WorldWideScience

Sample records for nonlinear response functions

  1. Nonlinearity of dose-response functions for carcinogenicity.

    OpenAIRE

    Hoel, D G; Portier, C J

    1994-01-01

    Carcinogenesis data for 315 chemicals were obtained from the National Cancer Institute-National Toxicology Program (NCI-NTP) bioassay programs and were analyzed to examine the shape of carcinogenesis dose-response curves. Tumor site data were more often consistent with a quadratic response than with a linear response, suggesting that the routine use of linear dose-response models will often overestimate risk. Information from in vivo short-term mutagenicity and genotoxicity assays was also ob...

  2. Scaling of ac susceptibility and the nonlinear response function of high-temperature superconductors

    Institute of Scientific and Technical Information of China (English)

    CHEN; Kaixuan; NING; Zhenhua; XU; Hengyi; QI; Zhi; LU; Guo

    2005-01-01

    The amplitude-dependent ac susceptibility of high-temperature superconductors is shown to obey some empirical scaling relations. We try to analyze this behavior by extending a dc nonlinear response function of mixed state to the ac cases. The derived equations for critical current and ac susceptibility x(T) agree with the scaling relations of experimental data.

  3. Equivalent Dynamic Stiffness Mapping technique for identifying nonlinear structural elements from frequency response functions

    Science.gov (United States)

    Wang, X.; Zheng, G. T.

    2016-02-01

    A simple and general Equivalent Dynamic Stiffness Mapping technique is proposed for identifying the parameters or the mathematical model of a nonlinear structural element with steady-state primary harmonic frequency response functions (FRFs). The Equivalent Dynamic Stiffness is defined as the complex ratio between the internal force and the displacement response of unknown element. Obtained with the test data of responses' frequencies and amplitudes, the real and imaginary part of Equivalent Dynamic Stiffness are plotted as discrete points in a three dimensional space over the displacement amplitude and the frequency, which are called the real and the imaginary Equivalent Dynamic Stiffness map, respectively. These points will form a repeatable surface as the Equivalent Dynamic stiffness is only a function of the corresponding data as derived in the paper. The mathematical model of the unknown element can then be obtained by surface-fitting these points with special functions selected by priori knowledge of the nonlinear type or with ordinary polynomials if the type of nonlinearity is not pre-known. An important merit of this technique is its capability of dealing with strong nonlinearities owning complicated frequency response behaviors such as jumps and breaks in resonance curves. In addition, this technique could also greatly simplify the test procedure. Besides there is no need to pre-identify the underlying linear parameters, the method uses the measured data of excitation forces and responses without requiring a strict control of the excitation force during the test. The proposed technique is demonstrated and validated with four classical single-degree-of-freedom (SDOF) numerical examples and one experimental example. An application of this technique for identification of nonlinearity from multiple-degree-of-freedom (MDOF) systems is also illustrated.

  4. Permanence of Periodic Predator-Prey System with General Nonlinear Functional Response and Stage Structure for Both Predator and Prey

    Directory of Open Access Journals (Sweden)

    Xuming Huang

    2009-01-01

    Full Text Available We study the permanence of periodic predator-prey system with general nonlinear functional responses and stage structure for both predator and prey and obtain that the predator and the prey species are permanent.

  5. Nonlinear functional response parameter estimation in a stochastic predator-prey model.

    Science.gov (United States)

    Gilioli, Gianni; Pasquali, Sara; Ruggeri, Fabrizio

    2012-01-01

    Parameter estimation for the functional response of predator-prey systems is a critical methodological problem in population ecology. In this paper we consider a stochastic predator-prey system with non-linear Ivlev functional response and propose a method for model parameter estimation based on time series of field data. We tackle the problem of parameter estimation using a Bayesian approach relying on a Markov Chain Monte Carlo algorithm. The efficiency of the method is tested on a set of simulated data. Then, the method is applied to a predator-prey system of importance for Integrated Pest Management and biological control, the pest mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. The model is estimated on a dataset obtained from a field survey. Finally, the estimated model is used to forecast predator-prey dynamics in similar fields, with slightly different initial conditions.

  6. A fast continuation scheme for accurate tracing of nonlinear oscillator frequency response functions

    Science.gov (United States)

    Chen, Guoqiang; Dunne, J. F.

    2016-12-01

    A new algorithm is proposed to combine the split-frequency harmonic balance method (SF-HBM) with arc-length continuation (ALC) for accurate tracing of the frequency response of oscillators with non-expansible nonlinearities. ALC is incorporated into the SF-HBM in a two-stage procedure: Stage I involves finding a reasonably accurate response frequency and solution using a relatively large number of low-frequency harmonics. This step is achieved using the SF-HBM in conjunction with ALC. Stage II uses the SF-HBM to obtain a very accurate solution at the frequency obtained in Stage I. To guarantee rapid path tracing, the frequency axis is appropriately subdivided. This gives high chance of success in finding a globally optimum set of harmonic coefficients. When approaching a turning point however, arc-lengths are adaptively reduced to obtain a very accurate solution. The combined procedure is tested on three hardening stiffness examples: a Duffing model; an oscillator with non-expansible stiffness and single harmonic forcing; and an oscillator with non-expansible stiffness and multiple-harmonic forcing. The results show that for non-expansible nonlinearities and multiple-harmonic forcing, the proposed algorithm is capable of tracing-out frequency response functions with high accuracy and efficiency.

  7. Nonlinear functional analysis

    Directory of Open Access Journals (Sweden)

    W. L. Fouché

    1983-03-01

    Full Text Available In this article we discuss some aspects of nonlinear functional analysis. It included reviews of Banach’s contraction theorem, Schauder’s fixed point theorem, globalising techniques and applications of homotopy theory to nonlinear functional analysis. The author emphasises that fundamentally new ideas are required in order to achieve a better understanding of phenomena which contain both nonlinear and definite infinite dimensional features.

  8. Classical density-functional theory of inhomogeneous water including explicit molecular structure and nonlinear dielectric response.

    Science.gov (United States)

    Lischner, Johannes; Arias, T A

    2010-02-11

    We present an accurate free-energy functional for liquid water written in terms of a set of effective potential fields in which fictitious noninteracting water molecules move. The functional contains an exact expression of the entropy of noninteracting molecules and thus provides an ideal starting point for the inclusion of complex intermolecular interactions which depend on the orientation of the interacting molecules. We show how an excess free-energy functional can be constructed to reproduce the following properties of water: the dielectric response; the experimental site-site correlation functions; the surface tension; the bulk modulus of the liquid and the variation of this modulus with pressure; the density of the liquid and the vapor phase; and liquid-vapor coexistence. As a demonstration, we present results for the application of this theory to the behavior of liquid water in a parallel plate capacitor. In particular, we make predictions for the dielectric response of water in the nonlinear regime, finding excellent agreement with known data.

  9. A diffusive virus infection dynamic model with nonlinear functional response, absorption effect and chemotaxis

    Science.gov (United States)

    Wang, Wei; Ma, Wanbiao; Lai, Xiulan

    2017-01-01

    From a biological perspective, a diffusive virus infection dynamic model with nonlinear functional response, absorption effect and chemotaxis is proposed. In the model, the diffusion of virus consists of two parts, the random diffusion and the chemotactic movement. The chemotaxis flux of virus depends not only on their own density, but also on the density of infected cells, and the density gradient of infected cells. The well posedness of the proposed model is deeply investigated. For the proposed model, the linear stabilities of the infection-free steady state E0 and the infection steady state E* are extensively performed. We show that the threshold dynamics can be expressed by the basic reproduction number R0 of the model without chemotaxis. That is, the infection-free steady state E0 is globally asymptotically stable if R0 virus is uniformly persistent if R0 > 1. In addition, we use the cross iteration method and the Schauder's fixed point theorem to prove the existence of travelling wave solutions connecting the infection-free steady state E0 and the infection steady state E* by constructing a pair of upper-lower solutions. At last, numerical simulations are presented to confirm theoretical findings.

  10. The impact of nonlinear functional responses on the long-term evolution of food web structure.

    Science.gov (United States)

    Drossel, Barbara; McKane, Alan J; Quince, Christopher

    2004-08-21

    We investigate the long-term web structure emerging in evolutionary food web models when different types of functional responses are used. We find that large and complex webs with several trophic layers arise only if the population dynamics is such that it allows predators to focus on their best prey species. This can be achieved using modified Lotka-Volterra or Holling/Beddington functional responses with effective couplings that depend on the predator's efficiency at exploiting the prey, or a ratio-dependent functional response with adaptive foraging. In contrast, if standard Lotka-Volterra or Holling/Beddington functional responses are used, long-term evolution generates webs with almost all species being basal, and with additionally many links between these species. Interestingly, in all cases studied, a large proportion of weak links result naturally from the evolution of the food webs.

  11. Optical nonlinear response function with linear and diagonal quadratic electron-vibration coupling in mixed quantum-classical systems.

    Science.gov (United States)

    Toutounji, Mohamad

    2005-03-22

    While an optical linear response function of linearly and quadratically coupled mixed quantum-classical condensed-phase systems was derived by Toutounji [J. Chem. Phys. 121, 2228 (2004)], the corresponding analytical optical line shape is derived. The respective nonlinear correlation functions are also derived. Model calculations involving photon-echo, pump-probe, and hole-burning signals of model systems with both linear and quadratic coupling are provided. Hole-burning formula of Hayes-Small is compared to that of Mukamel in mixed quantum-classical systems.

  12. Non-linear analysis of body responses to functional electrical stimulation on hemiplegic subjects.

    Science.gov (United States)

    Yu, W W; Acharya, U R; Lim, T C; Low, H W

    2009-08-01

    Functional electrical stimulation (FES) is a method of applying low-level electrical currents to restore or improve body functions lost through nervous system impairment. FES is applied to peripheral nerves that control specific muscles or muscle groups. Application of advanced signal computing techniques to the medical field has helped to achieve practical solutions to the health care problems accurately. The physiological signals are essentially non-stationary and may contain indicators of current disease, or even warnings about impending diseases. These indicators may be present at all times or may occur at random on the timescale. However, to study and pinpoint these subtle changes in the voluminous data collected over several hours is tedious. These signals, e.g. walking-related accelerometer signals, are not simply linear and involve non-linear contributions. Hence, non-linear signal-processing methods may be useful to extract the hidden complexities of the signal and to aid physicians in their diagnosis. In this work, a young female subject with major neuromuscular dysfunction of the left lower limb, which resulted in an asymmetric hemiplegic gait, participated in a series of FES-assisted walking experiments. Two three-axis accelerometers were attached to her left and right ankles and their corresponding signals were recorded during FES-assisted walking. The accelerometer signals were studied in three directions using the Hurst exponent H, the fractal dimension (FD), the phase space plot, and recurrence plots (RPs). The results showed that the H and FD values increase with increasing FES, indicating more synchronized variability due to FES for the left leg (paralysed leg). However, the variation in the normal right leg is more chaotic on FES.

  13. Do Quercus ilex woodlands undergo abrupt non-linear functional changes in response to human disturbance along a climatic gradient?

    Science.gov (United States)

    Bochet, Esther; García-Fayos, Patricio; José Molina, Maria; Moreno de las Heras, Mariano; Espigares, Tíscar; Nicolau, Jose Manuel; Monleon, Vicente

    2017-04-01

    Theoretical models predict that drylands are particularly prone to suffer critical transitions with abrupt non-linear changes in their structure and functions as a result of the existing complex interactions between climatic fluctuations and human disturbances. However, so far, few studies provide empirical data to validate these models. We aim at determining how holm oak (Quercus ilex) woodlands undergo changes in their functions in response to human disturbance along an aridity gradient (from semi-arid to sub-humid conditions), in eastern Spain. For that purpose, we used (a) remote-sensing estimations of precipitation-use-efficiency (PUE) from enhanced vegetation index (EVI) observations performed in 231x231 m plots of the Moderate Resolution Imaging Spectroradiometer (MODIS); (b) biological and chemical soil parameter determinations (extracellular soil enzyme activity, soil respiration, nutrient cycling processes) from soil sampled in the same plots; (c) vegetation parameter determinations (ratio of functional groups) from vegetation surveys performed in the same plots. We analyzed and compared the shape of the functional change (in terms of PUE and soil and vegetation parameters) in response to human disturbance intensity for our holm oak sites along the aridity gradient. Overall, our results evidenced important differences in the shape of the functional change in response to human disturbance between climatic conditions. Semi-arid areas experienced a more accelerated non-linear decrease with an increasing disturbance intensity than sub-humid ones. The proportion of functional groups (herbaceous vs. woody cover) played a relevant role in the shape of the functional response of the holm oak sites to human disturbance.

  14. Distributed nonlinear optical response

    DEFF Research Database (Denmark)

    Nikolov, Nikola Ivanov

    2005-01-01

    The purpose of the research presented here is to investigate basic physical properties in nonlinear optical materials with delayed or nonlocal nonlinearity. Soliton propagation, spectral broadening and the influence of the nonlocality or delay of the nonlinearity are the main focusses in the work...

  15. Non-linear optical properties of molecules in heterogeneous environments: a quadratic density functional/molecular mechanics response theory.

    Science.gov (United States)

    Rinkevicius, Zilvinas; Li, Xin; Sandberg, Jaime A R; Ågren, Hans

    2014-05-21

    We generalize a density functional theory/molecular mechanics approach for heterogeneous environments with an implementation of quadratic response theory. The updated methodology allows us to address a variety of non-linear optical, magnetic and mixed properties of molecular species in complex environments, such as combined metallic, solvent and confined organic environments. Illustrating calculations of para-nitroaniline on gold surfaces and in solution reveals a number of aspects that come into play when analyzing second harmonic generation of such systems--such as surface charge flow, coupled surface-solvent dynamics and induced geometric and electronic structure effects of the adsorbate. Some ramifications of the methodology for applied studies are discussed.

  16. Topics on nonlinear generalized functions

    CERN Document Server

    Colombeau, J F

    2011-01-01

    The aim of this paper is to give the text of a recent introduction to nonlinear generalized functions exposed in my talk in the congress gf2011, which was asked by several participants. Three representative topics were presented: two recalls "Nonlinear generalized functions and their connections with distribution theory", "Examples of applications", and a recent development: "Locally convex topologies and compactness: a functional analysis of nonlinear generalized functions".

  17. Nonlinear functional analysis

    CERN Document Server

    Deimling, Klaus

    1985-01-01

    topics. However, only a modest preliminary knowledge is needed. In the first chapter, where we introduce an important topological concept, the so-called topological degree for continuous maps from subsets ofRn into Rn, you need not know anything about functional analysis. Starting with Chapter 2, where infinite dimensions first appear, one should be familiar with the essential step of consider­ ing a sequence or a function of some sort as a point in the corresponding vector space of all such sequences or functions, whenever this abstraction is worthwhile. One should also work out the things which are proved in § 7 and accept certain basic principles of linear functional analysis quoted there for easier references, until they are applied in later chapters. In other words, even the 'completely linear' sections which we have included for your convenience serve only as a vehicle for progress in nonlinearity. Another point that makes the text introductory is the use of an essentially uniform mathematical languag...

  18. A generalized nonlinear tempeature response function for some growth and developmental parameters in kiwifruit (Actinidia deliciosa (A. Chev. C. F. Liang & A. R. Ferguson

    Directory of Open Access Journals (Sweden)

    Streck Nereu Augusto

    2003-01-01

    Full Text Available Temperature is a major factor that affects metabolic processes in living organisms. Thermal time has been widely used to account for the effects of temperature on crop growth and development. However, the thermal time approach has been criticized because it assumes a linear relationship between the rate of crop growth or development and temperature. The response of the rate of crop growth and development to temperature is nonlinear. The objective of this study was to develop a generalized nonlinear temperature response function for some growth and developmental parameters in kiwifruit (Actinidia deliciosa (A. Chev. C. F. Liang & A. R. Ferguson. The nonlinear function has three coefficients (the cardinal temperatures, which were 0ºC, 25ºC, and 40ºC. Data of temperature response of relative growth rate, relative leaf area growth, net photosynthesis rate, and leaf appearance rate in kiwifruit (female cv. Hayward at two light levels, which are from published research, were used as independent data for evaluating the performance of the nonlinear and the thermal time functions. The results showed that the generalized nonlinear response function is better than the thermal time approach, and the temperature response of several growth and developmental parameters in kiwifruit can be described with the same response function.

  19. Nonlinearities in vegetation functioning

    Science.gov (United States)

    Ceballos-Núñez, Verónika; Müller, Markus; Metzler, Holger; Sierra, Carlos

    2016-04-01

    Given the current drastic changes in climate and atmospheric CO2 concentrations, and the role of vegetation in the global carbon cycle, there is increasing attention to the carbon allocation component in biosphere terrestrial models. Improving the representation of C allocation in models could be the key to having better predictions of the fate of C once it enters the vegetation and is partitioned to C pools of different residence times. C allocation has often been modeled using systems of ordinary differential equations, and it has been hypothesized that most models can be generalized with a specific form of a linear dynamical system. However, several studies have highlighted discrepancies between empirical observations and model predictions, attributing these differences to problems with model structure. Although efforts have been made to compare different models, the outcome of these qualitative assessments has been a conceptual categorization of them. In this contribution, we introduce a new effort to identify the main properties of groups of models by studying their mathematical structure. For this purpose, we performed a literature research of the relevant models of carbon allocation in vegetation and developed a database with their representation in symbolic mathematics. We used the Python package SymPy for symbolic mathematics as a common language and manipulated the models to calculate their Jacobian matrix at fixed points and their eigenvalues, among other mathematical analyses. Our preliminary results show a tendency of inverse proportionality between model complexity and size of time/space scale; complex interactions between the variables controlling carbon allocation in vegetation tend to operate at shorter time/space scales, and vice-versa. Most importantly, we found that although the linear structure is common, other structures with non-linearities have been also proposed. We, therefore, propose a new General Model that can accommodate these

  20. Bacteriorhodopsin: Tunable Optical Nonlinear Magnetic Response

    CERN Document Server

    Bovino, F A; Sibilia, C; Giardina, M; Váró, G; Gergely, C

    2011-01-01

    We report on a strong and tunable magnetic optical nonlinear response of Bacteriorhodopsin (BR) under "off resonance" femtosecond (fs) pulse excitation, by detecting the polarization map of the noncollinear second harmonic signal of an oriented BR film, as a function of the input beam power. BR is a light-driven proton pump with a unique photochemistry initiated by the all trans retinal chromophore embedded in the protein. An elegant application of this photonic molecular machine has been recently found in the new area of optogenetics, where genetic expression of BR in brain cells conferred a light responsivity to the cells enabling thus specific stimulation of neurons. The observed strong tunable magnetic nonlinear response of BR might trigger promising applications in the emerging area of pairing optogenetics and functional magnetic resonance imaging susceptible to provide an unprecedented complete functional mapping of neural circuits.

  1. Topics in nonlinear functional analysis

    CERN Document Server

    Nirenberg, Louis

    2001-01-01

    Since its first appearance as a set of lecture notes published by the Courant Institute in 1974, this book served as an introduction to various subjects in nonlinear functional analysis. The current edition is a reprint of these notes, with added bibliographic references. Topological and analytic methods are developed for treating nonlinear ordinary and partial differential equations. The first two chapters of the book introduce the notion of topological degree and develop its basic properties. These properties are used in later chapters in the discussion of bifurcation theory (the possible br

  2. Plant functional trait diversity regulates the nonlinear response of productivity to regional climate change in Tibetan alpine grasslands

    Science.gov (United States)

    Wu, Jianshuang; Wurst, Susanne; Zhang, Xianzhou

    2016-01-01

    The biodiversity-productivity relationship is still under debate for alpine grasslands on the Tibetan Plateau. We know little about direct and indirect effects of biotic and abiotic drivers on this relationship, especially in regard to plant functional trait diversity. Here, we examine how aboveground net primary productivity (ANPP) and precipitation use efficiency (PUE) respond to climate, soil and community structure across alpine grasslands on the Northern Tibetan Plateau. We found that both ANPP and PUE showed nonlinear patterns along water availability and site altitude variation, which together accounted for 80.3% and 68.8% of variation in ANPP and PUE, respectively, by optimal generalized additive models. Functional trait divergence (FTD) and community weighted mean (CWM) of plant functional traits were as important as plant species diversity (PSD) for explaining the nonlinear productivity-climate relationship. These findings were confirmed by results from principal component analyses and structural equation models. We also found that FTD was negatively correlated with PSD across different alpine grasslands. Our results implicate: first, the combinatorial influences of temperature and precipitation gradients are important for predicting alpine grassland dynamics; second, the convergence and divergence of plant functional traits may have the potential to elucidate the effect of plant diversity on ecosystem functionality. PMID:27759112

  3. Plant functional trait diversity regulates the nonlinear response of productivity to regional climate change in Tibetan alpine grasslands.

    Science.gov (United States)

    Wu, Jianshuang; Wurst, Susanne; Zhang, Xianzhou

    2016-10-19

    The biodiversity-productivity relationship is still under debate for alpine grasslands on the Tibetan Plateau. We know little about direct and indirect effects of biotic and abiotic drivers on this relationship, especially in regard to plant functional trait diversity. Here, we examine how aboveground net primary productivity (ANPP) and precipitation use efficiency (PUE) respond to climate, soil and community structure across alpine grasslands on the Northern Tibetan Plateau. We found that both ANPP and PUE showed nonlinear patterns along water availability and site altitude variation, which together accounted for 80.3% and 68.8% of variation in ANPP and PUE, respectively, by optimal generalized additive models. Functional trait divergence (FTD) and community weighted mean (CWM) of plant functional traits were as important as plant species diversity (PSD) for explaining the nonlinear productivity-climate relationship. These findings were confirmed by results from principal component analyses and structural equation models. We also found that FTD was negatively correlated with PSD across different alpine grasslands. Our results implicate: first, the combinatorial influences of temperature and precipitation gradients are important for predicting alpine grassland dynamics; second, the convergence and divergence of plant functional traits may have the potential to elucidate the effect of plant diversity on ecosystem functionality.

  4. Plant functional trait diversity regulates the nonlinear response of productivity to regional climate change in Tibetan alpine grasslands

    Science.gov (United States)

    Wu, Jianshuang; Wurst, Susanne; Zhang, Xianzhou

    2016-10-01

    The biodiversity-productivity relationship is still under debate for alpine grasslands on the Tibetan Plateau. We know little about direct and indirect effects of biotic and abiotic drivers on this relationship, especially in regard to plant functional trait diversity. Here, we examine how aboveground net primary productivity (ANPP) and precipitation use efficiency (PUE) respond to climate, soil and community structure across alpine grasslands on the Northern Tibetan Plateau. We found that both ANPP and PUE showed nonlinear patterns along water availability and site altitude variation, which together accounted for 80.3% and 68.8% of variation in ANPP and PUE, respectively, by optimal generalized additive models. Functional trait divergence (FTD) and community weighted mean (CWM) of plant functional traits were as important as plant species diversity (PSD) for explaining the nonlinear productivity-climate relationship. These findings were confirmed by results from principal component analyses and structural equation models. We also found that FTD was negatively correlated with PSD across different alpine grasslands. Our results implicate: first, the combinatorial influences of temperature and precipitation gradients are important for predicting alpine grassland dynamics; second, the convergence and divergence of plant functional traits may have the potential to elucidate the effect of plant diversity on ecosystem functionality.

  5. Intrinsic nonlinear response of surface plasmon polaritons

    CERN Document Server

    Im, Song-Jin; Kim, Gum-Hyok

    2015-01-01

    We offer a model to describe the intrinsic nonlinear response of surface plasmon polaritons (SPPs). Relation of the complex nonlinear coefficient of SPPs to the third-order nonlinear susceptibility of the metal is provided. As reported in a recent study, gold is highly lossy and simultaneously highly nonlinear due to interband absorption and interband thermo-modulation at a wavelength shorter than 700 nm. The effect of the high loss of the metal on the SPP nonlinear propagation is taken into account in our model. With the model we show difference in sign of real and imaginary parts between the nonlinear propagation coefficient and the nonlinear susceptibility of component material for the first time to our knowledge. Our model could have practical importance in studying plasmonic devices utilizing the nonlinear phase modulation and the nonlinear absorption of SPPs. For example, it allows one to extract the complex nonlinear susceptibility of gold through a measurement of SPP nonlinear propagation at the visib...

  6. Semiclassical mode-coupling factorizations of coherent nonlinear optical response

    NARCIS (Netherlands)

    Jansen, TL; Mukamel, S

    2003-01-01

    The identification of relevant collective coordinates is crucial for the interpretation of coherent nonlinear spectroscopies of complex molecules and liquids. Using an h expansion of Liouville space generating functions, we show how to factorize multitime nonlinear response functions into products o

  7. Effect of -OH functionalization, C2 methylation, and high radiation fields on the non-linear optical response of imidazolium ionic liquids

    Science.gov (United States)

    Namboodiri, Vinu V.; Guleria, Apurav; Singh, Ajay K.

    2017-04-01

    Considering the impending applications of room temperature ionic liquids (RTILs) in various areas involving high optical and radiation fields, it is pertinent to probe the structure-property correlation of these solvents exposed to such conditions. Herein, femtosecond Z-scan technique (at high pulse repetition rate, 80 MHz) was employed to investigate the non-linear optical response of imidazolium RTILs in 3 scenarios: (1) -OH functionalization, (2) C2 methylation, and (3) influence of high radiation fields. Large negative non-linear refractive values ( n 2) were observed in all the RTIL samples and have been attributed predominantly due to the thermal effects. In order to isolate and determine the contribution of electronic Kerr effect, the Z-scan experiments were also carried out at low pulse repetition rate (i.e. 500 Hz) by means of a mechanical chopper. The closed aperture transmittance profile showed the valley-peak pattern, which signifies positive non-linearity. Nonetheless, the variation in the n2 values of the RTILs follows the same trend in low pulse repetition rate as was observed in case of high pulse repetition rate. The trend in the n 2 values clearly showed the decrease in the non-linearity in the first two cases and has been attributed to the weakening of the ion-pair formation, which adversely affects the charge transfer between the ionic moieties via C2 position. However, an increase in the n 2 values was observed in case of ILs irradiated to high radiation doses. This enhancement in the non-linearity has been assigned to the formation of double bond order radiolytic products. These results clearly indicate a strong correlation between the non-linearity and the strength of cation-anion interaction amongst them. Therefore, such information about these solvents may significantly contribute to the fundamental understanding of their structure-property relationships.

  8. Nonlinear manifold representations for functional data

    OpenAIRE

    Chen, Dong; Müller, Hans-Georg

    2012-01-01

    For functional data lying on an unknown nonlinear low-dimensional space, we study manifold learning and introduce the notions of manifold mean, manifold modes of functional variation and of functional manifold components. These constitute nonlinear representations of functional data that complement classical linear representations such as eigenfunctions and functional principal components. Our manifold learning procedures borrow ideas from existing nonlinear dimension reduction methods, which...

  9. Metamaterials with tailored nonlinear optical response.

    Science.gov (United States)

    Husu, Hannu; Siikanen, Roope; Mäkitalo, Jouni; Lehtolahti, Joonas; Laukkanen, Janne; Kuittinen, Markku; Kauranen, Martti

    2012-02-08

    We demonstrate that the second-order nonlinear optical response of noncentrosymmetric metal nanoparticles (metamolecules) can be efficiently controlled by their mutual ordering in an array. Two samples with minor change in ordering have nonlinear responses differing by a factor of up to 50. The results arise from polarization-dependent plasmonic resonances modified by long-range coupling associated with metamolecular ordering. The approach opens new ways for tailoring the nonlinear responses of metamaterials and their tensorial properties.

  10. The Effective AC Response of Nonlinear Composites

    Institute of Scientific and Technical Information of China (English)

    WEI En-Bo; GU Guo-Qing

    2001-01-01

    A perturbative approach is used to study the AC response of nonlinear composite media, which obey a current-field relation of the form J = σ E + χ|E|2 E with components having nonlinear response at finite frequencies. For a sinusoidal applied field, we extend the local potential in terms of sinusoidal components at fundamental frequency and high-order harmonic frequencies to treat the nonlinear composites. For nonlinear composite media vith a low concentrations of spherical inclusions, we give the formulae of the nonlinear effective AC susceptibility χ*3ω at the third harmonic frequency.

  11. Optical nonlinear response of a single nonlinear dielectric layer sandwiched between two linear dielectric structures

    Energy Technology Data Exchange (ETDEWEB)

    Lidorikis, E. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Busch, K. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)]|[Instituet fuer Theorie der Kondensierten Materie, Universitaet Karlsruhe, D-76128, Karlsruhe (Germany); Li, Q. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Chan, C.T. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)]|[Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Soukoulis, C.M. [Ames Laboratory--USDOE and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)

    1997-12-01

    We consider the general problem of electromagnetic wave propagation through a one-dimensional system consisting of a nonlinear medium sandwiched between two linear structures. Special emphasis is given to systems where the latter comprise Bragg reflectors. We obtain an exact expression for the nonlinear response of such dielectric superlattices when the nonlinear impurity is very thin, or in the {delta}-function limit. We find that both the switching-up and switching-down intensities of the bistable response can be made very low, when the frequency of the incident wave matches that of the impurity mode of the structure. Numerical results for a nonlinear layer of finite width display qualitatively similar behavior, thus confirming the usefulness of the simpler {delta}-function model. In addition, an analytical solution for the resonance states of an infinitely extended finite-width superlattice with a finite-width nonlinear impurity is presented. {copyright} {ital 1997} {ital The American Physical Society}

  12. Highly nonlinear stress-relaxation response of articular cartilage in indentation: Importance of collagen nonlinearity.

    Science.gov (United States)

    Mäkelä, J T A; Korhonen, R K

    2016-06-14

    Modern fibril-reinforced computational models of articular cartilage can include inhomogeneous tissue composition and structure, and nonlinear mechanical behavior of collagen, proteoglycans and fluid. These models can capture well experimental single step creep and stress-relaxation tests or measurements under small strains in unconfined and confined compression. Yet, it is known that in indentation, especially at high strain velocities, cartilage can express highly nonlinear response. Different fibril reinforced poroelastic and poroviscoelastic models were used to assess measured highly nonlinear stress-relaxation response of rabbit articular cartilage in indentation. Experimentally measured depth-dependent volume fractions of different tissue constituents and their mechanical nonlinearities were taken into account in the models. In particular, the collagen fibril network was modeled using eight separate models that implemented five different constitutive equations to describe the nonlinearity. These consisted of linear elastic, nonlinear viscoelastic and multiple nonlinear elastic representations. The model incorporating the most nonlinearly increasing Young׳s modulus of collagen fibrils as a function of strain captured best the experimental data. Relative difference between the model and experiment was ~3%. Surprisingly, the difference in the peak forces between the experiment and the model with viscoelastic collagen fibrils was almost 20%. Implementation of the measured volume fractions did not improve the ability of the model to capture the measured mechanical data. These results suggest that a highly nonlinear formulation for collagen fibrils is needed to replicate multi-step stress-relaxation response of rabbit articular cartilage in indentation with high strain rates.

  13. Structural optimization for nonlinear dynamic response.

    Science.gov (United States)

    Dou, Suguang; Strachan, B Scott; Shaw, Steven W; Jensen, Jakob S

    2015-09-28

    Much is known about the nonlinear resonant response of mechanical systems, but methods for the systematic design of structures that optimize aspects of these responses have received little attention. Progress in this area is particularly important in the area of micro-systems, where nonlinear resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance condition, thereby providing a means for tailoring its nonlinear response. The method is applied to the fundamental nonlinear resonance of a clamped-clamped beam and to the coupled mode response of a frame structure, and the results show that one can modify essential normal form coefficients by an order of magnitude by relatively simple changes in the shape of these elements. We expect the proposed approach, and its extensions, to be useful for the design of systems used for fundamental studies of nonlinear behaviour as well as for the development of commercial devices that exploit nonlinear behaviour.

  14. Spectral theory and nonlinear functional analysis

    CERN Document Server

    Lopez-Gomez, Julian

    2001-01-01

    This Research Note addresses several pivotal problems in spectral theory and nonlinear functional analysis in connection with the analysis of the structure of the set of zeroes of a general class of nonlinear operators. It features the construction of an optimal algebraic/analytic invariant for calculating the Leray-Schauder degree, new methods for solving nonlinear equations in Banach spaces, and general properties of components of solutions sets presented with minimal use of topological tools. The author also gives several applications of the abstract theory to reaction diffusion equations and systems.The results presented cover a thirty-year period and include recent, unpublished findings of the author and his coworkers. Appealing to a broad audience, Spectral Theory and Nonlinear Functional Analysis contains many important contributions to linear algebra, linear and nonlinear functional analysis, and topology and opens the door for further advances.

  15. Functional uniform priors for nonlinear modeling.

    Science.gov (United States)

    Bornkamp, Björn

    2012-09-01

    This article considers the topic of finding prior distributions when a major component of the statistical model depends on a nonlinear function. Using results on how to construct uniform distributions in general metric spaces, we propose a prior distribution that is uniform in the space of functional shapes of the underlying nonlinear function and then back-transform to obtain a prior distribution for the original model parameters. The primary application considered in this article is nonlinear regression, but the idea might be of interest beyond this case. For nonlinear regression the so constructed priors have the advantage that they are parametrization invariant and do not violate the likelihood principle, as opposed to uniform distributions on the parameters or the Jeffrey's prior, respectively. The utility of the proposed priors is demonstrated in the context of design and analysis of nonlinear regression modeling in clinical dose-finding trials, through a real data example and simulation.

  16. Structural optimization for nonlinear dynamic response

    DEFF Research Database (Denmark)

    Dou, Suguang; Strachan, B. Scott; Shaw, Steven W.

    2015-01-01

    condition, thereby providing a means for tailoring its nonlinear response. The method is applied to the fundamental nonlinear resonance of a clamped–clamped beam and to the coupled mode response of a frame structure, and the results show that one can modify essential normal form coefficients by an order...... resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described...... by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance...

  17. On Various Nonlinearity Measures for Boolean Functions.

    Science.gov (United States)

    Boyar, Joan; Find, Magnus Gausdal; Peralta, René

    2016-07-01

    A necessary condition for the security of cryptographic functions is to be "sufficiently distant" from linear, and cryptographers have proposed several measures for this distance. In this paper, we show that six common measures, nonlinearity, algebraic degree, annihilator immunity, algebraic thickness, normality, and multiplicative complexity, are incomparable in the sense that for each pair of measures, μ1, μ2, there exist functions f1, f2 with f1 being more nonlinear than f2 according to μ1, but less nonlinear according to μ2. We also present new connections between two of these measures. Additionally, we give a lower bound on the multiplicative complexity of collision-free functions.

  18. Nonlinear manifold representations for functional data

    CERN Document Server

    Chen, Dong; 10.1214/11-AOS936

    2012-01-01

    For functional data lying on an unknown nonlinear low-dimensional space, we study manifold learning and introduce the notions of manifold mean, manifold modes of functional variation and of functional manifold components. These constitute nonlinear representations of functional data that complement classical linear representations such as eigenfunctions and functional principal components. Our manifold learning procedures borrow ideas from existing nonlinear dimension reduction methods, which we modify to address functional data settings. In simulations and applications, we study examples of functional data which lie on a manifold and validate the superior behavior of manifold mean and functional manifold components over traditional cross-sectional mean and functional principal components. We also include consistency proofs for our estimators under certain assumptions.

  19. Effective ac response in weakly nonlinear composites

    Energy Technology Data Exchange (ETDEWEB)

    Wei Enbo [Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071 (China); Yang Zidong [College of Power Engineering, University of Shanghai Science and Technology, Shanghai 200093 (China); Gu Guoqing [Information College of Science and Technology, East China Normal University, Shanghai 200062 (China)

    2004-01-07

    The perturbation method is developed to deal with the problem of determining the effective nonlinear conductivity of Kerr-like nonlinear media under an external ac electric field. As an example, we have considered the cylindrical inclusion embedded in a host under the sinusoidal external field E{sub 1} sin (<{omega}t) + E{sub 3} sin (3<{omega}t) with frequencies{omega} and 3{omega}. The potentials of composites at higher harmonics are derived in both local inclusion particle and host regions. The effective responses of bulk nonlinear composites at basic frequency and harmonics are given for cylindrical composites in the dilute limit. Moreover, the relationships between the nonlinear effective responses at the basic frequency and the third harmonics are derived.

  20. Optimal design for nonlinear response models

    CERN Document Server

    Fedorov, Valerii V

    2013-01-01

    Optimal Design for Nonlinear Response Models discusses the theory and applications of model-based experimental design with a strong emphasis on biopharmaceutical studies. The book draws on the authors' many years of experience in academia and the pharmaceutical industry. While the focus is on nonlinear models, the book begins with an explanation of the key ideas, using linear models as examples. Applying the linearization in the parameter space, it then covers nonlinear models and locally optimal designs as well as minimax, optimal on average, and Bayesian designs. The authors also discuss ada

  1. Transfer function verification and block diagram simplification of a very high-order distributed pole closed-loop servo by means of non-linear time-response simulation

    Science.gov (United States)

    Mukhopadhyay, A. K.

    1975-01-01

    Linear frequency domain methods are inadequate in analyzing the 1975 Viking Orbiter (VO75) digital tape recorder servo due to dominant nonlinear effects such as servo signal limiting, unidirectional servo control, and static/dynamic Coulomb friction. The frequency loop (speed control) servo of the VO75 tape recorder is used to illustrate the analytical tools and methodology of system redundancy elimination and high order transfer function verification. The paper compares time-domain performance parameters derived from a series of nonlinear time responses with the available experimental data in order to select the best possible analytical transfer function representation of the tape transport (mechanical segment of the tape recorder) from several possible candidates. The study also shows how an analytical time-response simulation taking into account most system nonlinearities can pinpoint system redundancy and overdesign stemming from a strictly empirical design approach. System order reduction is achieved through truncation of individual transfer functions and elimination of redundant blocks.

  2. Nonlinear frequency response analysis of structural vibrations

    Science.gov (United States)

    Weeger, Oliver; Wever, Utz; Simeon, Bernd

    2014-12-01

    In this paper we present a method for nonlinear frequency response analysis of mechanical vibrations of 3-dimensional solid structures. For computing nonlinear frequency response to periodic excitations, we employ the well-established harmonic balance method. A fundamental aspect for allowing a large-scale application of the method is model order reduction of the discretized equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. For an efficient spatial discretization of continuum mechanics nonlinear partial differential equations, including large deformations and hyperelastic material laws, we employ the concept of isogeometric analysis. Isogeometric finite element methods have already been shown to possess advantages over classical finite element discretizations in terms of higher accuracy of numerical approximations in the fields of linear vibration and static large deformation analysis. With several computational examples, we demonstrate the applicability and accuracy of the modal derivative reduction method for nonlinear static computations and vibration analysis. Thus, the presented method opens a promising perspective on application of nonlinear frequency analysis to large-scale industrial problems.

  3. Optomechanical response of a nonlinear mechanical resonator

    Science.gov (United States)

    Shevchuk, Olga; Singh, Vibhor; Steele, Gary A.; Blanter, Ya. M.

    2015-11-01

    We investigate theoretically in detail the nonlinear effects in the response of an optical/microwave cavity coupled to a Duffing mechanical resonator. The cavity is driven by a laser at a red or blue mechanical subband, and a probe laser measures the reflection close to the cavity resonance. Under these conditions, we find that the cavity exhibits optomechanically induced reflection (OMIR) or absorption (OMIA) and investigate the optomechanical response in the limit of nonlinear driving of the mechanics. Similar to linear mechanical drive, in an overcoupled cavity the red sideband drive may lead to both OMIA and OMIR depending on the strength of the drive, whereas the blue sideband drive only leads to OMIR. The dynamics of the phase of the mechanical resonator leads to the difference between the shapes of the response of the cavity and the amplitude response of the driven Duffing oscillator, for example, at weak red sideband drive the OMIA dip has no inflection point. We also verify that mechanical nonlinearities beyond Duffing model have little effect on the size of the OMIA dip though they affect the width of the dip.

  4. Another Class of Perfect Nonlinear Polynomial Functions

    Directory of Open Access Journals (Sweden)

    Menglong Su

    2013-01-01

    Full Text Available Perfect nonlinear (PN functions have been an interesting subject of study for a long time and have applications in coding theory, cryptography, combinatorial designs, and so on. In this paper, the planarity of the trinomials xpk+1+ux2+vx2pk over GF(p2k are presented. This class of PN functions are all EA-equivalent to x2.

  5. Jacobi elliptic functions: A review of nonlinear oscillatory application problems

    Science.gov (United States)

    Kovacic, Ivana; Cveticanin, Livija; Zukovic, Miodrag; Rakaric, Zvonko

    2016-10-01

    This review paper is concerned with the applications of Jacobi elliptic functions to nonlinear oscillators whose restoring force has a monomial or binomial form that involves cubic and/or quadratic nonlinearity. First, geometric interpretations of three basic Jacobi elliptic functions are given and their characteristics are discussed. It is shown then how their different forms can be utilized to express exact solutions for the response of certain free conservative oscillators. These forms are subsequently used as a starting point for a presentation of different quantitative techniques for obtaining an approximate response for free perturbed nonlinear oscillators. An illustrative example is provided. Further, two types of externally forced nonlinear oscillators are reviewed: (i) those that are excited by elliptic-type excitations with different exact and approximate solutions; (ii) those that are damped and excited by harmonic excitations, but their approximate response is expressed in terms of Jacobi elliptic functions. Characteristics of the steady-state response are discussed and certain qualitative differences with respect to the classical Duffing oscillator excited harmonically are pointed out. Parametric oscillations of the oscillators excited by an elliptic-type forcing are considered as well, and the differences with respect to the stability chart of the classical Mathieu equation are emphasized. The adjustment of the Melnikov method to derive the general condition for the onset of homoclinic bifurcations in a system parametrically excited by an elliptic-type forcing is provided and compared with those corresponding to harmonic excitations. Advantages and disadvantages of the use of Jacobi elliptic functions in nonlinear oscillatory application problems are discussed and some suggestions for future work are given.

  6. Nonlinear Response of Strong Nonlinear System Arisen in Polymer Cushion

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2013-01-01

    Full Text Available A dynamic model is proposed for a polymer foam-based nonlinear cushioning system. An accurate analytical solution for the nonlinear free vibration of the system is derived by applying He's variational iteration method, and conditions for resonance are obtained, which should be avoided in the cushioning design.

  7. Nonlinear functional mapping of the human brain

    OpenAIRE

    Allgaier, Nicholas; Banaschewski, Tobias; Barker, Gareth; Arun L W Bokde; Bongard, Josh C.; Bromberg, Uli; Büchel, Christian; Cattrell, Anna; Conrod, Patricia J.; Danforth, Christopher M.; Desrivières, Sylvane; Peter S. Dodds; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen

    2015-01-01

    The field of neuroimaging has truly become data rich, and novel analytical methods capable of gleaning meaningful information from large stores of imaging data are in high demand. Those methods that might also be applicable on the level of individual subjects, and thus potentially useful clinically, are of special interest. In the present study, we introduce just such a method, called nonlinear functional mapping (NFM), and demonstrate its application in the analysis of resting state fMRI fro...

  8. Effective Dielectric Response of Nonlinear Composites of Coated Metal Inclusions

    Institute of Scientific and Technical Information of China (English)

    CHEN Guo-Qing; WU Ya-Min

    2007-01-01

    The effective dielectric response of the composites in which nondilute coated metal particles are randomly embedded in a linear host is investigated. Two types of coated particles are considered, one is that the core is nonlinear, the other is that the shell is nonlinear. We derive general expressions for the effective linear dielectric function and the effective third-order nonlinear susceptibility, and take one step forward to perform numerical calculations on the coated metal/dielectric composites. Numerical results show that the effective linear and nonlinear dielectric responses can be greatly enhanced near the surface plasmon resonant frequency. Moreover, the resonant peaks are found within a range from 0.46ωp to 0.57ωp for spherical particles and from 0.59ωp to 0.7ωp for cylindrical inclusions. In the frequency region, the resonant peak can achieve the maximum, according to an optimal structural parameter and volume fraction. The resonant frequency exhibits a redshift with the increasing structural parameter k or volume fraction f or dimensionality factor D.

  9. Frequency Response and Gap Tuning for Nonlinear Electrical Oscillator Networks

    Science.gov (United States)

    Bhat, Harish S.; Vaz, Garnet J.

    2013-01-01

    We study nonlinear electrical oscillator networks, the smallest example of which consists of a voltage-dependent capacitor, an inductor, and a resistor driven by a pure tone source. By allowing the network topology to be that of any connected graph, such circuits generalize spatially discrete nonlinear transmission lines/lattices that have proven useful in high-frequency analog devices. For such networks, we develop two algorithms to compute the steady-state response when a subset of nodes are driven at the same fixed frequency. The algorithms we devise are orders of magnitude more accurate and efficient than stepping towards the steady-state using a standard numerical integrator. We seek to enhance a given network's nonlinear behavior by altering the eigenvalues of the graph Laplacian, i.e., the resonances of the linearized system. We develop a Newton-type method that solves for the network inductances such that the graph Laplacian achieves a desired set of eigenvalues; this method enables one to move the eigenvalues while keeping the network topology fixed. Running numerical experiments using three different random graph models, we show that shrinking the gap between the graph Laplacian's first two eigenvalues dramatically improves a network's ability to (i) transfer energy to higher harmonics, and (ii) generate large-amplitude signals. Our results shed light on the relationship between a network's structure, encoded by the graph Laplacian, and its function, defined in this case by the presence of strongly nonlinear effects in the frequency response. PMID:24223751

  10. The Nonlinearity of Sum and Product for Boolean Functions

    Directory of Open Access Journals (Sweden)

    Huang Jinglian

    2016-01-01

    Full Text Available In this paper, we study the relationship between the nonlinearity of Boolean function and the nonlinearity of the sum and product of Boolean function, while derivative and e-derivative are used to study the problem further. We obtain that the sum of two functions’ nonlinearity is not less than the nonlinearity of the sum of two functions. The relationship between the nonlinearity of function and the nonlinearity of the sum and product of two functions are also obtained. Furthermore, we also get the relationship between the nonlinearity of the product of functions, and the derivative and e-derivative of function. Moreover, we also deduced some important applications on the basis of the above work.

  11. Constructions of vector output Boolean functions with high generalized nonlinearity

    Institute of Scientific and Technical Information of China (English)

    KE Pin-hui; ZHANG Sheng-yuan

    2008-01-01

    Carlet et al. recently introduced generalized nonlinearity to measure the ability to resist the improved correlation attack of a vector output Boolean function. This article presents a construction of vector output Boolean functions with high generalized nonlinearity using the sample space. The relation between the resilient order and generalized nonlinearity is also discussed.

  12. A nonlinear theory of generalized functions

    CERN Document Server

    1990-01-01

    This book provides a simple introduction to a nonlinear theory of generalized functions introduced by J.F. Colombeau, which gives a meaning to any multiplication of distributions. This theory extends from pure mathematics (it presents a faithful generalization of the classical theory of C? functions and provides a synthesis of most existing multiplications of distributions) to physics (it permits the resolution of ambiguities that appear in products of distributions), passing through the theory of partial differential equations both from the theoretical viewpoint (it furnishes a concept of weak solution of pde's leading to existence-uniqueness results in many cases where no distributional solution exists) and the numerical viewpoint (it introduces new and efficient methods developed recently in elastoplasticity, hydrodynamics and acoustics). This text presents basic concepts and results which until now were only published in article form. It is in- tended for mathematicians but, since the theory and applicati...

  13. Analysis of nonlinear transient responses of piezoelectric resonators.

    Science.gov (United States)

    Hagiwara, Manabu; Takahashi, Seita; Hoshina, Takuya; Takeda, Hiroaki; Tsurumi, Takaaki

    2011-09-01

    The electric transient response method is an effective technique to evaluate material constants of piezoelectric ceramics under high-power driving. In this study, we tried to incorporate nonlinear piezoelectric behaviors in the analysis of transient responses. As a base for handling the nonlinear piezoelectric responses, we proposed an assumption that the electric displacement is proportional to the strain without phase lag, which could be described by a real and constant piezoelectric e-coefficient. Piezoelectric constitutive equations including nonlinear responses were proposed to calculate transient responses of a piezoelectric resonator. The envelopes and waveforms of current and vibration velocity in transient responses observed in some piezoelectric ceramics could be fitted with the calculation including nonlinear responses. The procedure for calculation of mechanical quality factor Q(m) for piezoelectric resonators with nonlinear behaviors was also proposed.

  14. Functional possibilities of nonlinear crystals for frequency conversion: uniaxial crystals

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, Yu M [Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch of the Russian Academy of Sciences, Tomsk (Russian Federation); Arapov, Yu D; Kasyanov, I V [E.I. Zababakhin All-Russian Scientific-Research Institute of Technical Physics, Russian Federal Nuclear Centre, Snezhinsk, Chelyabinsk region (Russian Federation); Grechin, S G; Nikolaev, P P [N.E. Bauman Moscow State Technical University, Moscow (Russian Federation)

    2016-01-31

    The method and results of the analysis of phase-matching and nonlinear properties for all point groups of symmetry of uniaxial crystals that determine their functional possibilities for solving various problems of nonlinear frequency conversion of laser radiation are presented. (nonlinear optical phenomena)

  15. Stochastic response of nonlinear system in probability domain

    Indian Academy of Sciences (India)

    Deepak Kumar; T K Datta

    2006-08-01

    A stochastic averaging procedure for obtaining the probability density function (PDF) of the response for a strongly nonlinear single-degree-of-freedom system, subjected to both multiplicative and additive random excitations is presented. The procedure uses random Van Der Pol transformation, Ito’s equation of limiting diffusion process and stochastic averaging technique as outlined by Zhu and others. However, the equations are rederived in generalized form and arranged in such a way that the procedure lends itself to a numerical computational scheme using FFT. The main objective of the modification is to consider highly irregular nonlinear functions which cannot be integrated in closed form and also to solve problems where analytical expressions for probability density function cannot be obtained. The procedure is applied to obtain the PDF of the response of Duffing oscillator subjected to additive and multiplicative random excitations represented by rational power spectral density functions (PSDFs). The results are verified by digital simulation. It is shown that the procedure provides results which compare very well with those obtained from simulation analysis not only for wide-band excitations but also for very narrow-band excitations, which are weak (when normalized with respect to mass of the system).

  16. Direct Forecasting of Subsurface Flow Response from Non-Linear Dynamic Data By Linear Least-Squares in Canonical Functional Principal Component Space.

    Science.gov (United States)

    Satija, A.; Caers, J.

    2014-12-01

    Hydrogeological forecasting problems, like many subsurface forecasting problems, often suffer from the scarcity of reliable data yet complex prior information about the underlying earth system. Assimilating and integrating this information into an earth model requires using iterative parameter space exploration techniques or Monte Carlo Markov Chain techniques. Since such an earth model needs to account for many large and small scale features of the underlying system, as the system gets larger, iterative modeling can become computationally prohibitive, in particular when the forward model would allow for only a few hundred model evaluations. In addition, most modeling methods do not include the purpose for which inverse method are built, namely, the actual forecast and usually focus only on data and model. In this study, we present a technique to extract features of the earth system informed by time-varying dynamic data (data features) and those that inform a time-varying forecasting variable (forecast features) using Functional Principal Component Analysis. Canonical Coefficient Analysis is then used to examine the relationship between these features using a linear model. When this relationship suggests that the available data informs the required forecast, a simple linear regression can be used on the linear model to directly estimate the posterior of the forecasting problem, without any iterative inversion of model parameters. This idea and method is illustrated using an example of contaminant flow in an aquifer with complex prior, large dimension and non-linear flow & transport model.

  17. Non-linear stochastic response of a shallow cable

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2004-01-01

    The paper considers the stochastic response of geometrical non-linear shallow cables. Large rain-wind induced cable oscillations with non-linear interactions have been observed in many large cable stayed bridges during the last decades. The response of the cable is investigated for a reduced two-degrees-of-freedom...

  18. Transient response of an active nonlinear sandwich piezolaminated plate

    Science.gov (United States)

    Oveisi, Atta; Nestorović, Tamara

    2017-04-01

    In this paper, the dynamic modelling and active vibration control of a piezolaminated plate with geometrical nonlinearities are investigated using a semi-analytical approach. For active vibration control purposes, the core orthotropic elastic layer is assumed to be perfectly bonded with two piezo-layers on its top and bottom surfaces which act as sensor and actuator, respectively. In the modelling procedure, the piezo-layers are assumed to be connected via a proportional derivative (PD) feedback control law. Hamilton's principle is employed to acquire the strong form of the dynamic equation in terms of additional higher order strain expressions by means of von Karman strain-displacement correlation. The obtained nonlinear partial differential equation (NPDE) is converted to a system of nonlinear ordinary differential equations (NODEs) by engaging Galerkin method and using the orthogonality of shape functions for the simply supported boundary conditions. Then, the resulting system of NODEs is solved numerically by employing the built-in Mathematica function, "NDSolve". Next, the vibration attenuation performance is evaluated and sensitivity of the closed-loop system is investigated for several control parameters and the external disturbance parameters. The proposed solution in open loop configuration is validated by finite element (FE) package ABAQUS both in the spatial domain and for the time-/frequency-dependent response.

  19. Linear and nonlinear optical response of spherical anisotropic semiconductor microcrystallites

    Science.gov (United States)

    Ramaniah, Lavanya M.; Nair, Selvakumar V.; Rustagi, Kailash C.

    1989-12-01

    We present a phenomenological theory of the linear and nonlinear optical properties associated with the Fröhlich resonances of an optically anisotropic, spherical semiconductor crystallite. Using the Maxwell-Garnett approach, we calculate the effective dielectric function of a composite medium containing such crystallites. To study the effect of anisotropy, we take CdS and CdSe quantum dots as examples for the inclusions, and use a two-resonance model for the dielectric function. Even for randomly oriented inclusions, the Fröhlich resonances split as a result of anisotropic local-field corrections. At higher laser intensities, absorption saturation leads to bistability or tristability in the optical response of individual crystallites, while the response of the composite medium with randomly oriented inclusions shows multistability, with many intermediate branches. The nonlinear response of such a composite medium also exhibits a new kind of orientation-induced broadening of resonances. We also find that tristability is possible in another kind of inhomogeneous material, viz., a composite medium containing two types of isotropic spherical crystallites.

  20. Nonlinear Dielectric Response of Water Treed XLPE Cable Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Hvidsten, Sverre

    1999-07-01

    Condition assessment of XLPE power cables is becoming increasingly important for the utilities, due to a large number of old cables in service with high probability of failure caused by water tree degradation. The commercial available techniques are generally based upon measurements of the dielectric response, either by time (polarisation/depolarisation current or return voltage) or frequency domain measurements. Recently it has been found that a high number of water trees in XLPE insulated cables causes the dielectric response to increase more than linearly with increasing test voltage. This nonlinear feature of water tree degraded XLPE insulation has been suggested to be of a great importance, both for diagnostic purposes, and for fundamental understanding of the water tree phenomenon itself. The main purpose of this thesis have been to study the nonlinear feature of the dielectric response measured on watertreed XLPE insulation. This has been performed by dielectric response measurements in both time and frequency domain, numerical calculations of losses of simplified water tree models, and fmally water content and water permeation measurements on single water trees. The dielectric response measurements were performed on service aged cable samples and laboratory aged Rogowski type objects. The main reason for performing laboratory ageing was to facilitate diagnostic testing as a function of ageing time of samples containing mainly vented water trees. A new method, based upon inserting NaC1 particles at the interface between the upper semiconductive screen and the insulation, was found to successfully enhance initiation and growth of vented water trees. AC breakdown strength testing show that it is the vented water trees that reduce the breakdown level of both the laboratory aged test objects and service aged cable samples. Vented water treeing was found to cause the dielectric response to become nonlinear at a relatively low voltage level. However, the measured

  1. Delocalization of nonlinear optical responses in plasmonic nanoantennas

    CERN Document Server

    Viarbitskaya, Sviatlana; Cluzel, Benoit; Francs, Gérard Colas des; Bouhelier, Alexandre

    2015-01-01

    Remote excitation and emission of two-photon luminescence and second-harmonic generation are observed in micrometer long gold rod optical antennas upon local illumination with a tightly focused near-infrared femtosecond laser beam. We show that the nonlinear radiations can be emitted from the entire antenna and the measured far-field angular patterns bear the information regarding the nature and origins of the respective nonlinear processes. We demonstrate that the nonlinear responses are transported by the propagating surface plasmon at excitation frequency, enabling thereby polariton-mediated tailoring and design of nonlinear responses.

  2. Models of the delayed nonlinear Raman response in diatomic gases

    Science.gov (United States)

    Palastro, J. P.; Antonsen, T. M., Jr.; Pearson, A.

    2011-07-01

    We examine the delayed response of a diatomic gas to a polarizing laser field with the goal of obtaining computationally efficient methods for use with laser pulse propagation simulations. We demonstrate that for broadband pulses, heavy molecules such as O2 and N2, and typical atmospheric temperatures, the initial delayed response requires only classical physics. The linear kinetic Green's function is derived from the Boltzmann equation and shown to be in excellent agreement with full density-matrix calculations. A straightforward perturbation approach for the fully nonlinear, kinetic impulse response is also presented. With the kinetic theory a reduced fluid model of the diatomic gas’ orientation is derived. Transport coefficients are introduced to model the kinetic phase mixing of the delayed response. In addition to computational rapidity, the fluid model provides intuition through the use of familiar macroscopic quantities. Both the kinetic and the fluid descriptions predict a nonlinear steady-state alignment after passage of the laser pulse, which in the fluid model is interpreted as an anisotropic temperature of the diatomic fluid with respect to motion about the polarization axis.

  3. SOME NONLINEAR APPROXIMATIONS FOR MATRIX-VALUED FUNCTIONS

    Institute of Scientific and Technical Information of China (English)

    Guo-liang Xu

    2003-01-01

    Some nonlinear approximants, i.e., exponential-sum interpolation with equal distance or at origin, (0,1)-type, (0,2)-type and (1,2)-type fraction-sum approximations, for matrixvalued functions are introduced. All these approximation problems lead to a same form system of nonlinear equations. Solving methods for the nonlinear system are discussed.Conclusions on uniqueness and convergence of the approximants for certain class of functions are given.

  4. NONLINEAR RESPONSES OF A FLUID-CONVEYING PIPE EMBEDDED IN NONLINEAR ELASTIC FOUNDATIONS

    Institute of Scientific and Technical Information of China (English)

    Qin Qian; Lin Wang; Qiao Ni

    2008-01-01

    The nonlinear responses of planar motions of a fluid-conveying pipe embedded in nonlinear elastic foundations are investigated via the differential quadrature method diseretization (DQMD) of the governing partial differential equation. For the analytical model, the effect of the nonlinear elastic foundation is modeled by a nonlinear restraining force. By using an iterative algorithm, a set of ordinary differential dynamical equations derived from the equation of motion of the system are solved numerically and then the bifurcations are analyzed. The numerical results, in which the existence of chaos is demonstrated, are presented in the form of phase portraits of the oscillations. The intermittency transition to chaos has been found to arise.

  5. Harmonic Phase Response of Nonlinear Radar Targets

    Science.gov (United States)

    2015-10-01

    to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT...of an improvised explosive device (IED). Previous nonlinear radar systems detect targets via transmission of a single frequency ω, stepping...electronically nonlinear components, such as transistors, diodes , and semiconductors. While many circuit devices, such as amplifiers, mixers, and

  6. Space race functional responses.

    Science.gov (United States)

    Sjödin, Henrik; Brännström, Åke; Englund, Göran

    2015-02-22

    We derive functional responses under the assumption that predators and prey are engaged in a space race in which prey avoid patches with many predators and predators avoid patches with few or no prey. The resulting functional response models have a simple structure and include functions describing how the emigration of prey and predators depend on interspecific densities. As such, they provide a link between dispersal behaviours and community dynamics. The derived functional response is general but is here modelled in accordance with empirically documented emigration responses. We find that the prey emigration response to predators has stabilizing effects similar to that of the DeAngelis-Beddington functional response, and that the predator emigration response to prey has destabilizing effects similar to that of the Holling type II response. A stability criterion describing the net effect of the two emigration responses on a Lotka-Volterra predator-prey system is presented. The winner of the space race (i.e. whether predators or prey are favoured) is determined by the relationship between the slopes of the species' emigration responses. It is predicted that predators win the space race in poor habitats, where predator and prey densities are low, and that prey are more successful in richer habitats.

  7. A Photonic Basis for Deriving Nonlinear Optical Response

    Science.gov (United States)

    Andrews, David L.; Bradshaw, David S.

    2009-01-01

    Nonlinear optics is generally first presented as an extension of conventional optics. Typically the subject is introduced with reference to a classical oscillatory electric polarization, accommodating correction terms that become significant at high intensities. The material parameters that quantify the extent of the nonlinear response are cast as…

  8. Nonlinear wavelet estimation of regression function with random desigm

    Institute of Scientific and Technical Information of China (English)

    张双林; 郑忠国

    1999-01-01

    The nonlinear wavelet estimator of regression function with random design is constructed. The optimal uniform convergence rate of the estimator in a ball of Besov space Bp,q? is proved under quite genera] assumpations. The adaptive nonlinear wavelet estimator with near-optimal convergence rate in a wide range of smoothness function classes is also constructed. The properties of the nonlinear wavelet estimator given for random design regression and only with bounded third order moment of the error can be compared with those of nonlinear wavelet estimator given in literature for equal-spaced fixed design regression with i.i.d. Gauss error.

  9. Modified Filled Function to Solve NonlinearProgramming Problem

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Filled function method is an approach to find the global minimum of nonlinear functions. Many Problems, such as computing,communication control, and management, in real applications naturally result in global optimization formulations in a form ofnonlinear global integer programming. This paper gives a modified filled function method to solve the nonlinear global integerprogramming problem. The properties of the proposed modified filled function are also discussed in this paper. The results ofpreliminary numerical experiments are also reported.

  10. GADRAS Detector Response Function.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G; Horne, Steven M.

    2014-11-01

    The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.

  11. Confidence bounds for nonlinear dose-response relationships.

    Science.gov (United States)

    Baayen, C; Hougaard, P

    2015-11-30

    An important aim of drug trials is to characterize the dose-response relationship of a new compound. Such a relationship can often be described by a parametric (nonlinear) function that is monotone in dose. If such a model is fitted, it is useful to know the uncertainty of the fitted curve. It is well known that Wald confidence intervals are based on linear approximations and are often unsatisfactory in nonlinear models. Apart from incorrect coverage rates, they can be unreasonable in the sense that the lower confidence limit of the difference to placebo can be negative, even when an overall test shows a significant positive effect. Bootstrap confidence intervals solve many of the problems of the Wald confidence intervals but are computationally intensive and prone to undercoverage for small sample sizes. In this work, we propose a profile likelihood approach to compute confidence intervals for the dose-response curve. These confidence bounds have better coverage than Wald intervals and are more precise and generally faster than bootstrap methods. Moreover, if monotonicity is assumed, the profile likelihood approach takes this automatically into account. The approach is illustrated using a public dataset and simulations based on the Emax and sigmoid Emax models. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Hyperbolic function method for solving nonlinear differential-different equations

    Institute of Scientific and Technical Information of China (English)

    Zhu Jia-Min

    2005-01-01

    An algorithm is devised to obtained exact travelling wave solutions of differential-different equations by means of hyperbolic function. For illustration, we apply the method to solve the discrete nonlinear (2+1)-dimensional Toda lattice equation and the discretized nonlinear mKdV lattice equation, and successfully constructed some explicit and exact travelling wave solutions.

  13. State dependent matrices and balanced energy functions for nonlinear systems

    NARCIS (Netherlands)

    Scherpen, Jacquelien M.A.; Gray, W. Steven

    2000-01-01

    The nonlinear extension of the balancing procedure requires the case of state dependent quadratic forms for the energy functions, i.e., the nonlinear extensions of the linear Gramians are state dependent matrices. These extensions have some interesting ambiguities that do not occur in the linear cas

  14. Measurement of nonlinear elastic response in rock by the resonant bar method

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, P.A. [Los Alamos National Lab., NM (United States); Rasolofosaon, P.; Zinszner, B. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France)

    1993-04-01

    In this work we are studying the behavior of the fundamental (Young`s) mode resonant peak as a function of drive amplitude in rock samples. Our goal from these studies is to obtain nonlinear moduli for many rock types, and to study the nonlinear moduli as a function of water saturation and other changes in physical properties. Measurements were made on seven different room dry rock samples. For one sample measurements were taken at 16 saturation levels between 1 and 98%. All samples display a ``softening`` nonlinearity, that is, the resonant frequency shifts downward with increasing drive amplitude. In extreme cases, the resonant frequency changes by as much as 25% over a strain interval of 10{sup {minus}7} to {approximately}4 {times} 10{sup {minus}5}. Measurements indicate that the nonlinear response is extremely sensitive to saturation. Estimates of a combined cubic and quartic nonlinear parameter {Gamma} range from approximately {minus}300 to {minus}10{sup 9} for the rock samples.

  15. Nonlinear differentiation equation and analytic function spaces

    OpenAIRE

    Li, Hao; Li, Songxiao

    2015-01-01

    In this paper we consider the nonlinear complex differential equation $$(f^{(k)})^{n_{k}}+A_{k-1}(z)(f^{(k-1)})^{n_{k-1}}+\\cdot\\cdot\\cdot+A_{1}(z)(f')^{n_{1}}+A_{0}(z)f^{n_{0}}=0, $$where $ A_{j}(z)$, $ j=0, \\cdots, k-1 $, are analytic in the unit disk $ \\mathbb{D} $, $ n_{j}\\in R^{+} $ for all $ j=0, \\cdots, k $. We investigate this nonlinear differential equation from two aspects. On one hand, we provide some sufficient conditions on coefficients such that all solutions of this equation bel...

  16. Superoperator representation of nonlinear response: unifying quantum field and mode coupling theories.

    Science.gov (United States)

    Mukamel, Shaul

    2003-08-01

    Computing response functions by following the time evolution of superoperators in Liouville space (whose vectors are ordinary Hilbert space operators) offers an attractive alternative to the diagrammatic perturbative expansion of many-body equilibrium and nonequilibrium Green's functions. The bookkeeping of time ordering is naturally maintained in real (physical) time, allowing the formulation of Wick's theorem for superoperators, giving a factorization of higher order response functions in terms of two fundamental Green's functions. Backward propagations and analytic continuations using artificial times (Keldysh loops and Matsubara contours) are avoided. A generating functional for nonlinear response functions unifies quantum field theory and the classical mode coupling formalism of nonlinear hydrodynamics and may be used for semiclassical expansions. Classical response functions are obtained without the explicit computation of stability matrices.

  17. Stochastic Nonlinear Response of Woven CMCs

    Science.gov (United States)

    Kuang, C. Liu; Arnold, Steven M.

    2013-01-01

    It is well known that failure of a material is a locally driven event. In the case of ceramic matrix composites (CMCs), significant variations in the microstructure of the composite exist and their significance on both deformation and life response need to be assessed. Examples of these variations include changes in the fiber tow shape, tow shifting/nesting and voids within and between tows. In the present work, the influence of scale specific architectural features of woven ceramic composite are examined stochastically at both the macroscale (woven repeating unit cell (RUC)) and structural scale (idealized using multiple RUCs). The recently developed MultiScale Generalized Method of Cells methodology is used to determine the overall deformation response, proportional elastic limit (first matrix cracking), and failure under tensile loading conditions and associated probability distribution functions. Prior results showed that the most critical architectural parameter to account for is weave void shape and content with other parameters being less in severity. Current results show that statistically only the post-elastic limit region (secondary hardening modulus and ultimate tensile strength) is impacted by local uncertainties both at the macro and structural level.

  18. Effective nonlinear AC response to composite with spherical particles

    Institute of Scientific and Technical Information of China (English)

    Chen Xiao-Gang; Liang Fang-Chu; Wei En-Bo

    2005-01-01

    An effective nonlinear alternative-current (AC) response to granular nonlinear-composite with spherical inclusions embedded in a host medium under the action of an external AC field is investigated by using a perturbation approach.The local potentials of composite at higher harmonics are derived both in a region of local inclusion particles and in a local host region under the action of a sinusoidal field E1 sinωt + E3sin3ωt. An effective nonlinear-response to composite and the relationship between the effective nonlinear-responses at the fundamental frequency and the third harmonics are also studied for the spherical inclusions in a dilute limit.

  19. Relationships between nonlinear normal modes and response to random inputs

    Science.gov (United States)

    Schoneman, Joseph D.; Allen, Matthew S.; Kuether, Robert J.

    2017-02-01

    The ability to model nonlinear structures subject to random excitation is of key importance in designing hypersonic aircraft and other advanced aerospace vehicles. When a structure is linear, superposition can be used to construct its response to a known spectrum in terms of its linear modes. Superposition does not hold for a nonlinear system, but several works have shown that a system's dynamics can still be understood qualitatively in terms of its nonlinear normal modes (NNMs). This work investigates the connection between a structure's undamped nonlinear normal modes and the spectrum of its response to high amplitude random forcing. Two examples are investigated: a spring-mass system and a clamped-clamped beam modeled within a geometrically nonlinear finite element package. In both cases, an intimate connection is observed between the smeared peaks in the response spectrum and the frequency-energy dependence of the nonlinear normal modes. In order to understand the role of coupling between the underlying linear modes, reduced order models with and without modal coupling terms are used to separate the effect of each NNM's backbone from the nonlinear couplings that give rise to internal resonances. In the cases shown here, uncoupled, single-degree-of-freedom nonlinear models are found to predict major features in the response with reasonable accuracy; a highly inexpensive approximation such as this could be useful in design and optimization studies. More importantly, the results show that a reduced order model can be expected to give accurate results only if it is also capable of accurately predicting the frequency-energy dependence of the nonlinear modes that are excited.

  20. Nonlinear structural joint model updating based on instantaneous characteristics of dynamic responses

    Science.gov (United States)

    Wang, Zuo-Cai; Xin, Yu; Ren, Wei-Xin

    2016-08-01

    This paper proposes a new nonlinear joint model updating method for shear type structures based on the instantaneous characteristics of the decomposed structural dynamic responses. To obtain an accurate representation of a nonlinear system's dynamics, the nonlinear joint model is described as the nonlinear spring element with bilinear stiffness. The instantaneous frequencies and amplitudes of the decomposed mono-component are first extracted by the analytical mode decomposition (AMD) method. Then, an objective function based on the residuals of the instantaneous frequencies and amplitudes between the experimental structure and the nonlinear model is created for the nonlinear joint model updating. The optimal values of the nonlinear joint model parameters are obtained by minimizing the objective function using the simulated annealing global optimization method. To validate the effectiveness of the proposed method, a single-story shear type structure subjected to earthquake and harmonic excitations is simulated as a numerical example. Then, a beam structure with multiple local nonlinear elements subjected to earthquake excitation is also simulated. The nonlinear beam structure is updated based on the global and local model using the proposed method. The results show that the proposed local nonlinear model updating method is more effective for structures with multiple local nonlinear elements. Finally, the proposed method is verified by the shake table test of a real high voltage switch structure. The accuracy of the proposed method is quantified both in numerical and experimental applications using the defined error indices. Both the numerical and experimental results have shown that the proposed method can effectively update the nonlinear joint model.

  1. Nonlinear generalized functions and nonlinear numerical simulations in fluid and solid continuum mechanics

    OpenAIRE

    Colombeau, J. F.

    2007-01-01

    We present numerical techniques based on generalized functions adapted to nonlinear calculations. They concern main numerical engineering problems ruled by-or issued from-nonlinear equations of continuum mechanics. The aim of this text is to invite the readers in applying these techniques in their own work without significant prerequisites by presenting their use on a sample of elementary applications from engineering. Pure mathematicians can read it easily since the numerical techniques are ...

  2. Optical polarization based logic functions (XOR or XNOR) with nonlinear Gallium nitride nanoslab.

    Science.gov (United States)

    Bovino, F A; Larciprete, M C; Giardina, M; Belardini, A; Centini, M; Sibilia, C; Bertolotti, M; Passaseo, A; Tasco, V

    2009-10-26

    We present a scheme of XOR/XNOR logic gate, based on non phase-matched noncollinear second harmonic generation from a medium of suitable crystalline symmetry, Gallium nitride. The polarization of the noncollinear generated beam is a function of the polarization of both pump beams, thus we experimentally investigated all possible polarization combinations, evidencing that only some of them are allowed and that the nonlinear interaction of optical signals behaves as a polarization based XOR. The experimental results show the peculiarity of the nonlinear optical response associated with noncollinear excitation, and are explained using the expression for the effective second order optical nonlinearity in noncollinear scheme.

  3. Nonlinear Time Series Forecast Using Radial Basis Function Neural Networks

    Institute of Scientific and Technical Information of China (English)

    ZHENGXin; CHENTian-Lun

    2003-01-01

    In the research of using Radial Basis Function Neural Network (RBF NN) forecasting nonlinear time series, we investigate how the different clusterings affect the process of learning and forecasting. We find that k-means clustering is very suitable. In order to increase the precision we introduce a nonlinear feedback term to escape from the local minima of energy, then we use the model to forecast the nonlinear time series which are produced by Mackey-Glass equation and stocks. By selecting the k-means clustering and the suitable feedback term, much better forecasting results are obtained.

  4. Nonlinear Time Series Forecast Using Radial Basis Function Neural Networks

    Institute of Scientific and Technical Information of China (English)

    ZHENG Xin; CHEN Tian-Lun

    2003-01-01

    In the research of using Radial Basis Function Neural Network (RBF NN) forecasting nonlinear timeseries, we investigate how the different clusterings affect the process of learning and forecasting. We find that k-meansclustering is very suitable. In order to increase the precision we introduce a nonlinear feedback term to escape from thelocal minima of energy, then we use the model to forecast the nonlinear time series which are produced by Mackey-Glassequation and stocks. By selecting the k-means clustering and the suitable feedback term, much better forecasting resultsare obtained.

  5. On the dimension of complex responses in nonlinear structural vibrations

    Science.gov (United States)

    Wiebe, R.; Spottswood, S. M.

    2016-07-01

    The ability to accurately model engineering systems under extreme dynamic loads would prove a major breakthrough in many aspects of aerospace, mechanical, and civil engineering. Extreme loads frequently induce both nonlinearities and coupling which increase the complexity of the response and the computational cost of finite element models. Dimension reduction has recently gained traction and promises the ability to distill dynamic responses down to a minimal dimension without sacrificing accuracy. In this context, the dimensionality of a response is related to the number of modes needed in a reduced order model to accurately simulate the response. Thus, an important step is characterizing the dimensionality of complex nonlinear responses of structures. In this work, the dimensionality of the nonlinear response of a post-buckled beam is investigated. Significant detail is dedicated to carefully introducing the experiment, the verification of a finite element model, and the dimensionality estimation algorithm as it is hoped that this system may help serve as a benchmark test case. It is shown that with minor modifications, the method of false nearest neighbors can quantitatively distinguish between the response dimension of various snap-through, non-snap-through, random, and deterministic loads. The state-space dimension of the nonlinear system in question increased from 2-to-10 as the system response moved from simple, low-level harmonic to chaotic snap-through. Beyond the problem studied herein, the techniques developed will serve as a prescriptive guide in developing fast and accurate dimensionally reduced models of nonlinear systems, and eventually as a tool for adaptive dimension-reduction in numerical modeling. The results are especially relevant in the aerospace industry for the design of thin structures such as beams, panels, and shells, which are all capable of spatio-temporally complex dynamic responses that are difficult and computationally expensive to

  6. Modeling of nonlinear responses for reciprocal transducers involving polarization switching

    DEFF Research Database (Denmark)

    Willatzen, Morten; Wang, Linxiang

    2007-01-01

    Nonlinearities and hysteresis effects in a reciprocal PZT transducer are examined by use of a dynamical mathematical model on the basis of phase-transition theory. In particular, we consider the perovskite piezoelectric ceramic in which the polarization process in the material can be modeled....... We present numerical results for the reciprocal-transducer system and identify the influence of nonlinearities on the system dynamics at high and low frequency as well as electrical impedance effects due to tuning by a series inductance. It is found that nonlinear effects are not important at high...... by Landau theory for the first-order phase transformation, in which each polarization state is associated with a minimum of the Landau free-energy function. Nonlinear constitutive laws are obtained by using thermodynamical equilibrium conditions, and hysteretic behavior of the material can be modeled...

  7. Which impulse response function?

    OpenAIRE

    2011-01-01

    This paper compares standard and local projection techniques in the production of impulse response functions both theoretically and empirically. Through careful selection of a structural decomposition, the comparison continues to an application of US data to the textbook ISLM model. It is argued that local projection techniques offer a remedy to the bias of the conventional method especially at horizons longer than the vector autoregression's lag length. The application highlights that the te...

  8. Computation of the effective nonlinear mechanical response of lattice materials considering geometrical nonlinearities

    Science.gov (United States)

    ElNady, Khaled; Goda, Ibrahim; Ganghoffer, Jean-François

    2016-09-01

    The asymptotic homogenization technique is presently developed in the framework of geometrical nonlinearities to derive the large strains effective elastic response of network materials viewed as repetitive beam networks. This works extends the small strains homogenization method developed with special emphasis on textile structures in Goda et al. (J Mech Phys Solids 61(12):2537-2565, 2013). A systematic methodology is established, allowing the prediction of the overall mechanical properties of these structures in the nonlinear regime, reflecting the influence of the geometrical and mechanical micro-parameters of the network structure on the overall response of the chosen equivalent continuum. Internal scale effects of the initially discrete structure are captured by the consideration of a micropolar effective continuum model. Applications to the large strain response of 3D hexagonal lattices and dry textiles exemplify the powerfulness of the proposed method. The effective mechanical responses obtained for different loadings are validated by FE simulations performed over a representative unit cell.

  9. RESPONSE ANALYSIS OF RANDOMLY EXCITED NONLINEAR SYSTEMS WITH SYMMETRIC WEIGHTING PREISACH HYSTERESIS

    Institute of Scientific and Technical Information of China (English)

    应祖光

    2003-01-01

    An approximate method for analyzing the response of nonlinear systems with the Preisach hysteresis of the non-local memory under a stationary Gaussian excitation is presented based on the covariance and switching probability analysis. The covariance matrix equation of the Preisach hysteretic system response is derived. The cross correlation function of the Preisach hysteretic force and response in the covariance equation is evaluated by the switching probability analysis and the Gaussian approximation to the response process. Then an explicit expression of the correlation function is given for the case of symmetric Preisach weighting functions. The numerical result obtained is in good agreement with that from the digital simulation.

  10. Synthesis and functionalization of coumarin-containing copolymers for second order optical nonlinearities

    Science.gov (United States)

    Essaïdi, Zacaria; Krupka, Oksana; Iliopoulos, Konstantinos; Champigny, Emilie; Sahraoui, Bouchta; Sallé, Marc; Gindre, Denis

    2013-01-01

    The second-order nonlinear optical properties of photocross-linkable coumarin-based copolymers were investigated using the optical second harmonic generation (SHG) with the Maker fringes technique. High quality and transparent spin-deposited thin films of various methacrylic copolymers containing 4-methylcoumarin pendant chromophores were prepared and the coumarin units were ordered and oriented by the corona poling technique. Nonlinear optical investigations were performed using a picosecond Q-switched Nd:YAG laser working at the fundamental wavelength (λ = 1064 nm) and the second order nonlinear optical susceptibilities of the functionalized polymers were determined. The samples were irradiated using two wavelengths (λ = 254 nm and λ > 300 nm) promoting the reversible photo-induced dimerisation of coumarin moieties within the film. The latter is shown to have a significant impact on the nonlinear optical response of the corresponding material. A large SHG response of photocross-linkable coumarin-based copolymers is obtained.

  11. Computation simulation of the nonlinear response of suspension bridges

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, D.B.; Astaneh-Asl, A.

    1997-10-01

    Accurate computational simulation of the dynamic response of long- span bridges presents one of the greatest challenges facing the earthquake engineering community The size of these structures, in terms of physical dimensions and number of main load bearing members, makes computational simulation of transient response an arduous task. Discretization of a large bridge with general purpose finite element software often results in a computational model of such size that excessive computational effort is required for three dimensional nonlinear analyses. The aim of the current study was the development of efficient, computationally based methodologies for the nonlinear analysis of cable supported bridge systems which would allow accurate characterization of a bridge with a relatively small number of degrees of freedom. This work has lead to the development of a special purpose software program for the nonlinear analysis of cable supported bridges and the methodologies and software are described and illustrated in this paper.

  12. Nonlinear vibration of functionally graded circular cylindrical shells based on improved Donnell equations

    Science.gov (United States)

    Bich, Dao Huy; Xuan Nguyen, Nguyen

    2012-12-01

    In the present work, the study of the nonlinear vibration of a functionally graded cylindrical shell subjected to axial and transverse mechanical loads is presented. Material properties are graded in the thickness direction of the shell according to a simple power law distribution in terms of volume fractions of the material constituents. Governing equations are derived using improved Donnell shell theory ignoring the shallowness of cylindrical shells and kinematic nonlinearity is taken into consideration. One-term approximate solution is assumed to satisfy simply supported boundary conditions. The Galerkin method, the Volmir's assumption and fourth-order Runge-Kutta method are used for dynamical analysis of shells to give explicit expressions of natural frequencies, nonlinear frequency-amplitude relation and nonlinear dynamic responses. Numerical results show the effects of characteristics of functionally graded materials, pre-loaded axial compression and dimensional ratios on the dynamical behavior of shells. The proposed results are validated by comparing with those in the literature.

  13. Parametric characteristic of the random vibration response of nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    Xing-Jian Dong; Zhi-Ke Peng; Wen-Ming Zhang; Guang Meng; Fu-Lei Chu

    2013-01-01

    Volterra series is a powerful mathematical tool for nonlinear system analysis,and there is a wide range of non-linear engineering systems and structures that can be represented by a Volterra series model.In the present study,the random vibration of nonlinear systems is investigated using Volterra series.Analytical expressions were derived for the calculation of the output power spectral density (PSD) and input-output cross-PSD for nonlinear systems subjected to Gaussian excitation.Based on these expressions,it was revealed that both the output PSD and the input-output crossPSD can be expressed as polynomial functions of the nonlinear characteristic parameters or the input intensity.Numerical studies were carried out to verify the theoretical analysis result and to demonstrate the effectiveness of the derived relationship.The results reached in this study are of significance to the analysis and design of the nonlinear engineering systems and structures which can be represented by a Volterra series model.

  14. Nonlinear Response of Cantilever Beams to Combination and Subcombination Resonances

    Directory of Open Access Journals (Sweden)

    Ali H. Nayfeh

    1998-01-01

    Full Text Available The nonlinear planar response of cantilever metallic beams to combination parametric and external subcombination resonances is investigated, taking into account the effects of cubic geometric and inertia nonlinearities. The beams considered here are assumed to have large length-to-width aspect ratios and thin rectangular cross sections. Hence, the effects of shear deformations and rotatory inertia are neglected. For the case of combination parametric resonance, a two-mode Galerkin discretization along with Hamilton’s extended principle is used to obtain two second-order nonlinear ordinary-differential equations of motion and associated boundary conditions. Then, the method of multiple scales is applied to obtain a set of four first-order nonlinear ordinary-differential equations governing the modulation of the amplitudes and phases of the two excited modes. For the case of subcombination resonance, the method of multiple scales is applied directly to the Lagrangian and virtual-work term. Then using Hamilton’s extended principle, we obtain a set of four first-order nonlinear ordinary-differential equations governing the amplitudes and phases of the two excited modes. In both cases, the modulation equations are used to generate frequency- and force-response curves. We found that the trivial solution exhibits a jump as it undergoes a subcritical pitchfork bifurcation. Similarly, the nontrivial solutions also exhibit jumps as they undergo saddle-node bifurcations.

  15. Modeling and non-linear responses of MEMS capacitive accelerometer

    Directory of Open Access Journals (Sweden)

    Sri Harsha C.

    2014-01-01

    Full Text Available A theoretical investigation of an electrically actuated beam has been illustrated when the electrostatic-ally actuated micro-cantilever beam is separated from the electrode by a moderately large gap for two distinct types of geometric configurations of MEMS accelerometer. Higher order nonlinear terms have been taken into account for studying the pull in voltage analysis. A nonlinear model of gas film squeezing damping, another source of nonlinearity in MEMS devices is included in obtaining the dynamic responses. Moreover, in the present work, the possible source of nonlinearities while formulating the mathematical model of a MEMS accelerometer and their influences on the dynamic responses have been investigated. The theoretical results obtained by using MATLAB has been verified with the results obtained in FE software and has been found in good agreement. Criterion towards stable micro size accelerometer for each configuration has been investigated. This investigation clearly provides an understanding of nonlinear static and dynamics characteristics of electrostatically micro cantilever based device in MEMS.

  16. Measurement of Localized Nonlinear Microwave Response of Superconductors

    Science.gov (United States)

    Lee, Sheng-Chiang; Palmer, Benjamin; Maiorov, B.

    2005-03-01

    We measure the local harmonic generation from superconducting thin films at microwave frequencies to investigate the intrinsic nonlinear Meissner effect near T/c in zero magnetic field. Both second and third harmonic generation are measured to identify time-reversal symmetry breaking (TRSB) and time-reversal symmetric (TRS) nonlinearities. The microscope can measure the local nonlinear response of a bicrystal grain boundary [Sheng-Chiang Lee and Steven M. Anlage, Physica C 408-410, 324 (2004); cond-mat/0408170]. We also performed a systematic doping-dependent study of the nonlinear response and find that the TRS characteristic nonlinearity current density scale follows the doping dependence of the de-pairing critical current density [cond-mat/0405595]. We extract a spontaneous TRSB characteristic current density scale that onsets at T/c, grows with decreasing temperature, and systematically decreases in magnitude (at fixed T/T/c) with under-doping. The origin of this current scale could be Josephson circulating currents or the spontaneous magnetization associated with a TRSB order parameter.

  17. Recharge Response Functions

    Directory of Open Access Journals (Sweden)

    A. Calver

    1997-01-01

    Full Text Available This paper explores the establishment of transfer functions for describing the annual oscillation of unconfined aquifer water levels in response to effective precipitation. A simple saturated zone representation is developed to accompany the unsaturated zone mechanism. Practical examples are drawn from a sample of sites from the chalk and the Permo-Triassic sandstones of England and Wales. Modelled water levels are in many cases good. The technique is most appropriate within the usual range of fluctuation of aquifer water level, with no great change in influence of abstractions, and when it is acceptable to approximate the complexity of unsaturated zone processes in practical analysis.

  18. Method of Green’s function of nonlinear vibration of corrugated shallow shells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the dynamic equations of nonlinear large deflection of axisymmetric shallow shells of revolution, the nonlinear free vibration and forced vibration of a corrugated shallow shell under concentrated load acting at the center have been investigated. The nonlinear partial differential equations of shallow shell were re-duced to the nonlinear integral-differential equations by using the method of Green’s function. To solve the integral-differential equations, the expansion method was used to obtain Green’s function. Then the integral-differential equations were reduced to the form with a degenerate core by expanding Green’s function as a series of characteristic function. Therefore, the integral-differential equations be-came nonlinear ordinary differential equations with regard to time. The ampli-tude-frequency relation, with respect to the natural frequency of the lowest order and the amplitude-frequency response under harmonic force, were obtained by considering single mode vibration. As a numerical example, nonlinear free and forced vibration phenomena of shallow spherical shells with sinusoidal corrugation were studied. The obtained solutions are available for reference to the design of corrugated shells.

  19. Method of Green's function of nonlinear vibration of corrugated shallow shells

    Institute of Scientific and Technical Information of China (English)

    YUAN Hong

    2008-01-01

    Based on the dynamic equations of nonlinear large deflection of axisymmetric shallow shells of revolution,the nonlinear free vibration and forced vibration of a corrugated shallow shell under concentrated load acting at the center have been investigated.The nonlinear partial differential equations of shallow shell were re-duced to the nonlinear integral-differential equations by using the method of Green's function.To solve the integral-differential equations,the expansion method was used to obtain Green's function.Then the integral-differential equations were reduced to the form with a degenerate core by expanding Green's function as a series of characteristic function.Therefore,the integral-differential equations be-came nonlinear ordinary differential equations with regard to time.The ampli-tude-frequency relation,with respect to the natural frequency of the lowest order and the amplitude-frequency response under harmonic force,were obtained by considering single mode vibration.As a numerical example,nonlinear free and forced vibration phenomena of shallow spherical shells with sinusoidal corrugation were studied.The obtained solutions are available for reference to the design of corrugated shells.

  20. Analytical exploration of γ-function explicit method for pseudodynamic testing of nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    Shuenn-Yih Chang; Yu-Chi Sung

    2005-01-01

    It has been well studied that the γ-function explicit method can be effective in providing favorable numerical dissipation for linear elastic systems. However, its performance for nonlinear systems is unclear due to a lack of analytical evaluation techniques. Thus, a novel technique is proposed herein to evaluate its efficiency for application to nonlinear systems by introducing two parameters to describe the stiffness change. As a result, the numerical properties and error propagation characteristics of the γ-function explicit method for the pseudodynamic testing of a nonlinear system are analytically assessed. It is found that the upper stability limit decreases as the step degree of nonlinearity increases; and it increases as the current degree of nonlinearity increases. It is also shown that this integration method provides favorable numerical dissipation not only for linear elastic systems but also for nonlinear systems. Furthermore, error propagation analysis reveals that the numerical dissipation can effectively suppress the severe error propagation of high frequency modes while the low frequency responses are almost unaffected for both linear elastic and nonlinear systems.

  1. Neural networks for function approximation in nonlinear control

    Science.gov (United States)

    Linse, Dennis J.; Stengel, Robert F.

    1990-01-01

    Two neural network architectures are compared with a classical spline interpolation technique for the approximation of functions useful in a nonlinear control system. A standard back-propagation feedforward neural network and a cerebellar model articulation controller (CMAC) neural network are presented, and their results are compared with a B-spline interpolation procedure that is updated using recursive least-squares parameter identification. Each method is able to accurately represent a one-dimensional test function. Tradeoffs between size requirements, speed of operation, and speed of learning indicate that neural networks may be practical for identification and adaptation in a nonlinear control environment.

  2. Nonlinear analysis of the forced response of structural elements

    Science.gov (United States)

    Nayfeh, A. H.; Mook, D. T.; Sridhar, S.

    1974-01-01

    A general procedure is presented for the nonlinear analysis of the forced response of structural elements to harmonic excitations. Internal resonances (i.e., modal interactions) are taken into account. All excitations are considered, with special consideration given to resonant excitations. The general procedure is applied to clamped-hinged beams. The results reveal that exciting a higher mode may lead to a larger response in a lower interacting mode, contrary to the results of linear analyses.

  3. Nonlinear microwave switching response of BSCCO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, T.; Sridhar, S. [Northeastern Univ., Boston, MA (United States). Dept. of Physics; Willemsen, B.A. [Northeastern Univ., Boston, MA (United States). Dept. of Physics]|[Rome Lab., Hanscom AFB, MA (United States); Li, Qiang [Brookhaven National Lab., Upton, NY (United States); Gu, G.D.; Koshizuka, N. [Superconductivity Research Lab., Tokyo (Japan)

    1996-06-01

    Measurements of the surface impedance in Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+{delta}} single crystal with microwave currents flowing along the {cflx c} axis show clear evidence of a step-like nonlinearity. The surface resistance switches between apparently quantized levels for microwave field strength changes < 1 mG. This nonlinear response can arise from the presence of intrinsic Josephson junctions along the {cflx c} axis of these samples driven by the microwave current.

  4. RBFNN Model for Predicting Nonlinear Response of Uniformly Loaded Paddle Cantilever

    Directory of Open Access Journals (Sweden)

    Abdullah H. Abdullah

    2009-01-01

    Full Text Available The Radial basis Function neural network (RBFNN model has been developed for the prediction of nonlinear response for paddle Cantilever with built-in edges and different sizes, thickness and uniform loads. Learning data was performed by using a nonlinear finite element program, incremental stages of the nonlinear finite element analysis were generated by using 25 schemes of built paddle Cantilevers with different thickness and uniform distributed loads. The neural network model has 5 input nodes representing the uniform distributed load and paddle size, length, width and thickness, eight nodes at hidden layer and one output node representing the max. deflection response (1500×1 represent the deflection response of load. Regression analysis between finite element results and values predicted by the neural network model shows the least error.

  5. Nonlinear THz response of metallic armchair graphene nanoribbon superlattices

    Science.gov (United States)

    Wang, Yichao; Andersen, David R.

    2016-11-01

    We study the third order THz nonlinear response of metallic armchair graphene nanoribbon superlattices in the presence of an elliptically-polarized excitation field using the time dependent perturbation theory. For a one-dimensional Kronig-Penney potential of infinite length, the nonlinear response can be described perturbatively by a low energy \\mathbf{k}\\centerdot \\mathbf{p} N-photon coupling model. Remarkably, as shown by Burset et al the energy dispersion of the metallic band in the direction parallel to the superlattice wavevector is independent of the applied superlattice potential while the energy dispersion in the direction perpendicular to the superlattice wavevector depends strongly on the superlattice parameters. As a result, we predict novel behavior for the nonlinear response of single layer metallic acGNR superlattices to an applied elliptically-polarized electric field. Our work shows that the superlattice potential, periodicity, Fermi level, excitation field polarization state, and temperature all play a significant role in the resulting THz nonlinear conductances.

  6. Nonlinear optical response in doped conjugated polymers

    CERN Document Server

    Harigaya, K

    1995-01-01

    Exciton effects on conjugated polymers are investigated in soliton lattice states. We use the Su-Schrieffer-Heeger model with long-range Coulomb interactions. The Hartree-Fock (HF) approximation and the single-excitation configuration- interaction (single-CI) method are used to obtain optical absorption spectra. The third-harmonic generation (THG) at off-resonant frequencies is calculated as functions of the soliton concentration and the chain length of the polymer. The magnitude of the THG at the 10 percent doping increases by the factor about 10^2 from that of the neutral system. This is owing to the accumulation of the oscillator strengths at the lowest exciton with increasing the soliton concentration. The increase by the order two is common for several choices of Coulomb interaction strengths.

  7. Nonlinear programming extensions to rational function approximations of unsteady aerodynamics

    Science.gov (United States)

    Tiffany, Sherwood H.; Adams, William M., Jr.

    1987-01-01

    This paper deals with approximating unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft. Two methods of formulating these approximations are extended to include both the same flexibility in constraining them and the same methodology in optimizing nonlinear parameters as another currently used 'extended least-squares' method. Optimal selection of 'nonlinear' parameters is made in each of the three methods by use of the same nonlinear (nongradient) optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is of lower order than that required when no optimization of the nonlinear terms is performed. The free 'linear' parameters are determined using least-squares matrix techniques on a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from the different approaches are described, and results are presented which show comparative evaluations from application of each of the extended methods to a numerical example. The results obtained for the example problem show a significant (up to 63 percent) reduction in the number of differential equations used to represent the unsteady aerodynamic forces in linear time-invariant equations of motion as compared to a conventional method in which nonlinear terms are not optimized.

  8. Stabilization of discrete nonlinear systems based on control Lyapunov functions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The stabilization of discrete nonlinear systems is studied.Based on control Lyapunov functions,asufficient and necessary condition for a quadratic function to be a control Lyapunov function is given.From this condition,a continuous state feedback law is constructed explicitly.It can globally asymptotically stabilize the equilibrium of the closed-loop system.A simulation example shows the effectiveness of the proposed method.

  9. Structure property relationships for the nonlinear optical response of fullerenes

    Science.gov (United States)

    Rustagi, Kailash C.; Ramaniah, Lavanya M.; Nair, Selvakumar V.

    1994-11-01

    We present a phenomenological theory of nonlinear optical response of fullerenes. An empirical tight-binding model is used in conjunction with a classical electromagnetic picture for the screening. Since in bulk media such a picture of screening corresponds to the self- consistent field approach, the only additional approximation involved in our approach is the neglect of nonlocality. We obtain reliable estimates for the linear and nonlinear susceptibilities of C60, C70, C76 and other pure carbon fullerenes and also substituted fullerenes. The relatively large values of (beta) that we obtain for C76 and substituted fullerenes appear promising for the development of fullerene-based nonlinear optical materials. Our phenomenological picture of screening provides a good understanding of the linear absorption spectra of higher fullerenes and predicts that a comparison of the one-photon and multi-photon spectra will provide an insight into screening effects in these systems.

  10. Response bounds for complex systems with a localised and uncertain nonlinearity

    Science.gov (United States)

    Butlin, T.

    2016-12-01

    Predicting the vibration response of complex nonlinear structures is a significant challenge: the response may involve many modes of the structure; nonlinearity precludes the use of efficient techniques developed for linear systems; and there is often uncertainty associated with the nonlinear law, even to the extent that its functional form is not always known. This paper builds on a recently developed method for handling this class of problem in a novel way. The method exploits the fact that nonlinearities are often spatially localised, and seeks the best- and worst-case system response with respect to a chosen metric by regarding the internal nonlinear force as an independent excitation to the underlying linear system. Constraints are used to capture what is thought to be known about the nonlinearity without needing to specify a particular law. This paper focuses on the case of systems with a single point nonlinearity but with arbitrarily complex underlying linear dynamics, driven by a sinusoidal force excitation. Semi-analytic upper and lower bounds are proposed for root-mean-square response metrics subject to constraints which specify that the nonlinearity should be a combination of (A) passive, (B) displacement-limited, and / or (C) force-saturating. The concept of 'equivalent linear bounds' is also introduced for cases where the response metric is thought to be dominated by the same frequency as the input. The bounds corresponding to a passive and displacement-limited nonlinearity are compared with Monte Carlo experimental and numerical results from an impacting beam test rig. The bounds corresponding to a passive and force-saturating nonlinearity are compared with numerical results for a friction-damped beam. The global upper and lower bounds are satisfied for all input frequencies but are generally found to be rather conservative. The 'equivalent linear bounds' show remarkably good agreement for predicting the range of root-mean-square velocity responses

  11. Full Hydrodynamic Model of Nonlinear Electromagnetic Response in Metallic Metamaterials

    CERN Document Server

    Fang, Ming; Sha, Wei E I; Xiong, Xiaoyan Y Z; Wu, Xianliang

    2016-01-01

    Applications of metallic metamaterials have generated significant interest in recent years. Electromagnetic behavior of metamaterials in the optical range is usually characterized by a local-linear response. In this article, we develop a finite-difference time-domain (FDTD) solution of the hydrodynamic model that describes a free electron gas in metals. Extending beyond the local-linear response, the hydrodynamic model enables numerical investigation of nonlocal and nonlinear interactions between electromagnetic waves and metallic metamaterials. By explicitly imposing the current continuity constraint, the proposed model is solved in a self-consistent manner. Charge, energy and angular momentum conservation laws of high-order harmonic generation have been demonstrated for the first time by the Maxwell-hydrodynamic FDTD model. The model yields nonlinear optical responses for complex metallic metamaterials irradiated by a variety of waveforms. Consequently, the multiphysics model opens up unique opportunities f...

  12. Simulations of the Ocean Response to a Hurricane: Nonlinear Processes

    KAUST Repository

    Zedler, Sarah E.

    2009-10-01

    Superinertial internal waves generated by a tropical cyclone can propagate vertically and laterally away from their local generation site and break, contributing to turbulent vertical mixing in the deep ocean and maintenance of the stratification of the main thermocline. In this paper, the results of a modeling study are reported to investigate the mechanism by which superinertial fluctuations are generated in the deep ocean. The general properties of the superinertial wave wake were also characterized as a function of storm speed and central latitude. The Massachusetts Institute of Technology (MIT) Ocean General Circulation Model (OGCM) was used to simulate the open ocean response to realistic westward-tracking hurricane-type surface wind stress and heat and net freshwater buoyancy forcing for regions representative of midlatitudes in the Atlantic, the Caribbean, and low latitudes in the eastern Pacific. The model had high horizontal [Δ(x, y) = 1/6°] and vertical (Δz = 5 m in top 100 m) resolution and employed a parameterization for vertical mixing induced by shear instability. In the horizontal momentum equation, the relative size of the nonlinear advection terms, which had a dominant frequency near twice the inertial, was large only in the upper 200 m of water. Below 200 m, the linear momentum equations obeyed a linear balance to 2%. Fluctuations at nearly twice the inertial frequency (2f) were prevalent throughout the depth of the water column, indicating that these nonlinear advection terms in the upper 200 m forced a linear mode below at nearly twice the inertial frequency via vorticity conservation. Maximum variance at 2f in horizontal velocity occurred on the south side of the track. This was in response to vertical advection of northward momentum, which in the north momentum equation is an oscillatory positive definite term that constituted a net force to the south at a frequency near 2f. The ratio of this term to the Coriolis force was larger on the

  13. NONLINEAR RESPONSES OF GAMMA —RAY DOSIMETERS

    Institute of Scientific and Technical Information of China (English)

    罗达玲; 杨健明; 等

    1994-01-01

    Either sublinear or supralinear responses of dosimeters to γ-ray can be described by a response function derived from statistical Poisson distribution.The characteristic parameters of the function determine linearity,sublinearity and supralinearlty in their responses.The experimental data of gamma dose-responses of alanine ESR dosimeters film dosimeters.LiF(Mg,Cu,P) and LiF(Mg,Ti) thermoluminescence dosimeters are used to test the response function.

  14. Jacobi elliptic function solutions of some nonlinear PDEs

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jianbin; Yang Lei; Yang Kongqing

    2004-05-17

    Based on a subtle balance method, a given function expansion is applied to several nonlinear PDEs, which contain generalized KdV equations, coupled equations and complex equations and so on. A series of periodic solutions, solitary wave solutions and singular solutions are obtained by the aid of symbolic computation.

  15. Nonlinear response from the perspective of energy landscapes and beyond

    Science.gov (United States)

    Heuer, Andreas; Schroer, Carsten F. E.; Diddens, Diddo; Rehwald, Christian; Blank-Burian, Markus

    2017-08-01

    The paper discusses the nonlinear response of disordered systems. In particular we show how the nonlinear response can be interpreted in terms of properties of the potential energy landscape. It is shown why the use of relatively small systems is very helpful for this approach. For a standard model system we check which system sizes are particular suited. In case of the driving of a single particle via an external force the concept of an effective temperature helps to scale the force dependence for different temperature on a single master curve. In all cases the mobility increases with increasing external force. These results are compared with a stochastic process described by a 1d Langevin equation where a similar scaling is observed. Furthermore it is shown that for different classes of disordered systems the mobility can also decrease with increasing force. The results can be related to the properties of the chosen potential energy landscape. Finally, results for the crossover from the linear to the nonlinear conductivity of ionic liquids are presented, inspired by recent experimental results in the Roling group. Apart from a standard imidazolium-based ionic liquid we study a system which is characterized by a low conductivity as compared to other ionic liquids and very small nonlinear effects. We show via a real space structural analysis that for this system a particularly strong pair formation is observed and that the strength of the pair formation is insensitive to the application of strong electric fields. Consequences of this observation are discussed.

  16. Current-mode analog nonlinear function synthesizer structures

    CERN Document Server

    Popa, Cosmin Radu

    2013-01-01

    This book is dedicated to the analysis and design of analog CMOS nonlinear function synthesizer structures, based on original superior-order approximation functions. A variety of analog function synthesizer structures are discussed, based on accurate approximation functions.  Readers will be enabled to implement numerous circuit functions with applications in analog signal processing, including exponential, Gaussian or hyperbolic functions. Generalizing the methods for obtaining these particular functions, the author analyzes superior-order approximation functions, which represent the core for developing CMOS analog nonlinear function synthesizers.   ·         Describes novel methods for generating a multitude of circuit functions, based on superior-order improved accuracy approximation functions; ·         Presents techniques for analog function synthesizers that can be applied easily to a wide variety of analog signal processing circuits; ·         Enables the design of analog s...

  17. Nonlinear optics response of semiconductor quantum wells under high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Chemla, D.S.

    1993-07-01

    Recent investigations on the nonlinear optical response of semiconductor quantum wells in a strong perpendicular magnetic field, H, are reviewed. After some introductory material the evolution of the linear optical properties of GaAs QW`s as a function of H is discussed; an examination is made of how the magneto-excitons (MX) extrapolate continuously between quasi-2D QW excitons (X) when H = 0, and pairs of Landau levels (LL) when H {yields} {infinity}. Next, femtosecond time resolved investigations of their nonlinear optical response are presented; the evolution of MX-MX interactions with increasing H is stressed. Finally, how, as the dimensionality is reduced by application of H, the number of scattering channels is limited and relaxation of electron-hole pairs is affected. How nonlinear optical spectroscopy can be exploited to access the relaxation of angular momentum within magneto-excitons is also discussed.

  18. Piecewise nonlinear image registration using DCT basis functions

    Science.gov (United States)

    Gan, Lin; Agam, Gady

    2015-03-01

    The deformation field in nonlinear image registration is usually modeled by a global model. Such models are often faced with the problem that a locally complex deformation cannot be accurately modeled by simply increasing degrees of freedom (DOF). In addition, highly complex models require additional regularization which is usually ineffective when applied globally. Registering locally corresponding regions addresses this problem in a divide and conquer strategy. In this paper we propose a piecewise image registration approach using Discrete Cosine Transform (DCT) basis functions for a nonlinear model. The contributions of this paper are three-folds. First, we develop a multi-level piecewise registration framework that extends the concept of piecewise linear registration and works with any nonlinear deformation model. This framework is then applied to nonlinear DCT registration. Second, we show how adaptive model complexity and regularization could be applied for local piece registration, thus accounting for higher variability. Third, we show how the proposed piecewise DCT can overcome the fundamental problem of a large curvature matrix inversion in global DCT when using high degrees of freedoms. The proposed approach can be viewed as an extension of global DCT registration where the overall model complexity is increased while achieving effective local regularization. Experimental evaluation results provide comparison of the proposed approach to piecewise linear registration using an affine transformation model and a global nonlinear registration using DCT model. Preliminary results show that the proposed approach achieves improved performance.

  19. Design and characterization of nonlinear functions for the transmission of a small signal with non-Gaussian noise

    Science.gov (United States)

    Kasai, Seiya; Tadokoro, Yukihiro; Ichiki, Akihisa

    2013-12-01

    We design nonlinear functions for the transmission of a small signal with non-Gaussian noise and perform experiments to characterize their responses. Using statistical design theory [A. Ichiki and Y. Tadokoro, Phys. Rev. E 87, 012124 (2013), 10.1103/PhysRevE.87.012124], a static nonlinear function is estimated from the probability density function of the given noise in order to maximize the signal-to-noise ratio of the output. Using an electronic system that implements the optimized nonlinear function, we confirm the recovery of a small signal from a signal with non-Gaussian noise. In our experiment, the non-Gaussian noise is a mixture of Gaussian noises. A similar technique is also applied to the optimization of the threshold value of the function. We find that, for non-Gaussian noise, the response of the optimized nonlinear systems is better than that of the linear system.

  20. Stabilization of nonlinear systems based on robust control Lyapunov function

    Institute of Scientific and Technical Information of China (English)

    CAI Xiu-shan; HAN Zheng-zhi; LU Gan-yun

    2007-01-01

    This paper deals with the robust stabilization problem for a class of nonlinear systems with structural uncertainty. Based on robust control Lyapunov function, a sufficient and necessary condition for a function to be a robust control Lyapunov function is given. From this condition, simply sufficient condition for the robust stabilization (robust practical stabilization) is deduced. Moreover, if the equilibrium of the closed-loop system is unique, the existence of such a robust control Lyapunov function will also imply robustly globally asymptotical stabilization. Then a continuous state feedback law can be constructed explicitly. The simulation shows the effectiveness of the method.

  1. Comparison Criteria for Nonlinear Functional Dynamic Equations of Higher Order

    Directory of Open Access Journals (Sweden)

    Taher S. Hassan

    2016-01-01

    Full Text Available We will consider the higher order functional dynamic equations with mixed nonlinearities of the form xnt+∑j=0Npjtϕγjxφjt=0, on an above-unbounded time scale T, where n≥2, xi(t≔ri(tϕαixi-1Δ(t,  i=1,…,n-1,   with  x0=x,  ϕβ(u≔uβsgn⁡u, and α[i,j]≔αi⋯αj. The function φi:T→T is a rd-continuous function such that limt→∞φi(t=∞ for j=0,1,…,N. The results extend and improve some known results in the literature on higher order nonlinear dynamic equations.

  2. A Simple Transfer Function for Nonlinear Dendritic Integration

    Directory of Open Access Journals (Sweden)

    Matt eSingh

    2015-08-01

    Full Text Available Relatively recent advances in patch clamp recordings and iontophoresis have enabled unprecedented study of neuronal post-synaptic integration (dendritic integration. Findings support a separate layer of integration in the dendritic branches before potentials reach the cell’s soma. While integration between branches obeys previous linear assumptions, proximal inputs within a branch produce threshold nonlinearity, which some authors have likened to the sigmoid function. Here we show the implausibility of a sigmoidal relation and present a more realistic transfer function in both an elegant artificial form and a biophysically derived form that further considers input locations along the dendritic arbor. As the distance between input locations determines their ability to produce nonlinear interactions, models incorporating dendritic topology are essential to understanding the computational power afforded by these early stages of integration. We use the biophysical transfer function to emulate empirical data using biophysical parameters and describe the conditions under which the artificial and biophysically derived forms are equivalent.

  3. Nonlinear response studies and corrections for a liquid crystal spatial light modulator

    Indian Academy of Sciences (India)

    Ravinder Kumar Banyal; B Raghavendra Prasad

    2010-06-01

    The nonlinear response of light transmission characteristics of a liquid crystal (LC) spatial light modulator (SLM) is studied. The results show that the device exhibits a wide range of variations with different control parameters and input settings. Experiments were performed to obtain intensity modulation that is best described by either power-law or sigmoidal functions. Based on the inverse transformation, an appropriate pre-processing scheme for electrically addressed input gray-scale images, particularly important in several optical processing and imaging applications, is suggested. Further, the necessity to compensate the SLM image nonlinearities in a volume holographic data storage and retrieval system is demonstrated.

  4. Nonlinear vibrations of functionally graded doubly curved shallow shells

    Science.gov (United States)

    Alijani, F.; Amabili, M.; Karagiozis, K.; Bakhtiari-Nejad, F.

    2011-03-01

    Nonlinear forced vibrations of FGM doubly curved shallow shells with a rectangular base are investigated. Donnell's nonlinear shallow-shell theory is used and the shell is assumed to be simply supported with movable edges. The equations of motion are reduced using the Galerkin method to a system of infinite nonlinear ordinary differential equations with quadratic and cubic nonlinearities. Using the multiple scales method, primary and subharmonic resonance responses of FGM shells are fully discussed and the effect of volume fraction exponent on the internal resonance conditions, softening/hardening behavior and bifurcations of the shallow shell when the excitation frequency is (i) near the fundamental frequency and (ii) near two times the fundamental frequency is shown. Moreover, using a code based on arclength continuation method, a bifurcation analysis is carried out for a special case with two-to-one internal resonance between the first and second doubly symmetric modes with respect to the panel's center ( ω13≈2 ω11). Bifurcation diagrams and Poincaré maps are obtained through direct time integration of the equations of motion and chaotic regions are shown by calculating Lyapunov exponents and Lyapunov dimension.

  5. Stable response of low-gravity liquid non-linear sloshing in a circle cylindrical tank

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Under pitch excitation, the sloshing of liquid in circular cylindrical tank includes planar motion, rotary motion and rotary motion inside planar motion. The boundaries between stable motion and unstable motion depend on the radius of the tank, the liquid height, the gravitational intension, the surface tensor and the sloshing damping. In this article, the differential equations of nonlinear sloshing are built first.And by variational principle, the Lagrange function of liquid pressure is constructed in volume intergration form. Then the velocity potential function is expanded in series by wave height function at the free surface. The nonlinear equations with kinematics and dynamics free surface boundary conditions through variation are derived. At last, these equations are solved by multiple-scales method. The influence of Bond number on the global stable response of nonlinear liquid sloshing in circular cylinder tank is analyzed in detail. The result indicates that variation of amplitude frequency response characteristics of the system with Bond, jump, lag and other nonlinear phenomena of liquid sloshing are investigated.

  6. A FORTRAN program for calculating nonlinear seismic ground response

    Science.gov (United States)

    Joyner, William B.

    1977-01-01

    The program described here was designed for calculating the nonlinear seismic response of a system of horizontal soil layers underlain by a semi-infinite elastic medium representing bedrock. Excitation is a vertically incident shear wave in the underlying medium. The nonlinear hysteretic behavior of the soil is represented by a model consisting of simple linear springs and Coulomb friction elements arranged as shown. A boundary condition is used which takes account of finite rigidity in the elastic substratum. The computations are performed by an explicit finite-difference scheme that proceeds step by step in space and time. A brief program description is provided here with instructions for preparing the input and a source listing. A more detailed discussion of the method is presented elsewhere as is the description of a different program employing implicit integration.

  7. Effects of Particle Shape and Microstructure on Effective Nonlinear Response

    Institute of Scientific and Technical Information of China (English)

    HUANG Ji-Ping; LI Zhen-Ya

    2001-01-01

    We consider a binary granular composite medium, in which two materials have high-order nonlinearities.The effect of particle shape on effective nonlinear response (ENR) is investigated by assuming all the particles to be shaped as uniaxial ellipsoid. We discuss two types of arrangements of particles: 1) parallel axes (Case I); 2) random axes (Case II). During the process of numerical calculation, one component material is assumed to be linear, and two kinds of conductors are assumed to be at high conducting contrast. We find that: 1) the shape effect on ENR is possibly strong; 2) the enhanced ENR can even be obtained by choosing particles of appropriate ellipsoidal shapes; 3) the ENR enhancement predicted by Case I is much stronger than that by Case II.``

  8. Strong nonlinear photonic responses from microbiologically synthesized tellurium nanocomposites

    Science.gov (United States)

    Liao, K.-S.; Wang, Jingyuan; Dias, S.; Dewald, J.; Alley, N.J.; Baesman, S.M.; Oremland, R.S.; Blau, W.J.; Curran, S.A.

    2010-01-01

    A new class of nanomaterials, namely microbiologically-formed nanorods composed of elemental tellurium [Te(0)] that forms unusual nanocomposites when combined with poly(m-phenylenevinylene-co-2,5-dioctoxy-phenylenevinylene) (PmPV) is described. These bio-nanocomposites exhibit excellent broadband optical limiting at 532 and 1064 nm. Nonlinear scattering, originating from the laser induced solvent bubbles and microplasmas, is responsible for this nonlinear behavior. The use of bacterially-formed Te(0) when combined with an organic chemical host (e.g., PmPV) is a new green method of nanoparticle syntheses. This opens the possibilities of using unique, biologically synthesized materials to advance future nanoelectronic and nanophotonic applications. ?? 2009 Elsevier B.V. All rights reserved.

  9. Nonlinear dynamic response of stay cables under axial harmonic excitation

    Institute of Scientific and Technical Information of China (English)

    Xu XIE; He ZHAN; Zhi-cheng ZHANG

    2008-01-01

    This paper proposes a new numerical simulation method for analyzing the parametric vibration of stay cables based on the theory of nonlinear dynamic response of structures under the asynchronous support excitation.The effects of important parameters related to parametric vibration of cables,I.e., characteristics of structure,excitation frequency,excitation amplitude,damping effect of the air and the viscous damping coefficient of the cables,were investigated by using the proposed method for the cables with significant length difference as examples.The analysis results show that nonlinear finite element method is a powerful technique in analyzing the parametric vibration of cables,the behavior of parametric vibration of the two cables with different Irvine parameters has similar properties,the amplitudes of parametric vibration of cables are related to the frequency and amplitude of harmonic support excitations and the effect of distributed viscous damping on parametric vibration of the cables is very small.

  10. Nonlinear dynamics of initially imperfect functionally graded circular cylindrical shell under complex loads

    Science.gov (United States)

    Liu, Y. Z.; Hao, Y. X.; Zhang, W.; Chen, J.; Li, S. B.

    2015-07-01

    The nonlinear vibration of a simply supported FGM cylindrical shell with small initial geometric imperfection under complex loads is studied. The effects of radial harmonic excitation, compressive in-plane force combined with supersonic aerodynamic and thermal loads are considered. The small initial geometric imperfection of the cylindrical shell is characterized in the form of the sine-type trigonometric functions. The effective material properties of this FGM cylindrical shell are graded in the radial direction according to a simple power law in terms of the volume fractions. Based on Reddy's third-order shear deformation theory, von Karman-type nonlinear kinematics and Hamilton's principle, the nonlinear partial differential equation that controls the shell dynamics is derived. Both axial symmetric and driven modes of the cylindrical shell deflection pattern are included. Furthermore, the equations of motion can be reduced into a set of coupled nonlinear ordinary differential equations by applying Galerkin's method. In the study of the nonlinear dynamics responses of small initial geometric imperfect FGM cylindrical shell under complex loads, the 4th order Runge-Kutta method is used to obtain time history, phase portraits, bifurcation diagrams and Poincare maps with different parameters. The effects of external loads, geometric imperfections and volume fractions on the nonlinear dynamics of the system are discussed.

  11. Measurement of nonlinear elastic response in rock by the resonant bar method

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, P.A. (Los Alamos National Lab., NM (United States)); Rasolofosaon, P.; Zinszner, B. (Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France))

    1993-01-01

    In this work we are studying the behavior of the fundamental (Young's) mode resonant peak as a function of drive amplitude in rock samples. Our goal from these studies is to obtain nonlinear moduli for many rock types, and to study the nonlinear moduli as a function of water saturation and other changes in physical properties. Measurements were made on seven different room dry rock samples. For one sample measurements were taken at 16 saturation levels between 1 and 98%. All samples display a softening'' nonlinearity, that is, the resonant frequency shifts downward with increasing drive amplitude. In extreme cases, the resonant frequency changes by as much as 25% over a strain interval of 10[sup [minus]7] to [approximately]4 [times] 10[sup [minus]5]. Measurements indicate that the nonlinear response is extremely sensitive to saturation. Estimates of a combined cubic and quartic nonlinear parameter [Gamma] range from approximately [minus]300 to [minus]10[sup 9] for the rock samples.

  12. On Third-Order Nonlinearity of Biquadratic Monomial Boolean Functions

    Directory of Open Access Journals (Sweden)

    Brajesh Kumar Singh

    2014-01-01

    Full Text Available The rth-order nonlinearity of Boolean function plays a central role against several known attacks on stream and block ciphers. Because of the fact that its maximum equals the covering radius of the rth-order Reed-Muller code, it also plays an important role in coding theory. The computation of exact value or high lower bound on the rth-order nonlinearity of a Boolean function is very complicated problem, especially when r>1. This paper is concerned with the computation of the lower bounds for third-order nonlinearities of two classes of Boolean functions of the form Tr1nλxd for all x∈2n, λ∈2n*, where a d=2i+2j+2k+1, where i, j, and   k are integers such that i>j>k≥1 and n>2i, and b d=23ℓ+22ℓ+2ℓ+1, where ℓ is a positive integer such that gcdℓ,=1 and n>6.

  13. Identifying the nonlinear mechanical behaviour of micro-speakers from their quasi-linear electrical response

    Science.gov (United States)

    Zilletti, Michele; Marker, Arthur; Elliott, Stephen John; Holland, Keith

    2017-05-01

    In this study model identification of the nonlinear dynamics of a micro-speaker is carried out by purely electrical measurements, avoiding any explicit vibration measurements. It is shown that a dynamic model of the micro-speaker, which takes into account the nonlinear damping characteristic of the device, can be identified by measuring the response between the voltage input and the current flowing into the coil. An analytical formulation of the quasi-linear model of the micro-speaker is first derived and an optimisation method is then used to identify a polynomial function which describes the mechanical damping behaviour of the micro-speaker. The analytical results of the quasi-linear model are compared with numerical results. This study potentially opens up the possibility of efficiently implementing nonlinear echo cancellers.

  14. A study of non-linearity in rainfall-runoff response using 120 UK catchments

    Science.gov (United States)

    Mathias, Simon A.; McIntyre, Neil; Oughton, Rachel H.

    2016-09-01

    This study presents a catchment characteristic sensitivity analysis concerning the non-linearity of rainfall-runoff response in 120 UK catchments. Two approaches were adopted. The first approach involved, for each catchment, regression of a power-law to flow rate gradient data for recession events only. This approach was referred to as the recession analysis (RA). The second approach involved calibrating a rainfall-runoff model to the full data set (both recession and non-recession events). The rainfall-runoff model was developed by combining a power-law streamflow routing function with a one parameter probability distributed model (PDM) for soil moisture accounting. This approach was referred to as the rainfall-runoff model (RM). Step-wise linear regression was used to derive regionalization equations for the three parameters. An advantage of the RM approach is that it utilizes much more of the observed data. Results from the RM approach suggest that catchments with high base-flow and low annual precipitation tend to exhibit greater non-linearity in rainfall-runoff response. In contrast, the results from the RA approach suggest that non-linearity is linked to low evaporative demand. The difference in results is attributed to the aggregation of storm-flow and base-flow into a single system giving rise to a seemingly more non-linear response when applying the RM approach to catchments that exhibit a strongly dual storm-flow base-flow response. The study also highlights the value and limitations in a regionlization context of aggregating storm-flow and base-flow pathways into a single non-linear routing function.

  15. Nonlinear electromechanical response of the ferroelectret ultrasonic transducers

    Science.gov (United States)

    Döring, Joachim; Bovtun, Viktor; Bartusch, Jürgen; Erhard, Anton; Kreutzbruck, Marc; Yakymenko, Yuriy

    2010-08-01

    The ultrasonic transmission between two air-coupled polypropylene (PP) ferroelectret (FE) transducers in dependence on the amplitude of the high-voltage exciting pulse revealed a strongly nonlinear electromechanical response of the FE transmitter. This phenomenon is described by a linear increase of the inverse electromechanical transducer constant t_{33}^{(1)} of the PP FE film with an increase of the exciting electrical pulse amplitude. Enlargement of t_{33}^{(1)} by a factor of 4 was achieved by application of 3500 V exciting pulses. The electrostriction contribution to t_{33}^{(1)} can be attributed to the electrostatic force between electrodes and the Maxwell stress effect. The nonlinear electromechanical properties of the PP FE result in a strong increase of its air-coupled ultrasonic (ACUS) figure of merit ( FOM) under the high-voltage excitation, which exceeds results of the PP FE technological optimization. The FOM increase can be related to the increase of PP FE coupling factor and/or to the decrease of its acoustic impedance. A significant enhancement of the ACUS system transmission (12 dB) and signal-to-noise ratio (32 dB) was demonstrated by the increase of excitation voltage up to 3500 V. The nonlinear electromechanical properties of the PP FEs seem to be very important for their future applications.

  16. Method of guiding functions in problems of nonlinear analysis

    CERN Document Server

    Obukhovskii, Valeri; Van Loi, Nguyen; Kornev, Sergei

    2013-01-01

    This book offers a self-contained introduction to the theory of guiding functions methods, which can be used to study the existence of periodic solutions and their bifurcations in ordinary differential equations, differential inclusions and in control theory. It starts with the basic concepts of nonlinear and multivalued analysis, describes the classical aspects of the method of guiding functions, and then presents recent findings only available in the research literature. It describes essential applications in control theory, the theory of bifurcations, and physics, making it a valuable resource not only for “pure” mathematicians, but also for students and researchers working in applied mathematics, the engineering sciences and physics.

  17. Approximate Augmented Lagrangian Functions and Nonlinear Semidefinite Programs

    Institute of Scientific and Technical Information of China (English)

    X. X. HUANG; K. L. TEO; X. Q. YANG

    2006-01-01

    In this paper, an approximate augmented Lagrangian function for nonlinear semidefinite programs is introduced. Some basic properties of the approximate augmented Lagrange function such as monotonicity and convexity are discussed. Necessary and sufficient conditions for approximate strong duality results are derived. Conditions for an approximate exact penalty representation in the framework of augmented Lagrangian are given. Under certain conditions, it is shown that any limit point of a sequence of stationary points of approximate augmented Lagrangian problems is a KKT point of the original semidefinite program and that a sequence of optimal solutions to augmented Lagrangian problems converges to a solution of the original semidefinite program.

  18. An Adaptive Identification Algorithm of Nonlinear Output Frequency Response Functions and Its Application%非线性输出频域响应函数的自适应辨识算法及应用

    Institute of Scientific and Technical Information of China (English)

    韩海涛; 曹建福; 马红光; 张家良

    2011-01-01

    A nonlinear output frequency response functions (NOFRF) frequency adaptive identification algorithm (NOFRF-BLMS) is proposed to deal with the problems that the conventional identification method of NOFRF needs multiple stimulus and costs long time when the model of NOFRF is applied to fault diagnosis of analog circuit system. Input observation vectors and kernel vectors are constructed by means of NOFRF-BLMS, which makes the model of NOFRF become a pseudo-linear combination structure. Then, NOFRF adaptive identification recursive computational formula, which satisfies the norm of least mean square error, is deduced based on block least mean square (BLMS) and constraint optimization theory. Input power is used to estimate recursive learning factors, and output error is used to construct residual error vectors. NOFRF is identified via online learning and only one stimulus is needed in NOFRF-BLMS which simplifies the procedure of identifying dramatically and shortens the time of identifying. NOFRF-BLMS is robust to noise. Experimental results indicate that NOFRF-BLMS costs only 3 % of the identifying time of the conventional method, and the faults are correctly identified.%为解决非线性输出频域响应函数(NOFRF)模型用于模拟电路系统故障诊断时,传统辨识算法需多次激励计算过程耗时长的问题,提出了NOFRF的频域自适应辨识算法(NOFRF-BLMS).该算法构造了NOFRF的输入观测向量与核向量,从而可将NOFRF表示成一个伪线性结构.根据块最小均方(BLMS)原理及约束优化理论,推导出满足最小均方误差指标的NOFRF自适应辨识迭代计算公式,采用输入功率普迭代估算学习因子,由输出误差构造残差向量.NOFRF-BLMS通过在线学习方式,只需一次激励即可辨识出NOFRF,使辨识过程大幅度简化,缩短了辨识时间,具有更强的噪声抑制能力.实验结果表明,NOFRF-BLMS在相同的辨识精度下,耗时仅为传统算法的3%,且故障判断准确.

  19. Response of MDOF strongly nonlinear systems to fractional Gaussian noises

    Science.gov (United States)

    Deng, Mao-Lin; Zhu, Wei-Qiu

    2016-08-01

    In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.

  20. Response of MDOF strongly nonlinear systems to fractional Gaussian noises

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Mao-Lin; Zhu, Wei-Qiu, E-mail: wqzhu@zju.edu.cn [Department of Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027 (China)

    2016-08-15

    In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.

  1. Response of MDOF strongly nonlinear systems to fractional Gaussian noises.

    Science.gov (United States)

    Deng, Mao-Lin; Zhu, Wei-Qiu

    2016-08-01

    In the present paper, multi-degree-of-freedom strongly nonlinear systems are modeled as quasi-Hamiltonian systems and the stochastic averaging method for quasi-Hamiltonian systems (including quasi-non-integrable, completely integrable and non-resonant, completely integrable and resonant, partially integrable and non-resonant, and partially integrable and resonant Hamiltonian systems) driven by fractional Gaussian noise is introduced. The averaged fractional stochastic differential equations (SDEs) are derived. The simulation results for some examples show that the averaged SDEs can be used to predict the response of the original systems and the simulation time for the averaged SDEs is less than that for the original systems.

  2. Simulations of coherent nonlinear optical response of molecular vibronic dimers

    CERN Document Server

    Perlík, Václav

    2016-01-01

    We have implemented vibronic dynamics for simulations of the third order coherent response of electronic dimers. In the present communication we provide the full and detailed description of the dynamical model, recently used for simulations of chlorophyll-carotenoid dyads, terylene dimers, or hypericin. We allow for explicit vibronic level structure, by including selected vibrational modes into a "system". Bath dynamics include the Landau-Teller vibrational relaxation, electronic dephasing, and nonlinear vibronic (to bath) coupling. Simulations combine effects of transport and dephasing between vibronic levels. Transport is described by master equation within secular approximation, phase is accumulated in cumulants and its calculation follows the transport pathways during waiting time period.

  3. Functionally Unidimensional Item Response Models for Multivariate Binary Data.

    Science.gov (United States)

    Ip, Edward H; Molenberghs, Geert; Chen, Shyh-Huei; Goegebeur, Yuri; De Boeck, Paul

    2013-07-01

    The problem of fitting unidimensional item response models to potentially multidimensional data has been extensively studied. The focus of this article is on response data that have a strong dimension but also contain minor nuisance dimensions. Fitting a unidimensional model to such multidimensional data is believed to result in ability estimates that represent a combination of the major and minor dimensions. We conjecture that the underlying dimension for the fitted unidimensional model, which we call the functional dimension, represents a nonlinear projection. In this article we investigate 2 issues: (a) can a proposed nonlinear projection track the functional dimension well, and (b) what are the biases in the ability estimate and the associated standard error when estimating the functional dimension? To investigate the second issue, the nonlinear projection is used as an evaluative tool. An example regarding a construct of desire for physical competency is used to illustrate the functional unidimensional approach.

  4. Method of the Logistic Function for Finding Analytical Solutions of Nonlinear Differential Equations

    OpenAIRE

    Kudryashov, N. A.

    2015-01-01

    The method of the logistic function is presented for finding exact solutions of nonlinear differential equations. The application of the method is illustrated by using the nonlinear ordinary differential equation of the fourth order. Analytical solutions obtained by this method are presented. These solutions are expressed via exponential functions.logistic function, nonlinear wave, nonlinear ordinary differential equation, Painlev´e test, exact solution

  5. The Modified Rational Jacobi Elliptic Functions Method for Nonlinear Differential Difference Equations

    Directory of Open Access Journals (Sweden)

    Khaled A. Gepreel

    2012-01-01

    Full Text Available We modified the rational Jacobi elliptic functions method to construct some new exact solutions for nonlinear differential difference equations in mathematical physics via the lattice equation, the discrete nonlinear Schrodinger equation with a saturable nonlinearity, the discrete nonlinear Klein-Gordon equation, and the quintic discrete nonlinear Schrodinger equation. Some new types of the Jacobi elliptic solutions are obtained for some nonlinear differential difference equations in mathematical physics. The proposed method is more effective and powerful to obtain the exact solutions for nonlinear differential difference equations.

  6. Porosity-dependent nonlinear forced vibration analysis of functionally graded piezoelectric smart material plates

    Science.gov (United States)

    Qing Wang, Yan; Zu, Jean W.

    2017-10-01

    This work investigates the porosity-dependent nonlinear forced vibrations of functionally graded piezoelectric material (FGPM) plates by using both analytical and numerical methods. The FGPM plates contain porosities owing to the technical issues during the preparation of FGPMs. Two types of porosity distribution, namely, even and uneven distribution, are considered. A modified power law model is adopted to describe the material properties of the porous FGPM plates. Using D’Alembert’s principle, the out-of-plane equation of motion is derived by taking into account the Kármán nonlinear geometrical relations. After that, the Galerkin method is used to discretize the equation of motion, resulting in a set of ordinary differential equations with respect to time. These ordinary differential equations are solved analytically by employing the harmonic balance method. The approximate analytical results are verified by using the adaptive step-size fourth-order Runge–Kutta method. By means of the perturbation technique, the stability of approximate analytical solutions is examined. An interesting nonlinear broadband vibration phenomenon is detected in the FGPM plates with porosities. Nonlinear frequency-response characteristics of the present smart structures are investigated for various system parameters including the porosity type, the porosity volume fraction, the electric potential, the external excitation, the damping and the constituent volume fraction. It is found that these parameters have significant effects on the nonlinear vibration characteristics of porous FGPM plates.

  7. Dynamically Consistent Nonlinear Evaluations with Their Generating Functions in Lp

    Institute of Scientific and Technical Information of China (English)

    Feng HU

    2013-01-01

    In this paper,we study dynamically consistent nonlinear evaluations in Lp (1 < p < 2).One of our aim is to obtain the following result:under a domination condition,an Ft-consistent evaluation is an ∑g-evaluation in Lp.Furthermore,without the assumption that the generating function g(t,ω,y,z) is continuous with respect to t,we provide some useful characterizations of an εg-evaluation by g and give some applications.These results include and extend some existing results.

  8. Synchronizing spatiotemporal chaos in the coupled map lattices using nonlinear feedback functions

    Institute of Scientific and Technical Information of China (English)

    FangJin-Qing; MKAli

    1997-01-01

    In this paper the nonlinear feedback functional method is presented for study of synchronization of spatiotemporal chaos in coupled map lattices with five connection forms.Some of nonlinear feedback functions are given.The noise effect on synchronization and sporadic nonlinear feedback are discussed.

  9. Three New Construction Methods of the Highly Nonlinear Balanced Boolean Function

    Institute of Scientific and Technical Information of China (English)

    TANXinglie; SHEKun; JIQingbing; ZHOUMingtian; SHENChangxiang

    2003-01-01

    Nonlinearity is a nonlinear criterion of Boolean function. In this paper, some useful definitions and theorems are introduced, and then three new ways to construct the highly nonlinear balanced boolean function are given by ways of concatenating, dividing, modifying and alternating, which are proven to be very effective.

  10. Predicting nonlinear properties of metamaterials from the linear response.

    Science.gov (United States)

    O'Brien, Kevin; Suchowski, Haim; Rho, Junsuk; Salandrino, Alessandro; Kante, Boubacar; Yin, Xiaobo; Zhang, Xiang

    2015-04-01

    The discovery of optical second harmonic generation in 1961 started modern nonlinear optics. Soon after, R. C. Miller found empirically that the nonlinear susceptibility could be predicted from the linear susceptibilities. This important relation, known as Miller's Rule, allows a rapid determination of nonlinear susceptibilities from linear properties. In recent years, metamaterials, artificial materials that exhibit intriguing linear optical properties not found in natural materials, have shown novel nonlinear properties such as phase-mismatch-free nonlinear generation, new quasi-phase matching capabilities and large nonlinear susceptibilities. However, the understanding of nonlinear metamaterials is still in its infancy, with no general conclusion on the relationship between linear and nonlinear properties. The key question is then whether one can determine the nonlinear behaviour of these artificial materials from their exotic linear behaviour. Here, we show that the nonlinear oscillator model does not apply in general to nonlinear metamaterials. We show, instead, that it is possible to predict the relative nonlinear susceptibility of large classes of metamaterials using a more comprehensive nonlinear scattering theory, which allows efficient design of metamaterials with strong nonlinearity for important applications such as coherent Raman sensing, entangled photon generation and frequency conversion.

  11. Nonlinear dynamic response of an electrically actuated imperfect microbeam resonator

    KAUST Repository

    Ruzziconi, Laura

    2013-08-04

    We present a study of the dynamic behavior of a MEMS device constituted of an imperfect clamped-clamped microbeam subjected to electrostatic and electrodynamic actuation. Our objective is to develop a theoretical analysis, which is able to describe and predict all the main relevant aspects of the experimental response. Extensive experimental investigation is conducted, where the main imperfections coming from microfabrication are detected and the nonlinear dynamics are explored at increasing values of electrodynamic excitation, in a neighborhood of the first symmetric resonance. The nonlinear behavior is highlighted, which includes ranges of multistability, where the non-resonant and the resonant branch coexist, and intervals where superharmonic resonances are clearly visible. Numerical simulations are performed. Initially, two single mode reduced-order models are considered. One is generated via the Galerkin technique, and the other one via the combined use of the Ritz method and the Padé approximation. Both of them are able to provide a satisfactory agreement with the experimental data. This occurs not only at low values of electrodynamic excitation, but also at higher ones. Their computational efficiency is discussed in detail, since this is an essential aspect for systematic local and global simulations. Finally, the theoretical analysis is further improved and a two-degree-of-freedom reduced-order model is developed, which is capable also to capture the measured second symmetric superharmonic resonance. Despite the apparent simplicity, it is shown that all the proposed reduced-order models are able to describe the experimental complex nonlinear dynamics of the device accurately and properly, which validates the proposed theoretical approach. Copyright © 2013 by ASME.

  12. New Exact Jacobi Elliptic Function Solutions of Three—Dimensional Nonlinear Helmholtz Equation in a Nonlinear Kerr—Type Medium

    Institute of Scientific and Technical Information of China (English)

    YANGYong; YANZhen-Ya

    2002-01-01

    In this letter the three-dimensional nonlinear Helmholtz equation is investigated.which describes electromagnetic wave propagation in a nonlinear Kerr-type medium such that sixteen families of new Jacobi elliptic function solutions are obtained,by using our extended Jacobian elliptic function expansion method.When the modulus m-→1 or 0,the corresponding solitary waves including bright solitons,dark solitons and new line solitons and singly periodic solutions can be also found.

  13. Nonlinear Response of Unbiased and Biased Bilayer Graphene at Terahertz Frequencies

    Science.gov (United States)

    McGouran, Riley

    The main focus of this thesis is the investigation of the nonlinear response of unbiased and biased bilayer graphene to incident radiation at terahertz frequencies. We present a tight-binding model of biased and unbiased bilayer graphene that is used to calculate the nonlinear terahertz response. Dynamic equations are developed for the electron density matrix within the length gauge. These equations facilitate the calculation of interband and intraband carrier dynamics. We then obtain nonlinear transmitted and reflected terahertz fields using the calculated nonlinear interband and intraband current densities. We examine the nonlinear response of unbiased bilayer graphene as a function of the incident field amplitude. In this case the sample is taken to be undoped. In the reflected field, we find the maximum third harmonic amplitude to be approximately 30% of the fundamental frequency for an incident field of 1.5 kV cm-1, which is greater than that found in undoped monolayer graphene at the same field amplitude. To examine the nonlinear response of biased bilayer graphene, we investigate two different scenarios. In the first scenario, we consider an undoped sample at fixed temperature. We find that when the external bias has a value of 2 meV, the generated third harmonic in the reflected field is approximately 45% of the fundamental for an incident field amplitude of 2 kV cm-1 . When we increase the external bias further to 8 meV, we find the generated third harmonic field is approximately 38% of the fundamental for an incident field amplitude of 1 kV cm-1. For both of these bias values, the generated third harmonic is greater than that found in undoped monolayer graphene. In that system, the generated third harmonic field is approximately 32% of the fundamental for an incident field amplitude of 200 V cm-1. In the second scenario, we consider doped biased bilayer graphene. We fix the carrier density at 2x1012 cm-2, the incident field amplitude at 50 kV cm-1, and

  14. Nonlinear neurobiological probability weighting functions for aversive outcomes.

    Science.gov (United States)

    Berns, Gregory S; Capra, C Monica; Chappelow, Jonathan; Moore, Sara; Noussair, Charles

    2008-02-15

    While mainstream economic models assume that individuals treat probabilities objectively, many people tend to overestimate the likelihood of improbable events and underestimate the likelihood of probable events. However, a biological account for why probabilities would be treated this way does not yet exist. While undergoing fMRI, we presented individuals with a series of lotteries, defined by the voltage of an impending cutaneous electric shock and the probability with which the shock would be received. During the prospect phase, neural activity that tracked the probability of the expected outcome was observed in a circumscribed network of brain regions that included the anterior cingulate, visual, parietal, and temporal cortices. Most of these regions displayed responses to probabilities consistent with nonlinear probability weighting. The neural responses to passive lotteries predicted 79% of subsequent decisions when individuals were offered choices between different lotteries, and exceeded that predicted by behavior alone near the indifference point.

  15. Nonlinear optical response of some Graphene oxide and Graphene fluoride derivatives

    Science.gov (United States)

    Liaros, Nikolaos; Orfanos, Ioannis; Papadakis, Ioannis; Couris, Stelios

    2016-12-01

    The nonlinear optical properties of two graphene derivatives, graphene oxide and graphene fluoride, are investigated by means of the Z-scan technique employing 35 ps and 4 ns, visible (532 nm) laser excitation. Both derivatives were found to exhibit significant third-order nonlinear optical response at both excitation regimes, with the nonlinear absorption being relatively stronger and concealing the presence of nonlinear refraction under ns excitation, while ps excitation reveals the presence of both nonlinear absorption and refraction. Both nonlinear properties are of great interest for several photonics, opto-fluidics, opto-electronics and nanotechnology applications.

  16. Understanding nonlinear responses of the climate system to orbital forcing

    Science.gov (United States)

    Rial, J. A.; Anaclerio, C. A.

    2000-12-01

    We have recently introduced the working hypothesis that frequency modulation (FM) of the orbital eccentricity forcing may be one important source of the nonlinearities observed in δ 18O time series from deep-sea sediment cores (J.H. Rial (1999a) Pacemaking the lce Ages by frequency modulation of Earth's orbital eccentricity. Science 285, 564-568). In this paper we shall discuss further evidence of frequency modulation found in data from the Vostok ice core. Analyses of the 430,000-year long, orbitally untuned, time series of CO 2, deuterium, aerosol and methane, suggest frequency modulation of the 41 kyr (0.0244 kyr -1) obliquity forcing by the 413 kyr-eccentricity signal and its harmonics. Conventional and higher-order spectral analyses show that two distinct spectral peaks at ˜29 kyr (0.034 kyr -1) and ˜69 kyr (0.014 kyr -1) and other, smaller peaks surrounding the 41 kyr obliquity peak are harmonically (nonlinearly) related and likely to be FM-generated sidebands of the obliquity signal. All peaks can be closely matched by the spectrum of an appropriately built theoretical FM signal. A preliminary model, based on the classic logistic growth delay differential equation, reproduces the longer period FM effect and the familiar multiply peaked spectra of the eccentricity band. Since the FM effect appears to be a common feature in climate response, finding out its cause may help understand climate dynamics and global climate change.

  17. A non-linear association between self-reported negative emotional response to stress and subsequent allostatic load

    DEFF Research Database (Denmark)

    Dich, Nadya; Doan, Stacey N; Kivimäki, Mika

    2014-01-01

    Previous research suggests that high levels of negative emotions may affect health. However, it is likely that the absence of an emotional response following stressful events may also be problematic. Accordingly, we investigated whether a non-linear association exists between negative emotional...... cardiovascular, metabolic and immune function biomarkers at three clinical follow-up examinations. A non-linear association between negative emotional response and allostatic load was observed: being at either extreme end of the distribution of negative emotional response increased the risk of physiological...

  18. Optical and Nonlinear Optical Response of Light Sensor Thin Films

    Directory of Open Access Journals (Sweden)

    S. Z. Weisz

    2005-04-01

    Full Text Available For potential ultrafast optical sensor application, both VO2 thin films andnanocomposite crystal-Si enriched SiO2 thin films grown on fused quartz substrates weresuccessfully prepared using pulsed laser deposition (PLD and RF co-sputteringtechniques. In photoluminescence (PL measurement c-Si/SiO2 film containsnanoparticles of crystal Si exhibits strong red emission with the band maximum rangingfrom 580 to 750 nm. With ultrashort pulsed laser excitation all films show extremelyintense and ultrafast nonlinear optical (NLO response. The recorded holography fromall these thin films in a degenerate-four-wave-mixing configuration shows extremelylarge third-order response. For VO2 thin films, an optically induced semiconductor-tometalphase transition (PT immediately occurred upon laser excitation. it accompanied.It turns out that the fast excited state dynamics was responsible to the induced PT. For c-Si/SiO2 film, its NLO response comes from the contribution of charge carriers created bylaser excitation in conduction band of the c-Si nanoparticles. It was verified byintroducing Eu3+ which is often used as a probe sensing the environment variations. Itturns out that the entire excited state dynamical process associated with the creation,movement and trapping of the charge carriers has a characteristic 500 ps duration.

  19. Nonlinear Stochastic Analysis of Subharmonic Response of a Shallow Cable

    DEFF Research Database (Denmark)

    Zhou, Q.; Stærdahl, Jesper Winther; Nielsen, Søren R.K.

    2007-01-01

    The paper deals with the subharmonic response of a shallow cable due to time variations of the chord length of the equilibrium suspension, caused by time varying support point motions. Initially, the capability of a simple nonlinear two-degree-of-freedom model for the prediction of chaotic...... time-consuming for the finite difference model, most of the results are next based on the reduced model. Under harmonical varying support point motions the stable subharmonic motion consists of a harmonically varying component in the equilibrium plane and a large subharmonic out-of-plane component......, producing a trajectory at the mid-point of shape as an infinity sign. However, when the harmonical variation of the chordwise elongation is replaced by a narrow-banded Gaussian excitation with the same standard deviation and a centre frequency equal to the circular frequency of the harmonic excitation...

  20. Confidence bounds for nonlinear dose-response relationships

    DEFF Research Database (Denmark)

    Baayen, C; Hougaard, P

    2015-01-01

    . It is well known that Wald confidence intervals are based on linear approximations and are often unsatisfactory in nonlinear models. Apart from incorrect coverage rates, they can be unreasonable in the sense that the lower confidence limit of the difference to placebo can be negative, even when an overall...... test shows a significant positive effect. Bootstrap confidence intervals solve many of the problems of the Wald confidence intervals but are computationally intensive and prone to undercoverage for small sample sizes. In this work, we propose a profile likelihood approach to compute confidence...... intervals for the dose-response curve. These confidence bounds have better coverage than Wald intervals and are more precise and generally faster than bootstrap methods. Moreover, if monotonicity is assumed, the profile likelihood approach takes this automatically into account. The approach is illustrated...

  1. Crystal growth in fluid flow: Nonlinear response effects

    Science.gov (United States)

    Peng, H. L.; Herlach, D. M.; Voigtmann, Th.

    2017-08-01

    We investigate crystal-growth kinetics in the presence of strong shear flow in the liquid, using molecular-dynamics simulations of a binary-alloy model. Close to the equilibrium melting point, shear flow always suppresses the growth of the crystal-liquid interface. For lower temperatures, we find that the growth velocity of the crystal depends nonmonotonically on the shear rate. Slow enough flow enhances the crystal growth, due to an increased particle mobility in the liquid. Stronger flow causes a growth regime that is nearly temperature-independent, in striking contrast to what one expects from the thermodynamic and equilibrium kinetic properties of the system, which both depend strongly on temperature. We rationalize these effects of flow on crystal growth as resulting from the nonlinear response of the fluid to strong shearing forces.

  2. Orthogonal expansion of ground motion and PDEM-based seismic response analysis of nonlinear structures

    Institute of Scientific and Technical Information of China (English)

    Li Jie; Liu Zhangjun; Chen Jianbing

    2009-01-01

    This paper introduces an orthogonal expansion method for general stochastic processes. In the method, a normalized orthogonal function of time variable t is first introduced to carry out the decomposition of a stochastic process and then a correlated matrix decomposition technique, which transforms a correlated random vector into a vector of standard uncorrelated random variables, is used to complete a double orthogonal decomposition of the stochastic processes. Considering the relationship between the Hartley transform and Fourier transform of a real-valued function, it is suggested that the first orthogonal expansion in the above process is carried out using the Hartley basis function instead of the trigonometric basis function in practical applications. The seismic ground motion is investigated using the above method. In order to capture the main probabilistic characteristics of the seismic ground motion, it is proposed to directly carry out the orthogonal expansion of the seismic displacements. The case study shows that the proposed method is feasible to represent the seismic ground motion with only a few random variables. In the second part of the paper, the probability density evolution method (PDEM) is employed to study the stochastic response of nonlinear structures subjected to earthquake excitations. In the PDEM, a completely uncoupled one-dimensional partial differential equation, the generalized density evolution equation, plays a central role in governing the stochastic seismic responses of the nonlinear structure. The solution to this equation will yield the instantaneous probability density function of the responses. Computational algorithms to solve the probability density evolution equation are described, An example, which deals with a nonlinear frame structure subjected to stochastic ground motions, is illustrated to validate the above approach.

  3. Dimensionality of InGaAs nonlinear optical response

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, S.R. [Univ. of California, Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

    1995-07-01

    In this thesis the ultrafast optical properties of a series of InGaAs samples ranging from the two to the three dimensional limit are discussed. An optical system producing 150 fs continuum centered at 1.5 microns was built. Using this system, ultrafast pump-probe and four wave mixing experiments were performed. Carrier thermalization measurements reveal that screening of the Coulomb interaction is relatively unaffected by confinement, while Pauli blocking nonlinearities at the band edge are approximately twice as strong in two dimensions as in three. Carrier cooling via phonon emission is influenced by confinement due both to the change in electron distribution function and the reduction in electron phonon coupling. Purely coherent band edge effects, as measured by the AC Stark effect and four wave mixing, are found to be dominated by the changes in excitonic structure which take place with confinement.

  4. Nonlinear laser pulse response in a crystalline lens.

    Science.gov (United States)

    Sharma, R P; Gupta, Pradeep Kumar; Singh, Ram Kishor; Strickland, D

    2016-04-01

    The propagation characteristics of a spatial Gaussian laser pulse have been studied inside a gradient-index structured crystalline lens with constant-density plasma generated by the laser-tissue interaction. The propagation of the laser pulse is affected by the nonlinearities introduced by the generated plasma inside the crystalline lens. Owing to the movement of plasma species from a higher- to a lower-temperature region, an increase in the refractive index occurs that causes the focusing of the laser pulse. In this study, extended paraxial approximation has been applied to take into account the evolution of the radial profile of the Gaussian laser pulse. To examine the propagation characteristics, variation of the beam width parameter has been observed as a function of the laser power and initial beam radius. The cavitation bubble formation, which plays an important role in the restoration of the elasticity of the crystalline lens, has been investigated.

  5. Large nonlocal nonlinear optical response of castor oil

    Science.gov (United States)

    Souza, Rogério F.; Alencar, Márcio A. R. C.; Meneghetti, Mario R.; Hickmann, Jandir M.

    2009-09-01

    The nonlocal nonlinearity of castor oil was investigated using the Z-scan technique in the CW regime at 514 nm and in femtosecond regime at 810 nm. Large negative nonlinear refractive indexes of thermal origin, thermo-optical coefficients and degree of nonlocality were obtained for both laser excitation wavelengths. The results indicate that the electronic part of the nonlinear refractive index and nonlinear absorption were negligible. Our results suggest that castor oil is promising candidate as a nonlinear medium for several nonlocal optical applications, such as in spatial soliton propagation, as well as a dispersant agent in the measurement of absorptive properties of nanoparticles.

  6. Study of Magnetic Domain Dynamics Using Nonlinear Magnetic Responses: Magnetic Diagnostics of the Itinerant Magnet MnP

    Science.gov (United States)

    Mito, Masaki; Matsui, Hideaki; Tsuruta, Kazuki; Deguchi, Hiroyuki; Kishine, Jun-ichiro; Inoue, Katsuya; Kousaka, Yusuke; Yano, Shin-ichiro; Nakao, Yuya; Akimitsu, Jun

    2015-10-01

    The nonlinear and linear magnetic responses to an ac magnetic field H are useful for the study of the magnetic dynamics of both magnetic domains and their constituent spins. In particular, the third-harmonic magnetic response M3ω reflects the dynamics of magnetic domains. Furthermore, by considering the ac magnetic response as a function of H, we can evaluate the degree of magnetic nonlinearity, which is closely related to M3ω. In this study, a series of approaches was used to examine the itinerant magnet MnP, in which both ferromagnetic and helical phases are present. On the basis of this investigation, we systematize the diagnostic approach to evaluating nonlinearity in magnetic responses.

  7. Use of nonlinear programming to optimize performance response to energy density in broiler feed formulation.

    Science.gov (United States)

    Guevara, V R

    2004-02-01

    A nonlinear programming optimization model was developed to maximize margin over feed cost in broiler feed formulation and is described in this paper. The model identifies the optimal feed mix that maximizes profit margin. Optimum metabolizable energy level and performance were found by using Excel Solver nonlinear programming. Data from an energy density study with broilers were fitted to quadratic equations to express weight gain, feed consumption, and the objective function income over feed cost in terms of energy density. Nutrient:energy ratio constraints were transformed into equivalent linear constraints. National Research Council nutrient requirements and feeding program were used for examining changes in variables. The nonlinear programming feed formulation method was used to illustrate the effects of changes in different variables on the optimum energy density, performance, and profitability and was compared with conventional linear programming. To demonstrate the capabilities of the model, I determined the impact of variation in prices. Prices for broiler, corn, fish meal, and soybean meal were increased and decreased by 25%. Formulations were identical in all other respects. Energy density, margin, and diet cost changed compared with conventional linear programming formulation. This study suggests that nonlinear programming can be more useful than conventional linear programming to optimize performance response to energy density in broiler feed formulation because an energy level does not need to be set.

  8. UNBALANCE RESPONSE AND TOUCH-RUBBING THRESHOLD SPEED OF ROTOR SUBJECTED TO NONLINEAR MAGNETIC FORCES

    Institute of Scientific and Technical Information of China (English)

    JING Minqing; LI Zixin; LUO Min; YU Lie

    2008-01-01

    Because of the effect of unbalance excitation and nonlinear magnetic force, the large vibration of the rotor supported by active magnetic bearing(AMB) will go beyond the radial gap of the bearing, even causing mechanical touch-rubbing when the system works at an operational speed closer to the critical speed. In order to investigate this problem, the linear model and nonlinear model of the single mass symmetric rigid rotor system supported by AMB are established respectively and the corresponding transfer functions of close-loop system are given. To pass through the numerical calculation by using MATLAB/Simulink, the effect of both the unbalance response and threshold speed of touch-rubbing of the system subjected to nonlinear magnetic forces and nonlinear output current of power amplifier are studied. Furthermore, threshold speed of touch-rubbing of the rotor-bearing system is defined and the results of numerical simulation are presented. Finally, based on above studies, two methods of increasing the touch-rubbing threshold speed are discussed.

  9. Nonlinear associations between plasma cholesterol levels and neuropsychological function.

    Science.gov (United States)

    Wendell, Carrington R; Zonderman, Alan B; Katzel, Leslie I; Rosenberger, William F; Plamadeala, Victoria V; Hosey, Megan M; Waldstein, Shari R

    2016-11-01

    Although both high and low levels of total and low-density lipoprotein (LDL) cholesterol have been associated with poor neuropsychological function, little research has examined nonlinear effects. We examined quadratic relations of cholesterol to performance on a comprehensive neuropsychological battery. Participants were 190 older adults (53% men, ages 54-83) free of major medical, neurologic, and psychiatric disease. Measures of fasting plasma total and high-density lipoprotein (HDL) cholesterol were assayed, and LDL cholesterol was calculated. Participants completed neuropsychological measures of attention, executive function, memory, visuospatial judgment, and manual speed and dexterity. Multiple regression analyses examined cholesterol levels as quadratic predictors of each measure of cognitive performance, with age (dichotomized as quadratic effect of Total Cholesterol² × Age was identified for Logical Memory II (b = -.0013, p = .039), such that the 70+ group performed best at high and low levels of total cholesterol than at midrange total cholesterol (U-shaped) and the Quadratic associations between HDL cholesterol and cognitive performance were nonsignificant. Results indicate differential associations between cholesterol and neuropsychological function across different ages and domains of function. High and low total and LDL cholesterol may confer both risk and benefit for suboptimal cognitive function at different ages. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  10. Nonlinear Allometric Equation for Crop Response to Soil Salinity

    Directory of Open Access Journals (Sweden)

    E. Misle

    2015-06-01

    Full Text Available Crop response to soil salinity has been extensively studied, from empirical works to modelling approach, being described by different equations, first as a piecewise linear model. The equation employed can differ with actual response, causing miscalculation in practical situations, particularly at the higher extremes of the curve. The aim of this work is to propose a new equation, which allows determining the full response to salinity of plant species and to provide a verification using different experimental data sets. A new nonlinear equation is exposed supported by the allometric approach, in which the allometric exponent is salinity-dependent and decreases with the increase in relative salinity. A conversion procedure of parameters of the threshold-slope model is presented; also, a simple procedure for estimating the maximum salinity (zero-yield point when data sets are incomplete is exposed. The equation was tested in a wide range of experimental situations, using data sets from published works, as well as new measurements on seed germination. The statistical indicators of quality (R2, absolute sum of squares and standard deviation of residuals showed that the equation accurately fits the tested empirical results. The new equation for determining crop response to soil salinity is able to follow the response curve of any crop with remarkable accuracy and flexibility. Remarkable characteristics are: a maximum at minimum salinity, a maximum salinity point can be found (zero-yield depending on the data sets, and a meaningful inflection point, as well as the two points at which the slope of the curve equals unity, can be found.

  11. Nonlinear Local Bending Response and Bulging Factors for Longitudinal and Circumferential Cracks in Pressurized Cylindrical Shells

    Science.gov (United States)

    Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.

    2000-01-01

    Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or bulging factors that account for increased stresses due to curvature for longitudinal and circumferential cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in the form of contour plots of the bulging factor as a function of two nondimensional parameters: the shell curvature parameter, lambda, which is a function of the shell geometry, Poisson's ratio, and the crack length; and a loading parameter, eta, which is a function of the shell geometry, material properties, and the applied internal pressure. These plots identify the ranges of the shell curvature and loading parameters for which the effects of geometric nonlinearity are significant. Simple empirical expressions for the bulging factor are then derived from the numerical results and shown to predict accurately the nonlinear response of shells with longitudinal and circumferential cracks. The numerical results are also compared with analytical solutions based on linear shallow shell theory for thin shells, and with some other semi-empirical solutions from the literature, and limitations on the use of these other expressions are suggested.

  12. Filtering Non-Linear Transfer Functions on Surfaces.

    Science.gov (United States)

    Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice

    2014-07-01

    Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few

  13. Stochastic response and bifurcation of periodically driven nonlinear oscillators by the generalized cell mapping method

    Science.gov (United States)

    Han, Qun; Xu, Wei; Sun, Jian-Qiao

    2016-09-01

    The stochastic response of nonlinear oscillators under periodic and Gaussian white noise excitations is studied with the generalized cell mapping based on short-time Gaussian approximation (GCM/STGA) method. The solutions of the transition probability density functions over a small fraction of the period are constructed by the STGA scheme in order to construct the GCM over one complete period. Both the transient and steady-state probability density functions (PDFs) of a smooth and discontinuous (SD) oscillator are computed to illustrate the application of the method. The accuracy of the results is verified by direct Monte Carlo simulations. The transient responses show the evolution of the PDFs from being Gaussian to non-Gaussian. The effect of a chaotic saddle on the stochastic response is also studied. The stochastic P-bifurcation in terms of the steady-state PDFs occurs with the decrease of the smoothness parameter, which corresponds to the deterministic pitchfork bifurcation.

  14. Nonlinear differential equations with exact solutions expressed via the Weierstrass function

    NARCIS (Netherlands)

    Kudryashov, NA

    2004-01-01

    A new problem is studied, that is to find nonlinear differential equations with special solutions expressed via the Weierstrass function. A method is discussed to construct nonlinear ordinary differential equations with exact solutions. The main step of our method is the assumption that nonlinear di

  15. New Exact Jacobi Elliptic Function Solutions of Three-Dimensional Nonlinear Helmholtz Equation in a Nonlinear Kerr-Type Medium

    Institute of Scientific and Technical Information of China (English)

    YANG Yong; YAN Zhen-Ya

    2002-01-01

    In this letter the three-dimensional nonlinear Helmholtz equation is investigated, which describes electro-magnetic wave propagation in a nonlinear Kerr-type medium such that sixteen families of new Jacobi elliptic functionsolutions are obtained, by using our extended Jacobian elliptic function expansion method. When the modulus m → 1or0, the corresponding solitary waves including bright solitons, dark solitons and new line solitons and singly periodicsolutions can be also found.

  16. Modeling of the nonlinear resonant response in sedimentary rocks

    Energy Technology Data Exchange (ETDEWEB)

    Ten Cate, James A [Los Alamos National Laboratory; Shankland, Thomas J [Los Alamos National Laboratory; Vakhnenko, Vyacheslav O [NON LANL; Vakhnenko, Oleksiy [NON LANL

    2009-04-03

    We suggest a model for describing a wide class of nonlinear and hysteretic effects in sedimentary rocks at longitudinal bar resonance. In particular, we explain: hysteretic behaviour of a resonance curve on both its upward and downward slopes; linear softening of resonant frequency with increase of driving level; gradual (almost logarithmic) recovery of resonant frequency after large dynamical strains; and temporal relaxation of response amplitude at fixed frequency. Starting with a suggested model, we predict the dynamical realization of end-point memory in resonating bar experiments with a cyclic frequency protocol. These theoretical findings were confirmed experimentally at Los Alamos National Laboratory. Sedimentary rocks, particularly sandstones, are distinguished by their grain structure in which each grain is much harder than the intergrain cementation material. The peculiarities of grain and pore structures give rise to a variety of remarkable nonlinear mechanical properties demonstrated by rocks, both at quasistatic and alternating dynamic loading. Thus, the hysteresis earlier established for the stress-strain relation in samples subjected to quasistatic loading-unloading cycles has also been discovered for the relation between acceleration amplitude and driving frequency in bar-shaped samples subjected to an alternating external drive that is frequency-swept through resonance. At strong drive levels there is an unusual, almost linear decrease of resonant frequency with strain amplitude, and there are long-term relaxation phenomena such as nearly logarithmic recovery (increase) of resonant frequency after the large conditioning drive has been removed. In this report we present a short sketch of a model for explaining numerous experimental observations seen in forced longitudinal oscillations of sandstone bars. According to our theory a broad set of experimental data can be understood as various aspects of the same internally consistent pattern. Furthermore

  17. Measurement of the frequency response of the electrostrictive nonlinearity in optical fibers.

    Science.gov (United States)

    Buckland, E L; Boyd, R W

    1997-05-15

    The electrostrictive contribution to the nonlinear refractive index is investigated by use of frequency-dependent cross-phase modulation with a weak unpolarized cw probe wave and a harmonically modulated pump copropagating in optical fibers. Self-delayed homodyne detection is used to measure the amplitude of the sidebands imposed upon the probe wave as a function of pump intensity for pump modulation frequencies from 10 MHz to 1 GHz. The ratio of the electrostrictive nonlinear coefficient to the cross-phase-modulation Kerr coefficient for unpolarized light is measured to be 1.58:1 for a standard step-index single-mode fiber and 0.41:1 for dispersion-shifted fibers, indicating a larger electrostrictive response in silica fibers than previously expected.

  18. Higher harmonic nonlocal polymerization driven diffusion model: generalized nonlinearities and nonlocal responses

    Science.gov (United States)

    Kelly, John V.; O'Brien, Jeff; O'Neill, Feidhlim T.; Gleeson, Michael R.; Sheridan, John T.

    2004-10-01

    Non-local and non-linear models of photopolymer materials, which include diffusion effects, have recently received much attention in the literature. The material response is non-local as it is assumed that monomers are polymerised to form polymer chains and that these chains grow away from a point of initiation. The non-locality is defined in terms of a spatial non-local material response function. The numerical method of solution typically involves retaining either two or four harmonics of the Fourier series of monomer concentration in the calculation. In this paper a general set of equations is derived which allows inclusion of higher number of harmonics for any response function. The numerical convergence for varying number of harmonics retained is investigated with special care being taken to note the effect of the; non-local material variance s, the power law degree k, and the rates of diffusion, D, and polymerisation F0. General non-linear material responses are also included.

  19. A nonlinear analytic function expansion nodal method for transient calculations

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Han Gyn; Park, Sang Yoon; Cho, Byung Oh; Zee, Sung Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The nonlinear analytic function expansion nodal (AFEN) method is applied to the solution of the time-dependent neutron diffusion equation. Since the AFEN method requires both the particular solution and the homogeneous solution to the transient fixed source problem, the derivation of the solution method is focused on finding the particular solution efficiently. To avoid complicated particular solutions, the source distribution is approximated by quadratic polynomials and the transient source is constructed such that the error due to the quadratic approximation is minimized, In addition, this paper presents a new two-node solution scheme that is derived by imposing the constraint of current continuity at the interface corner points. The method is verified through a series of application to the NEACRP PWR rod ejection benchmark problems. 6 refs., 2 figs., 1 tab. (Author)

  20. Steady-state negative Wigner functions of nonlinear nanomechanical oscillators

    CERN Document Server

    Rips, Simon; Wilson-Rae, Ignacio; Hartmann, Michael J

    2011-01-01

    We propose a scheme to prepare nanomechanical oscillators in non-classical steady states, characterized by a pronounced negative Wigner function. In our optomechanical approach, the mechanical oscillator couples to multiple laser driven resonances of an optical cavity. By lowering the resonant frequency of the oscillator via an inhomogeneous electrostatic field, we significantly enhance its intrinsic geometric nonlinearity per phonon. This causes the motional sidebands to split into separate spectral lines for each phonon number and transitions between individual phonon Fock states can be selectively addressed. We show that this enables preparation of the nanomechanical oscillator in a single phonon Fock state. Our scheme can for example be implemented with a carbon nanotube dispersively coupled to the evanescent field of a state of the art whispering gallery mode microcavity.

  1. Geometrically Nonlinear Static Analysis of Edge Cracked Timoshenko Beams Composed of Functionally Graded Material

    Directory of Open Access Journals (Sweden)

    Şeref Doğuşcan Akbaş

    2013-01-01

    Full Text Available Geometrically nonlinear static analysis of edge cracked cantilever Timoshenko beams composed of functionally graded material (FGM subjected to a nonfollower transversal point load at the free end of the beam is studied with large displacements and large rotations. Material properties of the beam change in the height direction according to exponential distributions. The cracked beam is modeled as an assembly of two subbeams connected through a massless elastic rotational spring. In the study, the finite element of the beam is constructed by using the total Lagrangian Timoshenko beam element approximation. The nonlinear problem is solved by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The convergence study is performed for various numbers of finite elements. In the study, the effects of the location of crack, the depth of the crack, and various material distributions on the nonlinear static response of the FGM beam are investigated in detail. Also, the difference between the geometrically linear and nonlinear analysis of edge cracked FGM beam is investigated in detail.

  2. Nonlinear vibrations of shallow shells with complex boundary: R-functions method and experiments

    Science.gov (United States)

    Kurpa, Lidia; Pilgun, Galina; Amabili, Marco

    2007-10-01

    Geometrically nonlinear vibrations of shallow circular cylindrical panels with complex shape of the boundary are considered. The R-functions theory and variational methods are used to study the problem. The R-functions method (RFM) allows constructing in analytical form the sequence of basis functions satisfying the given boundary conditions in case of complex shape of the boundary. The problem is reduced to a single second-order differential equation with quadratic and cubic nonlinear terms. The method developed has been initially applied to study free vibrations of shallow circular cylindrical panels with rectangular base for different boundary conditions: (i) clamped edges, (ii) in-plane immovable simply supported edges, (iii) classically simply supported edges, and (iv) in-plane free simply supported edges. Then, the same approach is applied to a shell with complex shape of the boundary. Experiments have been conducted on an aluminum panel with complex shape of the boundary in order to identify the nonlinear response of the fundamental mode; these experimental results have been compared to numerical results.

  3. A nonlinear correlation function for selecting the delay time in dynamical reconstructions

    Science.gov (United States)

    Aguirre, Luis Antonio

    1995-02-01

    Numerical results discussed in this paper suggest that a function which detects nonlinear correlations in time series usually indicates shorter correlation times than the linear autocorrelation function which is often used for this purpose. The nonlinear correlation function can also detect changes in the data which cannot be distinguished by the linear counterpart. This affects a number of approaches for the selection of the delay time used in the reconstruction of nonlinear dynamics from a single time series based on time delay coordinates.

  4. Tailoring the nonlinear response of MEMS resonators using shape optimization

    DEFF Research Database (Denmark)

    Li, Lily L.; Polunin, Pavel M.; Dou, Suguang

    2017-01-01

    We demonstrate systematic control of mechanical nonlinearities in micro-electromechanical (MEMS) resonators using shape optimization methods. This approach generates beams with non-uniform profiles, which have nonlinearities and frequencies that differ from uniform beams. A set of bridge-type mic......We demonstrate systematic control of mechanical nonlinearities in micro-electromechanical (MEMS) resonators using shape optimization methods. This approach generates beams with non-uniform profiles, which have nonlinearities and frequencies that differ from uniform beams. A set of bridge...

  5. Can we detect a nonlinear response to temperature in European plant phenology?

    Science.gov (United States)

    Jochner, Susanne; Sparks, Tim H.; Laube, Julia; Menzel, Annette

    2016-10-01

    Over a large temperature range, the statistical association between spring phenology and temperature is often regarded and treated as a linear function. There are suggestions that a sigmoidal relationship with definite upper and lower limits to leaf unfolding and flowering onset dates might be more realistic. We utilised European plant phenological records provided by the European phenology database PEP725 and gridded monthly mean temperature data for 1951-2012 calculated from the ENSEMBLES data set E-OBS (version 7.0). We analysed 568,456 observations of ten spring flowering or leafing phenophases derived from 3657 stations in 22 European countries in order to detect possible nonlinear responses to temperature. Linear response rates averaged for all stations ranged between -7.7 (flowering of hazel) and -2.7 days °C-1 (leaf unfolding of beech and oak). A lower sensitivity at the cooler end of the temperature range was detected for most phenophases. However, a similar lower sensitivity at the warmer end was not that evident. For only ˜14 % of the station time series (where a comparison between linear and nonlinear model was possible), nonlinear models described the relationship significantly better than linear models. Although in most cases simple linear models might be still sufficient to predict future changes, this linear relationship between phenology and temperature might not be appropriate when incorporating phenological data of very cold (and possibly very warm) environments. For these cases, extrapolations on the basis of linear models would introduce uncertainty in expected ecosystem changes.

  6. A New Kind of Simple Smooth Exact Penalty Function of Constrained Nonlinear Programming

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The penalty function method is one basic method for solving constrained nonlinear programming, in which simple smooth exact penalty functions draw much attention for their simpleness and smoothness. This article offers a new kind of simple smooth approximative exact penalty function of general constrained nonlinear programmings and analyzes its properties.

  7. GLOBAL ASYMPTOTICAL PROPERTIES FOR A DIFFUSED HBV INFECTION MODEL WITH CTL IMMUNE RESPONSE AND NONLINEAR INCIDENCE

    Institute of Scientific and Technical Information of China (English)

    Wang Shaoli; Feng Xinlong; He Yinnian

    2011-01-01

    This article proposes a diffused hepatitis B virus (HBV) model with CTLimmune response and nonlinear incidence for the control of viral infections.By means of different Lyapunov functions,the global asymptotical properties of the viral-free equilibrium and immune-free equilibrium of the model are obtained.Global stability of the positive equilibrium of the model is also considered.The results show that the free diffusion of the virus has no effect on the global stability of such HBV infection problem with Neumann homogeneous boundary conditions.

  8. Nonlinear response of superconductors to alternating fields and currents

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Jason [Iowa State Univ., Ames, IA (United States)

    1997-10-08

    This report discusses the following topics on superconductivity: nonlinearities in hard superconductors such as surface impedance of a type II superconductimg half space and harmonic generation and intermodulation due to alternating transport currents; and nonlinearities in superconducting weak links such as harmonic generation by a long Josephson Junction in a superconducting slab.

  9. Nonlinear dynamic response of beam and its application in nanomechanical resonator

    Institute of Scientific and Technical Information of China (English)

    Yin Zhang; Yun Liu; Kevin D. Murphy

    2012-01-01

    Nonlinear dynamic response of nanomechanical resonator is of very important characteristics in its application.Two categories of the tension-dominant and curvaturedominant nonlinearities are analyzed.The dynamic nonlinearity of four beam structures of nanomechanical resonator is quantitatively studied via a dimensional analysis approach.The dimensional analysis shows that for the nanomechanical resonator of tension-dominant nonlinearity,its dynamic nonlinearity decreases monotonically with increasing axial loading and increases monotonically with the increasing aspect ratio of length to thickness; the dynamic nonlinearity can only result in the hardening effects.However,for the nanomechanical resonator of the curvature-dominant nonlinearity,its dynamic nonlinearity is only dependent on axial loading.Compared with the tension-dominant nonlinearity,the curvature-dominant nonlinearity increases monotonically with increasing axial loading; its dynamic nonlinearity can result in both hardening and softening effects.The analysis on the dynamic nonlinearity can be very helpful to the tuning application of the nanomechanical resonator.

  10. Nonlinear Simulation of Plasma Response to the NSTX Error Field

    Science.gov (United States)

    Breslau, J. A.; Park, J. K.; Boozer, A. H.; Park, W.

    2008-11-01

    In order to better understand the effects of the time-varying error field in NSTX on rotation braking, which impedes RWM stabilization, we model the plasma response to an applied low-n external field perturbation using the resistive MHD model in the M3D code. As an initial benchmark, we apply an m=2, n=1 perturbation to the flux at the boundary of a non-rotating model equilibrium and compare the resulting steady-state island sizes with those predicted by the ideal linear code IPEC. For sufficiently small perturbations, the codes agree; for larger perturbations, the nonlinear correction yields an upper limit on the island width beyond which stochasticity sets in. We also present results of scaling studies showing the effects of finite resistivity on island size in NSTX, and of time-dependent studies of the interaction between these islands and plasma rotation. The M3D-C1 code is also being evaluated as a tool for this analysis; first results will be shown. J.E. Menard, et al., Nucl. Fus. 47, S645 (2007). W. Park, et al., Phys. Plasmas 6, 1796 (1999). J.K. Park, et al., Phys. Plasmas 14, 052110 (2007). S.C. Jardin, et al., J. Comp. Phys. 226, 2146 (2007).

  11. A One-parameter Filled Function Method for Nonlinear Integer Programming

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This paper gives a new definition of the filled function for nonlinear integer programming problem. A filled function satisfying our definition is presented. This function contains only one parameter. The properties of the proposed filled function and the method using this filled function to solve nonlinear integer programming problem are also discussed. Numerical results indicate the efficiency and reliability of the proposed filled function algorithm.

  12. One-parameter quasi-filled function algorithm for nonlinear integer programming

    Institute of Scientific and Technical Information of China (English)

    SHANG You-lin; HAN Bo-shun

    2005-01-01

    A definition of the quasi-filled function for nonlinear integer programming problem is given in this paper. A quasi-filled function satisfying our definition is presented. This function contains only one parameter. The properties of the proposed quasi-filled function and the method using this quasi-filled function to solve nonlinear integer programming problem are also discussed in this paper. Numerical results indicated the efficiency and reliability of the proposed quasi-filled function algorithm.

  13. Combining in silico evolution and nonlinear dimensionality reduction to redesign responses of signaling networks

    Science.gov (United States)

    Prescott, Aaron M.; Abel, Steven M.

    2016-12-01

    The rational design of network behavior is a central goal of synthetic biology. Here, we combine in silico evolution with nonlinear dimensionality reduction to redesign the responses of fixed-topology signaling networks and to characterize sets of kinetic parameters that underlie various input-output relations. We first consider the earliest part of the T cell receptor (TCR) signaling network and demonstrate that it can produce a variety of input-output relations (quantified as the level of TCR phosphorylation as a function of the characteristic TCR binding time). We utilize an evolutionary algorithm (EA) to identify sets of kinetic parameters that give rise to: (i) sigmoidal responses with the activation threshold varied over 6 orders of magnitude, (ii) a graded response, and (iii) an inverted response in which short TCR binding times lead to activation. We also consider a network with both positive and negative feedback and use the EA to evolve oscillatory responses with different periods in response to a change in input. For each targeted input-output relation, we conduct many independent runs of the EA and use nonlinear dimensionality reduction to embed the resulting data for each network in two dimensions. We then partition the results into groups and characterize constraints placed on the parameters by the different targeted response curves. Our approach provides a way (i) to guide the design of kinetic parameters of fixed-topology networks to generate novel input-output relations and (ii) to constrain ranges of biological parameters using experimental data. In the cases considered, the network topologies exhibit significant flexibility in generating alternative responses, with distinct patterns of kinetic rates emerging for different targeted responses.

  14. Third-Order Nonlinear Optical Behavior of Novel Polythiophene Derivatives Functionalized with Disperse Red 19 Chromophore

    Directory of Open Access Journals (Sweden)

    Marilú Chávez-Castillo

    2015-01-01

    Full Text Available Two copolymers of 3-alkylthiophene (alkyl = hexyl, octyl and a thiophene functionalized with disperse red 19 (TDR19 as chromophore side chain were synthesized by oxidative polymerization. The synthetic procedure was easy to perform, cost-effective, and highly versatile. The molecular structure, molecular weight distribution, film morphology, and optical and thermal properties of these polythiophene derivatives were determined by NMR, FT-IR, UV-Vis GPC, DSC-TGA, and AFM. The third-order nonlinear optical response of these materials was performed with nanosecond and femtosecond laser pulses by using the third-harmonic generation (THG and Z-scan techniques at infrared wavelengths of 1300 and 800 nm, respectively. From these experiments it was observed that although the TRD19 incorporation into the side chain of the copolymers was lower than 5%, it was sufficient to increase their nonlinear response in solid state. For instance, the third-order nonlinear electric susceptibility (χ3 of solid thin films made of these copolymers exhibited an increment of nearly 60% when TDR19 incorporation increased from 3% to 5%. In solution, the copolymers exhibited similar two-photon absorption cross sections σ2PA with a maximum value of 8545 GM and 233 GM (1 GM = 10−50 cm4 s per repeated monomeric unit.

  15. Third-order nonlinear optical response of push-pull azobenzene polymers

    Science.gov (United States)

    Papagiannouli, I.; Iliopoulos, K.; Gindre, D.; Sahraoui, B.; Krupka, O.; Smokal, V.; Kolendo, A.; Couris, S.

    2012-12-01

    The nonlinear optical response of a series of azo-containing side-chain polymers is investigated using Z-scan technique, employing 35 ps and 4 ns laser pulses, at 532 nm. The systems were found to exhibit strong nonlinear optical response, dominated by nonlinear refraction. In all cases, the nonlinear absorption and refraction have been determined and are compared with those of disperse red 1 considered as reference. The corresponding third-order susceptibilities χ(3) were determined to be as large as 10-7 and 10-5 esu under ps and ns laser excitation, respectively. Finally, the results are discussed and compared with other reported data.

  16. Analysis of interlaminar stress and nonlinear dynamic response for composite laminated plates with interfacial damage

    Science.gov (United States)

    Zhu, F. H.; Fu, Y. M.

    2008-12-01

    By considering the effect of interfacial damage and using the variation principle, three-dimensional nonlinear dynamic governing equations of the laminated plates with interfacial damage are derived based on the general six-degrees-of-freedom plate theory towards the accurate stress analysis. The solutions of interlaminar stress and nonlinear dynamic response for a simply supported laminated plate with interfacial damage are obtained by using the finite difference method, and the results are validated by comparison with the solution of nonlinear finite element method. In numerical calculations, the effects of interfacial damage on the stress in the interface and the nonlinear dynamic response of laminated plates are discussed.

  17. Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals.

    Science.gov (United States)

    Lepeshkin, Nick N; Schweinsberg, Aaron; Piredda, Giovanni; Bennink, Ryan S; Boyd, Robert W

    2004-09-17

    We describe a new type of artificial nonlinear optical material composed of a one-dimensional metal-dielectric photonic crystal. Because of the resonant nature of multiple Bragg reflections, the transmission within the transmission band can be quite large, even though the transmission through the same total thickness of bulk metal would be very small. This procedure allows light to penetrate into the highly nonlinear metallic layers, leading to a large nonlinear optical response. We present experimental results for a Cu/SiO(2) crystal which displays a strongly enhanced nonlinear optical response (up to 12X) in transmission.

  18. Nonlinear waves in lattice materials: Adaptively augmented directivity and functionality enhancement by modal mixing

    Science.gov (United States)

    Ganesh, R.; Gonella, S.

    2017-02-01

    The motive of this work is to understand the complex spatial characteristics of finite-amplitude elastic wave propagation in periodic structures and leverage the unique opportunities offered by nonlinearity to activate complementary functionalities and design adaptive spatial wave manipulators. The underlying assumption is that the magnitude of wave propagation is small with respect to the length scale of the structure under consideration, albeit large enough to elicit the effects of finite deformation. We demonstrate that the interplay of dispersion, nonlinearity and modal complexity involved in the generation and propagation of higher harmonics gives rise to secondary wave packets that feature multiple characteristics, one of which conforms to the dispersion relation of the corresponding linear structure. This provides an opportunity to engineer desired wave characteristics through a geometric and topological design of the unit cell, and results in the ability to activate complementary functionalities, typical of high frequency regimes, while operating at low frequencies of excitation - an effect seldom observed in linear periodic structures. The ability to design adaptive switches is demonstrated here using lattice configurations whose response is characterized by geometric and/or material nonlinearities.

  19. Harmonic response of a class of finite extensibility nonlinear oscillators

    Science.gov (United States)

    Febbo, M.

    2011-06-01

    Finite extensibility oscillators are widely used to simulate those systems that cannot be extended to infinity. For example, they are used when modelling the bonds between molecules in a polymer or DNA molecule or when simulating filaments of non-Newtonian liquids. In this paper, the dynamic behavior of a harmonically driven finite extensibility oscillator is presented and studied. To this end, the harmonic balance method is applied to determine the amplitude-frequency and amplitude-phase equations. The distinguishable feature in this case is the bending of the amplitude-frequency curve to the frequency axis, making it asymptotically approach the limit of maximum elongation of the oscillator, which physically represents the impossibility of the system reaching this limit. Also, the stability condition that defines stable and unstable steady-state solutions is derived. The study of the effect of the system parameters on the response reveals that a decreasing value of the damping coefficient or an increasing value of the excitation amplitude leads to the appearance of a multi-valued response and to the existence of a jump phenomenon. In this sense, the critical amplitude of the excitation, which means here a certain value of external excitation that results in the occurrence of jump phenomena, is also derived. Numerical experiments to observe the effects of system parameters on the frequency-amplitude response are performed and compared with analytical calculations. At a low value of the damping coefficient or at a high value of excitation amplitude, the agreement is poor for low frequencies but good for high frequencies. It is demonstrated that the disagreement is caused by the neglect of higher-order harmonics in the analytical formulation. These higher-order harmonics, which appear as distinguishable peaks at certain values in the frequency response curves, are possible to calculate considering not the linearized frequency of the oscillator but its actual

  20. Law of “good and evil”, non-linear function of justice, political regimes and deformation of political systems

    Directory of Open Access Journals (Sweden)

    Sergey Gennadyevich Ol’kov

    2015-06-01

    Full Text Available Objective to clarify the law of good and evil the function rule of justice and to construct mathematical models of political regimes. Methods 1 observation analysis and synthesis 2 deduction and induction 3 using the laws of formal logic 4 formal legal method 5 mathematical modeling 6 the study of mathematical functions 7 differential calculus 8 plotting. Results the author has deduced 1 the nonlinear law function of good and evil 2 the nonlinear function of justice 3 the law function of political regimes. Scientific novelty the author has calculated and found 1 a nonlinear formula DLcol ndashLcol3 which represents the relationship between the acts of legal public relations subjects D and thecollective freedom Lcol ndash the law of quotgood and evilquot 2 a nonlinear formula YD D3 illustrating the relationship between the acts of legal relations subjects D and responsibility for their actions Y ndash a nonlinear function of justice 3 a nonlinear formulanbsp that shows the relationship between the individual Lind and collective freedom Lcol in the negative area of the function definition collective negative freedom and a formulanbsp reflecting the relationship between the individual and collective freedom in the positive area of the function definition collective positive freedom 4 has given a general classification of political regimes in the world describing their functions showing the types of political systems deformation that occur due to the leftwise and rightwise shifts of collective freedom. Practical value the possibility to use the obtained scientific results in the development of various legal theories. nbsp

  1. Nonlinear optical response in Kronig-Penney type graphene superlattice in terahertz regime

    Science.gov (United States)

    Jiang, Lijuan; Yuan, Rui-Yang; Zhao, Xin; Lv, Jing; Yan, Hui

    2015-05-01

    The terahertz nonlinear optical response in Kronig-Penney (KP) type graphene superlattice is demonstrated. The single-, triple- and quintuple-frequencies of the fifth-order nonlinear responses are investigated for different frequencies and temperatures with the angle φ along the periodicity of the superlattice toward the external field tuning from 0 to π/2. The results show that the fifth-order nonlinear optical conductance of graphene superlattice is enhanced in the terahertz regime when φ = 0, i.e. an external field is applied along the periodicity of the superlattice. The fifth-order nonlinear optical conductances at φ = 0 for different frequencies and temperatures are calculated. The results show that the nonlinear optical conductance is enhanced in low frequency and low temperature. Our results suggest that KP type graphene superlattices are preferred structures for developing graphene-based nonlinear photonics and optoelectronics devices.

  2. Nonlinear response of the quantum Hall system to a strong electromagnetic radiation

    Science.gov (United States)

    Avetissian, H. K.; Mkrtchian, G. F.

    2016-12-01

    We study nonlinear response of a quantum Hall system in semiconductor-hetero-structures via third harmonic generation process and nonlinear Faraday effect. We demonstrate that Faraday rotation angle and third harmonic radiation intensity have a characteristic Hall plateaus feature. These nonlinear effects remain robust against the significant broadening of Landau levels. We predict realization of an experiment through the observation of the third harmonic signal and Faraday rotation angle, which are within the experimental feasibility.

  3. Material reconstruction for spectral computed tomography with detector response function

    Science.gov (United States)

    Liu, Jiulong; Gao, Hao

    2016-11-01

    Different from conventional computed tomography (CT), spectral CT using energy-resolved photon-counting detectors is able to provide the unprecedented material compositions. However accurate spectral CT needs to account for the detector response function (DRF), which is often distorted by factors such as pulse pileup and charge-sharing. In this work, we propose material reconstruction methods for spectral CT with DRF. The simulation results suggest that the proposed methods reconstructed more accurate material compositions than the conventional method without DRF. Moreover, the proposed linearized method with linear data fidelity from spectral resampling had improved reconstruction quality from the nonlinear method directly based on nonlinear data fidelity.

  4. Cooperative enhancement of the nonlinear optical response in conjugated energetic materials: A TD-DFT study.

    Science.gov (United States)

    Sifain, Andrew E; Tadesse, Loza F; Bjorgaard, Josiah A; Chavez, David E; Prezhdo, Oleg V; Scharff, R Jason; Tretiak, Sergei

    2017-03-21

    Conjugated energetic molecules (CEMs) are a class of explosives with high nitrogen content that posses both enhanced safety and energetic performance properties and are ideal for direct optical initiation. As isolated molecules, they absorb within the range of conventional lasers. Crystalline CEMs are used in practice, however, and their properties can differ due to intermolecular interaction. Herein, time-dependent density functional theory was used to investigate one-photon absorption (OPA) and two-photon absorption (TPA) of monomers and dimers obtained from experimentally determined crystal structures of CEMs. OPA scales linearly with the number of chromophore units, while TPA scales nonlinearly, where a more than 3-fold enhancement in peak intensity, per chromophore unit, is calculated. Cooperative enhancement depends on electronic delocalization spanning both chromophore units. An increase in sensitivity to nonlinear laser initiation makes these materials suitable for practical use. This is the first study predicting a cooperative enhancement of the nonlinear optical response in energetic materials composed of relatively small molecules. The proposed model quantum chemistry is validated by comparison to crystal structure geometries and the optical absorption of these materials dissolved in solution.

  5. Contractivity and Exponential Stability of Solutions to Nonlinear Neutral Functional Differential Equations in Banach Spaces

    Institute of Scientific and Technical Information of China (English)

    Wan-sheng WANG; Shou-fu LI; Run-sheng YANG

    2012-01-01

    A series of contractivity and exponential stability results for the solutions to nonlinear neutral functional differential equations (NFDEs) in Banach spaces are obtained,which provide unified theoretical foundation for the contractivity analysis of solutions to nonlinear problems in functional differential equations (FDEs),neutral delay differential equations (NDDEs) and NFDEs of other types which appear in practice.

  6. Effective Response of Nonlinear Composite under External AC and DC Electric Field

    Institute of Scientific and Technical Information of China (English)

    LIU Ye; LIANG Fang-Chu; SHEN Hong-Liang

    2005-01-01

    A perturbation method is used to study effective response of nonlinear Kerr composites, which are subject to the constitutive relation of electric displacement and electric field, Dα = εαE + xα|E|2E. Under the external AC and DC electric field Eapp = Eα(1 + sinwt), the effective nonlinear responses and local potentials are induced by the cubic nonlinearity of Kerr materials at all harmonics. As an example in three dimensions, we have investigated this kind of nonlinear composites with spherical inclusions embedded in a host. At all harmonic frequencies, the potentials in inclusion and host regions are derived. Furthermore, the formulae of the effective linear and nonlinear responses are given in the dilute limit.

  7. Nonlinear response to a click in a time-domain model of the mammalian ear.

    Science.gov (United States)

    Meaud, Julien; Lemons, Charlsie

    2015-07-01

    In this paper, a state-space implementation of a previously developed frequency-domain model of the cochlea is coupled to a lumped parameter model of the middle ear. After validation of the time-domain model by comparison of its steady-state response to results obtained with a frequency-domain formulation, the nonlinear response of the cochlea to clicks is investigated. As observed experimentally, a compressive nonlinearity progressively develops within the first few cycles of the response of the basilar membrane (BM). Furthermore, a time-frequency analysis shows that the instantaneous frequency of the BM response to a click progressively approaches the characteristic frequency. This phenomenon, called glide, is predicted at all stimulus intensities, as in experiments. In typical experiments with sensitive animals, the click response is characterized by a long ringing and the response envelope includes several lobes. In order to achieve similar results, inhomogeneities are introduced in the cochlear model. Simulations demonstrate the strong link between characteristics of the frequency response, such as dispersion and frequency-dependent nonlinearity, and characteristics of the time-domain response, such as the glide and a time-dependent nonlinearity. The progressive buildup of cochlear nonlinearity in response to a click is shown to be a consequence of the glide and of frequency-dependent nonlinearity.

  8. Z-scan for thin media with more than one nonlocal nonlinear response.

    Science.gov (United States)

    Irivas, B A Martinez; Carrasco, M L Arroyo; Otero, M M Mendez; García, R Ramos; Castillo, M D Iturbe

    2016-06-13

    A model to characterize the response of a thin media that can exhibit more than one nonlocal nonlinear response when it is illuminated with a Gaussian beam in a z-scan experiment is proposed. The model considers that these nonlocal contributions can be treated as independent contributions in the refractive or absorptive nonlinear response. Numerical results for two nonlocal nonlinear contributions with different magnitudes between them are presented. Experimental results obtained from a hydrogenated amorphous silicon sample are used to corroborate this model.

  9. AN SQP METHOD BASED ON SMOOTHING PENALTY FUNCTION FOR NONLINEAR OPTIMIZATION WITH INEQUALITY CONSTRAINT

    Institute of Scientific and Technical Information of China (English)

    ZHANG Juliang; ZHANG Xiangsun

    2001-01-01

    In this paper, we use the smoothing penalty function proposed in [1] as the merit function of SQP method for nonlinear optimization with inequality constraints. The global convergence of the method is obtained.

  10. STABILIZATION OF NONLINEAR TIME-VARYING SYSTEMS: A CONTROL LYAPUNOV FUNCTION APPROACH

    Institute of Scientific and Technical Information of China (English)

    Zhongping JIANG; Yuandan LIN; Yuan WANG

    2009-01-01

    This paper presents a control Lyapunov function approach to the global stabilization problem for general nonlinear and time-varying systems. Explicit stabilizing feedback control laws are proposed based on the method of control Lyapunov functions and Sontag's universal formula.

  11. INVESTIGATION OF RANDOM RESPONSE OF ROTATIONAL SHELL WHEN CONSIDERING GEOMETRIC NONLINEAR BEHAVIOUR

    Institute of Scientific and Technical Information of China (English)

    GAO Shi-qiao(高世桥); JIN Lei(金磊); H.J.Niemann; LIU Hai-peng(刘海鹏)

    2001-01-01

    An iteration method of statistic linearization (IMSL) is presented. By this method, an equivalent linear term was formed in geometric relation and then an equivalent stiffness matrix for nonlinear term in vibration equation was established. Using the method to solve the statistic linear vibration equations, the effect of geometric nonlinearity on the random response of rotational shell is obtained.

  12. Measurements of dynamical response of non-linear systems. How hard can it be?

    DEFF Research Database (Denmark)

    Darula, Radoslav

    2015-01-01

    Measurements of a dynamical response of linear system are widely used in praxis, they are standardized and well known. On the other hand, for the non-linear systems the principle of superposition can’t be applied and also the non-linear systems can excite the harmonics or undergo jump phenomena...

  13. Artificial Neural Networks for Nonlinear Dynamic Response Simulation in Mechanical Systems

    DEFF Research Database (Denmark)

    Christiansen, Niels Hørbye; Høgsberg, Jan Becker; Winther, Ole

    2011-01-01

    It is shown how artificial neural networks can be trained to predict dynamic response of a simple nonlinear structure. Data generated using a nonlinear finite element model of a simplified wind turbine is used to train a one layer artificial neural network. When trained properly the network is able...

  14. Modeling the toxicity of aromatic compounds to tetrahymena pyriformis: the response surface methodology with nonlinear methods.

    Science.gov (United States)

    Ren, Shijin

    2003-01-01

    Response surface models based on multiple linear regression had previously been developed for the toxicity of aromatic chemicals to Tetrahymena pyriformis. However, a nonlinear relationship between toxicity and one of the molecular descriptors in the response surface model was observed. In this study, response surface models were established using six nonlinear modeling methods to handle the nonlinearity exhibited in the aromatic chemicals data set. All models were validated using the method of cross-validation, and prediction accuracy was tested on an external data set. Results showed that response surface models based on locally weighted regression scatter plot smoothing (LOESS), multivariate adaptive regression splines (MARS), neural networks (NN), and projection pursuit regression (PPR) provided satisfactory power of model fitting and prediction and had similar applicabilities. The response surface models based on nonlinear methods were difficult to interpret and conservative in discriminating toxicity mechanisms.

  15. A New Multi-tanh-Based Non-linear Function Synthesiser

    Science.gov (United States)

    Taher Abuelma'atti, Muhammad; Radhi Al-Abbas, Saad

    2016-11-01

    A new complementary metal-oxide-semiconductor transadmittance-mode with input voltage and output current, analogue non-linear odd-function synthesiser is presented. The proposed circuit is based on the assumption that a non-linear odd- function can be approximated by the summation of hyperbolic tangent (tanh) functions with different arguments. Each term of the tanh function expansion is realised by exploiting to advantage the inherent non-linearity of a current-controlled current-conveyor (CCCCII) (or an operational transconductance amplifier (OTA)) with a different bias current. The output currents of these CCCCIIs (OTAs) are weighted using the gains of current amplifiers. These weighted currents are algebraically added to form the required non-linear function. The proposed circuit is suitable for integration, can be easily extended to include higher order terms of the tanh-odd-function expansion and can be programmed to realise arbitrary hard non-linear odd-functions that cannot be easily realised using already existing techniques, based on the Taylor-series expansion, for synthesising non-linear functions. PSPICE simulation results, obtained from CCCCII-based realisations of selected hard non-linearities, demonstrating the functionality of the proposed circuit are included.

  16. Response Regimes in Equivalent Mechanical Model of Strongly Nonlinear Liquid Sloshing

    CERN Document Server

    Farid, M

    2016-01-01

    We consider equivalent mechanical model of liquid sloshing in partially-filled cylindrical vessel; the model treats both the regime of linear sloshing, and strongly nonlinear sloshing regime. The latter is related to hydraulic impacts applied to the vessel walls. These hydraulic impacts are commonly simulated with the help of high-power potential and dissipation functions. For the sake of analytic exploration, we substitute this traditional approach by treatment of an idealized vibro-impact system with velocity-dependent restitution coefficient. The obtained reduced model is similar to recently explored system of linear primary oscillator with attached vibro-impact energy sink. The ratio of modal mass of the first sloshing mode to the total mass of the liquid and the tank serves as a natural small parameter for multiple-scale analysis. In the case of external ground forcing, steady-state responses and chaotic strongly modulated responses are revealed. All analytical predictions of the reduced vibro-impact mod...

  17. Equivalent circuit simulation of HPEM-induced transient responses at nonlinear loads

    Directory of Open Access Journals (Sweden)

    M. Kotzev

    2017-09-01

    Full Text Available In this paper the equivalent circuit modeling of a nonlinearly loaded loop antenna and its transient responses to HPEM field excitations are investigated. For the circuit modeling the general strategy to characterize the nonlinearly loaded antenna by a linear and a nonlinear circuit part is pursued. The linear circuit part can be determined by standard methods of antenna theory and numerical field computation. The modeling of the nonlinear circuit part requires realistic circuit models of the nonlinear loads that are given by Schottky diodes. Combining both parts, appropriate circuit models are obtained and analyzed by means of a standard SPICE circuit simulator. It is the main result that in this way full-wave simulation results can be reproduced. Furthermore it is clearly seen that the equivalent circuit modeling offers considerable advantages with respect to computation speed and also leads to improved physical insights regarding the coupling between HPEM field excitation and nonlinearly loaded loop antenna.

  18. Non-linear dynamic response of a wind turbine blade

    Science.gov (United States)

    Chopra, I.; Dugundji, J.

    1979-01-01

    The paper outlines the nonlinear dynamic analysis of an isolated three-degree flap-lag-feather wind turbine blade under a gravity field and with shear flow. Lagrangian equations are used to derive the nonlinear equations of motion of blade for arbitrarily large angular deflections. The limit cycle analysis for forced oscillations and the determination of the principal parametric resonance of the blade due to periodic forces from the gravity field and wind shear are performed using the harmonic balance method. Results are obtained first for a two-degree flap-lag blade, then the effect of the third degree of freedom (feather) is studied. The self-excited flutter solutions are obtained for a uniform wind and with gravity forces neglected. The effects of several parameters on the blade stability are examined, including coning angle, structural damping, Lock number, and feather frequency. The limit cycle flutter solution of a typical configuration shows a substantial nonlinear softening spring behavior.

  19. Generalized Extended tanh-function Metho d for Traveling Wave Solutions of Nonlinear Physical Equations

    Institute of Scientific and Technical Information of China (English)

    Chang Jing; Gao Yi-xian; Cai Hua

    2014-01-01

    In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher’s equation, the nonlinear schr¨odinger equation to illustrate the validity and ad-vantages of the method. Many new and more general traveling wave solutions are obtained. Furthermore, this method can also be applied to other nonlinear equations in physics.

  20. Nonlinear Optical Response of Conjugated Polymer to Electric Field

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yu-fang; ZHUANG De-xin; CUI Bin

    2005-01-01

    The organic π-conjugated polymers are of major interest materials for the use in electro-optical and nonlinear optical devices. In this work, for a selected polyacetylene chain, the optical absorption spectra in UV/Vis regime as well as the linear polarizabilitiy and nonlinear hyperpolarizability are calculated by using quantum chemical ab initio and semiempirical methods. The relationship of its optical property to electric field is obtained. Some physical mechanism of electric field effect on molecular optical property is discussed by means of electron distribution and intramolecular charge transfer.

  1. Cardiovascular Response Identification Based on Nonlinear Support Vector Regression

    Science.gov (United States)

    Wang, Lu; Su, Steven W.; Chan, Gregory S. H.; Celler, Branko G.; Cheng, Teddy M.; Savkin, Andrey V.

    This study experimentally investigates the relationships between central cardiovascular variables and oxygen uptake based on nonlinear analysis and modeling. Ten healthy subjects were studied using cycle-ergometry exercise tests with constant workloads ranging from 25 Watt to 125 Watt. Breath by breath gas exchange, heart rate, cardiac output, stroke volume and blood pressure were measured at each stage. The modeling results proved that the nonlinear modeling method (Support Vector Regression) outperforms traditional regression method (reducing Estimation Error between 59% and 80%, reducing Testing Error between 53% and 72%) and is the ideal approach in the modeling of physiological data, especially with small training data set.

  2. Nonlinear dynamical model and response of avian cranial kinesis.

    Science.gov (United States)

    Meekangvan, Preeda; A Barhorst, Alan; Burton, Thomas D; Chatterjee, Sankar; Schovanec, Lawrence

    2006-05-01

    All modern birds have kinetic skulls in which the upper bill can move relative to the braincase, but the biomechanics and motion dynamics of cranial kinesis in birds are poorly understood. In this paper, we model the dynamics of avian cranial kinesis, such as prokinesis and proximal rhynchokinesis in which the upper jaw pivots around the nasal-frontal (N-F) hinge. The purpose of this paper is to present to the biological community an approach that demonstrates the application of sophisticated predictive mathematical modeling tools to avian kinesis. The generality of the method, however, is applicable to the advanced study of the biomechanics of other skeletal systems. The paper begins with a review of the relevant biological literature as well as the essential morphology of avian kinesis, especially the mechanical coupling of the upper and lower jaw by the postorbital ligament. A planar model of the described bird jaw morphology is then developed that maintains the closed kinematic topology of the avian jaw mechanism. We then develop the full nonlinear equations of motion with the assumption that the M. protractor pterygoideus and M. depressor mandibulae act on the quadrate as a pure torque, and the nasal frontal hinge is elastic with damping. The mechanism is shown to be a single degree of freedom device due to the holonomic constraints present in the quadrate-jugal bar-upper jaw-braincase-quadrate kinematic chain as well as the quadrate-lower jaw-postorbital ligament-braincase-quadrate kinematic chain. The full equations are verified via simulation and animation using the parameters of a Grey Heron (Ardea cinerea). Next we develop a simplified analytical model of the equations by power series expansion. We demonstrate that this model reproduces the dynamics of the full model to a high degree of fidelity. We proceed to use the harmonic balance technique to develop the frequency response characteristics of the jaw mechanism. It is shown that this avian cranial

  3. Tuning the nonlinear response of (6,5)-enriched single-wall carbon nanotubes dispersions

    Science.gov (United States)

    Aréstegui, O. S.; Silva, E. C. O.; Baggio, A. L.; Gontijo, R. N.; Hickmann, J. M.; Fantini, C.; Alencar, M. A. R. C.; Fonseca, E. J. S.

    2017-04-01

    Ultrafast nonlinear optical properties of (6,5)-enriched single-wall carbon nanotubes (SWCNTs) dispersions are investigated using the thermally managed Z-scan technique. As the (6,5) SWCNTs presented a strong resonance in the range of 895-1048 nm, the nonlinear refractive index (n2) and the absorption coefficients (β) measurements were performed tuning the laser exactly around absorption peak of the (6,5) SWCNTs. It is observed that the nonlinear response is very sensitive to the wavelength and the spectral behavior of n2 is strongly correlated to the tubes one-photon absorption band, presenting also a peak when the laser photon energy is near the tube resonance energy. This result suggests that a suitable selection of nanotubes types may provide optimized nonlinear optical responses in distinct regions of the electromagnetic spectrum. Analysis of the figures of merit indicated that this material is promising for ultrafast nonlinear optical applications under near infrared excitation.

  4. Nonlinear response of metallic acGNR to an elliptically-polarized terahertz excitation field

    CERN Document Server

    Wang, Yichao

    2016-01-01

    We present a theoretical description of the nonlinear response induced by an elliptically-polarized terahertz beam normally-incident on intrinsic and extrinsic metallic armchair graphene nanorib- bons. Our results show that using a straightforward experimental setup, it should be possible to observe novel polarization-dependent nonlinearities at low excitation field strengths of the or- der of 10 4 V/m. At low temperatures the Kerr nonlinearities in extrinsic nanoribbons persist to significantly higher excitation frequencies than they do for linear polarizations, and at room tem- peratures, the third-harmonic nonlinearities are enhanced by 2-3 orders of magnitude. Finally, the Fermi-level and temperature dependence of the nonlinear response is characterized.

  5. On the effects of nonlinearities in room impulse response measurements with exponential sweeps

    DEFF Research Database (Denmark)

    Ciric, Dejan; Markovic, Milos; Mijic, Miomir

    2013-01-01

    In room impulse response measurements, there are some common disturbances that affect the measured results. These disturbances include nonlinearity, noise and time variance. In this paper, the effects of nonlinearities in the measurements with exponential sweep-sine signals are analyzed from...... different perspectives. The analysis combines theoretical approach, simulations and measurements. The focus is on distortion artifacts in the causal part of the impulse response and their effects on room acoustical parameters. The results show that the sweep-sine method is vulnerable to a certain extent...... to nonlinearities from a theoretical standpoint, but the consequences of this vulnerability are reduced in the responses measured in practice. However, due to irretrievable contamination of the impulse responses, the nonlinearities (especially strong ones) should be avoided....

  6. A system identification analysis of neural adaptation dynamics and nonlinear responses in the local reflex control of locust hind limbs.

    Science.gov (United States)

    Dewhirst, Oliver P; Angarita-Jaimes, Natalia; Simpson, David M; Allen, Robert; Newland, Philip L

    2013-02-01

    Nonlinear type system identification models coupled with white noise stimulation provide an experimentally convenient and quick way to investigate the often complex and nonlinear interactions between the mechanical and neural elements of reflex limb control systems. Previous steady state analysis has allowed the neurons in such systems to be categorised by their sensitivity to position, velocity or acceleration (dynamics) and has improved our understanding of network function. These neurons, however, are known to adapt their output amplitude or spike firing rate during repetitive stimulation and this transient response may be more important than the steady state response for reflex control. In the current study previously used system identification methods are developed and applied to investigate both steady state and transient dynamic and nonlinear changes in the neural circuit responsible for controlling reflex movements of the locust hind limbs. Through the use of a parsimonious model structure and Monte Carlo simulations we conclude that key system dynamics remain relatively unchanged during repetitive stimulation while output amplitude adaptation is occurring. Whilst some evidence of a significant change was found in parts of the systems nonlinear response, the effect was small and probably of little physiological relevance. Analysis using biologically more realistic stimulation reinforces this conclusion.

  7. A Novel Method for Prediction of Nonlinear Aeroelastic Responses

    Science.gov (United States)

    2010-01-01

    Brian A. Freno Graduate Student, Texas A&M University Publications Journal articles: 1. Gargoloff, J. I. and Cizmas, P. G. A., “Mesh Generation and...papers: 1. Cizmas, P. G. A., Freno , B. A., Brenner, T. A., Worley, G. D., “A High-Fidelity Nonlinear Aeroelastic Model for Aircraft with Large Wing

  8. Non-linear response of soil carbon gas (CO2, CH4) flux to oxygen availability

    Science.gov (United States)

    Mcnicol, G.; Silver, W. L.

    2013-12-01

    Soil oxygen (O2) concentration can impact soil carbon (C) fluxes of carbon dioxide (CO2) and methane (CH4), and is an important chemical gradient across the terrestrial-aquatic interface that drives large differences in ecosystem C storage. Few studies have established quantitative relationships between gas-phase O2 concentration and soil C fluxes in controlled settings. Though standard Michaelis-Menten enzyme kinetics would predict a highly non-linear relationship between O2 concentration and microbial consumption, existing studies have imposed coarse changes in O2 concentration that necessarily prevent detection of non-linearity. We report on the results of laboratory incubations designed to explore the short-term sensitivity of soil C emissions to a wide range of gas-phase O2 concentrations. Organic-rich soil was collected from a drained peatland and subjected to seven O2 concentration treatments ranging from 0.03 % - 20 % O2. We compared the fit of the observed C flux response to O2 concentration to linear, log-linear, and Michaelis-Menten functions using MSE and residual fits as performance metrics. We found that both CO2 and CH4 emissions were highly sensitive to O2 concentration, with emission rates increasing and decreasing, respectively, at higher O2. Net CH4 emission rates were attenuated at higher O2 concentrations most likely due to stimulation of gross CH4 consumption. A log-linear or Michaelis-Menten model better fit data than a linear model by both performance metrics, demonstrating, empirically, a non-linear relationship between O2 concentration and soil CO2 and CH4 fluxes. Our results suggest high O2 sensitivity of C-rich soils at the terrestrial-aquatic interface and show that the microbial response to soil redox chemistry must be measured over a biophysically meaningful range of conditions to derive relationships that accurately predict soil C fluxes.

  9. The Kepler Pixel Response Function

    CERN Document Server

    Bryson, Stephen T; Jenkins, Jon M; Chandrasekaran, Hema; Klaus, Todd; Caldwell, Douglas A; Gilliland, Ronald L; Haas, Michael R; Dotson, Jessie L; Koch, David G; Borucki, William J

    2010-01-01

    Kepler seeks to detect sequences of transits of Earth-size exoplanets orbiting Solar-like stars. Such transit signals are on the order of 100 ppm. The high photometric precision demanded by Kepler requires detailed knowledge of how the Kepler pixels respond to starlight during a nominal observation. This information is provided by the Kepler pixel response function (PRF), defined as the composite of Kepler's optical point spread function, integrated spacecraft pointing jitter during a nominal cadence and other systematic effects. To provide sub-pixel resolution, the PRF is represented as a piecewise-continuous polynomial on a sub-pixel mesh. This continuous representation allows the prediction of a star's flux value on any pixel given the star's pixel position. The advantages and difficulties of this polynomial representation are discussed, including characterization of spatial variation in the PRF and the smoothing of discontinuities between sub-pixel polynomial patches. On-orbit super-resolution measurement...

  10. Non-linear response of infinite periodic solids to homogenous electric fields and collective atomic displacements

    Science.gov (United States)

    Ghosez, Philippe

    2006-03-01

    The non-linear response of infinite periodic solids to homogenous electric fields and cooperative atomic displacements will be discussed in the framework of density functional perturbation theory. The approach is based on the “2n + 1” theorem applied to an electric field dependent energy functional. We will focus on the non-linear optical susceptibilities, Raman scattering efficiencies and electrooptic coefficients. Different formulations of third-order energy derivatives will be examined and their convergence with respect to the k-point sampling will be discussed. The method will be applied to conventional semiconductors and to ferroelectric oxides. In the latter case, we will also describe how the first- principles results can be combined to an effective Hamiltonian approach in order to provide access to the temperature dependence of the optical properties. This work was done in collabration with M. Veithen and X. Gonze and was supported by the VolkwagenStiftung, FNRS-Belgium and the FAME-NoE.

  11. Numerical Simulation of Seabed Response and Liquefaction due to Non-linear Waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-feng; ZHANG Qing-he; HAN Tao; QIN Chong-ren

    2005-01-01

    Based on Biot's consolidation theory, a two-dimensional model for computation of the seabed response to waves is presented with the finite element method. Numerical results for different wave conditions are obtained, and the effects of wave non-linearity on the wave-induced seabed response are examined. Moreover, the wave-induced momentary liquefaction in uniform and inhomogeneous seabeds is investigated. It is shown that the wave non-linearity affects the distribution of the wave-induced pore pressure and effective stresses, while the influence of wave non-linearity on the seabed liquefaction potential is not so significant.

  12. Synthesis, characterization and non-linear optical response of organophilic carbon dots

    KAUST Repository

    Bourlinos, Athanasios B.

    2013-09-01

    For the first time ever we report the nonlinear optical (NLO) properties of carbon dots (C-dots). The C-dots for these experiments were synthesized by mild pyrolysis of lauryl gallate. The resulting C-dots bear lauryl chains and, hence, are highly dispersible in polar organic solvents, like chloroform. Dispersions in CHCl3 show significant NLO response. Specifically, the C-dots show negative nonlinear absorption coefficient and negative nonlinear refraction. Using suspensions with different concentrations these parameters are quantified and compared to those of fullerene a well-known carbon molecule with proven NLO response. © 2013 Elsevier Ltd. All rights reserved.

  13. Asymptotic behavior of a nonlinear functional-integral equation of cell kinetics with unequal division.

    Science.gov (United States)

    Arino, O; Kimmel, M

    1989-01-01

    A model of cell cycle kinetics is proposed, which includes unequal division of cells, and a nonlinear dependence of the fraction of cells re-entering proliferation on the total number of cells in the cycle. The model is described by a nonlinear functional-integral equation. It is analyzed using the operator semigroup theory combined with classical differential equations approach. A complete description of the asymptotic behavior of the model is provided for a relatively broad class of nonlinearities. The nonnegative solutions either tend to a stable steady state, or to zero. The simplicity of the model makes it an interesting step in the analysis of dynamics of nonlinear structure populations.

  14. Modified extended tanh-function method for solving nonlinear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    El-Wakil, S.A. [Department of Physics, Faculty of Science, Theoretical Research Group, Mansoura University, 35516 Mansoura (Egypt); Abdou, M.A. [Department of Physics, Faculty of Science, Theoretical Research Group, Mansoura University, 35516 Mansoura (Egypt)]. E-mail: m_abdou_eg@yahoo.com

    2007-03-15

    Based on computerized symbolic computation, modified extended tanh-method for constructing multiple travelling wave solutions of nonlinear evolution equations is presented and implemented in a computer algebraic system. Applying this method, with the aid of Maple, we consider some nonlinear evolution equations in mathematical physics such as the nonlinear partial differential equation, nonlinear Fisher-type equation, ZK-BBM equation, generalized Burgers-Fisher equation and Drinfeld-Sokolov system. As a result, we can successfully recover the previously known solitary wave solutions that had been found by the extended tanh-function method and other more sophisticated methods.

  15. Nonlinear Strain Measures, Shape Functions and Beam Elements for Dynamics of Flexible Beams

    Energy Technology Data Exchange (ETDEWEB)

    Sharf, I. [University of Victoria, Department of Mechanical Engineering (Canada)

    1999-05-15

    In this paper, we examine several aspects of the development of an explicit geometrically nonlinear beam element. These are: (i) linearization of the displacement field; (ii) the effect of a commonly adopted approximation for the nonlinear Lagrangian strain; and (iii) use of different-order shape functions for discretization. The issue of rigid-body check for a nonlinear beam element is also considered. An approximate check is introduced for an element based on an (approximate) intermediate strain measure. Several numerical examples are presented to support the analysis. The paper concludes with a discussion on the use of explicit nonlinear beam elements for multibody dynamics simulation.

  16. Exact Penalty Function and Asymptotic Strong Nonlinear Duality in Integer Programming

    Institute of Scientific and Technical Information of China (English)

    Fu-sheng Bai; Z.Y.Wu; L.S. Zhang

    2004-01-01

    In this paper, a logarithmic-exponential penalty function with two parameters for integer programmingis discussed. We obtain the exact penalty properties and then establish the asymptotic strong nonlinear duality in the corresponding logarithmic-exponential dual formulation by using the obtained exact penalty properties.The discussion is based on the logarithmic-exponential nonlinear dual formulation proposed in [6].

  17. Testing the Granger noncausality hypothesis in stationary nonlinear models of unknown functional form

    DEFF Research Database (Denmark)

    Péguin-Feissolle, Anne; Strikholm, Birgit; Teräsvirta, Timo

    In this paper we propose a general method for testing the Granger noncausality hypothesis in stationary nonlinear models of unknown functional form. These tests are based on a Taylor expansion of the nonlinear model around a given point in the sample space. We study the performance of our tests...

  18. Duality and singular value functions of the nonlinear normalized right and left coprime factorizations

    NARCIS (Netherlands)

    Scherpen, J. M. A.; Scherpen, J. M. A.

    2005-01-01

    This paper considers the nonlinear left coprime factorization (NLCF) of a nonlinear system. In order to study the balanced realization of such NLCF first a dual system notion is introduced. The important energy functions for the original NLCF and their relation with the dual NLCF are studied and rel

  19. Symbolic Computation of Extended Jacobian Elliptic Function Algorithm for Nonlinear Differential-Different Equations

    Institute of Scientific and Technical Information of China (English)

    DAI Chao-Qing; MENG Jian-Ping; ZHANG Jie-Fang

    2005-01-01

    The Jacobian elliptic function expansion method for nonlinear differential-different equations and its algorithm are presented by using some relations among ten Jacobian elliptic functions and successfully construct more new exact doubly-periodic solutions of the integrable discrete nonlinear Schrodinger equation. When the modulous m → 1or 0, doubly-periodic solutions degenerate to solitonic solutions including bright soliton, dark soliton, new solitons as well as trigonometric function solutions.

  20. Complex Tanh-Function Expansion Method and Exact Solutions to Two Systems of Nonlinear Wave Equations

    Institute of Scientific and Technical Information of China (English)

    ZHANGJin-Liang; WANGMing-Liang

    2004-01-01

    The complex tanh-function expansion method was presented recently, and it can be applied to derive exact solutions to the Schroedinger-type nonlinear evolution equations directly without transformation. In this paper,the complex tanh-function expansion method is applied to derive the exact solutions to the general coupled nonlinear evolution equations. Zakharov system and a long-short-wave interaction system are considered as examples, and the new applications of the complex tanh-function expansion method are shown.

  1. Research on an augmented Lagrangian penalty function algorithm for nonlinear programming

    Science.gov (United States)

    Frair, L.

    1978-01-01

    The augmented Lagrangian (ALAG) Penalty Function Algorithm for optimizing nonlinear mathematical models is discussed. The mathematical models of interest are deterministic in nature and finite dimensional optimization is assumed. A detailed review of penalty function techniques in general and the ALAG technique in particular is presented. Numerical experiments are conducted utilizing a number of nonlinear optimization problems to identify an efficient ALAG Penalty Function Technique for computer implementation.

  2. Complex Tanh-Function Expansion Method and Exact Solutions to Two Systems of Nonlinear Wave Equations

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-Liang; WANG Ming-Liang

    2004-01-01

    The complex tanh-function expansion method was presented recently, and it can be applied to derive exact solutions to the Schrodinger-type nonlinear evolution equations directly without transformation. In this paper,the complex tanh-function expansion method is applied to derive the exact solutions to the general coupled nonlinear evolution equations. Zakharov system and a long-short-wave interaction system are considered as examples, and the new applications of the complex tanh-function expansion method are shown.

  3. Superposition of elliptic functions as solutions for a large number of nonlinear equations

    Energy Technology Data Exchange (ETDEWEB)

    Khare, Avinash [Raja Ramanna Fellow, Indian Institute of Science Education and Research (IISER), Pune 411021 (India); Saxena, Avadh [Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-03-15

    For a large number of nonlinear equations, both discrete and continuum, we demonstrate a kind of linear superposition. We show that whenever a nonlinear equation admits solutions in terms of both Jacobi elliptic functions cn(x, m) and dn(x, m) with modulus m, then it also admits solutions in terms of their sum as well as difference. We have checked this in the case of several nonlinear equations such as the nonlinear Schrödinger equation, MKdV, a mixed KdV-MKdV system, a mixed quadratic-cubic nonlinear Schrödinger equation, the Ablowitz-Ladik equation, the saturable nonlinear Schrödinger equation, λϕ{sup 4}, the discrete MKdV as well as for several coupled field equations. Further, for a large number of nonlinear equations, we show that whenever a nonlinear equation admits a periodic solution in terms of dn{sup 2}(x, m), it also admits solutions in terms of dn {sup 2}(x,m)±√(m) cn (x,m) dn (x,m), even though cn(x, m)dn(x, m) is not a solution of these nonlinear equations. Finally, we also obtain superposed solutions of various forms for several coupled nonlinear equations.

  4. Existence Results for Some Nonlinear Functional-Integral Equations in Banach Algebra with Applications

    Directory of Open Access Journals (Sweden)

    Lakshmi Narayan Mishra

    2016-04-01

    Full Text Available In the present manuscript, we prove some results concerning the existence of solutions for some nonlinear functional-integral equations which contains various integral and functional equations that considered in nonlinear analysis and its applications. By utilizing the techniques of noncompactness measures, we operate the fixed point theorems such as Darbo's theorem in Banach algebra concerning the estimate on the solutions. The results obtained in this paper extend and improve essentially some known results in the recent literature. We also provide an example of nonlinear functional-integral equation to show the ability of our main result.

  5. Adaptive Neural Control of Nonaffine Nonlinear Systems without Differential Condition for Nonaffine Function

    Directory of Open Access Journals (Sweden)

    Chaojiao Sun

    2016-01-01

    Full Text Available An adaptive neural control scheme is proposed for nonaffine nonlinear system without using the implicit function theorem or mean value theorem. The differential conditions on nonaffine nonlinear functions are removed. The control-gain function is modeled with the nonaffine function probably being indifferentiable. Furthermore, only a semibounded condition for nonaffine nonlinear function is required in the proposed method, and the basic idea of invariant set theory is then constructively introduced to cope with the difficulty in the control design for nonaffine nonlinear systems. It is rigorously proved that all the closed-loop signals are bounded and the tracking error converges to a small residual set asymptotically. Finally, simulation examples are provided to demonstrate the effectiveness of the designed method.

  6. Nonlinear optical response of a two-dimensional atomic crystal.

    Science.gov (United States)

    Merano, Michele

    2016-01-01

    The theory of Bloembergen and Pershan for the light waves at the boundary of nonlinear media is extended to a nonlinear two-dimensional (2D) atomic crystal, i.e., a single planar atomic lattice, placed between linear bulk media. The crystal is treated as a zero-thickness interface, a real 2D system. Harmonic waves emanate from it. Generalization of the laws of reflection and refraction give the direction and the intensity of the harmonic waves. As a particular case that contains all the essential physical features, second-order harmonic generation is considered. The theory, due to its simplicity that stems from the special character of a single planar atomic lattice, is able to elucidate and explain the rich experimental details of harmonic generation from a 2D atomic crystal.

  7. Terahertz-Driven Nonlinear Spin Response of Antiferromagnetic Nickel Oxide

    Science.gov (United States)

    Baierl, S.; Mentink, J. H.; Hohenleutner, M.; Braun, L.; Do, T.-M.; Lange, C.; Sell, A.; Fiebig, M.; Woltersdorf, G.; Kampfrath, T.; Huber, R.

    2016-11-01

    Terahertz magnetic fields with amplitudes of up to 0.4 Tesla drive magnon resonances in nickel oxide while the induced dynamics is recorded by femtosecond magneto-optical probing. We observe distinct spin-mediated optical nonlinearities, including oscillations at the second harmonic of the 1 THz magnon mode. The latter originate from coherent dynamics of the longitudinal component of the antiferromagnetic order parameter, which are probed by magneto-optical effects of second order in the spin deflection. These observations allow us to dynamically disentangle electronic from lattice-related contributions to magnetic linear birefringence and dichroism—information so far only accessible by ultrafast THz spin control. The nonlinearities discussed here foreshadow physics that will become essential in future subcycle spin switching.

  8. Viscosity solutions of fully nonlinear functional parabolic PDE

    Directory of Open Access Journals (Sweden)

    Liu Wei-an

    2005-01-01

    Full Text Available By the technique of coupled solutions, the notion of viscosity solutions is extended to fully nonlinear retarded parabolic equations. Such equations involve many models arising from optimal control theory, economy and finance, biology, and so forth. The comparison principle is shown. Then the existence and uniqueness are established by the fixed point theory.

  9. A variational constitutive framework for the nonlinear viscoelastic response of a dielectric elastomer

    KAUST Repository

    Khan, Kamran

    2012-11-10

    We formulate a variational constitutive framework that accounts for nonlinear viscous behavior of electrically sensitive polymers, specifically Dielectric Elastomers (DEs), under large deformation. DEs are highly viscoelastic and their actuation response is greatly affected in dynamic applications. We used the generalized Maxwell model to represent the viscoelastic response of DE allowing the material to relax with multiple mechanisms. The constitutive updates at each load increment are obtained by minimizing an objective function formulated using the free energy and electrostatic energy of the elastomer, in addition to the viscous dissipation potential of the dashpots in each Maxwell branch. The model is then used to predict the electromechanical instability (EMI) of DE. The electro-elastic response of the DE is verified with available analytical solutions in the literature and then the material parameters are calibrated using experimental data. The model is integrated with finite element software to perform a variety of simulations on different types of electrically driven actuators under various electromechanical loadings. The electromechanical response of the DE and the critical conditions at which EMI occurs were found to be greatly affected by the viscoelasticity. Our model predicts that under a dead load EMI can be avoided if the DE operates at a high voltage rate. Subjected to constant, ramp and cyclic voltage, our model qualitatively predicts responses similar to the ones obtained from the analytical solutions and experimental data available in the literature. © 2012 Springer-Verlag Berlin Heidelberg.

  10. Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties

    Science.gov (United States)

    Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon

    2014-01-01

    Purpose The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency during anterior-posterior stretching. Method Three materially linear and three materially nonlinear models were created and stretched up to 10 mm in 1 mm increments. Phonation onset pressure (Pon) and fundamental frequency (F0) at Pon were recorded for each length. Measurements were repeated as the models were relaxed in 1 mm increments back to their resting lengths, and tensile tests were conducted to determine the stress-strain responses of linear versus nonlinear models. Results Nonlinear models demonstrated a more substantial frequency response than did linear models and a more predictable pattern of F0 increase with respect to increasing length (although range was inconsistent across models). Pon generally increased with increasing vocal fold length for nonlinear models, whereas for linear models, Pon decreased with increasing length. Conclusions Nonlinear synthetic models appear to more accurately represent the human vocal folds than linear models, especially with respect to F0 response. PMID:22271874

  11. Computer-aided Nonlinear Control System Design Using Describing Function Models

    CERN Document Server

    Nassirharand, Amir

    2012-01-01

    A systematic computer-aided approach provides a versatile setting for the control engineer to overcome the complications of controller design for highly nonlinear systems. Computer-aided Nonlinear Control System Design provides such an approach based on the use of describing functions. The text deals with a large class of nonlinear systems without restrictions on the system order, the number of inputs and/or outputs or the number, type or arrangement of nonlinear terms. The strongly software-oriented methods detailed facilitate fulfillment of tight performance requirements and help the designer to think in purely nonlinear terms, avoiding the expedient of linearization which can impose substantial and unrealistic model limitations and drive up the cost of the final product. Design procedures are presented in a step-by-step algorithmic format each step being a functional unit with outputs that drive the other steps. This procedure may be easily implemented on a digital computer with example problems from mecha...

  12. Newton algorithm for fitting transfer functions to frequency response measurements

    Science.gov (United States)

    Spanos, J. T.; Mingori, D. L.

    1993-01-01

    In this paper the problem of synthesizing transfer functions from frequency response measurements is considered. Given a complex vector representing the measured frequency response of a physical system, a transfer function of specified order is determined that minimizes the sum of the magnitude-squared of the frequency response errors. This nonlinear least squares minimization problem is solved by an iterative global descent algorithm of the Newton type that converges quadratically near the minimum. The unknown transfer function is expressed as a sum of second-order rational polynomials, a parameterization that facilitates a numerically robust computer implementation. The algorithm is developed for single-input, single-output, causal, stable transfer functions. Two numerical examples demonstrate the effectiveness of the algorithm.

  13. Numerical investigation of amplitude-dependent dynamic response in acoustic metamaterials with nonlinear oscillators.

    Science.gov (United States)

    Manimala, James M; Sun, C T

    2016-06-01

    The amplitude-dependent dynamic response in acoustic metamaterials having nonlinear local oscillator microstructures is studied using numerical simulations on representative discrete mass-spring models. Both cubically nonlinear hardening and softening local oscillator cases are considered. Single frequency, bi-frequency, and wave packet excitations at low and high amplitude levels were used to interrogate the models. The propagation and attenuation characteristics of harmonic waves in a tunable frequency range is found to correspond to the amplitude and nonlinearity-dependent shifts in the local resonance bandgap for such nonlinear acoustic metamaterials. A predominant shift in the propagated wave spectrum towards lower frequencies is observed. Moreover, the feasibility of amplitude and frequency-dependent selective filtering of composite signals consisting of individual frequency components which fall within propagating or attenuating regimes is demonstrated. Further enrichment of these wave manipulation mechanisms in acoustic metamaterials using different combinations of nonlinear microstructures presents device implications for acoustic filters and waveguides.

  14. Existence of Solutions of Abstract Nonlinear Mixed Functional Integrodifferential equation with nonlocal conditions

    Directory of Open Access Journals (Sweden)

    Dhakne Machindra B.

    2017-04-01

    Full Text Available In this paper we discuss the existence of mild and strong solutions of abstract nonlinear mixed functional integrodifferential equation with nonlocal condition by using Sadovskii’s fixed point theorem and theory of fractional power of operators.

  15. A nonlinear mixed-effects model for simultaneous smoothing and registration of functional data

    DEFF Research Database (Denmark)

    Raket, Lars Lau; Sommer, Stefan Horst; Markussen, Bo

    2014-01-01

    We consider misaligned functional data, where data registration is necessary for proper statistical analysis. This paper proposes to treat misalignment as a nonlinear random effect, which makes simultaneous likelihood inference for horizontal and vertical effects possible. By simultaneously fitting...

  16. Correction of complex nonlinear signal response from a pixel array detector.

    Science.gov (United States)

    van Driel, Tim Brandt; Herrmann, Sven; Carini, Gabriella; Nielsen, Martin Meedom; Lemke, Henrik Till

    2015-05-01

    The pulsed free-electron laser light sources represent a new challenge to photon area detectors due to the intrinsic spontaneous X-ray photon generation process that makes single-pulse detection necessary. Intensity fluctuations up to 100% between individual pulses lead to high linearity requirements in order to distinguish small signal changes. In real detectors, signal distortions as a function of the intensity distribution on the entire detector can occur. Here a robust method to correct this nonlinear response in an area detector is presented for the case of exposures to similar signals. The method is tested for the case of diffuse scattering from liquids where relevant sub-1% signal changes appear on the same order as artifacts induced by the detector electronics.

  17. Nonlinear dynamic response and active control of fiber metal laminated plates with piezoelectric actuators and sensors in unsteady temperature field

    Science.gov (United States)

    Shao, Xuefei; Fu, Yiming; Chen, Yang

    2015-05-01

    Based on the higher order shear deformation theory and the geometric nonlinear theory, the nonlinear motion equations, to which the effects of the positive and negative piezoelectric and the thermal are introduced by piezoelectric fiber metal laminated (FML) plates in an unsteady temperature, are established by Hamilton’s variational principle. Then, the control algorithm of negative-velocity feedback is applied to realize the vibration control of the piezoelectric FML plates. During the solving process, firstly, the formal functions of the displacements that fulfilled the boundary conditions are proposed. Then, heat conduction equations and nonlinear differential equations are dealt with using the differential quadrature (DQ) and Galerkin methods, respectively. On the basis of the previous processing, the time domain is dispersed by the Newmark-β method. Finally, the whole problem can be investigated by the iterative method. In the numerical examples, the influence of the applied voltage, the temperature loading and geometric parameters on the nonlinear dynamic response of the piezoelectric FML plates is analyzed. Meanwhile, the effect of feedback control gain and the position of the piezoelectric layer, the initial deflection and the external temperature on the active control effect of the piezoelectric layers has been studied. The model development and the research results can serve as a basis for nonlinear vibration analysis of the FML structures.

  18. Generalized Jacobi Elliptic Function Solution to a Class of Nonlinear Schrödinger-Type Equations

    Directory of Open Access Journals (Sweden)

    Zeid I. A. Al-Muhiameed

    2011-01-01

    Full Text Available With the help of the generalized Jacobi elliptic function, an improved Jacobi elliptic function method is used to construct exact traveling wave solutions of the nonlinear partial differential equations in a unified way. A class of nonlinear Schrödinger-type equations including the generalized Zakharov system, the Rangwala-Rao equation, and the Chen-Lee-Lin equation are investigated, and the exact solutions are derived with the aid of the homogenous balance principle.

  19. Nonlinear optical responses to circularly polarized lights of the surface state of a topological insulator

    Science.gov (United States)

    Misawa, Tetsuro; Yokoyama, Takehito; Murakami, Shuichi

    2012-02-01

    Recent photoelectron spectroscopy experiments have revealed the presence of the Dirac cone on the surface of the topological insulator and its spin-splitting due to the spin-orbit interaction. In general, on spin-orbit coupled systems, electric fields induce spin polarizations as linear and nonlinear responses. Here we investigate the inverse Faraday effect on the surface of the topological insulator. The inverse Faraday effect is a non-linear optical effect where a circularly polarized light induces a dc spin polarization. We employ the Keldysh Green's function method to calculate the induced spin polarization and discuss its frequency dependence. In particular, in the low frequency limit, our analytical result gives the spin polarization proportional to the frequency and the square of the lifetime. As for the finite frequency regime, we employ numerical methods to discuss the resonance due to interband transitions. We also discuss the photogalvanic effect, where an illumination of a circular polarized light generates the dc charge current. Lastly, we evaluate those quantities with realistic parameters.[4pt] [1] T. Misawa, T. Yokoyama, S. Murakami, Phys. Rev. B84, 165407 (2011).

  20. Analysis of interlaminar stress and nonlinear dynamic response for composite laminated plates with interfacial damage

    Institute of Scientific and Technical Information of China (English)

    F. H. Zhu; Y. M. Fu

    2008-01-01

    By considering the effect of interfacial damage and using the variation principle, three-dimensional nonli-near dynamic governing equations of the laminated plates with interfacial damage are derived based on the general six-degrees-of-freedom plate theory towards the accurate stress analysis. The solutions of interlaminar stress and nonlinear dynamic response for a simply supported laminated plate with interfacial damage are obtained by using the finite dif-ference method, and the results are validated by compari-son with the solution of nonlinear finite element method. In numerical calculations, the effects of interfacial damage on the stress in the interface and the nonlinear dynamic response of laminated plates are discussed.

  1. Algebrability, non-linear properties, and special functions

    CERN Document Server

    Bartoszewicz, Artur; Pellegrino, Daniel; Seoane-Sepúlveda, Juan B

    2011-01-01

    We construct uncountably generated algebras inside the following sets of special functions: Sierpi\\'nski-Zygmund functions, perfectly everywhere surjective functions and nowhere continuous Darboux functions. All conclusions obtained in this paper are improvements of some already known results.

  2. Two-parameters quasi-filled function algorithm for nonlinear integer programming

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-xiang; SHANG You-lin; ZHANG Lian-sheng

    2006-01-01

    A quasi-filled function for nonlinear integer programming problem is given in this paper. This function contains two parameters which are easily to be chosen. Theoretical properties of the proposed quasi-filled function are investigated. Moreover,we also propose a new solution algorithm using this quasi-filled function to solve nonlinear integer programming problem in this paper. The examples with 2 to 6 variables are tested and computational results indicated the efficiency and reliability of the proposed quasi-filled function algorithm.

  3. Construction of 1-Resilient Boolean Functions with Optimal Algebraic Immunity and Good Nonlinearity

    Institute of Scientific and Technical Information of China (English)

    Sen-Shan Pan; Xiao-Tong Fu; Wei-Guo Zhangx

    2011-01-01

    This paper presents a construction for a class of 1-resilient functions with optimal algebraic immunity on an even number of variables. The construction is based on the concatenation of two balanced functions in associative classes. For some n, a part of 1-resilient functions with maximum algebraic immunity constructed in the paper can achieve almost optimal nonlinearity. Apart from their high nonlinearity, the functions reach Siegenthaler's upper bound of algebraic degree. Also a class of 1-resilient functions on any number n > 2 of variables with at least sub-optimal algebraic immunity is provided.

  4. Experimental and theoretical studies of spectral alteration in ultrasonic waves resulting from nonlinear elastic response in rock

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, P.A.; McCall, K.R.; Meegan, G.D. Jr.

    1993-01-01

    Experiments in rock show a large nonlinear elastic wave response, far greater than that of gases, liquids and most other solids. The large response is attributed to structural defects in rock including microcracks and grain boundaries. In the earth, a large nonlinear response may be responsible for significant spectral alteration at amplitudes and distances currently considered to be well within the linear elastic regime.

  5. Experimental and theoretical studies of spectral alteration in ultrasonic waves resulting from nonlinear elastic response in rock

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, P.A.; McCall, K.R.; Meegan, G.D. Jr.

    1993-06-01

    Experiments in rock show a large nonlinear elastic wave response, far greater than that of gases, liquids and most other solids. The large response is attributed to structural defects in rock including microcracks and grain boundaries. In the earth, a large nonlinear response may be responsible for significant spectral alteration at amplitudes and distances currently considered to be well within the linear elastic regime.

  6. Experimental and theoretical studies of spectral alteration in ultrasonic waves resulting from nonlinear elastic response in rock

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, P.A.; McCall, K.R.; Meegan, G.D. Jr. [Los Alamos National Lab., NM (United States)

    1993-11-01

    Experiments in rock show a large nonlinear elastic wave response, far greater than that of gases, liquids and most other solids. The large response is attributed to structural defects in rock including microcracks and grain boundaries. In the earth, a large nonlinear response may be responsible for significant spectral alteration at amplitudes and distances currently considered to be well within the linear elastic regime.

  7. Cylindrical PVF2 film based fiber optic phase modulator - Phase shift nonlinearity and frequency response

    Science.gov (United States)

    Sudarshanam, V. S.; Claus, Richard O.

    1993-03-01

    A new cylindrical coil configuration for polyvinylidene flouride (PVF2) film based fiber optic phase modulator is studied for the frequency response and nonlinearity of phase shift at the resonance frequency. This configuration, hitherto unapproached for PVF2 film modulators, offers resonance at well defined, controllable and higher frequencies than possible for the flat-strip configuration. Two versions of this configuration are presented that differ strongly in both the resonance frequency and the phase shift nonlinearity coefficient.

  8. Nonlinear Site Response Due to Large Ground Acceleration: Observation and Computer Simulation

    Science.gov (United States)

    Noguchi, S.; Furumura, T.; Sasatani, T.

    2009-12-01

    We studied nonlinear site response due to large ground acceleration during the 2003 off-Miyagi Earthquake (Mw7.0) in Japan by means of horizontal-to-vertical spectral ratio analysis of S-wave motion. The results were then confirmed by finite-difference method (FDM) simulation of nonlinear seismic wave propagation. A nonlinear site response is often observed at soft sediment sites, and even at hard bedrock sites which are covered by thin soil layers. Nonlinear site response can be induced by strong ground motion whose peak ground acceleration (PGA) exceeds about 100 cm/s/s, and seriously affects the amplification of high frequency ground motion and PGA. Noguchi and Sasatani (2008) developed an efficient technique for quantitative evaluation of nonlinear site response using the horizontal-to-vertical spectral ratio of S-wave (S-H/V) derived from strong ground motion records, based on Wen et al. (2006). We applied this technique to perform a detailed analysis of the properties of nonlinear site response based on a large amount of data recorded at 132 K-NET and KiK-net strong motion stations in Northern Japan during the off-Miyagi Earthquake. We succeeded in demonstrating a relationship between ground motion level, nonlinear site response and surface soil characteristics. For example, the seismic data recorded at KiK-net IWTH26 showed obvious characteristics of nonlinear site response when the PGA exceeded 100 cm/s/s. As the ground motion level increased, the dominant peak of S-H/V shifted to lower frequency, the high frequency level of S-H/V dropped, and PGA amplification decreased. On the other hand, the records at MYGH03 seemed not to be affected by nonlinear site response even for high ground motion levels in which PGA exceeds 800 cm/s/s. The characteristics of such nonlinear site amplification can be modeled by evaluating Murnaghan constants (e.g. McCall, 1994), which are the third-order elastic constants. In order to explain the observed characteristics of

  9. Ecological prediction with nonlinear multivariate time-frequency functional data models

    Science.gov (United States)

    Yang, Wen-Hsi; Wikle, Christopher K.; Holan, Scott H.; Wildhaber, Mark L.

    2013-01-01

    Time-frequency analysis has become a fundamental component of many scientific inquiries. Due to improvements in technology, the amount of high-frequency signals that are collected for ecological and other scientific processes is increasing at a dramatic rate. In order to facilitate the use of these data in ecological prediction, we introduce a class of nonlinear multivariate time-frequency functional models that can identify important features of each signal as well as the interaction of signals corresponding to the response variable of interest. Our methodology is of independent interest and utilizes stochastic search variable selection to improve model selection and performs model averaging to enhance prediction. We illustrate the effectiveness of our approach through simulation and by application to predicting spawning success of shovelnose sturgeon in the Lower Missouri River.

  10. Nonlinear electromagnetic responses of active membrane protein complexes in live cells and organelles

    Science.gov (United States)

    Nawarathna, Dharmakirthi

    The response of biological cells to an applied oscillating electric field contains both linear and nonlinear components (eg. induced harmonics). Such noninvasive measurements can be used to study active processes taking place inside the cells. The measurement of induced harmonics is the tool used for the study described here. A highly sensitive superconducting quantum interference device (SQUID) is used to detect the response at low frequencies, which greatly reduces electrode polarization effects. At high frequencies, a four- probe method is used. At low frequencies, harmonic generation by budding yeast cells in response to a sinusoidal electric field is reported, which is seen to be minimal when the field amplitude is less than a threshold value. Surprisingly, sodium metavanadate, an inhibitor of P-type ATPases and glucose, a substrate of P-type ATPase responsible for nonlinear response in yeast, reduces the threshold field amplitude, increasing harmonic generation at low amplitudes while reducing it at large amplitudes. We have thus proposed a model that explicitly introduces a threshold field, similar to those observed in density waves, where fields above threshold drive charge transport through an energy landscape with multiple wells, and in Coulomb blockade tunnel junctions, recently exploited to define the current standard. At high frequencies, the induced harmonics exhibit pronounced features that depend on the specific organism. Budding yeast (S. cerevisiae ) cells produce numerous harmonics. When the second or third harmonic amplitude is plotted vs. applied frequency, we observe two peaks, around 3 kHz and 12 kHz, which are suppressed by the respiratory inhibitor potassium cyanide. We then measured the response to oscillatory electric fields of intact bovine heart mitochondria, a reproducible second harmonic (at ˜3-4 kHz applied frequency) was detected. Further, with coupled mouse mitochondria, an ADP sensitive peak (˜ 12-15 kHz applied frequency) was

  11. Computational Modelling Strategies for Nonlinear Response Prediction of Corroded Circular RC Bridge Piers

    Directory of Open Access Journals (Sweden)

    Mohammad M. Kashani

    2016-01-01

    Full Text Available A numerical model is presented that enables simulation of the nonlinear flexural response of corroded reinforced concrete (RC components. The model employs a force-based nonlinear fibre beam-column element. A new phenomenological uniaxial material model for corroded reinforcing steel is used. This model accounts for the impact of corrosion on buckling strength, postbuckling behaviour, and low-cycle fatigue degradation of vertical reinforcement under cyclic loading. The basic material model is validated through comparison of simulated and observed responses for uncorroded RC columns. The model is used to explore the impact of corrosion on the inelastic response of corroded RC columns.

  12. Nonlinear magneto-electric response of a giant magnetostrictive/piezoelectric composite cylinder

    Institute of Scientific and Technical Information of China (English)

    Yuan-Wen Gao; Juan-Juan Zhang

    2012-01-01

    In this study,we investigate the nonlinear coupling magneto-electric (ME) effect of a giant magnetostrictive/piezoelectric composite cylinder.The nonlinear constitutive relations of the ME material are taken into account,and the influences of the nonlinear material properties on the ME effect are investigated for the static and dynamic cases,respectively.The influences of different constraint conditions on the ME effect are discussed.In the dynamic case considering nonlinear material properties,the double frequency ME response (The response frequency is twice the applied magnetic frequency) is obtained and discussed,which can be used to explain the experiment phenomenon in which the input signal with frequency f is converted to the output signal with 2f in ME laminated structures.Some calculations on nonlinear ME effect are conducted.The obtained results indicate that the nonlinear material properties affect not only the magnitude of the ME effect in the static case but also the ME response frequency in the dynamic case.

  13. Functionally unidimensional item response models for multivariate binary data

    DEFF Research Database (Denmark)

    Ip, Edward; Molenberghs, Geert; Chen, Shyh-Huei;

    2013-01-01

    The problem of fitting unidimensional item response models to potentially multidimensional data has been extensively studied. The focus of this article is on response data that have a strong dimension but also contain minor nuisance dimensions. Fitting a unidimensional model to such multidimensio......The problem of fitting unidimensional item response models to potentially multidimensional data has been extensively studied. The focus of this article is on response data that have a strong dimension but also contain minor nuisance dimensions. Fitting a unidimensional model...... to such multidimensional data is believed to result in ability estimates that represent a combination of the major and minor dimensions. We conjecture that the underlying dimension for the fitted unidimensional model, which we call the functional dimension, represents a nonlinear projection. In this article we investigate...... tool. An example regarding a construct of desire for physical competency is used to illustrate the functional unidimensional approach....

  14. Frequency response areas in the inferior colliculus: nonlinearity and binaural interaction

    Science.gov (United States)

    Yu, Jane J.; Young, Eric D.

    2013-01-01

    The tuning, binaural properties, and encoding characteristics of neurons in the central nucleus of the inferior colliculus (CNIC) were investigated to shed light on nonlinearities in the responses of these neurons. Results were analyzed for three types of neurons (I, O, and V) in the CNIC of decerebrate cats. Rate responses to binaural stimuli were characterized using a 1st- plus 2nd-order spectral integration model. Parameters of the model were derived using broadband stimuli with random spectral shapes (RSS). This method revealed four characteristics of CNIC neurons: (1) Tuning curves derived from broadband stimuli have fixed (i. e., level tolerant) bandwidths across a 50–60 dB range of sound levels; (2) 1st-order contralateral weights (particularly for type I and O neurons) were usually larger in magnitude than corresponding ipsilateral weights; (3) contralateral weights were more important than ipsilateral weights when using the model to predict responses to untrained noise stimuli; and (4) 2nd-order weight functions demonstrate frequency selectivity different from that of 1st-order weight functions. Furthermore, while the inclusion of 2nd-order terms in the model usually improved response predictions related to untrained RSS stimuli, they had limited impact on predictions related to other forms of filtered broadband noise [e. g., virtual-space stimuli (VS)]. The accuracy of the predictions varied considerably by response type. Predictions were most accurate for I neurons, and less accurate for O and V neurons, except at the lowest stimulus levels. These differences in prediction performance support the idea that type I, O, and V neurons encode different aspects of the stimulus: while type I neurons are most capable of producing linear representations of spectral shape, type O and V neurons may encode spectral features or temporal stimulus properties in a manner not easily explained with the low-order model. Supported by NIH grant DC00115. PMID:23675323

  15. Ultrafast third-order nonlinear optical response of pyrene derivatives

    Science.gov (United States)

    Shi, Yufang; Li, Zhongguo; Fang, Yu; Sun, Jinyu; Zhao, Minggen; Song, Yinglin

    2017-05-01

    Two mono-substituted pyrene derivatives with delocalized electron system 1-(pyren-1-yl)-3-(4-Methyl thiophene-2-yl) acrylic ketone (13#) and 1-(pyren-1-yl)-3-(4-bromo thiophene-2-yl) acrylic ketone (15#) were successfully synthesized. The resultant compounds were characterized by nuclear magnetic resonance (NMR), infrared spectroscopy (IR), high resolution mass spectrum (HR-MS), and UV-vis spectra. The third-order nonlinear optical properties of the compounds were investigated using Z-scan technique with femtosecond laser pulses at 500 nm and 700 nm, respectively. Both of the compounds showed a decrease in transmittance about the focus, which are typical of two-photon absorption. It was found that the two-photon absorption behavior of the pyrene derivatives were modified by substituents on thiophene ring. These results indicate that both compounds can be promising candidates for future optoelectronic and bio-imaging applications.

  16. Real-Time Implementation of Nonlinear Optical Processing Functions.

    Science.gov (United States)

    1986-09-30

    demonstrating that the memory is nonlinear and selective. The recording medium could be replaced with real-time media such as photorefractive crystals. Thicker...recording media Fi4 4. Schematic of experiment that d,.non* trated ,,pera have the added advantage of higher angular selectiv- "" . e e r aity. thus... geometrica snapes in contact ’A,.n a c-:’:ser ’Figure 51a’ ., and a spher:cal 4:verg.ng reference -eam Upion :"um’latlon of t -" c-’gram by the object beam

  17. Interpreting the nonlinear dielectric response of glass-formers in terms of the coupling model

    Energy Technology Data Exchange (ETDEWEB)

    Ngai, K. L. [CNR-IPCF, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy and Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy)

    2015-03-21

    Nonlinear dielectric measurements at high electric fields of glass-forming glycerol and propylene carbonate initially were carried out to elucidate the dynamic heterogeneous nature of the structural α-relaxation. Recently, the measurements were extended to sufficiently high frequencies to investigate the nonlinear dielectric response of faster processes including the so-called excess wing (EW), appearing as a second power law at high frequencies in the loss spectra of many glass formers without a resolved secondary relaxation. While a strong increase of dielectric constant and loss is found in the nonlinear dielectric response of the α-relaxation, there is a lack of significant change in the EW. A surprise to the experimentalists finding it, this difference in the nonlinear dielectric properties between the EW and the α-relaxation is explained in the framework of the coupling model by identifying the EW investigated with the nearly constant loss (NCL) of caged molecules, originating from the anharmonicity of the intermolecular potential. The NCL is terminated at longer times (lower frequencies) by the onset of the primitive relaxation, which is followed sequentially by relaxation processes involving increasing number of molecules until the terminal Kohlrausch α-relaxation is reached. These intermediate faster relaxations, combined to form the so-called Johari-Goldstein (JG) β-relaxation, are spatially and dynamically heterogeneous, and hence exhibit nonlinear dielectric effects, as found in glycerol and propylene carbonate, where the JG β-relaxation is not resolved and in D-sorbitol where it is resolved. Like the linear susceptibility, χ{sub 1}(f), the frequency dispersion of the third-order dielectric susceptibility, χ{sub 3}(f), was found to depend primarily on the α-relaxation time, and independent of temperature T and pressure P. I show this property of the frequency dispersions of χ{sub 1}(f) and χ{sub 3}(f) is the characteristic of the many

  18. Excitonic effects in the nonlinear optical response of a Si(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Stamova, Maria; Rebentrost, Frank [Max-Planck-Institut fuer Quantenoptik, 85748 Garching (Germany)

    2010-08-15

    We discuss methods to calculate the linear and nonlinear optical spectra for cyclic cluster models of an ideal Si(111) surface. The cluster approach offers the possibility to implement the excitonic effects due to the Coulomb interaction between electron and hole in a relatively straight-forward way. In order to appproximate a situation resembling a surface we use clusters with several hundreds of Si atoms. The electronic structure is obtained from a tight-binding parametrization of the hamiltonian. A time-dependent density operator formalism is used to calculate the response functions S({tau}) and S({tau}{sub 1},{tau}{sub 2}) for the optical polarization, which also directly describe the response to ultrashort pulses. Their Fourier transforms are the frequency-dependent optical susceptibilities {chi}{sup (1)}(-{omega};{omega}) and {chi}{sup (2)} (-{omega}{sub 1}-{omega}{sub 2};{omega}{sub 1},{omega}{sub 2}) for second-harmonic ({omega}{sub 1} ={omega}{sub 2}) or sum-frequency generation from surfaces. The excitonic Coulomb interaction is treated in the time-dependent Hartree-Fock approximation, leading to large sets of differential equations that are integrated explicitly. The results on the linear susceptibility are in accord with earlier findings on the excitonic origin of the relative intensities of the E{sub 1} and E{sub 2} peaks near 3.4 and 4.3 eV. We present new results on excitonic effects in the nonlinear spectra and investigate in particular the surface-related peaks near 2{Dirac_h}{omega}= 1.3-1.5 and 2.4 eV that govern the strong enhancement observed in SHG of clean silicon surfaces. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  19. First-principles calculation of nonlinear optical responses by Wannier interpolation

    Science.gov (United States)

    Wang, Chong; Liu, Xiaoyu; Kang, Lei; Gu, Bing-Lin; Xu, Yong; Duan, Wenhui

    2017-09-01

    Various nonlinear optical (NLO) responses, like shift current and second harmonic generation (SHG), are revealed to be closely related to topological quantities involving the Berry connection and Berry curvature. First-principles prediction of NLO responses is of great importance to fundamental research and device design, but efficient computational methods are still lacking. The main challenge is that the calculations require a very dense k -point sampling that is computationally expensive and a proper treatment of the gauge problem for topological quantities. Here we present a Wannier interpolation method for first-principles calculation of NLO responses, which overcomes the challenge. This method interpolates physical quantities accurately for any desired k point with little computational cost and constructs a smooth gauge by the perturbation theory. To demonstrate the method, we study shift current of monolayer GeS and WS2 as well as SHG of bulk GaAs, getting good agreements with previous results. We show that the traditional sum rule method converges slowly with the number of bands, whereas the perturbation way does not. Moreover, our method is easily adapted to build tight-binding models for the following theoretical investigations. Last but not least, the method is compatible with most first-principles approaches, including density functional theory and beyond. With these advantages, Wannier interpolation is a promising method for first-principles studies of NLO phenomena.

  20. Approximate Stream Function wavemaker theory for highly non-linear waves in wave flumes

    DEFF Research Database (Denmark)

    Zhang, H.W.; Schäffer, Hemming Andreas

    2007-01-01

    An approximate Stream Function wavemaker theory for highly non-linear regular waves in flumes is presented. This theory is based on an ad hoe unified wave-generation method that combines linear fully dispersive wavemaker theory and wave generation for non-linear shallow water waves. This is done...... by applying a dispersion correction to the paddle position obtained for non-linear long waves. The method is validated by a number of wave flume experiments while comparing with results of linear wavemaker theory, second-order wavemaker theory and Cnoidal wavemaker theory within its range of application....

  1. Rogue Waves of Nonlinear Schrödinger Equation with Time-Dependent Linear Potential Function

    Directory of Open Access Journals (Sweden)

    Ni Song

    2016-01-01

    Full Text Available The rogue waves of the nonlinear Schrödinger equation with time-dependent linear potential function are investigated by using the similarity transformation in this paper. The first-order and second-order rogue waves solutions are obtained and the nonlinear dynamic behaviors of these solutions are discussed in detail. In addition, the amplitudes of the rogue waves under the effect of the gravity field and external magnetic field changing with the time are analyzed by using numerical simulation. The results can be used to study the matter rogue waves in the Bose-Einstein condensates and other fields of nonlinear science.

  2. Second-order nonlinear optical properties of mexylaminotriazine-functionalized glass-forming azobenzene derivatives

    Science.gov (United States)

    Umezawa, Hirohito; Jackson, Matthew; Lebel, Olivier; Nunzi, Jean-Michel; Sabat, Ribal Georges

    2016-10-01

    The second-order nonlinear optical coefficients of thin films of mexylaminotriazine-functionalized azobenzene molecular glass derivatives were measured using second harmonic generation. The thin films were poled using a custom corona poling set-up and the second harmonic light from a pulsed 1064-nm laser was detected. Four out of the six tested compounds showed optical nonlinearity and a maximum coefficient of 75 pm/V was obtained. The time dependence of the nonlinear coefficients was studied under ambient light and under dark; the second harmonic generation intensity stayed constant for thiazole-containing derivatives while a significant decay was measured for the other compounds.

  3. NONLINEAR DYNAMICS RESPONSE OF CASING PIPE UNDER COMBINED WAVE-CURRENT

    Institute of Scientific and Technical Information of China (English)

    TANG You-gang; GU Jia-yang; ZUO Jian-li; MIN Jian-qin

    2005-01-01

    The vortex-induced nonlinear vibration of casing pipes in the deep water was studied considering the loads of current and combined wave-current. The vortex-induced vibration equation of a casing pipe was set up considering the beam mode and Morison's nonlinear fluid loads as well as the vortex-excited loads. The approach of calculating vortex-excited nonlinear vibration by Galerkin's method was proposed. The natural vibration frequencies and modes were obtained, and the response including primary resonance induced by current and the composite resonance under combined wave-current for the 170 m long casing pipe in the 160 m depth of water were investigated. The results show that the dynamics response of casing pipe obviously increases, and the complicated response behaviors of casing pipe are described under combined wave-current.

  4. Regular nonlinear response of the driven Duffing oscillator to chaotic time series

    Institute of Scientific and Technical Information of China (English)

    YuanYe; Li Yue; Danilo P. Mandic; Yang Bao-Jun

    2009-01-01

    Nonlinear response of the driven Duffing oscillator to periodic or quasi-periodic signals has been well studied. In this paper, we investigate the nonlinear response of the driven Duffing oscillator to non-periodic, more specifically, chaotic time series. Through numerical simulations, we find that the driven Duffing oscillator can also show regular nonlinear response to the chaotic time series with different degree of chaos as generated by the same chaotic series generating model, and there exists a relationship between the state of the driven Duffing oscillator and the chaoticity of the input signal of the driven Duffing oscillator. One real-world and two artificial chaotic time series are used to verify the new feature of Duffing oscillator. A potential application of the new feature of Duffing oscillator is also indicated.

  5. Low Doses of Traditional Nanophytomedicines for Clinical Treatment: Manufacturing Processes and Nonlinear Response Patterns.

    Science.gov (United States)

    Bell, Iris R; Sarter, Barbara; Standish, Leanna J; Banerji, Prasanta; Banerji, Pratip

    2015-06-01

    The purpose of the present paper is to (a) summarize evidence for the nanoparticle nature and biological effects of traditional homeopathically-prepared medicines at low and ultralow doses; (b) provide details of historically-based homeopathic green manufacturing materials and methods, relating them to top-down mechanical attrition and plant-based biosynthetic processes in modern nanotechnology; (c) outline the potential roles of nonlinear dose-responses and dynamical interactions with complex adaptive systems in generating endogenous amplification processes during low dose treatment. Possible mechanisms of low dose effects, for which there is evidence involving nanoparticles and/or homeopathically-manufactured medicines, include hormesis, time-dependent sensitization, and stochastic resonance. All of the proposed mechanisms depend upon endogenous nonlinear amplification processes in the recipient organism in interaction with the salient, albeit weak signal properties of the medicine. Conventional ligand-receptor mechanisms relevant to higher doses are less likely involved. Effects, especially for homeopathically-prepared nanophytomedicines, include bidirectional host state-dependent changes in function. Homeopathic clinicians report successful treatment of serious infections and cancers. Preclinical biological evidence is consistent with such claims. Controlled biological data on homeopathically-prepared medicines indicate modulation of gene expression and biological signaling pathways regulating cell cycles, immune reactions, and central nervous system function from studies on cells, animals, and human subjects. As a 200-year old system of traditional medicine used by millions of people worldwide, homeopathy offers a pulsed low dose treatment strategy and strong safety record to facilitate progress in translational nanomedicine with plants and other natural products. In turn, modern nanotechnology methods can improve homeopathic manufacturing procedures

  6. Understanding and Ameliorating Non-Linear Phase and Amplitude Responses in AMCW Lidar

    Directory of Open Access Journals (Sweden)

    John P. Godbaz

    2011-12-01

    Full Text Available Amplitude modulated continuous wave (AMCW lidar systems commonly suffer from non-linear phase and amplitude responses due to a number of known factors such as aliasing and multipath inteference. In order to produce useful range and intensity information it is necessary to remove these perturbations from the measurements. We review the known causes of non-linearity, namely aliasing, temporal variation in correlation waveform shape and mixed pixels/multipath inteference. We also introduce other sources of non-linearity, including crosstalk, modulation waveform envelope decay and non-circularly symmetric noise statistics, that have been ignored in the literature. An experimental study is conducted to evaluate techniques for mitigation of non-linearity, and it is found that harmonic cancellation provides a significant improvement in phase and amplitude linearity.

  7. Stability analysis of solutions to nonlinear stiff Volterra functional differential equations in Banach spaces

    Institute of Scientific and Technical Information of China (English)

    LI Shoufu

    2005-01-01

    A series of stability, contractivity and asymptotic stability results of the solutions to nonlinear stiff Volterra functional differential equations (VFDEs) in Banach spaces is obtained, which provides the unified theoretical foundation for the stability analysis of solutions to nonlinear stiff problems in ordinary differential equations(ODEs), delay differential equations(DDEs), integro-differential equations(IDEs) and VFDEs of other type which appear in practice.

  8. A Nonlinear Blind Source Separation Method Based On Radial Basis Function and Quantum Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Wang Pidong

    2016-01-01

    Full Text Available Blind source separation is a hot topic in signal processing. Most existing works focus on dealing with linear combined signals, while in practice we always encounter with nonlinear mixed signals. To address the problem of nonlinear source separation, in this paper we propose a novel algorithm using radial basis function neutral network, optimized by multi-universe parallel quantum genetic algorithm. Experiments show the efficiency of the proposed method.

  9. Exact solutions for nonlinear variants of Kadomtsev–Petviashvili (, ) equation using functional variable method

    Indian Academy of Sciences (India)

    M Mirzazadeh; M Eslami

    2013-12-01

    Studying compactons, solitons, solitary patterns and periodic solutions is important in nonlinear phenomena. In this paper we study nonlinear variants of the Kadomtsev–Petviashvili (KP) and the Korteweg–de Vries (KdV) equations with positive and negative exponents. The functional variable method is used to establish compactons, solitons, solitary patterns and periodic solutions for these variants. This method is a powerful tool for searching exact travelling solutions in closed form.

  10. An optimized semiclassical approximation for vibrational response functions

    Science.gov (United States)

    Gerace, Mallory; Loring, Roger F.

    2013-03-01

    The observables of multidimensional infrared spectroscopy may be calculated from nonlinear vibrational response functions. Fully quantum dynamical calculations of vibrational response functions are generally impractical, while completely classical calculations are qualitatively incorrect at long times. These challenges motivate the development of semiclassical approximations to quantum mechanics, which use classical mechanical information to reconstruct quantum effects. The mean-trajectory (MT) approximation is a semiclassical approach to quantum vibrational response functions employing classical trajectories linked by deterministic transitions representing the effects of the radiation-matter interaction. Previous application of the MT approximation to the third-order response function R(3)(t3, t2, t1) demonstrated that the method quantitatively describes the coherence dynamics of the t3 and t1 evolution times, but is qualitatively incorrect for the waiting-time t2 period. Here we develop an optimized version of the MT approximation by elucidating the connection between this semiclassical approach and the double-sided Feynman diagrams (2FD) that represent the quantum response. Establishing the direct connection between 2FD and semiclassical paths motivates a systematic derivation of an optimized MT approximation (OMT). The OMT uses classical mechanical inputs to accurately reproduce quantum dynamics associated with all three propagation times of the third-order vibrational response function.

  11. Time-dependent density functional theory for nonlinear properties of open-shell systems.

    Science.gov (United States)

    Rinkevicius, Zilvinas; Jha, Prakash Chandra; Oprea, Corneliu I; Vahtras, Olav; Agren, Hans

    2007-09-21

    This paper presents response theory based on a spin-restricted Kohn-Sham formalism for computation of time-dependent and time-independent nonlinear properties of molecules with a high spin ground state. The developed approach is capable to handle arbitrary perturbations and constitutes an efficient procedure for evaluation of electric, magnetic, and mixed properties. Apart from presenting the derivation of the proposed approach, we show results from illustrating calculations of static and dynamic hyperpolarizabilities of small Si(3n+1)H(6n+3) (n=0,1,2) clusters which mimic Si(111) surfaces with dangling bond defects. The results indicate that the first hyperpolarizability tensor components of Si(3n+1)H(6n+3) have an ordering compatible with the measurements of second harmonic generation in SiO2/Si(111) interfaces and, therefore, support the hypothesis that silicon surface defects with dangling bonds are responsible for this phenomenon. The results exhibit a strong dependence on the quality of basis set and exchange-correlation functional, showing that an appropriate set of diffuse functions is required for reliable predictions of the first hyperpolarizability of open-shell compounds.

  12. Generalized Hyperbolic Function Solution to a Class of Nonlinear Schrödinger-Type Equations

    Directory of Open Access Journals (Sweden)

    Zeid I. A. Al-Muhiameed

    2012-01-01

    Full Text Available With the help of the generalized hyperbolic function, the subsidiary ordinary differential equation method is improved and proposed to construct exact traveling wave solutions of the nonlinear partial differential equations in a unified way. A class of nonlinear Schrödinger-type equations including the generalized Zakharov system, the Rangwala-Rao equation, and the Chen-Lee-Liu equation are investigated and the exact solutions are derived with the aid of the homogenous balance principle and generalized hyperbolic functions. We study the effect of the generalized hyperbolic function parameters p and q in the obtained solutions by using the computer simulation.

  13. SINGULARLY PERTURBED NONLINEAR BOUNDARY VALUE PROBLEM FOR A KIND OF VOLTERRA TYPE FUNCTIONAL DIFFERENTIAL EQUATION

    Institute of Scientific and Technical Information of China (English)

    鲁世平

    2003-01-01

    By employing the theory of differential inequality and some analysis methods, a nonlinear boundary value problem subject to a general kind of second-order Volterra functional differential equation was considered first. Then, by constructing the right-side layer function and the outer solution, a nonlinear boundary value problem subject to a kind of second- order Volterra functional differential equation with a small parameter was studied further. By using the differential mean value theorem and the technique of upper and lower solution, a new result on the existence of the solutions to the boundary value problem is obtained, and a uniformly valid asymptotic expansions of the solution is given as well.

  14. New Doubly Periodic Solutions of Nonlinear Evolution Equations via Weierstrass Elliptic Function Expansion Algorithm

    Institute of Scientific and Technical Information of China (English)

    YAN Zhen-Ya

    2004-01-01

    A Weierstrass elliptic function expansion method and its algorithm are developed in this paper. The method changes the problem solving nonlinear evolution equations into another one solving the correspondingsystem of nonlinear algebraic equations. With the aid of symbolic computation (e.g. Maple), the method is applied to the combined KdV-mKdV equation and (2+1)-dimensional coupled Davey-Stewartson equation. As a consequence, many new types of doubly periodic solutions are obtained in terms of the Weierstrass elliptic function. Jacobi elliptic function solutions and solitary wave solutions are also given as simple limits of doubly periodic solutions.

  15. New Doubly Periodic Solutions of Nonlinear Evolution Equations via Weierstrass Elliptic Function Expansion Algorithm

    Institute of Scientific and Technical Information of China (English)

    YANZhen-Ya

    2004-01-01

    A Weierstrass elliptic function expansion method and its algorithm are developed in this paper. The method changes the problem solving nonlinear evolution equations into another one solving the corresponding system of nonlinear algebraic equations. With the aid of symbolic computation (e.g. Maple), the method is applied to the combined KdV-mKdV equation and (2+1)-dimensional coupled Davey-Stewartson equation. As a consequence, many new types of doubly periodic solutions are obtained in terms of the Weierstrass elliptic function. Jacobi elliptic function solutions and solitary wave solutions are also given as simple limits of doubly periodic solutions.

  16. Global stabilization of nonlinear systems based on vector control lyapunov functions

    CERN Document Server

    Karafyllis, Iasson

    2012-01-01

    This paper studies the use of vector Lyapunov functions for the design of globally stabilizing feedback laws for nonlinear systems. Recent results on vector Lyapunov functions are utilized. The main result of the paper shows that the existence of a vector control Lyapunov function is a necessary and sufficient condition for the existence of a smooth globally stabilizing feedback. Applications to nonlinear systems are provided: simple and easily checkable sufficient conditions are proposed to guarantee the existence of a smooth globally stabilizing feedback law. The obtained results are applied to the problem of the stabilization of an equilibrium point of a reaction network taking place in a continuous stirred tank reactor.

  17. Diagnosing nonlinearities in the local and remote responses to partial Amazon deforestation

    Science.gov (United States)

    Badger, Andrew M.; Dirmeyer, Paul A.

    2016-08-01

    Using a set of fully coupled climate model simulations, the response to partial deforestation over the Amazon due to agricultural expansion has been analyzed. Three variations of 50% deforestation (all of western half, all of eastern half, and half of each grid box) were compared with total deforestation to determine the degree and character of nonlinearity of the climate response to partial deforestation. A metric is developed to quantify the degree and distribution of nonlinearity in the response, applicable to any variable. The metric also quantifies whether the response is saturating or accelerating, meaning significantly either more or less than 50% of the simulated response to total deforestation is attained at 50% deforestation. The spatial structure of the atmospheric response to Amazon deforestation reveals large areas across the tropics that exhibit a significant nonlinear component, particularly for temperature and geopotential height. Over the domain between 45°S and 45°N across all longitudes, 50% deforestation generally provides less than half of the total response to deforestation over oceans, indicating the marine portion of climate system is somewhat resilient to progressive deforestation. However, over continents there are both accelerating and saturating responses to 50% Amazon deforestation, and the response is different depending on whether the eastern or western half of Amazonia is deforested or half of the forest is removed uniformly across the region.

  18. Curved Displacement Transfer Functions for Geometric Nonlinear Large Deformation Structure Shape Predictions

    Science.gov (United States)

    Ko, William L.; Fleischer, Van Tran; Lung, Shun-Fat

    2017-01-01

    For shape predictions of structures under large geometrically nonlinear deformations, Curved Displacement Transfer Functions were formulated based on a curved displacement, traced by a material point from the undeformed position to deformed position. The embedded beam (depth-wise cross section of a structure along a surface strain-sensing line) was discretized into multiple small domains, with domain junctures matching the strain-sensing stations. Thus, the surface strain distribution could be described with a piecewise linear or a piecewise nonlinear function. The discretization approach enabled piecewise integrations of the embedded-beam curvature equations to yield the Curved Displacement Transfer Functions, expressed in terms of embedded beam geometrical parameters and surface strains. By entering the surface strain data into the Displacement Transfer Functions, deflections along each embedded beam can be calculated at multiple points for mapping the overall structural deformed shapes. Finite-element linear and nonlinear analyses of a tapered cantilever tubular beam were performed to generate linear and nonlinear surface strains and the associated deflections to be used for validation. The shape prediction accuracies were then determined by comparing the theoretical deflections with the finiteelement- generated deflections. The results show that the newly developed Curved Displacement Transfer Functions are very accurate for shape predictions of structures under large geometrically nonlinear deformations.

  19. Allometric functional response model: body masses constrain interaction strengths.

    Science.gov (United States)

    Vucic-Pestic, Olivera; Rall, Björn C; Kalinkat, Gregor; Brose, Ulrich

    2010-01-01

    1. Functional responses quantify the per capita consumption rates of predators depending on prey density. The parameters of these nonlinear interaction strength models were recently used as successful proxies for predicting population dynamics, food-web topology and stability. 2. This study addressed systematic effects of predator and prey body masses on the functional response parameters handling time, instantaneous search coefficient (attack coefficient) and a scaling exponent converting type II into type III functional responses. To fully explore the possible combinations of predator and prey body masses, we studied the functional responses of 13 predator species (ground beetles and wolf spiders) on one small and one large prey resulting in 26 functional responses. 3. We found (i) a power-law decrease of handling time with predator mass with an exponent of -0.94; (ii) an increase of handling time with prey mass (power-law with an exponent of 0.83, but only three prey sizes were included); (iii) a hump-shaped relationship between instantaneous search coefficients and predator-prey body-mass ratios; and (iv) low scaling exponents for low predator-prey body mass ratios in contrast to high scaling exponents for high predator-prey body-mass ratios. 4. These scaling relationships suggest that nonlinear interaction strengths can be predicted by knowledge of predator and prey body masses. Our results imply that predators of intermediate size impose stronger per capita top-down interaction strengths on a prey than smaller or larger predators. Moreover, the stability of population and food-web dynamics should increase with increasing body-mass ratios in consequence of increases in the scaling exponents. 5. Integrating these scaling relationships into population models will allow predicting energy fluxes, food-web structures and the distribution of interaction strengths across food web links based on knowledge of the species' body masses.

  20. Nonlinear Gust Response Analysis of Free Flexible Aircraft

    Directory of Open Access Journals (Sweden)

    Chen Shilu

    2013-01-01

    Full Text Available Gust response analysis plays a very important role in large aircraft design. This paper presents a methodology for calculating the flight dynamic characteristics and gust response of free flexible aircraft. A multidisciplinary coupled numerical tool is developed to simulate detailed aircraft models undergoing arbitrary free flight motion in the time domain, by Computational Fluid Dynamics (CFD, Computational Structure Dynamics (CSD and Computational Flight Mechanics (CFM coupling. To achieve this objective, a structured, time-accurate flow-solver is coupled with a computational module solving the flight mechanics equations of motion and a structural mechanics code determining the structural deformations. A novel method to determine the trim state of flexible aircraft is also stated. First, the field velocity approach is validated, after the trim state is attained, gust responses for the one-minus-cosine gust profile are analyzed for the longitudinal motion of a slender-wing aircraft configuration with and without the consideration of structural deformation.

  1. Dual-orthogonal radial basis function networks for nonlinear time series prediction.

    Science.gov (United States)

    Hong, X; Billings, Steve A.

    1998-04-01

    A new structure of Radial Basis Function (RBF) neural network called the Dual-orthogonal RBF Network (DRBF) is introduced for nonlinear time series prediction. The hidden nodes of a conventional RBF network compare the Euclidean distance between the network input vector and the centres, and the node responses are radially symmetrical. But in time series prediction where the system input vectors are lagged system outputs, which are usually highly correlated, the Euclidean distance measure may not be appropriate. The DRBF network modifies the distance metric by introducing a classification function which is based on the estimation data set. Training the DRBF networks consists of two stages. Learning the classification related basis functions and the important input nodes, followed by selecting the regressors and learning the weights of the hidden nodes. In both cases, a forward Orthogonal Least Squares (OLS) selection procedure is applied, initially to select the important input nodes and then to select the important centres. Simulation results of single-step and multi-step ahead predictions over a test data set are included to demonstrate the effectiveness of the new approach.

  2. Effects on the Floor Response Spectra by the Nonlinear Behavior of a Seismic Base Isolation System

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyungkui; Kim, Jung Han; Choi, Inkil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    An evaluation of safety being carried out for various risk factors of prevents for nuclear power plant accident. In general, an evaluation of the structural integrity was performed about seismic risk. In recent years, an assessment of integrity of internal equipment being carried out for earthquake loads owing to the possibility of severe accidents caused by the destruction of internal equipment or a blackout. Floor response spectra of the structure should be sought for evaluating of the integrity of internal equipment. The floor response spectra depends on the characteristics of seismic base isolation system such as the natural frequency, damping ratio, and height of the floor of the structure. An evaluation of the structural integrity using the equivalent stiffness of the seismic base isolation system was satisfactory. In this study, the effect of the non-linearity of isolated system in the floor response spectrum of the structure is analyzed. In this study, the floor response spectrum of the seismic base isolation system by the non-linear effect of the rubber isolator was analyzed. As a result, the influence of the non-linear isolated system was increased in hi-frequency domain. In addition, each floor exhibited a more different of responses compared with the equivalent linear model of the isolated structure. The non-linearity of the isolation system of the structure was considered, because of a more reliable assessment of integrity of equipment at each floor of seismic base the isolation system.

  3. Locally Bounded Function Spaces as the External Environment for Nonlinear Systems

    Directory of Open Access Journals (Sweden)

    Valery G. Fetisov

    2013-01-01

    Full Text Available . In this paper we consider locally bounded function spaces that act as the external environment for nonlinear dynamic systems. We give non-traditional examples of above spaces in which the basis of the selected function Orlicz space

  4. Solutions of Multi Objective Fuzzy Transportation Problems with Non-Linear Membership Functions

    Directory of Open Access Journals (Sweden)

    Dr. M. S. Annie Christi

    2016-11-01

    Full Text Available Multi-objective transportation problem with fuzzy interval numbers are considered. The solution of linear MOTP is obtained by using non-linear membership functions. The optimal compromise solution obtained is compared with the solution got by using a linear membership function. Some numerical examples are presented to illustrate this.

  5. Universal construction of control Lyapunov functions for a class of nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A method is developed by which control Lyapunov functions of a class of nonlinear systems can be constructed systematically.Based on the control Lyapunov function,a feedback control is obtained to stabilize the closed-loop system.In addition,this method is applied to stabilize the Benchmark system.A simulation shows the effectiveness of the method.

  6. Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Hemerson P. S.; Alencar, Márcio A. R. C.; Hickmann, Jandir M. [Optics and Materials Group–OPTMA, Universidade Federal de Alagoas, CAIXA POSTAL 2051, 57061-970 Maceió (Brazil); Wender, Heberton [Brazilian Synchrotron National Laboratory (LNLS), CNPEM, Rua Giuseppe Máximo Scolfaro 10.000, 13083-970 Campinas (Brazil); Department of Physics, Universidade Federal do Mato Grosso do Sul, 79070-900, Campo Grande (Brazil); Teixeira, Sergio R. [Institute of Physics, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre (Brazil); Dupont, Jairton [Laboratory of Molecular Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre (Brazil)

    2013-11-14

    The nonlinear optical responses of gold nanoparticles dispersed in castor oil produced by sputtering deposition were investigated, using the thermally managed Z-scan technique. Particles with spherical shape and 2.6 nm of average diameter were obtained and characterized by transmission electron microscopy and small angle X-ray scattering. This colloid was highly stable, without the presence of chemical impurities, neither stabilizers. It was observed that this system presents a large refractive third-order nonlinear response and a negligible nonlinear absorption. Moreover, the evaluation of the all-optical switching figures of merit demonstrated that the colloidal nanoparticles prepared by sputtering deposition have a good potential for the development of ultrafast photonic devices.

  7. On the Boundary between Nonlinear Jump Phenomenon and Linear Response of Hypoid Gear Dynamics

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2011-01-01

    Full Text Available A nonlinear time-varying (NLTV dynamic model of a hypoid gear pair system with time-dependent mesh point, line-of-action vector, mesh stiffness, mesh damping, and backlash nonlinearity is formulated to analyze the transitional phase between nonlinear jump phenomenon and linear response. It is found that the classical jump discontinuity will occur if the dynamic mesh force exceeds the mean value of tooth mesh force. On the other hand, the propensity for the gear response to jump disappears when the dynamic mesh force is lower than the mean mesh force. Furthermore, the dynamic analysis is able to distinguish the specific tooth impact types from analyzing the behaviors of the dynamic mesh force. The proposed theory is general and also applicable to high-speed spur, helical and spiral bevel gears even though those types of gears are not the primary focus of this paper.

  8. Wind energy conversion. Volume VI. Nonlinear response of wind turbine rotor

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, I.

    1978-09-01

    The nonlinear equations of motor for a rigid rotor restrained by three flexible springs representing, respectively, the flapping, lagging, and feathering motions are derived using Lagrange's equations, for arbitrary angular rotations. These are reduced to a consistent set of nonlinear equations using nonlinear terms up to third order. The complete analysis is divided into three parts, A, B, and C. Part A consists of forced response of two-degree flapping-lagging rotor under the excitation of pure gravitational field (i.e., no aerodynamic forces). In Part B, the effect of aerodynamic forces on the dynamic response of two-degree flapping-lagging rotor is investigated. In Part C, the effect of third degree of motion, feathering, is considered.

  9. Application of a New Membership Function in Nonlinear Fuzzy PID Controllers with Variable Gains

    Directory of Open Access Journals (Sweden)

    Xuda Zhang

    2014-01-01

    Full Text Available This paper proposes a nonlinear fuzzy PID control algorithm, whose membership function (MF is adjustable, is universal, and has a wide adjustable range. Appling this function to fuzzy control theory will increase system’s tunability. The continuity of this function is proved. This method was employed in the simulation and HIL experiments. Effectiveness and feasibility of this function are demonstrated in the results.

  10. Nonlinear optical responses of multiply ionized noble gases: Dispersion and spin multiplicity effects

    Science.gov (United States)

    Tarazkar, M.; Romanov, D. A.; Levis, R. J.

    2016-07-01

    Dynamic second-order hyperpolarizabilities of atomic noble gases and their multiply ionized ions are computed using ab initio multiconfigurational self-consistent field cubic response theory. For each species, the calculations are performed at wavelengths ranging from the static regime to those about 100 nm above the first multiphoton resonance. The second-order hyperpolarizability coefficients progressively decrease as the electrons are removed from the system, in qualitative agreement with phenomenological calculations. In higher ionization states, the resulting nonlinear refractive index becomes less dispersive as a function of wavelength. At each ionization stage, the sign of the optical response depends on the number of electrons in the system and, if multiple state symmetries are possible, on the spin of the particular quantum state. Thus, for N e3 + and N e4 + , the hyperpolarizability coefficients in the low-spin states (P2u, and S1g, respectively) are positive, while in the high-spin states (S4u, and P3g) they are negative. However, for doubly, triply, and quadruply charged Ar and Kr these coefficients do not undergo a sign change.

  11. Synchronous and non-synchronous responses of systems with multiple identical nonlinear vibration absorbers

    Science.gov (United States)

    Issa, Jimmy S.; Shaw, Steven W.

    2015-07-01

    In this work we investigate the nonlinear dynamic response of systems composed of a primary inertia to which multiple identical vibration absorbers are attached. This problem is motivated by observations of systems of centrifugal pendulum vibration absorbers that are designed to reduce engine order torsional vibrations in rotating systems, but the results are relevant to translational systems as well. In these systems the total absorber mass is split into multiple equal masses for purposes of distribution and/or balance, and it is generally expected that the absorbers will act in unison, corresponding to a synchronous response. In order to capture nonlinear effects of the responses of the absorbers, specifically, their amplitude-dependent frequency, we consider them to possess nonlinear stiffness. The equations of motion for the system are derived and it is shown how one can uncouple the equations for the absorbers from that for the primary inertia, resulting in a system of identical resonators that are globally coupled. These symmetric equations are scaled for weak nonlinear effects, near resonant forcing, and small damping. The method of averaging is applied, from which steady-state responses and their stability are investigated. The response of systems with two, three, and four absorbers are considered in detail, demonstrating a rich variety of bifurcations of the synchronous response, resulting in responses with various levels of symmetry in which sub-groups of absorbers are mutually synchronous. It is also shown that undamped models with more than two absorbers possess a degenerate response, which is made robust by the addition of damping to the model. Design guidelines are proposed based on the nature of the system response, with the aim of minimizing the acceleration of the primary system. It is shown that the desired absorber parameters are selected so that the system achieves a stable synchronous response which does not undergo jumps via saddle

  12. Towards time-dependent current-density-functional theory in the non-linear regime.

    Science.gov (United States)

    Escartín, J M; Vincendon, M; Romaniello, P; Dinh, P M; Reinhard, P-G; Suraud, E

    2015-02-28

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.

  13. Comparison of two definitions of lower and upper functions associated to nonlinear second order differential equations

    Directory of Open Access Journals (Sweden)

    Vrkoč Ivo

    2001-01-01

    Full Text Available The notions of lower and upper functions of the second order differential equations take their beginning from the classical work by C. Scorza-Dragoni and have been investigated till now because they play an important role in the theory of nonlinear boundary value problems. Most of them define lower and upper functions as solutions of the corresponding second order differential inequalities. The aim of this paper is to compare two more general approaches. One is due to Rachůnková and Tvrdý (Nonlinear systems of differential inequalities and solvability of certain boundary value problems (J. of Inequal. & Appl. (to appear who defined the lower and upper functions of the given equation as solutions of associated systems of two differential inequalities with solutions possibly not absolutely continuous. The second belongs to Fabry and Habets (Nonlinear Analysis, TMA 10 (1986, 985–1007 and requires the monotonicity of certain integro-differential expressions.

  14. Function Based Nonlinear Least Squares and Application to Jelinski--Moranda Software Reliability Model

    CERN Document Server

    Liu, Jingwei

    2011-01-01

    A function based nonlinear least squares estimation (FNLSE) method is proposed and investigated in parameter estimation of Jelinski-Moranda software reliability model. FNLSE extends the potential fitting functions of traditional least squares estimation (LSE), and takes the logarithm transformed nonlinear least squares estimation (LogLSE) as a special case. A novel power transformation function based nonlinear least squares estimation (powLSE) is proposed and applied to the parameter estimation of Jelinski-Moranda model. Solved with Newton-Raphson method, Both LogLSE and powLSE of Jelinski-Moranda models are applied to the mean time between failures (MTBF) predications on six standard software failure time data sets. The experimental results demonstrate the effectiveness of powLSE with optimal power index compared to the classical least--squares estimation (LSE), maximum likelihood estimation (MLE) and LogLSE in terms of recursively relative error (RE) index and Braun statistic index.

  15. Fast response of the optical nonlinearity in a GaAs/AlGaAs asymmetric triple quantum well structure

    CERN Document Server

    Ahn, S H; Sawaki, N

    1999-01-01

    The time response of the optical nonlinear behavior in a GaAs/AlGaAs asymmetric triple quantum well structure is estimated by using a picosecond pump-probe method at 77 K. From the results of the transmission of the probe pulse as a function of the delay time at the excitation wavelengths, a rise time of 5 approx 10 ps and a fall time of 8 approx 16 ps are obtained. The nonlinear behavior is attributed to the triple resonance of the electronic states due to the build-up of the internal field induced by the separation of photo-excited electrons and holes. It is found that the rise time is determined by the tunneling transfer time of the electrons in the narrowest well to an adjacent well separated by a thin potential barrier.

  16. Response of Saturated Porous Nonlinear Materials to Dynamic Loadings

    Science.gov (United States)

    1984-05-31

    the following section a bilinear hysteretic skeleton was modeled, followed by calculations on an actual sand from Enewetak Atoll . In this section...the response of saturated sand from Enewetak Atoll . The skeleton properties are taken from laboratory data reported in the second volunie of this study...with an actual saturated sand from Enewetak Atoll . In Section 2, the theoretical background and numerical code, TPDAP, used in this study are described

  17. Generation of High Frequency Response in a Dynamically Loaded, Nonlinear Soil Column

    Energy Technology Data Exchange (ETDEWEB)

    Spears, Robert Edward [Idaho National Laboratory; Coleman, Justin Leigh [Idaho National Laboratory

    2015-08-01

    Detailed guidance on linear seismic analysis of soil columns is provided in “Seismic Analysis of Safety-Related Nuclear Structures and Commentary (ASCE 4, 1998),” which is currently under revision. A new Appendix in ASCE 4-2014 (draft) is being added to provide guidance for nonlinear time domain analysis which includes evaluation of soil columns. When performing linear analysis, a given soil column is typically evaluated with a linear, viscous damped constitutive model. When submitted to a sine wave motion, this constitutive model produces a smooth hysteresis loop. For nonlinear analysis, the soil column can be modelled with an appropriate nonlinear hysteretic soil model. For the model in this paper, the stiffness and energy absorption result from a defined post yielding shear stress versus shear strain curve. This curve is input with tabular data points. When submitted to a sine wave motion, this constitutive model produces a hysteresis loop that looks similar in shape to the input tabular data points on the sides with discontinuous, pointed ends. This paper compares linear and nonlinear soil column results. The results show that the nonlinear analysis produces additional high frequency response. The paper provides additional study to establish what portion of the high frequency response is due to numerical noise associated with the tabular input curve and what portion is accurately caused by the pointed ends of the hysteresis loop. Finally, the paper shows how the results are changed when a significant structural mass is added to the top of the soil column.

  18. Accuracy of three-dimensional seismic ground response analysis in time domain using nonlinear numerical simulations

    Science.gov (United States)

    Liang, Fayun; Chen, Haibing; Huang, Maosong

    2017-07-01

    To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.

  19. Non-Linear Wave Loads and Ship responses by a time-domain Strip Theory

    DEFF Research Database (Denmark)

    Xia, Jinzhu; Wang, Zhaohui; Jensen, Jørgen Juncher

    1998-01-01

    A non-linear time-domain strip theory for vertical wave loads and ship responses is presented. The theory is generalized from a rigorous linear time-domain strip theory representaton. The hydrodynamic memory effect due to the free surface is approximated by a higher order differential equation...

  20. Nonlinear optical response in condensed phases : A microscopic theory using the multipolar Hamiltonian

    NARCIS (Netherlands)

    Knoester, Jasper; Mukamel, Shaul

    1990-01-01

    A general scheme is presented for calculating the nonlinear optical response in condensed phases that provides a unified picture of excitons, polaritons, retardation, and local-field effects in crystals and in disordered systems. A fully microscopic starting point is taken by considering the evoluti

  1. Nonlinear optical response of C60 in solvents: picosecond transient grating experiments

    Science.gov (United States)

    Khudyakov, Dmitriy V.; Rubtsov, Igor V.; Lobach, Anatolii S.; Nadtochenko, Victor A.

    1996-05-01

    Time-resolved resonant nonlinear optical response of C60 in a chlorobenzene solution was measured for 528 nm excitation and 1055, 528, and 351 nm probing for zzzz and zzyy configurations. The slow part of the signal (8 +/- 2 ps) was attributed to the orientational motion of C60 excited molecules.

  2. Nonlinear Optical Response of Disordered J Aggregates in the Motional Narrowing Limit

    NARCIS (Netherlands)

    Knoester, Jasper

    1995-01-01

    We discuss the theory of nonlinear optical response of molecular aggregates with frequency disorder. In contrast to the usual modeling, we allow for spatial correlations in the disorder. We show that the joint distribution of all multi-exciton frequencies can be determined analytically to first orde

  3. Optimum sensitivity derivatives of objective functions in nonlinear programming

    Science.gov (United States)

    Barthelemy, J.-F. M.; Sobieszczanski-Sobieski, J.

    1983-01-01

    The feasibility of eliminating second derivatives from the input of optimum sensitivity analyses of optimization problems is demonstrated. This elimination restricts the sensitivity analysis to the first-order sensitivity derivatives of the objective function. It is also shown that when a complete first-order sensitivity analysis is performed, second-order sensitivity derivatives of the objective function are available at little additional cost. An expression is derived whose application to linear programming is presented.

  4. SVM with Quadratic Polynomial Kernel Function Based Nonlinear Model One-step-ahead Predictive Control

    Institute of Scientific and Technical Information of China (English)

    钟伟民; 何国龙; 皮道映; 孙优贤

    2005-01-01

    A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identification method. By solving a cubic equation in the feature space, an explicit predictive control law is obtained through the predictive control mechanism. The effect of controller is demonstrated on a recognized benchmark problem and on the control of continuous-stirred tank reactor (CSTR). Simulation results show that SVM with quadratic polynomial kernel function based predictive controller can be well applied to nonlinear systems, with good performance in following reference trajectory as well as in disturbance-rejection.

  5. Exact solutions of some nonlinear partial differential equations using functional variable method

    Indian Academy of Sciences (India)

    A Nazarzadeh; M Eslami; M Mirzazadeh

    2013-08-01

    The functional variable method is a powerful solution method for obtaining exact solutions of some nonlinear partial differential equations. In this paper, the functional variable method is used to establish exact solutions of the generalized forms of Klein–Gordon equation, the (2 + 1)-dimensional Camassa–Holm Kadomtsev–Petviashvili equation and the higher-order nonlinear Schrödinger equation. By using this useful method, we found some exact solutions of the above-mentioned equations. The obtained solutions include solitary wave solutions, periodic wave solutions and combined formal solutions. It is shown that the proposed method is effective and general.

  6. RESPONSE OF NONLINEAR OSCILLATOR UNDER NARROW-BAND RANDOM EXCITATION

    Institute of Scientific and Technical Information of China (English)

    戎海武; 王向东; 孟光; 徐伟; 方同

    2003-01-01

    The principal resonance of Duffing oscillator to narrow-band random parametricexcitation was investigated. The method of multiple scales was used to determine theequations of modulation of amplitude and phase. The behavior, stability and bifurcation ofsteady state response were studied by means of qualitative analyses. The effects of damping,detuning, bandwidth and magnitudes of deterministic and random excitations wereanalyzed. The theoretical analyses were verified by numerical results. Theoretical analysesand numerical simulations show that when the intensity of the random excitation increases,the nontrivial steady state solution may change from a limit cycle to a diffused limit cycle.Under some conditions the system may have two ,steady state solutions.

  7. The heritability of the functional connectome is robust to common nonlinear registration methods

    Science.gov (United States)

    Hafzalla, George W.; Prasad, Gautam; Baboyan, Vatche G.; Faskowitz, Joshua; Jahanshad, Neda; McMahon, Katie L.; de Zubicaray, Greig I.; Wright, Margaret J.; Braskie, Meredith N.; Thompson, Paul M.

    2016-03-01

    Nonlinear registration algorithms are routinely used in brain imaging, to align data for inter-subject and group comparisons, and for voxelwise statistical analyses. To understand how the choice of registration method affects maps of functional brain connectivity in a sample of 611 twins, we evaluated three popular nonlinear registration methods: Advanced Normalization Tools (ANTs), Automatic Registration Toolbox (ART), and FMRIB's Nonlinear Image Registration Tool (FNIRT). Using both structural and functional MRI, we used each of the three methods to align the MNI152 brain template, and 80 regions of interest (ROIs), to each subject's T1-weighted (T1w) anatomical image. We then transformed each subject's ROIs onto the associated resting state functional MRI (rs-fMRI) scans and computed a connectivity network or functional connectome for each subject. Given the different degrees of genetic similarity between pairs of monozygotic (MZ) and same-sex dizygotic (DZ) twins, we used structural equation modeling to estimate the additive genetic influences on the elements of the function networks, or their heritability. The functional connectome and derived statistics were relatively robust to nonlinear registration effects.

  8. Taming waveform inversion non-linearity through phase unwrapping of the model and objective functions

    KAUST Repository

    Alkhalifah, Tariq Ali

    2012-09-25

    Traveltime inversion focuses on the geometrical features of the waveform (traveltimes), which is generally smooth, and thus, tends to provide averaged (smoothed) information of the model. On other hand, general waveform inversion uses additional elements of the wavefield including amplitudes to extract higher resolution information, but this comes at the cost of introducing non-linearity to the inversion operator, complicating the convergence process. We use unwrapped phase-based objective functions in waveform inversion as a link between the two general types of inversions in a domain in which such contributions to the inversion process can be easily identified and controlled. The instantaneous traveltime is a measure of the average traveltime of the energy in a trace as a function of frequency. It unwraps the phase of wavefields yielding far less non-linearity in the objective function than that experienced with conventional wavefields, yet it still holds most of the critical wavefield information in its frequency dependency. However, it suffers from non-linearity introduced by the model (or reflectivity), as reflections from independent events in our model interact with each other. Unwrapping the phase of such a model can mitigate this non-linearity as well. Specifically, a simple modification to the inverted domain (or model), can reduce the effect of the model-induced non-linearity and, thus, make the inversion more convergent. Simple numerical examples demonstrate these assertions.

  9. Global series solutions of nonlinear differential equations with shocks using Walsh functions

    Science.gov (United States)

    Gnoffo, Peter A.

    2014-02-01

    An orthonormal basis set composed of Walsh functions is used for deriving global solutions (valid over the entire domain) to nonlinear differential equations that include discontinuities. Function gn(x) of the set, a scaled Walsh function in sequency order, is comprised of n piecewise constant values (square waves) across the domain xa⩽x⩽xb. Only two square wave lengths are allowed in any function and a new derivation of the basis functions applies a fractal-like algorithm (infinitely self-similar) focused on the distribution of wave lengths. This distribution is determined by a recursive folding algorithm that propagates fundamental symmetries to successive values of n. Functions, including those with discontinuities, may be represented on the domain as a series in gn(x) with no occurrence of a Gibbs phenomenon (ringing) across the discontinuity. A much more powerful, self-mapping characteristic of the series is closure under multiplication - the product of any two Walsh functions is also a Walsh function. This self-mapping characteristic transforms the solution of nonlinear differential equations to the solution of systems of polynomial equations if the original nonlinearities can be represented as products of the dependent variables and the convergence of the series for n→∞ can be demonstrated. Fundamental operations (reciprocal, integral, derivative) on Walsh function series representations of functions with discontinuities are defined. Examples are presented for solution of the time dependent Burger's equation and for quasi-one-dimensional nozzle flow including a shock.

  10. Nonlinear Interactions of Zinc Phthalocyanine-Graphene Quantum Dots Nanocomposites: Investigation of Effects of Surface Functionalization with Heteroatoms.

    Science.gov (United States)

    Bankole, Owolabi M; Achadu, Ojodomo J; Nyokong, Tebello

    2017-03-01

    This study reports the development of functional optical limiting materials composed of pristine graphene (GQDs), nitrogen-doped (NGQDs) and sulfur-nitrogen co-doped (SNGQDs) graphene quantum dots covalently linked to mono-amino substituted zinc phthalocyanine (Pc). Open aperture Z-scan technique was employed to monitor the behaviour of the conjugates under tightly focussed Gaussian laser beam using a mode-locked Nd:YAG laser delivering 10 nanosecond (FWHM) pulses at 532 nm wavelength. Nonlinear effect due to reverse saturable absorption was the predominant mechanism; and was attributed to the moderately enhanced triplet population. The major factor(s) responsible for the enhanced nonlinearities in the Pc-NGQDs and Pc-SNGQDs was fully described and attributed to the surface defects caused by the presence of heteroatoms of N and S.

  11. Towards a unifying theory for the first-, second-, and third-order molecular (non)linear optical response

    Science.gov (United States)

    Pérez-Moreno, Javier; Clays, Koen; Kuzyk, Mark G.

    2010-05-01

    We present a procedure for the modeling of the dispersion of the nonlinear optical response of complex molecular structures that is based strictly on the results from experimental characterization. We show how under some general conditions, the use of the Thomas-Kuhn sum-rules leads to a successful modeling of the nonlinear response of complex molecular structures.

  12. Nonlinear biofluvial responses to vegetation change in a semiarid environment

    Science.gov (United States)

    Neave, Mel; Rayburg, Scott

    2007-09-01

    The desertification of grassland communities in the Jornada del Muerto Basin, southern New Mexico, USA, has occurred in association with a series of geomorphic responses that have influenced the system of vegetation change. Rainfall simulation experiments indicate that the volume of runoff generated from basin surfaces and its ability to erode are greatly affected by the distribution of vegetation, which ultimately controls processes such as rainsplash erosion, soil infiltrability and crust development. Animal activities also influence rates of sediment movement from unvegetated surfaces by disrupting soil crusts and making loose sediment available for transportation by overland flow. Shrublands in the Jornada Basin have a patchier vegetation cover than grasslands, with vegetated areas (shrubs) being separated by unvegetated (intershrub) zones. The exposed intershrub surfaces are more vulnerable to erosion than the grass and shrub surfaces. Thus, water and sediment yields, calculated using rainfall simulation experiments, were higher for vegetated (shrub and grass) plots than they were for unvegetated (intershrub) plots. The runoff and erosion model, KINEROS2, predicts that at the base of a 100 m slope, shrubland surfaces shed seven times more runoff and 25 times more sediment than grassland surfaces. Evidence to support the prediction of higher rates of erosion in the shrubland can be found in the form of the extensive rill networks that are common in this community. The contraction of grasslands has been associated with elevated rates of erosion that have altered the morphology of the surface, lowering slopes between shrubs, and increasing the amplitude of the microtopography. Overall, the viability of the exposed soils for recolonization by grasses has been reduced, reinforcing the system of shrubland invasion and lending support to the use of state-and-transition models to describe ecologic responses to change within this environment. Combined, these results

  13. Quantification of non-linearities as a function of time averaging in regional air quality modeling applications

    Science.gov (United States)

    Thunis, P.; Clappier, A.; Pisoni, E.; Degraeuwe, B.

    2015-02-01

    Air quality models which are nowadays used for a wide range of scopes (i.e. assessment, forecast, planning) see their intrinsic complexity progressively increasing as better knowledge of the atmospheric chemistry processes is gained. As a result of this increased complexity potential non-linearities are implicitly and/or explicitly incorporated in the system. These non-linearities represent a key and challenging aspect of air quality modeling, especially to assess the robustness of the model responses. In this work the importance of non-linear effects in air quality modeling is quantified, especially as a function of time averaging. A methodology is proposed to decompose the concentration change resulting from an emission reduction over a given domain into its linear and non-linear contributions for each precursor as well as in the contribution resulting from the interactions among precursors. Simulations with the LOTOS-EUROS model have been performed by TNO over three regional geographical areas in Europe for this analysis. In all three regions the non-linear effects for PM10 and PM2.5 are shown to be relatively minor for yearly and monthly averages whereas they become significant for daily average values. For Ozone non-linearities become important already for monthly averages in some regions. An approach which explicitly deals with monthly variations seems therefore more appropriate for O3. In general non-linearities are more important at locations where concentrations are the lowest, i.e. at urban locations for O3 and at rural locations for PM10 and PM2.5. Finally the impact of spatial resolution (tested by comparing coarse and fine resolution simulations) on the degree of non-linearity has been shown to be minor as well. The conclusions developed here are model dependent and runs should be repeated with the particular model of interest but the proposed methodology allows with a limited number of runs to identify where efforts should be focused in order to

  14. Estimates for the Green function and singular solutions for polyharmonic nonlinear equation

    Directory of Open Access Journals (Sweden)

    Imed Bachar

    2003-01-01

    Full Text Available We establish a new form of the 3G theorem for polyharmonic Green function on the unit ball of ℝn(n≥2 corresponding to zero Dirichlet boundary conditions. This enables us to introduce a new class of functions Km,n containing properly the classical Kato class Kn. We exploit properties of functions belonging to Km,n to prove an infinite existence result of singular positive solutions for nonlinear elliptic equation of order 2m.

  15. Functional responses modified by predator density

    NARCIS (Netherlands)

    Kratina, P.; Vos, M.; Bateman, A.W.; Anholt, B.R.

    2009-01-01

    Realistic functional responses are required for accurate model predictions at the community level. However, controversy remains regarding which types of dependencies need to be included in functional response models. Several studies have shown an effect of very high predator densities on per capita

  16. Nonlinear response of summer temperature to Holocene insolation forcing in Alaska.

    Science.gov (United States)

    Clegg, Benjamin F; Kelly, Ryan; Clarke, Gina H; Walker, Ian R; Hu, Feng Sheng

    2011-11-29

    Regional climate responses to large-scale forcings, such as precessional changes in solar irradiation and increases in anthropogenic greenhouse gases, may be nonlinear as a result of complex interactions among earth system components. Such nonlinear behaviors constitute a major source of climate "surprises" with important socioeconomic and ecological implications. Paleorecords are key for elucidating patterns and mechanisms of nonlinear responses to radiative forcing, but their utility has been greatly limited by the paucity of quantitative temperature reconstructions. Here we present Holocene July temperature reconstructions on the basis of midge analysis of sediment cores from three Alaskan lakes. Results show that summer temperatures during 10,000-5,500 calibrated years (cal) B.P. were generally lower than modern and that peak summer temperatures around 5,000 were followed by a decreasing trend toward the present. These patterns stand in stark contrast with the trend of precessional insolation, which decreased by ∼10% from 10,000 y ago to the present. Cool summers before 5,500 cal B.P. coincided with extensive summer ice cover in the western Arctic Ocean, persistence of a positive phase of the Arctic Oscillation, predominantly La Niña-like conditions, and variation in the position of the Alaskan treeline. These results illustrate nonlinear responses of summer temperatures to Holocene insolation radiative forcing in the Alaskan sub-Arctic, possibly because of state changes in the Arctic Oscillation and El Niño-Southern Oscillation and associated land-atmosphere-ocean feedbacks.

  17. Nonlinear boundary value problem for biregular functions in Clifford analysis

    Institute of Scientific and Technical Information of China (English)

    黄沙

    1996-01-01

    The biregular function in Clifford analysis is discussed. Plemelj’s formula is obtained andnonlinear boundary value problem: is considered. Applying the methodof integral equations and Schauder fixed-point theorem, the existence of solution for the above problem is proved.

  18. Synchronization of spatiotemporal chaos using nonlinear feedback functions

    Directory of Open Access Journals (Sweden)

    M. K. Ali

    1997-01-01

    Full Text Available Synchronization of spatiotemporal chaos is studied using the method of variable feedback with coupled map lattices as model systems. A variety of feedback functions are introduced and the diversity in their choices for synchronizing any given system is exemplified. Synchronization in the presence of noise and with sporadic feedback is also presented.

  19. Nonlinear H∞ Optimal Control Scheme for an Underwater Vehicle with Regional Function Formulation

    Directory of Open Access Journals (Sweden)

    Zool H. Ismail

    2013-01-01

    Full Text Available A conventional region control technique cannot meet the demands for an accurate tracking performance in view of its inability to accommodate highly nonlinear system dynamics, imprecise hydrodynamic coefficients, and external disturbances. In this paper, a robust technique is presented for an Autonomous Underwater Vehicle (AUV with region tracking function. Within this control scheme, nonlinear H∞ and region based control schemes are used. A Lyapunov-like function is presented for stability analysis of the proposed control law. Numerical simulations are presented to demonstrate the performance of the proposed tracking control of the AUV. It is shown that the proposed control law is robust against parameter uncertainties, external disturbances, and nonlinearities and it leads to uniform ultimate boundedness of the region tracking error.

  20. Stability for a class of nonlinear time-delay systems via Hamiltonian functional method

    Institute of Scientific and Technical Information of China (English)

    YANG RenMing; WANG YuZhen

    2012-01-01

    This paper investigates the stability of a class of nonlinear time-delay systems via Hamiltonian functional method,and proposes a number of new results on generalized Hamiltonian realization (GHR) and stability analysis for this class of systems.Firstly,the concept of GHR of general nonlinear time-delay systems is proposed,and several new GHR methods are given.Then,based on the new GHR methods obtained,the stability of time-delay systems is investigated,and several delay-dependent sufficient conditions in term of matrix inequalities are derived for the stability analysis by constructing suitable Lyapunov-Krasovskii (L-K) functionals.Finally,an illustrative example shows that the results obtained in this paper have less conservatism,and work very well in the stability analysis of some nonlinear time-delay Hamiltonian systems.

  1. Compact and accurate linear and nonlinear autoregressive moving average model parameter estimation using laguerre functions

    DEFF Research Database (Denmark)

    Chon, K H; Cohen, R J; Holstein-Rathlou, N H

    1997-01-01

    A linear and nonlinear autoregressive moving average (ARMA) identification algorithm is developed for modeling time series data. The algorithm uses Laguerre expansion of kernals (LEK) to estimate Volterra-Wiener kernals. However, instead of estimating linear and nonlinear system dynamics via moving...... average models, as is the case for the Volterra-Wiener analysis, we propose an ARMA model-based approach. The proposed algorithm is essentially the same as LEK, but this algorithm is extended to include past values of the output as well. Thus, all of the advantages associated with using the Laguerre...... function remain with our algorithm; but, by extending the algorithm to the linear and nonlinear ARMA model, a significant reduction in the number of Laguerre functions can be made, compared with the Volterra-Wiener approach. This translates into a more compact system representation and makes...

  2. Excited-state dynamics and nonlinear optical response of Ge nanocrystals embedded in silica matrix

    Science.gov (United States)

    Razzari, Luca; Gnoli, Andrea; Righini, Marcofabio; Dâna, Aykutlu; Aydinli, Atilla

    2006-05-01

    We use a dedicated Z-scan setup, arranged to account for cumulative effects, to study the nonlinear optical response of Ge nanocrystals embedded in silica matrix. Samples are prepared with plasma-enchanced chemical-vapor deposition and post-thermal annealing. We measure a third-order nonlinear refraction coefficient of γ =1×10-16m2/W. The nonlinear absorption shows an intensity-independent coefficient of β =4×10-10m/W related to fast processes. In addition, we measure a second β component around 10-9m /W with a relaxation time of 300μs that rises linearly with the laser intensity. We associate its origin to the absorption of excited carriers from a surface-defect state with a long depopulation time.

  3. Beyond the effective mass approximation: predictive theory of the nonlinear optical response of conduction electrons

    CERN Document Server

    Yu, Shukai; Talbayev, Diyar

    2016-01-01

    We present an experimental and computational study of the nonlinear optical response of conduction electrons to intense terahertz (THz) electric field. Our observations (saturable absorption and an amplitude-dependent group refractive index) can be understood on the qualitative level as the breakdown of the effective mass approximation. However, a predictive theoretical description of the nonlinearity has been missing. We propose a model based on the semiclassical electron dynamics, a realistic band structure, and the free electron Drude parameters to accurately calculate the experimental observables in InSb. Our results open a path to predictive modeling of the conduction-electron optical nonlinearity in semiconductors, metamaterials, as well as high-field effects in THz plasmonics.

  4. Semiclassical theory of nonlinear magneto-optical responses with applications to topological Dirac/Weyl semimetals

    Science.gov (United States)

    Morimoto, Takahiro; Zhong, Shudan; Orenstein, Joseph; Moore, Joel E.

    2016-12-01

    We study nonlinear magneto-optical responses of metals by a semiclassical Boltzmann equation approach. We derive general formulas for linear and second-order nonlinear optical effects in the presence of magnetic fields that include both the Berry curvature and the orbital magnetic moment. Applied to Weyl fermions, the semiclassical approach (i) captures the directional anisotropy of linear conductivity under a magnetic field as a consequence of an anisotropic B2 contribution, which may explain the low-field regime of recent experiments; and (ii) predicts strong second harmonic generation proportional to B that is enhanced as the Fermi energy approaches the Weyl point, leading to large nonlinear Kerr rotation. Moreover, we show that the semiclassical formula for the circular photogalvanic effect arising from the Berry curvature dipole is reproduced by a full quantum calculation using a Floquet approach.

  5. Nonlinear response speedup in bimodal visual-olfactory object identification

    Directory of Open Access Journals (Sweden)

    Richard eHöchenberger

    2015-09-01

    Full Text Available Multisensory processes are vital in the perception of our environment. In the evaluation of foodstuff, redundant sensory inputs not only assist the identification of edible and nutritious substances, but also help avoiding the ingestion of possibly hazardous substances. While it is known that the non-chemical senses interact already at early processing levels, it remains unclear whether the visual and olfactory senses exhibit comparable interaction effects. To address this question, we tested whether the perception of congruent bimodal visual-olfactory objects is facilitated compared to unimodal stimulation. We measured response times (RT and accuracy during speeded object identification. The onset of the visual and olfactory constituents in bimodal trials was physically aligned in the first and perceptually aligned in the second experiment. We tested whether the data favored coactivation or parallel processing consistent with race models. A redundant-signals effect was observed for perceptually aligned redundant stimuli only, i.e. bimodal stimuli were identified faster than either of the unimodal components. Analysis of the RT distributions and accuracy data revealed that these observations could be explained by a race model. More specifically, visual and olfactory channels appeared to be operating in a parallel, positively dependent manner. While these results suggest the absence of early sensory interactions, future studies are needed to substantiate this interpretation.

  6. Study of the Performance of an All-Optical Half-Adder Based on Three-Core Non-Linear Directional Fiber Coupler Under Delayed and Instantaneous Non-Linear Kerr Responses

    Science.gov (United States)

    Menezes, J. W. M.; Fraga, W. B.; Lima, F. T.; Guimarães, G. F.; Ferreira, A. C.; Lyra, M. L.; Sombra, A. S. B.

    2011-06-01

    Recently, much attention has been given to the influence of the relaxation process of the non-linear response, because the usual assumption of instantaneous non-linear response fails for ultra-short pulses, and additional contributions coming from non-linear dispersion and delayed non-linearity have to be taken into account. This article presents a numerical analysis of the symmetric planar and asymmetric planar three-core non-linear directional fiber couplers operating with a soliton pulse, where effects of both delayed and instantaneous non-linear Kerr responses are analyzed for implementation of an all-optical half-adder. To implement this all-optical half-adder, eight configurations were analyzed for the non-linear directional fiber coupler, with two symmetric and six asymmetric configurations. The half-adder is the key building block for many digital processing functions, such as shift register, binary counter, and serial parallel data converters. The optical coupler is an important component for applications in optical-fiber telecommunication systems and all integrated optical circuit because of its very high switching speeds. In this numerical simulation, the symmetric/asymmetric planar presents a structure with three cores in a parallel equidistant arrangement, three logical inputs, and two output energy. To prove the effectiveness of the theoretical model for generation of the all-optical half-adder, the best phase to be applied to the control pulse was sought, and a study was done of the extinction ratio level as a function of the Δ > parameter, the normalized time duration, and the Sum and Carry outputs of the (symmetric planar/asymmetric planar) non-linear directional fiber coupler. In this article, the interest is in transmission characteristics, extinction ratio level, normalized time duration, and pulse evolution along the non-linear directional fiber coupler. To compare the performance of the all-optical half-adders, the figure of merit of the

  7. Seismic response analysis of a nuclear reactor structure considering nonlinear soil-structure interaction

    Energy Technology Data Exchange (ETDEWEB)

    Bhaumik, Lopamudra, E-mail: lbhaumi2@illinois.edu [University of Illinois at Urbana-Champaign (United States); Raychowdhury, Prishati, E-mail: prishati@iitk.ac.in [Indian Institute of Technology Kanpur (India)

    2013-12-15

    Highlights: • Seismic response analysis of an internal shearwall of a reactor is done. • Incremental dynamic analysis is performed with 30 recorded ground motions. • Equivalent viscous damping increases up to twice when nonlinear SSI is considered. • Roof drift demand increases up to 25% upon consideration of foundation nonlinearity. • Base shear, base moment and ductility reduce up to 62%, 40%, and 35%, respectively. - Abstract: This study focuses on the seismic response analysis of an internal shearwall of a typical Indian reactor resting on a medium dense sandy silty soil, incorporating the nonlinear behavior of the soil-foundation interface. The modeling is done in an open-source finite element framework, OpenSees, where the soil-structure interaction (SSI) is modeled using a Beam-on-Nonlinear-Winkler-Foundation (BNWF) approach. Static pushover analysis and cyclic analysis are performed followed by an incremental dynamic analysis (IDA) with 30 recorded ground motions. For performing IDA, the spectral acceleration of each motion corresponding to the fundamental period, S{sub a}(T{sub 1})is incremented from 0.1 g to 1.0 g with an increment step of 0.1 g. It is observed from the cyclic analysis that the equivalent viscous damping of the system increases upto twice upon incorporation of inelastic SSI. The IDA results demonstrate that the average peak base shear, base moment and displacement ductility demand reduces as much as 62%, 40%, and 35%, respectively, whereas the roof drift demand increases up to 25% upon consideration of foundation nonlinearity for the highest intensity motion. These observations indicate the need of critical consideration of nonlinear soil-structure interaction as any deficient modeling of the same may lead to an inaccurate estimation of the seismic demands of the structure.

  8. A modified ensemble Kalman particle filter for non-Gaussian systems with nonlinear measurement functions

    Science.gov (United States)

    Shen, Zheqi; Tang, Youmin

    2016-04-01

    The ensemble Kalman particle filter (EnKPF) is a combination of two Bayesian-based algorithms, namely, the ensemble Kalman filter (EnKF) and the sequential importance resampling particle filter(SIR-PF). It was recently introduced to address non-Gaussian features in data assimilation for highly nonlinear systems, by providing a continuous interpolation between the EnKF and SIR-PF analysis schemes. In this paper, we first extend the EnKPF algorithm by modifying the formula for the computation of the covariancematrix, making it suitable for nonlinear measurement functions (we will call this extended algorithm nEnKPF). Further, a general form of the Kalman gain is introduced to the EnKPF to improve the performance of the nEnKPF when the measurement function is highly nonlinear (this improved algorithm is called mEnKPF). The Lorenz '63 model and Lorenz '96 model are used to test the two modified EnKPF algorithms. The experiments show that the mEnKPF and nEnKPF, given an affordable ensemble size, can perform better than the EnKF for the nonlinear systems with nonlinear observations. These results suggest a promising opportunity to develop a non-Gaussian scheme for realistic numerical models.

  9. A computer program for predicting nonlinear uniaxial material responses using viscoplastic models

    Science.gov (United States)

    Chang, T. Y.; Thompson, R. L.

    1984-01-01

    A computer program was developed for predicting nonlinear uniaxial material responses using viscoplastic constitutive models. Four specific models, i.e., those due to Miller, Walker, Krieg-Swearengen-Rhode, and Robinson, are included. Any other unified model is easily implemented into the program in the form of subroutines. Analysis features include stress-strain cycling, creep response, stress relaxation, thermomechanical fatigue loop, or any combination of these responses. An outline is given on the theoretical background of uniaxial constitutive models, analysis procedure, and numerical integration methods for solving the nonlinear constitutive equations. In addition, a discussion on the computer program implementation is also given. Finally, seven numerical examples are included to demonstrate the versatility of the computer program developed.

  10. A hybrid method based upon nonlinear Lamb wave response for locating a delamination in composite laminates.

    Science.gov (United States)

    Yelve, Nitesh P; Mitra, Mira; Mujumdar, P M; Ramadas, C

    2016-08-01

    A new hybrid method based upon nonlinear Lamb wave response in time and frequency domains is introduced to locate a delamination in composite laminates. In Lamb wave based nonlinear method, the presence of damage is shown by the appearance of higher harmonics in the Lamb wave response. The proposed method not only uses this spectral information but also the corresponding temporal response data, for locating the delamination. Thus, the method is termed as a hybrid method. The paper includes formulation of the method and its application to locate a Barely Visible Impact Damage (BVID) induced delamination in a Carbon Fiber Reinforced Polymer (CFRP) laminate. The method gives the damage location fairly well. It is a baseline free method, as it does not need data from the pristine specimen.

  11. Nonlinearity and Strain-Rate Dependence in the Deformation Response of Polymer Matrix Composites Modeled

    Science.gov (United States)

    Goldberg, Robert K.

    2000-01-01

    There has been no accurate procedure for modeling the high-speed impact of composite materials, but such an analytical capability will be required in designing reliable lightweight engine-containment systems. The majority of the models in use assume a linear elastic material response that does not vary with strain rate. However, for containment systems, polymer matrix composites incorporating ductile polymers are likely to be used. For such a material, the deformation response is likely to be nonlinear and to vary with strain rate. An analytical model has been developed at the NASA Glenn Research Center at Lewis Field that incorporates both of these features. A set of constitutive equations that was originally developed to analyze the viscoplastic deformation of metals (Ramaswamy-Stouffer equations) was modified to simulate the nonlinear, rate-dependent deformation of polymers. Specifically, the effects of hydrostatic stresses on the inelastic response, which can be significant in polymers, were accounted for by a modification of the definition of the effective stress. The constitutive equations were then incorporated into a composite micromechanics model based on the mechanics of materials theory. This theory predicts the deformation response of a composite material from the properties and behavior of the individual constituents. In this manner, the nonlinear, rate-dependent deformation response of a polymer matrix composite can be predicted.

  12. Response functions of atom gravimeters

    CERN Document Server

    Nagornyi, V D

    2012-01-01

    Atom gravimeters are equivalent to non-multi-level corner-cube gravimeters in translating the gravity signal into the measurement result. This enables description of atom gravimeters as LTI systems. The system's impulse responses by acceleration, velocity, and displacement are found to have the shape of triangle, meander, and the Dirac comb resp. The effects of inhomogeneous gravity field are studied for constant and linear vertical gradients and self-attraction of the instrument. For the constant gradient the effective measurement height is below the top of the trajectory at 1/6 and 7/24 of its length for the fountain and the release types of the instruments resp. The analysis is expanded to the gravimeters implementing the Bloch oscillations at the apex of the trajectory. In filtering the vibrations these instruments are equivalent to the first-order low-pass filters, while other atom gravimeters are equivalent to the second-order low-pass filters.

  13. Female sexual function and response.

    Science.gov (United States)

    Arcos, Barbara

    2004-01-01

    Although female sexual dysfunction is a problem with low priority, it can have a profound impact on quality of life. In women, the cycle of sexual response begins in the brain, where a memory, an image, a scent, music, or a fantasy acts as a trigger to prompt sexual arousal. Thus, the brain is really the key and starting place for treatment of sexual dysfunction. Decreased libido, altered arousal, inability to achieve orgasm, and dyspareunia are the four broad types of sexual dysfunction in women. Decreased libido, thought to be related to androgenic hormones, results in delayed or altered arousal, decreased vaginal lubrication and dilation, delayed or absent orgasm, and pain or dyspareunia, which can lead to an aversion to sexual experiences.

  14. NON-LINEAR VIBRATION MODELING WITH THE HELP OF FUNCTIONAL SERIES

    Directory of Open Access Journals (Sweden)

    Z. M. Ghasanov

    2010-06-01

    Full Text Available The algorithm of modeling the significantly nonlinear processes – «black boxes» – is offered. It uses functional series. The algorithm is described on the example of modeling of complex oscillations, which occur in acoustic flaw detection.

  15. On the nonuniqueness of singular value functions and balanced nonlinear realizations

    NARCIS (Netherlands)

    Gray, W. Steven; Scherpen, Jacquelien M.A.

    2001-01-01

    The notion of balanced realizations for nonlinear state space model reduction problems was first introduced earlier. Analogous to the linear case, the so-called singular value functions of a system describe the relative importance of each state component from an input–output point of view. In this p

  16. On the Nonuniqueness of Singular Value Functions in Balanced Nonlinear Realizations

    NARCIS (Netherlands)

    Gray, W. Steven; Scherpen, Jacquelien M.A.

    1999-01-01

    The notion of balanced realizations for nonlinear state space model reduction was first introduced in 1993. Analogous to the linear case, the so called singular value functions of a system describe the relative importance of each state component from an input-output point of view. In this paper it i

  17. Oscillatory and Asymptotic Behavior of a Second-Order Nonlinear Functional Differential Equations

    Institute of Scientific and Technical Information of China (English)

    张全信; 高丽; 王少英

    2012-01-01

    This paper is concerned with oscillatory and asymptotic behavior of solutions of a class of second order nonlinear functional differential equations. By using the generalized Riccati transformation and the integral averaging technique, new oscillation criteria and asymptotic behavior are obtained for all solutions of the equation. Our results generalize and improve some known theorems.

  18. The functional variable method for finding exact solutions of some nonlinear time-fractional differential equations

    Indian Academy of Sciences (India)

    Wenjun Liu; Kewang Chen

    2013-09-01

    In this paper, we implemented the functional variable method and the modified Riemann–Liouville derivative for the exact solitary wave solutions and periodic wave solutions of the time-fractional Klein–Gordon equation, and the time-fractional Hirota–Satsuma coupled KdV system. This method is extremely simple but effective for handling nonlinear time-fractional differential equations.

  19. Stability of quantized time-delay nonlinear systems : a Lyapunov–Krasowskii-functional approach

    NARCIS (Netherlands)

    Persis, Claudio De; Mazenc, Frédéric

    2010-01-01

    Lyapunov–Krasowskii functionals are used to design quantized control laws for nonlinear continuous-time systems in the presence of constant delays in the input. The quantized control law is implemented via hysteresis to avoid chattering. Under appropriate conditions, our analysis applies to stabiliz

  20. A STUDY ON SOME PROBLEMS ON EXISTENCE OF SOLUTIONS FOR NONLINEAR FUNCTIONAL-INTEGRAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    DEEPMALA; H.K. PATHAK

    2013-01-01

    In this paper, we prove the existence of solutions of some nonlinear functional-integral equation by using a fixed point theorem which satisfy the Darbo condition. The results extend the corresponding results of many authors. In the sequel, we give an example of our main result to highlight the realized improvements.

  1. Using logical functions for constructing non-linear analytical formulae in combinatorics and number theory

    OpenAIRE

    Chebrakov, Yu. V.

    2014-01-01

    In this paper we discuss techniques suitable for translating the verbal descriptions of computative algorithms into a set of mathematical formulae and demonstrate that logical functions can be used effectively in order to create non-linear analytical formulae, describing a set of combinatorial and number-theoretic computative algorithms.

  2. Stability of quantized time-delay nonlinear systems : A Lyapunov-Krasowskii-functional approach

    NARCIS (Netherlands)

    Persis, Claudio De; Mazenc, Frédéric

    2009-01-01

    Lyapunov-Krasowskii functionals are used to design quantized control laws for nonlinear continuous-time systems in the presence of time-invariant constant delays in the input. The quantized control law is implemented via hysteresis to avoid chattering. Under appropriate conditions, our analysis appl

  3. Non-linear Membrane Properties in Entorhinal Cortical Stellate Cells Reduce Modulation of Input-Output Responses by Voltage Fluctuations.

    Science.gov (United States)

    Fernandez, Fernando R; Malerba, Paola; White, John A

    2015-04-01

    The presence of voltage fluctuations arising from synaptic activity is a critical component in models of gain control, neuronal output gating, and spike rate coding. The degree to which individual neuronal input-output functions are modulated by voltage fluctuations, however, is not well established across different cortical areas. Additionally, the extent and mechanisms of input-output modulation through fluctuations have been explored largely in simplified models of spike generation, and with limited consideration for the role of non-linear and voltage-dependent membrane properties. To address these issues, we studied fluctuation-based modulation of input-output responses in medial entorhinal cortical (MEC) stellate cells of rats, which express strong sub-threshold non-linear membrane properties. Using in vitro recordings, dynamic clamp and modeling, we show that the modulation of input-output responses by random voltage fluctuations in stellate cells is significantly limited. In stellate cells, a voltage-dependent increase in membrane resistance at sub-threshold voltages mediated by Na+ conductance activation limits the ability of fluctuations to elicit spikes. Similarly, in exponential leaky integrate-and-fire models using a shallow voltage-dependence for the exponential term that matches stellate cell membrane properties, a low degree of fluctuation-based modulation of input-output responses can be attained. These results demonstrate that fluctuation-based modulation of input-output responses is not a universal feature of neurons and can be significantly limited by subthreshold voltage-gated conductances.

  4. Dielectric Response of Glass-Forming Liquids in the Nonlinear Regime

    Science.gov (United States)

    Samanta, Subarna

    Broadband dielectric spectroscopy is a powerful technique for understanding the dynamics in supercooled liquids. It generates information about the timescale of the orientational motions of molecular dipoles within the liquid. However, dynamics of liquids measured in the non-linear response regime has recently become an area of significant interest, because additional information can be obtained compared with linear response measurements. The first part of this thesis describes nonlinear dielectric relaxation experiments performed on various molecular glass forming-liquids, with an emphasis on the response at high frequencies (excess wing). A significant nonlinear dielectric effect (NDE) was found to persist in these modes, and the magnitude of this NDE traces the temperature dependence of the activation energy. A time resolved measurement technique monitoring the dielectric loss revealed that for the steady state NDE to develop it would take a very large number of high amplitude alternating current (ac) field cycles. High frequency modes were found to be 'slaved' to the average structural relaxation time, contrary to the standard picture of heterogeneity. Nonlinear measurements were also performed on the Johari-Goldstein beta-relaxation process. High ac fields were found to modify the amplitudes of these secondary modes. The nonlinear features of this secondary process are reminiscent of those found for the excess wing regime, suggesting that these two contributions to dynamics have common origins. The second part of this thesis describes the nonlinear effects observed from the application of high direct current (dc) bias fields superposed with a small amplitude sinusoidal ac field. For several molecular glass formers, the application of a dc field was found to slow down the system via reduction in configurational entropy (Adam-Gibbs relation). Time resolved measurements indicated that the rise of the non-linear effect is slower than its decay, as observed in the

  5. Global stabilization of high-energy response of a nonlinear wideband electromagnetic energy harvester

    Science.gov (United States)

    Sato, T.; Kato, S.; Masuda, A.

    2016-09-01

    This paper presents a resonance-type vibration energy harvester with a Duffing-type nonlinear oscillator which is designed to perform effectively in a wide frequency band. For the conventional linear vibration energy harvester, the maximum performance of the power generation and its bandwidth are in a relation of trade-off. Introducing a Duffing-type nonlinearity can expand the resonance frequency band and enable the harvester to generate larger electric power in a wider frequency range. However, since such nonlinear oscillator may have coexisting multiple steady-state solutions in the resonance band, it is difficult for the nonlinear harvester to maintain the high performance of the power generation constantly. The principle of self-excitation and entrainment has been utilized to give global stability to the high-energy orbit by destabilizing other unexpected low-energy orbits by introducing a switching circuit of the load resistance between positive and the negative values depending on the response amplitude of the oscillator. In this paper, an improved control law that switches the load resistance according to a frequency-dependent threshold is proposed to ensure the oscillator to respond in the high-energy orbit without ineffective power consumption. Numerical study shows that the steady-state responses of the harvester with the proposed control low are successfully kept on the high-energy orbit without repeating activation of the excitationmode.

  6. Nonlinear optical response of the collagen triple helix and second harmonic microscopy of collagen liquid crystals

    Science.gov (United States)

    Deniset-Besseau, A.; De Sa Peixoto, P.; Duboisset, J.; Loison, C.; Hache, F.; Benichou, E.; Brevet, P.-F.; Mosser, G.; Schanne-Klein, M.-C.

    2010-02-01

    Collagen is characterized by triple helical domains and plays a central role in the formation of fibrillar and microfibrillar networks, basement membranes, as well as other structures of the connective tissue. Remarkably, fibrillar collagen exhibits efficient Second Harmonic Generation (SHG) and SHG microscopy proved to be a sensitive tool to score fibrotic pathologies. However, the nonlinear optical response of fibrillar collagen is not fully characterized yet and quantitative data are required to further process SHG images. We therefore performed Hyper-Rayleigh Scattering (HRS) experiments and measured a second order hyperpolarisability of 1.25 10-27 esu for rat-tail type I collagen. This value is surprisingly large considering that collagen presents no strong harmonophore in its amino-acid sequence. In order to get insight into the physical origin of this nonlinear process, we performed HRS measurements after denaturation of the collagen triple helix and for a collagen-like short model peptide [(Pro-Pro-Gly)10]3. It showed that the collagen large nonlinear response originates in the tight alignment of a large number of weakly efficient harmonophores, presumably the peptide bonds, resulting in a coherent amplification of the nonlinear signal along the triple helix. To illustrate this mechanism, we successfully recorded SHG images in collagen liquid solutions by achieving liquid crystalline ordering of the collagen triple helices.

  7. Identification of damage based on frequency response function (FRF data

    Directory of Open Access Journals (Sweden)

    Sulaiman M. S. A.

    2017-01-01

    Full Text Available Mechanical joints, particularly fasteners such as bolted joints have a complex non-linear behaviour. The non-linearity might emerge from the material, geometry or by the contacts in the joints. However, damage to a structure can be happened either their connections or the material of components. The effect of damage can change the dynamic properties of the structure such as natural frequencies and mode shapes and structural performance and can cause premature failure to structure. This paper presents a damage detection method using a vibration based damage detection method based on the frequency response function (FRF data. A combination of numerical model and physical bolted jointed structure of damaged and undamaged structure will be investigated. The validation is employed to detect the presence of damage in the structure based on the frequency response function (FRF data from the parameter values used in the benchmark model and damaged model. The comparisons of the undamaged and damaged structure of the FRF have revealed the damaged structure was shifted from the undamaged structure. The effect of the FRF between undamaged and damaged structure is clearly affected by the reduction of stiffness for the damaged structure.

  8. New Generalized Hyperbolic Functions to Find New Exact Solutions of the Nonlinear Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Yusuf Pandir

    2013-01-01

    Full Text Available We firstly give some new functions called generalized hyperbolic functions. By the using of the generalized hyperbolic functions, new kinds of transformations are defined to discover the exact approximate solutions of nonlinear partial differential equations. Based on the generalized hyperbolic function transformation of the generalized KdV equation and the coupled equal width wave equations (CEWE, we find new exact solutions of two equations and analyze the properties of them by taking different parameter values of the generalized hyperbolic functions. We think that these solutions are very important to explain some physical phenomena.

  9. Applications of Jacobi Elliptic Function Expansion Method for Nonlinear Differential-Difference Equations

    Institute of Scientific and Technical Information of China (English)

    XU Gui-Qiong; LI Zhi-Bin

    2005-01-01

    The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the application of the Jacobi elliptic function expansion method. As a result, three types of periodic wave solutions including Jacobi elliptic sine function, Jacobi elliptic cosine function and the third elliptic function solutions are obtained. It is shown that the shock wave solutions and solitary wave solutions can be obtained at their limit condition.

  10. Nonlinear functional analysis in Banach spaces and Banach algebras fixed point theory under weak topology for nonlinear operators and block operator matrices with applications

    CERN Document Server

    Jeribi, Aref

    2015-01-01

    Uncover the Useful Interactions of Fixed Point Theory with Topological StructuresNonlinear Functional Analysis in Banach Spaces and Banach Algebras: Fixed Point Theory under Weak Topology for Nonlinear Operators and Block Operator Matrices with Applications is the first book to tackle the topological fixed point theory for block operator matrices with nonlinear entries in Banach spaces and Banach algebras. The book provides researchers and graduate students with a unified survey of the fundamental principles of fixed point theory in Banach spaces and algebras. The authors present several exten

  11. Soliton solution for nonlinear partial differential equations by cosine-function method

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A.H.A. [Mathematics Department, Faculty of Science, Menoufia University, Shebein El-Koom (Egypt); Soliman, A.A. [Department of Mathematics, Faculty of Education (AL-Arish), Suez Canal University, AL-Arish 45111 (Egypt)], E-mail: asoliman_99@yahoo.com; Raslan, K.R. [Mathematics Department, Faculty of Science, Al-Azhar University, Nasr-City, Cairo (Egypt)

    2007-08-20

    In this Letter, we established a traveling wave solution by using Cosine-function algorithm for nonlinear partial differential equations. The method is used to obtain the exact solutions for five different types of nonlinear partial differential equations such as, general equal width wave equation (GEWE), general regularized long wave equation (GRLW), general Korteweg-de Vries equation (GKdV), general improved Korteweg-de Vries equation (GIKdV), and Coupled equal width wave equations (CEWE), which are the important soliton equations.

  12. Nonlinear Dynamic Behavior of Functionally Graded Truncated Conical Shell Under Complex Loads

    Science.gov (United States)

    Yang, S. W.; Hao, Y. X.; Zhang, W.; Li, S. B.

    Nonlinear dynamic behaviors of ceramic-metal graded truncated conical shell subjected to complex loads are investigated. The shell is modeled by first-order shear deformation theory. The nonlinear partial differential governing equation in terms of transverse displacements of the FGM truncated conical shell is derived from the Hamilton's principle. Galerkin's method is then utilized to discretize the partial governing equations to a two-degree-of-freedom nonlinear ordinary differential equation. The temperature-dependent materials properties of the constituents are graded in the radial direction in accordance with a power-law distribution. The aerodynamic pressure can be calculated by using the first-order piston theory. The temperature field is assumed to be a steady-state constant-temperature distribution. Bifurcation diagrams, the maximum Lyapunov exponents, wave forms and phase portraits are obtained by numerical simulation to demonstrate the complex nonlinear dynamics response of the FGM truncated conical shell. The influences of the semi-vertex angle, the material gradient index, in-plane and aerodynamic load on the nonlinear dynamics are studied.

  13. Parametric system identification of resonant micro/nanosystems operating in a nonlinear response regime

    Science.gov (United States)

    Sabater, A. B.; Rhoads, J. F.

    2017-02-01

    The parametric system identification of macroscale resonators operating in a nonlinear response regime can be a challenging research problem, but at the micro- and nanoscales, experimental constraints add additional complexities. For example, due to the small and noisy signals micro/nanoresonators produce, a lock-in amplifier is commonly used to characterize the amplitude and phase responses of the systems. While the lock-in enables detection, it also prohibits the use of established time-domain, multi-harmonic, and frequency-domain methods, which rely upon time-domain measurements. As such, the only methods that can be used for parametric system identification are those based on fitting experimental data to an approximate solution, typically derived via perturbation methods and/or Galerkin methods, of a reduced-order model. Thus, one could view the parametric system identification of micro/nanosystems operating in a nonlinear response regime as the amalgamation of four coupled sub-problems: nonparametric system identification, or proper experimental design and data acquisition; the generation of physically consistent reduced-order models; the calculation of accurate approximate responses; and the application of nonlinear least-squares parameter estimation. This work is focused on the theoretical foundations that underpin each of these sub-problems, as the methods used to address one sub-problem can strongly influence the results of another. To provide context, an electromagnetically transduced microresonator is used as an example. This example provides a concrete reference for the presented findings and conclusions.

  14. A New Method for Nonlinear and Nonstationary Time Series Analysis and Its Application to the Earthquake and Building Response Records

    Science.gov (United States)

    Huang, Norden E.

    1999-01-01

    A new method for analyzing nonlinear and nonstationary data has been developed. The key part of the method is the Empirical Mode Decomposition method with which any complicated data set can be decomposed into a finite and often small number of Intrinsic Mode Functions (IMF). An IMF is defined as any function having the same numbers of zero-crossing and extrema, and also having symmetric envelopes defined by the local maxima and minima respectively. The IMF also admits well-behaved Hilbert transform. This decomposition method is adaptive, and, therefore, highly efficient. Since the decomposition is based on the local characteristic time scale of the data, it is applicable to nonlinear and nonstationary processes. With the Hilbert transform, the Intrinsic Mode Functions yield instantaneous frequencies as functions of time that give sharp identifications of imbedded structures. The final presentation of the results is an energy-frequency-time distribution, designated as the Hilbert Spectrum, Example of application of this method to earthquake and building response will be given. The results indicate those low frequency components, totally missed by the Fourier analysis, are clearly identified by the new method. Comparisons with Wavelet and window Fourier analysis show the new method offers much better temporal and frequency resolutions.

  15. Non-linear shape functions over time in the space-time finite element method

    Directory of Open Access Journals (Sweden)

    Kacprzyk Zbigniew

    2017-01-01

    Full Text Available This work presents a generalisation of the space-time finite element method proposed by Kączkowski in his seminal of 1970’s and early 1980’s works. Kączkowski used linear shape functions in time. The recurrence formula obtained by Kączkowski was conditionally stable. In this paper, non-linear shape functions in time are proposed.

  16. Application of Exp-function method for nonlinear evolution equations with variable coefficients

    Energy Technology Data Exchange (ETDEWEB)

    El-Wakil, S.A.; Madkour, M.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Abdou, M.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Faculty of Education for Girls, Physics Department, King Kahlid University, Bisha, Kingdom Saudi Arabia (Saudi Arabia)], E-mail: m_abdou_eg@yahoo.com

    2007-09-10

    In this Letter, the Exp-function method with the aid of symbolic computational system Maple is used to obtain generalized solitary solutions and periodic solutions of a generalized Zakharov-Kuznetsov equation with variable coefficients. It is shown that the Exp-function method, with the help of symbolic computation, provides a powerful mathematical tool for solving other nonlinear evolution equations arising in mathematical physics.

  17. Lyapunov functions for a class of nonlinear systems using Caputo derivative

    Science.gov (United States)

    Fernandez-Anaya, G.; Nava-Antonio, G.; Jamous-Galante, J.; Muñoz-Vega, R.; Hernández-Martínez, E. G.

    2017-02-01

    This paper presents an extension of recent results that allow proving the stability of Caputo nonlinear and time-varying systems, by means of the fractional order Lyapunov direct method, using quadratic Lyapunov functions. This article introduces a new way of building polynomial Lyapunov functions of any positive integer order as a way of determining the stability of a greater variety of systems when the order of the derivative is 0 < α < 1. Some examples are given to validate these results.

  18. Estimation of Nonlinear Functions of State Vector for Linear Systems with Time-Delays and Uncertainties

    Directory of Open Access Journals (Sweden)

    Il Young Song

    2015-01-01

    Full Text Available This paper focuses on estimation of a nonlinear function of state vector (NFS in discrete-time linear systems with time-delays and model uncertainties. The NFS represents a multivariate nonlinear function of state variables, which can indicate useful information of a target system for control. The optimal nonlinear estimator of an NFS (in mean square sense represents a function of the receding horizon estimate and its error covariance. The proposed receding horizon filter represents the standard Kalman filter with time-delays and special initial horizon conditions described by the Lyapunov-like equations. In general case to calculate an optimal estimator of an NFS we propose using the unscented transformation. Important class of polynomial NFS is considered in detail. In the case of polynomial NFS an optimal estimator has a closed-form computational procedure. The subsequent application of the proposed receding horizon filter and nonlinear estimator to a linear stochastic system with time-delays and uncertainties demonstrates their effectiveness.

  19. Nonlinear free flexural vibrations of functionally graded rectangular and skew plates under thermal environments

    CERN Document Server

    Sundararajan, N; Ganapathi, M; 10.1016/j.finel.2005.06.001

    2011-01-01

    The nonlinear formulation developed based on von Karman's assumptions is employed to study the free vibration characteristics of functionally graded material (FGM) plates subjected to thermal environment. Temperature field is assumed to be a uniform distribution over the plate surface and varied in the thickness direction. The material is assumed to be temperature dependent and graded in the thickness direction according to the power-law distribution in terms of volume fractions of the constituents. The effective material properties are estimated from the volume fractions and the material properties of the constituents using Mori-Tanaka homogenization method. The nonlinear governing equations obtained using Lagrange's equations of motion are solved using finite element procedure coupled with the direct iteration technique. The variation of nonlinear frequency ratio with amplitude is highlighted considering various parameters such as gradient index, temperature, thickness and aspect ratios, and skew angle. For...

  20. Solving Nonlinear Optimization Problems of Real Functions in Complex Variables by Complex-Valued Iterative Methods.

    Science.gov (United States)

    Zhang, Songchuan; Xia, Youshen

    2016-12-28

    Much research has been devoted to complex-variable optimization problems due to their engineering applications. However, the complex-valued optimization method for solving complex-variable optimization problems is still an active research area. This paper proposes two efficient complex-valued optimization methods for solving constrained nonlinear optimization problems of real functions in complex variables, respectively. One solves the complex-valued nonlinear programming problem with linear equality constraints. Another solves the complex-valued nonlinear programming problem with both linear equality constraints and an ℓ₁-norm constraint. Theoretically, we prove the global convergence of the proposed two complex-valued optimization algorithms under mild conditions. The proposed two algorithms can solve the complex-valued optimization problem completely in the complex domain and significantly extend existing complex-valued optimization algorithms. Numerical results further show that the proposed two algorithms have a faster speed than several conventional real-valued optimization algorithms.

  1. Material and Geometric Nonlinear Analysis of Functionally Graded Plate-Shell Type Structures

    Science.gov (United States)

    Moita, J. S.; Araújo, A. L.; Mota Soares, C. M.; Mota Soares, C. A.; Herskovits, J.

    2016-08-01

    A nonlinear formulation for general Functionally Graded Material plate-shell type structures is presented. The formulation accounts for geometric and material nonlinear behaviour of these structures. Using the Newton-Raphson incremental-iterative method, the incremental equilibrium path is obtained, and in case of snap-through occurrence the automatic arc-length method is used. This simple and fast element model is a non-conforming triangular flat plate/shell element with 24 degrees of freedom for the generalized displacements. It is benchmarked in the solution of some illustrative plate- shell examples and the results are presented and discussed with numerical alternative models. Benchmark tests with material and geometrically nonlinear behaviour are also proposed.

  2. Quantum Local Symmetry of the D-Dimensional Non-Linear Sigma Model: A Functional Approach

    Directory of Open Access Journals (Sweden)

    Andrea Quadri

    2014-04-01

    Full Text Available We summarize recent progress on the symmetric subtraction of the Non-Linear Sigma Model in D dimensions, based on the validity of a certain Local Functional Equation (LFE encoding the invariance of the SU(2 Haar measure under local left transformations. The deformation of the classical non-linearly realized symmetry at the quantum level is analyzed by cohomological tools. It is shown that all the divergences of the one-particle irreducible (1-PI amplitudes (both on-shell and off-shell can be classified according to the solutions of the LFE. Applications to the non-linearly realized Yang-Mills theory and to the electroweak theory, which is directly relevant to the model-independent analysis of LHC data, are briefly addressed.

  3. Improved nonlinear optical and optical limiting properties in non-covalent functionalized reduced graphene oxide/silver nanoparticle (NF-RGO/Ag-NPs) hybrid

    Science.gov (United States)

    Sakho, El hadji Mamour; Oluwafemi, Oluwatobi S.; Sreekanth, P.; Philip, Reji; Thomas, Sabu; Kalarikkal, Nandakumar

    2016-08-01

    Nonlinear optical (NLO) response under near infrared (800 nm) and visible (532 nm) laser excitations, of 100 fs (fs) and 5 ns (ns) pulse durations respectively, of reduced graphene oxide (RGO), non-covalent functionalized reduced graphene oxide (NF-RGO) and NF-RGO decorated with various concentration of silver nanoparticles (NF-RGO/Ag-NPs) have been investigated using the Open-aperture Z-Scan technique. For both femtosecond and nanosecond laser excitations, the studied graphene-based materials exhibit good nonlinear optical power limiting properties (OL), with NF-RGO/Ag-NPs sample prepared with 0.1 M AgNO3 showing the best nonlinear optical properties. For the ns regime, the optical limiting threshold decreased from 8.3 J/cm2 in NF-RGO to 4.3 J/cm2 in NF-RGO/Ag-NPs, while at fs regime, the nonlinear absorption coefficient (β) was found to increase with decrease in concentration of Ag-NPs in the hybrid. Two-photon absorption (2 PA) in combination with saturable absorption (SA) in femtosecond regime, and reverse saturable absorption (RSA) along with saturable absorption (SA) in the nanosecond regime, are responsible for the observed nonlinear optical absorption (NLA) behavior in these materials. These findings show that the as-synthesized NF-RGO/Ag-NPs hybrid is a relatively better material for nonlinear optical limiting applications.

  4. Simultaneous stabilization of a class of nonlinear descriptor systems via Hamiltonian function method

    Institute of Scientific and Technical Information of China (English)

    SUN LiYing; WANG YuZhen

    2009-01-01

    This paper studies simultaneous stabilization of a class of nonlinear descriptor systems via the Hamiltonlan function method.Firstly,based on the Hamiltonian realization of the nonlinear descriptor systems and a suitable output feedback,two nonlinear descriptor systems are equivalently transformed into two nonlinear Hamiltonian differential-algebraic systems by a nonsingular transformation,and a sufficient condition for two closed-loop systems to be impulse-free is given.The two systems are then combined to generate an augmented dissipative Hamiltonian differential-algebraic system by using the system-augmentation technique,based on which a simultaneous stabilization controller and a robust simultaneous stabilization controller are designed for the two systems.Secondly,the case of more than two nonlinear descriptor systems is investigated,and two new results are proposed for the simultaneous stabilization and robust simultaneous stabilization,respectively.Finally,an illustrative example is studied by using the results proposed in this paper,and simulations show that the simultaneous stabilization controllers obtained in this paper work very well.

  5. Nonlinear programming extensions to rational function approximation methods for unsteady aerodynamic forces

    Science.gov (United States)

    Tiffany, Sherwood H.; Adams, William M., Jr.

    1988-01-01

    The approximation of unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft are discussed. Two methods of formulating these approximations are extended to include the same flexibility in constraining the approximations and the same methodology in optimizing nonlinear parameters as another currently used extended least-squares method. Optimal selection of nonlinear parameters is made in each of the three methods by use of the same nonlinear, nongradient optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is lower order than that required when no optimization of the nonlinear terms is performed. The free linear parameters are determined using the least-squares matrix techniques of a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from different approaches are described and results are presented that show comparative evaluations from application of each of the extended methods to a numerical example.

  6. Quantifying the contributions of structure to annulus fibrosus mechanical function using a nonlinear, anisotropic, hyperelastic model.

    Science.gov (United States)

    Guerin, Heather Lynch; Elliott, Dawn M

    2007-04-01

    The annulus fibrosus of the intervertebral disc is comprised of concentric lamella of oriented collagen fibers embedded in a hydrated proteoglycan matrix with smaller amounts of minor collagens, elastin, and small proteoglycans. Its structure and composition enable the disc to withstand complex loads and result in inhomogeneous, anisotropic, and nonlinear mechanical behaviors. The specific contributions of the annulus fibrosus constituent structures to mechanical function remain unclear. Therefore, the objective of this study was to use a structurally motivated, anisotropic, nonlinear strain energy model of annulus fibrosus to determine the relative contributions of its structural components to tissue mechanical behavior. A nonlinear, orthotropic hyperelastic model was developed for the annulus fibrosus. Terms to describe fibers, matrix, and interactions between annulus fibrosus structures (shear and normal to the fiber directions) were explicitly included. The contributions of these structures were analyzed by including or removing terms and determining the effect on the fit to multidimensional experimental data. Correlation between experimental and model-predicted stress, a Bland-Altman analysis of bias and standard deviation of residuals, and the contribution of structural terms to overall tissue stress were calculated. Both shear and normal interaction terms were necessary to accurately model multidimensional behavior. Inclusion of shear interactions more accurately described annulus fibrosus nonlinearity. Fiber stretch and shear interactions dominated contributions to circumferential direction stress, while normal and shear interactions dominated axial stress. The results suggest that interactions between fibers and matrix, perhaps facilitated by crosslinks, elastin, or minor collagens, augment traditional (i.e., fiber-uncrimping) models of nonlinearity.

  7. Predicting the nonlinear optical response in the resonant region from the linear characterization: a self-consistent theory for the first-, second-, and third-order (non)linear optical response

    Science.gov (United States)

    Pérez-Moreno, Javier; Clays, Koen; Kuzyk, Mark G.

    2010-08-01

    We introduce a self-consistent theory for the description of the optical linear and nonlinear response of molecules that is based strictly on the results of the experimental characterization. We show how the Thomas-Kuhn sum-rules can be used to eliminate the dependence of the nonlinear response on parameters that are not directly measurable. Our approach leads to the successful modeling of the dispersion of the nonlinear response of complex molecular structures with different geometries (dipolar and octupolar), and can be used as a guide towards the modeling in terms of fundamental physical parameters.

  8. Beyond the perturbative description of the nonlinear optical response of low-index materials.

    Science.gov (United States)

    Reshef, Orad; Giese, Enno; Zahirul Alam, M; De Leon, Israel; Upham, Jeremy; Boyd, Robert W

    2017-08-15

    We show that standard approximations in nonlinear optics are violated for situations involving a small value of the linear refractive index. Consequently, the conventional equation for the intensity-dependent refractive index, n(I)=n0+n2I, becomes inapplicable in epsilon-near-zero and low-index media, even in the presence of only third-order effects. For the particular case of indium tin oxide, we find that the χ((3)), χ((5)), and χ((7)) contributions to refraction eclipse the linear term; thus, the nonlinear response can no longer be interpreted as a perturbation in these materials. Although the response is non-perturbative, we find no evidence that the power series expansion of the material polarization diverges.

  9. The horizontal angular vestibulo-ocular reflex: a nonlinear mechanism for context-dependent responses.

    Science.gov (United States)

    Ranjbaran, Mina; Galiana, Henrietta L

    2013-11-01

    Studies of the vestibulo-ocular reflex (VOR) have revealed that this type of involuntary eye movement is influenced by viewing distance. This paper presents a bilateral model for the horizontal angular VOR in the dark based on realistic physiological mechanisms. It is shown that by assigning proper nonlinear neural computations at the premotor level, the model is capable of replicating target-distance-dependent VOR responses that are in agreement with geometrical requirements. Central premotor responses in the model are also shown to be consistent with experimental observations. Moreover, the model performance after simulated unilateral canal plugging also reproduces experimental observations, an emerging property. Such local nonlinear computations could similarly generate context-dependent behaviors in other more complex motor systems.

  10. Dipole Solitons in Nonlinear Media with an Exponential-Decay Nonlocal Response

    Institute of Scientific and Technical Information of China (English)

    YANG Zhen-Jun; MA Xue-Kai; ZHENG Yi-Zhou; GAO Xing-Hui; LU Da-Quan; HU Wei

    2011-01-01

    By applying the variational approach,the analytical expression of dipole solitons is obtained in nonlinear media with an exponential-decay nonlocal response.The relations of the soliton power versus the propagation constant and the soliton width are given.Some numerical simulations are carried out.The results show that the analytical expression is in excellent agreement with the numerical results for the strongly nonlocal case.

  11. Periodic response of nonlinear dynamical system with large number of degrees of freedom

    Indian Academy of Sciences (India)

    B P Patel; S M Ibrahim; Y Nath

    2009-12-01

    In this paper, a methodology based on shooting technique and Newmark's time integration scheme is proposed for predicting the periodic responses of nonlinear systems directly from solution of second order equations of motion without transforming to double first order equations. The proposed methodology is quite suitable for systems with large number of degrees of freedom such as the banded system of equations from finite element discretization.

  12. Nonlinear pulse propagation in a single- and a few-cycle regimes with Raman response

    Indian Academy of Sciences (India)

    Vimlesh Mishra; Ajit Kumar

    2010-09-01

    The propagation equation for a single- and a few-cycle pulses was derived in a cubic nonlinear medium including the Raman response. Using this equation, the propagation characteristics of a single- and a 4-cycle pulse, at 0.8 m wavelength, were studied numerically in one spatial dimension. It was shown that Raman term does influence the propagation characteristics of a single- as well as a few-cycle pulses by counteracting the self-steepening effect.

  13. MULTISTAGE ADAPTIVE HIGHER-ORDER NONLINEAR FINITE IMPULSE RESPONSE FILTERS FOR CHAOTIC TIME SERIES PREDICTIONS

    Institute of Scientific and Technical Information of China (English)

    ZHANG JIA-SHU; XIAO XIAN-CI

    2001-01-01

    A multistage adaptive higher-order nonlinear finite impulse response (MAHONFIR) filter is proposed to predict chaotic time series. Using this approach, we may readily derive the decoupled parallel algorithm for the adaptation of the coefficients of the MAHONFIR filter, to guarantee a more rapid convergence of the adaptive weights to their optimal values. Numerical simulation results show that the MAHONFIR filters proposed here illustrate a very good performance for making an adaptive prediction of chaotic time series.

  14. A Class of Semilocal E-Preinvex Functions and Its Applications in Nonlinear Programming

    Directory of Open Access Journals (Sweden)

    Hehua Jiao

    2012-01-01

    Full Text Available A kind of generalized convex set, called as local star-shaped E-invex set with respect to η, is presented, and some of its important characterizations are derived. Based on this concept, a new class of functions, named as semilocal E-preinvex functions, which is a generalization of semi-E-preinvex functions and semilocal E-convex functions, is introduced. Simultaneously, some of its basic properties are discussed. Furthermore, as its applications, some optimality conditions and duality results are established for a nonlinear programming.

  15. Extrinsic contribution and non-linear response in lead-free KNN-modified piezoceramics

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa, D A; Garcia, J E; Perez, R; Gomis, V; Albareda, A [Department of Applied Physics, Universitat Politecnica de Catalunya, 08034 Barcelona (Spain); Rubio-Marcos, F; Fernandez, J F, E-mail: jose@fa.upc.ed [Department of Electroceramics, Instituto de Ceramica y Vidrio, CSIC, 28049 Madrid (Spain)

    2009-01-21

    Finding lead-free ceramics with good piezoelectric properties is nowadays one of the most important challenges in materials science. The (K, Na, Li)(Nb, Ta, Sb)O{sub 3} system is one of the most promising candidates as a lead-free ceramic for transducer applications and is currently the object of important research work. In this paper, (K{sub 0.44}Na{sub 0.52}Li{sub 0.04})(Nb{sub 0.86}Ta{sub 0.10}Sb{sub 0.04})O{sub 3} was prepared by a conventional ceramic processing route. For this composition, orthorhombic-to-tetragonal phase transition was observed at temperatures very close to room temperature. As a consequence, good room temperature electromechanical properties were observed, displaying good thermal stability. We show that the most important contribution to dielectric, piezoelectric and elastic response comes from extrinsic effects, as was observed in other perovskite based materials. Nonlinearities in electromechanical properties induced by high electric field or mechanical stress were studied. Non-linear dielectric response was found to be less important than for soft PZT ceramics and was analysed within the Rayleigh framework. The results reveal that the non-linear response at room temperature in this material is mainly due to the irreversible wall domain movement.

  16. Stationary variational estimates for the effective response and field fluctuations in nonlinear composites

    Science.gov (United States)

    Ponte Castañeda, Pedro

    2016-11-01

    This paper presents a variational method for estimating the effective constitutive response of composite materials with nonlinear constitutive behavior. The method is based on a stationary variational principle for the macroscopic potential in terms of the corresponding potential of a linear comparison composite (LCC) whose properties are the trial fields in the variational principle. When used in combination with estimates for the LCC that are exact to second order in the heterogeneity contrast, the resulting estimates for the nonlinear composite are also guaranteed to be exact to second-order in the contrast. In addition, the new method allows full optimization with respect to the properties of the LCC, leading to estimates that are fully stationary and exhibit no duality gaps. As a result, the effective response and field statistics of the nonlinear composite can be estimated directly from the appropriately optimized linear comparison composite. By way of illustration, the method is applied to a porous, isotropic, power-law material, and the results are found to compare favorably with earlier bounds and estimates. However, the basic ideas of the method are expected to work for broad classes of composites materials, whose effective response can be given appropriate variational representations, including more general elasto-plastic and soft hyperelastic composites and polycrystals.

  17. Inverse solution technique of steady-state responses for local nonlinear structures

    Science.gov (United States)

    Wang, Xing; Guan, Xin; Zheng, Gangtie

    2016-03-01

    An inverse solution technique with the ability of obtaining complete steady-state primary harmonic responses of local nonlinear structures in the frequency domain is proposed in the present paper. In this method, the nonlinear dynamic equations of motion is first condensed from many to only one algebraic amplitude-frequency equation of relative motion. Then this equation is transformed into a polynomial form, and with its frequency as the unknown variable, the polynomial equation is solved by tracing all the solutions of frequency with the increase of amplitude. With this solution technique, some complicated dynamic behaviors such as sharp tuning, anomalous jumps, breaks in responses and detached resonance curves could be obtained. The proposed method is demonstrated and validated through a finite element beam under force excitations and a lumped parameter model with a local nonlinear element under base excitations. The phenomenon of detached resonance curves in the frequency response and its coupling effects with multiple linear modes in the latter example are observed.

  18. On nonlinear oscillation response of a negatively dissipated oscillator and its analogy to long Josephson junction

    Energy Technology Data Exchange (ETDEWEB)

    Lim, C.W. [Department of Building and Construction, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)], E-mail: bccwlim@cityu.edu.hk; Lai, S.K. [Department of Building and Construction, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2007-08-20

    This Letter deals with a research subject in nonlinear mechanics and applied mathematics. It develops (i) accurate higher-order approximate analytical nonlinear oscillator system with negative dissipation, and (ii) analogy to long Josephson junction. Particular emphasis has been placed on the weakly damped nonlinear oscillating system with negative dissipation with respect to a transformed temporal variable derived from the weak link of the simplified Josephson junction model. Nevertheless, the system response is shown to be stable with positive dissipation with respect to the physical time at a specific location. The analysis forms an innovative extension of the harmonic balancing method commonly used in nonlinear oscillation and vibration systems such as the Duffing oscillator and van der Pol oscillator. Besides introducing coupling of linearized governing equation and harmonic balancing method, the method of averaging is also employed to obtain accurate higher-order analytical approximate solutions. Unlike the classical harmonic balance method without analytical solution, the approach not only considers energy dissipation but also presents simple linear algebraic approximate solutions. In addition, general approximate analytical expressions for the dispersion relations are also established. The presence of a small perturbed parameter is not required.

  19. NONLINEAR TRANSIENT RESPONSE OF STAY CABLE WITH VISCOELASTICITY DAMPER IN CABLE-STAYED BRIDGE

    Institute of Scientific and Technical Information of China (English)

    陈水生; 孙炳楠; 冯义卿

    2004-01-01

    Taking the bending stiffness,static sag,and geometric non-linearity into consideration,the space nonlinear vibration partial differential equations were derived.The partical differential equations were discretized in space by finite center difference approximation,then the nonlinear ordinal differential equations were obtained.A hybrid method involving the combination of the Newmark method and the pseudo-force strategy was proposed to analyze the nonlinear transient response of the inclined cable-dampers system subjected to arbitrary dynamic loading.As an example,two typical stay cables were calculated by the present method.The results reveal both the validity and the deficiency of the viscoelasticity damper for vibration control of stay cables.The efficiency and accuracy of the proposed method is also verified by comparing the results with those obtained by using Runge-Kutta direct integration technique.A new time history analysis method is provided for the research on the stay cable vibration control.

  20. Signal transmission from motor axons to group Ia muscle spindle afferents: frequency responses and second-order non-linearities.

    Science.gov (United States)

    Windhorst, U; Kokkoroyiannis, T; Laouris, Y; Meyer-Lohmann, J

    1994-03-01

    Spinal recurrent inhibition via Renshaw cells and proprioceptive feedback via skeletal muscle and muscle spindle afferents have been hypothesized to constitute a compound feedback system [Windhorst (1989) Afferent Control of Posture and Locomotion; Windhorst (1993) Robots and Biological Systems--Towards a New Bionics]. To assess their detailed functions, it is necessary to know their dynamic characteristics. Previously we have extensively described the properties of signal transmission from motor axons to Renshaw cells using random motor axon stimulation and data analysis methods based thereupon. Using the same methods, we here compare these properties, in the cat, with those between motor axons and group Ia muscle spindle afferents in terms of frequency responses and nonlinear features. The frequency responses depend on the mean rate (carrier rate) of activation of motor axons and on the strength of coupling between motor units and spindles. In general, they are those of a second-order low-pass system with a cut-off at fairly low frequencies. This contrasts with the dynamics of motor axon-Renshaw cell couplings which are those of a much broader band-pass with its peak in the range of c. 2-15 Hz [Christakos (1987) Neuroscience 23, 613-623]. The second-order non-linearities in motor unit-muscle spindle signal lines are much more diverse than those in motor axon-Renshaw cell couplings. Although the average strength of response declines with mean stimulus rate in both subsystems, there is no systematic relationship between the amount of non-linearity and the average response in the former, whilst there is in the latter. The qualitative appearance of motor unit-muscle spindle non-linearities was complicated as was the average response to motor unit twitches. Thus, whilst Renshaw cells appear to dynamically reflect motor output rather faithfully, muscle spindles seem to signal local muscle fibre length changes and their dynamics. This would be consistent with the

  1. Nonlinear Local Bending Response and Bulging Factors for Longitudinal Cracks in Pressurized Cylindrical Shells

    Science.gov (United States)

    Rose, Cheryl A.; Young, Richard D.; Starnes, James H., Jr.

    1999-01-01

    Results of a geometrically nonlinear finite element parametric study to determine curvature correction factors or "bulging factors" that account for increased stresses due to curvature for longitudinal cracks in unstiffened pressurized cylindrical shells are presented. Geometric parameters varied in the study include the shell radius, the shell wall thickness, and the crack length. The major results are presented in graphs of the bulging factor as a function of the applied load and as a function of geometric parameters that include the shell radius, the shell thickness and the crack length. The computed bulging factors are compared with solutions based on linear shallow shell theory, and with semi-empirical solutions that approximately account for the nonlinear deformation in the vicinity of the crack. The effect of biaxial loads on the computed bulging factors is also discussed.

  2. Nonlinear system stochastic response determination via fractional equivalent linearization and Karhunen-Loève expansion

    Science.gov (United States)

    Dai, Hongzhe; Zheng, Zhibao; Wang, Wei

    2017-08-01

    In this paper, a novel fractional equivalent linearization (EL) approach is developed by incorporating a fractional derivative term into the classical linearization equation. Due to the introduction of the fractional derivative term, the accuracy of the new linearization is improved, illustrated by a Duffing oscillator that is subjected to a harmonic excitation. Furthermore, a new method for solving stochastic response of nonlinear SDOF system is developed by combining Karhunen-Loève (K-L) expansion and fractional EL. The method firstly decomposes the stochastic excitation in terms of a set of random variables and deterministic sub-excitations using K-L expansion, and then construct sub-fractional equivalent linear system according to each sub-excitation by fractional EL, the response of the original nonlinear system is finally approximated as the weighed summation of the deterministic response of each sub-system multiplied by the corresponding random variable. The random nature of the final response comes from the set of random variables that is obtained in K-L expansion. In this way, the stochastic response computation is converted to a set of deterministic response analysis problems. The effectiveness of the developed method is demonstrated by a Duffing oscillator that is subjected to stochastic excitation modeled by Winner process. The results are compared with the numerical method and Monte Carlo simulation (MCS).

  3. Green functions and Langevin equations for nonlinear diffusion equations: A comment on ‘Markov processes, Hurst exponents, and nonlinear diffusion equations’ by Bassler et al.

    Science.gov (United States)

    Frank, T. D.

    2008-02-01

    We discuss two central claims made in the study by Bassler et al. [K.E. Bassler, G.H. Gunaratne, J.L. McCauley, Physica A 369 (2006) 343]. Bassler et al. claimed that Green functions and Langevin equations cannot be defined for nonlinear diffusion equations. In addition, they claimed that nonlinear diffusion equations are linear partial differential equations disguised as nonlinear ones. We review bottom-up and top-down approaches that have been used in the literature to derive Green functions for nonlinear diffusion equations and, in doing so, show that the first claim needs to be revised. We show that the second claim as well needs to be revised. To this end, we point out similarities and differences between non-autonomous linear Fokker-Planck equations and autonomous nonlinear Fokker-Planck equations. In this context, we raise the question whether Bassler et al.’s approach to financial markets is physically plausible because it necessitates the introduction of external traders and causes. Such external entities can easily be eliminated when taking self-organization principles and concepts of nonextensive thermostatistics into account and modeling financial processes by means of nonlinear Fokker-Planck equations.

  4. Nonlinear Dynamic Analysis of Functionally Graded Timoshenko Beam fixed to a Rotating Hub

    Science.gov (United States)

    Panigrahi, B.; Pohit, G.

    2016-08-01

    The present work accounts centrifugal stiffening effect on the nonlinear vibration response of an FGM Timoshenko beam. Analysis is carried out for a cantilever beam fixed with a rotating hub. Material is assumed to have a gradation relation along the depth of the beam. Centrifugal force and axial displacement raised due to the rotating hub is incorporated in the strain energy equations. Subsequent to this, an iterative technique is employed to obtain amplitude dependent vibration response of a rotating Timoshenko beam while material follows a gradation relation along the beam depth. Main objective of the work is to obtain the effects of rotational speeds, hub radius, and different gradation relations on the linear as well as nonlinear frequencies and mode shapes.

  5. Microscopic investigations of the terahertz and the extreme nonlinear optical response of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Golde, Daniel

    2010-06-22

    In the major part of this Thesis, we discuss the linear THz response of semiconductor nanostructures based on a microscopic theory. Here, two different problems are investigated: intersubband transitions in optically excited quantum wells and the THz plasma response of two-dimensional systems. In the latter case, we analyze the response of correlated electron and electron-hole plasmas. Extracting the plasma frequency from the linear response, we find significant deviations from the commonly accepted two-dimensional plasma frequency. Besides analyzing the pure plasma response, we also consider an intermediate regime where the response of the electron-hole plasma consists of a mixture of plasma contributions and excitonic transitions. A quantitative experiment-theory comparison provides novel insights into the behavior of the system at the transition from one regime to the other. The discussion of the intersubband transitions mainly focuses on the coherent superposition of the responses from true THz transitions and the ponderomotively accelerated carriers. We present a simple method to directly identify ponderomotive effects in the linear THz response. Apart from that, the excitonic contributions to intersubband transitions are investigated. The last part of the present Thesis deals with a completely different regime. Here, the extreme nonlinear optical response of low-dimensional semiconductor structures is discussed. Formally, extreme nonlinear optics describes the regime of light-matter interaction where the exciting field is strong enough such that the Rabi frequency is comparable to or larger than the characteristic transition frequency of the investigated system. Here, the Rabi frequency is given by the product of the electrical field strength and the dipole-matrix element of the respective transition. Theoretical investigations have predicted a large number of novel nonlinear effects arising for such strong excitations. Some of them have been observed in

  6. Scaling Laws for the Response of Nonlinear Elastic Media with Implications for Cell Mechanics

    Science.gov (United States)

    Shokef, Yair; Safran, Samuel A.

    2012-04-01

    We show how strain stiffening affects the elastic response to internal forces, caused either by material defects and inhomogeneities or by active forces that molecular motors generate in living cells. For a spherical force dipole in a material with a strongly nonlinear strain energy density, strains change sign with distance, indicating that, even around a contractile inclusion or molecular motor, there is radial compression; it is only at a long distance that one recovers the linear response in which the medium is radially stretched. Scaling laws with irrational exponents relate the far-field renormalized strain to the near-field strain applied by the inclusion or active force.

  7. Robust Predictive Functional Control for Flight Vehicles Based on Nonlinear Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Yinhui Zhang

    2015-01-01

    Full Text Available A novel robust predictive functional control based on nonlinear disturbance observer is investigated in order to address the control system design for flight vehicles with significant uncertainties, external disturbances, and measurement noise. Firstly, the nonlinear longitudinal dynamics of the flight vehicle are transformed into linear-like state-space equations with state-dependent coefficient matrices. And then the lumped disturbances are considered in the linear structure predictive model of the predictive functional control to increase the precision of the predictive output and resolve the intractable mismatched disturbance problem. As the lumped disturbances cannot be derived or measured directly, the nonlinear disturbance observer is applied to estimate the lumped disturbances, which are then introduced to the predictive functional control to replace the unknown actual lumped disturbances. Consequently, the robust predictive functional control for the flight vehicle is proposed. Compared with the existing designs, the effectiveness and robustness of the proposed flight control are illustrated and validated in various simulation conditions.

  8. Application of the R-Functions Theory to Problems of Nonlinear Dynamics of Laminated Composite Shallow Shells and Plates: Review

    OpenAIRE

    2016-01-01

    A review of studies performed using the R-functions theory to solve problems of nonlinear dynamics of plates and shallow shells is presented. The systematization of results and studies for the problems of free and parametric vibrations and for problems of static and dynamic stability is fulfilled. Expansion of the developed original method of discretization for nonlinear movement equations on new classes of nonlinear problems is shown. These problems include researches of vibratio...

  9. Response functions after a quantum quench

    Science.gov (United States)

    Marcuzzi, Matteo; Gambassi, Andrea

    2014-04-01

    The response of physical systems to external perturbations can be used to probe both their equilibrium and nonequilibrium dynamics. While response and correlation functions are related in equilibrium by fluctuation-dissipation theorems, out of equilibrium they provide complementary information on the dynamics. In the past years, a method has been devised to map the quantum dynamics of an isolated extended system after a quench onto a static theory with boundaries in imaginary time; up to now, however, the focus was entirely on symmetrized correlation functions. Here we provide a prescription which, in principle, allows one to retrieve the whole set of relevant dynamical quantities characterizing the evolution, including linear response functions. We illustrate this construction with some relevant examples, showing in the process the emergence of light-cone effects similar to those observed in correlation functions.

  10. Evolution of Channels Draining Mount St. Helens: Linking Non-Linear and Rapid, Threshold Responses

    Science.gov (United States)

    Simon, A.

    2010-12-01

    The catastrophic eruption of Mount St. Helens buried the valley of the North Fork Toutle River (NFT) to a depth of up to 140 m. Initial integration of a new drainage network took place episodically by the “filling and spilling” (from precipitation and seepage) of depressions formed during emplacement of the debris avalanche deposit. Channel incision to depths of 20-30 m occurred in the debris avalanche and extensive pyroclastic flow deposits, and headward migration of the channel network followed, with complete integration taking place within 2.5 years. Downstream reaches were converted from gravel-cobble streams with step-pool sequences to smoothed, infilled channels dominated by sand-sized materials. Subsequent channel evolution was dominated by channel widening with the ratio of changes in channel width to changes in channel depth ranging from about 60 to 100. Widening resulted in significant adjustment of hydraulic variables that control sediment-transport rates. For a given discharge over time, flow depths were reduced, relative roughness increased and flow velocity and boundary shear stress decreased non-linearly. These changes, in combination with coarsening of the channel bed with time resulted in systematically reduced rates of degradation (in upstream reaches), aggradation (in downstream reaches) and sediment-transport rates through much of the 1990s. Vertical adjustments were, therefore, easy to characterize with non-linear decay functions with bed-elevation attenuating with time. An empirical model of bed-level response was then created by plotting the total dimensionless change in elevation against river kilometer for both initial and secondary vertical adjustments. High magnitude events generated from the generated from upper part of the mountain, however, can cause rapid (threshold) morphologic changes. For example, a rain-on-snow event in November 2006 caused up to 9 m of incision along a 6.5 km reach of Loowit Creek and the upper NFT. The event

  11. Coupled large earthquakes in the Baikal rift system: Response to bifurcations in nonlinear resonance hysteresis

    Directory of Open Access Journals (Sweden)

    Anatoly V. Klyuchevskii

    2013-11-01

    Full Text Available The current lithospheric geodynamics and tectonophysics in the Baikal rift are discussed in terms of a nonlinear oscillator with dissipation. The nonlinear oscillator model is applicable to the area because stress change shows up as quasi-periodic inharmonic oscillations at rifting attractor structures (RAS. The model is consistent with the space-time patterns of regional seismicity in which coupled large earthquakes, proximal in time but distant in space, may be a response to bifurcations in nonlinear resonance hysteresis in a system of three oscillators corresponding to the rifting attractors. The space-time distribution of coupled MLH > 5.5 events has been stable for the period of instrumental seismicity, with the largest events occurring in pairs, one shortly after another, on two ends of the rift system and with couples of smaller events in the central part of the rift. The event couples appear as peaks of earthquake ‘migration’ rate with an approximately decadal periodicity. Thus the energy accumulated at RAS is released in coupled large events by the mechanism of nonlinear oscillators with dissipation. The new knowledge, with special focus on space-time rifting attractors and bifurcations in a system of nonlinear resonance hysteresis, may be of theoretical and practical value for earthquake prediction issues. Extrapolation of the results into the nearest future indicates the probability of such a bifurcation in the region, i.e., there is growing risk of a pending M ≈ 7 coupled event to happen within a few years.

  12. Nonlinear System Identification via Basis Functions Based Time Domain Volterra Model

    Directory of Open Access Journals (Sweden)

    Yazid Edwar

    2014-07-01

    Full Text Available This paper proposes basis functions based time domain Volterra model for nonlinear system identification. The Volterra kernels are expanded by using complex exponential basis functions and estimated via genetic algorithm (GA. The accuracy and practicability of the proposed method are then assessed experimentally from a scaled 1:100 model of a prototype truss spar platform. Identification results in time and frequency domain are presented and coherent functions are performed to check the quality of the identification results. It is shown that results between experimental data and proposed method are in good agreement.

  13. Nonlinear response of the trap model in the aging regime: exact results in the strong-disorder limit.

    Science.gov (United States)

    Monthus, Cécile

    2004-02-01

    We study the dynamics in the one-dimensional disordered trap model with a broad distribution of trapping times p(tau) approximately 1/tau(1+mu), when an external force is applied from the very beginning at t=0, or only after a waiting time t(w), in the linear as well as in the nonlinear response regime. Using a real-space renormalization procedure that becomes exact in the limit of strong disorder mu-->0, we obtain explicit results for many observables, such as the diffusion front, the mean position, the thermal width, the localization parameters and the two-particle correlation function. In particular, the scaling functions for these observables give access to the complete interpolation between the unbiased case and the directed case. Finally, we discuss in detail the various regimes that exist for the average position in terms of the two times and the external field.

  14. Arsenite Effects on Mitochondrial Bioenergetics in Human and Mouse Primary Hepatocytes Follow a Nonlinear Dose Response

    Directory of Open Access Journals (Sweden)

    Hemantkumar Chavan

    2017-01-01

    Full Text Available Arsenite is a known carcinogen and its exposure has been implicated in a variety of noncarcinogenic health concerns. Increased oxidative stress is thought to be the primary cause of arsenite toxicity and the toxic effect is thought to be linear with detrimental effects reported at all concentrations of arsenite. But the paradigm of linear dose response in arsenite toxicity is shifting. In the present study we demonstrate that arsenite effects on mitochondrial respiration in primary hepatocytes follow a nonlinear dose response. In vitro exposure of primary hepatocytes to an environmentally relevant, moderate level of arsenite results in increased oxidant production that appears to arise from changes in the expression and activity of respiratory Complex I of the mitochondrial proton circuit. In primary hepatocytes the excess oxidant production appears to elicit adaptive responses that promote resistance to oxidative stress and a propensity to increased proliferation. Taken together, these results suggest a nonlinear dose-response characteristic of arsenite with low-dose arsenite promoting adaptive responses in a process known as mitohormesis, with transient increase in ROS levels acting as transducers of arsenite-induced mitohormesis.

  15. The importance of ENSO nonlinearities in tropical pacific response to external forcing

    Science.gov (United States)

    Karamperidou, Christina; Jin, Fei-Fei; Conroy, Jessica L.

    2016-12-01

    Tropical Pacific climate varies at interannual, decadal and centennial time scales, and exerts a significant influence on global climate. Climate model projections exhibit a large spread in the magnitude and pattern of tropical Pacific warming in response to greenhouse-gas forcing. Here, we show that part of this spread can be explained by model biases in the simulation of interannual variability, namely the El Niño/Southern Oscillation (ENSO) phenomenon. We show that models that exhibit strong ENSO nonlinearities simulate a more accurate balance of ENSO feedbacks, and their projected tropical Pacific sea surface temperature warming pattern is closely linked to their projected ENSO response. Within this group, models with ENSO nonlinearity close to observed project stronger warming of the cold tongue, whereas models with stronger than observed ENSO nonlinearity project a more uniform warming of the tropical Pacific. These differences are also manifest in the projected changes of precipitation patterns, thereby highlighting that ENSO simulation biases may lead to potentially biased projections in long-term precipitation trends, with great significance for regional climate adaptation strategies.

  16. $v_4$, $v_5$, $v_6$, $v_7$: nonlinear hydrodynamic response versus LHC data

    CERN Document Server

    Yan, Li

    2015-01-01

    Higher harmonics of anisotropic flow ($v_n$ with $n\\ge 4$) in heavy-ion collisions can be measured either with respect to their own plane, or with respect to a plane constructed using lower-order harmonics. We explain how such measurements are related to event-plane correlations. We show that CMS data on $v_4$ and $v_6$ are compatible with ATLAS data on event-plane correlations. If one assumes that higher harmonics are the superposition of non-linear and linear responses, then the linear and non-linear parts can be isolated under fairly general assumptions. By combining analyses of higher harmonics with analyses of $v_2$ and $v_3$, one can eliminate the uncertainty from initial conditions and define quantities that only involve nonlinear hydrodynamic response coefficients. Experimental data on $v_4$, $v_5$ and $v_6$ are in good agreement with hydrodynamic calculations. We argue that $v_7$ can be measured with respect to elliptic and triangular flow. We present predictions for $v_7$ versus centrality in Pb-Pb ...

  17. Analysis on nonlinear wind-induced dynamic response of membrane roofs with aerodynamic effects

    Institute of Scientific and Technical Information of China (English)

    LI Qing-xiang; SUN Bing-nan

    2008-01-01

    Based on the characteristics of membrane structures and the air influence factors, this paper presen-ted a method to simulate the air aerodynamic force effects including the added air mass, the acoustic radiation damping and the pneumatic stiffness. The infinite air was modeled using the acoustic fluid element of commer-cial FE software and the finite element membrane roof models were coupled with fluid models. A comparison be-tween the results obtained by IrE computation and those obtained by the vibration experiment for a cable-mem-brane verified the validity of the method. Furthermore, applying the method to a flat membrane roof structure and using its wind tunnel test results, the analysis of nonlinear wind-induced dynamic responses for such geo-metrically nonlinear roofs, including the roof-air coupled model was performed. The result shows that the air has large influence on vibrating membrane roofs according to results of comparing the nodal time-history displace-ments, accelerations and stress of the two different cases. Meantime, numerical studies show that the method developed can successfully solve the nonlinear wind-induced dynamic response of the membrane roof with aero-dynamic effects.

  18. Robust Optimization Using Supremum of the Objective Function for Nonlinear Programming Problems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Se Jung; Park, Gyung Jin [Hanyang University, Seoul (Korea, Republic of)

    2014-05-15

    In the robust optimization field, the robustness of the objective function emphasizes an insensitive design. In general, the robustness of the objective function can be achieved by reducing the change of the objective function with respect to the variation of the design variables and parameters. However, in conventional methods, when an insensitive design is emphasized, the performance of the objective function can be deteriorated. Besides, if the numbers of the design variables are increased, the numerical cost is quite high in robust optimization for nonlinear programming problems. In this research, the robustness index for the objective function and a process of robust optimization are proposed. Moreover, a method using the supremum of linearized functions is also proposed to reduce the computational cost. Mathematical examples are solved for the verification of the proposed method and the results are compared with those from the conventional methods. The proposed approach improves the performance of the objective function and its efficiency.

  19. Order reduction and efficient implementation of nonlinear nonlocal cochlear response models.

    Science.gov (United States)

    Filo, Maurice; Karameh, Fadi; Awad, Mariette

    2016-12-01

    The cochlea is an indispensable preliminary processing stage in auditory perception that employs mechanical frequency-tuning and electrical transduction of incoming sound waves. Cochlear mechanical responses are shown to exhibit active nonlinear spatiotemporal response dynamics (e.g., otoacoustic emission). To model such phenomena, it is often necessary to incorporate cochlear fluid-membrane interactions. This results in both excessively high-order model formulations and computationally intensive solutions that limit their practical use in simulating the model and analyzing its response even for simple single-tone inputs. In order to address these limitations, the current work employs a control-theoretic framework to reformulate a nonlinear two-dimensional cochlear model into discrete state space models that are of considerably lower order (factor of 8) and are computationally much simpler (factor of 25). It is shown that the reformulated models enjoy sparse matrix structures which permit efficient numerical manipulations. Furthermore, the spatially discretized models are linearized and simplified using balanced transformation techniques to result in lower-order (nonlinear) realizations derived from the dominant Hankel singular values of the system dynamics. Accuracy and efficiency of the reduced-order reformulations are demonstrated under the response to two fixed tones, sweeping tones and, more generally, a brief speech signal. The corresponding responses are compared to those produced by the original model in both frequency and spatiotemporal domains. Although carried out on a specific instance of cochlear models, the introduced framework of control-theoretic model reduction could be applied to a wide class of models that address the micro- and macro-mechanical properties of the cochlea.

  20. Comparisons of linear and nonlinear plasma response models for non-axisymmetric perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Turnbull, A. D.; Ferraro, N. M.; Lao, L. L.; Lanctot, M. J. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Izzo, V. A. [University of California-San Diego, 9500 Gilman Dr., La Jolla, California 92093-0417 (United States); Lazarus, E. A.; Hirshman, S. P. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 (United States); Park, J.-K.; Lazerson, S.; Reiman, A. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States); Cooper, W. A. [Association Euratom-Confederation Suisse, Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Liu, Y. Q. [Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom); Turco, F. [Columbia University, 116th St and Broadway, New York, New York 10027 (United States)

    2013-05-15

    With the installation of non-axisymmetric coil systems on major tokamaks for the purpose of studying the prospects of ELM-free operation, understanding the plasma response to the applied fields is a crucial issue. Application of different response models, using standard tools, to DIII-D discharges with applied non-axisymmetric fields from internal coils, is shown to yield qualitatively different results. The plasma response can be treated as an initial value problem, following the system dynamically from an initial unperturbed state, or from a nearby perturbed equilibrium approach, and using both linear and nonlinear models [A. D. Turnbull, Nucl. Fusion 52, 054016 (2012)]. Criteria are discussed under which each of the approaches can yield a valid response. In the DIII-D cases studied, these criteria show a breakdown in the linear theory despite the small 10{sup −3} relative magnitude of the applied magnetic field perturbations in this case. For nonlinear dynamical evolution simulations to reach a saturated nonlinear steady state, appropriate damping mechanisms need to be provided for each normal mode comprising the response. Other issues arise in the technical construction of perturbed flux surfaces from a displacement and from the presence of near nullspace normal modes. For the nearby equilibrium approach, in the absence of a full 3D equilibrium reconstruction with a controlled comparison, constraints relating the 2D system profiles to the final profiles in the 3D system also need to be imposed to assure accessibility. The magnetic helicity profile has been proposed as an appropriate input to a 3D equilibrium calculation and tests of this show the anticipated qualitative behavior.

  1. Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package

    CERN Document Server

    Donges, Jonathan F; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik V; Marwan, Norbert; Dijkstra, Henk A; Kurths, Jürgen

    2015-01-01

    We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence qua...

  2. Post-Nonlinear Sparse Component Analysis Using Single-Source Zones and Functional Data Clustering

    CERN Document Server

    Puigt, Matthieu; Mouchtaris, Athanasios

    2012-01-01

    In this paper, we introduce a general extension of linear sparse component analysis (SCA) approaches to postnonlinear (PNL) mixtures. In particular, and contrary to the state-of-art methods, our approaches use a weak sparsity source assumption: we look for tiny temporal zones where only one source is active. We investigate two nonlinear single-source confidence measures, using the mutual information and a local linear tangent space approximation (LTSA). For this latter measure, we derive two extensions of linear single-source measures, respectively based on correlation (LTSA-correlation) and eigenvalues (LTSA-PCA). A second novelty of our approach consists of applying functional data clustering techniques to the scattered observations in the above single-source zones, thus allowing us to accurately estimate them.We first study a classical approach using a B-spline approximation, and then two approaches which locally approximate the nonlinear functions as lines. Finally, we extend our PNL methods to more gener...

  3. Identification of Wiener systems with nonlinearity being piecewise-linear function

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Identification of the Wiener system with the nonlinear block being a piecewise-linear function is considered in the paper, generalizing the results given by H. E. Chen to the case of noisy observation. Recursive algorithms are given for estimating all unknown parameters contained in the system, and their strong consistency is proved. The estimation method is similar to that used by H. E. Chen for Hammerstein systems with the same nonlinearity. However, the assumption imposed by H. E. Chen on the availability of an upper bound for the nonsmooth points of the piecewise-linear function has been removed in this paper with the help of designing an additional algorithm for estimating the upper bound.

  4. Nonlinear static and dynamic responses of an electrically actuated viscoelastic microbeam

    Institute of Scientific and Technical Information of China (English)

    Y. M. Fu; J. Zhang

    2009-01-01

    On the basis of the Euler-Bernoulli hypothesis,nonlinear static and dynamic responses of a viscoelastic microbeam under two kinds of electric forces [a purely direct current (DC) and a combined current composed of a DC and an alternating current] are studied. By using Taylor series expansion, a governing equation of nonlinear integro-differential type is derived, and numerical analyses are performed.When a purely DC is applied, there exist an instantaneous pull-in voltage and a durable pull-in voltage of which the physical meanings are also given, whereas under an applied combined current, the effect of the element relaxation coefficient on the dynamic pull-in phenomenon is observed where the largest Lyapunov exponent is taken as a criterion for the dynamic pull-in instability of viscoelastic microbeams.

  5. STEADY-STATE RESPONSES AND THEIR STABILITY OF NONLINEAR VIBRATION OF AN AXIALLY ACCELERATING STRING

    Institute of Scientific and Technical Information of China (English)

    吴俊; 陈立群

    2004-01-01

    The steady-state transverse vibration of an axially moving string with geometric nonlinearity was investigated. The transport speed was assumed to be a constant mean speed with small harmonic variations. The nonlinear partial-differential equation that governs the transverse vibration of the string was derived by use of the Hamilton principle. The method of multiple scales was applied directly to the equation. The solvability condition of eliminating the secular terms was established. Closed form solutions for the amplitude and the existence conditions of nontrivial steady-state response of the two-to-one parametric resonance were obtained. Some numerical examples showing effects of the mean transport speed, the amplitude and the frequency of speed variation were presented. The Liapunov linearized stability theory was employed to derive the instability conditions of the trivial solution and the nontrivial solutions for the two-to-one parametric resonance. Some numerical examples highlighting influences of the related parameters on the instability conditions were presented.

  6. A BSDE approach to Nash equilibrium payoffs for stochastic differential games with nonlinear cost functionals

    OpenAIRE

    Lin, Qian

    2011-01-01

    In this paper, we study Nash equilibrium payoffs for nonzero-sum stochastic differential games via the theory of backward stochastic differential equations. We obtain an existence theorem and a characterization theorem of Nash equilibrium payoffs for nonzero-sum stochastic differential games with nonlinear cost functionals defined with the help of a doubly controlled backward stochastic differential equation. Our results extend former ones by Buckdahn, Cardaliaguet and Rainer (2004) and are b...

  7. Small x nonlinear evolution with impact parameter and the structure function data

    CERN Document Server

    Berger, Jeffrey

    2011-01-01

    Nonlinear evolution at small values of Bjorken x is evaluated numerically using the dipole framework with impact parameter dependence. Confinement effects are modeled by including masses into the evolution. Sensitivity of the predictions due to different prescriptions of the cuts on large dipole sizes is investigated. Running coupling effects are taken into account in this analysis. Finally, a comparison with the inclusive data from HERA on the structure functions F2 and FL is performed.

  8. Direct adaptive control for nonlinear uncertain system based on control Lyapunov function method

    Institute of Scientific and Technical Information of China (English)

    Chen Yimei; Han Zhengzhi; Tang Houjun

    2006-01-01

    The problem of adaptive stabilization of a class of multi-input nonlinear systems with unknown parameters both in the state vector-field and the input vector-field has been considered. By employing the control Lyapunov function method, a direct adaptive controller is designed to complete the global adaptive stability of the uncertain system. At the same time, the controller is also verified to possess the optimality. Example and simulations are provided to illustrate the effectiveness of the proposed method.

  9. A New Maximum Entropy Probability Function for the Surface Elevation of Nonlinear Sea Waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-zhen; XU De-lun

    2005-01-01

    Based on the maximum entropy principle a new probability density function (PDF) f(x) for the surface elevation of nonlinear sea waves, X, is derived through performing a coordinate transform of X and solving a variation problem subject to three constraint conditions of f(x). Compared with the maximum entropy PDFs presented previously, the new PDF has the following merits: (1) it has four parameters to be determined and hence can give more refined fit to observed data and has wider suitability for nonlinear waves in different conditions; (2) these parameters are expressed in terms of distribution moments of X in a relatively simple form and hence are easy to be determined from observed data; (3) the PDF is free of the restriction of weak nonlinearity and possible to be used for sea waves in complicated conditions, such as those in shallow waters with complicated topography; and (4) the PDF is simple in form and hence convenient for theoretical and practical uses. Laboratory wind-wave experiments have been conducted to test the competence of the new PDF for the surface elevation of nonlinear waves. The experimental results manifest that the new PDF gives somewhat better fit to the laboratory wind-wave data than the well-known Gram-Charlier PDF and beta PDF.

  10. Experimental damage detection of cracked beams by using nonlinear characteristics of forced response

    Science.gov (United States)

    Andreaus, U.; Baragatti, P.

    2012-08-01

    Experimental evaluation of the flexural forced vibrations of a steel cantilever beam having a transverse surface crack extending uniformly along the width of the beam was performed, where an actual fatigue crack was introduced instead - as usual - of a narrow slot. The nonlinear aspects of the dynamic response of the beam under harmonic excitation were considered and the relevant quantitative parameters were evaluated, in order to relate the nonlinear resonances to the presence and size of the crack. To this end, the existence of sub- and super-harmonic components in the Fourier spectra of the acceleration signals was evidenced, and their amplitudes were quantified. In particular, the acceleration signals were measured in different positions along the beam axis and under different forcing levels at the beam tip. The remarkable relevance of the above mentioned nonlinear characteristics, and their substantial independence on force magnitude and measurement point were worthily noted in comparison with the behavior of the intact beam. Thus, a reliable method of damage detection was proposed which was based on simple tests requiring only harmonically forcing and acceleration measuring in any point non-necessarily near the crack. Then, the time-history of the acceleration recorded at the beam tip was numerically processed in order to obtain the time-histories of velocity and displacement. The nonlinear features of the forced response were described and given a physical interpretation in order to define parameters suitable for damage detection. The efficiency of such parameters was discussed with respect to the their capability of detecting damage and a procedure for damage detection was proposed which was able to detect even small cracks by using simple instruments. A finite element model of the cantilever beam was finally assembled and tuned in order to numerically simulate the results of the experimental tests.

  11. The non-interior continuation methods for solving the P0 function nonlinear complementarity problem

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, we propose a new smooth function that possesses a property not satisfied by the existing smooth functions. Based on this smooth function, we discuss the existence and continuity of the smoothing path for solving the P0 function nonlinear complementarity problem (NCP). Using the characteristics of the new smooth function, we investigate the boundedness of the iteration sequence generated by the non-interior continuation methods for solving the P0 function NCP under the assumption that the solution set of the NCP is nonempty and bounded. We show that the assumption that the solution set of the NCP is nonempty and bounded is weaker than those required by a few existing continuation methods for solving the NCP.

  12. The nonlinear North Atlantic-Arctic ocean response to CO2 forcing

    Science.gov (United States)

    van der Linden, Eveline C.; Bintanja, Richard; Hazeleger, Wilco

    2017-04-01

    Most climate models project an increase in oceanic energy transport towards high northern latitudes in future climate projections, but the physical mechanisms are not yet fully understood. To obtain a more fundamental understanding of the processes that cause the ocean heat transport to increase, we carried out a set of sensitivity experiments using a coupled atmosphere-ocean general circulation model. Within these experiments, atmospheric CO2 levels are instantaneously set to one-fourth to four times current values. These model integrations, each with a length of 550 years, result in five considerably different quasi-equilibrium climate states. Our simulations show that poleward ocean heat transport in the Atlantic sector of the Arctic at 70°N increases from 0.03 PW in the coldest climate state to 0.2 PW in the warmest climate state. This increase is caused primarily by changes in sea ice cover, in horizontal ocean currents owing to anomalous winds in response to sea ice changes, and in ocean advection of thermal anomalies. Surprisingly, at subpolar latitudes, the subpolar gyre is found to weaken toward both the warmer and colder climates, relative to the current climate. This nonlinear response is caused by a complex interplay between seasonal sea ice melt, the near-surface wind response to sea ice changes, and changes in the density-driven circulation. The Atlantic Meridional Overturning Circulation (AMOC) and its associated heat transport even oppose the total ocean heat transport towards the Arctic in the warmest climate. Going from warm to cold climates, or from high to low CO2 concentrations, the strength of the AMOC initially increases, but then declines towards the coldest climate, implying a nonlinear AMOC-response to CO2-induced climate change. Evidently, the North Atlantic-Arctic ocean heat transport depends on an interplay between various (remote) coupled ocean-atmosphere-sea ice mechanisms that respond in a nonlinear way to climate change.

  13. A temperature response function for modeling leaf growth and development of the African violet (Saintpaulia ionantha Wendl.

    Directory of Open Access Journals (Sweden)

    Streck Nereu Augusto

    2004-01-01

    Full Text Available Response functions used in crop simulation models are usually different for different physiological processes and cultivars, resulting in many unknown coefficients in the response functions. This is the case of African violet (Saintpaulia ionantha Wendl., where a generalized temperature response for leaf growth and development has not been developed yet. The objective of this study was to develop a generalized nonlinear temperature response function for leaf appearance rate and leaf elongation rate in African violet. The nonlinear function has three coefficients, which are the cardinal temperatures (minimum, optimum, and maximum temperatures. These coefficients were defined as 10, 24, and 33ºC, based on the cardinal temperatures of other tropical species. Data of temperature response of leaf appearance rate and leaf elongation rate in African violet, cultivar Utah, at different light levels, which are from published research, were used as independent data for evaluating the performance of the nonlinear temperature response function. The results showed that a generalized nonlinear response function can be used to describe the temperature response of leaf growth and development in African violet. These results imply that a reduction in the number of input data required in African violet simulation models is possible.

  14. Nonlinear flexural response of a slender cantilever beam of constant thickness and linearly-varying width to a primary resonance excitation

    Science.gov (United States)

    Silva, Clodoaldo J.; Daqaq, Mohammed F.

    2017-02-01

    Despite the shear amount of research studies on nonlinear flexural dynamics of cantilever beams, very few efforts address the practical geometry involving a constant thickness and linearly-varying width. This stems from the nature of the associated linear eigenvalue problem which cannot be easily solved in closed form. In this paper, we present a closed-form solution to this particular linear eigenvalue problem in the form of a general Meijer-G differential equation for which a solution is readily available in the shape of the Meijer-G functions. Using this approach, the exact linear modal frequencies and shapes are obtained and used in the discretization of the nonlinear partial-differential equation describing the dynamics of the system. The discretized system of ordinary-differential equations is then solved using the method of multiple scales to obtain an approximate analytical solution describing the primary resonance behavior of a given vibration mode. An analytical expression for the modal effective nonlinearity is obtained and used to analyze the influence of the beam's tapering on the nonlinear primary resonance behavior of the response (softening/hardening). Results are then compared to a finite element (FE) solution of the linear eigenvalue problem in which the modal shapes obtained using the FE method are fit into a set of orthogonal polynomial functions and used to discretize the nonlinear problem. It is shown that, while the modal frequencies obtained using the FE method approximate those obtained analytically with negligible error (less than 1%), there is a substantial error in the resulting estimates of the modal effective nonlinearity. This indicates that, even negligible errors in the approximate solution of the linear problem, can propagate to become significant when analyzing the nonlinear problem further reinforcing the importance of the exact solution.

  15. Dynamic Responsive Systems for Catalytic Function.

    Science.gov (United States)

    Vlatković, Matea; Collins, Beatrice S L; Feringa, Ben L

    2016-11-21

    Responsive systems have recently gained much interest in the scientific community in attempts to mimic dynamic functions in biological systems. One of the fascinating potential applications of responsive systems lies in catalysis. Inspired by nature, novel responsive catalytic systems have been built that show analogy with allosteric regulation of enzymes. The design of responsive catalytic systems allows control of catalytic activity and selectivity. In this Review, advances in the field over the last four decades are discussed and a comparison is made amongst the dynamic responsive systems based on the principles underlying their catalytic mechanisms. The catalyst systems are sorted according to the triggers used to achieve control of the catalytic activity and the distinct catalytic reactions illustrated. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A New Generalization of Extended Tanh-Function Method for Solving Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    ZHENG Xue-Dong; CHEN Yong; LI Biao; ZHANG Hong-Qing

    2003-01-01

    Making use of a new generalized ansatze and a proper transformation, we generalized the extended tanh-function method. Applying the generalized method with the aid of Maple, we consider some nonlinear evolution equations.As a result, we can successfully recover the previously known solitary wave solutions that had been found by the extendedtanh-function method and other more sophisticated methods. More importantly, for some equations, we also obtain othernew and more general solutions at the same time. The results include kink-profile solitary-wave solutions, bell-profilesolitary-wave solutions, periodic wave solutions, rational solutions, singular solutions and new formal solutions.

  17. Function projective synchronization between integer-order and stochastic fractional-order nonlinear systems.

    Science.gov (United States)

    Geng, Lingling; Yu, Yongguang; Zhang, Shuo

    2016-09-01

    In this paper, the function projective synchronization between integer-order and stochastic fractional-order nonlinear systems is investigated. Firstly, according to the stability theory of fractional-order systems and tracking control, a controller is designed. At the same time, based on the orthogonal polynomial approximation, the method of transforming stochastic error system into an equivalent deterministic system is given. Thus, the stability of the stochastic error system can be analyzed through its equivalent deterministic one. Finally, to demonstrate the effectiveness of the proposed scheme, the function projective synchronization between integer-order Lorenz system and stochastic fractional-order Chen system is studied.

  18. Theory of heart biomechanics, biophysics, and nonlinear dynamics of cardiac function

    CERN Document Server

    Hunter, Peter; McCulloch, Andrew

    1991-01-01

    In recent years there has been a growth in interest in studying the heart from the perspective of the physical sciences: mechanics, fluid flow, electromechanics. This volume is the result of a workshop held in July 1989 at the Institute for Nonlinear Sciences at the University of California at San Diego that brought together scientists and clinicians with graduate students and postdoctoral fellows who shared an interest in the heart. The chapters were prepared by the invited speakers as didactic reviews of their subjects but also include the structure, mechanical properties, and function of the heart and the myocardium, electrical activity of the heart and myocardium, and mathematical models of heart function.

  19. On tail behavior of nonlinear autoregressive functional conditional heteroscedastic model with heavy-tailed innovations

    Institute of Scientific and Technical Information of China (English)

    PAN; Jiazhu; WU; Guangxu

    2005-01-01

    We study the tail probability of the stationary distribution of nonparametric nonlinear autoregressive functional conditional heteroscedastic (NARFCH) model with heavytailed innovations. Our result shows that the tail of the stationary marginal distribution of an NARFCH series is heavily dependent on its conditional variance. When the innovations are heavy-tailed, the tail of the stationary marginal distribution of the series will become heavier or thinner than that of its innovations. We give some specific formulas to show how the increment or decrement of tail heaviness depends on the assumption on the conditional variance function. Some examples are given.

  20. Nonlinear radiation response of n-doped indium antimonide and indium arsenide in intense terahertz field

    Science.gov (United States)

    Gong, Jiao-Li; Liu, Jin-Song; Chu, Zheng; Yang, Zhen-Gang; Wang, Ke-Jia; Yao, Jian-Quan

    2016-10-01

    The nonlinear radiation responses of two different n-doped bulk semiconductors: indium antimonide (InSb) and indium arsenide (InAs) in an intense terahertz (THz) field are studied by using the method of ensemble Monte Carlo (EMC) at room temperature. The results show that the radiations of two materials generate about 2-THz periodic regular spectrum distributions under a high field of 100 kV/cm at 1-THz center frequency. The center frequencies are enhanced to about 7 THz in InSb, and only 5 THz in InAs, respectively. The electron valley occupancy and the percentage of new electrons excited by impact ionization are also calculated. We find that the band nonparabolicity and impact ionization promote the generation of nonlinear high frequency radiation, while intervalley scattering has the opposite effect. Moreover, the impact ionization dominates in InSb, while impact ionization and intervalley scattering work together in InAs. These characteristics have potential applications in up-convension of THz wave and THz nonlinear frequency multiplication field. Project supported by the National Natural Science Foundation of China (Grant Nos. 11574105 and 61177095), the Natural Science Foundation of Hubei Province, China (Grant Nos. 2012FFA074 and 2013BAA002), the Wuhan Municipal Applied Basic Research Project, China (Grant No. 20140101010009), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2013KXYQ004 and 2014ZZGH021).

  1. Investigation of local nonlinear electrodynamic response of surface states in cuprate superconductors at low temperatures

    Science.gov (United States)

    Mircea, Dragos I.; Anlage, Steven M.

    2004-03-01

    Traditionally, the Andreev Bound States (ABS) have been studied by means of tunneling experiments and global electromagnetic resonant techniques. The zero bias conductance peak and the strong upturn in the penetration depth at low temperature are considered strong evidence for the existence of ABS. The nonlinear inductance arising from the current-dependent penetration depth leads to a nonlinear electrodynamic response that can be probed with our non-resonant near-field microwave microscope [S. C. Lee and S. M. Anlage, Appl. Phys. Lett. 82, 1893 (2003)]. In the experiment, microwave currents have been applied locally along different directions on the surface of YBCO films exposing the (110) surface in order to investigate the angular dependence of the second and third order harmonics generated by the sample. The temperature and the angular dependence measured for different levels of the applied microwave power, will be presented and compared with the theoretical predictions. This low-temperature anisotropic nonlinear behavior is relevant for the study of ABS as well as for identifying the existence of local pairing states with symmetry different from that of the bulk order parameter.

  2. On the persistency of excitation in radial basis function network identification of nonlinear systems.

    Science.gov (United States)

    Gorinevsky, D

    1995-01-01

    Considers radial basis function (RBF) network approximation of a multivariate nonlinear mapping as a linear parametric regression problem. Linear recursive identification algorithms applied to this problem are known to converge, provided the regressor vector sequence has the persistency of excitation (PE) property. The main contribution of this paper is formulation and proof of PE conditions on the input variables. In the RBF network identification, the regressor vector is a nonlinear function of these input variables. According to the formulated condition, the inputs provide PE, if they belong to domains around the network node centers. For a two-input network with Gaussian RBF that have typical width and are centered on a regular mesh, these domains cover about 25% of the input domain volume. The authors further generalize the proposed solution of the standard RBF network identification problem and study affine RBF network identification that is important for affine nonlinear system control. For the affine RBF network, the author formulates and proves a PE condition on both the system state parameters and control inputs.

  3. Nonlinear ionospheric responses to large-amplitude infrasonic-acoustic waves generated by undersea earthquakes

    Science.gov (United States)

    Zettergren, M. D.; Snively, J. B.; Komjathy, A.; Verkhoglyadova, O. P.

    2017-02-01

    Numerical models of ionospheric coupling with the neutral atmosphere are used to investigate perturbations of plasma density, vertically integrated total electron content (TEC), neutral velocity, and neutral temperature associated with large-amplitude acoustic waves generated by the initial ocean surface displacements from strong undersea earthquakes. A simplified source model for the 2011 Tohoku earthquake is constructed from estimates of initial ocean surface responses to approximate the vertical motions over realistic spatial and temporal scales. Resulting TEC perturbations from modeling case studies appear consistent with observational data, reproducing pronounced TEC depletions which are shown to be a consequence of the impacts of nonlinear, dissipating acoustic waves. Thermospheric acoustic compressional velocities are ˜±250-300 m/s, superposed with downward flows of similar amplitudes, and temperature perturbations are ˜300 K, while the dominant wave periodicity in the thermosphere is ˜3-4 min. Results capture acoustic wave processes including reflection, onset of resonance, and nonlinear steepening and dissipation—ultimately leading to the formation of ionospheric TEC depletions "holes"—that are consistent with reported observations. Three additional simulations illustrate the dependence of atmospheric acoustic wave and subsequent ionospheric responses on the surface displacement amplitude, which is varied from the Tohoku case study by factors of 1/100, 1/10, and 2. Collectively, results suggest that TEC depletions may only accompany very-large amplitude thermospheric acoustic waves necessary to induce a nonlinear response, here with saturated compressional velocities ˜200-250 m/s generated by sea surface displacements exceeding ˜1 m occurring over a 3 min time period.

  4. Complex motor task associated with non-linear BOLD responses in cerebro-cortical areas and cerebellum.

    Science.gov (United States)

    Alahmadi, Adnan A S; Samson, Rebecca S; Gasston, David; Pardini, Matteo; Friston, Karl J; D'Angelo, Egidio; Toosy, Ahmed T; Wheeler-Kingshott, Claudia A M

    2016-06-01

    Previous studies have used fMRI to address the relationship between grip force (GF) applied to an object and BOLD response. However, whilst the majority of these studies showed a linear relationship between GF and neural activity in the contralateral M1 and ipsilateral cerebellum, animal studies have suggested the presence of non-linear components in the GF-neural activity relationship. Here, we present a methodology for assessing non-linearities in the BOLD response to different GF levels, within primary motor as well as sensory and cognitive areas and the cerebellum. To be sensitive to complex forms, we designed a feasible grip task with five GF targets using an event-related visually guided paradigm and studied a cohort of 13 healthy volunteers. Polynomial functions of increasing order were fitted to the data. (1) activated motor areas irrespective of GF; (2) positive higher-order responses in and outside M1, involving premotor, sensory and visual areas and cerebellum; (3) negative correlations with GF, predominantly involving the visual domain. Overall, our results suggest that there are physiologically consistent behaviour patterns in cerebral and cerebellar cortices; for example, we observed the presence of a second-order effect in sensorimotor areas, consistent with an optimum metabolic response at intermediate GF levels, while higher-order behaviour was found in associative and cognitive areas. At higher GF levels, sensory-related cortical areas showed reduced activation, interpretable as a redistribution of the neural activity for more demanding tasks. These results have the potential of opening new avenues for investigating pathological mechanisms of neurological diseases.

  5. Estimation of non-linear growth models by linearization: a simulation study using a Gompertz function.

    Science.gov (United States)

    Vuori, Kaarina; Strandén, Ismo; Sevón-Aimonen, Marja-Liisa; Mäntysaari, Esa A

    2006-01-01

    A method based on Taylor series expansion for estimation of location parameters and variance components of non-linear mixed effects models was considered. An attractive property of the method is the opportunity for an easily implemented algorithm. Estimation of non-linear mixed effects models can be done by common methods for linear mixed effects models, and thus existing programs can be used after small modifications. The applicability of this algorithm in animal breeding was studied with simulation using a Gompertz function growth model in pigs. Two growth data sets were analyzed: a full set containing observations from the entire growing period, and a truncated time trajectory set containing animals slaughtered prematurely, which is common in pig breeding. The results from the 50 simulation replicates with full data set indicate that the linearization approach was capable of estimating the original parameters satisfactorily. However, estimation of the parameters related to adult weight becomes unstable in the case of a truncated data set.

  6. Approach to design of Nonlinear Robust Control in a Class of Structurally Stable Functions

    CERN Document Server

    Ten, Viktor

    2009-01-01

    An approach to stabilization of control systems with ultimately wide ranges of uncertainly disturbed parameters is offered. The method relies on using of nonlinear structurally stable functions from catastrophe theory as controllers. Analytical part presents an analysis of designed nonlinear second-order control systems. As more important the integrators in series, canonical controllable form and Jordan forms are considered. The analysis resumes that due to added controllers systems become stable and insensitive to any disturbance of parameters. Experimental part presents MATLAB simulation of design of possible control systems on the examples of epidemic spread, angular motion of aircraft and submarine depth. The results of simulation confirm the efficiency of offered method of design.

  7. Model of nonlinear coupled thermo-hydro-elastodyanamics response for a saturated poroelastic medium

    Institute of Scientific and Technical Information of China (English)

    LIU GanBin; XIE KangHe; ZHENG RongYue

    2009-01-01

    Based on the Blot's wave equation and theory of thermodynamic,Darcy law of fluid and the modified Fourier law of heat conduction,a nonlinear fully coupled thermo-hydro-elastodynamic response model(THMD)for saturated porous medium is derived.The compressibility of the medium,the influence of fluid flux on the heat flux,and the influence of change of temperature on the fluid flux are considered in this model.With some simplification,the coupled nonlinear thermo-hydro-elastodynamic response model can be reduced to the thermo-elastodynamic(TMD)model based on the traditional Fourier law and,further more,to the Blot's wave equation without considering the heat phase.At last,the problem of one dimensional cylindrical cavity subjected to a time-dependent thermal/mechanical shock is analyzed by using the Laplace technique,the numerical results are used to discuss the influence of Blot's modulus M and coefficient of thermo-osmosis on displacement and to compare with the results of thermo-elastodynamic response to ascertain the validity of this model.

  8. Model of nonlinear coupled thermo-hydro-elastodynamics response for a saturated poroelastic medium

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the Biot’s wave equation and theory of thermodynamic, Darcy law of fluid and the modified Fourier law of heat conduction, a nonlinear fully coupled thermo-hydro-elastodynamic response model (THMD) for saturated porous medium is derived. The compressibility of the medium, the influence of fluid flux on the heat flux, and the influence of change of temperature on the fluid flux are considered in this model. With some simplification, the coupled nonlinear thermo-hydro-elastodynamic response model can be reduced to the thermo-elastodynamic (TMD) model based on the traditional Fourier law and, further more, to the Biot’s wave equation without considering the heat phase. At last, the problem of one dimensional cylindrical cavity subjected to a time-dependent thermal/mechanical shock is analyzed by using the Laplace technique, the numerical results are used to discuss the influence of Biot’s modulus M and coefficient of thermoos-mosis on displacement and to compare with the results of thermo-elastodynamic response to ascertain the validity of this model.

  9. The response of nonlinear controlled system under an external excitation via time delay state feedback

    Directory of Open Access Journals (Sweden)

    A.M. Elnaggar

    2016-01-01

    Full Text Available An analysis of primary, superharmonic of order five, and subharmonic of order one-three resonances for non-linear s.d.o.f. system with two distinct time-delays under an external excitation is investigated. The method of multiple scales is used to determine two first order ordinary differential equations which describe the modulation of the amplitudes and the phases. Steady-state solutions and their stabilities in each resonance are studied. Numerical results are obtained by using the Software of Mathematica, which presented in a group of figures. The effect of the feedback gains and time-delays on the non-linear response of the system is discussed and it is found that: an appropriate feedback can enhance the control performance. A suitable choice of the feedback gains and time-delays can enlarge the critical force amplitude, and reduce the peak amplitude of the response (or peak amplitude of the free oscillation term for the case of primary resonance (superharmonic resonance. Furthermore, a proper feedback can eliminate saddle-node bifurcation, thereby eliminating jump and hysteresis phenomena taking place in the corresponding uncontrolled system. For subharmonic resonance, an adequate feedback can reduce the regions of subharmonic resonance response.

  10. A Space-Time Finite Element Model for Design and Control Optimization of Nonlinear Dynamic Response

    Directory of Open Access Journals (Sweden)

    P.P. Moita

    2008-01-01

    Full Text Available A design and control sensitivity analysis and multicriteria optimization formulation is derived for flexible mechanical systems. This formulation is implemented in an optimum design code and it is applied to the nonlinear dynamic response. By extending the spatial domain to the space-time domain and treating the design variables as control variables that do not change with time, the design space is included in the control space. Thus, one can unify in one single formulation the problems of optimum design and optimal control. Structural dimensions as well as lumped damping and stiffness parameters plus control driven forces, are considered as decision variables. The dynamic response and its sensitivity with respect to the design and control variables are discretized via space-time finite elements, and are integrated at-once, as it is traditionally used for static response. The adjoint system approach is used to determine the design sensitivities. Design optimization numerical examples are performed. Nonlinear programming and optimality criteria may be used for the optimization process. A normalized weighted bound formulation is used to handle multicriteria problems.

  11. Studying Climate Response to Forcing by the Nonlinear Dynamical Mode Decomposition

    Science.gov (United States)

    Mukhin, Dmitry; Gavrilov, Andrey; Loskutov, Evgeny; Feigin, Alexander

    2017-04-01

    An analysis of global climate response to external forcing, both anthropogenic (mainly, CO2 and aerosol) and natural (solar and volcanic), is needed for adequate predictions of global climate change. Being complex dynamical system, the climate reacts to external perturbations exciting feedbacks (both positive and negative) making the response non-trivial and poorly predictable. Thus an extraction of internal modes of climate system, investigation of their interaction with external forcings and further modeling and forecast of their dynamics, are all the problems providing the success of climate modeling. In the report the new method for principal mode extraction from climate data is presented. The method is based on the Nonlinear Dynamical Mode (NDM) expansion [1,2], but takes into account a number of external forcings applied to the system. Each NDM is represented by hidden time series governing the observed variability, which, together with external forcing time series, are mapped onto data space. While forcing time series are considered to be known, the hidden unknown signals underlying the internal climate dynamics are extracted from observed data by the suggested method. In particular, it gives us an opportunity to study the evolution of principal system's mode structure in changing external conditions and separate the internal climate variability from trends forced by external perturbations. Furthermore, the modes so obtained can be extrapolated beyond the observational time series, and long-term prognosis of modes' structure including characteristics of interconnections and responses to external perturbations, can be carried out. In this work the method is used for reconstructing and studying the principal modes of climate variability on inter-annual and decadal time scales accounting the external forcings such as anthropogenic emissions, variations of the solar activity and volcanic activity. The structure of the obtained modes as well as their response to

  12. Optimization of coherent optical OFDM transmitter using DP-IQ modulator with nonlinear response

    Science.gov (United States)

    Chang, Sun Hyok; Kang, Hun-Sik; Moon, Sang-Rok; Lee, Joon Ki

    2016-07-01

    In this paper, we investigate the performance of dual polarization orthogonal frequency division multiplexing (DP-OFDM) signal generation when the signal is generated by a DP-IQ optical modulator. The DP-IQ optical modulator is made of four parallel Mach-Zehnder modulators (MZMs) which have nonlinear responses and limited extinction ratios. We analyze the effects of the MZM in the DP-OFDM signal generation by numerical simulation. The operating conditions of the DP-IQ modulator are optimized to have the best performance of the DP-OFDM signal.

  13. Insulation of nonlinear and random vibrations in the mining industry. [elastodynamic response of rubber insulator

    Science.gov (United States)

    Zeveleanu, C.

    1974-01-01

    The insulation of nonlinear and random vibrations is considered for some ore preparing and sorting implements: rotary crushers, resonance screens, hammer mills, etc. The appearance of subharmonic vibrations is analyzed, and the conditions for their appearance are determined. A method is given for calculating the insulation of these vibrations by means of elastic elements made of rubber. The insulation of the random vibrations produced by Symons crushers is calculated by determining the transmissability and deformation of the insulation system for a narrow band random response.

  14. Phase disruption as a new design paradigm for optimizing the nonlinear-optical response

    CERN Document Server

    Lytel, Rick; Kuzyk, Mark G

    2015-01-01

    The intrinsic optical nonlinearities of quasi-one dimensional structures, including conjugated chain polymers and nanowires, are shown to be dramatically enhanced by the judicious placement of a side group or wire of sufficiently short length to create a large phase disruption in the dominant eigenfunctions along the main path of probability current. Phase disruption is proposed as a new general principle for the design of molecules, nanowires and any quasi-1D quantum system with large intrinsic response and does not require charge donors-acceptors at the ends.

  15. Modeling of nonlinear optic and ESR response of CDW MX materials

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, A.; Gammel, J.T.; Bishop, A.R. [Los Alamos National Lab., NM (United States); Shuai, Z.; Bredas, J.L. [Center de Recherche en Electronique et Photonique Moleculaires, Universite de Mons-Hainaut (Belgium); Batistic, I. [Zagreb Univ. (Croatia). Dept. of Physics; Alouani, M. [Ohio State Univ., Columbus, OH (United States). Dept. of Physics

    1994-09-01

    We report results on the nonlinear optic and ESR response of the PtX MX chain materials calculated using a discrete, 3/4-filled, two-band, tight-binding Peierls-Hubbard model. We calculated electroabsorption (EA) spectra for the three PtX (X=Cl, Br, 1) charge-density-wave (CDW) materials and find good agreement with the experimental data. We also obtain EA spectra for localized defects in PtBr. In addition, the field orientation dependence of the electron spin resonance spectra associated with the spin carrying defects is calculated for PtX materials and compared with ESR data on photoinduced defects.

  16. POD/MAC-Based Modal Basis Selection for a Reduced Order Nonlinear Response Analysis

    Science.gov (United States)

    Rizzi, Stephen A.; Przekop, Adam

    2007-01-01

    A feasibility study was conducted to explore the applicability of a POD/MAC basis selection technique to a nonlinear structural response analysis. For the case studied the application of the POD/MAC technique resulted in a substantial improvement of the reduced order simulation when compared to a classic approach utilizing only low frequency modes present in the excitation bandwidth. Further studies are aimed to expand application of the presented technique to more complex structures including non-planar and two-dimensional configurations. For non-planar structures the separation of different displacement components may not be necessary or desirable.

  17. Non-linear wave loads and ship responses by a time-domain strip theory

    DEFF Research Database (Denmark)

    Xia, Jinzhu; Wang, Zhaohui; Jensen, Jørgen Juncher

    1998-01-01

    A non-linear time-domain strip theory for vertical wave loads and ship responses is presented. The theory is generalized from a rigorous linear time-domain strip theory representation. The hydrodynamic memory effect due to the free surface is approximated by a higher order differential equation. ...... and are systematically compared with the experimental results given by Watanabe et al. (1989, J. Soc. Naval Architects Japan, 166) and O’Dea et al. (1992, Proc. 19th Symp. on Naval Hydrodynamics). The agreement between the present predictions and the experiments is very encouraging....

  18. Generalized functional responses for species distributions

    NARCIS (Netherlands)

    Matthiopoulos, J.; Hebblewhite, M.; Aarts, G.M; Fieberg, J.

    2011-01-01

    Researchers employing resource selection functions (RSFs) and other related methods aim to detect correlates of space-use and mitigate against detrimental environmental change. However, an empirical model fit to data from one place or time is unlikely to capture species responses under different con

  19. Design and implementation of non-linear image processing functions for CMOS image sensor

    Science.gov (United States)

    Musa, Purnawarman; Sudiro, Sunny A.; Wibowo, Eri P.; Harmanto, Suryadi; Paindavoine, Michel

    2012-11-01

    Today, solid state image sensors are used in many applications like in mobile phones, video surveillance systems, embedded medical imaging and industrial vision systems. These image sensors require the integration in the focal plane (or near the focal plane) of complex image processing algorithms. Such devices must meet the constraints related to the quality of acquired images, speed and performance of embedded processing, as well as low power consumption. To achieve these objectives, low-level analog processing allows extracting the useful information in the scene directly. For example, edge detection step followed by a local maxima extraction will facilitate the high-level processing like objects pattern recognition in a visual scene. Our goal was to design an intelligent image sensor prototype achieving high-speed image acquisition and non-linear image processing (like local minima and maxima calculations). For this purpose, we present in this article the design and test of a 64×64 pixels image sensor built in a standard CMOS Technology 0.35 μm including non-linear image processing. The architecture of our sensor, named nLiRIC (non-Linear Rapid Image Capture), is based on the implementation of an analog Minima/Maxima Unit. This MMU calculates the minimum and maximum values (non-linear functions), in real time, in a 2×2 pixels neighbourhood. Each MMU needs 52 transistors and the pitch of one pixel is 40×40 mu m. The total area of the 64×64 pixels is 12.5mm2. Our tests have shown the validity of the main functions of our new image sensor like fast image acquisition (10K frames per second), minima/maxima calculations in less then one ms.

  20. The Average Widths and Non-linear Widths of the Classes of Multivariate Functions with Bounded Moduli of Smoothness

    Institute of Scientific and Technical Information of China (English)

    Yong-ping Liu; Gui-qiao Xu

    2002-01-01

    The classes of the multivariate functions with bounded moduli on Rd and Td are given and their average a-widths and non-linear n-widths are discussed. The weak asymptotic behaviors are established for the corresponding quantities.

  1. Fluctuation theorem, nonlinear response, and the regularity of time reversal symmetry

    Science.gov (United States)

    Porta, Marcello

    2010-06-01

    The Gallavotti-Cohen fluctuation theorem (FT) implies an infinite set of identities between correlation functions that can be seen as a generalization of Green-Kubo formula to the nonlinear regime. As an application, we discuss a perturbative check of the FT relation through these identities for a simple Anosov reversible system; we find that the lack of differentiability of the time reversal operator implies a violation of the Gallavotti-Cohen fluctuation relation. Finally, a brief comparison to Lebowitz-Spohn FT is reported.

  2. EXACT AUGMENTED LAGRANGIAN FUNCTION FOR NONLINEAR PROGRAMMING PROBLEMS WITH INEQUALITY CONSTRAINTS

    Institute of Scientific and Technical Information of China (English)

    DU Xue-wu; ZHANG Lian-sheng; SHANG You-lin; LI Ming-ming

    2005-01-01

    An exact augmented Lagrangian function for the nonlinear nonconvex programming problems with inequality constraints was discussed. Under suitable hypotheses, the relationship was established between the local unconstrained minimizers of the augmented Lagrangian function on the space of problem variables and the local minimizers of the original constrained problem. Furthermore, under some assumptions,the relationship was also established between the global solutions of the augmented Lagrangian function on some compact subset of the space of problem variables and the global solutions of the constrained problem. Therefore, from the theoretical point of view, a solution of the inequality constrained problem and the corresponding values of the Lagrange multipliers can be found by the well-known method of multipliers which resort to the unconstrained minimization of the augmented Lagrangian function presented.

  3. Computation of Value Functions in Nonlinear Differential Games with State Constraints

    KAUST Repository

    Botkin, Nikolai

    2013-01-01

    Finite-difference schemes for the computation of value functions of nonlinear differential games with non-terminal payoff functional and state constraints are proposed. The solution method is based on the fact that the value function is a generalized viscosity solution of the corresponding Hamilton-Jacobi-Bellman-Isaacs equation. Such a viscosity solution is defined as a function satisfying differential inequalities introduced by M. G. Crandall and P. L. Lions. The difference with the classical case is that these inequalities hold on an unknown in advance subset of the state space. The convergence rate of the numerical schemes is given. Numerical solution to a non-trivial three-dimensional example is presented. © 2013 IFIP International Federation for Information Processing.

  4. Effect of nonlinearity of restrainer and supports on the elasto-plastic seismic response of continuous girder bridge

    Directory of Open Access Journals (Sweden)

    Wang Changfeng

    2014-10-01

    Full Text Available During an earthquake, the nonlinearity of the bridge structure mainly occurs at the supports, bridge piers and restrainers. When entering nonlinear stage, members of the bridge structure affect the elasto-plastic seismic response of the whole structure to a certain extent; for multi-span continuous bridges, longitudinal restrainers can be installed on the movable piers to optimise the distribution of seismic force and enable the movable piers to bear a certain amount of seismic effect. In order to evaluate the effect of nonlinearity of restrainer and supports on the elasto-plastic seismic response of continuous girder bridge, analytical models of continuous girder bridge structure considering the nonlinearity of movable supports, restrainers and bridge piers were built and the nonlinear time history analysis was conducted to evaluate the effect of nonlinearity of restraining devices and supports on the elasto-plastic seismic response of continuous girder bridge. Relevant structural measures and recommendation were made to reduce the seismic response of the fixed piers of the continuous girder bridge.

  5. Fluid-structure interaction for nonlinear response of shells conveying pulsatile flow

    Science.gov (United States)

    Tubaldi, Eleonora; Amabili, Marco; Païdoussis, Michael P.

    2016-06-01

    Circular cylindrical shells with flexible boundary conditions conveying pulsatile flow and subjected to pulsatile pressure are investigated. The equations of motion are obtained based on the nonlinear Novozhilov shell theory via Lagrangian approach. The flow is set in motion by a pulsatile pressure gradient. The fluid is modeled as a Newtonian pulsatile flow and it is formulated using a hybrid model that contains the unsteady effects obtained from the linear potential flow theory and the pulsatile viscous effects obtained from the unsteady time-averaged Navier-Stokes equations. A numerical bifurcation analysis employs a refined reduced order model to investigate the dynamic behavior. The case of shells containing quiescent fluid subjected to the action of a pulsatile transmural pressure is also addressed. Geometrically nonlinear vibration response to pulsatile flow and transmural pressure are here presented via frequency-response curves and time histories. The vibrations involving both a driven mode and a companion mode, which appear due to the axial symmetry, are also investigated. This theoretical framework represents a pioneering study that could be of great interest for biomedical applications. In particular, in the future, a more refined model of the one here presented will possibly be applied to reproduce the dynamic behavior of vascular prostheses used for repairing and replacing damaged and diseased thoracic aorta in cases of aneurysm, dissection or coarctation. For this purpose, a pulsatile time-dependent blood flow model is here considered by applying physiological waveforms of velocity and pressure during the heart beating period. This study provides, for the first time in literature, a fully coupled fluid-structure interaction model with deep insights in the nonlinear vibrations of circular cylindrical shells subjected to pulsatile pressure and pulsatile flow.

  6. Redox-switchable second-order nonlinear optical responses of push-pull monotetrathiafulvalene-metalloporphyrins.

    Science.gov (United States)

    Liu, Chun-Guang; Guan, Wei; Song, Ping; Yan, Li-Kai; Su, Zhong-Min

    2009-07-20

    The redox-active tetrathiafulvalene (TTF) is a good electron donor, and porphyrin is highly delocalized in cyclic pi-conjugated systems. The direct combination of the two interesting building units into the same molecule provides an intriguing molecular system for designing nonlinear optical (NLO) molecular materials. In the present paper, the second-order NLO properties of a series of monoTTF-porphyrins and metalloporphyrins have been calculated by density functional theory (DFT) combined with the finite field (FF) method. Our calculations show that these compounds possess considerably large static first hyperpolarizabilities, approximately 400 x 10(-30) esu. Since the TTF unit is able to exist in three different stable redox states (TTF, TTF(*+), and TTF(2+)), the redox switching of the NLO response of the zinc(II) derivative of monoTTF-metalloporphyrin has been studied, and a substantial enhancement in static first hyperpolarizability has been obtained in its oxidized species according to our DFT-FF calculations. The beta values of one- and two-electron-oxidized species are 3.6 and 8.7 times as large as that of the neutral compound, especially for two-electron-oxidized species, with a value of 3384 x 10(-30) esu. This value is about 3 times that for a push-pull metalloporphyrin, which has an exceptionally large hyperpolarizability among reported organic NLO chromophores. Meanwhile, to give a more intuitive description of band assignments of the electron spectrum and trends in NLO behavior of these compounds, the time-dependent (TD)DFT method has been adopted to calculate the electron spectrum. The TDDFT calculations well-reproduce the soret band and Q-type bands of the monoTTF-porphyrin, and these absorption bands can be assigned to the pi --> pi* transition of the porphyrin core. On the other hand, the oxidized process significantly affects the geometrical structures of the TTF unit and porphyrin ring, and the two-electron-oxidized species has a planar TTF unit

  7. Non-linear modeling of the plasma response to RMPs in ASDEX Upgrade

    CERN Document Server

    Orain, F; Viezzer, E; Dunne, M; Becoulet, M; Cahyna, P; Huijsmans, G T A; Morales, J; Willensdorfer, M; Suttrop, W; Kirk, A; Pamela, S; Strumberger, E; Guenter, S; Lessig, A

    2016-01-01

    The plasma response to Resonant Magnetic Perturbations (RMPs) in ASDEX Upgrade is modeled with the non-linear resistive MHD code JOREK, using input profiles that match those of the experiments as closely as possible. The RMP configuration for which Edge Localized Modes are best mitigated in experiments is related to the largest edge kink response observed near the X-point in modeling. On the edge resonant surfaces q = m=n, the coupling between the m + 2 kink component and the m resonant component is found to induce the amplification of the resonant magnetic perturbation. The ergodicity and the 3D-displacement near the X-point induced by the resonant ampli?cation can only partly explain the density pumpout observed in experiments.

  8. Response of harmonically and stochastically excited strongly nonlinear oscillators with delayed feedback bang-bang control

    Institute of Scientific and Technical Information of China (English)

    Chang-shui FENG; Wei-qiu ZHU

    2009-01-01

    We studied the response of harmonically and stochastically excited strongly nonlinear oscillators with delayed feedback bang-bang control using the stochastic averaging method. First, the time-delayed feedback bang-bang control force is expressed approximately in terms of the system state variables without time delay. Then the averaged Ito stochastic differential equations for the system are derived using the stochastic averaging method. Finally, the response of the system is obtained by solving the Fokker-Plank-Kolmogorov (FPK) equation associated with the averaged Ito equations. A Duffing oscillator with time-delayed feedback bang-bang control under combined harmonic and white noise excitations is taken as an example to illus-trate the proposed method. The analytical results are confirmed by digital simulation. We found that the time delay in feedback bang-bang control will deteriorate the control effectiveness and cause bifurcation of stochastic jump of Duffing oscillator.

  9. Nonlinear response and dynamical transitions in a phase-field crystal model for adsorbed overlayers

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, J A P [Departamento de Ciencias Exatas, Universidade Estadual do Sudoeste da Bahia, 45000-000 Vitoria da Conquista, BA (Brazil); Granato, E [Laboratorio Associado de Sensores e Materiais, Instituto Nacional de Pesquisas Espaciais, 12245-970 Sao Jose dos Campos, SP (Brazil); Ying, S C; Ala-Nissila, T [Department of Physics, PO Box 1843, Brown University, Providence, RI 02912-1843 (United States); Achim, C V [Department of Applied Physics, Aalto University School of Science and Technology, PO Box 11000, FI-00076 Aalto, Espoo (Finland); Elder, K R, E-mail: Jorge@las.inpe.b [Department of Physics, Oakland University, Rochester, Michigan 48309-4487 (United States)

    2010-09-01

    The nonlinear response and sliding friction behavior of a phase-field crystal model for driven adsorbed atomic layers is determined numerically. The model describes the layer as a continuous density field coupled to the pinning potential of the substrate and under an external driving force. Dynamical equations which take into account both thermal fluctuations and inertial effects are used for numerical simulations of commensurate and incommensurate layers. At low temperatures, the velocity response of an initially commensurate layer shows hysteresis with dynamical melting and freezing transitions at different critical forces. The main features of the sliding friction behavior are similar to the results obtained previously from molecular dynamics simulations of particle models. However, the dynamical transitions correspond to nucleations of stripes rather than closed domains.

  10. Non-linear intensification of Sahel rainfall as a possible dynamic response to future warming

    Directory of Open Access Journals (Sweden)

    J. Schewe

    2017-07-01

    Full Text Available Projections of the response of Sahel rainfall to future global warming diverge significantly. Meanwhile, paleoclimatic records suggest that Sahel rainfall is capable of abrupt transitions in response to gradual forcing. Here we present climate modeling evidence for the possibility of an abrupt intensification of Sahel rainfall under future climate change. Analyzing 30 coupled global climate model simulations, we identify seven models where central Sahel rainfall increases by 40 to 300 % over the 21st century, owing to a northward expansion of the West African monsoon domain. Rainfall in these models is non-linearly related to sea surface temperature (SST in the tropical Atlantic and Mediterranean moisture source regions, intensifying abruptly beyond a certain SST warming level. We argue that this behavior is consistent with a self-amplifying dynamic–thermodynamical feedback, implying that the gradual increase in oceanic moisture availability under warming could trigger a sudden intensification of monsoon rainfall far inland of today's core monsoon region.

  11. Non-linear intensification of Sahel rainfall as a possible dynamic response to future warming

    Science.gov (United States)

    Schewe, Jacob; Levermann, Anders

    2017-07-01

    Projections of the response of Sahel rainfall to future global warming diverge significantly. Meanwhile, paleoclimatic records suggest that Sahel rainfall is capable of abrupt transitions in response to gradual forcing. Here we present climate modeling evidence for the possibility of an abrupt intensification of Sahel rainfall under future climate change. Analyzing 30 coupled global climate model simulations, we identify seven models where central Sahel rainfall increases by 40 to 300 % over the 21st century, owing to a northward expansion of the West African monsoon domain. Rainfall in these models is non-linearly related to sea surface temperature (SST) in the tropical Atlantic and Mediterranean moisture source regions, intensifying abruptly beyond a certain SST warming level. We argue that this behavior is consistent with a self-amplifying dynamic-thermodynamical feedback, implying that the gradual increase in oceanic moisture availability under warming could trigger a sudden intensification of monsoon rainfall far inland of today's core monsoon region.

  12. Non-linear modeling of the plasma response to RMPs in ASDEX Upgrade

    Science.gov (United States)

    Orain, F.; Hölzl, M.; Viezzer, E.; Dunne, M.; Bécoulet, M.; Cahyna, P.; Huijsmans, G. T. A.; Morales, J.; Willensdorfer, M.; Suttrop, W.; Kirk, A.; Pamela, S.; Günter, S.; Lackner, K.; Strumberger, E.; Lessig, A.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2017-02-01

    The plasma response to resonant magnetic perturbations (RMPs) in ASDEX Upgrade is modeled with the non-linear resistive MHD code JOREK, using input profiles that match those of the experiments as closely as possible. The RMP configuration for which edge localized modes are best mitigated in experiments is related to the largest edge kink response observed near the X-point in modeling. On the edge resonant surfaces q  =  m/n, the coupling between the kink component (m  >  nq) and the m resonant component is found to induce the amplification of the resonant magnetic perturbation. The ergodicity and the 3D-displacement near the X-point induced by the resonant amplification can only partly explain the density pumpout observed in experiments.

  13. Nonlinear Response of High Arch Dams to Nonuniform Seismic Excitation Considering Joint Effects

    Directory of Open Access Journals (Sweden)

    Masoomeh Akbari

    2013-01-01

    Full Text Available Nonuniform excitation due to spatially varying ground motions on nonlinear responses of concrete arch dams is investigated. A high arch dam was selected as numerical example, reservoir was modelled as incompressible material, foundation was assumed as mass-less medium, and all contraction and peripheral joints were modelled considering the ability of opening/closing. This study used Monte-Carlo simulation approach for generating spatially nonuniform ground motion. In this approach, random seismic characteristics due to incoherence and wave passage effects were investigated and finally their effects on structural response were compared with uniform excitation at design base level earthquake. Based on the results, nonuniform input leads to some differences than uniform input. Moreover using nonuniform excitation increase, stresses on dam body.

  14. Electrical nonlinear response of a photomixer for applications in ultrafast measurements

    Science.gov (United States)

    Constantin, Florin L.

    2014-05-01

    Electrical nonlinear response of a low-temperature-grown GaAs photomixer is exploited for THz-wave modulation, detection and waveform sampling. Current-voltage response at low bias field is modelled by electron drift velocity saturation. THz-wave rectification is discussed in a small-signal approximation and experimentally addressed in connection with the curvature of IV plot. The optical heterodyne signal from two lasers down-converted with the photomixer is modulated by applying an alternative bias field. Conversely, heterodyne detection of a continuous-wave THz source is demonstrated with the photomixer using the optical beat between the lasers as local oscillator. Alternatively, THz-waves with tunable carrier and pulse repetition rate are generated with a THz frequency multiplier driven by a pulsed microwave synthesizer. Asynchronous optical sampling with a pulsed optical beat is demonstrated with the heterodyne detection scheme.

  15. Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package

    Science.gov (United States)

    Donges, Jonathan; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik; Marwan, Norbert; Dijkstra, Henk; Kurths, Jürgen

    2016-04-01

    We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology. pyunicorn is available online at https://github.com/pik-copan/pyunicorn. Reference: J.F. Donges, J. Heitzig, B. Beronov, M. Wiedermann, J. Runge, Q.-Y. Feng, L. Tupikina, V. Stolbova, R.V. Donner, N. Marwan, H.A. Dijkstra, and J. Kurths, Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package, Chaos 25, 113101 (2015), DOI: 10.1063/1.4934554, Preprint: arxiv.org:1507.01571 [physics.data-an].

  16. Multiscale numerical study on ferroelectric nonlinear response of PZT thin films (Conference Presentation)

    Science.gov (United States)

    Wakabayashi, Hiroki; Uetsuji, Yasutomo; Tsuchiya, Kazuyoshi

    2017-06-01

    PZT thin films have excellent performance in deformation precision and response speed, so it is used widely for actuators and sensors of Micro Electro Mechanical System (MEMS). Although PZT thin films outputs large piezoelectricity at morphotropic phase bounfary (MPB), it shows a complicated hysteresis behavior caused by domain switching and structural phase transition between tetragonal and rhombohedral. In general, PZT thin films have some characteristic crystal morphologies. Additionally mechanical strains occur by lattice mismatch with substrate. Therefore it is important for fabrication and performance improvement of PZT thin films to understand the relation between macroscopic hysteresis response and microstructural changes. In this study, a multiscale nonlinear finite element simulation was proposed for PZT thin films at morphotropic phase boundary (MPB) on the substrate. The homogenization theory was employed for scale-bridging between macrostructure and microstructure. Figure 1 shows the proposed multiscale nonlinear simulation [1-3] based on the homogenization theory. Macrostructure is a homogeneous structure to catch the whole behaviors of actuators and sensors. And microstructure is a periodic inhomogeneous structure consisting of domains and grains. Macrostructure and microstructure are connected perfectly by homogenization theory and are analyzed by finite element method. We utilized an incremental form of fundamental constitutive law in consideration with physical property change caused by domain switching and structural phase transition. The developed multiscale finite element method was applied to PZT thin films with lattice mismatch strain on the substrate, and the relation between the macroscopic hysteresis response and microscopic domain switching and structural phase transition were investigated. Especially, we discuss about the effect of crystal morphologies and lattice mismatch strain on hysteresis response.

  17. Smoothing Newton Algorithm for Nonlinear Complementarity Problem with a P* Function

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    By using a smoothing function, the P* nonlinear complementarity problem (P* NCP) can be reformulated as a parameterized smooth equation. A Newton method is proposed to solve this equation. The iteration sequence generated by the proposed algorithm is bounded and this algorithm is proved to be globally convergent under an assumption that the P* NCP has a nonempty solution set. This assumption is weaker than the ones used in most existing smoothing algorithms. In particular, the solution obtained by the proposed algorithm is shown to be a maximally complementary solution of the P* NCP without any additional assumption.

  18. Chaotic keyed hash function based on feedforward feedback nonlinear digital filter

    Science.gov (United States)

    Zhang, Jiashu; Wang, Xiaomin; Zhang, Wenfang

    2007-03-01

    In this Letter, we firstly construct an n-dimensional chaotic dynamic system named feedforward feedback nonlinear filter (FFNF), and then propose a novel chaotic keyed hash algorithm using FFNF. In hashing process, the original message is modulated into FFNF's chaotic trajectory by chaotic shift keying (CSK) mode, and the final hash value is obtained by the coarse-graining quantization of chaotic trajectory. To expedite the avalanche effect of hash algorithm, a cipher block chaining (CBC) mode is introduced. Theoretic analysis and numerical simulations show that the proposed hash algorithm satisfies the requirement of keyed hash function, and it is easy to implement by the filter structure.

  19. Feedback control of nonlinear differential algebraic systems using Hamiltonian function method

    Institute of Scientific and Technical Information of China (English)

    LIU Yanhong; LI Chunwen; WU Rebing

    2006-01-01

    The stabilization and H∞ control of nonlinear differential algebraic systems (NDAS) are investigated using the Hamiltonian function method. Firstly, we put forward a novel dissipative Hamiltonian realization (DHR) structure and give the condition to complete the Hamiltonian realization. Then, based on the DHR, we present a criterion for the stability analysis of NDAS and construct a stabilization controller for NDAS in absence of disturbances. Finally, for NDAS in presence of disturbances, the L2 gain is analyzed via generalized Hamilton-Jacobi inequality and an H∞ control strategy is constructed. The proposed stabilization and robust controller can effectively take advantage of the structural characteristics of NDAS and is simple in form.

  20. Inverse problems and nonlinear evolution equations solutions, Darboux matrices and Weyl-Titchmarsh functions

    CERN Document Server

    Sakhnovich, Lev A; Roitberg, Inna Ya

    2013-01-01

    This monograph fits theclearlyneed for books with a rigorous treatment of theinverse problems for non-classical systems and that of initial-boundary-value problems for integrable nonlinear equations. The authorsdevelop a unified treatment of explicit and global solutions via the transfer matrix function in a form due to Lev A. Sakhnovich. The book primarily addresses specialists in the field. However, it is self-contained andstarts with preliminaries and examples, and hencealso serves as an introduction for advanced graduate students in the field.

  1. Sparse non-linear denoising: Generalization performance and pattern reproducibility in functional MRI

    DEFF Research Database (Denmark)

    Abrahamsen, Trine Julie; Hansen, Lars Kai

    2011-01-01

    We investigate sparse non-linear denoising of functional brain images by kernel Principal Component Analysis (kernel PCA). The main challenge is the mapping of denoised feature space points back into input space, also referred to as ”the pre-image problem”. Since the feature space mapping...... sparse pre-image reconstruction by Lasso regularization. We find that sparse estimation provides better brain state decoding accuracy and a more reproducible pre-image. These two important metrics are combined in an evaluation framework which allow us to optimize both the degree of sparsity and the non...

  2. A Functional Model of the Aesthetic Response

    Directory of Open Access Journals (Sweden)

    Daniel Conrad

    2010-01-01

    Full Text Available In a process of somatic evolution, the brain semi-randomly generates initially-unstable neural circuits that are selectively stabilized if they succeed in making sense out of raw sensory input. The human aesthetic response serves the function of stabilizing the circuits that successfully mediate perception and interpretation, making those faculties more agile, conferring selective advantage. It is triggered by structures in art and nature that provoke the making of sense. Art is deliberate human action aimed at triggering the aesthetic response in others; thus, if successful, it serves the same function of making perception and interpretation more agile. These few principles initiate a cascade of emergent phenomena which account for many observed qualities of aesthetics, including universality and idiosyncrasy of taste, the relevance of artists’ intentions, the virtues of openness and resonance, the dysfunction of formulaic art, and the fact that methods of art correspond to modes of perceptual transformation.

  3. Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center

    Energy Technology Data Exchange (ETDEWEB)

    Hoyos, Jaime H. [Departamento de Ciencias Básicas, Universidad de Medellín, Cra. 87 No. 30-65, Medellín (Colombia); Correa, J.D., E-mail: jcorrea@udem.edu.co [Departamento de Ciencias Básicas, Universidad de Medellín, Cra. 87 No. 30-65, Medellín (Colombia); Mora-Ramos, M.E. [Centro de Investigación en Ciencias, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, CP 62209 Cuernavaca, Morelos (Mexico); Duque, C.A. [Grupo de Materia Condensada-UdeA, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia)

    2016-03-01

    We calculate the nonlinear optical absorption coefficient of a cylindrical zincblende GaN-based quantum dot. For this purpose, we consider Coulomb interactions between electrons and an impurity ionized donor atom. The electron-donor-impurity spectrum and the associated quantum states are calculated using the effective mass approximation with a parabolic potential energy model describing both the radial and axial electron confinement. We also include the effects of the hydrostatic pressure and external electrostatic fields. The energy spectrum is obtained through an expansion of the eigenstates as a linear combination of Gaussian-type functions which reduces the computational effort since all the matrix elements are obtained analytically. Therefore, the numerical problem is reduced to the direct diagonalization of the Hamiltonian. The obtained energies are used in the evaluation of the dielectric susceptibility and the nonlinear optical absorption coefficient within a modified two-level approach in a rotating wave approximation. This quantity is investigated as a function of the quantum dot dimensions, the impurity position, the external electric field intensity and the hydrostatic pressure. The results of this research could be important in the design and fabrication of zincblende GaN-quantum-dot-based electro-optical devices.

  4. NaI(Tl) response functions

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R.; Ortiz R, J. M. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Benites R, J. L. [Centro Estatal de Cancerologia de Nayarit, Calz. de la Cruz 118 Sur, Tepic, Nayarit (Mexico); De Leon M, H. A., E-mail: fermineutron@yahoo.com.mx [Instituto Tecnologico de Aguascalientes, Av. Adolfo Lopez Mateos 1801 Ote., 20155 Aguascalientes, Ags. (Mexico)

    2015-09-15

    The response functions of a NaI(Tl) detector have been estimated using Monte Carlo methods. Response functions were calculated for monoenergetic photon sources (0.05 to 3 MeV). Responses were calculated for point-like sources and for sources distributed in Portland cement cylinders. The responses were used to calculate the efficiency functions in term of photon energy. Commonly, sources used for calibration are point-like, and eventually sources to be measured have different features. In order to use the calibrated sources corrections due to solid angle, self-absorption and scattering, must be carried out. However, some of these corrections are not easy to perform. In this work, the calculated responses were used to estimate the detector efficiency of point-like sources, and sources distributed in Portland type cement. Samples of Portland paste were prepared and were exposed to photoneutrons produced by a 15 MV linac. Some of the elements in the cement were activated producing γ-emitting radionuclides that were measured with a NaI(Tl) gamma-ray spectrometer, that was calibrated with point-like sources. In order to determine the specific activity in the induced radioisotopes calculated efficiencies were used to make corrections due to the differences between the solid angle, photon absorption and photon scattering in the point-like calibration sources and the sources distributed in cement. During the interaction between photoneutrons and the cement samples three radioisotopes were induced: {sup 56}Mn, {sup 24}Na, and {sup 28}Al. (Author)

  5. Non-linear diffusion in RD and in Hilbert Spaces, a Cylindrical/Functional Integral Study

    CERN Document Server

    Botelho, Luiz Carlos Lobato

    2010-01-01

    We present a proof for the existence and uniqueness of weak solutions for a cut-off and non cut-off model of non-linear diffusion equation in finite-dimensional space RD useful for modelling flows on porous medium with saturation, turbulent advection, etc. - and subject to deterministic or stochastic (white noise) stirrings. In order to achieve such goal, we use the powerful results of compacity on functional Lp spaces (the Aubin-Lion Theorem). We use such results to write a path-integral solution for this problem. Additionally, we present the rigourous functional integral solutions for the Linear Diffussion equation defined in Infinite-Dimensional Spaces (Separable Hilbert Spaces). These further results are presented in order to be useful to understand Polymer cylindrical surfaces probability distributions and functionals on String theory.

  6. SOME OSCILLATION CRITERIA FOR SECOND ORDER NONLINEAR FUNCTIONAL ORDINARY DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    E.M.E. Zayed; M.A. El-Moneam

    2007-01-01

    The main objective of this article is to study the oscillatory behavior of the solutions of the following nonlinear functional differential equations (a(t)x'(t))' + δ1p(t)x'(t) + δ2q(t)f(x(g(t))) = 0,for 0 ≤ t0 ≤ t, where δ1 = ±1 and δ2 = ±1. The functions p,q,g : [t0, ∞) → R, f :R → R are continuous, a(t) > 0, p(t) ≥ 0,q(t) ≥ 0 for t ≥ t0, limt→∞ g(t) = ∞, and q is not identically zero on any subinterval of [t0, ∞). Moreover, the functions q(t),g(t), and a(t) are continuously differentiable.

  7. Evolutionary geomorphology: thresholds and nonlinearity in landform response to environmental change

    Directory of Open Access Journals (Sweden)

    J. D. Phillips

    2006-04-01

    Full Text Available Geomorphic systems are typically nonlinear, owing largely to their threshold-dominated nature (but due to other factors as well. Nonlinear geomorphic systems may exhibit complex behaviors not possible in linear systems, including dynamical instability and deterministic chaos. The latter are common in geomorphology, indicating that small, short-lived changes may produce disproportionately large and long-lived results; that evidence of geomorphic change may not reflect proportionally large external forcings; and that geomorphic systems may have multiple potential response trajectories or modes of adjustment to change. Instability and chaos do not preclude predictability, but do modify the context of predictability. The presence of chaotic dynamics inhibits or excludes some forms of predicability and prediction techniques, but does not preclude, and enables, others. These dynamics also make spatial and historical contingency inevitable: geography and history matter. Geomorphic systems are thus governed by a combination of ''global'' laws, generalizations and relationships that are largely (if not wholly independent of time and place, and ''local'' place and/or time-contingent factors. The more factors incorporated in the representation of any geomorphic system, the more singular the results or description are. Generalization is enhanced by reducing rather than increasing the number of factors considered. Prediction of geomorphic responses calls for a recursive approach whereby global laws and local contingencies are used to constrain each other. More specifically a methodology whereby local details are embedded within simple but more highly general phenomenological models is advocated. As landscapes and landforms change in response to climate and other forcings, it cannot be assumed that geomorphic systems progress along any particular pathway. Geomorphic systems are evolutionary in the sense of being path

  8. System identification of the nonlinear dynamics in the thalamocortical circuit in response to patterned thalamic microstimulation in-vivo

    Science.gov (United States)

    Millard, Daniel C; Wang, Qi; Gollnick, Clare A; Stanley, Garrett B

    2013-01-01

    Objective Nonlinear system identification approaches were used to develop a dynamical model of the network level response to patterns of microstimulation in-vivo. Approach The thalamocortical circuit of the rodent vibrissa pathway was the model system, with voltage sensitive dye imaging capturing the cortical response to patterns of stimulation delivered from a single electrode in the ventral posteromedial thalamus. The results of simple paired stimulus experiments formed the basis for the development of a phenomenological model explicitly containing nonlinear elements observed experimentally. The phenomenological model was fit using datasets obtained with impulse train inputs, Poisson-distributed in time and uniformly varying in amplitude. Main Results The phenomenological model explained 58% of the variance in the cortical response to out of sample patterns of thalamic microstimulation. Furthermore, while fit on trial averaged data, the phenomenological model reproduced single trial response properties when simulated with noise added into the system during stimulus presentation. The simulations indicate that the single trial response properties were dependent on the relative sensitivity of the static nonlinearities in the two stages of the model, and ultimately suggest that electrical stimulation activates local circuitry through linear recruitment, but that this activity propagates in a highly nonlinear fashion to downstream targets. Significance The development of nonlinear dynamical models of neural circuitry will guide information delivery for sensory prosthesis applications, and more generally reveal properties of population coding within neural circuits. PMID:24162186

  9. System identification of the nonlinear dynamics in the thalamocortical circuit in response to patterned thalamic microstimulation in vivo

    Science.gov (United States)

    Millard, Daniel C.; Wang, Qi; Gollnick, Clare A.; Stanley, Garrett B.

    2013-12-01

    Objective. Nonlinear system identification approaches were used to develop a dynamical model of the network level response to patterns of microstimulation in vivo. Approach. The thalamocortical circuit of the rodent vibrissa pathway was the model system, with voltage sensitive dye imaging capturing the cortical response to patterns of stimulation delivered from a single electrode in the ventral posteromedial thalamus. The results of simple paired stimulus experiments formed the basis for the development of a phenomenological model explicitly containing nonlinear elements observed experimentally. The phenomenological model was fit using datasets obtained with impulse train inputs, Poisson-distributed in time and uniformly varying in amplitude. Main results. The phenomenological model explained 58% of the variance in the cortical response to out of sample patterns of thalamic microstimulation. Furthermore, while fit on trial-averaged data, the phenomenological model reproduced single trial response properties when simulated with noise added into the system during stimulus presentation. The simulations indicate that the single trial response properties were dependent on the relative sensitivity of the static nonlinearities in the two stages of the model, and ultimately suggest that electrical stimulation activates local circuitry through linear recruitment, but that this activity propagates in a highly nonlinear fashion to downstream targets. Significance. The development of nonlinear dynamical models of neural circuitry will guide information delivery for sensory prosthesis applications, and more generally reveal properties of population coding within neural circuits.

  10. Ant functional responses along environmental gradients.

    Science.gov (United States)

    Arnan, Xavier; Cerdá, Xim; Retana, Javier

    2014-11-01

    Understanding species distributions and diversity gradients is a central challenge in ecology and requires prior knowledge of the functional traits mediating species' survival under particular environmental conditions. While the functional ecology of plants has been reasonably well explored, much less is known about that of animals. Ants are among the most diverse, abundant and ecologically significant organisms on earth, and they perform a great variety of ecological functions. In this study, we analyse how the functional species traits present in ant communities vary along broad gradients in climate, productivity and vegetation type in the south-western Mediterranean. To this end, we compiled one of the largest animal databases to date: it contains information on 211 local ant communities (including eight climate variables, productivity, and vegetation type) and 124 ant species, for which 10 functional traits are described. We used traits that characterize different dimensions of the ant functional niche with respect to morphology, life history and behaviour at both individual and colony level. We calculated two complementary functional trait community indices ('trait average' and 'trait dissimilarity') for each trait, and we analysed how they varied along the three different gradients using generalized least squares models that accounted for spatial autocorrelation. Our results show that productivity, vegetation type and, to a lesser extent, each climate variable per se might play an important role in shaping the occurrence of functional species traits in ant communities. Among the climate variables, temperature and precipitation seasonality had a much higher influence on functional responses than their mean values, whose effects were almost lacking. Our results suggest that strong relationships might exist between the abiotic environment and the distribution of functional traits among south-western Mediterranean ant communities. This finding indicates that

  11. Organic nanoclusters for nonlinear optics: from model systems to cooperative nanoassemblies with enhanced NLO responses

    Science.gov (United States)

    Terenziani, Francesca; Parthasarathy, Venkatakrishnan; Ghosh, Sampa; Pandey, Ravindra; Das, Puspendu K.; Blanchard-Desce, Mireille

    2009-08-01

    While structure-properties relationships are quite actively and successfully investigated at the molecular level of engineering of optical nonlinear responses, supramolecular structure-property relationships are an appealing field. The realization that interchromophoric interactions between strongly polar/polarizable NLO chromophores can significantly affect the NLO response of each chromophoric unit as well as promote associations has opened new dimensions for molecular design. Several elegant routes have been implemented to hinder or counterbalance dipole-dipole interactions between dipolar NLO chromophores for the elaboration of second-order materials (for SHG or electro-optical modulation). At opposite, we have implemented a reverse strategy by confining discrete numbers of NLO push-pull chromophores in close proximity within covalent organic nanoclusters with the aim to exploit interchromophoric interactions in order to achieve enhanced NLO responses. As a proof of concept, we present here the investigation of two-series of multichromophoric covalent assemblies built from NLO push-pull chromophores showing that cooperative enhancement can be achieved both for second-order optical responses (first hyperpolarizabilities) or third-order responses (two-photon absorption cross-sections).

  12. Nonlinear amygdala response to face trustworthiness: contributions of high and low spatial frequency information.

    Science.gov (United States)

    Said, Christopher P; Baron, Sean G; Todorov, Alexander

    2009-03-01

    Previous neuroimaging research has shown amygdala sensitivity to the perceived trustworthiness of neutral faces, with greater responses to untrustworthy compared with trustworthy faces. This observation is consistent with the common view that the amygdala encodes fear and is preferentially responsive to negative stimuli. However, some studies have shown greater amygdala activation to positive compared with neutral stimuli. The first goal of this study was to more fully characterize the amygdala response to face trustworthiness by modeling its activation with both linear and nonlinear predictors. Using fMRI, we report a nonmonotonic response profile, such that the amygdala responds strongest to highly trustworthy and highly untrustworthy faces. This finding complicates future attempts to make inferences about mental states based on activation in the amygdala. The second goal of the study was to test for modulatory effects of image spatial frequency filtering on the amygdala response. We predicted greater amygdala sensitivity to face trustworthiness for low spatial frequency images compared with high spatial frequency images. Instead, we found that both frequency ranges provided sufficient information for the amygdala to differentiate faces on trustworthiness. This finding is consistent with behavioral results and suggests that trustworthiness information may reach the amygdala through pathways carrying both coarse and fine resolution visual signals.

  13. Application of the green function formalism to nonlinear evolution of the low gain FEL oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Shvets, G. [Princeton Plasma Physics Lab., NJ (United States); Wurtele, J.S.; Gardent, D. [Massachusetts Institute of Technology, Cambridge, MA (United States)] [and others

    1995-12-31

    A matrix formalism for the optical pulse evolution in the frequency domain, is applied to the nonlinear regime of operation. The formalism was previously developed for studies of the linear evolution of the low-gain FEL oscillator with an arbitrary shape of the electron beam. By varying experimentally controllable parameters, such as cavity detunning and cavity losses, different regimes of operation of the FEL oscillator, such as a steady state saturation and limit cycle saturation, are studied numerically. It is demonstrated that the linear supermodes, numerically obtained from the matrix formalism, provide an appropriate framework for analyzing the periodic change in the output power in the limit cycle regime. The frequency of this oscillation is related to the frequencies of the lowest-order linear supermodes. The response of the output radiation to periodic variation of the electron energy is studied. It is found that the response is enhanced when the frequency of the energy variation corresponds to the difference of per-pass phase advances of the lowest linear supermodes. Finally, various nonlinear models are tested to capture the steady state saturation and limit cycle variation of the EM field in the oscillator cavity.

  14. Analysis of stability and nonlinear response of rotor system with elliptical sliding bearing supports

    Institute of Scientific and Technical Information of China (English)

    LU Yanjun; LIU Heng; YU Lie; LI Qi; ZHANG Zhiyu; JIANG Ming

    2007-01-01

    Based on the variational constraint approach, the variational form of Reynolds equation in hydrodynamic lubrication is revised continuously to satisfy certain con- straints in the cavitation zone of oil film field. According to the physical characteristic of oil film, an eight-node isopara- metric finite element method is used to convert the revised variational form of Reynolds equation to a discrete form of finite dimensional algebraic variational equation. By this approach, a perturbance equation can be obtained directly on the finite element equation. Consequently, nonlinear oil film forces and their Jacobian matrices are calculated simul- taneously, and compatible accuracy is obtained without increasing the computational costs. A method, which is a combination ofpredictor-corrector mechanism and Newton- Raphson method, is presented to calculate equilibrium posi- tion and critical speed corresponding to Hopf bifurcation point of bearing-rotor system, as by-product dynamic coe- fficients of bearing are obtained. The timescale, i.e., the unknown whirling period of Hopf bifurcation solution of bearing-rotor system is drawn into the iterative process using Poincaré-Newton-Floquet method. The stability of the Hopf bifurcation solution can be detected when estimating Hopf bifurcation solution and its periods. The nonlinear unbalanced Tperiodic responses of the system are obtained by using PNF method and path-following technique. The local stability and bifurcation behaviors of T periodic motions are analyzed by Floquet theory. Chaotic motions are analyzed by Lyapunov exponents. The numerical results revealed the rich and complex nonlinear behavior of the system, such as periodic, quasiperiodic, jumped solution, chaos, and coexistence of multisolution, and so on.

  15. MULTIVARIATE VARYING COEFFICIENT MODEL FOR FUNCTIONAL RESPONSES.

    Science.gov (United States)

    Zhu, Hongtu; Li, Runze; Kong, Linglong

    2012-10-01

    Motivated by recent work studying massive imaging data in the neuroimaging literature, we propose multivariate varying coefficient models (MVCM) for modeling the relation between multiple functional responses and a set of covariates. We develop several statistical inference procedures for MVCM and systematically study their theoretical properties. We first establish the weak convergence of the local linear estimate of coefficient functions, as well as its asymptotic bias and variance, and then we derive asymptotic bias and mean integrated squared error of smoothed individual functions and their uniform convergence rate. We establish the uniform convergence rate of the estimated covariance function of the individual functions and its associated eigenvalue and eigenfunctions. We propose a global test for linear hypotheses of varying coefficient functions, and derive its asymptotic distribution under the null hypothesis. We also propose a simultaneous confidence band for each individual effect curve. We conduct Monte Carlo simulation to examine the finite-sample performance of the proposed procedures. We apply MVCM to investigate the development of white matter diffusivities along the genu tract of the corpus callosum in a clinical study of neurodevelopment.

  16. A New Non-linear Technique for Measurement of Splitting Functions of Normal Modes of the Earth

    Science.gov (United States)

    Pachhai, S.; Masters, G.; Tkalcic, H.

    2014-12-01

    Normal modes are the vibrating patterns of the Earth in response to the large earthquakes. Normal mode spectra are split due to Earth's rotation, ellipticity, and heterogeneity. The normal mode splitting is visualized through splitting functions, which represent the local radial average of Earth's structure seen by a mode of vibration. The analysis of the splitting of normal modes can provide unique information about the lateral variation of the Earth's elastic properties that cannot be directly imaged in body wave tomographic images. The non-linear iterative spectral fitting of the observed complex spectra and autoregressive linear inversion have been widely utilized to compute the Earth's 3-D structure. However, the non-linear inversion requires a model of the earthquake source and the retrieved 3-D structure is sensitive to the initial constraints. In contrast, the autoregressive linear inversion does not require the source model. However, this method requires many events to achieve full convergence. In addition, significant disagreement exists between different studies because of the non-uniqueness of the problem and limitations of different methods. We thus apply the neighbourhood algorithm (NA) to measure splitting functions. The NA is an efficient model space search technique and works in two steps: In the first step, the algorithm finds all the models compatible with given data while the posterior probability density of the model parameters are obtained in the second step. The NA can address the problem of non-uniqueness by taking advantage of random sampling of the full model space. The parameter trade-offs are conveniently visualized using joint marginal distributions. In addition, structure coefficients uncertainties can be extracted from the posterior probability distribution. After demonstrating the feasibility of NA with synthetic examples, we compute the splitting functions for the mode 13S2 (sensitive to the inner core) from several large

  17. Frequency response of the Loschmidt echo decay in an open driven nonlinear oscillator

    Science.gov (United States)

    Zhang, Shi-Hui; Yan, Zhan-Yuan

    2015-11-01

    The decay of the Loschmidt echo and its relation to the frequency response of the underlying classical dynamics are investigated in an open Duffing system by means of the Wigner function. The initial Wigner function of the system is Gaussian and centered at a phase point (x 0, p 0). For different (x 0, p 0), significant peaks are observed in the frequency response curves of the Loschmidt echo decay during the evolution of the Wigner function. Furthermore, there is good correspondence between the frequency response curves of the Loschmidt echo decay and the underlying classical dynamics. This can be attributed to the increase of the fringes of the Wigner function by the external driving force, which can be revealed by the frequency response of the underlying classical dynamics.

  18. Modeling nonstationary extreme value distributions with nonlinear functions: An application using multiple precipitation projections for U.S. cities

    Science.gov (United States)

    Um, Myoung-Jin; Kim, Yeonjoo; Markus, Momcilo; Wuebbles, Donald J.

    2017-09-01

    Climate extremes, such as heavy precipitation events, have become more common in recent decades, and nonstationarity concepts have increasingly been adopted to model hydrologic extremes. Various issues are associated with applying nonstationary modeling to extremes, and in this study, we focus on assessing the need for different forms of nonlinear functions in a nonstationary generalized extreme value (GEV) model of different annual maximum precipitation (AMP) time series. Moreover, we suggest an efficient approach for selecting the nonlinear functions of a nonstationary GEV model. Based on observed and multiple projected AMP data for eight cities across the U.S., three separate tasks are proposed. First, we conduct trend and stationarity tests for the observed and projected data. Second, AMP series are fit with thirty different nonlinear functions, and the best functions among these are selected. Finally, the selected nonlinear functions are used to model the location parameter of a nonstationary GEV model and stationary and nonstationary GEV models with a linear function. Our results suggest that the simple use of nonlinear functions might prove useful with nonstationary GEV models of AMP for different locations with different types of model results.

  19. Nonlinear viscoelastic response of highly filled elastomers under multiaxial finite deformation

    Science.gov (United States)

    Peng, Steven T. J.; Landel, Robert F.

    1990-01-01

    A biaxial tester was used to obtain precise biaxial stress responses of highly filled, high strain capability elastomers. Stress-relaxation experiments show that the time-dependent part of the relaxation response can be reasonably approximated by a function which is strain and biaxiality independent. Thus, isochronal data from the stress-relaxation curves can be used to determine the stored energy density function. The complex behavior of the elastomers under biaxial deformation may be caused by dewetting.

  20. The Effect of Temperature Dependent Material Nonlinearities on the Response of Piezoelectric Composite Plates

    Science.gov (United States)

    Lee, Ho-Jun; Saravanos, Dimitris A.

    1997-01-01

    Previously developed analytical formulations for piezoelectric composite plates are extended to account for the nonlinear effects of temperature on material properties. The temperature dependence of the composite and piezoelectric properties are represented at the material level through the thermopiezoelectric constitutive equations. In addition to capturing thermal effects from temperature dependent material properties, this formulation also accounts for thermal effects arising from: (1) coefficient of thermal expansion mismatch between the various composite and piezoelectric plies and (2) pyroelectric effects on the piezoelectric material. The constitutive equations are incorporated into a layerwise laminate theory to provide a unified representation of the coupled mechanical, electrical, and thermal behavior of smart structures. Corresponding finite element equations are derived and implemented for a bilinear plate element with the inherent capability to model both the active and sensory response of piezoelectric composite laminates. Numerical studies are conducted on a simply supported composite plate with attached piezoceramic patches under thermal gradients to investigate the nonlinear effects of material property temperature dependence on the displacements, sensory voltages, active voltages required to minimize thermal deflections, and the resultant stress states.