WorldWideScience

Sample records for nonlinear projection filter

  1. A Differential Geometric Approach to Nonlinear Filtering: The Projection Filter

    NARCIS (Netherlands)

    Brigo, D.; Hanzon, B.; LeGland, F.

    1998-01-01

    This paper presents a new and systematic method of approximating exact nonlinear filters with finite dimensional filters, using the differential geometric approach to statistics. The projection filter is defined rigorously in the case of exponential families. A convenient exponential family is

  2. Perspectives on Nonlinear Filtering

    KAUST Repository

    Law, Kody

    2015-01-01

    The solution to the problem of nonlinear filtering may be given either as an estimate of the signal (and ideally some measure of concentration), or as a full posterior distribution. Similarly, one may evaluate the fidelity of the filter either by its ability to track the signal or its proximity to the posterior filtering distribution. Hence, the field enjoys a lively symbiosis between probability and control theory, and there are plenty of applications which benefit from algorithmic advances, from signal processing, to econometrics, to large-scale ocean, atmosphere, and climate modeling. This talk will survey some recent theoretical results involving accurate signal tracking with noise-free (degenerate) dynamics in high-dimensions (infinite, in principle, but say d between 103 and 108 , depending on the size of your application and your computer), and high-fidelity approximations of the filtering distribution in low dimensions (say d between 1 and several 10s).

  3. Perspectives on Nonlinear Filtering

    KAUST Repository

    Law, Kody

    2015-01-07

    The solution to the problem of nonlinear filtering may be given either as an estimate of the signal (and ideally some measure of concentration), or as a full posterior distribution. Similarly, one may evaluate the fidelity of the filter either by its ability to track the signal or its proximity to the posterior filtering distribution. Hence, the field enjoys a lively symbiosis between probability and control theory, and there are plenty of applications which benefit from algorithmic advances, from signal processing, to econometrics, to large-scale ocean, atmosphere, and climate modeling. This talk will survey some recent theoretical results involving accurate signal tracking with noise-free (degenerate) dynamics in high-dimensions (infinite, in principle, but say d between 103 and 108 , depending on the size of your application and your computer), and high-fidelity approximations of the filtering distribution in low dimensions (say d between 1 and several 10s).

  4. Nonlinear filtering with particle filters

    OpenAIRE

    Haslehner, Mylène

    2014-01-01

    Convective phenomena in the atmosphere, such as convective storms, are characterized by very fast, intermittent and seemingly stochastic processes. They are thus difficult to predict with Numerical Weather Prediction (NWP) models, and difficult to estimate with data assimilation methods that combine prediction and observations. In this thesis, nonlinear data assimilation methods are tested on two idealized convective scale cloud models, developed in [58] and [59]. The aim of this work was to ...

  5. Adaptive projective filters

    International Nuclear Information System (INIS)

    Dikusar, N.D.

    1993-01-01

    The new approach to solving of the finding problem is proposed. The method is based on Discrete Projective Transformations (DPT), the List Square Fitting (LSF) and uses the information feedback in tracing for linear or quadratic track segments (TS). The fast and stable with respect to measurement errors and background points recurrent algorithm is suggested. The algorithm realizes the family of digital adaptive projective filters (APF) with known nonlinear weight functions-projective invariants. APF can be used in adequate control systems for collection, processing and compression of data, including tracking problems for the wide class of detectors. 10 refs.; 9 figs

  6. Nonlinear image filtering within IDP++

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, S.K.; Wieting, M.G.; Brase, J.M.

    1995-02-09

    IDP++, image and data processing in C++, is a set of a signal processing libraries written in C++. It is a multi-dimension (up to four dimensions), multi-data type (implemented through templates) signal processing extension to C++. IDP++ takes advantage of the object-oriented compiler technology to provide ``information hiding.`` Users need only know C, not C++. Signals or data sets are treated like any other variable with a defined set of operators and functions. We here some examples of the nonlinear filter library within IDP++. Specifically, the results of MIN, MAX median, {alpha}-trimmed mean, and edge-trimmed mean filters as applied to a real aperture radar (RR) and synthetic aperture radar (SAR) data set.

  7. Nonlinear filtering for LIDAR signal processing

    Directory of Open Access Journals (Sweden)

    D. G. Lainiotis

    1996-01-01

    Full Text Available LIDAR (Laser Integrated Radar is an engineering problem of great practical importance in environmental monitoring sciences. Signal processing for LIDAR applications involves highly nonlinear models and consequently nonlinear filtering. Optimal nonlinear filters, however, are practically unrealizable. In this paper, the Lainiotis's multi-model partitioning methodology and the related approximate but effective nonlinear filtering algorithms are reviewed and applied to LIDAR signal processing. Extensive simulation and performance evaluation of the multi-model partitioning approach and its application to LIDAR signal processing shows that the nonlinear partitioning methods are very effective and significantly superior to the nonlinear extended Kalman filter (EKF, which has been the standard nonlinear filter in past engineering applications.

  8. Particle Kalman Filtering: A Nonlinear Framework for Ensemble Kalman Filters

    KAUST Repository

    Hoteit, Ibrahim

    2010-09-19

    Optimal nonlinear filtering consists of sequentially determining the conditional probability distribution functions (pdf) of the system state, given the information of the dynamical and measurement processes and the previous measurements. Once the pdfs are obtained, one can determine different estimates, for instance, the minimum variance estimate, or the maximum a posteriori estimate, of the system state. It can be shown that, many filters, including the Kalman filter (KF) and the particle filter (PF), can be derived based on this sequential Bayesian estimation framework. In this contribution, we present a Gaussian mixture‐based framework, called the particle Kalman filter (PKF), and discuss how the different EnKF methods can be derived as simplified variants of the PKF. We also discuss approaches to reducing the computational burden of the PKF in order to make it suitable for complex geosciences applications. We use the strongly nonlinear Lorenz‐96 model to illustrate the performance of the PKF.

  9. Nonlinear Filtering and Approximation Techniques

    Science.gov (United States)

    1991-09-01

    filtering. UNIT8 Q RECERCE**No 1223 Programme 5 A utomatique, Productique, Traitement dui Signal et des Donnc~es CONSISTENT PARAMETER ESTIMATION FOR...ue’e[71 E C 2.’(Rm x [0,7]; R) is the unique solution of the Hamilton-Jacobi-Bellman equation 9u,’[7](x, t) - EAu "’[ 7](x,t) + He,’[ 7](x,t,Du,[ 7](x,t

  10. Nonlinear Filtering in High Dimension

    Science.gov (United States)

    2014-06-02

    near J (that is, the spatial accumulation of errors is mitigated). This localization comes at a price , however; the local filter stability bound holds...Appendix A to complete the proof of the variance bound. The present approach is inspired by [15]. The price we pay is that the variance bound scales...Random fields and diffusion processes. In École d’Été de Prob- abilités de Saint- Flour XV–XVII, 1985–87, volume 1362 of Lecture Notes in Math., pages

  11. Particle Kalman Filtering: A Nonlinear Framework for Ensemble Kalman Filters

    KAUST Repository

    Hoteit, Ibrahim; Luo, Xiaodong; Pham, Dinh-Tuan; Moroz, Irene M.

    2010-01-01

    In this contribution, we present a Gaussian mixture‐based framework, called the particle Kalman filter (PKF), and discuss how the different EnKF methods can be derived as simplified variants of the PKF. We also discuss approaches to reducing the computational burden of the PKF in order to make it suitable for complex geosciences applications. We use the strongly nonlinear Lorenz‐96 model to illustrate the performance of the PKF.

  12. A robust nonlinear filter for image restoration.

    Science.gov (United States)

    Koivunen, V

    1995-01-01

    A class of nonlinear regression filters based on robust estimation theory is introduced. The goal of the filtering is to recover a high-quality image from degraded observations. Models for desired image structures and contaminating processes are employed, but deviations from strict assumptions are allowed since the assumptions on signal and noise are typically only approximately true. The robustness of filters is usually addressed only in a distributional sense, i.e., the actual error distribution deviates from the nominal one. In this paper, the robustness is considered in a broad sense since the outliers may also be due to inappropriate signal model, or there may be more than one statistical population present in the processing window, causing biased estimates. Two filtering algorithms minimizing a least trimmed squares criterion are provided. The design of the filters is simple since no scale parameters or context-dependent threshold values are required. Experimental results using both real and simulated data are presented. The filters effectively attenuate both impulsive and nonimpulsive noise while recovering the signal structure and preserving interesting details.

  13. Nonlinear Kalman filtering in affine term structure models

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Dorion, Christian; Jacobs, Kris

    2014-01-01

    The extended Kalman filter, which linearizes the relationship between security prices and state variables, is widely used in fixed-income applications. We investigate whether the unscented Kalman filter should be used to capture nonlinearities and compare the performance of the Kalman filter...... with that of the particle filter. We analyze the cross section of swap rates, which are mildly nonlinear in the states, and cap prices, which are highly nonlinear. When caps are used to filter the states, the unscented Kalman filter significantly outperforms its extended counterpart. The unscented Kalman filter also...... performs well when compared with the much more computationally intensive particle filter. These findings suggest that the unscented Kalman filter may be a good approach for a variety of problems in fixed-income pricing....

  14. A new extended H∞ filter for discrete nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    张永安; 周荻; 段广仁

    2004-01-01

    Nonlinear estimation problem is investigated in this paper. By extension of a linear H∞ estimation with corrector-predictor form to nonlinear cases, a new extended H∞ filter is proposed for time-varying discretetime nonlinear systems. The new filter has a simple observer structure based on a local linearization model, and can be viewed as a general case of the extended Kalman filter (EKF). An example demonstrates that the new filter with a suitable-chosen prescribed H∞ bound performs better than the EKF.

  15. Nonlinear Kalman Filtering in Affine Term Structure Models

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Dorion, Christian; Jacobs, Kris

    When the relationship between security prices and state variables in dynamic term structure models is nonlinear, existing studies usually linearize this relationship because nonlinear fi…ltering is computationally demanding. We conduct an extensive investigation of this linearization and analyze...... the potential of the unscented Kalman …filter to properly capture nonlinearities. To illustrate the advantages of the unscented Kalman …filter, we analyze the cross section of swap rates, which are relatively simple non-linear instruments, and cap prices, which are highly nonlinear in the states. An extensive...

  16. Optimal Nonlinear Filter for INS Alignment

    Institute of Scientific and Technical Information of China (English)

    赵瑞; 顾启泰

    2002-01-01

    All the methods to handle the inertial navigation system (INS) alignment were sub-optimal in the past. In this paper, particle filtering (PF) as an optimal method is used for solving the problem of INS alignment. A sub-optimal two-step filtering algorithm is presented to improve the real-time performance of PF. The approach combines particle filtering with Kalman filtering (KF). Simulation results illustrate the superior performance of these approaches when compared with extended Kalman filtering (EKF).

  17. The second order extended Kalman filter and Markov nonlinear filter for data processing in interferometric systems

    International Nuclear Information System (INIS)

    Ermolaev, P; Volynsky, M

    2014-01-01

    Recurrent stochastic data processing algorithms using representation of interferometric signal as output of a dynamic system, which state is described by vector of parameters, in some cases are more effective, compared with conventional algorithms. Interferometric signals depend on phase nonlinearly. Consequently it is expedient to apply algorithms of nonlinear stochastic filtering, such as Kalman type filters. An application of the second order extended Kalman filter and Markov nonlinear filter that allows to minimize estimation error is described. Experimental results of signals processing are illustrated. Comparison of the algorithms is presented and discussed.

  18. Particle Kalman Filtering: A Nonlinear Bayesian Framework for Ensemble Kalman Filters*

    KAUST Repository

    Hoteit, Ibrahim

    2012-02-01

    This paper investigates an approximation scheme of the optimal nonlinear Bayesian filter based on the Gaussian mixture representation of the state probability distribution function. The resulting filter is similar to the particle filter, but is different from it in that the standard weight-type correction in the particle filter is complemented by the Kalman-type correction with the associated covariance matrices in the Gaussian mixture. The authors show that this filter is an algorithm in between the Kalman filter and the particle filter, and therefore is referred to as the particle Kalman filter (PKF). In the PKF, the solution of a nonlinear filtering problem is expressed as the weighted average of an “ensemble of Kalman filters” operating in parallel. Running an ensemble of Kalman filters is, however, computationally prohibitive for realistic atmospheric and oceanic data assimilation problems. For this reason, the authors consider the construction of the PKF through an “ensemble” of ensemble Kalman filters (EnKFs) instead, and call the implementation the particle EnKF (PEnKF). It is shown that different types of the EnKFs can be considered as special cases of the PEnKF. Similar to the situation in the particle filter, the authors also introduce a resampling step to the PEnKF in order to reduce the risk of weights collapse and improve the performance of the filter. Numerical experiments with the strongly nonlinear Lorenz-96 model are presented and discussed.

  19. Filtered-X Affine Projection Algorithms for Active Noise Control Using Volterra Filters

    Directory of Open Access Journals (Sweden)

    Sicuranza Giovanni L

    2004-01-01

    Full Text Available We consider the use of adaptive Volterra filters, implemented in the form of multichannel filter banks, as nonlinear active noise controllers. In particular, we discuss the derivation of filtered-X affine projection algorithms for homogeneous quadratic filters. According to the multichannel approach, it is then easy to pass from these algorithms to those of a generic Volterra filter. It is shown in the paper that the AP technique offers better convergence and tracking capabilities than the classical LMS and NLMS algorithms usually applied in nonlinear active noise controllers, with a limited complexity increase. This paper extends in two ways the content of a previous contribution published in Proc. IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP '03, Grado, Italy, June 2003. First of all, a general adaptation algorithm valid for any order of affine projections is presented. Secondly, a more complete set of experiments is reported. In particular, the effects of using multichannel filter banks with a reduced number of channels are investigated and relevant results are shown.

  20. A Nonlinear Adaptive Filter for Gyro Thermal Bias Error Cancellation

    Science.gov (United States)

    Galante, Joseph M.; Sanner, Robert M.

    2012-01-01

    Deterministic errors in angular rate gyros, such as thermal biases, can have a significant impact on spacecraft attitude knowledge. In particular, thermal biases are often the dominant error source in MEMS gyros after calibration. Filters, such as J\\,fEKFs, are commonly used to mitigate the impact of gyro errors and gyro noise on spacecraft closed loop pointing accuracy, but often have difficulty in rapidly changing thermal environments and can be computationally expensive. In this report an existing nonlinear adaptive filter is used as the basis for a new nonlinear adaptive filter designed to estimate and cancel thermal bias effects. A description of the filter is presented along with an implementation suitable for discrete-time applications. A simulation analysis demonstrates the performance of the filter in the presence of noisy measurements and provides a comparison with existing techniques.

  1. Ensemble-based Kalman Filters in Strongly Nonlinear Dynamics

    Institute of Scientific and Technical Information of China (English)

    Zhaoxia PU; Joshua HACKER

    2009-01-01

    This study examines the effectiveness of ensemble Kalman filters in data assimilation with the strongly nonlinear dynamics of the Lorenz-63 model, and in particular their use in predicting the regime transition that occurs when the model jumps from one basin of attraction to the other. Four configurations of the ensemble-based Kalman filtering data assimilation techniques, including the ensemble Kalman filter, ensemble adjustment Kalman filter, ensemble square root filter and ensemble transform Kalman filter, are evaluated with their ability in predicting the regime transition (also called phase transition) and also are compared in terms of their sensitivity to both observational and sampling errors. The sensitivity of each ensemble-based filter to the size of the ensemble is also examined.

  2. Particle Kalman Filtering: A Nonlinear Bayesian Framework for Ensemble Kalman Filters*

    KAUST Repository

    Hoteit, Ibrahim; Luo, Xiaodong; Pham, Dinh-Tuan

    2012-01-01

    introduce a resampling step to the PEnKF in order to reduce the risk of weights collapse and improve the performance of the filter. Numerical experiments with the strongly nonlinear Lorenz-96 model are presented and discussed.

  3. Implementation of a nonlinear filter for online nuclear counting

    International Nuclear Information System (INIS)

    Coulon, R.; Dumazert, J.; Kondrasovs, V.; Normand, S.

    2016-01-01

    Nuclear counting is a challenging task for nuclear instrumentation because of the stochastic nature of radioactivity. Event counting has to be processed and filtered to determine a stable count rate value and perform variation monitoring of the measured event. An innovative approach for nuclear counting is presented in this study, improving response time and maintaining count rate stability. Some nonlinear filters providing a local maximum likelihood estimation of the signal have been recently developed, which have been tested and compared with conventional linear filters. A nonlinear filter thus developed shows significant performance in terms of response time and measurement precision. The filter also presents the specificity of easy embedment into digital signal processor (DSP) electronics based on field-programmable gate arrays (FPGA) or microcontrollers, compatible with real-time requirements. © 2001 Elsevier Science. All rights reserved. - Highlights: • An efficient approach based on nonlinear filtering has been implemented. • The hypothesis test provides a local maximum likelihood estimation of the count rate. • The filter ensures an optimal compromise between precision and response time.

  4. Nonlinear dynamical system identification using unscented Kalman filter

    Science.gov (United States)

    Rehman, M. Javvad ur; Dass, Sarat Chandra; Asirvadam, Vijanth Sagayan

    2016-11-01

    Kalman Filter is the most suitable choice for linear state space and Gaussian error distribution from decades. In general practical systems are not linear and Gaussian so these assumptions give inconsistent results. System Identification for nonlinear dynamical systems is a difficult task to perform. Usually, Extended Kalman Filter (EKF) is used to deal with non-linearity in which Jacobian method is used for linearizing the system dynamics, But it has been observed that in highly non-linear environment performance of EKF is poor. Unscented Kalman Filter (UKF) is proposed here as a better option because instead of analytical linearization of state space, UKF performs statistical linearization by using sigma point calculated from deterministic samples. Formation of the posterior distribution is based on the propagation of mean and covariance through sigma points.

  5. Behavior of Filters and Smoothers for Strongly Nonlinear Dynamics

    Science.gov (United States)

    Zhu, Yanqui; Cohn, Stephen E.; Todling, Ricardo

    1999-01-01

    The Kalman filter is the optimal filter in the presence of known gaussian error statistics and linear dynamics. Filter extension to nonlinear dynamics is non trivial in the sense of appropriately representing high order moments of the statistics. Monte Carlo, ensemble-based, methods have been advocated as the methodology for representing high order moments without any questionable closure assumptions. Investigation along these lines has been conducted for highly idealized dynamics such as the strongly nonlinear Lorenz model as well as more realistic models of the means and atmosphere. A few relevant issues in this context are related to the necessary number of ensemble members to properly represent the error statistics and, the necessary modifications in the usual filter situations to allow for correct update of the ensemble members. The ensemble technique has also been applied to the problem of smoothing for which similar questions apply. Ensemble smoother examples, however, seem to be quite puzzling in that results state estimates are worse than for their filter analogue. In this study, we use concepts in probability theory to revisit the ensemble methodology for filtering and smoothing in data assimilation. We use the Lorenz model to test and compare the behavior of a variety of implementations of ensemble filters. We also implement ensemble smoothers that are able to perform better than their filter counterparts. A discussion of feasibility of these techniques to large data assimilation problems will be given at the time of the conference.

  6. Non-linear and signal energy optimal asymptotic filter design

    Directory of Open Access Journals (Sweden)

    Josef Hrusak

    2003-10-01

    Full Text Available The paper studies some connections between the main results of the well known Wiener-Kalman-Bucy stochastic approach to filtering problems based mainly on the linear stochastic estimation theory and emphasizing the optimality aspects of the achieved results and the classical deterministic frequency domain linear filters such as Chebyshev, Butterworth, Bessel, etc. A new non-stochastic but not necessarily deterministic (possibly non-linear alternative approach called asymptotic filtering based mainly on the concepts of signal power, signal energy and a system equivalence relation plays an important role in the presentation. Filtering error invariance and convergence aspects are emphasized in the approach. It is shown that introducing the signal power as the quantitative measure of energy dissipation makes it possible to achieve reasonable results from the optimality point of view as well. The property of structural energy dissipativeness is one of the most important and fundamental features of resulting filters. Therefore, it is natural to call them asymptotic filters. The notion of the asymptotic filter is carried in the paper as a proper tool in order to unify stochastic and non-stochastic, linear and nonlinear approaches to signal filtering.

  7. Nonlinear Bayesian filtering and learning: a neuronal dynamics for perception.

    Science.gov (United States)

    Kutschireiter, Anna; Surace, Simone Carlo; Sprekeler, Henning; Pfister, Jean-Pascal

    2017-08-18

    The robust estimation of dynamical hidden features, such as the position of prey, based on sensory inputs is one of the hallmarks of perception. This dynamical estimation can be rigorously formulated by nonlinear Bayesian filtering theory. Recent experimental and behavioral studies have shown that animals' performance in many tasks is consistent with such a Bayesian statistical interpretation. However, it is presently unclear how a nonlinear Bayesian filter can be efficiently implemented in a network of neurons that satisfies some minimum constraints of biological plausibility. Here, we propose the Neural Particle Filter (NPF), a sampling-based nonlinear Bayesian filter, which does not rely on importance weights. We show that this filter can be interpreted as the neuronal dynamics of a recurrently connected rate-based neural network receiving feed-forward input from sensory neurons. Further, it captures properties of temporal and multi-sensory integration that are crucial for perception, and it allows for online parameter learning with a maximum likelihood approach. The NPF holds the promise to avoid the 'curse of dimensionality', and we demonstrate numerically its capability to outperform weighted particle filters in higher dimensions and when the number of particles is limited.

  8. Nonlinear Principal Component Analysis Using Strong Tracking Filter

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The paper analyzes the problem of blind source separation (BSS) based on the nonlinear principal component analysis (NPCA) criterion. An adaptive strong tracking filter (STF) based algorithm was developed, which is immune to system model mismatches. Simulations demonstrate that the algorithm converges quickly and has satisfactory steady-state accuracy. The Kalman filtering algorithm and the recursive leastsquares type algorithm are shown to be special cases of the STF algorithm. Since the forgetting factor is adaptively updated by adjustment of the Kalman gain, the STF scheme provides more powerful tracking capability than the Kalman filtering algorithm and recursive least-squares algorithm.

  9. Non-linear DSGE Models, The Central Difference Kalman Filter, and The Mean Shifted Particle Filter

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller

    This paper shows how non-linear DSGE models with potential non-normal shocks can be estimated by Quasi-Maximum Likelihood based on the Central Difference Kalman Filter (CDKF). The advantage of this estimator is that evaluating the quasi log-likelihood function only takes a fraction of a second....... The second contribution of this paper is to derive a new particle filter which we term the Mean Shifted Particle Filter (MSPFb). We show that the MSPFb outperforms the standard Particle Filter by delivering more precise state estimates, and in general the MSPFb has lower Monte Carlo variation in the reported...

  10. Nonlinear Statistical Signal Processing: A Particle Filtering Approach

    International Nuclear Information System (INIS)

    Candy, J.

    2007-01-01

    A introduction to particle filtering is discussed starting with an overview of Bayesian inference from batch to sequential processors. Once the evolving Bayesian paradigm is established, simulation-based methods using sampling theory and Monte Carlo realizations are discussed. Here the usual limitations of nonlinear approximations and non-gaussian processes prevalent in classical nonlinear processing algorithms (e.g. Kalman filters) are no longer a restriction to perform Bayesian inference. It is shown how the underlying hidden or state variables are easily assimilated into this Bayesian construct. Importance sampling methods are then discussed and shown how they can be extended to sequential solutions implemented using Markovian state-space models as a natural evolution. With this in mind, the idea of a particle filter, which is a discrete representation of a probability distribution, is developed and shown how it can be implemented using sequential importance sampling/resampling methods. Finally, an application is briefly discussed comparing the performance of the particle filter designs with classical nonlinear filter implementations

  11. Exploiting nonlinearities of micro-machined resonators for filtering applications

    KAUST Repository

    Ilyas, Saad; Chappanda, K. N.; Younis, Mohammad I.

    2017-01-01

    We demonstrate the exploitation of the nonlinear behavior of two electrically coupled microbeam resonators to realize a band-pass filter. More specifically, we combine their nonlinear hardening and softening responses to realize a near flat pass band filter with sharp roll-off characteristics. The device is composed of two near identical doubly clamped and electrostatically actuated microbeams made of silicon. One of the resonators is buckled via thermal loading to produce a softening frequency response. It is then further tuned to create the desired overlap with the second resonator response of hardening behavior. This overlapping improves the pass band flatness. Also, the sudden jumps due to the softening and hardening behaviors create sharp roll-off characteristics. This approach can be promising for the future generation of filters with superior characteristics.

  12. Exploiting nonlinearities of micro-machined resonators for filtering applications

    KAUST Repository

    Ilyas, Saad

    2017-06-21

    We demonstrate the exploitation of the nonlinear behavior of two electrically coupled microbeam resonators to realize a band-pass filter. More specifically, we combine their nonlinear hardening and softening responses to realize a near flat pass band filter with sharp roll-off characteristics. The device is composed of two near identical doubly clamped and electrostatically actuated microbeams made of silicon. One of the resonators is buckled via thermal loading to produce a softening frequency response. It is then further tuned to create the desired overlap with the second resonator response of hardening behavior. This overlapping improves the pass band flatness. Also, the sudden jumps due to the softening and hardening behaviors create sharp roll-off characteristics. This approach can be promising for the future generation of filters with superior characteristics.

  13. Linear theory for filtering nonlinear multiscale systems with model error.

    Science.gov (United States)

    Berry, Tyrus; Harlim, John

    2014-07-08

    In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online , as part of a filtering

  14. Hot-Gas Filter Ash Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, M.L.; Hurley, J.P.; Dockter, B.A.; O`Keefe, C.A.

    1997-07-01

    Large-scale hot-gas filter testing over the past 10 years has revealed numerous cases of cake buildup on filter elements that has been difficult, if not impossible, to remove. At times, the cake can blind or bridge between candle filters, leading to filter failure. Physical factors, including particle-size distribution, particle shape, the aerodynamics of deposition, and system temperature, contribute to the difficulty in removing the cake, but chemical factors such as surface composition and gas-solid reactions also play roles in helping to bond the ash to the filters or to itself. This project is designed to perform the research necessary to determine the fuel-, sorbent-, and operations-related conditions that lead to blinding or bridging of hot-gas particle filters. The objectives of the project are threefold: (1) Determine the mechanisms by which a difficult-to-clean ash is formed and how it bridges hot-gas filters (2) Develop a method to determine the rate of bridging based on analyses of the feed coal and sorbent, filter properties, and system operating conditions and (3) Suggest and test ways to prevent filter bridging.

  15. The Behavior of Filters and Smoothers for Strongly Nonlinear Dynamics

    Science.gov (United States)

    Zhu, Yanqiu; Cohn, Stephen E.; Todling, Ricardo

    1999-01-01

    The Kalman filter is the optimal filter in the presence of known Gaussian error statistics and linear dynamics. Filter extension to nonlinear dynamics is non trivial in the sense of appropriately representing high order moments of the statistics. Monte Carlo, ensemble-based, methods have been advocated as the methodology for representing high order moments without any questionable closure assumptions (e.g., Miller 1994). Investigation along these lines has been conducted for highly idealized dynamics such as the strongly nonlinear Lorenz (1963) model as well as more realistic models of the oceans (Evensen and van Leeuwen 1996) and atmosphere (Houtekamer and Mitchell 1998). A few relevant issues in this context are related to the necessary number of ensemble members to properly represent the error statistics and, the necessary modifications in the usual filter equations to allow for correct update of the ensemble members (Burgers 1998). The ensemble technique has also been applied to the problem of smoothing for which similar questions apply. Ensemble smoother examples, however, seem to quite puzzling in that results of state estimate are worse than for their filter analogue (Evensen 1997). In this study, we use concepts in probability theory to revisit the ensemble methodology for filtering and smoothing in data assimilation. We use Lorenz (1963) model to test and compare the behavior of a variety implementations of ensemble filters. We also implement ensemble smoothers that are able to perform better than their filter counterparts. A discussion of feasibility of these techniques to large data assimilation problems will be given at the time of the conference.

  16. Nonlinear Filtering Techniques Comparison for Battery State Estimation

    Directory of Open Access Journals (Sweden)

    Aspasia Papazoglou

    2014-09-01

    Full Text Available The performance of estimation algorithms is vital for the correct functioning of batteries in electric vehicles, as poor estimates will inevitably jeopardize the operations that rely on un-measurable quantities, such as State of Charge and State of Health. This paper compares the performance of three nonlinear estimation algorithms: the Extended Kalman Filter, the Unscented Kalman Filter and the Particle Filter, where a lithium-ion cell model is considered. The effectiveness of these algorithms is measured by their ability to produce accurate estimates against their computational complexity in terms of number of operations and execution time required. The trade-offs between estimators' performance and their computational complexity are analyzed.

  17. Nonlinear stochastic systems with incomplete information filtering and control

    CERN Document Server

    Shen, Bo; Shu, Huisheng

    2013-01-01

    Nonlinear Stochastic Processes addresses the frequently-encountered problem of incomplete information. The causes of this problem considered here include: missing measurements; sensor delays and saturation; quantization effects; and signal sampling. Divided into three parts, the text begins with a focus on H∞ filtering and control problems associated with general classes of nonlinear stochastic discrete-time systems. Filtering problems are considered in the second part, and in the third the theory and techniques previously developed are applied to the solution of issues arising in complex networks with the design of sampled-data-based controllers and filters. Among its highlights, the text provides: ·         a unified framework for handling filtering and control problems in complex communication networks with limited bandwidth; ·         new concepts such as random sensor and signal saturations for more realistic modeling; and ·         demonstration of the use of techniques such...

  18. On Ensemble Nonlinear Kalman Filtering with Symmetric Analysis Ensembles

    KAUST Repository

    Luo, Xiaodong

    2010-09-19

    The ensemble square root filter (EnSRF) [1, 2, 3, 4] is a popular method for data assimilation in high dimensional systems (e.g., geophysics models). Essentially the EnSRF is a Monte Carlo implementation of the conventional Kalman filter (KF) [5, 6]. It is mainly different from the KF at the prediction steps, where it is some ensembles, rather then the means and covariance matrices, of the system state that are propagated forward. In doing this, the EnSRF is computationally more efficient than the KF, since propagating a covariance matrix forward in high dimensional systems is prohibitively expensive. In addition, the EnSRF is also very convenient in implementation. By propagating the ensembles of the system state, the EnSRF can be directly applied to nonlinear systems without any change in comparison to the assimilation procedures in linear systems. However, by adopting the Monte Carlo method, the EnSRF also incurs certain sampling errors. One way to alleviate this problem is to introduce certain symmetry to the ensembles, which can reduce the sampling errors and spurious modes in evaluation of the means and covariances of the ensembles [7]. In this contribution, we present two methods to produce symmetric ensembles. One is based on the unscented transform [8, 9], which leads to the unscented Kalman filter (UKF) [8, 9] and its variant, the ensemble unscented Kalman filter (EnUKF) [7]. The other is based on Stirling’s interpolation formula (SIF), which results in the divided difference filter (DDF) [10]. Here we propose a simplified divided difference filter (sDDF) in the context of ensemble filtering. The similarity and difference between the sDDF and the EnUKF will be discussed. Numerical experiments will also be conducted to investigate the performance of the sDDF and the EnUKF, and compare them to a well‐established EnSRF, the ensemble transform Kalman filter (ETKF) [2].

  19. Two-stage nonlinear filter for processing of scintigrams

    International Nuclear Information System (INIS)

    Pistor, P.; Hoener, J.; Walch, G.

    1973-01-01

    Linear filters which have been successfully used to process scintigrams can be modified in a meaningful manner by a preceding non-linear point operator, the Anscombe-transform. The advantages are: The scintigraphic noise becomes quasi-stationary and thus independent of the image. By these means the noise can be readily allowed for in the design of the convolutional operators. Transformed images with a stationary signal-to-noise ratio and a non-constant background t correspond to untransformed images with a signal-to-noise ratio that varies in certain limits. The filter chain automatically adapts to these changes. Our filter has the advantage over the majority of space-varying filters of being realizable by Fast Fourier Transform techniques. These advantages have to be paid for by reduced signal amplitude to background ratios. If the background is known, this shortcoming can be easily by-passed by processing trendfree scintigrams. If not, the filter chain should be completed by a third operator which reverses the Anscombe-transform. The Anscombe-transform influences the signal-to-noise ratio of cold spots and of hot spots in a different way. It remains an open question if this fact can be utilized to directly influence the detectability of the different kinds of spots

  20. A nested sampling particle filter for nonlinear data assimilation

    KAUST Repository

    Elsheikh, Ahmed H.

    2014-04-15

    We present an efficient nonlinear data assimilation filter that combines particle filtering with the nested sampling algorithm. Particle filters (PF) utilize a set of weighted particles as a discrete representation of probability distribution functions (PDF). These particles are propagated through the system dynamics and their weights are sequentially updated based on the likelihood of the observed data. Nested sampling (NS) is an efficient sampling algorithm that iteratively builds a discrete representation of the posterior distributions by focusing a set of particles to high-likelihood regions. This would allow the representation of the posterior PDF with a smaller number of particles and reduce the effects of the curse of dimensionality. The proposed nested sampling particle filter (NSPF) iteratively builds the posterior distribution by applying a constrained sampling from the prior distribution to obtain particles in high-likelihood regions of the search space, resulting in a reduction of the number of particles required for an efficient behaviour of particle filters. Numerical experiments with the 3-dimensional Lorenz63 and the 40-dimensional Lorenz96 models show that NSPF outperforms PF in accuracy with a relatively smaller number of particles. © 2013 Royal Meteorological Society.

  1. Filtering Non-Linear Transfer Functions on Surfaces.

    Science.gov (United States)

    Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice

    2014-07-01

    Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few

  2. On a nonlinear Kalman filter with simplified divided difference approximation

    KAUST Repository

    Luo, Xiaodong; Hoteit, Ibrahim; Moroz, Irene M.

    2012-01-01

    We present a new ensemble-based approach that handles nonlinearity based on a simplified divided difference approximation through Stirling's interpolation formula, which is hence called the simplified divided difference filter (sDDF). The sDDF uses Stirling's interpolation formula to evaluate the statistics of the background ensemble during the prediction step, while at the filtering step the sDDF employs the formulae in an ensemble square root filter (EnSRF) to update the background to the analysis. In this sense, the sDDF is a hybrid of Stirling's interpolation formula and the EnSRF method, while the computational cost of the sDDF is less than that of the EnSRF. Numerical comparison between the sDDF and the EnSRF, with the ensemble transform Kalman filter (ETKF) as the representative, is conducted. The experiment results suggest that the sDDF outperforms the ETKF with a relatively large ensemble size, and thus is a good candidate for data assimilation in systems with moderate dimensions. © 2011 Elsevier B.V. All rights reserved.

  3. On a nonlinear Kalman filter with simplified divided difference approximation

    KAUST Repository

    Luo, Xiaodong

    2012-03-01

    We present a new ensemble-based approach that handles nonlinearity based on a simplified divided difference approximation through Stirling\\'s interpolation formula, which is hence called the simplified divided difference filter (sDDF). The sDDF uses Stirling\\'s interpolation formula to evaluate the statistics of the background ensemble during the prediction step, while at the filtering step the sDDF employs the formulae in an ensemble square root filter (EnSRF) to update the background to the analysis. In this sense, the sDDF is a hybrid of Stirling\\'s interpolation formula and the EnSRF method, while the computational cost of the sDDF is less than that of the EnSRF. Numerical comparison between the sDDF and the EnSRF, with the ensemble transform Kalman filter (ETKF) as the representative, is conducted. The experiment results suggest that the sDDF outperforms the ETKF with a relatively large ensemble size, and thus is a good candidate for data assimilation in systems with moderate dimensions. © 2011 Elsevier B.V. All rights reserved.

  4. Nonlinear filtering for character recognition in low quality document images

    Science.gov (United States)

    Diaz-Escobar, Julia; Kober, Vitaly

    2014-09-01

    Optical character recognition in scanned printed documents is a well-studied task, where the captured conditions like sheet position, illumination, contrast and resolution are controlled. Nowadays, it is more practical to use mobile devices for document capture than a scanner. So as a consequence, the quality of document images is often poor owing to presence of geometric distortions, nonhomogeneous illumination, low resolution, etc. In this work we propose to use multiple adaptive nonlinear composite filters for detection and classification of characters. Computer simulation results obtained with the proposed system are presented and discussed.

  5. Nonlinear data assimilation using synchronization in a particle filter

    Science.gov (United States)

    Rodrigues-Pinheiro, Flavia; Van Leeuwen, Peter Jan

    2017-04-01

    Current data assimilation methods still face problems in strongly nonlinear cases. A promising solution is a particle filter, which provides a representation of the model probability density function by a discrete set of particles. However, the basic particle filter does not work in high-dimensional cases. The performance can be improved by considering the proposal density freedom. A potential choice of proposal density might come from the synchronisation theory, in which one tries to synchronise the model with the true evolution of a system using one-way coupling via the observations. In practice, an extra term is added to the model equations that damps growth of instabilities on the synchronisation manifold. When only part of the system is observed synchronization can be achieved via a time embedding, similar to smoothers in data assimilation. In this work, two new ideas are tested. First, ensemble-based time embedding, similar to an ensemble smoother or 4DEnsVar is used on each particle, avoiding the need for tangent-linear models and adjoint calculations. Tests were performed using Lorenz96 model for 20, 100 and 1000-dimension systems. Results show state-averaged synchronisation errors smaller than observation errors even in partly observed systems, suggesting that the scheme is a promising tool to steer model states to the truth. Next, we combine these efficient particles using an extension of the Implicit Equal-Weights Particle Filter, a particle filter that ensures equal weights for all particles, avoiding filter degeneracy by construction. Promising results will be shown on low- and high-dimensional Lorenz96 models, and the pros and cons of these new ideas will be discussed.

  6. Implementation of non-linear filters for iterative penalized maximum likelihood image reconstruction

    International Nuclear Information System (INIS)

    Liang, Z.; Gilland, D.; Jaszczak, R.; Coleman, R.

    1990-01-01

    In this paper, the authors report on the implementation of six edge-preserving, noise-smoothing, non-linear filters applied in image space for iterative penalized maximum-likelihood (ML) SPECT image reconstruction. The non-linear smoothing filters implemented were the median filter, the E 6 filter, the sigma filter, the edge-line filter, the gradient-inverse filter, and the 3-point edge filter with gradient-inverse filter, and the 3-point edge filter with gradient-inverse weight. A 3 x 3 window was used for all these filters. The best image obtained, by viewing the profiles through the image in terms of noise-smoothing, edge-sharpening, and contrast, was the one smoothed with the 3-point edge filter. The computation time for the smoothing was less than 1% of one iteration, and the memory space for the smoothing was negligible. These images were compared with the results obtained using Bayesian analysis

  7. Modeling of memristor-based chaotic systems using nonlinear Wiener adaptive filters based on backslash operator

    International Nuclear Information System (INIS)

    Zhao, Yibo; Jiang, Yi; Feng, Jiuchao; Wu, Lifu

    2016-01-01

    Highlights: • A novel nonlinear Wiener adaptive filters based on the backslash operator are proposed. • The identification approach to the memristor-based chaotic systems using the proposed adaptive filters. • The weight update algorithm and convergence characteristics for the proposed adaptive filters are derived. - Abstract: Memristor-based chaotic systems have complex dynamical behaviors, which are characterized as nonlinear and hysteresis characteristics. Modeling and identification of their nonlinear model is an important premise for analyzing the dynamical behavior of the memristor-based chaotic systems. This paper presents a novel nonlinear Wiener adaptive filtering identification approach to the memristor-based chaotic systems. The linear part of Wiener model consists of the linear transversal adaptive filters, the nonlinear part consists of nonlinear adaptive filters based on the backslash operator for the hysteresis characteristics of the memristor. The weight update algorithms for the linear and nonlinear adaptive filters are derived. Final computer simulation results show the effectiveness as well as fast convergence characteristics. Comparing with the adaptive nonlinear polynomial filters, the proposed nonlinear adaptive filters have less identification error.

  8. Estimation of dynamic reactivity using an H∞ optimal filter with a nonlinear term

    International Nuclear Information System (INIS)

    Suzuki, Katsuo; Watanabe, Koiti

    1996-01-01

    A method of nonlinear filtering is applied to the problem of estimating the dynamic reactivity of a nonlinear reactor system. The nonlinear filtering algorithm developed is a simple modification of a linear H ∞ optimal filter with a nonlinear feedback loop added. The linear filter is designed on the basis of a linearized dynamical system model that consists of linearized point reactor kinetic equations and a reactivity state equation driven by a fictitious signal. The latter is artificially introduced to deal with the reactivity as a state variable. The results of the computer simulation show that the nonlinear filtering algorithm can be applied to estimate the dynamic reactivity of the nonlinear reactor system, even under relatively large reactivity disturbances

  9. Advanced nonlinear control of three phase series active power filter

    Directory of Open Access Journals (Sweden)

    Abouelmahjoub Y.

    2014-01-01

    Full Text Available The problem of controlling three-phase series active power filter (TPSAPF is addressed in this paper in presence of the perturbations in the voltages of the electrical supply network. The control objective of the TPSAPF is twofold: (i compensation of all voltage perturbations (voltage harmonics, voltage unbalance and voltage sags, (ii regulation of the DC bus voltage of the inverter. A controller formed by two nonlinear regulators is designed, using the Backstepping technique, to provide the above compensation. The regulation of the DC bus voltage of the inverter is ensured by the use of a diode bridge rectifier which its output is in parallel with the DC bus capacitor. The Analysis of controller performances is illustrated by numerical simulation in Matlab/Simulink environment.

  10. Nonlinear control and filtering using differential flatness approaches applications to electromechanical systems

    CERN Document Server

    Rigatos, Gerasimos G

    2015-01-01

    This monograph presents recent advances in differential flatness theory and analyzes its use for nonlinear control and estimation. It shows how differential flatness theory can provide solutions to complicated control problems, such as those appearing in highly nonlinear multivariable systems and distributed-parameter systems. Furthermore, it shows that differential flatness theory makes it possible to perform filtering and state estimation for a wide class of nonlinear dynamical systems and provides several descriptive test cases. The book focuses on the design of nonlinear adaptive controllers and nonlinear filters, using exact linearization based on differential flatness theory. The adaptive controllers obtained can be applied to a wide class of nonlinear systems with unknown dynamics, and assure reliable functioning of the control loop under uncertainty and varying operating conditions. The filters obtained outperform other nonlinear filters in terms of accuracy of estimation and computation speed. The bo...

  11. Empirical intrinsic geometry for nonlinear modeling and time series filtering.

    Science.gov (United States)

    Talmon, Ronen; Coifman, Ronald R

    2013-07-30

    In this paper, we present a method for time series analysis based on empirical intrinsic geometry (EIG). EIG enables one to reveal the low-dimensional parametric manifold as well as to infer the underlying dynamics of high-dimensional time series. By incorporating concepts of information geometry, this method extends existing geometric analysis tools to support stochastic settings and parametrizes the geometry of empirical distributions. However, the statistical models are not required as priors; hence, EIG may be applied to a wide range of real signals without existing definitive models. We show that the inferred model is noise-resilient and invariant under different observation and instrumental modalities. In addition, we show that it can be extended efficiently to newly acquired measurements in a sequential manner. These two advantages enable us to revisit the Bayesian approach and incorporate empirical dynamics and intrinsic geometry into a nonlinear filtering framework. We show applications to nonlinear and non-Gaussian tracking problems as well as to acoustic signal localization.

  12. Fault prediction for nonlinear stochastic system with incipient faults based on particle filter and nonlinear regression.

    Science.gov (United States)

    Ding, Bo; Fang, Huajing

    2017-05-01

    This paper is concerned with the fault prediction for the nonlinear stochastic system with incipient faults. Based on the particle filter and the reasonable assumption about the incipient faults, the modified fault estimation algorithm is proposed, and the system state is estimated simultaneously. According to the modified fault estimation, an intuitive fault detection strategy is introduced. Once each of the incipient fault is detected, the parameters of which are identified by a nonlinear regression method. Then, based on the estimated parameters, the future fault signal can be predicted. Finally, the effectiveness of the proposed method is verified by the simulations of the Three-tank system. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  13. An improved fuzzy Kalman filter for state estimation of nonlinear systems

    International Nuclear Information System (INIS)

    Zhou, Z-J; Hu, C-H; Chen, L; Zhang, B-C

    2008-01-01

    The extended fuzzy Kalman filter (EFKF) is developed recently and used for state estimation of the nonlinear systems with uncertainty. Based on extension of the orthogonality principle and the extended fuzzy Kalman filter, an improved fuzzy Kalman filters (IFKF) is proposed in this paper, which is more applicable and can deal with the state estimation of the nonlinear systems better than the EFKF. A simulation study is provided to verify the efficiency of the proposed method

  14. Nonlinear stochastic systems with network-induced phenomena recursive filtering and sliding-mode design

    CERN Document Server

    Hu, Jun; Gao, Huijun

    2014-01-01

    This monograph introduces methods for handling filtering and control problems in nonlinear stochastic systems arising from network-induced phenomena consequent on limited communication capacity. Such phenomena include communication delay, packet dropout, signal quantization or saturation, randomly occurring nonlinearities and randomly occurring uncertainties.The text is self-contained, beginning with an introduction to nonlinear stochastic systems, network-induced phenomena and filtering and control, moving through a collection of the latest research results which focuses on the three aspects

  15. A novel extended Kalman filter for a class of nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    DONG Zhe; YOU Zheng

    2006-01-01

    Estimation of the state variables of nonlinear systems is one of the fundamental and significant problems in control and signal processing. A new extended Kalman filtering approach for a class of nonlinear discrete-time systems in engineering is presented in this paper. In contrast to the celebrated extended Kalman filter (EKF), there is no linearization operation in the design procedure of the filter, and the parameters of the filter are obtained through minimizing a proper upper bound of the mean-square estimation error. Simulation results show that this filter can provide higher estimation precision than that provided by the EKF.

  16. Sampling strong tracking nonlinear unscented Kalman filter and its application in eye tracking

    International Nuclear Information System (INIS)

    Zu-Tao, Zhang; Jia-Shu, Zhang

    2010-01-01

    The unscented Kalman filter is a developed well-known method for nonlinear motion estimation and tracking. However, the standard unscented Kalman filter has the inherent drawbacks, such as numerical instability and much more time spent on calculation in practical applications. In this paper, we present a novel sampling strong tracking nonlinear unscented Kalman filter, aiming to overcome the difficulty in nonlinear eye tracking. In the above proposed filter, the simplified unscented transform sampling strategy with n + 2 sigma points leads to the computational efficiency, and suboptimal fading factor of strong tracking filtering is introduced to improve robustness and accuracy of eye tracking. Compared with the related unscented Kalman filter for eye tracking, the proposed filter has potential advantages in robustness, convergence speed, and tracking accuracy. The final experimental results show the validity of our method for eye tracking under realistic conditions. (classical areas of phenomenology)

  17. Comparison of three nonlinear filters for fault detection in continuous glucose monitors.

    Science.gov (United States)

    Mahmoudi, Zeinab; Wendt, Sabrina Lyngbye; Boiroux, Dimitri; Hagdrup, Morten; Norgaard, Kirsten; Poulsen, Niels Kjolstad; Madsen, Henrik; Jorgensen, John Bagterp

    2016-08-01

    The purpose of this study is to compare the performance of three nonlinear filters in online drift detection of continuous glucose monitors. The nonlinear filters are the extended Kalman filter (EKF), the unscented Kalman filter (UKF), and the particle filter (PF). They are all based on a nonlinear model of the glucose-insulin dynamics in people with type 1 diabetes. Drift is modelled by a Gaussian random walk and is detected based on the statistical tests of the 90-min prediction residuals of the filters. The unscented Kalman filter had the highest average F score of 85.9%, and the smallest average detection delay of 84.1%, with the average detection sensitivity of 82.6%, and average specificity of 91.0%.

  18. Nonlinear Kalman filters for calibration in radio interferometry

    Science.gov (United States)

    Tasse, C.

    2014-06-01

    The data produced by the new generation of interferometers are affected by a wide variety of partially unknown complex effects such as pointing errors, phased array beams, ionosphere, troposphere, Faraday rotation, or clock drifts. Most algorithms addressing direction-dependent calibration solve for the effective Jones matrices, and cannot constrain the underlying physical quantities of the radio interferometry measurement equation (RIME). A related difficulty is that they lack robustness in the presence of low signal-to-noise ratios, and when solving for moderate to large numbers of parameters they can be subject to ill-conditioning. These effects can have dramatic consequences in the image plane such as source or even thermal noise suppression. The advantage of solvers directly estimating the physical terms appearing in the RIME is that they can potentially reduce the number of free parameters by orders of magnitudes while dramatically increasing the size of usable data, thereby improving conditioning. We present here a new calibration scheme based on a nonlinear version of the Kalman filter that aims at estimating the physical terms appearing in the RIME. We enrich the filter's structure with a tunable data representation model, together with an augmented measurement model for regularization. Using simulations we show that it can properly estimate the physical effects appearing in the RIME. We found that this approach is particularly useful in the most extreme cases such as when ionospheric and clock effects are simultaneously present. Combined with the ability to provide prior knowledge on the expected structure of the physical instrumental effects (expected physical state and dynamics), we obtain a fairly computationally cheap algorithm that we believe to be robust, especially in low signal-to-noise regimes. Potentially, the use of filters and other similar methods can represent an improvement for calibration in radio interferometry, under the condition that

  19. Projects on filter testing in Sweden

    International Nuclear Information System (INIS)

    Normann, B.; Wiktorsson, C.

    1985-01-01

    The Swedish nuclear power program comprises twelve light water reactors. Nine are boiling water reactors of ASEA-ATOM design and three are pressurized water reactors of Westinghouse design. Of these, ten are in operation and two are under construction and planned to go into operation during late 1984 and early 1985, respectively. Frequent tests on the penetration of particles through HEPA filters, regular tests on the adsorption of methyl iodide in the stand-by carbon filter units by laboratory testing are discussed. The proposed new regulations are based on many years of experience of filter system operation and of tests in-situ and in the laboratory. Moisture and water are factors that affect the functioning of filters. In addition, high loading of dust can give rise to increased penetration through HEPA filters, however pinholes could have less influence on the total penetration. Laboratory tests show that DOP particles retain 30-40% in 90 mm carbon filters (8-12 mesh). However no effect on the ability of carbon to adsorb methyl iodide after DOP contamination in combined carbon/HEPA filters has been observed. Leakage from ventilation ducts can cause radioactive contamination problems during filter testing with radioiodine. In-situ testing of control-room filters has been performed using inactive methyl iodide. A type of carbon bed not previously used in Sweden has been introduced. Testing of this filter type is discussed

  20. Nonlinear bayesian state filtering with missing measurements and bounded noise and its application to vehicle position estimation

    Czech Academy of Sciences Publication Activity Database

    Pavelková, Lenka

    2011-01-01

    Roč. 47, č. 3 (2011), s. 370-384 ISSN 0023-5954 R&D Projects: GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : non-linear state space model * bounded uncertainty * missing measurements * state filtering * vehicle position estimation Subject RIV: BC - Control Systems Theory Impact factor: 0.454, year: 2011 http://library.utia.cas.cz/separaty/2011/AS/pavelkova-0360239.pdf

  1. Characterization of the bistable wideband optical filter on the basis of nonlinear 2D photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Guryev, I. V., E-mail: guryev@ieee.org; Sukhoivanov, I. A., E-mail: guryev@ieee.org; Andrade Lucio, J. A., E-mail: guryev@ieee.org; Manzano, O. Ibarra, E-mail: guryev@ieee.org; Rodriguez, E. Vargaz, E-mail: guryev@ieee.org; Gonzales, D. Claudio, E-mail: guryev@ieee.org; Chavez, R. I. Mata, E-mail: guryev@ieee.org; Gurieva, N. S., E-mail: guryev@ieee.org [University of Guanajuato, Engineering division (Mexico)

    2014-05-15

    In our work, we investigated the wideband optical filter on the basis of nonlinear photonic crystal. The all-optical flip-flop using ultra-short pulses with duration lower than 200 fs is obtained in such filters. Here we pay special attention to the stability problem of the nonlinear element. To investigate this problem, the temporal response demonstrating the flip-flop have been computed within the certain range of the wavelengths as well as at different input power.

  2. A Bayes Formula for Nonlinear Filtering with Gaussian and Cox Noise

    Directory of Open Access Journals (Sweden)

    Vidyadhar Mandrekar

    2011-01-01

    Full Text Available A Bayes-type formula is derived for the nonlinear filter where the observation contains both general Gaussian noise as well as Cox noise whose jump intensity depends on the signal. This formula extends the well-known Kallianpur-Striebel formula in the classical non-linear filter setting. We also discuss Zakai-type equations for both the unnormalized conditional distribution as well as unnormalized conditional density in case the signal is a Markovian jump diffusion.

  3. Nonlinear Vibration Signal Tracking of Large Offshore Bridge Stayed Cable Based on Particle Filter

    Directory of Open Access Journals (Sweden)

    Ye Qingwei

    2015-12-01

    Full Text Available The stayed cables are key stress components of large offshore bridge. The fault detection of stayed cable is very important for safe of large offshore bridge. A particle filter model and algorithm of nonlinear vibration signal are used in this paper. Firstly, the particle filter model of stayed cable of large offshore bridge is created. Nonlinear dynamic model of the stayed-cable and beam coupling system is dispersed in temporal dimension by using the finite difference method. The discrete nonlinear vibration equations of any cable element are worked out. Secondly, a state equation of particle filter is fitted by least square algorithm from the discrete nonlinear vibration equations. So the particle filter algorithm can use the accurate state equations. Finally, the particle filter algorithm is used to filter the vibration signal of bridge stayed cable. According to the particle filter, the de-noised vibration signal can be tracked and be predicted for a short time accurately. Many experiments are done at some actual bridges. The simulation experiments and the actual experiments on the bridge stayed cables are all indicating that the particle filter algorithm in this paper has good performance and works stably.

  4. Nonlinear performance characterization in an eight-pole quasi-elliptic bandpass filter

    International Nuclear Information System (INIS)

    Mateu, J; Collado, C; Menendez, O; O'Callaghan, J M

    2004-01-01

    In this work we predict the nonlinear behaviour of an eight-pole quasi-elliptic bandpass high temperature superconducting (HTS) filter with an equivalent circuit extracted from intermodulation measurements performed at the centre of the filter passband. We present measurements that show that the equivalent circuit is able to predict the intermodulation products produced by the filter when driven by two in-band or out-of-band sinusoidal signals. Numerical techniques based on harmonic balance are used to extract the elements of the equivalent circuit and to simulate its nonlinear performance

  5. Method and system for training dynamic nonlinear adaptive filters which have embedded memory

    Science.gov (United States)

    Rabinowitz, Matthew (Inventor)

    2002-01-01

    Described herein is a method and system for training nonlinear adaptive filters (or neural networks) which have embedded memory. Such memory can arise in a multi-layer finite impulse response (FIR) architecture, or an infinite impulse response (IIR) architecture. We focus on filter architectures with separate linear dynamic components and static nonlinear components. Such filters can be structured so as to restrict their degrees of computational freedom based on a priori knowledge about the dynamic operation to be emulated. The method is detailed for an FIR architecture which consists of linear FIR filters together with nonlinear generalized single layer subnets. For the IIR case, we extend the methodology to a general nonlinear architecture which uses feedback. For these dynamic architectures, we describe how one can apply optimization techniques which make updates closer to the Newton direction than those of a steepest descent method, such as backpropagation. We detail a novel adaptive modified Gauss-Newton optimization technique, which uses an adaptive learning rate to determine both the magnitude and direction of update steps. For a wide range of adaptive filtering applications, the new training algorithm converges faster and to a smaller value of cost than both steepest-descent methods such as backpropagation-through-time, and standard quasi-Newton methods. We apply the algorithm to modeling the inverse of a nonlinear dynamic tracking system 5, as well as a nonlinear amplifier 6.

  6. NONLINEAR FILTER METHOD OF GPS DYNAMIC POSITIONING BASED ON BANCROFT ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    ZHANGQin; TAOBen-zao; ZHAOChao-ying; WANGLi

    2005-01-01

    Because of the ignored items after linearization, the extended Kalman filter (EKF) becomes a form of suboptimal gradient descent algorithm. The emanative tendency exists in GPS solution when the filter equations are ill-posed. The deviation in the estimation cannot be avoided. Furthermore, the true solution may be lost in pseudorange positioning because the linearized pseudorange equations are partial solutions. To solve the above problems in GPS dynamic positioning by using EKF, a closed-form Kalman filter method called the two-stage algorithm is presented for the nonlinear algebraic solution of GPS dynamic positioning based on the global nonlinear least squares closed algorithm--Bancroft numerical algorithm of American. The method separates the spatial parts from temporal parts during processing the GPS filter problems, and solves the nonlinear GPS dynamic positioning, thus getting stable and reliable dynamic positioning solutions.

  7. A novel strong tracking finite-difference extended Kalman filter for nonlinear eye tracking

    Institute of Scientific and Technical Information of China (English)

    ZHANG ZuTao; ZHANG JiaShu

    2009-01-01

    Non-Intrusive methods for eye tracking are Important for many applications of vision-based human computer interaction. However, due to the high nonlinearity of eye motion, how to ensure the robust-ness of external interference and accuracy of eye tracking poses the primary obstacle to the integration of eye movements into today's interfaces. In this paper, we present a strong tracking finite-difference extended Kalman filter algorithm, aiming to overcome the difficulty In modeling nonlinear eye tracking. In filtering calculation, strong tracking factor is introduced to modify a priori covariance matrix and im-prove the accuracy of the filter. The filter uses finite-difference method to calculate partial derivatives of nonlinear functions for eye tracking. The latest experimental results show the validity of our method for eye tracking under realistic conditions.

  8. Nonlinear Filtering with IMM Algorithm for Ultra-Tight GPS/INS Integration

    Directory of Open Access Journals (Sweden)

    Dah-Jing Jwo

    2013-05-01

    Full Text Available Abstract This paper conducts a performance evaluation for the ultra-tight integration of a Global positioning system (GPS and an inertial navigation system (INS, using nonlinear filtering approaches with an interacting multiple model (IMM algorithm. An ultra-tight GPS/INS architecture involves the integration of in-phase and quadrature components from the correlator of a GPS receiver with INS data. An unscented Kalman filter (UKF, which employs a set of sigma points by deterministic sampling, avoids the error caused by linearization as in an extended Kalman filter (EKF. Based on the filter structural adaptation for describing various dynamic behaviours, the IMM nonlinear filtering provides an alternative for designing the adaptive filter in the ultra-tight GPS/INS integration. The use of IMM enables tuning of an appropriate value for the process of noise covariance so as to maintain good estimation accuracy and tracking capability. Two examples are provided to illustrate the effectiveness of the design and demonstrate the effective improvement in navigation estimation accuracy. A performance comparison among various filtering methods for ultra-tight integration of GPS and INS is also presented. The IMM based nonlinear filtering approach demonstrates the effectiveness of the algorithm for improved positioning performance.

  9. A nested sampling particle filter for nonlinear data assimilation

    KAUST Repository

    Elsheikh, Ahmed H.; Hoteit, Ibrahim; Wheeler, Mary Fanett

    2014-01-01

    . The proposed nested sampling particle filter (NSPF) iteratively builds the posterior distribution by applying a constrained sampling from the prior distribution to obtain particles in high-likelihood regions of the search space, resulting in a reduction

  10. Monte Carlo filters for identification of nonlinear structural dynamical ...

    Indian Academy of Sciences (India)

    The theory of Kalman filtering provides one of ...... expansion (appendix B contains a reasonably self-contained account of how such expansions ...... Shinozuka M, Ghanem R 1995 Structural system identification II: experimental verification.

  11. On Ensemble Nonlinear Kalman Filtering with Symmetric Analysis Ensembles

    KAUST Repository

    Luo, Xiaodong; Hoteit, Ibrahim; Moroz, Irene M.

    2010-01-01

    However, by adopting the Monte Carlo method, the EnSRF also incurs certain sampling errors. One way to alleviate this problem is to introduce certain symmetry to the ensembles, which can reduce the sampling errors and spurious modes in evaluation of the means and covariances of the ensembles [7]. In this contribution, we present two methods to produce symmetric ensembles. One is based on the unscented transform [8, 9], which leads to the unscented Kalman filter (UKF) [8, 9] and its variant, the ensemble unscented Kalman filter (EnUKF) [7]. The other is based on Stirling’s interpolation formula (SIF), which results in the divided difference filter (DDF) [10]. Here we propose a simplified divided difference filter (sDDF) in the context of ensemble filtering. The similarity and difference between the sDDF and the EnUKF will be discussed. Numerical experiments will also be conducted to investigate the performance of the sDDF and the EnUKF, and compare them to a well‐established EnSRF, the ensemble transform Kalman filter (ETKF) [2].

  12. Interaction of Lyapunov vectors in the formulation of the nonlinear extension of the Kalman filter.

    Science.gov (United States)

    Palatella, Luigi; Trevisan, Anna

    2015-04-01

    When applied to strongly nonlinear chaotic dynamics the extended Kalman filter (EKF) is prone to divergence due to the difficulty of correctly forecasting the forecast error probability density function. In operational forecasting applications ensemble Kalman filters circumvent this problem with empirical procedures such as covariance inflation. This paper presents an extension of the EKF that includes nonlinear terms in the evolution of the forecast error estimate. This is achieved starting from a particular square-root implementation of the EKF with assimilation confined in the unstable subspace (EKF-AUS), that is, the span of the Lyapunov vectors with non-negative exponents. When the error evolution is nonlinear, the space where it is confined is no more restricted to the unstable and neutral subspace causing filter divergence. The algorithm presented here, denominated EKF-AUS-NL, includes the nonlinear terms in the error dynamics: These result from the nonlinear interaction among the leading Lyapunov vectors and account for all directions where the error growth may take place. Numerical results show that with the nonlinear terms included, filter divergence can be avoided. We test the algorithm on the Lorenz96 model, showing very promising results.

  13. Generation of Long Waves using Non-Linear Digital Filters

    DEFF Research Database (Denmark)

    Høgedal, Michael; Frigaard, Peter

    1994-01-01

    transform of the 1st order surface elevation and subsequently inverse Fourier transformed. Hence, the methods are unsuitable for real-time applications, for example where white noise are filtered digitally to obtain a wave spectrum with built-in stochastic variabillity. In the present paper an approximative...... method for including the correct 2nd order bound terms in such applications is presented. The technique utilizes non-liner digital filters fitted to the appropriate transfer function is derived only for bounded 2nd order subharmonics, as they laboratory experiments generally are considered the most...

  14. Adaptive projective synchronization of different chaotic systems with nonlinearity inputs

    International Nuclear Information System (INIS)

    Niu Yu-Jun; Pei Bing-Nan; Wang Xing-Yuan

    2012-01-01

    We investigate the projective synchronization of different chaotic systems with nonlinearity inputs. Based on the adaptive technique, sliding mode control method and pole assignment technique, a novel adaptive projective synchronization scheme is proposed to ensure the drive system and the response system with nonlinearity inputs can be rapidly synchronized up to the given scaling factor. (general)

  15. Applications of Kalman filters based on non-linear functions to numerical weather predictions

    Directory of Open Access Journals (Sweden)

    G. Galanis

    2006-10-01

    Full Text Available This paper investigates the use of non-linear functions in classical Kalman filter algorithms on the improvement of regional weather forecasts. The main aim is the implementation of non linear polynomial mappings in a usual linear Kalman filter in order to simulate better non linear problems in numerical weather prediction. In addition, the optimal order of the polynomials applied for such a filter is identified. This work is based on observations and corresponding numerical weather predictions of two meteorological parameters characterized by essential differences in their evolution in time, namely, air temperature and wind speed. It is shown that in both cases, a polynomial of low order is adequate for eliminating any systematic error, while higher order functions lead to instabilities in the filtered results having, at the same time, trivial contribution to the sensitivity of the filter. It is further demonstrated that the filter is independent of the time period and the geographic location of application.

  16. Generation of Long Waves using Non-Linear Digital Filters

    DEFF Research Database (Denmark)

    Høgedal, Michael; Frigaard, Peter; Christensen, Morten

    1994-01-01

    transform of the 1st order surface elevation and subsequently inverse Fourier transformed. Hence, the methods are unsuitable for real-time applications, for example where white noise are filtered digitally to obtain a wave spectrum with built-in stochastic variabillity. In the present paper an approximative...

  17. Hybrid three-dimensional variation and particle filtering for nonlinear systems

    International Nuclear Information System (INIS)

    Leng Hong-Ze; Song Jun-Qiang

    2013-01-01

    This work addresses the problem of estimating the states of nonlinear dynamic systems with sparse observations. We present a hybrid three-dimensional variation (3DVar) and particle piltering (PF) method, which combines the advantages of 3DVar and particle-based filters. By minimizing the cost function, this approach will produce a better proposal distribution of the state. Afterwards the stochastic resampling step in standard PF can be avoided through a deterministic scheme. The simulation results show that the performance of the new method is superior to the traditional ensemble Kalman filtering (EnKF) and the standard PF, especially in highly nonlinear systems

  18. Hollywood log-homotopy: movies of particle flow for nonlinear filters

    Science.gov (United States)

    Daum, Fred; Huang, Jim

    2011-06-01

    In this paper we show five movies of particle flow to provide insight and intuition about this new algorithm. The particles flow solves the well known and important problem of particle degeneracy. Bayes' rule is implemented by particle flow rather than as a pointwise multiplication. This theory is roughly seven orders of magnitude faster than standard particle filters, and it often beats the extended Kalman filter by two orders of magnitude in accuracy for difficult nonlinear problems.

  19. 3D early embryogenesis image filtering by nonlinear partial differential equations.

    Science.gov (United States)

    Krivá, Z; Mikula, K; Peyriéras, N; Rizzi, B; Sarti, A; Stasová, O

    2010-08-01

    We present nonlinear diffusion equations, numerical schemes to solve them and their application for filtering 3D images obtained from laser scanning microscopy (LSM) of living zebrafish embryos, with a goal to identify the optimal filtering method and its parameters. In the large scale applications dealing with analysis of 3D+time embryogenesis images, an important objective is a correct detection of the number and position of cell nuclei yielding the spatio-temporal cell lineage tree of embryogenesis. The filtering is the first and necessary step of the image analysis chain and must lead to correct results, removing the noise, sharpening the nuclei edges and correcting the acquisition errors related to spuriously connected subregions. In this paper we study such properties for the regularized Perona-Malik model and for the generalized mean curvature flow equations in the level-set formulation. A comparison with other nonlinear diffusion filters, like tensor anisotropic diffusion and Beltrami flow, is also included. All numerical schemes are based on the same discretization principles, i.e. finite volume method in space and semi-implicit scheme in time, for solving nonlinear partial differential equations. These numerical schemes are unconditionally stable, fast and naturally parallelizable. The filtering results are evaluated and compared first using the Mean Hausdorff distance between a gold standard and different isosurfaces of original and filtered data. Then, the number of isosurface connected components in a region of interest (ROI) detected in original and after the filtering is compared with the corresponding correct number of nuclei in the gold standard. Such analysis proves the robustness and reliability of the edge preserving nonlinear diffusion filtering for this type of data and lead to finding the optimal filtering parameters for the studied models and numerical schemes. Further comparisons consist in ability of splitting the very close objects which

  20. A Study on Application of Fuzzy Adaptive Unscented Kalman Filter to Nonlinear Turbojet Engine Control

    Science.gov (United States)

    Han, Dongju

    2018-05-01

    Safe and efficient flight powered by an aircraft turbojet engine relies on the performance of the engine controller preventing compressor surge with robustness from noises or disturbances. This paper proposes the effective nonlinear controller associated with the nonlinear filter for the real turbojet engine with highly nonlinear dynamics. For the feasible controller study the nonlinearity of the engine dynamics was investigated by comparing the step responses from the linearized model with the original nonlinear dynamics. The fuzzy-based PID control logic is introduced to control the engine efficiently and FAUKF is applied for robustness from noises. The simulation results prove the effectiveness of FAUKF applied to the proposed controller such that the control performances are superior over the conventional controller and the filer performance using FAUKF indicates the satisfactory results such as clearing the defects by reducing the distortions without compressor surge, whereas the conventional UKF is not fully effective as occurring some distortions with compressor surge due to a process noise.

  1. Input Forces Estimation for Nonlinear Systems by Applying a Square-Root Cubature Kalman Filter.

    Science.gov (United States)

    Song, Xuegang; Zhang, Yuexin; Liang, Dakai

    2017-10-10

    This work presents a novel inverse algorithm to estimate time-varying input forces in nonlinear beam systems. With the system parameters determined, the input forces can be estimated in real-time from dynamic responses, which can be used for structural health monitoring. In the process of input forces estimation, the Runge-Kutta fourth-order algorithm was employed to discretize the state equations; a square-root cubature Kalman filter (SRCKF) was employed to suppress white noise; the residual innovation sequences, a priori state estimate, gain matrix, and innovation covariance generated by SRCKF were employed to estimate the magnitude and location of input forces by using a nonlinear estimator. The nonlinear estimator was based on the least squares method. Numerical simulations of a large deflection beam and an experiment of a linear beam constrained by a nonlinear spring were employed. The results demonstrated accuracy of the nonlinear algorithm.

  2. Input Forces Estimation for Nonlinear Systems by Applying a Square-Root Cubature Kalman Filter

    Directory of Open Access Journals (Sweden)

    Xuegang Song

    2017-10-01

    Full Text Available This work presents a novel inverse algorithm to estimate time-varying input forces in nonlinear beam systems. With the system parameters determined, the input forces can be estimated in real-time from dynamic responses, which can be used for structural health monitoring. In the process of input forces estimation, the Runge-Kutta fourth-order algorithm was employed to discretize the state equations; a square-root cubature Kalman filter (SRCKF was employed to suppress white noise; the residual innovation sequences, a priori state estimate, gain matrix, and innovation covariance generated by SRCKF were employed to estimate the magnitude and location of input forces by using a nonlinear estimator. The nonlinear estimator was based on the least squares method. Numerical simulations of a large deflection beam and an experiment of a linear beam constrained by a nonlinear spring were employed. The results demonstrated accuracy of the nonlinear algorithm.

  3. Change detection in the dynamics of an intracellular protein synthesis model using nonlinear Kalman filtering.

    Science.gov (United States)

    Rigatos, Gerasimos G; Rigatou, Efthymia G; Djida, Jean Daniel

    2015-10-01

    A method for early diagnosis of parametric changes in intracellular protein synthesis models (e.g. the p53 protein - mdm2 inhibitor model) is developed with the use of a nonlinear Kalman Filtering approach (Derivative-free nonlinear Kalman Filter) and of statistical change detection methods. The intracellular protein synthesis dynamic model is described by a set of coupled nonlinear differential equations. It is shown that such a dynamical system satisfies differential flatness properties and this allows to transform it, through a change of variables (diffeomorphism), to the so-called linear canonical form. For the linearized equivalent of the dynamical system, state estimation can be performed using the Kalman Filter recursion. Moreover, by applying an inverse transformation based on the previous diffeomorphism it becomes also possible to obtain estimates of the state variables of the initial nonlinear model. By comparing the output of the Kalman Filter (which is assumed to correspond to the undistorted dynamical model) with measurements obtained from the monitored protein synthesis system, a sequence of differences (residuals) is obtained. The statistical processing of the residuals with the use of x2 change detection tests, can provide indication within specific confidence intervals about parametric changes in the considered biological system and consequently indications about the appearance of specific diseases (e.g. malignancies).

  4. Non-linear DSGE Models and The Central Difference Kalman Filter

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller

    This paper introduces a Quasi Maximum Likelihood (QML) approach based on the Cen- tral Difference Kalman Filter (CDKF) to estimate non-linear DSGE models with potentially non-Gaussian shocks. We argue that this estimator can be expected to be consistent and asymptotically normal for DSGE models...

  5. Improvement of nonlinear diffusion equation using relaxed geometric mean filter for low PSNR images

    DEFF Research Database (Denmark)

    Nadernejad, Ehsan

    2013-01-01

    A new method to improve the performance of low PSNR image denoising is presented. The proposed scheme estimates edge gradient from an image that is regularised with a relaxed geometric mean filter. The proposed method consists of two stages; the first stage consists of a second order nonlinear an...

  6. White noise theory of robust nonlinear filtering with correlated state and observation noises

    NARCIS (Netherlands)

    Bagchi, Arunabha; Karandikar, Rajeeva

    1992-01-01

    In the direct white noise theory of nonlinear filtering, the state process is still modeled as a Markov process satisfying an Ito stochastic differential equation, while a finitely additive white noise is used to model the observation noise. In the present work, this asymmetry is removed by modeling

  7. White noise theory of robust nonlinear filtering with correlated state and observation noises

    NARCIS (Netherlands)

    Bagchi, Arunabha; Karandikar, Rajeeva

    1994-01-01

    In the existing `direct¿ white noise theory of nonlinear filtering, the state process is still modelled as a Markov process satisfying an Itô stochastic differential equation, while a `finitely additive¿ white noise is used to model the observation noise. We remove this asymmetry by modelling the

  8. Gas Path Health Monitoring for a Turbofan Engine Based on a Nonlinear Filtering Approach

    Directory of Open Access Journals (Sweden)

    Yiqiu Lv

    2013-01-01

    Full Text Available Different approaches for gas path performance estimation of dynamic systems are commonly used, the most common being the variants of the Kalman filter. The extended Kalman filter (EKF method is a popular approach for nonlinear systems which combines the traditional Kalman filtering and linearization techniques to effectively deal with weakly nonlinear and non-Gaussian problems. Its mathematical formulation is based on the assumption that the probability density function (PDF of the state vector can be approximated to be Gaussian. Recent investigations have focused on the particle filter (PF based on Monte Carlo sampling algorithms for tackling strong nonlinear and non-Gaussian models. Considering the aircraft engine is a complicated machine, operating under a harsh environment, and polluted by complex noises, the PF might be an available way to monitor gas path health for aircraft engines. Up to this point in time a number of Kalman filtering approaches have been used for aircraft turbofan engine gas path health estimation, but the particle filters have not been used for this purpose and a systematic comparison has not been published. This paper presents gas path health monitoring based on the PF and the constrained extend Kalman particle filter (cEKPF, and then compares the estimation accuracy and computational effort of these filters to the EKF for aircraft engine performance estimation under rapid faults and general deterioration. Finally, the effects of the constraint mechanism and particle number on the cEKPF are discussed. We show in this paper that the cEKPF outperforms the EKF, PF and EKPF, and conclude that the cEKPF is the best choice for turbofan engine health monitoring.

  9. Decentralized identification of nonlinear structure under strong ground motion using the extended Kalman filter and unscented Kalman filter

    Science.gov (United States)

    Tao, Dongwang; Li, Hui; Ma, Qiang

    2016-04-01

    Complete structure identification of complicate nonlinear system using extend Kalman filter (EKF) or unscented Kalman filter (UKF) may have the problems of divergence, huge computation and low estimation precision due to the large dimension of the extended state space for the system. In this article, a decentralized identification method of hysteretic system based on the joint EKF and UKF is proposed. The complete structure is divided into linear substructures and nonlinear substructures. The substructures are identified from the top to the bottom. For the linear substructure, EKF is used to identify the extended space including the displacements, velocities, stiffness and damping coefficients of the substructures, using the limited absolute accelerations and the identified interface force above the substructure. Similarly, for the nonlinear substructure, UKF is used to identify the extended space including the displacements, velocities, stiffness, damping coefficients and control parameters for the hysteretic Bouc-Wen model and the force at the interface of substructures. Finally a 10-story shear-type structure with multiple inter-story hysteresis is used for numerical simulation and is identified using the decentralized approach, and the identified results are compared with those using only EKF or UKF for the complete structure identification. The results show that the decentralized approach has the advantage of more stability, relative less computation and higher estimation precision.

  10. A nonlinear filtering algorithm for denoising HR(S)TEM micrographs

    International Nuclear Information System (INIS)

    Du, Hongchu

    2015-01-01

    Noise reduction of micrographs is often an essential task in high resolution (scanning) transmission electron microscopy (HR(S)TEM) either for a higher visual quality or for a more accurate quantification. Since HR(S)TEM studies are often aimed at resolving periodic atomistic columns and their non-periodic deviation at defects, it is important to develop a noise reduction algorithm that can simultaneously handle both periodic and non-periodic features properly. In this work, a nonlinear filtering algorithm is developed based on widely used techniques of low-pass filter and Wiener filter, which can efficiently reduce noise without noticeable artifacts even in HR(S)TEM micrographs with contrast of variation of background and defects. The developed nonlinear filtering algorithm is particularly suitable for quantitative electron microscopy, and is also of great interest for beam sensitive samples, in situ analyses, and atomic resolution EFTEM. - Highlights: • A nonlinear filtering algorithm for denoising HR(S)TEM images is developed. • It can simultaneously handle both periodic and non-periodic features properly. • It is particularly suitable for quantitative electron microscopy. • It is of great interest for beam sensitive samples, in situ analyses, and atomic resolution EFTEM

  11. The Use of Nonlinear Constitutive Equations to Evaluate Draw Resistance and Filter Ventilation

    Directory of Open Access Journals (Sweden)

    Eitzinger B

    2014-12-01

    Full Text Available This study investigates by nonlinear constitutive equations the influence of tipping paper, cigarette paper, filter, and tobacco rod on the degree of filter ventilation and draw resistance. Starting from the laws of conservation, the path to the theory of fluid dynamics in porous media and Darcy's law is reviewed and, as an extension to Darcy's law, two different nonlinear pressure drop-flow relations are proposed. It is proven that these relations are valid constitutive equations and the partial differential equations for the stationary flow in an unlit cigarette covering anisotropic, inhomogeneous and nonlinear behaviour are derived. From these equations a system of ordinary differential equations for the one-dimensional flow in the cigarette is derived by averaging pressure and velocity over the cross section of the cigarette. By further integration, the concept of an electrical analog is reached and discussed in the light of nonlinear pressure drop-flow relations. By numerical calculations based on the system of ordinary differential equations, it is shown that the influence of nonlinearities cannot be neglected because variations in the degree of filter ventilation can reach up to 20% of its nominal value.

  12. PARTICLE FILTERING WITH SEQUENTIAL PARAMETER LEARNING FOR NONLINEAR BOLD fMRI SIGNALS.

    Science.gov (United States)

    Xia, Jing; Wang, Michelle Yongmei

    Analyzing the blood oxygenation level dependent (BOLD) effect in the functional magnetic resonance imaging (fMRI) is typically based on recent ground-breaking time series analysis techniques. This work represents a significant improvement over existing approaches to system identification using nonlinear hemodynamic models. It is important for three reasons. First, instead of using linearized approximations of the dynamics, we present a nonlinear filtering based on the sequential Monte Carlo method to capture the inherent nonlinearities in the physiological system. Second, we simultaneously estimate the hidden physiological states and the system parameters through particle filtering with sequential parameter learning to fully take advantage of the dynamic information of the BOLD signals. Third, during the unknown static parameter learning, we employ the low-dimensional sufficient statistics for efficiency and avoiding potential degeneration of the parameters. The performance of the proposed method is validated using both the simulated data and real BOLD fMRI data.

  13. Robust extended Kalman filter of discrete-time Markovian jump nonlinear system under uncertain noise

    International Nuclear Information System (INIS)

    Zhu, Jin; Park, Jun Hong; Lee, Kwan Soo; Spiryagin, Maksym

    2008-01-01

    This paper examines the problem of robust extended Kalman filter design for discrete -time Markovian jump nonlinear systems with noise uncertainty. Because of the existence of stochastic Markovian switching, the state and measurement equations of underlying system are subject to uncertain noise whose covariance matrices are time-varying or un-measurable instead of stationary. First, based on the expression of filtering performance deviation, admissible uncertainty of noise covariance matrix is given. Secondly, two forms of noise uncertainty are taken into account: Non- Structural and Structural. It is proved by applying game theory that this filter design is a robust mini-max filter. A numerical example shows the validity of the method

  14. Ensemble Kalman Filtering with Residual Nudging: An Extension to State Estimation Problems with Nonlinear Observation Operators

    KAUST Repository

    Luo, Xiaodong

    2014-10-01

    The ensemble Kalman filter (EnKF) is an efficient algorithm for many data assimilation problems. In certain circumstances, however, divergence of the EnKF might be spotted. In previous studies, the authors proposed an observation-space-based strategy, called residual nudging, to improve the stability of the EnKF when dealing with linear observation operators. The main idea behind residual nudging is to monitor and, if necessary, adjust the distances (misfits) between the real observations and the simulated ones of the state estimates, in the hope that by doing so one may be able to obtain better estimation accuracy. In the present study, residual nudging is extended and modified in order to handle nonlinear observation operators. Such extension and modification result in an iterative filtering framework that, under suitable conditions, is able to achieve the objective of residual nudging for data assimilation problems with nonlinear observation operators. The 40-dimensional Lorenz-96 model is used to illustrate the performance of the iterative filter. Numerical results show that, while a normal EnKF may diverge with nonlinear observation operators, the proposed iterative filter remains stable and leads to reasonable estimation accuracy under various experimental settings.

  15. Generalized Filtered Back-Projection for Digital Breast Tomosynthesis Reconstruction

    NARCIS (Netherlands)

    Erhard, K.; Grass, M.; Hitziger, S.; Iske, A.; Nielsen, T.

    2012-01-01

    Filtered back-projection (FBP) has been commonly used as an efficient and robust reconstruction technique in tomographic X-ray imagingduring the last decades. For limited angle tomography acquisitions such as digital breast tomosynthesis, however, standard FBP reconstruction algorithms provide poor

  16. Weighted Optimization-Based Distributed Kalman Filter for Nonlinear Target Tracking in Collaborative Sensor Networks.

    Science.gov (United States)

    Chen, Jie; Li, Jiahong; Yang, Shuanghua; Deng, Fang

    2017-11-01

    The identification of the nonlinearity and coupling is crucial in nonlinear target tracking problem in collaborative sensor networks. According to the adaptive Kalman filtering (KF) method, the nonlinearity and coupling can be regarded as the model noise covariance, and estimated by minimizing the innovation or residual errors of the states. However, the method requires large time window of data to achieve reliable covariance measurement, making it impractical for nonlinear systems which are rapidly changing. To deal with the problem, a weighted optimization-based distributed KF algorithm (WODKF) is proposed in this paper. The algorithm enlarges the data size of each sensor by the received measurements and state estimates from its connected sensors instead of the time window. A new cost function is set as the weighted sum of the bias and oscillation of the state to estimate the "best" estimate of the model noise covariance. The bias and oscillation of the state of each sensor are estimated by polynomial fitting a time window of state estimates and measurements of the sensor and its neighbors weighted by the measurement noise covariance. The best estimate of the model noise covariance is computed by minimizing the weighted cost function using the exhaustive method. The sensor selection method is in addition to the algorithm to decrease the computation load of the filter and increase the scalability of the sensor network. The existence, suboptimality and stability analysis of the algorithm are given. The local probability data association method is used in the proposed algorithm for the multitarget tracking case. The algorithm is demonstrated in simulations on tracking examples for a random signal, one nonlinear target, and four nonlinear targets. Results show the feasibility and superiority of WODKF against other filtering algorithms for a large class of systems.

  17. A novel nonlinear adaptive filter using a pipelined second-order Volterra recurrent neural network.

    Science.gov (United States)

    Zhao, Haiquan; Zhang, Jiashu

    2009-12-01

    To enhance the performance and overcome the heavy computational complexity of recurrent neural networks (RNN), a novel nonlinear adaptive filter based on a pipelined second-order Volterra recurrent neural network (PSOVRNN) is proposed in this paper. A modified real-time recurrent learning (RTRL) algorithm of the proposed filter is derived in much more detail. The PSOVRNN comprises of a number of simple small-scale second-order Volterra recurrent neural network (SOVRNN) modules. In contrast to the standard RNN, these modules of a PSOVRNN can be performed simultaneously in a pipelined parallelism fashion, which can lead to a significant improvement in its total computational efficiency. Moreover, since each module of the PSOVRNN is a SOVRNN in which nonlinearity is introduced by the recursive second-order Volterra (RSOV) expansion, its performance can be further improved. Computer simulations have demonstrated that the PSOVRNN performs better than the pipelined recurrent neural network (PRNN) and RNN for nonlinear colored signals prediction and nonlinear channel equalization. However, the superiority of the PSOVRNN over the PRNN is at the cost of increasing computational complexity due to the introduced nonlinear expansion of each module.

  18. A Nonmonotone Line Search Filter Algorithm for the System of Nonlinear Equations

    Directory of Open Access Journals (Sweden)

    Zhong Jin

    2012-01-01

    Full Text Available We present a new iterative method based on the line search filter method with the nonmonotone strategy to solve the system of nonlinear equations. The equations are divided into two groups; some equations are treated as constraints and the others act as the objective function, and the two groups are just updated at the iterations where it is needed indeed. We employ the nonmonotone idea to the sufficient reduction conditions and filter technique which leads to a flexibility and acceptance behavior comparable to monotone methods. The new algorithm is shown to be globally convergent and numerical experiments demonstrate its effectiveness.

  19. Maximized gust loads for a nonlinear airplane using matched filter theory and constrained optimization

    Science.gov (United States)

    Scott, Robert C.; Perry, Boyd, III; Pototzky, Anthony S.

    1991-01-01

    This paper describes and illustrates two matched-filter-theory based schemes for obtaining maximized and time-correlated gust-loads for a nonlinear airplane. The first scheme is computationally fast because it uses a simple one-dimensional search procedure to obtain its answers. The second scheme is computationally slow because it uses a more complex multidimensional search procedure to obtain its answers, but it consistently provides slightly higher maximum loads than the first scheme. Both schemes are illustrated with numerical examples involving a nonlinear control system.

  20. Nonlinear optical behaviour of absorbing CdSxSe1-x interference filters

    International Nuclear Information System (INIS)

    Ferencz, K.; Szipoecs, R.

    1988-01-01

    First experimental results of nonlinear, thin film interference filter wedges with mixed CdS x Se 1-x as spacer material at the 633 nm wavelength of He-Ne laser are reported. Optical bistability is observed with less than 7.5 mW of optical power in single-cavity structures. The change in refractive index is found to be positive which is in accordance with the thermal mechanism of nonlinearity. Producing a double-cavity structure a device is obtained which works as an optical astable multivibrator having periodical change of transmission as the function of time. (author)

  1. Differential Neural Networks for Identification and Filtering in Nonlinear Dynamic Games

    Directory of Open Access Journals (Sweden)

    Emmanuel García

    2014-01-01

    Full Text Available This paper deals with the problem of identifying and filtering a class of continuous-time nonlinear dynamic games (nonlinear differential games subject to additive and undesired deterministic perturbations. Moreover, the mathematical model of this class is completely unknown with the exception of the control actions of each player, and even though the deterministic noises are known, their power (or their effect is not. Therefore, two differential neural networks are designed in order to obtain a feedback (perfect state information pattern for the mentioned class of games. In this way, the stability conditions for two state identification errors and for a filtering error are established, the upper bounds of these errors are obtained, and two new learning laws for each neural network are suggested. Finally, an illustrating example shows the applicability of this approach.

  2. Density-based Monte Carlo filter and its applications in nonlinear stochastic differential equation models.

    Science.gov (United States)

    Huang, Guanghui; Wan, Jianping; Chen, Hui

    2013-02-01

    Nonlinear stochastic differential equation models with unobservable state variables are now widely used in analysis of PK/PD data. Unobservable state variables are usually estimated with extended Kalman filter (EKF), and the unknown pharmacokinetic parameters are usually estimated by maximum likelihood estimator. However, EKF is inadequate for nonlinear PK/PD models, and MLE is known to be biased downwards. A density-based Monte Carlo filter (DMF) is proposed to estimate the unobservable state variables, and a simulation-based M estimator is proposed to estimate the unknown parameters in this paper, where a genetic algorithm is designed to search the optimal values of pharmacokinetic parameters. The performances of EKF and DMF are compared through simulations for discrete time and continuous time systems respectively, and it is found that the results based on DMF are more accurate than those given by EKF with respect to mean absolute error. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Nonlinear optimal filter technique for analyzing energy depositions in TES sensors driven into saturation

    Directory of Open Access Journals (Sweden)

    B. Shank

    2014-11-01

    Full Text Available We present a detailed thermal and electrical model of superconducting transition edge sensors (TESs connected to quasiparticle (qp traps, such as the W TESs connected to Al qp traps used for CDMS (Cryogenic Dark Matter Search Ge and Si detectors. We show that this improved model, together with a straightforward time-domain optimal filter, can be used to analyze pulses well into the nonlinear saturation region and reconstruct absorbed energies with optimal energy resolution.

  4. Dual Adaptive Filtering by Optimal Projection Applied to Filter Muscle Artifacts on EEG and Comparative Study

    Directory of Open Access Journals (Sweden)

    Samuel Boudet

    2014-01-01

    Full Text Available Muscle artifacts constitute one of the major problems in electroencephalogram (EEG examinations, particularly for the diagnosis of epilepsy, where pathological rhythms occur within the same frequency bands as those of artifacts. This paper proposes to use the method dual adaptive filtering by optimal projection (DAFOP to automatically remove artifacts while preserving true cerebral signals. DAFOP is a two-step method. The first step consists in applying the common spatial pattern (CSP method to two frequency windows to identify the slowest components which will be considered as cerebral sources. The two frequency windows are defined by optimizing convolutional filters. The second step consists in using a regression method to reconstruct the signal independently within various frequency windows. This method was evaluated by two neurologists on a selection of 114 pages with muscle artifacts, from 20 clinical recordings of awake and sleeping adults, subject to pathological signals and epileptic seizures. A blind comparison was then conducted with the canonical correlation analysis (CCA method and conventional low-pass filtering at 30 Hz. The filtering rate was 84.3% for muscle artifacts with a 6.4% reduction of cerebral signals even for the fastest waves. DAFOP was found to be significantly more efficient than CCA and 30 Hz filters. The DAFOP method is fast and automatic and can be easily used in clinical EEG recordings.

  5. Effects of noise, nonlinear processing, and linear filtering on perceived music quality.

    Science.gov (United States)

    Arehart, Kathryn H; Kates, James M; Anderson, Melinda C

    2011-03-01

    The purpose of this study was to determine the relative impact of different forms of hearing aid signal processing on quality ratings of music. Music quality was assessed using a rating scale for three types of music: orchestral classical music, jazz instrumental, and a female vocalist. The music stimuli were subjected to a wide range of simulated hearing aid processing conditions including, (1) noise and nonlinear processing, (2) linear filtering, and (3) combinations of noise, nonlinear, and linear filtering. Quality ratings were measured in a group of 19 listeners with normal hearing and a group of 15 listeners with sensorineural hearing impairment. Quality ratings in both groups were generally comparable, were reliable across test sessions, were impacted more by noise and nonlinear signal processing than by linear filtering, and were significantly affected by the genre of music. The average quality ratings for music were reasonably well predicted by the hearing aid speech quality index (HASQI), but additional work is needed to optimize the index to the wide range of music genres and processing conditions included in this study.

  6. Nonlinear Filtering Effects of Reservoirs on Flood Frequency Curves at the Regional Scale: RESERVOIRS FILTER FLOOD FREQUENCY CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Li, Hong-Yi; Leung, Lai-Yung; Yigzaw, Wondmagegn Y.; Zhao, Jianshi; Lu, Hui; Deng, Zhiqun; Demissie, Yonas; Bloschl, Gunter

    2017-10-01

    Anthropogenic activities, e.g., reservoir operation, may alter the characteristics of Flood Frequency Curve (FFC) and challenge the basic assumption of stationarity used in flood frequency analysis. This paper presents a combined data-modeling analysis of the nonlinear filtering effects of reservoirs on the FFCs over the contiguous United States. A dimensionless Reservoir Impact Index (RII), defined as the total upstream reservoir storage capacity normalized by the annual streamflow volume, is used to quantify reservoir regulation effects. Analyses are performed for 388 river stations with an average record length of 50 years. The first two moments of the FFC, mean annual maximum flood (MAF) and coefficient of variations (CV), are calculated for the pre- and post-dam periods and compared to elucidate the reservoir regulation effects as a function of RII. It is found that MAF generally decreases with increasing RII but stabilizes when RII exceeds a threshold value, and CV increases with RII until a threshold value beyond which CV decreases with RII. The processes underlying the nonlinear threshold behavior of MAF and CV are investigated using three reservoir models with different levels of complexity. All models capture the non-linear relationships of MAF and CV with RII, suggesting that the basic flood control function of reservoirs is key to the non-linear relationships. The relative roles of reservoir storage capacity, operation objectives, available storage prior to a flood event, and reservoir inflow pattern are systematically investigated. Our findings may help improve flood-risk assessment and mitigation in regulated river systems at the regional scale.

  7. Nonlinear consider covariance analysis using a sigma-point filter formulation

    Science.gov (United States)

    Lisano, Michael E.

    2006-01-01

    The research reported here extends the mathematical formulation of nonlinear, sigma-point estimators to enable consider covariance analysis for dynamical systems. This paper presents a novel sigma-point consider filter algorithm, for consider-parameterized nonlinear estimation, following the unscented Kalman filter (UKF) variation on the sigma-point filter formulation, which requires no partial derivatives of dynamics models or measurement models with respect to the parameter list. It is shown that, consistent with the attributes of sigma-point estimators, a consider-parameterized sigma-point estimator can be developed entirely without requiring the derivation of any partial-derivative matrices related to the dynamical system, the measurements, or the considered parameters, which appears to be an advantage over the formulation of a linear-theory sequential consider estimator. It is also demonstrated that a consider covariance analysis performed with this 'partial-derivative-free' formulation yields equivalent results to the linear-theory consider filter, for purely linear problems.

  8. Marginalized adaptive particle filtering for nonlinear models with unknown time-varying noise parameters

    Czech Academy of Sciences Publication Activity Database

    Ökzan, E.; Šmídl, Václav; Saha, S.; Lundquist, C.; Gustafsson, F.

    2013-01-01

    Roč. 49, č. 6 (2013), s. 1566-1575 ISSN 0005-1098 R&D Projects: GA ČR(CZ) GAP102/11/0437 Keywords : Unknown Noise Statistics * Adaptive Filtering * Marginalized Particle Filter * Bayesian Conjugate prior Subject RIV: BC - Control Systems Theory Impact factor: 3.132, year: 2013 http://library.utia.cas.cz/separaty/2013/AS/smidl-0393047.pdf

  9. Evaluation of non-linear adaptive smoothing filter by digital phantom

    International Nuclear Information System (INIS)

    Sato, Kazuhiro; Ishiya, Hiroki; Oshita, Ryosuke; Yanagawa, Isao; Goto, Mitsunori; Mori, Issei

    2008-01-01

    As a result of the development of multi-slice CT, diagnoses based on three-dimensional reconstruction images and multi-planar reconstruction have spread. For these applications, which require high z-resolution, thin slice imaging is essential. However, because z-resolution is always based on a trade-off with image noise, thin slice imaging is necessarily accompanied by an increase in noise level. To improve the quality of thin slice images, a non-linear adaptive smoothing filter has been developed, and is being widely applied to clinical use. We developed a digital bar pattern phantom for the purpose of evaluating the effect of this filter and attempted evaluation from an addition image of the bar pattern phantom and the image of the water phantom. The effect of this filter was changed in a complex manner by the contrast and spatial frequency of the original image. We have confirmed the reduced effect of image noise in the low frequency component of the image, but decreased contrast or increased quantity of noise in the image of the high frequency component. This result represents the effect of change in the adaptation of this filter. The digital phantom was useful for this evaluation, but to understand the total effect of filtering, much improvement of the shape of the digital phantom is required. (author)

  10. Strong Tracking Filter for Nonlinear Systems with Randomly Delayed Measurements and Correlated Noises

    Directory of Open Access Journals (Sweden)

    Hongtao Yang

    2018-01-01

    Full Text Available This paper proposes a novel strong tracking filter (STF, which is suitable for dealing with the filtering problem of nonlinear systems when the following cases occur: that is, the constructed model does not match the actual system, the measurements have the one-step random delay, and the process and measurement noises are correlated at the same epoch. Firstly, a framework of decoupling filter (DF based on equivalent model transformation is derived. Further, according to the framework of DF, a new extended Kalman filtering (EKF algorithm via using first-order linearization approximation is developed. Secondly, the computational process of the suboptimal fading factor is derived on the basis of the extended orthogonality principle (EOP. Thirdly, the ultimate form of the proposed STF is obtained by introducing the suboptimal fading factor into the above EKF algorithm. The proposed STF can automatically tune the suboptimal fading factor on the basis of the residuals between available and predicted measurements and further the gain matrices of the proposed STF tune online to improve the filtering performance. Finally, the effectiveness of the proposed STF has been proved through numerical simulation experiments.

  11. An ensemble Kalman filter for statistical estimation of physics constrained nonlinear regression models

    International Nuclear Information System (INIS)

    Harlim, John; Mahdi, Adam; Majda, Andrew J.

    2014-01-01

    A central issue in contemporary science is the development of nonlinear data driven statistical–dynamical models for time series of noisy partial observations from nature or a complex model. It has been established recently that ad-hoc quadratic multi-level regression models can have finite-time blow-up of statistical solutions and/or pathological behavior of their invariant measure. Recently, a new class of physics constrained nonlinear regression models were developed to ameliorate this pathological behavior. Here a new finite ensemble Kalman filtering algorithm is developed for estimating the state, the linear and nonlinear model coefficients, the model and the observation noise covariances from available partial noisy observations of the state. Several stringent tests and applications of the method are developed here. In the most complex application, the perfect model has 57 degrees of freedom involving a zonal (east–west) jet, two topographic Rossby waves, and 54 nonlinearly interacting Rossby waves; the perfect model has significant non-Gaussian statistics in the zonal jet with blocked and unblocked regimes and a non-Gaussian skewed distribution due to interaction with the other 56 modes. We only observe the zonal jet contaminated by noise and apply the ensemble filter algorithm for estimation. Numerically, we find that a three dimensional nonlinear stochastic model with one level of memory mimics the statistical effect of the other 56 modes on the zonal jet in an accurate fashion, including the skew non-Gaussian distribution and autocorrelation decay. On the other hand, a similar stochastic model with zero memory levels fails to capture the crucial non-Gaussian behavior of the zonal jet from the perfect 57-mode model

  12. A dynamic load estimation method for nonlinear structures with unscented Kalman filter

    Science.gov (United States)

    Guo, L. N.; Ding, Y.; Wang, Z.; Xu, G. S.; Wu, B.

    2018-02-01

    A force estimation method is proposed for hysteretic nonlinear structures. The equation of motion for the nonlinear structure is represented in state space and the state variable is augmented by the unknown the time history of external force. Unscented Kalman filter (UKF) is improved for the force identification in state space considering the ill-condition characteristic in the computation of square roots for the covariance matrix. The proposed method is firstly validated by a numerical simulation study of a 3-storey nonlinear hysteretic frame excited by periodic force. Each storey is supposed to follow a nonlinear hysteretic model. The external force is identified and the measurement noise is considered in this case. Then a case of a seismically isolated building subjected to earthquake excitation and impact force is studied. The isolation layer performs nonlinearly during the earthquake excitation. Impact force between the seismically isolated structure and the retaining wall is estimated with the proposed method. Uncertainties such as measurement noise, model error in storey stiffness and unexpected environmental disturbances are considered. A real-time substructure testing of an isolated structure is conducted to verify the proposed method. In the experimental study, the linear main structure is taken as numerical substructure while the one of the isolations with additional mass is taken as the nonlinear physical substructure. The force applied by the actuator on the physical substructure is identified and compared with the measured value from the force transducer. The method proposed in this paper is also validated by shaking table test of a seismically isolated steel frame. The acceleration of the ground motion as the unknowns is identified by the proposed method. Results from both numerical simulation and experimental studies indicate that the UKF based force identification method can be used to identify external excitations effectively for the nonlinear

  13. Nonlinear system identification based on Takagi-Sugeno fuzzy modeling and unscented Kalman filter.

    Science.gov (United States)

    Vafamand, Navid; Arefi, Mohammad Mehdi; Khayatian, Alireza

    2018-03-01

    This paper proposes two novel Kalman-based learning algorithms for an online Takagi-Sugeno (TS) fuzzy model identification. The proposed approaches are designed based on the unscented Kalman filter (UKF) and the concept of dual estimation. Contrary to the extended Kalman filter (EKF) which utilizes derivatives of nonlinear functions, the UKF employs the unscented transformation. Consequently, non-differentiable membership functions can be considered in the structure of the TS models. This makes the proposed algorithms to be applicable for the online parameter calculation of wider classes of TS models compared to the recently published papers concerning the same issue. Furthermore, because of the great capability of the UKF in handling severe nonlinear dynamics, the proposed approaches can effectively approximate the nonlinear systems. Finally, numerical and practical examples are provided to show the advantages of the proposed approaches. Simulation results reveal the effectiveness of the proposed methods and performance improvement based on the root mean square (RMS) of the estimation error compared to the existing results. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Projection-iteration methods for solving nonlinear operator equations

    International Nuclear Information System (INIS)

    Nguyen Minh Chuong; Tran thi Lan Anh; Tran Quoc Binh

    1989-09-01

    In this paper, the authors investigate a nonlinear operator equation in uniformly convex Banach spaces as in metric spaces by using stationary and nonstationary generalized projection-iteration methods. Convergence theorems in the strong and weak sense were established. (author). 7 refs

  15. Sky-Hook Control and Kalman Filtering in Nonlinear Model of Tracked Vehicle Suspension System

    Directory of Open Access Journals (Sweden)

    Jurkiewicz Andrzej

    2017-09-01

    Full Text Available The essence of the undertaken topic is application of the continuous sky-hook control strategy and the Extended Kalman Filter as the state observer in the 2S1 tracked vehicle suspension system. The half-car model of this suspension system consists of seven logarithmic spiral springs and two magnetorheological dampers which has been described by the Bingham model. The applied continuous sky-hook control strategy considers nonlinear stiffness characteristic of the logarithmic spiral springs. The control is determined on estimates generated by the Extended Kalman Filter. Improve of ride comfort is verified by comparing simulation results, under the same driving conditions, of controlled and passive vehicle suspension systems.

  16. Out-of-band and adjacent-channel interference reduction by analog nonlinear filters

    Science.gov (United States)

    Nikitin, Alexei V.; Davidchack, Ruslan L.; Smith, Jeffrey E.

    2015-12-01

    In a perfect world, we would have `brick wall' filters, no-distortion amplifiers and mixers, and well-coordinated spectrum operations. The real world, however, is prone to various types of unintentional and intentional interference of technogenic (man-made) origin that can disrupt critical communication systems. In this paper, we introduce a methodology for mitigating technogenic interference in communication channels by analog nonlinear filters, with an emphasis on the mitigation of out-of-band and adjacent-channel interference. Interference induced in a communications receiver by external transmitters can be viewed as wide-band non-Gaussian noise affecting a narrower-band signal of interest. This noise may contain a strong component within the receiver passband, which may dominate over the thermal noise. While the total wide-band interference seen by the receiver may or may not be impulsive, we demonstrate that the interfering component due to power emitted by the transmitter into the receiver channel is likely to appear impulsive under a wide range of conditions. We give an example of mechanisms of impulsive interference in digital communication systems resulting from the nonsmooth nature of any physically realizable modulation scheme for transmission of a digital (discontinuous) message. We show that impulsive interference can be effectively mitigated by nonlinear differential limiters (NDLs). An NDL can be configured to behave linearly when the input signal does not contain outliers. When outliers are encountered, the nonlinear response of the NDL limits the magnitude of the respective outliers in the output signal. The signal quality is improved in excess of that achievable by the respective linear filter, increasing the capacity of a communications channel. The behavior of an NDL, and its degree of nonlinearity, is controlled by a single parameter in a manner that enables significantly better overall suppression of the noise-containing impulsive components

  17. Estimating Multivariate Exponentail-Affine Term Structure Models from Coupon Bound Prices using Nonlinear Filtering

    DEFF Research Database (Denmark)

    Baadsgaard, Mikkel; Nielsen, Jan Nygaard; Madsen, Henrik

    2000-01-01

    An econometric analysis of continuous-timemodels of the term structure of interest rates is presented. A panel of coupon bond prices with different maturities is used to estimate the embedded parameters of a continuous-discrete state space model of unobserved state variables: the spot interest rate...... noise term should account for model errors. A nonlinear filtering method is used to compute estimates of the state variables, and the model parameters are estimated by a quasimaximum likelihood method provided that some assumptions are imposed on the model residuals. Both Monte Carlo simulation results...

  18. Information mining in weighted complex networks with nonlinear rating projection

    Science.gov (United States)

    Liao, Hao; Zeng, An; Zhou, Mingyang; Mao, Rui; Wang, Bing-Hong

    2017-10-01

    Weighted rating networks are commonly used by e-commerce providers nowadays. In order to generate an objective ranking of online items' quality according to users' ratings, many sophisticated algorithms have been proposed in the complex networks domain. In this paper, instead of proposing new algorithms we focus on a more fundamental problem: the nonlinear rating projection. The basic idea is that even though the rating values given by users are linearly separated, the real preference of users to items between the different given values is nonlinear. We thus design an approach to project the original ratings of users to more representative values. This approach can be regarded as a data pretreatment method. Simulation in both artificial and real networks shows that the performance of the ranking algorithms can be improved when the projected ratings are used.

  19. Non-linear feedback control of the p53 protein-mdm2 inhibitor system using the derivative-free non-linear Kalman filter.

    Science.gov (United States)

    Rigatos, Gerasimos G

    2016-06-01

    It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.

  20. A Robust Adaptive Unscented Kalman Filter for Nonlinear Estimation with Uncertain Noise Covariance.

    Science.gov (United States)

    Zheng, Binqi; Fu, Pengcheng; Li, Baoqing; Yuan, Xiaobing

    2018-03-07

    The Unscented Kalman filter (UKF) may suffer from performance degradation and even divergence while mismatch between the noise distribution assumed as a priori by users and the actual ones in a real nonlinear system. To resolve this problem, this paper proposes a robust adaptive UKF (RAUKF) to improve the accuracy and robustness of state estimation with uncertain noise covariance. More specifically, at each timestep, a standard UKF will be implemented first to obtain the state estimations using the new acquired measurement data. Then an online fault-detection mechanism is adopted to judge if it is necessary to update current noise covariance. If necessary, innovation-based method and residual-based method are used to calculate the estimations of current noise covariance of process and measurement, respectively. By utilizing a weighting factor, the filter will combine the last noise covariance matrices with the estimations as the new noise covariance matrices. Finally, the state estimations will be corrected according to the new noise covariance matrices and previous state estimations. Compared with the standard UKF and other adaptive UKF algorithms, RAUKF converges faster to the actual noise covariance and thus achieves a better performance in terms of robustness, accuracy, and computation for nonlinear estimation with uncertain noise covariance, which is demonstrated by the simulation results.

  1. A study of single multiplicative neuron model with nonlinear filters for hourly wind speed prediction

    International Nuclear Information System (INIS)

    Wu, Xuedong; Zhu, Zhiyu; Su, Xunliang; Fan, Shaosheng; Du, Zhaoping; Chang, Yanchao; Zeng, Qingjun

    2015-01-01

    Wind speed prediction is one important methods to guarantee the wind energy integrated into the whole power system smoothly. However, wind power has a non–schedulable nature due to the strong stochastic nature and dynamic uncertainty nature of wind speed. Therefore, wind speed prediction is an indispensable requirement for power system operators. Two new approaches for hourly wind speed prediction are developed in this study by integrating the single multiplicative neuron model and the iterated nonlinear filters for updating the wind speed sequence accurately. In the presented methods, a nonlinear state–space model is first formed based on the single multiplicative neuron model and then the iterated nonlinear filters are employed to perform dynamic state estimation on wind speed sequence with stochastic uncertainty. The suggested approaches are demonstrated using three cases wind speed data and are compared with autoregressive moving average, artificial neural network, kernel ridge regression based residual active learning and single multiplicative neuron model methods. Three types of prediction errors, mean absolute error improvement ratio and running time are employed for different models’ performance comparison. Comparison results from Tables 1–3 indicate that the presented strategies have much better performance for hourly wind speed prediction than other technologies. - Highlights: • Developed two novel hybrid modeling methods for hourly wind speed prediction. • Uncertainty and fluctuations of wind speed can be better explained by novel methods. • Proposed strategies have online adaptive learning ability. • Proposed approaches have shown better performance compared with existed approaches. • Comparison and analysis of two proposed novel models for three cases are provided

  2. Detection of broken rotor bars in induction motors using nonlinear Kalman filters.

    Science.gov (United States)

    Karami, Farzaneh; Poshtan, Javad; Poshtan, Majid

    2010-04-01

    This paper presents a model-based fault detection approach for induction motors. A new filtering technique using Unscented Kalman Filter (UKF) and Extended Kalman Filter (EKF) is utilized as a state estimation tool for on-line detection of broken bars in induction motors based on rotor parameter value estimation from stator current and voltage processing. The hypothesis on which the detection is based is that the failure events are detected by jumps in the estimated parameter values of the model. Both UKF and EKF are used to estimate the value of rotor resistance. Upon breaking a bar the estimated rotor resistance is increased instantly, thus providing two values of resistance after and before bar breakage. In order to compare the estimation performance of the EKF and UKF, both observers are designed for the same motor model and run with the same covariance matrices under the same conditions. Computer simulations are carried out for a squirrel cage induction motor. The results show the superiority of UKF over EKF in nonlinear system (such as induction motors) as it provides better estimates for rotor fault detection. Copyright 2010. Published by Elsevier Ltd.

  3. Self-correction of projector nonlinearity in phase-shifting fringe projection profilometry.

    Science.gov (United States)

    Lü, Fuxing; Xing, Shuo; Guo, Hongwei

    2017-09-01

    In phase-shifting fringe projection profilometry, the luminance nonlinearity of the used projector has been recognized as one of the most crucial factors decreasing the measurement accuracy. To solve this problem, this paper presents a self-correcting technique that allows us to suppress the effect of the projector nonlinearity in the absence of any calibration data regarding the projector intensities or regarding the phase errors. In its first step, the standard phase-shifting algorithm is used to recover the phases, as well as the background intensities and the modulations. Using these results enables normalizing the fringe patterns, for ridding them of the effects of the background and modulations. Second, we smooth the calculated phase map by use of a low-pass filter in order to remove the ripple-like phase errors induced by the projector nonlinearity. Third, we determine a polynomial representing the projector nonlinearity by fitting the curve of the normalized fringe intensities against the cosine values of the smoothed phases. Finally, we correct the phase errors using the curve just obtained. Doing these steps in an iterative way eventually results in a phase map and, further, a 3D shape with their artifacts induced by the projector nonlinearity suppressed significantly. Experimental results demonstrate that this technique offers some advantages over others. It does not require a prior calibration of the projector, thus being suitable for dealing with a time-variant nonlinearity; its pointwise operation protects the edges and details of the measurement results from being blurred; and it works well with very few fringe patterns and is efficient in image capturing.

  4. Hybrid Cubature Kalman filtering for identifying nonlinear models from sampled recording: Estimation of neuronal dynamics.

    Science.gov (United States)

    Madi, Mahmoud K; Karameh, Fadi N

    2017-01-01

    Kalman filtering methods have long been regarded as efficient adaptive Bayesian techniques for estimating hidden states in models of linear dynamical systems under Gaussian uncertainty. Recent advents of the Cubature Kalman filter (CKF) have extended this efficient estimation property to nonlinear systems, and also to hybrid nonlinear problems where by the processes are continuous and the observations are discrete (continuous-discrete CD-CKF). Employing CKF techniques, therefore, carries high promise for modeling many biological phenomena where the underlying processes exhibit inherently nonlinear, continuous, and noisy dynamics and the associated measurements are uncertain and time-sampled. This paper investigates the performance of cubature filtering (CKF and CD-CKF) in two flagship problems arising in the field of neuroscience upon relating brain functionality to aggregate neurophysiological recordings: (i) estimation of the firing dynamics and the neural circuit model parameters from electric potentials (EP) observations, and (ii) estimation of the hemodynamic model parameters and the underlying neural drive from BOLD (fMRI) signals. First, in simulated neural circuit models, estimation accuracy was investigated under varying levels of observation noise (SNR), process noise structures, and observation sampling intervals (dt). When compared to the CKF, the CD-CKF consistently exhibited better accuracy for a given SNR, sharp accuracy increase with higher SNR, and persistent error reduction with smaller dt. Remarkably, CD-CKF accuracy shows only a mild deterioration for non-Gaussian process noise, specifically with Poisson noise, a commonly assumed form of background fluctuations in neuronal systems. Second, in simulated hemodynamic models, parametric estimates were consistently improved under CD-CKF. Critically, time-localization of the underlying neural drive, a determinant factor in fMRI-based functional connectivity studies, was significantly more accurate

  5. Hybrid Cubature Kalman filtering for identifying nonlinear models from sampled recording: Estimation of neuronal dynamics

    Science.gov (United States)

    2017-01-01

    Kalman filtering methods have long been regarded as efficient adaptive Bayesian techniques for estimating hidden states in models of linear dynamical systems under Gaussian uncertainty. Recent advents of the Cubature Kalman filter (CKF) have extended this efficient estimation property to nonlinear systems, and also to hybrid nonlinear problems where by the processes are continuous and the observations are discrete (continuous-discrete CD-CKF). Employing CKF techniques, therefore, carries high promise for modeling many biological phenomena where the underlying processes exhibit inherently nonlinear, continuous, and noisy dynamics and the associated measurements are uncertain and time-sampled. This paper investigates the performance of cubature filtering (CKF and CD-CKF) in two flagship problems arising in the field of neuroscience upon relating brain functionality to aggregate neurophysiological recordings: (i) estimation of the firing dynamics and the neural circuit model parameters from electric potentials (EP) observations, and (ii) estimation of the hemodynamic model parameters and the underlying neural drive from BOLD (fMRI) signals. First, in simulated neural circuit models, estimation accuracy was investigated under varying levels of observation noise (SNR), process noise structures, and observation sampling intervals (dt). When compared to the CKF, the CD-CKF consistently exhibited better accuracy for a given SNR, sharp accuracy increase with higher SNR, and persistent error reduction with smaller dt. Remarkably, CD-CKF accuracy shows only a mild deterioration for non-Gaussian process noise, specifically with Poisson noise, a commonly assumed form of background fluctuations in neuronal systems. Second, in simulated hemodynamic models, parametric estimates were consistently improved under CD-CKF. Critically, time-localization of the underlying neural drive, a determinant factor in fMRI-based functional connectivity studies, was significantly more accurate

  6. An adaptive three-stage extended Kalman filter for nonlinear discrete-time system in presence of unknown inputs.

    Science.gov (United States)

    Xiao, Mengli; Zhang, Yongbo; Wang, Zhihua; Fu, Huimin

    2018-04-01

    Considering the performances of conventional Kalman filter may seriously degrade when it suffers stochastic faults and unknown input, which is very common in engineering problems, a new type of adaptive three-stage extended Kalman filter (AThSEKF) is proposed to solve state and fault estimation in nonlinear discrete-time system under these conditions. The three-stage UV transformation and adaptive forgetting factor are introduced for derivation, and by comparing with the adaptive augmented state extended Kalman filter, it is proven to be uniformly asymptotically stable. Furthermore, the adaptive three-stage extended Kalman filter is applied to a two-dimensional radar tracking scenario to illustrate the effect, and the performance is compared with that of conventional three stage extended Kalman filter (ThSEKF) and the adaptive two-stage extended Kalman filter (ATEKF). The results show that the adaptive three-stage extended Kalman filter is more effective than these two filters when facing the nonlinear discrete-time systems with information of unknown inputs not perfectly known. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  7. A MIT-Based Nonlinear Adaptive Set-Membership Filter for the Ellipsoidal Estimation of Mobile Robots' States

    Directory of Open Access Journals (Sweden)

    Dalei Song

    2012-10-01

    Full Text Available The adaptive extended set-membership filter (AESMF for nonlinear ellipsoidal estimation suffers a mismatch between real process noise and its set boundaries, which may result in unstable estimation. In this paper, a MIT method-based adaptive set-membership filter, for the optimization of the set boundaries of process noise, is developed and applied to the nonlinear joint estimation of both time-varying states and parameters. As a result of using the proposed MIT-AESMF, the estimation effectiveness and boundary accuracy of traditional AESMF are substantially improved. Simulation results have shown the efficiency and robustness of the proposed method.

  8. Image classification using multiscale information fusion based on saliency driven nonlinear diffusion filtering.

    Science.gov (United States)

    Hu, Weiming; Hu, Ruiguang; Xie, Nianhua; Ling, Haibin; Maybank, Stephen

    2014-04-01

    In this paper, we propose saliency driven image multiscale nonlinear diffusion filtering. The resulting scale space in general preserves or even enhances semantically important structures such as edges, lines, or flow-like structures in the foreground, and inhibits and smoothes clutter in the background. The image is classified using multiscale information fusion based on the original image, the image at the final scale at which the diffusion process converges, and the image at a midscale. Our algorithm emphasizes the foreground features, which are important for image classification. The background image regions, whether considered as contexts of the foreground or noise to the foreground, can be globally handled by fusing information from different scales. Experimental tests of the effectiveness of the multiscale space for the image classification are conducted on the following publicly available datasets: 1) the PASCAL 2005 dataset; 2) the Oxford 102 flowers dataset; and 3) the Oxford 17 flowers dataset, with high classification rates.

  9. An inertia-free filter line-search algorithm for large-scale nonlinear programming

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Nai-Yuan; Zavala, Victor M.

    2016-02-15

    We present a filter line-search algorithm that does not require inertia information of the linear system. This feature enables the use of a wide range of linear algebra strategies and libraries, which is essential to tackle large-scale problems on modern computing architectures. The proposed approach performs curvature tests along the search step to detect negative curvature and to trigger convexification. We prove that the approach is globally convergent and we implement the approach within a parallel interior-point framework to solve large-scale and highly nonlinear problems. Our numerical tests demonstrate that the inertia-free approach is as efficient as inertia detection via symmetric indefinite factorizations. We also demonstrate that the inertia-free approach can lead to reductions in solution time because it reduces the amount of convexification needed.

  10. Sparse Nonlinear Electromagnetic Imaging Accelerated With Projected Steepest Descent Algorithm

    KAUST Repository

    Desmal, Abdulla

    2017-04-03

    An efficient electromagnetic inversion scheme for imaging sparse 3-D domains is proposed. The scheme achieves its efficiency and accuracy by integrating two concepts. First, the nonlinear optimization problem is constrained using L₀ or L₁-norm of the solution as the penalty term to alleviate the ill-posedness of the inverse problem. The resulting Tikhonov minimization problem is solved using nonlinear Landweber iterations (NLW). Second, the efficiency of the NLW is significantly increased using a steepest descent algorithm. The algorithm uses a projection operator to enforce the sparsity constraint by thresholding the solution at every iteration. Thresholding level and iteration step are selected carefully to increase the efficiency without sacrificing the convergence of the algorithm. Numerical results demonstrate the efficiency and accuracy of the proposed imaging scheme in reconstructing sparse 3-D dielectric profiles.

  11. Particle Filter with Novel Nonlinear Error Model for Miniature Gyroscope-Based Measurement While Drilling Navigation

    Directory of Open Access Journals (Sweden)

    Tao Li

    2016-03-01

    Full Text Available The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF and Kalman filter (KF. The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition.

  12. Particle Filter with Novel Nonlinear Error Model for Miniature Gyroscope-Based Measurement While Drilling Navigation.

    Science.gov (United States)

    Li, Tao; Yuan, Gannan; Li, Wang

    2016-03-15

    The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD) system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM) can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS) sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM) by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF) and Kalman filter (KF). The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition.

  13. Performance improvement of shunt active power filter based on non-linear least-square approach

    DEFF Research Database (Denmark)

    Terriche, Yacine

    2018-01-01

    Nowadays, the shunt active power filters (SAPFs) have become a popular solution for power quality issues. A crucial issue in controlling the SAPFs which is highly correlated with their accuracy, flexibility and dynamic behavior, is generating the reference compensating current (RCC). The synchron......Nowadays, the shunt active power filters (SAPFs) have become a popular solution for power quality issues. A crucial issue in controlling the SAPFs which is highly correlated with their accuracy, flexibility and dynamic behavior, is generating the reference compensating current (RCC......). The synchronous reference frame (SRF) approach is widely used for generating the RCC due to its simplicity and computation efficiency. However, the SRF approach needs precise information of the voltage phase which becomes a challenge under adverse grid conditions. A typical solution to answer this need....... This paper proposes an improved open loop strategy which is unconditionally stable and flexible. The proposed method which is based on non-linear least square (NLS) approach can extract the fundamental voltage and estimates its phase within only half cycle, even in the presence of odd harmonics and dc offset...

  14. Theory of affine projection algorithms for adaptive filtering

    CERN Document Server

    Ozeki, Kazuhiko

    2016-01-01

    This book focuses on theoretical aspects of the affine projection algorithm (APA) for adaptive filtering. The APA is a natural generalization of the classical, normalized least-mean-squares (NLMS) algorithm. The book first explains how the APA evolved from the NLMS algorithm, where an affine projection view is emphasized. By looking at those adaptation algorithms from such a geometrical point of view, we can find many of the important properties of the APA, e.g., the improvement of the convergence rate over the NLMS algorithm especially for correlated input signals. After the birth of the APA in the mid-1980s, similar algorithms were put forward by other researchers independently from different perspectives. This book shows that they are variants of the APA, forming a family of APAs. Then it surveys research on the convergence behavior of the APA, where statistical analyses play important roles. It also reviews developments of techniques to reduce the computational complexity of the APA, which are important f...

  15. Mode Coupling and Nonlinear Resonances of MEMS Arch Resonators for Bandpass Filters

    KAUST Repository

    Hajjaj, Amal Z.

    2017-01-30

    We experimentally demonstrate an exploitation of the nonlinear softening, hardening, and veering phenomena (near crossing), where the frequencies of two vibration modes get close to each other, to realize a bandpass filter of sharp roll off from the passband to the stopband. The concept is demonstrated based on an electrothermally tuned and electrostatically driven MEMS arch resonator operated in air. The in-plane resonator is fabricated from a silicon-on-insulator wafer with a deliberate curvature to form an arch shape. A DC current is applied through the resonator to induce heat and modulate its stiffness, and hence its resonance frequencies. We show that the first resonance frequency increases up to twice of the initial value while the third resonance frequency decreases until getting very close to the first resonance frequency. This leads to the phenomenon of veering, where both modes get coupled and exchange energy. We demonstrate that by driving both modes nonlinearly and electrostatically near the veering regime, such that the first and third modes exhibit softening and hardening behavior, respectively, sharp roll off from the passband to the stopband is achievable. We show a flat, wide, and tunable bandwidth and center frequency by controlling the electrothermal actuation voltage.

  16. Nonlinear unbiased minimum-variance filter for Mars entry autonomous navigation under large uncertainties and unknown measurement bias.

    Science.gov (United States)

    Xiao, Mengli; Zhang, Yongbo; Fu, Huimin; Wang, Zhihua

    2018-05-01

    High-precision navigation algorithm is essential for the future Mars pinpoint landing mission. The unknown inputs caused by large uncertainties of atmospheric density and aerodynamic coefficients as well as unknown measurement biases may cause large estimation errors of conventional Kalman filters. This paper proposes a derivative-free version of nonlinear unbiased minimum variance filter for Mars entry navigation. This filter has been designed to solve this problem by estimating the state and unknown measurement biases simultaneously with derivative-free character, leading to a high-precision algorithm for the Mars entry navigation. IMU/radio beacons integrated navigation is introduced in the simulation, and the result shows that with or without radio blackout, our proposed filter could achieve an accurate state estimation, much better than the conventional unscented Kalman filter, showing the ability of high-precision Mars entry navigation algorithm. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Exponential L2-L∞ Filtering for a Class of Stochastic System with Mixed Delays and Nonlinear Perturbations

    Directory of Open Access Journals (Sweden)

    Zhaohui Chen

    2013-01-01

    Full Text Available The delay-dependent exponential L2-L∞ performance analysis and filter design are investigated for stochastic systems with mixed delays and nonlinear perturbations. Based on the delay partitioning and integral partitioning technique, an improved delay-dependent sufficient condition for the existence of the L2-L∞ filter is established, by choosing an appropriate Lyapunov-Krasovskii functional and constructing a new integral inequality. The full-order filter design approaches are obtained in terms of linear matrix inequalities (LMIs. By solving the LMIs and using matrix decomposition, the desired filter gains can be obtained, which ensure that the filter error system is exponentially stable with a prescribed L2-L∞ performance γ. Numerical examples are provided to illustrate the effectiveness and significant improvement of the proposed method.

  18. Time-Domain Voltage Sag State Estimation Based on the Unscented Kalman Filter for Power Systems with Nonlinear Components

    Directory of Open Access Journals (Sweden)

    Rafael Cisneros-Magaña

    2018-06-01

    Full Text Available This paper proposes a time-domain methodology based on the unscented Kalman filter to estimate voltage sags and their characteristics, such as magnitude and duration in power systems represented by nonlinear models. Partial and noisy measurements from the electrical network with nonlinear loads, used as data, are assumed. The characteristics of voltage sags can be calculated in a discrete form with the unscented Kalman filter to estimate all the busbar voltages; being possible to determine the rms voltage magnitude and the voltage sag starting and ending time, respectively. Voltage sag state estimation results can be used to obtain the power quality indices for monitored and unmonitored busbars in the power grid and to design adequate mitigating techniques. The proposed methodology is successfully validated against the results obtained with the time-domain system simulation for the power system with nonlinear components, being the normalized root mean square error less than 3%.

  19. Lectures on nonlinear sigma-models in projective superspace

    International Nuclear Information System (INIS)

    Kuzenko, Sergei M

    2010-01-01

    N= 2 supersymmetry in four spacetime dimensions is intimately related to hyperkaehler and quaternionic Kaehler geometries. On one hand, the target spaces for rigid supersymmetric sigma-models are necessarily hyperkaehler manifolds. On the other hand, when coupled to N= 2 supergravity, the sigma-model target spaces must be quaternionic Kaehler. It is known that such manifolds of restricted holonomy are difficult to generate explicitly. Projective superspace is a field-theoretic approach to construct general N= 2 supersymmetric nonlinear sigma-models, and hence to generate new hyperkaehler and quaternionic Kaehler metrics. Intended for a mixed audience consisting of both physicists and mathematicians, these lectures provide a pedagogical introduction to the projective-superspace approach. (topical review)

  20. Lectures on nonlinear sigma-models in projective superspace

    Energy Technology Data Exchange (ETDEWEB)

    Kuzenko, Sergei M, E-mail: kuzenko@cyllene.uwa.edu.a [School of Physics M013, University of Western Australia, 35 Stirling Highway, Crawley WA 6009 (Australia)

    2010-11-05

    N= 2 supersymmetry in four spacetime dimensions is intimately related to hyperkaehler and quaternionic Kaehler geometries. On one hand, the target spaces for rigid supersymmetric sigma-models are necessarily hyperkaehler manifolds. On the other hand, when coupled to N= 2 supergravity, the sigma-model target spaces must be quaternionic Kaehler. It is known that such manifolds of restricted holonomy are difficult to generate explicitly. Projective superspace is a field-theoretic approach to construct general N= 2 supersymmetric nonlinear sigma-models, and hence to generate new hyperkaehler and quaternionic Kaehler metrics. Intended for a mixed audience consisting of both physicists and mathematicians, these lectures provide a pedagogical introduction to the projective-superspace approach. (topical review)

  1. Linear versus Nonlinear Filtering with Scale-Selective Corrections for Balanced Dynamics in a Simple Atmospheric Model

    KAUST Repository

    Subramanian, Aneesh C.

    2012-11-01

    This paper investigates the role of the linear analysis step of the ensemble Kalman filters (EnKF) in disrupting the balanced dynamics in a simple atmospheric model and compares it to a fully nonlinear particle-based filter (PF). The filters have a very similar forecast step but the analysis step of the PF solves the full Bayesian filtering problem while the EnKF analysis only applies to Gaussian distributions. The EnKF is compared to two flavors of the particle filter with different sampling strategies, the sequential importance resampling filter (SIRF) and the sequential kernel resampling filter (SKRF). The model admits a chaotic vortical mode coupled to a comparatively fast gravity wave mode. It can also be configured either to evolve on a so-called slow manifold, where the fast motion is suppressed, or such that the fast-varying variables are diagnosed from the slow-varying variables as slaved modes. Identical twin experiments show that EnKF and PF capture the variables on the slow manifold well as the dynamics is very stable. PFs, especially the SKRF, capture slaved modes better than the EnKF, implying that a full Bayesian analysis estimates the nonlinear model variables better. The PFs perform significantly better in the fully coupled nonlinear model where fast and slow variables modulate each other. This suggests that the analysis step in the PFs maintains the balance in both variables much better than the EnKF. It is also shown that increasing the ensemble size generally improves the performance of the PFs but has less impact on the EnKF after a sufficient number of members have been used.

  2. Linear versus Nonlinear Filtering with Scale-Selective Corrections for Balanced Dynamics in a Simple Atmospheric Model

    KAUST Repository

    Subramanian, Aneesh C.; Hoteit, Ibrahim; Cornuelle, Bruce; Miller, Arthur J.; Song, Hajoon

    2012-01-01

    This paper investigates the role of the linear analysis step of the ensemble Kalman filters (EnKF) in disrupting the balanced dynamics in a simple atmospheric model and compares it to a fully nonlinear particle-based filter (PF). The filters have a very similar forecast step but the analysis step of the PF solves the full Bayesian filtering problem while the EnKF analysis only applies to Gaussian distributions. The EnKF is compared to two flavors of the particle filter with different sampling strategies, the sequential importance resampling filter (SIRF) and the sequential kernel resampling filter (SKRF). The model admits a chaotic vortical mode coupled to a comparatively fast gravity wave mode. It can also be configured either to evolve on a so-called slow manifold, where the fast motion is suppressed, or such that the fast-varying variables are diagnosed from the slow-varying variables as slaved modes. Identical twin experiments show that EnKF and PF capture the variables on the slow manifold well as the dynamics is very stable. PFs, especially the SKRF, capture slaved modes better than the EnKF, implying that a full Bayesian analysis estimates the nonlinear model variables better. The PFs perform significantly better in the fully coupled nonlinear model where fast and slow variables modulate each other. This suggests that the analysis step in the PFs maintains the balance in both variables much better than the EnKF. It is also shown that increasing the ensemble size generally improves the performance of the PFs but has less impact on the EnKF after a sufficient number of members have been used.

  3. [Restoration filtering based on projection power spectrum for single-photon emission computed tomography].

    Science.gov (United States)

    Kubo, N

    1995-04-01

    To improve the quality of single-photon emission computed tomographic (SPECT) images, a restoration filter has been developed. This filter was designed according to practical "least squares filter" theory. It is necessary to know the object power spectrum and the noise power spectrum. The power spectrum is estimated from the power spectrum of a projection, when the high-frequency power spectrum of a projection is adequately approximated as a polynomial exponential expression. A study of the restoration with the filter based on a projection power spectrum was conducted, and compared with that of the "Butterworth" filtering method (cut-off frequency of 0.15 cycles/pixel), and "Wiener" filtering (signal-to-noise power spectrum ratio was a constant). Normalized mean-squared errors (NMSE) of the phantom, two line sources located in a 99mTc filled cylinder, were used. NMSE of the "Butterworth" filter, "Wiener" filter, and filtering based on a power spectrum were 0.77, 0.83, and 0.76 respectively. Clinically, brain SPECT images utilizing this new restoration filter improved the contrast. Thus, this filter may be useful in diagnosis of SPECT images.

  4. Restoration filtering based on projection power spectrum for single-photon emission computed tomography

    International Nuclear Information System (INIS)

    Kubo, Naoki

    1995-01-01

    To improve the quality of single-photon emission computed tomographic (SPECT) images, a restoration filter has been developed. This filter was designed according to practical 'least squares filter' theory. It is necessary to know the object power spectrum and the noise power spectrum. The power spectrum is estimated from the power spectrum of a projection, when the high-frequency power spectrum of a projection is adequately approximated as a polynomial exponential expression. A study of the restoration with the filter based on a projection power spectrum was conducted, and compared with that of the 'Butterworth' filtering method (cut-off frequency of 0.15 cycles/pixel), and 'Wiener' filtering (signal-to-noise power spectrum ratio was a constant). Normalized mean-squared errors (NMSE) of the phantom, two line sources located in a 99m Tc filled cylinder, were used. NMSE of the 'Butterworth' filter, 'Wiener' filter, and filtering based on a power spectrum were 0.77, 0.83, and 0.76 respectively. Clinically, brain SPECT images utilizing this new restoration filter improved the contrast. Thus, this filter may be useful in diagnosis of SPECT images. (author)

  5. Regularized iterative integration combined with non-linear diffusion filtering for phase-contrast x-ray computed tomography.

    Science.gov (United States)

    Burger, Karin; Koehler, Thomas; Chabior, Michael; Allner, Sebastian; Marschner, Mathias; Fehringer, Andreas; Willner, Marian; Pfeiffer, Franz; Noël, Peter

    2014-12-29

    Phase-contrast x-ray computed tomography has a high potential to become clinically implemented because of its complementarity to conventional absorption-contrast.In this study, we investigate noise-reducing but resolution-preserving analytical reconstruction methods to improve differential phase-contrast imaging. We apply the non-linear Perona-Malik filter on phase-contrast data prior or post filtered backprojected reconstruction. Secondly, the Hilbert kernel is replaced by regularized iterative integration followed by ramp filtered backprojection as used for absorption-contrast imaging. Combining the Perona-Malik filter with this integration algorithm allows to successfully reveal relevant sample features, quantitatively confirmed by significantly increased structural similarity indices and contrast-to-noise ratios. With this concept, phase-contrast imaging can be performed at considerably lower dose.

  6. Improved Minimum Entropy Filtering for Continuous Nonlinear Non-Gaussian Systems Using a Generalized Density Evolution Equation

    Directory of Open Access Journals (Sweden)

    Jinliang Xu

    2013-06-01

    Full Text Available This paper investigates the filtering problem for multivariate continuous nonlinear non-Gaussian systems based on an improved minimum error entropy (MEE criterion. The system is described by a set of nonlinear continuous equations with non-Gaussian system noises and measurement noises. The recently developed generalized density evolution equation is utilized to formulate the joint probability density function (PDF of the estimation errors. Combining the entropy of the estimation error with the mean squared error, a novel performance index is constructed to ensure the estimation error not only has small uncertainty but also approaches to zero. According to the conjugate gradient method, the optimal filter gain matrix is then obtained by minimizing the improved minimum error entropy criterion. In addition, the condition is proposed to guarantee that the estimation error dynamics is exponentially bounded in the mean square sense. Finally, the comparative simulation results are presented to show that the proposed MEE filter is superior to nonlinear unscented Kalman filter (UKF.

  7. Support Vector Regression-Based Adaptive Divided Difference Filter for Nonlinear State Estimation Problems

    Directory of Open Access Journals (Sweden)

    Hongjian Wang

    2014-01-01

    Full Text Available We present a support vector regression-based adaptive divided difference filter (SVRADDF algorithm for improving the low state estimation accuracy of nonlinear systems, which are typically affected by large initial estimation errors and imprecise prior knowledge of process and measurement noises. The derivative-free SVRADDF algorithm is significantly simpler to compute than other methods and is implemented using only functional evaluations. The SVRADDF algorithm involves the use of the theoretical and actual covariance of the innovation sequence. Support vector regression (SVR is employed to generate the adaptive factor to tune the noise covariance at each sampling instant when the measurement update step executes, which improves the algorithm’s robustness. The performance of the proposed algorithm is evaluated by estimating states for (i an underwater nonmaneuvering target bearing-only tracking system and (ii maneuvering target bearing-only tracking in an air-traffic control system. The simulation results show that the proposed SVRADDF algorithm exhibits better performance when compared with a traditional DDF algorithm.

  8. Integrated Navigation System Design for Micro Planetary Rovers: Comparison of Absolute Heading Estimation Algorithms and Nonlinear Filtering

    Science.gov (United States)

    Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok

    2016-01-01

    This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level. PMID:27223293

  9. Axion searches with microwave filters: the RADES project

    Science.gov (United States)

    Álvarez Melcón, Alejandro; Arguedas Cuendis, Sergio; Cogollos, Cristian; Díaz-Morcillo, Alejandro; Döbrich, Babette; Gallego, Juan Daniel; Gimeno, Benito; Irastorza, Igor G.; José Lozano-Guerrero, Antonio; Malbrunot, Chloé; Navarro, Pablo; Peña Garay, Carlos; Redondo, Javier; Vafeiadis, Theodoros; Wuensch, Walter

    2018-05-01

    We propose, design and construct a variant of the conventional axion haloscope concept that could be competitive in the search for dark matter axions of masses in the decade 10–100 μeV. Theses masses are located somewhat above the mass range in which existing experiments have reached sensitivity to benchmark QCD axion models. Our haloscope consists of an array of small microwave cavities connected by rectangular irises, in an arrangement commonly used in radio-frequency filters. The size of the unit cavity determines the main resonant frequency, while the possibility to connect a large number of cavities allows to reach large detection volumes. We develop the theoretical framework of the detection concept, and present design prescriptions to optimize detection capabilities. We describe the design and realization of a first small-scale prototype of this concept, called Relic Axion Detector Exploratory Setup (RADES). It consists of a copper-coated stainless steel five-cavities microwave filter with the detecting mode operating at around 8.4 GHz. This structure has been electromagnetically characterized at 2 K and 298 K, and it is now placed in ultra-high vacuum in one of the twin-bores of the 9 T CAST dipole magnet at CERN. We describe the data acquisition system developed for relic axion detection, and present preliminary results of the electromagnetic properties of the microwave filter, which show the potential of filters to reach QCD axion window sensitivity at X-band frequencies.

  10. Implementing Kernel Methods Incrementally by Incremental Nonlinear Projection Trick.

    Science.gov (United States)

    Kwak, Nojun

    2016-05-20

    Recently, the nonlinear projection trick (NPT) was introduced enabling direct computation of coordinates of samples in a reproducing kernel Hilbert space. With NPT, any machine learning algorithm can be extended to a kernel version without relying on the so called kernel trick. However, NPT is inherently difficult to be implemented incrementally because an ever increasing kernel matrix should be treated as additional training samples are introduced. In this paper, an incremental version of the NPT (INPT) is proposed based on the observation that the centerization step in NPT is unnecessary. Because the proposed INPT does not change the coordinates of the old data, the coordinates obtained by INPT can directly be used in any incremental methods to implement a kernel version of the incremental methods. The effectiveness of the INPT is shown by applying it to implement incremental versions of kernel methods such as, kernel singular value decomposition, kernel principal component analysis, and kernel discriminant analysis which are utilized for problems of kernel matrix reconstruction, letter classification, and face image retrieval, respectively.

  11. A nonlinear generalization of the Savitzky-Golay filter and the quantitative analysis of saccades.

    Science.gov (United States)

    Dai, Weiwei; Selesnick, Ivan; Rizzo, John-Ross; Rucker, Janet; Hudson, Todd

    2017-08-01

    The Savitzky-Golay (SG) filter is widely used to smooth and differentiate time series, especially biomedical data. However, time series that exhibit abrupt departures from their typical trends, such as sharp waves or steps, which are of physiological interest, tend to be oversmoothed by the SG filter. Hence, the SG filter tends to systematically underestimate physiological parameters in certain situations. This article proposes a generalization of the SG filter to more accurately track abrupt deviations in time series, leading to more accurate parameter estimates (e.g., peak velocity of saccadic eye movements). The proposed filtering methodology models a time series as the sum of two component time series: a low-frequency time series for which the conventional SG filter is well suited, and a second time series that exhibits instantaneous deviations (e.g., sharp waves, steps, or more generally, discontinuities in a higher order derivative). The generalized SG filter is then applied to the quantitative analysis of saccadic eye movements. It is demonstrated that (a) the conventional SG filter underestimates the peak velocity of saccades, especially those of small amplitude, and (b) the generalized SG filter estimates peak saccadic velocity more accurately than the conventional filter.

  12. A hybrid filter to mitigate harmonics caused by nonlinear load and resonance caused by power factor correction capacitor

    Science.gov (United States)

    Adan, N. F.; Soomro, D. M.

    2017-01-01

    Power factor correction capacitor (PFCC) is commonly installed in industrial applications for power factor correction (PFC). With the expanding use of non-linear equipment such as ASDs, power converters, etc., power factor (PF) improvement has become difficult due to the presence of harmonics. The resulting capacitive impedance of the PFCC may form a resonant circuit with the source inductive reactance at a certain frequency, which is likely to coincide with one of the harmonic frequency of the load. This condition will trigger large oscillatory currents and voltages that may stress the insulation and cause subsequent damage to the PFCC and equipment connected to the power system (PS). Besides, high PF cannot be achieved due to power distortion. This paper presents the design of a three-phase hybrid filter consisting of a single tuned passive filter (STPF) and shunt active power filter (SAPF) to mitigate harmonics and resonance in the PS through simulation using PSCAD/EMTDC software. SAPF was developed using p-q theory. The hybrid filter has resulted in significant improvement on both total harmonic distortion for voltage (THDV) and total demand distortion for current (TDDI) with maximum values of 2.93% and 9.84% respectively which were within the recommended IEEE 519-2014 standard limits. Regarding PF improvement, the combined filters have achieved PF close to desired PF at 0.95 for firing angle, α values up to 40°.

  13. Applications of Kalman filters based on non-linear functions to numerical weather predictions

    Directory of Open Access Journals (Sweden)

    G. Galanis

    2006-10-01

    Full Text Available This paper investigates the use of non-linear functions in classical Kalman filter algorithms on the improvement of regional weather forecasts. The main aim is the implementation of non linear polynomial mappings in a usual linear Kalman filter in order to simulate better non linear problems in numerical weather prediction. In addition, the optimal order of the polynomials applied for such a filter is identified. This work is based on observations and corresponding numerical weather predictions of two meteorological parameters characterized by essential differences in their evolution in time, namely, air temperature and wind speed. It is shown that in both cases, a polynomial of low order is adequate for eliminating any systematic error, while higher order functions lead to instabilities in the filtered results having, at the same time, trivial contribution to the sensitivity of the filter. It is further demonstrated that the filter is independent of the time period and the geographic location of application.

  14. A comparison of nonlinear filtering approaches in the context of an HIV model.

    Science.gov (United States)

    Banks, H Thomas; Hu, Shuhua; Kenz, Zackary R; Tran, Hien T

    2010-04-01

    In this paper three different filtering methods, the Extended Kalman Filter (EKF), the Gauss-Hermite Filter (GHF), and the Unscented Kalman Filter (UKF), are compared for state-only and coupled state and parameter estimation when used with log state variables of a model of the immunologic response to the human immunodeficiency virus (HIV) in individuals. The filters are implemented to estimate model states as well as model parameters from simulated noisy data, and are compared in terms of estimation accuracy and computational time. Numerical experiments reveal that the GHF is the most computationally expensive algorithm, while the EKF is the least expensive one. In addition, computational experiments suggest that there is little difference in the estimation accuracy between the UKF and GHF. When measurements are taken as frequently as every week to two weeks, the EKF is the superior filter. When measurements are further apart, the UKF is the best choice in the problem under investigation.

  15. Comparison of Three Nonlinear Filters for Fault Detection in Continuous Glucose Monitors

    DEFF Research Database (Denmark)

    Mahmoudi, Zeinab; Wendt, Sabrina Lyngbye; Boiroux, Dimitri

    2016-01-01

    model of the glucose-insulin dynamics in people with type 1 diabetes. Drift is modelled by a Gaussian random walk and is detected based on the statistical tests of the 90-min prediction residuals of the filters. The unscented Kalman filter had the highest average F score of 85.9%, and the smallest...

  16. A reconstruction algorithm for coherent scatter computed tomography based on filtered back-projection

    International Nuclear Information System (INIS)

    Stevendaal, U. van; Schlomka, J.-P.; Harding, A.; Grass, M.

    2003-01-01

    Coherent scatter computed tomography (CSCT) is a reconstructive x-ray imaging technique that yields the spatially resolved coherent-scatter form factor of the investigated object. Reconstruction from coherently scattered x-rays is commonly done using algebraic reconstruction techniques (ART). In this paper, we propose an alternative approach based on filtered back-projection. For the first time, a three-dimensional (3D) filtered back-projection technique using curved 3D back-projection lines is applied to two-dimensional coherent scatter projection data. The proposed algorithm is tested with simulated projection data as well as with projection data acquired with a demonstrator setup similar to a multi-line CT scanner geometry. While yielding comparable image quality as ART reconstruction, the modified 3D filtered back-projection algorithm is about two orders of magnitude faster. In contrast to iterative reconstruction schemes, it has the advantage that subfield-of-view reconstruction becomes feasible. This allows a selective reconstruction of the coherent-scatter form factor for a region of interest. The proposed modified 3D filtered back-projection algorithm is a powerful reconstruction technique to be implemented in a CSCT scanning system. This method gives coherent scatter CT the potential of becoming a competitive modality for medical imaging or nondestructive testing

  17. Comparison of tomography reconstruction by maximum entropy and filtered retro projection

    International Nuclear Information System (INIS)

    Abdala, F.J.P.; Simpson, D.M.; Roberty, N.C.

    1992-01-01

    The tomographic reconstruction with few projections is studied, comparing the maximum entropy method with filtered retro projection. Simulations with and without the presence of noise and also with the presence of an object of high density inside of the skull are showed. (C.G.C.)

  18. An extended Kalman filtering approach to modeling nonlinear dynamic gene regulatory networks via short gene expression time series.

    Science.gov (United States)

    Wang, Zidong; Liu, Xiaohui; Liu, Yurong; Liang, Jinling; Vinciotti, Veronica

    2009-01-01

    In this paper, the extended Kalman filter (EKF) algorithm is applied to model the gene regulatory network from gene time series data. The gene regulatory network is considered as a nonlinear dynamic stochastic model that consists of the gene measurement equation and the gene regulation equation. After specifying the model structure, we apply the EKF algorithm for identifying both the model parameters and the actual value of gene expression levels. It is shown that the EKF algorithm is an online estimation algorithm that can identify a large number of parameters (including parameters of nonlinear functions) through iterative procedure by using a small number of observations. Four real-world gene expression data sets are employed to demonstrate the effectiveness of the EKF algorithm, and the obtained models are evaluated from the viewpoint of bioinformatics.

  19. Distributed Event-Based Set-Membership Filtering for a Class of Nonlinear Systems With Sensor Saturations Over Sensor Networks.

    Science.gov (United States)

    Ma, Lifeng; Wang, Zidong; Lam, Hak-Keung; Kyriakoulis, Nikos

    2017-11-01

    In this paper, the distributed set-membership filtering problem is investigated for a class of discrete time-varying system with an event-based communication mechanism over sensor networks. The system under consideration is subject to sector-bounded nonlinearity, unknown but bounded noises and sensor saturations. Each intelligent sensing node transmits the data to its neighbors only when certain triggering condition is violated. By means of a set of recursive matrix inequalities, sufficient conditions are derived for the existence of the desired distributed event-based filter which is capable of confining the system state in certain ellipsoidal regions centered at the estimates. Within the established theoretical framework, two additional optimization problems are formulated: one is to seek the minimal ellipsoids (in the sense of matrix trace) for the best filtering performance, and the other is to maximize the triggering threshold so as to reduce the triggering frequency with satisfactory filtering performance. A numerically attractive chaos algorithm is employed to solve the optimization problems. Finally, an illustrative example is presented to demonstrate the effectiveness and applicability of the proposed algorithm.

  20. Generalized projective synchronization of chaotic nonlinear gyros coupled with dead-zone input

    International Nuclear Information System (INIS)

    Hung, M.-L.; Yan, J.-J.; Liao, T.-L.

    2008-01-01

    This paper addresses the synchronization problem of drive-response chaotic gyros coupled with dead-zone nonlinear input. Using the sliding mode control technique, a novel control law is established which guarantees generalized projective synchronization even when the dead-zone nonlinearity is present. Numerical simulations are presented to verify that the synchronization can be achieved by using the proposed synchronization scheme

  1. Restoration of Static JPEG Images and RGB Video Frames by Means of Nonlinear Filtering in Conditions of Gaussian and Non-Gaussian Noise

    Science.gov (United States)

    Sokolov, R. I.; Abdullin, R. R.

    2017-11-01

    The use of nonlinear Markov process filtering makes it possible to restore both video stream frames and static photos at the stage of preprocessing. The present paper reflects the results of research in comparison of these types image filtering quality by means of special algorithm when Gaussian or non-Gaussian noises acting. Examples of filter operation at different values of signal-to-noise ratio are presented. A comparative analysis has been performed, and the best filtered kind of noise has been defined. It has been shown the quality of developed algorithm is much better than quality of adaptive one for RGB signal filtering at the same a priori information about the signal. Also, an advantage over median filter takes a place when both fluctuation and pulse noise filtering.

  2. Optimization of nonlinear, non-Gaussian Bayesian filtering for diagnosis and prognosis of monotonic degradation processes

    Science.gov (United States)

    Corbetta, Matteo; Sbarufatti, Claudio; Giglio, Marco; Todd, Michael D.

    2018-05-01

    The present work critically analyzes the probabilistic definition of dynamic state-space models subject to Bayesian filters used for monitoring and predicting monotonic degradation processes. The study focuses on the selection of the random process, often called process noise, which is a key perturbation source in the evolution equation of particle filtering. Despite the large number of applications of particle filtering predicting structural degradation, the adequacy of the picked process noise has not been investigated. This paper reviews existing process noise models that are typically embedded in particle filters dedicated to monitoring and predicting structural damage caused by fatigue, which is monotonic in nature. The analysis emphasizes that existing formulations of the process noise can jeopardize the performance of the filter in terms of state estimation and remaining life prediction (i.e., damage prognosis). This paper subsequently proposes an optimal and unbiased process noise model and a list of requirements that the stochastic model must satisfy to guarantee high prognostic performance. These requirements are useful for future and further implementations of particle filtering for monotonic system dynamics. The validity of the new process noise formulation is assessed against experimental fatigue crack growth data from a full-scale aeronautical structure using dedicated performance metrics.

  3. New Evidence That Nonlinear Source-Filter Coupling Affects Harmonic Intensity and fo Stability During Instances of Harmonics Crossing Formants.

    Science.gov (United States)

    Maxfield, Lynn; Palaparthi, Anil; Titze, Ingo

    2017-03-01

    The traditional source-filter theory of voice production describes a linear relationship between the source (glottal flow pulse) and the filter (vocal tract). Such a linear relationship does not allow for nor explain how changes in the filter may impact the stability and regularity of the source. The objective of this experiment was to examine what effect unpredictable changes to vocal tract dimensions could have on fo stability and individual harmonic intensities in situations in which low frequency harmonics cross formants in a fundamental frequency glide. To determine these effects, eight human subjects (five male, three female) were recorded producing fo glides while their vocal tracts were artificially lengthened by a section of vinyl tubing inserted into the mouth. It was hypothesized that if the source and filter operated as a purely linear system, harmonic intensities would increase and decrease at nearly the same rates as they passed through a formant bandwidth, resulting in a relatively symmetric peak on an intensity-time contour. Additionally, fo stability should not be predictably perturbed by formant/harmonic crossings in a linear system. Acoustic analysis of these recordings, however, revealed that harmonic intensity peaks were asymmetric in 76% of cases, and that 85% of fo instabilities aligned with a crossing of one of the first four harmonics with the first three formants. These results provide further evidence that nonlinear dynamics in the source-filter relationship can impact fo stability as well as harmonic intensities as harmonics cross through formant bandwidths. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  4. ECG denoising and fiducial point extraction using an extended Kalman filtering framework with linear and nonlinear phase observations.

    Science.gov (United States)

    Akhbari, Mahsa; Shamsollahi, Mohammad B; Jutten, Christian; Armoundas, Antonis A; Sayadi, Omid

    2016-02-01

    In this paper we propose an efficient method for denoising and extracting fiducial point (FP) of ECG signals. The method is based on a nonlinear dynamic model which uses Gaussian functions to model ECG waveforms. For estimating the model parameters, we use an extended Kalman filter (EKF). In this framework called EKF25, all the parameters of Gaussian functions as well as the ECG waveforms (P-wave, QRS complex and T-wave) in the ECG dynamical model, are considered as state variables. In this paper, the dynamic time warping method is used to estimate the nonlinear ECG phase observation. We compare this new approach with linear phase observation models. Using linear and nonlinear EKF25 for ECG denoising and nonlinear EKF25 for fiducial point extraction and ECG interval analysis are the main contributions of this paper. Performance comparison with other EKF-based techniques shows that the proposed method results in higher output SNR with an average SNR improvement of 12 dB for an input SNR of -8 dB. To evaluate the FP extraction performance, we compare the proposed method with a method based on partially collapsed Gibbs sampler and an established EKF-based method. The mean absolute error and the root mean square error of all FPs, across all databases are 14 ms and 22 ms, respectively, for our proposed method, with an advantage when using a nonlinear phase observation. These errors are significantly smaller than errors obtained with other methods. For ECG interval analysis, with an absolute mean error and a root mean square error of about 22 ms and 29 ms, the proposed method achieves better accuracy and smaller variability with respect to other methods.

  5. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra

    KAUST Repository

    Cannistraci, Carlo Vittorio

    2015-01-26

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet\\'s performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis.

  6. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra

    KAUST Repository

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-01

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis.

  7. Bds/gps Integrated Positioning Method Research Based on Nonlinear Kalman Filtering

    Science.gov (United States)

    Ma, Y.; Yuan, W.; Sun, H.

    2017-09-01

    In order to realize fast and accurate BDS/GPS integrated positioning, it is necessary to overcome the adverse effects of signal attenuation, multipath effect and echo interference to ensure the result of continuous and accurate navigation and positioning. In this paper, pseudo-range positioning is used as the mathematical model. In the stage of data preprocessing, using precise and smooth carrier phase measurement value to promote the rough pseudo-range measurement value without ambiguity. At last, the Extended Kalman Filter(EKF), the Unscented Kalman Filter(UKF) and the Particle Filter(PF) algorithm are applied in the integrated positioning method for higher positioning accuracy. The experimental results show that the positioning accuracy of PF is the highest, and UKF is better than EKF.

  8. Estimation of State of Charge for Two Types of Lithium-Ion Batteries by Nonlinear Predictive Filter for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Yin Hua

    2015-04-01

    Full Text Available Estimation of state of charge (SOC is of great importance for lithium-ion (Li-ion batteries used in electric vehicles. This paper presents a state of charge estimation method using nonlinear predictive filter (NPF and evaluates the proposed method on the lithium-ion batteries with different chemistries. Contrary to most conventional filters which usually assume a zero mean white Gaussian process noise, the advantage of NPF is that the process noise in NPF is treated as an unknown model error and determined as a part of the solution without any prior assumption, and it can take any statistical distribution form, which improves the estimation accuracy. In consideration of the model accuracy and computational complexity, a first-order equivalent circuit model is applied to characterize the battery behavior. The experimental test is conducted on the LiCoO2 and LiFePO4 battery cells to validate the proposed method. The results show that the NPF method is able to accurately estimate the battery SOC and has good robust performance to the different initial states for both cells. Furthermore, the comparison study between NPF and well-established extended Kalman filter for battery SOC estimation indicates that the proposed NPF method has better estimation accuracy and converges faster.

  9. Feature Subset Selection and Instance Filtering for Cross-project Defect Prediction - Classification and Ranking

    Directory of Open Access Journals (Sweden)

    Faimison Porto

    2016-12-01

    Full Text Available The defect prediction models can be a good tool on organizing the project's test resources. The models can be constructed with two main goals: 1 to classify the software parts - defective or not; or 2 to rank the most defective parts in a decreasing order. However, not all companies maintain an appropriate set of historical defect data. In this case, a company can build an appropriate dataset from known external projects - called Cross-project Defect Prediction (CPDP. The CPDP models, however, present low prediction performances due to the heterogeneity of data. Recently, Instance Filtering methods were proposed in order to reduce this heterogeneity by selecting the most similar instances from the training dataset. Originally, the similarity is calculated based on all the available dataset features (or independent variables. We propose that using only the most relevant features on the similarity calculation can result in more accurate filtered datasets and better prediction performances. In this study we extend our previous work. We analyse both prediction goals - Classification and Ranking. We present an empirical evaluation of 41 different methods by associating Instance Filtering methods with Feature Selection methods. We used 36 versions of 11 open source projects on experiments. The results show similar evidences for both prediction goals. First, the defect prediction performance of CPDP models can be improved by associating Feature Selection and Instance Filtering. Second, no evaluated method presented general better performances. Indeed, the most appropriate method can vary according to the characteristics of the project being predicted.

  10. On projective invariants based on non-linear connections in a Finsler space I

    International Nuclear Information System (INIS)

    Rastogi, S.C.

    1986-05-01

    The projective transformations based on linear connections in a Finsler space have been studied by Berwald, Misra, Szabo, Matsumoto, Fukai and Yamada, Rastogi and others. In almost all these papers the emphasis has been on studying Finsler spaces of scalar curvature, Finsler spaces of constant curvature and Finsler spaces of zero curvature with the help of projective curvature tensors of Weyl and Douglas. In 1981, the author studied projective transformation in a Finsler space based on non-linear connections and obtained certain projective invariants. The aim of the present paper is to study Finsler spaces of scalar curvature, constant curvature and zero curvature with the help of non-linear connections and projective invariants obtained from non-linear connections. (author)

  11. Ultrasonic computerized tomography (CT) for temperature measurements with limited projection data based on extrapolated filtered back projection (FBP) method

    International Nuclear Information System (INIS)

    Zhu Ning; Jiang Yong; Kato, Seizo

    2005-01-01

    This study uses ultrasound in combination with tomography to obtain three-dimensional temperature measurements using projection data obtained from limited projection angle. The main feature of the new computerized tomography (CT) reconstruction algorithm is to employ extrapolation scheme to make up for the incomplete projection data, it is based on the conventional filtered back projection (FBP) method while on top of that taking into account the correlation between the projection data and Fourier transform-based extrapolation. Computer simulation is conducted to verify the above algorithm. An experimental 3D temperature distribution measurement is also carried out to validate the proposed algorithm. The simulation and experimental results demonstrate that the extrapolated FBP CT algorithm is highly effective in dealing with projection data from limited projection angle

  12. Fuzzy predictive filtering in nonlinear economic model predictive control for demand response

    DEFF Research Database (Denmark)

    Santos, Rui Mirra; Zong, Yi; Sousa, Joao M. C.

    2016-01-01

    problem. Moreover, to reduce the computation time and improve the controller's performance, a fuzzy predictive filter is introduced. With the purpose of testing the developed EMPC, a simulation controlling the temperature levels of an intelligent office building (PowerFlexHouse), with and without fuzzy...

  13. Nonlinear Control of Back-to-Back VSC-HVDC System via Command-Filter Backstepping

    Directory of Open Access Journals (Sweden)

    Jie Huang

    2017-01-01

    Full Text Available This paper proposed a command-filtered backstepping controller to improve the dynamic performance of back-to-back voltage-source-converter high voltage direct current (BTB VSC-HVDC. First, the principle and model of BTB VSC-HVDC in abc and d-q frame are described. Then, backstepping method is applied to design a controller to maintain the voltage balance and realize coordinated control of active and reactive power. Meanwhile, command filter is introduced to deal with the problem of input saturation and explosion of complexity in conventional backstepping, and a filter compensation signal is designed to diminish the adverse effects caused by the command filter. Next, the stability and convergence of the whole system are proved via the Lyapunov theorem of asymptotic stability. Finally, simulation results are given to demonstrate that proposed controller has a better dynamic performance and stronger robustness compared to the traditional PID algorithm, which also proves the effectiveness and possibility of the designed controller.

  14. New series active power filter for computers loads and small non-linear loads

    Energy Technology Data Exchange (ETDEWEB)

    Tarnini, M.Y. [Hariri Canadian Univ., Meshref (Lebanon)

    2009-07-01

    This paper proposed the use of a single-phase series active power filter to reduce voltage total harmonic distortion and provide improved power quality. Control schemes were developed using simple control algorithms and a reduced number of current transducers. The circuit was comprised of a power supply and zero crossing detector; a hall-effect current sensor and signal conditioning circuit; a microcontroller circuit; a driving circuit; and an inverter bridge. The filter corrected fundamental and sinusoidal voltage amplitudes. The amplitude of the fundamental current in the series filter was controlled using a microcontroller placed between the load voltage and a pre-established reference point. Experiments were conducted to test the source voltage and source current after compensation using a prototype of the filter. The control system provided effective correction of the power factor and harmonic distortion, and reached steady state in approximately 2 cycles. It was concluded that the compensator can also be adapted for use in 3-phase systems. 13 refs., 1 tab., 14 figs.

  15. The effect of compression on tuning estimates in a simple nonlinear auditory filter model

    DEFF Research Database (Denmark)

    Marschall, Marton; MacDonald, Ewen; Dau, Torsten

    2013-01-01

    Behavioral experiments using auditory masking have been used to characterize frequency selectivity, one of the basic properties of the auditory system. However, due to the nonlinear response of the basilar membrane, the interpretation of these experiments may not be straightforward. Specifically,...

  16. Correction method of nonlinearity due to logarithm operation for X-ray CT projection data with noise in photon-starved state

    International Nuclear Information System (INIS)

    Iwamoto, Shin-ichiro; Shiozaki, Akira

    2007-01-01

    In the acquisition of projection data of X-ray CT, logarithm operation is indispensable. But noise distribution is nonlinearly projected by the logarithm operation, and this deteriorates the precision of CT number. This influence becomes particularly remarkable when only a few photons are caught with a detector. It generates a strong streak artifact (SA) in a reconstructed image. Previously we have clarified the influence of the nonlinearity by statistical analysis and proposed a correction method for such nonlinearity. However, there is a problem that the compensation for clamp processing cannot be performed and that the suppression of SA is not enough in photon shortage state. In this paper, we propose a new technique for correcting the nonlinearity due to logarithm operation for noisy data by combining the previously presented method and an adaptive filtering method. The technique performs an adaptive filtering only when the number of captured photons is very few. Moreover we quantitatively evaluate the influence of noise on the reconstructed image in the proposed method by the experiment using numerical phantoms. The experimental results show that there is less influence on spatial resolution despite suppressing SA effectively and that CT number are hardly dependent on the number of the incident photons. (author)

  17. Identifying the preferred subset of enzymatic profiles in nonlinear kinetic metabolic models via multiobjective global optimization and Pareto filters.

    Directory of Open Access Journals (Sweden)

    Carlos Pozo

    Full Text Available Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study

  18. Identifying the preferred subset of enzymatic profiles in nonlinear kinetic metabolic models via multiobjective global optimization and Pareto filters.

    Science.gov (United States)

    Pozo, Carlos; Guillén-Gosálbez, Gonzalo; Sorribas, Albert; Jiménez, Laureano

    2012-01-01

    Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear optimization methods have become rather popular in systems biology. However, despite being useful, these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and the regulatory signals involved. Targeting more complex biological systems requires the application of global optimization methods to non-linear representations. In this work we address the multi-objective global optimization of metabolic networks that are described by a special class of models based on the power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose a heuristic approach based on the epsilon constraint method that reduces the computational burden of generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values. To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic profiles. We demonstrate the usefulness of our approach by means of a case study that optimizes the

  19. Breaking projective chaos synchronization secure communication using filtering and generalized synchronization

    International Nuclear Information System (INIS)

    Alvarez, G.; Li Shujun; Montoya, F.; Pastor, G.; Romera, M.

    2005-01-01

    This paper describes the security weaknesses of a recently proposed secure communication method based on chaotic masking using projective synchronization of two chaotic systems. We show that the system is insecure and how to break it in two different ways, by high-pass filtering and by generalized synchronization

  20. A multiscale filter for noise reduction of low-dose cone beam projections.

    Science.gov (United States)

    Yao, Weiguang; Farr, Jonathan B

    2015-08-21

    The Poisson or compound Poisson process governs the randomness of photon fluence in cone beam computed tomography (CBCT) imaging systems. The probability density function depends on the mean (noiseless) of the fluence at a certain detector. This dependence indicates the natural requirement of multiscale filters to smooth noise while preserving structures of the imaged object on the low-dose cone beam projection. In this work, we used a Gaussian filter, exp(-x2/2σ(2)(f)) as the multiscale filter to de-noise the low-dose cone beam projections. We analytically obtained the expression of σ(f), which represents the scale of the filter, by minimizing local noise-to-signal ratio. We analytically derived the variance of residual noise from the Poisson or compound Poisson processes after Gaussian filtering. From the derived analytical form of the variance of residual noise, optimal σ(2)(f)) is proved to be proportional to the noiseless fluence and modulated by local structure strength expressed as the linear fitting error of the structure. A strategy was used to obtain the reliable linear fitting error: smoothing the projection along the longitudinal direction to calculate the linear fitting error along the lateral direction and vice versa. The performance of our multiscale filter was examined on low-dose cone beam projections of a Catphan phantom and a head-and-neck patient. After performing the filter on the Catphan phantom projections scanned with pulse time 4 ms, the number of visible line pairs was similar to that scanned with 16 ms, and the contrast-to-noise ratio of the inserts was higher than that scanned with 16 ms about 64% in average. For the simulated head-and-neck patient projections with pulse time 4 ms, the visibility of soft tissue structures in the patient was comparable to that scanned with 20 ms. The image processing took less than 0.5 s per projection with 1024   ×   768 pixels.

  1. Preventing diarrhoea with household ceramic water filters: assessment of a pilot project in Bolivia.

    Science.gov (United States)

    Clasen, Thomas F; Brown, Joseph; Collin, Simon M

    2006-06-01

    In an attempt to prevent diarrhoea in a rural community in central Bolivia, an international non-governmental organization implemented a pilot project to improve drinking water quality using gravity-fed, household-based, ceramic water filters. We assessed the performance of the filters by conducting a five-month randomized controlled trial among all 60 households in the pilot community. Water filters eliminated thermotolerant (faecal) coliforms from almost all intervention households and significantly reduced turbidity, thereby improving water aesthetics. Most importantly, the filters were associated with a 45.3% reduction in prevalence of diarrhoea among the study population (p = 0.02). After adjustment for household clustering and repeated episodes in individuals and controlling for age and baseline diarrhoea, prevalence of diarrhoea among the intervention group was 51% lower than controls, though the protective effect was only borderline significant (OR 0.49, 95% CI: 0.24, 1.01; p = 0.05). A follow-up survey conducted approximately 9 months after deployment of the filters found 67% being used regularly, 13% being used intermittently, and 21% not in use. Water samples from all regularly used filters were free of thermotolerant coliforms.

  2. A non-linear algorithm for current signal filtering and peak detection in SiPM

    International Nuclear Information System (INIS)

    Putignano, M; Intermite, A; Welsch, C P

    2012-01-01

    Read-out of Silicon Photomultipliers is commonly achieved by means of charge integration, a method particularly susceptible to after-pulsing noise and not efficient for low level light signals. Current signal monitoring, characterized by easier electronic implementation and intrinsically faster than charge integration, is also more suitable for low level light signals and can potentially result in much decreased after-pulsing noise effects. However, its use is to date limited by the need of developing a suitable read-out algorithm for signal analysis and filtering able to achieve current peak detection and measurement with the needed precision and accuracy. In this paper we present an original algorithm, based on a piecewise linear-fitting approach, to filter the noise of the current signal and hence efficiently identifying and measuring current peaks. The proposed algorithm is then compared with the optimal linear filtering algorithm for time-encoded peak detection, based on a moving average routine, and assessed in terms of accuracy, precision, and peak detection efficiency, demonstrating improvements of 1÷2 orders of magnitude in all these quality factors.

  3. Performance improvement of shunt active power filter based on non-linear least-square approach

    DEFF Research Database (Denmark)

    Terriche, Yacine

    2018-01-01

    . This paper proposes an improved open loop strategy which is unconditionally stable and flexible. The proposed method which is based on non-linear least square (NLS) approach can extract the fundamental voltage and estimates its phase within only half cycle, even in the presence of odd harmonics and dc offset......). The synchronous reference frame (SRF) approach is widely used for generating the RCC due to its simplicity and computation efficiency. However, the SRF approach needs precise information of the voltage phase which becomes a challenge under adverse grid conditions. A typical solution to answer this need...

  4. Sparse Nonlinear Electromagnetic Imaging Accelerated With Projected Steepest Descent Algorithm

    KAUST Repository

    Desmal, Abdulla; Bagci, Hakan

    2017-01-01

    steepest descent algorithm. The algorithm uses a projection operator to enforce the sparsity constraint by thresholding the solution at every iteration. Thresholding level and iteration step are selected carefully to increase the efficiency without

  5. Robust synchronization of coupled neural oscillators using the derivative-free nonlinear Kalman Filter.

    Science.gov (United States)

    Rigatos, Gerasimos

    2014-12-01

    A synchronizing control scheme for coupled neural oscillators of the FitzHugh-Nagumo type is proposed. Using differential flatness theory the dynamical model of two coupled neural oscillators is transformed into an equivalent model in the linear canonical (Brunovsky) form. A similar linearized description is succeeded using differential geometry methods and the computation of Lie derivatives. For such a model it becomes possible to design a state feedback controller that assures the synchronization of the membrane's voltage variations for the two neurons. To compensate for disturbances that affect the neurons' model as well as for parametric uncertainties and variations a disturbance observer is designed based on Kalman Filtering. This consists of implementation of the standard Kalman Filter recursion on the linearized equivalent model of the coupled neurons and computation of state and disturbance estimates using the diffeomorphism (relations about state variables transformation) provided by differential flatness theory. After estimating the disturbance terms in the neurons' model their compensation becomes possible. The performance of the synchronization control loop is tested through simulation experiments.

  6. Chaos synchronization in noisy environment using nonlinear filtering and sliding mode control

    Energy Technology Data Exchange (ETDEWEB)

    Behzad, Mehdi [Center of Excellence in Design, Robotics, and Automation (CEDRA), Department of Mechanical Engineering, Sharif University of Technology, Postal Code 11365-9567, Azadi Avenue, Tehran (Iran, Islamic Republic of)], E-mail: m_behzad@sharif.edu; Salarieh, Hassan [Center of Excellence in Design, Robotics, and Automation (CEDRA), Department of Mechanical Engineering, Sharif University of Technology, Postal Code 11365-9567, Azadi Avenue, Tehran (Iran, Islamic Republic of)], E-mail: salarieh@mech.sharif.edu; Alasty, Aria [Center of Excellence in Design, Robotics, and Automation (CEDRA), Department of Mechanical Engineering, Sharif University of Technology, Postal Code 11365-9567, Azadi Avenue, Tehran (Iran, Islamic Republic of)], E-mail: aalasti@sharif.edu

    2008-06-15

    This paper presents an algorithm for synchronizing two different chaotic systems, using a combination of the extended Kalman filter and the sliding mode controller. It is assumed that the drive chaotic system has a random excitation with a stochastically chaotic behavior. Two different cases are considered in this study. At first it is assumed that all state variables of the drive system are available, i.e. complete state measurement, and a sliding mode controller is designed for synchronization. For the second case, it is assumed that the output of the drive system does not contain the whole state variables of the drive system, and it is also affected by some random noise. By combination of extended Kalman filter and the sliding mode control, a synchronizing control law is proposed. As a case study, the presented algorithm is applied to the Lur'e-Genesio chaotic systems as the drive-response dynamic systems. Simulation results show the good performance of the algorithm in synchronizing the chaotic systems in presence of noisy environment.

  7. Chaos synchronization in noisy environment using nonlinear filtering and sliding mode control

    International Nuclear Information System (INIS)

    Behzad, Mehdi; Salarieh, Hassan; Alasty, Aria

    2008-01-01

    This paper presents an algorithm for synchronizing two different chaotic systems, using a combination of the extended Kalman filter and the sliding mode controller. It is assumed that the drive chaotic system has a random excitation with a stochastically chaotic behavior. Two different cases are considered in this study. At first it is assumed that all state variables of the drive system are available, i.e. complete state measurement, and a sliding mode controller is designed for synchronization. For the second case, it is assumed that the output of the drive system does not contain the whole state variables of the drive system, and it is also affected by some random noise. By combination of extended Kalman filter and the sliding mode control, a synchronizing control law is proposed. As a case study, the presented algorithm is applied to the Lur'e-Genesio chaotic systems as the drive-response dynamic systems. Simulation results show the good performance of the algorithm in synchronizing the chaotic systems in presence of noisy environment

  8. Lysis solution composition and non-linear dose-response to ionizing radiation in the non-denaturing DNA filter elution technique

    International Nuclear Information System (INIS)

    Radford, I.R.

    1990-01-01

    The suggestion by Okayasu and Iliakis (1989) that the non-linear dose-response curve, obtained with the non-denaturing filter elution technique for mammalian cells exposed to low-LET radiation, is the result of a technical artefact, was not confirmed. (author)

  9. Image reconstruction for digital breast tomosynthesis (DBT) by using projection-angle-dependent filter functions

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeonok; Park, Chulkyu; Cho, Hyosung; Je, Uikyu; Hong, Daeki; Lee, Minsik; Cho, Heemoon; Choi, Sungil; Koo, Yangseo [Yonsei University, Wonju (Korea, Republic of)

    2014-09-15

    Digital breast tomosynthesis (DBT) is considered in clinics as a standard three-dimensional imaging modality, allowing the earlier detection of cancer. It typically acquires only 10-30 projections over a limited angle range of 15 - 60 .deg. with a stationary detector and typically uses a computationally-efficient filtered-backprojection (FBP) algorithm for image reconstruction. However, a common FBP algorithm yields poor image quality resulting from the loss of average image value and the presence of severe image artifacts due to the elimination of the dc component of the image by the ramp filter and to the incomplete data, respectively. As an alternative, iterative reconstruction methods are often used in DBT to overcome these difficulties, even though they are still computationally expensive. In this study, as a compromise, we considered a projection-angle dependent filtering method in which one-dimensional geometry-adapted filter kernels are computed with the aid of a conjugate-gradient method and are incorporated into the standard FBP framework. We implemented the proposed algorithm and performed systematic simulation works to investigate the imaging characteristics. Our results indicate that the proposed method is superior to a conventional FBP method for DBT imaging and has a comparable computational cost, while preserving good image homogeneity and edge sharpening with no serious image artifacts.

  10. Combination of highly nonlinear fiber, an optical bandpass filter, and a Fabry-Perot filter to improve the signal-to-noise ratio of a supercontinuum continuous-wave optical source.

    Science.gov (United States)

    Nan, Yinbo; Huo, Li; Lou, Caiyun

    2005-05-20

    We present a theoretical study of a supercontinuum (SC) continuous-wave (cw) optical source generation in highly nonlinear fiber and its noise properties through numerical simulations based on the nonlinear Schrödinger equation. Fluctuations of pump pulses generate substructures between the longitudinal modes that result in the generation of white noise and then in degradation of coherence and in a decrease of the modulation depths and the signal-to-noise ratio (SNR). A scheme for improvement of the SNR of a multiwavelength cw optical source based on a SC by use of the combination of a highly nonlinear fiber (HNLF), an optical bandpass filter, and a Fabry-Perot (FP) filter is presented. Numerical simulations show that the improvement in modulation depth is relative to the HNLF's length, the 3-dB bandwidth of the optical bandpass filter, and the reflection ratio of the FP filter and that the average improvement in modulation depth is 13.7 dB under specified conditions.

  11. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Radiology, Stanford University, Stanford, California 94305 (United States) and Center for Medical Image Science and Visualization, Linkoeping University, Linkoeping (Sweden); Pattern Recognition Laboratory, Department of Computer Science, Friedrich-Alexander University of Erlangen-Nuremberg, 91054, Erlangen (Germany); Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Siemens AG Healthcare, Forchheim 91301 (Germany); Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2011-11-15

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8

  12. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    International Nuclear Information System (INIS)

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca

    2011-01-01

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold

  13. A general exact method for synthesizing parallel-beam projections from cone-beam projections via filtered backprojection

    International Nuclear Information System (INIS)

    Li Liang; Chen Zhiqiang; Xing Yuxiang; Zhang Li; Kang Kejun; Wang Ge

    2006-01-01

    In recent years, image reconstruction methods for cone-beam computed tomography (CT) have been extensively studied. However, few of these studies discussed computing parallel-beam projections from cone-beam projections. In this paper, we focus on the exact synthesis of complete or incomplete parallel-beam projections from cone-beam projections. First, an extended central slice theorem is described to establish a relationship between the Radon space and the Fourier space. Then, data sufficiency conditions are proposed for computing parallel-beam projection data from cone-beam data. Using these results, a general filtered backprojection algorithm is formulated that can exactly synthesize parallel-beam projection data from cone-beam projection data. As an example, we prove that parallel-beam projections can be exactly synthesized in an angular range in the case of circular cone-beam scanning. Interestingly, this angular range is larger than that derived in the Feldkamp reconstruction framework. Numerical experiments are performed in the circular scanning case to verify our method

  14. Block matching 3D random noise filtering for absorption optical projection tomography

    International Nuclear Information System (INIS)

    Fumene Feruglio, P; Vinegoni, C; Weissleder, R; Gros, J; Sbarbati, A

    2010-01-01

    Absorption and emission optical projection tomography (OPT), alternatively referred to as optical computed tomography (optical-CT) and optical-emission computed tomography (optical-ECT), are recently developed three-dimensional imaging techniques with value for developmental biology and ex vivo gene expression studies. The techniques' principles are similar to the ones used for x-ray computed tomography and are based on the approximation of negligible light scattering in optically cleared samples. The optical clearing is achieved by a chemical procedure which aims at substituting the cellular fluids within the sample with a cell membranes' index matching solution. Once cleared the sample presents very low scattering and is then illuminated with a light collimated beam whose intensity is captured in transillumination mode by a CCD camera. Different projection images of the sample are subsequently obtained over a 360 0 full rotation, and a standard backprojection algorithm can be used in a similar fashion as for x-ray tomography in order to obtain absorption maps. Because not all biological samples present significant absorption contrast, it is not always possible to obtain projections with a good signal-to-noise ratio, a condition necessary to achieve high-quality tomographic reconstructions. Such is the case for example, for early stage's embryos. In this work we demonstrate how, through the use of a random noise removal algorithm, the image quality of the reconstructions can be considerably improved even when the noise is strongly present in the acquired projections. Specifically, we implemented a block matching 3D (BM3D) filter applying it separately on each acquired transillumination projection before performing a complete three-dimensional tomographical reconstruction. To test the efficiency of the adopted filtering scheme, a phantom and a real biological sample were processed. In both cases, the BM3D filter led to a signal-to-noise ratio increment of over 30 d

  15. Multiscale Support Vector Learning With Projection Operator Wavelet Kernel for Nonlinear Dynamical System Identification.

    Science.gov (United States)

    Lu, Zhao; Sun, Jing; Butts, Kenneth

    2016-02-03

    A giant leap has been made in the past couple of decades with the introduction of kernel-based learning as a mainstay for designing effective nonlinear computational learning algorithms. In view of the geometric interpretation of conditional expectation and the ubiquity of multiscale characteristics in highly complex nonlinear dynamic systems [1]-[3], this paper presents a new orthogonal projection operator wavelet kernel, aiming at developing an efficient computational learning approach for nonlinear dynamical system identification. In the framework of multiresolution analysis, the proposed projection operator wavelet kernel can fulfill the multiscale, multidimensional learning to estimate complex dependencies. The special advantage of the projection operator wavelet kernel developed in this paper lies in the fact that it has a closed-form expression, which greatly facilitates its application in kernel learning. To the best of our knowledge, it is the first closed-form orthogonal projection wavelet kernel reported in the literature. It provides a link between grid-based wavelets and mesh-free kernel-based methods. Simulation studies for identifying the parallel models of two benchmark nonlinear dynamical systems confirm its superiority in model accuracy and sparsity.

  16. Nonlinear spatio-temporal filtering of dynamic PET data using a four-dimensional Gaussian filter and expectation-maximization deconvolution

    International Nuclear Information System (INIS)

    Floberg, J M; Holden, J E

    2013-01-01

    We introduce a method for denoising dynamic PET data, spatio-temporal expectation-maximization (STEM) filtering, that combines four-dimensional Gaussian filtering with EM deconvolution. The initial Gaussian filter suppresses noise at a broad range of spatial and temporal frequencies and EM deconvolution quickly restores the frequencies most important to the signal. We aim to demonstrate that STEM filtering can improve variance in both individual time frames and in parametric images without introducing significant bias. We evaluate STEM filtering with a dynamic phantom study, and with simulated and human dynamic PET studies of a tracer with reversible binding behaviour, [C-11]raclopride, and a tracer with irreversible binding behaviour, [F-18]FDOPA. STEM filtering is compared to a number of established three and four-dimensional denoising methods. STEM filtering provides substantial improvements in variance in both individual time frames and in parametric images generated with a number of kinetic analysis techniques while introducing little bias. STEM filtering does bias early frames, but this does not affect quantitative parameter estimates. STEM filtering is shown to be superior to the other simple denoising methods studied. STEM filtering is a simple and effective denoising method that could be valuable for a wide range of dynamic PET applications. (paper)

  17. Kalman Filtering with Real-Time Applications

    CERN Document Server

    Chui, Charles K

    2009-01-01

    Kalman Filtering with Real-Time Applications presents a thorough discussion of the mathematical theory and computational schemes of Kalman filtering. The filtering algorithms are derived via different approaches, including a direct method consisting of a series of elementary steps, and an indirect method based on innovation projection. Other topics include Kalman filtering for systems with correlated noise or colored noise, limiting Kalman filtering for time-invariant systems, extended Kalman filtering for nonlinear systems, interval Kalman filtering for uncertain systems, and wavelet Kalman filtering for multiresolution analysis of random signals. Most filtering algorithms are illustrated by using simplified radar tracking examples. The style of the book is informal, and the mathematics is elementary but rigorous. The text is self-contained, suitable for self-study, and accessible to all readers with a minimum knowledge of linear algebra, probability theory, and system engineering.

  18. Galerkin v. discrete-optimal projection in nonlinear model reduction

    Energy Technology Data Exchange (ETDEWEB)

    Carlberg, Kevin Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barone, Matthew Franklin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Antil, Harbir [George Mason Univ., Fairfax, VA (United States)

    2015-04-01

    Discrete-optimal model-reduction techniques such as the Gauss{Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible ow problems where standard Galerkin techniques have failed. However, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform projection at the time-continuous level, while discrete-optimal techniques do so at the time-discrete level. This work provides a detailed theoretical and experimental comparison of the two techniques for two common classes of time integrators: linear multistep schemes and Runge{Kutta schemes. We present a number of new ndings, including conditions under which the discrete-optimal ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and experimentally that decreasing the time step does not necessarily decrease the error for the discrete-optimal ROM; instead, the time step should be `matched' to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible- ow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the discrete-optimal reduced-order model by an order of magnitude.

  19. Adaptive kernels in approximate filtering of state-space models

    Czech Academy of Sciences Publication Activity Database

    Dedecius, Kamil

    2017-01-01

    Roč. 31, č. 6 (2017), s. 938-952 ISSN 0890-6327 R&D Projects: GA ČR(CZ) GP14-06678P Institutional support: RVO:67985556 Keywords : filtering * nonlinear filters * Bayesian filtering * sequential Monte Carlo * approximate filtering Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Statistics and probability Impact factor: 1.708, year: 2016 http://library.utia.cs.cz/separaty/2016/AS/dedecius-0466448.pdf

  20. Via generalized function projective synchronization in nonlinear Schrödinger equation for secure communication

    Science.gov (United States)

    Zhao, L. W.; Du, J. G.; Yin, J. L.

    2018-05-01

    This paper proposes a novel secured communication scheme in a chaotic system by applying generalized function projective synchronization of the nonlinear Schrödinger equation. This phenomenal approach guarantees a secured and convenient communication. Our study applied the Melnikov theorem with an active control strategy to suppress chaos in the system. The transmitted information signal is modulated into the parameter of the nonlinear Schrödinger equation in the transmitter and it is assumed that the parameter of the receiver system is unknown. Based on the Lyapunov stability theory and the adaptive control technique, the controllers are designed to make two identical nonlinear Schrödinger equation with the unknown parameter asymptotically synchronized. The numerical simulation results of our study confirmed the validity, effectiveness and the feasibility of the proposed novel synchronization method and error estimate for a secure communication. The Chaos masking signals of the information communication scheme, further guaranteed a safer and secured information communicated via this approach.

  1. Generalized projective chaos synchronization of gyroscope systems subjected to dead-zone nonlinear inputs

    International Nuclear Information System (INIS)

    Yau, H.-T.

    2008-01-01

    This Letter presents a robust control scheme to generalized projective synchronization between two identical two-degrees-of-freedom heavy symmetric gyroscopes with dead zone nonlinear inputs. Because of the nonlinear terms of the gyroscope system, the system exhibits complex and chaotic motions. By the Lyapunov stability theory with control terms, two suitable sliding surfaces are proposed to ensure the stability of the controlled closed-loop system in sliding mode. Then, two sliding mode controllers (SMC) are designed to guarantee the hitting of the sliding surfaces even when the control inputs contain dead-zone nonlinearity. This method allows us to arbitrarily direct the scaling factor onto a desired value. Numerical simulations show that this method works very well for the proposed controller

  2. Multichannel Filtered-X Error Coded Affine Projection-Like Algorithm with Evolving Order

    Directory of Open Access Journals (Sweden)

    J. G. Avalos

    2017-01-01

    Full Text Available Affine projection (AP algorithms are commonly used to implement active noise control (ANC systems because they provide fast convergence. However, their high computational complexity can restrict their use in certain practical applications. The Error Coded Affine Projection-Like (ECAP-L algorithm has been proposed to reduce the computational burden while maintaining the speed of AP, but no version of this algorithm has been derived for active noise control, for which the adaptive structures are very different from those of other configurations. In this paper, we introduce a version of the ECAP-L for single-channel and multichannel ANC systems. The proposed algorithm is implemented using the conventional filtered-x scheme, which incurs a lower computational cost than the modified filtered-x structure, especially for multichannel systems. Furthermore, we present an evolutionary method that dynamically decreases the projection order in order to reduce the dimensions of the matrix used in the algorithm’s computations. Experimental results demonstrate that the proposed algorithm yields a convergence speed and a final residual error similar to those of AP algorithms. Moreover, it achieves meaningful computational savings, leading to simpler hardware implementation of real-time ANC applications.

  3. A nonlinear dynamics approach for incorporating wind-speed patterns into wind-power project evaluation.

    Science.gov (United States)

    Huffaker, Ray; Bittelli, Marco

    2015-01-01

    Wind-energy production may be expanded beyond regions with high-average wind speeds (such as the Midwest U.S.A.) to sites with lower-average speeds (such as the Southeast U.S.A.) by locating favorable regional matches between natural wind-speed and energy-demand patterns. A critical component of wind-power evaluation is to incorporate wind-speed dynamics reflecting documented diurnal and seasonal behavioral patterns. Conventional probabilistic approaches remove patterns from wind-speed data. These patterns must be restored synthetically before they can be matched with energy-demand patterns. How to accurately restore wind-speed patterns is a vexing problem spurring an expanding line of papers. We propose a paradigm shift in wind power evaluation that employs signal-detection and nonlinear-dynamics techniques to empirically diagnose whether synthetic pattern restoration can be avoided altogether. If the complex behavior of observed wind-speed records is due to nonlinear, low-dimensional, and deterministic system dynamics, then nonlinear dynamics techniques can reconstruct wind-speed dynamics from observed wind-speed data without recourse to conventional probabilistic approaches. In the first study of its kind, we test a nonlinear dynamics approach in an application to Sugarland Wind-the first utility-scale wind project proposed in Florida, USA. We find empirical evidence of a low-dimensional and nonlinear wind-speed attractor characterized by strong temporal patterns that match up well with regular daily and seasonal electricity demand patterns.

  4. Oblique Projection Polarization Filtering-Based Interference Suppressions for Radar Sensor Networks

    Directory of Open Access Journals (Sweden)

    Cao Bin

    2010-01-01

    Full Text Available The interferences coming from the radar members degrade the detection and recognition performance of the radar sensor networks (RSNs if the waveforms of the radar members are nonorthogonal. In this paper, we analyze the interferences by exploring the polarization information of the electromagnetic (EM waves. Then, we propose the oblique projection polarization filtering- (OPPF- based scheme to suppress the interferences while keeping the amplitude and phase of its own return in RSNs, even if the polarized states of the radar members are not orthogonal. We consider the cooperative RSNs environment where the polarization information of each radar member is known to all. The proposed method uses all radar members' polarization information to establish the corresponding filtering operator. The Doppler-shift and its uncertainty are independent of the polarization information, which contributes that the interferences can be suppressed without the utilization of the spatial, the temporal, the frequency, the time-delay and the Doppler-shift information. Theoretical analysis and the mathematical deduction show that the proposed scheme is a valid and simple implementation. Simulation results also demonstrate that this method can obtain a good filtering performance when dealing with the problem of interference suppressions for RSNs.

  5. Space-time least-squares Petrov-Galerkin projection in nonlinear model reduction.

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Youngsoo [Sandia National Laboratories (SNL-CA), Livermore, CA (United States). Extreme-scale Data Science and Analytics Dept.; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Carlberg, Kevin Thomas [Sandia National Laboratories (SNL-CA), Livermore, CA (United States). Extreme-scale Data Science and Analytics Dept.

    2017-09-01

    Our work proposes a space-time least-squares Petrov-Galerkin (ST-LSPG) projection method for model reduction of nonlinear dynamical systems. In contrast to typical nonlinear model-reduction methods that first apply Petrov-Galerkin projection in the spatial dimension and subsequently apply time integration to numerically resolve the resulting low-dimensional dynamical system, the proposed method applies projection in space and time simultaneously. To accomplish this, the method first introduces a low-dimensional space-time trial subspace, which can be obtained by computing tensor decompositions of state-snapshot data. The method then computes discrete-optimal approximations in this space-time trial subspace by minimizing the residual arising after time discretization over all space and time in a weighted ℓ2-norm. This norm can be de ned to enable complexity reduction (i.e., hyper-reduction) in time, which leads to space-time collocation and space-time GNAT variants of the ST-LSPG method. Advantages of the approach relative to typical spatial-projection-based nonlinear model reduction methods such as Galerkin projection and least-squares Petrov-Galerkin projection include: (1) a reduction of both the spatial and temporal dimensions of the dynamical system, (2) the removal of spurious temporal modes (e.g., unstable growth) from the state space, and (3) error bounds that exhibit slower growth in time. Numerical examples performed on model problems in fluid dynamics demonstrate the ability of the method to generate orders-of-magnitude computational savings relative to spatial-projection-based reduced-order models without sacrificing accuracy.

  6. Kalman filtering with real-time applications

    CERN Document Server

    Chui, Charles K

    2017-01-01

    This new edition presents a thorough discussion of the mathematical theory and computational schemes of Kalman filtering. The filtering algorithms are derived via different approaches, including a direct method consisting of a series of elementary steps, and an indirect method based on innovation projection. Other topics include Kalman filtering for systems with correlated noise or colored noise, limiting Kalman filtering for time-invariant systems, extended Kalman filtering for nonlinear systems, interval Kalman filtering for uncertain systems, and wavelet Kalman filtering for multiresolution analysis of random signals. Most filtering algorithms are illustrated by using simplified radar tracking examples. The style of the book is informal, and the mathematics is elementary but rigorous. The text is self-contained, suitable for self-study, and accessible to all readers with a minimum knowledge of linear algebra, probability theory, and system engineering. Over 100 exercises and problems with solutions help de...

  7. Connection between perturbation theory, projection-operator techniques, and statistical linearization for nonlinear systems

    International Nuclear Information System (INIS)

    Budgor, A.B.; West, B.J.

    1978-01-01

    We employ the equivalence between Zwanzig's projection-operator formalism and perturbation theory to demonstrate that the approximate-solution technique of statistical linearization for nonlinear stochastic differential equations corresponds to the lowest-order β truncation in both the consolidated perturbation expansions and in the ''mass operator'' of a renormalized Green's function equation. Other consolidated equations can be obtained by selectively modifying this mass operator. We particularize the results of this paper to the Duffing anharmonic oscillator equation

  8. Tracking single dynamic MEG dipole sources using the projected Extended Kalman Filter.

    Science.gov (United States)

    Yao, Yuchen; Swindlehurst, A Lee

    2011-01-01

    This paper presents two new algorithms based on the Extended Kalman Filter (EKF) for tracking the parameters of single dynamic magnetoencephalography (MEG) dipole sources. We assume a dynamic MEG dipole source with possibly both time-varying location and dipole orientation. The standard EKF-based tracking algorithm performs well under the assumption that the dipole source components vary in time as a Gauss-Markov process, provided that the background noise is temporally stationary. We propose a Projected-EKF algorithm that is adapted to a more forgiving condition where the background noise is temporally nonstationary, as well as a Projected-GLS-EKF algorithm that works even more universally, when the dipole components vary arbitrarily from one sample to the next.

  9. The NYC native air sampling pilot project: using HVAC filter data for urban biological incident characterization.

    Science.gov (United States)

    Ackelsberg, Joel; Leykam, Frederic M; Hazi, Yair; Madsen, Larry C; West, Todd H; Faltesek, Anthony; Henderson, Gavin D; Henderson, Christopher L; Leighton, Terrance

    2011-09-01

    Native air sampling (NAS) is distinguished from dedicated air sampling (DAS) devices (eg, BioWatch) that are deployed to detect aerosol disseminations of biological threat agents. NAS uses filter samples from heating, ventilation, and air conditioning (HVAC) systems in commercial properties for environmental sampling after DAS detection of biological threat agent incidents. It represents an untapped, scientifically sound, efficient, widely distributed, and comparably inexpensive resource for postevent environmental sampling. Calculations predict that postevent NAS would be more efficient than environmental surface sampling by orders of magnitude. HVAC filter samples could be collected from pre-identified surrounding NAS facilities to corroborate the DAS alarm and delineate the path taken by the bioaerosol plume. The New York City (NYC) Native Air Sampling Pilot Project explored whether native air sampling would be acceptable to private sector stakeholders and could be implemented successfully in NYC. Building trade associations facilitated outreach to and discussions with property owners and managers, who expedited contact with building managers of candidate NAS properties that they managed or owned. Nominal NAS building requirements were determined; procedures to identify and evaluate candidate NAS facilities were developed; data collection tools and other resources were designed and used to expedite candidate NAS building selection and evaluation in Manhattan; and exemplar environmental sampling playbooks for emergency responders were completed. In this sample, modern buildings with single or few corporate tenants were the best NAS candidate facilities. The Pilot Project successfully demonstrated that in one urban setting a native air sampling strategy could be implemented with effective public-private collaboration.

  10. Imaging reconstruction based on improved wavelet denoising combined with parallel-beam filtered back-projection algorithm

    Science.gov (United States)

    Ren, Zhong; Liu, Guodong; Huang, Zhen

    2012-11-01

    The image reconstruction is a key step in medical imaging (MI) and its algorithm's performance determinates the quality and resolution of reconstructed image. Although some algorithms have been used, filter back-projection (FBP) algorithm is still the classical and commonly-used algorithm in clinical MI. In FBP algorithm, filtering of original projection data is a key step in order to overcome artifact of the reconstructed image. Since simple using of classical filters, such as Shepp-Logan (SL), Ram-Lak (RL) filter have some drawbacks and limitations in practice, especially for the projection data polluted by non-stationary random noises. So, an improved wavelet denoising combined with parallel-beam FBP algorithm is used to enhance the quality of reconstructed image in this paper. In the experiments, the reconstructed effects were compared between the improved wavelet denoising and others (directly FBP, mean filter combined FBP and median filter combined FBP method). To determine the optimum reconstruction effect, different algorithms, and different wavelet bases combined with three filters were respectively test. Experimental results show the reconstruction effect of improved FBP algorithm is better than that of others. Comparing the results of different algorithms based on two evaluation standards i.e. mean-square error (MSE), peak-to-peak signal-noise ratio (PSNR), it was found that the reconstructed effects of the improved FBP based on db2 and Hanning filter at decomposition scale 2 was best, its MSE value was less and the PSNR value was higher than others. Therefore, this improved FBP algorithm has potential value in the medical imaging.

  11. Using active power filter to compensate the current component of asymmetrical non-linear load in the four wire network

    Directory of Open Access Journals (Sweden)

    Руслан Володимирович Власенко

    2016-07-01

    Full Text Available Electricity quality improving is extremely relevant nowadays. With such industrial loads as induction motors, induction furnaces, welding machines, controlled or uncontrolled rectifiers, frequency converters and others reactive power, harmonics and unbalance are generated in power grid. Reactive power, higher harmonic currents and asymmetry loads influence the functioning of electric devices and electrical mains. An effective technical solution is the use of new compensating devices, that is active power filters. The emergence of consumers with a unit capacity of four wire networks requires a new approach to building system control active power filter. When designing the active power filter control system the current flowing in the neutral wire must be taken into account. To assess the power balance in the four wire active power filter, scientists have proposed to apply pqr theory of power based on the Clarke transformation. There are different topologies of three-phase four wire active power filters. A visual simulation of Matlab / Simulink model with an active power filter based on pqr theory of power has been created. A method of pulse width modulation with four control channels was used as pulses forming systems with transistor keys. Operating conditions of three-phase four wire active power filter with asymmetry, non-sinosoidal voltage source and asymmetric load have been studied. The correction taking into account the means improving the active power filter has been offered as pqr theory of power does not take into account non-sinosoidal voltage

  12. Evaluation of correlated digital back propagation and extended Kalman filtering for non-linear mitigation in PM-16-QAM WDM systems

    Science.gov (United States)

    Pakala, Lalitha; Schmauss, Bernhard

    2017-01-01

    We investigate the individual and combined performance of correlated digital back propagation (CDBP) and extended Kalman filtering (EKF) in mitigating inter and intra-channel non-linearities in wavelength division multiplexed (WDM) systems. The afore-mentioned algorithms are verified through numerical simulations on 28 Gbaud polarization multiplexed (PM) 16-quadrature amplitude modulation (16-QAM) 9-channel WDM system with 50 GHz spacing. A single channel CDBP with one-step-per-span based on asymmetric split step Fourier method (A-SSFM) with optimized non-linear coefficient has been employed. We also study an amplitude dependent optimization (AO) of the non-linear coefficient for CDBP which shows an improvement of ≍ 0.8 dB compared to the conventional optimized CDBP, in the non-linear regime. Moreover, our proposed carrier phase and amplitude noise estimation (CPANE) algorithm based on EKF outperforms AO-CDBP in both linear and non-linear regimes with an enhanced performance besides significantly reduced complexity. We further investigate the combined performance of AO-CDBP and EKF which results in an enhanced non-linear tolerance at the expense of increased computational cost trading off to the number of required CDBP steps per span. Furthermore, we also analyze the impact of cross phase modulation (XPM) on the combined performance of AO-CDBP and EKF by varying the number of WDM channels. Numerical results show that the obtained gain from employing AO-CDBP prior to EKF reduces with increasing effects of XPM. Additionally, we also discuss the computational complexity of the aforementioned algorithms.

  13. A Projected Non-linear Conjugate Gradient Method for Interactive Inverse Kinematics

    DEFF Research Database (Denmark)

    Engell-Nørregård, Morten; Erleben, Kenny

    2009-01-01

    Inverse kinematics is the problem of posing an articulated figure to obtain a wanted goal, without regarding inertia and forces. Joint limits are modeled as bounds on individual degrees of freedom, leading to a box-constrained optimization problem. We present A projected Non-linear Conjugate...... Gradient optimization method suitable for box-constrained optimization problems for inverse kinematics. We show application on inverse kinematics positioning of a human figure. Performance is measured and compared to a traditional Jacobian Transpose method. Visual quality of the developed method...

  14. Effect of number of of projections on inverse radon transform based image reconstruction by using filtered back-projection for parallel beam transmission tomography

    International Nuclear Information System (INIS)

    Qureshi, S.A.; Mirza, S.M.; Arif, M.

    2007-01-01

    This paper present the effect of number of projections on inverse Radon transform (IRT) estimation using filtered back-projection (FBP) technique for parallel beam transmission tomography. The head phantom and the lung phantom have been used in this work. Various filters used in this study include Ram-Lak, Shepp-Logan, Cosin, Hamming and Hanning filters. The slices have been reconstructed by increasing the number of projections through parallel beam transmission tomography keeping the projections uniformly distributed. The Euclidean and Mean Squared errors and peak signal-to-noise ratio (PSNR) have been analyzed for their sensitiveness as functions of number of projections. It has found that image quality improves with the number of projections but at the cost of the computer time. The error has been minimized to get the best approximation of inverse Radon transform (IRT) as the number of projections is enhanced. The value of PSNR has been found to increase from 8.20 to 24.53 dB as the number of projections is raised from 5 to 180 for head phantom. (author)

  15. Systematic Error in Lung Nodule Volumetry : Effect of Iterative Reconstruction Versus Filtered Back Projection at Different CT Parameters

    NARCIS (Netherlands)

    Willemink, Martin J.; Leiner, Tim; Budde, Ricardo P. J.; de Kort, Freek P. L.; Vliegenthart, Rozemarijn; van Ooijen, Peter M. A.; Oudkerk, Matthijs; de Jong, Pim A.

    2012-01-01

    OBJECTIVE. Iterative reconstruction potentially can reduce radiation dose compared with filtered back projection (FBP) for chest CT. This is especially important for repeated CT scanning, as is the case in patients with indeterminate lung nodules. It is currently unknown whether absolute nodule

  16. Online Parameter Identification and State of Charge Estimation of Lithium-Ion Batteries Based on Forgetting Factor Recursive Least Squares and Nonlinear Kalman Filter

    Directory of Open Access Journals (Sweden)

    Bizhong Xia

    2017-12-01

    Full Text Available State of charge (SOC estimation is the core of any battery management system. Most closed-loop SOC estimation algorithms are based on the equivalent circuit model with fixed parameters. However, the parameters of the equivalent circuit model will change as temperature or SOC changes, resulting in reduced SOC estimation accuracy. In this paper, two SOC estimation algorithms with online parameter identification are proposed to solve this problem based on forgetting factor recursive least squares (FFRLS and nonlinear Kalman filter. The parameters of a Thevenin model are constantly updated by FFRLS. The nonlinear Kalman filter is used to perform the recursive operation to estimate SOC. Experiments in variable temperature environments verify the effectiveness of the proposed algorithms. A combination of four driving cycles is loaded on lithium-ion batteries to test the adaptability of the approaches to different working conditions. Under certain conditions, the average error of the SOC estimation dropped from 5.6% to 1.1% after adding the online parameters identification, showing that the estimation accuracy of proposed algorithms is greatly improved. Besides, simulated measurement noise is added to the test data to prove the robustness of the algorithms.

  17. Kalman filter parameter estimation for a nonlinear diffusion model of epithelial cell migration using stochastic collocation and the Karhunen-Loeve expansion.

    Science.gov (United States)

    Barber, Jared; Tanase, Roxana; Yotov, Ivan

    2016-06-01

    Several Kalman filter algorithms are presented for data assimilation and parameter estimation for a nonlinear diffusion model of epithelial cell migration. These include the ensemble Kalman filter with Monte Carlo sampling and a stochastic collocation (SC) Kalman filter with structured sampling. Further, two types of noise are considered -uncorrelated noise resulting in one stochastic dimension for each element of the spatial grid and correlated noise parameterized by the Karhunen-Loeve (KL) expansion resulting in one stochastic dimension for each KL term. The efficiency and accuracy of the four methods are investigated for two cases with synthetic data with and without noise, as well as data from a laboratory experiment. While it is observed that all algorithms perform reasonably well in matching the target solution and estimating the diffusion coefficient and the growth rate, it is illustrated that the algorithms that employ SC and KL expansion are computationally more efficient, as they require fewer ensemble members for comparable accuracy. In the case of SC methods, this is due to improved approximation in stochastic space compared to Monte Carlo sampling. In the case of KL methods, the parameterization of the noise results in a stochastic space of smaller dimension. The most efficient method is the one combining SC and KL expansion. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Self-consistent EXAFS PDF Projection Method by Matched Correction of Fourier Filter Signal Distortion

    International Nuclear Information System (INIS)

    Lee, Jay Min; Yang, Dong-Seok

    2007-01-01

    Inverse problem solving computation was performed for solving PDF (pair distribution function) from simulated data EXAFS based on data FEFF. For a realistic comparison with experimental data, we chose a model of the first sub-shell Mn-0 pair showing the Jahn Teller distortion in crystalline LaMnO3. To restore the Fourier filtering signal distortion, involved in the first sub-shell information isolated from higher shell contents, relevant distortion matching function was computed initially from the proximity model, and iteratively from the prior-guess during consecutive regularization computation. Adaptive computation of EXAFS background correction is an issue of algorithm development, but our preliminary test was performed under the simulated background correction perfectly excluding the higher shell interference. In our numerical result, efficient convergence of iterative solution indicates a self-consistent tendency that a true PDF solution is convinced as a counterpart of genuine chi-data, provided that a background correction function is iteratively solved using an extended algorithm of MEPP (Matched EXAFS PDF Projection) under development

  19. Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques in quantifying coronary calcium.

    Science.gov (United States)

    Takahashi, Masahiro; Kimura, Fumiko; Umezawa, Tatsuya; Watanabe, Yusuke; Ogawa, Harumi

    2016-01-01

    Adaptive statistical iterative reconstruction (ASIR) has been used to reduce radiation dose in cardiac computed tomography. However, change of image parameters by ASIR as compared to filtered back projection (FBP) may influence quantification of coronary calcium. To investigate the influence of ASIR on calcium quantification in comparison to FBP. In 352 patients, CT images were reconstructed using FBP alone, FBP combined with ASIR 30%, 50%, 70%, and ASIR 100% based on the same raw data. Image noise, plaque density, Agatston scores and calcium volumes were compared among the techniques. Image noise, Agatston score, and calcium volume decreased significantly with ASIR compared to FBP (each P ASIR reduced Agatston score by 10.5% to 31.0%. In calcified plaques both of patients and a phantom, ASIR decreased maximum CT values and calcified plaque size. In comparison to FBP, adaptive statistical iterative reconstruction (ASIR) may significantly decrease Agatston scores and calcium volumes. Copyright © 2016 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  20. Comparison analysis between filtered back projection and algebraic reconstruction technique on microwave imaging

    Science.gov (United States)

    Ramadhan, Rifqi; Prabowo, Rian Gilang; Aprilliyani, Ria; Basari

    2018-02-01

    Victims of acute cancer and tumor are growing each year and cancer becomes one of the causes of human deaths in the world. Cancers or tumor tissue cells are cells that grow abnormally and turn to take over and damage the surrounding tissues. At the beginning, cancers or tumors do not have definite symptoms in its early stages, and can even attack the tissues inside of the body. This phenomena is not identifiable under visual human observation. Therefore, an early detection system which is cheap, quick, simple, and portable is essensially required to anticipate the further development of cancer or tumor. Among all of the modalities, microwave imaging is considered to be a cheaper, simple, and portable system method. There are at least two simple image reconstruction algorithms i.e. Filtered Back Projection (FBP) and Algebraic Reconstruction Technique (ART), which have been adopted in some common modalities. In this paper, both algorithms will be compared by reconstructing the image from an artificial tissue model (i.e. phantom), which has two different dielectric distributions. We addressed two performance comparisons, namely quantitative and qualitative analysis. Qualitative analysis includes the smoothness of the image and also the success in distinguishing dielectric differences by observing the image with human eyesight. In addition, quantitative analysis includes Histogram, Structural Similarity Index (SSIM), Mean Squared Error (MSE), and Peak Signal-to-Noise Ratio (PSNR) calculation were also performed. As a result, quantitative parameters of FBP might show better values than the ART. However, ART is likely more capable to distinguish two different dielectric value than FBP, due to higher contrast in ART and wide distribution grayscale level.

  1. Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques in brain CT

    International Nuclear Information System (INIS)

    Ren, Qingguo; Dewan, Sheilesh Kumar; Li, Ming; Li, Jianying; Mao, Dingbiao; Wang, Zhenglei; Hua, Yanqing

    2012-01-01

    Purpose: To compare image quality and visualization of normal structures and lesions in brain computed tomography (CT) with adaptive statistical iterative reconstruction (ASIR) and filtered back projection (FBP) reconstruction techniques in different X-ray tube current–time products. Materials and methods: In this IRB-approved prospective study, forty patients (nineteen men, twenty-one women; mean age 69.5 ± 11.2 years) received brain scan at different tube current–time products (300 and 200 mAs) in 64-section multi-detector CT (GE, Discovery CT750 HD). Images were reconstructed with FBP and four levels of ASIR-FBP blending. Two radiologists (please note that our hospital is renowned for its geriatric medicine department, and these two radiologists are more experienced in chronic cerebral vascular disease than in neoplastic disease, so this research did not contain cerebral tumors but as a discussion) assessed all the reconstructed images for visibility of normal structures, lesion conspicuity, image contrast and diagnostic confidence in a blinded and randomized manner. Volume CT dose index (CTDI vol ) and dose-length product (DLP) were recorded. All the data were analyzed by using SPSS 13.0 statistical analysis software. Results: There was no statistically significant difference between the image qualities at 200 mAs with 50% ASIR blending technique and 300 mAs with FBP technique (p > .05). While between the image qualities at 200 mAs with FBP and 300 mAs with FBP technique a statistically significant difference (p < .05) was found. Conclusion: ASIR provided same image quality and diagnostic ability in brain imaging with greater than 30% dose reduction compared with FBP reconstruction technique

  2. Comparison of adaptive statistical iterative and filtered back projection reconstruction techniques in brain CT

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Qingguo, E-mail: renqg83@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Dewan, Sheilesh Kumar, E-mail: sheilesh_d1@hotmail.com [Department of Geriatrics, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Li, Ming, E-mail: minli77@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Li, Jianying, E-mail: Jianying.Li@med.ge.com [CT Imaging Research Center, GE Healthcare China, Beijing (China); Mao, Dingbiao, E-mail: maodingbiao74@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Wang, Zhenglei, E-mail: Williswang_doc@yahoo.com.cn [Department of Radiology, Shanghai Electricity Hospital, Shanghai 200050 (China); Hua, Yanqing, E-mail: cjr.huayanqing@vip.163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China)

    2012-10-15

    Purpose: To compare image quality and visualization of normal structures and lesions in brain computed tomography (CT) with adaptive statistical iterative reconstruction (ASIR) and filtered back projection (FBP) reconstruction techniques in different X-ray tube current–time products. Materials and methods: In this IRB-approved prospective study, forty patients (nineteen men, twenty-one women; mean age 69.5 ± 11.2 years) received brain scan at different tube current–time products (300 and 200 mAs) in 64-section multi-detector CT (GE, Discovery CT750 HD). Images were reconstructed with FBP and four levels of ASIR-FBP blending. Two radiologists (please note that our hospital is renowned for its geriatric medicine department, and these two radiologists are more experienced in chronic cerebral vascular disease than in neoplastic disease, so this research did not contain cerebral tumors but as a discussion) assessed all the reconstructed images for visibility of normal structures, lesion conspicuity, image contrast and diagnostic confidence in a blinded and randomized manner. Volume CT dose index (CTDI{sub vol}) and dose-length product (DLP) were recorded. All the data were analyzed by using SPSS 13.0 statistical analysis software. Results: There was no statistically significant difference between the image qualities at 200 mAs with 50% ASIR blending technique and 300 mAs with FBP technique (p > .05). While between the image qualities at 200 mAs with FBP and 300 mAs with FBP technique a statistically significant difference (p < .05) was found. Conclusion: ASIR provided same image quality and diagnostic ability in brain imaging with greater than 30% dose reduction compared with FBP reconstruction technique.

  3. An Improved Global Harmony Search Algorithm for the Identification of Nonlinear Discrete-Time Systems Based on Volterra Filter Modeling

    Directory of Open Access Journals (Sweden)

    Zongyan Li

    2016-01-01

    Full Text Available This paper describes an improved global harmony search (IGHS algorithm for identifying the nonlinear discrete-time systems based on second-order Volterra model. The IGHS is an improved version of the novel global harmony search (NGHS algorithm, and it makes two significant improvements on the NGHS. First, the genetic mutation operation is modified by combining normal distribution and Cauchy distribution, which enables the IGHS to fully explore and exploit the solution space. Second, an opposition-based learning (OBL is introduced and modified to improve the quality of harmony vectors. The IGHS algorithm is implemented on two numerical examples, and they are nonlinear discrete-time rational system and the real heat exchanger, respectively. The results of the IGHS are compared with those of the other three methods, and it has been verified to be more effective than the other three methods on solving the above two problems with different input signals and system memory sizes.

  4. Selection vector filter framework

    Science.gov (United States)

    Lukac, Rastislav; Plataniotis, Konstantinos N.; Smolka, Bogdan; Venetsanopoulos, Anastasios N.

    2003-10-01

    We provide a unified framework of nonlinear vector techniques outputting the lowest ranked vector. The proposed framework constitutes a generalized filter class for multichannel signal processing. A new class of nonlinear selection filters are based on the robust order-statistic theory and the minimization of the weighted distance function to other input samples. The proposed method can be designed to perform a variety of filtering operations including previously developed filtering techniques such as vector median, basic vector directional filter, directional distance filter, weighted vector median filters and weighted directional filters. A wide range of filtering operations is guaranteed by the filter structure with two independent weight vectors for angular and distance domains of the vector space. In order to adapt the filter parameters to varying signal and noise statistics, we provide also the generalized optimization algorithms taking the advantage of the weighted median filters and the relationship between standard median filter and vector median filter. Thus, we can deal with both statistical and deterministic aspects of the filter design process. It will be shown that the proposed method holds the required properties such as the capability of modelling the underlying system in the application at hand, the robustness with respect to errors in the model of underlying system, the availability of the training procedure and finally, the simplicity of filter representation, analysis, design and implementation. Simulation studies also indicate that the new filters are computationally attractive and have excellent performance in environments corrupted by bit errors and impulsive noise.

  5. Very High-Performance Advanced Filter Bank Analog-to-Digital Converter (AFB ADC) Project

    National Research Council Canada - National Science Library

    Velazquez, Scott

    1999-01-01

    ... of the art by using a parallel array of individual commercial off the shelf converters. The significant performance improvements afforded by the Advanced Filter Bank Analog to Digital Converter (AFB ADC...

  6. FAF-Drugs2: free ADME/tox filtering tool to assist drug discovery and chemical biology projects.

    Science.gov (United States)

    Lagorce, David; Sperandio, Olivier; Galons, Hervé; Miteva, Maria A; Villoutreix, Bruno O

    2008-09-24

    Drug discovery and chemical biology are exceedingly complex and demanding enterprises. In recent years there are been increasing awareness about the importance of predicting/optimizing the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of small chemical compounds along the search process rather than at the final stages. Fast methods for evaluating ADMET properties of small molecules often involve applying a set of simple empirical rules (educated guesses) and as such, compound collections' property profiling can be performed in silico. Clearly, these rules cannot assess the full complexity of the human body but can provide valuable information and assist decision-making. This paper presents FAF-Drugs2, a free adaptable tool for ADMET filtering of electronic compound collections. FAF-Drugs2 is a command line utility program (e.g., written in Python) based on the open source chemistry toolkit OpenBabel, which performs various physicochemical calculations, identifies key functional groups, some toxic and unstable molecules/functional groups. In addition to filtered collections, FAF-Drugs2 can provide, via Gnuplot, several distribution diagrams of major physicochemical properties of the screened compound libraries. We have developed FAF-Drugs2 to facilitate compound collection preparation, prior to (or after) experimental screening or virtual screening computations. Users can select to apply various filtering thresholds and add rules as needed for a given project. As it stands, FAF-Drugs2 implements numerous filtering rules (23 physicochemical rules and 204 substructure searching rules) that can be easily tuned.

  7. Reduction by invariants and projection of linear representations of Lie algebras applied to the construction of nonlinear realizations

    Science.gov (United States)

    Campoamor-Stursberg, R.

    2018-03-01

    A procedure for the construction of nonlinear realizations of Lie algebras in the context of Vessiot-Guldberg-Lie algebras of first-order systems of ordinary differential equations (ODEs) is proposed. The method is based on the reduction of invariants and projection of lowest-dimensional (irreducible) representations of Lie algebras. Applications to the description of parameterized first-order systems of ODEs related by contraction of Lie algebras are given. In particular, the kinematical Lie algebras in (2 + 1)- and (3 + 1)-dimensions are realized simultaneously as Vessiot-Guldberg-Lie algebras of parameterized nonlinear systems in R3 and R4, respectively.

  8. Adaptive Filtering Algorithms and Practical Implementation

    CERN Document Server

    Diniz, Paulo S R

    2013-01-01

    In the fourth edition of Adaptive Filtering: Algorithms and Practical Implementation, author Paulo S.R. Diniz presents the basic concepts of adaptive signal processing and adaptive filtering in a concise and straightforward manner. The main classes of adaptive filtering algorithms are presented in a unified framework, using clear notations that facilitate actual implementation. The main algorithms are described in tables, which are detailed enough to allow the reader to verify the covered concepts. Many examples address problems drawn from actual applications. New material to this edition includes: Analytical and simulation examples in Chapters 4, 5, 6 and 10 Appendix E, which summarizes the analysis of set-membership algorithm Updated problems and references Providing a concise background on adaptive filtering, this book covers the family of LMS, affine projection, RLS and data-selective set-membership algorithms as well as nonlinear, sub-band, blind, IIR adaptive filtering, and more. Several problems are...

  9. On projective synchronization of hyperchaotic complex nonlinear systems based on passive theory for secure communications

    International Nuclear Information System (INIS)

    Mahmoud, Gamal M; Mahmoud, Emad E; Arafa, Ayman A

    2013-01-01

    In this paper we deal with the projective synchronization (PS) of hyperchaotic complex nonlinear systems and its application in secure communications based on passive theory. The unpredictability of the scaling factor in PS can additionally enhance the security of communications. In this paper, a scheme for secure message transmission is proposed, and we try to transmit more than one large or bounded message from the transmitter to the receiver. The new hyperchaotic complex Lorenz system is employed to encrypt these messages. In the transmitter, the original messages are modulated into its parameter. In the receiver, we assume that the parameter of the receiver system is uncertain. The controllers and corresponding parameter update law are constructed to achieve PS between the transmitter and receiver system with an uncertain parameter, and identify the unknown parameter via passive theory. The original messages can be recovered successfully through some simple operations by the estimated parameter. Numerical results have verified the effectiveness and feasibility of the presented method. (paper)

  10. Model-Based Control of a Nonlinear Aircraft Engine Simulation using an Optimal Tuner Kalman Filter Approach

    Science.gov (United States)

    Connolly, Joseph W.; Csank, Jeffrey Thomas; Chicatelli, Amy; Kilver, Jacob

    2013-01-01

    This paper covers the development of a model-based engine control (MBEC) methodology featuring a self tuning on-board model applied to an aircraft turbofan engine simulation. Here, the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) serves as the MBEC application engine. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC over a wide range of operating points. The on-board model is a piece-wise linear model derived from CMAPSS40k and updated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. Investigations using the MBEC to provide a stall margin limit for the controller protection logic are presented that could provide benefits over a simple acceleration schedule that is currently used in traditional engine control architectures.

  11. State and parameter estimation based on a nonlinear filter applied to an industrial process control of ethanol production

    Directory of Open Access Journals (Sweden)

    Meleiro L.A.C.

    2000-01-01

    Full Text Available Most advanced computer-aided control applications rely on good dynamics process models. The performance of the control system depends on the accuracy of the model used. Typically, such models are developed by conducting off-line identification experiments on the process. These experiments for identification often result in input-output data with small output signal-to-noise ratio, and using these data results in inaccurate model parameter estimates [1]. In this work, a multivariable adaptive self-tuning controller (STC was developed for a biotechnological process application. Due to the difficulties involving the measurements or the excessive amount of variables normally found in industrial process, it is proposed to develop "soft-sensors" which are based fundamentally on artificial neural networks (ANN. A second approach proposed was set in hybrid models, results of the association of deterministic models (which incorporates the available prior knowledge about the process being modeled with artificial neural networks. In this case, kinetic parameters - which are very hard to be accurately determined in real time industrial plants operation - were obtained using ANN predictions. These methods are especially suitable for the identification of time-varying and nonlinear models. This advanced control strategy was applied to a fermentation process to produce ethyl alcohol (ethanol in industrial scale. The reaction rate considered for substratum consumption, cells and ethanol productions are validated with industrial data for typical operating conditions. The results obtained show that the proposed procedure in this work has a great potential for application.

  12. Color Shift Failure Prediction for Phosphor-Converted White LEDs by Modeling Features of Spectral Power Distribution with a Nonlinear Filter Approach

    Directory of Open Access Journals (Sweden)

    Jiajie Fan

    2017-07-01

    Full Text Available With the expanding application of light-emitting diodes (LEDs, the color quality of white LEDs has attracted much attention in several color-sensitive application fields, such as museum lighting, healthcare lighting and displays. Reliability concerns for white LEDs are changing from the luminous efficiency to color quality. However, most of the current available research on the reliability of LEDs is still focused on luminous flux depreciation rather than color shift failure. The spectral power distribution (SPD, defined as the radiant power distribution emitted by a light source at a range of visible wavelength, contains the most fundamental luminescence mechanisms of a light source. SPD is used as the quantitative inference of an LED’s optical characteristics, including color coordinates that are widely used to represent the color shift process. Thus, to model the color shift failure of white LEDs during aging, this paper first extracts the features of an SPD, representing the characteristics of blue LED chips and phosphors, by multi-peak curve-fitting and modeling them with statistical functions. Then, because the shift processes of extracted features in aged LEDs are always nonlinear, a nonlinear state-space model is then developed to predict the color shift failure time within a self-adaptive particle filter framework. The results show that: (1 the failure mechanisms of LEDs can be identified by analyzing the extracted features of SPD with statistical curve-fitting and (2 the developed method can dynamically and accurately predict the color coordinates, correlated color temperatures (CCTs, and color rendering indexes (CRIs of phosphor-converted (pc-white LEDs, and also can estimate the residual color life.

  13. Color Shift Failure Prediction for Phosphor-Converted White LEDs by Modeling Features of Spectral Power Distribution with a Nonlinear Filter Approach.

    Science.gov (United States)

    Fan, Jiajie; Mohamed, Moumouni Guero; Qian, Cheng; Fan, Xuejun; Zhang, Guoqi; Pecht, Michael

    2017-07-18

    With the expanding application of light-emitting diodes (LEDs), the color quality of white LEDs has attracted much attention in several color-sensitive application fields, such as museum lighting, healthcare lighting and displays. Reliability concerns for white LEDs are changing from the luminous efficiency to color quality. However, most of the current available research on the reliability of LEDs is still focused on luminous flux depreciation rather than color shift failure. The spectral power distribution (SPD), defined as the radiant power distribution emitted by a light source at a range of visible wavelength, contains the most fundamental luminescence mechanisms of a light source. SPD is used as the quantitative inference of an LED's optical characteristics, including color coordinates that are widely used to represent the color shift process. Thus, to model the color shift failure of white LEDs during aging, this paper first extracts the features of an SPD, representing the characteristics of blue LED chips and phosphors, by multi-peak curve-fitting and modeling them with statistical functions. Then, because the shift processes of extracted features in aged LEDs are always nonlinear, a nonlinear state-space model is then developed to predict the color shift failure time within a self-adaptive particle filter framework. The results show that: (1) the failure mechanisms of LEDs can be identified by analyzing the extracted features of SPD with statistical curve-fitting and (2) the developed method can dynamically and accurately predict the color coordinates, correlated color temperatures (CCTs), and color rendering indexes (CRIs) of phosphor-converted (pc)-white LEDs, and also can estimate the residual color life.

  14. Fan-beam and cone-beam image reconstruction via filtering the backprojection image of differentiated projection data

    International Nuclear Information System (INIS)

    Zhuang Tingliang; Leng Shuai; Nett, Brian E; Chen Guanghong

    2004-01-01

    In this paper, a new image reconstruction scheme is presented based on Tuy's cone-beam inversion scheme and its fan-beam counterpart. It is demonstrated that Tuy's inversion scheme may be used to derive a new framework for fan-beam and cone-beam image reconstruction. In this new framework, images are reconstructed via filtering the backprojection image of differentiated projection data. The new framework is mathematically exact and is applicable to a general source trajectory provided the Tuy data sufficiency condition is satisfied. By choosing a piece-wise constant function for one of the components in the factorized weighting function, the filtering kernel is one dimensional, viz. the filtering process is along a straight line. Thus, the derived image reconstruction algorithm is mathematically exact and efficient. In the cone-beam case, the derived reconstruction algorithm is applicable to a large class of source trajectories where the pi-lines or the generalized pi-lines exist. In addition, the new reconstruction scheme survives the super-short scan mode in both the fan-beam and cone-beam cases provided the data are not transversely truncated. Numerical simulations were conducted to validate the new reconstruction scheme for the fan-beam case

  15. Generalised Filtering

    Directory of Open Access Journals (Sweden)

    Karl Friston

    2010-01-01

    Full Text Available We describe a Bayesian filtering scheme for nonlinear state-space models in continuous time. This scheme is called Generalised Filtering and furnishes posterior (conditional densities on hidden states and unknown parameters generating observed data. Crucially, the scheme operates online, assimilating data to optimize the conditional density on time-varying states and time-invariant parameters. In contrast to Kalman and Particle smoothing, Generalised Filtering does not require a backwards pass. In contrast to variational schemes, it does not assume conditional independence between the states and parameters. Generalised Filtering optimises the conditional density with respect to a free-energy bound on the model's log-evidence. This optimisation uses the generalised motion of hidden states and parameters, under the prior assumption that the motion of the parameters is small. We describe the scheme, present comparative evaluations with a fixed-form variational version, and conclude with an illustrative application to a nonlinear state-space model of brain imaging time-series.

  16. Particulate Emissions Control using Advanced Filter Systems: Final Report for Argonne National Laboratory, Corning Inc. and Hyundai Motor Company CRADA Project

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Hee Je [Argonne National Lab. (ANL), Argonne, IL (United States); Choi, Seungmok [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-10-09

    This is a 3-way CRADA project working together with Corning, Inc. and Hyundai Motor Co. (HMC). The project is to understand particulate emissions from gasoline direct-injection engines (GDI) and their physico-chemical properties. In addition, this project focuses on providing fundamental information about filtration and regeneration mechanisms occurring in gasoline particulate filter (GPF) systems. For the work, Corning provides most advanced filter substrates for GPF applications and HMC provides three-way catalyst (TWC) coating services of these filter by way of a catalyst coating company. Then, Argonne National Laboratory characterizes fundamental behaviors of filtration and regeneration processes as well as evaluated TWC functionality for the coated filters. To examine aging impacts on TWC and GPF performance, the research team evaluates gaseous and particulate emissions as well as back-pressure increase with ash loading by using an engine-oil injection system to accelerate ash loading in TWC-coated GPFs.

  17. FAF-Drugs2: Free ADME/tox filtering tool to assist drug discovery and chemical biology projects

    Directory of Open Access Journals (Sweden)

    Miteva Maria A

    2008-09-01

    Full Text Available Abstract Background Drug discovery and chemical biology are exceedingly complex and demanding enterprises. In recent years there are been increasing awareness about the importance of predicting/optimizing the absorption, distribution, metabolism, excretion and toxicity (ADMET properties of small chemical compounds along the search process rather than at the final stages. Fast methods for evaluating ADMET properties of small molecules often involve applying a set of simple empirical rules (educated guesses and as such, compound collections' property profiling can be performed in silico. Clearly, these rules cannot assess the full complexity of the human body but can provide valuable information and assist decision-making. Results This paper presents FAF-Drugs2, a free adaptable tool for ADMET filtering of electronic compound collections. FAF-Drugs2 is a command line utility program (e.g., written in Python based on the open source chemistry toolkit OpenBabel, which performs various physicochemical calculations, identifies key functional groups, some toxic and unstable molecules/functional groups. In addition to filtered collections, FAF-Drugs2 can provide, via Gnuplot, several distribution diagrams of major physicochemical properties of the screened compound libraries. Conclusion We have developed FAF-Drugs2 to facilitate compound collection preparation, prior to (or after experimental screening or virtual screening computations. Users can select to apply various filtering thresholds and add rules as needed for a given project. As it stands, FAF-Drugs2 implements numerous filtering rules (23 physicochemical rules and 204 substructure searching rules that can be easily tuned.

  18. Performance-Based Technology Selection Filter description report. INEL Buried Waste Integrated Demonstration System Analysis project

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, M.C.; Morrison, J.L.; Morneau, R.A.; Rudin, M.J.; Richardson, J.G.

    1992-05-01

    A formal methodology has been developed for identifying technology gaps and assessing innovative or postulated technologies for inclusion in proposed Buried Waste Integrated Demonstration (BWID) remediation systems. Called the Performance-Based Technology Selection Filter, the methodology provides a formalized selection process where technologies and systems are rated and assessments made based on performance measures, and regulatory and technical requirements. The results are auditable, and can be validated with field data. This analysis methodology will be applied to the remedial action of transuranic contaminated waste pits and trenches buried at the Idaho National Engineering Laboratory (INEL).

  19. arXiv Axion Searches with Microwave Filters: the RADES project

    CERN Document Server

    Melcón, Alejandro Álvarez; Cogollos, Cristian; Díaz-Morcillo, Alejandro; Döbrich, Babette; Gallego, Juan Daniel; Gimeno, Benito; Irastorza, Igor G.; Lozano-Guerrero, Antonio José; Malbrunot, Chloé; Navarro, Pablo; Peña-Garay, Carlos; Redondo, Javier; Vafeiadis, Theodoros; Wuensch, Walter

    2018-05-14

    We propose, design and construct a variant of the conventional axion haloscope concept that could be competitive in the search for dark matter axions of masses in the decade 10–100 μeV. Theses masses are located somewhat above the mass range in which existing experiments have reached sensitivity to benchmark QCD axion models. Our haloscope consists of an array of small microwave cavities connected by rectangular irises, in an arrangement commonly used in radio-frequency filters. The size of the unit cavity determines the main resonant frequency, while the possibility to connect a large number of cavities allows to reach large detection volumes. We develop the theoretical framework of the detection concept, and present design prescriptions to optimize detection capabilities. We describe the design and realization of a first small-scale prototype of this concept, called Relic Axion Detector Exploratory Setup (RADES). It consists of a copper-coated stainless steel five-cavities microwave filter with the detec...

  20. Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations

    KAUST Repository

    Carlberg, Kevin

    2010-10-28

    A Petrov-Galerkin projection method is proposed for reducing the dimension of a discrete non-linear static or dynamic computational model in view of enabling its processing in real time. The right reduced-order basis is chosen to be invariant and is constructed using the Proper Orthogonal Decomposition method. The left reduced-order basis is selected to minimize the two-norm of the residual arising at each Newton iteration. Thus, this basis is iteration-dependent, enables capturing of non-linearities, and leads to the globally convergent Gauss-Newton method. To avoid the significant computational cost of assembling the reduced-order operators, the residual and action of the Jacobian on the right reduced-order basis are each approximated by the product of an invariant, large-scale matrix, and an iteration-dependent, smaller one. The invariant matrix is computed using a data compression procedure that meets proposed consistency requirements. The iteration-dependent matrix is computed to enable the least-squares reconstruction of some entries of the approximated quantities. The results obtained for the solution of a turbulent flow problem and several non-linear structural dynamics problems highlight the merit of the proposed consistency requirements. They also demonstrate the potential of this method to significantly reduce the computational cost associated with high-dimensional non-linear models while retaining their accuracy. © 2010 John Wiley & Sons, Ltd.

  1. Efficient non-linear model reduction via a least-squares Petrov-Galerkin projection and compressive tensor approximations

    KAUST Repository

    Carlberg, Kevin; Bou-Mosleh, Charbel; Farhat, Charbel

    2010-01-01

    A Petrov-Galerkin projection method is proposed for reducing the dimension of a discrete non-linear static or dynamic computational model in view of enabling its processing in real time. The right reduced-order basis is chosen to be invariant and is constructed using the Proper Orthogonal Decomposition method. The left reduced-order basis is selected to minimize the two-norm of the residual arising at each Newton iteration. Thus, this basis is iteration-dependent, enables capturing of non-linearities, and leads to the globally convergent Gauss-Newton method. To avoid the significant computational cost of assembling the reduced-order operators, the residual and action of the Jacobian on the right reduced-order basis are each approximated by the product of an invariant, large-scale matrix, and an iteration-dependent, smaller one. The invariant matrix is computed using a data compression procedure that meets proposed consistency requirements. The iteration-dependent matrix is computed to enable the least-squares reconstruction of some entries of the approximated quantities. The results obtained for the solution of a turbulent flow problem and several non-linear structural dynamics problems highlight the merit of the proposed consistency requirements. They also demonstrate the potential of this method to significantly reduce the computational cost associated with high-dimensional non-linear models while retaining their accuracy. © 2010 John Wiley & Sons, Ltd.

  2. A statistical rain attenuation prediction model with application to the advanced communication technology satellite project. 3: A stochastic rain fade control algorithm for satellite link power via non linear Markow filtering theory

    Science.gov (United States)

    Manning, Robert M.

    1991-01-01

    The dynamic and composite nature of propagation impairments that are incurred on Earth-space communications links at frequencies in and above 30/20 GHz Ka band, i.e., rain attenuation, cloud and/or clear air scintillation, etc., combined with the need to counter such degradations after the small link margins have been exceeded, necessitate the use of dynamic statistical identification and prediction processing of the fading signal in order to optimally estimate and predict the levels of each of the deleterious attenuation components. Such requirements are being met in NASA's Advanced Communications Technology Satellite (ACTS) Project by the implementation of optimal processing schemes derived through the use of the Rain Attenuation Prediction Model and nonlinear Markov filtering theory.

  3. Basic methodology of tomographic imaging by filtered inverse projection at a turbo-pump. Project report; Methodische Grundlagen fuer die Tomographie durch gefilterte Rueckprojektion an einer Axialpumpe. Projektbericht

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, D.

    2000-11-01

    A two-phase medium consisting of a fluid containing gas is transported in a turbo-pump via an impeller. The interaction between the gaseous phase and the impeller is to be examined by tomography with gamma rays. Reconstruction of the image of the object is to be made by way of filtered inverse projection. The methodology of using this principle in the given system (geometry and measuring conditions) is explained. (orig./CB) [German] Ein zweiphasiges, aus einer gashaltigen Fluessigkeit bestehendes Medium wird in einer Axialpumpe von einem propellerartigen Laufrad senkrecht zur Drehachse dieses Laufrades transportiert. Die Wechselwirkung zwischen der Gasphase und dem Laufrad soll unter Verwendung von Gamma-Strahlung mittels Tomographie untersucht werden. Dabei ist fuer die Rekonstruktion des Objektbildes das Prinzip der sogenannten gefilterten Rueckprojektion vorgesehen. Die methodischen Grundlagen fuer die Nutzung dieses Prinzips unter von vorgesehenen geometrischen und messtechnischen Bedingungen sind Gegenstand dieser Arbeit. (orig.)

  4. Interior Point Methods for Large-Scale Nonlinear Programming

    Czech Academy of Sciences Publication Activity Database

    Lukšan, Ladislav; Matonoha, Ctirad; Vlček, Jan

    2005-01-01

    Roč. 20, č. 4-5 (2005), s. 569-582 ISSN 1055-6788 R&D Projects: GA AV ČR IAA1030405 Institutional research plan: CEZ:AV0Z10300504 Keywords : nonlinear programming * interior point methods * KKT systems * indefinite preconditioners * filter methods * algorithms Subject RIV: BA - General Mathematics Impact factor: 0.477, year: 2005

  5. Jacobian projection reduced-order models for dynamic systems with contact nonlinearities

    Science.gov (United States)

    Gastaldi, Chiara; Zucca, Stefano; Epureanu, Bogdan I.

    2018-02-01

    In structural dynamics, the prediction of the response of systems with localized nonlinearities, such as friction dampers, is of particular interest. This task becomes especially cumbersome when high-resolution finite element models are used. While state-of-the-art techniques such as Craig-Bampton component mode synthesis are employed to generate reduced order models, the interface (nonlinear) degrees of freedom must still be solved in-full. For this reason, a new generation of specialized techniques capable of reducing linear and nonlinear degrees of freedom alike is emerging. This paper proposes a new technique that exploits spatial correlations in the dynamics to compute a reduction basis. The basis is composed of a set of vectors obtained using the Jacobian of partial derivatives of the contact forces with respect to nodal displacements. These basis vectors correspond to specifically chosen boundary conditions at the contacts over one cycle of vibration. The technique is shown to be effective in the reduction of several models studied using multiple harmonics with a coupled static solution. In addition, this paper addresses another challenge common to all reduction techniques: it presents and validates a novel a posteriori error estimate capable of evaluating the quality of the reduced-order solution without involving a comparison with the full-order solution.

  6. A Nonlinear Multiobjective Bilevel Model for Minimum Cost Network Flow Problem in a Large-Scale Construction Project

    Directory of Open Access Journals (Sweden)

    Jiuping Xu

    2012-01-01

    Full Text Available The aim of this study is to deal with a minimum cost network flow problem (MCNFP in a large-scale construction project using a nonlinear multiobjective bilevel model with birandom variables. The main target of the upper level is to minimize both direct and transportation time costs. The target of the lower level is to minimize transportation costs. After an analysis of the birandom variables, an expectation multiobjective bilevel programming model with chance constraints is formulated to incorporate decision makers’ preferences. To solve the identified special conditions, an equivalent crisp model is proposed with an additional multiobjective bilevel particle swarm optimization (MOBLPSO developed to solve the model. The Shuibuya Hydropower Project is used as a real-world example to verify the proposed approach. Results and analysis are presented to highlight the performances of the MOBLPSO, which is very effective and efficient compared to a genetic algorithm and a simulated annealing algorithm.

  7. Nonlinear data assimilation

    CERN Document Server

    Van Leeuwen, Peter Jan; Reich, Sebastian

    2015-01-01

    This book contains two review articles on nonlinear data assimilation that deal with closely related topics but were written and can be read independently. Both contributions focus on so-called particle filters. The first contribution by Jan van Leeuwen focuses on the potential of proposal densities. It discusses the issues with present-day particle filters and explorers new ideas for proposal densities to solve them, converging to particle filters that work well in systems of any dimension, closing the contribution with a high-dimensional example. The second contribution by Cheng and Reich discusses a unified framework for ensemble-transform particle filters. This allows one to bridge successful ensemble Kalman filters with fully nonlinear particle filters, and allows a proper introduction of localization in particle filters, which has been lacking up to now.

  8. Contributions to dataflow sub-system of the ATLAS data acquisition and event filter prototype-1 project

    International Nuclear Information System (INIS)

    Badescu, E.; Caprini, M.; Niculescu, M.; Radu, A.

    1998-01-01

    A project has been approved by the ATLAS Collaboration for the design and implementation of a Data Acquisition (DAQ) and Event Filter (EF) prototype. The prototype consists of a full 'vertical' slice of the ATLAS Data Acquisition and Event Filter architecture and can be seen as made of 4 sub-systems: the Detector Interface, the Dataflow, the Back-end DAQ and the Event Filter. The Bucharest group is member of DAQ/EF collaboration and during 1997 it was involved in the Dataflow activities. The Dataflow component of the ATLAS DAQ/EF prototype is responsible for moving the event data from the detector read-out links to the final mass storage. It also provides event data for monitoring purposes and implements local control for the various elements. The Dataflow system is designed to cover three main functions, namely: the collection and buffering of the data from the detector, the merging of fragments into full events and the interaction with event filter sub-farm. The event building function is covered by a Dataflow building block named Event Builder. All the other functions of the Dataflow system are covered by the two modular building blocks, the read-out crate (ROC) and the sub-farm DAQ (SFC). The Bucharest group was mainly involved in the activities related to the high level design, initial implementation and tests of the ROC supporting the read-out from one or more read-out drivers and having one or more connections to the event builder. The main data flow within the ROC is handled by three input/output modules named IOMs: the trigger module (TRG), the event builder interface module (EBIF) and the read-out buffer module (ROB). The TRG receives and buffers data control messages from level 1 and from level 2 trigger system, the EBIF builds fragments and makes them available to the event building sub-system and the ROB receives and buffers ROB fragments from the read-out link, S-LINK. In order to estimate the performance which could be achieved with the actual

  9. Hybrid Projected Gradient-Evolutionary Search Algorithm for Mixed Integer Nonlinear Optimization Problems

    National Research Council Canada - National Science Library

    Homaifar, Abdollah; Esterline, Albert; Kimiaghalam, Bahram

    2005-01-01

    The Hybrid Projected Gradient-Evolutionary Search Algorithm (HPGES) algorithm uses a specially designed evolutionary-based global search strategy to efficiently create candidate solutions in the solution space...

  10. Final report LDRD project 105816 : model reduction of large dynamic systems with localized nonlinearities.

    Energy Technology Data Exchange (ETDEWEB)

    Lehoucq, Richard B.; Segalman, Daniel Joseph; Hetmaniuk, Ulrich L. (University of Washington, Seattle, WA); Dohrmann, Clark R.

    2009-10-01

    Advanced computing hardware and software written to exploit massively parallel architectures greatly facilitate the computation of extremely large problems. On the other hand, these tools, though enabling higher fidelity models, have often resulted in much longer run-times and turn-around-times in providing answers to engineering problems. The impediments include smaller elements and consequently smaller time steps, much larger systems of equations to solve, and the inclusion of nonlinearities that had been ignored in days when lower fidelity models were the norm. The research effort reported focuses on the accelerating the analysis process for structural dynamics though combinations of model reduction and mitigation of some factors that lead to over-meshing.

  11. Comparison of pure and hybrid iterative reconstruction techniques with conventional filtered back projection: Image quality assessment in the cervicothoracic region

    International Nuclear Information System (INIS)

    Katsura, Masaki; Sato, Jiro; Akahane, Masaaki; Matsuda, Izuru; Ishida, Masanori; Yasaka, Koichiro; Kunimatsu, Akira; Ohtomo, Kuni

    2013-01-01

    Objectives: To evaluate the impact on image quality of three different image reconstruction techniques in the cervicothoracic region: model-based iterative reconstruction (MBIR), adaptive statistical iterative reconstruction (ASIR), and filtered back projection (FBP). Methods: Forty-four patients underwent unenhanced standard-of-care clinical computed tomography (CT) examinations which included the cervicothoracic region with a 64-row multidetector CT scanner. Images were reconstructed with FBP, 50% ASIR-FBP blending (ASIR50), and MBIR. Two radiologists assessed the cervicothoracic region in a blinded manner for streak artifacts, pixilated blotchy appearances, critical reproduction of visually sharp anatomical structures (thyroid gland, common carotid artery, and esophagus), and overall diagnostic acceptability. Objective image noise was measured in the internal jugular vein. Data were analyzed using the sign test and pair-wise Student's t-test. Results: MBIR images had significant lower quantitative image noise (8.88 ± 1.32) compared to ASIR images (18.63 ± 4.19, P 0.9 for ASIR vs. FBP for both readers). MBIR images were all diagnostically acceptable. Unique features of MBIR images included pixilated blotchy appearances, which did not adversely affect diagnostic acceptability. Conclusions: MBIR significantly improves image noise and streak artifacts of the cervicothoracic region over ASIR and FBP. MBIR is expected to enhance the value of CT examinations for areas where image noise and streak artifacts are problematic

  12. A high-order relaxation method with projective integration for solving nonlinear systems of hyperbolic conservation laws

    Science.gov (United States)

    Lafitte, Pauline; Melis, Ward; Samaey, Giovanni

    2017-07-01

    We present a general, high-order, fully explicit relaxation scheme which can be applied to any system of nonlinear hyperbolic conservation laws in multiple dimensions. The scheme consists of two steps. In a first (relaxation) step, the nonlinear hyperbolic conservation law is approximated by a kinetic equation with stiff BGK source term. Then, this kinetic equation is integrated in time using a projective integration method. After taking a few small (inner) steps with a simple, explicit method (such as direct forward Euler) to damp out the stiff components of the solution, the time derivative is estimated and used in an (outer) Runge-Kutta method of arbitrary order. We show that, with an appropriate choice of inner step size, the time step restriction on the outer time step is similar to the CFL condition for the hyperbolic conservation law. Moreover, the number of inner time steps is also independent of the stiffness of the BGK source term. We discuss stability and consistency, and illustrate with numerical results (linear advection, Burgers' equation and the shallow water and Euler equations) in one and two spatial dimensions.

  13. Curve Evolution in Subspaces and Exploring the Metameric Class of Histogram of Gradient Orientation based Features using Nonlinear Projection Methods

    DEFF Research Database (Denmark)

    Tatu, Aditya Jayant

    This thesis deals with two unrelated issues, restricting curve evolution to subspaces and computing image patches in the equivalence class of Histogram of Gradient orientation based features using nonlinear projection methods. Curve evolution is a well known method used in various applications like...... tracking interfaces, active contour based segmentation methods and others. It can also be used to study shape spaces, as deforming a shape can be thought of as evolving its boundary curve. During curve evolution a curve traces out a path in the infinite dimensional space of curves. Due to application...... specific requirements like shape priors or a given data model, and due to limitations of the computer, the computed curve evolution forms a path in some finite dimensional subspace of the space of curves. We give methods to restrict the curve evolution to a finite dimensional linear or implicitly defined...

  14. Projection-reduction method applied to deriving non-linear optical conductivity for an electron-impurity system

    Directory of Open Access Journals (Sweden)

    Nam Lyong Kang

    2013-07-01

    Full Text Available The projection-reduction method introduced by the present authors is known to give a validated theory for optical transitions in the systems of electrons interacting with phonons. In this work, using this method, we derive the linear and first order nonlinear optical conductivites for an electron-impurity system and examine whether the expressions faithfully satisfy the quantum mechanical philosophy, in the same way as for the electron-phonon systems. The result shows that the Fermi distribution function for electrons, energy denominators, and electron-impurity coupling factors are contained properly in organized manners along with absorption of photons for each electron transition process in the final expressions. Furthermore, the result is shown to be represented properly by schematic diagrams, as in the formulation of electron-phonon interaction. Therefore, in conclusion, we claim that this method can be applied in modeling optical transitions of electrons interacting with both impurities and phonons.

  15. Advanced Filtering Techniques Applied to Spaceflight, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — IST-Rolla developed two nonlinear filters for spacecraft orbit determination during the Phase I contract. The theta-D filter and the cost based filter, CBF, were...

  16. HEPA Filter Vulnerability Assessment

    International Nuclear Information System (INIS)

    GUSTAVSON, R.D.

    2000-01-01

    This assessment of High Efficiency Particulate Air (HEPA) filter vulnerability was requested by the USDOE Office of River Protection (ORP) to satisfy a DOE-HQ directive to evaluate the effect of filter degradation on the facility authorization basis assumptions. Within the scope of this assessment are ventilation system HEPA filters that are classified as Safety-Class (SC) or Safety-Significant (SS) components that perform an accident mitigation function. The objective of the assessment is to verify whether HEPA filters that perform a safety function during an accident are likely to perform as intended to limit release of hazardous or radioactive materials, considering factors that could degrade the filters. Filter degradation factors considered include aging, wetting of filters, exposure to high temperature, exposure to corrosive or reactive chemicals, and exposure to radiation. Screening and evaluation criteria were developed by a site-wide group of HVAC engineers and HEPA filter experts from published empirical data. For River Protection Project (RPP) filters, the only degradation factor that exceeded the screening threshold was for filter aging. Subsequent evaluation of the effect of filter aging on the filter strength was conducted, and the results were compared with required performance to meet the conditions assumed in the RPP Authorization Basis (AB). It was found that the reduction in filter strength due to aging does not affect the filter performance requirements as specified in the AB. A portion of the HEPA filter vulnerability assessment is being conducted by the ORP and is not part of the scope of this study. The ORP is conducting an assessment of the existing policies and programs relating to maintenance, testing, and change-out of HEPA filters used for SC/SS service. This document presents the results of a HEPA filter vulnerability assessment conducted for the River protection project as requested by the DOE Office of River Protection

  17. Comparison of pure and hybrid iterative reconstruction techniques with conventional filtered back projection: Image quality assessment in the cervicothoracic region

    Energy Technology Data Exchange (ETDEWEB)

    Katsura, Masaki, E-mail: mkatsura-tky@umin.ac.jp [Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Sato, Jiro; Akahane, Masaaki; Matsuda, Izuru; Ishida, Masanori; Yasaka, Koichiro; Kunimatsu, Akira; Ohtomo, Kuni [Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan)

    2013-02-15

    Objectives: To evaluate the impact on image quality of three different image reconstruction techniques in the cervicothoracic region: model-based iterative reconstruction (MBIR), adaptive statistical iterative reconstruction (ASIR), and filtered back projection (FBP). Methods: Forty-four patients underwent unenhanced standard-of-care clinical computed tomography (CT) examinations which included the cervicothoracic region with a 64-row multidetector CT scanner. Images were reconstructed with FBP, 50% ASIR-FBP blending (ASIR50), and MBIR. Two radiologists assessed the cervicothoracic region in a blinded manner for streak artifacts, pixilated blotchy appearances, critical reproduction of visually sharp anatomical structures (thyroid gland, common carotid artery, and esophagus), and overall diagnostic acceptability. Objective image noise was measured in the internal jugular vein. Data were analyzed using the sign test and pair-wise Student's t-test. Results: MBIR images had significant lower quantitative image noise (8.88 ± 1.32) compared to ASIR images (18.63 ± 4.19, P < 0.01) and FBP images (26.52 ± 5.8, P < 0.01). Significant improvements in streak artifacts of the cervicothoracic region were observed with the use of MBIR (P < 0.001 each for MBIR vs. the other two image data sets for both readers), while no significant difference was observed between ASIR and FBP (P > 0.9 for ASIR vs. FBP for both readers). MBIR images were all diagnostically acceptable. Unique features of MBIR images included pixilated blotchy appearances, which did not adversely affect diagnostic acceptability. Conclusions: MBIR significantly improves image noise and streak artifacts of the cervicothoracic region over ASIR and FBP. MBIR is expected to enhance the value of CT examinations for areas where image noise and streak artifacts are problematic.

  18. Comparison of Nonlinear Filtering Methods for Estimating the State of Charge of Li4Ti5O12 Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Jianping Gao

    2015-01-01

    Full Text Available Accurate state of charge (SoC estimation is of great significance for the lithium-ion battery to ensure its safety operation and to prevent it from overcharging or overdischarging. To achieve reliable SoC estimation for Li4Ti5O12 lithium-ion battery cell, three filtering methods have been compared and evaluated. A main contribution of this study is that a general three-step model-based battery SoC estimation scheme has been proposed. It includes the processes of battery data measurement, parametric modeling, and model-based SoC estimation. With the proposed general scheme, multiple types of model-based SoC estimators have been developed and evaluated for battery management system application. The detailed comparisons on three advanced adaptive filter techniques, which include extend Kalman filter, unscented Kalman filter, and adaptive extend Kalman filter (AEKF, have been implemented with a Li4Ti5O12 lithium-ion battery. The experimental results indicate that the proposed model-based SoC estimation approach with AEKF algorithm, which uses the covariance matching technique, performs well with good accuracy and robustness; the mean absolute error of the SoC estimation is within 1% especially with big SoC initial error.

  19. Generalized Selection Weighted Vector Filters

    Directory of Open Access Journals (Sweden)

    Rastislav Lukac

    2004-09-01

    Full Text Available This paper introduces a class of nonlinear multichannel filters capable of removing impulsive noise in color images. The here-proposed generalized selection weighted vector filter class constitutes a powerful filtering framework for multichannel signal processing. Previously defined multichannel filters such as vector median filter, basic vector directional filter, directional-distance filter, weighted vector median filters, and weighted vector directional filters are treated from a global viewpoint using the proposed framework. Robust order-statistic concepts and increased degree of freedom in filter design make the proposed method attractive for a variety of applications. Introduced multichannel sigmoidal adaptation of the filter parameters and its modifications allow to accommodate the filter parameters to varying signal and noise statistics. Simulation studies reported in this paper indicate that the proposed filter class is computationally attractive, yields excellent performance, and is able to preserve fine details and color information while efficiently suppressing impulsive noise. This paper is an extended version of the paper by Lukac et al. presented at the 2003 IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP '03 in Grado, Italy.

  20. Nonlinear Projective-Iteration Methods for Solving Transport Problems on Regular and Unstructured Grids

    International Nuclear Information System (INIS)

    Dmitriy Y. Anistratov; Adrian Constantinescu; Loren Roberts; William Wieselquist

    2007-01-01

    This is a project in the field of fundamental research on numerical methods for solving the particle transport equation. Numerous practical problems require to use unstructured meshes, for example, detailed nuclear reactor assembly-level calculations, large-scale reactor core calculations, radiative hydrodynamics problems, where the mesh is determined by hydrodynamic processes, and well-logging problems in which the media structure has very complicated geometry. Currently this is an area of very active research in numerical transport theory. main issues in developing numerical methods for solving the transport equation are the accuracy of the numerical solution and effectiveness of iteration procedure. The problem in case of unstructured grids is that it is very difficult to derive an iteration algorithm that will be unconditionally stable

  1. An iterative reconstruction from truncated projection data

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Various methods have been proposed for tomographic reconstruction from truncated projection data. In this paper, a reconstructive method is discussed which consists of iterations of filtered back-projection, reprojection and some nonlinear processings. First, the method is so constructed that it converges to a fixed point. Then, to examine its effectiveness, comparisons are made by computer experiments with two existing reconstructive methods for truncated projection data, that is, the method of extrapolation based on the smooth assumption followed by filtered back-projection, and modified additive ART

  2. Galerkin v. least-squares Petrov–Galerkin projection in nonlinear model reduction

    International Nuclear Information System (INIS)

    Carlberg, Kevin Thomas; Barone, Matthew F.; Antil, Harbir

    2016-01-01

    Least-squares Petrov–Galerkin (LSPG) model-reduction techniques such as the Gauss–Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible flow problems where standard Galerkin techniques have failed. Furthermore, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform optimal projection associated with residual minimization at the time-continuous level, while LSPG techniques do so at the time-discrete level. This work provides a detailed theoretical and computational comparison of the two techniques for two common classes of time integrators: linear multistep schemes and Runge–Kutta schemes. We present a number of new findings, including conditions under which the LSPG ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and computationally that decreasing the time step does not necessarily decrease the error for the LSPG ROM; instead, the time step should be ‘matched’ to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible-flow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the LSPG reduced-order model by an order of magnitude.

  3. Finite-time generalized function matrix projective lag synchronization of coupled dynamical networks with different dimensions via the double power function nonlinear feedback control method

    International Nuclear Information System (INIS)

    Dai, Hao; Si, Gangquan; Jia, Lixin; Zhang, Yanbin

    2014-01-01

    This paper investigates the problem of finite-time generalized function matrix projective lag synchronization between two different coupled dynamical networks with different dimensions of network nodes. The double power function nonlinear feedback control method is proposed in this paper to guarantee that the state trajectories of the response network converge to the state trajectories of the drive network according to a function matrix in a given finite time. Furthermore, in comparison with the traditional nonlinear feedback control method, the new method improves the synchronization efficiency, and shortens the finite synchronization time. Numerical simulation results are presented to illustrate the effectiveness of this method. (papers)

  4. Derivative free filtering using Kalmtool

    DEFF Research Database (Denmark)

    Bayramoglu, Enis; Hansen, Søren; Ravn, Ole

    2010-01-01

    In this paper we present a toolbox enabling easy evaluation and comparison of different filtering algorithms. The toolbox is called Kalmtool 4 and is a set of MATLAB tools for state estimation of nonlinear systems. The toolbox contains functions for extended Kalman filtering as well as for DD1 fi...

  5. Notch filters for port-Hamiltonian systems

    NARCIS (Netherlands)

    Dirksz, D.A.; Scherpen, J.M.A.; van der Schaft, A.J.; Steinbuch, M.

    2012-01-01

    In this paper a standard notch filter is modeled in the port-Hamiltonian framework. By having such a port-Hamiltonian description it is proven that the notch filter is a passive system. The notch filter can then be interconnected with another (nonlinear) port-Hamiltonian system, while preserving the

  6. Filter arrays

    Science.gov (United States)

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  7. Gaussian particle filter based pose and motion estimation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Determination of relative three-dimensional (3D) position, orientation, and relative motion between two reference frames is an important problem in robotic guidance, manipulation, and assembly as well as in other fields such as photogrammetry.A solution to pose and motion estimation problem that uses two-dimensional (2D) intensity images from a single camera is desirable for real-time applications. The difficulty in performing this measurement is that the process of projecting 3D object features to 2D images is a nonlinear transformation. In this paper, the 3D transformation is modeled as a nonlinear stochastic system with the state estimation providing six degrees-of-freedom motion and position values, using line features in image plane as measuring inputs and dual quaternion to represent both rotation and translation in a unified notation. A filtering method called the Gaussian particle filter (GPF) based on the particle filtering concept is presented for 3D pose and motion estimation of a moving target from monocular image sequences. The method has been implemented with simulated data, and simulation results are provided along with comparisons to the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) to show the relative advantages of the GPF. Simulation results showed that GPF is a superior alternative to EKF and UKF.

  8. In-plane Material Filters for the Discrete Material Optimization Method

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2015-01-01

    , because the projection filter is a non-linear function of the design variables, the projected variables have to be re-scaled in a final so-called normalization filter. This is done to prevent the optimizer in creating superior, but non-physical pseudo-materials. The method is demonstrated on a series......This paper presents in-plane material filters for the Discrete Material Optimization method used for optimizing laminated composite structures. The filters make it possible for engineers to specify a minimum length scale which governs the minimum size of areas with constant material continuity....... Consequently, engineers can target the available production methods, and thereby increase its manufacturability while the optimizer is free to determine which material to apply together with an optimum location, shape, and size of these areas with constant material continuity. By doing so, engineers no longer...

  9. Bayesian target tracking based on particle filter

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    For being able to deal with the nonlinear or non-Gaussian problems, particle filters have been studied by many researchers. Based on particle filter, the extended Kalman filter (EKF) proposal function is applied to Bayesian target tracking. Markov chain Monte Carlo (MCMC) method, the resampling step, etc novel techniques are also introduced into Bayesian target tracking. And the simulation results confirm the improved particle filter with these techniques outperforms the basic one.

  10. Distributed Fault Detection for a Class of Nonlinear Stochastic Systems

    Directory of Open Access Journals (Sweden)

    Bingyong Yan

    2014-01-01

    Full Text Available A novel distributed fault detection strategy for a class of nonlinear stochastic systems is presented. Different from the existing design procedures for fault detection, a novel fault detection observer, which consists of a nonlinear fault detection filter and a consensus filter, is proposed to detect the nonlinear stochastic systems faults. Firstly, the outputs of the nonlinear stochastic systems act as inputs of a consensus filter. Secondly, a nonlinear fault detection filter is constructed to provide estimation of unmeasurable system states and residual signals using outputs of the consensus filter. Stability analysis of the consensus filter is rigorously investigated. Meanwhile, the design procedures of the nonlinear fault detection filter are given in terms of linear matrix inequalities (LMIs. Taking the influence of the system stochastic noises into consideration, an outstanding feature of the proposed scheme is that false alarms can be reduced dramatically. Finally, simulation results are provided to show the feasibility and effectiveness of the proposed fault detection approach.

  11. Rectifier Filters

    Directory of Open Access Journals (Sweden)

    Y. A. Bladyko

    2010-01-01

    Full Text Available The paper contains definition of a smoothing factor which is suitable for any rectifier filter. The formulae of complex smoothing factors have been developed for simple and complex passive filters. The paper shows conditions for application of calculation formulae and filters

  12. Ultra low-dose chest CT using filtered back projection: Comparison of 80-, 100- and 120 kVp protocols in a prospective randomized study

    Energy Technology Data Exchange (ETDEWEB)

    Khawaja, Ranish Deedar Ali, E-mail: rkhawaja@mgh.harvard.edu [Division of Thoracic Radiology, MGH Imaging, Massachusetts General Hospital and Harvard Medical School, Boston (United States); Singh, Sarabjeet [Division of Thoracic Radiology, MGH Imaging, Massachusetts General Hospital and Harvard Medical School, Boston (United States); Madan, Rachna [Division of Thoracic Radiology, Brigham and Women' s Hospital and Harvard Medical School, Boston (United States); Sharma, Amita; Padole, Atul; Pourjabbar, Sarvenaz; Digumarthy, Subba; Shepard, Jo-Anne; Kalra, Mannudeep K. [Division of Thoracic Radiology, MGH Imaging, Massachusetts General Hospital and Harvard Medical School, Boston (United States)

    2014-10-15

    Highlights: • Filtered back projection technique enables acceptable image quality for chest CT examinations at 0.9 mGy (estimated effective dose of 0.5 mSv) for selected sizes of patients. • Lesion detection (such as solid non-calcified lung nodules) in lung parenchyma is optimal at 0.9 mGy, with limited visualization of thyroid nodules in FBP images. • Further dose reduction down to 0.4 mGy is possible for most patients undergoing follow-up chest CT for evaluation of larger lung nodules and GGOs. • Our results may help set the reference ALARA dose for chest CT examinations reconstructed with filtered back projection technique using the minimum possible radiation dose with acceptable image quality and lesion detection. - Abstract: Purpose: To assess lesion detection and diagnostic image quality of filtered back projection (FBP) reconstruction technique in ultra low-dose chest CT examinations. Methods and materials: In this IRB-approved ongoing prospective clinical study, 116 CT-image-series at four different radiation-doses were performed for 29 patients (age, 57–87 years; F:M – 15:12; BMI 16–32 kg/m{sup 2}). All patients provided written-informed-consent for the acquisitions of additional ultra low-dose (ULD) series on a 256-slice MDCT (iCT, Philips Healthcare). In-addition to their clinical standard-dose chest CT (SD, 120 kV mean CTDI{sub vol}, 6 ± 1 mGy), ULD-CT was subsequently performed at three-dose-levels (0.9 mGy [120 kV]; 0.5 mGy [100 kV] and 0.2 mGy [80 kV]). Images were reconstructed with FBP (2.5 mm * 1.25 mm) resulting into four-stacks: SD-FBP (reference-standard), FBP{sub 0.9}, FBP{sub 0.5}, and FBP{sub 0.2}. Four thoracic-radiologists from two-teaching-hospitals independently-evaluated data for lesion-detection and visibility-of-small-structures. Friedman's-non-parametric-test with post hoc Dunn's-test was used for data-analysis. Results: Interobserver-agreement was substantial between radiologists (k = 0.6–0.8). With

  13. Stochastic processes and filtering theory

    CERN Document Server

    Jazwinski, Andrew H

    1970-01-01

    This unified treatment of linear and nonlinear filtering theory presents material previously available only in journals, and in terms accessible to engineering students. Its sole prerequisites are advanced calculus, the theory of ordinary differential equations, and matrix analysis. Although theory is emphasized, the text discusses numerous practical applications as well.Taking the state-space approach to filtering, this text models dynamical systems by finite-dimensional Markov processes, outputs of stochastic difference, and differential equations. Starting with background material on probab

  14. Non-linear modeling of 1H NMR metabonomic data using kernel-based orthogonal projections to latent structures optimized by simulated annealing

    International Nuclear Information System (INIS)

    Fonville, Judith M.; Bylesjoe, Max; Coen, Muireann; Nicholson, Jeremy K.; Holmes, Elaine; Lindon, John C.; Rantalainen, Mattias

    2011-01-01

    Highlights: → Non-linear modeling of metabonomic data using K-OPLS. → automated optimization of the kernel parameter by simulated annealing. → K-OPLS provides improved prediction performance for exemplar spectral data sets. → software implementation available for R and Matlab under GPL v2 license. - Abstract: Linear multivariate projection methods are frequently applied for predictive modeling of spectroscopic data in metabonomic studies. The OPLS method is a commonly used computational procedure for characterizing spectral metabonomic data, largely due to its favorable model interpretation properties providing separate descriptions of predictive variation and response-orthogonal structured noise. However, when the relationship between descriptor variables and the response is non-linear, conventional linear models will perform sub-optimally. In this study we have evaluated to what extent a non-linear model, kernel-based orthogonal projections to latent structures (K-OPLS), can provide enhanced predictive performance compared to the linear OPLS model. Just like its linear counterpart, K-OPLS provides separate model components for predictive variation and response-orthogonal structured noise. The improved model interpretation by this separate modeling is a property unique to K-OPLS in comparison to other kernel-based models. Simulated annealing (SA) was used for effective and automated optimization of the kernel-function parameter in K-OPLS (SA-K-OPLS). Our results reveal that the non-linear K-OPLS model provides improved prediction performance in three separate metabonomic data sets compared to the linear OPLS model. We also demonstrate how response-orthogonal K-OPLS components provide valuable biological interpretation of model and data. The metabonomic data sets were acquired using proton Nuclear Magnetic Resonance (NMR) spectroscopy, and include a study of the liver toxin galactosamine, a study of the nephrotoxin mercuric chloride and a study of

  15. Adaptable Iterative and Recursive Kalman Filter Schemes

    Science.gov (United States)

    Zanetti, Renato

    2014-01-01

    Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.

  16. Convergence Results for the Gaussian Mixture Implementation of the Extended-Target PHD Filter and Its Extended Kalman Filtering Approximation

    Directory of Open Access Journals (Sweden)

    Feng Lian

    2012-01-01

    Full Text Available The convergence of the Gaussian mixture extended-target probability hypothesis density (GM-EPHD filter and its extended Kalman (EK filtering approximation in mildly nonlinear condition, namely, the EK-GM-EPHD filter, is studied here. This paper proves that both the GM-EPHD filter and the EK-GM-EPHD filter converge uniformly to the true EPHD filter. The significance of this paper is in theory to present the convergence results of the GM-EPHD and EK-GM-EPHD filters and the conditions under which the two filters satisfy uniform convergence.

  17. Filter apparatus

    International Nuclear Information System (INIS)

    Butterworth, D.J.

    1980-01-01

    This invention relates to liquid filters, precoated by replaceable powders, which are used in the production of ultra pure water required for steam generation of electricity. The filter elements are capable of being installed and removed by remote control so that they can be used in nuclear power reactors. (UK)

  18. Comparison of applied dose and image quality in staging CT of neuroendocrine tumor patients using standard filtered back projection and adaptive statistical iterative reconstruction

    International Nuclear Information System (INIS)

    Böning, G.; Schäfer, M.; Grupp, U.; Kaul, D.; Kahn, J.; Pavel, M.; Maurer, M.; Denecke, T.; Hamm, B.; Streitparth, F.

    2015-01-01

    Highlights: • Iterative reconstruction (IR) in staging CT provides equal objective image quality compared to filtered back projection (FBP). • IR delivers excellent subjective quality and reduces effective dose compared to FBP. • In patients with neuroendocrine tumor (NET) or may other hypervascular abdominal tumors IR can be used without scarifying diagnostic confidence. - Abstract: Objective: To investigate whether dose reduction via adaptive statistical iterative reconstruction (ASIR) affects image quality and diagnostic accuracy in neuroendocrine tumor (NET) staging. Methods: A total of 28 NET patients were enrolled in the study. Inclusion criteria were histologically proven NET and visible tumor in abdominal computed tomography (CT). In an intraindividual study design, the patients underwent a baseline CT (filtered back projection, FBP) and follow-up CT (ASIR 40%) using matched scan parameters. Image quality was assessed subjectively using a 5-grade scoring system and objectively by determining signal-to-noise ratio (SNR) and contrast-to-noise ratios (CNRs). Applied volume computed tomography dose index (CTDI vol ) of each scan was taken from the dose report. Results: ASIR 40% significantly reduced CTDI vol (10.17 ± 3.06 mGy [FBP], 6.34 ± 2.25 mGy [ASIR] (p < 0.001) by 37.6% and significantly increased CNRs (complete tumor-to-liver, 2.76 ± 1.87 [FBP], 3.2 ± 2.32 [ASIR]) (p < 0.05) (complete tumor-to-muscle, 2.74 ± 2.67 [FBP], 4.31 ± 4.61 [ASIR]) (p < 0.05) compared to FBP. Subjective scoring revealed no significant changes for diagnostic confidence (5.0 ± 0 [FBP], 5.0 ± 0 [ASIR]), visibility of suspicious lesion (4.8 ± 0.5 [FBP], 4.8 ± 0.5 [ASIR]) and artifacts (5.0 ± 0 [FBP], 5.0 ± 0 [ASIR]). ASIR 40% significantly decreased scores for noise (4.3 ± 0.6 [FBP], 4.0 ± 0.8 [ASIR]) (p < 0.05), contrast (4.4 ± 0.6 [FBP], 4.1 ± 0.8 [ASIR]) (p < 0.001) and visibility of small structures (4.5 ± 0.7 [FBP], 4.3 ± 0.8 [ASIR]) (p < 0

  19. Comparison of applied dose and image quality in staging CT of neuroendocrine tumor patients using standard filtered back projection and adaptive statistical iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Böning, G., E-mail: georg.boening@charite.de [Department of Radiology, Charité, Humboldt-University Medical School, Charitéplatz 1, 10117 Berlin (Germany); Schäfer, M.; Grupp, U. [Department of Radiology, Charité, Humboldt-University Medical School, Charitéplatz 1, 10117 Berlin (Germany); Kaul, D. [Department of Radiation Oncology, Charité, Humboldt-University Medical School, Charitéplatz 1, 10117 Berlin (Germany); Kahn, J. [Department of Radiology, Charité, Humboldt-University Medical School, Charitéplatz 1, 10117 Berlin (Germany); Pavel, M. [Department of Gastroenterology, Charité, Humboldt-University Medical School, Charitéplatz 1, 10117 Berlin (Germany); Maurer, M.; Denecke, T.; Hamm, B.; Streitparth, F. [Department of Radiology, Charité, Humboldt-University Medical School, Charitéplatz 1, 10117 Berlin (Germany)

    2015-08-15

    Highlights: • Iterative reconstruction (IR) in staging CT provides equal objective image quality compared to filtered back projection (FBP). • IR delivers excellent subjective quality and reduces effective dose compared to FBP. • In patients with neuroendocrine tumor (NET) or may other hypervascular abdominal tumors IR can be used without scarifying diagnostic confidence. - Abstract: Objective: To investigate whether dose reduction via adaptive statistical iterative reconstruction (ASIR) affects image quality and diagnostic accuracy in neuroendocrine tumor (NET) staging. Methods: A total of 28 NET patients were enrolled in the study. Inclusion criteria were histologically proven NET and visible tumor in abdominal computed tomography (CT). In an intraindividual study design, the patients underwent a baseline CT (filtered back projection, FBP) and follow-up CT (ASIR 40%) using matched scan parameters. Image quality was assessed subjectively using a 5-grade scoring system and objectively by determining signal-to-noise ratio (SNR) and contrast-to-noise ratios (CNRs). Applied volume computed tomography dose index (CTDI{sub vol}) of each scan was taken from the dose report. Results: ASIR 40% significantly reduced CTDI{sub vol} (10.17 ± 3.06 mGy [FBP], 6.34 ± 2.25 mGy [ASIR] (p < 0.001) by 37.6% and significantly increased CNRs (complete tumor-to-liver, 2.76 ± 1.87 [FBP], 3.2 ± 2.32 [ASIR]) (p < 0.05) (complete tumor-to-muscle, 2.74 ± 2.67 [FBP], 4.31 ± 4.61 [ASIR]) (p < 0.05) compared to FBP. Subjective scoring revealed no significant changes for diagnostic confidence (5.0 ± 0 [FBP], 5.0 ± 0 [ASIR]), visibility of suspicious lesion (4.8 ± 0.5 [FBP], 4.8 ± 0.5 [ASIR]) and artifacts (5.0 ± 0 [FBP], 5.0 ± 0 [ASIR]). ASIR 40% significantly decreased scores for noise (4.3 ± 0.6 [FBP], 4.0 ± 0.8 [ASIR]) (p < 0.05), contrast (4.4 ± 0.6 [FBP], 4.1 ± 0.8 [ASIR]) (p < 0.001) and visibility of small structures (4.5 ± 0.7 [FBP], 4.3 ± 0.8 [ASIR]) (p < 0

  20. Noise reduction with complex bilateral filter.

    Science.gov (United States)

    Matsumoto, Mitsuharu

    2017-12-01

    This study introduces a noise reduction technique that uses a complex bilateral filter. A bilateral filter is a nonlinear filter originally developed for images that can reduce noise while preserving edge information. It is an attractive filter and has been used in many applications in image processing. When it is applied to an acoustical signal, small-amplitude noise is reduced while the speech signal is preserved. However, a bilateral filter cannot handle noise with relatively large amplitudes owing to its innate characteristics. In this study, the noisy signal is transformed into the time-frequency domain and the filter is improved to handle complex spectra. The high-amplitude noise is reduced in the time-frequency domain via the proposed filter. The features and the potential of the proposed filter are also confirmed through experiments.

  1. Unscented Kalman filter for SINS alignment

    Institute of Scientific and Technical Information of China (English)

    Zhou Zhanxin; Gao Yanan; Chen Jiabin

    2007-01-01

    In order to improve the filter accuracy for the nonlinear error model of strapdown inertial navigation system (SINS) alignment, Unscented Kalman Filter (UKF) is presented for simulation with stationary base and moving base of SINS alignment.Simulation results show the superior performance of this approach when compared with classical suboptimal techniques such as extended Kalman filter in cases of large initial misalignment.The UKF has good performance in case of small initial misalignment.

  2. Introduction to the Box Particle Filtering

    OpenAIRE

    Gning, Amadou; Ristic, B; Mihaylova, Lyudmila; Abdallah, F.

    2013-01-01

    This paper presents a novel method for solving nonlinear filtering problems. This approach is particularly appealing in practical situations involving imprecise stochastic measurements, thus resulting in very broad posterior densities. It relies on the concept of a box particle, which occupies a small and controllable rectangular region having a non-zero volume in the state space. Key advantages of the box particle filter (Box-PF) against the standard particle filter (PF) are in its reduced c...

  3. Digital Image Deblurring by Nonlinear Homomorphic Filtering

    Science.gov (United States)

    1974-08-01

    Noise Film Grain Noise Impulse Noise Nois» and the ReVlection Scanner Page iv vii viii 1 1 2 4 5 7 8 11 11 12 IB 20 25...1. "^ bCx.y), n(x,y) Diagram 1 a(x,y) le the impulse response, or point-spread function, of the system, and la assumed to be unknown. All noise ... deblurring problem. This inadequacy results from the fact that the high frequency noise floor in the pouer spectrum of a blurred imaga U about 60 dbt

  4. Approximations and Implementations of Nonlinear Filtering Schemes.

    Science.gov (United States)

    1988-02-01

    sias k an Ykar repctively the input and the output vectors. Asfold. First, there are intrinsic errors, due to explained in the previous section, the...e.g.[BV,P]). In the above example of a a-algebra, the distributive property SIA (S 2vS3) - (SIAS2)v(SIAS3) holds. A complete orthocomplemented...process can be approximated by a switched Control Systems: Stochastic Stability and parameter process depending on the aggregated slow Dynamic Relaibility

  5. Contributions to the back-end software sub-system of the ATLAS data acquisition of event filter prototype -1 project

    International Nuclear Information System (INIS)

    Badescu, E.; Caprini, M.; Niculescu, M.; Radu, A.

    1998-01-01

    A project has been approved by the ATLAS Collaboration for the design and implementation of a Data Acquisition (DAQ) and Event Filter (EF) prototype, based on the functional architecture described in the ATLAS Technical Proposal. The prototype consists of a full 'vertical' slice of the ATLAS Data Acquisition and Event Filter architecture and can be seen as made of 4 sub-systems: the Detector Interface, the Dataflow, the Back-end DAQ and the Event Filter. The Bucharest group is member of DAQ/EF collaboration and during 1997 was involved in the Back-end activities. The back-end software encompasses the software for configuring, controlling and monitoring the DAQ but specifically excludes the management, processing or transportation of physics data. The user requirements gathered for the back-end sub-system have been divided into groups related to activities providing similar functionality. The groups have been further developed into components of the Back-end with a well defined purpose and boundaries. Each component offers some unique functionality and has its own architecture. The actual Back-end component model includes 5 core components (run control, configuration databases, message reporting system, process manager and information service) and 6 detector integration components (partition and resource manager, status display, run bookkeeper, event dump, test manager and diagnostic package). The Bucharest group participated to the high level design, implementation and testing of three components (information service, message reporting system and status display). The Information Service (IS) provides an information exchange facility for software components of the DAQ. Information (defined by the supplier) from many sources can be categorized and made available to requesting applications asynchronously or on demand. The design of the information service followed an object oriented approach. It is a multiple server configuration in which servers are dedicated to

  6. Data assimilation in the early phase: Kalman filtering RIMPUFF

    International Nuclear Information System (INIS)

    Astrup, P.; Turcanu, C.; Puch, R.O.; Palma, C.R.; Mikkelsen, T.

    2004-09-01

    In the framework of the DAONEM project (Data Assimilation for Off-site Nuclear Emergency Management), a data assimilation module, ADUM (Atmospheric Dispersion Updating Module), for the mesoscale atmospheric dispersion program RIMPUFF (Risoe Mesoscale Puff model) part of the early-phase programs of RODOS (Realtime Online DecisiOn Support system for nuclear emergencies) has been developed. It is built on the Kalman filtering algorithm and it assimilates 10-minute averaged gamma dose rates measured at ground level stations. Since the gamma rates are non-linear functions of the state vector variables, the applied Kalman filter is the so-called Extended Kalman filter. In more ways the implementation is non standard: 1) the number of state vector variables varies with time, and 2) the state vector variables are prediction updated with 1-minute time steps but only Kalman filtered every 10 minutes, and this based on time averaged measurements. Given reasonable conditions, i.e. a spatially dense distribution of gamma monitors and a realistic wind field, the developed ADUM module is found to be able to enhance the prediction of the gamma dose field. Based on some of the Kalman filtering parameters, another module, ToDeMM, has been developed for providing the late-phase DeMM (Deposition Monitoring Module) of RODOS with an ensemble of fields of ground level air concentrations and wet deposited material. This accounts for the uncertainty estimation of this kind of quantities as calculated by RIMPUFF for use by DeMM. (au)

  7. Spectral Ensemble Kalman Filters

    Czech Academy of Sciences Publication Activity Database

    Mandel, Jan; Kasanický, Ivan; Vejmelka, Martin; Fuglík, Viktor; Turčičová, Marie; Eben, Kryštof; Resler, Jaroslav; Juruš, Pavel

    2014-01-01

    Roč. 11, - (2014), EMS2014-446 [EMS Annual Meeting /14./ & European Conference on Applied Climatology (ECAC) /10./. 06.10.2014-10.10.2014, Prague] R&D Projects: GA ČR GA13-34856S Grant - others:NSF DMS-1216481 Institutional support: RVO:67985807 Keywords : data assimilation * spectral filter Subject RIV: DG - Athmosphere Sciences, Meteorology

  8. Filters in Fuzzy Class Theory

    Czech Academy of Sciences Publication Activity Database

    Kroupa, Tomáš

    2008-01-01

    Roč. 159, č. 14 (2008), s. 1773-1787 ISSN 0165-0114 R&D Projects: GA MŠk 1M0572; GA AV ČR KJB100300502 Institutional research plan: CEZ:AV0Z10750506 Keywords : filter * prime filter * fuzzy class theory Subject RIV: BA - General Mathematics Impact factor: 1.833, year: 2008

  9. Quantitative analysis of emphysema and airway measurements according to iterative reconstruction algorithms: comparison of filtered back projection, adaptive statistical iterative reconstruction and model-based iterative reconstruction

    International Nuclear Information System (INIS)

    Choo, Ji Yung; Goo, Jin Mo; Park, Chang Min; Park, Sang Joon; Lee, Chang Hyun; Shim, Mi-Suk

    2014-01-01

    To evaluate filtered back projection (FBP) and two iterative reconstruction (IR) algorithms and their effects on the quantitative analysis of lung parenchyma and airway measurements on computed tomography (CT) images. Low-dose chest CT obtained in 281 adult patients were reconstructed using three algorithms: FBP, adaptive statistical IR (ASIR) and model-based IR (MBIR). Measurements of each dataset were compared: total lung volume, emphysema index (EI), airway measurements of the lumen and wall area as well as average wall thickness. Accuracy of airway measurements of each algorithm was also evaluated using an airway phantom. EI using a threshold of -950 HU was significantly different among the three algorithms in decreasing order of FBP (2.30 %), ASIR (1.49 %) and MBIR (1.20 %) (P < 0.01). Wall thickness was also significantly different among the three algorithms with FBP (2.09 mm) demonstrating thicker walls than ASIR (2.00 mm) and MBIR (1.88 mm) (P < 0.01). Airway phantom analysis revealed that MBIR showed the most accurate value for airway measurements. The three algorithms presented different EIs and wall thicknesses, decreasing in the order of FBP, ASIR and MBIR. Thus, care should be taken in selecting the appropriate IR algorithm on quantitative analysis of the lung. (orig.)

  10. Design of an elliptic spot illumination system in LED-based color filter-liquid-crystal-on-silicon pico projectors for mobile embedded projection.

    Science.gov (United States)

    Chen, Enguo; Yu, Feihong

    2012-06-01

    We present an elliptic spot illumination system for a color filter-liquid-crystal-on-silicon (CF-LCoS) pico projector employing a specifically designed free-form lens and a cylindrical lens to improve on previous designs in terms of optical efficiency while yielding an ultracompact and low-cost optical architecture. The detailed design description of the optical system is thoroughly investigated. Simulation results coincide well with the theoretical calculation. The single 1  mm×1  mm LED chip-powered optical engine, which employs a CF-LCoS panel with a diagonal of 0.28 in and an aspect ratio of 4:3, has an estimated output efficiency over 9.8% (11.8 lm@1 W) and an ANSI 9-point uniformity over 88.5%, with the ultrasmall volume 24  mm×19  mm×7  mm. Compared to the circular spot-illuminated projection system, a total increment of about 23% of system efficiency is available with this improved optical engine. It is believed that there would be a huge market potential to commercialize our design.

  11. Comparison of the effects of model-based iterative reconstruction and filtered back projection algorithms on software measurements in pulmonary subsolid nodules

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Julien G. [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Centre Hospitalier Universitaire de Grenoble, Clinique Universitaire de Radiologie et Imagerie Medicale (CURIM), Universite Grenoble Alpes, Grenoble Cedex 9 (France); Kim, Hyungjin; Park, Su Bin [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Ginneken, Bram van [Radboud University Nijmegen Medical Center, Department of Radiology and Nuclear Medicine, Nijmegen (Netherlands); Ferretti, Gilbert R. [Centre Hospitalier Universitaire de Grenoble, Clinique Universitaire de Radiologie et Imagerie Medicale (CURIM), Universite Grenoble Alpes, Grenoble Cedex 9 (France); Institut A Bonniot, INSERM U 823, La Tronche (France); Lee, Chang Hyun [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Goo, Jin Mo; Park, Chang Min [Seoul National University College of Medicine, Department of Radiology, Seoul (Korea, Republic of); Seoul National University Medical Research Center, Institute of Radiation Medicine, Seoul (Korea, Republic of); Seoul National University College of Medicine, Cancer Research Institute, Seoul (Korea, Republic of)

    2017-08-15

    To evaluate the differences between filtered back projection (FBP) and model-based iterative reconstruction (MBIR) algorithms on semi-automatic measurements in subsolid nodules (SSNs). Unenhanced CT scans of 73 SSNs obtained using the same protocol and reconstructed with both FBP and MBIR algorithms were evaluated by two radiologists. Diameter, mean attenuation, mass and volume of whole nodules and their solid components were measured. Intra- and interobserver variability and differences between FBP and MBIR were then evaluated using Bland-Altman method and Wilcoxon tests. Longest diameter, volume and mass of nodules and those of their solid components were significantly higher using MBIR (p < 0.05) with mean differences of 1.1% (limits of agreement, -6.4 to 8.5%), 3.2% (-20.9 to 27.3%) and 2.9% (-16.9 to 22.7%) and 3.2% (-20.5 to 27%), 6.3% (-51.9 to 64.6%), 6.6% (-50.1 to 63.3%), respectively. The limits of agreement between FBP and MBIR were within the range of intra- and interobserver variability for both algorithms with respect to the diameter, volume and mass of nodules and their solid components. There were no significant differences in intra- or interobserver variability between FBP and MBIR (p > 0.05). Semi-automatic measurements of SSNs significantly differed between FBP and MBIR; however, the differences were within the range of measurement variability. (orig.)

  12. Comparison of the image qualities of filtered back-projection, adaptive statistical iterative reconstruction, and model-based iterative reconstruction for CT venography at 80 kVp

    International Nuclear Information System (INIS)

    Kim, Jin Hyeok; Choo, Ki Seok; Moon, Tae Yong; Lee, Jun Woo; Jeon, Ung Bae; Kim, Tae Un; Hwang, Jae Yeon; Yun, Myeong-Ja; Jeong, Dong Wook; Lim, Soo Jin

    2016-01-01

    To evaluate the subjective and objective qualities of computed tomography (CT) venography images at 80 kVp using model-based iterative reconstruction (MBIR) and to compare these with those of filtered back projection (FBP) and adaptive statistical iterative reconstruction (ASIR) using the same CT data sets. Forty-four patients (mean age: 56.1 ± 18.1) who underwent 80 kVp CT venography (CTV) for the evaluation of deep vein thrombosis (DVT) during 4 months were enrolled in this retrospective study. The same raw data were reconstructed using FBP, ASIR, and MBIR. Objective and subjective image analysis were performed at the inferior vena cava (IVC), femoral vein, and popliteal vein. The mean CNR of MBIR was significantly greater than those of FBP and ASIR and images reconstructed using MBIR had significantly lower objective image noise (p <.001). Subjective image quality and confidence of detecting DVT by MBIR group were significantly greater than those of FBP and ASIR (p <.005), and MBIR had the lowest score for subjective image noise (p <.001). CTV at 80 kVp with MBIR was superior to FBP and ASIR regarding subjective and objective image qualities. (orig.)

  13. Coronary CT angiography: Comparison of a novel iterative reconstruction with filtered back projection for reconstruction of low-dose CT—Initial experience

    International Nuclear Information System (INIS)

    Takx, Richard A.P.; Schoepf, U. Joseph; Moscariello, Antonio; Das, Marco; Rowe, Garrett; Schoenberg, Stefan O.; Fink, Christian; Henzler, Thomas

    2013-01-01

    Objective: To prospectively compare subjective and objective image quality in 20% tube current coronary CT angiography (cCTA) datasets between an iterative reconstruction algorithm (SAFIRE) and traditional filtered back projection (FBP). Materials and methods: Twenty patients underwent a prospectively ECG-triggered dual-step cCTA protocol using 2nd generation dual-source CT (DSCT). CT raw data was reconstructed using standard FBP at full-dose (Group 1 a) and 80% tube current reduced low-dose (Group 1 b). The low-dose raw data was additionally reconstructed using iterative raw data reconstruction (Group 2 ). Attenuation and image noise were measured in three regions of interest and signal-to-noise-ratio (SNR) as well as contrast-to-noise-ratio (CNR) was calculated. Subjective diagnostic image quality was evaluated using a 4-point Likert scale. Results: Mean image noise of group 2 was lowered by 22% on average when compared to group 1 b (p 2 compared to group 1 b (p 2 (1.88 ± 0.63) was also rated significantly higher when compared to group 1 b (1.58 ± 0.63, p = 0.004). Conclusions: Image quality of 80% tube current reduced iteratively reconstructed cCTA raw data is significantly improved when compared to standard FBP and consequently may improve the diagnostic accuracy of cCTA

  14. Local detection of prostate cancer by positron emission tomography with 2-fluorodeoxyglucose comparison of filtered back projection and iterative reconstruction with segmented attenuation correction

    International Nuclear Information System (INIS)

    Turlakow, A.; Larson, S. M.; Coakley, F.; Akhurst, T.; Macapinlac, H. A.; Hricak, H.; Gonen, M.; Kelly, W.; Scher, H.; Leibel, S.; Humm, J.; Scardino, P.

    2001-01-01

    To compare filtered back projection (FBP) and iterative reconstruction with segmented attenuation correction (IRSAC) in the local imaging of prostate cancer by positron emission tomography with 2-fluorodeoxyglucose (FDG-PET). 13 patients with primary (n=7) or recurrent (n=6) prostate cancer who had increased uptake in the prostate on FDG-PET performed without urinary catheterization, contemporaneous biopsy confirming the presence of active tumor in the prostate, were retrospectively identified. Two independent nuclear medicine physicians separately rated FBP and IRSAC images for visualization of prostatic activity on a 4-point scale. Results were compared using biopsy and cross-sectional imaging findings as the standard of reference. IRSAC images were significantly better that FBP in terms of visualization of prostatic activity in 12 of 13 patients, and were equivalent in 1 patient (p<0.001, Wilcoxon signed ranks test). In particular, 2 foci of tumor activity in 2 different patients seen on IRSAC images were not visible on FBP images. In 11 patients who had a gross tumor mass evident on cross-sectional imaging, there was good agreement between PET and cross-sectional anatomic imaging with respect to tumor localization. In selected patients, cancer can be imaged within the prostate using FDG-PET, and IRSAC is superior to FBP in image reconstruction for local tumor visualization

  15. Adaptive statistical iterative reconstruction versus filtered back projection in the same patient: 64 channel liver CT image quality and patient radiation dose

    International Nuclear Information System (INIS)

    Mitsumori, Lee M.; Shuman, William P.; Busey, Janet M.; Kolokythas, Orpheus; Koprowicz, Kent M.

    2012-01-01

    To compare routine dose liver CT reconstructed with filtered back projection (FBP) versus low dose images reconstructed with FBP and adaptive statistical iterative reconstruction (ASIR). In this retrospective study, patients had a routine dose protocol reconstructed with FBP, and again within 17 months (median 6.1 months), had a low dose protocol reconstructed twice, with FBP and ASIR. These reconstructions were compared for noise, image quality, and radiation dose. Nineteen patients were included. (12 male, mean age 58). Noise was significantly lower in low dose images reconstructed with ASIR compared to routine dose images reconstructed with FBP (liver: p <.05, aorta: p < 0.001). Low dose FBP images were scored significantly lower for subjective image quality than low dose ASIR (2.1 ± 0.5, 3.2 ± 0.8, p < 0.001). There was no difference in subjective image quality scores between routine dose FBP images and low dose ASIR images (3.6 ± 0.5, 3.2 ± 0.8, NS).Radiation dose was 41% less for the low dose protocol (4.4 ± 2.4 mSv versus 7.5 ± 5.5 mSv, p < 0.05). Our initial results suggest low dose CT images reconstructed with ASIR may have lower measured noise, similar image quality, yet significantly less radiation dose compared with higher dose images reconstructed with FBP. (orig.)

  16. Quantitative analysis of emphysema and airway measurements according to iterative reconstruction algorithms: comparison of filtered back projection, adaptive statistical iterative reconstruction and model-based iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Ji Yung [Seoul National University Medical Research Center, Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul (Korea, Republic of); Korea University Ansan Hospital, Ansan-si, Department of Radiology, Gyeonggi-do (Korea, Republic of); Goo, Jin Mo; Park, Chang Min; Park, Sang Joon [Seoul National University Medical Research Center, Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul (Korea, Republic of); Seoul National University, Cancer Research Institute, Seoul (Korea, Republic of); Lee, Chang Hyun; Shim, Mi-Suk [Seoul National University Medical Research Center, Department of Radiology, Seoul National University College of Medicine, and Institute of Radiation Medicine, Seoul (Korea, Republic of)

    2014-04-15

    To evaluate filtered back projection (FBP) and two iterative reconstruction (IR) algorithms and their effects on the quantitative analysis of lung parenchyma and airway measurements on computed tomography (CT) images. Low-dose chest CT obtained in 281 adult patients were reconstructed using three algorithms: FBP, adaptive statistical IR (ASIR) and model-based IR (MBIR). Measurements of each dataset were compared: total lung volume, emphysema index (EI), airway measurements of the lumen and wall area as well as average wall thickness. Accuracy of airway measurements of each algorithm was also evaluated using an airway phantom. EI using a threshold of -950 HU was significantly different among the three algorithms in decreasing order of FBP (2.30 %), ASIR (1.49 %) and MBIR (1.20 %) (P < 0.01). Wall thickness was also significantly different among the three algorithms with FBP (2.09 mm) demonstrating thicker walls than ASIR (2.00 mm) and MBIR (1.88 mm) (P < 0.01). Airway phantom analysis revealed that MBIR showed the most accurate value for airway measurements. The three algorithms presented different EIs and wall thicknesses, decreasing in the order of FBP, ASIR and MBIR. Thus, care should be taken in selecting the appropriate IR algorithm on quantitative analysis of the lung. (orig.)

  17. Adaptive statistical iterative reconstruction versus filtered back projection in the same patient: 64 channel liver CT image quality and patient radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Mitsumori, Lee M.; Shuman, William P.; Busey, Janet M.; Kolokythas, Orpheus; Koprowicz, Kent M. [University of Washington School of Medicine, Department of Radiology, Seattle, WA (United States)

    2012-01-15

    To compare routine dose liver CT reconstructed with filtered back projection (FBP) versus low dose images reconstructed with FBP and adaptive statistical iterative reconstruction (ASIR). In this retrospective study, patients had a routine dose protocol reconstructed with FBP, and again within 17 months (median 6.1 months), had a low dose protocol reconstructed twice, with FBP and ASIR. These reconstructions were compared for noise, image quality, and radiation dose. Nineteen patients were included. (12 male, mean age 58). Noise was significantly lower in low dose images reconstructed with ASIR compared to routine dose images reconstructed with FBP (liver: p <.05, aorta: p < 0.001). Low dose FBP images were scored significantly lower for subjective image quality than low dose ASIR (2.1 {+-} 0.5, 3.2 {+-} 0.8, p < 0.001). There was no difference in subjective image quality scores between routine dose FBP images and low dose ASIR images (3.6 {+-} 0.5, 3.2 {+-} 0.8, NS).Radiation dose was 41% less for the low dose protocol (4.4 {+-} 2.4 mSv versus 7.5 {+-} 5.5 mSv, p < 0.05). Our initial results suggest low dose CT images reconstructed with ASIR may have lower measured noise, similar image quality, yet significantly less radiation dose compared with higher dose images reconstructed with FBP. (orig.)

  18. Comparison of the effects of model-based iterative reconstruction and filtered back projection algorithms on software measurements in pulmonary subsolid nodules.

    Science.gov (United States)

    Cohen, Julien G; Kim, Hyungjin; Park, Su Bin; van Ginneken, Bram; Ferretti, Gilbert R; Lee, Chang Hyun; Goo, Jin Mo; Park, Chang Min

    2017-08-01

    To evaluate the differences between filtered back projection (FBP) and model-based iterative reconstruction (MBIR) algorithms on semi-automatic measurements in subsolid nodules (SSNs). Unenhanced CT scans of 73 SSNs obtained using the same protocol and reconstructed with both FBP and MBIR algorithms were evaluated by two radiologists. Diameter, mean attenuation, mass and volume of whole nodules and their solid components were measured. Intra- and interobserver variability and differences between FBP and MBIR were then evaluated using Bland-Altman method and Wilcoxon tests. Longest diameter, volume and mass of nodules and those of their solid components were significantly higher using MBIR (p algorithms with respect to the diameter, volume and mass of nodules and their solid components. There were no significant differences in intra- or interobserver variability between FBP and MBIR (p > 0.05). Semi-automatic measurements of SSNs significantly differed between FBP and MBIR; however, the differences were within the range of measurement variability. • Intra- and interobserver reproducibility of measurements did not differ between FBP and MBIR. • Differences in SSNs' semi-automatic measurement induced by reconstruction algorithms were not clinically significant. • Semi-automatic measurement may be conducted regardless of reconstruction algorithm. • SSNs' semi-automated classification agreement (pure vs. part-solid) did not significantly differ between algorithms.

  19. A quantum extended Kalman filter

    International Nuclear Information System (INIS)

    Emzir, Muhammad F; Woolley, Matthew J; Petersen, Ian R

    2017-01-01

    In quantum physics, a stochastic master equation (SME) estimates the state (density operator) of a quantum system in the Schrödinger picture based on a record of measurements made on the system. In the Heisenberg picture, the SME is a quantum filter. For a linear quantum system subject to linear measurements and Gaussian noise, the dynamics may be described by quantum stochastic differential equations (QSDEs), also known as quantum Langevin equations, and the quantum filter reduces to a so-called quantum Kalman filter. In this article, we introduce a quantum extended Kalman filter (quantum EKF), which applies a commutative approximation and a time-varying linearization to systems of nonlinear QSDEs. We will show that there are conditions under which a filter similar to a classical EKF can be implemented for quantum systems. The boundedness of estimation errors and the filtering problem with ‘state-dependent’ covariances for process and measurement noises are also discussed. We demonstrate the effectiveness of the quantum EKF by applying it to systems that involve multiple modes, nonlinear Hamiltonians, and simultaneous jump-diffusive measurements. (paper)

  20. A quantum extended Kalman filter

    Science.gov (United States)

    Emzir, Muhammad F.; Woolley, Matthew J.; Petersen, Ian R.

    2017-06-01

    In quantum physics, a stochastic master equation (SME) estimates the state (density operator) of a quantum system in the Schrödinger picture based on a record of measurements made on the system. In the Heisenberg picture, the SME is a quantum filter. For a linear quantum system subject to linear measurements and Gaussian noise, the dynamics may be described by quantum stochastic differential equations (QSDEs), also known as quantum Langevin equations, and the quantum filter reduces to a so-called quantum Kalman filter. In this article, we introduce a quantum extended Kalman filter (quantum EKF), which applies a commutative approximation and a time-varying linearization to systems of nonlinear QSDEs. We will show that there are conditions under which a filter similar to a classical EKF can be implemented for quantum systems. The boundedness of estimation errors and the filtering problem with ‘state-dependent’ covariances for process and measurement noises are also discussed. We demonstrate the effectiveness of the quantum EKF by applying it to systems that involve multiple modes, nonlinear Hamiltonians, and simultaneous jump-diffusive measurements.

  1. nonlinMIP contribution to CMIP6: model intercomparison project for non-linear mechanisms: physical basis, experimental design and analysis principles (v1.0

    Directory of Open Access Journals (Sweden)

    P. Good

    2016-11-01

    Full Text Available nonlinMIP provides experiments that account for state-dependent regional and global climate responses. The experiments have two main applications: (1 to focus understanding of responses to CO2 forcing on states relevant to specific policy or scientific questions (e.g. change under low-forcing scenarios, the benefits of mitigation, or from past cold climates to the present day, or (2 to understand the state dependence (non-linearity of climate change – i.e. why doubling the forcing may not double the response. State dependence (non-linearity of responses can be large at regional scales, with important implications for understanding mechanisms and for general circulation model (GCM emulation techniques (e.g. energy balance models and pattern-scaling methods. However, these processes are hard to explore using traditional experiments, which explains why they have had so little attention in previous studies. Some single model studies have established novel analysis principles and some physical mechanisms. There is now a need to explore robustness and uncertainty in such mechanisms across a range of models (point 2 above, and, more broadly, to focus work on understanding the response to CO2 on climate states relevant to specific policy/science questions (point 1. nonlinMIP addresses this using a simple, small set of CO2-forced experiments that are able to separate linear and non-linear mechanisms cleanly, with a good signal-to-noise ratio – while being demonstrably traceable to realistic transient scenarios. The design builds on the CMIP5 (Coupled Model Intercomparison Project Phase 5 and CMIP6 DECK (Diagnostic, Evaluation and Characterization of Klima protocols, and is centred around a suite of instantaneous atmospheric CO2 change experiments, with a ramp-up–ramp-down experiment to test traceability to gradual forcing scenarios. In all cases the models are intended to be used with CO2 concentrations rather than CO2 emissions as the input. The

  2. nonlinMIP contribution to CMIP6: model intercomparison project for non-linear mechanisms: physical basis, experimental design and analysis principles (v1.0)

    Science.gov (United States)

    Good, Peter; Andrews, Timothy; Chadwick, Robin; Dufresne, Jean-Louis; Gregory, Jonathan M.; Lowe, Jason A.; Schaller, Nathalie; Shiogama, Hideo

    2016-11-01

    nonlinMIP provides experiments that account for state-dependent regional and global climate responses. The experiments have two main applications: (1) to focus understanding of responses to CO2 forcing on states relevant to specific policy or scientific questions (e.g. change under low-forcing scenarios, the benefits of mitigation, or from past cold climates to the present day), or (2) to understand the state dependence (non-linearity) of climate change - i.e. why doubling the forcing may not double the response. State dependence (non-linearity) of responses can be large at regional scales, with important implications for understanding mechanisms and for general circulation model (GCM) emulation techniques (e.g. energy balance models and pattern-scaling methods). However, these processes are hard to explore using traditional experiments, which explains why they have had so little attention in previous studies. Some single model studies have established novel analysis principles and some physical mechanisms. There is now a need to explore robustness and uncertainty in such mechanisms across a range of models (point 2 above), and, more broadly, to focus work on understanding the response to CO2 on climate states relevant to specific policy/science questions (point 1). nonlinMIP addresses this using a simple, small set of CO2-forced experiments that are able to separate linear and non-linear mechanisms cleanly, with a good signal-to-noise ratio - while being demonstrably traceable to realistic transient scenarios. The design builds on the CMIP5 (Coupled Model Intercomparison Project Phase 5) and CMIP6 DECK (Diagnostic, Evaluation and Characterization of Klima) protocols, and is centred around a suite of instantaneous atmospheric CO2 change experiments, with a ramp-up-ramp-down experiment to test traceability to gradual forcing scenarios. In all cases the models are intended to be used with CO2 concentrations rather than CO2 emissions as the input. The understanding

  3. Inorganic UV filters

    Directory of Open Access Journals (Sweden)

    Eloísa Berbel Manaia

    2013-06-01

    Full Text Available Nowadays, concern over skin cancer has been growing more and more, especially in tropical countries where the incidence of UVA/B radiation is higher. The correct use of sunscreen is the most efficient way to prevent the development of this disease. The ingredients of sunscreen can be organic and/or inorganic sun filters. Inorganic filters present some advantages over organic filters, such as photostability, non-irritability and broad spectrum protection. Nevertheless, inorganic filters have a whitening effect in sunscreen formulations owing to the high refractive index, decreasing their esthetic appeal. Many techniques have been developed to overcome this problem and among them, the use of nanotechnology stands out. The estimated amount of nanomaterial in use must increase from 2000 tons in 2004 to a projected 58000 tons in 2020. In this context, this article aims to analyze critically both the different features of the production of inorganic filters (synthesis routes proposed in recent years and the permeability, the safety and other characteristics of the new generation of inorganic filters.

  4. Filter systems

    International Nuclear Information System (INIS)

    Vanin, V.R.

    1990-01-01

    The multidetector systems for high resolution gamma spectroscopy are presented. The observable parameters for identifying nuclides produced simultaneously in the reaction are analysed discussing the efficiency of filter systems. (M.C.K.)

  5. Dynamics of nonlinear feedback control

    OpenAIRE

    Snippe, H.P.; Hateren, J.H. van

    2007-01-01

    Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain signal (resp. the attenuation signal) is obtained through a concatenation of an instantaneous nonlinearity and a linear low-pass filter operating on the output of the feedback loop. For input step...

  6. Fremont Tree-Well Filter

    Science.gov (United States)

    Information about the SFBWQP Fremont Tree-Well Filter Spine project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  7. Filtering, control and fault detection with randomly occurring incomplete information

    CERN Document Server

    Dong, Hongli; Gao, Huijun

    2013-01-01

    This book investigates the filtering, control and fault detection problems for several classes of nonlinear systems with randomly occurring incomplete information. It proposes new concepts, including RVNs, ROMDs, ROMTCDs, and ROQEs. The incomplete information under consideration primarily includes missing measurements, time-delays, sensor and actuator saturations, quantization effects and time-varying nonlinearities. The first part of this book focuses on the filtering, control and fault detection problems for several classes of nonlinear stochastic discrete-time systems and

  8. Nonlinear Dot Plots.

    Science.gov (United States)

    Rodrigues, Nils; Weiskopf, Daniel

    2018-01-01

    Conventional dot plots use a constant dot size and are typically applied to show the frequency distribution of small data sets. Unfortunately, they are not designed for a high dynamic range of frequencies. We address this problem by introducing nonlinear dot plots. Adopting the idea of nonlinear scaling from logarithmic bar charts, our plots allow for dots of varying size so that columns with a large number of samples are reduced in height. For the construction of these diagrams, we introduce an efficient two-way sweep algorithm that leads to a dense and symmetrical layout. We compensate aliasing artifacts at high dot densities by a specifically designed low-pass filtering method. Examples of nonlinear dot plots are compared to conventional dot plots as well as linear and logarithmic histograms. Finally, we include feedback from an expert review.

  9. Optimum color filters for CCD digital cameras

    Science.gov (United States)

    Engelhardt, Kai; Kunz, Rino E.; Seitz, Peter; Brunner, Harald; Knop, Karl

    1993-12-01

    As part of the ESPRIT II project No. 2103 (MASCOT) a high performance prototype color CCD still video camera was developed. Intended for professional usage such as in the graphic arts, the camera provides a maximum resolution of 3k X 3k full color pixels. A high colorimetric performance was achieved through specially designed dielectric filters and optimized matrixing. The color transformation was obtained by computer simulation of the camera system and non-linear optimization which minimized the perceivable color errors as measured in the 1976 CIELUV uniform color space for a set of about 200 carefully selected test colors. The color filters were designed to allow perfect colorimetric reproduction in principle and at the same time with imperceptible color noise and with special attention to fabrication tolerances. The camera system includes a special real-time digital color processor which carries out the color transformation. The transformation can be selected from a set of sixteen matrices optimized for different illuminants and output devices. Because the actual filter design was based on slightly incorrect data the prototype camera showed a mean colorimetric error of 2.7 j.n.d. (CIELUV) in experiments. Using correct input data in the redesign of the filters, a mean colorimetric error of only 1 j.n.d. (CIELUV) seems to be feasible, implying that it is possible with such an optimized color camera to achieve such a high colorimetric performance that the reproduced colors in an image cannot be distinguished from the original colors in a scene, even in direct comparison.

  10. Nonlinear optics

    International Nuclear Information System (INIS)

    Boyd, R.W.

    1992-01-01

    Nonlinear optics is the study of the interaction of intense laser light with matter. This book is a textbook on nonlinear optics at the level of a beginning graduate student. The intent of the book is to provide an introduction to the field of nonlinear optics that stresses fundamental concepts and that enables the student to go on to perform independent research in this field. This book covers the areas of nonlinear optics, quantum optics, quantum electronics, laser physics, electrooptics, and modern optics

  11. Core component integration tests for the back-end software sub-system in the ATLAS data acquisition and event filter prototype -1 project

    International Nuclear Information System (INIS)

    Badescu, E.; Caprini, M.; Niculescu, M.; Radu, A.

    2000-01-01

    The ATLAS data acquisition (DAQ) and Event Filter (EF) prototype -1 project was intended to produce a prototype system for evaluating candidate technologies and architectures for the final ATLAS DAQ system on the LHC accelerator at CERN. Within the prototype project, the back-end sub-system encompasses the software for configuring, controlling and monitoring the DAQ. The back-end sub-system includes core components and detector integration components. The core components provide the basic functionality and had priority in terms of time-scale for development in order to have a baseline sub-system that can be used for integration with the data-flow sub-system and event filter. The following components are considered to be the core of the back-end sub-system: - Configuration databases, describe a large number of parameters of the DAQ system architecture, hardware and software components, running modes and status; - Message reporting system (MRS), allows all software components to report messages to other components in the distributed environment; - Information service (IS) allows the information exchange for software components; - Process manager (PMG), performs basic job control of software components (start, stop, monitoring the status); - Run control (RC), controls the data taking activities by coordinating the operations of the DAQ sub-systems, back-end software and external systems. Performance and scalability tests have been made for individual components. The back-end subsystem integration tests bring together all the core components and several trigger/DAQ/detector integration components to simulate the control and configuration of data taking sessions. For back-end integration tests a test plan was provided. The tests have been done using a shell script that goes through different phases as follows: - starting the back-end server processes to initialize communication services and PMG; - launching configuration specific processes via DAQ supervisor as

  12. Design, control, and implementation of LCL-filter-based shunt active power filters

    DEFF Research Database (Denmark)

    Tang, Yi; Loh, Poh Chiang; Wang, Peng

    2011-01-01

    This paper concentrates on the design, control and implementation of an LCL-filter-based shunt active power filter (SAPF), which can effectively compensate harmonic currents produced by nonlinear loads in a three-phase three-wire power system. The use of LCL-filter at the output end of SAPF offer......-loop control system, and active damping implemented with fewer current sensors are all addressed here. An analytical design example is finally presented, being supported with experimental results, to verify its effectiveness and practicality.......This paper concentrates on the design, control and implementation of an LCL-filter-based shunt active power filter (SAPF), which can effectively compensate harmonic currents produced by nonlinear loads in a three-phase three-wire power system. The use of LCL-filter at the output end of SAPF offers...

  13. Modelling modulation perception : modulation low-pass filter or modulation filter bank?

    NARCIS (Netherlands)

    Dau, T.; Kollmeier, B.; Kohlrausch, A.G.

    1995-01-01

    In current models of modulation perception, the stimuli are first filtered and nonlinearly transformed (mostly half-wave rectified). In order to model the low-pass characteristic of measured modulation transfer functions, the next stage in the models is a first-order low-pass filter with a typical

  14. Adaptive iterative dose reduction algorithm in CT: Effect on image quality compared with filtered back projection in body phantoms of different sizes

    International Nuclear Information System (INIS)

    Kim, Milim; Lee, Jeong Min; Son, Hyo Shin; Han, Joon Koo; Choi, Byung Ihn; Yoon, Jeong Hee; Choi, Jin Woo

    2014-01-01

    To evaluate the impact of the adaptive iterative dose reduction (AIDR) three-dimensional (3D) algorithm in CT on noise reduction and the image quality compared to the filtered back projection (FBP) algorithm and to compare the effectiveness of AIDR 3D on noise reduction according to the body habitus using phantoms with different sizes. Three different-sized phantoms with diameters of 24 cm, 30 cm, and 40 cm were built up using the American College of Radiology CT accreditation phantom and layers of pork belly fat. Each phantom was scanned eight times using different mAs. Images were reconstructed using the FBP and three different strengths of the AIDR 3D. The image noise, the contrast-to-noise ratio (CNR) and the signal-to-noise ratio (SNR) of the phantom were assessed. Two radiologists assessed the image quality of the 4 image sets in consensus. The effectiveness of AIDR 3D on noise reduction compared with FBP were also compared according to the phantom sizes. Adaptive iterative dose reduction 3D significantly reduced the image noise compared with FBP and enhanced the SNR and CNR (p < 0.05) with improved image quality (p < 0.05). When a stronger reconstruction algorithm was used, greater increase of SNR and CNR as well as noise reduction was achieved (p < 0.05). The noise reduction effect of AIDR 3D was significantly greater in the 40-cm phantom than in the 24-cm or 30-cm phantoms (p < 0.05). The AIDR 3D algorithm is effective to reduce the image noise as well as to improve the image-quality parameters compared by FBP algorithm, and its effectiveness may increase as the phantom size increases.

  15. Adaptive iterative dose reduction algorithm in CT: Effect on image quality compared with filtered back projection in body phantoms of different sizes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Milim; Lee, Jeong Min; Son, Hyo Shin; Han, Joon Koo; Choi, Byung Ihn [College of Medicine, Seoul National University, Seoul (Korea, Republic of); Yoon, Jeong Hee; Choi, Jin Woo [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2014-04-15

    To evaluate the impact of the adaptive iterative dose reduction (AIDR) three-dimensional (3D) algorithm in CT on noise reduction and the image quality compared to the filtered back projection (FBP) algorithm and to compare the effectiveness of AIDR 3D on noise reduction according to the body habitus using phantoms with different sizes. Three different-sized phantoms with diameters of 24 cm, 30 cm, and 40 cm were built up using the American College of Radiology CT accreditation phantom and layers of pork belly fat. Each phantom was scanned eight times using different mAs. Images were reconstructed using the FBP and three different strengths of the AIDR 3D. The image noise, the contrast-to-noise ratio (CNR) and the signal-to-noise ratio (SNR) of the phantom were assessed. Two radiologists assessed the image quality of the 4 image sets in consensus. The effectiveness of AIDR 3D on noise reduction compared with FBP were also compared according to the phantom sizes. Adaptive iterative dose reduction 3D significantly reduced the image noise compared with FBP and enhanced the SNR and CNR (p < 0.05) with improved image quality (p < 0.05). When a stronger reconstruction algorithm was used, greater increase of SNR and CNR as well as noise reduction was achieved (p < 0.05). The noise reduction effect of AIDR 3D was significantly greater in the 40-cm phantom than in the 24-cm or 30-cm phantoms (p < 0.05). The AIDR 3D algorithm is effective to reduce the image noise as well as to improve the image-quality parameters compared by FBP algorithm, and its effectiveness may increase as the phantom size increases.

  16. Image quality and radiation dose of low dose coronary CT angiography in obese patients: Sinogram affirmed iterative reconstruction versus filtered back projection

    International Nuclear Information System (INIS)

    Wang, Rui; Schoepf, U. Joseph; Wu, Runze; Reddy, Ryan P.; Zhang, Chuanchen; Yu, Wei; Liu, Yi; Zhang, Zhaoqi

    2012-01-01

    Purpose: To investigate the image quality and radiation dose of low radiation dose CT coronary angiography (CTCA) using sinogram affirmed iterative reconstruction (SAFIRE) compared with standard dose CTCA using filtered back-projection (FBP) in obese patients. Materials and methods: Seventy-eight consecutive obese patients were randomized into two groups and scanned using a prospectively ECG-triggered step-and-shot (SAS) CTCA protocol on a dual-source CT scanner. Thirty-nine patients (protocol A) were examined using a routine radiation dose protocol at 120 kV and images were reconstructed with FBP (protocol A). Thirty-nine patients (protocol B) were examined using a low dose protocol at 100 kV and images were reconstructed with SAFIRE. Two blinded observers independently assessed the image quality of each coronary segment using a 4-point scale (1 = non-diagnostic, 4 = excellent) and measured the objective parameters image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). Radiation dose was calculated. Results: The coronary artery image quality scores, image noise, SNR and CNR were not significantly different between protocols A and B (all p > 0.05), with image quality scores of 3.51 ± 0.70 versus 3.55 ± 0.47, respectively. The effective radiation dose was significantly lower in protocol B (4.41 ± 0.83 mSv) than that in protocol A (8.83 ± 1.74 mSv, p < 0.01). Conclusion: Compared with standard dose CTCA using FBP, low dose CTCA using SAFIRE can maintain diagnostic image quality with 50% reduction of radiation dose.

  17. Vascular diameter measurement in CT angiography: comparison of model-based iterative reconstruction and standard filtered back projection algorithms in vitro.

    Science.gov (United States)

    Suzuki, Shigeru; Machida, Haruhiko; Tanaka, Isao; Ueno, Eiko

    2013-03-01

    The purpose of this study was to evaluate the performance of model-based iterative reconstruction (MBIR) in measurement of the inner diameter of models of blood vessels and compare performance between MBIR and a standard filtered back projection (FBP) algorithm. Vascular models with wall thicknesses of 0.5, 1.0, and 1.5 mm were scanned with a 64-MDCT unit and densities of contrast material yielding 275, 396, and 542 HU. Images were reconstructed images by MBIR and FBP, and the mean diameter of each model vessel was measured by software automation. Twenty separate measurements were repeated for each vessel, and variance among the repeated measures was analyzed for determination of measurement error. For all nine model vessels, CT attenuation profiles were compared along a line passing through the luminal center on axial images reconstructed with FBP and MBIR, and the 10-90% edge rise distances at the boundary between the vascular wall and the lumen were evaluated. For images reconstructed with FBP, measurement errors were smallest for models with 1.5-mm wall thickness, except those filled with 275-HU contrast material, and errors grew as the density of the contrast material decreased. Measurement errors with MBIR were comparable to or less than those with FBP. In CT attenuation profiles of images reconstructed with MBIR, the 10-90% edge rise distances at the boundary between the lumen and vascular wall were relatively short for each vascular model compared with those of the profile curves of FBP images. MBIR is better than standard FBP for reducing reconstruction blur and improving the accuracy of diameter measurement at CT angiography.

  18. Comparison of iterative model, hybrid iterative, and filtered back projection reconstruction techniques in low-dose brain CT: impact of thin-slice imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakaura, Takeshi; Iyama, Yuji; Kidoh, Masafumi; Yokoyama, Koichi [Amakusa Medical Center, Diagnostic Radiology, Amakusa, Kumamoto (Japan); Kumamoto University, Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto (Japan); Oda, Seitaro; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto (Japan); Tokuyasu, Shinichi [Philips Electronics, Kumamoto (Japan); Harada, Kazunori [Amakusa Medical Center, Department of Surgery, Kumamoto (Japan)

    2016-03-15

    The purpose of this study was to evaluate the utility of iterative model reconstruction (IMR) in brain CT especially with thin-slice images. This prospective study received institutional review board approval, and prior informed consent to participate was obtained from all patients. We enrolled 34 patients who underwent brain CT and reconstructed axial images with filtered back projection (FBP), hybrid iterative reconstruction (HIR) and IMR with 1 and 5 mm slice thicknesses. The CT number, image noise, contrast, and contrast noise ratio (CNR) between the thalamus and internal capsule, and the rate of increase of image noise in 1 and 5 mm thickness images between the reconstruction methods, were assessed. Two independent radiologists assessed image contrast, image noise, image sharpness, and overall image quality on a 4-point scale. The CNRs in 1 and 5 mm slice thickness were significantly higher with IMR (1.2 ± 0.6 and 2.2 ± 0.8, respectively) than with FBP (0.4 ± 0.3 and 1.0 ± 0.4, respectively) and HIR (0.5 ± 0.3 and 1.2 ± 0.4, respectively) (p < 0.01). The mean rate of increasing noise from 5 to 1 mm thickness images was significantly lower with IMR (1.7 ± 0.3) than with FBP (2.3 ± 0.3) and HIR (2.3 ± 0.4) (p < 0.01). There were no significant differences in qualitative analysis of unfamiliar image texture between the reconstruction techniques. IMR offers significant noise reduction and higher contrast and CNR in brain CT, especially for thin-slice images, when compared to FBP and HIR. (orig.)

  19. Measurement of vascular wall attenuation: Comparison of CT angiography using model-based iterative reconstruction with standard filtered back-projection algorithm CT in vitro

    International Nuclear Information System (INIS)

    Suzuki, Shigeru; Machida, Haruhiko; Tanaka, Isao; Ueno, Eiko

    2012-01-01

    Objectives: To compare the performance of model-based iterative reconstruction (MBIR) with that of standard filtered back projection (FBP) for measuring vascular wall attenuation. Study design: After subjecting 9 vascular models (actual attenuation value of wall, 89 HU) with wall thickness of 0.5, 1.0, or 1.5 mm that we filled with contrast material of 275, 396, or 542 HU to scanning using 64-detector computed tomography (CT), we reconstructed images using MBIR and FBP (Bone, Detail kernels) and measured wall attenuation at the center of the wall for each model. We performed attenuation measurements for each model and additional supportive measurements by a differentiation curve. We analyzed statistics using analyzes of variance with repeated measures. Results: Using the Bone kernel, standard deviation of the measurement exceeded 30 HU in most conditions. In measurements at the wall center, the attenuation values obtained using MBIR were comparable to or significantly closer to the actual wall attenuation than those acquired using Detail kernel. Using differentiation curves, we could measure attenuation for models with walls of 1.0- or 1.5-mm thickness using MBIR but only those of 1.5-mm thickness using Detail kernel. We detected no significant differences among the attenuation values of the vascular walls of either thickness (MBIR, P = 0.1606) or among the 3 densities of intravascular contrast material (MBIR, P = 0.8185; Detail kernel, P = 0.0802). Conclusions: Compared with FBP, MBIR reduces both reconstruction blur and image noise simultaneously, facilitates recognition of vascular wall boundaries, and can improve accuracy in measuring wall attenuation.

  20. Dose reduction in chest CT: Comparison of the adaptive iterative dose reduction 3D, adaptive iterative dose reduction, and filtered back projection reconstruction techniques

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yoshitake, E-mail: yamada@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Jinzaki, Masahiro, E-mail: jinzaki@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Hosokawa, Takahiro, E-mail: hosokawa@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Tanami, Yutaka, E-mail: tanami@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Sugiura, Hiroaki, E-mail: hsugiura@rad.med.keio.ac.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Abe, Takayuki, E-mail: tabe@z5.keio.jp [Center for Clinical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan); Kuribayashi, Sachio, E-mail: skuribay@a5.keio.jp [Department of Diagnostic Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 (Japan)

    2012-12-15

    Objectives: To assess the effectiveness of adaptive iterative dose reduction (AIDR) and AIDR 3D in improving the image quality in low-dose chest CT (LDCT). Materials and methods: Fifty patients underwent standard-dose chest CT (SDCT) and LDCT simultaneously, performed under automatic exposure control with noise index of 19 and 38 (for a 2-mm slice thickness), respectively. The SDCT images were reconstructed with filtered back projection (SDCT-FBP images), and the LDCT images with FBP, AIDR and AIDR 3D (LDCT-FBP, LDCT-AIDR and LDCT-AIDR 3D images, respectively). On all the 200 lung and 200 mediastinal image series, objective image noise and signal-to-noise ratio (SNR) were measured in several regions, and two blinded radiologists independently assessed the subjective image quality. Wilcoxon's signed rank sum test with Bonferroni's correction was used for the statistical analyses. Results: The mean dose reduction in LDCT was 64.2% as compared with the dose in SDCT. LDCT-AIDR 3D images showed significantly reduced objective noise and significantly increased SNR in all regions as compared to the SDCT-FBP, LDCT-FBP and LDCT-AIDR images (all, P ≤ 0.003). In all assessments of the image quality, LDCT-AIDR 3D images were superior to LDCT-AIDR and LDCT-FBP images. The overall diagnostic acceptability of both the lung and mediastinal LDCT-AIDR 3D images was comparable to that of the lung and mediastinal SDCT-FBP images. Conclusions: AIDR 3D is superior to AIDR. Intra-individual comparisons between SDCT and LDCT suggest that AIDR 3D allows a 64.2% reduction of the radiation dose as compared to SDCT, by substantially reducing the objective image noise and increasing the SNR, while maintaining the overall diagnostic acceptability.

  1. Measurement of vascular wall attenuation: comparison of CT angiography using model-based iterative reconstruction with standard filtered back-projection algorithm CT in vitro.

    Science.gov (United States)

    Suzuki, Shigeru; Machida, Haruhiko; Tanaka, Isao; Ueno, Eiko

    2012-11-01

    To compare the performance of model-based iterative reconstruction (MBIR) with that of standard filtered back projection (FBP) for measuring vascular wall attenuation. After subjecting 9 vascular models (actual attenuation value of wall, 89 HU) with wall thickness of 0.5, 1.0, or 1.5 mm that we filled with contrast material of 275, 396, or 542 HU to scanning using 64-detector computed tomography (CT), we reconstructed images using MBIR and FBP (Bone, Detail kernels) and measured wall attenuation at the center of the wall for each model. We performed attenuation measurements for each model and additional supportive measurements by a differentiation curve. We analyzed statistics using analyzes of variance with repeated measures. Using the Bone kernel, standard deviation of the measurement exceeded 30 HU in most conditions. In measurements at the wall center, the attenuation values obtained using MBIR were comparable to or significantly closer to the actual wall attenuation than those acquired using Detail kernel. Using differentiation curves, we could measure attenuation for models with walls of 1.0- or 1.5-mm thickness using MBIR but only those of 1.5-mm thickness using Detail kernel. We detected no significant differences among the attenuation values of the vascular walls of either thickness (MBIR, P=0.1606) or among the 3 densities of intravascular contrast material (MBIR, P=0.8185; Detail kernel, P=0.0802). Compared with FBP, MBIR reduces both reconstruction blur and image noise simultaneously, facilitates recognition of vascular wall boundaries, and can improve accuracy in measuring wall attenuation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Comparison of applied dose and image quality in staging CT of neuroendocrine tumor patients using standard filtered back projection and adaptive statistical iterative reconstruction.

    Science.gov (United States)

    Böning, G; Schäfer, M; Grupp, U; Kaul, D; Kahn, J; Pavel, M; Maurer, M; Denecke, T; Hamm, B; Streitparth, F

    2015-08-01

    To investigate whether dose reduction via adaptive statistical iterative reconstruction (ASIR) affects image quality and diagnostic accuracy in neuroendocrine tumor (NET) staging. A total of 28 NET patients were enrolled in the study. Inclusion criteria were histologically proven NET and visible tumor in abdominal computed tomography (CT). In an intraindividual study design, the patients underwent a baseline CT (filtered back projection, FBP) and follow-up CT (ASIR 40%) using matched scan parameters. Image quality was assessed subjectively using a 5-grade scoring system and objectively by determining signal-to-noise ratio (SNR) and contrast-to-noise ratios (CNRs). Applied volume computed tomography dose index (CTDIvol) of each scan was taken from the dose report. ASIR 40% significantly reduced CTDIvol (10.17±3.06mGy [FBP], 6.34±2.25mGy [ASIR] (pASIR]) (pASIR]) (pASIR]), visibility of suspicious lesion (4.8±0.5 [FBP], 4.8±0.5 [ASIR]) and artifacts (5.0±0 [FBP], 5.0±0 [ASIR]). ASIR 40% significantly decreased scores for noise (4.3±0.6 [FBP], 4.0±0.8 [ASIR]) (pASIR]) (pASIR]) (pASIR can be used to reduce radiation dose without sacrificing image quality and diagnostic confidence in staging CT of NET patients. This may be beneficial for patients with frequent follow-up and significant cumulative radiation exposure. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Harmonic Detection at Initialization With Kalman Filter

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Imran, Raja Muhammad; Shoro, Ghulam Mustafa

    2014-01-01

    Most power electronic equipment these days generate harmonic disturbances, these devices hold nonlinear voltage/current characteristic. The harmonics generated can potentially be harmful to the consumer supply. Typically, filters are integrated at the power source or utility location to filter out...... the affect of harmonics on the supply. For the detection of these harmonics various techniques are available and one of that technique is the Kalman filter. In this paper we investigate that what are the consequences when harmonic detection system based on Kalman Filtering is initialized...

  4. Nonlinear optics

    CERN Document Server

    Bloembergen, Nicolaas

    1996-01-01

    Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe

  5. Results of nonlinear and nonstationary image processing

    International Nuclear Information System (INIS)

    Pizer, S.M.; Correla, J.A.; Chesler, D.A.; Metz, C.E.

    1973-01-01

    A nonstationary method, multiple z-divided filtering, and a nonlinear method, biased smearing have been applied to scintigrams. Biased smearing does not appear to hold much promise. Multiple z-divided filtering, on the other hand, appears to be justified, and initial results at minimum encourage further research into the possibility that this technique may become a method of choice

  6. A computational fluid dynamics simulation of the hypersonic flight of the Pegasus(TM) vehicle using an artificial viscosity model and a nonlinear filtering method. M.S. Thesis

    Science.gov (United States)

    Mendoza, John Cadiz

    1995-01-01

    The computational fluid dynamics code, PARC3D, is tested to see if its use of non-physical artificial dissipation affects the accuracy of its results. This is accomplished by simulating a shock-laminar boundary layer interaction and several hypersonic flight conditions of the Pegasus(TM) launch vehicle using full artificial dissipation, low artificial dissipation, and the Engquist filter. Before the filter is applied to the PARC3D code, it is validated in one-dimensional and two-dimensional form in a MacCormack scheme against the Riemann and convergent duct problem. For this explicit scheme, the filter shows great improvements in accuracy and computational time as opposed to the nonfiltered solutions. However, for the implicit PARC3D code it is found that the best estimate of the Pegasus experimental heat fluxes and surface pressures is the simulation utilizing low artificial dissipation and no filter. The filter does improve accuracy over the artificially dissipative case but at a computational expense greater than that achieved by the low artificial dissipation case which has no computational time penalty and shows better results. For the shock-boundary layer simulation, the filter does well in terms of accuracy for a strong impingement shock but not as well for weaker shock strengths. Furthermore, for the latter problem the filter reduces the required computational time to convergence by 18.7 percent.

  7. Vector Directional Distance Rational Hybrid Filters for Color Image Restoration

    Directory of Open Access Journals (Sweden)

    L. Khriji

    2005-12-01

    Full Text Available A new class of nonlinear filters, called vector-directional distance rational hybrid filters (VDDRHF for multispectral image processing, is introduced and applied to color image-filtering problems. These filters are based on rational functions (RF. The VDDRHF filter is a two-stage filter, which exploits the features of the vector directional distance filter (VDDF, the center weighted vector directional distance filter (CWVDDF and those of the rational operator. The filter output is a result of vector rational function (VRF operating on the output of three sub-functions. Two vector directional distance (VDDF filters and one center weighted vector directional distance filter (CWVDDF are proposed to be used in the first stage due to their desirable properties, such as, noise attenuation, chromaticity retention, and edges and details preservation. Experimental results show that the new VDDRHF outperforms a number of widely known nonlinear filters for multi-spectral image processing such as the vector median filter (VMF, the generalized vector directional filters (GVDF and distance directional filters (DDF with respect to all criteria used.

  8. Filter This

    Directory of Open Access Journals (Sweden)

    Audrey Barbakoff

    2011-03-01

    Full Text Available In the Library with the Lead Pipe welcomes Audrey Barbakoff, a librarian at the Milwaukee Public Library, and Ahniwa Ferrari, Virtual Experience Manager at the Pierce County Library System in Washington, for a point-counterpoint piece on filtering in libraries. The opinions expressed here are those of the authors, and are not endorsed by their employers. [...

  9. Improving Filtered Backprojection Reconstruction by Data-Dependent Filtering

    NARCIS (Netherlands)

    D.M. Pelt (Daniël); K.J. Batenburg (Joost)

    2014-01-01

    htmlabstractFiltered backprojection, one of the most widely used reconstruction methods in tomography, requires a large number of low-noise projections to yield accurate reconstructions. In many applications of tomography, complete projection data of high quality cannot be obtained, because of

  10. Concrete ensemble Kalman filters with rigorous catastrophic filter divergence.

    Science.gov (United States)

    Kelly, David; Majda, Andrew J; Tong, Xin T

    2015-08-25

    The ensemble Kalman filter and ensemble square root filters are data assimilation methods used to combine high-dimensional, nonlinear dynamical models with observed data. Ensemble methods are indispensable tools in science and engineering and have enjoyed great success in geophysical sciences, because they allow for computationally cheap low-ensemble-state approximation for extremely high-dimensional turbulent forecast models. From a theoretical perspective, the dynamical properties of these methods are poorly understood. One of the central mysteries is the numerical phenomenon known as catastrophic filter divergence, whereby ensemble-state estimates explode to machine infinity, despite the true state remaining in a bounded region. In this article we provide a breakthrough insight into the phenomenon, by introducing a simple and natural forecast model that transparently exhibits catastrophic filter divergence under all ensemble methods and a large set of initializations. For this model, catastrophic filter divergence is not an artifact of numerical instability, but rather a true dynamical property of the filter. The divergence is not only validated numerically but also proven rigorously. The model cleanly illustrates mechanisms that give rise to catastrophic divergence and confirms intuitive accounts of the phenomena given in past literature.

  11. Dynamics of nonlinear feedback control.

    Science.gov (United States)

    Snippe, H P; van Hateren, J H

    2007-05-01

    Feedback control in neural systems is ubiquitous. Here we study the mathematics of nonlinear feedback control. We compare models in which the input is multiplied by a dynamic gain (multiplicative control) with models in which the input is divided by a dynamic attenuation (divisive control). The gain signal (resp. the attenuation signal) is obtained through a concatenation of an instantaneous nonlinearity and a linear low-pass filter operating on the output of the feedback loop. For input steps, the dynamics of gain and attenuation can be very different, depending on the mathematical form of the nonlinearity and the ordering of the nonlinearity and the filtering in the feedback loop. Further, the dynamics of feedback control can be strongly asymmetrical for increment versus decrement steps of the input. Nevertheless, for each of the models studied, the nonlinearity in the feedback loop can be chosen such that immediately after an input step, the dynamics of feedback control is symmetric with respect to increments versus decrements. Finally, we study the dynamics of the output of the control loops and find conditions under which overshoots and undershoots of the output relative to the steady-state output occur when the models are stimulated with low-pass filtered steps. For small steps at the input, overshoots and undershoots of the output do not occur when the filtering in the control path is faster than the low-pass filtering at the input. For large steps at the input, however, results depend on the model, and for some of the models, multiple overshoots and undershoots can occur even with a fast control path.

  12. Image quality of ct angiography using model-based iterative reconstruction in infants with congenital heart disease: Comparison with filtered back projection and hybrid iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Qianjun, E-mail: jiaqianjun@126.com [Southern Medical University, Guangzhou, Guangdong (China); Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong (China); Department of Catheterization Lab, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong (China); Zhuang, Jian, E-mail: zhuangjian5413@tom.com [Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong (China); Jiang, Jun, E-mail: 81711587@qq.com [Department of Radiology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong (China); Li, Jiahua, E-mail: 970872804@qq.com [Department of Catheterization Lab, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong (China); Huang, Meiping, E-mail: huangmeiping_vip@163.com [Department of Catheterization Lab, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong (China); Southern Medical University, Guangzhou, Guangdong (China); Liang, Changhong, E-mail: cjr.lchh@vip.163.com [Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong (China); Southern Medical University, Guangzhou, Guangdong (China)

    2017-01-15

    Purpose: To compare the image quality, rate of coronary artery visualization and diagnostic accuracy of 256-slice multi-detector computed tomography angiography (CTA) with prospective electrocardiographic (ECG) triggering at a tube voltage of 80 kVp between 3 reconstruction algorithms (filtered back projection (FBP), hybrid iterative reconstruction (iDose{sup 4}) and iterative model reconstruction (IMR)) in infants with congenital heart disease (CHD). Methods: Fifty-one infants with CHD who underwent cardiac CTA in our institution between December 2014 and March 2015 were included. The effective radiation doses were calculated. Imaging data were reconstructed using the FBP, iDose{sup 4} and IMR algorithms. Parameters of objective image quality (noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR)); subjective image quality (overall image quality, image noise and margin sharpness); coronary artery visibility; and diagnostic accuracy for the three algorithms were measured and compared. Results: The mean effective radiation dose was 0.61 ± 0.32 mSv. Compared to FBP and iDose{sup 4}, IMR yielded significantly lower noise (P < 0.01), higher SNR and CNR values (P < 0.01), and a greater subjective image quality score (P < 0.01). The total number of coronary segments visualized was significantly higher for both iDose{sup 4} and IMR than for FBP (P = 0.002 and P = 0.025, respectively), but there was no significant difference in this parameter between iDose{sup 4} and IMR (P = 0.397). There was no significant difference in the diagnostic accuracy between the FBP, iDose{sup 4} and IMR algorithms (χ{sup 2} = 0.343, P = 0.842). Conclusions: For infants with CHD undergoing cardiac CTA, the IMR reconstruction algorithm provided significantly increased objective and subjective image quality compared with the FBP and iDose{sup 4} algorithms. However, IMR did not improve the diagnostic accuracy or coronary artery visualization compared with iDose{sup 4}.

  13. Nonlinear Science

    CERN Document Server

    Yoshida, Zensho

    2010-01-01

    This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl

  14. Nonlinear oscillations

    CERN Document Server

    Nayfeh, Ali Hasan

    1995-01-01

    Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

  15. Apparatus for filtering radioactive fluids

    International Nuclear Information System (INIS)

    Gischel, E.H.

    1975-01-01

    Apparatus is provided for filtering radioactive particles from the cooling and/or auxiliary process water of a nuclear reactor, or nuclear fuel processing plant, or other installations wherein radioactive fluid systems are known to exist. The apparatus affords disposal of the captured particles in a manner which minimizes the exposure of operating personnel to radioactivity. The apparatus comprises a housing adapted to contain a removable filter cartridge assembly, a valve normally closing the lower end of the housing, an upwardly-open shipping cask located below the valve, and an elongated operating rod assembly projecting upwardly from the filter cartridge assembly and through the upper end of the housing to enable a workman to dismount the filter cartridge assembly from its housing and to lower the filter cartridge assembly through the valve and into the cask from a remote location above the housing. (U.S.)

  16. NONLINEAR DYNAMICS OF ORGANIZATION DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Денис Антонович БУШУЕВ

    2016-02-01

    Full Text Available The nonlinear behavior of organizations in development projects is considered. The nonlinear behavior is initiated in the growth of organizations and requires a restructuring of governance in identifying dysfunctions. Such a restructuring is needed in the area of soft components, determining the organizational levels of competence in the management of projects, programs, portfolios and heads of the Project Management Office. An important component of the strategic development of the organization is the proposed concept for formation and management of development programs in the context according to their life cycle. It should take into account the non-linear behavior of the soft components of the system and violation of functional processes of the organization. The specific management syndromes of projects and programs are considered. Such as syndromes time management project linked to the singular points of the project. These syndromes are "shift to the right", "point of no return", "braking at the end of the project" and others.

  17. Adaptive Filtering Using Recurrent Neural Networks

    Science.gov (United States)

    Parlos, Alexander G.; Menon, Sunil K.; Atiya, Amir F.

    2005-01-01

    A method for adaptive (or, optionally, nonadaptive) filtering has been developed for estimating the states of complex process systems (e.g., chemical plants, factories, or manufacturing processes at some level of abstraction) from time series of measurements of system inputs and outputs. The method is based partly on the fundamental principles of the Kalman filter and partly on the use of recurrent neural networks. The standard Kalman filter involves an assumption of linearity of the mathematical model used to describe a process system. The extended Kalman filter accommodates a nonlinear process model but still requires linearization about the state estimate. Both the standard and extended Kalman filters involve the often unrealistic assumption that process and measurement noise are zero-mean, Gaussian, and white. In contrast, the present method does not involve any assumptions of linearity of process models or of the nature of process noise; on the contrary, few (if any) assumptions are made about process models, noise models, or the parameters of such models. In this regard, the method can be characterized as one of nonlinear, nonparametric filtering. The method exploits the unique ability of neural networks to approximate nonlinear functions. In a given case, the process model is limited mainly by limitations of the approximation ability of the neural networks chosen for that case. Moreover, despite the lack of assumptions regarding process noise, the method yields minimum- variance filters. In that they do not require statistical models of noise, the neural- network-based state filters of this method are comparable to conventional nonlinear least-squares estimators.

  18. Harmonic distortion in microwave photonic filters.

    Science.gov (United States)

    Rius, Manuel; Mora, José; Bolea, Mario; Capmany, José

    2012-04-09

    We present a theoretical and experimental analysis of nonlinear microwave photonic filters. Far from the conventional condition of low modulation index commonly used to neglect high-order terms, we have analyzed the harmonic distortion involved in microwave photonic structures with periodic and non-periodic frequency responses. We show that it is possible to design microwave photonic filters with reduced harmonic distortion and high linearity even under large signal operation.

  19. Nonlinear systems

    CERN Document Server

    Palmero, Faustino; Lemos, M; Sánchez-Rey, Bernardo; Casado-Pascual, Jesús

    2018-01-01

    This book presents an overview of the most recent advances in nonlinear science. It provides a unified view of nonlinear properties in many different systems and highlights many  new developments. While volume 1 concentrates on mathematical theory and computational techniques and challenges, which are essential for the study of nonlinear science, this second volume deals with nonlinear excitations in several fields. These excitations can be localized and transport energy and matter in the form of breathers, solitons, kinks or quodons with very different characteristics, which are discussed in the book. They can also transport electric charge, in which case they are known as polarobreathers or solectrons. Nonlinear excitations can influence function and structure in biology, as for example, protein folding. In crystals and other condensed matter, they can modify transport properties, reaction kinetics and interact with defects. There are also engineering applications in electric lattices, Josephson junction a...

  20. Pescara benchmarks: nonlinear identification

    Science.gov (United States)

    Gandino, E.; Garibaldi, L.; Marchesiello, S.

    2011-07-01

    Recent nonlinear methods are suitable for identifying large systems with lumped nonlinearities, but in practice most structural nonlinearities are distributed and an ideal nonlinear identification method should cater for them as well. In order to extend the current NSI method to be applied also on realistic large engineering structures, a modal counterpart of the method is proposed in this paper. The modal NSI technique is applied on one of the reinforced concrete beams that have been tested in Pescara, under the project titled "Monitoring and diagnostics of railway bridges by means of the analysis of the dynamic response due to train crossing", financed by Italian Ministry of Research. The beam showed a softening nonlinear behaviour, so that the nonlinearity concerning the first mode is characterized and its force contribution is quantified. Moreover, estimates for the modal parameters are obtained and the model is validated by comparing the measured and the reconstructed output. The identified estimates are also used to accurately predict the behaviour of the same beam, when subject to different initial conditions.

  1. Pescara benchmarks: nonlinear identification

    International Nuclear Information System (INIS)

    Gandino, E; Garibaldi, L; Marchesiello, S

    2011-01-01

    Recent nonlinear methods are suitable for identifying large systems with lumped nonlinearities, but in practice most structural nonlinearities are distributed and an ideal nonlinear identification method should cater for them as well. In order to extend the current NSI method to be applied also on realistic large engineering structures, a modal counterpart of the method is proposed in this paper. The modal NSI technique is applied on one of the reinforced concrete beams that have been tested in Pescara, under the project titled M onitoring and diagnostics of railway bridges by means of the analysis of the dynamic response due to train crossing , financed by Italian Ministry of Research. The beam showed a softening nonlinear behaviour, so that the nonlinearity concerning the first mode is characterized and its force contribution is quantified. Moreover, estimates for the modal parameters are obtained and the model is validated by comparing the measured and the reconstructed output. The identified estimates are also used to accurately predict the behaviour of the same beam, when subject to different initial conditions.

  2. Device Applications of Nonlinear Dynamics

    CERN Document Server

    Baglio, Salvatore

    2006-01-01

    This edited book is devoted specifically to the applications of complex nonlinear dynamic phenomena to real systems and device applications. While in the past decades there has been significant progress in the theory of nonlinear phenomena under an assortment of system boundary conditions and preparations, there exist comparatively few devices that actually take this rich behavior into account. "Device Applications of Nonlinear Dynamics" applies and exploits this knowledge to make devices which operate more efficiently and cheaply, while affording the promise of much better performance. Given the current explosion of ideas in areas as diverse as molecular motors, nonlinear filtering theory, noise-enhanced propagation, stochastic resonance and networked systems, the time is right to integrate the progress of complex systems research into real devices.

  3. Exact solutions for the higher-order nonlinear Schoerdinger equation in nonlinear optical fibres

    International Nuclear Information System (INIS)

    Liu Chunping

    2005-01-01

    First, by using the generally projective Riccati equation method, many kinds of exact solutions for the higher-order nonlinear Schoerdinger equation in nonlinear optical fibres are obtained in a unified way. Then, some relations among these solutions are revealed

  4. Bag filters

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, M; Komeda, I; Takizaki, K

    1982-01-01

    Bag filters are widely used throughout the cement industry for recovering raw materials and products and for improving the environment. Their general mechanism, performance and advantages are shown in a classification table, and there are comparisons and explanations. The outer and inner sectional construction of the Shinto ultra-jet collector for pulverized coal is illustrated and there are detailed descriptions of dust cloud prevention, of measures used against possible sources of ignition, of oxygen supply and of other topics. Finally, explanations are given of matters that require careful and comprehensive study when selecting equipment.

  5. Digital filters

    CERN Document Server

    Hamming, Richard W

    1997-01-01

    Digital signals occur in an increasing number of applications: in telephone communications; in radio, television, and stereo sound systems; and in spacecraft transmissions, to name just a few. This introductory text examines digital filtering, the processes of smoothing, predicting, differentiating, integrating, and separating signals, as well as the removal of noise from a signal. The processes bear particular relevance to computer applications, one of the focuses of this book.Readers will find Hamming's analysis accessible and engaging, in recognition of the fact that many people with the s

  6. Filter Pattern Search Algorithms for Mixed Variable Constrained Optimization Problems

    National Research Council Canada - National Science Library

    Abramson, Mark A; Audet, Charles; Dennis, Jr, J. E

    2004-01-01

    .... This class combines and extends the Audet-Dennis Generalized Pattern Search (GPS) algorithms for bound constrained mixed variable optimization, and their GPS-filter algorithms for general nonlinear constraints...

  7. Nonlinear optics

    CERN Document Server

    Boyd, Robert W

    2013-01-01

    Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q

  8. An evaluation of a pre-charging pulse-jet filter for small combustor particulate control. Project quarterly report, December 1, 1989--February 28, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Quimby, J.M.

    1990-04-01

    The objective of this test program is the performance and economic evaluation of a pre charged-pulse jet filter as the principal particulate control device for a commercial or industrial scale coal fired combustor. Performance factors that will be considered are the effects of particle charge, air/cloth ratio, fabric types, percent humidity and inlet particulate loading on fine particle collection efficiency, and pressure drop. Economic factors that will be considered are capital costs, energy and other operating costs, and maintenance costs. The program will result in a recommendation regarding the relative suitability of the pre charged pulse-jet filter for small combustor particulate control, as compared to other control devices. Fine particle control capability, ease of operation, and overall economics will be taken into consideration in making comparisons.

  9. Sparse PDF maps for non-linear multi-resolution image operations

    KAUST Repository

    Hadwiger, Markus; Sicat, Ronell Barrera; Beyer, Johanna; Krü ger, Jens J.; Mö ller, Torsten

    2012-01-01

    feasible for gigapixel images, while enabling direct evaluation of a variety of non-linear operators from the same representation. We illustrate this versatility for antialiased color mapping, O(n) local Laplacian filters, smoothed local histogram filters

  10. Nonlinear systems

    National Research Council Canada - National Science Library

    Drazin, P. G

    1992-01-01

    This book is an introduction to the theories of bifurcation and chaos. It treats the solution of nonlinear equations, especially difference and ordinary differential equations, as a parameter varies...

  11. Nonlinear analysis

    CERN Document Server

    Gasinski, Leszek

    2005-01-01

    Hausdorff Measures and Capacity. Lebesgue-Bochner and Sobolev Spaces. Nonlinear Operators and Young Measures. Smooth and Nonsmooth Analysis and Variational Principles. Critical Point Theory. Eigenvalue Problems and Maximum Principles. Fixed Point Theory.

  12. Passive target tracking using marginalized particle filter

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A marginalized particle filtering(MPF)approach is proposed for target tracking under the background of passive measurement.Essentially,the MPF is a combination of particle filtering technique and Kalman filter.By making full use of marginalization,the distributions of the tractable linear part of the total state variables are updated analytically using Kalman filter,and only the lower-dimensional nonlinear state variable needs to be dealt with using particle filter.Simulation studies are performed on an illustrative example,and the results show that the MPF method leads to a significant reduction of the tracking errors when compared with the direct particle implementation.Real data test results also validate the effectiveness of the presented method.

  13. Particle filters for random set models

    CERN Document Server

    Ristic, Branko

    2013-01-01

    “Particle Filters for Random Set Models” presents coverage of state estimation of stochastic dynamic systems from noisy measurements, specifically sequential Bayesian estimation and nonlinear or stochastic filtering. The class of solutions presented in this book is based  on the Monte Carlo statistical method. The resulting  algorithms, known as particle filters, in the last decade have become one of the essential tools for stochastic filtering, with applications ranging from  navigation and autonomous vehicles to bio-informatics and finance. While particle filters have been around for more than a decade, the recent theoretical developments of sequential Bayesian estimation in the framework of random set theory have provided new opportunities which are not widely known and are covered in this book. These recent developments have dramatically widened the scope of applications, from single to multiple appearing/disappearing objects, from precise to imprecise measurements and measurement models. This book...

  14. Design and control of LCL-filter with active damping for Active Power Filter

    DEFF Research Database (Denmark)

    Zeng, Guohong; Rasmussen, Tonny Wederberg; Ma, L

    2010-01-01

    of LCL-filter for APF is introduced, which is aimed for simplified the implementation. To suppress the resonance that may be excited in the system, which brings in stability problems, an active damping control strategy using the current feed-back of the filter capacitor is adopted. By selecting two equal......In the application of shunt Active Power Filter (APF) to compensate nonlinear load's harmonic, reactive and negative sequence current, it is more effective to use a LCL-filter than an L-filter as an interface between the Voltage Source Converter (VSC) and grid. In this paper, a designing procedure...... or similar inductances, the filter designing become more simple and effective, meanwhile the capacitance requirement is minimized. A pole-zero automatic cancellation phenomenon is discussed in this paper, which can be applied to simplify the current regulator designing. The tuning method is presented, based...

  15. Reduced nonlinearities in 100-nm high SOI waveguides

    Science.gov (United States)

    Lacava, C.; Marchetti, R.; Vitali, V.; Cristiani, I.; Giuliani, G.; Fournier, M.; Bernabe, S.; Minzioni, P.

    2016-03-01

    Here we show the results of an experimental analysis dedicated to investigate the impact of optical non linear effects, such as two-photon absorption (TPA), free-carrier absorption (FCA) and free-carrier dispersion (FCD), on the performance of integrated micro-resonator based filters for application in WDM telecommunication systems. The filters were fabricated using SOI (Silicon-on-Insulator) technology by CEA-Leti, in the frame of the FP7 Fabulous Project, which aims to develop low-cost and high-performance integrated optical devices to be used in new generation passive optical- networks (NG-PON2). Different designs were tested, including both ring-based structures and racetrack-based structures, with single-, double- or triple- resonator configuration, and using different waveguide cross-sections (from 500 x 200 nm to 825 x 100 nm). Measurements were carried out using an external cavity tunable laser source operating in the extended telecom bandwidth, using both continuous wave signals and 10 Gbit/s modulated signals. Results show that the use 100-nm high waveguide allows reducing the impact of non-linear losses, with respect to the standard waveguides, thus increasing by more than 3 dB the maximum amount of optical power that can be injected into the devices before causing significant non-linear effects. Measurements with OOK-modulated signals at 10 Gbit/s showed that TPA and FCA don't affect the back-to-back BER of the signal, even when long pseudo-random-bit-sequences (PRBS) are used, as the FCD-induced filter-detuning increases filter losses but "prevents" excessive signal degradation.

  16. Volterra Filtering for ADC Error Correction

    Directory of Open Access Journals (Sweden)

    J. Saliga

    2001-09-01

    Full Text Available Dynamic non-linearity of analog-to-digital converters (ADCcontributes significantly to the distortion of digitized signals. Thispaper introduces a new effective method for compensation such adistortion based on application of Volterra filtering. Considering ana-priori error model of ADC allows finding an efficient inverseVolterra model for error correction. Efficiency of proposed method isdemonstrated on experimental results.

  17. Q-Method Extended Kalman Filter

    Science.gov (United States)

    Zanetti, Renato; Ainscough, Thomas; Christian, John; Spanos, Pol D.

    2012-01-01

    A new algorithm is proposed that smoothly integrates non-linear estimation of the attitude quaternion using Davenport s q-method and estimation of non-attitude states through an extended Kalman filter. The new method is compared to a similar existing algorithm showing its similarities and differences. The validity of the proposed approach is confirmed through numerical simulations.

  18. Adaptive Filtering for Non-Gaussian Processes

    DEFF Research Database (Denmark)

    Kidmose, Preben

    2000-01-01

    A new stochastic gradient robust filtering method, based on a non-linear amplitude transformation, is proposed. The method requires no a priori knowledge of the characteristics of the input signals and it is insensitive to the signals distribution and to the stationarity of the signals. A simulat...

  19. Higher-order chaotic oscillator using active bessel filter

    DEFF Research Database (Denmark)

    Lindberg, Erik; Mykolaitis, Gytis; Bumelien, Skaidra

    2010-01-01

    A higher-order oscillator, including a nonlinear unit and an 8th-order low-pass active Bessel filter is described. The Bessel unit plays the role of "three-in-one": a delay line, an amplifier and a filter. Results of hardware experiments and numerical simulation are presented. Depending...

  20. Particle filter based MAP state estimation: A comparison

    NARCIS (Netherlands)

    Saha, S.; Boers, Y.; Driessen, J.N.; Mandal, Pranab K.; Bagchi, Arunabha

    2009-01-01

    MAP estimation is a good alternative to MMSE for certain applications involving nonlinear non Gaussian systems. Recently a new particle filter based MAP estimator has been derived. This new method extracts the MAP directly from the output of a running particle filter. In the recent past, a Viterbi

  1. Projectables

    DEFF Research Database (Denmark)

    Rasmussen, Troels A.; Merritt, Timothy R.

    2017-01-01

    CNC cutting machines have become essential tools for designers and architects enabling rapid prototyping, model-building and production of high quality components. Designers often cut from new materials, discarding the irregularly shaped remains. We introduce ProjecTables, a visual augmented...... reality system for interactive packing of model parts onto sheet materials. ProjecTables enables designers to (re)use scrap materials for CNC cutting that would have been previously thrown away, at the same time supporting aesthetic choices related to wood grain, avoiding surface blemishes, and other...... relevant material properties. We conducted evaluations of ProjecTables with design students from Aarhus School of Architecture, demonstrating that participants could quickly and easily place and orient model parts reducing material waste. Contextual interviews and ideation sessions led to a deeper...

  2. Convergent Filter Bases

    Directory of Open Access Journals (Sweden)

    Coghetto Roland

    2015-09-01

    Full Text Available We are inspired by the work of Henri Cartan [16], Bourbaki [10] (TG. I Filtres and Claude Wagschal [34]. We define the base of filter, image filter, convergent filter bases, limit filter and the filter base of tails (fr: filtre des sections.

  3. Comparison of Sigma-Point and Extended Kalman Filters on a Realistic Orbit Determination Scenario

    Science.gov (United States)

    Gaebler, John; Hur-Diaz. Sun; Carpenter, Russell

    2010-01-01

    Sigma-point filters have received a lot of attention in recent years as a better alternative to extended Kalman filters for highly nonlinear problems. In this paper, we compare the performance of the additive divided difference sigma-point filter to the extended Kalman filter when applied to orbit determination of a realistic operational scenario based on the Interstellar Boundary Explorer mission. For the scenario studied, both filters provided equivalent results. The performance of each is discussed in detail.

  4. A stabilised nodal spectral element method for fully nonlinear water waves

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Eskilsson, C.; Bigoni, Daniele

    2016-01-01

    can cause severe aliasing problems and consequently numerical instability for marginally resolved or very steep waves. We show how the scheme can be stabilised through a combination of over-integration of the Galerkin projections and a mild spectral filtering on a per element basis. This effectively......We present an arbitrary-order spectral element method for general-purpose simulation of non-overturning water waves, described by fully nonlinear potential theory. The method can be viewed as a high-order extension of the classical finite element method proposed by Cai et al. (1998) [5], although...... the numerical implementation differs greatly. Features of the proposed spectral element method include: nodal Lagrange basis functions, a general quadrature-free approach and gradient recovery using global L2 projections. The quartic nonlinear terms present in the Zakharov form of the free surface conditions...

  5. Mixed-Degree Spherical Simplex-Radial Cubature Kalman Filter

    Directory of Open Access Journals (Sweden)

    Shiyuan Wang

    2017-01-01

    Full Text Available Conventional low degree spherical simplex-radial cubature Kalman filters often generate low filtering accuracy or even diverge for handling highly nonlinear systems. The high-degree Kalman filters can improve filtering accuracy at the cost of increasing computational complexity; nevertheless their stability will be influenced by the negative weights existing in the high-dimensional systems. To efficiently improve filtering accuracy and stability, a novel mixed-degree spherical simplex-radial cubature Kalman filter (MSSRCKF is proposed in this paper. The accuracy analysis shows that the true posterior mean and covariance calculated by the proposed MSSRCKF can agree accurately with the third-order moment and the second-order moment, respectively. Simulation results show that, in comparison with the conventional spherical simplex-radial cubature Kalman filters that are based on the same degrees, the proposed MSSRCKF can perform superior results from the aspects of filtering accuracy and computational complexity.

  6. CHANGE DETECTION VIA SELECTIVE GUIDED CONTRASTING FILTERS

    Directory of Open Access Journals (Sweden)

    Y. V. Vizilter

    2017-05-01

    Full Text Available Change detection scheme based on guided contrasting was previously proposed. Guided contrasting filter takes two images (test and sample as input and forms the output as filtered version of test image. Such filter preserves the similar details and smooths the non-similar details of test image with respect to sample image. Due to this the difference between test image and its filtered version (difference map could be a basis for robust change detection. Guided contrasting is performed in two steps: at the first step some smoothing operator (SO is applied for elimination of test image details; at the second step all matched details are restored with local contrast proportional to the value of some local similarity coefficient (LSC. The guided contrasting filter was proposed based on local average smoothing as SO and local linear correlation as LSC. In this paper we propose and implement new set of selective guided contrasting filters based on different combinations of various SO and thresholded LSC. Linear average and Gaussian smoothing, nonlinear median filtering, morphological opening and closing are considered as SO. Local linear correlation coefficient, morphological correlation coefficient (MCC, mutual information, mean square MCC and geometrical correlation coefficients are applied as LSC. Thresholding of LSC allows operating with non-normalized LSC and enhancing the selective properties of guided contrasting filters: details are either totally recovered or not recovered at all after the smoothing. These different guided contrasting filters are tested as a part of previously proposed change detection pipeline, which contains following stages: guided contrasting filtering on image pyramid, calculation of difference map, binarization, extraction of change proposals and testing change proposals using local MCC. Experiments on real and simulated image bases demonstrate the applicability of all proposed selective guided contrasting filters. All

  7. Nonlinear optimization

    CERN Document Server

    Ruszczynski, Andrzej

    2011-01-01

    Optimization is one of the most important areas of modern applied mathematics, with applications in fields from engineering and economics to finance, statistics, management science, and medicine. While many books have addressed its various aspects, Nonlinear Optimization is the first comprehensive treatment that will allow graduate students and researchers to understand its modern ideas, principles, and methods within a reasonable time, but without sacrificing mathematical precision. Andrzej Ruszczynski, a leading expert in the optimization of nonlinear stochastic systems, integrates the theory and the methods of nonlinear optimization in a unified, clear, and mathematically rigorous fashion, with detailed and easy-to-follow proofs illustrated by numerous examples and figures. The book covers convex analysis, the theory of optimality conditions, duality theory, and numerical methods for solving unconstrained and constrained optimization problems. It addresses not only classical material but also modern top...

  8. Spectral Diagonal Ensemble Kalman Filters

    Czech Academy of Sciences Publication Activity Database

    Kasanický, Ivan; Mandel, Jan; Vejmelka, Martin

    2015-01-01

    Roč. 22, č. 4 (2015), s. 485-497 ISSN 1023-5809 R&D Projects: GA ČR GA13-34856S Grant - others:NSF(US) DMS-1216481 Institutional support: RVO:67985807 Keywords : data assimilation * ensemble Kalman filter * spectral representation Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.321, year: 2015

  9. Blended particle filters for large-dimensional chaotic dynamical systems

    Science.gov (United States)

    Majda, Andrew J.; Qi, Di; Sapsis, Themistoklis P.

    2014-01-01

    A major challenge in contemporary data science is the development of statistically accurate particle filters to capture non-Gaussian features in large-dimensional chaotic dynamical systems. Blended particle filters that capture non-Gaussian features in an adaptively evolving low-dimensional subspace through particles interacting with evolving Gaussian statistics on the remaining portion of phase space are introduced here. These blended particle filters are constructed in this paper through a mathematical formalism involving conditional Gaussian mixtures combined with statistically nonlinear forecast models compatible with this structure developed recently with high skill for uncertainty quantification. Stringent test cases for filtering involving the 40-dimensional Lorenz 96 model with a 5-dimensional adaptive subspace for nonlinear blended filtering in various turbulent regimes with at least nine positive Lyapunov exponents are used here. These cases demonstrate the high skill of the blended particle filter algorithms in capturing both highly non-Gaussian dynamical features as well as crucial nonlinear statistics for accurate filtering in extreme filtering regimes with sparse infrequent high-quality observations. The formalism developed here is also useful for multiscale filtering of turbulent systems and a simple application is sketched below. PMID:24825886

  10. Miniaturized dielectric waveguide filters

    OpenAIRE

    Sandhu, MY; Hunter, IC

    2016-01-01

    Design techniques for a new class of integrated monolithic high-permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled transverse electromagnetic filters with the same unloaded Q-factor. Designs for Chebyshev and asymmetric generalised Chebyshev filter and a diplexer are presented with experimental results for an 1800 MHz Chebyshev filter and a 1700 MHz generalised Chebyshev filter showing excellent agreement with theory.

  11. Image processing with a cellular nonlinear network

    International Nuclear Information System (INIS)

    Morfu, S.

    2005-01-01

    A cellular nonlinear network (CNN) based on uncoupled nonlinear oscillators is proposed for image processing purposes. It is shown theoretically and numerically that the contrast of an image loaded at the nodes of the CNN is strongly enhanced, even if this one is initially weak. An image inversion can be also obtained without reconfiguration of the network whereas a gray levels extraction can be performed with an additional threshold filtering. Lastly, an electronic implementation of this CNN is presented

  12. Solution of problems with material nonlinearities with a coupled finite element/boundary element scheme using an iterative solver. Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Koteras, J.R.

    1996-01-01

    The prediction of stresses and displacements around tunnels buried deep within the earth is an important class of geomechanics problems. The material behavior immediately surrounding the tunnel is typically nonlinear. The surrounding mass, even if it is nonlinear, can usually be characterized by a simple linear elastic model. The finite element method is best suited for modeling nonlinear materials of limited volume, while the boundary element method is well suited for modeling large volumes of linear elastic material. A computational scheme that couples the finite element and boundary element methods would seem particularly useful for geomechanics problems. A variety of coupling schemes have been proposed, but they rely on direct solution methods. Direct solution techniques have large storage requirements that become cumbersome for large-scale three-dimensional problems. An alternative to direct solution methods is iterative solution techniques. A scheme has been developed for coupling the finite element and boundary element methods that uses an iterative solution method. This report shows that this coupling scheme is valid for problems where nonlinear material behavior occurs in the finite element region

  13. Nonlinear H-infinity control, Hamiltonian systems and Hamilton-Jacobi equations

    CERN Document Server

    Aliyu, MDS

    2011-01-01

    A comprehensive overview of nonlinear Haeu control theory for both continuous-time and discrete-time systems, Nonlinear Haeu-Control, Hamiltonian Systems and Hamilton-Jacobi Equations covers topics as diverse as singular nonlinear Haeu-control, nonlinear Haeu -filtering, mixed H2/ Haeu-nonlinear control and filtering, nonlinear Haeu-almost-disturbance-decoupling, and algorithms for solving the ubiquitous Hamilton-Jacobi-Isaacs equations. The link between the subject and analytical mechanics as well as the theory of partial differential equations is also elegantly summarized in a single chapter

  14. International Conference on Applications in Nonlinear Dynamics

    CERN Document Server

    Longhini, Patrick; Palacios, Antonio

    2017-01-01

    This book presents collaborative research works carried out by experimentalists and theorists around the world in the field of nonlinear dynamical systems. It provides a forum for applications of nonlinear systems while solving practical problems in science and engineering. Topics include: Applied Nonlinear Optics, Sensor, Radar & Communication Signal Processing, Nano Devices, Nonlinear Biomedical Applications, Circuits & Systems, Coupled Nonlinear Oscillator, Precision Timing Devices, Networks, and other contemporary topics in the general field of Nonlinear Science. This book provides a comprehensive report of the various research projects presented at the International Conference on Applications in Nonlinear Dynamics (ICAND 2016) held in Denver, Colorado, 2016. It can be a valuable tool for scientists and engineering interested in connecting ideas and methods in nonlinear dynamics with actual design, fabrication and implementation of engineering applications or devices.

  15. Generalized design of high performance shunt active power filter with output LCL filter

    DEFF Research Database (Denmark)

    Tang, Yi; Loh, Poh Chiang; Wang, Peng

    2012-01-01

    parameters, interactions between resonance damping and harmonic compensation, bandwidth design of the closed-loop system, and active damping implementation with fewer current sensors. These described design concerns, together with their generalized design procedure, are applied to an analytical example......This paper concentrates on the design, control, and implementation of an LCL-filter-based shunt active power filter (SAPF), which can effectively compensate for harmonic currents produced by nonlinear loads in a three-phase three-wire power system. With an LCL filter added at its output...

  16. Image statistics and nonlinear artifacts in composed transmission x-ray tomography

    International Nuclear Information System (INIS)

    Duerinckx, A.J.G.

    1979-01-01

    Knowledge of the image quality and image statistics in Computed Tomography (CT) images obtained with transmission x-ray CT scanners can increase the amount of clinically useful information that can be retrieved. Artifacts caused by nonlinear shadows are strongly object-dependent and are visible over larger areas of the image. No simple technique exists for their complete elimination. One source of artifacts in the first order statistics is the nonlinearities in the measured shadow or projection data used to reconstruct the image. One of the leading causes is the polychromaticity of the x-ray beam used in transmission CT scanners. Ways to improve the resulting image quality and techniques to extract additional information using dual energy scanning are discussed. A unique formalism consisting of a vector representation of the material dependence of the photon-tissue interactions is generalized to allow an in depth analysis. Poly-correction algorithms are compared using this analytic approach. Both quantum and detector electronic noise decrease the quality or information content of first order statistics. Preliminary results are presented using an heuristic adaptive nonlinear noise filter system for projection data. This filter system can be improved and/or modified to remove artifacts in both first and second order image statistics. Artifacts in the second order image statistics arise from the contribution of quantum noise. This can be described with a nonlinear detection equivalent model, similar to the model used to study artifacts in first order statistics. When analyzing these artifacts in second order statistics, one can divide them into linear artifacts, which do not present any problem of interpretation, and nonlinear artifacts, referred to as noise artifacts. A study of noise artifacts is presented together with a discussion of their relative importance in diagnostic radiology

  17. Active RC filter based implementation analysis part of two channel hybrid filter bank

    Directory of Open Access Journals (Sweden)

    Stojanović Vidosav

    2014-01-01

    Full Text Available In the present paper, a new design method for continuous-time powersymmetric active RC filters for Hybrid Filter Bank (HFB is proposed. Some theoretical properties of continious-time power-symmetric filters bank in a more general perspective are studied. This includes the derivation of a new general analytical form, and a study of poles and zeros locations in s-plane. In the proposed design method the analytic solution of filter coefficients is solved in sdomain using only one nonlinear equation Finally, the proposed approximation is compared to standard approximations. It was shown that attenuation and group delay characteristic of the proposed filter lie between Butterworth and elliptic characteristics. [Projekat Ministarstva nauke Republike Srbije, br. 32009TR

  18. Recirculating electric air filter

    Science.gov (United States)

    Bergman, W.

    1985-01-09

    An electric air filter cartridge has a cylindrical inner high voltage electrode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  19. Multi-Canister overpack internal HEPA filters

    International Nuclear Information System (INIS)

    SMITH, K.E.

    1998-01-01

    The rationale for locating a filter assembly inside each Multi-Canister Overpack (MCO) rather than include the filter in the Cold Vacuum Drying (CVD) process piping system was to eliminate the potential for contamination to the operators, processing equipment, and the MCO. The internal HEPA filters provide essential protection to facility workers from alpha contamination, both external skin contamination and potential internal depositions. Filters installed in the CVD process piping cannot mitigate potential contamination when breaking the process piping connections. Experience with K-Basin material has shown that even an extremely small release can result in personnel contamination and costly schedule disruptions to perform equipment and facility decontamination. Incorporating the filter function internal to the MCO rather than external is consistent with ALARA requirements of 10 CFR 835. Based on the above, the SNF Project position is to retain the internal HEPA filters in the MCO design

  20. Optimization-based particle filter for state and parameter estimation

    Institute of Scientific and Technical Information of China (English)

    Li Fu; Qi Fei; Shi Guangming; Zhang Li

    2009-01-01

    In recent years, the theory of particle filter has been developed and widely used for state and parameter estimation in nonlinear/non-Gaussian systems. Choosing good importance density is a critical issue in particle filter design. In order to improve the approximation of posterior distribution, this paper provides an optimization-based algorithm (the steepest descent method) to generate the proposal distribution and then sample particles from the distribution. This algorithm is applied in 1-D case, and the simulation results show that the proposed particle filter performs better than the extended Kalman filter (EKF), the standard particle filter (PF), the extended Kalman particle filter (PF-EKF) and the unscented particle filter (UPF) both in efficiency and in estimation precision.

  1. Passive Power Filters

    CERN Document Server

    Künzi, R.

    2015-06-15

    Power converters require passive low-pass filters which are capable of reducing voltage ripples effectively. In contrast to signal filters, the components of power filters must carry large currents or withstand large voltages, respectively. In this paper, three different suitable filter struc tures for d.c./d.c. power converters with inductive load are introduced. The formulas needed to calculate the filter components are derived step by step and practical examples are given. The behaviour of the three discussed filters is compared by means of the examples. P ractical aspects for the realization of power filters are also discussed.

  2. Filter replacement lifetime prediction

    Science.gov (United States)

    Hamann, Hendrik F.; Klein, Levente I.; Manzer, Dennis G.; Marianno, Fernando J.

    2017-10-25

    Methods and systems for predicting a filter lifetime include building a filter effectiveness history based on contaminant sensor information associated with a filter; determining a rate of filter consumption with a processor based on the filter effectiveness history; and determining a remaining filter lifetime based on the determined rate of filter consumption. Methods and systems for increasing filter economy include measuring contaminants in an internal and an external environment; determining a cost of a corrosion rate increase if unfiltered external air intake is increased for cooling; determining a cost of increased air pressure to filter external air; and if the cost of filtering external air exceeds the cost of the corrosion rate increase, increasing an intake of unfiltered external air.

  3. Optimization of filter loading

    International Nuclear Information System (INIS)

    Turney, J.H.; Gardiner, D.E.; Sacramento Municipal Utility District, Herald, CA)

    1985-01-01

    The introduction of 10 CFR Part 61 has created potential difficulties in the disposal of spent cartridge filters. When this report was prepared, Rancho Seco had no method of packaging and disposing of class B or C filters. This work examined methods to minimize the total operating cost of cartridge filters while maintaining them below the class A limit. It was found that by encapsulating filters in cement the filter operating costs could be minimized

  4. New developments in state estimation for Nonlinear Systems

    DEFF Research Database (Denmark)

    Nørgård, Peter Magnus; Poulsen, Niels Kjølstad; Ravn, Ole

    2000-01-01

    Based on an interpolation formula, accurate state estimators for nonlinear systems can be derived. The estimators do not require derivative information which makes them simple to implement.; State estimators for nonlinear systems are derived based on polynomial approximations obtained with a mult......-known estimators, such as the extended Kalman filter (EKF) and its higher-order relatives, in most practical applications....

  5. Evaluation of harmonic detection methods for active power filter applications

    DEFF Research Database (Denmark)

    Asiminoaei, Lucian; Blaabjerg, Frede; Hansen, Steffan

    2005-01-01

    In the attempt to minimize the harmonic disturbances created by the non-linear loads the choice of the active power filters comes out to improve the filtering efficiency and to solve many issues existing with classical passive filters. One of the key points for a proper implementation of an active...... theories. Then, the work here proposes a simulation setup that decouples the harmonic reference generator from the active filter model and its controller. In this way the selected methods can be equally analyzed and compared with respect to their performance, which helps anticipating possible...

  6. Nonlinear System Identification Using Neural Networks Trained with Natural Gradient Descent

    Directory of Open Access Journals (Sweden)

    Ibnkahla Mohamed

    2003-01-01

    Full Text Available We use natural gradient (NG learning neural networks (NNs for modeling and identifying nonlinear systems with memory. The nonlinear system is comprised of a discrete-time linear filter followed by a zero-memory nonlinearity . The NN model is composed of a linear adaptive filter followed by a two-layer memoryless nonlinear NN. A Kalman filter-based technique and a search-and-converge method have been employed for the NG algorithm. It is shown that the NG descent learning significantly outperforms the ordinary gradient descent and the Levenberg-Marquardt (LM procedure in terms of convergence speed and mean squared error (MSE performance.

  7. NONLINEAR ESTIMATION METHODS FOR AUTONOMOUS TRACKED VEHICLE WITH SLIP

    Institute of Scientific and Technical Information of China (English)

    ZHOU Bo; HAN Jianda

    2007-01-01

    In order to achieve precise, robust autonomous guidance and control of a tracked vehicle, a kinematic model with longitudinal and lateral slip is established. Four different nonlinear filters are used to estimate both state vector and time-varying parameter vector of the created model jointly. The first filter is the well-known extended Kalman filter. The second filter is an unscented version of the Kalman filter. The third one is a particle filter using the unscented Kalman filter to generate the importance proposal distribution. The last one is a novel and guaranteed filter that uses a linear set-membership estimator and can give an ellipsoid set in which the true state lies. The four different approaches have different complexities, behavior and advantages that are surveyed and compared.

  8. Nonlinear Elliptic Differential Equations with Multivalued Nonlinearities

    Indian Academy of Sciences (India)

    In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all R R . Assuming the existence of an upper and of a lower ...

  9. Marginalized Particle Filtering Framework for Tuning of Ensemble Filters

    Czech Academy of Sciences Publication Activity Database

    Šmídl, Václav; Hofman, Radek

    2011-01-01

    Roč. 139, č. 11 (2011), s. 3589-3599 ISSN 0027-0644 R&D Projects: GA MV VG20102013018; GA ČR GP102/08/P250 Institutional research plan: CEZ:AV0Z10750506 Keywords : ensemble finter * marginalized particle filter * data assimilation Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.688, year: 2011 http://library.utia.cas.cz/separaty/2011/AS/smidl-0367533.pdf

  10. Laboratory for filter testing

    Energy Technology Data Exchange (ETDEWEB)

    Paluch, W.

    1987-07-01

    Filters used for mine draining in brown coal surface mines are tested by the Mine Draining Department of Poltegor. Laboratory tests of new types of filters developed by Poltegor are analyzed. Two types of tests are used: tests of scale filter models and tests of experimental units of new filters. Design and operation of the test stands used for testing mechanical properties and hydraulic properties of filters for coal mines are described: dimensions, pressure fluctuations, hydraulic equipment. Examples of testing large-diameter filters for brown coal mines are discussed.

  11. Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    Jiang, Ping; Ding, Chengyuan; Hu, Xiaoyong; Gong, Qihuang

    2007-01-01

    A tunable double-channel filter is presented, which is based on a two-dimensional nonlinear ferroelectric photonic crystal made of cerium doped barium titanate. The filtering properties of the photonic crystal filter can be tuned by adjusting the defect structure or by a pump light. The influences of the structure disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed

  12. Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ping [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Ding, Chengyuan [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Hu, Xiaoyong [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)]. E-mail: xiaoyonghu@pku.edu.cn; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)]. E-mail: qhgong@pku.edu.cn

    2007-04-02

    A tunable double-channel filter is presented, which is based on a two-dimensional nonlinear ferroelectric photonic crystal made of cerium doped barium titanate. The filtering properties of the photonic crystal filter can be tuned by adjusting the defect structure or by a pump light. The influences of the structure disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed.

  13. Practical feasibility of Kalman filters for the state estimation of lithium-ion batteries

    OpenAIRE

    Campestrini, Christian

    2018-01-01

    This work investigates the feasibility of the Kalman filter for the state estimation of lithium-ion cells and modules under real conditions. Therefore, the dependencies of the cells during ageing are shown and various Kalman filter types are compared. The strongly varying model parameters, as well as the temperature and ageing dependent open circuit voltage, require an empirical adaptation of the inconstant and non-linear filter tuning parameters. The performance of the Kalman filter in a rea...

  14. Optimal filtering values in renogram deconvolution

    Energy Technology Data Exchange (ETDEWEB)

    Puchal, R.; Pavia, J.; Gonzalez, A.; Ros, D.

    1988-07-01

    The evaluation of the isotopic renogram by means of the renal retention function (RRF) is a technique that supplies valuable information about renal function. It is not unusual to perform a smoothing of the data because of the sensitivity of the deconvolution algorithms with respect to noise. The purpose of this work is to confirm the existence of an optimal smoothing which minimises the error between the calculated RRF and the theoretical value for two filters (linear and non-linear). In order to test the effectiveness of these optimal smoothing values, some parameters of the calculated RRF were considered using this optimal smoothing. The comparison of these parameters with the theoretical ones revealed a better result in the case of the linear filter than in the non-linear case. The study was carried out simulating the input and output curves which would be obtained when using hippuran and DTPA as tracers.

  15. A Game Theoretic Fault Detection Filter

    Science.gov (United States)

    Chung, Walter H.; Speyer, Jason L.

    1995-01-01

    The fault detection process is modelled as a disturbance attenuation problem. The solution to this problem is found via differential game theory, leading to an H(sub infinity) filter which bounds the transmission of all exogenous signals save the fault to be detected. For a general class of linear systems which includes some time-varying systems, it is shown that this transmission bound can be taken to zero by simultaneously bringing the sensor noise weighting to zero. Thus, in the limit, a complete transmission block can he achieved, making the game filter into a fault detection filter. When we specialize this result to time-invariant system, it is found that the detection filter attained in the limit is identical to the well known Beard-Jones Fault Detection Filter. That is, all fault inputs other than the one to be detected (the "nuisance faults") are restricted to an invariant subspace which is unobservable to a projection on the output. For time-invariant systems, it is also shown that in the limit, the order of the state-space and the game filter can be reduced by factoring out the invariant subspace. The result is a lower dimensional filter which can observe only the fault to be detected. A reduced-order filter can also he generated for time-varying systems, though the computational overhead may be intensive. An example given at the end of the paper demonstrates the effectiveness of the filter as a tool for fault detection and identification.

  16. Sensory Pollution from Bag Filters, Carbon Filters and Combinations

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Clausen, Geo; Weschler, Charles J.

    2008-01-01

    by an upstream pre-filter (changed monthly), an EU7 filter protected by an upstream activated carbon (AC) filter, and EU7 filters with an AC filter either downstream or both upstream and downstream. In addition, two types of stand-alone combination filters were evaluated: a bag-type fiberglass filter...... that contained AC and a synthetic fiber cartridge filter that contained AC. Air that had passed through used filters was most acceptable for those sets in which an AC filter was used downstream of the particle filter. Comparable air quality was achieved with the stand-alone bag filter that contained AC...

  17. Nonlinear dynamics in chemical processes. Project A: Locally distributed periodic processes. Sub-project A3I: Catalitic afterburning. Nonlinear periodic front travelling processes. Final report; Nichtlineare Dynamik bei chemischen Prozessen. Projekt A: Oertlich verteilte periodische Prozesse. Teilprojekt A3I: Katalytische Nachverbrennung im Zirkulationsreaktor. Nichtlineare periodische Frontwanderungsprozesse. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Richter, M.; Reinhardt, H.J.; Roschka, E.

    1998-01-31

    The catalytic conversion of a HC/CHC mixture in a travelling reaction front was investigated in order to apply the circulation reactor principle to the catalytic afterburning of CHC-burdened off-gas. The sub-project `circulating reaction zones` comprised a model-supported analysis and synthesis for establishing process control concepts using the methods of nonlinear dynamics. The experiment showed that the circulation reactor adjusts to different states of operation autonomously. The region of stable oscillation shifts as a result of (reversible) deactivation of the catalyst. With suitable process control measures, the position-dependent maximum temperature of the circulating reaction front can be kept within the catalyst-specific limiting values for total oxidation resp. catalyst damage. On the basis fo the investigations, a technically mature concept for use of the circulation reactor for decomposition of hard-to-crack pollutants was obtained provided that a suitable catalyst is available. The main field of application is the catalytic afterburning of varying pollutant volumes in low-volume off-gas streams in order to make use of the autonomous adaptation of the reactor to a new operating state in case of changing reaction conditions. [Deutsch] Im Rahmen dieses Teilprojektes wurde die katalytische Zersetzung eines Kohlenwasserstoff-Chlorkohlenwasserstoff-Gemischs in wandernder Reaktionsfront untersucht, um das Prinzip des Zirkulationsreaktors auf die katalytische Nachverbrennung von CKW-haltigen Abgasen anzuwenden. Im Teilprojekt `Zirkulierende Reaktionszonen` erfolgte die modellgestuetzte Analyse und Synthese zur Ableitung von Prozessfuehrungskonzepten mit den Methoden der nichtlinearen Dynamik. Bei den Versuchen konnte ein autonomes Einschwingen des Zirkulationsreaktors auf verschiedene Betriebszustaende experimentell nachgewiesen werden. Der Bereich stabiler Oszillation verschiebt sich infolge (reversibler) Desaktivierung des Katalysators. Mit geeigneten

  18. Evaluating low pass filters on SPECT reconstructed cardiac orientation estimation

    Science.gov (United States)

    Dwivedi, Shekhar

    2009-02-01

    Low pass filters can affect the quality of clinical SPECT images by smoothing. Appropriate filter and parameter selection leads to optimum smoothing that leads to a better quantification followed by correct diagnosis and accurate interpretation by the physician. This study aims at evaluating the low pass filters on SPECT reconstruction algorithms. Criteria for evaluating the filters are estimating the SPECT reconstructed cardiac azimuth and elevation angle. Low pass filters studied are butterworth, gaussian, hamming, hanning and parzen. Experiments are conducted using three reconstruction algorithms, FBP (filtered back projection), MLEM (maximum likelihood expectation maximization) and OSEM (ordered subsets expectation maximization), on four gated cardiac patient projections (two patients with stress and rest projections). Each filter is applied with varying cutoff and order for each reconstruction algorithm (only butterworth used for MLEM and OSEM). The azimuth and elevation angles are calculated from the reconstructed volume and the variation observed in the angles with varying filter parameters is reported. Our results demonstrate that behavior of hamming, hanning and parzen filter (used with FBP) with varying cutoff is similar for all the datasets. Butterworth filter (cutoff > 0.4) behaves in a similar fashion for all the datasets using all the algorithms whereas with OSEM for a cutoff < 0.4, it fails to generate cardiac orientation due to oversmoothing, and gives an unstable response with FBP and MLEM. This study on evaluating effect of low pass filter cutoff and order on cardiac orientation using three different reconstruction algorithms provides an interesting insight into optimal selection of filter parameters.

  19. High Degree Cubature Federated Filter for Multisensor Information Fusion with Correlated Noises

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    2016-01-01

    Full Text Available This paper proposes an improved high degree cubature federated filter for the nonlinear fusion system with cross-correlation between process and measurement noises at the same time using the fifth-degree cubature rule and the decorrelated principle in its local filters. The master filter of the federated filter adopts the no-reset mode to fuse local estimates of local filters to generate a global estimate according to the scalar weighted rule. The air-traffic maneuvering target tracking simulations are performed between the proposed filter and the fifth-degree cubature federated filter. Simulations results demonstrate that the proposed filter not only can achieve almost the same accuracy as the fifth-degree cubature federated filter with independent white noises, but also has superior performance to the fifth-degree cubature federated filter while the noises are cross-correlated at the same time.

  20. Dynamic beam filtering for miscentered patients.

    Science.gov (United States)

    Mao, Andrew; Shyr, William; Gang, Grace J; Stayman, J Webster

    2018-02-01

    Accurate centering of the patient within the bore of a CT scanner takes time and is often difficult to achieve precisely. Patient miscentering can result in significant dose and image noise penalties with the use of traditional bowtie filters. This work describes a system to dynamically position an x-ray beam filter during image acquisition to enable more consistent image performance and potentially lower dose needed for CT imaging. We propose a new approach in which two orthogonal low-dose scout images are used to estimate a parametric model of the object describing its shape, size, and location within the field of view (FOV). This model is then used to compute an optimal filter motion profile by minimizing the variance of the expected detector fluence for each projection. Dynamic filtration was implemented on a cone-beam CT (CBCT) test bench using two different physical filters: 1) an aluminum bowtie and 2) a structured binary filter called a multiple aperture device (MAD). Dynamic filtration performance was compared to a static filter in studies of dose and reconstruction noise as a function of the degree of miscentering of a homogeneous water phantom. Estimated filter trajectories were found to be largely sinusoidal with an amplitude proportional to the amount of miscentering. Dynamic filtration demonstrated an improved ability to keep the spatial distribution of dose and reconstruction noise at baseline levels across varying levels of miscentering, reducing the maximum noise and dose deviation from 53% to 15% and 42% to 14% respectively for the bowtie filter, and 25% to 8% and 24% to 15% respectively for the MAD filter. Dynamic positioning of beam filters during acquisition improves dose utilization and image quality over static filters for miscentered patients. Such dynamic filters relax positioning requirements and have the potential to reduce set-up time and lower dose requirements.

  1. Bias aware Kalman filters

    DEFF Research Database (Denmark)

    Drecourt, J.-P.; Madsen, H.; Rosbjerg, Dan

    2006-01-01

    This paper reviews two different approaches that have been proposed to tackle the problems of model bias with the Kalman filter: the use of a colored noise model and the implementation of a separate bias filter. Both filters are implemented with and without feedback of the bias into the model state....... The colored noise filter formulation is extended to correct both time correlated and uncorrelated model error components. A more stable version of the separate filter without feedback is presented. The filters are implemented in an ensemble framework using Latin hypercube sampling. The techniques...... are illustrated on a simple one-dimensional groundwater problem. The results show that the presented filters outperform the standard Kalman filter and that the implementations with bias feedback work in more general conditions than the implementations without feedback. 2005 Elsevier Ltd. All rights reserved....

  2. Simon-nitinol filter

    International Nuclear Information System (INIS)

    Simon, M.; Kim, D.; Porter, D.H.; Kleshinski, S.

    1989-01-01

    This paper discusses a filter that exploits the thermal shape-memory properties of the nitinol alloy to achieve an optimized filter shape and a fine-bore introducer. Experimental methods and materials are given and results are analyzed

  3. Square Root Unscented Kalman Filters for State Estimation of Induction Motor Drives

    DEFF Research Database (Denmark)

    Lascu, Cristian; Jafarzadeh, Saeed; Fadali, M.Sami

    2013-01-01

    This paper investigates the application, design, and implementation of the square root unscented Kalman filter (UKF) (SRUKF) for induction motor (IM) sensorless drives. The UKF uses nonlinear unscented transforms (UTs) in the prediction step in order to preserve the stochastic characteristics...... of a nonlinear system. The advantage of using the UT is its ability to capture the nonlinear behavior of the system, unlike the extended Kalman filter (EKF) that uses linearized models. The SRUKF implements the UKF using square root filtering to reduce computational errors. We discuss the theoretical aspects...

  4. MST Filterability Tests

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Duignan, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-12

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). The low filter flux through the ARP has limited the rate at which radioactive liquid waste can be treated. Recent filter flux has averaged approximately 5 gallons per minute (gpm). Salt Batch 6 has had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. In addition, at the time the testing started, SRR was assessing the impact of replacing the 0.1 micron filter with a 0.5 micron filter. This report describes testing of MST filterability to investigate the impact of filter pore size and MST particle size on filter flux and testing of filter enhancers to attempt to increase filter flux. The authors constructed a laboratory-scale crossflow filter apparatus with two crossflow filters operating in parallel. One filter was a 0.1 micron Mott sintered SS filter and the other was a 0.5 micron Mott sintered SS filter. The authors also constructed a dead-end filtration apparatus to conduct screening tests with potential filter aids and body feeds, referred to as filter enhancers. The original baseline for ARP was 5.6 M sodium salt solution with a free hydroxide concentration of approximately 1.7 M.3 ARP has been operating with a sodium concentration of approximately 6.4 M and a free hydroxide concentration of approximately 2.5 M. SRNL conducted tests varying the concentration of sodium and free hydroxide to determine whether those changes had a significant effect on filter flux. The feed slurries for the MST filterability tests were composed of simple salts (NaOH, NaNO2, and NaNO3) and MST (0.2 – 4.8 g/L). The feed slurry for the filter enhancer tests contained simulated salt batch 6 supernate, MST, and filter enhancers.

  5. Ballistic target tracking algorithm based on improved particle filtering

    Science.gov (United States)

    Ning, Xiao-lei; Chen, Zhan-qi; Li, Xiao-yang

    2015-10-01

    Tracking ballistic re-entry target is a typical nonlinear filtering problem. In order to track the ballistic re-entry target in the nonlinear and non-Gaussian complex environment, a novel chaos map particle filter (CMPF) is used to estimate the target state. CMPF has better performance in application to estimate the state and parameter of nonlinear and non-Gassuian system. The Monte Carlo simulation results show that, this method can effectively solve particle degeneracy and particle impoverishment problem by improving the efficiency of particle sampling to obtain the better particles to part in estimation. Meanwhile CMPF can improve the state estimation precision and convergence velocity compared with EKF, UKF and the ordinary particle filter.

  6. An Unbiased Unscented Transform Based Kalman Filter for 3D Radar

    Institute of Scientific and Technical Information of China (English)

    WANGGuohong; XIUJianjuan; HEYou

    2004-01-01

    As a derivative-free alternative to the Extended Kalman filter (EKF) in the framework of state estimation, the Unscented Kalman filter (UKF) has potential applications in nonlinear filtering. By noting the fact that the unscented transform is generally biased when converting the radar measurements from spherical coordinates into Cartesian coordinates, a new filtering algorithm for 3D radar, called Unbiased unscented Kalman filter (UUKF), is proposed. The new algorithm is validated by Monte Carlo simulation runs. Simulation results show that the UUKF is more effective than the UKF, EKF and the Converted measurement Kalman filter (CMKF).

  7. Vehicle Sideslip Angle Estimation Based on Hybrid Kalman Filter

    Directory of Open Access Journals (Sweden)

    Jing Li

    2016-01-01

    Full Text Available Vehicle sideslip angle is essential for active safety control systems. This paper presents a new hybrid Kalman filter to estimate vehicle sideslip angle based on the 3-DoF nonlinear vehicle dynamic model combined with Magic Formula tire model. The hybrid Kalman filter is realized by combining square-root cubature Kalman filter (SCKF, which has quick convergence and numerical stability, with square-root cubature based receding horizon Kalman FIR filter (SCRHKF, which has robustness against model uncertainty and temporary noise. Moreover, SCKF and SCRHKF work in parallel, and the estimation outputs of two filters are merged by interacting multiple model (IMM approach. Experimental results show the accuracy and robustness of the hybrid Kalman filter.

  8. Alternating minimisation for glottal inverse filtering

    International Nuclear Information System (INIS)

    Bleyer, Ismael Rodrigo; Lybeck, Lasse; Auvinen, Harri; Siltanen, Samuli; Airaksinen, Manu; Alku, Paavo

    2017-01-01

    A new method is proposed for solving the glottal inverse filtering (GIF) problem. The goal of GIF is to separate an acoustical speech signal into two parts: the glottal airflow excitation and the vocal tract filter. To recover such information one has to deal with a blind deconvolution problem. This ill-posed inverse problem is solved under a deterministic setting, considering unknowns on both sides of the underlying operator equation. A stable reconstruction is obtained using a double regularization strategy, alternating between fixing either the glottal source signal or the vocal tract filter. This enables not only splitting the nonlinear and nonconvex problem into two linear and convex problems, but also allows the use of the best parameters and constraints to recover each variable at a time. This new technique, called alternating minimization glottal inverse filtering (AM-GIF), is compared with two other approaches: Markov chain Monte Carlo glottal inverse filtering (MCMC-GIF), and iterative adaptive inverse filtering (IAIF), using synthetic speech signals. The recent MCMC-GIF has good reconstruction quality but high computational cost. The state-of-the-art IAIF method is computationally fast but its accuracy deteriorates, particularly for speech signals of high fundamental frequency ( F 0). The results show the competitive performance of the new method: With high F 0, the reconstruction quality is better than that of IAIF and close to MCMC-GIF while reducing the computational complexity by two orders of magnitude. (paper)

  9. Nonlinear Elasticity

    Science.gov (United States)

    Fu, Y. B.; Ogden, R. W.

    2001-05-01

    This collection of papers by leading researchers in the field of finite, nonlinear elasticity concerns itself with the behavior of objects that deform when external forces or temperature gradients are applied. This process is extremely important in many industrial settings, such as aerospace and rubber industries. This book covers the various aspects of the subject comprehensively with careful explanations of the basic theories and individual chapters each covering a different research direction. The authors discuss the use of symbolic manipulation software as well as computer algorithm issues. The emphasis is placed firmly on covering modern, recent developments, rather than the very theoretical approach often found. The book will be an excellent reference for both beginners and specialists in engineering, applied mathematics and physics.

  10. Nonlinear resonances

    CERN Document Server

    Rajasekar, Shanmuganathan

    2016-01-01

    This introductory text presents the basic aspects and most important features of various types of resonances and anti-resonances in dynamical systems. In particular, for each resonance, it covers the theoretical concepts, illustrates them with case studies, and reviews the available information on mechanisms, characterization, numerical simulations, experimental realizations, possible quantum analogues, applications and significant advances made over the years. Resonances are one of the most fundamental phenomena exhibited by nonlinear systems and refer to specific realizations of maximum response of a system due to the ability of that system to store and transfer energy received from an external forcing source. Resonances are of particular importance in physical, engineering and biological systems - they can prove to be advantageous in many applications, while leading to instability and even disasters in others. The book is self-contained, providing the details of mathematical derivations and techniques invo...

  11. Are consistent equal-weight particle filters possible?

    Science.gov (United States)

    van Leeuwen, P. J.

    2017-12-01

    Particle filters are fully nonlinear data-assimilation methods that could potentially change the way we do data-assimilation in highly nonlinear high-dimensional geophysical systems. However, the standard particle filter in which the observations come in by changing the relative weights of the particles is degenerate. This means that one particle obtains weight one, and all other particles obtain a very small weight, effectively meaning that the ensemble of particles reduces to that one particle. For over 10 years now scientists have searched for solutions to this problem. One obvious solution seems to be localisation, in which each part of the state only sees a limited number of observations. However, for a realistic localisation radius based on physical arguments, the number of observations is typically too large, and the filter is still degenerate. Another route taken is trying to find proposal densities that lead to more similar particle weights. There is a simple proof, however, that shows that there is an optimum, the so-called optimal proposal density, and that optimum will lead to a degenerate filter. On the other hand, it is easy to come up with a counter example of a particle filter that is not degenerate in high-dimensional systems. Furthermore, several particle filters have been developed recently that claim to have equal or equivalent weights. In this presentation I will show how to construct a particle filter that is never degenerate in high-dimensional systems, and how that is still consistent with the proof that one cannot do better than the optimal proposal density. Furthermore, it will be shown how equal- and equivalent-weights particle filters fit within this framework. This insight will then lead to new ways to generate particle filters that are non-degenerate, opening up the field of nonlinear filtering in high-dimensional systems.

  12. Deterministic Mean-Field Ensemble Kalman Filtering

    KAUST Repository

    Law, Kody

    2016-05-03

    The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. A density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence k between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d<2k. The fidelity of approximation of the true distribution is also established using an extension of the total variation metric to random measures. This is limited by a Gaussian bias term arising from nonlinearity/non-Gaussianity of the model, which arises in both deterministic and standard EnKF. Numerical results support and extend the theory.

  13. Deterministic Mean-Field Ensemble Kalman Filtering

    KAUST Repository

    Law, Kody; Tembine, Hamidou; Tempone, Raul

    2016-01-01

    The proof of convergence of the standard ensemble Kalman filter (EnKF) from Le Gland, Monbet, and Tran [Large sample asymptotics for the ensemble Kalman filter, in The Oxford Handbook of Nonlinear Filtering, Oxford University Press, Oxford, UK, 2011, pp. 598--631] is extended to non-Gaussian state-space models. A density-based deterministic approximation of the mean-field limit EnKF (DMFEnKF) is proposed, consisting of a PDE solver and a quadrature rule. Given a certain minimal order of convergence k between the two, this extends to the deterministic filter approximation, which is therefore asymptotically superior to standard EnKF for dimension d<2k. The fidelity of approximation of the true distribution is also established using an extension of the total variation metric to random measures. This is limited by a Gaussian bias term arising from nonlinearity/non-Gaussianity of the model, which arises in both deterministic and standard EnKF. Numerical results support and extend the theory.

  14. The research of radar target tracking observed information linear filter method

    Science.gov (United States)

    Chen, Zheng; Zhao, Xuanzhi; Zhang, Wen

    2018-05-01

    Aiming at the problems of low precision or even precision divergent is caused by nonlinear observation equation in radar target tracking, a new filtering algorithm is proposed in this paper. In this algorithm, local linearization is carried out on the observed data of the distance and angle respectively. Then the kalman filter is performed on the linearized data. After getting filtered data, a mapping operation will provide the posteriori estimation of target state. A large number of simulation results show that this algorithm can solve above problems effectively, and performance is better than the traditional filtering algorithm for nonlinear dynamic systems.

  15. FY 1990 Report on the results of the research and development project for the industrial base technologies of the next generation. Research and development of nonlinear optoelectronic materials; 1990 nendo hisenkei hikari denshi zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    Described herein are the FY 1990 results of the research and development project for the optoelectronic materials, implemented to cope with the highly information-oriented societies. The FY 1990 is the second year for the phase-I project of the basic plan, and the R and D efforts are directed to elucidation of the mechanisms involved in the nonlinear phenomena, exploration and designs of various materials, and investigations of the technologies for, e.g., the material synthesis and evaluation. The themes to be investigated by the long-term project include exploration and preparation of the superfine particles and base materials for the organic materials; and crystal growth, dispersion of the fine particles and development of the superlattices for development of the materials. The comprehensive investigation and research program investigates the trends of the related technologies, both domestic and foreign. A total of 9 research themes are recommissioned to 9 enterprises. They include organic, low-molecular-weight materials, growth of orientation-controlled crystals, films of high-molecular-weight organic conjugated compounds, glass-dispersed materials (prepared by the vapor-phase, impregnation of porous glass, sol-gel, superlow-melting glass and super-cooling methods), organic dispersed materials, development of the organic superlattices, and development of the three-dimensional superstructures. (NEDO)

  16. Rotational Kinematics Model Based Adaptive Particle Filter for Robust Human Tracking in Thermal Omnidirectional Vision

    Directory of Open Access Journals (Sweden)

    Yazhe Tang

    2015-01-01

    Full Text Available This paper presents a novel surveillance system named thermal omnidirectional vision (TOV system which can work in total darkness with a wild field of view. Different to the conventional thermal vision sensor, the proposed vision system exhibits serious nonlinear distortion due to the effect of the quadratic mirror. To effectively model the inherent distortion of omnidirectional vision, an equivalent sphere projection is employed to adaptively calculate parameterized distorted neighborhood of an object in the image plane. With the equivalent projection based adaptive neighborhood calculation, a distortion-invariant gradient coding feature is proposed for thermal catadioptric vision. For robust tracking purpose, a rotational kinematic modeled adaptive particle filter is proposed based on the characteristic of omnidirectional vision, which can handle multiple movements effectively, including the rapid motions. Finally, the experiments are given to verify the performance of the proposed algorithm for human tracking in TOV system.

  17. Rotationally invariant correlation filtering

    International Nuclear Information System (INIS)

    Schils, G.F.; Sweeney, D.W.

    1985-01-01

    A method is presented for analyzing and designing optical correlation filters that have tailored rotational invariance properties. The concept of a correlation of an image with a rotation of itself is introduced. A unified theory of rotation-invariant filtering is then formulated. The unified approach describes matched filters (with no rotation invariance) and circular-harmonic filters (with full rotation invariance) as special cases. The continuum of intermediate cases is described in terms of a cyclic convolution operation over angle. The angular filtering approach allows an exact choice for the continuous trade-off between loss of the correlation energy (or specificity regarding the image) and the amount of rotational invariance desired

  18. Robotic fish tracking method based on suboptimal interval Kalman filter

    Science.gov (United States)

    Tong, Xiaohong; Tang, Chao

    2017-11-01

    Autonomous Underwater Vehicle (AUV) research focused on tracking and positioning, precise guidance and return to dock and other fields. The robotic fish of AUV has become a hot application in intelligent education, civil and military etc. In nonlinear tracking analysis of robotic fish, which was found that the interval Kalman filter algorithm contains all possible filter results, but the range is wide, relatively conservative, and the interval data vector is uncertain before implementation. This paper proposes a ptimization algorithm of suboptimal interval Kalman filter. Suboptimal interval Kalman filter scheme used the interval inverse matrix with its worst inverse instead, is more approximate nonlinear state equation and measurement equation than the standard interval Kalman filter, increases the accuracy of the nominal dynamic system model, improves the speed and precision of tracking system. Monte-Carlo simulation results show that the optimal trajectory of sub optimal interval Kalman filter algorithm is better than that of the interval Kalman filter method and the standard method of the filter.

  19. Nonlinear Waves in the Terrestrial Quasiparallel Foreshock.

    Science.gov (United States)

    Hnat, B; Kolotkov, D Y; O'Connell, D; Nakariakov, V M; Rowlands, G

    2016-12-02

    We provide strongly conclusive evidence that the cubic nonlinearity plays an important part in the evolution of the large amplitude magnetic structures in the terrestrial foreshock. Large amplitude nonlinear wave trains at frequencies above the proton cyclotron frequency are identified after nonharmonic slow variations are filtered out by applying the empirical mode decomposition. Numerical solutions of the derivative nonlinear Schrödinger equation, predicted analytically by the use of a pseudopotential approach, are found to be consistent with the observed wave forms. The approximate phase speed of these nonlinear waves, indicated by the parameters of numerical solutions, is of the order of the local Alfvén speed. We suggest that the feedback of the large amplitude fluctuations on background plasma is reflected in the evolution of the pseudopotential.

  20. Gradiometer Based on Nonlinear Magneto-Optic Rotation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR project will demonstrate sensitive measurements of magnetic field gradients by nonlinear atomic spectroscopy. The gradients are determined by...

  1. Retina-Inspired Filter.

    Science.gov (United States)

    Doutsi, Effrosyni; Fillatre, Lionel; Antonini, Marc; Gaulmin, Julien

    2018-07-01

    This paper introduces a novel filter, which is inspired by the human retina. The human retina consists of three different layers: the Outer Plexiform Layer (OPL), the inner plexiform layer, and the ganglionic layer. Our inspiration is the linear transform which takes place in the OPL and has been mathematically described by the neuroscientific model "virtual retina." This model is the cornerstone to derive the non-separable spatio-temporal OPL retina-inspired filter, briefly renamed retina-inspired filter, studied in this paper. This filter is connected to the dynamic behavior of the retina, which enables the retina to increase the sharpness of the visual stimulus during filtering before its transmission to the brain. We establish that this retina-inspired transform forms a group of spatio-temporal Weighted Difference of Gaussian (WDoG) filters when it is applied to a still image visible for a given time. We analyze the spatial frequency bandwidth of the retina-inspired filter with respect to time. It is shown that the WDoG spectrum varies from a lowpass filter to a bandpass filter. Therefore, while time increases, the retina-inspired filter enables to extract different kinds of information from the input image. Finally, we discuss the benefits of using the retina-inspired filter in image processing applications such as edge detection and compression.

  2. Study of different filters

    International Nuclear Information System (INIS)

    Cochinal, R.; Rouby, R.

    1959-01-01

    This note first contains a terminology related to filters and to their operation, and then proposes an overview of general characteristics of filters such as load loss with respect to gas rate, efficiency, and clogging with respect to filter pollution. It also indicates standard aerosols which are generally used, how they are dosed, and how efficiency is determined with a standard aerosol. Then, after a presentation of the filtration principle, this note reports the study of several filters: glass wool, filter papers provided by different companies, Teflon foam, English filters, Teflon wool, sintered Teflonite, quartz wool, polyvinyl chloride foam, synthetic filter, sintered bronze. The third part reports the study of some aerosol and dust separators

  3. Changing ventilation filters

    International Nuclear Information System (INIS)

    Hackney, S.

    1980-01-01

    A filter changing unit has a door which interlocks with the door of a filter chamber so as to prevent contamination of the outer surfaces of the doors by radioactive material collected on the filter element and a movable support which enables a filter chamber thereonto to be stored within the unit in such a way that the doors of the unit and the filter chamber can be replaced. The door pivots and interlocks with another door by means of a bolt, a seal around the periphery lip of the first door engages the periphery of the second door to seal the gap. A support pivots into a lower filter element storage position. Inspection windows and glove ports are provided. The unit is releasably connected to the filter chamber by bolts engaging in a flange provided around an opening. (author)

  4. Balanced microwave filters

    CERN Document Server

    Hong, Jiasheng; Medina, Francisco; Martiacuten, Ferran

    2018-01-01

    This book presents and discusses strategies for the design and implementation of common-mode suppressed balanced microwave filters, including, narrowband, wideband, and ultra-wideband filters This book examines differential-mode, or balanced, microwave filters by discussing several implementations of practical realizations of these passive components. Topics covered include selective mode suppression, designs based on distributed and semi-lumped approaches, multilayer technologies, defect ground structures, coupled resonators, metamaterials, interference techniques, and substrate integrated waveguides, among others. Divided into five parts, Balanced Microwave Filters begins with an introduction that presents the fundamentals of balanced lines, circuits, and networks. Part 2 covers balanced transmission lines with common-mode noise suppression, including several types of common-mode filters and the application of such filters to enhance common-mode suppression in balanced bandpass filters. Next, Part 3 exa...

  5. Extended Kalman Filter Modifications Based on an Optimization View Point

    OpenAIRE

    Skoglund, Martin; Hendeby, Gustaf; Axehill, Daniel

    2015-01-01

    The extended Kalman filter (EKF) has been animportant tool for state estimation of nonlinear systems sinceits introduction. However, the EKF does not possess the same optimality properties as the Kalman filter, and may perform poorly. By viewing the EKF as an optimization problem it is possible to, in many cases, improve its performance and robustness. The paper derives three variations of the EKF by applying different optimisation algorithms to the EKF costfunction and relate these to the it...

  6. Feedback Robust Cubature Kalman Filter for Target Tracking Using an Angle Sensor.

    Science.gov (United States)

    Wu, Hao; Chen, Shuxin; Yang, Binfeng; Chen, Kun

    2016-05-09

    The direction of arrival (DOA) tracking problem based on an angle sensor is an important topic in many fields. In this paper, a nonlinear filter named the feedback M-estimation based robust cubature Kalman filter (FMR-CKF) is proposed to deal with measurement outliers from the angle sensor. The filter designs a new equivalent weight function with the Mahalanobis distance to combine the cubature Kalman filter (CKF) with the M-estimation method. Moreover, by embedding a feedback strategy which consists of a splitting and merging procedure, the proper sub-filter (the standard CKF or the robust CKF) can be chosen in each time index. Hence, the probability of the outliers' misjudgment can be reduced. Numerical experiments show that the FMR-CKF performs better than the CKF and conventional robust filters in terms of accuracy and robustness with good computational efficiency. Additionally, the filter can be extended to the nonlinear applications using other types of sensors.

  7. Nonlinear Control Structure of Grid Connected Modular Multilevel Converters

    DEFF Research Database (Denmark)

    Hajizadeh, Amin; Norum, Lars; Ahadpour Shal, Alireza

    2017-01-01

    in the prediction step in order to preserve the stochastic characteristics of a nonlinear system. In order to design adaptive robust control strategy and nonlinear observer, mathematical model of MMC using rotating d-q theory has been used. Digital time-domain simulation studies are carried out in the Matlab......This paper implements nonlinear control structure based on Adaptive Fuzzy Sliding Mode (AFSM) Current Control and Unscented Kalman Filter (UKF) to estimate the capacitor voltages from the measurement of arm currents of Modular Multilevel Converter (MMC). UKF use nonlinear unscented transforms....../Simulink environment to verify the performance of the overall proposed control structure during different case studies....

  8. Impact of model-based iterative reconstruction on low-contrast lesion detection and image quality in abdominal CT: a 12-reader-based comparative phantom study with filtered back projection at different tube voltages

    Energy Technology Data Exchange (ETDEWEB)

    Euler, Andre; Stieltjes, Bram; Eichenberger, Reto; Reisinger, Clemens; Hirschmann, Anna; Zaehringer, Caroline; Kircher, Achim; Streif, Matthias; Bucher, Sabine; Buergler, David; D' Errico, Luigia; Kopp, Sebastien; Wilhelm, Markus [University Hospital Basel, Clinic of Radiology and Nuclear Medicine, Basel (Switzerland); Szucs-Farkas, Zsolt [Hospital Centre of Biel, Institute of Radiology, Biel (Switzerland); Schindera, Sebastian T. [University Hospital Basel, Clinic of Radiology and Nuclear Medicine, Basel (Switzerland); Cantonal Hospital Aarau, Institute of Radiology, Aarau (Switzerland)

    2017-12-15

    To evaluate the impact of model-based iterative reconstruction (MBIR) on image quality and low-contrast lesion detection compared with filtered back projection (FBP) in abdominal computed tomography (CT) of simulated medium and large patients at different tube voltages. A phantom with 45 hypoattenuating lesions was placed in two water containers and scanned at 70, 80, 100, and 120 kVp. The 120-kVp protocol served as reference, and the volume CT dose index (CTDI{sub vol}) was kept constant for all protocols. The datasets were reconstructed with MBIR and FBP. Image noise and contrast-to-noise-ratio (CNR) were assessed. Low-contrast lesion detectability was evaluated by 12 radiologists. MBIR decreased the image noise by 24% and 27%, and increased the CNR by 30% and 29% for the medium and large phantoms, respectively. Lower tube voltages increased the CNR by 58%, 46%, and 16% at 70, 80, and 100 kVp, respectively, compared with 120 kVp in the medium phantom and by 9%, 18% and 12% in the large phantom. No significant difference in lesion detection rate was observed (medium: 79-82%; large: 57-65%; P > 0.37). Although MBIR improved quantitative image quality compared with FBP, it did not result in increased low-contrast lesion detection in abdominal CT at different tube voltages in simulated medium and large patients. (orig.)

  9. Computed Tomography Image Quality Evaluation of a New Iterative Reconstruction Algorithm in the Abdomen (Adaptive Statistical Iterative Reconstruction-V) a Comparison With Model-Based Iterative Reconstruction, Adaptive Statistical Iterative Reconstruction, and Filtered Back Projection Reconstructions.

    Science.gov (United States)

    Goodenberger, Martin H; Wagner-Bartak, Nicolaus A; Gupta, Shiva; Liu, Xinming; Yap, Ramon Q; Sun, Jia; Tamm, Eric P; Jensen, Corey T

    The purpose of this study was to compare abdominopelvic computed tomography images reconstructed with adaptive statistical iterative reconstruction-V (ASIR-V) with model-based iterative reconstruction (Veo 3.0), ASIR, and filtered back projection (FBP). Abdominopelvic computed tomography scans for 36 patients (26 males and 10 females) were reconstructed using FBP, ASIR (80%), Veo 3.0, and ASIR-V (30%, 60%, 90%). Mean ± SD patient age was 32 ± 10 years with mean ± SD body mass index of 26.9 ± 4.4 kg/m. Images were reviewed by 2 independent readers in a blinded, randomized fashion. Hounsfield unit, noise, and contrast-to-noise ratio (CNR) values were calculated for each reconstruction algorithm for further comparison. Phantom evaluation of low-contrast detectability (LCD) and high-contrast resolution was performed. Adaptive statistical iterative reconstruction-V 30%, ASIR-V 60%, and ASIR 80% were generally superior qualitatively compared with ASIR-V 90%, Veo 3.0, and FBP (P ASIR-V 60% with respective CNR values of 5.54 ± 2.39, 8.78 ± 3.15, and 3.49 ± 1.77 (P ASIR 80% had the best and worst spatial resolution, respectively. Adaptive statistical iterative reconstruction-V 30% and ASIR-V 60% provided the best combination of qualitative and quantitative performance. Adaptive statistical iterative reconstruction 80% was equivalent qualitatively, but demonstrated inferior spatial resolution and LCD.

  10. An aperiodic phenomenon of the unscented Kalman filter in filtering noisy chaotic signals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A non-periodic oscillatory behavior of the unscented Kalman filter (UKF) when used to filter noisy contaminated chaotic signals is reported. We show both theoretically and experimentally that the gain of the UKF may not converge or diverge but oscillate aperiodically. More precisely, when a nonlinear system is periodic, the Kalman gain and error covariance of the UKF converge to zero. However, when the system being considered is chaotic, the Kalman gain either converges to a fixed point with a magnitude larger than zero or oscillates aperiodically.

  11. [Nonlinear magnetohydrodynamics

    International Nuclear Information System (INIS)

    1994-01-01

    Resistive MHD equilibrium, even for small resistivity, differs greatly from ideal equilibrium, as do the dynamical consequences of its instabilities. The requirement, imposed by Faraday's law, that time independent magnetic fields imply curl-free electric fields, greatly restricts the electric fields allowed inside a finite-resistivity plasma. If there is no flow and the implications of the Ohm's law are taken into account (and they need not be, for ideal equilibria), the electric field must equal the resistivity times the current density. The vanishing of the divergence of the current density then provides a partial differential equation which, together with boundary conditions, uniquely determines the scalar potential, the electric field, and the current density, for any given resistivity profile. The situation parallels closely that of driven shear flows in hydrodynamics, in that while dissipative steady states are somewhat more complex than ideal ones, there are vastly fewer of them to consider. Seen in this light, the vast majority of ideal MHD equilibria are just irrelevant, incapable of being set up in the first place. The steady state whose stability thresholds and nonlinear behavior needs to be investigated ceases to be an arbitrary ad hoc exercise dependent upon the whim of the investigator, but is determined by boundary conditions and choice of resistivity profile

  12. Stochastic Integration H∞ Filter for Rapid Transfer Alignment of INS.

    Science.gov (United States)

    Zhou, Dapeng; Guo, Lei

    2017-11-18

    The performance of an inertial navigation system (INS) operated on a moving base greatly depends on the accuracy of rapid transfer alignment (RTA). However, in practice, the coexistence of large initial attitude errors and uncertain observation noise statistics poses a great challenge for the estimation accuracy of misalignment angles. This study aims to develop a novel robust nonlinear filter, namely the stochastic integration H ∞ filter (SIH ∞ F) for improving both the accuracy and robustness of RTA. In this new nonlinear H ∞ filter, the stochastic spherical-radial integration rule is incorporated with the framework of the derivative-free H ∞ filter for the first time, and the resulting SIH ∞ F simultaneously attenuates the negative effect in estimations caused by significant nonlinearity and large uncertainty. Comparisons between the SIH ∞ F and previously well-known methodologies are carried out by means of numerical simulation and a van test. The results demonstrate that the newly-proposed method outperforms the cubature H ∞ filter. Moreover, the SIH ∞ F inherits the benefit of the traditional stochastic integration filter, but with more robustness in the presence of uncertainty.

  13. Experimental verification of transient nonlinear acoustical holography.

    Science.gov (United States)

    Jing, Yun; Cannata, Jonathan; Wang, Tianren

    2013-05-01

    This paper presents an experimental study on nonlinear transient acoustical holography. The validity and effectiveness of a recently proposed nonlinear transient acoustical holography algorithm is evaluated in the presence of noise. The acoustic field measured on a post-focal plane of a high-intensity focused transducer is backward projected to reconstruct the pressure distributions on the focal and a pre-focal plane, which are shown to be in good agreement with the measurement. In contrast, the conventional linear holography produces erroneous results in this case where the nonlinearity involved is strong. Forward acoustic field projection was also carried out to further verify the algorithm.

  14. UV Fluorescence Photography of Works of Art : Replacing the Traditional UV Cut Filters with Interference Filters

    Directory of Open Access Journals (Sweden)

    Luís BRAVO PEREIRA

    2010-09-01

    Full Text Available For many years filters like the Kodak Wratten E series, or the equivalent Schneider B+W 415, were used as standard UV cut filters, necessary to obtain good quality on UV Fluorescence photography. The only problem with the use of these filters is that, when they receive the UV radiation that they should remove, they present themselves an internal fluorescence as side effect, that usually reduce contrast and quality on the final image. This article presents the results of our experiences on using some innovative filters, that appeared available on the market in recent years, projected to adsorb UV radiation even more efficiently than with the mentioned above pigment based standard filters: the interference filters for UV rejection (and, usually, for IR rejection too manufactured using interference layers, that present better results than the pigment based filters. The only problem with interference filters type is that they are sensitive to the rays direction and, because of that, they are not adequate to wide-angle lenses. The internal fluorescence for three filters: the B+W 415 UV cut (equivalent to the Kodak Wratten 2E, pigment based, the B+W 486 UV IR cut (an interference type filter, used frequently on digital cameras to remove IR or UV and the Baader UVIR rejection filter (two versions of this interference filter were used had been tested and compared. The final quality of the UV fluorescence images seems to be of a superior quality when compared to the images obtained with classic filters.

  15. Filter material charging apparatus for filter assembly for radioactive contaminants

    International Nuclear Information System (INIS)

    Goldsmith, J.M.; O'Nan, A. Jr.

    1977-01-01

    A filter charging apparatus for a filter assembly is described. The filter assembly includes a housing with at least one filter bed therein and the filter charging apparatus for adding filter material to the filter assembly includes a tank with an opening therein, the tank opening being disposed in flow communication with opposed first and second conduit means, the first conduit means being in flow communication with the filter assembly housing and the second conduit means being in flow communication with a blower means. Upon activation of the blower means, the blower means pneumatically conveys the filter material from the tank to the filter housing

  16. Identification of a Class of Non-linear State Space Models using RPE Techniques

    DEFF Research Database (Denmark)

    Zhou, Wei-Wu; Blanke, Mogens

    1989-01-01

    The RPE (recursive prediction error) method in state-space form is developed in the nonlinear systems and extended to include the exact form of a nonlinearity, thus enabling structure preservation for certain classes of nonlinear systems. Both the discrete and the continuous-discrete versions...... of the algorithm in an innovations model are investigated, and a nonlinear simulation example shows a quite convincing performance of the filter as combined parameter and state estimator...

  17. Power-Law Radon-Transformed Superimposed Inverse Filter Synthetic Discriminant Correlator for Facial Recognition

    National Research Council Canada - National Science Library

    Haji-saeed, Bahareh; Khoury, Jed; Woods, Charles L; Kierstead, John

    2008-01-01

    ...) for facial recognition is proposed. In order to avoid spectral overlap and nonlinear crosstalk, superposition of rotationally variant sets of inverse filter Fourier-transformed Radon-processed templates is used to generate the SDF...

  18. Passive Target Tracking in Non-cooperative Radar System Based on Particle Filtering

    Institute of Scientific and Technical Information of China (English)

    LI Shuo; TAO Ran

    2006-01-01

    We propose a target tracking method based on particle filtering(PF) to solve the nonlinear non-Gaussian target-tracking problem in the bistatic radar systems using external radiation sources. Traditional nonlinear state estimation method is extended Kalman filtering (EKF), which is to do the first level Taylor series extension. It will cause an inaccuracy or even a scatter estimation result on condition that there is either a highly nonlinear target or a large noise square-error. Besides, Kalman filtering is the optimal resolution under a Gaussian noise assumption, and is not suitable to the non-Gaussian condition. PF is a sort of statistic filtering based on Monte Carlo simulation that is using some random samples (particles) to simulate the posterior probability density of system random variables. This method can be used in any nonlinear random system. It can be concluded through simulation that PF can achieve higher accuracy than the traditional EKF.

  19. Selection of unstable patterns and control of optical turbulence by Fourier plane filtering

    DEFF Research Database (Denmark)

    Mamaev, A.V.; Saffman, M.

    1998-01-01

    We report on selection and stabilization of transverse optical patterns in a feedback mirror experiment. Amplitude filtering in the Fourier plane is used to select otherwise unstable spatial patterns. Optical turbulence observed for nonlinearities far above the pattern formation threshold...

  20. Concentric Split Flow Filter

    Science.gov (United States)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  1. Estimation of three-dimensional radar tracking using modified extended kalman filter

    Science.gov (United States)

    Aditya, Prima; Apriliani, Erna; Khusnul Arif, Didik; Baihaqi, Komar

    2018-03-01

    Kalman filter is an estimation method by combining data and mathematical models then developed be extended Kalman filter to handle nonlinear systems. Three-dimensional radar tracking is one of example of nonlinear system. In this paper developed a modification method of extended Kalman filter from the direct decline of the three-dimensional radar tracking case. The development of this filter algorithm can solve the three-dimensional radar measurements in the case proposed in this case the target measured by radar with distance r, azimuth angle θ, and the elevation angle ϕ. Artificial covariance and mean adjusted directly on the three-dimensional radar system. Simulations result show that the proposed formulation is effective in the calculation of nonlinear measurement compared with extended Kalman filter with the value error at 0.77% until 1.15%.

  2. ? filtering for stochastic systems driven by Poisson processes

    Science.gov (United States)

    Song, Bo; Wu, Zheng-Guang; Park, Ju H.; Shi, Guodong; Zhang, Ya

    2015-01-01

    This paper investigates the ? filtering problem for stochastic systems driven by Poisson processes. By utilising the martingale theory such as the predictable projection operator and the dual predictable projection operator, this paper transforms the expectation of stochastic integral with respect to the Poisson process into the expectation of Lebesgue integral. Then, based on this, this paper designs an ? filter such that the filtering error system is mean-square asymptotically stable and satisfies a prescribed ? performance level. Finally, a simulation example is given to illustrate the effectiveness of the proposed filtering scheme.

  3. Computation of nuclear reactor parameters using a stretch Kalman filtering

    International Nuclear Information System (INIS)

    Zwingelstein, G.; Poujol, A.

    1976-01-01

    A method of nonlinear stochastic filtering, the stretched Karman filter, is used for the estimation of two basic parameters involved in the control of nuclear reactor start-up. The corresponding algorithm is stored in a small Multi-8 computer and tested with data recorded for the Ulysse reactor (I.N.S.T.N.). The various practical problems involved in using the algorithm are examined: filtering initialization, influence of the model... The quality and time saving obtained in the computation make it possible for a real time operation, the computer being connected with the reactor [fr

  4. FY 1992 Report on the results of the research and development project for the industrial base technologies of the next generation. Research and development of nonlinear optoelectronic materials; 1992 nendo hisenkei hikari denshi zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    Described herein are the FY 1992 results of the research and development project for the optoelectronic materials. The FY 1992 is the last year for the phase-I project of the basic plan, and the results are evaluated mainly viewed from extent of attainment of the interim targets. For the organic materials, the highly unique chiral nonlinear compounds are further developed, and direction for the investigations of the conjugated low-molecular-weight compounds is established. The excellent high-molecular-weight films are developed. For the dispersed materials, those developed include CuCl-dispersed glass, CdTe laminated glass developed by the laser evaporation method, glass dispersed with semiconductors at high concentrations, and dispersed materials with high-molecular-weight materials as the matrices. For the material development, those technologies investigated are orientation controlling of the crystals for thin organic films, and development of superlattices. A total of 9 research themes are recommissioned to 9 enterprises. They include organic, low-molecular-weight materials, growth of orientation-controlled crystals, films of high-molecular-weight organic conjugated compounds, glass-dispersed materials (prepared by the vapor-phase, impregnation of porous glass, sol-gel, superlow-melting glass and super-cooling methods), organic dispersed materials, development of the organic superlattices, and development of the three-dimensional superstructures. (NEDO)

  5. Hybrid Filter Membrane

    Science.gov (United States)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of

  6. Nonlinear beam mechanics

    NARCIS (Netherlands)

    Westra, H.J.R.

    2012-01-01

    In this Thesis, nonlinear dynamics and nonlinear interactions are studied from a micromechanical point of view. Single and doubly clamped beams are used as model systems where nonlinearity plays an important role. The nonlinearity also gives rise to rich dynamic behavior with phenomena like

  7. Noise Reduction for Nonlinear Nonstationary Time Series Data using Averaging Intrinsic Mode Function

    Directory of Open Access Journals (Sweden)

    Christofer Toumazou

    2013-07-01

    Full Text Available A novel noise filtering algorithm based on averaging Intrinsic Mode Function (aIMF, which is a derivation of Empirical Mode Decomposition (EMD, is proposed to remove white-Gaussian noise of foreign currency exchange rates that are nonlinear nonstationary times series signals. Noise patterns with different amplitudes and frequencies were randomly mixed into the five exchange rates. A number of filters, namely; Extended Kalman Filter (EKF, Wavelet Transform (WT, Particle Filter (PF and the averaging Intrinsic Mode Function (aIMF algorithm were used to compare filtering and smoothing performance. The aIMF algorithm demonstrated high noise reduction among the performance of these filters.

  8. Backflushable filter insert

    International Nuclear Information System (INIS)

    Keith, R.C.; Vandenberg, T.; Randolph, M.C.; Lewis, T.B.; Gillis, P.J. Jr.

    1988-01-01

    Filter elements are mounted on a tube plate beneath an accumulator chamber whose wall is extended by skirt and flange to form a closure for the top of pressure vessel. The accumulator chamber is annular around a central pipe which serves as the outlet for filtered water passing from the filter elements. The chamber contains filtered compressed air from supply. Periodically the filtration of water is stopped and vessel is drained. Then a valve is opened, allowing the accumulated air to flow from chamber up a pipe and down pipe, pushing the filtered water from pipe back through the filter elements to clean them. The accumulator chamber is so proportioned, relative to the volume of the system communicating therewith during backflushing, that the equilibrium pressure during backflushing cannot exceed the pressure rating of the vessel. However a line monitors the pressure at the top of the vessel, and if it rises too far a bleed valve is automatically opened to depressurise the system. The chamber is intended to replace the lid of an existing vessel to convert a filter using filter aid to one using permanent filter elements. (author)

  9. Updating the OMERACT filter

    DEFF Research Database (Denmark)

    Wells, George; Beaton, Dorcas E; Tugwell, Peter

    2014-01-01

    The "Discrimination" part of the OMERACT Filter asks whether a measure discriminates between situations that are of interest. "Feasibility" in the OMERACT Filter encompasses the practical considerations of using an instrument, including its ease of use, time to complete, monetary costs......, and interpretability of the question(s) included in the instrument. Both the Discrimination and Reliability parts of the filter have been helpful but were agreed on primarily by consensus of OMERACT participants rather than through explicit evidence-based guidelines. In Filter 2.0 we wanted to improve this definition...

  10. Nanofiber Filters Eliminate Contaminants

    Science.gov (United States)

    2009-01-01

    With support from Phase I and II SBIR funding from Johnson Space Center, Argonide Corporation of Sanford, Florida tested and developed its proprietary nanofiber water filter media. Capable of removing more than 99.99 percent of dangerous particles like bacteria, viruses, and parasites, the media was incorporated into the company's commercial NanoCeram water filter, an inductee into the Space Foundation's Space Technology Hall of Fame. In addition to its drinking water filters, Argonide now produces large-scale nanofiber filters used as part of the reverse osmosis process for industrial water purification.

  11. Filters in nuclear facilities

    International Nuclear Information System (INIS)

    Berg, K.H.; Wilhelm, J.G.

    1985-01-01

    The topics of the nine papers given include the behavior of HEPA filters during exposure to air flows of high humidity as well as of high differential pressure, the development of steel-fiber filters suitable for extreme operating conditions, and the occurrence of various radioactive iodine species in the exhaust air from boiling water reactors. In an introductory presentation the German view of the performance requirements to be met by filters in nuclear facilities as well as the present status of filter quality assurance are discussed. (orig.) [de

  12. Washing method of filter

    International Nuclear Information System (INIS)

    Izumidani, Masakiyo; Tanno, Kazuo.

    1978-01-01

    Purpose: To enable automatic filter operation and facilitate back-washing operation by back-washing filters used in a bwr nuclear power plant utilizing an exhaust gas from a ventilator or air conditioner. Method: Exhaust gas from an exhaust pipe of an ventilator or air conditioner is pressurized in a compressor and then introduced in a back-washing gas tank. Then, the exhaust gas pressurized to a predetermined pressure is blown from the inside to the outside of a filter to thereby separate impurities collected on the filter elements and introduce them to a waste tank. (Furukawa, Y.)

  13. Data assimilation in the early phase: Kalman filtering RIMPUFF

    DEFF Research Database (Denmark)

    Astrup, P.; Turcanu, C.; Puch, R.O.

    2004-01-01

    of RODOS (Realtime Online DecisiOn Support system for nuclear emergencies) – has been developed. It is built on the Kalman filtering algorithm and it assimilates 10-minute averaged gamma dose rates measured atground level stations. Since the gamma rates are non-linear functions of the state vector...... variables, the applied Kalman filter is the so-called Extended Kalman filter. In more ways the implementation is non standard: 1) the number of state vectorvariables varies with time, and 2) the state vector variables are prediction updated with 1-minute time steps but only Kalman filtered every 10 minutes......, and this based on time averaged measurements. Given reasonable conditions, i.e. a spatially densedistribution of gamma monitors and a realistic wind field, the developed ADUM module is found to be able to enhance the prediction of the gamma dose field. Based on some of the Kalman filtering parameters, another...

  14. Comparisons of measurements and numerical simulations of a nonlinear beam subjected to a multi-harmonic non-ideal input signal

    International Nuclear Information System (INIS)

    Claeys, M.; Sinou, J.J.; Lambelin, J.P.; Alcoverro, B.

    2014-01-01

    This study presents a direct comparison of measured and predicted nonlinear vibrations of a clamped-clamped steel beam. A multi-harmonic comparison of simulations with measurements is performed at the vicinity of the primary resonance. First of all, a nonlinear analytical model of the beam is developed taking into account non-ideal boundary conditions. The Harmonic Balance Method is implemented to estimate the nonlinear behavior of the clamped-clamped beam. This nonlinear method enables to simulate the vibration stationary response of a nonlinear system projected on several harmonics. This study then proposes a method to compare numerical simulations with measurements on all these harmonics. A signal analysis tool is developed to extract the system harmonics' frequency responses from a temporal signal of a swept sine experiment. An evolutionary updating algorithm (Covariance Matrix Adaptation Evolution Strategy), coupled with highly selective filters is used to identify both fundamental frequency and harmonics' amplitude in the temporal signal, at every moment. This tool enables to extract the harmonic amplitudes of the output signal as well as the input signal. The input of the Harmonic Balance Method can then be either an ideal mono-harmonic signal or a multi-harmonic experimental input signal. Finally, the present work focuses on the comparison of experimental and simulated results. From experimental output harmonics and numerical simulations, it is shown that it is possible to distinguish the nonlinearities of the clamped-clamped beam and the effect of the non-ideal input signal. (authors)

  15. IX Disposition Project - project management plan

    International Nuclear Information System (INIS)

    Choi, I.G.

    1994-01-01

    This report presents plans for resolving saving and disposal concerns for ion exchange modules, cartridge filters and columns. This plan also documents the project baselines for schedules, cost, and technical information

  16. Testing particle filters on convective scale dynamics

    Science.gov (United States)

    Haslehner, Mylene; Craig, George. C.; Janjic, Tijana

    2014-05-01

    Particle filters have been developed in recent years to deal with highly nonlinear dynamics and non Gaussian error statistics that also characterize data assimilation on convective scales. In this work we explore the use of the efficient particle filter (P.v. Leeuwen, 2011) for convective scale data assimilation application. The method is tested in idealized setting, on two stochastic models. The models were designed to reproduce some of the properties of convection, for example the rapid development and decay of convective clouds. The first model is a simple one-dimensional, discrete state birth-death model of clouds (Craig and Würsch, 2012). For this model, the efficient particle filter that includes nudging the variables shows significant improvement compared to Ensemble Kalman Filter and Sequential Importance Resampling (SIR) particle filter. The success of the combination of nudging and resampling, measured as RMS error with respect to the 'true state', is proportional to the nudging intensity. Significantly, even a very weak nudging intensity brings notable improvement over SIR. The second model is a modified version of a stochastic shallow water model (Würsch and Craig 2013), which contains more realistic dynamical characteristics of convective scale phenomena. Using the efficient particle filter and different combination of observations of the three field variables (wind, water 'height' and rain) allows the particle filter to be evaluated in comparison to a regime where only nudging is used. Sensitivity to the properties of the model error covariance is also considered. Finally, criteria are identified under which the efficient particle filter outperforms nudging alone. References: Craig, G. C. and M. Würsch, 2012: The impact of localization and observation averaging for convective-scale data assimilation in a simple stochastic model. Q. J. R. Meteorol. Soc.,139, 515-523. Van Leeuwen, P. J., 2011: Efficient non-linear data assimilation in geophysical

  17. Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT

    International Nuclear Information System (INIS)

    Kachelriess, Marc; Watzke, Oliver; Kalender, Willi A.

    2001-01-01

    In modern computed tomography (CT) there is a strong desire to reduce patient dose and/or to improve image quality by increasing spatial resolution and decreasing image noise. These are conflicting demands since increasing resolution at a constant noise level or decreasing noise at a constant resolution level implies a higher demand on x-ray power and an increase of patient dose. X-ray tube power is limited due to technical reasons. We therefore developed a generalized multi-dimensional adaptive filtering approach that applies nonlinear filters in up to three dimensions in the raw data domain. This new method differs from approaches in the literature since our nonlinear filters are applied not only in the detector row direction but also in the view and in the z-direction. This true three-dimensional filtering improves the quantum statistics of a measured projection value proportional to the third power of the filter size. Resolution tradeoffs are shared among these three dimensions and thus are considerably smaller as compared to one-dimensional smoothing approaches. Patient data of spiral and sequential single- and multi-slice CT scans as well as simulated spiral cone-beam data were processed to evaluate these new approaches. Image quality was assessed by evaluation of difference images, by measuring the image noise and the noise reduction, and by calculating the image resolution using point spread functions. The use of generalized adaptive filters helps to reduce image noise or, alternatively, patient dose. Image noise structures, typically along the direction of the highest attenuation, are effectively reduced. Noise reduction values of typically 30%-60% can be achieved in noncylindrical body regions like the shoulder. The loss in image resolution remains below 5% for all cases. In addition, the new method has a great potential to reduce metal artifacts, e.g., in the hip region

  18. Penetration of asbestos fibers in respirator filters

    International Nuclear Information System (INIS)

    Cheng, Yung-Sung; Pearson, S.D.; Rohrbacher, K.D.; Yeh, Hsu-Chi.

    1994-01-01

    Currently, the health risks associated with asbestos have restricted its use and created a growing asbestos abatement industry with a need for respirator filters that are effective for worker protection. The main purpose of this project is to determine the influence of fiber size, electrostatic charge, and flow rate on the penetration of asbestos fibers in respirator filter cartridges. The study includes four types of filters each tested at two flow rates: the AO-R57A, a dual cartridge HEPA filter tested at 16 and 42.5 L/min; the MSA-S, a dust and mist filter tested at 16 and 42.5 L/min; the MSA-A power filter tested at 32 and 85 L/min; and the 3M-8710, a low-efficiency disposable face mask filter tested at 32 and 85 L/min. The three types of asbestos fibers used (amosite, crocidolite, and chrysotile) ranged in length from 0.04-0.5 μm and in aspect ratio (ratio of length to diameter) from 3 to 60. The fibers were used in both charged and neutralized forms. The results from amosite fibers are reported here

  19. Comparing Consider-Covariance Analysis with Sigma-Point Consider Filter and Linear-Theory Consider Filter Formulations

    Science.gov (United States)

    Lisano, Michael E.

    2007-01-01

    Recent literature in applied estimation theory reflects growing interest in the sigma-point (also called unscented ) formulation for optimal sequential state estimation, often describing performance comparisons with extended Kalman filters as applied to specific dynamical problems [c.f. 1, 2, 3]. Favorable attributes of sigma-point filters are described as including a lower expected error for nonlinear even non-differentiable dynamical systems, and a straightforward formulation not requiring derivation or implementation of any partial derivative Jacobian matrices. These attributes are particularly attractive, e.g. in terms of enabling simplified code architecture and streamlined testing, in the formulation of estimators for nonlinear spaceflight mechanics systems, such as filter software onboard deep-space robotic spacecraft. As presented in [4], the Sigma-Point Consider Filter (SPCF) algorithm extends the sigma-point filter algorithm to the problem of consider covariance analysis. Considering parameters in a dynamical system, while estimating its state, provides an upper bound on the estimated state covariance, which is viewed as a conservative approach to designing estimators for problems of general guidance, navigation and control. This is because, whether a parameter in the system model is observable or not, error in the knowledge of the value of a non-estimated parameter will increase the actual uncertainty of the estimated state of the system beyond the level formally indicated by the covariance of an estimator that neglects errors or uncertainty in that parameter. The equations for SPCF covariance evolution are obtained in a fashion similar to the derivation approach taken with standard (i.e. linearized or extended) consider parameterized Kalman filters (c.f. [5]). While in [4] the SPCF and linear-theory consider filter (LTCF) were applied to an illustrative linear dynamics/linear measurement problem, in the present work examines the SPCF as applied to

  20. Comparison of image quality and visibility of normal and abnormal findings at submillisievert chest CT using filtered back projection, iterative model reconstruction (IMR) and iDose{sup 4}™

    Energy Technology Data Exchange (ETDEWEB)

    Laqmani, Azien, E-mail: a.laqmani@uke.de [Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Avanesov, Maxim; Butscheidt, Sebastian; Kurfürst, Maximilian [Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Sehner, Susanne [Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Schmidt-Holtz, Jakob; Derlin, Thorsten; Behzadi, Cyrus [Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany); Nagel, Hans D. [Science & Technology for Radiology, Fritz-Reuter-Weg 5f, 21244 Buchholz, Germany, (Germany); Adam, Gerhard; Regier, Marc [Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg (Germany)

    2016-11-15

    Objective: To compare both image quality and visibility of normal and abnormal findings at submillisievert chest CT (smSv-CT) using filtered back projection (FBP) and the two different iterative reconstruction (IR) techniques iterative model reconstruction (IMR) and iDose{sup 4}™. Materials and methods: This institutional review board approved study was based on retrospective interpretation of clinically indicated acquired data. The requirement to obtain informed consent was waived. 81 patients with suspected pneumonia underwent smSv-CT (Brilliance iCT, Philips Healthcare; mean effective dose: 0.86 ± 0.2 mSv). Data were reconstructed using FBP and two different IR techniques iDose{sup 4}™ and IMR (Philips Healthcare) at various iteration levels. Objective image noise (OIN) was measured. Two experienced readers independently assessed all images for image noise, image appearance and visibility of normal anatomic and abnormal findings. A random intercept model was used for statistical analysis. Results: Compared to FBP and iDose{sup 4}™, IMR reduced OIN up to 88% and 72%, respectively (p < 0.001). A mild blotchy image appearance was seen in IMR images, affecting diagnostic confidence. iDose{sup 4}™ images provided satisfactory to good image quality for visibility of normal and abnormal findings and were superior to FBP (p < 0.001). IMR images were significantly inferior for visibility of normal structures compared to iDose{sup 4}™, while being superior for visibility of abnormal findings except for reticular pattern (p < 0.001). Conclusion: IMR results for visibility of normal and abnormal lung findings are heterogeneous, indicating that IMR may not represent a priority technique for clinical routine. iDose{sup 4}™ represents a suitable method for evaluation of lung tissue at submillisievert chest CT.

  1. Computed tomography of the cervical spine: comparison of image quality between a standard-dose and a low-dose protocol using filtered back-projection and iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Becce, Fabio [University of Lausanne, Department of Diagnostic and Interventional Radiology, Centre Hospitalier Universitaire Vaudois, Lausanne (Switzerland); Universite Catholique Louvain, Department of Radiology, Cliniques Universitaires Saint-Luc, Brussels (Belgium); Ben Salah, Yosr; Berg, Bruno C. vande; Lecouvet, Frederic E.; Omoumi, Patrick [Universite Catholique Louvain, Department of Radiology, Cliniques Universitaires Saint-Luc, Brussels (Belgium); Verdun, Francis R. [University of Lausanne, Institute of Radiation Physics, Centre Hospitalier Universitaire Vaudois, Lausanne (Switzerland); Meuli, Reto [University of Lausanne, Department of Diagnostic and Interventional Radiology, Centre Hospitalier Universitaire Vaudois, Lausanne (Switzerland)

    2013-07-15

    To compare image quality of a standard-dose (SD) and a low-dose (LD) cervical spine CT protocol using filtered back-projection (FBP) and iterative reconstruction (IR). Forty patients investigated by cervical spine CT were prospectively randomised into two groups: SD (120 kVp, 275 mAs) and LD (120 kVp, 150 mAs), both applying automatic tube current modulation. Data were reconstructed using both FBP and sinogram-affirmed IR. Image noise, signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were measured. Two radiologists independently and blindly assessed the following anatomical structures at C3-C4 and C6-C7 levels, using a four-point scale: intervertebral disc, content of neural foramina and dural sac, ligaments, soft tissues and vertebrae. They subsequently rated overall image quality using a ten-point scale. For both protocols and at each disc level, IR significantly decreased image noise and increased SNR and CNR, compared with FBP. SNR and CNR were statistically equivalent in LD-IR and SD-FBP protocols. Regardless of the dose and disc level, the qualitative scores with IR compared with FBP, and with LD-IR compared with SD-FBP, were significantly higher or not statistically different for intervertebral discs, neural foramina and ligaments, while significantly lower or not statistically different for soft tissues and vertebrae. The overall image quality scores were significantly higher with IR compared with FBP, and with LD-IR compared with SD-FBP. LD-IR cervical spine CT provides better image quality for intervertebral discs, neural foramina and ligaments, and worse image quality for soft tissues and vertebrae, compared with SD-FBP, while reducing radiation dose by approximately 40 %. (orig.)

  2. Iterative reconstruction technique vs filter back projection: utility for quantitative bronchial assessment on low-dose thin-section MDCT in patients with/without chronic obstructive pulmonary disease

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Hisanobu; Seki, Shinichiro; Sugimura, Kazuro [Kobe University Graduate School of Medicine, Division of Radiology, Department of Radiology, Kobe, Hyogo (Japan); Ohno, Yoshiharu; Nishio, Mizuho; Matsumoto, Sumiaki; Yoshikawa, Takeshi [Kobe University Graduate School of Medicine, Advanced Biomedical Imaging Research Centre, Kobe (Japan); Kobe University Graduate School of Medicine, Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe (Japan); Sugihara, Naoki [Toshiba Medical Systems Corporation, Ohtawara, Tochigi (Japan)

    2014-08-15

    The aim of this study was to evaluate the utility of the iterative reconstruction (IR) technique for quantitative bronchial assessment during low-dose computed tomography (CT) as a substitute for standard-dose CT in patients with/without chronic obstructive pulmonary disease. Fifty patients (mean age, 69.2; mean % predicted FEV1, 79.4) underwent standard-dose CT (150mAs) and low-dose CT (25mAs). Except for tube current, the imaging parameters were identical for both protocols. Standard-dose CT was reconstructed using filtered back-projection (FBP), and low-dose CT was reconstructed using IR and FBP. For quantitative bronchial assessment, the wall area percentage (WA%) of the sub-segmental bronchi and the airway luminal volume percentage (LV%) from the main bronchus to the peripheral bronchi were acquired in each dataset. The correlation and agreement of WA% and LV% between standard-dose CT and both low-dose CTs were statistically evaluated. WA% and LV% between standard-dose CT and both low-dose CTs were significant correlated (r > 0.77, p < 0.00001); however, only the LV% agreement between SD-CT and low-dose CT reconstructed with IR was moderate (concordance correlation coefficient = 0.93); the other agreement was poor (concordance correlation coefficient <0.90). Quantitative bronchial assessment via low-dose CT has potential as a substitute for standard-dose CT by using IR and airway luminal volumetry techniques. circle Quantitative bronchial assessment of COPD using low-dose CT is possible. (orig.)

  3. Computed tomography of the cervical spine: comparison of image quality between a standard-dose and a low-dose protocol using filtered back-projection and iterative reconstruction

    International Nuclear Information System (INIS)

    Becce, Fabio; Ben Salah, Yosr; Berg, Bruno C. vande; Lecouvet, Frederic E.; Omoumi, Patrick; Verdun, Francis R.; Meuli, Reto

    2013-01-01

    To compare image quality of a standard-dose (SD) and a low-dose (LD) cervical spine CT protocol using filtered back-projection (FBP) and iterative reconstruction (IR). Forty patients investigated by cervical spine CT were prospectively randomised into two groups: SD (120 kVp, 275 mAs) and LD (120 kVp, 150 mAs), both applying automatic tube current modulation. Data were reconstructed using both FBP and sinogram-affirmed IR. Image noise, signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were measured. Two radiologists independently and blindly assessed the following anatomical structures at C3-C4 and C6-C7 levels, using a four-point scale: intervertebral disc, content of neural foramina and dural sac, ligaments, soft tissues and vertebrae. They subsequently rated overall image quality using a ten-point scale. For both protocols and at each disc level, IR significantly decreased image noise and increased SNR and CNR, compared with FBP. SNR and CNR were statistically equivalent in LD-IR and SD-FBP protocols. Regardless of the dose and disc level, the qualitative scores with IR compared with FBP, and with LD-IR compared with SD-FBP, were significantly higher or not statistically different for intervertebral discs, neural foramina and ligaments, while significantly lower or not statistically different for soft tissues and vertebrae. The overall image quality scores were significantly higher with IR compared with FBP, and with LD-IR compared with SD-FBP. LD-IR cervical spine CT provides better image quality for intervertebral discs, neural foramina and ligaments, and worse image quality for soft tissues and vertebrae, compared with SD-FBP, while reducing radiation dose by approximately 40 %. (orig.)

  4. DSP based adaptive hysteresis-band current controlled active filter ...

    African Journals Online (AJOL)

    The use of non-linear loads critically affects the quality of supply by drawing harmonic currents and reactive power from the electrical distribution system. Active power filters are the most viable solution for solving such power quality problems in compliance with the harmonic standards. This article presents a digital signal ...

  5. Multilevel ensemble Kalman filter

    KAUST Repository

    Chernov, Alexey; Hoel, Haakon; Law, Kody; Nobile, Fabio; Tempone, Raul

    2016-01-01

    This work embeds a multilevel Monte Carlo (MLMC) sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF). In terms of computational cost vs. approximation error the asymptotic performance of the multilevel ensemble Kalman filter (MLEnKF) is superior to the EnKF s.

  6. Neutron Beam Filters

    International Nuclear Information System (INIS)

    Adib, M.

    2011-01-01

    The purpose of filters is to transmit neutrons with selected energy, while remove unwanted ones from the incident neutron beam. This reduces the background, and the number of spurious. The types of commonly used now-a-day neutron filters and their properties are discussed in the present work. There are three major types of neutron filters. The first type is filter of selective thermal neutron. It transmits the main reflected neutrons from a crystal monochromate, while reject the higher order contaminations accompanying the main one. Beams coming from the moderator always contain unwanted radiation like fast neutrons and gamma-rays which contribute to experimental background and to the biological hazard potential. Such filter type is called filter of whole thermal neutron spectrum. The third filter type is it transmits neutrons with energies in the resonance energy range (En . 1 KeV). The main idea of such neutron filter technique is the use of large quantities of a certain material which have the deep interference minima in its total neutron cross-section. By transmitting reactor neutrons through bulk layer of such material, one can obtain the quasimonochromatic neutron lines instead of white reactor spectrum.

  7. Side loading filter apparatus

    International Nuclear Information System (INIS)

    Reynolds, K.E.

    1981-01-01

    A side loading filter chamber for use with radioactive gases is described. The equipment incorporates an inexpensive, manually operated, mechanism for aligning filter units with a number of laterally spaced wall openings and for removing the units from the chamber. (U.K.)

  8. Multilevel ensemble Kalman filter

    KAUST Repository

    Chernov, Alexey

    2016-01-06

    This work embeds a multilevel Monte Carlo (MLMC) sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF). In terms of computational cost vs. approximation error the asymptotic performance of the multilevel ensemble Kalman filter (MLEnKF) is superior to the EnKF s.

  9. Nonlinear Adaptive Filter for MEMS Gyro Error Cancellation

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal biases are the dominate error in low-cost low-power small MEMS gyros. CubeSats often can't afford the power/mass to put a heater on their MEMS gyros and...

  10. Ceramic High Efficiency Particulate Air (HEPA) Filter Final Report CRADA No. TC02160.0

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bergman, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-25

    The technical objective of this project was to develop a ceramic HEPA filter technology, by initially producing and testing coupon ceramics, small scale prototypes, and full scale prototype HEPA filters, and to address relevant manufacturing and commercialization technical issues.

  11. Sensorless Control of Electric Motors with Kalman Filters: Applications to Robotic and Industrial Systems

    Directory of Open Access Journals (Sweden)

    Gerasimos G. Rigatos

    2011-12-01

    Full Text Available The paper studies sensorless control for DC and induction motors, using Kalman Filtering techniques. First the case of a DC motor is considered and Kalman Filter-based control is implemented. Next the nonlinear model of a field-oriented induction motor is examined and the motor

  12. Filtering and prediction

    CERN Document Server

    Fristedt, B; Krylov, N

    2007-01-01

    Filtering and prediction is about observing moving objects when the observations are corrupted by random errors. The main focus is then on filtering out the errors and extracting from the observations the most precise information about the object, which itself may or may not be moving in a somewhat random fashion. Next comes the prediction step where, using information about the past behavior of the object, one tries to predict its future path. The first three chapters of the book deal with discrete probability spaces, random variables, conditioning, Markov chains, and filtering of discrete Markov chains. The next three chapters deal with the more sophisticated notions of conditioning in nondiscrete situations, filtering of continuous-space Markov chains, and of Wiener process. Filtering and prediction of stationary sequences is discussed in the last two chapters. The authors believe that they have succeeded in presenting necessary ideas in an elementary manner without sacrificing the rigor too much. Such rig...

  13. Filter cake breaker systems

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Marcelo H.F. [Poland Quimica Ltda., Duque de Caxias, RJ (Brazil)

    2004-07-01

    Drilling fluids filter cakes are based on a combination of properly graded dispersed particles and polysaccharide polymers. High efficiency filter cakes are formed by these combination , and their formation on wellbore walls during the drilling process has, among other roles, the task of protecting the formation from instantaneous or accumulative invasion of drilling fluid filtrate, granting stability to well and production zones. Filter cake minimizes contact between drilling fluid filtrate and water, hydrocarbons and clay existent in formations. The uniform removal of the filter cake from the entire interval is a critical factor of the completion process. The main methods used to breaking filter cake are classified into two groups, external or internal, according to their removal mechanism. The aim of this work is the presentation of these mechanisms as well their efficiency. (author)

  14. Sub-micron filter

    Science.gov (United States)

    Tepper, Frederick [Sanford, FL; Kaledin, Leonid [Port Orange, FL

    2009-10-13

    Aluminum hydroxide fibers approximately 2 nanometers in diameter and with surface areas ranging from 200 to 650 m.sup.2/g have been found to be highly electropositive. When dispersed in water they are able to attach to and retain electronegative particles. When combined into a composite filter with other fibers or particles they can filter bacteria and nano size particulates such as viruses and colloidal particles at high flux through the filter. Such filters can be used for purification and sterilization of water, biological, medical and pharmaceutical fluids, and as a collector/concentrator for detection and assay of microbes and viruses. The alumina fibers are also capable of filtering sub-micron inorganic and metallic particles to produce ultra pure water. The fibers are suitable as a substrate for growth of cells. Macromolecules such as proteins may be separated from each other based on their electronegative charges.

  15. Estimation of Sideslip Angle Based on Extended Kalman Filter

    Directory of Open Access Journals (Sweden)

    Yupeng Huang

    2017-01-01

    Full Text Available The sideslip angle plays an extremely important role in vehicle stability control, but the sideslip angle in production car cannot be obtained from sensor directly in consideration of the cost of the sensor; it is essential to estimate the sideslip angle indirectly by means of other vehicle motion parameters; therefore, an estimation algorithm with real-time performance and accuracy is critical. Traditional estimation method based on Kalman filter algorithm is correct in vehicle linear control area; however, on low adhesion road, vehicles have obvious nonlinear characteristics. In this paper, extended Kalman filtering algorithm had been put forward in consideration of the nonlinear characteristic of the tire and was verified by the Carsim and Simulink joint simulation, such as the simulation on the wet cement road and the ice and snow road with double lane change. To test and verify the effect of extended Kalman filtering estimation algorithm, the real vehicle test was carried out on the limit test field. The experimental results show that the accuracy of vehicle sideslip angle acquired by extended Kalman filtering algorithm is obviously higher than that acquired by Kalman filtering in the area of the nonlinearity.

  16. Monolithic Integrated Ceramic Waveguide Filters

    OpenAIRE

    Hunter, IC; Sandhu, MY

    2014-01-01

    Design techniques for a new class of integrated monolithic high permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled TEM filters with the same unloaded Q-Factor. Designs for both chebyshev and asymmetric generalized chebyshev filter are presented, with experimental results for an 1800 MHz chebyshev filter showing excellent agreement with theory.

  17. Homogenized description and retrieval method of nonlinear metasurfaces

    Science.gov (United States)

    Liu, Xiaojun; Larouche, Stéphane; Smith, David R.

    2018-03-01

    A patterned, plasmonic metasurface can strongly scatter incident light, functioning as an extremely low-profile lens, filter, reflector or other optical device. When the metasurface is patterned uniformly, its linear optical properties can be expressed using effective surface electric and magnetic polarizabilities obtained through a homogenization procedure. The homogenized description of a nonlinear metasurface, however, presents challenges both because of the inherent anisotropy of the medium as well as the much larger set of potential wave interactions available, making it challenging to assign effective nonlinear parameters to the otherwise inhomogeneous layer of metamaterial elements. Here we show that a homogenization procedure can be developed to describe nonlinear metasurfaces, which derive their nonlinear response from the enhanced local fields arising within the structured plasmonic elements. With the proposed homogenization procedure, we are able to assign effective nonlinear surface polarization densities to a nonlinear metasurface, and link these densities to the effective nonlinear surface susceptibilities and averaged macroscopic pumping fields across the metasurface. These effective nonlinear surface polarization densities are further linked to macroscopic nonlinear fields through the generalized sheet transition conditions (GSTCs). By inverting the GSTCs, the effective nonlinear surface susceptibilities of the metasurfaces can be solved for, leading to a generalized retrieval method for nonlinear metasurfaces. The application of the homogenization procedure and the GSTCs are demonstrated by retrieving the nonlinear susceptibilities of a SiO2 nonlinear slab. As an example, we investigate a nonlinear metasurface which presents nonlinear magnetoelectric coupling in near infrared regime. The method is expected to apply to any patterned metasurface whose thickness is much smaller than the wavelengths of operation, with inclusions of arbitrary geometry

  18. Detecting Nonlinear Oscillations in Broadband Signals

    Czech Academy of Sciences Publication Activity Database

    Vejmelka, Martin; Paluš, Milan

    2009-01-01

    Roč. 19, - (2009), 1015114-1-1015114-7 ISSN 1054-1500 R&D Projects: GA MŠk 7E08027 EU Projects: European Commission(XE) 200728 - BRAINSYNC Institutional research plan: CEZ:AV0Z10300504 Keywords : nonlinear dynamical systems * oscillations * random processes * time series analysis * EEG Subject RIV: FH - Neurology Impact factor: 1.795, year: 2009

  19. CudaFilters: A SignalPlant library for GPU-accelerated FFT and FIR filtering

    Czech Academy of Sciences Publication Activity Database

    Nejedlý, Petr; Plešinger, Filip; Halámek, Josef; Jurák, Pavel

    2018-01-01

    Roč. 48, č. 1 (2018), s. 3-9 ISSN 0038-0644 R&D Projects: GA ČR GA17-13830S; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : CUDA * FFT filter * FIR filter * GPU acceleration * SignalPlant Impact factor: 1.609, year: 2016

  20. Marginalized approximate filtering of state-space models

    Czech Academy of Sciences Publication Activity Database

    Dedecius, Kamil

    2018-01-01

    Roč. 32, č. 1 (2018), s. 1-12 ISSN 0890-6327 R&D Projects: GA ČR(CZ) GA16-09848S Institutional support: RVO:67985556 Keywords : approximate filtering * marginalized filters * particle filtering Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.708, year: 2016 http://library.utia.cas.cz/separaty/2017/AS/dedecius-0478074.pdf

  1. Filtering algorithm for dotted interferences

    Energy Technology Data Exchange (ETDEWEB)

    Osterloh, K., E-mail: kurt.osterloh@bam.de [Federal Institute for Materials Research and Testing (BAM), Division VIII.3, Radiological Methods, Unter den Eichen 87, 12205 Berlin (Germany); Buecherl, T.; Lierse von Gostomski, Ch. [Technische Universitaet Muenchen, Lehrstuhl fuer Radiochemie, Walther-Meissner-Str. 3, 85748 Garching (Germany); Zscherpel, U.; Ewert, U. [Federal Institute for Materials Research and Testing (BAM), Division VIII.3, Radiological Methods, Unter den Eichen 87, 12205 Berlin (Germany); Bock, S. [Technische Universitaet Muenchen, Lehrstuhl fuer Radiochemie, Walther-Meissner-Str. 3, 85748 Garching (Germany)

    2011-09-21

    An algorithm has been developed to remove reliably dotted interferences impairing the perceptibility of objects within a radiographic image. This particularly is a major challenge encountered with neutron radiographs collected at the NECTAR facility, Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II): the resulting images are dominated by features resembling a snow flurry. These artefacts are caused by scattered neutrons, gamma radiation, cosmic radiation, etc. all hitting the detector CCD directly in spite of a sophisticated shielding. This makes such images rather useless for further direct evaluations. One approach to resolve this problem of these random effects would be to collect a vast number of single images, to combine them appropriately and to process them with common image filtering procedures. However, it has been shown that, e.g. median filtering, depending on the kernel size in the plane and/or the number of single shots to be combined, is either insufficient or tends to blur sharp lined structures. This inevitably makes a visually controlled processing image by image unavoidable. Particularly in tomographic studies, it would be by far too tedious to treat each single projection by this way. Alternatively, it would be not only more comfortable but also in many cases the only reasonable approach to filter a stack of images in a batch procedure to get rid of the disturbing interferences. The algorithm presented here meets all these requirements. It reliably frees the images from the snowy pattern described above without the loss of fine structures and without a general blurring of the image. It consists of an iterative, within a batch procedure parameter free filtering algorithm aiming to eliminate the often complex interfering artefacts while leaving the original information untouched as far as possible.

  2. Filtering algorithm for dotted interferences

    International Nuclear Information System (INIS)

    Osterloh, K.; Buecherl, T.; Lierse von Gostomski, Ch.; Zscherpel, U.; Ewert, U.; Bock, S.

    2011-01-01

    An algorithm has been developed to remove reliably dotted interferences impairing the perceptibility of objects within a radiographic image. This particularly is a major challenge encountered with neutron radiographs collected at the NECTAR facility, Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II): the resulting images are dominated by features resembling a snow flurry. These artefacts are caused by scattered neutrons, gamma radiation, cosmic radiation, etc. all hitting the detector CCD directly in spite of a sophisticated shielding. This makes such images rather useless for further direct evaluations. One approach to resolve this problem of these random effects would be to collect a vast number of single images, to combine them appropriately and to process them with common image filtering procedures. However, it has been shown that, e.g. median filtering, depending on the kernel size in the plane and/or the number of single shots to be combined, is either insufficient or tends to blur sharp lined structures. This inevitably makes a visually controlled processing image by image unavoidable. Particularly in tomographic studies, it would be by far too tedious to treat each single projection by this way. Alternatively, it would be not only more comfortable but also in many cases the only reasonable approach to filter a stack of images in a batch procedure to get rid of the disturbing interferences. The algorithm presented here meets all these requirements. It reliably frees the images from the snowy pattern described above without the loss of fine structures and without a general blurring of the image. It consists of an iterative, within a batch procedure parameter free filtering algorithm aiming to eliminate the often complex interfering artefacts while leaving the original information untouched as far as possible.

  3. Ceramic fiber reinforced filter

    Science.gov (United States)

    Stinton, David P.; McLaughlin, Jerry C.; Lowden, Richard A.

    1991-01-01

    A filter for removing particulate matter from high temperature flowing fluids, and in particular gases, that is reinforced with ceramic fibers. The filter has a ceramic base fiber material in the form of a fabric, felt, paper of the like, with the refractory fibers thereof coated with a thin layer of a protective and bonding refractory applied by chemical vapor deposition techniques. This coating causes each fiber to be physically joined to adjoining fibers so as to prevent movement of the fibers during use and to increase the strength and toughness of the composite filter. Further, the coating can be selected to minimize any reactions between the constituents of the fluids and the fibers. A description is given of the formation of a composite filter using a felt preform of commercial silicon carbide fibers together with the coating of these fibers with pure silicon carbide. Filter efficiency approaching 100% has been demonstrated with these filters. The fiber base material is alternately made from aluminosilicate fibers, zirconia fibers and alumina fibers. Coating with Al.sub.2 O.sub.3 is also described. Advanced configurations for the composite filter are suggested.

  4. FY 1993 Report on the industrial science and technology research and development project results. Research and development of non-linear photoelectronic materials; 1993 nendo hisenkei hikari denshi zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    Described herein are the results of the industrial science and technology research and development project for nonlinear optoelectronic materials. The more functional chiral and pi-conjugated compounds are investigated as the organic, low-molecular-weight materials. The technologies for the orientation-controlled crystal growth are continuously investigated. Polyacetylene is investigated as the conjugated pi-electron system. The glass-dispersed systems, prepared by the sol-gel, superlow-melting glass and super-cooling methods, are investigated. In order to elucidate the relationship between the organic superlattice and properties (e.g., photoelectronic properties), the intramolecular interactions under the superlattice conditions are estimated by the theoretical chemical calculations, and the optimum structures deduced from the measured properties are proposed. The thin, composite films of fine metallic particles and glass are prepared by the multi-dimensional sputtering, to explore the constituent materials suitable for the three-dimensional superstructures, and their properties are analyzed. The thin semiconductor films of superlattices are prepared by the molecular beam epitaxy method, to investigate the optimization of the structures and compositions. The basic aspects of the three-dimensional superstructures, prepared by the superfine machining, are investigated. The results of the comprehensive investigations and researches are also described. (NEDO)

  5. Circuits and filters handbook

    CERN Document Server

    Chen, Wai-Kai

    2003-01-01

    A bestseller in its first edition, The Circuits and Filters Handbook has been thoroughly updated to provide the most current, most comprehensive information available in both the classical and emerging fields of circuits and filters, both analog and digital. This edition contains 29 new chapters, with significant additions in the areas of computer-aided design, circuit simulation, VLSI circuits, design automation, and active and digital filters. It will undoubtedly take its place as the engineer's first choice in looking for solutions to problems encountered in the design, analysis, and behavi

  6. EMI filter design

    CERN Document Server

    Ozenbaugh, Richard Lee

    2011-01-01

    With today's electrical and electronics systems requiring increased levels of performance and reliability, the design of robust EMI filters plays a critical role in EMC compliance. Using a mix of practical methods and theoretical analysis, EMI Filter Design, Third Edition presents both a hands-on and academic approach to the design of EMI filters and the selection of components values. The design approaches covered include matrix methods using table data and the use of Fourier analysis, Laplace transforms, and transfer function realization of LC structures. This edition has been fully revised

  7. Randomized Filtering Algorithms

    DEFF Research Database (Denmark)

    Katriel, Irit; Van Hentenryck, Pascal

    2008-01-01

    of AllDifferent and is generalization, the Global Cardinality Constraint. The first delayed filtering scheme is a Monte Carlo algorithm: its running time is superior, in the worst case, to that of enforcing are consistency after every domain event, while its filtering effectiveness is analyzed...... in the expected sense. The second scheme is a Las Vegas algorithm using filtering triggers: Its effectiveness is the same as enforcing are consistency after every domain event, while in the expected case it is faster by a factor of m/n, where n and m are, respectively, the number of nodes and edges...

  8. Indirect Control of a low power Single-Phase Active Power Filter

    Directory of Open Access Journals (Sweden)

    SILVIU EPURE

    2010-12-01

    Full Text Available This paper deals with a low power, single phase active filter used to compensate nonlinear loads. The filter uses the indirect control method and it is based on a particular connection between filter, polluting load and grid to avoid timeconsuming mathematic operations or signal processing computations and assures good rejection of harmonic currents injected by the nonlinear load into the grid. A scale model was first simulated in Simulink and then physically implemented. The paper presents simulation and experimental results, and highlight problems encountered during experiments.

  9. On Poisson Nonlinear Transformations

    Directory of Open Access Journals (Sweden)

    Nasir Ganikhodjaev

    2014-01-01

    Full Text Available We construct the family of Poisson nonlinear transformations defined on the countable sample space of nonnegative integers and investigate their trajectory behavior. We have proved that these nonlinear transformations are regular.

  10. Testing Of The Dual Rotary Filter System

    International Nuclear Information System (INIS)

    Herman, D.; Fowley, M.; Stefanko, D.

    2011-01-01

    The Savannah River National Laboratory (SRNL) installed and tested two hydraulically connected SpinTek rotary microfilter (RMF) units to determine the behavior of a multiple filter system. Both units were successfully controlled by a control scheme written in DELTA-V architecture by Savannah River Remediation (SRR) Process Control Engineering personnel. The control system was tuned to provide satisfactory response to changing conditions during the operation of the multi-filter system. Stability was maintained through the startup and shutdown of one of the filter units while the second was still in operation. The installation configuration originally proposed by the Small Colum Ion Exchange (SCIX) project of independent filter and motor mountings may be susceptible to vibration. Significant stiffening of the filter and motor mounts was required to minimize the vibration. Alignment of the motor to the filter was a challenge in this test configuration. The deployment configuration must be easy to manipulate and allow for fine adjustment. An analysis of the vibration signature of the test system identified critical speeds. Whether it corresponds to the resonance frequency of a rotor radial vibration mode that was excited by rotor unbalance is uncertain based upon the measurements. A relative motion series should be completed on the filter with the final shaft configuration to determine if the resonances exist in the final filter design. The instrumentation selected for deployment, including the concentrate discharge control valve and flow meters, performed well. Automation of the valve control integrated well with the control scheme and when used in concert with the other control variables, allowed automated control of the dual RMF system. The one area of concern with the instrumentation was the condition resulting when the filtrate flow meter operated with less than three gpm. This low flow was at the lower range of performance for the flow meter. This should not be

  11. TESTING OF THE DUAL ROTARY FILTER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D.; Fowley, M.; Stefanko, D.

    2011-08-29

    The Savannah River National Laboratory (SRNL) installed and tested two hydraulically connected SpinTek rotary microfilter (RMF) units to determine the behavior of a multiple filter system. Both units were successfully controlled by a control scheme written in DELTA-V architecture by Savannah River Remediation (SRR) Process Control Engineering personnel. The control system was tuned to provide satisfactory response to changing conditions during the operation of the multi-filter system. Stability was maintained through the startup and shutdown of one of the filter units while the second was still in operation. The installation configuration originally proposed by the Small Colum Ion Exchange (SCIX) project of independent filter and motor mountings may be susceptible to vibration. Significant stiffening of the filter and motor mounts was required to minimize the vibration. Alignment of the motor to the filter was a challenge in this test configuration. The deployment configuration must be easy to manipulate and allow for fine adjustment. An analysis of the vibration signature of the test system identified critical speeds. Whether it corresponds to the resonance frequency of a rotor radial vibration mode that was excited by rotor unbalance is uncertain based upon the measurements. A relative motion series should be completed on the filter with the final shaft configuration to determine if the resonances exist in the final filter design. The instrumentation selected for deployment, including the concentrate discharge control valve and flow meters, performed well. Automation of the valve control integrated well with the control scheme and when used in concert with the other control variables, allowed automated control of the dual RMF system. The one area of concern with the instrumentation was the condition resulting when the filtrate flow meter operated with less than three gpm. This low flow was at the lower range of performance for the flow meter. This should not be

  12. Numerical evaluation of methods for computing tomographic projections

    International Nuclear Information System (INIS)

    Zhuang, W.; Gopal, S.S.; Hebert, T.J.

    1994-01-01

    Methods for computing forward/back projections of 2-D images can be viewed as numerical integration techniques. The accuracy of any ray-driven projection method can be improved by increasing the number of ray-paths that are traced per projection bin. The accuracy of pixel-driven projection methods can be increased by dividing each pixel into a number of smaller sub-pixels and projecting each sub-pixel. The authors compared four competing methods of computing forward/back projections: bilinear interpolation, ray-tracing, pixel-driven projection based upon sub-pixels, and pixel-driven projection based upon circular, rather than square, pixels. This latter method is equivalent to a fast, bi-nonlinear interpolation. These methods and the choice of the number of ray-paths per projection bin or the number of sub-pixels per pixel present a trade-off between computational speed and accuracy. To solve the problem of assessing backprojection accuracy, the analytical inverse Fourier transform of the ramp filtered forward projection of the Shepp and Logan head phantom is derived

  13. Metalcasting: Filtering Molten Metal

    International Nuclear Information System (INIS)

    Lauren Poole; Lee Recca

    1999-01-01

    A more efficient method has been created to filter cast molten metal for impurities. Read about the resulting energy and money savings that can accrue to many different industries from the use of this exciting new technology

  14. HEPA air filter (image)

    Science.gov (United States)

    ... pet dander and other irritating allergens from the air. Along with other methods to reduce allergens, such ... controlling the amount of allergens circulating in the air. HEPA filters can be found in most air ...

  15. Updating the OMERACT filter

    DEFF Research Database (Denmark)

    Tugwell, Peter; Boers, Maarten; D'Agostino, Maria-Antonietta

    2014-01-01

    OBJECTIVE: The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter requires that criteria be met to demonstrate that the outcome instrument meets...... the criteria for content, face, and construct validity. METHODS: Discussion groups critically reviewed a variety of ways in which case studies of current OMERACT Working Groups complied with the Truth component of the Filter and what issues remained to be resolved. RESULTS: The case studies showed...... that there is broad agreement on criteria for meeting the Truth criteria through demonstration of content, face, and construct validity; however, several issues were identified that the Filter Working Group will need to address. CONCLUSION: These issues will require resolution to reach consensus on how Truth...

  16. Updating the OMERACT filter

    DEFF Research Database (Denmark)

    Kirwan, John R; Boers, Maarten; Hewlett, Sarah

    2014-01-01

    OBJECTIVE: The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter presupposes an explicit framework for identifying the relevant core outcomes...... for defining core areas of measurement ("Filter 2.0 Core Areas of Measurement") was presented at OMERACT 11 to explore areas of consensus and to consider whether already endorsed core outcome sets fit into this newly proposed framework. METHODS: Discussion groups critically reviewed the extent to which case......, presentation, and clarity of the framework were questioned. The discussion groups and subsequent feedback highlighted 20 such issues. CONCLUSION: These issues will require resolution to reach consensus on accepting the proposed Filter 2.0 framework of Core Areas as the basis for the selection of Core Outcome...

  17. Paul Rodgersi filter Kohilas

    Index Scriptorium Estoniae

    2000-01-01

    28. I Kohila keskkoolis kohaspetsiifiline skulptuur ja performance "Filter". Kooli 130. aastapäeva tähistava ettevõtmise eesotsas oli skulptor Paul Rodgers ja kaks viimase klassi noormeest ئ Marko Heinmäe, Hendrik Karm.

  18. Advances in nonlinear optics

    CERN Document Server

    Chen, Xianfeng; Zeng, Heping; Guo, Qi; She, Weilong

    2015-01-01

    This book presents an overview of the state of the art of nonlinear optics from weak light nonlinear optics, ultrafast nonlinear optics to electro-optical theory and applications. Topics range from the fundamental studies of the interaction between matter and radiation to the development of devices, components, and systems of tremendous commercial interest for widespread applications in optical telecommunications, medicine, and biotechnology.

  19. Spatial filter issues

    International Nuclear Information System (INIS)

    Murray, J.E.; Estabrook, K.G.; Milam, D.; Sell, W.D.; Van Wonterghem, R.M.; Feil, M.D.; Rubenchick, A.M.

    1996-01-01

    Experiments and calculations indicate that the threshold pressure in spatial filters for distortion of a transmitted pulse scales approximately as I O.2 and (F number-sign) 2 over the intensity range from 10 14 to 2xlO 15 W/CM 2 . We also demonstrated an interferometric diagnostic that will be used to measure the scaling relationships governing pinhole closure in spatial filters

  20. Microwave Resonators and Filters

    Science.gov (United States)

    2015-12-22

    1 Microwave Resonators and Filters Daniel E. Oates MIT Lincoln Laboratory 244 Wood St. Lexington, MA 02478 USA Email: oates@ll.mit.edu...explained in other chapters, the surface resistance of superconductors at microwave frequencies can be as much as three orders of magnitude lower than the...resonators and filters in the first edition of this handbook (Z.-Y. Shen 2003) discussed the then state of the art of microwave frequency applications