The theoferometer optics are mounted on a plate, which is in turn mounted on orthogonal air bearings for near-360 rotation in azimuth and elevation. Rough alignment of the theoferometer to the test cube is done by hand, with fine position adjustment provided by a tangent arm drive using linear inchwormlike motors.
The upgraded S18 neutron interferometer
Energy Technology Data Exchange (ETDEWEB)
Bruckner, G. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)]|[Atominstitut der Oesterreichischen Universitaeten, Vienna (Austria)
1999-11-01
The instrument S18, the perfect-crystal neutron interferometer was reopened in October 1998. The instrument, which was dismantled during the reactor shutdown, has been set up again within the last two years. The upgraded version allows more advanced neutron optics experiments for fundamental, nuclear and condensed-matter physics. The instrument also takes advantage of the new super-mirror guide which provides considerably higher intensities. Several types of large perfect-crystal interferometers are available for different applications. A new multipurpose monochromator allows the use of a wide wavelength range and the configuration of the system as an advanced high-resolution Bonse-Hart small-angle scattering camera. Another instrument option is the use of completely polarised beams which are obtained using permanent magnetic prism deflection. An additional third analyser axis permits novel post-selection experiments concerning momentum distribution and polarisation analysis of the interfering beams. (author) 11 refs., 2 figs.
Analysis of a free oscillation atom interferometer
Kafle, Rudra P; Zozulya, Alex A
2011-01-01
We analyze a Bose-Einstein condensate (BEC) - based free oscillation atom Michelson interferometer in a weakly confining harmonic magnetic trap. A BEC at the center of the trap is split into two harmonics by a laser standing wave. The harmonics move in opposite directions with equal speeds and turn back under the influence of the trapping potential at their classical turning points. The harmonics are allowed to pass through each other and a recombination pulse is applied when they overlap at the end of a cycle after they return for the second time. We derive an expression for the contrast of the interferometric fringes and obtain the fundamental limit of performance of the interferometer in the parameter space.
Thermal-noise-limited underground interferometer CLIO
Agatsuma, Kazuhiro; Fujimoto, Masa-Katsu; Kawamura, Seiji; Kuroda, Kazuaki; Miyakawa, Osamu; Miyoki, Shinji; Ohashi, Masatake; Suzuki, Toshikazu; Takahashi, Ryutaro; Tatsumi, Daisuke; Telada, Souichi; Uchiyama, Takashi; Yamamoto, Kazuhiro
2009-01-01
We report on the current status of CLIO (Cryogenic Laser Interferometer Observatory), which is a prototype interferometer for LCGT (Large scale Cryogenic Gravitational-wave Telescope). LCGT is a Japanese next-generation interferometric gravitational wave detector featuring the use of cryogenic mirrors and a quiet underground site. The main purpose of CLIO is to demonstrate a reduction of the mirror thermal noise by cooling the sapphire mirrors. CLIO is located in an underground site of the Kamioka mine, 1000 m deep from the mountain top, to verify its advantages. After a few years of commissioning work, we have achieved a thermal-noise-limited sensitivity at room temperature. One of the main results of noise hunting was the elimination of thermal noise caused by a conductive coil-holder coupled with a pendulum through magnets.
Temperature insensitive fiber optic interferometer and applications
Murphy, Kent A.
1989-01-01
A method of modifying a uÌ ber optic fused biconical tapered coupler to produce a relatively temperature insensitive Michelson interferometer is presented. The modification was accomplished by cleaving the coupler after the minimum taper region and polishing, perpendicular to the endface, to a point just short of the interaction region. This allows one of the two fiber cores, which are within micrometers of each other with their claddings fused together, to be coated at its end...
First Colombian Solar Radio Interferometer: current stage
Guevara Gómez, J. C.; Martínez Oliveros, J. C.; Calvo-Mozo, B.
2017-10-01
Solar radio astronomy is a fast developing research field in Colombia. Here, we present the scientific goals, specifications and current state of the First Colombian Solar Radio Interferometer consisting of two log-periodic antennas covering a frequency bandwidth op to 800 MHz. We describe the importance and benefits of its development to the radioastronomy in Latin America and its impact on the scientific community and general public.
Photonic Crystal Fiber Interferometer for Dew Detection
Mathew, Jinesh; Semenova, Yuliya; Farrell, Gerald
2012-01-01
A novel method for dew detection based on photonic crystal fiber (PCF) interferometer that operates in reflection mode is presented in this paper. The fabrication of the sensor head is simple since it only involves cleaving and fusion splicing. The sensor shows good sensitivity to dew formation with a large wavelength peak shift of the interference pattern at the onset of dew formation. The device’s response to ambient humidity and temperature are also studied and reported in this paper. From...
Measurement of small vibration by laser interferometer
Institute of Scientific and Technical Information of China (English)
QIAN Menglu; LIU Hewei
2003-01-01
The method and experimental results of measuring a small vibrating displacement by laser interferometer are introduced in this paper. The dynamic response of a new kind of tiny piezoelectric driver is detected. Results show that this kind of PZN-PZT tiny driver not only has high voltage-displacement sensitivity, but also its frequency response approaches to 1 kHz.Therefore this kind of piezoelectric driver can be used widely in many fields.
Energy Technology Data Exchange (ETDEWEB)
Geniet, F; Leon, J [Physique Mathematique et Theorique, CNRS-UMR 5825, 34095 Montpellier (France)
2003-05-07
A nonlinear system possessing a natural forbidden band gap can transmit energy of a signal with a frequency in the gap, as recently shown for a nonlinear chain of coupled pendulums (Geniet and Leon 2002 Phys. Rev. Lett. 89 134102). This process of nonlinear supratransmission, occurring at a threshold that is exactly predictable in many cases, is shown to have a simple experimental realization with a mechanical chain of pendulums coupled by a coil spring. It is then analysed in more detail. First we go to different (nonintegrable) systems which do sustain nonlinear supratransmission. Then a Josephson transmission line (a one-dimensional array of short Josephson junctions coupled through superconducting wires) is shown to also sustain nonlinear supratransmission, though being related to a different class of boundary conditions, and despite the presence of damping, finiteness, and discreteness. Finally, the mechanism at the origin of nonlinear supratransmission is found to be a nonlinear instability, and this is briefly discussed here.
Hybrid photonic chip interferometer for embedded metrology
Kumar, P.; Martin, H.; Maxwell, G.; Jiang, X.
2014-03-01
Embedded metrology is the provision of metrology on the manufacturing platform, enabling measurement without the removal of the work piece. Providing closer integration of metrology upon the manufacturing platform can lead to the better control and increased throughput. In this work we present the development of a high precision hybrid optical chip interferometer metrology device. The complete metrology sensor system is structured into two parts; optical chip and optical probe. The hybrid optical chip interferometer is based on a silica-on-silicon etched integrated-optic motherboard containing waveguide structures and evanescent couplers. Upon the motherboard, electro-optic components such as photodiodes and a semiconductor gain block are mounted and bonded to provide the required functionality. The key structure in the device is a tunable laser module based upon an external-cavity diode laser (ECDL). Within the cavity is a multi-layer thin film filter which is rotated to select the longitudinal mode at which the laser operates. An optical probe, which uses a blazed diffracting grating and collimating objective lens, focuses light of different wavelengths laterally over the measurand. Incident laser light is then tuned in wavelength time to effectively sweep an `optical stylus' over the surface. Wavelength scanning and rapid phase shifting can then retrieve the path length change and thus the surface height. We give an overview of the overall design of the final hybrid photonic chip interferometer, constituent components, device integration and packaging as well as experimental test results from the current version now under evaluation.
Coherence and information in a fiber interferometer
Kellerer, Aglaé; Lacour, Sylvestre
2016-01-01
We present an experiment based on a fibered Mach-Zehnder interferometer. The aim is to familiarize students with fibered optics and interferometry, and to improve their understanding of optical amplification. The laboratory project has two parts: in a first part, the students modulate the optical path of the interferometer to study the spectra of light sources via Fourier Transform Spectroscopy. In a second part, an optical amplifier is placed in one or both arms of the interferometer. The set-up uses monomode, polarization-maintaining fibers that propagate light of 1.5 $\\mu$m wavelength. In this article, we describe the set-up and the analysis of the measurements, and we present results from student reports. All components are part of standard optical catalogues. Even though the experiment is based on fibered optics, it is robust to manipulation (it is however relatively expensive $\\sim \\pounds 15\\,000$): We describe our efforts to protect the components from damage. This experiment is now offered as a 2-wee...
Model-based phase-shifting interferometer
Liu, Dong; Zhang, Lei; Shi, Tu; Yang, Yongying; Chong, Shiyao; Miao, Liang; Huang, Wei; Shen, Yibing; Bai, Jian
2015-10-01
A model-based phase-shifting interferometer (MPI) is developed, in which a novel calculation technique is proposed instead of the traditional complicated system structure, to achieve versatile, high precision and quantitative surface tests. In the MPI, the partial null lens (PNL) is employed to implement the non-null test. With some alternative PNLs, similar as the transmission spheres in ZYGO interferometers, the MPI provides a flexible test for general spherical and aspherical surfaces. Based on modern computer modeling technique, a reverse iterative optimizing construction (ROR) method is employed for the retrace error correction of non-null test, as well as figure error reconstruction. A self-compiled ray-tracing program is set up for the accurate system modeling and reverse ray tracing. The surface figure error then can be easily extracted from the wavefront data in forms of Zernike polynomials by the ROR method. Experiments of the spherical and aspherical tests are presented to validate the flexibility and accuracy. The test results are compared with those of Zygo interferometer (null tests), which demonstrates the high accuracy of the MPI. With such accuracy and flexibility, the MPI would possess large potential in modern optical shop testing.
Auslander, Maurice
2014-01-01
This classic monograph is geared toward advanced undergraduates and graduate students. The treatment presupposes some familiarity with sets, groups, rings, and vector spaces. The four-part approach begins with examinations of sets and maps, monoids and groups, categories, and rings. The second part explores unique factorization domains, general module theory, semisimple rings and modules, and Artinian rings. Part three's topics include localization and tensor products, principal ideal domains, and applications of fundamental theorem. The fourth and final part covers algebraic field extensions
Refractometric sensor based on all-fiber coaxial Michelson interferometers
Barrios, Paola; Sáez-Rodríguez, David; Rodríguez, Amparo; Cruz, José L.; Díez, Antonio; Andrés, Miguel V.
2009-05-01
All-fiber coaxial Michelson interferometers are compact and very stable interferometers that can be dipped directly into water solutions for chemical and biological sensing. The sensitivity of the cladding mode to the surrounding medium can be exploited to use the interferometer as a compact fiber refractometer. Several interferometers have been fabricated and characterized as glucose sensors. A first series of devices were designed to work at 1550 nm, while a second series was prepared to work at 850 nm. Thus, the second series of interferometers enables the use of compact, robust and low cost optical spectrum analyzers. In our present experiments, the length of the fiber that forms the interferometer was within the range 1-10 cm. When the shift of the spectrum maxima were measured as a function of the glucose concentration, a slope of 350 pm/% was achieved. The use of the 850 nm sensor heads as a portable sensor system to monitor sewage treatment plants is shown.
A Michelson-type Radio Interferometer for University Education
Koda, Jin; Hasegawa, Tetsuo; Hayashi, Masahiko; Shafto, Gene; Slechta, Jeff; Metchev, Stanimir
2016-01-01
We report development of a simple and affordable radio interferometer suitable as an educational laboratory experiment. With the increasing importance of interferometry in astronomy, the lack of educational interferometers is an obstacle to training the future generation of astronomers. This interferometer provides the hands-on experience needed to fully understand the basic concepts of interferometry. The design of this interferometer is based on the Michelson & Pease stellar optical interferometer, but operates at a radio wavelength (~11 GHz; ~2.7cm); thus the requirement for optical accuracy is much less stringent. We utilize a commercial broadcast satellite dish and feedhorn. Two flat side mirrors slide on a ladder, providing baseline coverage. This interferometer resolves and measures the diameter of the Sun, a nice daytime experiment which can be carried out even in marginal weather (i.e., partial cloud cover). Commercial broadcast satellites provide convenient point sources for comparison to the Su...
Two-interferometer fiber optic sensor with disturbance localization
Kondrat, M.; Szustakowski, M.; Ciurapinski, W.; Zyczkowski, M.
2006-09-01
We present investigation results of a new generation of the fiber optic perimeter sensor in a Sagnac and Michelson interferometers configuration. This sensor can detect a potential intruder and determine its position along a protected zone. We propose a localization method that makes use of the inherent properties of both interferometers. After demodulation of signals from both interferometers, the obtained amplitude characteristic of the Sagnac interferometer depends on position of a disturbance along the interferometer, while amplitude characteristic of the Michelson interferometer do not depend on this position. So, quotient of both demodulated characteristics makes it possible to localize the disturbance. Arrangement of a laboratory model of the sensor and its signal processing scheme is also presented. During research of the laboratory model of the sensor, it was possible to detect the position of the disturbance with resolution of about 40m along the 6-km long sensor.
Development of stable monolithic wide-field Michelson interferometers
Wan, Xiaoke; Ge, Jian; Chen, Zhiping
2011-07-01
Bulk wide-field Michelson interferometers are very useful for high precision applications in remote sensing and astronomy. A stable monolithic Michelson interferometer is a key element in high precision radial velocity (RV) measurements for extrasolar planets searching and studies. Thermal stress analysis shows that matching coefficients of thermal expansion (CTEs) is a critical requirement for ensuring interferometer stability. This requirement leads to a novel design using BK7 and LAK7 materials, such that the monolithic interferometer is free from thermal distortion. The processes of design, fabrication, and testing of interferometers are described in detail. In performance evaluations, the field angle is typically 23.8° and thermal sensitivity is typically -2.6×10-6/° C near 550nm, which corresponds to ˜800m/s/°C in the RV scale. Low-cost interferometer products have been commissioned in multiple RV instruments, and they are producing high stability performance over long term operations.
Vibration induced phase noise in Mach-Zehnder atom interferometers
Miffre, A; Büchner, M; Trénec, G; Vigué, J; Miffre, Alain; Jacquey, Marion; B\\"{u}chner, Matthias; Vigu\\'{e}, Jacques
2006-01-01
The high inertial sensitivity of atom interferometers has been used to build accelerometers and gyrometers but this sensitivity makes these interferometers very sensitive to the laboratory seismic noise. This seismic noise induces a phase noise which is large enough to reduce the fringe visibility in many cases. We develop here a model calculation of this phase noise in the case of Mach-Zehnder atom interferometers and we apply this model to our thermal lithium interferometer. We are thus able to explain the observed dependence of the fringe visibility with the diffraction order. The dynamical model developed in the present paper should be very useful to further reduce this phase noise in atom interferometers and this reduction should open the way to improved interferometers.
Development of stable monolithic wide-field Michelson interferometers.
Wan, Xiaoke; Ge, Jian; Chen, Zhiping
2011-07-20
Bulk wide-field Michelson interferometers are very useful for high precision applications in remote sensing and astronomy. A stable monolithic Michelson interferometer is a key element in high precision radial velocity (RV) measurements for extrasolar planets searching and studies. Thermal stress analysis shows that matching coefficients of thermal expansion (CTEs) is a critical requirement for ensuring interferometer stability. This requirement leads to a novel design using BK7 and LAK7 materials, such that the monolithic interferometer is free from thermal distortion. The processes of design, fabrication, and testing of interferometers are described in detail. In performance evaluations, the field angle is typically 23.8° and thermal sensitivity is typically -2.6×10(-6)/°C near 550 nm, which corresponds to ∼800 m/s/°C in the RV scale. Low-cost interferometer products have been commissioned in multiple RV instruments, and they are producing high stability performance over long term operations.
... Right Sport for You Healthy School Lunch Planner Birth Control Ring KidsHealth > For Teens > Birth Control Ring Print A A A What's in ... español Anillo vaginal anticonceptivo What Is It? The birth control ring is a soft, flexible, doughnut-shaped ...
On Weakly Semicommutative Rings*
Institute of Scientific and Technical Information of China (English)
CHEN WEI-XING; CUI SHU-YING
2011-01-01
A ring R is said to be weakly scmicommutative if for any a, b ∈ R,ab = 0 implies aRb C_ Nil(R), where Nil(R) is the set of all nilpotcnt elements in R.In this note, we clarify the relationship between weakly semicommutative rings and NI-rings by proving that the notion of a weakly semicommutative ring is a proper generalization of NI-rings. We say that a ring R is weakly 2-primal if the set of nilpotent elements in R coincides with its Levitzki radical, and prove that if R is a weakly 2-primal ring which satisfies oα-condition for an endomorphism α of R (that is, ab = 0 （←→） aα(b) ＝ 0 where a, b ∈ R) then the skew polynomial ring R[π; αα]is a weakly 2-primal ring, and that if R is a ring and I is an ideal of R such that I and R/I are both weakly semicommutative then R is weakly semicommutative.Those extend the main results of Liang et al. 2007 (Taiwanese J. Math., 11(5)(2007),1359-1368) considerably. Moreover, several new results about weakly semicommutative rings and NI-rings are included.
Special topics in infrared interferometry. [Michelson interferometer development
Hanel, R. A.
1985-01-01
Topics in IR interferometry related to the development of a Michelson interferometer are treated. The selection and reading of the signal from the detector to the analog to digital converter is explained. The requirements for the Michelson interferometer advance speed are deduced. The effects of intensity modulation on the interferogram are discussed. Wavelength and intensity calibration of the interferometer are explained. Noise sources (Nyquist or Johnson noise, phonon noise), definitions of measuring methods of noise, and noise measurements are presented.
Modelling of interference pattern produced by Michelson interferometer
Glebov, Victor; Lashmanov, Oleg
2016-04-01
Using of Michelson interferometer is shown in the field of measurement of periodical displacements of the con-trolled object. The foundations of optical interferometry are presented. The features of Michelson interferometer are described. The mathematical model of interference pattern produced by Michelson interferometer is created. It takes in consideration such parameters as the angles at which the mirrors are located and the lengths of two optical paths.
Analysis of a four-mirror-cavity enhanced Michelson interferometer.
Thüring, André; Lück, Harald; Danzmann, Karsten
2005-12-01
We investigate the shot-noise-limited sensitivity of a four-mirror-cavity enhanced Michelson interferometer. The intention of this interferometer topology is the reduction of thermal lensing and the impact of the interferometers contrast although transmissive optics are used with high circulating powers. The analytical expressions describing the light fields and the frequency response are derived. Although the parameter space has 11 dimensions, a detailed analysis of the resonance feature gives boundary conditions allowing systematic parameter studies.
Heterodyne Interferometer for Triggering Gas-Puff PRSs
2007-11-02
completion of the Phase I effort. They are: "* Implement a heterodyne interferometer in a Michelson format using fiber optic components. "* Interface the...of single-mode fiber cable. These fibers represent the two legs of a Michelson interferometer . One fiber is terminated in a reflector and is the...independently through the same fiber to the interferometer head. They are subject to identical stresses and, therefore, incur identical phase noise which cancels
HCN Laser Interferometer on the EAST Superconducting Tokamak
Institute of Scientific and Technical Information of China (English)
XU Qiang; GAO Xiang; JIE Yinxian; LIU Haiqing; SHI Nan; CHENG Yongfei; TONG Xingde
2008-01-01
A single-channel far-infrared (FIR) laser interferometer was developed to measure the line averaged electron density on the EAST tokamak. The structure of the single-channel FIR laser interferometer is described in detail. The evolution of density sawtooth oscillation was measured by means the FIR laser interferometer, and was identified by electron cyclotron emission (ECE) signals and soft X-ray intensity. The discharges with and without sawtooth were compared with each other in the Hugill diagram.
Terrestrial Planet Finder Interferometer: Architecture, Mission Design, and Technology Development
Henry, Curt
2004-01-01
This slide presentation represents an overview progress report about the system design and technology development of two interferometer concepts studied for the Terrestrial Planet Finder (TPF) project. The two concepts are a structurally-connected interferometer (SCI) intended to fulfill minimum TPF science goals and a formation-flying interferometer (FFI) intended to fulfill full science goals. Described are major trades, analyses, and technology experiments completed. Near term plans are also described. This paper covers progress since August 2003
Analysis of a four-mirror-cavity enhanced Michelson interferometer
Thüring, A.; Lück, H.; Danzmann, K.
2005-01-01
We investigate the shot noise limited sensitivity of a four-mirror cavity enhanced Michelson interferometer. The intention of this interferometer topology is the reduction of thermal lensing and the impact of the interferometers contrast although transmissive optics are used with high circulating powers. The analytical expressions describing the light fields and the frequency response are derived. Although the parameter space has 11 dimensions, a detailed analysis of the resonance feature giv...
Gravitational Wave Detection with Single-Laser Atom Interferometers
Yu, Nan; Tinto, Massimo
2011-01-01
A new design for a broadband detector of gravitational radiation relies on two atom interferometers separated by a distance L. In this scheme, only one arm and one laser are used for operating the two atom interferometers. The innovation here involves the fact that the atoms in the atom interferometers are not only considered as perfect test masses, but also as highly stable clocks. Atomic coherence is intrinsically stable, and can be many orders of magnitude more stable than a laser.
Ultrashort-pulse lasers based on the Sagnac interferometer
Energy Technology Data Exchange (ETDEWEB)
Bezrodnyi, V.I.; Prokhorenko, V.I.; Tikhonov, E.A.; Shpak, M.T.; Iatskiv, D.IA.
1988-01-01
Results of experimental studies carried out on passively mode-locked and synchronously pumped ultrashort-pulse lasers with cavities based on the Sagnac interferometer are reported. It is shown that the use of the interferometer makes it possible to substantially improve the principal parameters of the ultrashort-pulse laser, such as repeatability, stability, spatial-angular characteristics, and the frequency tuning range. In particular, results are presented for YAG:Nd(3+) and dye lasers with Sagnac interferometers. 10 references.
Conditions on Structural Controllability of Nonlinear Systems: Polynomial Method
Directory of Open Access Journals (Sweden)
Qiang Ma
2011-03-01
Full Text Available In this paper the structural controllability of a class of a nonlinear system is investigated. The transfer function (matrix of nonlinear systems is obtained by putting the nonlinear system model on non-commutative ring. Conditions of structural controllability of nonlinear systems are presented according to the criterion of linear systems structural controllability in frequency domain. An example is used to testify the presented conditions finally.
Tunable diode laser control by a stepping Michelson interferometer
Energy Technology Data Exchange (ETDEWEB)
Valentin, A.; Nicolas, C.; Henry, L.; Mantz, A.W.
1987-01-01
A tunable diode laser beam is sent through a Michelson interferometer and is locked to a fringe of the diode laser interferometer pattern by controlling the diode laser polarization current. The path difference change of the Michelson interferometer is controlled step by step by a stabilized He--Ne red laser. When the interferometer path differences increases or decreases, the polarization current of the diode is forced to change in order to preserve the interference order of the diode beam. At every step the diode frequency is accurately fixed and its phase noise significantly reduced.
Quantum heat engines based on electronic Mach-Zehnder interferometers
Hofer, Patrick P.; Sothmann, Björn
2015-05-01
We theoretically investigate the thermoelectric properties of heat engines based on Mach-Zehnder interferometers. The energy dependence of the transmission amplitudes in such setups arises from a difference in the interferometer arm lengths. Any thermoelectric response is thus of purely quantum-mechanical origin. In addition to an experimentally established three-terminal setup, we also consider a two-terminal geometry as well as a four-terminal setup consisting of two interferometers. We find that Mach-Zehnder interferometers can be used as powerful and efficient heat engines which perform well under realistic conditions.
Two-path plasmonic interferometer with integrated detector
Energy Technology Data Exchange (ETDEWEB)
Dyer, Gregory Conrad; Shaner, Eric A.; Aizin, Gregory
2016-03-29
An electrically tunable terahertz two-path plasmonic interferometer with an integrated detection element can down convert a terahertz field to a rectified DC signal. The integrated detector utilizes a resonant plasmonic homodyne mixing mechanism that measures the component of the plasma waves in-phase with an excitation field that functions as the local oscillator in the mixer. The plasmonic interferometer comprises two independently tuned electrical paths. The plasmonic interferometer enables a spectrometer-on-a-chip where the tuning of electrical path length plays an analogous role to that of physical path length in macroscopic Fourier transform interferometers.
A trapped atom interferometer with ultracold Sr atoms
Zhang, Xian; Mazzoni, Tommaso; Poli, Nicola; Tino, Guglielmo M
2016-01-01
We report on a trapped atom interferometer based on Bragg diffraction and Bloch oscillations with alkaline-earth-metal atoms. We use a Ramsey-Bord\\'e Bragg interferometer with $^{88}$Sr atoms combined with Bloch oscillations to extend the interferometer time. Thanks to a long coherence time for Bloch oscillations of $^{88}$Sr atoms, we observed interference up to 1 s evolution time in the lattice. A detailed study of decoherence sources during the Bloch phase is also presented. While still limited in sensitivity by lattice lifetime and beam inhomogeneity this result opens the way to high contrast trapped interferometers with extended interrogation time.
SHIMS -- A Spatial Heterodyne Interferometer for Methane Sounding Project
National Aeronautics and Space Administration — This project develops the Spatial Heterodyne Interferometer for Methane Sounding (SHIMS), a lightweight, compact, robust spectrometer system for remote sensing of...
2016-07-01
Advanced Research Projects Agency (DARPA) Dynamics-Enabled Frequency Sources (DEFYS) program is focused on the convergence of nonlinear dynamics and...Early work in this program has shown that nonlinear dynamics can provide performance advantages. However, the pathway from initial results to...dependent nonlinear stiffness observed in these devices. This work is ongoing, and will continue through the final period of this program . Reference 9
Fomin, Vladimir M
2013-01-01
This book deals with a new class of materials, quantum rings. Innovative recent advances in experimental and theoretical physics of quantum rings are based on the most advanced state-of-the-art fabrication and characterization techniques as well as theoretical methods. The experimental efforts allow to obtain a new class of semiconductor quantum rings formed by capping self-organized quantum dots grown by molecular beam epitaxy. Novel optical and magnetic properties of quantum rings are associated with non-trivial topologies at the nanoscale. An adequate characterization of quantum rings is po
Envelopes of Commutative Rings
Institute of Scientific and Technical Information of China (English)
Rafael PARRA; Manuel SAOR(I)N
2012-01-01
Given a significative class F of commutative rings,we study the precise conditions under which a commutative ring R has an F-envelope.A full answer is obtained when.F is the class of fields,semisimple commutative rings or integral domains.When F is the class of Noetherian rings,we give a full answer when the Krull dimension of R is zero and when the envelope is required to be epimorphic.The general problem is reduced to identifying the class of non-Noetherian rings having a monomorphic Noetherian envelope,which we conjecture is the empty class.
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Proxy signatures have been used to enable the transfer of digital signing power within some context and ring signatures can be used to provide the anonymity of a signer. By combining the functionalities of proxy signatures and ring signatures, this paper introduces a new concept, named ring proxy signature, which is a proxy signature generated by an anonymous member from a set of potential signers. The paper also constructs the first concrete ring proxy signature scheme based on the provably secure Schnorr's signatures and two ID-based ring proxy signature schemes. The security analysis is provided as well.
Adaptive time-domain filtering for real-time spectral discrimination in a Michelson interferometer.
Bhalotra, Sameer R; Kung, Helen L; Jiao, Yang; Miller, David A B
2002-07-01
We present a method of spectral discrimination that employs time-domain processing instead of the typical frequency-domain analysis and implement the method in a Michelson interferometer with a nonlinear mirror scan. The technique yields one analog output value per scan instead of a complete interferogram by directly filtering a measured scan with a reference function in the time domain. Such a procedure drastically reduces data-processing requirements downstream. Additionally, using prerecorded interferograms as references eliminates the need to compensate for scan nonlinearities, which broadens the field of usable components for implementation in miniaturized sensing systems. With our efficient use of known spectral signatures, we demonstrate real-time discrimination of 633- and 663-nm laser sources with a mirror scan length of 1 microm , compared with the Rayleigh criterion of 7 microm.
Nayfeh, Ali Hasan
1995-01-01
Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim
Yoshida, Zensho
2010-01-01
This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl
Nanda, Sudarsan
2013-01-01
"Nonlinear analysis" presents recent developments in calculus in Banach space, convex sets, convex functions, best approximation, fixed point theorems, nonlinear operators, variational inequality, complementary problem and semi-inner-product spaces. Nonlinear Analysis has become important and useful in the present days because many real world problems are nonlinear, nonconvex and nonsmooth in nature. Although basic concepts have been presented here but many results presented have not appeared in any book till now. The book could be used as a text for graduate students and also it will be useful for researchers working in this field.
Verbiscer, Anne J; Skrutskie, Michael F; Hamilton, Douglas P
2009-10-22
Most planetary rings in the Solar System lie within a few radii of their host body, because at these distances gravitational accelerations inhibit satellite formation. The best known exceptions are Jupiter's gossamer rings and Saturn's E ring, broad sheets of dust that extend outward until they fade from view at five to ten planetary radii. Source satellites continuously supply the dust, which is subsequently lost in collisions or by radial transport. Here we report that Saturn has an enormous ring associated with its outer moon Phoebe, extending from at least 128R(S) to 207R(S) (Saturn's radius R(S) is 60,330 km). The ring's vertical thickness of 40R(S) matches the range of vertical motion of Phoebe along its orbit. Dynamical considerations argue that these ring particles span the Saturnian system from the main rings to the edges of interplanetary space. The ring's normal optical depth of approximately 2 x 10(-8) is comparable to that of Jupiter's faintest gossamer ring, although its particle number density is several hundred times smaller. Repeated impacts on Phoebe, from both interplanetary and circumplanetary particle populations, probably keep the ring populated with material. Ring particles smaller than centimetres in size slowly migrate inward and many of them ultimately strike the dark leading face of Iapetus.
The contraceptive vaginal ring.
Edwardson, Jill; Jamshidi, Roxanne
2010-03-01
The contraceptive vaginal ring offers effective contraception that is self-administered, requires less frequent dosing than many other forms of contraception, and provides low doses of hormones. NuvaRing (Organon, Oss, The Netherlands), the only contraceptive vaginal ring approved for use in the United States, contains etonogestrel and ethinyl estradiol. It is inserted into the vagina for 3 weeks, followed by a 1-week ring-free period, and works by inhibiting ovulation. Most women note a beneficial effect on bleeding profiles and are satisfied with NuvaRing. Commonly reported adverse events include vaginitis, leukorrhea, headaches, and device-related events such as discomfort. Serious adverse events are rare. In Chile and Peru, progesterone-only vaginal contraceptive rings are available for nursing women. Studies are ongoing examining new formulations of vaginal contraceptive rings.
New Dust Belts of Uranus: One Ring, Two Ring, Red Ring, Blue Ring
Energy Technology Data Exchange (ETDEWEB)
de Pater, I; Hammel, H B; Gibbard, S G; Showalter, M R
2006-02-02
We compare near-infrared observations of the recently discovered outer rings of Uranus with HST results. We find that the inner ring, R/2003 U 2, is red, whereas the outer ring, R/2003 U 1, is very blue. Blue is an unusual color for rings; Saturn's enigmatic E ring is the only other known example. By analogy to the E ring, R/2003 U 1 is probably produced via impacts into the embedded moon Mab, which apparently orbits at a location where non-gravitational perturbations favor the survival and spreading of sub-micron sized dust. R/2003 U 2 more closely resembles Saturn's G ring.
Certain near-rings are rings, II
Directory of Open Access Journals (Sweden)
Howard E. Bell
1986-01-01
Full Text Available We investigate distributively-generated near-rings R which satisfy one of the following conditions: (i for each x,y∈R, there exist positive integers m, n for which xy=ymxn; (ii for each x,y∈R, there exists a positive integer n such that xy=(yxn. Under appropriate additional hypotheses, we prove that R must be a commutative ring.
Ling, Yan; Lu, Fang
2006-12-20
We introduce a new method for femtosecond pulse shape measurement. The interference of two pulses is employed rather than the second-harmonic generation (SHG). Usually, the measurements of the femtosecond pulse is realized by an interferometer in combination with a nonlinear optical material, while the measurement that we describe is realized by means of a Michelson interferometer with a Schottky junction. Only a metal-semiconductor junction (Schottky junction) is needed, and neither the nonlinear optical material nor a photodetector is included. The two-photon absorption arises when the light is strong enough, while there is only a one-photon absorption when the light is weak. And the calculations are in good agreement with the experimental results. In principle, the new technique could be used for the measuring of pulses with any duration and with very low power. Unlike the SHG scheme, in the new method the quality of optics, mechanics, and other elements of the scheme are not essential, and the measurement is easily realized, but the results are quite precise and very sensitive to the light.
Design of a novel electrostatic ion storage ring at KACST
Energy Technology Data Exchange (ETDEWEB)
El Ghazaly, M.O.A., E-mail: maelghazaly@kacst.edu.sa [National Center for Mathematics and Physics (NCMP), King Abdulaziz City for Sciences and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Alshammari, S.M. [National Center for Mathematics and Physics (NCMP), King Abdulaziz City for Sciences and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia); Welsch, C.P. [Cockcroft Institute and the University of Liverpool (United Kingdom); Alharbi, H.H. [National Center for Mathematics and Physics (NCMP), King Abdulaziz City for Sciences and Technology (KACST), P.O. Box 6086, Riyadh 11442 (Saudi Arabia)
2013-05-01
A new electrostatic storage ring for beams at energies up to 30 keV·q is currently under development at the National Centre for Mathematics and Physics (NCMP), King Abdulaziz City for Science and Technology (KACST). The ring design is based on the existing electrostatic storage rings, but stretches significantly beyond them in that it shall form the core of a unique flexible experimental facility at KACST. The lattice of this ring has been designed in a way that enables the use of state-of-the-art experimental methods to study electron–ion, laser-ion, and ion-neutral beams interactions. The lattice design also allows for a future upgrade of the ring to a double storage ring structure that would enable ion–ion beam interactions to be performed. In this paper, we present the design of this ring with a focus on beam dynamics calculations for the 7° single-bend racetrack layout. The study is principally based on the SIMION8 program. We complemented this study further by using purpose-written routine and MAD-X simulation code. An in-depth investigation into beam stability under consideration of non-linear field components in the electrostatic optical elements, is presented. Finally, different working points and stability regions are discussed. -- Highlights: ► The design for a highly flexible electrostatic storage ring is carried out. ► It is shown this design can be upgraded to a double storage ring structure. ► SIMION can be used in ray-tracing simulations to compute aberrations in the ring. ► Non-linear effects in an electrostatic ring can potentially disturb the stored beam. ► An electrostatic ring can store low-energy beams in spite of existing fringe fields.
Woillez, Julien; Lai, Olivier; Perrin, Guy; Reynaud, François; Baril, Marc; Dong, Yue; Fédou, Pierre
2017-06-01
Context. In comparison to the radio and sub-millimetric domains, imaging with optical interferometry is still in its infancy. Due to the limited number of telescopes in existing arrays, image generation is a demanding process that relies on time-consuming reconfiguration of the interferometer array and super-synthesis. Aims: Using single mode optical fibres for the coherent transport of light from the collecting telescopes to the focal plane, a new generation of interferometers optimized for imaging can be designed. Methods: To support this claim, we report on the successful completion of the `OHANA Iki project: an end-to-end, on-sky demonstration of a two-telescope interferometer, built around near-infrared single mode fibres, carried out as part of the `OHANA project. Results: Having demonstrated that coherent transport by single-mode fibres is feasible, we explore the concepts, performances, and limitations of a new imaging facility with single mode fibres at its heart: Agile Guided Interferometer for Longbaseline Imaging Synthesis (AGILIS). Conclusions: AGILIS has the potential of becoming a next generation facility or a precursor to a much larger project like the Planet Formation Imager (PFI).
Institute of Scientific and Technical Information of China (English)
Huanyin Chen
2007-01-01
In this paper, we introduce a new class of rings, the QB∞-rings. We investigate necessary and sufficient conditions under which an exchange ring is a QB∞-ring. The modules over an exchange QB∞-ring are studied. Also, we prove that every regular square matrix over an exchange QB∞-ring admits a diagonal reduction by pseudo-invertible matrices.
Neutrosophic LA-Semigroup Rings
Directory of Open Access Journals (Sweden)
Mumtaz Ali
2015-01-01
Full Text Available Neutrosophic LA-semigroup is a midway structure between a neutrosophic groupoid and a commutative neutrosophic semigroup. Rings are the old concept in algebraic structures. We combine the neutrosophic LA-semigroup and ring together to form the notion of neutrosophic LA-semigroup ring. Neutrosophic LAsemigroup ring is defined analogously to neutrosophic group ring and neutrosophic semigroup ring.
Polarizing Michelson interferometer for measuring thermospheric winds
Energy Technology Data Exchange (ETDEWEB)
Bird, J.C.
1991-01-01
The Polarizing Atmospheric Michelson Interferometer, PAMI, a new version of the Wide Angle Michelson Interferometer, is used to measure winds in the termosphere. In the polarizing instrument, the optical path difference is changed simply by rotating a polarizing filter external to the interferometer. This allows a very simple scanning mechanism. PAMI is similar to other instruments such as WAMDII that measure thermospheric winds and temperatures, retaining the benefits of high light throughput, while offering advantages including lower cost, simplicity, and portability. The instrument is highly sensitive and thus is designed to be used for field measurements at locations far from city lights. Results are shown from the AIDA observation campaign in Puerto Rico where coordinated observations were made by PAMI along with other optical and radio measurements during April and May 1989. Intensities of the green line layer at 95 km were compared to those observed by several other instruments. For example, MORTI (Mesopause Oxygen Rotational Temperature Imager), a colocated instrument which was looking at the 94 km 867.6 nm molecular oxygen emission. MORTI and PAMI emission rates were found to show the same trends. On the brightest night recorded during April, the zenith emission rate reached over 400 Rayleighs; emission enhancements were sometimes related to auroral events. During the observing period of April 4 to April 11, 1989, most of the observations of the 94 km airglow were after midnight where the winds were found to be generally towards the north east at about 50 to 100 m/s. During auroral activity this wind vector always turned counterclockwise, towards the west. During the nights of May 2 and May 6 these wind vectors follow a wave-like variation in magnitude and direction. It is concluded that auroral activity changes the global circulation in a way that sometimes transports increased amounts of oxygen atoms over Arecibo.
Three Cavity Tunable MEMS Fabry Perot Interferometer
Directory of Open Access Journals (Sweden)
Narayanswamy Sivakumar
2007-12-01
Full Text Available In this paper a four-mirror tunable micro electro-mechanical systems (MEMSFabry Perot Interferometer (FPI concept is proposed with the mathematical model. Thespectral range of the proposed FPI lies in the infrared spectrum ranging from 2400 to 4018(nm. FPI can be finely tuned by deflecting the two middle mirrors (or by changing the threecavity lengths. Two different cases were separately considered for the tuning. In case one,tuning was achieved by deflecting mirror 2 only and in case two, both mirrors 2 and 3 weredeflected for the tuning of the FPI.
Sagnac interferometer for photothermal deflection spectroscopy.
Shiokawa, Naoyuki; Mizuno, Yuki; Tsuchiya, Harumasa; Tokunaga, Eiji
2012-07-01
Photothermal deflection spectroscopy is combined with a Sagnac interferometer to enhance the sensitivity of the absorption measurement by converting the photothermal beam deflection effect into the light intensity change by the interference effect. Because of stable light interference due to the common path, the signal intensity can be amplified without increasing the noise by extending the optical path length between a sample and a photodetector. The sensitivity is further improved by the use of focusing optics and double-pass geometry. This makes photothermal deflection spectroscopy applicable to any kind of material in the whole visible region with a xenon lamp for excitation and water or air as a deflection medium.
Automatic alignment of a Michelson interferometer
Energy Technology Data Exchange (ETDEWEB)
Barone, F.; Di Fiore, L.; Milano, L.; Russo, G.; Solimeno, S. (Inst. Nazionale di Fisica Nucleare, Napoli (IT))
1992-04-01
This paper describes the control system for the automatic control of a very large dual-wave Michelson interferometer to be used in the VIRGO experiment, a gravitational wave search in the band 10 to 3000 Hz. The system is mainly based on a VME bus architecture for the local controls, on which numeric control system based on digital filters are implemented. The authors describe these control systems, and the way they are linked together to form the global control system, in a hierarchical configuration.
In-fiber Michelson interferometer inclinometer
da Silveira, C. R.; Jorge, P. A. S.; Costa, J. W. A.; Giraldi, M. T. M. R.; Santos, J. L.; Frazão, O.
2015-09-01
This work describes an in-fiber Michelson interferometer inclinometer which is sensitive to curvature applied in the tapered region. The performance of this inclinometer is evaluated by calculating the variation of the fringe visibility near the 1550 nm spectral range as a function of the tilt angle. It is presented the results of four experimental measurements and calculated the average and standard deviation of those measurements. The results indicate a good response of the sensor within the angular range between 3° and 6°. The average of those four measurements is around -0.15/° and the greatest standard deviation is about 5.5%.
Interferometer -based Technology for Optical Nanoscale Inspection
Directory of Open Access Journals (Sweden)
Ryabko M.
2014-02-01
Full Text Available We demonstrate the interferometer-based approach for nanoscale grating Critical Dimension (CD measurements and prove the possibility to achieve no worse than 10 nm accuracy of measurements for 100 nm pitch gratings. The approach is based on phase shift measurement of light fields specularly reflected from periodical pattern and adjacent substrate with subsequent comparison between experimental and simulation results. RCWA algorithm is used to fit the measured results and extract the CD value. It is shown that accuracy of CD value measurement depends rather on the grating’s CD/pitch ratio than its CD value
Data Flow System for the VLT Interferometer
Ballester, P.; Licha, T.; Percheron, I.; Sabet, C.
2006-07-01
A milestone on the accuracy of angular measurements is reached with each new instrument on the VLT interferometer: about 10 milliarcsec for MIDI (N Band), 1 milliarcsec for AMBER (JHK bands) and, later, the ultimate goal of 10 microarcsec for the PRIMA imaging and astrometry facility. Extracting the science information from these measurements requires a unified understanding of the data obtained by modelling, homogeneous calibration of large datasets and robust data reduction methods. We describe in this poster the operational tools provided for observation preparation, pipeline processing, and data quality control.
Using ACT arrays as Intensity Interferometers
Le Bohec, S
2005-01-01
The Narrabri intensity interferometer was successfully used until 1974 to observe 32 stars, all brighter than B=+2.5, among which some were found to have an angular diameter as small as 0.41+/-0.03 milli-arc-seconds (mas). The technique was then abandoned in favor of Michelson interferometry. Here we consider the technical feasibility and scientific potential of implementing intensity interferometry on Imaging Air Cherenkov Telescope arrays. The scientific motivations are varied, including stellar diameter measurements and investigations of the circumstellar environment. Long baselines and short wavelengths are easily accesible to this technique, making it uniquely suited for some applications.
Neutral wind results from TIMED Doppler interferometer
Killeen, T.; Gablehouse, R.; Gell, D.; Johnson, R.; Niciejewski, R.; Ortland, D.; Wu, Q.; Skinner, W.; Solomon, S.; Kafkalidis, J.
2003-04-01
Since the launch of the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite in December 2001, the TIMED Doppler Interferometer (TIDI) has been collecting lower thermosphere and mesospheric data for over a year. After adjustments to the spectral sampling scheme and operational mode, the instrument has been optimized. Efforts have also been made to improve the instrument performance. Preliminary neutral winds from O2 (0-0) have been analyzed. Tidal features and their seasonal variation are shown clearly in the wind data, which are quantitatively consistent with model prediction. We will report our progress on these efforts.
Adaptive Holographic Fiber-Optic Interferometer
Kozhevnikov, Nikolai M.; Lipovskaya, Margarita J.
1990-04-01
Interaction of phase-modulated light beams in photorefractive local inertial responce media was analysed. Interaction of this type allows to registrate phase-modulated signals adaptively under low frequency phase disturbtion. The experiments on multimode fiber-optic interferometer with demodulation element based on photorefractive bacteriorhodopsin-doped polimer film are described. As the writing of dynamic phase hologram is an inertial process the signal fluctuations with the frequencies up to 100 Hz can be canceled. The hologram efficiencies are enough to registrate high frequency phase shifts ~10-4 radn.
Low cost Michelson-Morley interferometer
Pathare, Shirish; Kurmude, Vikrant
2016-11-01
The Michelson-Morley interferometer is an important and challenging experiment in many undergraduate as well as post-graduate physics laboratories. The apparatus required for this experiment is costly and delicate to handle. It also requires considerable skill to obtain a set of sharp fringes. This frontline presents a low cost (~US50) design of the experiment, which can be easily fabricated in any undergraduate laboratory. It is easy to handle as well as any part of this set up being easily replaced in case of any damage.
Mach-Zehnder interferometer for movement monitoring
Vasinek, Vladimir; Cubik, Jakub; Kepak, Stanislav; Doricak, Jan; Latal, Jan; Koudelka, Petr
2012-06-01
Fiber optical interferometers belong to highly sensitive equipments that are able to measure slight changes like distortion of shape, temperature and electric field variation and etc. Their great advantage is that they are insensitive on ageing component, from which they are composed of. It is in virtue of herewith, that there are evaluated no changes in optical signal intensity but number interference fringes. To monitor the movement of persons, eventually to analyze the changes in state of motion we developed method based on analysis the dynamic changes in interferometric pattern. We have used Mach- Zehnder interferometer with conventional SM fibers excited with the DFB laser at wavelength of 1550 nm. It was terminated with optical receiver containing InGaAs PIN photodiode. Its output was brought into measuring card module that performs on FFT of the received interferometer signal. The signal rises with the composition of two waves passing through single interferometer arm. The optical fiber SMF 28e in one arm is referential; the second one is positioned on measuring slab at dimensions of 1x2m. A movement of persons around the slab was monitored, signal processed with FFT and frequency spectra were evaluated. They rose owing to dynamic changes of interferometric pattern. The results reflect that the individual subjects passing through slab embody characteristic frequency spectra, which are individual for particular persons. The scope of measuring frequencies proceeded from zero to 10 kHz. It was also displayed in experiments that the experimental subjects, who walked around the slab and at the same time they have had changed their state of motion (knee joint fixation), embodied characteristic changes in their frequency spectra. At experiments the stability of interferometric patterns was evaluated as from time aspects, so from the view of repeated identical experiments. Two kinds of balls (tennis and ping-pong) were used to plot the repeatability measurements and
Physics issues in diffraction limited storage ring design
Institute of Scientific and Technical Information of China (English)
FAN Wei; BAI ZhengHe; GAO WeiWei; FENG GuangYao; LI WeiMin; WANG Lin; HE DuoHui
2012-01-01
Diffraction limited electron storage ring is considered a promising candidate for future light sources,whose main characteristics are higher brilliance,better transverse coherence and better stability.The challenge of diffraction limited storage ring design is how to achieve the ultra low beam emittance with acceptable nonlinear performance.Effective linear and nonlinear parameter optimization methods based on Artificial Intelligence were developed for the storage ring physical design.As an example of application,partial physical design of HALS (Hefei Advanced Light Source),which is a diffraction limited VUV and soft X-ray light source,was introduced.Severe emittance growth due to the Intra Beam Scattering effect,which is the main obstacle to achieve ultra low emittance,was estimated quantitatively and possible cures were discussed.It is inspiring that better performance of diffraction limited storage ring can be achieved in principle with careful parameter optimization.
Physics issues in diffraction limited storage ring design
Fan, Wei; Bai, ZhengHe; Gao, WeiWei; Feng, GuangYao; Li, WeiMin; Wang, Lin; He, DuoHui
2012-05-01
Diffraction limited electron storage ring is considered a promising candidate for future light sources, whose main characteristics are higher brilliance, better transverse coherence and better stability. The challenge of diffraction limited storage ring design is how to achieve the ultra low beam emittance with acceptable nonlinear performance. Effective linear and nonlinear parameter optimization methods based on Artificial Intelligence were developed for the storage ring physical design. As an example of application, partial physical design of HALS (Hefei Advanced Light Source), which is a diffraction limited VUV and soft X-ray light source, was introduced. Severe emittance growth due to the Intra Beam Scattering effect, which is the main obstacle to achieve ultra low emittance, was estimated quantitatively and possible cures were discussed. It is inspiring that better performance of diffraction limited storage ring can be achieved in principle with careful parameter optimization.
Integration and initial operation of the multi-component large ring laser structure ROMY
Schreiber, Karl Ulrich; Igel, Heiner; Wassermann, Joachim; Gebauer, André; Simonelli, Andrea; Bernauer, Felix; Donner, Stefanie; Hadziioannou, Celine; Egdorf, Sven; Wells, Jon-Paul
2017-04-01
Rotation sensing for the geosciences requires a high sensor resolution of the order of 10 pico- radians per second or even less. An optical Sagnac interferometer offers this sensitivity, provided that the scale factor can be made very large. We have designed and built a multi- component ring laser system, consisting of 4 individual large ring lasers, each covering an area of more than 62 square m. The rings are orientated in the shape of a tetrahedron, so that all 3 spatial directions are covered, allowing also for some redundancy. We report on the initial operation of the free running gyroscopes in their underground facility in order to establish a performance estimate for the ROMY ring laser structure. Preliminary results suggest that the quantum noise limit is lower than that of the G ring laser.
New technologies for exoplanet detection with mid-IR interferometers
Directory of Open Access Journals (Sweden)
Ksendzov A.
2011-07-01
Full Text Available This paper provides an overview of technology development for the Terrestrial Planet Finder Interferometer (TPF-I. TPF-I is a mid-infrared space interferometer being designed with the capability of detecting Earth-like planets in the habitable zones around nearby stars.
A possible approach to improve sensitivity of Michelson interferometer
Fu, J
2006-01-01
We propose a possible approach to achieve an 1/N sensitivity of Michelson interferometer by using a properly designed random phase modulation. Although, the $\\sqrt{N}$ precision improvement might not be achieved due to the complication of the random phase modulation, it can help interferometers such as LIGO to reach higher sensitivity.
Michelson interferometer based interleaver design using classic IIR filter decomposition.
Cheng, Chi-Hao; Tang, Shasha
2013-12-16
An elegant method to design a Michelson interferometer based interleaver using a classic infinite impulse response (IIR) filter such as Butterworth, Chebyshev, and elliptic filters as a starting point are presented. The proposed design method allows engineers to design a Michelson interferometer based interleaver from specifications seamlessly. Simulation results are presented to demonstrate the validity of the proposed design method.
A 3D translation stage calibrated with Michelson interferometers
Lin, Hui-Hung; Hung, Kuo-Kai; Wang, Lu-Yu; Su, Wei-Hung
2016-09-01
A 3D translation stage which meets the requirement of the next-generation lithography is proposed. The Michelson interferometer is used to evaluate the moving distance for this 3-dimensional translation stage. With the help of Michelson interferometer, accuracy in the order of nanometers is desirable.
Numerical simulation and experimental verification of extended source interferometer
Hou, Yinlong; Li, Lin; Wang, Shanshan; Wang, Xiao; Zang, Haijun; Zhu, Qiudong
2013-12-01
Extended source interferometer, compared with the classical point source interferometer, can suppress coherent noise of environment and system, decrease dust scattering effects and reduce high-frequency error of reference surface. Numerical simulation and experimental verification of extended source interferometer are discussed in this paper. In order to provide guidance for the experiment, the modeling of the extended source interferometer is realized by using optical design software Zemax. Matlab codes are programmed to rectify the field parameters of the optical system automatically and get a series of interferometric data conveniently. The communication technique of DDE (Dynamic Data Exchange) was used to connect Zemax and Matlab. Then the visibility of interference fringes can be calculated through adding the collected interferometric data. Combined with the simulation, the experimental platform of the extended source interferometer was established, which consists of an extended source, interference cavity and image collection system. The decrease of high-frequency error of reference surface and coherent noise of the environment is verified. The relation between the spatial coherence and the size, shape, intensity distribution of the extended source is also verified through the analysis of the visibility of interference fringes. The simulation result is in line with the result given by real extended source interferometer. Simulation result shows that the model can simulate the actual optical interference of the extended source interferometer quite well. Therefore, the simulation platform can be used to guide the experiment of interferometer which is based on various extended sources.
Silicon Carbide Mounts for Fabry-Perot Interferometers
Lindemann, Scott
2011-01-01
Etalon mounts for tunable Fabry- Perot interferometers can now be fabricated from reaction-bonded silicon carbide structural components. These mounts are rigid, lightweight, and thermally stable. The fabrication of these mounts involves the exploitation of post-casting capabilities that (1) enable creation of monolithic structures having reduced (in comparison with prior such structures) degrees of material inhomogeneity and (2) reduce the need for fastening hardware and accommodations. Such silicon carbide mounts could be used to make lightweight Fabry-Perot interferometers or could be modified for use as general lightweight optical mounts. Heretofore, tunable Fabry-Perot interferometer structures, including mounting hardware, have been made from the low-thermal-expansion material Invar (a nickel/iron alloy) in order to obtain the thermal stability required for spectroscopic applications for which such interferometers are typically designed. However, the high mass density of Invar structures is disadvantageous in applications in which there are requirements to minimize mass. Silicon carbide etalon mounts have been incorporated into a tunable Fabry-Perot interferometer of a prior design that originally called for Invar structural components. The strength, thermal stability, and survivability of the interferometer as thus modified are similar to those of the interferometer as originally designed, but the mass of the modified interferometer is significantly less than the mass of the original version.
Although they rank among the tiniest of the microspcopic phytoplankton, coccolithophore algae aid oceanographers studying the Gulf Stream rings and the ring boundaries. The algal group could help to identify more precisely the boundary of the warm rings of water that spin off from the Gulf Stream and become independent pools of warm water in the colder waters along the northeastern U.S. coast.Coccolithophore populations in the Gulf Stream rings intrigue oceanographers for two reasons: The phytoplankton are subjected to an environment that changes every few days, and population explosions within one coccolithophore species seem to be associated with changes in the characteristics of ocean water, said Pat Blackwelder, an associate professor at the Nova Oceanographic Center in Dania, Fla. She is one of many studying the physics, chemistry, and biology of warm core rings. A special oceanography session on these rings was held at the recent AGU Fall Meeting/ASLO Winter Meeting.
Directory of Open Access Journals (Sweden)
Adela Ionescu
2007-01-01
Full Text Available Ring topology is a simple configuration used to connect processes that communicate among themselves. A number of network standards such as token ring, token bus, and FDDI are based on the ring connectivity. This article will develop an implementation of a ring of processes that communicate among themselves via pipe links. The processes are nodes in the ring. Each process reads from its standard input and writes in its standard output. N-1 process redirects the its standard output to a standard input of the process through a pipe. When the ring-structure is designed, the project can be extended to simulate networks or to implement algorithms for mutual exclusion
An X-ray BBB Michelson interferometer.
Sutter, John P; Ishikawa, Tetsuya; Kuetgens, Ulrich; Materlik, Gerhard; Nishino, Yoshinori; Rostomyan, Armen; Tamasaku, Kenji; Yabashi, Makina
2004-09-01
A new X-ray Michelson interferometer based on the BBB interferometer of Bonse and Hart and designed for X-rays of wavelength approximately 1 A was described in a previous paper. Here, a further test carried out at the SPring-8 1 km beamline BL29XUL is reported. One of the BBB's mirrors was displaced by a piezo to introduce the required path-length difference. The resulting variation of intensity with piezo voltage as measured by an avalanche photodiode could be ascribed to the phase variation resulting from the path-length change, with a small additional contribution from the change of the position of the lattice planes of the front mirror relative to the rest of the crystal. This 'Michelson fringe' interpretation is supported by the observed steady movement across the output beam of the interference fringes produced by a refractive wedge when the piezo voltage was ramped. The front-mirror displacement required for one complete fringe at the given wavelength is only 0.675 A; therefore, a quiet environment is vital for operating this device, as previous experiments have shown.
Michelson interferometer for the piezoelectric coefficient measurements
Directory of Open Access Journals (Sweden)
Muensit, S.
2002-01-01
Full Text Available The present work has described the Michelson interferometer which is capable of measuring the vibrational amplitudes in a sub-angstrom range. In the system, a He-Ne laser is used as a monochromatic source of light and a photodiode as a detector to convert an optical signal into an electronic one. Lock-in detections of the electronic signals are applied to relate the vibrational amplitudes to the wavelength of the laser beam. A feedback circuit is introduced in order to stabilize the sensitivity of the interferometric system. With this setup, a mechanical displacement referred to a change in thickness of a vibrating sample can be measured and the corresponding piezoelectric coefficient, i.e. the ratio of the change in sample thickness to the applied voltage, evaluated. In order to check the performance of the system, measurements on lithium niobate (LiNbO3 have been made and its piezoelectric coefficient d33 was confirmed with 2% accuracy. The piezoelectric coefficient d33 for lead zirconate titanate (PZT ceramics was, therefore, determined by this interferometer and found to be 270 pm/V.
Retrievals with the Infrared Atmospheric Sounding Interferometer
Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schlussel, Peter; Strow, L. Larrabee; Calbet, Xavier; Mango, Stephen A.
2007-01-01
The Infrared Atmospheric Sounding Interferometer (IASI) on the MetOp satellite was launched on October 19, 2006. The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25/cm and a spectral coverage from 645 to 2760/cm. Ultraspectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI observations during the JAIVEx are obtained and presented. These retrievals are further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The capabilities of satellite ultra-spectral sounder such as the IASI are investigated.
The Millimeter-wave Bolometric Interferometer (MBI)
Gault, Amanda C.; Ade, P. A. R.; Bierman, E.; Bunn, E. F.; Hyland, P. O.; Keating, B. G.; Korotkov, A. L.; Malu, S. S.; O'Sullivan, C.; Piccirillo, L.; Timbie, P. T.; Tucker, G. S.
2009-01-01
We report on the design and tests of a prototype of the Millimeter-wave Bolometric Interferometer (MBI). MBI is designed to make sensitive measurements of the polarization of the cosmic microwave background (CMB). It combines the differencing capabilities of an interferometer with the high sensitivity of bolometers at millimeter wavelengths. The prototype, which we call MBI-4, views the sky directly through four corrugated horn antennas. MBI ultimately will have 1000 antennas. These antennas have low sidelobes and nearly symmetric beam patterns, so spurious instrumental polarization from reflective optics is avoided. The MBI-4 optical band is defined by filters with a central frequency of 90 GHz. The set of baselines, determined by placement of the four antennas, results in sensitivity to CMB polarization fluctuations over the multipole range l = 150 - 270. The signals are combined with a Fizeau beam combiner and interference fringes are detected by an array of spiderweb bolometers. In order to separate the visibility signals from the total power detected by each bolometer, the phase of the signal from each antenna is modulated by a ferrite-based waveguide phase shifter. Initial tests and observations have been made at Pine Bluff Observatory (PBO) outside Madison, WI. This work was supported by NASA grants NAG5-12758, NNX07AG82G, the Rhode Island Space Grant and the Wisconsin Space Grant.
The Millimeter-Wave Bolometric Interferometer
Korotkov, Andrei; Ade, P. A.; Ali, S.; Bierman, E.; Bunn, E. F.; Calderon, C.; Gault, A. C.; Hyland, P. O.; Keating, B. G.; Kim, J.; Malu, S. S.; Mauskopf, P. D.; Murphy, J. A.; O'Sullivan, C.; Piccirillo, L.; Timbie, P. T.; Tucker, G. S.; Wandelt, B. D.
2006-12-01
We report on the status of the Millimeter-Wave Bolometric Interferometer (MBI), an instrument designed for polarization measurements of the cosmic microwave background (CMB). MBI combines the differencing capabilities of an interferometer with the high sensitivity of bolometers. The design of the ground-based four-channel version of the instrument with 7-degree-FOV corrugated horns (MBI-4) and first measurements results are discussed. Corrugated horn antennas with low sidelobes and nearly symmetric beam patterns minimize spurious instrumental polarization. The MBI-4 optical band is limited by filters with a central frequency of 90 GHz. The antenna separation is chosen so the instrument is sensitive over the multipole range l=150-270. In MBI-4, the signals from antennas are combined with a quasi-optical Fizeau beam combiner and interference fringes are detected by an array of spider-web bolometers with NTD germanium thermistors. In order to separate the visibility signals from the total power detected by each bolometer, the phase of the signal from each antenna is modulated by a ferrite-based waveguide phase shifter. First observations will be from the Pine Bluff Observatory outside Madison, WI. The project is supported by NASA.
Sheridan, T E
2010-01-01
One-dimensional and quasi-one-dimensional strongly-coupled dusty plasma rings have been created experimentally. Longitudinal (acoustic) and transverse (optical) dispersion relations for the 1-ring were measured and found to be in very good agreement with the theory for an unbounded straight chain of particles interacting through a Yukawa (i.e., screened Coulomb or Debye-H\\"uckel) potential. These rings provide a new system in which to study one-dimensional and quasi-one-dimensional physics.
2013-01-01
Please note this is a Short Discount publication. This report provides an overview of the IBM Token-Ring technology and products built by IBM and compatible vendors. It consists of two sections: 1. A summary of the design trade-offs for the IBM Token-Ring. 2. A summary of the products of the major token-ring compatible vendors broken down by adapters and components, wiring systems, testing, and new chip technology.
Monolithic interferometer for high precision radial velocity measurements
Wan, Xiaoke; Ge, Jian; Wang, Ji; Lee, Brian
2009-08-01
In high precision radial velocity (RV) measurements for extrasolar planets searching and studies, a stable wide field Michelson interferometer is very critical in Exoplanet Tracker (ET) instruments. Adopting a new design, monolithic interferometers are homogenous and continuous in thermal expansion, and field compensation and thermal compensation are both satisfied. Interferometer design and fabrication are decrypted in details. In performance evaluations, field angle is typically 22° and thermal sensitivity is typically -1.7 x 10-6/°C, which corresponds to ~500 m/s /°C in RV scale. In interferometer stability monitoring using a wavelength stabilized laser source, phase shift data was continuously recorded for nearly seven days. Appling a frequent calibration every 30 minutes as in typical star observations, the interferometer instability contributes less than 1.4 m/s in RV error, in a conservative estimation.
102ℏk large area atom interferometers.
Chiow, Sheng-wey; Kovachy, Tim; Chien, Hui-Chun; Kasevich, Mark A
2011-09-23
We demonstrate atom interferometers utilizing a novel beam splitter based on sequential multiphoton Bragg diffractions. With this sequential Bragg large momentum transfer (SB-LMT) beam splitter, we achieve high contrast atom interferometers with momentum splittings of up to 102 photon recoil momenta (102ℏk). To our knowledge, this is the highest momentum splitting achieved in any atom interferometer, advancing the state-of-the-art by an order of magnitude. We also demonstrate strong noise correlation between two simultaneous SB-LMT interferometers, which alleviates the need for ultralow noise lasers and ultrastable inertial environments in some future applications. Our method is intrinsically scalable and can be used to dramatically increase the sensitivity of atom interferometers in a wide range of applications, including inertial sensing, measuring the fine structure constant, and detecting gravitational waves.
Mode matching for optimal plasmonic nonlinear generation
O'Brien, Kevin; Suchowski, Haim; Rho, Jun Suk; Kante, Boubacar; Yin, Xiaobo; Zhang, Xiang
2013-03-01
Nanostructures and metamaterials have attracted interest in the nonlinear optics community due to the possibility of engineering their nonlinear responses; however, the underlying physics to describe nonlinear light generation in nanostructures and the design rules to maximize the emission are still under debate. We study the geometry dependence of the second harmonic and third harmonic emission from gold nanostructures, by designing arrays of nanostructures whose geometry varies from bars to split ring resonators. We fix the length (and volume) of the nanostructure on one axis, and change the morphology from a split ring resonator on the other axis. We observed that the optimal second harmonic generation does not occur at the morphology indicated by a nonlinear oscillator model with parameters derived from the far field transmission and is not maximized by a spectral overlap of the plasmonic modes; however, we find a near field overlap integral and mode matching considerations accurately predict the optimal geometry.
On -Coherent Endomorphism Rings
Indian Academy of Sciences (India)
Li-Xin Mao
2008-11-01
A ring is called right -coherent if every principal right ideal is finitely presented. Let $M_R$ be a right -module. We study the -coherence of the endomorphism ring of $M_R$. It is shown that is a right -coherent ring if and only if every endomorphism of $M_R$ has a pseudokernel in add $M_R; S$ is a left -coherent ring if and only if every endomorphism of $M_R$ has a pseudocokernel in add $M_R$. Some applications are given.
Energy Technology Data Exchange (ETDEWEB)
Fomin, Vladimir M. (ed.) [Leibniz Institute for Solid State and Materials Research, Dresden (Germany)
2014-07-01
Presents the new class of materials of quantum rings. Provides an elemental basis for low-cost high-performance devices promising for electronics, optoelectronics, spintronics and quantum information processing. Explains the physical properties of quantum rings to cover a gap in scientific literature. Presents the application of most advanced nanoengineering and nanocharacterization techniques. This book deals with a new class of materials, quantum rings. Innovative recent advances in experimental and theoretical physics of quantum rings are based on the most advanced state-of-the-art fabrication and characterization techniques as well as theoretical methods. The experimental efforts allow to obtain a new class of semiconductor quantum rings formed by capping self-organized quantum dots grown by molecular beam epitaxy. Novel optical and magnetic properties of quantum rings are associated with non-trivial topologies at the nanoscale. An adequate characterization of quantum rings is possible on the basis of modern characterization methods of nanostructures, such as Scanning Tunneling Microscopy. A high level of complexity is demonstrated to be needed for a dedicated theoretical model to adequately represent the specific features of quantum rings. The findings presented in this book contribute to develop low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings.
Zhu, Hong-Ming; Pen, Ue-Li; Chen, Xuelei; Yu, Hao-Ran
2016-01-01
We present a direct approach to non-parametrically reconstruct the linear density field from an observed non-linear map. We solve for the unique displacement potential consistent with the non-linear density and positive definite coordinate transformation using a multigrid algorithm. We show that we recover the linear initial conditions up to $k\\sim 1\\ h/\\mathrm{Mpc}$ with minimal computational cost. This reconstruction approach generalizes the linear displacement theory to fully non-linear fields, potentially substantially expanding the BAO and RSD information content of dense large scale structure surveys, including for example SDSS main sample and 21cm intensity mapping.
Boyd, Robert W
2013-01-01
Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q
Resonant Meta-atoms with Nonlinearities on Demand
Filonov, Dmitry; Kozlov, Vitali; Malomed, Boris A; Ginzburg, Pavel
2016-01-01
Nonlinear light-matter interactions and their applications are constrained by properties of available materials. The use of metamaterials opens the way to achieve precise control over electromagnetic properties at a microscopic level, providing new tools for experimental studies of complex nonlinear phenomena in photonics. Here a doubly resonant nonlinear meta-atom is proposed, analyzed and characterized in the GHz spectral range. The underlying structure is composed of a pair of split rings, resonant at both fundamental and nonlinear frequencies. The rings share a varactor diode, which serves as a microscopic source of nonlinearity. Flexible control over the coupling and near- and far-field patterns are reported, favoring the doubly resonant structure over other realizations. Relative efficiencies of the second and third harmonics, generated by the diode, are tailored by dint of the double-ring geometry, providing a guideline for selecting one frequency against another, using the design of the auxiliary stru...
1999-01-01
Space Telescope Science Institute astronomers are giving the public chances to decide where to aim NASA's Hubble Space Telescope. Guided by 8,000 Internet voters, Hubble has already been used to take a close-up, multi-color picture of the most popular object from a list of candidates, the extraordinary 'polar-ring' galaxy NGC 4650A. Located about 130 million light-years away, NGC 4650A is one of only 100 known polar-ring galaxies. Their unusual disk-ring structure is not yet understood fully. One possibility is that polar rings are the remnants of colossal collisions between two galaxies sometime in the distant past, probably at least 1 billion years ago. What is left of one galaxy has become the rotating inner disk of old red stars in the center. Meanwhile, another smaller galaxy which ventured too close was probably severely damaged or destroyed. The bright bluish clumps, which are especially prominent in the outer parts of the ring, are regions containing luminous young stars, examples of stellar rebirth from the remnants of an ancient galactic disaster. The polar ring appears to be highly distorted. No regular spiral pattern stands out in the main part of the ring, and the presence of young stars below the main ring on one side and above on the other shows that the ring is warped and does not lie in one plane. Determining the typical ages of the stars in the polar ring is an initial goal of our Polar Ring Science Team that can provide a clue to the evolution of this unusual galaxy. The HST exposures were acquired by the Hubble Heritage Team, consisting of Keith Noll, Howard Bond, Carol Christian, Jayanne English, Lisa Frattare, Forrest Hamilton, Anne Kinney and Zolt Levay, and guest collaborators Jay Gallagher (University of Wisconsin-Madison), Lynn Matthews (National Radio Astronomy Observatory-Charlottesville), and Linda Sparke (University of Wisconsin-Madison).
The next linear collider damping ring complex
Energy Technology Data Exchange (ETDEWEB)
Corlett,J.; Atkinson,D.; De Santis,S.; Hartman, N.; Kennedy, K.; Li, D.; Marks, S.; Minamihara, Y.; Nishimura, H.; Pivi, M.; Reavill, D.; Rimmer, R.; Schlueter, R.; Wolski, A.; Anderson,S.; McKee,B.; Raubenheimer, T.; Ross, M.; Sheppard, J.C.
2001-06-12
We report progress on the design of the Next Linear Collider (NLC) Damping Rings complexes. The purpose of the damping rings is to provide low emittance electron and positron bunch trains to the NLC linacs, at a rate of 120 Hz. As an option to operate at the higher rate of 180 Hz, two 1.98 GeV main damping rings per beam are proposed, and one positron pre-damping ring. The main damping rings store up to 0.8 amp in 3 trains of 190 bunches each and have normalized extracted beam emittances {gamma}{var_epsilon}x = 3 mm-mrad and {gamma}{var_epsilon}y = 0.02 mm-mrad. The optical designs, based on a theoretical minimum emittance lattice (TME), are described, with an analysis of dynamic aperture and non-linear effects. Key subsystems and components are described, including the wiggler, the vacuum systems and photon stop design, and the higher-order-mode damped RF cavities. Impedance and instabilities are discussed.
Ruszczynski, Andrzej
2011-01-01
Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates t
Green laser interferometric metrology system with sub-nanometer periodic nonlinearity.
Zhao, Shijie; Wei, Haoyun; Zhu, Minhao; Li, Yan
2016-04-10
This paper describes the design and realization of a heterodyne laser interferometer system that is applicable to metrology comparison. In this research, an iodine-stabilized Nd:YAG laser at 532 nm served as the light source. Two spatially separated beams with different offset frequencies are generated by two acousto-optic modulators to prevent any source mixing and polarization leakage. The interferometry components are integrated to a monolithic prism to reduce the difficulty of the light path adjustment and to guarantee the measuring accuracy. The experimental results show there is a sub-nanometer periodic nonlinearity, which mainly results from the ghost reflection. Placed in a vacuum chamber, the interferometer is applicable for measuring comparison using a piezo nanopositioner and a precision translation stage. Finally, a commercial interferometer is calibrated with the interferometer system.
TIMED Doppler Interferometer: Overview and recent results
Killeen, T. L.; Wu, Q.; Solomon, S. C.; Ortland, D. A.; Skinner, W. R.; Niciejewski, R. J.; Gell, D. A.
2006-10-01
The Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite carries a limb-scanning Fabry-Perot interferometer designed to perform remote-sensing measurements of upper atmosphere winds and temperatures globally. This instrument is called the TIMED Doppler Interferometer, or TIDI. This paper provides an overview of the TIDI instrument design, on-orbit performance, operational modes, data processing and inversion procedures, and a summary of wind results to date. Daytime and nighttime neutral winds in the mesosphere and lower thermosphere/ionosphere (MLTI) are measured on TIDI using four individual scanning telescopes that collect light from various upper atmosphere airglow layers on both the cold and warm sides of the high-inclination TIMED spacecraft. The light is spectrally analyzed using an ultrastable plane etalon Fabry-Perot system with sufficient spectral resolution to determine the Doppler line characteristics of atomic and molecular emissions emanating from the MLTI. The light from all four telescopes and from an internal calibration field passes through the etalon and is combined on a single image plane detector using a Circle-to-Line Interferometer Optic (CLIO). The four geophysical fields provide orthogonal line-of-sight measurements to either side of the satellite's path and these are analyzed to produce altitude profiles of vector winds in the MLTI. The TIDI wind measurements presented here are from the molecular oxygen (0-0) band, covering the altitude region 85-105 km. The unique TIDI design allows for more extended local time coverage of wind structures than previous wind-measuring instruments from high-inclination satellites. The TIDI operational performance has been nominal except for two anomalies: (1) higher than expected background white light caused by a low-level light leak and (2) ice deposition on cold optical surfaces. Both anomalies are well understood and the instrumental modes and data analysis techniques have been
Dooley, Katherine L; Arain, Muzammil A; Feldbaum, David; Frolov, Valery V; Heintze, Matthew; Hoak, Daniel; Khazanov, Efim A; Lucianetti, Antonio; Martin, Rodica M; Mueller, Guido; Palashov, Oleg; Quetschke, Volker; Reitze, David H; Savage, R L; Tanner, D B; Williams, Luke F; Wu, Wan
2012-03-01
We present the design and performance of the LIGO Input Optics subsystem as implemented for the sixth science run of the LIGO interferometers. The Initial LIGO Input Optics experienced thermal side effects when operating with 7 W input power. We designed, built, and implemented improved versions of the Input Optics for Enhanced LIGO, an incremental upgrade to the Initial LIGO interferometers, designed to run with 30 W input power. At four times the power of Initial LIGO, the Enhanced LIGO Input Optics demonstrated improved performance including better optical isolation, less thermal drift, minimal thermal lensing, and higher optical efficiency. The success of the Input Optics design fosters confidence for its ability to perform well in Advanced LIGO.
Porco, C. C.; Nicholson, P. D.; Cuzzi, J. N.; Lissauer, J. J.; Esposito, L. W.
The authors review the current state of knowledge regarding the structure, particle properties, kinematics, dynamics, origin, and evolution of the Neptune rings derived from Earth-based and Voyager data. Neptune has a diverse system of five continuous rings - 2 broad (Galle and Lassell) and 3 narrow (Adams, Le Verrier, and Arago) - plus a narrow discontinuous ring sharing the orbit of one of its ring-region satellites, Galatea. The outermost Adams ring contains the only arcs observed so far in Voyager images. The five arcs vary in angular extent from ≡1° to ≡10°, and exhibit internal azimuthal structure with typical spatial scales of ≡0.5°. All five lie within ≡40° of longitude. Dust is present throughout the Neptune system and measureable quantities of it were detected over Neptune's north pole. The Adams ring (including the arcs) and the Le Verrier ring contain a significant fraction of dust. The Neptune ring particles are probably red, and may consist of ice "dirtied" with silicates and/or some carbon-bearing material. A kinematic model for the arcs derived from Voyager data, the arcs' physical characteristics, and their orbital geometry and phasing are all roughly in accord with single-satellite arc shepherding by Galatea, though the presence of small kilometer-sized bodies embedded either within the arcs or placed at their Lagrange points may explain some inconsistencies with this model.
Ciocanea Teodorescu I.,
2016-01-01
In this thesis we are interested in describing algorithms that answer questions arising in ring and module theory. Our focus is on deterministic polynomial-time algorithms and rings and modules that are finite. The first main result of this thesis is a solution to the module isomorphism problem in
Institute of Scientific and Technical Information of China (English)
Dennis Y. W. Liu; Joseph K. Liu; Yi Mu; Willy Susilo; Duncan S. Wong
2007-01-01
Group signature allows the anonymity of a real signer in a group to be revoked by a trusted party called group manager. It also gives the group manager the absolute power of controlling the formation of the group. Ring signature, on the other hand, does not allow anyone to revoke the signer anonymity, while allowing the real signer to forma group (also known as a ring) arbitrarily without being controlled by any other party. In this paper, we propose a new variant for ring signature, called Revocable Ring Signature. The signature allows a real signer to form a ring arbitrarily while allowing a set of authorities to revoke the anonymity of the real signer. This new variant inherits the desirable properties from both group signature and ring signature in such a way that the real signer will be responsible for what it has signed as the anonymity is revocable by authorities while the real signer still has the freedom on ring formation. We provide a formal security model for revocable ring signature and propose an efficient construction which is proven secure under our security model.
Illustration of Saturn's Rings
2001-01-01
This illustration shows a close-up of Saturn's rings. These rings are thought to have formed from material that was unable to form into a Moon because of tidal forces from Saturn, or from a Moon that was broken up by Saturn's tidal forces.
Energy Technology Data Exchange (ETDEWEB)
Martin Hu
2001-07-24
The Fermilab Recycler is a permanent magnet storage ring for the accumulation of antiprotons from the Antiproton Source, and the recovery and cooling of the antiprotons remaining at the end of a Tevatron store. It is an integral part of the Fermilab III luminosity upgrade. The following paper describes the design features, operational and commissioning status of the Recycler Ring.
Energy Technology Data Exchange (ETDEWEB)
Uckan, N.A. (ed.)
1980-04-01
This workshop attempted to evaluate the status of the current experimental and theoretical understanding of hot electron ring properties. The dominant physical processes that influence ring formation, scaling, and their optimal behavior are also studied. Separate abstracts were prepared for each of the 27 included papers. (MOW)
Huggins, Elisha
2011-01-01
The behavior of smoke rings, tornados, and quantized vortex rings in superfluid helium has many features in common. These features can be described by the same mathematics we use when introducing Ampere's law in an introductory physics course. We discuss these common features. (Contains 7 figures.)
Ciocanea Teodorescu I.,
2016-01-01
In this thesis we are interested in describing algorithms that answer questions arising in ring and module theory. Our focus is on deterministic polynomial-time algorithms and rings and modules that are finite. The first main result of this thesis is a solution to the module isomorphism problem in
Borderies, Nicole
1989-01-01
Theoretical models of planetary-ring dynamics are examined in a brief analytical review. The mathematical description of streamlines and streamline interactions is outlined; the redistribution of angular momentum due to collisions between particles is explained; and problems in the modeling of broad, narrow, and arc rings are discussed.
Steroidal contraceptive vaginal rings.
Sarkar, N N
2003-06-01
The development of steroid-releasing vaginal rings over the past three decades is reviewed to illustrate the role of this device as an effective hormonal contraceptive for women. Vaginal rings are made of polysiloxane rubber or ethylene-vinyl-acetate copolymer with an outer diameter of 54-60 mm and a cross-sectional diameter of 4-9.5 mm and contain progestogen only or a combination of progestogen and oestrogen. The soft flexible combined ring is inserted in the vagina for three weeks and removed for seven days to allow withdrawal bleeding. Progesterone/progestogen-only rings are kept in for varying periods and replaced without a ring-free period. Rings are in various stages of research and development but a few, such as NuvaRing, have reached the market in some countries. Women find this method easy to use, effective, well tolerated and acceptable with no serious side-effects. Though the contraceptive efficacy of these vaginal rings is high, acceptability is yet to be established.
Measurement of the transmission phase of an electron in a quantum two-path interferometer
Energy Technology Data Exchange (ETDEWEB)
Takada, S., E-mail: shintaro.takada@neel.cnrs.fr; Watanabe, K. [Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Yamamoto, M. [Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); PRESTO, JST, Kawaguchi-shi, Saitama 331-0012 (Japan); Bäuerle, C. [Université Grenoble Alpes, Institut NEEL, F-38042 Grenoble (France); CNRS, Institut NEEL, F-38042 Grenoble (France); Ludwig, A.; Wieck, A. D. [Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum (Germany); Tarucha, S. [Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Center for Emergent Matter Science (CEMS), RIKEN, Wako, Saitama 351-0198 (Japan)
2015-08-10
A quantum two-path interferometer allows for direct measurement of the transmission phase shift of an electron, providing useful information on coherent scattering problems. In mesoscopic systems, however, the two-path interference is easily smeared by contributions from other paths, and this makes it difficult to observe the true transmission phase shift. To eliminate this problem, multi-terminal Aharonov-Bohm (AB) interferometers have been used to derive the phase shift by assuming that the relative phase shift of the electrons between the two paths is simply obtained when a smooth shift of the AB oscillations is observed. Nevertheless, the phase shifts using such a criterion have sometimes been inconsistent with theory. On the other hand, we have used an AB ring contacted to tunnel-coupled wires and acquired the phase shift consistent with theory when the two output currents through the coupled wires oscillate with well-defined anti-phase. Here, we investigate thoroughly these two criteria used to ensure a reliable phase measurement, the anti-phase relation of the two output currents, and the smooth phase shift in the AB oscillation. We confirm that the well-defined anti-phase relation ensures a correct phase measurement with a quantum two-path interference. In contrast, we find that even in a situation where the anti-phase relation is less well-defined, the smooth phase shift in the AB oscillation can still occur but does not give the correct transmission phase due to contributions from multiple paths. This indicates that the phase relation of the two output currents in our interferometer gives a good criterion for the measurement of the true transmission phase, while the smooth phase shift in the AB oscillation itself does not.
Jupiter's Rings: Sharpest View
2007-01-01
The New Horizons spacecraft took the best images of Jupiter's charcoal-black rings as it approached and then looked back at Jupiter. The top image was taken on approach, showing three well-defined lanes of gravel- to boulder-sized material composing the bulk of the rings, as well as lesser amounts of material between the rings. New Horizons snapped the lower image after it had passed Jupiter on February 28, 2007, and looked back in a direction toward the sun. The image is sharply focused, though it appears fuzzy due to the cloud of dust-sized particles enveloping the rings. The dust is brightly illuminated in the same way the dust on a dirty windshield lights up when you drive toward a 'low' sun. The narrow rings are confined in their orbits by small 'shepherding' moons.
The ballistic transport instability in Saturn's rings III: numerical simulations
Latter, Henrik; Chupeau, Marie
2014-01-01
Saturn's inner B-ring and its C-ring support wavetrains of contrasting amplitudes but with similar length scales, 100-1000 km. In addition, the inner B-ring is punctuated by two intriguing `flat' regions between radii 93,000 km and 98,000 km in which the waves die out, whereas the C-ring waves coexist with a forest of plateaus, narrow ringlets, and gaps. In both regions the waves are probably generated by a large-scale linear instability whose origin lies in the meteoritic bombardment of the rings: the ballistic transport instability. In this paper, the third in a series, we numerically simulate the long-term nonlinear evolution of this instability in a convenient local model. Our C-ring simulations confirm that the unstable system forms low-amplitude wavetrains possessing a preferred band of wavelengths. B-ring simulations, on the other hand, exhibit localised nonlinear wave `packets' separated by linearly stable flat zones. Wave packets travel slowly while spreading in time, a result that suggests the obser...
VISAR (Velocity Interferometer System for Any Reflector): Line-imaging interferometer
Energy Technology Data Exchange (ETDEWEB)
Hemsing, W.F.; Mathews, A.R.; Warnes, R.H.; Whittemore, G.R.
1990-01-01
This paper describes a Velocity Interferometer System for Any Reflector (VISAR) technique that extends velocity measurements from single points to a line. Single-frequency argon laser light was focused through a cylindrical lens to illuminate a line on a surface. The initially stationary, flat surface was accelerated unevenly during the experiment. Motion produced a Doppler-shift of light reflected from the surface that was proportional to the velocity at each point. The Doppler-shifted image of the illuminated line was focused from the surface through a push-pull VISAR interferometer where the light was split into four quadrature-coded images. When the surface accelerated, the Doppler-shift caused the interference for each point on each line image to oscillate sinusoidally. Coherent fiber optic bundles transmitted images from the interferometer to an electronic streak camera for sweeping in time and recording on film. Data reduction combined the images to yield a continuous velocity and displacement history for all points on the surface that reflected sufficient light. The technique was demonstrated in an experiment where most of the surface was rapidly driven to a saddle shape by an exploding foil. Computer graphics were used to display the measured velocity history and to aid visualization of the surface motion. 6 refs., 8 figs.
A Michelson-type radio interferometer for university education
Koda, Jin; Barrett, James; Shafto, Gene; Slechta, Jeff; Hasegawa, Tetsuo; Hayashi, Masahiko; Metchev, Stanimir
2016-04-01
We report development of a simple and affordable radio interferometer suitable as an educational laboratory experiment. The design of this interferometer is based on the Michelson and Pease stellar optical interferometer, but instead operates at the radio wavelength of ˜11 GHz (˜2.7 cm), requiring much less stringent optical accuracy in its design and use. We utilize a commercial broadcast satellite dish and feedhorn with two flat side mirrors that slide on a ladder, providing baseline coverage. This interferometer can resolve and measure the diameter of the Sun, even on a day with marginal weather. Commercial broadcast satellites provide convenient point sources for comparison to the Sun's extended disk. The mathematical background of an adding interferometer is presented, as is its design and development, including the receiver system, and sample measurements of the Sun. Results from a student laboratory report are shown. With the increasing importance of interferometry in astronomy, the lack of educational interferometers is an obstacle to training the future generation of astronomers. This interferometer provides the hands-on experience needed to fully understand the basic concepts of interferometry.
TFTR Michelson interferometer electron cyclotron emission diagnostic
Energy Technology Data Exchange (ETDEWEB)
Stauffer, F.J.; Boyd, D.A.; Cutler, R.C.; McCarthy, M.P.
1985-05-01
In July 1984, a Fourier transform spectrometer employing a fast-scanning Michelson interferometer began operating on TFTR. This diagnostic system can measure the electron cyclotron emission spectrum 72 times per s with a time resolution of 11 ms and a spectral resolution of 3.6 GHz. The initial operating spectral range is 75--540 GHz, which is adequate for measuring the first three cyclotron harmonics at present TFTR magnetic field levels. The range can be extended easily to 75--1080 GHz in order to accommodate increases in toroidal magnetic field or to study superthermal ECE. The measured spectra are absolutely calibrated using a liquid nitrogen cooled blackbody reference source. The second harmonic feature of each spectrum is used to calculate the absolute electron temperature profile.
Distributed acoustic sensing with Michelson interferometer demodulation
Liu, Xiaohui; Wang, Chen; Shang, Ying; Wang, Chang; Zhao, Wenan; Peng, Gangding; Wang, Hongzhong
2016-12-01
The distributed acoustic sensing (DAS) has been extensively studied and widely used. A distributed acoustic sensing system based on the unbalanced Michelson interferometer with phase generated carrier (PGC) demodulation was designed and tested. The system could directly obtain the phase, amplitude, frequency response, and location information of sound wave at the same time and measurement at all points along the sensing fiber simultaneously. Experiments showed that the system successfully measured the acoustic signals with a phase-pressure sensitivity about-148 dB (re rad/μPa) and frequency response ripple less than 1.5 dB. The further field experiment showed that the system could measure signals at all points along the sensing fiber simultaneously.
Artificial calibration source for ALMA radio interferometer
Kiuchi, Hitoshi; Hills, Richard; Whyborn, Nicholas D.; Asayama, Shinichiro; Sakamoto, Seiichi; Iguchi, Satoru; Corder, Stuartt A.
2016-07-01
The ALMA (Atacama Large Millimeter/submillimeter Array) radio interferometer has some different types of antennas which have a variation of gain and leakages across the primary beam of an individual antenna. We have been developing an artificial calibration source which is used for compensation of individual difference of antennas. In a high-frequency antenna, using astronomical sources to do calibration measurement would be extremely time consuming, whereas with the artificial calibration source becomes a realistic possibility. Photonic techniques are considered to be superior to conventional techniques based on electronic devices in terms of wide bandwidth and high-frequency signals. Conversion from an optical signal to a millimeter/sub-millimeter wave signal is done by a photo-mixer.
Broadband interferometer observations of a triggered lightning
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The development of positive leader of an artificially triggered lightning has been analyzed based on the data of electric field change, location of radiation source and frequency spectrum obtained by using the broadband interferometer system. The results indicate that radiation from positive leader could be detected within close distance in spite of the relatively weak radiation, while the radiation from negative breakdown processes was relatively stronger.Positive leader developed with few branches, and the initial progression velocity was of the order of 10s m/s. The distribution of power spectrum by 25 MHz high pass filter indicated that the radiation frequency from positive leader maximized at 25-30 MHz, while that from negative breakdown processes maximized at 60-70 MHz.
A holographic three-slit interferometer
Institute of Scientific and Technical Information of China (English)
王丁; LI; Jingsong
2002-01-01
A new type of real-time holographic three-slit interferometer is presented.It uses a calcite polarized optical element to obtain objective light and reference light to record a hologram.Its remarkable feature is to use a beam of fixed slit diffracted light as the reference light to record the lateral slit diffracted wave front,and to use also the same diffracted light as the illuminating light to reconstruct the wave front.This insures the phase distribution of the reconstructed wave front against the influence by the small natural direction drift of the laser beam and also by the tiny external vibration.The stabillity,reliability and measuring accuracy of this apparatus are improved notably.
Distributed acoustic sensing with Michelson interferometer demodulation
Liu, Xiaohui; Wang, Chen; Shang, Ying; Wang, Chang; Zhao, Wenan; Peng, Gangding; Wang, Hongzhong
2017-09-01
The distributed acoustic sensing (DAS) has been extensively studied and widely used. A distributed acoustic sensing system based on the unbalanced Michelson interferometer with phase generated carrier (PGC) demodulation was designed and tested. The system could directly obtain the phase, amplitude, frequency response, and location information of sound wave at the same time and measurement at all points along the sensing fiber simultaneously. Experiments showed that the system successfully measured the acoustic signals with a phase-pressure sensitivity about-148 dB (re rad/μPa) and frequency response ripple less than 1.5 dB. The further field experiment showed that the system could measure signals at all points along the sensing fiber simultaneously.
Probabilistic image reconstruction for radio interferometers
Sutter, P M; McEwen, Jason D; Bunn, Emory F; Karakci, Ata; Korotkov, Andrei; Timbie, Peter; Tucker, Gregory S; Zhang, Le
2013-01-01
We present a novel, general-purpose method for deconvolving and denoising images from gridded radio interferometric visibilities using Bayesian inference based on a Gaussian process model. The method automatically takes into account incomplete coverage of the uv-plane and mode coupling due to the beam. Our method uses Gibbs sampling to efficiently explore the full posterior distribution of the underlying signal image given the data. We use a set of widely diverse mock images with a realistic interferometer setup and level of noise to assess the method. Compared to results from a proxy for the CLEAN method we find that in terms of RMS error and signal-to-noise ratio our approach performs better than traditional deconvolution techniques, regardless of the structure of the source image in our test suite. Our implementation scales as O(np log np), provides full statistical and uncertainty information of the reconstructed image, requires no supervision, and provides a robust, consistent framework for incorporating...
Shot Noise in a Mesoscopic Interferometer
Institute of Scientific and Technical Information of China (English)
ZHANG Guang-Biao; WANG Shun-Jin; LI Lei
2006-01-01
The charge conductance and the shot noise in an Aharonov-Bohm interferometer with double quantum dots embedded and coupled to each other by a capacity are studied in the framework of the equation of motion of Green's flunction.From the impurity Anderson model Hamiltonian,the equations of motion of nonequilibrium Green functions are derived and solved including the effects of two body correlations under Lacrolx's approximation.Our results show that the conductance,the shot noise,and the Fano factor (the ratio of the shot noise to the Poisson noise)as functions of the magnetic flux oscillate with the period of h/e,and their oscillation behaviour is similar to the resuIts of the experiment replacing the capacitive coupling by tunnelling between the two dots.The experiment is suggested to test the results.
Parallel Calibration for Sensor Array Radio Interferometers
Brossard, Martin; Pesavento, Marius; Boyer, Rémy; Larzabal, Pascal; Wijnholds, Stefan J
2016-01-01
In order to meet the theoretically achievable imaging performance, calibration of modern radio interferometers is a mandatory challenge, especially at low frequencies. In this perspective, we propose a novel parallel iterative multi-wavelength calibration algorithm. The proposed algorithm estimates the apparent directions of the calibration sources, the directional and undirectional complex gains of the array elements and their noise powers, with a reasonable computational complexity. Furthermore, the algorithm takes into account the specific variation of the aforementioned parameter values across wavelength. Realistic numerical simulations reveal that the proposed scheme outperforms the mono-wavelength calibration scheme and approaches the derived constrained Cram\\'er-Rao bound even with the presence of non-calibration sources at unknown directions, in a computationally efficient manner.
Atom Interferometers and the Gravitational Redshift
Sinha, Supurna
2011-01-01
Muller, Peters and Chu (MPC) claim that a reinterpretation of decade old experiments with atom interferometers leads to a sensitive test of the gravitational redshift effect. This claim has been disputed by Wolf et al (WBBRSC), who adduce arguments to show that MPC's claim is incorrect. In this Letter, we distill the arguments offered by WBBRSC to a single fundamental objection: an atom is not a clock ticking at the Compton frequency. We show that atom interferometric experiments conducted to date do not test the gravitational redshift effect. Our analysis is general and focuses on points of principle rather thanon the present state of technology. We then observe that it is in principle possible to use atom lasers to produce sensitive tests of the red shift effect at the Compton frequency. Such tests may become technologically realisable in the future.
Nonlinear Interferometry via Fock State Projection
Khoury, G; Eisenberg, H S; Fonseca, E J S
2006-01-01
We use a photon-number resolving detector to monitor the photon number distribution of the output of an interferometer, as a function of phase delay. As inputs we use coherent states with mean photon number up to seven. The postselection of a specific Fock (photon-number) state effectively induces high-order optical non-linearities. Following a scheme by Bentley and Boyd [S.J. Bentley and R.W. Boyd, Optics Express 12, 5735 (2004)] we explore this effect to demonstrate interference patterns a factor of five smaller than the Rayleigh limit.
Nonlinear Interferometry via Fock-State Projection
Khoury, G.; Eisenberg, H. S.; Fonseca, E. J. S.; Bouwmeester, D.
2006-05-01
We use a photon-number-resolving detector to monitor the photon-number distribution of the output of an interferometer, as a function of phase delay. As inputs we use coherent states with mean photon number up to seven. The postselection of a specific Fock (photon-number) state effectively induces high-order optical nonlinearities. Following a scheme by Bentley and Boyd [Opt. Express 12, 5735 (2004).OPEXFF1094-408710.1364/OPEX.12.005735], we explore this effect to demonstrate interference patterns a factor of 5 smaller than the Rayleigh limit.
2006-01-01
[figure removed for brevity, see original site] The Enceladus Ring (labeled) This excellent view of the faint E ring -- a ring feature now known to be created by Enceladus -- also shows two of Saturn's small moons that orbit within the ring, among a field of stars in the background. The E ring extends from three to eight Saturn radii -- about 180,000 kilometers (118,000 miles) to 482,000 kilometers (300,000 miles). Its full extent is not visible in this view. Calypso (22 kilometers, or 14 miles across) and Helene (32 kilometers, or 20 miles across) orbit within the E ring's expanse. Helene skirts the outer parts of the E ring, but here it is projected in front of a region deeper within the ring. Calypso and Helene are trojan satellites, or moons that orbit 60 degrees in front or behind a larger moon. Calypso is a Tethys trojan and Helene is a trojan of Dione. An interesting feature of note in this image is the double-banded appearance of the E-ring, which is created because the ring is somewhat fainter in the ringplane than it is 500-1,000 kilometers (300-600 miles) above and below the ringplane. This appearance implies that the particles in this part of the ring have nonzero inclinations (a similar affect is seen in Jupiter's gossamer ring). An object with a nonzero inclination does not orbit exactly at Saturn's ringplane. Instead, its orbit takes it above and below the ringplane. Scientists are not entirely sure why the particles should have such inclinations, but they are fairly certain that the reason involves Enceladus. One possible explanation is that all the E ring particles come from the plume of icy material that is shooting due south out of the moon's pole. This means all of the particles are created with a certain velocity out of the ringplane, and then they orbit above and below that plane. Another possible explanation is that Enceladus produces particles with a range of speeds, but the moon gravitationally scatters any particles that lie very close to
Wave-particle duality in a Raman atom interferometer
Jia, Ai-Ai; Yang, Jun; Yan, Shu-Hua; Hu, Qing-Qing; Luo, Yu-Kun; Zhu, Shi-Yao
2015-08-01
We theoretically investigate the wave-particle duality based on a Raman atom interferometer, via the interaction between the atom and Raman laser, which is similar to the optical Mach-Zehnder interferometer. The wave and which-way information are stored in the atomic internal states. For the φ - π - π/2 type of atom interferometer, we find that the visibility (V) and predictability (P) still satisfy the duality relation, P2 + V2 ≤ 1. Project supported by the National Natural Science Foundation of China (Grant No. 51275523) and the Special Research Found for the Doctoral Program of Higher Education, China (Grant No. 20134307110009).
Detection of elastic waves using stabilized Michelson interferometer
Energy Technology Data Exchange (ETDEWEB)
Kim, Young Hwan; So, Chul Ho; Kwon, Oh Young Yang [KRISS, Daejeon (Korea, Republic of)
1993-11-15
The stabilized Michelson interferometer was developed in order to measure micro-displacement due to the elastic wave propagation. The stabilizer was designed to compensate light path disturbances using the reference mirror driven by piezoelectric actuator. Using stabilizer, the effect of external vibration was reduced and interferometer was satisfied the quadrature condition. As results, the output of photodetector had maximum sensitivity and linearity. The minimum detectable displacement was 0.3 nm at the band width of 10 MHz. The epicentral displacement due to the glass capillary breaks and steel ball drop impact were measured by developed interferometer and compared with the calculated one.
Using the Talbot_Lau_interferometer_parameters Spreadsheet
Energy Technology Data Exchange (ETDEWEB)
Kallman, Jeffrey S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-06-04
Talbot-Lau interferometers allow incoherent X-ray sources to be used for phase contrast imaging. A spreadsheet for exploring the parameter space of Talbot and Talbot-Lau interferometers has been assembled. This spreadsheet allows the user to examine the consequences of choosing phase grating pitch, source energy, and source location on the overall geometry of a Talbot or Talbot-Lau X-ray interferometer. For the X-ray energies required to penetrate scanned luggage the spacing between gratings is large enough that the mechanical tolerances for amplitude grating positioning are unlikely to be met.
EIT Based Gas Detector Design by Using Michelson Interferometer
Abbasian, K.; Rostami, A.; Abdollahi, M. H.
2011-12-01
Electromagnetically induced transparency (EIT) is one of the interesting phenomena of light-matter interaction which modifies matter properties for propagation of light. In other words, we can change the absorption and refractive index (RI) in neighborhood of the resonant frequency using EIT. In this paper, we have doped 3-level quantum dots in one of the Michelson Interferometer's mirror and used EIT to change its RI. So, a controllable phase difference between lights in two arms of interferometer is created. Long response time is the main drawback of Michelson interferometer based sensor, which is resolved by this technique.
Monolithic Michelson Interferometer as ultra stable wavelength reference
Wan, Xiaoke; Ge, Jian
2010-07-01
Ultra-stable Monolithic Michelson interferometer can be an ideal reference for highprecision applications such as RV measurement in planet searching and orbit study. The advantages include wide wavelength range, simple sinusoidal spectral format, and high optical efficiency. In this paper, we report that a monolithic Michelson interferometers has been in-house developed with minimized thermal sensitivity with compensation tuning. With a scanning white light interferometer, the thermal sensitivity is measured ~ 6x10-7/°C at 550 nm and it decreases to zero near 1000 nm. We expect the wideband wavelength reference source to be stabilized better than 0.3 m/s for RV experiments
A compact, robust and versatile moiré interferometer
Mollenhauer, D. H.; Ifju, P. G.; Han, B.
A moiré interferometer was designed and constructed based on a general system design using a reflective crossed-line diffraction grating to produce the four beams of light necessary for moiré interferometry. The design concept, basic design and tuning procedures are discussed. The important features of the interferometer, i.e. compactness, versatility, polarization insensitivity, relaxed collimation requirements, low laser power and remote optics, are addressed. Several such interferometers have been constructed and successfully applied to engineering problems. These include examining the displacement fields surrounding drilled and preformed holes in composite laminates loaded in tension, and the evaluation of nonhomogeneous behavior in textile composites.
Fourier-transform and global contrast interferometer alignment methods
Goldberg, Kenneth A.
2001-01-01
Interferometric methods are presented to facilitate alignment of image-plane components within an interferometer and for the magnified viewing of interferometer masks in situ. Fourier-transforms are performed on intensity patterns that are detected with the interferometer and are used to calculate pseudo-images of the electric field in the image plane of the test optic where the critical alignment of various components is being performed. Fine alignment is aided by the introduction and optimization of a global contrast parameter that is easily calculated from the Fourier-transform.
A new topology for the control of complex interferometers
Energy Technology Data Exchange (ETDEWEB)
Rabeling, David S; Gossler, Stefan; Cumpston, Jeffrey; Gray, Malcolm B; McClelland, David E [Centre for Gravitational Physics, Faculty of Science, Australian National University, Canberra, 0200 (Australia)
2006-04-21
We discuss a new control topology which will generate control signals for the output optics of complex interferometers operating on a pure dark fringe. Our system, which involves the injection of a modulated control field through the output port of the interferometer, is also compatible with the use of squeezed light. We discuss this topology in the context of the control of an interferometer featuring a variable reflectivity signal recycling mirror and present results from a coupled cavity geometry to demonstrate some of the features.
Transmission through a quantum dot molecule embedded in an Aharonov-Bohm interferometer
Energy Technology Data Exchange (ETDEWEB)
Lovey, Daniel A; Gomez, Sergio S; Romero, Rodolfo H, E-mail: rhromero@exa.unne.edu.ar [Instituto de Modelado e Innovacion Tecnologica, CONICET, and Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400) Corrientes (Argentina)
2011-10-26
We study theoretically the transmission through a quantum dot molecule embedded in the arms of an Aharonov-Bohm four quantum dot ring threaded by a magnetic flux. The tunable molecular coupling provides a transmission pathway between the interferometer arms in addition to those along the arms. From a decomposition of the transmission in terms of contributions from paths, we show that antiresonances in the transmission arise from the interference of the self-energy along different paths and that application of a magnetic flux can produce the suppression of such antiresonances. The occurrence of a period of twice the quantum of flux arises at the opening of the transmission pathway through the dot molecule. Two different connections of the device to the leads are considered and their spectra of conductance are compared as a function of the tunable parameters of the model. (paper)
Performance of a Rapid-Scan Vacuum Michelson Interferometer at the NSLS
Energy Technology Data Exchange (ETDEWEB)
P. Brierly; P. Dumas; M. Smith; G.P. Williams
2001-09-01
A commercial Nicolet Magna series rapid-scan Michelson Fourier Transform Infrared (FTIR) was installed in a vacuum housing and integrated into the U4IR beamline at the National Synchrotron Light Source at Brookhaven National Laboratory. The frequency reference laser was mounted outside vacuum, but the moving mirror mechanism and the dynamic alignment system for the fixed mirror were in vacuum. The performance of the instrument was measured in the usual way by measuring the repeatability of data collected under specific conditions of aperture, resolution and mirror scanning velocity. We briefly discuss the beamline design, to put the interferometer in context, then present signal to noise data which we discuss in terms of both instrument performance and also storage ring stability. Under optimal conditions, the instrument has a reproducibility of 0.01% in 1 minute of measuring time at a resolution of 2 cmss,{sup -1}, over a range from 100-3000 cm{sup -1}.
Spin Accumulation in a Double Quantum Dot Aharonov-Bohm Interferometer
Institute of Scientific and Technical Information of China (English)
YIN Hai-Tao; L(U) Tian-Quan; LIU Xiao-Jie; XUE Hui-Jie
2009-01-01
@@ We investigate the spin accumulation in a double quantum dot Aharonov-Bohm (AB) interferometer in which both the Rashba spin-orbit (RSO) interaction and intradot Coulomb interaction are taken into account. Due to the existence of the RSO interaction, the electron, flowing through different arms of the AB ring, will acquire a spin-dependent phase factor in the tunnel-coupling strengths. This phase factor will induce various interesting interference phenomena. It is found that the electrons of the different spin directions can accumulate in the two dots by properly adjusting the bias and the intradot level with a fixed RSO interaction strength. Moreover, both the magnitude and direction of the spin accumulation in each dot can be conveniently controlled and tuned by the gate voltage acting on the dot or the bias on the lead.
Institute of Scientific and Technical Information of China (English)
Shuang LIU; Junqiang SUN; Ping SHUM
2009-01-01
In this paper, we proposed a novel scheme to realize the multiwavelength erbium-doped fiber lasers. By adding a length of dispersion shifted fiber (DSF) in the ring cavity, we can suppress the cavity mode competition resulting from homogeneous line broadening (HLB) effect. In addition, a comb filter based on fiber delay inter-ferometer (DI) is used for frequency selecting. To enhance the extinction ratio while maintaining the free space range (FSR), the proposed isolator-assisted double-pass DI is utilized into the laser cavity, and a stable 7-wavelength simultaneous lasing spaced at 21.5GHz is accordingly achieved with an extinction ratio of higher than 40 dB. The lasers are stable with a maximum power fluctuation per channel of less than 0.6 dB during an hour test.
Pati, G S; Salit, M; Shahriar, M S
2006-01-01
The concept of the 'white-light cavity' has recently generated considerable research interest in the context of gravitational wave detection. Cavity designs are proposed using negative (or anomalous) dispersion in an intracavity medium to make the cavity resonate over a large range of frequencies and still maintain a high cavity build-up. This paper presents the first experimental attempt and demonstration of white-light effect in a meter long ring cavity using an intracavity atomic medium. The medium's negative dispersion is caused by bi-frequency Raman gain in an atomic vapor cell. Although the white light condition was not perfectly achieved and improvements in experimental control are still desirable, significantly broad cavity response over bandwidth greater than 20 MHz has been observed. These devices will have potential applications in new generation laser interferometer gravitational wave detectors.
Interferometer-controlled soft X-ray scanning photoemission microscope at SOLEIL
Avila, José; Lorcy, Stephane; Giorgetta, Jean-Luc; Polack, François; Asensio, María C
2013-01-01
ANTARES beamline (BL), a new soft X-ray scanning photoemission microscope located at the SOLEIL synchrotron storage ring has been recently designed, built and commissioned. The implemented interferometer control allows the accurate measurement of the transverse position of the Fresnel zone plate (FZP) relative to the sample. An effective sample position feedback has been achieved during experiments in static mode, with a fixed FZP position required to perform nano Angle-Resolved Photoelectron Spectroscopy (Nano-ARPES) measurements. Likewise, long-term stability has been attained for the FZP position relative to the sample during the translation of the FZP when performing typical X-ray absorption experiments around the absorption edges of light elements. Moreover, a fully automatic feedback digital control of the interferometric system provides extremely low orthogonal distortion of the recorded two-dimensional images. The microscope is diffraction limited with the resolution set to several tens of nanometers ...
Proposal for the generation of photon pairs with nonzero orbital angular momentum in a ring fiber.
Javůrek, D; Svozilík, J; Peřina, J
2014-09-22
We present a method for the generation of correlated photon pairs in desired orbital-angular-momentum states using a non-linear silica ring fiber and spontaneous parametric down-conversion. Photon-pair emission under quasi-phase-matching conditions with quantum conversion efficiency 6 × 10(-11) is found in a 1-m long fiber with a thermally induced χ(2) nonlinearity in a ring-shaped core.
Hancock, L. O.; Povenmire, H.
2010-12-01
Among the most beautiful findings of the Space Age have been the discoveries of planetary rings. Not only Saturn but also Jupiter, Uranus and Neptune have rings; Saturn’s ring system has structures newly discovered; even Saturn's moon Rhea itself has a ring. All these are apparently supplied by material from the planetary moons (Rhea's ring by Rhea itself). The question naturally arises, why should the Earth not have a ring, and on the other hand, if it does, why has it not been observed? No rings have yet been observed in the inner solar system, but after all, rings in the inner solar system might simply tend to be fainter and more transient than those of the outer solar system: the inner solar system is more affected by the solar wind, and the Sun’s perturbing gravitational influence is greater. J.A. O’Keefe first suggested (1980) that Earth might have a ring system of its own. An Earth ring could account for some climate events. O’Keefe remarked that formation or thickening of a ring system in Earth’s equatorial plane could drive glaciation by deepening the chill of the winter hemisphere. (It is very well established that volcanic dust is an effective agent for the extinction of sunlight; this factor can be overwhelmingly apparent in eclipse observations.) O’Keefe died in 2000 and the speculation was not pursued, but the idea of an Earth ring has a prima facie reasonableness that calls for its renewed consideration. The program of this note is to hypothesize that, as O’Keefe proposed: (a) an Earth ring system exists; (b) it affects Earth's weather and climate; (c) the tektite strewn fields comprise filaments of the ring fallen to Earth's surface on various occasions of disturbance by comets or asteroids. On this basis, and drawing on the world's weather records, together with the Twentieth Century Reanalysis by NCEP/CIRES covering the period 1870-2010 and the geology of the tektite strewn fields, we herein propose the hypothesized Earth ring
Franetič, Damir
2015-01-01
We study loop near-rings, a generalization of near-rings, where the additive structure is not necessarily associative. We introduce local loop near-rings and prove a useful detection principle for localness.
In, Visarath; Longhini, Patrick; Kho, Andy; Neff, Joseph D.; Leung, Daniel; Liu, Norman; Meadows, Brian K.; Gordon, Frank; Bulsara, Adi R.; Palacios, Antonio
2012-12-01
The nonlinear channelizer is an integrated circuit made up of large parallel arrays of analog nonlinear oscillators, which, collectively, serve as a broad-spectrum analyzer with the ability to receive complex signals containing multiple frequencies and instantaneously lock-on or respond to a received signal in a few oscillation cycles. The concept is based on the generation of internal oscillations in coupled nonlinear systems that do not normally oscillate in the absence of coupling. In particular, the system consists of unidirectionally coupled bistable nonlinear elements, where the frequency and other dynamical characteristics of the emergent oscillations depend on the system's internal parameters and the received signal. These properties and characteristics are being employed to develop a system capable of locking onto any arbitrary input radio frequency signal. The system is efficient by eliminating the need for high-speed, high-accuracy analog-to-digital converters, and compact by making use of nonlinear coupled systems to act as a channelizer (frequency binning and channeling), a low noise amplifier, and a frequency down-converter in a single step which, in turn, will reduce the size, weight, power, and cost of the entire communication system. This paper covers the theory, numerical simulations, and some engineering details that validate the concept at the frequency band of 1-4 GHz.
Conductance of closed and open long Aharonov-Bohm-Kondo rings
Shi, Zheng; Komijani, Yashar
2017-02-01
We calculate the finite temperature linear dc conductance of a generic single-impurity Anderson model containing an arbitrary number of Fermi liquid leads, and apply the formalism to closed and open long Aharonov-Bohm-Kondo (ABK) rings. We show that, as with the short ABK ring, there is a contribution to the conductance from the connected four-point Green's function of the conduction electrons. At sufficiently low temperatures this contribution can be eliminated, and the conductance can be expressed as a linear function of the T matrix of the screening channel. For closed rings we show that at temperatures high compared to the Kondo temperature, the conductance behaves differently for temperatures above and below vF/L , where vF is the Fermi velocity and L is the circumference of the ring. For open rings, when the ring arms have both a small transmission and a small reflection, we show from the microscopic model that the ring behaves like a two-path interferometer, and that the Kondo temperature is unaffected by details of the ring. Our findings confirm that ABK rings are potentially useful in the detection of the size of the Kondo screening cloud, the π /2 scattering phase shift from the Kondo singlet, and the suppression of Aharonov-Bohm oscillations due to inelastic scattering.
Clark, David
2006-01-01
Theodolite ring lights have been invented to ease a difficulty encountered in the well-established optical-metrology practice of using highly reflective spherical tooling balls as position references. A theodolite ring light produces a more easily visible reflection and eliminates the need for an autocollimating device. A theodolite ring light is a very bright light source that is well centered on the optical axis of the instrument. It can be fabricated, easily and inexpensively, for use on a theodolite or telescope of any diameter.
Energy Technology Data Exchange (ETDEWEB)
Schuch, R.
1987-01-01
A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented.
Localized modes in nonlinear binary kagome ribbons.
Beličev, P P; Gligorić, G; Radosavljević, A; Maluckov, A; Stepić, M; Vicencio, R A; Johansson, M
2015-11-01
The localized mode propagation in binary nonlinear kagome ribbons is investigated with the premise to ensure controlled light propagation through photonic lattice media. Particularity of the linear system characterized by the dispersionless flat band in the spectrum is the opening of new minigaps due to the "binarism." Together with the presence of nonlinearity, this determines the guiding mode types and properties. Nonlinearity destabilizes the staggered rings found to be nondiffracting in the linear system, but can give rise to dynamically stable ringlike solutions of several types: unstaggered rings, low-power staggered rings, hour-glass-like solutions, and vortex rings with high power. The type of solutions, i.e., the energy and angular momentum circulation through the nonlinear lattice, can be controlled by suitable initial excitation of the ribbon. In addition, by controlling the system "binarism" various localized modes can be generated and guided through the system, owing to the opening of the minigaps in the spectrum. All these findings offer diverse technical possibilities, especially with respect to the high-speed optical communications and high-power lasers.
Kreisbeck, C.; Kramer, T.; Molina, R. A.
2017-04-01
We have performed time-dependent wave packet simulations of realistic Aharonov-Bohm (AB) devices with a quantum dot embedded in one of the arms of the interferometer. The AB ring can function as a measurement device for the intrinsic transmission phase through the quantum dot, however, care has to be taken in analyzing the influence of scattering processes in the junctions of the interferometer arms. We consider a harmonic quantum dot and show how the Darwin–Fock spectrum emerges as a unique pattern in the interference fringes of the AB oscillations.
Cassini RSS occultation observations of density waves in Saturn's rings
McGhee, C. A.; French, R. G.; Marouf, E. A.; Rappaport, N. J.; Schinder, P. J.; Anabtawi, A.; Asmar, S.; Barbinis, E.; Fleischman, D.; Goltz, G.; Johnston, D.; Rochblatt, D.
2005-08-01
On May 3, 2005, the first of a series of eight nearly diametric occultations by Saturn's rings and atmosphere took place, observed by the Cassini Radio Science (RSS) team. Simultaneous high SNR measurements at the Deep Space Network (DSN) at S, X, and Ka bands (λ = 13, 3.6, and 0.9 cm) have provided a remarkably detailed look at the radial structure and particle scattering behavior of the rings. By virtue of the relatively large ring opening angle (B=-23.6o), the slant path optical depth of the rings was much lower than during the Voyager epoch (B=5.9o), making it possible to detect many density waves and other ring features in the Cassini RSS data that were lost in the noise in the Voyager RSS experiment. Ultimately, diffraction correction of the ring optical depth profiles will yield radial resolution as small as tens of meters for the highest SNR data. At Ka band, the Fresnel scale is only 1--1.5 km, and thus even without diffraction correction, the ring profiles show a stunning array of density waves. The A ring is replete with dozens of Pandora and Prometheus inner Lindblad resonance features, and the Janus 2:1 density wave in the B ring is revealed with exceptional clarity for the first time at radio wavelengths. Weaker waves are abundant as well, and multiple occultation chords sample a variety of wave phases. We estimate the surface mass density of the rings from linear density wave models of the weaker waves. For stronger waves, non-linear models are required, providing more accurate estimates of the wave dispersion relation, the ring surface mass density, and the angular momentum exchange between the rings and satellite. We thank the DSN staff for their superb support of these complex observations.
Energy Technology Data Exchange (ETDEWEB)
Turchetti, G. (Bologna Univ. (Italy). Dipt. di Fisica)
1989-01-01
Research in nonlinear dynamics is rapidly expanding and its range of applications is extending beyond the traditional areas of science where it was first developed. Indeed while linear analysis and modelling, which has been very successful in mathematical physics and engineering, has become a mature science, many elementary phenomena of intrinsic nonlinear nature were recently experimentally detected and investigated, suggesting new theoretical work. Complex systems, as turbulent fluids, were known to be governed by intrinsically nonlinear laws since a long time ago, but received purely phenomenological descriptions. The pioneering works of Boltzmann and Poincare, probably because of their intrinsic difficulty, did not have a revolutionary impact at their time; it is only very recently that their message is reaching a significant number of mathematicians and physicists. Certainly the development of computers and computer graphics played an important role in developing geometric intuition of complex phenomena through simple numerical experiments, while a new mathematical framework to understand them was being developed.
Energy Technology Data Exchange (ETDEWEB)
Martin, R.; Manero, F.
1984-07-01
In this paper a description is given of the microwave interferometer used for measuring the plasma electronic density in the TJ-1 Tokamak of Fusion Division of JEN. The principles of the electronic density measurement are discussed in detail, as well as those concerning the determination of density pro files from experimental data. A description of the interferometer used in the TJ-1 Tokamak is given, together with a detailed analysis of the circuits which constitute the measuring chain. The working principles of the klystron reflex and hybrid rings are also presented. (Author) 23 refs.
Scanning Gate Microscopy of Kondo Dots: Fabry-P\\'erot Interferences and Thermally Induced Rings
Kleshchonok, Andrii; Fleury, Geneviève; Pichard, Jean-Louis
2013-01-01
We study the conductance of an electron interferometer formed in a two dimensional electron gas between a nanostructured quantum contact and the charged tip of a scanning gate microscope. Measuring the conductance as a function of the tip position, thermally induced rings may be observed in addition to Fabry-P\\'erot interference fringes spaced by half the Fermi wavelength. If the contact is made of a quantum dot opened in the middle of a Kondo valley, we show how the location of the rings all...
Measurement of Resonance driving terms in the ATF Damping Ring
Tomás, R; Kuroda, S; Naito, T; Okugi, T; Urakawa, J; Zimmermann, F
2008-01-01
The measurement of resonance driving terms in the Damping Ring of the Accelerator Test Facility in KEK could help finding possible machine imperfections and even to optimize single particle stability through the minimization of non-linearities. The first experimental attempts of this enterprise are reported in this note.
Modelling a singly resonant, intracavity ring optical parametric oscillator
DEFF Research Database (Denmark)
Buchhave, Preben; Tidemand-Lichtenberg, Peter; Wei, Hou;
2003-01-01
We study theoretically and experimentally the dynamics of a single-frequency, unidirectional ring laser with an intracavity nonlinear singly resonant OPO-crystal in a coupled resonator. We find for a range of operating conditions good agreement between model results and measurements of the laser ...
Transistor-based metamaterials with dynamically tunable nonlinear susceptibility
Barrett, John P.; Katko, Alexander R.; Cummer, Steven A.
2016-08-01
We present the design, analysis, and experimental demonstration of an electromagnetic metamaterial with a dynamically tunable effective nonlinear susceptibility. Split-ring resonators loaded with transistors are shown theoretically and experimentally to act as metamaterials with a second-order nonlinear susceptibility that can be adjusted through the use of a bias voltage. Measurements confirm that this allows for the design of a nonlinear metamaterial with adjustable mixing efficiency.
Theoretical analysis on x-ray cylindrical grating interferometer
Cong, Wenxiang; Wang, Ge
2015-01-01
Grating interferometer is a state of art x-ray imaging approach, which can simultaneously acquire information of x-ray attenuation, phase shift, and small angle scattering. This approach is very sensitive to micro-structural variation and offers superior contrast resolution for biological soft tissues. The present grating interferometer often uses flat gratings, with serious limitations in the field of view and the flux of photons. The use of curved gratings allows perpendicular incidence of x-rays on the gratings, and gives higher visibility over a larger field of view than a conventional interferometer with flat gratings. In the study, we present a rigorous theoretical analysis of the self-imaging of curved transmission gratings based on Rayleigh-Sommerfeld diffraction. Numerical simulations have demonstrated the self-imaging phenomenon of cylindrical grating interferometer. The theoretical results are in agreement with the results of numerical simulations.
Web-based Teaching Radio Interferometer for Africa
Carignan, Claude; Libert, Yannick
2016-10-01
This presentation describes the web-based Teaching Radio Interferometer being built on the campus of the University of Cape Town, in South Africa, to train the future users of the African VLBI (Very Long Baseline Interferometry) Network (AVN).
Plasma flow velocity measurements using a modulated Michelson interferometer
Energy Technology Data Exchange (ETDEWEB)
Howard, J. [Australian National Univ., Canberra, ACT (Australia). Plasma Research Lab.; Meijer, F.G. [FOM-Instituut voor Plasmafysica `Rijnhuizen`, Association Euratom-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands)]|[Physics Faculty, University of Amsterdam, Amsterdam (Netherlands)
1997-03-01
This paper discusses the possibility of flow velocity reconstruction using passive spectroscopic techniques. We report some preliminary measurements of the toroidal flow velocity of hydrogen atoms in the RTP tokamak using a phase modulated Michelson interferometer. (orig.) 1 refs.
Performance evaluation of a thermal Doppler Michelson interferometer system.
Mani, Reza; Dobbie, Steven; Scott, Alan; Shepherd, Gordon; Gault, William; Brown, Stephen
2005-11-20
The thermal Doppler Michelson interferometer is the primary element of a proposed limb-viewing satellite instrument called SWIFT (Stratospheric Wind Interferometer for Transport studies). SWIFT is intended to measure stratospheric wind velocities in the altitude range of 15-45 km. SWIFT also uses narrowband tandem etalon filters made of germanium to select a line out of the thermal spectrum. The instrument uses the same technique of phase-stepping interferometry employed by the Wind Imaging Interferometer onboard the Upper Atmosphere Research Satellite. A thermal emission line of ozone near 9 microm is used to detect the Doppler shift due to winds. A test bed was set up for this instrument that included the Michelson interferometer and the etalon filters. For the test bed work, we investigate the behavior of individual components and their combination and report the results.
Increasing the Sensitivity of the Michelson Interferometer through Multiple Reflection
Youn, Woonghee
Michelson interferometry has been one of the most famous and popular optical interference system for analyzing optical components and measuring optical metrology properties. Typical Michelson interferometer can measure object displacement with wavefront shapes to one half of the laser wavelength. As testing components and devices size reduce to micro and nano dimension, Michelson interferometer sensitivity is not suitable. The purpose of this study is to design and develop the Michelson interferometer using the concept of multiple reflections. This thesis proposes a new and novel design for a multiple reflection interferometer, where the number of reflections does not affect the quality of the interference. Theoretically we show that more than 1000 reflections can be achieved. Experimental results of greater than 100 reflections are presented in this thesis.
An atom interferometer with a shaken optical lattice
Weidner, C A; Kosloff, Ronnie; Anderson, and Dana Z
2016-01-01
We introduce shaken lattice interferometry with atoms trapped in a one-dimensional optical lattice. The atoms undergo an interferometer sequence of splitting, propagation, reflection, and recombination by phase modulation of the lattice through a sequence of shaking functions. Each function in the sequence is determined by a learning procedure that is implemented with a genetic algorithm. Numerical simulations determine the momentum state of the atoms, which is experimentally accessible with time-of-flight imaging. The shaking function is then optimized to achieve the desired state transitions. The sensitivity of the interferometer to perturbations such as those introduced by inertial forces scales the same way as for conventional matter wave interferometers. The shaken lattice interferometer may be optimized to sense signals of interest while rejecting others, such as the measurement of an AC signal while rejecting a DC bias.
Novel double path shearing interferometer in corneal topography measurements
Licznerski, Tomasz J.; Jaronski, Jaroslaw; Kosz, Dariusz
2005-09-01
The paper presents an approach for measurements of corneal topography by use of a patent pending double path shearing interferometer (DPSI). Laser light reflected from the surface of the cornea is divided and directed to the inputs of two interferometers. The interferometers use lateral shearing of wavefronts in two orthogonal directions. A tilt of one of the mirrors in each interferometric setup perpendicularly to the lateral shear introduces parallel carrier frequency fringes at the output of each interferometer. There is orthogonal linear polarization of the laser light used in two DPSI. Two images of fringe patters are recorded by a high resolution digital camera. The obtained fringe patterns are used for phase difference reconstruction. The phase of the wavefront was reconstructed by use of algorithms for a large grid based on discrete integration. The in vivo method can also be used for tear film stability measurement, artificial tears and contact lens tests.
Two-interferometers fiber optic sensor for disturbance localization
Zyczkowski, Marek; Ciurapinski, Wieslaw; Kondrat, Marcin
2005-09-01
Initial researches of Two-interferometers Fibre Optic Sensor for Disturbance Localization will be presented. The sensor is typically susceptible to environmentally induced mechanical perturbation at low frequencies. The presented sensor consists of two interferometers: Sagnac and Michelson. The Sagnac transfer function is proportional to the product of two factors: firstly the rate of change, dφ/dt, of the optical signal, induced at a point by external disturbance, and secondly the distance between the disturbance point and the Sagnac coil centre. The second interferometer transfer function gives an output proportional to φ. So, if we determine a pulsation ω of the mechanical disturbance from both interferometers output signals, we will be able to localize point where the mechanical disturbance takes place along the fibre by means of simple division of these transfer function. A laboratory arrangement of the sensor and the results of numerical signal processing are also shown.
Development of Methods Precision Length Measurement Using Transported Laser Interferometer
Lavrov, E. A.; Epikhin, V. M.; Mazur, M. M.; Suddenok, Y. A.; Shorin, V. N.
The paper shows the results of a comparison of a developed transported laser interferometer (TLI) with a measurement interferometer XL-80 Renishaw at the distance 0-60 meters. Testings of a breadboard model of the TLI showed that a difference between the travel measurements of the two interferometers does not exceed 6 μm. The mean value of the difference of indications between the TLI and a Renishaw travel measurer at the distance near 58 m approximately equals to 0,5 μm. Root-mean square deviation of the indications of the interferometers approximately equals to 3 μm. At comparison of the sections with the same name between the TLI and the Renishaw travel measurer, measured at different days, a repeatability of the results for the sections with the same name is noted.
Broadband detuned Sagnac interferometer for future generation gravitational wave astronomy
Voronchev, N V; Danilishin, S L
2015-01-01
Broadband suppression of quantum noise below the Standard Quantum Limit (SQL) becomes a top-priority problem for the future generation of large-scale terrestrial detectors of gravitational waves, as the interferometers of the Advanced LIGO project, predesigned to be quantum-noise-limited in the almost entire detection band, are phased in. To this end, among various proposed methods of quantum noise suppression or signal amplification, the most elaborate approach implies a so-called *xylophone* configuration of two Michelson interferometers, each optimised for its own frequency band, with a combined broadband sensitivity well below the SQL. Albeit ingenious, it is a rather costly solution. We demonstrate that changing the optical scheme to a Sagnac interferometer with weak detuned signal recycling and frequency dependent input squeezing can do almost as good a job, as the xylophone for significantly lower spend. We also show that the Sagnac interferometer is more robust to optical loss in filter cavity, used f...
Do laser interferometers absorb energy from gravitational waves ?
Ma, Yiqiu; Zhao, Chunnong; Kells, William
2014-01-01
In this paper we discuss the energy interaction between gravitational waves and laser interferom- eter gravitational wave detectors. We show that the widely held view that the laser interferometer gravitational wave detector absorbs no energy from gravitational waves is only valid under the approximation of a frequency-independent optomechanical coupling strength and a pump laser without detuning with respect to the resonance of the interferometer. For a strongly detuned interferometer, the optical-damping dynamics dissipates gravitational wave energy through the interaction between the test masses and the optical ?eld. For a non-detuned interferometer, the frequency-dependence of the optomechanical coupling strength causes a tiny energy dissipation, which is proved to be equivalent to the Doppler friction raised by Braginsky et.al.
Decoupling of a Neutron Interferometer from Temperature Gradients
Saggu, Parminder; Arif, Muhammad; Cory, David; Haun, Robert; Heacock, Ben; Huber, Michael; Li, Ke; Nsofini, Joachim; Sarenac, Dusan; Shahi, Chandra; Skavysh, Vladimir; Snow, William; Werner, Samuel; Young, Albert; Pushin, Dmitriy
2016-01-01
Neutron interferometry enables precision measurements that are typically operated within elaborate, multi-layered facilities which provide substantial shielding from environmental noise. These facilities are necessary to maintain the coherence requirements in a perfect crystal neutron interferometer which is extremely sensitive to local environmental conditions such as temperature gradients across the interferometer, external vibrations, and acoustic waves. The ease of operation and breadth of applications of perfect crystal neutron interferometry would greatly benefit from a mode of operation which relaxes these stringent isolation requirements. Here, the INDEX Collaboration and National Institute of Standards and Technology demonstrates the functionality of a neutron interferometer in vacuum and characterize the use of a compact vacuum chamber enclosure as a means to isolate the interferometer from spatial temperature gradients and time-dependent temperature fluctuations. The vacuum chamber is found to have...
Calibration of the z-axis for large-scale scanning white-light interferometers
Energy Technology Data Exchange (ETDEWEB)
Boedecker, S; Rembe, C; Schmid, H [R and D Polytec GmbH, Polytec-Platz 1-7, 76137 Waldbronn (Germany); Hageney, T; Koehnlein, T, E-mail: s.boedecker@polytec.de [eumetron GmbH, Gartenstrasse 133, 73430 Aalen (Germany)
2011-08-19
The calibration of white-light interferometers is an important requirement to make the results of these fast and accurate measurement tools comparable to the well-established tactile techniques. In this paper we present an approach for the calibration of the z-axis of a large-scale scanning white-light interferometer (SWLI) covering the full scanning range by utilizing a newly developed step-height calibration standard. The standard was specially adapted to the requirements of the large-scale WLI with an x-y-field of view of 38 x 28 mm{sup 2} and a z-scan range of 70 mm. We have developed a new procedure to calibrate the z-scale by using the measured WLI data of the step heights of the standard to obtain an inverse characteristic to compensate non-linearities of the length reference, which is in our case simply the lead screw of the step-motor-driven linear stage. We describe the development of our standard, present measurement results before and after the calibration and discuss the uncertainties of the procedure.
Electron dynamics with radiation and nonlinear wigglers
Energy Technology Data Exchange (ETDEWEB)
Jowett, J.M.
1986-06-01
The physics of electron motion in storage rings is described by supplementing the Hamiltonian equations of motion with fluctuating radiation reaction forces to describe the effects of synchrotron radiation. This leads to a description of radiation damping and quantum diffusion in single-particle phase-space by means of Fokker-Planck equations. For practical purposes, most storage rings remain in the regime of linear damping and diffusion; this is discussed in some detail with examples, concentrating on longitudinal phase space. However special devices such as nonlinear wigglers may permit the new generation of very large rings to go beyond this into regimes of nonlinear damping. It is shown how a special combined-function wiggler can be used to modify the energy distribution and current profile of electron bunches.
National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains GIS layers that depict the known spatial distributions (i.e., ranges) of the five subspecies of ringed seals (Phoca hispida). It was produced...
1974-01-01
The precise measurement of "g-2", the anomalous magnetic moment of the muon, required a special muon storage ring with electrostatic focussing and very accurate knowledge of the magnetic bending field. For more details see under photo 7405430.
Chaitanya, T Sai; Krishna, V Sai; Anandh, B Shankar; Umesh, K S
2010-01-01
In an earlier work (Shankar kumar Jha, A Vyas, O S K S Sastri, Rajkumar Jain & K S Umesh, 'Determination of wavelength of laser light using Modified Newton's rings setup', Physics Education, vol. 22, no.3, 195-202(2005)) reported by our group, a version of Newton's rings experiment called Modified Newton's rings was proposed. The present work is an extension of this work. Here, a general formula for wavelength has been derived, applicable for a plane of observation at any distance. A relation between the focal length and the radius curvature is also derived for a plano-convex lens which is essentially used as a concave mirror. Tracker, a video analysis software, freely downloadable from the net, is employed to analyze the fringes captured using a CCD camera. Two beams which give rise to interference fringes in conventional Newton's rings and in the present setup are clearly distinguished.
The Case for Massive and Ancient Rings of Saturn
Esposito, Larry W.
2016-10-01
Analysis of Voyager and Pioneer 11 results give a mass for Saturn's rings, M = 5 x 10-8 Msat. This is about the mass of Saturn's small moon Mimas. This has been interpreted as a lower limit to the ring mass (Esposito et al 1983), since the thickest parts of the rings were not penetrated by the stellar occultstion, and this calculation assumes an unvarying particle size throughout the rings. Because the rings are constantly bombarded by micrometeroids, their current composition of nearly pure water ice implies such low mass rings must have formed recently. The case is particularly strong for Saturn's A ring, where the data are the best, implying the A ring is less than 10% of the age of the Saturn (Esposito 1986). Cassini results compound this problem. UVIS spectra are consistent with either young rings or rings about 10x as massive as the Voyager estimate (Elliott and Esposito (2011). CDA confirms the impacting mass flux is similar to that assumed for the pollution calculations (Kempf etal 2015). VIMS analysis of density wave signatures in the B ring gives a value of about 1/3 the Voyager value (Hedmann etal 2016). This VIMS result implies the rings are even younger! The problem is that young rings are very unlikely to be formed recently, meaning that we live in a very special epoch, following some unlikely recent origin… like disruption of a medium sized moon or capture of the fragments of a disrupted comet (Charnoz etal 2009).To take the VIMS results at face value, Saturn's low mass rings must be very young. The optically thick B ring must be made of small, porous or fractal particles. An alternative is that we accept the higher mass interpretation of the Pioneer 11 results (Esposito etal 2008) using the granola bar model of Colwell etal 2007. This would imply that the density wave structure seen by VIMS is not sensing all the mass in the rings, where structure near strong resonances is dominted by temporary aggregates, and where non-linear effects cause the
Fiber Fabry-Perot interferometer with controllable temperature sensitivity.
Zhang, Xinpu; Peng, Wei; Zhang, Yang
2015-12-01
We proposed a fiber taper based on the Fabry-Perot (FP) interferometer structure with controllable temperature sensitivity. The FP interferometer is formed by inserting a segment of tapered fiber tip into the capillary and subsequently splicing the other end of the capillary to a single-mode fiber (SMF), the tapered fiber endface, and the spliced face form the FP cavity. Through controlling the inserted tapered fiber length, a series of FP interferometers were made. Because the inserted taper tip has the degree of freedom along the fiber axial, when the FP interferometer is subjected to temperature variation, the thermal expansion of the fiber taper tip will resist the FP cavity length change caused by the evolution of capillary length, and we can control the temperature sensitivity by adjusting the inserted taper length. In this structure, the equivalent thermal expansion coefficient of the FP interferometer can be defined; it was used to evaluate the temperature sensitivity of the FP interferometer, which provides an effective method to eliminate the temperature effect and to enhance other measurement accuracy. We fabricated the FP interferometers and calibrated their temperature characters by measuring the wavelength shift of the resonance dips in the reflection spectrum. In a temperature range of 50°C to 150°C, the corresponding temperature sensitivities can be controlled between 0 and 1.97 pm/°C when the inserted taper is between 75 and 160 μm. Because of its controllable temperature sensitivity, ease of fabrication, and low cost, this FP interferometer can meet different temperature sensitivity requirements in various application areas, especially in the fields which need temperature insensitivity.
Fiber in-line Michelson Interferometer for refractive index sensing
Liao, C. R.; Wang, D. N.; Wang, Min; Yang, Minghong; Wang, Yiping
2013-09-01
A fiber in-line Michelson interferometer based on open micro-cavity is demonstrated, which is fabricated by femtosecond laser micromachining and thin film coating technique. In refractive index sensing, this interferometer operates in a reflection mode of detection, exhibits compact sensor head, good mechanical reliability, wide operation range and high sensitivity of 975nm/RIU (refractive index unit) at the refractive index value of 1.484.
Optical inclinometer based on fibre-taper-modal Michelson interferometer
Amaral, L. M. N.; Frazão, O.; Santos, J. L.; Lobo Ribeiro, A. B.
2010-09-01
An inclinometer sensor based on optical fibre-taper-modal Michelson interferometer is demonstrated. The magnitude of the tilt (bending angle of the fibre taper interferometer) is obtained by passive interferometric interrogation based on the generation of two quadrature phase-shifted signals from two fibre Bragg gratings. Optical phase-to-rotation sensitivity of 1.13 rad/degree with a 14 mrad/√Hz resolution is achieved.
Overview and Status of Advanced Interferometers for Gravitational Wave Detection
Grote, Hartmut
2016-01-01
The world-wide network of km-scale laser interferometers is aiming at the detection of gravitational waves of astrophysical origin. The second generation of these instruments, called advanced detectors has been, or is in the process of being completed, and a first observational run with the Advanced LIGO interferometers has been performed late in 2015. The basic functionality of advanced detectors is discussed, along with specific features and status updates of the individual projects.
Overview and Status of Advanced Interferometers for Gravitational Wave Detection
Grote, H.
2016-05-01
The world-wide network of km-scale laser interferometers is aiming at the detection of gravitational waves of astrophysical origin. The second generation of these instruments, called advanced detectors has been, or is in the process of being completed, and a first observational run with the Advanced LIGO interferometers has been performed late in 2015. The basic functionality of advanced detectors is discussed, along with specific features and status updates of the individual projects.
Applications of monolithic fiber interferometers and actively controlled fibers
Rugeland, Patrik
2013-01-01
The objective of this thesis was to develop applications of monolithic fiber devices and actively controlled fibers. A special twin-core fiber known as a ‘Gemini’ fiber was used to construct equal arm-length fiber interferometers, impervious to temperature and mechanical perturbations. A broadband add/drop multiplexer was constructed by inscribing fiber Bragg gratings in the arms of a Gemini Mach-Zehnder interferometer. A broadband interferometric nanosecond switch was constructed from a micr...
Continuous-wave singly resonant optical parametric oscillator placed inside a ring laser
DEFF Research Database (Denmark)
Abitan, Haim; Buchhave, Preben
2003-01-01
A cw singly resonant optical parametric oscillator (SRO) was built and placed inside the cavity of a ring laser. The system consists of a diode-end-pumped Nd:YVO4 ring laser with intracavity periodically poled lithium niobate as the nonlinear gain medium of the SRO. When the laser was operated...... the laser was coupled with the SRO. The results show that it is preferable to couple a SRO with a unidirectional ring laser....
Anomalous Hollow Electron Beams in a Storage Ring
Energy Technology Data Exchange (ETDEWEB)
Wu, Y.K.
2005-04-12
This paper reports the first observations of an anomalous hollow electron beam in the Duke storage ring. Created by exciting the single bunch beam in a lattice with a negative chromaticity, the hollow beam consists of a solid core inside and a large ring outside. We report the detailed measurements of the hollow beam phenomenon, including its distinct image pattern, spectrum signature, and its evolution with time. By capturing the post-instability bursting beam, the hollow beam is a unique model system for studying the transverse instabilities, in particular, the interplay of the wake field and the lattice nonlinearity. In addition, the hollow beam can be used as a powerful tool to study the linear and nonlinear particle dynamics in the storage ring.
Amaresh Kumar, M. V.; Sahoo, Debendranath
A characterization of the two-terminal open-ring Aharonov-Bohm interferometer is made by analyzing the phase space plots in the complex transmission amplitude plane. Two types of plots are considered: type 1 plot uses the magnetic flux as the variable parameter and type 2 plot which uses the electron momentum as the variable parameter. In type 1 plot, the trajectory closes upon itself only when the ratio R of the arm lengths (of the interferometer) is a rational fraction, and the shape and the type of the generated flower-like pattern is sensitive to the electron momentum. For momenta corresponding to discrete eigenstates of the perfect ring (i.e., the ring without the leads), the trajectory passes through the origin a certain fixed number of times before closing upon itself, whereas for arbitrary momenta it never passes through the origin. Although the transmission coefficient is periodic in the flux with the elementary flux quantum as the basic period, the phenomenon of electron transmission is shown not to be so when analyzed via the present technique. The periodicity is seen to spread over several flux units whenever R is a rational fraction whereas there is absolutely no periodicity present when R is an irrational number. In type 2 plot, closed trajectories passing through the origin a number of times are seen for R being a rational fraction. The case R = 1 (i.e., a symmetric ring) with zero flux is rather pathological — it presents a closed loop surrounding the origin. For irrational R values, the trajectories never close.
Highly stable polarization independent Mach-Zehnder interferometer
Energy Technology Data Exchange (ETDEWEB)
Mičuda, Michal, E-mail: micuda@optics.upol.cz; Doláková, Ester; Straka, Ivo; Miková, Martina; Dušek, Miloslav; Fiurášek, Jaromír; Ježek, Miroslav, E-mail: jezek@optics.upol.cz [Department of Optics, Faculty of Science, Palacký University, 17. listopadu 1192/12, 77146 Olomouc (Czech Republic)
2014-08-15
We experimentally demonstrate optical Mach-Zehnder interferometer utilizing displaced Sagnac configuration to enhance its phase stability. The interferometer with footprint of 27×40 cm offers individually accessible paths and shows phase deviation less than 0.4° during a 250 s long measurement. The phase drift, evaluated by means of Allan deviation, stays below 3° or 7 nm for 1.5 h without any active stabilization. The polarization insensitive design is verified by measuring interference visibility as a function of input polarization. For both interferometer's output ports and all tested polarization states the visibility stays above 93%. The discrepancy in visibility for horizontal and vertical polarization about 3.5% is caused mainly by undesired polarization dependence of splitting ratio of the beam splitter used. The presented interferometer device is suitable for quantum-information and other sensitive applications where active stabilization is complicated and common-mode interferometer is not an option as both the interferometer arms have to be accessible individually.
Seider, Warren D.; Ungar, Lyle H.
1987-01-01
Describes a course in nonlinear mathematics courses offered at the University of Pennsylvania which provides an opportunity for students to examine the complex solution spaces that chemical engineers encounter. Topics include modeling many chemical processes, especially those involving reaction and diffusion, auto catalytic reactions, phase…
Phase memory across two single-photon interferometers including wavelength conversion
Heuer, A.; Raabe, S.; Menzel, R.
2014-10-01
Spontaneous parametric down-conversion (SPDC) in a nonlinear crystal generates two single photons (signal and idler) with random phases. Thus, no first-order interference between them occurs. However, coherence can be induced in a cascaded setup of two crystals if, e.g., the idler modes of both crystals are aligned to be indistinguishable. Due to the effect of phase memory it is found that the first-order interference of the signal beams can be controlled by the phase delay between the pump beams. Even for pump photon delays much larger than the coherence length of the SPDC photons, the visibility is above 90%. The high visibilities reported here prove an almost perfect phase memory effect across the two interferometers for the pump and the signal photon modes.
Energy Technology Data Exchange (ETDEWEB)
Appel, A.
1992-02-17
The introduced interferometer consists of an LLL interferometer and a phase-displacing Bragg groove component. A part of the radiation path between the Lane mirrors in the Bragg grooves is replaced by a radiation path, whose wave number vector has a slightly different direction compared to the Lane case by the refraction correction. If the angles of incidence in the two grooves are different, then a difference in path is produced between the beams producing interference. This is the first X-ray interferometer which works like an optical Michelson interferometer. As there are no basic limits to resolution by absorption or dispersion, for example, it opens up the possibility of carrying out Fourier spectroscopy in the A wavelength range. (orig.).
The life cycle of a coherent Lagrangian Agulhas ring
Wang, Y; Olascoaga, M J
2016-01-01
We document the long-term evolution of an Agulhas ring detected from satellite altimetry using a technique from nonlinear dynamical systems that enables objective (i.e., observer-independent) eddy framing. Such objectively detected eddies have Lagrangian (material) boundaries that remain coherent (unfilamented) over the detection period. The ring preserves a quite compact material entity for a period of about 2 years even after most initial coherence is lost within 5 months after detection. We attribute this to the successive development of short-term coherent material boundaries around the ring. These boundaries provide effective short-term shielding for the ring, which prevents a large fraction of the ring's interior from being mixed with the ambient turbulent flow. We show that such coherence regain events cannot be inferred from Eulerian analysis. This process is terminated by a ring-splitting event which marks the ring demise, near the South American coast. The genesis of the ring is characterized by a r...
Report of the working group on single-particle nonlinear dynamics
Energy Technology Data Exchange (ETDEWEB)
Bazzani, A.; Bongini, L.; Corbett, J.; Dome, G.; Fedorova, A.; Freguglia, P.; Ng, K.; Ohmi, K.; Owen, H.; Papaphilippou, Y.; Robin, D.; Safranek, J.; Scandale, W.; Terebilo, A.; Turchetti, G.; Todesco, E.; Warnock, R.; Zeitlin, M. (Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division, U.S. Department of Energy (United States))
1999-04-01
The Working Group on single-particle nonlinear dynamics has developed a set of tools to study nonlinear dynamics in a particle accelerator. The design of rings with large dynamic apertures is still far from automatic. The Working Group has concluded that nonlinear single-particle dynamics limits the performance of acclerators. (AIP) [copyright] [ital 1999] [ital American Institute of Physics
Report of the working group on single-particle nonlinear dynamics
Bazzani, A.; Bongini, L.; Corbett, J.; Dome, G.; Fedorova, A.; Freguglia, P.; Ng, K.; Ohmi, K.; Owen, H.; Papaphilippou, Y.; Robin, D.; Safranek, J.; Scandale, W.; Terebilo, A.; Turchetti, G.; Todesco, E.; Warnock, R.; Zeitlin, M.
1999-04-01
The Working Group on single-particle nonlinear dynamics has developed a set of tools to study nonlinear dynamics in a particle accelerator. The design of rings with large dynamic apertures is still far from automatic. The Working Group has concluded that nonlinear single-particle dynamics limits the performance of acclerators. (AIP)
Damping of Resonantly Forced Density Waves in Dense Planetary Rings
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2016-10-01
We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of
Descent from the form ring and Buchsbaum rings
Schenzel, P
1996-01-01
There is a spectral sequence technique in order to estimate the local cohomology of a ring by the local cohomology of a certain form ring. As applications there are information on the descent of homological properties (Cohen-Macaulay, Buchsbaum etc.) from the form ring to the ring itself. In the case of Buchsbaum ring there is a discussion of the descent of the surjectivity of a natural map into the local cohomology.
[A new method of anti-jamming ability improvement for Michelson Interferometer].
Li, Yang-Jun; Lian, Su-Jie; Shi, Jia; Guo, Ya-Fei; Wang, Gao
2014-05-01
In order to improve anti-jamming capability of Michelson interferometer system, replace the traditional structure of the moving mirror scanning was replaced, an interference system based on electro-optic modulation of crystal refractive index was designed to achieve optical path scanning. The system modulated voltage signal on the variable refractive crystal, to generate cyclical changes, changed the refractive index to control optical path difference in the original optical path system. Using electronic scanning to replace of mechanical scanning, improved the system's noise immunity was improved. In the electro-optic modulation process, computed the maximum optical path difference of the system was computed, and analyzed of the crystal thickness and crystal diffraction efficiency of the modulation process were analyzed. The simulation experiment shows that, with the modulation voltage range increasing, the available range of the optical path is also increased, and the system spectrum resolving power will also increase accordingly. Meanwhile, in the modulation process set the modulation range was set to make the energy of diffraction energy losses less than 10% of the total energy, so as to ensure a better signal to noise ratio. Experimental results show that, as the modulation voltage changes, interference fringes occurred continuously moved. When the voltage is further increased, the nonlinear error appears. After non-linear error correction for the system, spectrum resolution reached to 7. 2 cm-1, slightly lower than the original system. But its anti-jamming capability is greatly enhanced, as in the absence of experimental platform for seismic conditions, conventional interferometer relative error is more than 20%, while the relative error of the system is less than 5%, in line with the design requirements. It was proved that the anti-jamming capability of the system was enhanced greatly, when the static electro-optical modulation was used.
Magnetometer Based On Spin Wave Interferometer
Balynsky, M; Chiang, H; Kozhevnikov, A; Filimonov, Y; Balandin, A A; Khitun, A
2016-01-01
We describe magnetic field sensor based on spin wave interferometer. Its sensing element consists of a magnetic cross junction with four micro-antennas fabricated at the edges. Two of these antennas are used for spin wave excitation and two others antennas are used for the detection of the inductive voltage produced by the interfering spin waves. Two waves propagating in the orthogonal arms of the cross may accumulate significantly different phase shifts depending on the magnitude and the direction of the external magnetic field. This phenomenon is utilized for magnetic field sensing. The sensitivity has maximum at the destructive interference condition, where a small change of the external magnetic field results in a drastic increase of the inductive voltage as well as the change of the output phase. We report experimental data obtained on a micrometer scale Y3Fe2(FeO4)3 cross structure. The change of the inductive voltage near the destructive interference point exceeds 40 dB per 1 Oe. At the same time, the ...
With the VLT Interferometer towards Sharper Vision
2000-05-01
The Nova-ESO VLTI Expertise Centre Opens in Leiden (The Netherlands) European science and technology will gain further strength when the new, front-line Nova-ESO VLTI Expertise Centre (NEVEC) opens in Leiden (The Netherlands) this week. It is a joint venture of the Netherlands Research School for Astronomy (NOVA) (itself a collaboration between the Universities of Amsterdam, Groningen, Leiden, and Utrecht) and the European Southern Observatory (ESO). It is concerned with the Very Large Telescope Interferometer (VLTI). The Inauguration of the new Centre will take place on Friday, May 26, 2000, at the Gorlaeus Laboratory (Lecture Hall no. 1), Einsteinweg 55 2333 CC Leiden; the programme is available on the web. Media representatives who would like to participate in this event and who want further details should contact the Nova Information Centre (e-mail: jacques@astro.uva.nl; Tel: +31-20-5257480 or +31-6-246 525 46). The inaugural ceremony is preceded by a scientific workshop on ground and space-based optical interferometry. NEVEC: A Technology Centre of Excellence As a joint project of NOVA and ESO, NEVEC will develop in the coming years the expertise to exploit the unique interferometric possibilities of the Very Large Telescope (VLT) - now being built on Paranal mountain in Chile. Its primary goals are the * development of instrument modeling, data reduction and calibration techniques for the VLTI; * accumulation of expertise relevant for second-generation VLTI instruments; and * education in the use of the VLTI and related matters. NEVEC will develop optical equipment, simulations and software to enable interferometry with VLT [1]. The new Center provides a strong impulse to Dutch participation in the VLTI. With direct involvement in this R&D work, the scientists at NOVA will be in the front row to do observations with this unique research facility, bound to produce top-level research and many exciting new discoveries. The ESO VLTI at Paranal ESO PR Photo 14a/00
ELTS, interferometers, and hypertelescopes at different wavelengths
Labeyrie, Antoine
2008-04-01
In the way of major new instruments for ground-based optical astronomy, maximizing the science favors a large hypertelescope. If equipped with adaptive optics and a laser guide star, it can provide direct high-resolution images of faint extra-galactic and cosmological sources. The signal/(photon noise) ratio is theoretically higher than with interferometer schemes relying upon aperture synthesis, using a few large apertures to reconstruct images. The crowding limit on complex objects, the direct-imaging field, and the dynamic range are also improved with many small apertures. The adaptive phasing of hypertelescopes, achievable on bright stars with modified wave sensing techniques such as "dispersed speckle" analysis, is also achievable on very faint sources with a modified version of a laser guide star. This makes large hypertelescopes capable of observing cosmological deep fields of faint galaxies. Pending space versions, the size of which can in principle reach hundreds and thousands of kilometers, terrestrial hypertelescopes limited in size to one or two kilometers can be built at suitable sites and used efficiently from ultra-violet to millimeter wavelengths. Some sites can allow the coupling of a hypertelescope with an ELT, an alternate option which can also be efficient for imaging deep fields with a high-resolution.
The GREGOR Fabry-P\\'erot Interferometer
Puschmann, K G; Kneer, F; Erdogan, N Al; Balthasar, H; Bauer, S M; Beck, C; González, N Bello; Collados, M; Hahn, T; Hirzberger, J; Hofmann, A; Louis, R E; Nicklas, H; Okunev, O; Pillet, V Martínez; Popow, E; Seelemann, T; Volkmer, R; Wittmann, A D; Woche, M
2012-01-01
The GREGOR Fabry-P\\'erot Interferometer (GFPI) is one of three first-light instruments of the German 1.5-meter GREGOR solar telescope at the Observatorio del Teide, Tenerife, Spain. The GFPI uses two tunable etalons in collimated mounting. Thanks to its large-format, high-cadence CCD detectors with sophisticated computer hard- and software it is capable of scanning spectral lines with a cadence that is sufficient to capture the dynamic evolution of the solar atmosphere. The field-of-view (FOV) of 50" x 38" is well suited for quiet Sun and sunspot observations. However, in the vector spectropolarimetric mode the FOV reduces to 25" x 38". The spectral coverage in the spectroscopic mode extends from 530-860 nm with a theoretical spectral resolution R of about 250,000, whereas in the vector spectropolarimetric mode the wavelength range is at present limited to 580-660 nm. The combination of fast narrow-band imaging and post-factum image restoration has the potential for discovery science concerning the dynamic Su...
FIRI - a Far-Infrared Interferometer
Helmich, Frank
2007-01-01
Half of the energy ever emitted by stars and accreting objects comes to us in the FIR waveband and has yet to be properly explored. We propose a powerful Far-InfraRed Interferometer mission, FIRI, to carry out high-resolution imaging spectroscopy in the FIR. This key observational capability is essential to reveal how gas and dust evolve into stars and planets, how the first luminous objects in the Universe ignited, how galaxies formed, and when super-massive black holes grew. FIRI will disentangle the cosmic histories of star formation and accretion onto black holes and will trace the assembly and evolution of quiescent galaxies like our Milky Way. Perhaps most importantly, FIRI will observe all stages of planetary system formation and recognise Earth-like planets that may harbour life, via its ability to image the dust structures in planetary systems. It will thus address directly questions fundamental to our understanding of how the Universe has developed and evolved - the very questions posed by ESA's Cos...
A Quasioptical Vector Interferometer for Polarization Control
Chuss, David T.; Wollack, Edward J.; Moseley, Harvey S.; Novak, Giles
2005-01-01
We present a mathematical description of a Quasioptical Vector Interferometer (QVI), a device that maps an input polarization state to an output polarization state by introducing a phase delay between two linear orthogonal components of the input polarization. The advantages of such a device over a spinning wave-plate modulator for measuring astronomical polarization in the far-infrared through millimeter are: 1. The use of small, linear motions eliminates the need for cryogenic rotational bearings, 2. The phase flexibility allows measurement of Stokes V as well as Q and U, and 3. The QVI allows for both multi-wavelength and broadband modulation. We suggest two implementations of this device as an astronomical polarization modulator. The first involves two such modulators placed in series. By adjusting the two phase delays, it is possible to use such a modulator to measure Stokes Q, U, and V for passbands that are not too large. Conversely, a single QVI may be used to measure Q and V independent of frequency. In this implementation, Stokes U must be measured by rotating the instrument. We conclude this paper by presenting initial laboratory results.
Holomorphic Dynamics and Herman Rings
DEFF Research Database (Denmark)
Henriksen, Christian
1997-01-01
Existence theorem for Herman Rings of holomorphic mappings in a certain holomorphic family is given, using quasiconformal mappings. Proofs of topological properties of these Herman rings are given.......Existence theorem for Herman Rings of holomorphic mappings in a certain holomorphic family is given, using quasiconformal mappings. Proofs of topological properties of these Herman rings are given....
Implementation of Nonlinear Control Laws for an Optical Delay Line
Hench, John J.; Lurie, Boris; Grogan, Robert; Johnson, Richard
2000-01-01
This paper discusses the implementation of a globally stable nonlinear controller algorithm for the Real-Time Interferometer Control System Testbed (RICST) brassboard optical delay line (ODL) developed for the Interferometry Technology Program at the Jet Propulsion Laboratory. The control methodology essentially employs loop shaping to implement linear control laws. while utilizing nonlinear elements as means of ameliorating the effects of actuator saturation in its coarse, main, and vernier stages. The linear controllers were implemented as high-order digital filters and were designed using Bode integral techniques to determine the loop shape. The nonlinear techniques encompass the areas of exact linearization, anti-windup control, nonlinear rate limiting and modal control. Details of the design procedure are given as well as data from the actual mechanism.
Periodic nonlinearity resulting from ghost reflections in heterodyne interferometry
Wu, Chien-ming
2003-01-01
Periodic nonlinearity is a systematic error limiting the accuracy of displacement measurements at the nanometer level. It results from many causes such as frequency mixing, polarization mixing, polarization-frequency mixing, and ghost reflections. The purpose of this paper is to study the periodic nonlinearity resulting from ghost reflections, which has not been investigated before. A generalized scheme of interferometer, which is free of frequency and polarization mixings, is used in the study. This ensures that the residual periodic nonlinearity is from the ghost reflections only. In this paper, a general form of periodic nonlinearity and a model including two kinds of ghost reflections, one with the same frequency and the other with two frequencies, are presented. The model is verified by experimental results.
Development of a combined optical and x-ray interferometer (COXI) system for nanometrology
Yim, Noh B.; Kim, Min Seok; Eom, Cheon I.
1998-07-01
In the COXI (Combined Optical and X-ray Interferometer) system, optical and x-ray interferometers are combined to provide a means for the calibration of transducers with the traceability to the standards of length in the sub-nanometer region. The COXI mainly comprises a laser interferometer, an x-ray interferometer, and a precision translation stage. The laser interferometer used for the COXI instrument was a Michelson type, differential heterodyne interferometer having common optical path. A monolithic x-ray interferometer was made from a silicon single crystal. We have designed a control procedure to operate the COXI instrument for the calibration of nano-transducers and developed a phase demodulator for use with the laser interferometer. The bandwidth, phase resolution, and the measurement uncertainty of the interferometer were found 1 kHz, 0.01 degree, and 0.1 degree, respectively.
Iguchi, Hideo
2010-01-01
Previously the five dimensional $S^1$-rotating black rings have been superposed in concentric way by some solitonic methods and regular systems of two $S^1$-rotating black rings were constructed by the authors and then Evslin and Krishnan (we called these solutions black di-rings). In this place we show some characteristics of the solutions of five dimensional black di-rings, especially in thermodynamic equilibrium. After the summary of the di-ring expressions and their physical quantities, first we comment on the equivalence of the two different solution-sets of the black di-rings. Then the existence of thermodynamic black di-rings are shown, in which both iso-thermality and iso-rotation between the inner black ring and the outer black ring are realized. We also give detailed analysis of peculiar properties of the thermodynamic black di-ring including discussion about a certain kind of thermodynamic stability (instability) of the system.
Ringed accretion disks: equilibrium configurations
Pugliese, D
2015-01-01
We investigate a model of ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the General Relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can be then determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We pr...
Crary, F. J.
2014-04-01
Saturn's main rings orbit the planet within an atmosphere and ionosphere of water, oxygen and hydrogen, produced by meteoritic impacts on and ultraviolet photodesorbtion of the ring particles [Johnson et al., 2006; Luhmann et al., 2006; Tseng et al., 2010]. The neutral atmosphere itself has only been tentatively detected through ultraviolet fluorescents of OH [Hall et al., 1996] while the ionosphere was observed in situ by the Cassini spacecraft shortly after orbital insertion [Coates et al.,2005; Tokar et al. 2005, Waite et al. 2005]. Although the plasma flow velocity of this ionosphere is not well-constrained, but the close association with the rings suggests that its speed would be couppled to the keplarian velocity of the rings themselves. As a result, the motion of the plasma through Saturn's magnetic field would produce an induced voltage, oriented away from the planet outside synchronous orbit and towards the planet inside synchronous orbit. Such a potential could result in currents flowing across the ring plane and closeing along magnetic field lines and through Saturn's ionosphere at latitudes between 36o and 48o. Cassini observations of whistler-mode plasma wave emissions [Xin et al.,2006] centered on synchronous orbit (1.76 Rs, mapping to 41o latitude) have been interpreted as a product of field-aligned electron beams associated with such a current. This presentation will investigate the magnitude of these currents and the resulting Joule heating of the ionosphere. An important constraint is that no auroral ultraviolet emissions have been observed at the relevant latitudes. In contrast, Joule heating could affect infrared emissions from H3+. Variations in H3+ emission associated with Saturn's rings have been reported by O'Donoghue et al., 2013, and interpreted as a result of ring "rain", i.e. precipitating water group species from the rings which alter ionosphereic chemistry and H3+ densities. As noted by O'Donoghue et al., this interpretation may be
Nonlinear terahertz metamaterials with active electrical control
Keiser, G. R.; Karl, N.; Liu, P. Q.; Tulloss, C.; Chen, H.-T.; Taylor, A. J.; Brener, I.; Reno, J. L.; Mittleman, D. M.
2017-09-01
We present a study of an electrically modulated nonlinear metamaterial consisting of an array of split-ring resonators fabricated on n-type gallium arsenide. The resonant metamaterial nonlinearity appears as an intensity-dependent transmission minimum at terahertz frequencies and arises from the interaction between local electric fields in the split-ring resonator (SRR) capacitive gaps and charge carriers in the n-type substrate. We investigate the active tuning range of the metamaterial device as the incident terahertz field intensity is increased and conversely the effect of an applied DC bias on the terahertz field-induced nonlinear modulation of the metamaterial response. Applying a DC bias to the metamaterial sample alters the nonlinear response and reduces the net nonlinear modulation. Similarly, increasing the incident terahertz field intensity decreases the net modulation induced by an applied DC bias. We interpret these results in terms of DC and terahertz-field-assisted carrier acceleration, scattering, and multiplication processes, highlighting the unique nature of this DC-field modulated terahertz nonlinearity.
2015-01-01
From the Back Cover: The emphasis throughout the present volume is on the practical application of theoretical mathematical models helping to unravel the underlying mechanisms involved in processes from mathematical physics and biosciences. It has been conceived as a unique collection of abstract methods dealing especially with nonlinear partial differential equations (either stationary or evolutionary) that are applied to understand concrete processes involving some important applications re...
Inkpen, Michael S.; Scheerer, Stefan; Linseis, Michael; White, Andrew J. P.; Winter, Rainer F.; Albrecht, Tim; Long, Nicholas J.
2016-09-01
Cyclic oligomers comprising strongly interacting redox-active monomer units represent an unknown, yet highly desirable class of nanoscale materials. Here we describe the synthesis and properties of the first family of molecules belonging to this compound category—differently sized rings comprising only 1,1‧-disubstituted ferrocene units (cyclo[n], n = 5-7, 9). Due to the close proximity and connectivity of centres (covalent Cp-Cp linkages; Cp = cyclopentadienyl) solution voltammograms exhibit well-resolved, separated 1e- waves. Theoretical interrogations into correlations based on ring size and charge state are facilitated using values of the equilibrium potentials of these transitions, as well as their relative spacing. As the interaction free energies between the redox centres scale linearly with overall ring charge and in conjunction with fast intramolecular electron transfer (˜107 s-1), these molecules can be considered as uniformly charged nanorings (diameter ˜1-2 nm).
Vidal L., Francisco V.; Vidal L., Victor M. V.; Molero, José María Pérez
Surface and deep circulation of the central and western Gulf of Mexico is controlled by interactions of rings of water pinched from the gulf's Loop Current. The discovery was made by Mexican oceanographers who are preparing a full-color, 8-volume oceanographic atlas of the gulf.Anticyclonic warm-core rings pinch off the Loop Current at a rate of about one to two per year, the scientists of the Grupo de Estudios Oceanográficos of the Instituto de Investigaciones Eléctricas (GEO-IIE) found. The rings migrate west until they collide with the continental shelf break of the western gulf, almost always between 22° and 23°N latitude. On their westward travel they transfer angular momentum and vorticity to the surrounding water, generating cyclonic circulations and vortex pairs that completely dominate the entire surface and deep circulation of the central and western gulf.
Autocatalytic chemical smoke rings
Rogers, M C; Rogers, Michael C.; Morris, Stephen W.
2005-01-01
Buoyant plumes, evolving free of boundary constraints, may develop well-defined mushroom shaped heads. In normal plumes, overturning flow in the head entrains less buoyant fluid from the surroundings as the head rises, robbing the plume of its driving force. We consider here a new type of plume in which the source of buoyancy is an autocatalytic chemical reaction. The reaction occurs at a sharp front which separates reactants from less dense products. In this type of plume, entrainment assists the reaction, producing new buoyancy which fuels an accelerating plume head. When the head has grown to a critical size, it detaches from the upwelling conduit, forming an accelerating, buoyant vortex ring. This vortex is analogous to a rising smoke ring. A second-generation head then develops at the point of detachment.Multiple generations of chemical vortex rings can detach from a single triggering event.
Chancé, A; Bouquerel, E; Hancock, S; Jensen, E
The study of the neutrino oscillation between its different flavours needs pureand very intense fluxes of high energy, well collimated neutrinos with a welldetermined energy spectrum. A dedicated machine seems to be necessarynowadays to reach the required flux. A new concept based on the β-decayof radioactive ions which were accelerated in an accelerator chain was thenproposed. After ion production, stripping, bunching and acceleration, the unstableions are then stored in a racetrack-shaped superconducting decay ring.Finally, the ions are accumulated in the decay ring until being lost. The incomingbeam is merged to the stored beam by using a specific RF system, whichwill be presented here.We propose here to study some aspects of the decay ring, such as its opticalproperties, its RF system or the management of the losses which occur in thering (mainly by decay or by collimation).
2003-01-01
This book develops thorough and complete foundations for the method of almost etale extensions, which is at the basis of Faltings' approach to p-adic Hodge theory. The central notion is that of an "almost ring". Almost rings are the commutative unitary monoids in a tensor category obtained as a quotient V-Mod/S of the category V-Mod of modules over a fixed ring V; the subcategory S consists of all modules annihilated by a fixed ideal m of V, satisfying certain natural conditions. The reader is assumed to be familiar with general categorical notions, some basic commutative algebra and some advanced homological algebra (derived categories, simplicial methods). Apart from these general prerequisites, the text is as self-contained as possible. One novel feature of the book - compared with Faltings' earlier treatment - is the systematic exploitation of the cotangent complex, especially for the study of deformations of almost algebras.
Institute of Scientific and Technical Information of China (English)
Somyot Plubtieng
2003-01-01
A module M is called a CS-module (or extending module [5]) if every submodule of M is essential in a direct summand of M. It is shown that (i) a simple ring R is right noetherian if and only if every cyclic singular right R-module is either a CS-module or a noetherian module; (ii) for a prime ring R, if every proper cyclic right R-module is a direct sum of a quasi-injective module and a finitely cogenerated module, then R is either semisimple artinian or a right Ore domain; and (iii) a prime ring R is right noetherian if and only if every cyclic right R-module is a direct sum of a quasi-injective module and a noetherian module.
Institute of Scientific and Technical Information of China (English)
ZHAO Liu
2007-01-01
Hawking radiation of black ring solutions to 5-dimensional Einstein-Maxwell-dilaton theory is analyzed by use of the Parikh-Wilczek tunneling method. To get the correct tunneling amplitude and emission rate, we adopt and develop the Angheben-Nadalini-Vanzo-Zerbini covariant approach to cover the effects of rotation and electronic discharge all at once, and the effect of back reaction is also taken into account. This constitutes a unified approach to the tunneling problem. Provided the first law of thermodynamics for black rings holds, the emission rate is proportional to the exponential of the change of Bekenstein-Hawking entropy. Explicit calculation for black ring temperatures agrees exactly with the results obtained via the classical surface gravity method and the quasi-local formalism.
Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.; Lin, Gregory Y.
2014-01-01
Deployable Fresnel rings (DFRs) significantly enhance the realizable gain of an antenna. This innovation is intended to be used in combination with another antenna element, as the DFR itself acts as a focusing or microwave lens element for a primary antenna. This method is completely passive, and is also completely wireless in that it requires neither a cable, nor a connector from the antenna port of the primary antenna to the DFR. The technology improves upon the previous NASA technology called a Tri-Sector Deployable Array Antenna in at least three critical aspects. In contrast to the previous technology, this innovation requires no connector, cable, or other physical interface to the primary communication radio or sensor device. The achievable improvement in terms of antenna gain is significantly higher than has been achieved with the previous technology. Also, where previous embodiments of the Tri-Sector antenna have been constructed with combinations of conventional (e.g., printed circuit board) and conductive fabric materials, this innovation is realized using only conductive and non-conductive fabric (i.e., "e-textile") materials, with the possible exception of a spring-like deployment ring. Conceptually, a DFR operates by canceling the out-of-phase radiation at a plane by insertion of a conducting ring or rings of a specific size and distance from the source antenna, defined by Fresnel zones. Design of DFRs follow similar procedures to those outlined for conventional Fresnel zone rings. Gain enhancement using a single ring is verified experimentally and through computational simulation. The experimental test setup involves a microstrip patch antenna that is directly behind a single-ring DFR and is radiating towards a second microstrip patch antenna. The first patch antenna and DFR are shown. At 2.42 GHz, the DFR improves the transmit antenna gain by 8.6 dB, as shown in Figure 2, relative to the wireless link without the DFR. A figure illustrates the
Spin Filter Based on an Aharonov-Bohm Interferometer with Rashba Spin-Orbit Effect
Institute of Scientific and Technical Information of China (English)
FANG Ming; SUN Lian-Liang
2008-01-01
We propose a spin filter based on both the quantum interference and the Rashba spin-orbit (RSO) effects. This spin filter consists of a Aharonov-Bohm (AB) interferometer with two quantum dots (QDs) inserted in its arms.The influences of a magnetic flux ψ threading through the AB ring and the RSO interaction inside the two QDs are taken into account by using the nonequilibrium Green's function technique. Due to the existence of the RSO interaction, the electrons flowing through different arms of the ring will acquire a spin-dependent phase factor in the linewidth matrix elements. This phase factor, combined with the influence of the magnetic flux, will induce a spin-dependent electron transport through the device. Moreover, we show that by tuning the magnetic flux,the RSO strength and the inter-dot tunnelling coupling strength, a pure spin-up or spin-down conductance can be obtained when a spin-unpolarized current is injected from the external leads, which can be used to filter the electron spin.