WorldWideScience

Sample records for nonlinear projection methods

  1. The Generalized Projective Riccati Equations Method for Solving Nonlinear Evolution Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    E. M. E. Zayed

    2014-01-01

    Full Text Available We apply the generalized projective Riccati equations method to find the exact traveling wave solutions of some nonlinear evolution equations with any-order nonlinear terms, namely, the nonlinear Pochhammer-Chree equation, the nonlinear Burgers equation and the generalized, nonlinear Zakharov-Kuznetsov equation. This method presents wider applicability for handling many other nonlinear evolution equations in mathematical physics.

  2. Implementing Kernel Methods Incrementally by Incremental Nonlinear Projection Trick.

    Science.gov (United States)

    Kwak, Nojun

    2016-05-20

    Recently, the nonlinear projection trick (NPT) was introduced enabling direct computation of coordinates of samples in a reproducing kernel Hilbert space. With NPT, any machine learning algorithm can be extended to a kernel version without relying on the so called kernel trick. However, NPT is inherently difficult to be implemented incrementally because an ever increasing kernel matrix should be treated as additional training samples are introduced. In this paper, an incremental version of the NPT (INPT) is proposed based on the observation that the centerization step in NPT is unnecessary. Because the proposed INPT does not change the coordinates of the old data, the coordinates obtained by INPT can directly be used in any incremental methods to implement a kernel version of the incremental methods. The effectiveness of the INPT is shown by applying it to implement incremental versions of kernel methods such as, kernel singular value decomposition, kernel principal component analysis, and kernel discriminant analysis which are utilized for problems of kernel matrix reconstruction, letter classification, and face image retrieval, respectively.

  3. Nonlinear Time Reversal Acoustic Method of Friction Stir Weld Assessment Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the project is demonstration of the feasibility of Friction Stir Weld (FSW) assessment by novel Nonlinear Time Reversal Acoustic (TRA) method. Time...

  4. An iterative regularization method for nonlinear problems based on Bregman projections

    Science.gov (United States)

    Maaß, Peter; Strehlow, Robin

    2016-11-01

    In this paper, we present an iterative method for the regularization of ill-posed, nonlinear problems. The approach is based on the Bregman projection onto stripes the width of which is controlled by both the noise level and the structure of the operator. In our investigations, we follow (Lorenz et al 2014 SIAM J. Imaging Sci. 7 1237-62) and extend the respective method to the setting of nonlinear operators. Furthermore, we present a proof for the regularizing properties of the method.

  5. A Projected Non-linear Conjugate Gradient Method for Interactive Inverse Kinematics

    DEFF Research Database (Denmark)

    Engell-Nørregård, Morten; Erleben, Kenny

    2009-01-01

    Inverse kinematics is the problem of posing an articulated figure to obtain a wanted goal, without regarding inertia and forces. Joint limits are modeled as bounds on individual degrees of freedom, leading to a box-constrained optimization problem. We present A projected Non-linear Conjugate...... Gradient optimization method suitable for box-constrained optimization problems for inverse kinematics. We show application on inverse kinematics positioning of a human figure. Performance is measured and compared to a traditional Jacobian Transpose method. Visual quality of the developed method...

  6. Solution of nonlinear space time fractional differential equations via the fractional projective Riccati expansion method

    CERN Document Server

    Abdel-Salam, Emad A-B; Hassan, Gmal F

    2015-01-01

    In this paper, the fractional projective Riccati expansion method is proposed to solve fractional differential equations. To illustrate the effectiveness of the method, we discuss the space-time fractional Burgers equation, the space-time fractional mKdV equation and time fractional biological population model. The solutions are expressed in terms of fractional hyperbolic functions. These solutions are useful to understand the mechanisms of the complicated nonlinear physical phenomena and fractional differential equations. Among these solutions, some are found for the first time. The fractal index for the obtained results is equal to one. Counter examples to compute the fractal index are introduced in appendix.

  7. Nonlinear projection trick in kernel methods: an alternative to the kernel trick.

    Science.gov (United States)

    Kwak, Nojun

    2013-12-01

    In kernel methods such as kernel principal component analysis (PCA) and support vector machines, the so called kernel trick is used to avoid direct calculations in a high (virtually infinite) dimensional kernel space. In this brief, based on the fact that the effective dimensionality of a kernel space is less than the number of training samples, we propose an alternative to the kernel trick that explicitly maps the input data into a reduced dimensional kernel space. This is easily obtained by the eigenvalue decomposition of the kernel matrix. The proposed method is named as the nonlinear projection trick in contrast to the kernel trick. With this technique, the applicability of the kernel methods is widened to arbitrary algorithms that do not use the dot product. The equivalence between the kernel trick and the nonlinear projection trick is shown for several conventional kernel methods. In addition, we extend PCA-L1, which uses L1-norm instead of L2-norm (or dot product), into a kernel version and show the effectiveness of the proposed approach.

  8. Derivation of second-order nonlinear optical conductivity by the projection-diagram method

    Directory of Open Access Journals (Sweden)

    Nam Lyong Kang

    2012-03-01

    Full Text Available A projection-diagram method is introduced for optical conductivity with lineshape functions, which takes into account the population criterion that the electron and phonon distribution functions are multiplicatively combined along with the energy conservation factors for proper interpretation of emission and absorption of phonons and photons in all the processes of electron transitions. It is further shown that the second order nonlinear optical conductivity of the system of electrons interacting with phonons, obtained using this method, is identical with that derived by using the state dependent projectors and the KC reduction identities [J. Phys. A: Math. Theor. 43, 165203 (2010]. We expect that this method can reduce the amount of many-body calculation and can be of help in providing physical intuition into solid state quantum dynamics and representing perturbation expressions for such systems.

  9. A Kernel—based Nonlinear Subspace Projection Method for Dimensionality Reduction of Hyperspectral Image Data

    Institute of Scientific and Technical Information of China (English)

    GUYanfeng; ZHANGYe; QUANTaifan

    2003-01-01

    A challenging problem in using hyper-spectral data is to eliminate redundancy and preserve useful spectral information for applications. In this pa-per, a kernel-based nonlinear subspace projection (KNSP)method is proposed for feature extraction and dimension-ality reduction in hyperspectral images. The proposed method includes three key steps: subspace partition of hyperspectral data, feature extraction using kernel-based principal component analysis (KPCA) and feature selec-tion based on class separability in the subspaces. Accord-ing to the strong correlation between neighboring bands,the whole data space is partitioned to requested subspaces.In each subspace, the KPCA method is used to effectively extract spectral feature and eliminate redundancies. A criterion function based on class discrimination and sepa-rability is used for the transformed feature selection. For the purpose of testifying its effectiveness, the proposed new method is compared with the classical principal component analysis (PCA) and segmented principal component trans-formation (SPCT). A hyperspectral image classification is performed on AVIRIS data. which have 224 svectral bands.Experimental results show that KNSP is very effective for feature extraction and dimensionality reduction of hyper-spectral data and provides significant improvement over classical PCA and current SPCT technique.

  10. A convenient look-up-table based method for the compensation of non-linear error in digital fringe projection

    Directory of Open Access Journals (Sweden)

    Chen Xiong

    2016-01-01

    Full Text Available Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this work, we propose a convenient look-up-table-based (LUT-based method to compensate for the non-linear error in captured fringe patterns. Without extra calibration, this LUT-based method completely utilizes the captured fringe pattern by recording the full-field differences. Then, a phase compensation map is established to revise the measured phase. Experimental results demonstrate that this method works effectively.

  11. The projective Riccati equation expansion method and variable separation solutions for the nonlinear physical differential equation in physics

    Institute of Scientific and Technical Information of China (English)

    Ma Zheng-Yi

    2007-01-01

    Using the projective Riccati equation expansion (PREE) method, new families of variable separation solutions(including solitary wave solutions, periodic wave solutions and rational function solutions) with arbitrary functions for two nonlinear physical models are obtained. Based on one of the vriable separation solutions and by choosing appropriate functions, new types of interactions between the multi-valued and single-valued solitons, such as a peakonlike semi-foldon and a peakon, a compacton-like semi-foldon and a compacton, are investigated.

  12. Projection-reduction method applied to deriving non-linear optical conductivity for an electron-impurity system

    Directory of Open Access Journals (Sweden)

    Nam Lyong Kang

    2013-07-01

    Full Text Available The projection-reduction method introduced by the present authors is known to give a validated theory for optical transitions in the systems of electrons interacting with phonons. In this work, using this method, we derive the linear and first order nonlinear optical conductivites for an electron-impurity system and examine whether the expressions faithfully satisfy the quantum mechanical philosophy, in the same way as for the electron-phonon systems. The result shows that the Fermi distribution function for electrons, energy denominators, and electron-impurity coupling factors are contained properly in organized manners along with absorption of photons for each electron transition process in the final expressions. Furthermore, the result is shown to be represented properly by schematic diagrams, as in the formulation of electron-phonon interaction. Therefore, in conclusion, we claim that this method can be applied in modeling optical transitions of electrons interacting with both impurities and phonons.

  13. Curve Evolution in Subspaces and Exploring the Metameric Class of Histogram of Gradient Orientation based Features using Nonlinear Projection Methods

    DEFF Research Database (Denmark)

    Tatu, Aditya Jayant

    defined subspace, the N-links bicycle chain space, i.e. the space of curves with equidistant neighboring landmark points. This in itself is a useful shape space for medical image analysis applications. The Histogram of Gradient orientation based features are many in number and are widely used......This thesis deals with two unrelated issues, restricting curve evolution to subspaces and computing image patches in the equivalence class of Histogram of Gradient orientation based features using nonlinear projection methods. Curve evolution is a well known method used in various applications like...... specific requirements like shape priors or a given data model, and due to limitations of the computer, the computed curve evolution forms a path in some finite dimensional subspace of the space of curves. We give methods to restrict the curve evolution to a finite dimensional linear or implicitly defined...

  14. Nonlinear Projective-Iteration Methods for Solving Transport Problems on Regular and Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Dmitriy Y. Anistratov; Adrian Constantinescu; Loren Roberts; William Wieselquist

    2007-04-30

    This is a project in the field of fundamental research on numerical methods for solving the particle transport equation. Numerous practical problems require to use unstructured meshes, for example, detailed nuclear reactor assembly-level calculations, large-scale reactor core calculations, radiative hydrodynamics problems, where the mesh is determined by hydrodynamic processes, and well-logging problems in which the media structure has very complicated geometry. Currently this is an area of very active research in numerical transport theory. main issues in developing numerical methods for solving the transport equation are the accuracy of the numerical solution and effectiveness of iteration procedure. The problem in case of unstructured grids is that it is very difficult to derive an iteration algorithm that will be unconditionally stable.

  15. Improved nonlinear prediction method

    Science.gov (United States)

    Adenan, Nur Hamiza; Md Noorani, Mohd Salmi

    2014-06-01

    The analysis and prediction of time series data have been addressed by researchers. Many techniques have been developed to be applied in various areas, such as weather forecasting, financial markets and hydrological phenomena involving data that are contaminated by noise. Therefore, various techniques to improve the method have been introduced to analyze and predict time series data. In respect of the importance of analysis and the accuracy of the prediction result, a study was undertaken to test the effectiveness of the improved nonlinear prediction method for data that contain noise. The improved nonlinear prediction method involves the formation of composite serial data based on the successive differences of the time series. Then, the phase space reconstruction was performed on the composite data (one-dimensional) to reconstruct a number of space dimensions. Finally the local linear approximation method was employed to make a prediction based on the phase space. This improved method was tested with data series Logistics that contain 0%, 5%, 10%, 20% and 30% of noise. The results show that by using the improved method, the predictions were found to be in close agreement with the observed ones. The correlation coefficient was close to one when the improved method was applied on data with up to 10% noise. Thus, an improvement to analyze data with noise without involving any noise reduction method was introduced to predict the time series data.

  16. Computer-Aided Design Methods for Model-Based Nonlinear Engine Control Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Traditional design methods for aircraft turbine engine control systems have relied on the use of linearized models and linear control theory. While these controllers...

  17. Projection Methods

    DEFF Research Database (Denmark)

    Wagner, Falko Jens; Poulsen, Mikael Zebbelin

    1999-01-01

    When trying to solve a DAE problem of high index with more traditional methods, it often causes instability in some of the variables, and finally leads to breakdown of convergence and integration of the solution. This is nicely shown in [ESF98, p. 152 ff.].This chapter will introduce projection...... methods as a way of handling these special problems. It is assumed that we have methods for solving normal ODE systems and index-1 systems....

  18. Nonlinear Optical Terahertz Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Our approach is based on high-Q optical WGM resonators made with a nonlinear crystal. Such resonators have been demonstrated to dramatically enhance nonlinear...

  19. Nonlinear Multiantenna Detection Methods

    Directory of Open Access Journals (Sweden)

    Chen Sheng

    2004-01-01

    Full Text Available A nonlinear detection technique designed for multiple-antenna assisted receivers employed in space-division multiple-access systems is investigated. We derive the optimal solution of the nonlinear spatial-processing assisted receiver for binary phase shift keying signalling, which we refer to as the Bayesian detector. It is shown that this optimal Bayesian receiver significantly outperforms the standard linear beamforming assisted receiver in terms of a reduced bit error rate, at the expense of an increased complexity, while the achievable system capacity is substantially enhanced with the advent of employing nonlinear detection. Specifically, when the spatial separation expressed in terms of the angle of arrival between the desired and interfering signals is below a certain threshold, a linear beamformer would fail to separate them, while a nonlinear detection assisted receiver is still capable of performing adequately. The adaptive implementation of the optimal Bayesian detector can be realized using a radial basis function network. Two techniques are presented for constructing block-data-based adaptive nonlinear multiple-antenna assisted receivers. One of them is based on the relevance vector machine invoked for classification, while the other on the orthogonal forward selection procedure combined with the Fisher ratio class-separability measure. A recursive sample-by-sample adaptation procedure is also proposed for training nonlinear detectors based on an amalgam of enhanced -means clustering techniques and the recursive least squares algorithm.

  20. Methods of nonlinear kinetics

    OpenAIRE

    Gorban, A. N.; Karlin, I.V.

    2003-01-01

    Nonlinear kinetic equations are reviewed for a wide audience of specialists and postgraduate students in physics, mathematical physics, material science, chemical engineering and interdisciplinary research. Contents: The Boltzmann equation, Phenomenology and Quasi-chemical representation of the Boltzmann equation, Kinetic models, Discrete velocity models, Direct simulation, Lattice Gas and Lattice Boltzmann models, Minimal Boltzmann models for flows at low Knudsen number, Other kinetic equati...

  1. Nonlinear programming analysis and methods

    CERN Document Server

    Avriel, Mordecai

    2012-01-01

    This text provides an excellent bridge between principal theories and concepts and their practical implementation. Topics include convex programming, duality, generalized convexity, analysis of selected nonlinear programs, techniques for numerical solutions, and unconstrained optimization methods.

  2. Projection methods

    Science.gov (United States)

    Michael E. Goerndt; W. Keith Moser; Patrick D. Miles; Dave Wear; Ryan D. DeSantis; Robert J. Huggett; Stephen R. Shifley; Francisco X. Aguilar; Kenneth E. Skog

    2016-01-01

    One purpose of the Northern Forest Futures Project is to predict change in future forest attributes across the 20 States in the U.S. North for the period that extends from 2010 to 2060. The forest attributes of primary interest are the 54 indicators of forest sustainability identified in the Montreal Process Criteria and Indicators (Montreal Process Working Group, n.d...

  3. Computational Models for Nonlinear Aeroelastic Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate new and efficient computational methods of modeling nonlinear aeroelastic systems. The...

  4. Nonlinear programming analysis and methods

    CERN Document Server

    Avriel, Mordecai

    2003-01-01

    Comprehensive and complete, this overview provides a single-volume treatment of key algorithms and theories. The author provides clear explanations of all theoretical aspects, with rigorous proof of most results. The two-part treatment begins with the derivation of optimality conditions and discussions of convex programming, duality, generalized convexity, and analysis of selected nonlinear programs. The second part concerns techniques for numerical solutions and unconstrained optimization methods, and it presents commonly used algorithms for constrained nonlinear optimization problems. This g

  5. Computational Models for Nonlinear Aeroelastic Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate a new and efficient computational method of modeling nonlinear aeroelastic systems. The...

  6. Scalable nonlinear iterative methods for partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Cai, X-C

    2000-10-29

    We conducted a six-month investigation of the design, analysis, and software implementation of a class of singularity-insensitive, scalable, parallel nonlinear iterative methods for the numerical solution of nonlinear partial differential equations. The solutions of nonlinear PDEs are often nonsmooth and have local singularities, such as sharp fronts. Traditional nonlinear iterative methods, such as Newton-like methods, are capable of reducing the global smooth nonlinearities at a nearly quadratic convergence rate but may become very slow once the local singularities appear somewhere in the computational domain. Even with global strategies such as line search or trust region the methods often stagnate at local minima of {parallel}F{parallel}, especially for problems with unbalanced nonlinearities, because the methods do not have built-in machinery to deal with the unbalanced nonlinearities. To find the same solution u* of F(u) = 0, we solve, instead, an equivalent nonlinearly preconditioned system G(F(u*)) = 0 whose nonlinearities are more balanced. In this project, we proposed and studied a nonlinear additive Schwarz based parallel nonlinear preconditioner and showed numerically that the new method converges well even for some difficult problems, such as high Reynolds number flows, when a traditional inexact Newton method fails.

  7. Statistical methods in nonlinear dynamics

    Indian Academy of Sciences (India)

    K P N Murthy; R Harish; S V M Satyanarayana

    2005-03-01

    Sensitivity to initial conditions in nonlinear dynamical systems leads to exponential divergence of trajectories that are initially arbitrarily close, and hence to unpredictability. Statistical methods have been found to be helpful in extracting useful information about such systems. In this paper, we review briefly some statistical methods employed in the study of deterministic and stochastic dynamical systems. These include power spectral analysis and aliasing, extreme value statistics and order statistics, recurrence time statistics, the characterization of intermittency in the Sinai disorder problem, random walk analysis of diffusion in the chaotic pendulum, and long-range correlations in stochastic sequences of symbols.

  8. General projective Riccati equation method and exact solutions for generalized KdV-type and KdV-Burgers-type equations with nonlinear terms of any order

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yong E-mail: chenyong@dlut.edu.cn; Li Biao E-mail: libiao@dlut.edu.cn

    2004-03-01

    Applying the improved generalized method, which is a direct and unified algebraic method for constructing multiple travelling wave solutions of nonlinear partial differential equations and implemented in a computer algebraic system, we consider the KdV-type equations and KdV-Burgers-type equations with nonlinear terms of any order. As a result, we can not only successfully recover the previously known travelling wave solutions found by existing various tanh methods and other sophisticated methods, but also obtain some new formal solutions. The solutions obtained include kink-shaped solitons, bell-shaped solitons, singular solitons and periodic solutions.

  9. Information mining in weighted complex networks with nonlinear rating projection

    Science.gov (United States)

    Liao, Hao; Zeng, An; Zhou, Mingyang; Mao, Rui; Wang, Bing-Hong

    2017-10-01

    Weighted rating networks are commonly used by e-commerce providers nowadays. In order to generate an objective ranking of online items' quality according to users' ratings, many sophisticated algorithms have been proposed in the complex networks domain. In this paper, instead of proposing new algorithms we focus on a more fundamental problem: the nonlinear rating projection. The basic idea is that even though the rating values given by users are linearly separated, the real preference of users to items between the different given values is nonlinear. We thus design an approach to project the original ratings of users to more representative values. This approach can be regarded as a data pretreatment method. Simulation in both artificial and real networks shows that the performance of the ranking algorithms can be improved when the projected ratings are used.

  10. Nonlinear projective filtering in a data stream

    CERN Document Server

    Schreiber, T; Schreiber, Thomas; Richter, Marcus

    1998-01-01

    We introduce a modified algorithm to perform nonlinear filtering of a time series by locally linear phase space projections. Unlike previous implementations, the algorithm can be used not only for a posteriori processing but includes the possibility to perform real time filtering in a data stream. The data base that represents the phase space structure generated by the data is updated dynamically. This also allows filtering of non-stationary signals and dynamic parameter adjustment. We discuss exemplary applications, including the real time extraction of the fetal electrocardiogram from abdominal recordings.

  11. Nonlinear fault diagnosis method based on kernel principal component analysis

    Institute of Scientific and Technical Information of China (English)

    Yan Weiwu; Zhang Chunkai; Shao Huihe

    2005-01-01

    To ensure the system run under working order, detection and diagnosis of faults play an important role in industrial process. This paper proposed a nonlinear fault diagnosis method based on kernel principal component analysis (KPCA). In proposed method, using essential information of nonlinear system extracted by KPCA, we constructed KPCA model of nonlinear system under normal working condition. Then new data were projected onto the KPCA model. When new data are incompatible with the KPCA model, it can be concluded that the nonlinear system isout of normal working condition. Proposed method was applied to fault diagnosison rolling bearings. Simulation results show proposed method provides an effective method for fault detection and diagnosis of nonlinear system.

  12. Nonlinear structural analysis using integrated force method

    Indian Academy of Sciences (India)

    N R B Krishnam Raju; J Nagabhushanam

    2000-08-01

    Though the use of the integrated force method for linear investigations is well-recognised, no efforts were made to extend this method to nonlinear structural analysis. This paper presents the attempts to use this method for analysing nonlinear structures. General formulation of nonlinear structural analysis is given. Typically highly nonlinear bench-mark problems are considered. The characteristic matrices of the elements used in these problems are developed and later these structures are analysed. The results of the analysis are compared with the results of the displacement method. It has been demonstrated that the integrated force method is equally viable and efficient as compared to the displacement method.

  13. Nonlinear calculating method of pile settlement

    Institute of Scientific and Technical Information of China (English)

    贺炜; 王桂尧; 王泓华

    2008-01-01

    To study calculating method of settlement on top of extra-long large-diameter pile, the relevant research results were summarized. The hyperbola model, a nonlinear load transfer function, was introduced to establish the basic differential equation with load transfer method. Assumed that the displacement of pile shaft was the high order power series of buried depth, through merging the same orthometric items and arranging the relevant coefficients, the solution which could take the nonlinear pile-soil interaction and stratum properties of soil into account was solved by power series. On the basis of the solution, by determining the load transfer depth with criterion of settlement on pile tip, the method by making boundary conditions compatible was advised to solve the load-settlement curve of pile. The relevant flow chart and mathematic expressions of boundary conditions were also listed. Lastly, the load transfer methods based on both two-broken-line model and hyperbola model were applied to analyzing a real project. The related coefficients of fitting curves by hyperbola were not less than 0.96, which shows that the hyperbola model is truthfulness, and is propitious to avoid personal error. The calculating value of load-settlement curve agrees well with the measured one, which indicates that it can be applied in engineering practice and making the theory that limits the design bearing capacity by settlement on pile top comes true.

  14. Gradiometer Based on Nonlinear Magneto-Optic Rotation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR project will demonstrate sensitive measurements of magnetic field gradients by nonlinear atomic spectroscopy. The gradients are determined by...

  15. LIMITED MEMORY BFGS METHOD FOR NONLINEAR MONOTONE EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Weijun Zhou; Donghui Li

    2007-01-01

    In this paper, we propose an algorithm for solving nonlinear monotone equations by combining the limited memory BFGS method (L-BFGS) with a projection method. We show that the method is globally convergent if the equation involves a Lipschitz continuous monotone function. We also present some preliminary numerical results.

  16. Some geometrical iteration methods for nonlinear equations

    Institute of Scientific and Technical Information of China (English)

    LU Xing-jiang; QIAN Chun

    2008-01-01

    This paper describes geometrical essentials of some iteration methods (e.g. Newton iteration,secant line method,etc.) for solving nonlinear equations and advances some geomet-rical methods of iteration that are flexible and efficient.

  17. Convergence of some asynchronous nonlinear multisplitting methods

    Science.gov (United States)

    Szyld, Daniel B.; Xu, Jian-Jun

    2000-09-01

    Frommer's nonlinear multisplitting methods for solving nonlinear systems of equations are extended to the asynchronous setting. Block methods are extended to include overlap as well. Several specific cases are discussed. Sufficient conditions to guarantee their local convergence are given. A numerical example is presented illustrating the performance of the new approach.

  18. Project execution methods

    National Research Council Canada - National Science Library

    John C Pfeiffer

    2004-01-01

      In the design/build (D/B) method of implementing plant construction projects, the owner contracts with the engineer/contractor or contractor/engineer company or team-depending upon who takes the lead in the project to develop...

  19. TAYLOR EXPANSION METHOD FOR NONLINEAR EVOLUTION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    HE Yin-nian

    2005-01-01

    A new numerical method of integrating the nonlinear evolution equations, namely the Taylor expansion method, was presented. The standard Galerkin method can be viewed as the 0-th order Taylor expansion method; while the nonlinear Galerkin method can be viewed as the 1-st order modified Taylor expansion method. Moreover, the existence of the numerical solution and its convergence rate were proven. Finally, a concrete example,namely, the two-dimensional Navier-Stokes equations with a non slip boundary condition,was provided. The result is that the higher order Taylor expansion method is of the higher convergence rate under some assumptions about the regularity of the solution.

  20. Model Updating Nonlinear System Identification Toolbox Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology (ZONA) proposes to develop an enhanced model updating nonlinear system identification (MUNSID) methodology that utilizes flight data with...

  1. ACCELERATION METHODS OF NONLINEAR ITERATION FOR NONLINEAR PARABOLIC EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Guang-wei Yuan; Xu-deng Hang

    2006-01-01

    This paper discusses the accelerating iterative methods for solving the implicit scheme of nonlinear parabolic equations. Two new nonlinear iterative methods named by the implicit-explicit quasi-Newton (IEQN) method and the derivative free implicit-explicit quasi-Newton (DFIEQN) method are introduced, in which the resulting linear equations from the linearization can preserve the parabolic characteristics of the original partial differential equations. It is proved that the iterative sequence of the iteration method can converge to the solution of the implicit scheme quadratically. Moreover, compared with the Jacobian Free Newton-Krylov (JFNK) method, the DFIEQN method has some advantages, e.g., its implementation is easy, and it gives a linear algebraic system with an explicit coefficient matrix, so that the linear (inner) iteration is not restricted to the Krylov method. Computational results by the IEQN, DFIEQN, JFNK and Picard iteration meth-ods are presented in confirmation of the theory and comparison of the performance of these methods.

  2. Control methods for localization of nonlinear waves

    Science.gov (United States)

    Porubov, Alexey; Andrievsky, Boris

    2017-03-01

    A general form of a distributed feedback control algorithm based on the speed-gradient method is developed. The goal of the control is to achieve nonlinear wave localization. It is shown by example of the sine-Gordon equation that the generation and further stable propagation of a localized wave solution of a single nonlinear partial differential equation may be obtained independently of the initial conditions. The developed algorithm is extended to coupled nonlinear partial differential equations to obtain consistent localized wave solutions at rather arbitrary initial conditions. This article is part of the themed issue 'Horizons of cybernetical physics'.

  3. LINEARIZATION AND CORRECTION METHOD FOR NONLINEAR PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    何吉欢

    2002-01-01

    A new perturbation-like technique called linearization and correction method is proposed. Contrary to the traditional perturbation techniques, the present theory does not assume that the solution is expressed in the form of a power series of small parameter. To obtain an asymptotic solution of nonlinear system, the technique first searched for a solution for the linearized system, then a correction was added to the linearized solution. So the obtained results are uniformly valid for both weakly and strongly nonlinear equations.

  4. Method for conducting nonlinear electrochemical impedance spectroscopy

    Science.gov (United States)

    Adler, Stuart B.; Wilson, Jamie R.; Huff, Shawn L.; Schwartz, Daniel T.

    2015-06-02

    A method for conducting nonlinear electrochemical impedance spectroscopy. The method includes quantifying the nonlinear response of an electrochemical system by measuring higher-order current or voltage harmonics generated by moderate-amplitude sinusoidal current or voltage perturbations. The method involves acquisition of the response signal followed by time apodization and fast Fourier transformation of the data into the frequency domain, where the magnitude and phase of each harmonic signal can be readily quantified. The method can be implemented on a computer as a software program.

  5. Method for conducting nonlinear electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Adler, Stuart B.; Wilson, Jamie R.; Huff, Shawn L.; Schwartz, Daniel T.

    2015-06-02

    A method for conducting nonlinear electrochemical impedance spectroscopy. The method includes quantifying the nonlinear response of an electrochemical system by measuring higher-order current or voltage harmonics generated by moderate-amplitude sinusoidal current or voltage perturbations. The method involves acquisition of the response signal followed by time apodization and fast Fourier transformation of the data into the frequency domain, where the magnitude and phase of each harmonic signal can be readily quantified. The method can be implemented on a computer as a software program.

  6. Advances in iterative methods for nonlinear equations

    CERN Document Server

    Busquier, Sonia

    2016-01-01

    This book focuses on the approximation of nonlinear equations using iterative methods. Nine contributions are presented on the construction and analysis of these methods, the coverage encompassing convergence, efficiency, robustness, dynamics, and applications. Many problems are stated in the form of nonlinear equations, using mathematical modeling. In particular, a wide range of problems in Applied Mathematics and in Engineering can be solved by finding the solutions to these equations. The book reveals the importance of studying convergence aspects in iterative methods and shows that selection of the most efficient and robust iterative method for a given problem is crucial to guaranteeing a good approximation. A number of sample criteria for selecting the optimal method are presented, including those regarding the order of convergence, the computational cost, and the stability, including the dynamics. This book will appeal to researchers whose field of interest is related to nonlinear problems and equations...

  7. Model Updating Nonlinear System Identification Toolbox Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology proposes to develop an enhanced model updating nonlinear system identification (MUNSID) methodology by adopting the flight data with state-of-the-art...

  8. Parallel Nonlinear Optimization for Astrodynamic Navigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — CU Aerospace proposes the development of a new parallel nonlinear program (NLP) solver software package. NLPs allow the solution of complex optimization problems,...

  9. Entropy viscosity method for nonlinear conservation laws

    KAUST Repository

    Guermond, Jean-Luc

    2011-05-01

    A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method. © 2010 Elsevier Inc.

  10. A Non-smooth Nonlinear Conjugate Gradient Method for Interactive Contact Force Problems

    DEFF Research Database (Denmark)

    Silcowitz, Morten; Niebe, Sarah Maria; Erleben, Kenny

    2010-01-01

    of a nonlinear complementarity problem (NCP), which can be solved using an iterative splitting method, such as the projected Gauss–Seidel (PGS) method. We present a novel method for solving the NCP problem by applying a Fletcher–Reeves type nonlinear nonsmooth conjugate gradient (NNCG) type method. We analyze...

  11. Method of Conjugate Radii for Solving Linear and Nonlinear Systems

    Science.gov (United States)

    Nachtsheim, Philip R.

    1999-01-01

    This paper describes a method to solve a system of N linear equations in N steps. A quadratic form is developed involving the sum of the squares of the residuals of the equations. Equating the quadratic form to a constant yields a surface which is an ellipsoid. For different constants, a family of similar ellipsoids can be generated. Starting at an arbitrary point an orthogonal basis is constructed and the center of the family of similar ellipsoids is found in this basis by a sequence of projections. The coordinates of the center in this basis are the solution of linear system of equations. A quadratic form in N variables requires N projections. That is, the current method is an exact method. It is shown that the sequence of projections is equivalent to a special case of the Gram-Schmidt orthogonalization process. The current method enjoys an advantage not shared by the classic Method of Conjugate Gradients. The current method can be extended to nonlinear systems without modification. For nonlinear equations the Method of Conjugate Gradients has to be augmented with a line-search procedure. Results for linear and nonlinear problems are presented.

  12. Numerical methods for nonlinear partial differential equations

    CERN Document Server

    Bartels, Sören

    2015-01-01

    The description of many interesting phenomena in science and engineering leads to infinite-dimensional minimization or evolution problems that define nonlinear partial differential equations. While the development and analysis of numerical methods for linear partial differential equations is nearly complete, only few results are available in the case of nonlinear equations. This monograph devises numerical methods for nonlinear model problems arising in the mathematical description of phase transitions, large bending problems, image processing, and inelastic material behavior. For each of these problems the underlying mathematical model is discussed, the essential analytical properties are explained, and the proposed numerical method is rigorously analyzed. The practicality of the algorithms is illustrated by means of short implementations.

  13. The random projection method

    CERN Document Server

    Vempala, Santosh S

    2005-01-01

    Random projection is a simple geometric technique for reducing the dimensionality of a set of points in Euclidean space while preserving pairwise distances approximately. The technique plays a key role in several breakthrough developments in the field of algorithms. In other cases, it provides elegant alternative proofs. The book begins with an elementary description of the technique and its basic properties. Then it develops the method in the context of applications, which are divided into three groups. The first group consists of combinatorial optimization problems such as maxcut, graph coloring, minimum multicut, graph bandwidth and VLSI layout. Presented in this context is the theory of Euclidean embeddings of graphs. The next group is machine learning problems, specifically, learning intersections of halfspaces and learning large margin hypotheses. The projection method is further refined for the latter application. The last set consists of problems inspired by information retrieval, namely, nearest neig...

  14. Monotone method for nonlinear nonlocal hyperbolic problems

    Directory of Open Access Journals (Sweden)

    Azmy S. Ackleh

    2003-02-01

    Full Text Available We present recent results concerning the application of the monotone method for studying existence and uniqueness of solutions to general first-order nonlinear nonlocal hyperbolic problems. The limitations of comparison principles for such nonlocal problems are discussed. To overcome these limitations, we introduce new definitions for upper and lower solutions.

  15. Review of Nonlinear Methods and Modelling

    CERN Document Server

    Borg, F G

    2005-01-01

    The first part of this Review describes a few of the main methods that have been employed in non-linear time series analysis with special reference to biological applications (biomechanics). The second part treats the physical basis of posturogram data (human balance) and EMG (electromyography, a measure of muscle activity).

  16. Condition Monitoring of Turbines Using Nonlinear Mapping Method

    Institute of Scientific and Technical Information of China (English)

    Liao Guang-lan; Shi Tie-lin; Jiang Nan

    2004-01-01

    Aiming at the non-linear nature of the signals generated from turbines, curvilinear component analysis (CCA), a novel nonlinear projection method that favors local topology conservation is presented for turbines conditions monitoring. This is accomplished in two steps. Time domain features are extracted from raw vibration signals, and then they are projected into a two-dimensional output space by using CCA method and form regions indicative of specific conditions, which helps classify and identify turbine states visually. Therefore, the variation of turbine conditions can be observed clearly with the trajectory of image points for the feature data in the two-dimensional space, and the occurrence and development of failures can be monitored in time.

  17. Nonlinear system compound inverse control method

    Institute of Scientific and Technical Information of China (English)

    Yan ZHANG; Zengqiang CHEN; Peng YANG; Zhuzhi YUAN

    2005-01-01

    A compound neural network is utilized to identify the dynamic nonlinear system.This network is composed of two parts: one is a linear neural network,and the other is a recurrent neural network.Based on the inverse theory a compound inverse control method is proposed.The controller has also two parts:a linear controller and a nonlinear neural network controller.The stability condition of the closed-loop neural network-based compound inverse control system is demonstrated based on the Lyapunov theory.Simulation studies have shown that this scheme is simple and has good control accuracy and robustness.

  18. Nonlinear Interferometry via Fock State Projection

    CERN Document Server

    Khoury, G; Eisenberg, H S; Fonseca, E J S

    2006-01-01

    We use a photon-number resolving detector to monitor the photon number distribution of the output of an interferometer, as a function of phase delay. As inputs we use coherent states with mean photon number up to seven. The postselection of a specific Fock (photon-number) state effectively induces high-order optical non-linearities. Following a scheme by Bentley and Boyd [S.J. Bentley and R.W. Boyd, Optics Express 12, 5735 (2004)] we explore this effect to demonstrate interference patterns a factor of five smaller than the Rayleigh limit.

  19. Nonlinear Interferometry via Fock-State Projection

    Science.gov (United States)

    Khoury, G.; Eisenberg, H. S.; Fonseca, E. J. S.; Bouwmeester, D.

    2006-05-01

    We use a photon-number-resolving detector to monitor the photon-number distribution of the output of an interferometer, as a function of phase delay. As inputs we use coherent states with mean photon number up to seven. The postselection of a specific Fock (photon-number) state effectively induces high-order optical nonlinearities. Following a scheme by Bentley and Boyd [Opt. Express 12, 5735 (2004).OPEXFF1094-408710.1364/OPEX.12.005735], we explore this effect to demonstrate interference patterns a factor of 5 smaller than the Rayleigh limit.

  20. Multigrid Methods for Nonlinear Problems: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Henson, V E

    2002-12-23

    Since their early application to elliptic partial differential equations, multigrid methods have been applied successfully to a large and growing class of problems, from elasticity and computational fluid dynamics to geodetics and molecular structures. Classical multigrid begins with a two-grid process. First, iterative relaxation is applied, whose effect is to smooth the error. Then a coarse-grid correction is applied, in which the smooth error is determined on a coarser grid. This error is interpolated to the fine grid and used to correct the fine-grid approximation. Applying this method recursively to solve the coarse-grid problem leads to multigrid. The coarse-grid correction works because the residual equation is linear. But this is not the case for nonlinear problems, and different strategies must be employed. In this presentation we describe how to apply multigrid to nonlinear problems. There are two basic approaches. The first is to apply a linearization scheme, such as the Newton's method, and to employ multigrid for the solution of the Jacobian system in each iteration. The second is to apply multigrid directly to the nonlinear problem by employing the so-called Full Approximation Scheme (FAS). In FAS a nonlinear iteration is applied to smooth the error. The full equation is solved on the coarse grid, after which the coarse-grid error is extracted from the solution. This correction is then interpolated and applied to the fine grid approximation. We describe these methods in detail, and present numerical experiments that indicate the efficacy of them.

  1. Projective synchronization of chaotic systems with bidirectional nonlinear coupling

    Indian Academy of Sciences (India)

    Mohammada Ali Khan; Swarup Poria

    2013-09-01

    This paper presents a new scheme for constructing bidirectional nonlinear coupled chaotic systems which synchronize projectively. Conditions necessary for projective synchronization (PS) of two bidirectionally coupled chaotic systems are derived using Lyapunov stability theory. The proposed PS scheme is discussed by taking as examples the so-called unified chaotic model, the Lorenz–Stenflo system and the nonautonomous chaotic Van der Pol oscillator. Numerical simulation results are presented to show the efficiency of the proposed synchronization scheme.

  2. Nonlinear projective filtering; 1, Application to real time series

    CERN Document Server

    Schreiber, T

    1998-01-01

    We discuss applications of nonlinear filtering of time series by locally linear phase space projections. Noise can be reduced whenever the error due to the manifold approximation is smaller than the noise in the system. Examples include the real time extraction of the fetal electrocardiogram from abdominal recordings.

  3. Fast Stiffness Matrix Calculation for Nonlinear Finite Element Method

    Directory of Open Access Journals (Sweden)

    Emir Gülümser

    2014-01-01

    Full Text Available We propose a fast stiffness matrix calculation technique for nonlinear finite element method (FEM. Nonlinear stiffness matrices are constructed using Green-Lagrange strains, which are derived from infinitesimal strains by adding the nonlinear terms discarded from small deformations. We implemented a linear and a nonlinear finite element method with the same material properties to examine the differences between them. We verified our nonlinear formulation with different applications and achieved considerable speedups in solving the system of equations using our nonlinear FEM compared to a state-of-the-art nonlinear FEM.

  4. Nonlinear ordinary differential equations analytical approximation and numerical methods

    CERN Document Server

    Hermann, Martin

    2016-01-01

    The book discusses the solutions to nonlinear ordinary differential equations (ODEs) using analytical and numerical approximation methods. Recently, analytical approximation methods have been largely used in solving linear and nonlinear lower-order ODEs. It also discusses using these methods to solve some strong nonlinear ODEs. There are two chapters devoted to solving nonlinear ODEs using numerical methods, as in practice high-dimensional systems of nonlinear ODEs that cannot be solved by analytical approximate methods are common. Moreover, it studies analytical and numerical techniques for the treatment of parameter-depending ODEs. The book explains various methods for solving nonlinear-oscillator and structural-system problems, including the energy balance method, harmonic balance method, amplitude frequency formulation, variational iteration method, homotopy perturbation method, iteration perturbation method, homotopy analysis method, simple and multiple shooting method, and the nonlinear stabilized march...

  5. A NUMERICAL METHOD FOR NONLINEAR WATER WAVES

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xi-zeng; SUN Zhao-chen; LIANG Shu-xiu; HU Chang-hong

    2009-01-01

    This article presents a numerical method for modeling nonlinear water waves based on the High Order Spectral (HOS) method proposed by Dommermuth and Yue and West et al., involving Taylor expansion of the Dirichlet problem and the Fast Fourier Transform (FFT) algorithm. The validation and efficiency of the numerical scheme is illustrated by a number of case studies on wave and wave train configuration including the evolution of fifth-order Stokes waves, wave dispersive focusing and the instability of Stokes wave with finite slope. The results agree well with those obtained by other studies.

  6. ADFE METHOD WITH HIGH ACCURACY FOR NONLINEAR PARABOLIC INTEGRO-DIFFERENTIAL SYSTEM WITH NONLINEAR BOUNDARY CONDITIONS

    Institute of Scientific and Technical Information of China (English)

    崔霞

    2002-01-01

    Alternating direction finite element (ADFE) scheme for d-dimensional nonlinear system of parabolic integro-differential equations is studied. By using a local approximation based on patches of finite elements to treat the capacity term qi(u), decomposition of the coefficient matrix is realized; by using alternating direction, the multi-dimensional problem is reduced to a family of single space variable problems, calculation work is simplified; by using finite element method, high accuracy for space variant is kept; by using inductive hypothesis reasoning, the difficulty coming from the nonlinearity of the coefficients and boundary conditions is treated; by introducing Ritz-Volterra projection, the difficulty coming from the memory term is solved. Finally, by using various techniques for priori estimate for differential equations, the unique resolvability and convergence properties for both FE and ADFE schemes are rigorously demonstrated, and optimal H1 and L2norm space estimates and O((△t)2) estimate for time variant are obtained.

  7. Nonlinear modal methods for crack localization

    Science.gov (United States)

    Sutin, Alexander; Ostrovsky, Lev; Lebedev, Andrey

    2003-10-01

    A nonlinear method for locating defects in solid materials is discussed that is relevant to nonlinear modal tomography based on the signal cross-modulation. The scheme is illustrated by a theoretical model in which a thin plate or bar with a single crack is excited by a strong low-frequency wave and a high-frequency probing wave (ultrasound). A crack is considered as a small contact-type defect which does not perturb the modal structure of sound in linear approximation but creates combinational-frequency components whose amplitudes depend on their closeness to a resonance and crack position. Using different crack models, including the hysteretic ones, the nonlinear part of its volume variations under the given stress and then the combinational wave components in the bar can be determined. Evidently, their amplitude depends strongly on the crack position with respect to the peaks or nodes of the corresponding linear signals which can be used for localization of the crack position. Exciting the sample by sweeping ultrasound frequencies through several resonances (modes) reduces the ambiguity in the localization. Some aspects of inverse problem solution are also discussed, and preliminary experimental results are presented.

  8. Identification methods for nonlinear stochastic systems.

    Science.gov (United States)

    Fullana, Jose-Maria; Rossi, Maurice

    2002-03-01

    Model identifications based on orbit tracking methods are here extended to stochastic differential equations. In the present approach, deterministic and statistical features are introduced via the time evolution of ensemble averages and variances. The aforementioned quantities are shown to follow deterministic equations, which are explicitly written within a linear as well as a weakly nonlinear approximation. Based on such equations and the observed time series, a cost function is defined. Its minimization by simulated annealing or backpropagation algorithms then yields a set of best-fit parameters. This procedure is successfully applied for various sampling time intervals, on a stochastic Lorenz system.

  9. Optimal Variational Method for Truly Nonlinear Oscillators

    Directory of Open Access Journals (Sweden)

    Vasile Marinca

    2013-01-01

    Full Text Available The Optimal Variational Method (OVM is introduced and applied for calculating approximate periodic solutions of “truly nonlinear oscillators”. The main advantage of this procedure consists in that it provides a convenient way to control the convergence of approximate solutions in a very rigorous way and allows adjustment of convergence regions where necessary. This approach does not depend upon any small or large parameters. A very good agreement was found between approximate and numerical solution, which proves that OVM is very efficient and accurate.

  10. NONLINEAR DATA RECONCILIATION METHOD BASED ON KERNEL PRINCIPAL COMPONENT ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In the industrial process situation, principal component analysis (PCA) is a general method in data reconciliation.However, PCA sometime is unfeasible to nonlinear feature analysis and limited in application to nonlinear industrial process.Kernel PCA (KPCA) is extension of PCA and can be used for nonlinear feature analysis.A nonlinear data reconciliation method based on KPCA is proposed.The basic idea of this method is that firstly original data are mapped to high dimensional feature space by nonlinear function, and PCA is implemented in the feature space.Then nonlinear feature analysis is implemented and data are reconstructed by using the kernel.The data reconciliation method based on KPCA is applied to ternary distillation column.Simulation results show that this method can filter the noise in measurements of nonlinear process and reconciliated data can represent the true information of nonlinear process.

  11. Evaluation methods for hospital projects.

    Science.gov (United States)

    Buelow, Janet R; Zuckweiler, Kathryn M; Rosacker, Kirsten M

    2010-01-01

    The authors report the findings of a survey of hospital managers on the utilization of various project selection and evaluation methodologies. The focus of the analysis was the empirical relationship between a portfolio of project evaluation(1) methods actually utilized for a given project and several measures of perceived project success. The analysis revealed that cost-benefit analysis and top management support were the two project evaluation methods used most often by the hospital managers. The authors' empirical assessment provides evidence that top management support is associated with overall project success.

  12. Water resources climate change projections using supervised nonlinear and multivariate soft computing techniques

    Science.gov (United States)

    Sarhadi, Ali; Burn, Donald H.; Johnson, Fiona; Mehrotra, Raj; Sharma, Ashish

    2016-05-01

    Accurate projection of global warming on the probabilistic behavior of hydro-climate variables is one of the main challenges in climate change impact assessment studies. Due to the complexity of climate-associated processes, different sources of uncertainty influence the projected behavior of hydro-climate variables in regression-based statistical downscaling procedures. The current study presents a comprehensive methodology to improve the predictive power of the procedure to provide improved projections. It does this by minimizing the uncertainty sources arising from the high-dimensionality of atmospheric predictors, the complex and nonlinear relationships between hydro-climate predictands and atmospheric predictors, as well as the biases that exist in climate model simulations. To address the impact of the high dimensional feature spaces, a supervised nonlinear dimensionality reduction algorithm is presented that is able to capture the nonlinear variability among projectors through extracting a sequence of principal components that have maximal dependency with the target hydro-climate variables. Two soft-computing nonlinear machine-learning methods, Support Vector Regression (SVR) and Relevance Vector Machine (RVM), are engaged to capture the nonlinear relationships between predictand and atmospheric predictors. To correct the spatial and temporal biases over multiple time scales in the GCM predictands, the Multivariate Recursive Nesting Bias Correction (MRNBC) approach is used. The results demonstrate that this combined approach significantly improves the downscaling procedure in terms of precipitation projection.

  13. A simplified NARMAX method using nonlinear input-output data

    Institute of Scientific and Technical Information of China (English)

    Jie CHEN; Sheng FENG

    2007-01-01

    A system identification method for nonlinear systems with unknown structure is presented using short input-output data. The method simplifies the original NARMAX method. It introduces more general model structures for nonlinear systems. The group method of data handling (GMDH) method is employed to obtain the model terms and parameters. Effectiveness of the proposed method is illustrated by a typical nonlinear system with unknown structure and deficient input-output data.

  14. Adaptive explicit Magnus numerical method for nonlinear dynamical systems

    Institute of Scientific and Technical Information of China (English)

    LI Wen-cheng; DENG Zi-chen

    2008-01-01

    Based on the new explicit Magnus expansion developed for nonlinear equations defined on a matrix Lie group,an efficient numerical method is proposed for nonlinear dynamical systems.To improve computational efficiency,the integration step size can be adaptively controlled.Validity and effectiveness of the method are shown by application to several nonlinear dynamical systems including the Duffing system,the van der Pol system with strong stiffness,and the nonlinear Hamiltonian pendulum system.

  15. INTERIOR POINT PROJECTED REDUCED HESSIAN METHOD WITH TRUST REGION STRATEGY FOR NONLINEAR CONSTRAINED OPTIMIZATION%信赖域策略的内点投影既约Hessian方法解非线性约束优化

    Institute of Scientific and Technical Information of China (English)

    朱德通

    2004-01-01

    A interior point scaling projected reduced Hessian method with combination of nonmonotonic backtracking technique and trust region strategy for nonlinear equality constrained optimization with nonegative constraint on variables is proposed.In order to deal with large problems,a pair of trust region subproblems in horizontal and vertical subspaces is used to replace the general full trust region subproblem.The horizontal trust region subproblem in the algorithm is only a general trust region subproblem while the vertical trust region subproblem is defined by a parameter size of the vertical direction subject only to an ellipsoidal constraint.Both trust region strategy and line search technique at each iteration switch to obtaining a backtracking step generated by the two trust region subproblems.By adopting the l1 penalty function as the merit function, the global convergence and fast local convergence rate of the proposed algorithm are established under some reasonable conditions.A nonmonotonic criterion and the second order correction step are used to overcome Maratos effect and speed up the convergence progress in some ill-conditioned cases.

  16. μ Synthesis Method for Robust Control of Uncertain Nonlinear Systems

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    μ synthesis method for robust control of uncertain nonlinear systems is propored, which is based on feedback linearization. First, nonlinear systems are linearized as controllable linear systems by I/O linearization,such that uncertain nonlinear systems are expressed as the linear fractional transformations (LFTs) on the generalized linearized plants and uncertainty.Then,linear robust controllers are obtained for the LFTs usingμsynthesis method based on H∞ optimization.Finally,the nonlinear robust controllers are constructed by combining the linear robust controllers and the nonlinear feedback.An example is given to illustrate the design.

  17. OBLIQUE PROJECTION REALIZATION OF A KERNEL-BASED NONLINEAR DISCRIMINATOR

    Institute of Scientific and Technical Information of China (English)

    Liu Benyong; Zhang Jing

    2006-01-01

    Previously, a novel classifier called Kernel-based Nonlinear Discriminator (KND) was proposed to discriminate a pattern class from other classes by minimizing mean effect of the latter. To consider the effect of the target class, this paper introduces an oblique projection algorithm to determine the coefficients of a KND so that it is extended to a new version called extended KND (eKND). In eKND construction, the desired output vector of the target class is obliquely projected onto the relevant subspace along the subspace related to other classes. In addition, a simple technique is proposed to calculate the associated oblique projection operator. Experimental results on handwritten digit recognition show that the algorithm performes better than a KND classifier and some other commonly used classifiers.

  18. New cooperative projection neural network for nonlinearly constrained variational inequality

    Institute of Scientific and Technical Information of China (English)

    XIA YouSheng

    2009-01-01

    This paper proposes a new cooperative projection neural network (CPNN), which combines automat-ically three individual neural network models with a common projection term. As a special case, the proposed CPNN can include three recent recurrent neural networks for solving monotone variational in-equality problems with limit or linear constraints, respectively. Under the monotonicity condition of the corresponding Lagrangian mapping, the proposed CPNN is theoretically guaranteed to solve monotone variational inequality problems and a class of nonmonotone variational inequality problems with linear and nonlinear constraints. Unlike the extended projection neural network, the proposed CPNN has no limitation on the initial point for global convergence. Compared with other related cooperative neural networks and numerical optimization algorithms, the proposed CPNN has a low computational complex-ity and requires weak convergence conditions. An application in real-time grasping force optimization and examples demonstrate good performance of the proposed CPNN.

  19. Sparse Nonlinear Electromagnetic Imaging Accelerated With Projected Steepest Descent Algorithm

    KAUST Repository

    Desmal, Abdulla

    2017-04-03

    An efficient electromagnetic inversion scheme for imaging sparse 3-D domains is proposed. The scheme achieves its efficiency and accuracy by integrating two concepts. First, the nonlinear optimization problem is constrained using L₀ or L₁-norm of the solution as the penalty term to alleviate the ill-posedness of the inverse problem. The resulting Tikhonov minimization problem is solved using nonlinear Landweber iterations (NLW). Second, the efficiency of the NLW is significantly increased using a steepest descent algorithm. The algorithm uses a projection operator to enforce the sparsity constraint by thresholding the solution at every iteration. Thresholding level and iteration step are selected carefully to increase the efficiency without sacrificing the convergence of the algorithm. Numerical results demonstrate the efficiency and accuracy of the proposed imaging scheme in reconstructing sparse 3-D dielectric profiles.

  20. JAC3D -- A three-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Biffle, J.H.

    1993-02-01

    JAC3D is a three-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equation. The method is implemented in a three-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. An eight-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic-plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.

  1. JAC2D: A two-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Biffle, J.H.; Blanford, M.L.

    1994-05-01

    JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.

  2. Multiscale Support Vector Learning With Projection Operator Wavelet Kernel for Nonlinear Dynamical System Identification.

    Science.gov (United States)

    Lu, Zhao; Sun, Jing; Butts, Kenneth

    2016-02-03

    A giant leap has been made in the past couple of decades with the introduction of kernel-based learning as a mainstay for designing effective nonlinear computational learning algorithms. In view of the geometric interpretation of conditional expectation and the ubiquity of multiscale characteristics in highly complex nonlinear dynamic systems [1]-[3], this paper presents a new orthogonal projection operator wavelet kernel, aiming at developing an efficient computational learning approach for nonlinear dynamical system identification. In the framework of multiresolution analysis, the proposed projection operator wavelet kernel can fulfill the multiscale, multidimensional learning to estimate complex dependencies. The special advantage of the projection operator wavelet kernel developed in this paper lies in the fact that it has a closed-form expression, which greatly facilitates its application in kernel learning. To the best of our knowledge, it is the first closed-form orthogonal projection wavelet kernel reported in the literature. It provides a link between grid-based wavelets and mesh-free kernel-based methods. Simulation studies for identifying the parallel models of two benchmark nonlinear dynamical systems confirm its superiority in model accuracy and sparsity.

  3. Comparative study of homotopy continuation methods for nonlinear algebraic equations

    Science.gov (United States)

    Nor, Hafizudin Mohamad; Ismail, Ahmad Izani Md.; Majid, Ahmad Abd.

    2014-07-01

    We compare some recent homotopy continuation methods to see which method has greater applicability and greater accuracy. We test the methods on systems of nonlinear algebraic equations. The results obtained indicate the superior accuracy of Newton Homotopy Continuation Method (NHCM).

  4. Nonlinear generalization of Den Hartog's equal-peak method

    Science.gov (United States)

    Habib, G.; Detroux, T.; Viguié, R.; Kerschen, G.

    2015-02-01

    This study addresses the mitigation of a nonlinear resonance of a mechanical system. In view of the narrow bandwidth of the classical linear tuned vibration absorber, a nonlinear absorber, termed the nonlinear tuned vibration absorber (NLTVA), is introduced in this paper. An unconventional aspect of the NLTVA is that the mathematical form of its restoring force is tailored according to the nonlinear restoring force of the primary system. The NLTVA parameters are then determined using a nonlinear generalization of Den Hartog's equal-peak method. The mitigation of the resonant vibrations of a Duffing oscillator is considered to illustrate the proposed developments.

  5. Vibrations of Nonlinear Systems. The Method of Integral Equations,

    Science.gov (United States)

    Many diverse applied methods of investigating oscillations of nonlinear systems often in different mathematical formulations and outwardly not...parameter classical methods and the methods of investigating nonlinear systems of automatic control based on the so-called filter hypothesis, and to

  6. Nonlinear Ultrasonic Characterization Using the Noncollinear Method

    Science.gov (United States)

    Croxford, A. J.; Drinkwater, B. W.; Wilcox, P. D.

    2011-06-01

    The measurement of material non-linearity using ultrasound is an attractive concept, offering the potential to detect fatigue damage earlier than is possible with conventional techniques. Despite this advantage and much work in the field the currently developed approaches are primarily limited to the lab environment. This is due to the difficulty in separating the material nonlinearity from that generated by equipment. This paper reports on an approach that eliminates this problem. When two shear waves interact a third wave is generated due to the material nonlinearity. This paper shows how this interaction can be used to measure material properties in damaged specimens. It goes on to show that this approach can be used to make measurements of material non-linearity both across a specimen.

  7. A Hybrid of DL and WYL Nonlinear Conjugate Gradient Methods

    Directory of Open Access Journals (Sweden)

    Shengwei Yao

    2014-01-01

    Full Text Available The conjugate gradient method is an efficient method for solving large-scale nonlinear optimization problems. In this paper, we propose a nonlinear conjugate gradient method which can be considered as a hybrid of DL and WYL conjugate gradient methods. The given method possesses the sufficient descent condition under the Wolfe-Powell line search and is globally convergent for general functions. Our numerical results show that the proposed method is very robust and efficient for the test problems.

  8. Auxiliary equation method for solving nonlinear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Sirendaoreji,; Jiong, Sun

    2003-03-31

    By using the solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct several kinds of exact travelling wave solutions for some nonlinear partial differential equations. By this method some physically important nonlinear equations are investigated and new exact travelling wave solutions are explicitly obtained with the aid of symbolic computation.

  9. Energy Method to Obtain Approximate Solutions of Strongly Nonlinear Oscillators

    Directory of Open Access Journals (Sweden)

    Alex Elías-Zúñiga

    2013-01-01

    Full Text Available We introduce a nonlinearization procedure that replaces the system potential energy by an equivalent representation form that is used to derive analytical solutions of strongly nonlinear conservative oscillators. We illustrate the applicability of this method by finding the approximate solutions of two strongly nonlinear oscillators and show that this procedure provides solutions that follow well the numerical integration solutions of the corresponding equations of motion.

  10. Dynamic decoupling nonlinear control method for aircraft gust alleviation

    Science.gov (United States)

    Lv, Yang; Wan, Xiaopeng; Li, Aijun

    2008-10-01

    A dynamic decoupling nonlinear control method for MIMO system is presented in this paper. The dynamic inversion method is used to decouple the multivariable system. The nonlinear control method is used to overcome the poor decoupling effect when the system model is inaccurate. The nonlinear control method has correcting function and is expressed in analytic form, it is easy to adjust the parameters of the controller and optimize the design of the control system. The method is used to design vertical transition mode of active control aircraft for gust alleviation. Simulation results show that the designed vertical transition mode improves the gust alleviation effect about 34% comparing with the normal aircraft.

  11. Robust methods and asymptotic theory in nonlinear econometrics

    CERN Document Server

    Bierens, Herman J

    1981-01-01

    This Lecture Note deals with asymptotic properties, i.e. weak and strong consistency and asymptotic normality, of parameter estimators of nonlinear regression models and nonlinear structural equations under various assumptions on the distribution of the data. The estimation methods involved are nonlinear least squares estimation (NLLSE), nonlinear robust M-estimation (NLRME) and non­ linear weighted robust M-estimation (NLWRME) for the regression case and nonlinear two-stage least squares estimation (NL2SLSE) and a new method called minimum information estimation (MIE) for the case of structural equations. The asymptotic properties of the NLLSE and the two robust M-estimation methods are derived from further elaborations of results of Jennrich. Special attention is payed to the comparison of the asymptotic efficiency of NLLSE and NLRME. It is shown that if the tails of the error distribution are fatter than those of the normal distribution NLRME is more efficient than NLLSE. The NLWRME method is appropriate ...

  12. Function projective synchronization between integer-order and stochastic fractional-order nonlinear systems.

    Science.gov (United States)

    Geng, Lingling; Yu, Yongguang; Zhang, Shuo

    2016-09-01

    In this paper, the function projective synchronization between integer-order and stochastic fractional-order nonlinear systems is investigated. Firstly, according to the stability theory of fractional-order systems and tracking control, a controller is designed. At the same time, based on the orthogonal polynomial approximation, the method of transforming stochastic error system into an equivalent deterministic system is given. Thus, the stability of the stochastic error system can be analyzed through its equivalent deterministic one. Finally, to demonstrate the effectiveness of the proposed scheme, the function projective synchronization between integer-order Lorenz system and stochastic fractional-order Chen system is studied.

  13. Numerical Methods for Nonlinear PDEs in Finance

    DEFF Research Database (Denmark)

    Mashayekhi, Sima

    Nonlinear Black-Scholes equations arise from considering parameters such as feedback and illiquid markets eects or large investor preferences, volatile portfolio and nontrivial transaction costs into option pricing models to have more accurate option price. Here some nite dierence schemes have been...

  14. Nonlinear modal method of crack localization

    Science.gov (United States)

    Ostrovsky, Lev; Sutin, Alexander; Lebedev, Andrey

    2004-05-01

    A simple scheme for crack localization is discussed that is relevant to nonlinear modal tomography based on the cross-modulation of two signals at different frequencies. The scheme is illustrated by a theoretical model, in which a thin plate or bar with a single crack is excited by a strong low-frequency wave and a high-frequency probing wave (ultrasound). The crack is assumed to be small relative to all wavelengths. Nonlinear scattering from the crack is studied using a general matrix approach as well as simplified models allowing one to find the nonlinear part of crack volume variations under the given stress and then the combinational wave components in the tested material. The nonlinear response strongly depends on the crack position with respect to the peaks or nodes of the corresponding interacting signals which can be used for determination of the crack position. Juxtaposing various resonant modes interacting at the crack it is possible to retrieve both crack location and orientation. Some aspects of inverse problem solutions are also discussed, and preliminary experimental results are presented.

  15. Numerical Methods for Nonlinear PDEs in Finance

    DEFF Research Database (Denmark)

    Mashayekhi, Sima

    Nonlinear Black-Scholes equations arise from considering parameters such as feedback and illiquid markets eects or large investor preferences, volatile portfolio and nontrivial transaction costs into option pricing models to have more accurate option price. Here some nite dierence schemes have be...

  16. Modified Homotopy Analysis Method for Nonlinear Fractional Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    D. Ziane

    2017-05-01

    Full Text Available In this paper, a combined form of natural transform with homotopy analysis method is proposed to solve nonlinear fractional partial differential equations. This method is called the fractional homotopy analysis natural transform method (FHANTM. The FHANTM can easily be applied to many problems and is capable of reducing the size of computational work. The fractional derivative is described in the Caputo sense. The results show that the FHANTM is an appropriate method for solving nonlinear fractional partial differentia equation.

  17. Iterative regularization methods for nonlinear ill-posed problems

    CERN Document Server

    Scherzer, Otmar; Kaltenbacher, Barbara

    2008-01-01

    Nonlinear inverse problems appear in many applications, and typically they lead to mathematical models that are ill-posed, i.e., they are unstable under data perturbations. Those problems require a regularization, i.e., a special numerical treatment. This book presents regularization schemes which are based on iteration methods, e.g., nonlinear Landweber iteration, level set methods, multilevel methods and Newton type methods.

  18. Reproducing Kernel Particle Method for Non-Linear Fracture Analysis

    Institute of Scientific and Technical Information of China (English)

    Cao Zhongqing; Zhou Benkuan; Chen Dapeng

    2006-01-01

    To study the non-linear fracture, a non-linear constitutive model for piezoelectric ceramics was proposed, in which the polarization switching and saturation were taken into account. Based on the model, the non-linear fracture analysis was implemented using reproducing kernel particle method (RKPM). Using local J-integral as a fracture criterion, a relation curve of fracture loads against electric fields was obtained. Qualitatively, the curve is in agreement with the experimental observations reported in literature. The reproducing equation, the shape function of RKPM, and the transformation method to impose essential boundary conditions for meshless methods were also introduced. The computation was implemented using object-oriented programming method.

  19. Online Fault Diagnosis Method Based on Nonlinear Spectral Analysis

    Institute of Scientific and Technical Information of China (English)

    WEI Rui-xuan; WU Li-xun; WANG Yong-chang; HAN Chong-zhao

    2005-01-01

    The fault diagnosis based on nonlinear spectral analysis is a new technique for the nonlinear fault diagnosis, but its online application could be limited because of the enormous compution requirements for the estimation of general frequency response functions. Based on the fully decoupled Volterra identification algorithm, a new online fault diagnosis method based on nonlinear spectral analysis is presented, which can availably reduce the online compution requirements of general frequency response functions. The composition and working principle of the method are described, the test experiments have been done for damping spring of a vehicle suspension system by utilizing the new method, and the results indicate that the method is efficient.

  20. Hyperbolic function method for solving nonlinear differential-different equations

    Institute of Scientific and Technical Information of China (English)

    Zhu Jia-Min

    2005-01-01

    An algorithm is devised to obtained exact travelling wave solutions of differential-different equations by means of hyperbolic function. For illustration, we apply the method to solve the discrete nonlinear (2+1)-dimensional Toda lattice equation and the discretized nonlinear mKdV lattice equation, and successfully constructed some explicit and exact travelling wave solutions.

  1. A decoupled monolithic projection method for natural convection problems

    Science.gov (United States)

    Pan, Xiaomin; Kim, Kyoungyoun; Lee, Changhoon; Choi, Jung-Il

    2016-06-01

    We propose an efficient monolithic numerical procedure based on a projection method for solving natural convection problems. In the present monolithic method, the buoyancy, linear diffusion, and nonlinear convection terms are implicitly advanced by applying the Crank-Nicolson scheme in time. To avoid an otherwise inevitable iterative procedure in solving the monolithic discretized system, we use a linearization of the nonlinear convection terms and approximate block lower-upper (LU) decompositions along with approximate factorization. Numerical simulations demonstrate that the proposed method is more stable and computationally efficient than other semi-implicit methods, preserving temporal second-order accuracy.

  2. Advances in projection of climate change impacts using supervised nonlinear dimensionality reduction techniques

    Science.gov (United States)

    Sarhadi, Ali; Burn, Donald H.; Yang, Ge; Ghodsi, Ali

    2017-02-01

    One of the main challenges in climate change studies is accurate projection of the global warming impacts on the probabilistic behaviour of hydro-climate processes. Due to the complexity of climate-associated processes, identification of predictor variables from high dimensional atmospheric variables is considered a key factor for improvement of climate change projections in statistical downscaling approaches. For this purpose, the present paper adopts a new approach of supervised dimensionality reduction, which is called "Supervised Principal Component Analysis (Supervised PCA)" to regression-based statistical downscaling. This method is a generalization of PCA, extracting a sequence of principal components of atmospheric variables, which have maximal dependence on the response hydro-climate variable. To capture the nonlinear variability between hydro-climatic response variables and projectors, a kernelized version of Supervised PCA is also applied for nonlinear dimensionality reduction. The effectiveness of the Supervised PCA methods in comparison with some state-of-the-art algorithms for dimensionality reduction is evaluated in relation to the statistical downscaling process of precipitation in a specific site using two soft computing nonlinear machine learning methods, Support Vector Regression and Relevance Vector Machine. The results demonstrate a significant improvement over Supervised PCA methods in terms of performance accuracy.

  3. Modeling the toxicity of aromatic compounds to tetrahymena pyriformis: the response surface methodology with nonlinear methods.

    Science.gov (United States)

    Ren, Shijin

    2003-01-01

    Response surface models based on multiple linear regression had previously been developed for the toxicity of aromatic chemicals to Tetrahymena pyriformis. However, a nonlinear relationship between toxicity and one of the molecular descriptors in the response surface model was observed. In this study, response surface models were established using six nonlinear modeling methods to handle the nonlinearity exhibited in the aromatic chemicals data set. All models were validated using the method of cross-validation, and prediction accuracy was tested on an external data set. Results showed that response surface models based on locally weighted regression scatter plot smoothing (LOESS), multivariate adaptive regression splines (MARS), neural networks (NN), and projection pursuit regression (PPR) provided satisfactory power of model fitting and prediction and had similar applicabilities. The response surface models based on nonlinear methods were difficult to interpret and conservative in discriminating toxicity mechanisms.

  4. A stabilised nodal spectral element method for fully nonlinear water waves

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Eskilsson, C.; Bigoni, Daniele

    2016-01-01

    We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element method proposed by Cai et al. (1998) [5], although...... the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global L2 projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions...

  5. GHM method for obtaining rationalsolutions of nonlinear differential equations.

    Science.gov (United States)

    Vazquez-Leal, Hector; Sarmiento-Reyes, Arturo

    2015-01-01

    In this paper, we propose the application of the general homotopy method (GHM) to obtain rational solutions of nonlinear differential equations. It delivers a high precision representation of the nonlinear differential equation using a few linear algebraic terms. In order to assess the benefits of this proposal, three nonlinear problems are solved and compared against other semi-analytic methods or numerical methods. The obtained results show that GHM is a powerful tool, capable to generate highly accurate rational solutions. AMS subject classification 34L30.

  6. On filter-successive linearization methods for nonlinear semidefinite programming

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper we present a filter-successive linearization method with trust region for solutions of nonlinear semidefinite programming. Such a method is based on the concept of filter for nonlinear programming introduced by Fletcher and Leyffer in 2002. We describe the new algorithm and prove its global convergence under weaker assumptions. Some numerical results are reported and show that the new method is potentially effcient.

  7. On filter-successive linearization methods for nonlinear semidefinite programming

    Institute of Scientific and Technical Information of China (English)

    LI ChengJin; SUN WenYui

    2009-01-01

    In this paper we present a filter-successive linearization method with trust region for solutions of nonlinear semidefinite programming. Such a method is based on the concept of filter for nonlinear programming introduced by Fletcher and Leyffer in 2002. We describe the new algorithm and prove its global convergence under weaker assumptions. Some numerical results are reported and show that the new method is potentially efficient.

  8. A Projected Lagrangian Algorithm for Nonlinear Minimax Optimization.

    Science.gov (United States)

    1979-11-01

    T Problem 5: Charalambous and Bandler (1976) # 1. f 1(x ) 2- + _ f3(x) = 2 exp(-x+ X2) Starting Pointz xO (1,..1)T 61 Problem 6: Rosen and Suzuki...Charalambous and Bandler ,#l) 2 3 1 6 6 6 (Rosen and Suzuki) 4 4 2 7 10 The results demonstrate that at least on a limited set of test problems the...and Numerical Methods for Stiff Differential Equations. Charalambous, C. and J.W. Bandler (1974). Nonlinear minimax optimization as a sequence of least

  9. Training two-layered feedforward networks with variable projection method.

    Science.gov (United States)

    Kim, C T; Lee, J J

    2008-02-01

    The variable projection (VP) method for separable nonlinear least squares (SNLLS) is presented and incorporated into the Levenberg-Marquardt optimization algorithm for training two-layered feedforward neural networks. It is shown that the Jacobian of variable projected networks can be computed by simple modification of the backpropagation algorithm. The suggested algorithm is efficient compared to conventional techniques such as conventional Levenberg-Marquardt algorithm (LMA), hybrid gradient algorithm (HGA), and extreme learning machine (ELM).

  10. Bifurcation methods of dynamical systems for handling nonlinear wave equations

    Indian Academy of Sciences (India)

    Dahe Feng; Jibin Li

    2007-05-01

    By using the bifurcation theory and methods of dynamical systems to construct the exact travelling wave solutions for nonlinear wave equations, some new soliton solutions, kink (anti-kink) solutions and periodic solutions with double period are obtained.

  11. COMPARISON OF NONLINEAR DYNAMICS OPTIMIZATION METHODS FOR APS-U

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.; Borland, Michael

    2017-06-25

    Many different objectives and genetic algorithms have been proposed for storage ring nonlinear dynamics performance optimization. These optimization objectives include nonlinear chromaticities and driving/detuning terms, on-momentum and off-momentum dynamic acceptance, chromatic detuning, local momentum acceptance, variation of transverse invariant, Touschek lifetime, etc. In this paper, the effectiveness of several different optimization methods and objectives are compared for the nonlinear beam dynamics optimization of the Advanced Photon Source upgrade (APS-U) lattice. The optimized solutions from these different methods are preliminarily compared in terms of the dynamic acceptance, local momentum acceptance, chromatic detuning, and other performance measures.

  12. A Numerical Embedding Method for Solving the Nonlinear Optimization Problem

    Institute of Scientific and Technical Information of China (English)

    田保锋; 戴云仙; 孟泽红; 张建军

    2003-01-01

    A numerical embedding method was proposed for solving the nonlinear optimization problem. By using the nonsmooth theory, the existence and the continuation of the following path for the corresponding homotopy equations were proved. Therefore the basic theory for the algorithm of the numerical embedding method for solving the non-linear optimization problem was established. Based on the theoretical results, a numerical embedding algorithm was designed for solving the nonlinear optimization problem, and prove its convergence carefully. Numerical experiments show that the algorithm is effective.

  13. A new variable coefficient algebraic method and non-traveling wave solutions of nonlinear equations

    Institute of Scientific and Technical Information of China (English)

    Lu Bin; Zhang Hong-Qing

    2008-01-01

    In this paper,a new auxiliary equation method is presented of constructing more new non-travelling wave solutions of nonlinear differential equations in mathematical physics,which is direct and more powerful than projective Riccati equation method.In order to illustrate the validity and the advantages of the method,(2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equation is employed and many new double periodic non-travelling wave solutions are obtained.This algorithm can also be applied to other nonlinear differential equations.

  14. A granular computing method for nonlinear convection-diffusion equation

    Directory of Open Access Journals (Sweden)

    Tian Ya Lan

    2016-01-01

    Full Text Available This paper introduces a method of solving nonlinear convection-diffusion equation (NCDE, based on the combination of granular computing (GrC and characteristics finite element method (CFEM. The key idea of the proposed method (denoted as GrC-CFEM is to reconstruct the solution from coarse-grained layer to fine-grained layer. It first gets the nonlinear solution on the coarse-grained layer, and then the function (Taylor expansion is applied to linearize the NCDE on the fine-grained layer. Switch to the fine-grained layer, the linear solution is directly derived from the nonlinear solution. The full nonlinear problem is solved only on the coarse-grained layer. Numerical experiments show that the GrC-CFEM can accelerate the convergence and improve the computational efficiency without sacrificing the accuracy.

  15. A Hybrid Method for Nonlinear Least Squares Problems

    Institute of Scientific and Technical Information of China (English)

    Zhongyi Liu; Linping Sun

    2007-01-01

    A negative curvature method is applied to nonlinear least squares problems with indefinite Hessian approximation matrices. With the special structure of the method,a new switch is proposed to form a hybrid method. Numerical experiments show that this method is feasible and effective for zero-residual,small-residual and large-residual problems.

  16. Nonlinear Dimensionality Reduction Methods in Climate Data Analysis

    CERN Document Server

    Ross, Ian

    2008-01-01

    Linear dimensionality reduction techniques, notably principal component analysis, are widely used in climate data analysis as a means to aid in the interpretation of datasets of high dimensionality. These linear methods may not be appropriate for the analysis of data arising from nonlinear processes occurring in the climate system. Numerous techniques for nonlinear dimensionality reduction have been developed recently that may provide a potentially useful tool for the identification of low-dimensional manifolds in climate data sets arising from nonlinear dynamics. In this thesis I apply three such techniques to the study of El Nino/Southern Oscillation variability in tropical Pacific sea surface temperatures and thermocline depth, comparing observational data with simulations from coupled atmosphere-ocean general circulation models from the CMIP3 multi-model ensemble. The three methods used here are a nonlinear principal component analysis (NLPCA) approach based on neural networks, the Isomap isometric mappin...

  17. NOLB: Nonlinear Rigid Block Normal Mode Analysis Method

    OpenAIRE

    Hoffmann, Alexandre; Grudinin, Sergei

    2017-01-01

    International audience; We present a new conceptually simple and computationally efficient method for non-linear normal mode analysis called NOLB. It relies on the rotations-translations of blocks (RTB) theoretical basis developed by Y.-H. Sanejouand and colleagues. We demonstrate how to physically interpret the eigenvalues computed in the RTB basis in terms of angular and linear velocities applied to the rigid blocks and how to construct a non-linear extrapolation of motion out of these velo...

  18. Inverse extraction of interfacial tractions from elastic and elasto-plastic far-fields by nonlinear field projection

    Science.gov (United States)

    Chew, Huck Beng

    2013-01-01

    Determining the tractions along a surface or interface from measurement data in the far-fields of nonlinear materials is a challenging inverse problem which has significant engineering and nanoscience applications. Previously, a field projection method was established to identify the crack-tip cohesive zone constitutive relations in an isotropic elastic solid (Hong and Kim, 2003. J. Mech. Phys. Solids 51, 1267). In this paper, the field projection method is further generalized to extracting the tractions along interfaces bounded by nonlinear materials, both with and without pre-existing cracks. The new formulation is based on Maxwell-Betti's reciprocal theorem with a reciprocity gap associated with nonlinear materials. We express the unknown normal and shear tractions along the interface in terms of the Fourier series, and use specially constructed analytical auxiliary fields in the reciprocal theorem to extract the unknown Fourier coefficients from far-field data; the reciprocity gap in the formulation is iteratively determined with a set of numerical algorithms. Our detailed numerical experiments demonstrate that this nonlinear field projection method (NFPM) is well-suited for extracting the interfacial tractions from the far-field data of any nonlinear elastic or elasto-plastic material with known constitutive laws. Applications of the NFPM to experiments and atomistic simulations are discussed.

  19. A simple harmonic balance method for solving strongly nonlinear oscillators

    Directory of Open Access Journals (Sweden)

    Md. Abdur Razzak

    2016-10-01

    Full Text Available In this paper, a simple harmonic balance method (HBM is proposed to obtain higher-order approximate periodic solutions of strongly nonlinear oscillator systems having a rational and an irrational force. With the proposed procedure, the approximate frequencies and the corresponding periodic solutions can be easily determined. It gives high accuracy for both small and large amplitudes of oscillations and better result than those obtained by other existing results. The main advantage of the present method is that its simplicity and the second-order approximate solutions almost coincide with the corresponding numerical solutions (considered to be exact. The method is illustrated by examples. The present method is very effective and convenient method for solving strongly nonlinear oscillator systems arising in nonlinear science and engineering.

  20. CONVERGENCE OF NONLINEAR CONJUGATE GRADIENT METHODS

    Institute of Scientific and Technical Information of China (English)

    Yu-hong Dai

    2001-01-01

    This paper proves that a simplified Armijo-type line search can ensure the global con vergences of the Fletcher-Reeves method and the Polak-Ribiére-Polyak method for un constrained optimization. Although it seems not possible to verify that the PRP method using the generalized Armijo line search converges globally for generally problems, it can be shown that in this case the PRP method always solves uniformly convex problems.

  1. Improved HPC method for nonlinear wave tank

    DEFF Research Database (Denmark)

    Zhu, Wenbo; Greco, Marilena; Shao, Yanlin

    2017-01-01

    The recently developed Harmonic Polynomial Cell (HPC) method has been proved to be a promising choice for solving potential-flow Boundary Value Problem (BVP). In this paper, a flux method is proposed to consistently deal with the Neumann boundary condition of the original HPC method and enhance...

  2. Nonlinear Methods in Riemannian and Kählerian Geometry

    CERN Document Server

    Jost, Jürgen

    1991-01-01

    In this book, I present an expanded version of the contents of my lectures at a Seminar of the DMV (Deutsche Mathematiker Vereinigung) in Düsseldorf, June, 1986. The title "Nonlinear methods in complex geometry" already indicates a combination of techniques from nonlinear partial differential equations and geometric concepts. In older geometric investigations, usually the local aspects attracted more attention than the global ones as differential geometry in its foundations provides approximations of local phenomena through infinitesimal or differential constructions. Here, all equations are linear. If one wants to consider global aspects, however, usually the presence of curvature Ieads to a nonlinearity in the equations. The simplest case is the one of geodesics which are described by a system of second ordernonlinear ODE; their linearizations are the Jacobi fields. More recently, nonlinear PDE played a more and more pro~inent röle in geometry. Let us Iist some of the most important ones: - harmonic maps ...

  3. Adaptive control method for nonlinear time-delay processes

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Two complex properties,varying time-delay and block-oriented nonlinearity,are very common in chemical engineering processes and not easy to be controlled by routine control methods.Aimed at these two complex properties,a novel adaptive control algorithm the basis of nonlinear OFS(orthonormal functional series) model is proposed.First,the hybrid model which combines OFS and Volterra series is introduced.Then,a stable state feedback strategy is used to construct a nonlinear adaptive control algorithm that can guarantee the closed-loop stability and can track the set point curve without steady-state errors.Finally,control simulations and experiments on a nonlinear process with varying time-delay are presented.A number of experimental results validate the efficiency and superiority of this algorithm.

  4. Optimal Variational Asymptotic Method for Nonlinear Fractional Partial Differential Equations.

    Science.gov (United States)

    Baranwal, Vipul K; Pandey, Ram K; Singh, Om P

    2014-01-01

    We propose optimal variational asymptotic method to solve time fractional nonlinear partial differential equations. In the proposed method, an arbitrary number of auxiliary parameters γ 0, γ 1, γ 2,… and auxiliary functions H 0(x), H 1(x), H 2(x),… are introduced in the correction functional of the standard variational iteration method. The optimal values of these parameters are obtained by minimizing the square residual error. To test the method, we apply it to solve two important classes of nonlinear partial differential equations: (1) the fractional advection-diffusion equation with nonlinear source term and (2) the fractional Swift-Hohenberg equation. Only few iterations are required to achieve fairly accurate solutions of both the first and second problems.

  5. Extended Trial Equation Method for Nonlinear Partial Differential Equations

    Science.gov (United States)

    Gepreel, Khaled A.; Nofal, Taher A.

    2015-04-01

    The main objective of this paper is to use the extended trial equation method to construct a series of some new solutions for some nonlinear partial differential equations (PDEs) in mathematical physics. We will construct the solutions in many different functions such as hyperbolic function solutions, trigonometric function solutions, Jacobi elliptic function solutions, and rational functional solutions for the nonlinear PDEs when the balance number is a real number via the Zhiber-Shabat nonlinear differential equation. The balance number of this method is not constant as we shown in other methods, but it is changed by changing the trial equation derivative definition. This method allowed us to construct many new types of solutions. It is shown by using the Maple software package that all obtained solutions satisfy the original PDEs.

  6. The optical nonlinearity of gold nanoparticles prepared by bioreduction method

    Science.gov (United States)

    Balbuena Ortega, A.; Arroyo Carrasco, M. L.; Gayou, V. L.; Orduña Díaz, A.; Delgado Macuil, R.; Rojas López, Marlon

    2013-11-01

    Nonlinear optical and electronic properties of nanosized metal particles have drawn considerable attention because of their strong and size-dependent plasmon resonance absorption. In a metal nanoparticle system such as gold dispersed in a transparent matrix, an absorption peak due to surface plasmon resonance is usually observed in the visible spectral region. Metal nanoparticles are of special interest as nonlinear materials for optical switching and computing because of their relatively large third-order nonlinearity (χ3) and ultrafast response time. The purpose of this study was to analyze the nonlinear optical properties of biosynthesized gold nanoparticles. The samples were prepared by biosynthesis method using yeast extract as reducing agent and the nonlinear optical properties of the nanoparticles were investigated using a single beam Z-scan technique with a beam power of 20 mW and operated at wavelength of 514 nm. The reaction between metal ions and yeast extracts were monitored by UV-visible spectra of Au nanoparticles in aqueous solution with different pH (3-6). The surface plasmon peak position was shifted from 528 nm to 573 nm, according to of pH variation 4 to 6. The average particle size was calculated by the absorption peak position using the Fernig method, from 42 to 103 nm. The z-scan curves showed a negative nonlocal nonlinear refractive index with a magnitude dependent on the nanoparticle size.

  7. An analysis of the stress formula for energy-momentum methods in nonlinear elastodynamics

    Science.gov (United States)

    Romero, Ignacio

    2012-11-01

    The energy-momentum method, a space-time discretization strategy for elastic problems in nonlinear solid, structural, and multibody mechanics relies critically on a discrete derivative operation that defines an approximation of the internal forces that guarantees the discrete conservation of energy and momenta. In the case of nonlinear elastodynamics, the formulation for general hyperelastic materials is due to Simo and Gonzalez, dating back to the mid-nineties. In this work we show that there are actually infinite second order energy-momentum methods for elastodynamics, all of them deriving from a modified midpoint integrator by an appropriate redefinition of the stress tensor at equilibrium. Such stress tensors can be interpreted as the solutions to local convex projections, whose precise definitions lead to different methods. The mathematical requirements of such projections are identified. Based on this geometrical interpretation several conserving methods are examined.

  8. A Stabilised Nodal Spectral Element Method for Fully Nonlinear Water Waves

    CERN Document Server

    Engsig-Karup, Allan Peter; Bigoni, Daniele

    2015-01-01

    We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element method proposed by Cai et al (1998) \\cite{CaiEtAl1998}, although the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global $L^2$ projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions can cause severe aliasing problems and consequently numerical instability for marginally resolved or very steep waves. We show how the scheme can be stabilised through a combination of over-integration of the Galerkin projections and a mild spectral filtering on a per element basis. This effectively removes any aliasing driven instabilities while retaining the high-order accuracy of the numerical...

  9. THE MORTAR ELEMENT METHOD FOR A NONLINEAR BIHARMONIC EQUATION

    Institute of Scientific and Technical Information of China (English)

    Zhong-ci Shi; Xue-jun Xu

    2005-01-01

    The mortar element method is a new domain decomposition method(DDM) with nonoverlapping subdomains. It can handle the situation where the mesh on different subdomains need not align across interfaces, and the matching of discretizations on adjacent subdomains is only enforced weakly. But until now there has been very little work for nonlinear PDEs. In this paper, we will present a mortar-type Morley element method for a nonlinear biharmonic equation which is related to the well-known Navier-Stokes equation. Optimal energy and H1-norm estimates are obtained under a reasonable elliptic regularity assumption.

  10. Direct Perturbation Method for Derivative Nonlinear Schrodinger Equation

    Institute of Scientific and Technical Information of China (English)

    CHENG Xue-Ping; LIN Ji; HAN Ping

    2008-01-01

    We extend Lou's direct perturbation method for solving the nonlinear SchrSdinger equation to the case of the derivative nonlinear Schrodinger equation (DNLSE). By applying this method, different types of perturbation solutions axe obtained. Based on these approximate solutions, the analytical forms of soliton parameters, such as the velocity, the width and the initial position, are carried out and the effects of perturbation on solitons are analyzed at the same time. A numerical simulation of perturbed DNLSE finally verifies the results of the perturbation method.

  11. New Efficient Fourth Order Method for Solving Nonlinear Equations

    Directory of Open Access Journals (Sweden)

    Farooq Ahmad

    2013-12-01

    Full Text Available In a paper [Appl. Math. Comput., 188 (2 (2007 1587--1591], authors have suggested and analyzed a method for solving nonlinear equations. In the present work, we modified this method by using the finite difference scheme, which has a quintic convergence. We have compared this modified Halley method with some other iterative of fifth-orders convergence methods, which shows that this new method having convergence of fourth order, is efficient.

  12. Chaos Control in Nonlinear Systems Using the Generalized Backstopping Method

    Directory of Open Access Journals (Sweden)

    A. R. Sahab

    2008-01-01

    Full Text Available One of the most important nonlinear systems for checking the abilities of control methods is chaos. In this study chaos in Lorenz system was used for checking abilities of new control method. This new method to control nonlinear systems was called Generalized Backstepping method because of its similarity to Backstepping but its abilities to control more systems than Backstepping. This new method was applied to Lorenz system in three ways: 1.Stabilized states of equations. 2. Track step response. 3. Track sinusoidal response. In every way, simulations proved abilities of method. Comparing this new method with Backstepping showed that in this method, states stabilize at zero in shorter time than Backstepping and input control is more limited. So new method not only is used in more systems but also has better response.

  13. APPLICATION OF MODIFIED CONVERSION METHOD TO A NONLINEAR DYNAMICAL SYSTEM

    Directory of Open Access Journals (Sweden)

    G.I. Melnikov

    2015-01-01

    Full Text Available The paper deals with a mathematical model of dynamical system with single degree of freedom, presented in the form of ordinary differential equations with nonlinear parts in the form of polynomials with constant and periodic coefficients. A modified method for the study of self-oscillations of nonlinear mechanical systems is presented. A refined method of transformation and integration of the equation, based on Poincare-Dulac normalization method has been developed. Refinement of the method lies in consideration of higher order nonlinear terms by Chebyshev economization technique that improves the accuracy of the calculations. Approximation of the higher order remainder terms by homogeneous forms of lower orders is performed; in the present case, it is done by cubic forms. An application of the modified method for the Van-der-Pol equation is considered as an example; the expressions for the amplitude and the phase of the oscillations are obtained in an analytical form. The comparison of the solution of the Van-der-Pol equation obtained by the developed method and the exact solution is performed. The error of the solution obtained by the modified method equals to 1%, which shows applicability of the developed method for analysis of self-oscillations of nonlinear dynamic systems with constant and periodic parameters.

  14. An averaging method for nonlinear laminar Ekman layers

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Lautrup, B.; Bohr, T.

    2003-01-01

    We study steady laminar Ekman boundary layers in rotating systems using,an averaging method similar to the technique of von Karman and Pohlhausen. The method allows us to explore nonlinear corrections to the standard Ekman theory even at large Rossby numbers. We consider both the standard self...

  15. Tensor methods for large sparse systems of nonlinear equations

    Energy Technology Data Exchange (ETDEWEB)

    Bouaricha, A. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.; Schnabel, R.B. [Colorado Univ., Boulder, CO (United States). Dept. of Computer Science

    1996-12-31

    This paper introduces censor methods for solving, large sparse systems of nonlinear equations. Tensor methods for nonlinear equations were developed in the context of solving small to medium- sized dense problems. They base each iteration on a quadratic model of the nonlinear equations. where the second-order term is selected so that the model requires no more derivative or function information per iteration than standard linear model-based methods, and hardly more storage or arithmetic operations per iteration. Computational experiments on small to medium-sized problems have shown censor methods to be considerably more efficient than standard Newton-based methods, with a particularly large advantage on singular problems. This paper considers the extension of this approach to solve large sparse problems. The key issue that must be considered is how to make efficient use of sparsity in forming and solving the censor model problem at each iteration. Accomplishing this turns out to require an entirely new way of solving the tensor model that successfully exploits the sparsity of the Jacobian, whether the Jacobian is nonsingular or singular. We develop such an approach and, based upon it, an efficient tensor method for solving large sparse systems of nonlinear equations. Test results indicate that this tensor method is significantly more efficient and robust than an efficient sparse Newton-based method. in terms of iterations, function evaluations. and execution time.

  16. A Spectral Element Method for Nonlinear and Dispersive Water Waves

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Bigoni, Daniele; Eskilsson, Claes

    The use of flexible mesh discretisation methods are important for simulation of nonlinear wave-structure interactions in offshore and marine settings such as harbour and coastal areas. For real applications, development of efficient models for wave propagation based on unstructured discretisation...... methods is of key interest. We present a high-order general-purpose three-dimensional numerical model solving fully nonlinear and dispersive potential flow equations with a free surface.......The use of flexible mesh discretisation methods are important for simulation of nonlinear wave-structure interactions in offshore and marine settings such as harbour and coastal areas. For real applications, development of efficient models for wave propagation based on unstructured discretisation...

  17. Analysis of Nonlinear Dynamics by Square Matrix Method

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Li Hua [Brookhaven National Lab. (BNL), Upton, NY (United States). Energy and Photon Sciences Directorate. National Synchrotron Light Source II

    2016-07-25

    The nonlinear dynamics of a system with periodic structure can be analyzed using a square matrix. In this paper, we show that because the special property of the square matrix constructed for nonlinear dynamics, we can reduce the dimension of the matrix from the original large number for high order calculation to low dimension in the first step of the analysis. Then a stable Jordan decomposition is obtained with much lower dimension. The transformation to Jordan form provides an excellent action-angle approximation to the solution of the nonlinear dynamics, in good agreement with trajectories and tune obtained from tracking. And more importantly, the deviation from constancy of the new action-angle variable provides a measure of the stability of the phase space trajectories and their tunes. Thus the square matrix provides a novel method to optimize the nonlinear dynamic system. The method is illustrated by many examples of comparison between theory and numerical simulation. Finally, in particular, we show that the square matrix method can be used for optimization to reduce the nonlinearity of a system.

  18. Nonlinear Direct Robust Adaptive Control Using Lyapunov Method

    Directory of Open Access Journals (Sweden)

    Chunbo Xiu

    2013-07-01

    Full Text Available    The problem of robust adaptive stabilization of a class of multi-input nonlinear systems with arbitrary unknown parameters and unknown structure of bounded variation have been considered. By employing the direct adaptive and control Lyapunov function method, a robust adaptive controller is designed to complete the globally adaptive stability of the system states. By employing our result, a kind of nonlinear system is analyzed, the concrete form of the control law is given and the meaningful quadratic control Lyapunov function for the system is constructed. Simulation of parallel manipulator is provided to illustrate the effectiveness of the proposed method.

  19. Wave envelopes method for description of nonlinear acoustic wave propagation.

    Science.gov (United States)

    Wójcik, J; Nowicki, A; Lewin, P A; Bloomfield, P E; Kujawska, T; Filipczyński, L

    2006-07-01

    A novel, free from paraxial approximation and computationally efficient numerical algorithm capable of predicting 4D acoustic fields in lossy and nonlinear media from arbitrary shaped sources (relevant to probes used in medical ultrasonic imaging and therapeutic systems) is described. The new WE (wave envelopes) approach to nonlinear propagation modeling is based on the solution of the second order nonlinear differential wave equation reported in [J. Wójcik, J. Acoust. Soc. Am. 104 (1998) 2654-2663; V.P. Kuznetsov, Akust. Zh. 16 (1970) 548-553]. An incremental stepping scheme allows for forward wave propagation. The operator-splitting method accounts independently for the effects of full diffraction, absorption and nonlinear interactions of harmonics. The WE method represents the propagating pulsed acoustic wave as a superposition of wavelet-like sinusoidal pulses with carrier frequencies being the harmonics of the boundary tone burst disturbance. The model is valid for lossy media, arbitrarily shaped plane and focused sources, accounts for the effects of diffraction and can be applied to continuous as well as to pulsed waves. Depending on the source geometry, level of nonlinearity and frequency bandwidth, in comparison with the conventional approach the Time-Averaged Wave Envelopes (TAWE) method shortens computational time of the full 4D nonlinear field calculation by at least an order of magnitude; thus, predictions of nonlinear beam propagation from complex sources (such as phased arrays) can be available within 30-60 min using only a standard PC. The approximate ratio between the computational time costs obtained by using the TAWE method and the conventional approach in calculations of the nonlinear interactions is proportional to 1/N2, and in memory consumption to 1/N where N is the average bandwidth of the individual wavelets. Numerical computations comparing the spatial field distributions obtained by using both the TAWE method and the conventional approach

  20. An Analytical Approximation Method for Strongly Nonlinear Oscillators

    Directory of Open Access Journals (Sweden)

    Wang Shimin

    2012-01-01

    Full Text Available An analytical method is proposed to get the amplitude-frequency and the phase-frequency characteristics of free/forced oscillators with nonlinear restoring force. The nonlinear restoring force is expressed as a spring with varying stiffness that depends on the vibration amplitude. That is, for stationary vibration, the restoring force linearly depends on the displacement, but the stiffness of the spring varies with the vibration amplitude for nonstationary oscillations. The varied stiffness is constructed by means of the first and second averaged derivatives of the restoring force with respect to the displacement. Then, this stiffness gives the amplitude frequency and the phase frequency characteristics of the oscillator. Various examples show that this method can be applied extensively to oscillators with nonlinear restoring force, and that the solving process is extremely simple.

  1. Nonlinear Adaptive Filter for MEMS Gyro Error Cancellation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nonlinear adaptive filters (NAF) can learn deterministic gyro errors and cancel the error’s effect from attitude estimates. By completely canceling...

  2. Unified Nonlinear Flight Dynamics and Aeroelastic Simulator Tool Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes a R&D effort to develop a Unified Nonlinear Flight Dynamics and Aeroelastic Simulator (UNFDAS) Tool that will combine...

  3. Non-linear Ultrasonic Bond-Strength Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To date, bond strength is considered one of the ?holy grails? for NDE. Preliminary data indicates that the Luna Nonlinear Ultrasonic Bond Strength (NUBS) monitor...

  4. [SENTIERI Project: materials and methods].

    Science.gov (United States)

    Conti, Susanna; Crocetti, Emanuele; Buzzoni, Carlotta; Comba, Pietro; Fazzo, Lucia; Iavarone, Ivano; Manno, Valerio; Minelli, Giada; Pasetto, Roberto; Pirastu, Roberta; Ricci, Paolo; Zona, Amerigo; Fusco, Mario

    2014-01-01

    The Report considers three health outcomes - mortality, cancer incidence and hospital discharges - studied using homogenous methods and using data from official sources, namely the National Institute of Statistics (Istat), Italian Network of Cancer Registries (AIRTUM) and the Health Ministry. The timeframes of observation are: 2003-2010 for mortality, 1996-2005 for cancer incidence and 2005-2010 for hospital discharges. The causes of death are those examined by the SENTIERI Project. Hospital discharges are analysed with reference to the main diagnosis. The study of cancer incidence applies to the sites selected by AIRTUM. Statistical parameters (SMR, Standardized Mortality Ratio; SIR, Standardized Incidence Ratio; SHR, Standardized Hospitalization Ratio) were computed with a 90% confidence interval; the estimators were adjusted for age and socioeconomic status.

  5. Linear Algebraic Method for Non-Linear Map Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yu,L.; Nash, B.

    2009-05-04

    We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.

  6. Application of homotopy analysis method for solving nonlinear Cauchy problem

    Directory of Open Access Journals (Sweden)

    V.G. Gupta

    2012-11-01

    Full Text Available In this paper, by means of the homotopy analysis method (HAM, the solutions of some nonlinear Cauchy problem of parabolic-hyperbolic type are exactly obtained in the form of convergent Taylor series. The HAM contains the auxiliary parameter \\hbar that provides a convenient way of controlling the convergent region of series solutions. This analytical method is employed to solve linear examples to obtain the exact solutions. The results reveal that the proposed method is very effective and simple.

  7. An Agent Interaction Based Method for Nonlinear Process Plan Scheduling

    Institute of Scientific and Technical Information of China (English)

    GAO Qinglu; WU Bo; GUO Guang

    2006-01-01

    This article puts forward a scheduling method for nonlinear process plan shop floor. Task allocation and load balance are realized by bidding mechanism. Though the agent interaction process, the execution of tasks is determined and the coherence of manufacturing decision is verified. The employment of heuristic index can help to optimize the system performance.

  8. Applications of non-linear methods in astronomy

    NARCIS (Netherlands)

    Martens, P.C.H.

    1984-01-01

    In this review I discuss catastrophes, bifurcations and strange attractors in a non-mathematical manner by giving very simple examples that st ill contain the essence of the phenomenon. The salientresults of the applications of these non-linear methods in astrophysics are reviewed and include such d

  9. Method for Measuring Small Nonlinearities of Electric Characteristics

    DEFF Research Database (Denmark)

    Guldbrandsen, Tom; Meyer, Niels I; Schjær-Jacobsen, Jørgen

    1965-01-01

    A method is described for measuring very small deviations from linearity in electric characteristics. The measurement is based on the harmonics generated by the nonlinear element when subjected to a sine wave signal. A special bridge circuit is used to balance out the undesired harmonics...... of the signal generator together with the first harmonic frequency. The set-up measures the small-signal value and the first and second derivative with respect to voltage. The detailed circuits are given for measuring nonlinearities in Ohmic and capacitive components. In the Ohmic case, a sensitivity...

  10. Projection methods for the numerical solution of Markov chain models

    Science.gov (United States)

    Saad, Youcef

    1989-01-01

    Projection methods for computing stationary probability distributions for Markov chain models are presented. A general projection method is a method which seeks an approximation from a subspace of small dimension to the original problem. Thus, the original matrix problem of size N is approximated by one of dimension m, typically much smaller than N. A particularly successful class of methods based on this principle is that of Krylov subspace methods which utilize subspaces of the form span(v,av,...,A(exp m-1)v). These methods are effective in solving linear systems and eigenvalue problems (Lanczos, Arnoldi,...) as well as nonlinear equations. They can be combined with more traditional iterative methods such as successive overrelaxation, symmetric successive overrelaxation, or with incomplete factorization methods to enhance convergence.

  11. Numerical method for nonlinear two-phase displacement problem and its application

    Institute of Scientific and Technical Information of China (English)

    YUAN Yi-rang; LIANG Dong; RUI Hong-xing; DU Ning; WANG Wen-qia

    2008-01-01

    For the three-dimensional nonlinear two-phase displacement problem, the modified upwind finite difference fractional steps schemes were put forward. Some techniques, such as calculus of variations, induction hypothesis, decomposition of high order difference operators, the theory of prior estimates and techniques were used. Optimal order estimates were derived for the error in the approximation solution. These methods have been successfully used to predict the consequences of seawater intrusion and protection projects.

  12. Various Newton-type iterative methods for solving nonlinear equations

    Directory of Open Access Journals (Sweden)

    Manoj Kumar

    2013-10-01

    Full Text Available The aim of the present paper is to introduce and investigate new ninth and seventh order convergent Newton-type iterative methods for solving nonlinear equations. The ninth order convergent Newton-type iterative method is made derivative free to obtain seventh-order convergent Newton-type iterative method. These new with and without derivative methods have efficiency indices 1.5518 and 1.6266, respectively. The error equations are used to establish the order of convergence of these proposed iterative methods. Finally, various numerical comparisons are implemented by MATLAB to demonstrate the performance of the developed methods.

  13. Slope stability analysis using limit equilibrium method in nonlinear criterion.

    Science.gov (United States)

    Lin, Hang; Zhong, Wenwen; Xiong, Wei; Tang, Wenyu

    2014-01-01

    In slope stability analysis, the limit equilibrium method is usually used to calculate the safety factor of slope based on Mohr-Coulomb criterion. However, Mohr-Coulomb criterion is restricted to the description of rock mass. To overcome its shortcomings, this paper combined Hoek-Brown criterion and limit equilibrium method and proposed an equation for calculating the safety factor of slope with limit equilibrium method in Hoek-Brown criterion through equivalent cohesive strength and the friction angle. Moreover, this paper investigates the impact of Hoek-Brown parameters on the safety factor of slope, which reveals that there is linear relation between equivalent cohesive strength and weakening factor D. However, there are nonlinear relations between equivalent cohesive strength and Geological Strength Index (GSI), the uniaxial compressive strength of intact rock σ ci , and the parameter of intact rock m i . There is nonlinear relation between the friction angle and all Hoek-Brown parameters. With the increase of D, the safety factor of slope F decreases linearly; with the increase of GSI, F increases nonlinearly; when σ ci is relatively small, the relation between F and σ ci is nonlinear, but when σ ci is relatively large, the relation is linear; with the increase of m i , F decreases first and then increases.

  14. Relaxation and decomposition methods for mixed integer nonlinear programming

    CERN Document Server

    Nowak, Ivo; Bank, RE

    2005-01-01

    This book presents a comprehensive description of efficient methods for solving nonconvex mixed integer nonlinear programs, including several numerical and theoretical results, which are presented here for the first time. It contains many illustrations and an up-to-date bibliography. Because on the emphasis on practical methods, as well as the introduction into the basic theory, the book is accessible to a wide audience. It can be used both as a research and as a graduate text.

  15. A Filter Method for Nonlinear Semidefinite Programming with Global Convergence

    Institute of Scientific and Technical Information of China (English)

    Zhi Bin ZHU; Hua Li ZHU

    2014-01-01

    In this study, a new filter algorithm is presented for solving the nonlinear semidefinite programming. This algorithm is inspired by the classical sequential quadratic programming method. Unlike the traditional filter methods, the suffi cient descent is ensured by changing the step size instead of the trust region radius. Under some suitable conditions, the global convergence is obtained. In the end, some numerical experiments are given to show that the algorithm is eff ective.

  16. A New Nonlinear Compound Forecasting Method Based on ANN

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper the compound-forecasting method is discussed. The compound-forecasting method is one of the hotspots in the current predication. Firstly, the compound-forecasting method is introduced and various existing compound-forecasting methods arediscussed. Secondly, the Artificial Neural Network (ANN) is brought in compound-prediction research and a nonlinear compound-prediction model based on ANN is presented. Finally, inorder to avoid irregular weight, a new method is presented which uses principal component analyses to increase the availability of compound-forecasting information. Higherforecasting precision is achieved in practice.

  17. Perturbation and harmonic balance methods for nonlinear panel flutter.

    Science.gov (United States)

    Kuo, C.-C.; Morino, L.; Dugundji, J.

    1972-01-01

    A systematic way of applying both perturbation methods and harmonic balance methods to nonlinear panel flutter problems is developed here. Results obtained by both these methods for two-dimensional simply supported and three-dimensional clamped-clamped plates with six modes agree well with those obtained by the straightforward direct integration method, yet require less computer time and provide better insight into the solutions. Effects of viscoelastic structural damping on the flutter stability boundary are generally found to be destabilizing and the postflutter behavior becomes more explosive. The methods developed here may be of interest in related vibration problems.

  18. Multi-level damage detection with nonlinear ultrasonic methods

    Science.gov (United States)

    Matlack, Kathryn H.; Kim, Jin-Yeon; Jacobs, Laurence J.; Qu, Jianmin

    2013-01-01

    The nonlinear ultrasonic method of second harmonic generation is used to detect multiple levels of damage on a single specimen. There is a breadth of research in the literature that measures the second harmonic and the resulting nonlinear parameter to monitor increasing amounts of uniform damage, but for this method to be applicable as an in situ technique, it must be able to scan an area of a structure with varying amounts of damage over a region. To investigate this, an aluminum alloy sample is shot-peened to two intensity levels along its length, to produce different sections of cold work and residual stress as a function of spatial location. Previous research has shown that the residual stress and cold work introduced in a material from shot peening causes an increase in the nonlinear parameter. Rayleigh waves are generated in the sample and the first and second harmonic amplitudes are measured at increasing propagation distances that encompass an undamaged section and two sections, each with different levels of shot peening. Results show that the nonlinear parameter increases as the Rayleigh wedge sensor is scanned over the shot peening sections.

  19. Shuttle entry guidance revisited using nonlinear geometric methods

    Science.gov (United States)

    Mease, Kenneth D.; Kremer, Jean-Paul

    1994-11-01

    The entry guidance law for the space shuttle orbiter is revisited using nonlinear geometric methods. The shuttle guidance concept is to track a reference drag trajectory that has been designed to lead a specified range and velocity. It is shown that the approach taken in the original derivation of the shuttle entry guidance has much in common with the more recently developed feedback linearization method of differential geometric control. Using the feedback linearization method, however, an alternative, potentially superior, guidance law was formulated. Comparing the two guidance laws based performance domains in state space, taking into account the nonlinear dynamics, the alternative guidance law achieves the desired performance over larger domains in state space; the stability domain of the laws are similar. With larger operating domain for the shuttle or some other entry vehicle, the alternative guidance law should be considered.

  20. Analysis of Nonlinear Missile Guidance Systems Through Linear Adjoint Method

    Directory of Open Access Journals (Sweden)

    Khaled Gamal Eltohamy

    2015-12-01

    Full Text Available In this paper, a linear simulation algorithm, the adjoint method, is modified and employed as an efficient tool for analyzing the contributions of system parameters to the miss - distance of a nonlinear time-varying missile guidance system model. As an example for the application of the linear adjoint method, the effect of missile flight time on the miss - distance is studied. Since the missile model is highly nonlinear and a time-varying linearized model is required to apply the adjoint method, a new technique that utilizes the time-reversed linearized coefficients of the missile as a replacement for the time-varying describing functions is applied and proven to be successful. It is found that, when compared with Monte Carlo generated results, simulation results of this linear adjoint technique provide acceptable accuracy and can be produced with much less effort.

  1. Bayesian Methods for Nonlinear System Identification of Civil Structures

    Directory of Open Access Journals (Sweden)

    Conte Joel P.

    2015-01-01

    Full Text Available This paper presents a new framework for the identification of mechanics-based nonlinear finite element (FE models of civil structures using Bayesian methods. In this approach, recursive Bayesian estimation methods are utilized to update an advanced nonlinear FE model of the structure using the input-output dynamic data recorded during an earthquake event. Capable of capturing the complex damage mechanisms and failure modes of the structural system, the updated nonlinear FE model can be used to evaluate the state of health of the structure after a damage-inducing event. To update the unknown time-invariant parameters of the FE model, three alternative stochastic filtering methods are used: the extended Kalman filter (EKF, the unscented Kalman filter (UKF, and the iterated extended Kalman filter (IEKF. For those estimation methods that require the computation of structural FE response sensitivities with respect to the unknown modeling parameters (EKF and IEKF, the accurate and computationally efficient direct differentiation method (DDM is used. A three-dimensional five-story two-by-one bay reinforced concrete (RC frame is used to illustrate the performance of the framework and compare the performance of the different filters in terms of convergence, accuracy, and robustness. Excellent estimation results are obtained with the UKF, EKF, and IEKF. Because of the analytical linearization used in the EKF and IEKF, abrupt and large jumps in the estimates of the modeling parameters are observed when using these filters. The UKF slightly outperforms the EKF and IEKF.

  2. Manufacturing Methods and Technology Project Summary Reports.

    Science.gov (United States)

    1980-12-01

    as high speed machining. Except for the abrasive aluminum alloys like A356 which must be machined with carbide, either carbide or high speed steel...Shear Forging Processes for Missile 82 Primary Structure Project 376 3230 - Manufacturing Methods for High Speed Machining of 85 Aluminum Project 376 3231...Production Methods for Squeeze Castings 88 Projects 471 4312 and 472 4312 - Hard Face Coating to Aluminum Com- 91 ponents Project 576 6759

  3. Multi-crack imaging using nonclassical nonlinear acoustic method

    Science.gov (United States)

    Zhang, Lue; Zhang, Ying; Liu, Xiao-Zhou; Gong, Xiu-Fen

    2014-10-01

    Solid materials with cracks exhibit the nonclassical nonlinear acoustical behavior. The micro-defects in solid materials can be detected by nonlinear elastic wave spectroscopy (NEWS) method with a time-reversal (TR) mirror. While defects lie in viscoelastic solid material with different distances from one another, the nonlinear and hysteretic stress—strain relation is established with Preisach—Mayergoyz (PM) model in crack zone. Pulse inversion (PI) and TR methods are used in numerical simulation and defect locations can be determined from images obtained by the maximum value. Since false-positive defects might appear and degrade the imaging when the defects are located quite closely, the maximum value imaging with a time window is introduced to analyze how defects affect each other and how the fake one occurs. Furthermore, NEWS-TR-NEWS method is put forward to improve NEWS-TR scheme, with another forward propagation (NEWS) added to the existing phases (NEWS and TR). In the added phase, scanner locations are determined by locations of all defects imaged in previous phases, so that whether an imaged defect is real can be deduced. NEWS-TR-NEWS method is proved to be effective to distinguish real defects from the false-positive ones. Moreover, it is also helpful to detect the crack that is weaker than others during imaging procedure.

  4. Application of the homotopy perturbation method to the nonlinear pendulum

    Energy Technology Data Exchange (ETDEWEB)

    Belendez, A; Hernandez, A; Belendez, T; Neipp, C; Marquez, A [Departamento de Fisica, IngenierIa de Sistemas y TeorIa de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)

    2007-01-15

    The homotopy perturbation method is used to solve the nonlinear differential equation that governs the nonlinear oscillations of a simple pendulum, and an approximate expression for its period is obtained. Only one iteration leads to high accuracy of the solutions and the relative error for the approximate period is less than 2% for amplitudes as high as 130{sup 0}. Another important point is that this method provides an analytical expression for the angular displacement as a function of time as the sum of an infinite number of harmonics; although for practical purposes it is sufficient to consider only a finite number of harmonics. We believe that the present study may be a suitable and fruitful exercise for teaching and better understanding perturbation techniques in advanced undergraduate courses on classical mechanics.

  5. Lavrentiev regularization method for nonlinear ill-posed problems

    CERN Document Server

    Kinh, N V

    2002-01-01

    In this paper we shall be concerned with Lavientiev regularization method to reconstruct solutions x sub 0 of non ill-posed problems F(x)=y sub o , where instead of y sub 0 noisy data y subdelta is an element of X with absolut(y subdelta-y sub 0) X is an accretive nonlinear operator from a real reflexive Banach space X into itself. In this regularization method solutions x subalpha supdelta are obtained by solving the singularly perturbed nonlinear operator equation F(x)+alpha(x-x*)=y subdelta with some initial guess x*. Assuming certain conditions concerning the operator F and the smoothness of the element x*-x sub 0 we derive stability estimates which show that the accuracy of the regularized solutions is order optimal provided that the regularization parameter alpha has been chosen properly.

  6. Adomian decomposition method for nonlinear Sturm-Liouville problems

    Directory of Open Access Journals (Sweden)

    Sennur Somali

    2007-09-01

    Full Text Available In this paper the Adomian decomposition method is applied to the nonlinear Sturm-Liouville problem-y" + y(tp=λy(t, y(t > 0, t ∈ I = (0, 1, y(0 = y(1 = 0, where p > 1 is a constant and λ > 0 is an eigenvalue parameter. Also, the eigenvalues and the behavior of eigenfuctions of the problem are demonstrated.

  7. Reproducing wavelet kernel method in nonlinear system identification

    Institute of Scientific and Technical Information of China (English)

    WEN Xiang-jun; XU Xiao-ming; CAI Yun-ze

    2008-01-01

    By combining the wavelet decomposition with kernel method, a practical approach of universal multi-scale wavelet kernels constructed in reproducing kernel Hilbert space (RKHS) is discussed, and an identifica-tion scheme using wavelet support vector machines ( WSVM ) estimator is proposed for nonlinear dynamic sys-tems. The good approximating properties of wavelet kernel function enhance the generalization ability of the pro-posed method, and the comparison of some numerical experimental results between the novel approach and some existing methods is encouraging.

  8. The First Integral Method to the Nonlinear Schrodinger Equations in Higher Dimensions

    Directory of Open Access Journals (Sweden)

    Shoukry Ibrahim Atia El-Ganaini

    2013-01-01

    Full Text Available The first integral method introduced by Feng is adopted for solving some important nonlinear partial differential equations, including the (2 + 1-dimensional hyperbolic nonlinear Schrodinger (HNLS equation, the generalized nonlinear Schrodinger (GNLS equation with a source, and the higher-order nonlinear Schrodinger equation in nonlinear optical fibers. This method provides polynomial first integrals for autonomous planar systems. Through the established first integrals, exact traveling wave solutions are formally derived in a concise manner.

  9. Nonlinear Parameter-Varying AeroServoElastic Reduced Order Model for Aerostructural Sensing and Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of the project is to develop reliable reduced order modeling technologies to automatically generate nonlinear, parameter-varying (PV),...

  10. The Modified Rational Jacobi Elliptic Functions Method for Nonlinear Differential Difference Equations

    Directory of Open Access Journals (Sweden)

    Khaled A. Gepreel

    2012-01-01

    Full Text Available We modified the rational Jacobi elliptic functions method to construct some new exact solutions for nonlinear differential difference equations in mathematical physics via the lattice equation, the discrete nonlinear Schrodinger equation with a saturable nonlinearity, the discrete nonlinear Klein-Gordon equation, and the quintic discrete nonlinear Schrodinger equation. Some new types of the Jacobi elliptic solutions are obtained for some nonlinear differential difference equations in mathematical physics. The proposed method is more effective and powerful to obtain the exact solutions for nonlinear differential difference equations.

  11. Simulating Nonlinear Dynamics of Deployable Space Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To support NASA's vital interest in developing much larger solar array structures over the next 20 years, MotionPort LLC's Phase I SBIR project will strengthen...

  12. A mixed finite element method for nonlinear diffusion equations

    KAUST Repository

    Burger, Martin

    2010-01-01

    We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model. © American Institute of Mathematical Sciences.

  13. An hp symplectic pseudospectral method for nonlinear optimal control

    Science.gov (United States)

    Peng, Haijun; Wang, Xinwei; Li, Mingwu; Chen, Biaosong

    2017-01-01

    An adaptive symplectic pseudospectral method based on the dual variational principle is proposed and is successfully applied to solving nonlinear optimal control problems in this paper. The proposed method satisfies the first order necessary conditions of continuous optimal control problems, also the symplectic property of the original continuous Hamiltonian system is preserved. The original optimal control problem is transferred into a set of nonlinear equations which can be solved easily by Newton-Raphson iterations, and the Jacobian matrix is found to be sparse and symmetric. The proposed method, on one hand, exhibits exponent convergence rates when the number of collocation points are increasing with the fixed number of sub-intervals; on the other hand, exhibits linear convergence rates when the number of sub-intervals is increasing with the fixed number of collocation points. Furthermore, combining with the hp method based on the residual error of dynamic constraints, the proposed method can achieve given precisions in a few iterations. Five examples highlight the high precision and high computational efficiency of the proposed method.

  14. Mapping deformation method and its application to nonlinear equations

    Institute of Scientific and Technical Information of China (English)

    李画眉

    2002-01-01

    An extended mapping deformation method is proposed for finding new exact travelling wave solutions of nonlinearpartial differential equations (PDEs). The key idea of this method is to take full advantage of the simple algebraicmapping relation between the solutions of the PDEs and those of the cubic nonlinear Klein-Gordon equation. This isapplied to solve a system of variant Boussinesq equations. As a result, many explicit and exact solutions are obtained,including solitary wave solutions, periodic wave solutions, Jacobian elliptic function solutions and other exact solutions.

  15. The simplex method for nonlinear sliding mode control

    Directory of Open Access Journals (Sweden)

    Bartolini G.

    1998-01-01

    Full Text Available General nonlinear control systems described by ordinary differential equations with a prescribed sliding manifold are considered. A method of designing a feedback control law such that the state variable fulfills the sliding condition in finite time is based on the construction of a suitable simplex of vectors in the tangent space of the manifold. The convergence of the method is proved under an obtuse angle condition and a way to build the required simplex is indicated. An example of engineering interest is presented.

  16. Method of guiding functions in problems of nonlinear analysis

    CERN Document Server

    Obukhovskii, Valeri; Van Loi, Nguyen; Kornev, Sergei

    2013-01-01

    This book offers a self-contained introduction to the theory of guiding functions methods, which can be used to study the existence of periodic solutions and their bifurcations in ordinary differential equations, differential inclusions and in control theory. It starts with the basic concepts of nonlinear and multivalued analysis, describes the classical aspects of the method of guiding functions, and then presents recent findings only available in the research literature. It describes essential applications in control theory, the theory of bifurcations, and physics, making it a valuable resource not only for “pure” mathematicians, but also for students and researchers working in applied mathematics, the engineering sciences and physics.

  17. High-Order Energy Balance Method to Nonlinear Oscillators

    OpenAIRE

    Seher Durmaz; Metin Orhan Kaya

    2012-01-01

    Energy balance method (EBM) is extended for high-order nonlinear oscillators. To illustrate the effectiveness of the method, a cubic-quintic Duffing oscillator was chosen. The maximum relative errors of the frequencies of the oscillator read 1.25% and 0.6% for the first- and second-order approximation, respectively. The third-order approximation has an accuracy as high as 0.008%. Excellent agreement of the approximated frequencies and periodic solutions with the exact ones is demonstrated fo...

  18. High-Order Energy Balance Method to Nonlinear Oscillators

    Directory of Open Access Journals (Sweden)

    Seher Durmaz

    2012-01-01

    Full Text Available Energy balance method (EBM is extended for high-order nonlinear oscillators. To illustrate the effectiveness of the method, a cubic-quintic Duffing oscillator was chosen. The maximum relative errors of the frequencies of the oscillator read 1.25% and 0.6% for the first- and second-order approximation, respectively. The third-order approximation has an accuracy as high as 0.008%. Excellent agreement of the approximated frequencies and periodic solutions with the exact ones is demonstrated for several values of parameters of the oscillator.

  19. The energy balance to nonlinear oscillations via Jacobi collocation method

    Directory of Open Access Journals (Sweden)

    M.K. Yazdi

    2015-06-01

    Full Text Available This study develops the energy balance based on Jacobi collocation method for accurate prediction of conservative nonlinear oscillator models with a single collocation point. The node points are taken as the roots of Jacobi orthogonal polynomials. Several examples are included to demonstrate the applicability and accuracy of the proposed algorithm, and some comparisons are made with the existing results. The method is suitable and the approximate frequencies are valid for small as well as large amplitudes of oscillation. Excellent agreement with exact ones is presented for the first order approximation.

  20. A new method for nonlinear optimization - experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Loskovska, S.; Percinkova, B.

    1994-12-31

    In this paper an application of a new method for nonlinear optimization problems suggested and presented by B. Percinkova is performed. The method is originally developed and applicated on nonlinear systems. Basis of the method is following: A system of n-nonlinear equations gives as F{sub i}(x{sub 1}, x{sub 2}, x{sub 3}, ..., x{sub n}) = 0; 1 = 1, 2, ..., n and solution domain x{sub pi} {<=} x{sub i} {<=} x{sub ki} i = 1, 2, ..., n is modified by introducing a new variable z. The new system is given by: F{sub i}(x{sub 1}, x{sub 2}, x{sub 3}, ..., x{sub n}) = z; i = 1, 2, ..., n. The system defines a curve in (n + 1) dimensional space. System`s point X = (x{sub i}, x{sub 2}, x{sub 3}, ..., x{sub n}, z) that, the solution of the system is obtained using an interative procedure moving along the curve until the point with z = 0 is reached. In order to applicate method on optimization problems, a basic optimization model given with (min, max)F{sub i}(x{sub 1}, x{sub 2}, x{sub 3}, ..., x{sub n}) with the following optimization space: F{sub i}(x{sub 1}, x{sub 2}, x{sub 3}, ..., x{sub n}) ({<=}{>=})0 : i = 1, 2, ..., n is transformed into a system equivalent to system (2) by (dF/dx{sub i}) = z; i - 1, 2, ..., n. The main purpose of this work is to make relevant evaluation of the method by standard test problems.

  1. Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations

    KAUST Repository

    Carlberg, Kevin

    2010-10-28

    A Petrov-Galerkin projection method is proposed for reducing the dimension of a discrete non-linear static or dynamic computational model in view of enabling its processing in real time. The right reduced-order basis is chosen to be invariant and is constructed using the Proper Orthogonal Decomposition method. The left reduced-order basis is selected to minimize the two-norm of the residual arising at each Newton iteration. Thus, this basis is iteration-dependent, enables capturing of non-linearities, and leads to the globally convergent Gauss-Newton method. To avoid the significant computational cost of assembling the reduced-order operators, the residual and action of the Jacobian on the right reduced-order basis are each approximated by the product of an invariant, large-scale matrix, and an iteration-dependent, smaller one. The invariant matrix is computed using a data compression procedure that meets proposed consistency requirements. The iteration-dependent matrix is computed to enable the least-squares reconstruction of some entries of the approximated quantities. The results obtained for the solution of a turbulent flow problem and several non-linear structural dynamics problems highlight the merit of the proposed consistency requirements. They also demonstrate the potential of this method to significantly reduce the computational cost associated with high-dimensional non-linear models while retaining their accuracy. © 2010 John Wiley & Sons, Ltd.

  2. Pulse wave attenuation measurement by linear and nonlinear methods in nonlinearly elastic tubes.

    Science.gov (United States)

    Bertram, C D; Pythoud, F; Stergiopulos, N; Meister, J J

    1999-04-01

    Reasons for the continuing difficulty in making definitive measurements of pulse wave attenuation in elastic tubes and arteries in the presence of reflections are sought. The measurement techniques available were re-examined in elastic tubes mimicking the arterial compliance nonlinearity, under conditions of strong reflection. The pulse was of physiological shape, and two different pulse amplitudes in the physiological range were used. Measurements of pressure, flow-rate and diameter pulsation allowed the deployment of four of the classical linear methods of analysis. In addition, a method of separating the forward- and backward-travelling waves that does not require linearising assumptions was used, and the attenuation in the forward and reverse directions was calculated from the resulting waveforms. Overall, the results obtained here suggest that a fully satisfactory way of measuring arterial attenuation has yet to be devised. The classical linear methods all provided comparable attenuation estimates in terms of average value and degree of scatter across frequency. Increased scatter was generally found at the higher pulse amplitude. When the forward waveforms from the separation were similarly compared in terms of frequency components, the average value at energetic harmonics was similar to both the value indicated by the linear methods and the values predicted from linear theory on the basis of estimated viscous and viscoelastic parameter data. The backward waveforms indicated a physically unreasonable result, attributed as the expression for this technique of the same difficulties that normally manifest in scatter. Data in the literature suggesting that one of the classical methods, the three-point, systematically over-estimates attenuation were not supported, but it was confirmed that this method becomes prone to negative attenuation estimates at low harmonics as pulse amplitude increases. Although the goal of definitive attenuation measurement remains elusive

  3. Relating harmonic and projective descriptions of N=2 nonlinear sigma models

    CERN Document Server

    Butter, Daniel

    2012-01-01

    Recent papers have established the relationship between projective superspace and a complexified version of harmonic superspace. We extend this construction to the case of general nonlinear sigma models in both frameworks. Using an analogy with Hamiltonian mechanics, we demonstrate how the Hamiltonian structure of the harmonic model and the symplectic structure of the projective model naturally arise from a single unifying action on a complexified version of harmonic superspace. This links the harmonic and projective descriptions of hyperkahler target spaces. For two examples, we show how to derive the projective superspace solutions for the Taub-NUT and Eguchi-Hanson models from the harmonic superspace solutions.

  4. The Projection Neural Network for Solving Convex Nonlinear Programming

    Science.gov (United States)

    Yang, Yongqing; Xu, Xianyun

    In this paper, a projection neural network for solving convex optimization is investigated. Using Lyapunov stability theory and LaSalle invariance principle, the proposed network is showed to be globally stable and converge to exact optimal solution. Two examples show the effectiveness of the proposed neural network model.

  5. Applications of extended F-expansion and projective Ricatti equation methods to (2+1-dimensional soliton equations

    Directory of Open Access Journals (Sweden)

    Hitender Kumar

    2013-03-01

    Full Text Available The (2+1-dimensional Maccari and nonlinear Schrödinger equations are reduced to a nonlinear ordinary differential equation (ODE by using a simple transformation, various solutions of the nonlinear ODE are obtained by using extended F-expansion and projective Ricatti equation methods. With the aid of solutions of the nonlinear ODE more explicit traveling wave solutions expressed by the hyperbolic functions, trigonometric functions and rational functions are found out. It is shown that these methods provides a powerful mathematical tool for solving nonlinear evolution equations in mathematical physics.

  6. A Method on Non-Linear Correction of Broadband LFMCW Signal Utilizing Its Relative Sweep Non-Linear Error

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper presents a method on non-linear correction of broadband LFMCW signal utilizing its relativenonlinear error. The deriving procedure and the results simulated by a computer and tested by a practical system arealso introduced. The method has two obvious advantages compared with the previous methods: (1) Correction has norelation with delay time td and sweep bandwidth B; (2) The inherent non-linear error of VCO has no influence on thecorrection and its last results.

  7. Prediction of biodegradation kinetics using a nonlinear group contribution method

    Energy Technology Data Exchange (ETDEWEB)

    Tabak, H.H. (Environmental Protection Agency, Cincinnati, OH (United States)); Govind, R. (Univ. of Cincinnati, OH (United States))

    1993-02-01

    The fate of organic chemicals in the environment depends on their susceptibility to biodegradation. Hence, development of regulations concerning their manufacture and use requires information on the extent and rate of biodegradation. Recent studies have attempted to correlate the kinetics of biodegradation with the molecular structure of the compound. This has led to the development of structure-biodegradation relationships (SBRs) using the group contribution approach. Each defined group present in the chemical structure of the compound is assigned a unique numerical contribution toward the calculation of the biodegradation kinetic constants. In this paper, a nonlinear group contribution method has been developed using neural networks; it is trained using literature data on the first-order biodegradation kinetic rate constant for a number of priority pollutants. The trained neural network is then used to predict the biodegradation kinetic constant for a new list of compounds, and results have been compared with the experimental values and the predictions obtained from a linear group contribution method. It has been shown that the nonlinear group contribution method using neural networks is able to provide a superior fit to the training set data and test data set and produce a lower prediction error than the previous linear method.

  8. Diagnosis of multiple sclerosis from EEG signals using nonlinear methods.

    Science.gov (United States)

    Torabi, Ali; Daliri, Mohammad Reza; Sabzposhan, Seyyed Hojjat

    2017-09-08

    EEG signals have essential and important information about the brain and neural diseases. The main purpose of this study is classifying two groups of healthy volunteers and Multiple Sclerosis (MS) patients using nonlinear features of EEG signals while performing cognitive tasks. EEG signals were recorded when users were doing two different attentional tasks. One of the tasks was based on detecting a desired change in color luminance and the other task was based on detecting a desired change in direction of motion. EEG signals were analyzed in two ways: EEG signals analysis without rhythms decomposition and EEG sub-bands analysis. After recording and preprocessing, time delay embedding method was used for state space reconstruction; embedding parameters were determined for original signals and their sub-bands. Afterwards nonlinear methods were used in feature extraction phase. To reduce the feature dimension, scalar feature selections were done by using T-test and Bhattacharyya criteria. Then, the data were classified using linear support vector machines (SVM) and k-nearest neighbor (KNN) method. The best combination of the criteria and classifiers was determined for each task by comparing performances. For both tasks, the best results were achieved by using T-test criterion and SVM classifier. For the direction-based and the color-luminance-based tasks, maximum classification performances were 93.08 and 79.79% respectively which were reached by using optimal set of features. Our results show that the nonlinear dynamic features of EEG signals seem to be useful and effective in MS diseases diagnosis.

  9. Estimation methods for nonlinear state-space models in ecology

    DEFF Research Database (Denmark)

    Pedersen, Martin Wæver; Berg, Casper Willestofte; Thygesen, Uffe Høgsbro

    2011-01-01

    The use of nonlinear state-space models for analyzing ecological systems is increasing. A wide range of estimation methods for such models are available to ecologists, however it is not always clear, which is the appropriate method to choose. To this end, three approaches to estimation in the theta...... logistic model for population dynamics were benchmarked by Wang (2007). Similarly, we examine and compare the estimation performance of three alternative methods using simulated data. The first approach is to partition the state-space into a finite number of states and formulate the problem as a hidden...... Markov model (HMM). The second method uses the mixed effects modeling and fast numerical integration framework of the AD Model Builder (ADMB) open-source software. The third alternative is to use the popular Bayesian framework of BUGS. The study showed that state and parameter estimation performance...

  10. Similar Constructive Method for Solving a nonlinearly Spherical Percolation Model

    Directory of Open Access Journals (Sweden)

    WANG Yong

    2013-01-01

    Full Text Available In the view of nonlinear spherical percolation problem of dual porosity reservoir, a mathematical model considering three types of outer boundary conditions: closed, constant pressure, infinity was established in this paper. The mathematical model was linearized by substitution of variable and became a boundary value problem of ordinary differential equation in Laplace space by Laplace transformation. It was verified that such boundary value problem with one type of outer boundary had a similar structure of solution. And a new method: Similar Constructive Method was obtained for solving such boundary value problem. By this method, solutions with similar structure in other two outer boundary conditions were obtained. The Similar Constructive Method raises efficiency of solving such percolation model.

  11. A nonlinear analytic function expansion nodal method for transient calculations

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Han Gyn; Park, Sang Yoon; Cho, Byung Oh; Zee, Sung Quun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The nonlinear analytic function expansion nodal (AFEN) method is applied to the solution of the time-dependent neutron diffusion equation. Since the AFEN method requires both the particular solution and the homogeneous solution to the transient fixed source problem, the derivation of the solution method is focused on finding the particular solution efficiently. To avoid complicated particular solutions, the source distribution is approximated by quadratic polynomials and the transient source is constructed such that the error due to the quadratic approximation is minimized, In addition, this paper presents a new two-node solution scheme that is derived by imposing the constraint of current continuity at the interface corner points. The method is verified through a series of application to the NEACRP PWR rod ejection benchmark problems. 6 refs., 2 figs., 1 tab. (Author)

  12. Reduced projection augmented Lagrange bi-conjugate gradient method for contact and impact problems

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the numerical governing formulation and non-linear complementary conditions of contact and impact problems, a reduced projection augmented Lagrange biconjugate gradient method is proposed for contact and impact problems by translating non-linear complementary conditions into equivalent formulation of non-linear programming. For contact-impact problems, a larger time-step can be adopted arriving at numerical convergence compared with penalty method. By establishment of the impact-contact formulations which are equivalent with original non-linear complementary conditions, a reduced projection augmented Lagrange bi-conjugate gradient method is deduced to improve precision and efficiency of numerical solutions. A numerical example shows that the algorithm we suggested is valid and exact.

  13. CAD—Oriented Noise Analysis Method of Nonlinear Microwave Chircuits

    Institute of Scientific and Technical Information of China (English)

    WANGJun; TANGGaodi; CHENHuilian

    2003-01-01

    A general method is introduced which is capable of making accurate,quantitative predictions about the noise of different type of nonlinear microwave circuits.This new approach also elucidates several design criteria for making it suitable to CAD-oriented analysis via identifying the mechanisms by which intrinsic device noise and external noise sources contribute to the total equivalent noise.In particular,it explains the details of how noise spectrum at the interesting port is obtained.And the theory also naturally leads to additional important design insights.In the illustrative experiments,excellent agreement among theory,simulations,and measurements is observed.

  14. Method of the Logistic Function for Finding Analytical Solutions of Nonlinear Differential Equations

    OpenAIRE

    Kudryashov, N. A.

    2015-01-01

    The method of the logistic function is presented for finding exact solutions of nonlinear differential equations. The application of the method is illustrated by using the nonlinear ordinary differential equation of the fourth order. Analytical solutions obtained by this method are presented. These solutions are expressed via exponential functions.logistic function, nonlinear wave, nonlinear ordinary differential equation, Painlev´e test, exact solution

  15. Methods for Project Tracking in Creative Environment

    Directory of Open Access Journals (Sweden)

    Eva Šviráková

    2017-06-01

    Full Text Available The objective of this paper is to design new alternative methods for project tracking in creative industry environment. One of the research method is system dynamics modelling. A dynamics model accepts problems which were identified based on qualitative research and assessed using the system thinking method. A system dynamics model contains a project reference mode which correctly and provably expresses the planned and actual project development in terms of scope and budget. Reference mode of the project was discovered on the basis of Earned Value Management method modification. System dynamics modelling suitability is demonstrated on a case study of a creative project called “Water for Everyone”. If the project is behind schedule, the simulation explains why it happened and forecasts further project development. Managers can use the modelling process to evaluate the impact of their decisions on the next stages of the project life cycle and adopt new management practices using scenarios. The published research is valuable for key stakeholders as it is practically focused on ascertaining essential information about the project progress.

  16. A modal method for finite amplitude, nonlinear sloshing

    Indian Academy of Sciences (India)

    P N Shankar; R Kidambi

    2002-10-01

    A modal method is used to calculate the two-dimensional sloshing motion of an inviscid liquid in a rectangular container. The full nonlinear problem is reduced to the solution of a system of nonlinear ordinary differential equations for the time varying coefficients in the expansions of the interface and the potential. The effects of capillarity are included in the formulation. The simplicity, generality and power of the method are exhibited not only by recovering the earlier results obtained, for example, by Penney and Price [1], Tadjbakhsh and Keller [2] and Faltinsen et al [3], but also by obtaining new and interesting results of the effects of capillarity and shallow depth, which would be difficult to obtain otherwise. For example, it is found that for the initial interface profile considered here, parasitic capillary waves, borne by the higher number wave modes, are generated for moderate capillarity but disappear for larger values of the parameter. The method can be extended to other simple geometries.

  17. Application of Extended Projective Riccati Equation Method to (2+1)-Dimensional Broer-Kaup-Kupershmidt System

    Institute of Scientific and Technical Information of China (English)

    LU Bin; ZHANG Hong-Qing

    2008-01-01

    In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riecati equation method. In order to illustrate the effect of the method, Broer-Kaup Kupershmidt system is employed and Jacobi doubly periodic solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.

  18. Project Management Concepts, Methods, and Techniques

    CERN Document Server

    Maley, Claude H

    2011-01-01

    In order to succeed in today's increasingly competitive environment, corporations, companies, governments, and nonprofit organizations must be conversant with modern project management techniques. This is especially true for individuals looking to remain professionally competitive. Illustrating the why, what, and how of project management, Project Management Concepts, Methods, and Techniques will help readers develop and refine the skills needed to achieve strategic objectives. It presents a balanced blend of detailed explanatory texts and more than 200 illustrations to supply readers with act

  19. Fast nonlinear regression method for CT brain perfusion analysis.

    Science.gov (United States)

    Bennink, Edwin; Oosterbroek, Jaap; Kudo, Kohsuke; Viergever, Max A; Velthuis, Birgitta K; de Jong, Hugo W A M

    2016-04-01

    Although computed tomography (CT) perfusion (CTP) imaging enables rapid diagnosis and prognosis of ischemic stroke, current CTP analysis methods have several shortcomings. We propose a fast nonlinear regression method with a box-shaped model (boxNLR) that has important advantages over the current state-of-the-art method, block-circulant singular value decomposition (bSVD). These advantages include improved robustness to attenuation curve truncation, extensibility, and unified estimation of perfusion parameters. The method is compared with bSVD and with a commercial SVD-based method. The three methods were quantitatively evaluated by means of a digital perfusion phantom, described by Kudo et al. and qualitatively with the aid of 50 clinical CTP scans. All three methods yielded high Pearson correlation coefficients ([Formula: see text]) with the ground truth in the phantom. The boxNLR perfusion maps of the clinical scans showed higher correlation with bSVD than the perfusion maps from the commercial method. Furthermore, it was shown that boxNLR estimates are robust to noise, truncation, and tracer delay. The proposed method provides a fast and reliable way of estimating perfusion parameters from CTP scans. This suggests it could be a viable alternative to current commercial and academic methods.

  20. Generalized multiscale finite element methods. nonlinear elliptic equations

    KAUST Repository

    Efendiev, Yalchin R.

    2013-01-01

    In this paper we use the Generalized Multiscale Finite Element Method (GMsFEM) framework, introduced in [26], in order to solve nonlinear elliptic equations with high-contrast coefficients. The proposed solution method involves linearizing the equation so that coarse-grid quantities of previous solution iterates can be regarded as auxiliary parameters within the problem formulation. With this convention, we systematically construct respective coarse solution spaces that lend themselves to either continuous Galerkin (CG) or discontinuous Galerkin (DG) global formulations. Here, we use Symmetric Interior Penalty Discontinuous Galerkin approach. Both methods yield a predictable error decline that depends on the respective coarse space dimension, and we illustrate the effectiveness of the CG and DG formulations by offering a variety of numerical examples. © 2014 Global-Science Press.

  1. Hybrid discretization method for time-delay nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zheng [Xi' an Jiaotong University, Xi' an (China); Zhang, Yuanliang; Kil Chong, To [Chonbuk National University, Jeonju (Korea, Republic of); Kostyukova, Olga [3Institute of Mathematics National Academy of Science of Belarus, Minsk (Belarus)

    2010-03-15

    A hybrid discretization scheme that combines the virtues of the Taylor series and Matrix exponential integration methods is proposed. In the algorithm, each sampling time interval is divided into two subintervals to be considered according to the time delay and sampling period. The algorithm is not too expensive computationally and lends itself to be easily inserted into large simulation packages. The mathematical structure of the new discretization scheme is explored and described in detail. The performance of the proposed discretization procedure is evaluated by employing case studies. Various input signals, sampling rates, and time-delay values are considered to test the proposed method. The results demonstrate that the proposed discretization scheme is better than previous Taylor series method for nonlinear time-delay systems, especially when a large sampling period is inevitable

  2. Ultrasound Tomography in Circular Measurement Configuration using Nonlinear Reconstruction Method

    Directory of Open Access Journals (Sweden)

    Tran Quang-Huy

    2015-12-01

    Full Text Available Ultrasound tomography offers the potential for detecting of very small tumors whose sizes are smaller than the wavelength of the incident pressure wave without ionizing radiation. Based on inverse scattering technique, this imaging modality uses some material properties such as sound contrast and attenuation in order to detect small objects. One of the most commonly used methods in ultrasound tomography is the Distorted Born Iterative Method (DBIM. The compressed sensing technique was applied in the DBIM as a promising approach for the image reconstruction quality improvement. Nevertheless, the random measurement configuration of transducers in this method is very difficult to set up in practice. Therefore, in this paper, we take advantages of simpler sparse uniform measurement configuration set-up of transducers and high-quality image reconstruction of 1 non-linear regularization in sparse scattering domain. The simulation results demonstrate the high performance of the proposed approach in terms of tremendously reduced total runtime and normalized error.

  3. Analytic treatment of nonlinear evolution equations using first integral method

    Indian Academy of Sciences (India)

    Ahmet Bekir; Ömer Ünsal

    2012-07-01

    In this paper, we show the applicability of the first integral method to combined KdV-mKdV equation, Pochhammer–Chree equation and coupled nonlinear evolution equations. The power of this manageable method is confirmed by applying it for three selected nonlinear evolution equations. This approach can also be applied to other nonlinear differential equations.

  4. The tanh-coth method combined with the Riccati equation for solving non-linear equation

    Energy Technology Data Exchange (ETDEWEB)

    Bekir, Ahmet [Dumlupinar University, Art-Science Faculty, Department of Mathematics, Kuetahya (Turkey)], E-mail: abekir@dumlupinar.edu.tr

    2009-05-15

    In this work, we established abundant travelling wave solutions for some non-linear evolution equations. This method was used to construct solitons and traveling wave solutions of non-linear evolution equations. The tanh-coth method combined with Riccati equation presents a wider applicability for handling non-linear wave equations.

  5. Optimization of nonlinear structural resonance using the incremental harmonic balance method

    DEFF Research Database (Denmark)

    Dou, Suguang; Jensen, Jakob Søndergaard

    2015-01-01

    We present an optimization procedure for tailoring the nonlinear structural resonant response with time-harmonic loads. A nonlinear finite element method is used for modeling beam structures with a geometric nonlinearity and the incremental harmonic balance method is applied for accurate nonlinea...

  6. NOLB : Non-linear rigid block normal mode analysis method.

    Science.gov (United States)

    Hoffmann, Alexandre; Grudinin, Sergei

    2017-04-05

    We present a new conceptually simple and computationally efficient method for non-linear normal mode analysis called NOLB. It relies on the rotations-translations of blocks (RTB) theoretical basis developed by Y.-H. Sanejouand and colleagues. We demonstrate how to physically interpret the eigenvalues computed in the RTB basis in terms of angular and linear velocities applied to the rigid blocks and how to construct a non-linear extrapolation of motion out of these velocities. The key observation of our method is that the angular velocity of a rigid block can be interpreted as the result of an implicit force, such that the motion of the rigid block can be considered as a pure rotation about a certain center. We demonstrate the motions produced with the NOLB method on three different molecular systems and show that some of the lowest frequency normal modes correspond to the biologically relevant motions. For example, NOLB detects the spiral sliding motion of the TALE protein, which is capable of rapid diffusion along its target DNA. Overall, our method produces better structures compared to the standard approach, especially at large deformation amplitudes, as we demonstrate by visual inspection, energy and topology analyses, and also by the MolProbity service validation. Finally, our method is scalable and can be applied to very large molecular systems, such as ribosomes. Standalone executables of the NOLB normal mode analysis method are available at https://team.inria.fr/nano-d/software/nolb-normal-modes. A graphical user interfaces created for the SAMSON software platform will be made available at https: //www.samson-connect.net.

  7. Numerical Methods through Open-Ended Projects

    Science.gov (United States)

    Cline, Kelly S.

    2005-01-01

    We present a design for a junior level numerical methods course that focuses on a series of five open-ended projects in applied mathematics. These projects were deliberately designed to present many of the ambiguities and complexities that appear any time we use mathematics in the real world, and so they offered the students a variety of possible…

  8. Conformal structure-preserving method for damped nonlinear Schrödinger equation

    Science.gov (United States)

    Fu, Hao; Zhou, Wei-En; Qian, Xu; Song, Song-He; Zhang, Li-Ying

    2016-11-01

    In this paper, we propose a conformal momentum-preserving method to solve a damped nonlinear Schrödinger (DNLS) equation. Based on its damped multi-symplectic formulation, the DNLS system can be split into a Hamiltonian part and a dissipative part. For the Hamiltonian part, the average vector field (AVF) method and implicit midpoint method are employed in spatial and temporal discretizations, respectively. For the dissipative part, we can solve it exactly. The proposed method conserves the conformal momentum conservation law in any local time-space region. With periodic boundary conditions, this method also preserves the total conformal momentum and the dissipation rate of momentum exactly. Numerical experiments are presented to demonstrate the conservative properties of the proposed method. Project supported by the National Natural Science Foundation of China (Grant Nos. 11571366, 11501570, and 11601514) and the Open Foundation of State Key Laboratory of High Performance Computing of China (Grant No. JC15-02-02).

  9. Kyropoulos method for growth of nonlinear optical organic crystal ABP (4-aminobenzophenone) from the melt

    Science.gov (United States)

    Pan, Shoukui; Okano, Y.; Tsunekawa, S.; Fukuda, T.

    1993-03-01

    The Kyropoulus method was used to grow nonlinear optical organic crystals ABP (4-aminobenzophenone). The crystals were characterized by nonlinear optical measurements and had a large effect of frequency doubling.

  10. A preconditioned inexact newton method for nonlinear sparse electromagnetic imaging

    KAUST Repository

    Desmal, Abdulla

    2015-03-01

    A nonlinear inversion scheme for the electromagnetic microwave imaging of domains with sparse content is proposed. Scattering equations are constructed using a contrast-source (CS) formulation. The proposed method uses an inexact Newton (IN) scheme to tackle the nonlinearity of these equations. At every IN iteration, a system of equations, which involves the Frechet derivative (FD) matrix of the CS operator, is solved for the IN step. A sparsity constraint is enforced on the solution via thresholded Landweber iterations, and the convergence is significantly increased using a preconditioner that levels the FD matrix\\'s singular values associated with contrast and equivalent currents. To increase the accuracy, the weight of the regularization\\'s penalty term is reduced during the IN iterations consistently with the scheme\\'s quadratic convergence. At the end of each IN iteration, an additional thresholding, which removes small \\'ripples\\' that are produced by the IN step, is applied to maintain the solution\\'s sparsity. Numerical results demonstrate the applicability of the proposed method in recovering sparse and discontinuous dielectric profiles with high contrast values.

  11. Finite Volume Evolution Galerkin Methods for Nonlinear Hyperbolic Systems

    Science.gov (United States)

    Lukáčová-Medvid'ová, M.; Saibertová, J.; Warnecke, G.

    2002-12-01

    We present new truly multidimensional schemes of higher order within the frame- work of finite volume evolution Galerkin (FVEG) methods for systems of nonlinear hyperbolic conservation laws. These methods couple a finite volume formulation with approximate evolution operators. The latter are constructed using the bicharacteristics of the multidimensional hyperbolic system, such that all of the infinitely many directions of wave propagation are taken into account. Following our previous results for the wave equation system, we derive approximate evolution operators for the linearized Euler equations. The integrals along the Mach cone and along the cell interfaces are evaluated exactly, as well as by means of numerical quadratures. The influence of these numerical quadratures will be discussed. Second-order resolution is obtained using a conservative piecewise bilinear recovery and the midpoint rule approximation for time integration. We prove error estimates for the finite volume evolution Galerkin scheme for linear systems with constant coefficients. Several numerical experiments for the nonlinear. Euler equations, which confirm the accuracy and good multidimensional behavior of the FVEG schemes, are presented as well.

  12. Efficient computation method for two-dimensional nonlinear waves

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The theory and simulation of fully-nonlinear waves in a truncated two-dimensional wave tank in time domain are presented. A piston-type wave-maker is used to generate gravity waves into the tank field in finite water depth. A damping zone is added in front of the wave-maker which makes it become one kind of absorbing wave-maker and ensures the prescribed Neumann condition. The efficiency of nmerical tank is further enhanced by installation of a sponge layer beach (SLB) in front of downtank to absorb longer weak waves that leak through the entire wave train front. Assume potential flow, the space- periodic irrotational surface waves can be represented by mixed Euler- Lagrange particles. Solving the integral equation at each time step for new normal velocities, the instantaneous free surface is integrated following time history by use of fourth-order Runge- Kutta method. The double node technique is used to deal with geometric discontinuity at the wave- body intersections. Several precise smoothing methods have been introduced to treat surface point with high curvature. No saw-tooth like instability is observed during the total simulation.The advantage of proposed wave tank has been verified by comparing with linear theoretical solution and other nonlinear results, excellent agreement in the whole range of frequencies of interest has been obtained.

  13. Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems

    Science.gov (United States)

    Tang, Yao-Zong; Li, Xiao-Lin

    2017-03-01

    We first give a stabilized improved moving least squares (IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin method is provided theoretically for both linear and nonlinear elliptic boundary value problems. Finally, numerical examples are given to verify the theoretical analysis. Project supported by the National Natural Science Foundation of China (Grant No. 11471063), the Chongqing Research Program of Basic Research and Frontier Technology, China (Grant No. cstc2015jcyjBX0083), and the Educational Commission Foundation of Chongqing City, China (Grant No. KJ1600330).

  14. Attitude Control Synthesis for Small Satellites Using Gradient Method. Part I - Nonlinear Equations

    Directory of Open Access Journals (Sweden)

    Teodor-Viorel CHELARU

    2012-12-01

    Full Text Available The paper presents some aspects for synthesis of small satellites attitude control. Thesatellite nonlinear model presented here will be with six degrees of freedom. After movement equationlinearization the stability and command matrixes will be established and the controller will beobtained using gradient and gradient method. Two attitude control cases will be analysed: thereaction wheels and the micro thrusters. The results will be used in the project European Space MoonOrbit - ESMO founded by European Space Agency in which the University POLITEHNICA ofBucharest is involved.

  15. Conditions on Structural Controllability of Nonlinear Systems: Polynomial Method

    Directory of Open Access Journals (Sweden)

    Qiang Ma

    2011-03-01

    Full Text Available In this paper the structural controllability of a class of a nonlinear system is investigated. The transfer function (matrix of nonlinear systems is obtained by putting the nonlinear system model on non-commutative ring. Conditions of structural controllability of nonlinear systems are presented according to the criterion of linear systems structural controllability in frequency domain. An example is used to testify the presented conditions finally.

  16. Simple noise-reduction method based on nonlinear forecasting

    Science.gov (United States)

    Tan, James P. L.

    2017-03-01

    Nonparametric detrending or noise reduction methods are often employed to separate trends from noisy time series when no satisfactory models exist to fit the data. However, conventional noise reduction methods depend on subjective choices of smoothing parameters. Here we present a simple multivariate noise reduction method based on available nonlinear forecasting techniques. These are in turn based on state-space reconstruction for which a strong theoretical justification exists for their use in nonparametric forecasting. The noise reduction method presented here is conceptually similar to Schreiber's noise reduction method using state-space reconstruction. However, we show that Schreiber's method has a minor flaw that can be overcome with forecasting. Furthermore, our method contains a simple but nontrivial extension to multivariate time series. We apply the method to multivariate time series generated from the Van der Pol oscillator, the Lorenz equations, the Hindmarsh-Rose model of neuronal spiking activity, and to two other univariate real-world data sets. It is demonstrated that noise reduction heuristics can be objectively optimized with in-sample forecasting errors that correlate well with actual noise reduction errors.

  17. Nonlinear diffusion methods based on robust statistics for noise removal

    Institute of Scientific and Technical Information of China (English)

    JIA Di-ye; HUANG Feng-gang; SU Han

    2007-01-01

    A novel smoothness term of Bayesian regularization framework based on M-estimation of robust statistics is proposed, and from this term a class of fourth-order nonlinear diffusion methods is proposed. These methods attempt to approximate an observed image with a piecewise linear image, which looks more natural than piecewise constant image used to approximate an observed image by P-M[1] model. It is known that M-estimators and W-estimators are essentially equivalent and solve the same minimization problem. Then, we propose PL bilateral filter from equivalent W-estimator. This new model is designed for piecewise linear image filtering,which is more effective than normal bilateral filter.

  18. Quantitative Emboli Detection Using Nonlinear Ultrasound Technique Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a new and innovative method for the detection and classification of emboli flowing into the brain through Carotid arteries, specifically for...

  19. Control time reduction using virtual source projection for treating a leg sarcoma with nonlinear perfusion

    Science.gov (United States)

    Cheng, Kung-Shan; Yuan, Yu; Li, Zhen; Stauffer, Paul R.; Joines, William T.; Dewhirst, Mark W.; Das, Shiva K.

    2009-02-01

    Purpose: Blood perfusion is a well-known factor that complicates accurate control of heating during hyperthermia treatments of cancer. Since blood perfusion varies as a function of time, temperature and location, determination of appropriate power deposition pattern from multiple antenna array Hyperthermia systems and heterogeneous tissues is a difficult control problem. Therefore, we investigate the applicability of a real-time eigenvalue model reduction (virtual source - VS) reduced-order controller for hyperthermic treatments of tissue with nonlinearly varying perfusion. Methods: We impose a piecewise linear approximation to a set of heat pulses, each consisting of a 1-min heat-up, followed by a 2-min cool-down. The controller is designed for feedback from magnetic resonance temperature images (MRTI) obtained after each iteration of heat pulses to adjust the projected optimal setting of antenna phase and magnitude for selective tumor heating. Simulated temperature patterns with additive Gaussian noise with a standard deviation of 1.0°C and zero mean were used as a surrogate for MRTI. Robustness tests were conducted numerically for a patient's right leg placed at the middle of a water bolus surrounded by a 10-antenna applicator driven at 150 MHz. Robustness tests included added discrepancies in perfusion, electrical and thermal properties, and patient model simplifications. Results: The controller improved selective tumor heating after an average of 4-9 iterative adjustments of power and phase, and fulfilled satisfactory therapeutic outcomes with approximately 75% of tumor volumes heated to temperatures >43°C while maintaining about 93% of healthy tissue volume time to only 4 to 9% of the original value. Conclusions: Using a piecewise linear approximation to a set of heat pulses in a VS reduced-order controller, the proposed algorithm greatly improves the efficiency of hyperthermic treatment of leg sarcomas while accommodating practical nonlinear variation of

  20. A stabilised nodal spectral element method for fully nonlinear water waves

    Science.gov (United States)

    Engsig-Karup, A. P.; Eskilsson, C.; Bigoni, D.

    2016-08-01

    We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element method proposed by Cai et al. (1998) [5], although the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global L2 projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions can cause severe aliasing problems and consequently numerical instability for marginally resolved or very steep waves. We show how the scheme can be stabilised through a combination of over-integration of the Galerkin projections and a mild spectral filtering on a per element basis. This effectively removes any aliasing driven instabilities while retaining the high-order accuracy of the numerical scheme. The additional computational cost of the over-integration is found insignificant compared to the cost of solving the Laplace problem. The model is applied to several benchmark cases in two dimensions. The results confirm the high order accuracy of the model (exponential convergence), and demonstrate the potential for accuracy and speedup. The results of numerical experiments are in excellent agreement with both analytical and experimental results for strongly nonlinear and irregular dispersive wave propagation. The benefit of using a high-order - possibly adapted - spatial discretisation for accurate water wave propagation over long times and distances is particularly attractive for marine hydrodynamics applications.

  1. A new method for parameter estimation in nonlinear dynamical equations

    Science.gov (United States)

    Wang, Liu; He, Wen-Ping; Liao, Le-Jian; Wan, Shi-Quan; He, Tao

    2015-01-01

    Parameter estimation is an important scientific problem in various fields such as chaos control, chaos synchronization and other mathematical models. In this paper, a new method for parameter estimation in nonlinear dynamical equations is proposed based on evolutionary modelling (EM). This will be achieved by utilizing the following characteristics of EM which includes self-organizing, adaptive and self-learning features which are inspired by biological natural selection, and mutation and genetic inheritance. The performance of the new method is demonstrated by using various numerical tests on the classic chaos model—Lorenz equation (Lorenz 1963). The results indicate that the new method can be used for fast and effective parameter estimation irrespective of whether partial parameters or all parameters are unknown in the Lorenz equation. Moreover, the new method has a good convergence rate. Noises are inevitable in observational data. The influence of observational noises on the performance of the presented method has been investigated. The results indicate that the strong noises, such as signal noise ratio (SNR) of 10 dB, have a larger influence on parameter estimation than the relatively weak noises. However, it is found that the precision of the parameter estimation remains acceptable for the relatively weak noises, e.g. SNR is 20 or 30 dB. It indicates that the presented method also has some anti-noise performance.

  2. Study of plasmonic slot waveguides with a nonlinear metamaterial core: semi-analytical and numerical methods

    CERN Document Server

    Elsawy, Mahmoud M R

    2016-01-01

    Two distinct models are developed to investigate the transverse magnetic stationary solutions propagating in one-dimensional anisotropic nonlinear plasmonic structures made from a nonlinear metamaterial core of Kerr-type embedded between two semi-infinite metal claddings. The first model is semi-analytical, in which we assumed that the anisotropic nonlinearity depends only on the transverse component of the electric field and that the nonlinear refractive index modification is small compared to the linear one. This method allows us to derive analytically the field profiles and the nonlinear dispersion relations in terms of the Jacobi elliptical functions. The second model is fully numerical, it is based on the finite-element method in which all the components of the electric field are considered in the Kerr-type nonlinearity with no presumptions on the nonlinear refractive index change. Our finite-element based model is valid beyond weak nonlinearity regime and generalize the well-known single-component fixed...

  3. Method and system for non-linear motion estimation

    Science.gov (United States)

    Lu, Ligang (Inventor)

    2011-01-01

    A method and system for extrapolating and interpolating a visual signal including determining a first motion vector between a first pixel position in a first image to a second pixel position in a second image, determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image, determining a third motion vector between one of the first pixel position in the first image and the second pixel position in the second image, and the second pixel position in the second image and the third pixel position in the third image using a non-linear model, determining a position of the fourth pixel in a fourth image based upon the third motion vector.

  4. Applications of Automation Methods for Nonlinear Fracture Test Analysis

    Science.gov (United States)

    Allen, Phillip A.; Wells, Douglas N.

    2013-01-01

    Using automated and standardized computer tools to calculate the pertinent test result values has several advantages such as: 1. allowing high-fidelity solutions to complex nonlinear phenomena that would be impractical to express in written equation form, 2. eliminating errors associated with the interpretation and programing of analysis procedures from the text of test standards, 3. lessening the need for expertise in the areas of solid mechanics, fracture mechanics, numerical methods, and/or finite element modeling, to achieve sound results, 4. and providing one computer tool and/or one set of solutions for all users for a more "standardized" answer. In summary, this approach allows a non-expert with rudimentary training to get the best practical solution based on the latest understanding with minimum difficulty.Other existing ASTM standards that cover complicated phenomena use standard computer programs: 1. ASTM C1340/C1340M-10- Standard Practice for Estimation of Heat Gain or Loss Through Ceilings Under Attics Containing Radiant Barriers by Use of a Computer Program 2. ASTM F 2815 - Standard Practice for Chemical Permeation through Protective Clothing Materials: Testing Data Analysis by Use of a Computer Program 3. ASTM E2807 - Standard Specification for 3D Imaging Data Exchange, Version 1.0 The verification, validation, and round-robin processes required of a computer tool closely parallel the methods that are used to ensure the solution validity for equations included in test standard. The use of automated analysis tools allows the creation and practical implementation of advanced fracture mechanics test standards that capture the physics of a nonlinear fracture mechanics problem without adding undue burden or expense to the user. The presented approach forms a bridge between the equation-based fracture testing standards of today and the next generation of standards solving complex problems through analysis automation.

  5. Dynamic properties of the cubic nonlinear Schr(o)dinger equation by symplectic method

    Institute of Scientific and Technical Information of China (English)

    Liu Xue-Shen; Wei Jia-Yu; Ding Pei-Zhu

    2005-01-01

    The dynamic properties of a cubic nonlinear Schrodinger equation are investigated numerically by using the symplectic method with different space approximations. The behaviours of the cubic nonlinear Schrodinger equation are discussed with different cubic nonlinear parameters in the harmonically modulated initial condition. We show that the conserved quantities will be preserved for long-time computation but the system will exhibit different dynamic behaviours in space difference approximation for the strong cubic nonlinearity.

  6. A method for generating highly nonlinear periodic waves in physical wave basins

    DEFF Research Database (Denmark)

    Zhang, Haiwen; Schäffer, Hemming A.; Bingham, Harry B.

    2006-01-01

    This abstract describes a new method for generating nonlinear waves of constant form in physical wave basins. The idea is to combine fully dispersive linear wavemaker theory with nonlinear shallow water wave generation theory; and use an exact nonlinear theory as the target. We refer to the metho...... as an ad-hoc unified wave generation theory, since there is no rigorous analysis behind the idea which is simply justified by the improved results obtained for the practical generation of steady nonlinear waves....

  7. A nonlinear dynamics approach for incorporating wind-speed patterns into wind-power project evaluation.

    Science.gov (United States)

    Huffaker, Ray; Bittelli, Marco

    2015-01-01

    Wind-energy production may be expanded beyond regions with high-average wind speeds (such as the Midwest U.S.A.) to sites with lower-average speeds (such as the Southeast U.S.A.) by locating favorable regional matches between natural wind-speed and energy-demand patterns. A critical component of wind-power evaluation is to incorporate wind-speed dynamics reflecting documented diurnal and seasonal behavioral patterns. Conventional probabilistic approaches remove patterns from wind-speed data. These patterns must be restored synthetically before they can be matched with energy-demand patterns. How to accurately restore wind-speed patterns is a vexing problem spurring an expanding line of papers. We propose a paradigm shift in wind power evaluation that employs signal-detection and nonlinear-dynamics techniques to empirically diagnose whether synthetic pattern restoration can be avoided altogether. If the complex behavior of observed wind-speed records is due to nonlinear, low-dimensional, and deterministic system dynamics, then nonlinear dynamics techniques can reconstruct wind-speed dynamics from observed wind-speed data without recourse to conventional probabilistic approaches. In the first study of its kind, we test a nonlinear dynamics approach in an application to Sugarland Wind-the first utility-scale wind project proposed in Florida, USA. We find empirical evidence of a low-dimensional and nonlinear wind-speed attractor characterized by strong temporal patterns that match up well with regular daily and seasonal electricity demand patterns.

  8. Using Replication Projects in Teaching Research Methods

    Science.gov (United States)

    Standing, Lionel G.; Grenier, Manuel; Lane, Erica A.; Roberts, Meigan S.; Sykes, Sarah J.

    2014-01-01

    It is suggested that replication projects may be valuable in teaching research methods, and also address the current need in psychology for more independent verification of published studies. Their use in an undergraduate methods course is described, involving student teams who performed direct replications of four well-known experiments, yielding…

  9. A Neurodynamic Model to Solve Nonlinear Pseudo-Monotone Projection Equation and Its Applications.

    Science.gov (United States)

    Eshaghnezhad, Mohammad; Effati, Sohrab; Mansoori, Amin

    2016-09-29

    In this paper, a neurodynamic model is given to solve nonlinear pseudo-monotone projection equation. Under pseudo-monotonicity condition and Lipschitz continuous condition, the projection neurodynamic model is proved to be stable in the sense of Lyapunov, globally convergent, globally asymptotically stable, and globally exponentially stable. Also, we show that, our new neurodynamic model is effective to solve the nonconvex optimization problems. Moreover, since monotonicity is a special case of pseudo-monotonicity and also since a co-coercive mapping is Lipschitz continuous and monotone, and a strongly pseudo-monotone mapping is pseudo-monotone, the neurodynamic model can be applied to solve a broader classes of constrained optimization problems related to variational inequalities, pseudo-convex optimization problem, linear and nonlinear complementarity problems, and linear and convex quadratic programming problems. Finally, several illustrative examples are stated to demonstrate the effectiveness and efficiency of our new neurodynamic model.

  10. A MESHLESS LOCAL PETROV-GALERKIN METHOD FOR GEOMETRICALLY NONLINEAR PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Xiong Yuanbo; Long Shuyao; Hu De'an; Li Guangyao

    2005-01-01

    Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficulties in the large deformation analysis. The essential boundary conditions in the present formulation are imposed by a penalty method. An incremental and iterative solution procedure is used to solve geometrically nonlinear problems. Several examples are presented to demonstrate the effectiveness of the method in geometrically nonlinear problems analysis. Numerical results show that the MLPG method is an effective one and that the values of the unknown variable are quite accurate.

  11. Experimental Detection and Quantification of Structural Nonlinearity Using Homogeneity and Hilbert Transform Methods

    DEFF Research Database (Denmark)

    Kragh, Knud Abildgaard; Thomsen, Jon Juel; Tcherniak, Dmitri

    2010-01-01

    exists. The present study suggests a framework for the detection of structural nonlinearities. Two methods for detection are compared, the homogeneity method and a Hilbert transform based method. Based on these two methods, a nonlinearity index is suggested. Through simulations and laboratory experiments...

  12. The repeated homogeneous balance method and its applications to nonlinear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Xiqiang [Department of Mathematics, Ocean University of China, Qingdao Shandong 266071 (China)] e-mail: zhaodss@yahoo.com.cn; Wang Limin [Shandong University of Technology, Zibo Shandong 255049 (China); Sun Weijun [Shandong University of Technology, Zibo Shandong 255049 (China)

    2006-04-01

    In this letter, a new method, called the repeated homogeneous balance method, is proposed for seeking the traveling wave solutions of nonlinear partial differential equations. The Burgers-KdV equation is chosen to illustrate our method. It has been confirmed that more traveling wave solutions of nonlinear partial differential equations can be effectively obtained by using the repeated homogeneous balance method.

  13. Multiple Methods: Research Methods in Education Projects at NSF

    Science.gov (United States)

    Suter, Larry E.

    2005-01-01

    Projects on science and mathematics education research supported by the National Science Foundation (US government) rarely employ a single method of study. Studies of educational practices that use experimental design are very rare. The most common research method is the case study method and the second most common is some form of experimental…

  14. RANDOM MICROSTRUCTURE FINITE ELEMENT METHOD FOR EFFECTIVE NONLINEAR PROPERTIES OF COMPOSITE MATERIALS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Some theoretical methods have been reported to deal with nonlinear problems of composite materials but the accuracy is not so good. In the meantime, a lot of nonlinear problems are difficult to be managed by the theoretical methods. The present study aims to use the developed method, the random microstructure finite element method, to deal with these nonlinear problems. In this paper, the random microstructure finite element method is used to deal with all three kinds of nonlinear property problems of composite materials. The analyzed results suggest that the influences of the nonlinear phenomena on the effective properties of composite materials are significant and the random microstructure finite element method is an efficient tool to investigate the nonlinear problems.

  15. Nonlinear free vibrations of curved double walled carbon nanotubes using differential quadrature method

    Science.gov (United States)

    Cigeroglu, Ender; Samandari, Hamed

    2014-11-01

    Nonlinear free vibration analysis of curved double-walled carbon nanotubes (DWNTs) embedded in an elastic medium is studied in this study. Nonlinearities considered are due to large deflection of carbon nanotubes (geometric nonlinearity) and nonlinear interlayer van der Waals forces between inner and outer tubes. The differential quadrature method (DQM) is utilized to discretize the partial differential equations of motion in spatial domain, which resulted in a nonlinear set of algebraic equations of motion. The effect of nonlinearities, different end conditions, initial curvature, and stiffness of the surrounding elastic medium, and vibrational modes on the nonlinear free vibration of DWCNTs is studied. Results show that it is possible to detect different vibration modes occurring at a single vibration frequency when CNTs vibrate in the out-of-phase vibration mode. Moreover, it is observed that boundary conditions have significant effect on the nonlinear natural frequencies of the DWCNT including multiple solutions.

  16. Application of nonlinear methods to the study of ionospheric plasma

    Science.gov (United States)

    Chernyshov, A. A.; Mogilevsky, M. M.; Kozelov, B. V.

    2015-01-01

    Most of the processes taking place in the auroral region of Earth's ionosphere are reflected in a variety of dynamic forms of the aurora borealis. In order to study these processes it is necessary to consider temporary and spatial variations of the characteristics of ionospheric plasma. Most traditional methods of classical physics are applicable mainly for stationary or quasi-stationary phenomena, but dynamic regimes, transients, fluctuations, selfsimilar scaling could be considered using the methods of nonlinear dynamics. Special interest is the development of the methods for describing the spatial structure and the temporal dynamics of auroral ionosphere based on the ideas of percolation theory and fractal geometry. The fractal characteristics (the Hausdorff fractal dimension and the index of connectivity) of Hall and Pedersen conductivities are used to the description of fractal patterns in the ionosphere. To obtain the self-consistent estimates of the parameters the Hausdorff fractal dimension and the index of connectivity in the auroral zone, an additional relation describing universal behavior of the fractal geometry of percolation at the critical threshold is applied. Also, it is shown that Tsallis statistics can be used to study auroral ionosphere

  17. Nonlinear Analysis Methods for Evaluating Seismic Performance of Multi-Story RC Buildings

    OpenAIRE

    Tayyebi, Saeid Moussavi

    2014-01-01

    ABSTRACT: A major challenge in performance-based earthquake engineering is to develop simple and practical methods for estimating capacity level and seismic demand on structures by taking into account their inelastic behavior. Researchers and engineers certainly prefer to use nonlinear static methods over complicated nonlinear time-history methods. However, in Nonlinear Static procedure both predetermined target displacement and force distribution pattern are based on a false assumption that ...

  18. The Riccati Equation Mapping Method for Solving Nonlinear Partial Differential Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    Elsayed Mohamed Elsayed ZAYED

    2014-07-01

    Full Text Available In this article, many new exact solutions of the (2+1-dimensional nonlinear Boussinesq-Kadomtsev-Petviashvili equation and the (1+1-dimensional nonlinear heat conduction equation are constructed using the Riccati equation mapping method. By means of this method, many new exact solutions are successfully obtained. This method can be applied to many other nonlinear evolution equations in mathematical physics.doi:10.14456/WJST.2014.14

  19. Generalized projective synchronization in time-delayed systems: nonlinear observer approach.

    Science.gov (United States)

    Ghosh, Dibakar

    2009-03-01

    In this paper, we consider the projective-anticipating, projective, and projective-lag synchronization in a unified coupled time-delay system via nonlinear observer design. A new sufficient condition for generalized projective synchronization is derived analytically with the help of Krasovskii-Lyapunov theory for constant and variable time-delay systems. The analytical treatment can give stable synchronization (anticipatory and lag) for a large class of time-delayed systems in which the response system's trajectory is forced to have an amplitude proportional to the drive system. The constant of proportionality is determined by the control law, not by the initial conditions. The proposed technique has been applied to synchronize Ikeda and prototype models by numerical simulation.

  20. Analysis and Design Methods for Nonlinear Control Systems

    Science.gov (United States)

    1990-03-01

    entitled "Design of Nonlinear PID Controllers ." In this paper it is demonstrated that the extended linearization approach can be applied to standard...Sciences and Systems, Baltimore, Maryland, pp. 675-680, 1987. [3] WJ. Rugh, "Design of Nonlinear PID Controllers ," AIChE Journa Vol. 33, No. 10, pp. 1738

  1. Projection preconditioning for Lanczos-type methods

    Energy Technology Data Exchange (ETDEWEB)

    Bielawski, S.S.; Mulyarchik, S.G.; Popov, A.V. [Belarusian State Univ., Minsk (Belarus)

    1996-12-31

    We show how auxiliary subspaces and related projectors may be used for preconditioning nonsymmetric system of linear equations. It is shown that preconditioned in such a way (or projected) system is better conditioned than original system (at least if the coefficient matrix of the system to be solved is symmetrizable). Two approaches for solving projected system are outlined. The first one implies straightforward computation of the projected matrix and consequent using some direct or iterative method. The second approach is the projection preconditioning of conjugate gradient-type solver. The latter approach is developed here in context with biconjugate gradient iteration and some related Lanczos-type algorithms. Some possible particular choices of auxiliary subspaces are discussed. It is shown that one of them is equivalent to using colorings. Some results of numerical experiments are reported.

  2. Detection method of nonlinearity errors by statistical signal analysis in heterodyne Michelson interferometer.

    Science.gov (United States)

    Hu, Juju; Hu, Haijiang; Ji, Yinghua

    2010-03-15

    Periodic nonlinearity that ranges from tens of nanometers to a few nanometers in heterodyne interferometer limits its use in high accuracy measurement. A novel method is studied to detect the nonlinearity errors based on the electrical subdivision and the analysis method of statistical signal in heterodyne Michelson interferometer. Under the movement of micropositioning platform with the uniform velocity, the method can detect the nonlinearity errors by using the regression analysis and Jackknife estimation. Based on the analysis of the simulations, the method can estimate the influence of nonlinearity errors and other noises for the dimensions measurement in heterodyne Michelson interferometer.

  3. Modified extended tanh-function method for solving nonlinear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    El-Wakil, S.A. [Department of Physics, Faculty of Science, Theoretical Research Group, Mansoura University, 35516 Mansoura (Egypt); Abdou, M.A. [Department of Physics, Faculty of Science, Theoretical Research Group, Mansoura University, 35516 Mansoura (Egypt)]. E-mail: m_abdou_eg@yahoo.com

    2007-03-15

    Based on computerized symbolic computation, modified extended tanh-method for constructing multiple travelling wave solutions of nonlinear evolution equations is presented and implemented in a computer algebraic system. Applying this method, with the aid of Maple, we consider some nonlinear evolution equations in mathematical physics such as the nonlinear partial differential equation, nonlinear Fisher-type equation, ZK-BBM equation, generalized Burgers-Fisher equation and Drinfeld-Sokolov system. As a result, we can successfully recover the previously known solitary wave solutions that had been found by the extended tanh-function method and other more sophisticated methods.

  4. Simplified Methods Applied to Nonlinear Motion of Spar Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Haslum, Herbjoern Alf

    2000-07-01

    Simplified methods for prediction of motion response of spar platforms are presented. The methods are based on first and second order potential theory. Nonlinear drag loads and the effect of the pumping motion in a moon-pool are also considered. Large amplitude pitch motions coupled to extreme amplitude heave motions may arise when spar platforms are exposed to long period swell. The phenomenon is investigated theoretically and explained as a Mathieu instability. It is caused by nonlinear coupling effects between heave, surge, and pitch. It is shown that for a critical wave period, the envelope of the heave motion makes the pitch motion unstable. For the same wave period, a higher order pitch/heave coupling excites resonant heave response. This mutual interaction largely amplifies both the pitch and the heave response. As a result, the pitch/heave instability revealed in this work is more critical than the previously well known Mathieu's instability in pitch which occurs if the wave period (or the natural heave period) is half the natural pitch period. The Mathieu instability is demonstrated both by numerical simulations with a newly developed calculation tool and in model experiments. In order to learn more about the conditions for this instability to occur and also how it may be controlled, different damping configurations (heave damping disks and pitch/surge damping fins) are evaluated both in model experiments and by numerical simulations. With increased drag damping, larger wave amplitudes and more time are needed to trigger the instability. The pitch/heave instability is a low probability of occurrence phenomenon. Extreme wave periods are needed for the instability to be triggered, about 20 seconds for a typical 200m draft spar. However, it may be important to consider the phenomenon in design since the pitch/heave instability is very critical. It is also seen that when classical spar platforms (constant cylindrical cross section and about 200m draft

  5. Application of homotopy-perturbation method to nonlinear population dynamics models

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, M.S.H. [School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi Selangor (Malaysia); Hashim, I. [School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi Selangor (Malaysia)], E-mail: ishak_h@ukm.my; Abdulaziz, O. [School of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi Selangor (Malaysia)

    2007-08-20

    In this Letter, the homotopy-perturbation method (HPM) is employed to derive approximate series solutions of nonlinear population dynamics models. The nonlinear models considered are the multispecies Lotka-Volterra equations. The accuracy of this method is examined by comparison with the available exact and the fourth-order Runge-Kutta method (RK4)

  6. Wideband nonlinear time reversal seismo-acoustic method for landmine detection.

    Science.gov (United States)

    Sutin, Alexander; Libbey, Brad; Fillinger, Laurent; Sarvazyan, Armen

    2009-04-01

    Acoustic and seismic waves provide a method to localize compliant mines by vibrating the top plate and a thin soil layer above the mine. This vibration is mostly linear, but also includes a small nonlinear deviation. The main goal of this paper is to introduce a method of processing that uses phase-inversion to observe nonlinear effects in a wide frequency band. The method extracts a nonlinear part of surface velocity from two similar broadcast signals of opposite sign by summing and cancelling the linear components and leaving the nonlinear components. This phase-inversion method is combined with time reversal focusing to provide increased seismic vibration and enhance the nonlinear effect. The experiments used six loudspeakers in a wood box placed over sand in which inert landmines were buried. The nonlinear surface velocity of the sand with a mine compared to the sand without a mine was greater as compared to a linear technique.

  7. Nonlinear Circuit Analysis via Perturbation Methods and Hardware Prototyping

    Directory of Open Access Journals (Sweden)

    K. Odame

    2010-01-01

    Full Text Available Nonlinear signal processing is necessary in many emerging applications where form factor and power are at a premium. In order to make such complex computation feasible under these constraints, it is necessary to implement the signal processors as analog circuits. Since analog circuit design is largely based on a linear systems perspective, new tools are being introduced to circuit designers that allow them to understand and exploit circuit nonlinearity for useful processing. This paper discusses two such tools, which represent nonlinear circuit behavior in a graphical way, making it easy to develop a qualitative appreciation for the circuits under study.

  8. Study of plasmonic slot waveguides with a nonlinear metamaterial core: semi-analytical and numerical methods

    Science.gov (United States)

    Elsawy, Mahmoud M. R.; Renversez, Gilles

    2017-07-01

    Two distinct models are developed to investigate the transverse magnetic stationary solutions propagating in one-dimensional anisotropic nonlinear plasmonic structures made from a Kerr-type nonlinear metamaterial core embedded between two semi-infinite metal claddings. The first model is semi-analytical, in which we assume that the anisotropic nonlinearity depends only on the transverse component of the electric field and that the nonlinear refractive index modification is small compared to the linear one. This method allows us to derive analytically the field profiles and nonlinear dispersion relations in terms of the Jacobi elliptical functions. The second model is fully numerical and is based on the finite element method in which all the components of the electric field are considered in the Kerr-type nonlinearity, with no presumptions as to the nonlinear refractive index change. Our finite-element-based model is valid beyond the weak nonlinearity regime and generalizes the well-known single-component fixed power algorithm that is usually used. Examples of the main cases are investigated, including those with strong spatial nonlinear effects at low power. Loss issues are reduced through the use of a gain medium in the nonlinear metamaterial core. Using anisotropic nonlinear FDTD simulations, we provide some results for the properties of the main solution.

  9. Geometric methods for nonlinear many-body quantum systems

    CERN Document Server

    Lewin, Mathieu

    2010-01-01

    Geometric techniques have played an important role in the seventies, for the study of the spectrum of many-body Schr\\"odinger operators. In this paper we provide a formalism which also allows to study nonlinear systems. We start by defining a weak topology on many-body states, which appropriately describes the physical behavior of the system in the case of lack of compactness, that is when some particles are lost at infinity. We provide several important properties of this topology and use them to provide a simple proof of the famous HVZ theorem in the repulsive case. In a second step we recall the method of geometric localization in Fock space as proposed by Derezi\\'nski and G\\'erard, and we relate this tool to our weak topology. We then provide several applications. We start by studying the so-called finite-rank approximation which consists in imposing that the many-body wavefunction can be expanded using finitely many one-body functions. We thereby emphasize geometric properties of Hartree-Fock states and ...

  10. Extended abstract: Partial row projection methods

    Energy Technology Data Exchange (ETDEWEB)

    Bramley, R.; Lee, Y. [Indiana Univ., Bloomington, IN (United States)

    1996-12-31

    Accelerated row projection (RP) algorithms for solving linear systems Ax = b are a class of iterative methods which in theory converge for any nonsingular matrix. RP methods are by definition ones that require finding the orthogonal projection of vectors onto the null space of block rows of the matrix. The Kaczmarz form, considered here because it has a better spectrum for iterative methods, has an iteration matrix that is the product of such projectors. Because straightforward Kaczmarz method converges slowly for practical problems, typically an outer CG acceleration is applied. Definiteness, symmetry, or localization of the eigenvalues, of the coefficient matrix is not required. In spite of this robustness, work has generally been limited to structured systems such as block tridiagonal matrices because unlike many iterative solvers, RP methods cannot be implemented by simply supplying a matrix-vector multiplication routine. Finding the orthogonal projection of vectors onto the null space of block rows of the matrix in practice requires accessing the actual entries in the matrix. This report introduces a new partial RP algorithm which retains advantages of the RP methods.

  11. STABILITY ANALYSIS OF RUNGE-KUTTA METHODS FOR NONLINEAR SYSTEMS OF PANTOGRAPH EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Yue-xin Yu; Shou-fu Li

    2005-01-01

    This paper is concerned with numerical stability of nonlinear systems of pantograph equations. Numerical methods based on (k, l)-algebraically stable Runge-Kutta methods are suggested. Global and asymptotic stability conditions for the presented methods are derived.

  12. Detection and visualization of non-linear structures in large datasets using Exploratory Projection Pursuit Laboratory (EPP-Lab software

    Directory of Open Access Journals (Sweden)

    Souad Larabi Marie-Sainte

    2017-01-01

    Full Text Available This article consists of using biologically inspired algorithms in order to detect potentially interesting structures in large and multidimensional data sets. Data exploration and the detection of interesting structures are based on the use of Projection Pursuit that involves the definition and the optimization of an index associated with each direction or projection. The optimization of a projection index should provide a set of multiple optima that is expected to correspond to interesting graphical representations in low dimensional space. The implementation of the bio-inspired algorithms along with the projection pursuit develops a new software called EPP-Lab. Projection pursuit is widely used in different scientific domains (biology, pharmacy, bioinformatics, biometry, etc but not widely present in the well-known softwares. EPP-Lab is dedicated to recognize and visualize clusters and outlying observations on one dimension from high dimensional and multivariate data sets. It includes different statistical techniques for results analysis. It provides several features and gives the user the option to adjust the parameters of the selected bio-inspired methods or to use defaults values. EPP-Lab is a unique software for detection, visualization and analysis of non-linear structures. The performance of this tool has been validated by testing different real and simulated data sets.

  13. LOCAL DISCONTINUOUS GALERKIN METHODS FOR THREE CLASSES OF NONLINEAR WAVE EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Yan Xu; Chi-wang Shu

    2004-01-01

    In this paper, we further develop the local discontinuous Galerkin method to solve three classes of nonlinear wave equations formulated by the general KdV-Burgers type equations, the general fifth-order KdV type equations and the fully nonlinear K(n, n, n)equations, and prove their stability for these general classes of nonlinear equations. The schemes we present extend the previous work of Yan and Shu [30, 31] and of Levy, Shu and Yan [24] on local discontinuous Galerkin method solving partial differential equations with higher spatial derivatives. Numerical examples for nonlinear problems are shown to illustrate the accuracy and capability of the methods. The numerical experiments include stationary solitons, soliton interactions and oscillatory solitary wave solutions.The numerical experiments also include the compacton solutions of a generalized fifthorder KdV equation in which the highest order derivative term is nonlinear and the fully nonlinear K(n, n, n) equations.

  14. Nonlinearities Distribution Homotopy Perturbation Method Applied to Solve Nonlinear Problems: Thomas-Fermi Equation as a Case Study

    Directory of Open Access Journals (Sweden)

    U. Filobello-Nino

    2015-01-01

    Full Text Available We propose an approximate solution of T-F equation, obtained by using the nonlinearities distribution homotopy perturbation method (NDHPM. Besides, we show a table of comparison, between this proposed approximate solution and a numerical of T-F, by establishing the accuracy of the results.

  15. Nonlinear generalized source method for modeling second-harmonic generation in diffraction gratings

    CERN Document Server

    Weismann, Martin; Panoiu, Nicolae C

    2015-01-01

    We introduce a versatile numerical method for modeling light diffraction in periodically patterned photonic structures containing quadratically nonlinear non-centrosymmetric optical materials. Our approach extends the generalized source method to nonlinear optical interactions by incorporating the contribution of nonlinear polarization sources to the diffracted field in the algorithm. We derive the mathematical formalism underlying the numerical method and introduce the Fourier-factorization suitable for nonlinear calculations. The numerical efficiency and runtime characteristics of the method are investigated in a set of benchmark calculations: the results corresponding to the fundamental frequency are compared to those obtained from a reference method and the beneficial effects of the modified Fourier-factorization rule on the accuracy of the nonlinear computations is demonstrated. In order to illustrate the capabilities of our method, we employ it to demonstrate strong enhancement of second-harmonic genera...

  16. A New Fractional Projective Riccati Equation Method for Solving Fractional Partial Differential Equations

    Science.gov (United States)

    Feng, Qing-Hua

    2014-08-01

    In this paper, a new fractional projective Riccati equation method is proposed to establish exact solutions for fractional partial differential equations in the sense of modified Riemann—Liouville derivative. This method can be seen as the fractional version of the known projective Riccati equation method. For illustrating the validity of this method, we apply this method to solve the space-time fractional Whitham—Broer—Kaup (WBK) equations and the nonlinear fractional Sharma—Tasso—Olever (STO) equation, and as a result, some new exact solutions for them are obtained.

  17. An analytical method for solving exact solutions of the nonlinear Bogoyavlenskii equation and the nonlinear diffusive predator–prey system

    Directory of Open Access Journals (Sweden)

    Md. Nur Alam

    2016-06-01

    Full Text Available In this article, we apply the exp(-Φ(ξ-expansion method to construct many families of exact solutions of nonlinear evolution equations (NLEEs via the nonlinear diffusive predator–prey system and the Bogoyavlenskii equations. These equations can be transformed to nonlinear ordinary differential equations. As a result, some new exact solutions are obtained through the hyperbolic function, the trigonometric function, the exponential functions and the rational forms. If the parameters take specific values, then the solitary waves are derived from the traveling waves. Also, we draw 2D and 3D graphics of exact solutions for the special diffusive predator–prey system and the Bogoyavlenskii equations by the help of programming language Maple.

  18. APPLICATION OF THE DUAL RECIPROCITY BOUNDARY ELEMENT METHOD TO SOLUTION OF NONLINEAR DIFFERENTIAL EQUATION

    Institute of Scientific and Technical Information of China (English)

    Long Shuyao; Zhang Qin

    2000-01-01

    In this paper the dual reciprocity boundary element method is employed to solve nonlinear differential equation 2 u + u + εu3 = b. Results obtained in an example have a good agreement with those by FEM and show the applicability and simplicity of dual reciprocity method(DRM) in solving nonlinear dif ferential equations.

  19. A new method to solve the damped nonlinear Klein-Gordon equation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper discusses a damped nonlinear Klein-Gordon equation in the reproducing kernel space and provides a new method for solving the damped nonlinear Klein-Gordon equation based on the reproducing kernel space.Two numerical examples are given for illustrating the feasibility and accuracy of the method.

  20. A nonlinear dynamics approach for incorporating wind-speed patterns into wind-power project evaluation.

    Directory of Open Access Journals (Sweden)

    Ray Huffaker

    Full Text Available Wind-energy production may be expanded beyond regions with high-average wind speeds (such as the Midwest U.S.A. to sites with lower-average speeds (such as the Southeast U.S.A. by locating favorable regional matches between natural wind-speed and energy-demand patterns. A critical component of wind-power evaluation is to incorporate wind-speed dynamics reflecting documented diurnal and seasonal behavioral patterns. Conventional probabilistic approaches remove patterns from wind-speed data. These patterns must be restored synthetically before they can be matched with energy-demand patterns. How to accurately restore wind-speed patterns is a vexing problem spurring an expanding line of papers. We propose a paradigm shift in wind power evaluation that employs signal-detection and nonlinear-dynamics techniques to empirically diagnose whether synthetic pattern restoration can be avoided altogether. If the complex behavior of observed wind-speed records is due to nonlinear, low-dimensional, and deterministic system dynamics, then nonlinear dynamics techniques can reconstruct wind-speed dynamics from observed wind-speed data without recourse to conventional probabilistic approaches. In the first study of its kind, we test a nonlinear dynamics approach in an application to Sugarland Wind-the first utility-scale wind project proposed in Florida, USA. We find empirical evidence of a low-dimensional and nonlinear wind-speed attractor characterized by strong temporal patterns that match up well with regular daily and seasonal electricity demand patterns.

  1. Variational iteration method for solving non-linear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Hemeda, A.A. [Department of Mathematics, Faculty of Science, University of Tanta, Tanta (Egypt)], E-mail: aahemeda@yahoo.com

    2009-02-15

    In this paper, we shall use the variational iteration method to solve some problems of non-linear partial differential equations (PDEs) such as the combined KdV-MKdV equation and Camassa-Holm equation. The variational iteration method is superior than the other non-linear methods, such as the perturbation methods where this method does not depend on small parameters, such that it can fined wide application in non-linear problems without linearization or small perturbation. In this method, the problems are initially approximated with possible unknowns, then a correction functional is constructed by a general Lagrange multiplier, which can be identified optimally via the variational theory.

  2. Nonlinear Aerodynamic and Nonlinear Structures Interations (NANSI) Methodology for Ballute/Inflatable Aeroelasticity in Hypersonic Atmospheric Entry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA proposes a phase II effort to fully develop a comprehensive methodology for aeroelastic predictions of the nonlinear aerodynamic/aerothermodynamic - structure...

  3. A SIMPLIFIED CALCULATING METHOD OF NONLINEAR FREQUENCY OF CABLE NET UNDER MEAN WIND LOAD

    Institute of Scientific and Technical Information of China (English)

    Feng Ruoqiang; Wu Yue; Shen Shizhao

    2006-01-01

    The cable net supported glass curtain wallas the most advanced technique in dot point supported glass curtain wall, is widely used in China. Because of its large deflection and high nonlinearity under wind load, the dynamic performance of the cable net is greatly different from that of the conventional linear structures. The continuous membrane theory is used to construct the nonlinear vibration differential equation of the cable net, and the harmonic balance method is used to solve the analytic formula of the nonlinear frequency. In order to verify the accuracy of the above analytic formula, the results of the formula and the nonlinear FEM time-history method are compared and found to be in good agreement. Furthermore, the nonlinear vibration differential equation and the nonlinear frequency obtained in this paper are the basis for the wind-induced response analysis of a cable net under fluctuating wind load.

  4. Second derivatives for approximate spin projection methods.

    Science.gov (United States)

    Thompson, Lee M; Hratchian, Hrant P

    2015-02-07

    The use of broken-symmetry electronic structure methods is required in order to obtain correct behavior of electronically strained open-shell systems, such as transition states, biradicals, and transition metals. This approach often has issues with spin contamination, which can lead to significant errors in predicted energies, geometries, and properties. Approximate projection schemes are able to correct for spin contamination and can often yield improved results. To fully make use of these methods and to carry out exploration of the potential energy surface, it is desirable to develop an efficient second energy derivative theory. In this paper, we formulate the analytical second derivatives for the Yamaguchi approximate projection scheme, building on recent work that has yielded an efficient implementation of the analytical first derivatives.

  5. An iterative symplectic pseudospectral method to solve nonlinear state-delayed optimal control problems

    Science.gov (United States)

    Peng, Haijun; Wang, Xinwei; Zhang, Sheng; Chen, Biaosong

    2017-07-01

    Nonlinear state-delayed optimal control problems have complex nonlinear characters. To solve this complex nonlinear problem, an iterative symplectic pseudospectral method based on quasilinearization techniques, the dual variational principle and pseudospectral methods is proposed in this paper. First, the proposed method transforms the original nonlinear optimal control problem into a series of linear quadratic optimal control problems. Then, a symplectic pseudospectral method is developed to solve these converted linear quadratic state-delayed optimal control problems. Coefficient matrices in the proposed method are sparse and symmetric since the dual variational principle is used, which makes the proposed method highly efficient. Converged numerical solutions with high precision can be obtained after a few iterations due to the benefit of the local pseudospectral method and quasilinearization techniques. In the numerical simulations, other numerical methods were used for comparisons. The numerical simulation results show that the proposed method is highly accurate, efficient and robust.

  6. Generalized Taylor Series Method for Solving Nonlinear Fractional Differential Equations with Modified Riemann-Liouville Derivative

    Directory of Open Access Journals (Sweden)

    Süleyman Öğrekçi

    2015-01-01

    Full Text Available We propose an efficient analytic method for solving nonlinear differential equations of fractional order. The fractional derivative is defined in the sense of modified Riemann-Liouville derivative. A new technique for calculating the generalized Taylor series coefficients (also known as “generalized differential transforms,” GDTs of nonlinear functions and a new approach of the generalized Taylor series method (GTSM are presented. This new method offers a simple algorithm for computing GDTs of nonlinear functions and avoids massive computational work that usually arises in the standard method. Several illustrative examples are demonstrated to show effectiveness of the proposed method.

  7. Methods for the Drug Effectiveness Review Project

    Directory of Open Access Journals (Sweden)

    McDonagh Marian S

    2012-09-01

    Full Text Available Abstract The Drug Effectiveness Review Project was initiated in 2003 in response to dramatic increases in the cost of pharmaceuticals, which lessened the purchasing power of state Medicaid budgets. A collaborative group of state Medicaid agencies and other organizations formed to commission high-quality comparative effectiveness reviews to inform evidence-based decisions about drugs that would be available to Medicaid recipients. The Project is coordinated by the Center for Evidence-based Policy (CEbP at Oregon Health & Science University (OHSU, and the systematic reviews are undertaken by the Evidence-based Practice Centers (EPCs at OHSU and at the University of North Carolina. The reviews adhere to high standards for comparative effectiveness reviews. Because the investigators have direct, regular communication with policy-makers, the reports have direct impact on policy and decision-making, unlike many systematic reviews. The Project was an innovator of methods to involve stakeholders and continues to develop its methods in conducting reviews that are highly relevant to policy-makers. The methods used for selecting topics, developing key questions, searching, determining eligibility of studies, assessing study quality, conducting qualitative and quantitative syntheses, rating the strength of evidence, and summarizing findings are described. In addition, our on-going interactions with the policy-makers that use the reports are described.

  8. A new method based on the harmonic balance method for nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.M. [Department of Mechanics, Zhongshan University, Guangzhou 510275 (China); Liu, J.K. [Department of Mechanics, Zhongshan University, Guangzhou 510275 (China)], E-mail: jikeliu@hotmail.com

    2007-08-27

    The harmonic balance (HB) method as an analytical approach is widely used for nonlinear oscillators, in which the initial conditions are generally simplified by setting velocity or displacement to be zero. Based on HB, we establish a new theory to address nonlinear conservative systems with arbitrary initial conditions, and deduce a set of over-determined algebraic equations. Since these deduced algebraic equations are not solved directly, a minimization problem is constructed instead and an iterative algorithm is employed to seek the minimization point. Taking Duffing and Duffing-harmonic equations as numerical examples, we find that these attained solutions are not only with high degree of accuracy, but also uniformly valid in the whole solution domain.

  9. A Smoothing Inexact Newton Method for Generalized Nonlinear Complementarity Problem

    Directory of Open Access Journals (Sweden)

    Meixia Li

    2012-01-01

    Full Text Available Based on the smoothing function of penalized Fischer-Burmeister NCP-function, we propose a new smoothing inexact Newton algorithm with non-monotone line search for solving the generalized nonlinear complementarity problem. We view the smoothing parameter as an independent variable. Under suitable conditions, we show that any accumulation point of the generated sequence is a solution of the generalized nonlinear complementarity problem. We also establish the local superlinear (quadratic convergence of the proposed algorithm under the BD-regular assumption. Preliminary numerical experiments indicate the feasibility and efficiency of the proposed algorithm.

  10. A novel method for extracting acoustic nonlinearity parameters with diffraction corrections

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyunjo [Wonkwang University, Iksan (Korea, Republic of); Zhang, Shuzeng; Li, Xiongbing [Central South University, Changsha (China)

    2016-02-15

    A new method for determining the acoustic nonlinearity parameter using a nonlinear data fitting method is proposed. Based on the quasilinear theory of Westervelt's equation, the fundamental and second harmonic beam fields are expressed as a multi-Gaussian beam model that separates the attenuation and diffraction correction terms from the propagating plane waves. A nonlinear least squares curve fitting method is developed to extract the nonlinearity parameter without knowing the attenuation coefficients of the material being tested. The nonlinearity parameter of water is determined using the proposed method, and the result agrees well with the literature value. The attenuation coefficients of the fundamental and the second harmonic are also extracted and discussed.

  11. A nonlinear signal-based control method and its applications to input identification for nonlinear SIMO problems

    Science.gov (United States)

    Enokida, Ryuta; Takewaki, Izuru; Stoten, David

    2014-12-01

    The problem of control system design can be conceptualised as identifying an input signal to a plant (the system to be controlled) so that the corresponding output matches that of a pre-defined reference signal. Primarily, this problem is solved via well-known techniques based upon the principle of feedback design, an essential component for ensuring stability and robustness of the controlled system. However, feedforward design techniques also have a large part to play, whereby (in the absence of feedback control and assuming that the plant is stable) a model of the plant dynamics can be used to modify the reference signal so that the resultant feedforward input signal generates a plant output signal that is sufficiently close to the original reference signal. The principal objective of this paper is to introduce a new nonlinear control method, called nonlinear signal-based control (NSBC) that can be executed as an on-line technique of feedforward compensation (used synonymously here with the phrase 'input identification') and an off-line technique of feedback compensation. NSBC determines the feedforward input signal to the plant by using an error signal, determined from the difference between the output signals from a linear model of the plant and from the nonlinear plant, under the same input signal. The efficacy of NSBC is examined via numerical examples using Matlab/Simulink and compared with alternative well-known methods based upon inverse transfer function compensation and also the method of high gain feedback control. NSBC was found to provide the most accurate input identification in all the examined cases of linear or nonlinear single-input, single-output and single-input, multi-output (SIMO) systems. Furthermore, in problems of structural and earthquake engineering, NSBC was also found to be particularly effective in estimating the original ground motion from a nonlinear SIMO system and its response.

  12. Application of Multivariate Linear and Nonlinear Calibration and Classification Methods in Drug Design.

    Science.gov (United States)

    Abdolmaleki, Azizeh; Ghasemi, Jahan B; Shiri, Fereshteh; Pirhadi, Somayeh

    2015-01-01

    Data manipulation and maximum efficient extraction of useful information need a range of searching, modeling, mathematical, and statistical approaches. Hence, an adequate multivariate characterization is the first necessary step in investigation and the results are interpreted after multivariate analysis. Multivariate data analysis is capable of not only large dataset management but also interpret them surely and rapidly. Application of chemometrics and cheminformatics methods may be useful for design and discovery of new drug compounds. In this review, we present a variety of information sources on chemometrics, which we consider useful in different fields of drug design. This review describes exploratory analysis (PCA), classification and multivariate calibration (PCR, PLS) methods to data analysis. It summarizes the main facts of linear and nonlinear multivariate data analysis in drug discovery and provides an introduction to manipulation of data in this field. It handles the fundamental aspects of basic concepts of multivariate methods, principles of projections (PCA and PLS) and introduces the popular modeling and classification techniques. Enough theory behind these methods, more particularly concerning the chemometrics tools is included for those with little experience in multivariate data analysis techniques such as PCA, PLS, SIMCA, etc. We describe each method by avoiding unnecessary equations, and details of calculation algorithms. It provides a synopsis of the method followed by cases of applications in drug design (i.e., QSAR) and some of the features for each method.

  13. AN SQP METHOD BASED ON SMOOTHING PENALTY FUNCTION FOR NONLINEAR OPTIMIZATION WITH INEQUALITY CONSTRAINT

    Institute of Scientific and Technical Information of China (English)

    ZHANG Juliang; ZHANG Xiangsun

    2001-01-01

    In this paper, we use the smoothing penalty function proposed in [1] as the merit function of SQP method for nonlinear optimization with inequality constraints. The global convergence of the method is obtained.

  14. A Direct Algebraic Method in Finding Particular Solutions to Some Nonlinear Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    LIUChun-Ping; CHENJian-Kang; CAIFan

    2004-01-01

    Firstly, a direct algebraic method and a routine way in finding traveling wave solutions to nonlinear evolution equations are explained. And then some new exact solutions for some evolution equations are obtained by using the method.

  15. Linear and nonlinear associations between general intelligence and personality in Project TALENT.

    Science.gov (United States)

    Major, Jason T; Johnson, Wendy; Deary, Ian J

    2014-04-01

    Research on the relations of personality traits to intelligence has primarily been concerned with linear associations. Yet, there are no a priori reasons why linear relations should be expected over nonlinear ones, which represent a much larger set of all possible associations. Using 2 techniques, quadratic and generalized additive models, we tested for linear and nonlinear associations of general intelligence (g) with 10 personality scales from Project TALENT (PT), a nationally representative sample of approximately 400,000 American high school students from 1960, divided into 4 grade samples (Flanagan et al., 1962). We departed from previous studies, including one with PT (Reeve, Meyer, & Bonaccio, 2006), by modeling latent quadratic effects directly, controlling the influence of the common factor in the personality scales, and assuming a direction of effect from g to personality. On the basis of the literature, we made 17 directional hypotheses for the linear and quadratic associations. Of these, 53% were supported in all 4 male grades and 58% in all 4 female grades. Quadratic associations explained substantive variance above and beyond linear effects (mean R² between 1.8% and 3.6%) for Sociability, Maturity, Vigor, and Leadership in males and Sociability, Maturity, and Tidiness in females; linear associations were predominant for other traits. We discuss how suited current theories of the personality-intelligence interface are to explain these associations, and how research on intellectually gifted samples may provide a unique way of understanding them. We conclude that nonlinear models can provide incremental detail regarding personality and intelligence associations.

  16. Analysis of Highly Nonlinear Oscillation System Using He's Max-Min Method and Comparison with Homotopy Analysis Method and Energy Balance Methods

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Barari, Amin; Kimiaeifar, Amin

    2010-01-01

    /approximate analytical solution to strong nonlinear oscillators. Furthermore, it is shown that a large class of linear or nonlinear differential equations can be solved without the tangible restriction of sensitivity to the degree of the nonlinear term, adding that the method is quite convenient due to reduction in size...

  17. A limited memory BFGS method for a nonlinear inverse problem in digital breast tomosynthesis

    Science.gov (United States)

    Landi, G.; Loli Piccolomini, E.; Nagy, J. G.

    2017-09-01

    Digital breast tomosynthesis (DBT) is an imaging technique that allows the reconstruction of a pseudo three-dimensional image of the breast from a finite number of low-dose two-dimensional projections obtained by different x-ray tube angles. An issue that is often ignored in DBT is the fact that an x-ray beam is polyenergetic, i.e. it is composed of photons with different levels of energy. The polyenergetic model requires solving a large-scale, nonlinear inverse problem, which is more expensive than the typically used simplified, linear monoenergetic model. However, the polyenergetic model is much less susceptible to beam hardening artifacts, which show up as dark streaks and cupping (i.e. background nonuniformities) in the reconstructed image. In addition, it has been shown that the polyenergetic model can be exploited to obtain additional quantitative information about the material of the object being imaged. In this paper we consider the multimaterial polyenergetic DBT model, and solve the nonlinear inverse problem with a limited memory BFGS quasi-Newton method. Regularization is enforced at each iteration using a diagonally modified approximation of the Hessian matrix, and by truncating the iterations.

  18. Prediction of peptide bonding affinity: kernel methods for nonlinear modeling

    CERN Document Server

    Bergeron, Charles; Sundling, C Matthew; Krein, Michael; Katt, Bill; Sukumar, Nagamani; Breneman, Curt M; Bennett, Kristin P

    2011-01-01

    This paper presents regression models obtained from a process of blind prediction of peptide binding affinity from provided descriptors for several distinct datasets as part of the 2006 Comparative Evaluation of Prediction Algorithms (COEPRA) contest. This paper finds that kernel partial least squares, a nonlinear partial least squares (PLS) algorithm, outperforms PLS, and that the incorporation of transferable atom equivalent features improves predictive capability.

  19. Comparison of alternative improved perturbative methods for nonlinear oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Amore, Paolo [Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo 340, Colima (Mexico)]. E-mail: paolo@ucol.mx; Raya, Alfredo [Facultad de Ciencias, Universidad de Colima, Bernal Diaz del Castillo 340, Colima (Mexico); Fernandez, Francisco M. [INIFTA (Conicet, UNLP), Diag. 113 y 64 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)

    2005-06-06

    We discuss and compare two alternative perturbation approaches for the calculation of the period of nonlinear systems based on the Lindstedt-Poincare technique. As illustrative examples we choose one-dimensional anharmonic oscillators and the Van der Pol equation. Our results show that each approach is better for just one type of model considered here.

  20. Quantifying Poincare’s Continuation Method for Nonlinear Oscillators

    Directory of Open Access Journals (Sweden)

    Daniel Núñez

    2015-01-01

    Full Text Available In the sixties, Loud obtained interesting results of continuation on periodic solutions in driven nonlinear oscillators with small parameter (Loud, 1964. In this paper Loud’s results are extended out for periodically driven Duffing equations with odd symmetry quantifying the continuation parameter for a periodic odd solution which is elliptic and emanates from the equilibrium of the nonperturbed problem.

  1. A Novel Method for Prediction of Nonlinear Aeroelastic Responses

    Science.gov (United States)

    2010-01-01

    Brian A. Freno Graduate Student, Texas A&M University Publications Journal articles: 1. Gargoloff, J. I. and Cizmas, P. G. A., “Mesh Generation and...papers: 1. Cizmas, P. G. A., Freno , B. A., Brenner, T. A., Worley, G. D., “A High-Fidelity Nonlinear Aeroelastic Model for Aircraft with Large Wing

  2. Applied Nonlinear Dynamics Analytical, Computational, and Experimental Methods

    CERN Document Server

    Nayfeh, Ali H

    1995-01-01

    A unified and coherent treatment of analytical, computational and experimental techniques of nonlinear dynamics with numerous illustrative applications. Features a discourse on geometric concepts such as Poincaré maps. Discusses chaos, stability and bifurcation analysis for systems of differential and algebraic equations. Includes scores of examples to facilitate understanding.

  3. Probabilistic methods for discrete nonlinear Schr\\"odinger equations

    CERN Document Server

    Chatterjee, Sourav

    2010-01-01

    Using techniques from probability theory, we show that the thermodynamics of the focusing cubic discrete nonlinear Schrodinger equation (NLS) are exactly solvable in dimensions three and higher. A number of explicit formulas are derived. The probabilistic results, combined with dynamical information, prove the existence and typicality of solutions to the discrete NLS with highly stable localized modes that are sometimes called discrete breathers.

  4. Simple and fast method for step size determination in computations of signal propagation through nonlinear fibres

    DEFF Research Database (Denmark)

    Rasmussen, Christian Jørgen

    2001-01-01

    Presents a simple and fast method for determination of the step size that exactly leads to a prescribed accuracy when signal propagation through nonlinear optical fibres is computed using the split-step Fourier method.......Presents a simple and fast method for determination of the step size that exactly leads to a prescribed accuracy when signal propagation through nonlinear optical fibres is computed using the split-step Fourier method....

  5. A SELF-ADAPTIVE TECHNIQUE FOR A KIND OF NONLINEAR CONJUGATE GRADIENT METHODS

    Institute of Scientific and Technical Information of China (English)

    王丽平

    2004-01-01

    Conjugate gradient methods. are a class of important methods for unconstrained optimization, especially when the dimension is large. In 2001, Dai and Liao have proposed a new conjugate condition, based on it two nonlinear conjugate gradient methods are constructed. With trust region idea, this paper gives a self-adaptive technique for the two methods. The numerical results show that this technique works well for the given nonlinear optimization test problems.

  6. A new method of determining the optimal embedding dimension based on nonlinear prediction

    Institute of Scientific and Technical Information of China (English)

    Meng Qing-Fang; Peng Yu-Hua; Xue Pei-Jun

    2007-01-01

    A new method is proposed to determine the optimal embedding dimension from a scalar time series in this paper. This method determines the optimal embedding dimension by optimizing the nonlinear autoregressive prediction model parameterized by the embedding dimension and the nonlinear degree. Simulation results show the effectiveness of this method. And this method is applicable to a short time series, stable to noise, computationally efficient, and without any purposely introduced parameters.

  7. Analysis of factors influencing fire damage to concrete using nonlinear resonance vibration method

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gang Kyu; Park, Sun Jong; Kwak, Hyo Gyoung [Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, KAIST, Daejeon (Korea, Republic of); Yim, Hong Jae [Dept. of Construction and Disaster Prevention Engineering, Kyungpook National University, Sangju (Korea, Republic of)

    2015-04-15

    In this study, the effects of different mix proportions and fire scenarios (exposure temperatures and post-fire-curing periods) on fire-damaged concrete were analyzed using a nonlinear resonance vibration method based on nonlinear acoustics. The hysteretic nonlinearity parameter was obtained, which can sensitively reflect the damage level of fire-damaged concrete. In addition, a splitting tensile strength test was performed on each fire-damaged specimen to evaluate the residual property. Using the results, a prediction model for estimating the residual strength of fire-damaged concrete was proposed on the basis of the correlation between the hysteretic nonlinearity parameter and the ratio of splitting tensile strength.

  8. Simple Weighting Methods to Combine Multimodel Projections

    Science.gov (United States)

    Lorenz, R.; Sedlacek, J.; Knutti, R.

    2016-12-01

    Multimodel ensembles of global climate models are very heterogeneous and some models perform better than others for a certain purpose. Nevertheless, weighting of models is rarely performed and there is a debate about whether and how to weight model projections when combining simulations. We argue that the growing number of models with different characteristics and considerable interdependence, at least for cases where relevant metrics of model performance are clear, requires to make use of model constraints to decrease uncertainties in model projections. Steps towards this should involve a) showing unweighted results along with weighted ones, b) testing the robustness of the results towards different metrics or constraints to maximize transparency and comparability across studies, c) an explicit discussion of the choice of metrics, including the physical reasoning why those quantities matter, d) an assessment of the uncertainties in observations, e) testing the sensitivity towards different datasets, time periods, seasonal vs. annual mean values, grid point vs. spatially aggregated data, etc., and f) exploring whether the choice of metric may lead to overconfident results. Several prerequisites need to be met for such approaches to work. For instance, we need available observations, a certain degree of model skill as well as observable relationships that relate to the projections in question. Here we explore projections of summer temperature over central North America. Many CMIP5 models show a pronounced bias of summer temperature over central North America in present climate. We investigate possible causes for this bias and possibilities to constrain the CMIP5 ensemble. We will show if and how uncertainties of projections change depending on weighting method, observational dataset and constraint used.

  9. Adaptive SLICE method: an enhanced method to determine nonlinear dynamic respiratory system mechanics.

    Science.gov (United States)

    Zhao, Zhanqi; Guttmann, Josef; Möller, Knut

    2012-01-01

    The objective of this paper is to introduce and evaluate the adaptive SLICE method (ASM) for continuous determination of intratidal nonlinear dynamic compliance and resistance. The tidal volume is subdivided into a series of volume intervals called slices. For each slice, one compliance and one resistance are calculated by applying a least-squares-fit method. The volume window (width) covered by each slice is determined based on the confidence interval of the parameter estimation. The method was compared to the original SLICE method and evaluated using simulation and animal data. The ASM was also challenged with separate analysis of dynamic compliance during inspiration. If the signal-to-noise ratio (SNR) in the respiratory data decreased from +∞ to 10 dB, the relative errors of compliance increased from 0.1% to 22% for the ASM and from 0.2% to 227% for the SLICE method. Fewer differences were found in resistance. When the SNR was larger than 40 dB, the ASM delivered over 40 parameter estimates (42.2 ± 1.3). When analyzing the compliance during inspiration separately, the estimates calculated with the ASM were more stable. The adaptive determination of slice bounds results in consistent and reliable parameter values. Online analysis of nonlinear respiratory mechanics will profit from such an adaptive selection of interval size.

  10. HOPF BIFURCATION OF A NONLINEAR RESTRAINED CURVED PIPE CONVEYING FLUID BY DIFFERENTIAL QUADRATURE METHOD

    Institute of Scientific and Technical Information of China (English)

    WangLin; NiQiao; HuangYuying

    2003-01-01

    This paper proposes a new method for investigating the Hopf bifurcation of a curved pipe conveying fluid with nonlinear spring support. The nonlinear equation of motion is derived by forces equilibrium on microelement of the system under consideration. The spatial coordinate of the system is discretized by the differential quadrature method and then the dynamic equation is solved by the Newton-Raphson method. The numerical solutions show that the inner fluid velocity of the Hopf bifurcation point of the curved pipe varies with different values of the parameter,nonlinear spring stiffness. Based on this, the cycle and divergent motions are both found to exist at specific fluid flow velocities with a given value of the nonlinear spring stiffness. The results are useful for further study of the nonlinear dynamic mechanism of the curved fluid conveying pipe.

  11. Applications of algebraic method to exactly solve some nonlinear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, A.A. [Department of Mathematics, Faculty of Science, Helwan University (Egypt)]. E-mail: profdarwish@yahoo.com; Ramady, A. [Department of Mathematics, Faculty of Science, Beni-Suef University (Egypt)]. E-mail: aramady@yahoo.com

    2007-08-15

    A direct and unified algebraic method for constructing multiple travelling wave solutions of nonlinear evolution equations is used and implemented in a computer algebraic system. New solutions for some nonlinear partial differential equations (NLPDE's) are obtained. Graphs of the solutions are displayed.

  12. A NUMERICAL CALCULATION METHOD FOR EIGENVALUE PROBLEMS OF NONLINEAR INTERNAL WAVES

    Institute of Scientific and Technical Information of China (English)

    SHI Xin-gang; FAN Zhi-song; LIU Hai-long

    2009-01-01

    Generally speaking, the background shear current U(z)must be taken into account in eigenvalue problems of nonlinear internal waves in ocean, as is different from those of linear internal waves. A numerical calculation method for eigenvalue problems of nonlinear internal waves is presented in this paper on the basis of the Thompson-Haskell's calculation method. As an application of this method, at a station (21°N, 117°15′E) in the South China Sea, a modal structure and parameters of nonlinear internal waves are calculated, and the results closely agree with the calculated results based on observation by Yang et al..

  13. Approximate Solutions of Nonlinear Partial Differential Equations by Modified q-Homotopy Analysis Method

    Directory of Open Access Journals (Sweden)

    Shaheed N. Huseen

    2013-01-01

    Full Text Available A modified q-homotopy analysis method (mq-HAM was proposed for solving nth-order nonlinear differential equations. This method improves the convergence of the series solution in the nHAM which was proposed in (see Hassan and El-Tawil 2011, 2012. The proposed method provides an approximate solution by rewriting the nth-order nonlinear differential equation in the form of n first-order differential equations. The solution of these n differential equations is obtained as a power series solution. This scheme is tested on two nonlinear exactly solvable differential equations. The results demonstrate the reliability and efficiency of the algorithm developed.

  14. New generalized and improved (G′/G-expansion method for nonlinear evolution equations in mathematical physics

    Directory of Open Access Journals (Sweden)

    Hasibun Naher

    2014-10-01

    Full Text Available In this article, new extension of the generalized and improved (G′/G-expansion method is proposed for constructing more general and a rich class of new exact traveling wave solutions of nonlinear evolution equations. To demonstrate the novelty and motivation of the proposed method, we implement it to the Korteweg-de Vries (KdV equation. The new method is oriented toward the ease of utilize and capability of computer algebraic system and provides a more systematic, convenient handling of the solution process of nonlinear equations. Further, obtained solutions disclose a wider range of applicability for handling a large variety of nonlinear partial differential equations.

  15. NONLINEAR GALERKIN METHOD FOR THE EXTERIOR NONSTATIONARY NAVIER-STOKES EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    何银年; 李开泰

    2002-01-01

    A new algorithm combining nonlinear Galerkin method and coupling method of finite element and boundary element is introduced to solve the exterior nonstationary Navier-Stokes equations. The regularity of the coupling variational formulation and the convergence of the approximate solution corresponding to the algorithm are proved. If the fine mesh h is choosed as coarse mesh H-sgure, the nonlinear Galerkin method, nonlinearity is only treated on the coarse grid and linearity is treated on the fine grid. Hence, the new algorithm can save a large amount of computational time.

  16. Nonlinear time series theory, methods and applications with R examples

    CERN Document Server

    Douc, Randal; Stoffer, David

    2014-01-01

    FOUNDATIONSLinear ModelsStochastic Processes The Covariance World Linear Processes The Multivariate Cases Numerical Examples ExercisesLinear Gaussian State Space Models Model Basics Filtering, Smoothing, and Forecasting Maximum Likelihood Estimation Smoothing Splines and the Kalman Smoother Asymptotic Distribution of the MLE Missing Data Modifications Structural Component Models State-Space Models with Correlated Errors Exercises Beyond Linear ModelsNonlinear Non-Gaussian Data Volterra Series Expansion Cumulants and Higher-Order Spectra Bilinear Models Conditionally Heteroscedastic Models Thre

  17. A NUMERICAL EMBEDDING METHOD FOR SOLVING THE NONLINEAR COMPLEMENTARITY PROBLEM(Ⅰ)--THEORY

    Institute of Scientific and Technical Information of China (English)

    Jian-jun Zhang; De-ren Wang

    2002-01-01

    In this paper, we extend the numerical embedding method for solving the smooth equations to the nonlinear complementarity problem. By using the nonsmooth theory,we prove the existence and the continuation of the following path for the corresponding homotopy equations. Therefore the basic theory of the numerical embedding method for solving the nonlinear complementarity problem is established. In part Ⅱ of this paper, we will further study the implementation of the method and give some numerical exapmles.

  18. Trial Equation Method to Nonlinear Evolution Equations with Rank Inhomogeneous:Mathematical Discussions and Its Applications

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A trial equation method to nonlinear evolution equation with rank inhomogeneous is given. As applications, the exact traveling wave solutions to some higher-order nonlinear equations such as generalized Boussinesq equation,generalized Pochhammer-Chree equation, KdV-Burgers equation, and KS equation and so on, are obtained. Among these, some results are new. The proposed method is based on the idea of reduction of the order of ODE. Some mathematical details of the proposed method are discussed.

  19. Complex Tanh-Function Expansion Method and Exact Solutions to Two Systems of Nonlinear Wave Equations

    Institute of Scientific and Technical Information of China (English)

    ZHANGJin-Liang; WANGMing-Liang

    2004-01-01

    The complex tanh-function expansion method was presented recently, and it can be applied to derive exact solutions to the Schroedinger-type nonlinear evolution equations directly without transformation. In this paper,the complex tanh-function expansion method is applied to derive the exact solutions to the general coupled nonlinear evolution equations. Zakharov system and a long-short-wave interaction system are considered as examples, and the new applications of the complex tanh-function expansion method are shown.

  20. NONLINEAR STABILITY OF NATURAL RUNGE-KUTTA METHODS FOR NEUTRAL DELAY DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Cheng-jian Zhang

    2002-01-01

    This paper first presents the stability analysis of theoretical solutions for a class of nonlinear neutral delay-differential equations (NDDEs). Then the numerical analogous results, of the natural Runge-Kutta (NRK) methods for the same class of nonlinear NDDEs,are given. In particular, it is shown that the (k, l)-algebraic stability of a RK method for ODEs implies the generalized asymptotic stability and the global stability of the induced NRK method.

  1. Solution of nonlinear Volterra-Hammerstein integral equations using alternative Legendre collocation method

    Directory of Open Access Journals (Sweden)

    Sohrab Bazm

    2016-11-01

    Full Text Available Alternative Legendre polynomials (ALPs are used to approximate the solution of a class of nonlinear Volterra-Hammerstein integral equations. For this purpose, the operational matrices of integration and the product for ALPs are derived. Then, using the collocation method, the considered problem is reduced into a set of nonlinear algebraic equations. The error analysis of the method is given and the efficiency and accuracy are illustrated by applying the method to some examples.

  2. Complex Tanh-Function Expansion Method and Exact Solutions to Two Systems of Nonlinear Wave Equations

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-Liang; WANG Ming-Liang

    2004-01-01

    The complex tanh-function expansion method was presented recently, and it can be applied to derive exact solutions to the Schrodinger-type nonlinear evolution equations directly without transformation. In this paper,the complex tanh-function expansion method is applied to derive the exact solutions to the general coupled nonlinear evolution equations. Zakharov system and a long-short-wave interaction system are considered as examples, and the new applications of the complex tanh-function expansion method are shown.

  3. Variational Iteration Method for the Magnetohydrodynamic Flow over a Nonlinear Stretching Sheet

    Directory of Open Access Journals (Sweden)

    Lan Xu

    2013-01-01

    Full Text Available The variational iteration method (VIM is applied to solve the boundary layer problem of magnetohydrodynamic flow over a nonlinear stretching sheet. The combination of the VIM and the Padé approximants is shown to be a powerful method for solving two-point boundary value problems consisting of systems of nonlinear differential equations. And the comparison of the obtained results with other available results shows that the method is very effective and convenient for solving boundary layer problems.

  4. An extended harmonic balance method based on incremental nonlinear control parameters

    Science.gov (United States)

    Khodaparast, Hamed Haddad; Madinei, Hadi; Friswell, Michael I.; Adhikari, Sondipon; Coggon, Simon; Cooper, Jonathan E.

    2017-02-01

    A new formulation for calculating the steady-state responses of multiple-degree-of-freedom (MDOF) non-linear dynamic systems due to harmonic excitation is developed. This is aimed at solving multi-dimensional nonlinear systems using linear equations. Nonlinearity is parameterised by a set of 'non-linear control parameters' such that the dynamic system is effectively linear for zero values of these parameters and nonlinearity increases with increasing values of these parameters. Two sets of linear equations which are formed from a first-order truncated Taylor series expansion are developed. The first set of linear equations provides the summation of sensitivities of linear system responses with respect to non-linear control parameters and the second set are recursive equations that use the previous responses to update the sensitivities. The obtained sensitivities of steady-state responses are then used to calculate the steady state responses of non-linear dynamic systems in an iterative process. The application and verification of the method are illustrated using a non-linear Micro-Electro-Mechanical System (MEMS) subject to a base harmonic excitation. The non-linear control parameters in these examples are the DC voltages that are applied to the electrodes of the MEMS devices.

  5. A NUMERICAL METHOD FOR SIMULATING NONLINEAR FLUID-RIGID STRUCTURE INTERACTION PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    XingJ.T; PriceW.G; ChenY.G

    2005-01-01

    A numerical method for simulating nonlinear fluid-rigid structure interaction problems is developed. The structure is assumed to undergo large rigid body motions and the fluid flow is governed by nonlinear, viscous or non-viscous, field equations with nonlinear boundary conditions applied to the free surface and fluid-solid interaction interfaces. An Arbitrary-Lagrangian-Eulerian (ALE) mesh system is used to construct the numerical model. A multi-block numerical scheme of study is adopted allowing for the relative motion between moving overset grids, which are independent of one another. This provides a convenient method to overcome the difficulties in matching fluid meshes with large solid motions. Nonlinear numerical equations describing nonlinear fluid-solid interaction dynamics are derived through a numerical discretization scheme of study. A coupling iteration process is used to solve these numerical equations. Numerical examples are presented to demonstrate applications of the model developed.

  6. Numerical approximations of nonlinear fractional differential difference equations by using modified He-Laplace method

    Directory of Open Access Journals (Sweden)

    J. Prakash

    2016-03-01

    Full Text Available In this paper, a numerical algorithm based on a modified He-Laplace method (MHLM is proposed to solve space and time nonlinear fractional differential-difference equations (NFDDEs arising in physical phenomena such as wave phenomena in fluids, coupled nonlinear optical waveguides and nanotechnology fields. The modified He-Laplace method is a combined form of the fractional homotopy perturbation method and Laplace transforms method. The nonlinear terms can be easily decomposed by the use of He’s polynomials. This algorithm has been tested against time-fractional differential-difference equations such as the modified Lotka Volterra and discrete (modified KdV equations. The proposed scheme grants the solution in the form of a rapidly convergent series. Three examples have been employed to illustrate the preciseness and effectiveness of the proposed method. The achieved results expose that the MHLM is very accurate, efficient, simple and can be applied to other nonlinear FDDEs.

  7. Solving Fuzzy Nonlinear Volterra-Fredholm Integral Equations by Using Homotopy Analysis and Adomian Decomposition Methods

    Directory of Open Access Journals (Sweden)

    Shadan Sadigh Behzadi

    2011-12-01

    Full Text Available In this paper, Adomian decomposition method (ADM and homotopy analysis method (HAM are proposed to solving the fuzzy nonlinear Volterra-Fredholm integral equation of the second kind$(FVFIE-2$. we convert a fuzzy nonlinear Volterra-Fredholm integral equation to a nonlinear system of Volterra-Fredholm integral equation in crisp case. we use ADM , HAM and find the approximate solution of this system and hence obtain an approximation for fuzzy solution of the nonlinear fuzzy Volterra-Fredholm integral equation. Also, the existence and uniqueness of the solution and convergence of the proposed methods are proved. Examples is given and the results reveal that homotopy analysis method is very effective and simple compared with the Adomian decomposition method.

  8. The extended (′/)-expansion method and travelling wave solutions for the perturbed nonlinear Schrödinger’s equation with Kerr law nonlinearity

    Indian Academy of Sciences (India)

    Zaiyun Zhang; Jianhua Huang; Juan Zhong; Sha-Sha Dou; Jiao Liu; Dan Peng; Ting Gao

    2014-06-01

    In this paper, we construct the travelling wave solutions to the perturbed nonlinear Schrödinger’s equation (NLSE) with Kerr law non-linearity by the extended (′/)-expansion method. Based on this method, we obtain abundant exact travelling wave solutions of NLSE with Kerr law nonlinearity with arbitrary parameters. The travelling wave solutions are expressed by the hyperbolic functions, trigonometric functions and rational functions.

  9. Theoretical investigation on a general class of 2D quasicrystals with the rectangular projection method

    Science.gov (United States)

    Yue, Yang-Yang; Lu, Rong-er; Yang, Bo; Huang, Huang; Hong, Xu-Hao; Zhang, Chao; Qin, Yi-Qiang; Zhu, Yong-Yuan

    2016-10-01

    We take a theoretical investigation on the reciprocal property of a class of 2D nonlinear photonic quasicrystal proposed by Lifshitz et al. in PRL 95, 133901 (2005). Using the rectangular projection method, the analytical expression for the Fourier spectrum of the quasicrystal structure is obtained explicitly. It is interesting to find that the result has a similar form to the corresponding expression of the well-known 1D Fibonacci lattice. In addition, we predict a further extension of the result to higher dimensions. This work is of practical importance for the photonic device design in nonlinear optical conversion progresses.

  10. Nonlinear Aerodynamic ROM-Structural ROM Methodology for Inflatable Aeroelasticity in Hypersonic Atmospheric Entry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology proposes to develop an innovative nonlinear structural reduced order model (ROM) - nonlinear aerodynamic ROM methodology for the inflatable...

  11. New Method of Selecting Efficient Project Portfolios in the Presence of Hybrid Uncertainty

    Directory of Open Access Journals (Sweden)

    Bogdan Rębiasz

    2016-01-01

    Full Text Available A new methods of selecting efficient project portfolios in the presence of hybrid uncertainty has been presented. Pareto optimal solutions have been defined by an algorithm for generating project portfolios. The method presented allows us to select efficient project portfolios taking into account statistical and economic dependencies between projects when some of the parameters used in the calculation of effectiveness can be expressed in the form of an interactive possibility distribution and some in the form of a probability distribution. The procedure for processing such hybrid data combines stochastic simulation with nonlinear programming. The interaction between data are modeled by correlation matrices and the interval regression. Economic dependences are taken into account by the equations balancing the production capacity of the company. The practical example presented indicates that an interaction between projects has a significant impact on the results of calculations. (original abstract

  12. New analytical method for solving Burgers' and nonlinear heat transfer equations and comparison with HAM

    Science.gov (United States)

    Rashidi, M. M.; Erfani, E.

    2009-09-01

    In this study, we present a numerical comparison between the differential transform method (DTM) and the homotopy analysis method (HAM) for solving Burgers' and nonlinear heat transfer problems. The first differential equation is the Burgers' equation serves as a useful model for many interesting problems in applied mathematics. The second one is the modeling equation of a straight fin with a temperature dependent thermal conductivity. In order to show the effectiveness of the DTM, the results obtained from the DTM is compared with available solutions obtained using the HAM [M.M. Rashidi, G. Domairry, S. Dinarvand, Commun. Nonlinear Sci. Numer. Simul. 14 (2009) 708-717; G. Domairry, M. Fazeli, Commun. Nonlinear Sci. Numer. Simul. 14 (2009) 489-499] and whit exact solutions. The method can easily be applied to many linear and nonlinear problems. It illustrates the validity and the great potential of the differential transform method in solving nonlinear partial differential equations. The obtained results reveal that the technique introduced here is very effective and convenient for solving nonlinear partial differential equations and nonlinear ordinary differential equations that we are found to be in good agreement with the exact solutions.

  13. Evaluation of a transfinite element numerical solution method for nonlinear heat transfer problems

    Science.gov (United States)

    Cerro, J. A.; Scotti, S. J.

    1991-01-01

    Laplace transform techniques have been widely used to solve linear, transient field problems. A transform-based algorithm enables calculation of the response at selected times of interest without the need for stepping in time as required by conventional time integration schemes. The elimination of time stepping can substantially reduce computer time when transform techniques are implemented in a numerical finite element program. The coupling of transform techniques with spatial discretization techniques such as the finite element method has resulted in what are known as transfinite element methods. Recently attempts have been made to extend the transfinite element method to solve nonlinear, transient field problems. This paper examines the theoretical basis and numerical implementation of one such algorithm, applied to nonlinear heat transfer problems. The problem is linearized and solved by requiring a numerical iteration at selected times of interest. While shown to be acceptable for weakly nonlinear problems, this algorithm is ineffective as a general nonlinear solution method.

  14. Nonlinear modal propagation analysis method in multimode interference coupler for operation development

    Science.gov (United States)

    Tajaldini, Mehdi; Mat Jafri, Mohd Zubir Mat

    2013-05-01

    In this study, we propose a novel approach that is called nonlinear modal propagation analysis method (NMPA) in MMI coupler via the enhances of nonlinear wave propagation in terms of guided modes interferences in nonlinear regimes, such that the modal fields are measurable at any point of coupler and output facets. Then, the ultra-short MMI coupler is optimized as a building block in micro ring resonator to investigate the method efficiency against the already used method. Modeling results demonstrate more efficiency and accuracy in shorter lengths of multimode interference coupler. Therefore, NMPA can be used as a method to study the compact dimension coupler and for developing the performance in applications. Furthermore, the possibility of access tothe all-optical switching is assumed due to one continuous MMI for proof of the development of performances in nonlinear regimes.

  15. NONLINEAR GALERKIN METHODS FOR SOLVING TWO DIMENSIONAL NEWTON-BOUSSINESQ EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    GUOBOLING

    1995-01-01

    The nonlinear Galerkin methods for solving two-dimensional Newton-Boussinesq equations are proposed. The existence and uniqueness of global generalized solution of these equations,and the convergence of approximate solutions are also obtained.

  16. On the “freezing” method for nonlinear nonautonomous systems with delay

    Directory of Open Access Journals (Sweden)

    Michael I. Gil'

    2001-01-01

    Full Text Available Nonlinear nonautonomous differential systems with delaying argument are considered. Explicit conditions for absolute stability are derived. The proposed approach is based on the generalization of the “freezing” method for ordinary differential equations.

  17. Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis

    Science.gov (United States)

    Jeffrey, Alan

    1971-01-01

    The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)

  18. The Full—Discrete Mixed Finite Element Methods for Nonlinear Hyperbolic Equations

    Institute of Scientific and Technical Information of China (English)

    YanpingCHEN; YunqingHUANG

    1998-01-01

    This article treats mixed finite element methods for second order nonlinear hyperbolic equations.A fully discrete scheme is presented and improved L2-error estimates are established.The convergence of both the function value andthe flux is demonstrated.

  19. Stability analysis of Runge-Kutta methods for nonlinear neutral delay integro-differential equations

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The sufficient conditions for the stability and asymptotic stability of Runge-Kutta methods for nonlinear neutral delay integro-differential equations are derived. A numerical test that confirms the theoretical results is given in the end.

  20. Study on high order perturbation-based nonlinear stochastic finite element method for dynamic problems

    Science.gov (United States)

    Wang, Qing; Yao, Jing-Zheng

    2010-12-01

    Several algorithms were proposed relating to the development of a framework of the perturbation-based stochastic finite element method (PSFEM) for large variation nonlinear dynamic problems. For this purpose, algorithms and a framework related to SFEM based on the stochastic virtual work principle were studied. To prove the validity and practicality of the algorithms and framework, numerical examples for nonlinear dynamic problems with large variations were calculated and compared with the Monte-Carlo Simulation method. This comparison shows that the proposed approaches are accurate and effective for the nonlinear dynamic analysis of structures with random parameters.

  1. Determining the minimum embedding dimension of nonlinear time series based on prediction method

    Institute of Scientific and Technical Information of China (English)

    Bian Chun-Hua; Ning Xin-Bao

    2004-01-01

    Determining the embedding dimension of nonlinear time series plays an important role in the reconstruction of nonlinear dynamics. The paper first summarizes the current methods for determining the embedding dimension.Then, inspired by the fact that the optimum modelling dimension of nonlinear autoregressive (NAR) prediction model can characterize the embedding feature of the dynamics, the paper presents a new idea that the optimum modelling dimension of the NAR model can be taken as the minimum embedding dimension. Some validation examples and results are given and the present method shows its advantage for short data series.

  2. H∞ Synthesis Method for Control of Non-linear Flexible Joint Models

    OpenAIRE

    Axelsson, Patrik; Pipeleers, Goele; Helmersson, Anders; Norrlöf, Mikael

    2014-01-01

    An H∞ synthesis method for control of a flexible joint, with non-linear spring characteristic, is proposed. The first step of the synthesis method is to extend the joint model with an uncertainty description of the stiffness parameter. In the second step, a non-linear optimisation problem, based on nominal performance and robust stability requirements, has to be solved. Using the Lyapunov shaping paradigm and a change of variables, the non-linear optimisation problem can be rewritten as a con...

  3. Assessment of Two Analytical Methods in Solving the Linear and Nonlinear Elastic Beam Deformation Problems

    DEFF Research Database (Denmark)

    Barari, Amin; Ganjavi, B.; Jeloudar, M. Ghanbari

    2010-01-01

    Purpose – In the last two decades with the rapid development of nonlinear science, there has appeared ever-increasing interest of scientists and engineers in the analytical techniques for nonlinear problems. This paper considers linear and nonlinear systems that are not only regarded as general...... and fluid mechanics. Design/methodology/approach – Two new but powerful analytical methods, namely, He's VIM and HPM, are introduced to solve some boundary value problems in structural engineering and fluid mechanics. Findings – Analytical solutions often fit under classical perturbation methods. However...

  4. Nonlinear dynamics of rotating shallow water methods and advances

    CERN Document Server

    Zeitlin, Vladimir

    2007-01-01

    The rotating shallow water (RSW) model is of wide use as a conceptual tool in geophysical fluid dynamics (GFD), because, in spite of its simplicity, it contains all essential ingredients of atmosphere and ocean dynamics at the synoptic scale, especially in its two- (or multi-) layer version. The book describes recent advances in understanding (in the framework of RSW and related models) of some fundamental GFD problems, such as existence of the slow manifold, dynamical splitting of fast (inertia-gravity waves) and slow (vortices, Rossby waves) motions, nonlinear geostrophic adjustment and wa

  5. DOUBLE TRIALS METHOD FOR NONLINEAR PROBLEMS ARISING IN HEAT TRANSFER

    Directory of Open Access Journals (Sweden)

    Chun-Hui He

    2011-01-01

    Full Text Available According to an ancient Chinese algorithm, the Ying Buzu Shu, in about second century BC, known as the rule of double false position in West after 1202 AD, two trial roots are assumed to solve algebraic equations. The solution procedure can be extended to solve nonlinear differential equations by constructing an approximate solution with an unknown parameter, and the unknown parameter can be easily determined using the Ying Buzu Shu. An example in heat transfer is given to elucidate the solution procedure.

  6. Exact solutions for nonlinear variants of Kadomtsev–Petviashvili (, ) equation using functional variable method

    Indian Academy of Sciences (India)

    M Mirzazadeh; M Eslami

    2013-12-01

    Studying compactons, solitons, solitary patterns and periodic solutions is important in nonlinear phenomena. In this paper we study nonlinear variants of the Kadomtsev–Petviashvili (KP) and the Korteweg–de Vries (KdV) equations with positive and negative exponents. The functional variable method is used to establish compactons, solitons, solitary patterns and periodic solutions for these variants. This method is a powerful tool for searching exact travelling solutions in closed form.

  7. A Nonlinear Physics-Based Optimal Control Method for Magnetostrictive Actuators

    Science.gov (United States)

    Smith, Ralph C.

    1998-01-01

    This paper addresses the development of a nonlinear optimal control methodology for magnetostrictive actuators. At moderate to high drive levels, the output from these actuators is highly nonlinear and contains significant magnetic and magnetomechanical hysteresis. These dynamics must be accommodated by models and control laws to utilize the full capabilities of the actuators. A characterization based upon ferromagnetic mean field theory provides a model which accurately quantifies both transient and steady state actuator dynamics under a variety of operating conditions. The control method consists of a linear perturbation feedback law used in combination with an optimal open loop nonlinear control. The nonlinear control incorporates the hysteresis and nonlinearities inherent to the transducer and can be computed offline. The feedback control is constructed through linearization of the perturbed system about the optimal system and is efficient for online implementation. As demonstrated through numerical examples, the combined hybrid control is robust and can be readily implemented in linear PDE-based structural models.

  8. In vivo characterization of skin using a Weiner nonlinear stochastic system identification method.

    Science.gov (United States)

    Chen, Yi; Hunter, Ian W

    2009-01-01

    This paper describes an indentometer device used to identify the linear dynamic and nonlinear properties of skin and underlying tissue using an in vivo test. The device uses a Lorentz force actuator to apply a dynamic force to the skin and measures the resulting displacement. It was found that the skin could be modeled as a Wiener system (i.e. a linear dynamic system followed by a static nonlinearity). Using a stochastic nonlinear system identification technique, the method presented in this paper was able to identify the dynamic linear and static nonlinear mechanical parameters of the indentometer-skin system within 2 to 4 seconds. The shape of the nonlinearity was found to vary depending on the area of the skin that was tested. We show that the device can repeatably distinguish between different areas of human tissue for multiple test subjects.

  9. Nonlinear optical properties measurement of polypyrrole -carbon nanotubes prepared by an electrochemical polymerization method

    Directory of Open Access Journals (Sweden)

    Shahriari

    2017-02-01

    Full Text Available In this work, the optical properties dependence of Multi-Walled Carbon Nanotubes (MWNT on concentration was discussed. MWNT samples were prepared in polypyrrole by an electrochemical polymerization of monomers, in the presence of different concentrations of MWNTs, using Sodium Dodecyl-Benzen-Sulfonate (SDBS as surfactant at room temperature. The nonlinear refractive and nonlinear absorbtion indices were measured using a low power CW laser beam operated at 532 nm using z-scan method. The results show that nonlinear refractive and nonlinear absorbtion indices tend to be increased with increasing the concentration of carbon nanotubes. Optical properties of  carbone nanotubes indicate that they are good candidates for nonlinear optical devices

  10. Investigation of nonlinear optical properties of various organic materials by the Z-scan method

    Science.gov (United States)

    Ganeev, R. A.; Boltaev, G. S.; Tugushev, R. I.; Usmanov, T.

    2012-06-01

    We have studied the nonlinear optical properties of various organic materials (vegetable oil, juice, wine, cognac, Coca-Cola and Fanta drinks, Nescafé coffee, tea, gasoline, clock oil, glycerol, and polyphenyl ether) that are used in everyday life. Their nonlinearities have been studied by the Z-scan method in the near-IR and visible spectral ranges. We have shown that the majority of samples possess a nonlinear absorption; however, some of the studied materials show a strong saturated absorption and nonlinear refraction. Red wine and glycerol proved to be the most interesting materials. For these samples, we have observed a change in the sign of the nonlinear absorption with increasing laser intensity, which was attributed to the competition between two-photon absorption and saturated absorption.

  11. Analytical exploration of γ-function explicit method for pseudodynamic testing of nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    Shuenn-Yih Chang; Yu-Chi Sung

    2005-01-01

    It has been well studied that the γ-function explicit method can be effective in providing favorable numerical dissipation for linear elastic systems. However, its performance for nonlinear systems is unclear due to a lack of analytical evaluation techniques. Thus, a novel technique is proposed herein to evaluate its efficiency for application to nonlinear systems by introducing two parameters to describe the stiffness change. As a result, the numerical properties and error propagation characteristics of the γ-function explicit method for the pseudodynamic testing of a nonlinear system are analytically assessed. It is found that the upper stability limit decreases as the step degree of nonlinearity increases; and it increases as the current degree of nonlinearity increases. It is also shown that this integration method provides favorable numerical dissipation not only for linear elastic systems but also for nonlinear systems. Furthermore, error propagation analysis reveals that the numerical dissipation can effectively suppress the severe error propagation of high frequency modes while the low frequency responses are almost unaffected for both linear elastic and nonlinear systems.

  12. Chaos control and function projective synchronization of fractional-order systems through the backstepping method

    Science.gov (United States)

    Das, S.; Yadav, V. K.

    2016-10-01

    We study the chaos control and the function projective synchronization of a fractional-order T-system and Lorenz chaotic system using the backstepping method. Based on stability theory, we consider the condition for the local stability of nonlinear three-dimensional commensurate fractional-order system. Using the feedback control method, we control the chaos in the considered fractional-order T-system. We simulate the function projective synchronization between the fractional-order T-system and Lorenz system numerically using MATLAB and depict the results with plots.

  13. Applying a life cycle approach to project management methods

    OpenAIRE

    Biggins, David; Trollsund, F.; Høiby, A.L.

    2016-01-01

    Project management is increasingly important to organisations because projects are the method\\ud by which organisations respond to their environment. A key element within project management\\ud is the standards and methods that are used to control and conduct projects, collectively known as\\ud project management methods (PMMs) and exemplified by PRINCE2, the Project Management\\ud Institute’s and the Association for Project Management’s Bodies of Knowledge (PMBOK and\\ud APMBOK. The purpose of t...

  14. Third-order nonlinear optical properties of acid green 25 dye by Z-scan method

    Science.gov (United States)

    Jeyaram, S.; Geethakrishnan, T.

    2017-03-01

    Third-order nonlinear optical (NLO) properties of aqueous solutions of an anthraquinone dye (Acid green 25 dye, color index: 61570) have been studied by Z-scan method with a 5 mW continuous wave (CW) diode laser operating at 635 nm. The nonlinear refractive index (n2) and the absorption coefficient (β) have been evaluated respectively from the closed and open aperture Z-scan data and the values of these parameters are found to increase with increase in concentration of the dye solution. The negative sign of the observed nonlinear refractive index (n2) indicates that the aqueous solution of acid green 25 dye exhibits self-defocusing type optical nonlinearity. The mechanism of the observed nonlinear absorption (NLA) and nonlinear refraction (NLR) is attributed respectively to reverse saturable absorption (RSA) and thermal nonlinear effects. The magnitudes of n2 and β are found to be of the order of 10-7 cm2/W and 10-3 cm/W respectively. With these experimental results, the authors suggest that acid green 25 dye may have potential applications in nonlinear optics.

  15. Three-step iterative methods with eighth-order convergence for solving nonlinear equations

    Directory of Open Access Journals (Sweden)

    Mashallah Matinfar

    2013-01-01

    Full Text Available A family of eighth-order iterative methods for solution of nonlinear equations is presented. We propose an optimal three-step method with eight-order convergence for finding the simple roots of nonlinear equations by Hermite interpolation method. Per iteration of this method requires two evaluations of the function and two evaluations of its first derivative, which implies that the efficiency index of the developed methods is 1.682. Some numerical examples illustrate that the algorithms are more efficient and performs better than the other methods.

  16. Non-linear time series analysis: methods and applications to atrial fibrillation.

    Science.gov (United States)

    Hoekstra, B P; Diks, C G; Allessie, M A; Degoede, J

    2001-01-01

    We apply methods from non-linear statistical time series analysis to characterize electrograms of atrial fibrillation. These are based on concepts originating from the theory of non-linear dynamical systems and use the empirical reconstruction density in reconstructed phase space. Application of these methods is not restricted to deterministic chaos but is valid in a general time series context. We illustrate this by applying three recently proposed non-linear time series methods to fibrillation electrograms: 1) a test for time reversibility in atrial electrograms during paroxysmal atrial fibrillation in patients; 2) a test to detect differences in the dynamical behaviour during the pharmacological conversion of sustained atrial fibrillation in instrumented conscious goats; 3) a test for general Granger causality to identify couplings and information transport in the atria during fibrillation. We conclude that a characterization of the dynamics via the reconstruction density offers a useful framework for the non-linear analysis of electrograms of atrial fibrillation.

  17. Exact travelling solutions for some nonlinear physical models by (′/)-expansion method

    Indian Academy of Sciences (India)

    B Salim Bahrami; H Abdollahzadeh; I M Berijani; D D Ganji; M Abdollahzadeh

    2011-08-01

    In this paper, we establish exact solutions for some special nonlinear partial differential equations. The (′/)-expansion method is used to construct travelling wave solutions of the twodimensional sine-Gordon equation, Dodd–Bullough–Mikhailov and Schrödinger–KdV equations, which appear in many fields such as, solid-state physics, nonlinear optics, fluid dynamics, fluid flow, quantum field theory, electromagnetic waves and so on. In this method we take the advantage of general solutions of second-order linear ordinary differential equation (LODE) to solve many nonlinear evolution equations effectively. The (′/)-expansion method is direct, concise and elementary and can be used with a wider applicability for handling many nonlinear wave equations.

  18. A novel order reduction method for nonlinear dynamical system under external periodic excitations

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The concept of approximate inertial manifold (AIM) is extended to develop a kind of nonlinear order reduction technique for non-autonomous nonlinear systems in second-order form in this paper.Using the modal transformation,a large nonlinear dynamical system is split into a ’master’ subsystem,a ’slave’ subsystem,and a ’negligible’ subsystem.Accordingly,a novel order reduction method (Method I) is developed to construct a low order subsystem by neglecting the ’negligible’ subsystem and slaving the ’slave’ subsystem into the ’master’ subsystem using the extended AIM.As a comparison,Method II accounting for the effects of both ’slave’ subsystem and the ’negligible’ subsystem is also applied to obtain the reduced order subsystem.Then,a typical 5-degree-of-freedom nonlinear dynamical system is given to compare the accuracy and efficiency of the traditional Galerkin truncation (ignoring the contributions of the slave and negligible subsystems),Method I and Method II.It is shown that Method I gives a considerable increase in accuracy for little computational cost in comparison with the standard Galerkin method,and produces almost the same accuracy as Method II.Finally,a 3-degree-of-freedom nonlinear dynamical system is analyzed by using the analytic method for showing predominance and convenience of Method I to obtain the analytically reduced order system.

  19. Commutative algebra constructive methods finite projective modules

    CERN Document Server

    Lombardi, Henri

    2015-01-01

    Translated from the popular French edition, this book offers a detailed introduction to various basic concepts, methods, principles, and results of commutative algebra. It takes a constructive viewpoint in commutative algebra and studies algorithmic approaches alongside several abstract classical theories. Indeed, it revisits these traditional topics with a new and simplifying manner, making the subject both accessible and innovative. The algorithmic aspects of such naturally abstract topics as Galois theory, Dedekind rings, Prüfer rings, finitely generated projective modules, dimension theory of commutative rings, and others in the current treatise, are all analysed in the spirit of the great developers of constructive algebra in the nineteenth century. This updated and revised edition contains over 350 well-arranged exercises, together with their helpful hints for solution. A basic knowledge of linear algebra, group theory, elementary number theory as well as the fundamentals of ring and module theory is r...

  20. An Alternative Method to Project Wind Patterns

    Science.gov (United States)

    Fadillioglu, Cagla; Kiyisuren, I. Cagatay; Collu, Kamil; Turp, M. Tufan; Kurnaz, M. Levent; Ozturk, Tugba

    2016-04-01

    Wind energy is one of the major clean and sustainable energy sources. Beside its various advantages, wind energy has a downside that its performance cannot be projected very accurately in the long-term. In this study, we offer an alternative method which can be used to determine the best location to install a wind turbine in a large area aiming maximum energy performance in the long run. For this purpose, a regional climate model (i.e. RegCM4.4) is combined with a software called Winds on Critical Streamline Surfaces (WOCSS) in order to identify wind patterns for any domains even in a changing climate. As a special case, Çanakkale region is examined due to the terrain profile having both coastal and mountainous features. WOCSS program was run twice for each month in the sample years in a double nested fashion, using the provisional RegCM4.4 wind data between years 2020 and 2040. Modified version of WOCSS provides terrain following flow surfaces and by processing those data, it makes a wind profile output for certain heights specified by the user. The computational time of WOCSS is also in reasonable range. Considering the lack of alternative methods for long-term wind performance projection, the model used in this study is a very good way for obtaining quick indications for wind performance taking the impact of the terrain effects into account. This research has been supported by Boǧaziçi University Research Fund Grant Number 10421.

  1. A Family of Fifth-order Iterative Methods for Solving Nonlinear Equations

    Institute of Scientific and Technical Information of China (English)

    Liu Tian-Bao; Cai Hua

    2013-01-01

    In this paper, we present and analyze a family of fifth-order iterative methods free from second derivative for solving nonlinear equations. It is established that the family of iterative methods has convergence order five. Numerical examples show that the new methods are comparable with the well known existing methods and give better results in many aspects.

  2. Solving method of generalized nonlinear dynamic least squares for data processing in building of digital mine

    Institute of Scientific and Technical Information of China (English)

    TAO Hua-xue (陶华学); GUO Jin-yun (郭金运)

    2003-01-01

    Data are very important to build the digital mine. Data come from many sources, have different types and temporal states. Relations between one class of data and the other one, or between data and unknown parameters are more nonlinear. The unknown parameters are non-random or random, among which the random parameters often dynamically vary with time. Therefore it is not accurate and reliable to process the data in building the digital mine with the classical least squares method or the method of the common nonlinear least squares. So a generalized nonlinear dynamic least squares method to process data in building the digital mine is put forward. In the meantime, the corresponding mathematical model is also given. The generalized nonlinear least squares problem is more complex than the common nonlinear least squares problem and its solution is more difficultly obtained because the dimensions of data and parameters in the former are bigger. So a new solution model and the method are put forward to solve the generalized nonlinear dynamic least squares problem. In fact, the problem can be converted to two sub-problems, each of which has a single variable. That is to say, a complex problem can be separated and then solved. So the dimension of unknown parameters can be reduced to its half, which simplifies the original high dimensional equations. The method lessens the calculating load and opens up a new way to process the data in building the digital mine, which have more sources, different types and more temporal states.

  3. Method and system for training dynamic nonlinear adaptive filters which have embedded memory

    Science.gov (United States)

    Rabinowitz, Matthew (Inventor)

    2002-01-01

    Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.

  4. A Bivariate Chebyshev Spectral Collocation Quasilinearization Method for Nonlinear Evolution Parabolic Equations

    Directory of Open Access Journals (Sweden)

    S. S. Motsa

    2014-01-01

    Full Text Available This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs. The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.

  5. A bivariate Chebyshev spectral collocation quasilinearization method for nonlinear evolution parabolic equations.

    Science.gov (United States)

    Motsa, S S; Magagula, V M; Sibanda, P

    2014-01-01

    This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.

  6. NONLINEAR ESTIMATION METHODS FOR AUTONOMOUS TRACKED VEHICLE WITH SLIP

    Institute of Scientific and Technical Information of China (English)

    ZHOU Bo; HAN Jianda

    2007-01-01

    In order to achieve precise, robust autonomous guidance and control of a tracked vehicle, a kinematic model with longitudinal and lateral slip is established. Four different nonlinear filters are used to estimate both state vector and time-varying parameter vector of the created model jointly. The first filter is the well-known extended Kalman filter. The second filter is an unscented version of the Kalman filter. The third one is a particle filter using the unscented Kalman filter to generate the importance proposal distribution. The last one is a novel and guaranteed filter that uses a linear set-membership estimator and can give an ellipsoid set in which the true state lies. The four different approaches have different complexities, behavior and advantages that are surveyed and compared.

  7. Modified Semi-Classical Methods for Nonlinear Quantum Oscillations Problems

    CERN Document Server

    Moncrief, Vincent; Maitra, Rachel

    2012-01-01

    We develop a modified semi-classical approach to the approximate solution of Schrodinger's equation for certain nonlinear quantum oscillations problems. At lowest order, the Hamilton-Jacobi equation of the conventional semi-classical formalism is replaced by an inverted-potential-vanishing-energy variant thereof. Under smoothness, convexity and coercivity hypotheses on its potential energy function, we prove, using the calculus of variations together with the Banach space implicit function theorem, the existence of a global, smooth `fundamental solution'. Higher order quantum corrections, for ground and excited states, are computed through the integration of associated systems of linear transport equations, and formal expansions for the corresponding energy eigenvalues obtained by imposing smoothness on the quantum corrections to the eigenfunctions. For linear oscillators our expansions naturally truncate, reproducing the well-known solutions for the energy eigenfunctions and eigenvalues. As an application, w...

  8. A hybrid nonlinear programming method for design optimization

    Science.gov (United States)

    Rajan, S. D.

    1986-01-01

    Solutions to engineering design problems formulated as nonlinear programming (NLP) problems usually require the use of more than one optimization technique. Moreover, the interaction between the user (analysis/synthesis) program and the NLP system can lead to interface, scaling, or convergence problems. An NLP solution system is presented that seeks to solve these problems by providing a programming system to ease the user-system interface. A simple set of rules is used to select an optimization technique or to switch from one technique to another in an attempt to detect, diagnose, and solve some potential problems. Numerical examples involving finite element based optimal design of space trusses and rotor bearing systems are used to illustrate the applicability of the proposed methodology.

  9. A URI 4-NODE QUADRILATERAL ELEMENT BY ASSUMED STRAIN METHOD FOR NONLINEAR PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    WANG Jinyan; CHEN Jun; LI Minghui

    2004-01-01

    In this paper one-point quadrature "assumed strain" mixed element formulation based on the Hu-Washizu variational principle is presented. Special care is taken to avoid hourglass modes and volumetric locking as well as shear locking. The assumed strain fields are constructed so that those portions of the fields which lead to volumetric and shear locking phenomena are eliminated by projection, while the implementation of the proposed URI scheme is straightforward to suppress hourglass modes. In order to treat geometric nonlinearities simply and efficiently, a corotational coordinate system is used. Several numerical examples are given to demonstrate the performance of the suggested formulation, including nonlinear static/dynamic mechanical problems.

  10. A projection method for under determined optimal experimental designs

    KAUST Repository

    Long, Quan

    2014-01-09

    A new implementation, based on the Laplace approximation, was developed in (Long, Scavino, Tempone, & Wang 2013) to accelerate the estimation of the post–experimental expected information gains in the model parameters and predictive quantities of interest. A closed–form approximation of the inner integral and the order of the corresponding dominant error term were obtained in the cases where the parameters are determined by the experiment. In this work, we extend that method to the general cases where the model parameters could not be determined completely by the data from the proposed experiments. We carry out the Laplace approximations in the directions orthogonal to the null space of the corresponding Jacobian matrix, so that the information gain (Kullback–Leibler divergence) can be reduced to an integration against the marginal density of the transformed parameters which are not determined by the experiments. Furthermore, the expected information gain can be approximated by an integration over the prior, where the integrand is a function of the projected posterior covariance matrix. To deal with the issue of dimensionality in a complex problem, we use Monte Carlo sampling or sparse quadratures for the integration over the prior probability density function, depending on the regularity of the integrand function. We demonstrate the accuracy, efficiency and robustness of the proposed method via several nonlinear under determined numerical examples.

  11. Application of new novel energy balance method to strongly nonlinear oscillator systems

    Directory of Open Access Journals (Sweden)

    Md. Abdur Razzak

    2015-01-01

    Full Text Available In this paper, a new novel energy balance method based on the harmonic balance method is proposed to obtain higher-order approximations of strongly nonlinear problems arising in engineering. Especially, second-order approximation is considered in this paper. Results found in this paper are compared with the exact result and other existing results. The results show that the proposed method gives better result for both small and large amplitudes of oscillation than other existing results. The method is illustrated by examples. It has been shown that the proposed method is very effective, convenient and quite accurate to nonlinear engineering problems.

  12. Exact solutions of some nonlinear partial differential equations using functional variable method

    Indian Academy of Sciences (India)

    A Nazarzadeh; M Eslami; M Mirzazadeh

    2013-08-01

    The functional variable method is a powerful solution method for obtaining exact solutions of some nonlinear partial differential equations. In this paper, the functional variable method is used to establish exact solutions of the generalized forms of Klein–Gordon equation, the (2 + 1)-dimensional Camassa–Holm Kadomtsev–Petviashvili equation and the higher-order nonlinear Schrödinger equation. By using this useful method, we found some exact solutions of the above-mentioned equations. The obtained solutions include solitary wave solutions, periodic wave solutions and combined formal solutions. It is shown that the proposed method is effective and general.

  13. Nonlinear system identification NARMAX methods in the time, frequency, and spatio-temporal domains

    CERN Document Server

    Billings, Stephen A

    2013-01-01

    Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains describes a comprehensive framework for the identification and analysis of nonlinear dynamic systems in the time, frequency, and spatio-temporal domains. This book is written with an emphasis on making the algorithms accessible so that they can be applied and used in practice. Includes coverage of: The NARMAX (nonlinear autoregressive moving average with exogenous inputs) modelThe orthogonal least squares algorithm that allows models to be built term by

  14. The (′/)-expansion method for a discrete nonlinear Schrödinger equation

    Indian Academy of Sciences (India)

    Sheng Zhang; Ling Dong; Jin-Mei Ba; Ying-Na Sun

    2010-02-01

    An improved algorithm is devised for using the (′/)-expansion method to solve nonlinear differential-difference equations. With the aid of symbolic computation, we choose a discrete nonlinear Schrödinger equation to illustrate the validity and advantages of the improved algorithm. As a result, hyperbolic function solutions, trigonometric function solutions and rational solutions with parameters are obtained, from which some special solutions including the known solitary wave solution are derived by setting the parameters as appropriate values. It is shown that the improved algorithm is effective and can be used for many other nonlinear differential-difference equations in mathematical physics.

  15. Control design for the nonlinear benchmark problem via the output regulation method

    Institute of Scientific and Technical Information of China (English)

    Jie HUANG; Guoqiang HU

    2004-01-01

    The problem of designing a feedback controller to achieve asymptotic disturbance rejection / attenuation while maintaining good transient response in the RTAC system is known as a benchmark nonlinear control problem, which has been an intensive research subject since 1995. In this paper, we will further investigate the solvability of the robust disturbance rejection problem of the RTAC system by the measurement output feedback control based on the robust output regulation method. We have obtained a design by overcoming two major obstacles: find a closed-form solution of the regulator equations; and devise a nonlinear internal model to account for non-polynomial nonlinearities.

  16. Application of nonlinear systems in nanomechanics and nanofluids analytical methods and applications

    CERN Document Server

    Ganji, Davood Domairry

    2015-01-01

    With Application of Nonlinear Systems in Nanomechanics and Nanofluids the reader gains a deep and practice-oriented understanding of nonlinear systems within areas of nanotechnology application as well as the necessary knowledge enabling the handling of such systems. The book helps readers understand relevant methods and techniques for solving nonlinear problems, and is an invaluable reference for researchers, professionals and PhD students interested in research areas and industries where nanofluidics and dynamic nano-mechanical systems are studied or applied. The book is useful in areas suc

  17. GLOBAL FINITE ELEMENT NONLINEAR GALERKIN METHOD FOR THE PENALIZED NAVIER-STOKES EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Yin-nian He; Yan-ren Hou; Li-quan Mei

    2001-01-01

    A global finite element nonlinear Galerkin method for the penalized Navier-Stokes equations is presented. This method is based on two finite element spaces XH and Xh,defined respectively on one coarse grid with grid size H and one fine grid with grid size h << H. Comparison is also made with the finite element Galerkin method. If we choose H = O(ε-1/4h1/2), ε> 0 being the penalty parameter, then two methods are of the same order of approximation. However, the global finite element nonlinear Galerkin method is much cheaper than the standard finite element Galerkin method. In fact, in the finite element Galerkin method the nonlinearity is treated on the fine grid finite element space Xh and while in the global finite element nonlinear Galerkin method the similar nonlinearity is treated on the coarse grid finite element space XH and only the linearity needs to be treated on the fine grid increment finite element space Wh. Finally, we provide numerical test which shows above results stated.

  18. Application of nonlinear ultrasonic method for monitoring of stress state in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyu Jin; Kwak, Hyo Gyoung [Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Sun Jong [Dept. of Structural System and Site Safety Evaluation, Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-04-15

    As the lifespan of concrete structures increases, their load carrying capacity decreases owing to cyclic loads and long-term effects such as creep and shrinkage. For these reasons, there is a necessity for stress state monitoring of concrete members. Particularly, it is necessary to evaluate the concrete structures for behavioral changes by using a technique that can overcome the measuring limitations of usual ultrasonic nondestructive evaluation methods. This paper proposes the use of a nonlinear ultrasonic method, namely, nonlinear resonant ultrasonic spectroscopy (NRUS) for the measurement of nonlinearity parameters for stress monitoring. An experiment compared the use of NRUS method and a linear ultrasonic method, namely, ultrasonic pulse velocity (UPV) to study the effects of continuously increasing loads and cyclic loads on the nonlinearity parameter. Both NRUS and UPV methods found a similar direct relationship between load level and that parameter. The NRUS method showed a higher sensitivity to micro-structural changes of concrete than UPV method. Thus, the experiment confirms the possibility of using the nonlinear ultrasonic method for stress state monitoring of concrete members.

  19. Extended trial equation method for nonlinear coupled Schrodinger Boussinesq partial differential equations

    Directory of Open Access Journals (Sweden)

    Khaled A. Gepreel

    2016-07-01

    Full Text Available In this paper, we improve the extended trial equation method to construct the exact solutions for nonlinear coupled system of partial differential equations in mathematical physics. We use the extended trial equation method to find some different types of exact solutions such as the Jacobi elliptic function solutions, soliton solutions, trigonometric function solutions and rational, exact solutions to the nonlinear coupled Schrodinger Boussinesq equations when the balance number is a positive integer. The performance of this method is reliable, effective and powerful for solving more complicated nonlinear partial differential equations in mathematical physics. The balance number of this method is not constant as we have in other methods. This method allows us to construct many new types of exact solutions. By using the Maple software package we show that all obtained solutions satisfy the original partial differential equations.

  20. Acceleration of the AFEN method by two-node nonlinear iteration

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Kap Suk; Cho, Nam Zin; Noh, Jae Man; Hong, Ser Gi [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    A nonlinear iterative scheme developed to reduce the computing time of the AFEN method was tested and applied to two benchmark problems. The new nonlinear method for the AFEN method is based on solving two-node problems and use of two nonlinear correction factors at every interface instead of one factor in the conventional scheme. The use of two correction factors provides higher-order accurate interface fluxes as well as currents which are used as the boundary conditions of the two-node problem. The numerical results show that this new method gives exactly the same solution as that of the original AFEN method and the computing time is significantly reduced in comparison with the original AFEN method. 7 refs., 1 fig., 1 tab. (Author)

  1. Image Prediction Method with Nonlinear Control Lines Derived from Kriging Method with Extracted Feature Points Based on Morphing

    Directory of Open Access Journals (Sweden)

    Kohei Arai

    2013-01-01

    Full Text Available Method for image prediction with nonlinear control lines which are derived from extracted feature points from the previously acquired imagery data based on Kriging method and morphing method is proposed. Through comparisons between the proposed method and the conventional linear interpolation and widely used Cubic Spline interpolation methods, it is found that the proposed method is superior to the conventional methods in terms of prediction accuracy.

  2. Nonlinear Spline Kernel-based Partial Least Squares Regression Method and Its Application

    Institute of Scientific and Technical Information of China (English)

    JIA Jin-ming; WEN Xiang-jun

    2008-01-01

    Inspired by the traditional Wold's nonlinear PLS algorithm comprises of NIPALS approach and a spline inner function model,a novel nonlinear partial least squares algorithm based on spline kernel(named SK-PLS)is proposed for nonlinear modeling in the presence of multicollinearity.Based on the iuner-product kernel spanned by the spline basis functions with infinite numher of nodes,this method firstly maps the input data into a high dimensional feature space,and then calculates a linear PLS model with reformed NIPALS procedure in the feature space and gives a unified framework of traditional PLS"kernel"algorithms in consequence.The linear PLS in the feature space corresponds to a nonlinear PLS in the original input (primal)space.The good approximating property of spline kernel function enhances the generalization ability of the novel model,and two numerical experiments are given to illustrate the feasibility of the proposed method.

  3. A new expansion method of first order nonlinear ordinary differential equation with at most a sixth-degree nonlinear term and its application to mBBM model

    Institute of Scientific and Technical Information of China (English)

    Pan Jun-Ting; Gong Lun-Xun

    2008-01-01

    Based on a first order nonlinear ordinary differential equation with at most a sixth-degree nonlinear term which is extended from a type of elliptic equation,and by converting it into a new expansion form,this paper proposes a new algebraic method to construct exact solutions for nonlinear evolution equations.Being concise and straightforward,themethod is applied to modified Benjamin-Bona-Mahony (mBBM) model,and some new exact solutions to the system are obtained.The algorithm is of important significance in exploring exact solutions for other nonlinear evolution equations.

  4. A Nonlinear Blind Source Separation Method Based On Radial Basis Function and Quantum Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Wang Pidong

    2016-01-01

    Full Text Available Blind source separation is a hot topic in signal processing. Most existing works focus on dealing with linear combined signals, while in practice we always encounter with nonlinear mixed signals. To address the problem of nonlinear source separation, in this paper we propose a novel algorithm using radial basis function neutral network, optimized by multi-universe parallel quantum genetic algorithm. Experiments show the efficiency of the proposed method.

  5. A One-parameter Filled Function Method for Nonlinear Integer Programming

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    This paper gives a new definition of the filled function for nonlinear integer programming problem. A filled function satisfying our definition is presented. This function contains only one parameter. The properties of the proposed filled function and the method using this filled function to solve nonlinear integer programming problem are also discussed. Numerical results indicate the efficiency and reliability of the proposed filled function algorithm.

  6. Singular perturbation methods for nonlinear dynamic systems with time delays

    Energy Technology Data Exchange (ETDEWEB)

    Hu, H.Y. [MOE Key Laboratory of Structure Mechanics and Control for Aircraft, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing (China)], E-mail: hhyae@nuaa.edu.cn; Wang, Z.H. [MOE Key Laboratory of Structure Mechanics and Control for Aircraft, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing (China)

    2009-04-15

    This review article surveys the recent advances in the dynamics and control of time-delay systems, with emphasis on the singular perturbation methods, such as the method of multiple scales, the method of averaging, and two newly developed methods, the energy analysis and the pseudo-oscillator analysis. Some examples are given to demonstrate the advantages of the methods. The comparisons with other methods show that these methods lead to easier computations and higher accurate prediction on the local dynamics of time-delay systems near a Hopf bifurcation.

  7. Nonlinear Multidimensional Assignment Problems Efficient Conic Optimization Methods and Applications

    Science.gov (United States)

    2015-06-24

    CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0153 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Mittelmann, Hans D 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...problems. The size 16 three-dimensional quadratic assignment problem Q3AP from wireless communications was solved using a sophisticated approach...placement of the sensors. However, available MINLP solvers are not sufficiently effective, even in the convex case, and a hybrid Benders

  8. Multi-Role Project (MRP): A New Project-Based Learning Method for STEM

    Science.gov (United States)

    Warin, Bruno; Talbi, Omar; Kolski, Christophe; Hoogstoel, Frédéric

    2016-01-01

    This paper presents the "Multi-Role Project" method (MRP), a broadly applicable project-based learning method, and describes its implementation and evaluation in the context of a Science, Technology, Engineering, and Mathematics (STEM) course. The MRP method is designed around a meta-principle that considers the project learning activity…

  9. He-Laplace Method for Linear and Nonlinear Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Hradyesh Kumar Mishra

    2012-01-01

    Full Text Available A new treatment for homotopy perturbation method is introduced. The new treatment is called He-Laplace method which is the coupling of the Laplace transform and the homotopy perturbation method using He’s polynomials. The nonlinear terms can be easily handled by the use of He’s polynomials. The method is implemented on linear and nonlinear partial differential equations. It is found that the proposed scheme provides the solution without any discretization or restrictive assumptions and avoids the round-off errors.

  10. Iterative Multistep Reproducing Kernel Hilbert Space Method for Solving Strongly Nonlinear Oscillators

    Directory of Open Access Journals (Sweden)

    Banan Maayah

    2014-01-01

    Full Text Available A new algorithm called multistep reproducing kernel Hilbert space method is represented to solve nonlinear oscillator’s models. The proposed scheme is a modification of the reproducing kernel Hilbert space method, which will increase the intervals of convergence for the series solution. The numerical results demonstrate the validity and the applicability of the new technique. A very good agreement was found between the results obtained using the presented algorithm and the Runge-Kutta method, which shows that the multistep reproducing kernel Hilbert space method is very efficient and convenient for solving nonlinear oscillator’s models.

  11. Solution of (3+1-Dimensional Nonlinear Cubic Schrodinger Equation by Differential Transform Method

    Directory of Open Access Journals (Sweden)

    Hassan A. Zedan

    2012-01-01

    Full Text Available Four-dimensional differential transform method has been introduced and fundamental theorems have been defined for the first time. Moreover, as an application of four-dimensional differential transform, exact solutions of nonlinear system of partial differential equations have been investigated. The results of the present method are compared very well with analytical solution of the system. Differential transform method can easily be applied to linear or nonlinear problems and reduces the size of computational work. With this method, exact solutions may be obtained without any need of cumbersome work, and it is a useful tool for analytical and numerical solutions.

  12. Enhanced Multistage Homotopy Perturbation Method: Approximate Solutions of Nonlinear Dynamic Systems

    Directory of Open Access Journals (Sweden)

    Daniel Olvera

    2014-01-01

    Full Text Available We introduce a new approach called the enhanced multistage homotopy perturbation method (EMHPM that is based on the homotopy perturbation method (HPM and the usage of time subintervals to find the approximate solution of differential equations with strong nonlinearities. We also study the convergence of our proposed EMHPM approach based on the value of the control parameter h by following the homotopy analysis method (HAM. At the end of the paper, we compare the derived EMHPM approximate solutions of some nonlinear physical systems with their corresponding numerical integration solutions obtained by using the classical fourth order Runge-Kutta method via the amplitude-time response curves.

  13. Differential transform method for solving linear and non-linear systems of partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Ravi Kanth, A.S.V. [Applied Mathematics Division, School of Science and Humanities, V.I.T. University, Vellore-632 014, Tamil Nadu (India)], E-mail: asvravikanth@yahoo.com; Aruna, K. [Applied Mathematics Division, School of Science and Humanities, V.I.T. University, Vellore-632 014, Tamil Nadu (India)

    2008-11-17

    In this Letter, we propose a reliable algorithm to develop exact and approximate solutions for the linear and non-linear systems of partial differential equations. The approach rest mainly on two-dimensional differential transform method which is one of the approximate methods. The method can easily be applied to many linear and non-linear problems and is capable of reducing the size of computational work. Exact solutions can also be achieved by the known forms of the series solutions. Several illustrative examples are given to demonstrate the effectiveness of the present method.

  14. Nonlinear viscosity derived by means of Grad's moment method

    Science.gov (United States)

    Eu, Byung Chan

    2002-03-01

    In this paper we examine the stress tensor component evolution equations recently derived by Uribe and Garcia-Colin [Phys. Rev. E 60, 4052 (1999)] for unidirectional flow at uniform temperature under the assumption/approximation of vanishing transversal velocity gradients. By removing this assumption/approximation we derive the stress tensor evolution equation from the Boltzmann equation within the framework of the Grad moment expansion for the case of uniform temperature (the same condition as theirs). Specializing the evolution equation to the case of steady unidirectional flow in a square channel, we obtain a set of steady state evolution equations for the components of the stress tensor. Because the transversal velocity gradients are not assumed to vanish in this paper in contrast to their paper, the present result is more general than theirs. Its special case corresponding to the one-dimensional flow considered by Uribe and Garcia-Colin is at variance with theirs because of a missing term in their stress evolution equation for the xy component. The nonlinear viscosity formulas are also different. A general remark is given with regard to the relation of dimensionalities of hydrodynamic equations and the kinetic equation underlying the former. They are not necessarily the same.

  15. Nonlinear mode decomposition: A noise-robust, adaptive decomposition method

    Science.gov (United States)

    Iatsenko, Dmytro; McClintock, Peter V. E.; Stefanovska, Aneta

    2015-09-01

    The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool—nonlinear mode decomposition (NMD)—which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques—which, together with the adaptive choice of their parameters, make it extremely noise robust—and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download.

  16. Nonlinear mode decomposition: a noise-robust, adaptive decomposition method.

    Science.gov (United States)

    Iatsenko, Dmytro; McClintock, Peter V E; Stefanovska, Aneta

    2015-09-01

    The signals emanating from complex systems are usually composed of a mixture of different oscillations which, for a reliable analysis, should be separated from each other and from the inevitable background of noise. Here we introduce an adaptive decomposition tool-nonlinear mode decomposition (NMD)-which decomposes a given signal into a set of physically meaningful oscillations for any wave form, simultaneously removing the noise. NMD is based on the powerful combination of time-frequency analysis techniques-which, together with the adaptive choice of their parameters, make it extremely noise robust-and surrogate data tests used to identify interdependent oscillations and to distinguish deterministic from random activity. We illustrate the application of NMD to both simulated and real signals and demonstrate its qualitative and quantitative superiority over other approaches, such as (ensemble) empirical mode decomposition, Karhunen-Loève expansion, and independent component analysis. We point out that NMD is likely to be applicable and useful in many different areas of research, such as geophysics, finance, and the life sciences. The necessary matlab codes for running NMD are freely available for download.

  17. A new method for observing the running states of a single-variable nonlinear system.

    Science.gov (United States)

    Meng, Yu; Chen, Hong; Chen, Cheng

    2015-03-01

    In order to timely grasp a single variable nonlinear system running states, a new method called Scatter Point method is put forward in this paper. It can be used to observe or monitor the running states of a single variable nonlinear system in real-time. In this paper, the definition of the method is given at first, and then its working principle is expounded theoretically, after this, some physical experiments based on Chua's nonlinear system are conducted. At the same time, many scatter point graphs are measured by a general analog oscilloscope. The motion, number, and distribution of these scatter points shown on the oscilloscope screen can directly reflect the current states of the tested system. The experimental results further confirm that the method is effective and practical, in which the system running states are not easily lost. In addition, this method is not only suitable for single variable systems but also for multivariable systems.

  18. Evaluation of a direct 4D reconstruction method using generalised linear least squares for estimating nonlinear micro-parametric maps.

    Science.gov (United States)

    Angelis, Georgios I; Matthews, Julian C; Kotasidis, Fotis A; Markiewicz, Pawel J; Lionheart, William R; Reader, Andrew J

    2014-11-01

    Estimation of nonlinear micro-parameters is a computationally demanding and fairly challenging process, since it involves the use of rather slow iterative nonlinear fitting algorithms and it often results in very noisy voxel-wise parametric maps. Direct reconstruction algorithms can provide parametric maps with reduced variance, but usually the overall reconstruction is impractically time consuming with common nonlinear fitting algorithms. In this work we employed a recently proposed direct parametric image reconstruction algorithm to estimate the parametric maps of all micro-parameters of a two-tissue compartment model, used to describe the kinetics of [[Formula: see text]F]FDG. The algorithm decouples the tomographic and the kinetic modelling problems, allowing the use of previously developed post-reconstruction methods, such as the generalised linear least squares (GLLS) algorithm. Results on both clinical and simulated data showed that the proposed direct reconstruction method provides considerable quantitative and qualitative improvements for all micro-parameters compared to the conventional post-reconstruction fitting method. Additionally, region-wise comparison of all parametric maps against the well-established filtered back projection followed by post-reconstruction non-linear fitting, as well as the direct Patlak method, showed substantial quantitative agreement in all regions. The proposed direct parametric reconstruction algorithm is a promising approach towards the estimation of all individual microparameters of any compartment model. In addition, due to the linearised nature of the GLLS algorithm, the fitting step can be very efficiently implemented and, therefore, it does not considerably affect the overall reconstruction time.

  19. A contrast source method for nonlinear acoustic wave fields in media with spatially inhomogeneous attenuation.

    Science.gov (United States)

    Demi, L; van Dongen, K W A; Verweij, M D

    2011-03-01

    Experimental data reveals that attenuation is an important phenomenon in medical ultrasound. Attenuation is particularly important for medical applications based on nonlinear acoustics, since higher harmonics experience higher attenuation than the fundamental. Here, a method is presented to accurately solve the wave equation for nonlinear acoustic media with spatially inhomogeneous attenuation. Losses are modeled by a spatially dependent compliance relaxation function, which is included in the Westervelt equation. Introduction of absorption in the form of a causal relaxation function automatically results in the appearance of dispersion. The appearance of inhomogeneities implies the presence of a spatially inhomogeneous contrast source in the presented full-wave method leading to inclusion of forward and backward scattering. The contrast source problem is solved iteratively using a Neumann scheme, similar to the iterative nonlinear contrast source (INCS) method. The presented method is directionally independent and capable of dealing with weakly to moderately nonlinear, large scale, three-dimensional wave fields occurring in diagnostic ultrasound. Convergence of the method has been investigated and results for homogeneous, lossy, linear media show full agreement with the exact results. Moreover, the performance of the method is demonstrated through simulations involving steered and unsteered beams in nonlinear media with spatially homogeneous and inhomogeneous attenuation.

  20. A time stepping method in analysis of nonlinear structural dynamics

    Directory of Open Access Journals (Sweden)

    Gholampour A. A.

    2011-12-01

    Full Text Available In this paper a new method is proposed for the direct time integration method for structural dynamics problems. The proposed method assumes second order variations of the acceleration at each time step. Therefore more terms in the Taylor series expansion were used compared to other methods. Because of the increase in order of variations of acceleration, this method has higher accuracy than classical methods. The displacement function is a polynomial with five constants and they are calculated using: two equations for initial conditions (from the end of previous time step, two equations for satisfying the equilibrium at both ends of the time step, and one equation for the weighted residual integration. Proposed method has higher stability and order of accuracy than the other methods.

  1. Nonlinear Aerodynamics-Structure Time Simulation for HALE Aircraft Design/Analysis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Time simulation of a nonlinear aerodynamics model (NA) developed at Virginia Tech coupled with a nonlinear structure model (NS) is proposed as a design/analysis...

  2. Investigations of the Non-Linear LMC Cepheid Period-Luminosity Relation with Testimator and Schwarz Information Criterion Methods

    CERN Document Server

    Kanbur, S M; Nanthakumar, A; Stevens, R

    2007-01-01

    In this paper, we investigate the linearity versus non-linearity of the Large Magellanic Cloud (LMC) Cepheid period-luminosity (P-L) relation using two statistical approaches not previously applied to this problem: the testimator method and the Schwarz Information Criterion (SIC). The testimator method is extended to multiple stages for the first time, shown to be unbiased and the variance of the estimated slope can be proved to be smaller than the standard slope estimated from linear regression theory. The Schwarz Information Criterion (also known as the Bayesian Information Criterion) is more conservative than the Akaike Information Criterion and tends to choose lower order models. By using simulated data sets, we verify that these statistical techniques can be used to detect intrinsically linear and/or non-linear P-L relations. These methods are then applied to independent LMC Cepheid data sets from the OGLE project and the MACHO project, respectively. Our results imply that there is a change of slope in l...

  3. How Agile Methods Conquers General Project Management - The Project Half Double Initiative

    DEFF Research Database (Denmark)

    Tordrup Heeager, Lise; Svejvig, Per; Schlichter, Bjarne Rerup

    2016-01-01

    Increased complexity in projects has forced new project management initiatives. In software development several agile methods have emerged and methods such as Scrum are today highly implemented in practice. General project management practice has been inspired by agile software development....... But in order to fully understand and to provide suggestions for future practice on how agility can be incorporated in general project management, this paper addresses how agile methods have inspired general project management practices. To answer the research question, the paper provides an analysis which...... compares ten characteristics of agile software development (identified in theory) and the general project management method developed by the Danish Project Half Double (PHD) initiative. The method consists of 10 leading stars for rethinking project management the impact, flow and leadership (ILF) method...

  4. On Newton-Like Methods for Solving Nonlinear Equations

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, we present a family of general Newton-like methods with a parametric function for finding a zero of a univariate function, permitting f′(x)=0 in some points. The case of multiple roots is not treated. The methods are proved to be quadratically convergent provided the weak condition. Thus the methods remove the severe condition f′(x)≠0. Based on the general form of the Newton-like methods, a family of new iterative methods with a variable parameter are developed.

  5. Modeling nonstationary extreme value distributions with nonlinear functions: An application using multiple precipitation projections for U.S. cities

    Science.gov (United States)

    Um, Myoung-Jin; Kim, Yeonjoo; Markus, Momcilo; Wuebbles, Donald J.

    2017-09-01

    Climate extremes, such as heavy precipitation events, have become more common in recent decades, and nonstationarity concepts have increasingly been adopted to model hydrologic extremes. Various issues are associated with applying nonstationary modeling to extremes, and in this study, we focus on assessing the need for different forms of nonlinear functions in a nonstationary generalized extreme value (GEV) model of different annual maximum precipitation (AMP) time series. Moreover, we suggest an efficient approach for selecting the nonlinear functions of a nonstationary GEV model. Based on observed and multiple projected AMP data for eight cities across the U.S., three separate tasks are proposed. First, we conduct trend and stationarity tests for the observed and projected data. Second, AMP series are fit with thirty different nonlinear functions, and the best functions among these are selected. Finally, the selected nonlinear functions are used to model the location parameter of a nonstationary GEV model and stationary and nonstationary GEV models with a linear function. Our results suggest that the simple use of nonlinear functions might prove useful with nonstationary GEV models of AMP for different locations with different types of model results.

  6. Stability analysis of nonlinear systems by multiple time scaling. [using perturbation methods

    Science.gov (United States)

    Morino, L.

    1974-01-01

    The asymptotic solution for the transient analysis of a general nonlinear system in the neighborhood of the stability boundary was obtained by using the multiple-time-scaling asymptotic-expansion method. The nonlinearities are assumed to be of algebraic nature. Terms of order epsilon to the 3rd power (where epsilon is the order of amplitude of the unknown) are included in the solution. The solution indicates that there is always a limit cycle which is stable (unstable) and exists above (below) the stability boundary if the nonlinear terms are stabilizing (destabilizing). Extension of the solution to include fifth order nonlinear terms is also presented. Comparisons with harmonic balance and with multiple-time-scaling solution of panel flutter equations are also included.

  7. Determination of natural frequencies by coupled method of homotopy perturbation and variational method for strongly nonlinear oscillators

    Science.gov (United States)

    Akbarzade, M.; Langari, J.

    2011-02-01

    In this paper a new approach combining the features of the homotopy concept with variational approach is proposed to find accurate analytical solutions for nonlinear oscillators with and without a fractional power restoring force. Since the first-order approximation leads to very accurate results, comparisons with other results are presented to show the effectiveness of this method. The validity of the method is independent of whether or not there exist small or large parameters in the considered nonlinear equations; the obtained results prove the validity and efficiency of the method, which can be easily extended to other strongly nonlinear problems. At the end we compare our procedure with the optimal homotopy perturbation method.

  8. Image quality assessment method based on nonlinear feature extraction in kernel space

    Institute of Scientific and Technical Information of China (English)

    Yong DING‡; Nan LI; Yang ZHAO; Kai HUANG

    2016-01-01

    To match human perception, extracting perceptual features effectively plays an important role in image quality assessment. In contrast to most existing methods that use linear transformations or models to represent images, we employ a complex mathematical expression of high dimensionality to reveal the statistical characteristics of the images. Furthermore, by introducing kernel methods to transform the linear problem into a nonlinear one, a full-reference image quality assessment method is proposed based on high-dimensional nonlinear feature extraction. Experiments on the LIVE, TID2008, and CSIQ databases demonstrate that nonlinear features offer competitive performance for image inherent quality representation and the proposed method achieves a promising performance that is consistent with human subjective evaluation.

  9. Application of a modified rational harmonic balance method for a class of strongly nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Belendez, A. [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es; Gimeno, E.; Alvarez, M.L.; Mendez, D.I.; Hernandez, A. [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)

    2008-09-22

    An analytical approximate technique for conservative nonlinear oscillators is proposed. This method is a modification of the rational harmonic balance method in which analytical approximate solutions have rational form. This approach gives us the frequency of the motion as a function of the amplitude of oscillation. We find that this method works very well for the whole range of parameters, and excellent agreement of the approximate frequencies with the exact one has been demonstrated and discussed. The most significant features of this method are its simplicity and its excellent accuracy for the whole range of oscillation amplitude values and the results reveal that this technique is very effective and convenient for solving conservative truly nonlinear oscillatory systems with complex nonlinearities.

  10. Method of Green’s function of nonlinear vibration of corrugated shallow shells

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the dynamic equations of nonlinear large deflection of axisymmetric shallow shells of revolution, the nonlinear free vibration and forced vibration of a corrugated shallow shell under concentrated load acting at the center have been investigated. The nonlinear partial differential equations of shallow shell were re-duced to the nonlinear integral-differential equations by using the method of Green’s function. To solve the integral-differential equations, the expansion method was used to obtain Green’s function. Then the integral-differential equations were reduced to the form with a degenerate core by expanding Green’s function as a series of characteristic function. Therefore, the integral-differential equations be-came nonlinear ordinary differential equations with regard to time. The ampli-tude-frequency relation, with respect to the natural frequency of the lowest order and the amplitude-frequency response under harmonic force, were obtained by considering single mode vibration. As a numerical example, nonlinear free and forced vibration phenomena of shallow spherical shells with sinusoidal corrugation were studied. The obtained solutions are available for reference to the design of corrugated shells.

  11. Method of Green's function of nonlinear vibration of corrugated shallow shells

    Institute of Scientific and Technical Information of China (English)

    YUAN Hong

    2008-01-01

    Based on the dynamic equations of nonlinear large deflection of axisymmetric shallow shells of revolution,the nonlinear free vibration and forced vibration of a corrugated shallow shell under concentrated load acting at the center have been investigated.The nonlinear partial differential equations of shallow shell were re-duced to the nonlinear integral-differential equations by using the method of Green's function.To solve the integral-differential equations,the expansion method was used to obtain Green's function.Then the integral-differential equations were reduced to the form with a degenerate core by expanding Green's function as a series of characteristic function.Therefore,the integral-differential equations be-came nonlinear ordinary differential equations with regard to time.The ampli-tude-frequency relation,with respect to the natural frequency of the lowest order and the amplitude-frequency response under harmonic force,were obtained by considering single mode vibration.As a numerical example,nonlinear free and forced vibration phenomena of shallow spherical shells with sinusoidal corrugation were studied.The obtained solutions are available for reference to the design of corrugated shells.

  12. APPLICATIONS OF NONLINEAR OPTIMIZATION METHOD TO NUMERICAL STUDIES OF ATMOSPHERIC AND OCEANIC SCIENCES

    Institute of Scientific and Technical Information of China (English)

    DUAN Wan-suo; MU Mu

    2005-01-01

    Linear singular vector and linear singular value can only describe the evolution of sufficiently small perturbations during the period in which the tangent linear model is valid.With this in mind, the applications of nonlinear optimization methods to the atmospheric and oceanic sciences are introduced, which include nonlinear singular vector (NSV) and nonlinear singular value (NSVA), conditional nonlinear optimal perturbation (CNOP), and their applications to the studies of predictability in numerical weather and climate prediction.The results suggest that the nonlinear characteristics of the motions of atmosphere and oceans can be explored by NSV and CNOP. Also attentions are paid to the introduction of the classification of predictability problems, which are related to the maximum predictable time,the maximum prediction error, and the maximum allowing error of initial value and the parameters. All the information has the background of application to the evaluation of products of numerical weather and climate prediction. Furthermore the nonlinear optimization methods of the sensitivity analysis with numerical model are also introduced, which can give a quantitative assessment whether a numerical model is able to simulate the observations and find the initial field that yield the optimal simulation. Finally, the difficulties in the lack of ripe algorithms are also discussed, which leave future work to both computational mathematics and scientists in geophysics.

  13. Distributed Research Project Scheduling Based on Multi-Agent Methods

    Directory of Open Access Journals (Sweden)

    Constanta Nicoleta Bodea

    2011-01-01

    Full Text Available Different project planning and scheduling approaches have been developed. The Operational Research (OR provides two major planning techniques: CPM (Critical Path Method and PERT (Program Evaluation and Review Technique. Due to projects complexity and difficulty to use classical methods, new approaches were developed. Artificial Intelligence (AI initially promoted the automatic planner concept, but model-based planning and scheduling methods emerged later on. The paper adresses the project scheduling optimization problem, when projects are seen as Complex Adaptive Systems (CAS. Taken into consideration two different approaches for project scheduling optimization: TCPSP (Time- Constrained Project Scheduling and RCPSP (Resource-Constrained Project Scheduling, the paper focuses on a multiagent implementation in MATLAB for TCSP. Using the research project as a case study, the paper includes a comparison between two multi-agent methods: Genetic Algorithm (GA and Ant Colony Algorithm (ACO.

  14. Extended Riccati Equation Rational Expansion Method and Its Application to Nonlinear Stochastic Evolution Equations

    Institute of Scientific and Technical Information of China (English)

    WANG Mei-Jiao; WANG Qi

    2006-01-01

    In this work, by means of a new more general ansatz and the symbolic computation system Maple, we extend the Riccati equation rational expansion method [Chaos, Solitons & Fractals 25 (2005) 1019] to uniformly construct a series of stochastic nontravelling wave solutions for nonlinear stochastic evolution equation. To illustrate the effectiveness of our method, we take the stochastic mKdV equation as an example, and successfully construct some new and more general solutions including a series of rational formal nontraveling wave and coefficient functions' soliton-like solutions and trigonometric-like function solutions. The method can also be applied to solve other nonlinear stochastic evolution equation or equations.

  15. Introduction to the Explicit Finite Element Method for Nonlinear Transient Dynamics

    CERN Document Server

    Wu, Shen R

    2012-01-01

    A systematic introduction to the theories and formulations of the explicit finite element method As numerical technology continues to grow and evolve with industrial applications, understanding the explicit finite element method has become increasingly important, particularly in the areas of crashworthiness, metal forming, and impact engineering. Introduction to the Explicit FiniteElement Method for Nonlinear Transient Dynamics is the first book to address specifically what is now accepted as the most successful numerical tool for nonlinear transient dynamics. The book aids readers in master

  16. Application of nonlinear optimization method to sensitivity analysis of numerical model

    Institute of Scientific and Technical Information of China (English)

    XU Hui; MU Mu; LUO Dehai

    2004-01-01

    A nonlinear optimization method is applied to sensitivity analysis of a numerical model. Theoretical analysis and numerical experiments indicate that this method can give not only a quantitative assessment whether the numerical model is able to simulate the observations or not, but also the initial field that yields the optimal simulation. In particular, when the simulation results are apparently satisfactory, and sometimes both model error and initial error are considerably large, the nonlinear optimization method, under some conditions, can identify the error that plays a dominant role.

  17. Solution of Excited Non-Linear Oscillators under Damping Effects Using the Modified Differential Transform Method

    Directory of Open Access Journals (Sweden)

    H. M. Abdelhafez

    2016-03-01

    Full Text Available The modified differential transform method (MDTM, Laplace transform and Padé approximants are used to investigate a semi-analytic form of solutions of nonlinear oscillators in a large time domain. Forced Duffing and forced van der Pol oscillators under damping effect are studied to investigate semi-analytic forms of solutions. Moreover, solutions of the suggested nonlinear oscillators are obtained using the fourth-order Runge-Kutta numerical solution method. A comparison of the result by the numerical Runge-Kutta fourth-order accuracy method is compared with the result by the MDTM and plotted in a long time domain.

  18. A new method of thermal network modeling - A nonlinear programming approach

    Science.gov (United States)

    Adachi, M.; Miyaoka, S.; Muramatsu, A.; Funabashi, M.; Nakajima, T.

    A new method for correcting thermal network model coefficients is described. This method sharply reduces discrepancies obtained by the nonlinear programming approach in the conductance coefficients and radiation coefficients for determining the heat balance of a spacecraft. The method consists of an experimental design and a nonlinear parameter identification. An experimental design for obtaining useful data for the thermal network model correction is discussed. A simulation study has shown that the standard deviation of the estimated temperature and estimation error of the parameters are reduced by 50 percent and 70 percent respectively.

  19. A weak condition for secant method to solve systems of nonlinear equations

    Institute of Scientific and Technical Information of China (English)

    LIANG Ke-wei; HAN Dan-fu; ZHANG Hong; ZHU Cheng-yan

    2009-01-01

    In this paper, a new weak condition for the convergence of secant method to solve the systems of nonlinear equations is proposed. A convergence ball with the center x0 is replaced by that with X1, the first approximation generated by the secant method with the initial data x-1 and x0. Under the bounded conditions of the divided difference, a convergence theorem is obtained and two examples to illustrate the weakness of convergence conditions are provided.Moreover, the secant method is applied to a system of nonlinear equations to demonstrate the viability and effectiveness of the results in the paper.

  20. Simple equation method for nonlinear partial differential equations and its applications

    Directory of Open Access Journals (Sweden)

    Taher A. Nofal

    2016-04-01

    Full Text Available In this article, we focus on the exact solution of the some nonlinear partial differential equations (NLPDEs such as, Kodomtsev–Petviashvili (KP equation, the (2 + 1-dimensional breaking soliton equation and the modified generalized Vakhnenko equation by using the simple equation method. In the simple equation method the trial condition is the Bernoulli equation or the Riccati equation. It has been shown that the method provides a powerful mathematical tool for solving nonlinear wave equations in mathematical physics and engineering problems.

  1. A NOTE ON THE NONLINEAR CONJUGATE GRADIENT METHOD

    Institute of Scientific and Technical Information of China (English)

    Yu-hong Dai; Ya-xiang Yuan

    2002-01-01

    The conjugate gradient method for unconstrained optimization problems varies with a scalar. In this note, a general condition concerning the scalar is given, which ensures the global convergence of the method in the case of strong Wolfe line searches. It is also discussed how to use the result to obtain the convergence of the famous Fletcher-Reeves, and Polak-Ribiere-Polyak conjugate gradient methods. That the condition cannot be relaxed in some sense is mentioned.

  2. Comment on "Generalized projective synchronization in time-delayed systems: nonlinear observer approach" [Chaos 19, 013102 (2009); 20, 029902 (2010)].

    Science.gov (United States)

    Theesar, S Jeeva Sathya; Balasubramaniam, P; Banerjee, Santo

    2012-09-01

    In Chaos 19, 013102 (2009), the author proposed generalized projective synchronization for time delay systems using nonlinear observer and obtained sufficient condition to ensure projective synchronization for modulated time varying delay. There are concerns with the obtained conditions as the result was applicable only to trivial case of time varying delay τ[over dot](1)(t)=dτ(1)(t)/dt<1. In this paper, we note the drawbacks of the proposed sufficient condition. The new improved sufficient condition for ensuring the projective synchronization of time varying delayed systems is presented. The proposed new criteria have been verified by adopting the Ikeda system.

  3. Multi-Symplectic Splitting Method for Two-Dimensional Nonlinear Schriidinger Equation

    Institute of Scientific and Technical Information of China (English)

    陈亚铭; 朱华君; 宋松和

    2011-01-01

    Using the idea of splitting numerical methods and the multi-symplectic methods, we propose a multisymplectic splitting (MSS) method to solve the two-dimensional nonlinear Schrodinger equation (2D-NLSE) in this paper. It is further shown that the method constructed in this way preserve the global symplectieity exactly. Numerical experiments for the plane wave solution and singular solution of the 2D-NLSE show the accuracy and effectiveness of the proposed method.

  4. Three-Step Iterative Methods with Sixth-Order Convergence for Solving Nonlinear Equations

    Directory of Open Access Journals (Sweden)

    Behzad GHANBARI

    2012-09-01

    Full Text Available In this paper, we develop new families of sixth-order methods for solving simple zeros of non-linear equations. These methods are constructed such that the convergence is of order six. Each member of the families requires two evaluations of the given function and two of its derivative per iteration. These methods have more advantages than Newton’s method and other methods with the same convergence order, as shown in the illustration examples.  

  5. A nonlinearity compensation method for a matrix converter drive

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Blaabjerg, Frede

    2005-01-01

    converter model using the direction of current. The proposed method does not need any additional hardware or complicated software and it is easy to realize by applying the algorithm to the conventional vector control. The proposed compensation method is applied for high-performance induction motor drives...

  6. Periodic nonlinear Fourier transform for fiber-optic communications, Part I: theory and numerical methods.

    Science.gov (United States)

    Kamalian, Morteza; Prilepsky, Jaroslaw E; Le, Son Thai; Turitsyn, Sergei K

    2016-08-08

    In this work, we introduce the periodic nonlinear Fourier transform (PNFT) method as an alternative and efficacious tool for compensation of the nonlinear transmission effects in optical fiber links. In the Part I, we introduce the algorithmic platform of the technique, describing in details the direct and inverse PNFT operations, also known as the inverse scattering transform for periodic (in time variable) nonlinear Schrödinger equation (NLSE). We pay a special attention to explaining the potential advantages of the PNFT-based processing over the previously studied nonlinear Fourier transform (NFT) based methods. Further, we elucidate the issue of the numerical PNFT computation: we compare the performance of four known numerical methods applicable for the calculation of nonlinear spectral data (the direct PNFT), in particular, taking the main spectrum (utilized further in Part II for the modulation and transmission) associated with some simple example waveforms as the quality indicator for each method. We show that the Ablowitz-Ladik discretization approach for the direct PNFT provides the best performance in terms of the accuracy and computational time consumption.

  7. Nonlinear programming extensions to rational function approximation methods for unsteady aerodynamic forces

    Science.gov (United States)

    Tiffany, Sherwood H.; Adams, William M., Jr.

    1988-01-01

    The approximation of unsteady generalized aerodynamic forces in the equations of motion of a flexible aircraft are discussed. Two methods of formulating these approximations are extended to include the same flexibility in constraining the approximations and the same methodology in optimizing nonlinear parameters as another currently used extended least-squares method. Optimal selection of nonlinear parameters is made in each of the three methods by use of the same nonlinear, nongradient optimizer. The objective of the nonlinear optimization is to obtain rational approximations to the unsteady aerodynamics whose state-space realization is lower order than that required when no optimization of the nonlinear terms is performed. The free linear parameters are determined using the least-squares matrix techniques of a Lagrange multiplier formulation of an objective function which incorporates selected linear equality constraints. State-space mathematical models resulting from different approaches are described and results are presented that show comparative evaluations from application of each of the extended methods to a numerical example.

  8. Robust identification method for nonlinear model structures and its application to high-performance aircraft

    Science.gov (United States)

    Shi, Zhong-Ke; Wu, Fang-Xiang

    2013-06-01

    A common assumption is that the model structure is known for modelling high performance aircraft. In practice, this is not the case. Actually, structure identification plays the most important role in the processing of nonlinear system modelling. The integration of mode structure identification and parameter estimation is an efficient method to construct the model for high performance aircraft, which is nonlinear and also contains uncertainties. This article presents an efficient method for identifying nonlinear model structure and estimating parameters for high-performance aircraft model, which contains uncertainties. The parameters associated with nonlinear terms are considered one after the other if they should be included in the nonlinear model until a stopping criterion is met, which is based on Akaike's information criterion. A numerically efficient U-D factorisation is presented to avoid complex computation of high-order matrices. The proposed method is applied to flight test data of a high-performance aircraft. The results demonstrate that the proposed method could obtain the good aircraft model with a reasonably good fidelity based on the comparison with flight test data.

  9. Parallel High Order Accuracy Methods Applied to Non-Linear Hyperbolic Equations and to Problems in Materials Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Jan Hesthaven

    2012-02-06

    Final report for DOE Contract DE-FG02-98ER25346 entitled Parallel High Order Accuracy Methods Applied to Non-Linear Hyperbolic Equations and to Problems in Materials Sciences. Principal Investigator Jan S. Hesthaven Division of Applied Mathematics Brown University, Box F Providence, RI 02912 Jan.Hesthaven@Brown.edu February 6, 2012 Note: This grant was originally awarded to Professor David Gottlieb and the majority of the work envisioned reflects his original ideas. However, when Prof Gottlieb passed away in December 2008, Professor Hesthaven took over as PI to ensure proper mentoring of students and postdoctoral researchers already involved in the project. This unusual circumstance has naturally impacted the project and its timeline. However, as the report reflects, the planned work has been accomplished and some activities beyond the original scope have been pursued with success. Project overview and main results The effort in this project focuses on the development of high order accurate computational methods for the solution of hyperbolic equations with application to problems with strong shocks. While the methods are general, emphasis is on applications to gas dynamics with strong shocks.

  10. Two-grid method for characteristisc mixed finite-element solutions of nonlinear convection-diffusion equations

    Institute of Scientific and Technical Information of China (English)

    QIN Xinqiang; MA Yichen; GONG Chunqiong

    2004-01-01

    A two-grid method for solving nonlinear convection-dominated diffusion equations is presented. The method use discretizations based on a characteristic mixed finite-element method and give the linearization for nonlinear systems by two steps. The error analysis shows that the two-grid scheme combined with the characteristic mixed finite-element method can decrease numerical oscillation caused by dominated convections and solve nonlinear advection-dominated diffusion problems efficiently.

  11. Nonlinear system identification with global and local soft computing methods

    Energy Technology Data Exchange (ETDEWEB)

    Runkler, T.A. [Siemens AG, Muenchen (Germany). Zentralabt. Technik Information und Kommunikation

    2000-10-01

    An important step in the design of control systems is system identification. Data driven system identification finds functional models for the system's input output behavior. Regression methods are simple and effective, but may cause overshoots for complicated characteristics. Neural network approaches such as the multilayer perceptron yield very accurate models, but are black box approaches which leads to problems in system and stability analysis. In contrast to these global modeling methods crisp and fuzzy rule bases represent local models that can be extracted from data by clustering methods. Depending on the type and number of models different degrees of model accuracy can be achieved. (orig.)

  12. Extended Mapping Transformation Method and Its Applications to Nonlinear Partial Differential Equation(s)

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In this paper, we extend the mapping transformation method through introducing variable coefficients.By means of the extended mapping transformation method, many explicit and exact general solutions with arbitrary functions for some nonlinear partial differential equations, which contain solitary wave solutions, trigonometric function solutions, and rational solutions, are obtained.

  13. A new method to obtain approximate symmetry of nonlinear evolution equation from perturbations

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhi-Yong; Yong Xue-Lin; Chen Yu-Fu

    2009-01-01

    A novel method for obtaining the approximate symmetry of a partial differential equation with a small parameter is introduced. By expanding the independent variable and the dependent variable in the small parameter series, we obtain more affluent approximate symmetries. The method is applied to two perturbed nonlinear partial differential equations and new approximate solutions are derived.

  14. A Generalized F-expansion Method and Its Application in High-Dimensional Nonlinear Evolution Equation

    Institute of Scientific and Technical Information of China (English)

    CHEN Jiang; HE Hong-Sheng; YANG Kong-Qing

    2005-01-01

    A generalized F-expansion method is introduced and applied to (3+ 1)-dimensional Kadomstev-Petviashvili(KP) equation. As a result, some new Jacobi elliptic function solutions of the equation are found, from which the trigonometric function solutions and the solitary wave solutions can be obtained. The method can also be extended to other types of nonlinear evolution equations in mathematical physics.

  15. The functional variable method for finding exact solutions of some nonlinear time-fractional differential equations

    Indian Academy of Sciences (India)

    Wenjun Liu; Kewang Chen

    2013-09-01

    In this paper, we implemented the functional variable method and the modified Riemann–Liouville derivative for the exact solitary wave solutions and periodic wave solutions of the time-fractional Klein–Gordon equation, and the time-fractional Hirota–Satsuma coupled KdV system. This method is extremely simple but effective for handling nonlinear time-fractional differential equations.

  16. A Smooth Newton Method for Nonlinear Programming Problems with Inequality Constraints

    Directory of Open Access Journals (Sweden)

    Vasile Moraru

    2012-02-01

    Full Text Available The paper presents a reformulation of the Karush-Kuhn-Tucker (KKT system associated nonlinear programming problem into an equivalent system of smooth equations. Classical Newton method is applied to solve the system of equations. The superlinear convergence of the primal sequence, generated by proposed method, is proved. The preliminary numerical results with a problems test set are presented.

  17. Asymptotic Analysis to Two Nonlinear Equations in Fluid Mechanics by Homotopy Renormalisation Method

    Science.gov (United States)

    Guan, Jiang; Kai, Yue

    2016-09-01

    By the homotopy renormalisation method, the global approximate solutions to Falkner-Skan equation and Von Kármá's problem of a rotating disk in an infinite viscous fluid are obtained. The homotopy renormalisation method is simple and powerful for finding global approximate solutions to nonlinear perturbed differential equations arising in mathematical physics.

  18. Variational space–time (dis)continuous Galerkin method for nonlinear free surface water waves

    NARCIS (Netherlands)

    Gagarina, E.; Ambati, V.R.; Vegt, van der J.J.W.; Bokhove, O.

    2014-01-01

    A new variational finite element method is developed for nonlinear free surface gravity water waves using the potential flow approximation. This method also handles waves generated by a wave maker. Its formulation stems from Miles’ variational principle for water waves together with a finite element

  19. Variational space-time (dis)continuous Galerkin method for nonlinear free surface waves

    NARCIS (Netherlands)

    Gagarina, E.; Vegt, van der J.J.W.; Ambati, V.R.; Bokhove, O.

    2013-01-01

    A new variational finite element method is developed for nonlinear free surface gravity water waves. This method also handles waves generated by a wave maker. Its formulation stems from Miles' variational principle for water waves together with a space-time finite element discretization that is cont

  20. A direct algebraic method applied to obtain complex solutions of some nonlinear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Huiqun [College of Mathematical Science, Qingdao University, Qingdao, Shandong 266071 (China)], E-mail: hellozhq@yahoo.com.cn

    2009-02-15

    By using some exact solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct the exact complex solutions for nonlinear partial differential equations. The method is implemented for the NLS equation, a new Hamiltonian amplitude equation, the coupled Schrodinger-KdV equations and the Hirota-Maccari equations. New exact complex solutions are obtained.

  1. Solution of the Linear and Non-linear Partial Differential Equations Using Homotopy Perturbation Method

    Directory of Open Access Journals (Sweden)

    Abaker. A. Hassaballa.

    2015-10-01

    Full Text Available - In recent years, many more of the numerical methods were used to solve a wide range of mathematical, physical, and engineering problems linear and nonlinear. This paper applies the homotopy perturbation method (HPM to find exact solution of partial differential equation with the Dirichlet and Neumann boundary conditions.

  2. Numerical Analysis of Strongly Nonlinear Oscillation Systems using He's Max-Min Method

    DEFF Research Database (Denmark)

    Babazadeh, H; Domairry, G; Barari, Amin;

    2011-01-01

    Nonlinear functions are crucial points and terms in engineering problems. Actual and physical problems can be solved by solving and processing such functions. Thus, most scientists and engineers focus on solving these equations. This paper presents a novel method called the max-min method...

  3. A finite element-based perturbation method for nonlinear free vibration analysis of composite cylindrical shells

    NARCIS (Netherlands)

    Rahman, T.; Jansen, E.L.; Tiso, P.

    2011-01-01

    In this paper, a finite element-based approach for nonlinear vibration analysis of shell structures is presented. The approach makes use of a perturbation method that gives an approximation for the amplitude-frequency relation of the structure. The method is formulated using a functional notation an

  4. Application of the trial equation method for solving some nonlinear evolution equations arising in mathematical physics

    Indian Academy of Sciences (India)

    Yusuf Gurefe; Abdullah Sonmezoglu; Emine Misirli

    2011-12-01

    In this paper some exact solutions including soliton solutions for the KdV equation with dual power law nonlinearity and the (, ) equation with generalized evolution are obtained using the trial equation method. Also a more general trial equation method is proposed.

  5. A finite element-based perturbation method for nonlinear free vibration analysis of composite cylindrical shells

    NARCIS (Netherlands)

    Rahman, T.; Jansen, E.L.; Tiso, P.

    2011-01-01

    In this paper, a finite element-based approach for nonlinear vibration analysis of shell structures is presented. The approach makes use of a perturbation method that gives an approximation for the amplitude-frequency relation of the structure. The method is formulated using a functional notation

  6. Application of a new method of nonlinear dynamical system identification to biochemical problems.

    Science.gov (United States)

    Karnaukhov, A V; Karnaukhova, E V

    2003-03-01

    The system identification method for a variety of nonlinear dynamic models is elaborated. The problem of identification of an original nonlinear model presented as a system of ordinary differential equations in the Cauchy explicit form with a polynomial right part reduces to the solution of the system of linear equations for the constants of the dynamical model. In other words, to construct an integral model of the complex system (phenomenon), it is enough to collect some data array characterizing the time-course of dynamical parameters of the system. Collection of such a data array has always been a problem. However difficulties emerging are, as a rule, not principal and may be overcome almost without exception. The potentialities of the method under discussion are demonstrated by the example of the test problem of multiparametric nonlinear oscillator identification. The identification method proposed may be applied to the study of different biological systems and in particular the enzyme kinetics of complex biochemical reactions.

  7. Couple of the Variational Iteration Method and Legendre Wavelets for Nonlinear Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Fukang Yin

    2013-01-01

    Full Text Available This paper develops a modified variational iteration method coupled with the Legendre wavelets, which can be used for the efficient numerical solution of nonlinear partial differential equations (PDEs. The approximate solutions of PDEs are calculated in the form of a series whose components are computed by applying a recursive relation. Block pulse functions are used to calculate the Legendre wavelets coefficient matrices of the nonlinear terms. The main advantage of the new method is that it can avoid solving the nonlinear algebraic system and symbolic computation. Furthermore, the developed vector-matrix form makes it computationally efficient. The results show that the proposed method is very effective and easy to implement.

  8. An Inverse Power Method for Nonlinear Eigenproblems with Applications in 1-Spectral Clustering and Sparse PCA

    CERN Document Server

    Hein, Matthias

    2010-01-01

    Many problems in machine learning and statistics can be formulated as (generalized) eigenproblems. In terms of the associated optimization problem, computing linear eigenvectors amounts to finding critical points of a quadratic function subject to quadratic constraints. In this paper we show that a certain class of constrained optimization problems with nonquadratic objective and constraints can be understood as nonlinear eigenproblems. We derive a generalization of the inverse power method which is guaranteed to converge to a nonlinear eigenvector. We apply the inverse power method to 1-spectral clustering and sparse PCA which can naturally be formulated as nonlinear eigenproblems. In both applications we achieve state-of-the-art results in terms of solution quality and runtime. Moving beyond the standard eigenproblem should be useful also in many other applications and our inverse power method can be easily adapted to new problems.

  9. Stability for a class of nonlinear time-delay systems via Hamiltonian functional method

    Institute of Scientific and Technical Information of China (English)

    YANG RenMing; WANG YuZhen

    2012-01-01

    This paper investigates the stability of a class of nonlinear time-delay systems via Hamiltonian functional method,and proposes a number of new results on generalized Hamiltonian realization (GHR) and stability analysis for this class of systems.Firstly,the concept of GHR of general nonlinear time-delay systems is proposed,and several new GHR methods are given.Then,based on the new GHR methods obtained,the stability of time-delay systems is investigated,and several delay-dependent sufficient conditions in term of matrix inequalities are derived for the stability analysis by constructing suitable Lyapunov-Krasovskii (L-K) functionals.Finally,an illustrative example shows that the results obtained in this paper have less conservatism,and work very well in the stability analysis of some nonlinear time-delay Hamiltonian systems.

  10. Nonlinear Electrical Circuit Oscillator Control Based on Backstepping Method: A Genetic Algorithm Approach

    Directory of Open Access Journals (Sweden)

    Mahsa Khoeiniha

    2012-01-01

    Full Text Available This paper investigated study of dynamics of nonlinear electrical circuit by means of modern nonlinear techniques and the control of a class of chaotic system by using backstepping method based on Lyapunov function. The behavior of such nonlinear system when they are under the influence of external sinusoidal disturbances with unknown amplitudes has been considered. The objective is to analyze the performance of this system at different amplitudes of disturbances. We illustrate the proposed approach for controlling duffing oscillator problem to stabilize this system at the equilibrium point. Also Genetic Algorithm method (GA for computing the parameters of controller has been used. GA can be successfully applied to achieve a better controller. Simulation results have shown the effectiveness of the proposed method.

  11. Developing New Testing Methods for Nanosatellites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal modeling and Test plan to be carried out and developed by Goddard Space Flight Center. This project will be done in collaboration with partners at MIT and...

  12. Manufacturing Methods and Technology Project Summary Reports

    Science.gov (United States)

    1982-06-01

    variation. The goal of this FY78 project was to solve these problems, develop pilot line production of 200 ferrites , and test them. SWITCHING ...WIRES FERRITE HIGH &. DIELECTRIC ^ mm i ii ’&Z2ZL f M Figure 1 - Non-Reciprocal Latching Phase Shifter - Side Loaded Geometry 39 i SUMMARY...Control Manufacturing Modernization Plan 18 ELECTRONICS Project 273 9638 - Integrated Hybrid Transistor Switch for Solid 21 State Converter

  13. The Optical Nonlinearity of Au and Ag Nanoparticle Prepared by the Γ-Radiation Method

    Directory of Open Access Journals (Sweden)

    Esmaeil Shahriari

    2010-01-01

    Full Text Available Problem statement: The third order nonlinear optical properties of metal nanoparticles have been of interest in physical chemistry, medical diagnostics and optical devices. Gold colloidal nanoparticles are responsible for the brilliant reds seen in stained glass windows and silver particles are typically yellow. The purpose of the study was to determine the nonlinear refraction and absorption coefficient of the Au and Ag nanoparticles in PVP solution. Approach: The samples were prepared by Γ-radiation method and the nonlinear optical properties of the composites were investigated using a single beam Z-scan technique with a beam power of 40 mW and operated at wavelength of 532 nm. The measurements were carried out for both Open and closed aperture Z-scan arrangements. Results: For both Au/PVP and Ag/PVP samples the results exhibited reverse saturable absorption. The closed aperture Z-scan of the nano-fluid samples revealed self-defocusing effect while the open aperture Z-scan of the samples show a reversible saturable absorption. Conclusion: The Z-scan measurement showed that silver and gold nano-fluid prepared by gamma radiation exhibited large thermal nonlinear refractive index n2 as -8.78×10-7 and -2.478×10-6 cm2/W, respectively. We have also investigated nonlinear absorption of these samples and we found a large value of nonlinear absorption for Ag nanoparticle and a weak absorption for Au nanoparticle. In conclusion, the experimental result shows a good nonlinear refractive index at low laser power in which encouraging for possible applications in nonlinear optical devices.

  14. Constructing Frozen Jacobian Iterative Methods for Solving Systems of Nonlinear Equations, Associated with ODEs and PDEs Using the Homotopy Method

    Directory of Open Access Journals (Sweden)

    Uswah Qasim

    2016-03-01

    Full Text Available A homotopy method is presented for the construction of frozen Jacobian iterative methods. The frozen Jacobian iterative methods are attractive because the inversion of the Jacobian is performed in terms of LUfactorization only once, for a single instance of the iterative method. We embedded parameters in the iterative methods with the help of the homotopy method: the values of the parameters are determined in such a way that a better convergence rate is achieved. The proposed homotopy technique is general and has the ability to construct different families of iterative methods, for solving weakly nonlinear systems of equations. Further iterative methods are also proposed for solving general systems of nonlinear equations.

  15. A hybrid method based upon nonlinear Lamb wave response for locating a delamination in composite laminates.

    Science.gov (United States)

    Yelve, Nitesh P; Mitra, Mira; Mujumdar, P M; Ramadas, C

    2016-08-01

    A new hybrid method based upon nonlinear Lamb wave response in time and frequency domains is introduced to locate a delamination in composite laminates. In Lamb wave based nonlinear method, the presence of damage is shown by the appearance of higher harmonics in the Lamb wave response. The proposed method not only uses this spectral information but also the corresponding temporal response data, for locating the delamination. Thus, the method is termed as a hybrid method. The paper includes formulation of the method and its application to locate a Barely Visible Impact Damage (BVID) induced delamination in a Carbon Fiber Reinforced Polymer (CFRP) laminate. The method gives the damage location fairly well. It is a baseline free method, as it does not need data from the pristine specimen.

  16. Measurement of heart rate variability by methods based on nonlinear dynamics.

    Science.gov (United States)

    Huikuri, Heikki V; Mäkikallio, Timo H; Perkiömäki, Juha

    2003-01-01

    Heart rate (HR) variability has been conventionally analyzed with time and frequency domain methods, which measure the overall magnitude of R-R interval fluctuations around its mean value or the magnitude of fluctuations in some predetermined frequencies. Analysis of HR dynamics by methods based on chaos theory and nonlinear system theory has gained recent interest. This interest is based on observations suggesting that the mechanisms involved in cardiovascular regulation likely interact with each other in a nonlinear way. Furthermore, recent observational studies suggest that some indexes describing nonlinear HR dynamics, such as fractal scaling exponents, may provide more powerful prognostic information than the traditional HR variability indexes. In particular, short-term fractal scaling exponent measured by detrended fluctuation analysis method has been shown to predict fatal cardiovascular events in various populations. Approximate entropy, a nonlinear index of HR dynamics, which describes the complexity of R-R interval behavior, has provided information on the vulnerability to atrial fibrillation. There are many other nonlinear indexes, eg, Lyapunov exponent and correlation dimensions, which also give information on the characteristics of HR dynamics, but their clinical utility is not well established. Although concepts of chaos theory, fractal mathematics, and complexity measures of HR behavior in relation to cardiovascular physiology or various cardiovascular events are still far away from clinical medicine, they are a fruitful area for future research to expand our knowledge concerning the behavior of cardiovascular oscillations in normal healthy conditions as well as in disease states.

  17. A model selection method for nonlinear system identification based FMRI effective connectivity analysis.

    Science.gov (United States)

    Li, Xingfeng; Coyle, Damien; Maguire, Liam; McGinnity, Thomas M; Benali, Habib

    2011-07-01

    In this paper a model selection algorithm for a nonlinear system identification method is proposed to study functional magnetic resonance imaging (fMRI) effective connectivity. Unlike most other methods, this method does not need a pre-defined structure/model for effective connectivity analysis. Instead, it relies on selecting significant nonlinear or linear covariates for the differential equations to describe the mapping relationship between brain output (fMRI response) and input (experiment design). These covariates, as well as their coefficients, are estimated based on a least angle regression (LARS) method. In the implementation of the LARS method, Akaike's information criterion corrected (AICc) algorithm and the leave-one-out (LOO) cross-validation method were employed and compared for model selection. Simulation comparison between the dynamic causal model (DCM), nonlinear identification method, and model selection method for modelling the single-input-single-output (SISO) and multiple-input multiple-output (MIMO) systems were conducted. Results show that the LARS model selection method is faster than DCM and achieves a compact and economic nonlinear model simultaneously. To verify the efficacy of the proposed approach, an analysis of the dorsal and ventral visual pathway networks was carried out based on three real datasets. The results show that LARS can be used for model selection in an fMRI effective connectivity study with phase-encoded, standard block, and random block designs. It is also shown that the LOO cross-validation method for nonlinear model selection has less residual sum squares than the AICc algorithm for the study.

  18. A mixed Newton-Tikhonov method for nonlinear ill-posed problems

    Institute of Scientific and Technical Information of China (English)

    Chuan-gang KANG; Guo-qiang HE

    2009-01-01

    Newton type methods are one kind of the efficient methods to solve nonlinear ill-posed problems,which have attracted extensive attention.However,computational cost of Newton type methods is high because practical problems are complicated.We propose a mixed Newton-Tikhonov method,i.e.,one step Newton-Tikhonov method with several other steps of simplified Newton-Tikhonov method.Convergence and stability of this method are proved under some conditions.Numerical experiments show that the proposed method has obvious advantages over the classical Newton method in terms of computational costs.

  19. Recursive prediction error methods for online estimation in nonlinear state-space models

    Directory of Open Access Journals (Sweden)

    Dag Ljungquist

    1994-04-01

    Full Text Available Several recursive algorithms for online, combined state and parameter estimation in nonlinear state-space models are discussed in this paper. Well-known algorithms such as the extended Kalman filter and alternative formulations of the recursive prediction error method are included, as well as a new method based on a line-search strategy. A comparison of the algorithms illustrates that they are very similar although the differences can be important for the online tracking capabilities and robustness. Simulation experiments on a simple nonlinear process show that the performance under certain conditions can be improved by including a line-search strategy.

  20. Extension of the homotopy pertubation method for solving nonlinear differential-difference equations

    Energy Technology Data Exchange (ETDEWEB)

    Mousa, Mohamed Medhat [Benha Univ. (Egypt). Benha High Inst. of Technology; Al-Farabi Kazakh National Univ., Almaty (Kazakhstan); Kaltayev, Aidarkan [Al-Farabi Kazakh National Univ., Almaty (Kazakhstan); Bulut, Hasan [Firat Univ., Elazig (Turkey). Dept. of Mathematics

    2010-12-15

    In this paper, we have extended the homotopy perturbation method (HPM) to find approximate analytical solutions for some nonlinear differential-difference equations (NDDEs). The discretized modified Korteweg-de Vries (mKdV) lattice equation and the discretized nonlinear Schroedinger equation are taken as examples to demonstrate the validity and the great potential of the HPM in solving such NDDEs. Comparisons are made between the results of the presented method and exact solutions. The obtained results reveal that the HPM is a very effective and convenient tool for solving such kind of equations. (orig.)

  1. Level Set Projection Method for Incompressible Navier-Stokes on Arbitrary Boundaries

    KAUST Repository

    Williams-Rioux, Bertrand

    2012-01-12

    Second order level set projection method for incompressible Navier-Stokes equations is proposed to solve flow around arbitrary geometries. We used rectilinear grid with collocated cell centered velocity and pressure. An explicit Godunov procedure is used to address the nonlinear advection terms, and an implicit Crank-Nicholson method to update viscous effects. An approximate pressure projection is implemented at the end of the time stepping using multigrid as a conventional fast iterative method. The level set method developed by Osher and Sethian [17] is implemented to address real momentum and pressure boundary conditions by the advection of a distance function, as proposed by Aslam [3]. Numerical results for the Strouhal number and drag coefficients validated the model with good accuracy for flow over a cylinder in the parallel shedding regime (47 < Re < 180). Simulations for an array of cylinders and an oscillating cylinder were performed, with the latter demonstrating our methods ability to handle dynamic boundary conditions.

  2. The Action-Project Method in Counseling Psychology

    Science.gov (United States)

    Young, Richard A.; Valach, Ladislav; Domene, Jose F.

    2005-01-01

    The qualitative action-project method is described as an appropriate and heuristic qualitative research method for use in counseling psychology. Action theory, which addresses human intentional, goal-directed action, project, and career, provides the conceptual framework for the method. Data gathering and analysis involve multiple procedures to…

  3. A Projection-Programming Method of Combination Weighting

    Institute of Scientific and Technical Information of China (English)

    ZeshuiXu; LiLi

    2004-01-01

    This paper proposes a projection programming method of combination weighting. The method combines subjective weights and objective weights, and derives the weights of attributes by solving a projection-programming model. The method is simple, practical and easy to implement on computer. A numerical example is also given.

  4. The Action-Project Method in Counseling Psychology

    Science.gov (United States)

    Young, Richard A.; Valach, Ladislav; Domene, Jose F.

    2005-01-01

    The qualitative action-project method is described as an appropriate and heuristic qualitative research method for use in counseling psychology. Action theory, which addresses human intentional, goal-directed action, project, and career, provides the conceptual framework for the method. Data gathering and analysis involve multiple procedures to…

  5. Experimental and theoretical studies of iterative methods for nonlinear, nonsymmetric systems arising in combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hagstrom, T. [Univ. of New Mexico, Albuquerque, NM (United States); Radhakrishnan, K. [Sverdrup Technology, Brook Park, OH (United States)

    1994-12-31

    The authors report on some iterative methods which they have tested for use in combustion simulations. In particular, they have developed a code to solve zero Mach number reacting flow equations with complex reaction and diffusion physics. These equations have the form of a nonlinear parabolic system coupled with constraints. In semi-discrete form, one obtains DAE`s of index two or three depending on the number of spatial dimensions. The authors have implemented a fourth order (fully implicit) BDF method in time, coupled with a suite of fourth order explicit and implicit spatial difference approximations. Most codes they know of for simulating reacting flows use a splitting strategy to march in time. This results in a sequence of nonlinear systems to solve, each of which has a simpler structure than the one they are faced with. The rapid and robust solution of the coupled system is the essential requirement for the success of their approach. They have implemented and analyzed nonlinear generalizations of conjugate gradient-like methods for nonsymmetric systems, including CGS and the quasi-Newton based method of Eirola and Nevanlinna. They develop a general framework for the nonlinearization of linear methods in terms of the acceleration of fixed-point iterations, where the latter is assumed to include the {open_quote}preconditioning{open_quote}. Their preconditioning is a single step of a split method, using lower order spatial difference approximations as well as simplified (Fickian) approximations of the diffusion physics.

  6. An assessment of a semi analytical AG method for solving nonlinear oscillators

    Directory of Open Access Journals (Sweden)

    Hadi Mirgolbabaee

    2016-02-01

    Based on the comparison between AGM and numerical methods, AGM can be successfully applied for a broad range of nonlinear equations. One of the important reasons of selecting AGM for solving differential equations in miscellaneous fields not only in vibrations but also in different fields of sciences for instance fluid mechanics, solid mechanics, chemical engineering, etc. The main benefit of this method in comparison with the other approaches are as follows: normally according to the order of differential equations, we need boundary conditions so in the case of the number of boundary conditions is less than the order of the differential equation, AGM can create additional new boundary conditions in regard to the own differential equation and its derivatives. Results illustrate that method is efficient and has enough accuracy in comparison with other semi analytical and numerical methods because of the simplicity of this method. Moreover results demonstrate that AGM could be applicable through other methods in nonlinear problems with high nonlinearity. Furthermore convergence problems for solving nonlinear equations by using AGM appear small.

  7. Nonlinear simulation of arch dam cracking with mixed finite element method

    Directory of Open Access Journals (Sweden)

    Ren Hao

    2008-06-01

    Full Text Available This paper proposes a new, simple and efficient method for nonlinear simulation of arch dam cracking from the construction period to the operation period, which takes into account the arch dam construction process and temperature loads. In the calculation mesh, the contact surface of pair nodes is located at places on the arch dam where cracking is possible. A new effective iterative method, the mixed finite element method for friction-contact problems, is improved and used for nonlinear simulation of the cracking process. The forces acting on the structure are divided into two parts: external forces and contact forces. The displacement of the structure is chosen as the basic variable and the nodal contact force in the possible contact region of the local coordinate system is chosen as the iterative variable, so that the nonlinear iterative process is only limited within the possible contact surface and is much more economical. This method was used to simulate the cracking process of the Shuanghe Arch Dam in Southwest China. In order to prove the validity and accuracy of this method and to study the effect of thermal stress on arch dam cracking, three schemes were designed for calculation. Numerical results agree with actual measured data, proving that it is feasible to use this method to simulate the entire process of nonlinear arch dam cracking.

  8. A conservative Fourier pseudo-spectral method for the nonlinear Schrödinger equation

    Science.gov (United States)

    Gong, Yuezheng; Wang, Qi; Wang, Yushun; Cai, Jiaxiang

    2017-01-01

    A Fourier pseudo-spectral method that conserves mass and energy is developed for a two-dimensional nonlinear Schrödinger equation. By establishing the equivalence between the semi-norm in the Fourier pseudo-spectral method and that in the finite difference method, we are able to extend the result in Ref. [56] to prove that the optimal rate of convergence of the new method is in the order of O (N-r +τ2) in the discrete L2 norm without any restrictions on the grid ratio, where N is the number of modes used in the spectral method and τ is the time step size. A fast solver is then applied to the discrete nonlinear equation system to speed up the numerical computation for the high order method. Numerical examples are presented to show the efficiency and accuracy of the new method.

  9. A LQP BASED INTERIOR PREDICTION-CORRECTION METHOD FOR NONLINEAR COMPLEMENTARITY PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Bing-sheng He; Li-zhi Liao; Xiao-ming Yuan

    2006-01-01

    To solve nonlinear complementarity problems (NCP), at each iteration, the classical proximal point algorithm solves a well-conditioned sub-NCP while the LogarithmicQuadratic Proximal (LQP) method solves a system of nonlinear equations (LQP system). This paper presents a practical LQP method-based prediction-correction method for NCP.The predictor is obtained via solving the LQP system approximately under significantly relaxed restriction, and the new iterate (the corrector) is computed directly by an explicit formula derived from the original LQP method. The implementations are very easy to be carried out. Global convergence of the method is proved under the same mild assumptions as the original LQP method. Finally, numerical results for traffic equilibrium problems are provided to verify that the method is effective for some practical problems.

  10. Adaptive discontinuous Galerkin methods for non-linear reactive flows

    CERN Document Server

    Uzunca, Murat

    2016-01-01

    The focus of this monograph is the development of space-time adaptive methods to solve the convection/reaction dominated non-stationary semi-linear advection diffusion reaction (ADR) equations with internal/boundary layers in an accurate and efficient way. After introducing the ADR equations and discontinuous Galerkin discretization, robust residual-based a posteriori error estimators in space and time are derived. The elliptic reconstruction technique is then utilized to derive the a posteriori error bounds for the fully discrete system and to obtain optimal orders of convergence. As coupled surface and subsurface flow over large space and time scales is described by (ADR) equation the methods described in this book are of high importance in many areas of Geosciences including oil and gas recovery, groundwater contamination and sustainable use of groundwater resources, storing greenhouse gases or radioactive waste in the subsurface.

  11. Nonlinear Least Squares Methods for Joint DOA and Pitch Estimation

    DEFF Research Database (Denmark)

    Jensen, Jesper Rindom; Christensen, Mads Græsbøll; Jensen, Søren Holdt

    2013-01-01

    In this paper, we consider the problem of joint direction-of-arrival (DOA) and fundamental frequency estimation. Joint estimation enables robust estimation of these parameters in multi-source scenarios where separate estimators may fail. First, we derive the exact and asymptotic Cram\\'{e}r-Rao...... estimation. Moreover, simulations on real-life data indicate that the NLS and aNLS methods are applicable even when reverberation is present and the noise is not white Gaussian....

  12. Material nonlinear analysis via mixed-iterative finite element method

    Science.gov (United States)

    Sutjahjo, Edhi; Chamis, Christos C.

    1992-01-01

    The performance of elastic-plastic mixed-iterative analysis is examined through a set of convergence studies. Membrane and bending behaviors are tested using 4-node quadrilateral finite elements. The membrane result is excellent, which indicates the implementation of elastic-plastic mixed-iterative analysis is appropriate. On the other hand, further research to improve bending performance of the method seems to be warranted.

  13. Controlling Beam Halo-chaos Using a Special Nonlinear Method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Beam halo-chaos in high-current accelerators has become a key concerned issue because it can cause excessive radioactivity from the accelerators therefore significantly limits their applications in industry,medicine, and national defense. Some general engineering methods for chaos control have been developedin recent years, but they generally are unsuccessful for beam halo-chaos suppression due to manytechnical constraints. Beam halo-chaos is essentially a spatotemporal chaotic motion within a high power

  14. Easy-to-implement method to target nonlinear systems

    Science.gov (United States)

    Baptista, Murilo S.; Caldas, Iberê L.

    1998-03-01

    In this work we present a method to rapidly direct a chaotic system, to an aimed state or target, through a sequence of control perturbations, with few different amplitudes chosen according to the allowed control-parameter changes. We applied this procedure to the one-dimensional Logistic map, to the two-dimensional Hénon map, and to the Double Scroll circuit described by a three-dimensional system of differential equations. Furthermore, for the Logistic map, we show numerically that the resulting trajectory (from the starting point to the target) goes along a stable manifold of the target. Moreover, using the Hénon map, we create and stabilize unstable periodic orbits, and also verify the procedure robustness in the presence of noise. We apply our method to the Double Scroll circuit, without using any low-dimensional mapping to represent its dynamics, an improvement with respect to previous targeting methods only applied for experimental systems that are mapping-modeled.

  15. Nonlinear preprocessing method for detecting peaks from gas chromatograms

    Directory of Open Access Journals (Sweden)

    Min Hyeyoung

    2009-11-01

    Full Text Available Abstract Background The problem of locating valid peaks from data corrupted by noise frequently arises while analyzing experimental data. In various biological and chemical data analysis tasks, peak detection thus constitutes a critical preprocessing step that greatly affects downstream analysis and eventual quality of experiments. Many existing techniques require the users to adjust parameters by trial and error, which is error-prone, time-consuming and often leads to incorrect analysis results. Worse, conventional approaches tend to report an excessive number of false alarms by finding fictitious peaks generated by mere noise. Results We have designed a novel peak detection method that can significantly reduce parameter sensitivity, yet providing excellent peak detection performance and negligible false alarm rates from gas chromatographic data. The key feature of our new algorithm is the successive use of peak enhancement algorithms that are deliberately designed for a gradual improvement of peak detection quality. We tested our approach with real gas chromatograms as well as intentionally contaminated spectra that contain Gaussian or speckle-type noise. Conclusion Our results demonstrate that the proposed method can achieve near perfect peak detection performance while maintaining very small false alarm probabilities in case of gas chromatograms. Given the fact that biological signals appear in the form of peaks in various experimental data and that the propose method can easily be extended to such data, our approach will be a useful and robust tool that can help researchers highlight valid signals in their noisy measurements.

  16. Solving Nonlinear Optimization Problems of Real Functions in Complex Variables by Complex-Valued Iterative Methods.

    Science.gov (United States)

    Zhang, Songchuan; Xia, Youshen

    2016-12-28

    Much research has been devoted to complex-variable optimization problems due to their engineering applications. However, the complex-valued optimization method for solving complex-variable optimization problems is still an active research area. This paper proposes two efficient complex-valued optimization methods for solving constrained nonlinear optimization problems of real functions in complex variables, respectively. One solves the complex-valued nonlinear programming problem with linear equality constraints. Another solves the complex-valued nonlinear programming problem with both linear equality constraints and an ℓ₁-norm constraint. Theoretically, we prove the global convergence of the proposed two complex-valued optimization algorithms under mild conditions. The proposed two algorithms can solve the complex-valued optimization problem completely in the complex domain and significantly extend existing complex-valued optimization algorithms. Numerical results further show that the proposed two algorithms have a faster speed than several conventional real-valued optimization algorithms.

  17. Analysis of search-extension method for finding multiple solutions of nonlinear problem

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    For numerical computations of multiple solutions of the nonlinear elliptic problemΔu+ f(u)=0 inΩ, u=0 onΓ, a search-extension method (SEM) was proposed and systematically studied by the authors. This paper shall complete its theoretical analysis. It is assumed that the nonlinearity is non-convex and its solution is isolated, under some conditions the corresponding linearized problem has a unique solution. By use of the compactness of the solution family and the contradiction argument, in general conditions, the high order regularity of the solution u∈H1+α,α>0 is proved. Assume that some initial value searched by suitably many eigenbases is already fallen into the neighborhood of the isolated solution, then the optimal error estimates of its nonlinear finite element approximation are shown by the duality argument and continuation method.

  18. An efficient and accurate method for calculating nonlinear diffraction beam fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyun Jo; Cho, Sung Jong; Nam, Ki Woong; Lee, Jang Hyun [Division of Mechanical and Automotive Engineering, Wonkwang University, Iksan (Korea, Republic of)

    2016-04-15

    This study develops an efficient and accurate method for calculating nonlinear diffraction beam fields propagating in fluids or solids. The Westervelt equation and quasilinear theory, from which the integral solutions for the fundamental and second harmonics can be obtained, are first considered. A computationally efficient method is then developed using a multi-Gaussian beam (MGB) model that easily separates the diffraction effects from the plane wave solution. The MGB models provide accurate beam fields when compared with the integral solutions for a number of transmitter-receiver geometries. These models can also serve as fast, powerful modeling tools for many nonlinear acoustics applications, especially in making diffraction corrections for the nonlinearity parameter determination, because of their computational efficiency and accuracy.

  19. NONLINEAR FILTER METHOD OF GPS DYNAMIC POSITIONING BASED ON BANCROFT ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    ZHANGQin; TAOBen-zao; ZHAOChao-ying; WANGLi

    2005-01-01

    Because of the ignored items after linearization, the extended Kalman filter (EKF) becomes a form of suboptimal gradient descent algorithm. The emanative tendency exists in GPS solution when the filter equations are ill-posed. The deviation in the estimation cannot be avoided. Furthermore, the true solution may be lost in pseudorange positioning because the linearized pseudorange equations are partial solutions. To solve the above problems in GPS dynamic positioning by using EKF, a closed-form Kalman filter method called the two-stage algorithm is presented for the nonlinear algebraic solution of GPS dynamic positioning based on the global nonlinear least squares closed algorithm--Bancroft numerical algorithm of American. The method separates the spatial parts from temporal parts during processing the GPS filter problems, and solves the nonlinear GPS dynamic positioning, thus getting stable and reliable dynamic positioning solutions.

  20. Research reactor power controller design using an output feedback nonlinear receding horizon control method

    Energy Technology Data Exchange (ETDEWEB)

    Etchepareborda, Andres [Department of Nuclear Engineering, Argentine National Atomic Energy Commission, Centro Atomico Bariloche, Av. E. Bustillo 9500, Bariloche 8400 (Argentina)]. E-mail: etche@cab.cnea.gov.ar; Lolich, Jose [INVAP S.E., Moreno 1089, Bariloche 8400 (Argentina)

    2007-02-15

    A constrained, output feedback nonlinear receding horizon control (NRHC) method is applied to design a research reactor power controller. The method uses a nonlinear plant model subject to state, control and terminal set constraints; a nonlinear cost function; and a high gain observer. The controller regulates reactor power from 1% to 100% of full power; considers known disturbances, such as reactivity insertions and changes in core inlet flow and temperature; and includes upper limits constraints on neutron flux, neutron flux rate, core outlet temperature and core inlet-outlet temperature difference. Simulation results show an excellent performance for power regulation and known disturbances rejection: all process variables are kept within the admissible limits avoiding the actuation of the safety systems.

  1. A Class of Parameter Estimation Methods for Nonlinear Muskingum Model Using Hybrid Invasive Weed Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Aijia Ouyang

    2015-01-01

    Full Text Available Nonlinear Muskingum models are important tools in hydrological forecasting. In this paper, we have come up with a class of new discretization schemes including a parameter θ to approximate the nonlinear Muskingum model based on general trapezoid formulas. The accuracy of these schemes is second order, if θ≠1/3, but interestingly when θ=1/3, the accuracy of the presented scheme gets improved to third order. Then, the present schemes are transformed into an unconstrained optimization problem which can be solved by a hybrid invasive weed optimization (HIWO algorithm. Finally, a numerical example is provided to illustrate the effectiveness of the present methods. The numerical results substantiate the fact that the presented methods have better precision in estimating the parameters of nonlinear Muskingum models.

  2. Non-linear modeling of 1H NMR metabonomic data using kernel-based orthogonal projections to latent structures optimized by simulated annealing.

    Science.gov (United States)

    Fonville, Judith M; Bylesjö, Max; Coen, Muireann; Nicholson, Jeremy K; Holmes, Elaine; Lindon, John C; Rantalainen, Mattias

    2011-10-31

    Linear multivariate projection methods are frequently applied for predictive modeling of spectroscopic data in metabonomic studies. The OPLS method is a commonly used computational procedure for characterizing spectral metabonomic data, largely due to its favorable model interpretation properties providing separate descriptions of predictive variation and response-orthogonal structured noise. However, when the relationship between descriptor variables and the response is non-linear, conventional linear models will perform sub-optimally. In this study we have evaluated to what extent a non-linear model, kernel-based orthogonal projections to latent structures (K-OPLS), can provide enhanced predictive performance compared to the linear OPLS model. Just like its linear counterpart, K-OPLS provides separate model components for predictive variation and response-orthogonal structured noise. The improved model interpretation by this separate modeling is a property unique to K-OPLS in comparison to other kernel-based models. Simulated annealing (SA) was used for effective and automated optimization of the kernel-function parameter in K-OPLS (SA-K-OPLS). Our results reveal that the non-linear K-OPLS model provides improved prediction performance in three separate metabonomic data sets compared to the linear OPLS model. We also demonstrate how response-orthogonal K-OPLS components provide valuable biological interpretation of model and data. The metabonomic data sets were acquired using proton Nuclear Magnetic Resonance (NMR) spectroscopy, and include a study of the liver toxin galactosamine, a study of the nephrotoxin mercuric chloride and a study of Trypanosoma brucei brucei infection. Automated and user-friendly procedures for the kernel-optimization have been incorporated into version 1.1.1 of the freely available K-OPLS software package for both R and Matlab to enable easy application of K-OPLS for non-linear prediction modeling.

  3. Analysis of Highly Nonlinear Oscillation Systems Using He’s Max-Min Method and Comparison with Homotopy Analysis and Energy Balance Methods

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo; Barari, Amin; Kimiaeifar, Amin

    2010-01-01

    /approximate analytical solution to strong nonlinear oscillators. Furthermore, it is shown that a large class of linear or nonlinear differential equations can be solved without the tangible restriction of sensitivity to the degree of the nonlinear term, adding that the method is quite convenient due to reduction in size...

  4. New implicit method for analysis of problems in nonlinear structural dynamics

    Directory of Open Access Journals (Sweden)

    Gholampour A. A.

    2011-06-01

    Full Text Available In this paper a new method is proposed for direct time integration of nonlinear structural dynamics problems. In the proposed method the order of time integration scheme is higher than the conventional Newmark’s family of methods. This method assumes second order variation of the acceleration at each time step. Two variable parameters are used to increase the stability and accuracy of the method. The result obtained from this new higher order method is compared with two implicit methods; namely the Wilson-θ and the Newmark’s average acceleration methods.

  5. Application of the G'/G Expansion Method in Ultrashort Pulses in Nonlinear Optical Fibers

    Directory of Open Access Journals (Sweden)

    Jiang Xing-Fang

    2013-01-01

    Full Text Available With the increasing input power in optical fibers, the dispersion problem is becoming a severe restriction on wavelength division multiplexing (WDM. With the aid of solitons, in which the shape and speed can remain constant during propagation, it is expected that the transmission of nonlinear ultrashort pulses in optical fibers can effectively control the dispersion. The propagation of a nonlinear ultrashort laser pulse in an optical fiber, which fits the high-order nonlinear Schrödinger equation (NLSE, has been solved using the G'/G expansion method. Group velocity dispersion, self-phase modulation, the fourth-order dispersion, and the fifth-order nonlinearity of the high-order NLSE were taken into consideration. A series of solutions has been obtained such as the solitary wave solutions of kink, inverse kink, the tangent trigonometric function, and the cotangent trigonometric function. The results have shown that the G'/G expansion method is an effective way to obtain the exact solutions for the high-order NLSE, and it provides a theoretical basis for the transmission of ultrashort pulses in nonlinear optical fibers.

  6. Budgetary Approach to Project Management by Percentage of Completion Method

    Directory of Open Access Journals (Sweden)

    Leszek Borowiec

    2010-06-01

    Full Text Available Efficient and effective project management process is made possible by the use of methods and techniques of project management. The aim of this paper is to present the problems of project management by using Percentage of Completion method. The research material was gathered based on the experience in implementing this method by the Johnson Controls International Company. The article attempts to demonstrate the validity of the thesis that the POC project management method, allows for effective implementation and monitoring of the project and thus is an effective tool in the managing of companies which exploit the budgetary approach. The study presents planning process of basic parameters affecting the effectiveness of the project (such as costs, revenue, margin and characterized how the primary measurements used to evaluate it. The present theme is illustrating by numerous examples for showing the essence of the raised problems and the results are presenting by using descriptive methods, graphical and tabular.

  7. Sequential Monte Carlo methods for nonlinear discrete-time filtering

    CERN Document Server

    Bruno, Marcelo GS

    2013-01-01

    In these notes, we introduce particle filtering as a recursive importance sampling method that approximates the minimum-mean-square-error (MMSE) estimate of a sequence of hidden state vectors in scenarios where the joint probability distribution of the states and the observations is non-Gaussian and, therefore, closed-form analytical expressions for the MMSE estimate are generally unavailable.We begin the notes with a review of Bayesian approaches to static (i.e., time-invariant) parameter estimation. In the sequel, we describe the solution to the problem of sequential state estimation in line

  8. Flight Dynamic Simulation with Nonlinear Aeroelastic Interaction using the ROM-ROM Procedure Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes to develop an integrated flight dynamics simulation capability with nonlinear aeroelastic interactions by combining a flight...

  9. Flight Dynamic Simulation with Nonlinear Aeroelastic Interaction using the ROM-ROM Procedure Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. proposes to develop an integrated flight dynamics simulation capability with nonlinear aeroelastic interactions by combining a flight dynamics...

  10. Nonlinear dimensionality reduction methods for synthetic biology biobricks' visualization.

    Science.gov (United States)

    Yang, Jiaoyun; Wang, Haipeng; Ding, Huitong; An, Ning; Alterovitz, Gil

    2017-01-19

    Visualizing data by dimensionality reduction is an important strategy in Bioinformatics, which could help to discover hidden data properties and detect data quality issues, e.g. data noise, inappropriately labeled data, etc. As crowdsourcing-based synthetic biology databases face similar data quality issues, we propose to visualize biobricks to tackle them. However, existing dimensionality reduction methods could not be directly applied on biobricks datasets. Hereby, we use normalized edit distance to enhance dimensionality reduction methods, including Isomap and Laplacian Eigenmaps. By extracting biobricks from synthetic biology database Registry of Standard Biological Parts, six combinations of various types of biobricks are tested. The visualization graphs illustrate discriminated biobricks and inappropriately labeled biobricks. Clustering algorithm K-means is adopted to quantify the reduction results. The average clustering accuracy for Isomap and Laplacian Eigenmaps are 0.857 and 0.844, respectively. Besides, Laplacian Eigenmaps is 5 times faster than Isomap, and its visualization graph is more concentrated to discriminate biobricks. By combining normalized edit distance with Isomap and Laplacian Eigenmaps, synthetic biology biobircks are successfully visualized in two dimensional space. Various types of biobricks could be discriminated and inappropriately labeled biobricks could be determined, which could help to assess crowdsourcing-based synthetic biology databases' quality, and make biobricks selection.

  11. A combined dynamic analysis method for geometrically nonlinear vibration isolators with elastic rings

    Science.gov (United States)

    Hu, Zhan; Zheng, Gangtie

    2016-08-01

    A combined analysis method is developed in the present paper for studying the dynamic properties of a type of geometrically nonlinear vibration isolator, which is composed of push-pull configuration rings. This method combines the geometrically nonlinear theory of curved beams and the Harmonic Balance Method to overcome the difficulty in calculating the vibration and vibration transmissibility under large deformations of the ring structure. Using the proposed method, nonlinear dynamic behaviors of this isolator, such as the lock situation due to the coulomb damping and the usual jump resulting from the nonlinear stiffness, can be investigated. Numerical solutions based on the primary harmonic balance are first verified by direct integration results. Then, the whole procedure of this combined analysis method is demonstrated and validated by slowly sinusoidal sweeping experiments with different amplitudes of the base excitation. Both numerical and experimental results indicate that this type of isolator behaves as a hardening spring with increasing amplitude of the base excitation, which makes it suitable for isolating both steady-state vibrations and transient shocks.

  12. Manufacturing Methods and Technology Project Summary Reports

    Science.gov (United States)

    1982-12-01

    MORE INFORMATION 1 Additional information can be obtained from the project officer, Mr. Nathaniel Scott, ARRADCOM, AV 880-6945 or Commercial (201...QAM6, Mr. S. R. Caswell Cdr, Hawthorne AAP, Attn: SARHW-CO Cdr, Holston AAP, Attn: SARHO-CO Cdr, Indiana AAP, Attn: SARIN-CO AII-3 DRXIB-MT

  13. Project Oriented Immersion Learning: Method and Results

    DEFF Research Database (Denmark)

    Icaza, José I.; Heredia, Yolanda; Borch, Ole M.

    2005-01-01

    house that develops digital products including e-books, tutorials, web sites and so on. The students defined the problem that their product was to solve; choose the type of product and the content; and built the product following a strict project methodology. A wiki server was used as a platform to hold...

  14. Extended Application of the Conditional Nonlinear Optimal Parameter Perturbation Method in the Common Land Model

    Institute of Scientific and Technical Information of China (English)

    WANG Bo; HUO Zhenhua

    2013-01-01

    An extension of the conditional nonlinear optimal parameter perturbation (CNOP-P) method is applied to the parameter optimization of the Common Land Model (CoLM) for the North China Plain with the differential evolution (DE) method.Using National Meteorological Center (NMC) Reanalysis 6-hourly surface flux data and National Center for Environmental Prediction/Department of Energy (NCEP/DOE)Atmospheric Model Intercomparison Project II (AMIP-II) 6-hourly Reanalysis Gaussian Grid data,two experiments (I and II) were designed to investigate the impact of the percentages of sand and clay in the shallow soil in CoLM on its ability to simulate shallow soil moisture.A third experiment (III) was designed to study the shallow soil moisture and latent heat flux simultaneously.In all the three experiments,after the optimization stage,the percentages of sand and clay of the shallow soil were used to predict the shallow soil moisture in the following month.The results show that the optimal parameters can enable CoLM to better simulate shallow soil moisture,with the simulation results of CoLM after the double-parameter optimal experiment being better than the single-parameter optimal experiment in the optimization slot.Furthermore,the optimal parameters were able to significantly improve the prediction results of CoLM at the prediction stage.In addition,whether or not the atmospheric forcing and observational data are accurate can seriously affect the results of optimization,and the more accurate the data are,the more significant the results of optimization may be.

  15. Numerical Simulation of Coupled Nonlinear Schr(o)dinger Equations Using the Generalized Differential Quadrature Method

    Institute of Scientific and Technical Information of China (English)

    R.Mokhtari; A.Samadi Toodar; N.G.Chegini

    2011-01-01

    @@ We the extend application of the generalized differential quadrature method (GDQM) to solve some coupled nonlinear Schr(o)dinger equations.The cosine-based GDQM is employed and the obtained system of ordinary differential equations is solved via the fourth order Runge-Kutta method.The numerical solutions coincide with the exact solutions in desired machine precision and invariant quantities are conserved sensibly.Some comparisons with the methods applied in the literature are carried out.%We the extend application of the generalized differential quadrature method (GDQM) to solve some coupled nonlinear Schrodinger equations. The cosine-based GDQM is employed and the obtained system of ordinary differential equations is solved via the fourth order Runge-Kutta method. The numerical solutions coincide with the exact solutions in desired machine precision and invariant quantities are conserved sensibly. Some comparisons with the methods applied in the literature are carried out.

  16. A stable numerical solution method in-plane loading of nonlinear viscoelastic laminated orthotropic materials

    Science.gov (United States)

    Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.

    1989-01-01

    In response to the tremendous growth in the development of advanced materials, such as fiber-reinforced plastic (FRP) composite materials, a new numerical method is developed to analyze and predict the time-dependent properties of these materials. Basic concepts in viscoelasticity, laminated composites, and previous viscoelastic numerical methods are presented. A stable numerical method, called the nonlinear differential equation method (NDEM), is developed to calculate the in-plane stresses and strains over any time period for a general laminate constructed from nonlinear viscoelastic orthotropic plies. The method is implemented in an in-plane stress analysis computer program, called VCAP, to demonstrate its usefulness and to verify its accuracy. A number of actual experimental test results performed on Kevlar/epoxy composite laminates are compared to predictions calculated from the numerical method.

  17. A New Spectral Local Linearization Method for Nonlinear Boundary Layer Flow Problems

    Directory of Open Access Journals (Sweden)

    S. S. Motsa

    2013-01-01

    Full Text Available We propose a simple and efficient method for solving highly nonlinear systems of boundary layer flow problems with exponentially decaying profiles. The algorithm of the proposed method is based on an innovative idea of linearizing and decoupling the governing systems of equations and reducing them into a sequence of subsystems of differential equations which are solved using spectral collocation methods. The applicability of the proposed method, hereinafter referred to as the spectral local linearization method (SLLM, is tested on some well-known boundary layer flow equations. The numerical results presented in this investigation indicate that the proposed method, despite being easy to develop and numerically implement, is very robust in that it converges rapidly to yield accurate results and is more efficient in solving very large systems of nonlinear boundary value problems of the similarity variable boundary layer type. The accuracy and numerical stability of the SLLM can further be improved by using successive overrelaxation techniques.

  18. A Theoretical Method for Characterizing Nonlinear Effects in Paul Traps with Added Octopole Field.

    Science.gov (United States)

    Xiong, Caiqiao; Zhou, Xiaoyu; Zhang, Ning; Zhan, Lingpeng; Chen, Yongtai; Chen, Suming; Nie, Zongxiu

    2015-08-01

    In comparison with numerical methods, theoretical characterizations of ion motion in the nonlinear Paul traps always suffer from low accuracy and little applicability. To overcome the difficulties, the theoretical harmonic balance (HB) method was developed, and was validated by the numerical fourth-order Runge-Kutta (4th RK) method. Using the HB method, analytical ion trajectory and ion motion frequency in the superimposed octopole field, ε, were obtained by solving the nonlinear Mathieu equation (NME). The obtained accuracy of the HB method was comparable with that of the 4th RK method at the Mathieu parameter, q = 0.6, and the applicable q values could be extended to the entire first stability region with satisfactory accuracy. Two sorts of nonlinear effects of ion motion were studied, including ion frequency shift, Δβ, and ion amplitude variation, Δ(C(2n)/C0) (n ≠ 0). New phenomena regarding Δβ were observed, although extensive studies have been performed based on the pseudo-potential well (PW) model. For instance, the |Δβ| at ε = 0.1 and ε = -0.1 were found to be different, but they were the same in the PW model. This is the first time the nonlinear effects regarding Δ(C(2n)/C0) (n ≠ 0) are studied, and the associated study has been a challenge for both theoretical and numerical methods. The nonlinear effects of Δ(C(2n)/C0) (n ≠ 0) and Δβ were found to share some similarities at q < 0.6: both of them were proportional to ε, and the square of the initial ion displacement, z(0)(2).

  19. Dissipativity of Multistep Runge-Kutta Methods for Nonlinear Volterra Delay-integro-differential Equations

    Institute of Scientific and Technical Information of China (English)

    Rui QI; Cheng-jian ZHANG; Yu-jie ZHANG

    2012-01-01

    This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear Volterra delay-integro-differential equations. We investigate the dissipativity properties of (k,l)-algebraically stable multistep Runge-Kutta methods with constrained grid and an uniform grid.The finitedimensional and infinite-dimensional dissipativity results of (k,l)-algebraically stable Runge-Kutta methods are obtained.

  20. The Convergence Study of the Homotopy Analysis Method for Solving Nonlinear Volterra-Fredholm Integrodifferential Equations

    Directory of Open Access Journals (Sweden)

    Behzad Ghanbari

    2014-01-01

    Full Text Available We aim to study the convergence of the homotopy analysis method (HAM in short for solving special nonlinear Volterra-Fredholm integrodifferential equations. The sufficient condition for the convergence of the method is briefly addressed. Some illustrative examples are also presented to demonstrate the validity and applicability of the technique. Comparison of the obtained results HAM with exact solution shows that the method is reliable and capable of providing analytic treatment for solving such equations.

  1. Global solvability to generalized Boussinesq equation with Bernoulli type nonlinearities via nonstandard potential well method

    Science.gov (United States)

    Kutev, N.; Kolkovska, N.; Dimova, M.

    2013-10-01

    The Cauchy problem to the generalized Boussinesq equation with Bernoulli type nonlinearities is studied. Global solvability of the solutions with sub-critical initial energy is proved by means of different techniques - nonstandard potential well method and method of the conservation low of the energy. In the framework of the nonstandard potential well method a new critical energy constant is introduced and estimated. The performed numerical experiments support the theoretical results.

  2. Evaluation of a physically based quasi-linear and a conceptually based nonlinear Muskingum methods

    Science.gov (United States)

    Perumal, Muthiah; Tayfur, Gokmen; Rao, C. Madhusudana; Gurarslan, Gurhan

    2017-03-01

    Two variants of the Muskingum flood routing method formulated for accounting nonlinearity of the channel routing process are investigated in this study. These variant methods are: (1) The three-parameter conceptual Nonlinear Muskingum (NLM) method advocated by Gillin 1978, and (2) The Variable Parameter McCarthy-Muskingum (VPMM) method recently proposed by Perumal and Price in 2013. The VPMM method does not require rigorous calibration and validation procedures as required in the case of NLM method due to established relationships of its parameters with flow and channel characteristics based on hydrodynamic principles. The parameters of the conceptual nonlinear storage equation used in the NLM method were calibrated using the Artificial Intelligence Application (AIA) techniques, such as the Genetic Algorithm (GA), the Differential Evolution (DE), the Particle Swarm Optimization (PSO) and the Harmony Search (HS). The calibration was carried out on a given set of hypothetical flood events obtained by routing a given inflow hydrograph in a set of 40 km length prismatic channel reaches using the Saint-Venant (SV) equations. The validation of the calibrated NLM method was investigated using a different set of hypothetical flood hydrographs obtained in the same set of channel reaches used for calibration studies. Both the sets of solutions obtained in the calibration and validation cases using the NLM method were compared with the corresponding solutions of the VPMM method based on some pertinent evaluation measures. The results of the study reveal that the physically based VPMM method is capable of accounting for nonlinear characteristics of flood wave movement better than the conceptually based NLM method which requires the use of tedious calibration and validation procedures.

  3. On a New Method for Computing the Numerical Solution of Systems of Nonlinear Equations

    Directory of Open Access Journals (Sweden)

    H. Montazeri

    2012-01-01

    Full Text Available We consider a system of nonlinear equations F(x=0. A new iterative method for solving this problem numerically is suggested. The analytical discussions of the method are provided to reveal its sixth order of convergence. A discussion on the efficiency index of the contribution with comparison to the other iterative methods is also given. Finally, numerical tests illustrate the theoretical aspects using the programming package Mathematica.

  4. C-L METHOD AND ITS APPLICATION TO ENGINEERING NONLINEAR DYNAMICAL PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    陈予恕; 丁千

    2001-01-01

    The C-L method was generalized from Liapunov-Schmidt reduction method,combined with theory of singularities, for study of non-autonomous dynamical systems to obtain the typical bifurcating response curves in the system parameter spaces. This method has been used , as an example, to analyze the engineering nonlinear dynamical problems by obtaining the bifurcation programs and response curves which are useful in developing tech niques of control to subharmonic instability of large rotating machinery.

  5. AN ANISOTROPIC NONCONFORMING FINITE ELEMENT METHOD FOR APPROXIMATING A CLASS OF NONLINEAR SOBOLEV EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Dongyang Shi; Haihong Wang; Yuepeng Du

    2009-01-01

    An anisotropic nonconforming finite element method is presented for a class of nonlinear Sobolev equations. The optimal error estimates and supercloseness are obtained for both semi-discrete and fully-discrete approximate schemes, which are the same as the traditional finite element methods. In addition, the global superconvergence is derived through the postprocessing technique. Numerical experiments are included to illustrate the feasibility of the proposed method.

  6. A Field Method for Integrating Equations of Motion of Nonlinear Mechanico-Electrical Coupling Dynamical Systems

    Institute of Scientific and Technical Information of China (English)

    FU Jing-Li; FU Hao

    2008-01-01

    We deai with the generalization of the field method to weakly non-linear mechanico-electricai coupling systems.The field co-ordinates and field momenta approaches are combined with the method of multiple time scales in order to obtain the amplitudes and phase of oscillations in the frst approximation. An example in mechanico-electrical coupling systems is given to illustrate this method.

  7. A New UKF Based Fault Detection Method in Non-linear Systems

    Institute of Scientific and Technical Information of China (English)

    GE Zhe-xue; YANG Yong-min; HU Zheng

    2006-01-01

    To detect the bias fault in stochastic non-linear dynamic systems, a new Unscented Kalman Filtering(UKF) based real-time recursion detection method is brought forward with the consideration of the flaws of traditional Extended Kalman Filtering(EKF). It uses the UKF as the residual generation method and the Weighted-Sum Squared Residual (WSSR) as the fault detection strategy. The simulation results are provided which demonstrate better effectiveness and a higher detection ratio of the developed methods.

  8. Modeling Solution of Nonlinear Dispersive Partial Differential Equations using the Marker Method

    Energy Technology Data Exchange (ETDEWEB)

    Jerome L.V. Lewandowski

    2005-01-25

    A new method for the solution of nonlinear dispersive partial differential equations is described. The marker method relies on the definition of a convective field associated with the underlying partial differential equation; the information about the approximate solution is associated with the response of an ensemble of markers to this convective field. Some key aspects of the method, such as the selection of the shape function and the initial loading, are discussed in some details.

  9. Directed electromagnetic wave propagation in 1D metamaterial: Projecting operators method

    Energy Technology Data Exchange (ETDEWEB)

    Ampilogov, Dmitrii, E-mail: DVAmpilogov@kantiana.ru; Leble, Sergey, E-mail: sleble@kantiana.ru

    2016-07-01

    We consider a boundary problem for 1D electrodynamics modeling of a pulse propagation in a metamaterial medium. We build and apply projecting operators to a Maxwell system in time domain that allows to split the linear propagation problem to directed waves for a material relations with general dispersion. Matrix elements of the projectors act as convolution integral operators. For a weak nonlinearity we generalize the linear results still for arbitrary dispersion and derive the system of interacting right/left waves with combined (hybrid) amplitudes. The result is specified for the popular metamaterial model with Drude formula for both permittivity and permeability coefficients. We also discuss and investigate stationary solutions of the system related to some boundary regimes. - Highlights: • The problem of boundary regime propagation is solved by a systematic dynamic projecting method. • By this method a hybrid amplitude is introduced and used for derivation of nonlinear equation of opposite directed waves. • The equations are specified for Drude metamaterial dispersion and Kerr nonlinearity. • It is shown that one of unidirection waves in the metamaterial is specified as Shafer–Wayn integrable equation. • A stationary wave solution is approximately expressed in terms of elliptic functions.

  10. Numerical research orthotropic geometrically nonlinear shell stability using the mixed finite element method

    Science.gov (United States)

    Stupishin, L.; Nikitin, K.; Kolesnikov, A.

    2017-05-01

    A methodology for shell stability research and determining buckling load, based on the mixed finite element method are proposed. Axisymmetric geometrically nonlinear shallow shells made of orthotropic material are considered. The results of numerical research of stability by changing the shape of shells, ratio of elastic modulus of the material and parameters of the support contour are presented.

  11. EXACT SOLITARY WAVE SOLUTIONS TO A CLASS OF NONLINEAR DIFFERENTIAL EQUATIONS USING DIRECT ALGEBRAIC METHOD

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Using direct algebraic method,exact solitary wave solutions are performed for a class of third order nonlinear dispersive disipative partial differential equations. These solutions are obtained under certain conditions for the relationship between the coefficients of the equation. The exact solitary waves of this class are rational functions of real exponentials of kink-type solutions.

  12. A Kernel Time Structure Independent Component Analysis Method for Nonlinear Process Monitoring☆

    Institute of Scientific and Technical Information of China (English)

    Lianfang Cai; Xuemin Tian; Ni Zhang

    2014-01-01

    Kernel independent component analysis (KICA) is a newly emerging nonlinear process monitoring method, which can extract mutually independent latent variables cal ed independent components (ICs) from process var-iables. However, when more than one IC have Gaussian distribution, it cannot extract the IC feature effectively and thus its monitoring performance will be degraded drastical y. To solve such a problem, a kernel time struc-ture independent component analysis (KTSICA) method is proposed for monitoring nonlinear process in this paper. The original process data are mapped into a feature space nonlinearly and then the whitened data are calculated in the feature space by the kernel trick. Subsequently, a time structure independent component analysis algorithm, which has no requirement for the distribution of ICs, is proposed to extract the IC feature. Finally, two monitoring statistics are built to detect process faults. When some fault is detected, a nonlinear fault identification method is developed to identify fault variables based on sensitivity analysis. The proposed monitoring method is applied in the Tennessee Eastman benchmark process. Applications demonstrate the superiority of KTSICA over KICA.

  13. An Assessment of Linear Versus Non-linear Multigrid Methods for Unstructured Mesh Solvers

    Science.gov (United States)

    2001-05-01

    problems is investigated. The first case consists of a transient radiation-diffusion problem for which an exact linearization is available, while the...to the Jacobian of a second-order accurate discretization. When an exact linearization is employed, the linear and non-linear multigrid methods

  14. Adaptive Wavelet Methods for Linear and Nonlinear Least-Squares Problems

    NARCIS (Netherlands)

    Stevenson, R.

    2014-01-01

    The adaptive wavelet Galerkin method for solving linear, elliptic operator equations introduced by Cohen et al. (Math Comp 70:27-75, 2001) is extended to nonlinear equations and is shown to converge with optimal rates without coarsening. Moreover, when an appropriate scheme is available for the appr

  15. Regularization method with two parameters for nonlinear ill-posed problems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper is devoted to the regularization of a class of nonlinear ill-posed problems in Banach spaces. The operators involved are multi-valued and the data are assumed to be known approximately. Under the assumption that the original problem is solvable, a strongly convergent approximation procedure is designed by means of the Tikhonov regularization method with two pa- rameters.

  16. Approximation for Transient of Nonlinear Circuits Using RHPM and BPES Methods

    Directory of Open Access Journals (Sweden)

    H. Vazquez-Leal

    2013-01-01

    Full Text Available The microelectronics area constantly demands better and improved circuit simulation tools. Therefore, in this paper, rational homotopy perturbation method and Boubaker Polynomials Expansion Scheme are applied to a differential equation from a nonlinear circuit. Comparing the results obtained by both techniques revealed that they are effective and convenient.

  17. Pushing the Boundaries: Level-set Methods and Geometrical Nonlinearities in Structural Topology Optimization

    NARCIS (Netherlands)

    Van Dijk, N.P.

    2012-01-01

    This thesis aims at understanding and improving topology optimization techniques focusing on density-based level-set methods and geometrical nonlinearities. Central in this work are the numerical modeling of the mechanical response of a design and the consistency of the optimization process itself.

  18. Travelling wave solutions to nonlinear physical models by means of the first integral method

    Indian Academy of Sciences (India)

    İsmail Aslan Aslan

    2011-04-01

    This paper presents the first integral method to carry out the integration of nonlinear partial differential equations in terms of travelling wave solutions. For illustration, three important equations of mathematical physics are analytically investigated. Through the established first integrals, exact solutions are successfully constructed for the equations considered.

  19. Stability analysis of explicit entropy viscosity methods for non-linear scalar conservation equations

    KAUST Repository

    Bonito, Andrea

    2013-10-03

    We establish the L2-stability of an entropy viscosity technique applied to nonlinear scalar conservation equations. First-and second-order explicit time-stepping techniques using continuous finite elements in space are considered. The method is shown to be stable independently of the polynomial degree of the space approximation under the standard CFL condition. © 2013 American Mathematical Society.

  20. THE FINITE ELEMENT METHODS FOR A CLASS OF NONLINEAR PARABOLIC EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Error estimates are established for the finite dement methods to solve a class of second or der nonlinear parabolic equations. Optimal rates of convergence in L2-and H1-norms are derived. Meanwhile,the schenes are second order correct in time.