WorldWideScience

Sample records for nonlinear processes progress

  1. Perturbation and characterization of nonlinear processes: Progress report, November 15, 1983-June 1, 1987

    International Nuclear Information System (INIS)

    Swinney, H.L.; Swift, J.

    1987-01-01

    This progress report summarizes the principal accomplishments dealing with perturbation and characterization of nonlinear processes. Topics of research include Lyapunov equations, mutual information and metric entropy, the dimensions, complex dynamics and transition sequences and spatial patterns

  2. Nonlinear filtering for LIDAR signal processing

    Directory of Open Access Journals (Sweden)

    D. G. Lainiotis

    1996-01-01

    Full Text Available LIDAR (Laser Integrated Radar is an engineering problem of great practical importance in environmental monitoring sciences. Signal processing for LIDAR applications involves highly nonlinear models and consequently nonlinear filtering. Optimal nonlinear filters, however, are practically unrealizable. In this paper, the Lainiotis's multi-model partitioning methodology and the related approximate but effective nonlinear filtering algorithms are reviewed and applied to LIDAR signal processing. Extensive simulation and performance evaluation of the multi-model partitioning approach and its application to LIDAR signal processing shows that the nonlinear partitioning methods are very effective and significantly superior to the nonlinear extended Kalman filter (EKF, which has been the standard nonlinear filter in past engineering applications.

  3. Progress in ultrafast laser processing and future prospects

    Science.gov (United States)

    Sugioka, Koji

    2017-03-01

    The unique characteristics of ultrafast lasers have rapidly revolutionized materials processing after their first demonstration in 1987. The ultrashort pulse width of the laser suppresses heat diffusion to the surroundings of the processed region, which minimizes the formation of a heat-affected zone and thereby enables ultrahigh precision micro- and nanofabrication of various materials. In addition, the extremely high peak intensity can induce nonlinear multiphoton absorption, which extends the diversity of materials that can be processed to transparent materials such as glass. Nonlinear multiphoton absorption enables three-dimensional (3D) micro- and nanofabrication by irradiation with tightly focused femtosecond laser pulses inside transparent materials. Thus, ultrafast lasers are currently widely used for both fundamental research and practical applications. This review presents progress in ultrafast laser processing, including micromachining, surface micro- and nanostructuring, nanoablation, and 3D and volume processing. Advanced technologies that promise to enhance the performance of ultrafast laser processing, such as hybrid additive and subtractive processing, and shaped beam processing are discussed. Commercial and industrial applications of ultrafast laser processing are also introduced. Finally, future prospects of the technology are given with a summary.

  4. Progress Toward Single-Photon-Level Nonlinear Optics in Crystalline Microcavities

    Science.gov (United States)

    Kowligy, Abijith S.

    Over the last two decades, the emergence of quantum information science has uncovered many practical applications in areas such as communications, imaging, and sensing where harnessing quantum features of Nature provides tremendous benefits over existing methods exploiting classical physical phenomena. In this effort, one of the frontiers of research has been to identify and utilize quantum phenomena that are not susceptible to environmental and parasitic noise processes. Quantum photonics has been at the forefront of these studies because it allows room-temperature access to its inherently quantum-mechanical features, and allows leveraging the mature telecommunication industry. Accompanying the weak environmental influence, however, are also weak optical nonlinearities. Efficient nonlinear optical interactions are indispensible for many of the existing protocols for quantum optical computation and communication, e.g. high-fidelity entangling quantum logic gates rely on large nonlinear responses at the one- or few-photon-level. While this has been addressed to a great extent by interfacing photons with single quantum emitters and cold atomic gases, scalability has remained elusive. In this work, we identify the macroscopic second-order nonlinear polarization as a robust platform to address this challenge, and utilize the recent advances in the burgeoning field of optical microcavities to enhance this nonlinear response. In particular, we show theoretically that by using the quantum Zeno effect, low-noise, single-photon-level optical nonlinearities can be realized in lithium niobate whispering-gallery-mode microcavities, and present experimental progress toward this goal. Using the measured strength of the second-order nonlinear response in lithium niobate, we modeled the nonlinear system in the strong coupling regime using the Schrodinger picture framework and theoretically demonstrated that the single-photon-level operation can be observed for cavity lifetimes in

  5. Nonlinear Pulse Shaping in Fibres for Pulse Generation and Optical Processing

    Directory of Open Access Journals (Sweden)

    Sonia Boscolo

    2012-01-01

    Full Text Available The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion.

  6. Perturbation and characterization of nonlinear processes. Progress report, November 15, 1984-November 14, 1985

    International Nuclear Information System (INIS)

    Swinney, H.L.; Swift, J.

    1985-01-01

    Methods of characterizing nonperiodic processes in nonlinear systems are being developed and tested on low dimensional mathematical models and applied to laboratory data for nonequilibrium systems, particularly the Belousov--Zhabotinskii (BZ) reaction. Methods developed for characterizing dynamical behavior are described first, followed by a discussion of the experimental work

  7. Nonlinear Progressive Collapse Analysis Including Distributed Plasticity

    Directory of Open Access Journals (Sweden)

    Mohamed Osama Ahmed

    2016-01-01

    Full Text Available This paper demonstrates the effect of incorporating distributed plasticity in nonlinear analytical models used to assess the potential for progressive collapse of steel framed regular building structures. Emphasis on this paper is on the deformation response under the notionally removed column, in a typical Alternate Path (AP method. The AP method employed in this paper is based on the provisions of the Unified Facilities Criteria – Design of Buildings to Resist Progressive Collapse, developed and updated by the U.S. Department of Defense [1]. The AP method is often used for to assess the potential for progressive collapse of building structures that fall under Occupancy Category III or IV. A case study steel building is used to examine the effect of incorporating distributed plasticity, where moment frames were used on perimeter as well as the interior of the three dimensional structural system. It is concluded that the use of moment resisting frames within the structural system will enhance resistance to progressive collapse through ductile deformation response and that it is conserative to ignore the effects of distributed plasticity in determining peak displacement response under the notionally removed column.

  8. Dynamics and vibrations progress in nonlinear analysis

    CERN Document Server

    Kachapi, Seyed Habibollah Hashemi

    2014-01-01

    Dynamical and vibratory systems are basically an application of mathematics and applied sciences to the solution of real world problems. Before being able to solve real world problems, it is necessary to carefully study dynamical and vibratory systems and solve all available problems in case of linear and nonlinear equations using analytical and numerical methods. It is of great importance to study nonlinearity in dynamics and vibration; because almost all applied processes act nonlinearly, and on the other hand, nonlinear analysis of complex systems is one of the most important and complicated tasks, especially in engineering and applied sciences problems. There are probably a handful of books on nonlinear dynamics and vibrations analysis. Some of these books are written at a fundamental level that may not meet ambitious engineering program requirements. Others are specialized in certain fields of oscillatory systems, including modeling and simulations. In this book, we attempt to strike a balance between th...

  9. Multiorder nonlinear diffraction in frequency doubling processes

    DEFF Research Database (Denmark)

    Saltiel, Solomon M.; Neshev, Dragomir N.; Krolikowski, Wieslaw

    2009-01-01

    We analyze experimentally light scattering from 2 nonlinear gratings and observe two types of second-harmonic frequency-scattering processes. The first process is identified as Raman–Nath type nonlinear diffraction that is explained by applying only transverse phase-matching conditions. The angular...... position of this type of diffraction is defined by the ratio of the second-harmonic wavelength and the grating period. In contrast, the second type of nonlinear scattering process is explained by the longitudinal phase matching only, being insensitive to the nonlinear grating...

  10. Progress in nonlinear nano-optics

    CERN Document Server

    Lienau, Christoph; Grunwald, Rüdiger

    2015-01-01

    This book presents the state of the art in nonlinear nanostructures for ultrafast laser applications. Most recent results in two emerging fields are presented: (i) generation of laser-induced nanostructures in materials like metals, metal oxides and semiconductors, and (ii) ultrafast excitation and energy transfer in nanoscale physical, chemical and hybrid systems. Particular emphasis is laid on the up-to-date controversially discussed mechanisms of sub-wavelength ripple formation including models of self-organized material transport and multiphoton excitation channels, nonlinear optics of plasmonic structures (nanotips, nanowires, 3D-metamaterials), and energy localization and transport on ultrafast time scale and spatial nanoscale. High-resolution spectroscopy, simulation and characterization techniques are reported. New applications of ultrashort-pulsed lasers for materials processing and the use of nanostructured materials for characterizing laser fields and laser-matter-interactions are discussed.

  11. Nonlinear Process Fault Diagnosis Based on Serial Principal Component Analysis.

    Science.gov (United States)

    Deng, Xiaogang; Tian, Xuemin; Chen, Sheng; Harris, Chris J

    2018-03-01

    Many industrial processes contain both linear and nonlinear parts, and kernel principal component analysis (KPCA), widely used in nonlinear process monitoring, may not offer the most effective means for dealing with these nonlinear processes. This paper proposes a new hybrid linear-nonlinear statistical modeling approach for nonlinear process monitoring by closely integrating linear principal component analysis (PCA) and nonlinear KPCA using a serial model structure, which we refer to as serial PCA (SPCA). Specifically, PCA is first applied to extract PCs as linear features, and to decompose the data into the PC subspace and residual subspace (RS). Then, KPCA is performed in the RS to extract the nonlinear PCs as nonlinear features. Two monitoring statistics are constructed for fault detection, based on both the linear and nonlinear features extracted by the proposed SPCA. To effectively perform fault identification after a fault is detected, an SPCA similarity factor method is built for fault recognition, which fuses both the linear and nonlinear features. Unlike PCA and KPCA, the proposed method takes into account both linear and nonlinear PCs simultaneously, and therefore, it can better exploit the underlying process's structure to enhance fault diagnosis performance. Two case studies involving a simulated nonlinear process and the benchmark Tennessee Eastman process demonstrate that the proposed SPCA approach is more effective than the existing state-of-the-art approach based on KPCA alone, in terms of nonlinear process fault detection and identification.

  12. Economic Benefit from Progressive Integration of Scheduling and Control for Continuous Chemical Processes

    Directory of Open Access Journals (Sweden)

    Logan D. R. Beal

    2017-12-01

    Full Text Available Performance of integrated production scheduling and advanced process control with disturbances is summarized and reviewed with four progressive stages of scheduling and control integration and responsiveness to disturbances: open-loop segregated scheduling and control, closed-loop segregated scheduling and control, open-loop scheduling with consideration of process dynamics, and closed-loop integrated scheduling and control responsive to process disturbances and market fluctuations. Progressive economic benefit from dynamic rescheduling and integrating scheduling and control is shown on a continuously stirred tank reactor (CSTR benchmark application in closed-loop simulations over 24 h. A fixed horizon integrated scheduling and control formulation for multi-product, continuous chemical processes is utilized, in which nonlinear model predictive control (NMPC and continuous-time scheduling are combined.

  13. Composite Beam Theory with Material Nonlinearities and Progressive Damage

    Science.gov (United States)

    Jiang, Fang

    Beam has historically found its broad applications. Nowadays, many engineering constructions still rely on this type of structure which could be made of anisotropic and heterogeneous materials. These applications motivate the development of beam theory in which the impact of material nonlinearities and damage on the global constitutive behavior has been a focus in recent years. Reliable predictions of these nonlinear beam responses depend on not only the quality of the material description but also a comprehensively generalized multiscale methodology which fills the theoretical gaps between the scales in an efficient yet high-fidelity manner. The conventional beam modeling methodologies which are built upon ad hoc assumptions are in lack of such reliability in need. Therefore, the focus of this dissertation is to create a reliable yet efficient method and the corresponding tool for composite beam modeling. A nonlinear beam theory is developed based on the Mechanics of Structure Genome (MSG) using the variational asymptotic method (VAM). The three-dimensional (3D) nonlinear continuum problem is rigorously reduced to a one-dimensional (1D) beam model and a two-dimensional (2D) cross-sectional analysis featuring both geometric and material nonlinearities by exploiting the small geometric parameter which is an inherent geometric characteristic of the beam. The 2D nonlinear cross-sectional analysis utilizes the 3D material models to homogenize the beam cross-sectional constitutive responses considering the nonlinear elasticity and progressive damage. The results from such a homogenization are inputs as constitutive laws into the global nonlinear 1D beam analysis. The theoretical foundation is formulated without unnecessary kinematic assumptions. Curvilinear coordinates and vector calculus are utilized to build the 3D deformation gradient tensor, of which the components are formulated in terms of cross-sectional coordinates, generalized beam strains, unknown warping

  14. Progress in linear optics, non-linear optics and surface alignment of liquid crystals

    Science.gov (United States)

    Ong, H. L.; Meyer, R. B.; Hurd, A. J.; Karn, A. J.; Arakelian, S. M.; Shen, Y. R.; Sanda, P. N.; Dove, D. B.; Jansen, S. A.; Hoffmann, R.

    We first discuss the progress in linear optics, in particular, the formulation and application of geometrical-optics approximation and its generalization. We then discuss the progress in non-linear optics, in particular, the enhancement of a first-order Freedericksz transition and intrinsic optical bistability in homeotropic and parallel oriented nematic liquid crystal cells. Finally, we discuss the liquid crystal alignment and surface effects on field-induced Freedericksz transition.

  15. Nonlinearly perturbed semi-Markov processes

    CERN Document Server

    Silvestrov, Dmitrii

    2017-01-01

    The book presents new methods of asymptotic analysis for nonlinearly perturbed semi-Markov processes with a finite phase space. These methods are based on special time-space screening procedures for sequential phase space reduction of semi-Markov processes combined with the systematical use of operational calculus for Laurent asymptotic expansions. Effective recurrent algorithms are composed for getting asymptotic expansions, without and with explicit upper bounds for remainders, for power moments of hitting times, stationary and conditional quasi-stationary distributions for nonlinearly perturbed semi-Markov processes. These results are illustrated by asymptotic expansions for birth-death-type semi-Markov processes, which play an important role in various applications. The book will be a useful contribution to the continuing intensive studies in the area. It is an essential reference for theoretical and applied researchers in the field of stochastic processes and their applications that will cont...

  16. Broadband Nonlinear Signal Processing in Silicon Nanowires

    DEFF Research Database (Denmark)

    Yvind, Kresten; Pu, Minhao; Hvam, Jørn Märcher

    The fast non-linearity of silicon allows Tbit/s optical signal processing. By choosing suitable dimensions of silicon nanowires their dispersion can be tailored to ensure a high nonlinearity at power levels low enough to avoid significant two-photon abso We have fabricated low insertion...

  17. Nonlinear analysis of the progressive collapse of reinforced concrete plane frames using a multilayered beam formulation

    Directory of Open Access Journals (Sweden)

    C. E. M. Oliveira

    Full Text Available This work investigates the response of two reinforced concrete (RC plane frames after the loss of a column and their potential resistance for progressive collapse. Nonlinear dynamic analysis is performed using a multilayered Euler/Bernoulli beam element, including elasto-viscoplastic effects. The material nonlinearity is represented using one-dimensional constitutive laws in the material layers, while geometrical nonlinearities are incorporated within a corotational beam formulation. The frames were designed in accordance with the minimum requirements proposed by the reinforced concrete design/building codes of Europe (fib [1-2], Eurocode 2 [3] and Brazil (NBR 6118 [4]. The load combinations considered for PC analysis follow the prescriptions of DoD [5]. The work verifies if the minimum requirements of the considered codes are sufficient for enforcing structural safety and robustness, and also points out the major differences in terms of progressive collapse potential of the corresponding designed structures.

  18. Ultrafast Nonlinear Signal Processing in Silicon Waveguides

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Mulvad, Hans Christian Hansen; Hu, Hao

    2012-01-01

    We describe recent demonstrations of exploiting highly nonlinear silicon waveguides for ultrafast optical signal processing. We describe wavelength conversion and serial-to-parallel conversion of 640 Gbit/s data signals and 1.28 Tbit/s demultiplexing and all-optical sampling.......We describe recent demonstrations of exploiting highly nonlinear silicon waveguides for ultrafast optical signal processing. We describe wavelength conversion and serial-to-parallel conversion of 640 Gbit/s data signals and 1.28 Tbit/s demultiplexing and all-optical sampling....

  19. Input saturation in nonlinear multivariable processes resolved by nonlinear decoupling

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1995-04-01

    Full Text Available A new method is presented for the resolution of the problem of input saturation in nonlinear multivariable process control by means of elementary nonlinear decoupling (END. Input saturation can have serious consequences particularly in multivariable control because it may lead to very undesirable system behaviour and quite often system instability. Many authors have searched for systematic techniques for designing multivariable control systems in which saturation may occur in any of the control variables (inputs, manipulated variables. No generally accepted method seems to have been presented so far which gives a solution in closed form. The method of elementary nonlinear decoupling (END can be applied directly to the case of saturation control variables by deriving as many control strategies as there are combinations of saturating control variables. The method is demonstrated by the multivariable control of a simulated Fluidized Catalytic Cracker (FCC with very convincing results.

  20. Nonlinear partial least squares with Hellinger distance for nonlinear process monitoring

    KAUST Repository

    Harrou, Fouzi; Madakyaru, Muddu; Sun, Ying

    2017-01-01

    This paper proposes an efficient data-based anomaly detection method that can be used for monitoring nonlinear processes. The proposed method merges advantages of nonlinear projection to latent structures (NLPLS) modeling and those of Hellinger distance (HD) metric to identify abnormal changes in highly correlated multivariate data. Specifically, the HD is used to quantify the dissimilarity between current NLPLS-based residual and reference probability distributions. The performances of the developed anomaly detection using NLPLS-based HD technique is illustrated using simulated plug flow reactor data.

  1. Nonlinear partial least squares with Hellinger distance for nonlinear process monitoring

    KAUST Repository

    Harrou, Fouzi

    2017-02-16

    This paper proposes an efficient data-based anomaly detection method that can be used for monitoring nonlinear processes. The proposed method merges advantages of nonlinear projection to latent structures (NLPLS) modeling and those of Hellinger distance (HD) metric to identify abnormal changes in highly correlated multivariate data. Specifically, the HD is used to quantify the dissimilarity between current NLPLS-based residual and reference probability distributions. The performances of the developed anomaly detection using NLPLS-based HD technique is illustrated using simulated plug flow reactor data.

  2. Nonlinear Markov processes: Deterministic case

    International Nuclear Information System (INIS)

    Frank, T.D.

    2008-01-01

    Deterministic Markov processes that exhibit nonlinear transition mechanisms for probability densities are studied. In this context, the following issues are addressed: Markov property, conditional probability densities, propagation of probability densities, multistability in terms of multiple stationary distributions, stability analysis of stationary distributions, and basin of attraction of stationary distribution

  3. Engineering high-order nonlinear dissipation for quantum superconducting circuits

    Science.gov (United States)

    Mundhada, S. O.; Grimm, A.; Touzard, S.; Shankar, S.; Minev, Z. K.; Vool, U.; Mirrahimi, M.; Devoret, M. H.

    Engineering nonlinear driven-dissipative processes is essential for quantum control. In the case of a harmonic oscillator, nonlinear dissipation can stabilize a decoherence-free manifold, leading to protected quantum information encoding. One possible approach to implement such nonlinear interactions is to combine the nonlinearities provided by Josephson circuits with parametric pump drives. However, it is usually hard to achieve strong nonlinearities while avoiding undesired couplings. Here we propose a scheme to engineer a four-photon drive and dissipation in a harmonic oscillator by cascading experimentally demonstrated two-photon processes. We also report experimental progress towards realization of such a scheme. Work supported by: ARO, ONR, AFOSR and YINQE.

  4. Optoelectronic and nonlinear optical processes in low dimensional ...

    Indian Academy of Sciences (India)

    Optoelectronic process; nonlinear optical process; semiconductor. Quest for ever faster and intelligent information processing technologies has sparked ..... Schematic energy level diagram for the proposed 4-level model. States other than the.

  5. Image processing with a cellular nonlinear network

    International Nuclear Information System (INIS)

    Morfu, S.

    2005-01-01

    A cellular nonlinear network (CNN) based on uncoupled nonlinear oscillators is proposed for image processing purposes. It is shown theoretically and numerically that the contrast of an image loaded at the nodes of the CNN is strongly enhanced, even if this one is initially weak. An image inversion can be also obtained without reconfiguration of the network whereas a gray levels extraction can be performed with an additional threshold filtering. Lastly, an electronic implementation of this CNN is presented

  6. Recent advances in nonlinear speech processing

    CERN Document Server

    Faundez-Zanuy, Marcos; Esposito, Antonietta; Cordasco, Gennaro; Drugman, Thomas; Solé-Casals, Jordi; Morabito, Francesco

    2016-01-01

    This book presents recent advances in nonlinear speech processing beyond nonlinear techniques. It shows that it exploits heuristic and psychological models of human interaction in order to succeed in the implementations of socially believable VUIs and applications for human health and psychological support. The book takes into account the multifunctional role of speech and what is “outside of the box” (see Björn Schuller’s foreword). To this aim, the book is organized in 6 sections, each collecting a small number of short chapters reporting advances “inside” and “outside” themes related to nonlinear speech research. The themes emphasize theoretical and practical issues for modelling socially believable speech interfaces, ranging from efforts to capture the nature of sound changes in linguistic contexts and the timing nature of speech; labors to identify and detect speech features that help in the diagnosis of psychological and neuronal disease, attempts to improve the effectiveness and performa...

  7. A non-linear model of economic production processes

    Science.gov (United States)

    Ponzi, A.; Yasutomi, A.; Kaneko, K.

    2003-06-01

    We present a new two phase model of economic production processes which is a non-linear dynamical version of von Neumann's neoclassical model of production, including a market price-setting phase as well as a production phase. The rate of an economic production process is observed, for the first time, to depend on the minimum of its input supplies. This creates highly non-linear supply and demand dynamics. By numerical simulation, production networks are shown to become unstable when the ratio of different products to total processes increases. This provides some insight into observed stability of competitive capitalist economies in comparison to monopolistic economies. Capitalist economies are also shown to have low unemployment.

  8. Ultra-Fast Optical Signal Processing in Nonlinear Silicon Waveguides

    DEFF Research Database (Denmark)

    Oxenløwe, Leif Katsuo; Galili, Michael; Pu, Minhao

    2011-01-01

    We describe recent demonstrations of exploiting highly nonlinear silicon nanowires for processing Tbit/s optical data signals. We perform demultiplexing and optical waveform sampling of 1.28 Tbit/s and wavelength conversion of 640 Gbit/s data signals.......We describe recent demonstrations of exploiting highly nonlinear silicon nanowires for processing Tbit/s optical data signals. We perform demultiplexing and optical waveform sampling of 1.28 Tbit/s and wavelength conversion of 640 Gbit/s data signals....

  9. Nonlinear signal processing using neural networks: Prediction and system modelling

    Energy Technology Data Exchange (ETDEWEB)

    Lapedes, A.; Farber, R.

    1987-06-01

    The backpropagation learning algorithm for neural networks is developed into a formalism for nonlinear signal processing. We illustrate the method by selecting two common topics in signal processing, prediction and system modelling, and show that nonlinear applications can be handled extremely well by using neural networks. The formalism is a natural, nonlinear extension of the linear Least Mean Squares algorithm commonly used in adaptive signal processing. Simulations are presented that document the additional performance achieved by using nonlinear neural networks. First, we demonstrate that the formalism may be used to predict points in a highly chaotic time series with orders of magnitude increase in accuracy over conventional methods including the Linear Predictive Method and the Gabor-Volterra-Weiner Polynomial Method. Deterministic chaos is thought to be involved in many physical situations including the onset of turbulence in fluids, chemical reactions and plasma physics. Secondly, we demonstrate the use of the formalism in nonlinear system modelling by providing a graphic example in which it is clear that the neural network has accurately modelled the nonlinear transfer function. It is interesting to note that the formalism provides explicit, analytic, global, approximations to the nonlinear maps underlying the various time series. Furthermore, the neural net seems to be extremely parsimonious in its requirements for data points from the time series. We show that the neural net is able to perform well because it globally approximates the relevant maps by performing a kind of generalized mode decomposition of the maps. 24 refs., 13 figs.

  10. Quantum Information Processing using Nonlinear Optical Effects

    DEFF Research Database (Denmark)

    Andersen, Lasse Mejling

    This PhD thesis treats applications of nonlinear optical effects for quantum information processing. The two main applications are four-wave mixing in the form of Bragg scattering (BS) for quantum-state-preserving frequency conversion, and sum-frequency generation (SFG) in second-order nonlinear......-chirping the pumps. In the high-conversion regime without the effects of NPM, exact Green functions for BS are derived. In this limit, separability is possible for conversion efficiencies up to 60 %. However, the system still allows for selective frequency conversion as well as re-shaping of the output. One way...

  11. Nonlinear Statistical Signal Processing: A Particle Filtering Approach

    International Nuclear Information System (INIS)

    Candy, J.

    2007-01-01

    A introduction to particle filtering is discussed starting with an overview of Bayesian inference from batch to sequential processors. Once the evolving Bayesian paradigm is established, simulation-based methods using sampling theory and Monte Carlo realizations are discussed. Here the usual limitations of nonlinear approximations and non-gaussian processes prevalent in classical nonlinear processing algorithms (e.g. Kalman filters) are no longer a restriction to perform Bayesian inference. It is shown how the underlying hidden or state variables are easily assimilated into this Bayesian construct. Importance sampling methods are then discussed and shown how they can be extended to sequential solutions implemented using Markovian state-space models as a natural evolution. With this in mind, the idea of a particle filter, which is a discrete representation of a probability distribution, is developed and shown how it can be implemented using sequential importance sampling/resampling methods. Finally, an application is briefly discussed comparing the performance of the particle filter designs with classical nonlinear filter implementations

  12. Nonlinear wave-mixing processes in the extreme ultraviolet

    International Nuclear Information System (INIS)

    Misoguti, L.; Christov, I. P.; Backus, S.; Murnane, M. M.; Kapteyn, H. C.

    2005-01-01

    We present data from two-color high-order harmonic generation in a hollow waveguide, that suggest the presence of a nonlinear-optical frequency conversion process driven by extreme ultraviolet light. By combining the fundamental and second harmonic of an 800 nm laser in a hollow-core fiber, with varying relative polarizations, and by observing the pressure and power scaling of the various harmonic orders, we show that the data are consistent with a picture where we drive the process of high-harmonic generation, which in turn drives four-wave frequency mixing processes in the extreme EUV. This work promises a method for extending nonlinear optics into the extreme ultraviolet region of the spectrum using an approach that has not previously been considered, and has compelling implications for generating tunable light at short wavelengths

  13. Preface "Nonlinear processes in oceanic and atmospheric flows"

    Directory of Open Access Journals (Sweden)

    E. García-Ladona

    2010-05-01

    Full Text Available Nonlinear phenomena are essential ingredients in many oceanic and atmospheric processes, and successful understanding of them benefits from multidisciplinary collaboration between oceanographers, meteorologists, physicists and mathematicians. The present Special Issue on "Nonlinear Processes in Oceanic and Atmospheric Flows" contains selected contributions from attendants to the workshop which, in the above spirit, was held in Castro Urdiales, Spain, in July 2008. Here we summarize the Special Issue contributions, which include papers on the characterization of ocean transport in the Lagrangian and in the Eulerian frameworks, generation and variability of jets and waves, interactions of fluid flow with plankton dynamics or heavy drops, scaling in meteorological fields, and statistical properties of El Niño Southern Oscillation.

  14. Nonlinear processes of magnons in insulating ferromagnetic materials

    International Nuclear Information System (INIS)

    Araujo, C.B. de.

    1975-04-01

    The representation of coherent states is used to investigate the excitation of magnons by 'parallel pumping', 'perpendicular pumping' and 'phonon pumping'. The stationary regime of the processes is studied with respect to the magnon population and the statistic behavior of the system below and just above the threshold. Particular attention is given to the thermodynamic and the coherence properties of the parametric states. The results show that just above the threshold the generated states become coherent. Also, it is shown that the non-linear processes have characteristics of a second-order phase transition with the pumping power as the 'reservoir variable' and the transverse dynamical magnetization as the 'order parameter'. Finally, the possibilities to extend the theory, its experimental check, and its convenience to study the other nonlinear processes of magnons and phonons in magnetic insulators are discussed. (author) [pt

  15. Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk.

    Science.gov (United States)

    Liu, Shijie; Zheng, Yuanlin; Chen, Xianfeng

    2017-09-15

    Whispering-gallery-mode (WGM) microcavities are very important in both fundamental science and practical applications, among which on-chip second-order nonlinear microresonators play an important role in integrated photonic functionalities. Here we demonstrate resonant second-harmonic generation (SHG) and cascaded third-harmonic generation (THG) in a lithium niobate-on-insulator (LNOI) microdisk resonator. Efficient SHG in the visible range was obtained with only several mW input powers at telecom wavelengths. THG was also observed through a cascading process, which reveals simultaneous phase matching and strong mode coupling in the resonator. Cascading of second-order nonlinear processes gives rise to an effectively large third-order nonlinearity, which makes on-chip second-order nonlinear microresonators a promising frequency converter for integrated nonlinear photonics.

  16. Internal Decoupling in Nonlinear Process Control

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1988-07-01

    Full Text Available A simple method has been investigated for the total or partial removal of the effect of non-linear process phenomena in multi-variable feedback control systems. The method is based upon computing the control variables which will drive the process at desired rates. It is shown that the effect of model errors in the linearization of the process can be partly removed through the use of large feedback gains. In practice there will be limits on how large gains can he used. The sensitivity to parameter errors is less pronounced and the transient behaviour is superior to that of ordinary PI controllers.

  17. Nonlinear oscillations

    CERN Document Server

    Nayfeh, Ali Hasan

    1995-01-01

    Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

  18. Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity

    Directory of Open Access Journals (Sweden)

    Isao Ishida

    2015-01-01

    Full Text Available We introduce and investigate some properties of a class of nonlinear time series models based on the moving sample quantiles in the autoregressive data generating process. We derive a test fit to detect this type of nonlinearity. Using the daily realized volatility data of Standard & Poor’s 500 (S&P 500 and several other indices, we obtained good performance using these models in an out-of-sample forecasting exercise compared with the forecasts obtained based on the usual linear heterogeneous autoregressive and other models of realized volatility.

  19. Nonlinear optomechanical measurement of mechanical motion

    DEFF Research Database (Denmark)

    Brawley, G.A.; Vanner, M R; Larsen, Peter Emil

    2016-01-01

    Precision measurement of nonlinear observables is an important goal in all facets of quantum optics. This allows measurement-based non-classical state preparation, which has been applied to great success in various physical systems, and provides a route for quantum information processing with oth......Precision measurement of nonlinear observables is an important goal in all facets of quantum optics. This allows measurement-based non-classical state preparation, which has been applied to great success in various physical systems, and provides a route for quantum information processing...... with otherwise linear interactions. In cavity optomechanics much progress has been made using linear interactions and measurement, but observation of nonlinear mechanical degrees-of-freedom remains outstanding. Here we report the observation of displacement-squared thermal motion of a micro-mechanical resonator...... by exploiting the intrinsic nonlinearity of the radiation-pressure interaction. Using this measurement we generate bimodal mechanical states of motion with separations and feature sizes well below 100 pm. Future improvements to this approach will allow the preparation of quantum superposition states, which can...

  20. Non-equilibrium condensation process in holographic superconductor with nonlinear electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunqi; Gong, Yungui [School of Physics, Huazhong University of Science and Technology,Wuhan, Hubei 430074 (China); Wang, Bin [IFSA Collaborative Innovation Center, Department of Physics and Astronomy, Shanghai Jiao Tong University,Shanghai 200240 (China)

    2016-02-17

    We study the non-equilibrium condensation process in a holographic superconductor with nonlinear corrections to the U(1) gauge field. We start with an asymptotic Anti-de-Sitter(AdS) black hole against a complex scalar perturbation at the initial time, and solve the dynamics of the gravitational systems in the bulk. When the black hole temperature T is smaller than a critical value T{sub c}, the scalar perturbation grows exponentially till saturation, the final state of spacetime approaches to a hairy black hole. In the bulk theory, we find the clue of the influence of nonlinear corrections in the gauge filed on the process of the scalar field condensation. We show that the bulk dynamics in the non-equilibrium process is completely consistent with the observations on the boundary order parameter. Furthermore we examine the time evolution of horizons in the bulk non-equilibrium transformation process from the bald AdS black hole to the AdS hairy hole. Both the evolution of apparent and event horizons show that the original AdS black hole configuration requires more time to finish the transformation to become a hairy black hole if there is nonlinear correction to the electromagnetic field. We generalize our non-equilibrium discussions to the holographic entanglement entropy and find that the holographic entanglement entropy can give us further understanding of the influence of the nonlinearity in the gauge field on the scalar condensation.

  1. Photonic single nonlinear-delay dynamical node for information processing

    Science.gov (United States)

    Ortín, Silvia; San-Martín, Daniel; Pesquera, Luis; Gutiérrez, José Manuel

    2012-06-01

    An electro-optical system with a delay loop based on semiconductor lasers is investigated for information processing by performing numerical simulations. This system can replace a complex network of many nonlinear elements for the implementation of Reservoir Computing. We show that a single nonlinear-delay dynamical system has the basic properties to perform as reservoir: short-term memory and separation property. The computing performance of this system is evaluated for two prediction tasks: Lorenz chaotic time series and nonlinear auto-regressive moving average (NARMA) model. We sweep the parameters of the system to find the best performance. The results achieved for the Lorenz and the NARMA-10 tasks are comparable to those obtained by other machine learning methods.

  2. Photonic Crystal Nanocavity Devices for Nonlinear Signal Processing

    DEFF Research Database (Denmark)

    Yu, Yi

    , membranization of InP/InGaAs structure and wet etching. Experimental investigation of the switching dynamics of InP photonic crystal nanocavity structures are carried out using short-pulse homodyne pump-probe techniques, both in the linear and nonlinear region where the cavity is perturbed by a relatively small......This thesis deals with the investigation of InP material based photonic crystal cavity membrane structures, both experimentally and theoretically. The work emphasizes on the understanding of the physics underlying the structures’ nonlinear properties and their applications for all-optical signal...... processing. Based on the previous fabrication recipe developed in our III-V platform, several processing techniques are developed and optimized for the fabrication of InP photonic crystal membrane structures. Several key issues are identified to ensure a good device quality such as air hole size control...

  3. Nonlinear Krylov acceleration of reacting flow codes

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S.; Rawat, R.; Smith, P.; Pernice, M. [Univ. of Utah, Salt Lake City, UT (United States)

    1996-12-31

    We are working on computational simulations of three-dimensional reactive flows in applications encompassing a broad range of chemical engineering problems. Examples of such processes are coal (pulverized and fluidized bed) and gas combustion, petroleum processing (cracking), and metallurgical operations such as smelting. These simulations involve an interplay of various physical and chemical factors such as fluid dynamics with turbulence, convective and radiative heat transfer, multiphase effects such as fluid-particle and particle-particle interactions, and chemical reaction. The governing equations resulting from modeling these processes are highly nonlinear and strongly coupled, thereby rendering their solution by traditional iterative methods (such as nonlinear line Gauss-Seidel methods) very difficult and sometimes impossible. Hence we are exploring the use of nonlinear Krylov techniques (such as CMRES and Bi-CGSTAB) to accelerate and stabilize the existing solver. This strategy allows us to take advantage of the problem-definition capabilities of the existing solver. The overall approach amounts to using the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) method and its variants as nonlinear preconditioners for the nonlinear Krylov method. We have also adapted a backtracking approach for inexact Newton methods to damp the Newton step in the nonlinear Krylov method. This will be a report on work in progress. Preliminary results with nonlinear GMRES have been very encouraging: in many cases the number of line Gauss-Seidel sweeps has been reduced by about a factor of 5, and increased robustness of the underlying solver has also been observed.

  4. Instantaneous nonlinear assessment of complex cardiovascular dynamics by Laguerre-Volterra point process models.

    Science.gov (United States)

    Valenza, Gaetano; Citi, Luca; Barbieri, Riccardo

    2013-01-01

    We report an exemplary study of instantaneous assessment of cardiovascular dynamics performed using point-process nonlinear models based on Laguerre expansion of the linear and nonlinear Wiener-Volterra kernels. As quantifiers, instantaneous measures such as high order spectral features and Lyapunov exponents can be estimated from a quadratic and cubic autoregressive formulation of the model first order moment, respectively. Here, these measures are evaluated on heartbeat series coming from 16 healthy subjects and 14 patients with Congestive Hearth Failure (CHF). Data were gathered from the on-line repository PhysioBank, which has been taken as landmark for testing nonlinear indices. Results show that the proposed nonlinear Laguerre-Volterra point-process methods are able to track the nonlinear and complex cardiovascular dynamics, distinguishing significantly between CHF and healthy heartbeat series.

  5. Non-linear partial differential equations an algebraic view of generalized solutions

    CERN Document Server

    Rosinger, Elemer E

    1990-01-01

    A massive transition of interest from solving linear partial differential equations to solving nonlinear ones has taken place during the last two or three decades. The availability of better computers has often made numerical experimentations progress faster than the theoretical understanding of nonlinear partial differential equations. The three most important nonlinear phenomena observed so far both experimentally and numerically, and studied theoretically in connection with such equations have been the solitons, shock waves and turbulence or chaotical processes. In many ways, these phenomen

  6. Noise removal in extended depth of field microscope images through nonlinear signal processing.

    Science.gov (United States)

    Zahreddine, Ramzi N; Cormack, Robert H; Cogswell, Carol J

    2013-04-01

    Extended depth of field (EDF) microscopy, achieved through computational optics, allows for real-time 3D imaging of live cell dynamics. EDF is achieved through a combination of point spread function engineering and digital image processing. A linear Wiener filter has been conventionally used to deconvolve the image, but it suffers from high frequency noise amplification and processing artifacts. A nonlinear processing scheme is proposed which extends the depth of field while minimizing background noise. The nonlinear filter is generated via a training algorithm and an iterative optimizer. Biological microscope images processed with the nonlinear filter show a significant improvement in image quality and signal-to-noise ratio over the conventional linear filter.

  7. Corrugated Membrane Nonlinear Deformation Process Calculation

    Directory of Open Access Journals (Sweden)

    A. S. Nikolaeva

    2015-01-01

    Full Text Available Elastic elements are widely used in instrumentation. They are used to create a particular interference between the parts, for accumulating mechanical energy, as the motion transmission elements, elastic supports, and sensing elements of measuring devices. Device reliability and quality depend on the calculation accuracy of the elastic elements. A corrugated membrane is rather common embodiment of the elastic element.The corrugated membrane properties depend largely on its profile i.e. a generatrix of the meridian surface.Unlike other types of pressure elastic members (bellows, tube spring, the elastic characteristics of which are close to linear, an elastic characteristic of the corrugated membrane (typical movement versus external load is nonlinear. Therefore, the corrugated membranes can be used to measure quantities, nonlinearly related to the pressure (e.g., aircraft air speed, its altitude, pipeline fluid or gas flow rate. Another feature of the corrugated membrane is that significant movements are possible within the elastic material state. However, a significant non-linearity of membrane characteristics leads to severe complicated calculation.This article is aimed at calculating the corrugated membrane to obtain the elastic characteristics and the deformed shape of the membrane meridian, as well as at investigating the processes of buckling. As the calculation model, a thin-walled axisymmetric shell rotation is assumed. The material properties are linearly elastic. We consider a corrugated membrane of sinusoidal profile. The membrane load is a uniform pressure.The algorithm for calculating the mathematical model of an axisymmetric corrugated membrane of constant thickness, based on the Reissner’s theory of elastic thin shells, was realized as the author's program in C language. To solve the nonlinear problem were used a method of changing the subspace of control parameters, developed by S.S., Gavriushin, and a parameter marching method

  8. Heterogeneous recurrence monitoring and control of nonlinear stochastic processes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui, E-mail: huiyang@usf.edu; Chen, Yun [Complex Systems Monitoring, Modeling and Analysis Laboratory, University of South Florida, Tampa, Florida 33620 (United States)

    2014-03-15

    Recurrence is one of the most common phenomena in natural and engineering systems. Process monitoring of dynamic transitions in nonlinear and nonstationary systems is more concerned with aperiodic recurrences and recurrence variations. However, little has been done to investigate the heterogeneous recurrence variations and link with the objectives of process monitoring and anomaly detection. Notably, nonlinear recurrence methodologies are based on homogeneous recurrences, which treat all recurrence states in the same way as black dots, and non-recurrence is white in recurrence plots. Heterogeneous recurrences are more concerned about the variations of recurrence states in terms of state properties (e.g., values and relative locations) and the evolving dynamics (e.g., sequential state transitions). This paper presents a novel approach of heterogeneous recurrence analysis that utilizes a new fractal representation to delineate heterogeneous recurrence states in multiple scales, including the recurrences of both single states and multi-state sequences. Further, we developed a new set of heterogeneous recurrence quantifiers that are extracted from fractal representation in the transformed space. To that end, we integrated multivariate statistical control charts with heterogeneous recurrence analysis to simultaneously monitor two or more related quantifiers. Experimental results on nonlinear stochastic processes show that the proposed approach not only captures heterogeneous recurrence patterns in the fractal representation but also effectively monitors the changes in the dynamics of a complex system.

  9. Investigation on the effect of nonlinear processes on similarity law in high-pressure argon discharges

    Science.gov (United States)

    Fu, Yangyang; Parsey, Guy M.; Verboncoeur, John P.; Christlieb, Andrew J.

    2017-11-01

    In this paper, the effect of nonlinear processes (such as three-body collisions and stepwise ionizations) on the similarity law in high-pressure argon discharges has been studied by the use of the Kinetic Global Model framework. In the discharge model, the ground state argon atoms (Ar), electrons (e), atom ions (Ar+), molecular ions (Ar2+), and fourteen argon excited levels Ar*(4s and 4p) are considered. The steady-state electron and ion densities are obtained with nonlinear processes included and excluded in the designed models, respectively. It is found that in similar gas gaps, keeping the product of gas pressure and linear dimension unchanged, with the nonlinear processes included, the normalized density relations deviate from the similarity relations gradually as the scale-up factor decreases. Without the nonlinear processes, the parameter relations are in good agreement with the similarity law predictions. Furthermore, the pressure and the dimension effects are also investigated separately with and without the nonlinear processes. It is shown that the gas pressure effect on the results is less obvious than the dimension effect. Without the nonlinear processes, the pressure and the dimension effects could be estimated from one to the other based on the similarity relations.

  10. Device Applications of Nonlinear Dynamics

    CERN Document Server

    Baglio, Salvatore

    2006-01-01

    This edited book is devoted specifically to the applications of complex nonlinear dynamic phenomena to real systems and device applications. While in the past decades there has been significant progress in the theory of nonlinear phenomena under an assortment of system boundary conditions and preparations, there exist comparatively few devices that actually take this rich behavior into account. "Device Applications of Nonlinear Dynamics" applies and exploits this knowledge to make devices which operate more efficiently and cheaply, while affording the promise of much better performance. Given the current explosion of ideas in areas as diverse as molecular motors, nonlinear filtering theory, noise-enhanced propagation, stochastic resonance and networked systems, the time is right to integrate the progress of complex systems research into real devices.

  11. All-optical image processing with nonlinear liquid crystals

    Science.gov (United States)

    Hong, Kuan-Lun

    Liquid crystals are fascinating materials because of several advantages such as large optical birefringence, dielectric anisotropic, and easily compatible to most kinds of materials. Compared to the electro-optical properties of liquid crystals widely applied in displays and switching application, transparency through most parts of wavelengths also makes liquid crystals a better candidate for all-optical processing. The fast response time of liquid crystals resulting from multiple nonlinear effects, such as thermal and density effect can even make real-time processing realized. In addition, blue phase liquid crystals with spontaneously self-assembled three dimensional cubic structures attracted academic attention. In my dissertation, I will divide the whole contents into six parts. In Chapter 1, a brief introduction of liquid crystals is presented, including the current progress and the classification of liquid crystals. Anisotropy and laser induced director axis reorientation is presented in Chapter 2. In Chapter 3, I will solve the electrostrictive coupled equation and analyze the laser induced thermal and density effect in both static and dynamic ways. Furthermore, a dynamic simulation of laser induced density fluctuation is proposed by applying finite element method. In Chapter 4, two image processing setups are presented. One is the intensity inversion experiment in which intensity dependent phase modulation is the mechanism. The other is the wavelength conversion experiment in which I can read the invisible image with a visible probe beam. Both experiments are accompanied with simulations to realize the matching between the theories and practical experiment results. In Chapter 5, optical properties of blue phase liquid crystals will be introduced and discussed. The results of grating diffractions and thermal refractive index gradient are presented in this chapter. In addition, fiber arrays imaging and switching with BPLCs will be included in this chapter

  12. Quasilinear Extreme Learning Machine Model Based Internal Model Control for Nonlinear Process

    Directory of Open Access Journals (Sweden)

    Dazi Li

    2015-01-01

    Full Text Available A new strategy for internal model control (IMC is proposed using a regression algorithm of quasilinear model with extreme learning machine (QL-ELM. Aimed at the chemical process with nonlinearity, the learning process of the internal model and inverse model is derived. The proposed QL-ELM is constructed as a linear ARX model with a complicated nonlinear coefficient. It shows some good approximation ability and fast convergence. The complicated coefficients are separated into two parts. The linear part is determined by recursive least square (RLS, while the nonlinear part is identified through extreme learning machine. The parameters of linear part and the output weights of ELM are estimated iteratively. The proposed internal model control is applied to CSTR process. The effectiveness and accuracy of the proposed method are extensively verified through numerical results.

  13. Effects of noise, nonlinear processing, and linear filtering on perceived music quality.

    Science.gov (United States)

    Arehart, Kathryn H; Kates, James M; Anderson, Melinda C

    2011-03-01

    The purpose of this study was to determine the relative impact of different forms of hearing aid signal processing on quality ratings of music. Music quality was assessed using a rating scale for three types of music: orchestral classical music, jazz instrumental, and a female vocalist. The music stimuli were subjected to a wide range of simulated hearing aid processing conditions including, (1) noise and nonlinear processing, (2) linear filtering, and (3) combinations of noise, nonlinear, and linear filtering. Quality ratings were measured in a group of 19 listeners with normal hearing and a group of 15 listeners with sensorineural hearing impairment. Quality ratings in both groups were generally comparable, were reliable across test sessions, were impacted more by noise and nonlinear signal processing than by linear filtering, and were significantly affected by the genre of music. The average quality ratings for music were reasonably well predicted by the hearing aid speech quality index (HASQI), but additional work is needed to optimize the index to the wide range of music genres and processing conditions included in this study.

  14. A fuzzy model based adaptive PID controller design for nonlinear and uncertain processes.

    Science.gov (United States)

    Savran, Aydogan; Kahraman, Gokalp

    2014-03-01

    We develop a novel adaptive tuning method for classical proportional-integral-derivative (PID) controller to control nonlinear processes to adjust PID gains, a problem which is very difficult to overcome in the classical PID controllers. By incorporating classical PID control, which is well-known in industry, to the control of nonlinear processes, we introduce a method which can readily be used by the industry. In this method, controller design does not require a first principal model of the process which is usually very difficult to obtain. Instead, it depends on a fuzzy process model which is constructed from the measured input-output data of the process. A soft limiter is used to impose industrial limits on the control input. The performance of the system is successfully tested on the bioreactor, a highly nonlinear process involving instabilities. Several tests showed the method's success in tracking, robustness to noise, and adaptation properties. We as well compared our system's performance to those of a plant with altered parameters with measurement noise, and obtained less ringing and better tracking. To conclude, we present a novel adaptive control method that is built upon the well-known PID architecture that successfully controls highly nonlinear industrial processes, even under conditions such as strong parameter variations, noise, and instabilities. © 2013 Published by ISA on behalf of ISA.

  15. Nonlinear excitations in biomolecules

    International Nuclear Information System (INIS)

    Peyrard, M.

    1995-01-01

    The aim of the workshop entitled ''Nonlinear Excitations in Biomolecules'' is to attempt to bridge the gap between the physicists and biologists communities which is mainly due to language and cultural barriers. The progress of nonlinear science in the last few decades which have shown that the combination of nonlinearity, which characterize most biological phenomena, and cooperative effects in a system having a large number of degrees of freedom, can give rise to coherent excitations with remarkable properties. New concepts, such as solitons nd nonlinear energy localisation have become familiar to physicists and applied mathematicians. It is thus tempting to make an analogy between these coherent excitations and the exceptional stability of some biological processes, such as for instance DNA transcription, which require the coordination of many events in the ever changing environment of a cell. Physicists are now invoking nonlinear excitations to describe and explain many bio-molecular processes while biologists often doubt that the seemingly infinite variety of phenomena that they are attempting to classify can be reduced to such simple concepts. A large part of the meeting is devoted to tutorial lectures rather than to latest research results. The book provides a pedagogical introduction to the two topics forming the backbone of the meeting: the theory of nonlinear excitations and solitons, and their application in biology; and the structure and function of biomolecules, as well as energy and charge transport in biophysics. In order to emphasize the link between physics and biology, the volume is not divided along these two topics but according to biological subjects. Each chapter starts with a short introduction attempting to help the reader to find his way among the contributions and point out the connection between them. 23 lectures over the 32 presented have been selected and refers to quantum properties of macro-molecules. (J.S.)

  16. Simultaneous spatial and temporal focusing: a route towards confined nonlinear materials processing

    Science.gov (United States)

    Kammel, Robert; Bergner, Klaus; Thomas, Jens; Ackermann, Roland; Skupin, Stefan; Nolte, Stefan

    2016-03-01

    Ultrashort pulse lasers enable reliable and versatile high precision ablation and surface processing of various materials such as metals, polymers and semiconductors. However, when modifications deep inside the bulk of transparent media are required, nonlinear pulse material interactions can decrease the precision, since weak focusing and the long propagation of the intense pulses within the nonlinear media may induce Kerr self-focusing, filamentation and white light generation. In order to improve the precision of those modifications, simultaneous spatial and temporal focusing (SSTF) allows to reduce detrimental nonlinear interactions, because the ultrashort pulse duration is only obtained at the focus, while outside of the focal region the continuously increasing pulse duration strongly reduces the pulse intensity. In this paper, we review the fundamental concepts of this technology and provide an overview of its applications for purposes of multiphoton microscopy and laser materials processing. Moreover, numerical simulations on the nonlinear pulse propagation within transparent media illustrate the linear and nonlinear pulse propagation, highlighting the differences between conventional focusing and SSTF. Finally, fs-laser induced modifications in gelatine are presented to compare nonlinear side-effects caused by conventional focusing and SSTF. With conventional focusing the complex interplay of self-focusing and filamentation induces strongly inhomogeneous, elongated disruptions. In contrast, disruptions induced by SSTF are homogeneously located at the focal plane and reduced in length by a factor >2, which is in excellent agreement with the numerical simulations of the nonlinear pulse propagation and might favor SSTF for demanding applications such as intraocular fs-laser surgery.

  17. Nonlinear identification of process dynamics using neural networks

    International Nuclear Information System (INIS)

    Parlos, A.G.; Atiya, A.F.; Chong, K.T.

    1992-01-01

    In this paper the nonlinear identification of process dynamics encountered in nuclear power plant components is addressed, in an input-output sense, using artificial neural systems. A hybrid feedforward/feedback neural network, namely, a recurrent multilayer perceptron, is used as the model structure to be identified. The feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of temporal variations in the system nonlinearities. The standard backpropagation learning algorithm is modified, and it is used for the supervised training of the proposed hybrid network. The performance of recurrent multilayer perceptron networks in identifying process dynamics is investigated via the case study of a U-tube steam generator. The response of representative steam generator is predicted using a neural network, and it is compared to the response obtained from a sophisticated computer model based on first principles. The transient responses compare well, although further research is warranted to determine the predictive capabilities of these networks during more severe operational transients and accident scenarios

  18. Fault Detection for Nonlinear Process With Deterministic Disturbances: A Just-In-Time Learning Based Data Driven Method.

    Science.gov (United States)

    Yin, Shen; Gao, Huijun; Qiu, Jianbin; Kaynak, Okyay

    2017-11-01

    Data-driven fault detection plays an important role in industrial systems due to its applicability in case of unknown physical models. In fault detection, disturbances must be taken into account as an inherent characteristic of processes. Nevertheless, fault detection for nonlinear processes with deterministic disturbances still receive little attention, especially in data-driven field. To solve this problem, a just-in-time learning-based data-driven (JITL-DD) fault detection method for nonlinear processes with deterministic disturbances is proposed in this paper. JITL-DD employs JITL scheme for process description with local model structures to cope with processes dynamics and nonlinearity. The proposed method provides a data-driven fault detection solution for nonlinear processes with deterministic disturbances, and owns inherent online adaptation and high accuracy of fault detection. Two nonlinear systems, i.e., a numerical example and a sewage treatment process benchmark, are employed to show the effectiveness of the proposed method.

  19. Nonlinear signal processing for ultrasonic imaging of material complexity

    Czech Academy of Sciences Publication Activity Database

    Dos Santos, S.; Vejvodová, Šárka; Převorovský, Zdeněk

    2010-01-01

    Roč. 59, č. 2 (2010), s. 108-117 ISSN 1736-6046 Institutional research plan: CEZ:AV0Z20760514 Keywords : nonlinear signal processing * TR-NEWS * symmetry analysis * DORT Subject RIV: BI - Acoustics Impact factor: 0.464, year: 2010 www.eap.ee/proceedings

  20. Nonlinear Silicon Photonic Signal Processing Devices for Future Optical Networks

    Directory of Open Access Journals (Sweden)

    Cosimo Lacava

    2017-01-01

    Full Text Available In this paper, we present a review on silicon-based nonlinear devices for all optical nonlinear processing of complex telecommunication signals. We discuss some recent developments achieved by our research group, through extensive collaborations with academic partners across Europe, on optical signal processing using silicon-germanium and amorphous silicon based waveguides as well as novel materials such as silicon rich silicon nitride and tantalum pentoxide. We review the performance of four wave mixing wavelength conversion applied on complex signals such as Differential Phase Shift Keying (DPSK, Quadrature Phase Shift Keying (QPSK, 16-Quadrature Amplitude Modulation (QAM and 64-QAM that dramatically enhance the telecom signal spectral efficiency, paving the way to next generation terabit all-optical networks.

  1. Photo-physics of third-order nonlinear optical processes in organic dyes

    International Nuclear Information System (INIS)

    Delysse, Stephane

    1997-01-01

    We study some aspects of the nonlinear picosecond photo-physics in organic dyes using Kerr ellipsometry. The aim is to establish link between the photo-physics and nonlinear optics in these compounds. First, we study coherent processes directly linked to the third-order susceptibility. Thus, we measure two-photon absorption spectra of large internal charge transfer dyes. We take into account all coupling between three electronic states which can interfere to explain the particular response of some stilbene dyes. On the second hand, we expose a more photophysical approach to determine the S 1 → S n transition energies and moments using the measurement of excited state absorption cross sections. These results allow the prediction of the susceptibilities relevant to alternative nonlinear optical methods. Nevertheless, the stationary approach hides the complex relaxation processes which can take place in organic dyes. As an illustration, we study the formation and disappearance of a TICT (Twisted intramolecular charge transfer) in a pyrylium salt in solvents of increasing viscosity. (author) [fr

  2. Harnessing mode-selective nonlinear optics for on-chip multi-channel all-optical signal processing

    Directory of Open Access Journals (Sweden)

    Ming Ma

    2016-11-01

    Full Text Available All-optical signal processing based on nonlinear optical effects allows for the realization of important functions in telecommunications including wavelength conversion, optical multiplexing/demultiplexing, Fourier transformation, and regeneration, amongst others, on ultrafast time scales to support high data rate transmission. In integrated photonic subsystems, the majority of all-optical signal processing systems demonstrated to date typically process only a single channel at a time or perform a single processing function, which imposes a serious limitation on the functionality of integrated solutions. Here, we demonstrate how nonlinear optical effects can be harnessed in a mode-selective manner to perform simultaneous multi-channel (two and multi-functional optical signal processing (i.e., regenerative wavelength conversion in an integrated silicon photonic device. This approach, which can be scaled to a higher number of channels, opens up a new degree of freedom for performing a broad range of multi-channel nonlinear optical signal processing functions using a single integrated photonic device.

  3. NON-LINEAR FINITE ELEMENT MODELING OF DEEP DRAWING PROCESS

    Directory of Open Access Journals (Sweden)

    Hasan YILDIZ

    2004-03-01

    Full Text Available Deep drawing process is one of the main procedures used in different branches of industry. Finding numerical solutions for determination of the mechanical behaviour of this process will save time and money. In die surfaces, which have complex geometries, it is hard to determine the effects of parameters of sheet metal forming. Some of these parameters are wrinkling, tearing, and determination of the flow of the thin sheet metal in the die and thickness change. However, the most difficult one is determination of material properties during plastic deformation. In this study, the effects of all these parameters are analyzed before producing the dies. The explicit non-linear finite element method is chosen to be used in the analysis. The numerical results obtained for non-linear material and contact models are also compared with the experiments. A good agreement between the numerical and the experimental results is obtained. The results obtained for the models are given in detail.

  4. Unusual nonlinear absorption response of graphene oxide in the presence of a reduction process

    International Nuclear Information System (INIS)

    Karimzadeh, Rouhollah; Arandian, Alireza

    2015-01-01

    The nonlinear absorption responses of graphene, graphene oxide and reduced graphene oxide are investigated using the Z-scan technique and laser beams at 405, 532 and 635 nm in a continuous wave regime. Results show that graphene, graphene oxide and reduced graphene oxide do not show any open Z-scan signals at wavelengths of 532 and 635 nm. At the same time, fresh graphene oxide suspension is found to exhibit a nonlinear absorption process in the case of a laser light at 405 nm. Moreover, it can be observed that the reduction of graphene oxide by 405 nm laser irradiation decreases its nonlinear absorption value significantly. These findings highlight the important role of the reduction process on the nonlinear absorption performance of graphene oxide. (letter)

  5. The 1989 progress report: quantum optics

    International Nuclear Information System (INIS)

    Flytzanis, C.

    1989-01-01

    The 1989 progress report of the laboratory of Quantum Optics of the Polytechnic School (France) is presented. The main research activity of the Laboratory is the study of processes controlling the behavior of matter under the action of high intensity light fields and under space-time constraints. The reported investigations were performed in the following fields: dynamics and vibrational relaxation modes in dense phases; nonlinear optical properties of composite materials; surface energy transfer and distribution in molecule surface interactions. Techniques relating to femtosecond impulsions, pulsating Raman and nonlinear optics were developed. The published papers, the conferences and the Laboratory staff are listed [fr

  6. An ultra-efficient nonlinear planar integrated platform for optical signal processing and generation

    DEFF Research Database (Denmark)

    Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta

    2017-01-01

    This paper will discuss the recently developed integrated platform: AlGaAs-oninsulator and its broad range of nonlinear applications. Recent demonstrations of broadband optical signal processing and efficient frequency comb generations in this platform will be reviewed.......This paper will discuss the recently developed integrated platform: AlGaAs-oninsulator and its broad range of nonlinear applications. Recent demonstrations of broadband optical signal processing and efficient frequency comb generations in this platform will be reviewed....

  7. Nonlinear and Nonsymmetric Single-Molecule Electronic Properties Towards Molecular Information Processing.

    Science.gov (United States)

    Tamaki, Takashi; Ogawa, Takuji

    2017-09-05

    This review highlights molecular design for nonlinear and nonsymmetric single-molecule electronic properties such as rectification, negative differential resistance, and switching, which are important components of future single-molecule information processing devices. Perspectives on integrated "molecular circuits" are also provided. Nonlinear and nonsymmetric single-molecule electronics can be designed by utilizing (1) asymmetric molecular cores, (2) asymmetric anchoring groups, (3) an asymmetric junction environment, and (4) asymmetric electrode materials. This review mainly focuses on the design of molecular cores.

  8. Markov chains of nonlinear Markov processes and an application to a winner-takes-all model for social conformity

    Energy Technology Data Exchange (ETDEWEB)

    Frank, T D [Center for the Ecological Study of Perception and Action, Department of Psychology, University of Connecticut, 406 Babbidge Road, Storrs, CT 06269 (United States)

    2008-07-18

    We discuss nonlinear Markov processes defined on discrete time points and discrete state spaces using Markov chains. In this context, special attention is paid to the distinction between linear and nonlinear Markov processes. We illustrate that the Chapman-Kolmogorov equation holds for nonlinear Markov processes by a winner-takes-all model for social conformity. (fast track communication)

  9. Markov chains of nonlinear Markov processes and an application to a winner-takes-all model for social conformity

    International Nuclear Information System (INIS)

    Frank, T D

    2008-01-01

    We discuss nonlinear Markov processes defined on discrete time points and discrete state spaces using Markov chains. In this context, special attention is paid to the distinction between linear and nonlinear Markov processes. We illustrate that the Chapman-Kolmogorov equation holds for nonlinear Markov processes by a winner-takes-all model for social conformity. (fast track communication)

  10. Nonlinear modeling and dynamic analysis of hydro-turbine governing system in the process of load rejection transient

    International Nuclear Information System (INIS)

    Zhang, Hao; Chen, Diyi; Xu, Beibei; Wang, Feifei

    2015-01-01

    Graphical abstract: Nonlinear dynamic transfer coefficients are introduced to the hydro-turbine governing system. In the process of load reject ion transient, the nonlinear dynamical behaviors of the system are studied in detail. - Highlights: • A novel mathematical model of a hydro-turbine governing system is established. • The process of load rejection transient is considered. • Nonlinear dynamic transfer coefficients are introduced to the system. • The bifurcation diagram with the variable t has better engineering significance. • The nonlinear dynamical behaviors of the system are studied in detail. - Abstract: This article pays attention to the mathematical modeling of a hydro-turbine governing system in the process of load rejection transient. As a pioneer work, the nonlinear dynamic transfer coefficients are introduced in a penstock system. Considering a generator system, a turbine system and a governor system, we present a novel nonlinear dynamical model of a hydro-turbine governing system. Fortunately, for the unchanged of PID parameters, we acquire the stable regions of the governing system in the process of load rejection transient by numerical simulations. Moreover, the nonlinear dynamic behaviors of the governing system are illustrated by bifurcation diagrams, Poincare maps, time waveforms and phase orbits. More importantly, these methods and analytic results will present theoretical groundwork for allowing a hydropower station in the process of load rejection transient

  11. Nonlinear Lagrangian and the π N → π π π N process

    International Nuclear Information System (INIS)

    Pinto, F.A.

    1976-02-01

    A nonlinear Lagrangian is constructed involving only pions and nucleons consisting of a part invariant under the transformations of the group SU(2) (X) SU(2) and of a part which breaks this symmetry and contains an arbitrary parameter zeta introduced in order to allow the breaking of exact PCAC. The total cross-section for the process π N → π π π N at low incident energies of the incident pion, in the threshold approximation, is calculated utilizing this nonlinear Lagrangian. The parameter zeta appears in the total cross-section of the process π N → π π N also [pt

  12. Digital signals processing using non-linear orthogonal transformation in frequency domain

    Directory of Open Access Journals (Sweden)

    Ivanichenko E.V.

    2017-12-01

    Full Text Available The rapid progress of computer technology in recent decades led to a wide introduction of methods of digital information processing practically in all fields of scientific research. In this case, among various applications of computing one of the most important places is occupied by digital processing systems signals (DSP that are used in data processing remote solution tasks of navigation of aerospace and marine objects, communications, radiophysics, digital optics and in a number of other applications. Digital Signal Processing (DSP is a dynamically developing an area that covers both technical and software tools. Related areas for digital signal processing are theory information, in particular, the theory of optimal signal reception and theory pattern recognition. In the first case, the main problem is signal extraction against a background of noise and interference of a different physical nature, and in the second - automatic recognition, i.e. classification and signal identification. In the digital processing of signals under a signal, we mean its mathematical description, i.e. a certain real function, containing information on the state or behavior of a physical system under an event that can be defined on a continuous or discrete space of time variation or spatial coordinates. In the broad sense, DSP systems mean a complex algorithmic, hardware and software. As a rule, systems contain specialized technical means of preliminary (or primary signal processing and special technical means for secondary processing of signals. Means of pretreatment are designed to process the original signals observed in general case against a background of random noise and interference of a different physical nature and represented in the form of discrete digital samples, for the purpose of detecting and selection (selection of the useful signal and evaluation characteristics of the detected signal. A new method of digital signal processing in the frequency

  13. Nonlinear transport processes in tokamak plasmas. I. The collisional regimes

    International Nuclear Information System (INIS)

    Sonnino, Giorgio; Peeters, Philippe

    2008-01-01

    An application of the thermodynamic field theory (TFT) to transport processes in L-mode tokamak plasmas is presented. The nonlinear corrections to the linear ('Onsager') transport coefficients in the collisional regimes are derived. A quite encouraging result is the appearance of an asymmetry between the Pfirsch-Schlueter (P-S) ion and electron transport coefficients: the latter presents a nonlinear correction, which is absent for the ions, and makes the radial electron coefficients much larger than the former. Explicit calculations and comparisons between the neoclassical results and the TFT predictions for Joint European Torus (JET) plasmas are also reported. It is found that the nonlinear electron P-S transport coefficients exceed the values provided by neoclassical theory by a factor that may be of the order 10 2 . The nonlinear classical coefficients exceed the neoclassical ones by a factor that may be of order 2. For JET, the discrepancy between experimental and theoretical results for the electron losses is therefore significantly reduced by a factor 10 2 when the nonlinear contributions are duly taken into account but, there is still a factor of 10 2 to be explained. This is most likely due to turbulence. The expressions of the ion transport coefficients, determined by the neoclassical theory in these two regimes, remain unaltered. The low-collisional regimes, i.e., the plateau and the banana regimes, are analyzed in the second part of this work

  14. Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report

    International Nuclear Information System (INIS)

    Tataronis, J. A.

    2004-01-01

    This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfven continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named ''accumulation continuum'' and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory

  15. Recombination Processes and Nonlinear Markov Chains.

    Science.gov (United States)

    Pirogov, Sergey; Rybko, Alexander; Kalinina, Anastasia; Gelfand, Mikhail

    2016-09-01

    Bacteria are known to exchange genetic information by horizontal gene transfer. Since the frequency of homologous recombination depends on the similarity between the recombining segments, several studies examined whether this could lead to the emergence of subspecies. Most of them simulated fixed-size Wright-Fisher populations, in which the genetic drift should be taken into account. Here, we use nonlinear Markov processes to describe a bacterial population evolving under mutation and recombination. We consider a population structure as a probability measure on the space of genomes. This approach implies the infinite population size limit, and thus, the genetic drift is not assumed. We prove that under these conditions, the emergence of subspecies is impossible.

  16. Observations of linear and nonlinear processes in the foreshock wave evolution

    Directory of Open Access Journals (Sweden)

    Y. Narita

    2007-07-01

    Full Text Available Waves in the foreshock region are studied on the basis of a hypothesis that the linear process first excites the waves and further wave-wave nonlinearities distribute scatter the energy of the primary waves into a number of daughter waves. To examine this wave evolution scenario, the dispersion relations, the wave number spectra of the magnetic field energy, and the dimensionless cross helicity are determined from the observations made by the four Cluster spacecraft. The results confirm that the linear process is the ion/ion right-hand resonant instability, but the wave-wave interactions are not clearly identified. We discuss various reasons why the test for the wave-wave nonlinearities fails, and conclude that the higher order statistics would provide a direct evidence for the wave coupling phenomena.

  17. Parallel processing for nonlinear dynamics simulations of structures including rotating bladed-disk assemblies

    Science.gov (United States)

    Hsieh, Shang-Hsien

    1993-01-01

    The principal objective of this research is to develop, test, and implement coarse-grained, parallel-processing strategies for nonlinear dynamic simulations of practical structural problems. There are contributions to four main areas: finite element modeling and analysis of rotational dynamics, numerical algorithms for parallel nonlinear solutions, automatic partitioning techniques to effect load-balancing among processors, and an integrated parallel analysis system.

  18. Acoustic wave focusing in complex media using Nonlinear Time Reversal coded signal processing

    Czech Academy of Sciences Publication Activity Database

    Dos Santos, S.; Dvořáková, Zuzana; Lints, M.; Kůs, V.; Salupere, A.; Převorovský, Zdeněk

    2014-01-01

    Roč. 19, č. 12 (2014) ISSN 1435-4934. [European Conference on Non-Destructive Testing (ECNDT 2014) /11./. Praha, 06.10.2014-10.10.2014] Institutional support: RVO:61388998 Keywords : ultrasonic testing (UT) * signal processing * TR- NEWS * nonlinear time reversal * NDT * nonlinear acoustics Subject RIV: BI - Acoustics http://www.ndt.net/events/ECNDT2014/app/content/Slides/590_DosSantos_Rev1.pdf

  19. Strategies for Enhancing Nonlinear Internal Model Control of pH Processes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiuping.; Rangaiah, G.P. [The National University of Singapore, Singapore (Singapore). Dept. of Chemical and Environmental Engineering

    1999-02-01

    Control of neutralization processes is very difficult due to nonlinear dynamics, different types of disturbances and modeling errors. The objective of the paper is to evaluate two strategies (augmented internal model control, AuIMC and adaptive internal model control, AdIMC) for enhancing pH control by nonlinear internal model control (NIMC). A NIMC controller is derived directly form input output linearization. The AuIMC is composed of NIMC and an additional loop through which the difference between the process and model outputs is fed back and added to the input of the controller. For the AdIMC, and adaptive law with two tuning parameters is proposed for estimating the unknown parameter. Both AuIMC and AdIMC are extensively tested via simulation for pH neutralization. The theoretical and simulation results show that both the proposed strategies can reduce the effect of modeling errors and disturbances, and thereby enhance the performance of NIMC for pH processes. (author)

  20. Some applications of nonlinear diffusion to processing of dynamic evolution images

    International Nuclear Information System (INIS)

    Goltsov, Alexey N.; Nikishov, Sergey A.

    1997-01-01

    Model nonlinear diffusion equation with the most simple Landau-Ginzburg free energy functional was applied to locate boundaries between meaningful regions of low-level images. The method is oriented to processing images of objects that are a result of dynamic evolution: images of different organs and tissues obtained by radiography and NMR methods, electron microscope images of morphogenesis fields, etc. In the methods developed by us, parameters of the nonlinear diffusion model are chosen on the basis of the preliminary treatment of the images. The parameters of the Landau-Ginzburg free energy functional are extracted from the structure factor of the images. Owing to such a choice of the model parameters, the image to be processed is located in the vicinity of the steady-state of the diffusion equation. The suggested method allows one to separate distinct structures having specific space characteristics from the whole image. The method was applied to processing X-ray images of the lung

  1. Azimuthal asymmetry in processes of nonlinear QED for linearly polarized photon

    International Nuclear Information System (INIS)

    Bajer, V.N.; Mil'shtejn, A.I.

    1994-01-01

    Cross sections of nonlinear QED processes (photon-photon scattering, photon splitting in a Coulomb field, and Delbrueck scattering) are considered for linearly polarized initial photon. The cross sections have sizeable azimuthal asymmetry. 15 refs.; 3 figs

  2. Ultrafast nonlinear optical processes in metal-dielectric nanocomposites and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang-Hyon

    2012-04-13

    This work reports results of a theoretical study of nonlinear optical processes in metal-dielectric nanocomposites used for the increase of the nonlinear coefficients and for plasmonic field enhancement. The main results include the study of the transient saturable nonlinearity in dielectric composites doped with metal nanoparticles, its physical mechanism as well its applications in nonlinear optics. For the study of the transient response, a time-depending equation for the dielectric function of the nanocomposite using the semi-classical two-temperature model is derived. By using this approach, we study the transient nonlinear characteristics of these materials in comparison with preceding experimental measurements. The results show that these materials behave as efficient saturable absorbers for passive mode-locking of lasers in the spectral range from the visible to near IR. We present results for the modelocked dynamics in short-wavelength solid-state and semiconductor disk lasers; in this spectral range other efficient saturable absorbers do not exist. We suggest a new mechanism for the realization of slow light phenomenon by using glasses doped with metal nanoparticles in a pump-probe regime near the plasmonic resonance. Furthermore, we study femtosecond plasmon generation by mode-locked surface plasmon polariton lasers with Bragg reflectors and metal-gain-absorber layered structures. In the final part of the thesis, we present results for high-order harmonic generation near a metallic fractal rough surface. The results show a possible reduction of the pump intensities by three orders of magnitudes and two orders of magnitudes higher efficiency compared with preceding experimental results by using bow-tie nanostructures.

  3. Mathematical models of non-linear phenomena, processes and systems: from molecular scale to planetary atmosphere

    CERN Document Server

    2013-01-01

    This book consists of twenty seven chapters, which can be divided into three large categories: articles with the focus on the mathematical treatment of non-linear problems, including the methodologies, algorithms and properties of analytical and numerical solutions to particular non-linear problems; theoretical and computational studies dedicated to the physics and chemistry of non-linear micro-and nano-scale systems, including molecular clusters, nano-particles and nano-composites; and, papers focused on non-linear processes in medico-biological systems, including mathematical models of ferments, amino acids, blood fluids and polynucleic chains.

  4. Fault detection in nonlinear chemical processes based on kernel entropy component analysis and angular structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Qingchao; Yan, Xuefeng; Lv, Zhaomin; Guo, Meijin [East China University of Science and Technology, Shanghai (China)

    2013-06-15

    Considering that kernel entropy component analysis (KECA) is a promising new method of nonlinear data transformation and dimensionality reduction, a KECA based method is proposed for nonlinear chemical process monitoring. In this method, an angle-based statistic is designed because KECA reveals structure related to the Renyi entropy of input space data set, and the transformed data sets are produced with a distinct angle-based structure. Based on the angle difference between normal status and current sample data, the current status can be monitored effectively. And, the confidence limit of the angle-based statistics is determined by kernel density estimation based on sample data of the normal status. The effectiveness of the proposed method is demonstrated by case studies on both a numerical process and a simulated continuous stirred tank reactor (CSTR) process. The KECA based method can be an effective method for nonlinear chemical process monitoring.

  5. Fault detection in nonlinear chemical processes based on kernel entropy component analysis and angular structure

    International Nuclear Information System (INIS)

    Jiang, Qingchao; Yan, Xuefeng; Lv, Zhaomin; Guo, Meijin

    2013-01-01

    Considering that kernel entropy component analysis (KECA) is a promising new method of nonlinear data transformation and dimensionality reduction, a KECA based method is proposed for nonlinear chemical process monitoring. In this method, an angle-based statistic is designed because KECA reveals structure related to the Renyi entropy of input space data set, and the transformed data sets are produced with a distinct angle-based structure. Based on the angle difference between normal status and current sample data, the current status can be monitored effectively. And, the confidence limit of the angle-based statistics is determined by kernel density estimation based on sample data of the normal status. The effectiveness of the proposed method is demonstrated by case studies on both a numerical process and a simulated continuous stirred tank reactor (CSTR) process. The KECA based method can be an effective method for nonlinear chemical process monitoring

  6. The second order extended Kalman filter and Markov nonlinear filter for data processing in interferometric systems

    International Nuclear Information System (INIS)

    Ermolaev, P; Volynsky, M

    2014-01-01

    Recurrent stochastic data processing algorithms using representation of interferometric signal as output of a dynamic system, which state is described by vector of parameters, in some cases are more effective, compared with conventional algorithms. Interferometric signals depend on phase nonlinearly. Consequently it is expedient to apply algorithms of nonlinear stochastic filtering, such as Kalman type filters. An application of the second order extended Kalman filter and Markov nonlinear filter that allows to minimize estimation error is described. Experimental results of signals processing are illustrated. Comparison of the algorithms is presented and discussed.

  7. Bifurcation and stability analysis of a nonlinear milling process

    Science.gov (United States)

    Weremczuk, Andrzej; Rusinek, Rafal; Warminski, Jerzy

    2018-01-01

    Numerical investigations of milling operations dynamics are presented in this paper. A two degree of freedom nonlinear model is used to study workpiece-tool vibrations. The analyzed model takes into account both flexibility of the tool and the workpiece. The dynamics of the milling process is described by the discontinuous ordinary differential equation with time delay, which can cause process instability. First, stability lobes diagrams are created on the basis of the parameters determined in impact test of an end mill and workpiece. Next, the bifurcations diagrams are performed for different values of rotational speeds.

  8. Structure formation in turbulent plasmas - test of nonlinear processes in plasma experiments

    International Nuclear Information System (INIS)

    Itoh, S.-I.; Yagi, Masatoshi; Inagaki, Shigeru

    2009-01-01

    Full text: Recent developments in plasma physics, either in the fusion research in a new era of ITER, or in space and in astro-physics, the world-wide and focused research has been developed on the subject of structural formation in turbulent plasma being associated with electro-magnetic field formation. Keys for the progress were a change of the physics view from the 'linear, local and deterministic' picture to the description based on 'nonlinear instability, nonlocal interaction and probabilistic excitation' for the turbulent state, and the integration of the theory-simulation-experiment. In this presentation, we first briefly summarize the theory of microscopic turbulence and mesoscale fluctuations and selection rules. In addition, the statistical formation of large-scale structure/deformation by turbulence is addressed. Then, the experimental measurements of the mesoscale structures (e.g., zonal flows, zonal fields, streamer and transport interface) and of the nonlinear interactions among them in turbulent plasmas are reported. Confirmations by, and new challenges from, the experiments are overviewed. Work supported by the Grant-in-Aid for Specially-Promoted Research (16002005). (author)

  9. From point process observations to collective neural dynamics: Nonlinear Hawkes process GLMs, low-dimensional dynamics and coarse graining.

    Science.gov (United States)

    Truccolo, Wilson

    2016-11-01

    This review presents a perspective on capturing collective dynamics in recorded neuronal ensembles based on multivariate point process models, inference of low-dimensional dynamics and coarse graining of spatiotemporal measurements. A general probabilistic framework for continuous time point processes reviewed, with an emphasis on multivariate nonlinear Hawkes processes with exogenous inputs. A point process generalized linear model (PP-GLM) framework for the estimation of discrete time multivariate nonlinear Hawkes processes is described. The approach is illustrated with the modeling of collective dynamics in neocortical neuronal ensembles recorded in human and non-human primates, and prediction of single-neuron spiking. A complementary approach to capture collective dynamics based on low-dimensional dynamics ("order parameters") inferred via latent state-space models with point process observations is presented. The approach is illustrated by inferring and decoding low-dimensional dynamics in primate motor cortex during naturalistic reach and grasp movements. Finally, we briefly review hypothesis tests based on conditional inference and spatiotemporal coarse graining for assessing collective dynamics in recorded neuronal ensembles. Published by Elsevier Ltd.

  10. PLASMA EMISSION BY NONLINEAR ELECTROMAGNETIC PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Ziebell, L. F.; Petruzzellis, L. T.; Gaelzer, R. [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park (United States); Pavan, J., E-mail: luiz.ziebell@ufrgs.br, E-mail: laripetruzzellis@yahoo.com.br, E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: joel.pavan@ufpel.edu.br [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil)

    2015-06-20

    The plasma emission, or electromagnetic (EM) radiation at the plasma frequency and/or its harmonic(s), is generally accepted as the radiation mechanism responsible for solar type II and III radio bursts. Identification and characterization of these solar radio burst phenomena were done in the 1950s. Despite many decades of theoretical research since then, a rigorous demonstration of the plasma emission process based upon first principles was not available until recently, when, in a recent Letter, Ziebell et al. reported the first complete numerical solution of EM weak turbulence equations; thus, quantitatively analyzing the plasma emission process starting from the initial electron beam and the associated beam-plasma (or Langmuir wave) instability, as well as the subsequent nonlinear conversion of electrostatic Langmuir turbulence into EM radiation. In the present paper, the same problem is revisited in order to elucidate the detailed physical mechanisms that could not be reported in the brief Letter format. Findings from the present paper may be useful for interpreting observations and full-particle numerical simulations.

  11. Symbol manipulation by computer applied to plasma physics. Technical progress report 2

    International Nuclear Information System (INIS)

    Rosen, B.

    1977-09-01

    Progress has been made in automating the calculation of parametric processes analytically by computer. The computations are performed automatically to lowest order quickly and efficiently. Work has started on a method for solving the nonlinear differential equations describing interacting modes

  12. Nonlinear wave collapse and strong turbulence

    International Nuclear Information System (INIS)

    Robinson, P.A.

    1997-01-01

    The theory and applications of wave self-focusing, collapse, and strongly nonlinear wave turbulence are reviewed. In the last decade, the theory of these phenomena and experimental realizations have progressed rapidly. Various nonlinear wave systems are discussed, but the simplest case of collapse and strong turbulence of Langmuir waves in an unmagnetized plasma is primarily used in explaining the theory and illustrating the main ideas. First, an overview of the basic physics of linear waves and nonlinear wave-wave interactions is given from an introductory perspective. Wave-wave processes are then considered in more detail. Next, an introductory overview of the physics of wave collapse and strong turbulence is provided, followed by a more detailed theoretical treatment. Later sections cover numerical simulations of Langmuir collapse and strong turbulence and experimental applications to space, ionospheric, and laboratory plasmas, including laser-plasma and beam-plasma interactions. Generalizations to self-focusing, collapse, and strong turbulence of waves in other systems are also discussed, including nonlinear optics, solid-state systems, magnetized auroral and astrophysical plasmas, and deep-water waves. The review ends with a summary of the main ideas of wave collapse and strong-turbulence theory, a collection of open questions in the field, and a brief discussion of possible future research directions. copyright 1997 The American Physical Society

  13. Control of a nonlinear ice cream crystallization process

    OpenAIRE

    Casenave, Céline; Dochain, Denis; Alvarez, Graciela; Arellano, Marcela; Benkhelifa, Hayat; Leducq, Denis

    2013-01-01

    International audience; In the ice cream industry, the type of final desired product (large cartons (sqrounds) or ice creams on a stick) determine the viscosity at which the ice cream has to be produced. One of the objectives of the ice cream crystallization processes is therefore to produce an ice cream of specified viscosity. In this paper, a nonlinear control strategy is proposed for the control of the viscosity of the ice cream in a continuous crystallizer. It has been designed on the bas...

  14. Nonlinear Optics: Principles and Applications

    DEFF Research Database (Denmark)

    Rottwitt, Karsten; Tidemand-Lichtenberg, Peter

    of applications, Nonlinear Optics: Principles and Applications effectively bridges physics and mathematics with relevant applied material for real-world use. The book progresses naturally from fundamental aspects to illustrative examples, and presents a strong theoretical foundation that equips the reader...... and matter, this text focuses on the physical understanding of nonlinear optics, and explores optical material response functions in the time and frequency domain....

  15. The 1989 progress report: Applied Mathematics

    International Nuclear Information System (INIS)

    Nedelec, J.C.

    1989-01-01

    The 1989 progress report of the laboratory of Applied Mathematics of the Polytechnic School (France) is presented. The investigations reported were performed in the following fields: mathematical and numerical aspects of wave propagation, nonlinear hyperbolic fluid mechanics, numerical simulations and mathematical aspects of semiconductors and electron beams, mechanics of solids, plasticity, viscoelasticity, stochastic, automatic and statistic calculations, synthesis and image processing. The published papers, the conferences and the Laboratory staff are listed [fr

  16. Nonlinear transformations of random processes

    CERN Document Server

    Deutsch, Ralph

    2017-01-01

    This concise treatment of nonlinear noise techniques encountered in system applications is suitable for advanced undergraduates and graduate students. It is also a valuable reference for systems analysts and communication engineers. 1962 edition.

  17. Suppression of two-photon resonantly enhanced nonlinear processes in extended media

    International Nuclear Information System (INIS)

    Garrett, W.R.; Moore, M.A.; Payne, M.G.; Wunderlich, R.K.

    1988-11-01

    On the basis of combined experimental and theoretical studies of nonlinear processes associated with two-photon excitations near 3d and 4d states in Na, we show how resonantly enhanced stimulated hyper-Raman emission, parametric four-wave mixing processes and total resonant two-photon absorption can become severely suppressed through the actions of internally generated fields on the total atomic response in extended media. 7 refs., 3 figs

  18. Progress in neuromorphic photonics

    Science.gov (United States)

    Ferreira de Lima, Thomas; Shastri, Bhavin J.; Tait, Alexander N.; Nahmias, Mitchell A.; Prucnal, Paul R.

    2017-03-01

    As society's appetite for information continues to grow, so does our need to process this information with increasing speed and versatility. Many believe that the one-size-fits-all solution of digital electronics is becoming a limiting factor in certain areas such as data links, cognitive radio, and ultrafast control. Analog photonic devices have found relatively simple signal processing niches where electronics can no longer provide sufficient speed and reconfigurability. Recently, the landscape for commercially manufacturable photonic chips has been changing rapidly and now promises to achieve economies of scale previously enjoyed solely by microelectronics. By bridging the mathematical prowess of artificial neural networks to the underlying physics of optoelectronic devices, neuromorphic photonics could breach new domains of information processing demanding significant complexity, low cost, and unmatched speed. In this article, we review the progress in neuromorphic photonics, focusing on photonic integrated devices. The challenges and design rules for optoelectronic instantiation of artificial neurons are presented. The proposed photonic architecture revolves around the processing network node composed of two parts: a nonlinear element and a network interface. We then survey excitable lasers in the recent literature as candidates for the nonlinear node and microring-resonator weight banks as the network interface. Finally, we compare metrics between neuromorphic electronics and neuromorphic photonics and discuss potential applications.

  19. Predicting speech intelligibility in conditions with nonlinearly processed noisy speech

    DEFF Research Database (Denmark)

    Jørgensen, Søren; Dau, Torsten

    2013-01-01

    The speech-based envelope power spectrum model (sEPSM; [1]) was proposed in order to overcome the limitations of the classical speech transmission index (STI) and speech intelligibility index (SII). The sEPSM applies the signal-tonoise ratio in the envelope domain (SNRenv), which was demonstrated...... to successfully predict speech intelligibility in conditions with nonlinearly processed noisy speech, such as processing with spectral subtraction. Moreover, a multiresolution version (mr-sEPSM) was demonstrated to account for speech intelligibility in various conditions with stationary and fluctuating...

  20. Sub-wavelength patterning of organic monolayers via nonlinear processing with continuous-wave lasers

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu, Mareike; Hartmann, Nils, E-mail: nils.hartmann@uni-due.de [Fakultaet fuer Chemie, Universitaet Duisburg-Essen, 45117 Essen (Germany); CeNIDE-Center for Nanointegration Duisburg-Essen, 47048 Duisburg (Germany); NETZ-NanoEnergieTechnikZentrum, 47048 Duisburg (Germany)

    2010-12-15

    In recent years, nonlinear processing with continuous-wave lasers has been demonstrated to be a facile means of rapid nanopatterning of organic monolayers down to the sub-100 nm range. In this study, we report on laser patterning of thiol-based organic monolayers with sub-wavelength resolution. Au-coated silicon substrates are functionalized with 1-hexadecanethiol. Irradiation with a focused beam of an Ar{sup +} laser operating at {lambda}=514 nm allows one to locally remove the monolayer. Subsequently, the patterns are transferred into the Au film via selective etching in a ferri-/ferrocyanide solution. Despite a 1/e{sup 2} spot diameter of about 2.8 {mu}m, structures with lateral dimensions down to 250 nm are fabricated. The underlying nonlinear dependence of the patterning process on laser intensity is traced back to the interplay between the laser-induced transient local temperature rise and the thermally activated desorption of the thiol molecules. A simple thermokinetic analysis of the data allows us to determine the effective kinetic parameters. These results complement our previous work on photothermal laser patterning of ultrathin organic coatings, such as silane-based organic monolayers, organo/silicon interfaces and supported membranes. A general introduction to nonlinear laser processing of organic monolayers is presented.

  1. Some nonlinear processes relevant to the beat wave accelerator

    International Nuclear Information System (INIS)

    Bingham, R.; Mori, W.B.

    1985-03-01

    The beat wave accelerator depends on the generation of a large amplitude plasma wave with a phase velocity close to the velocity of light c. The plasma wave (ωsub(p), ksub(p)) is generated by beating colinear laser beams (ω 1 , k 1 ) and (ω 2 ,k 2 ) with ωsub(p) = ω 1 -ω 2 , ksub(p) = k 1 -k 2 . Since the process involves both large amplitude transverse and longitudinal waves, various nonlinear instabilities associated with either wave may occur. The object of the article is to discuss some of the processes that may compete with the beat wave generation listing their threshold and growth rate. (author)

  2. Nonlinear phenomena in collisionless plasmas. Progress report, September 1, 1974--August 31, 1975

    International Nuclear Information System (INIS)

    Aamodt, R.E.

    1975-01-01

    The nonlinear evolution of unstable collective modes common to conventional mirror machines is being analyzed in order to evaluate measurable saturation amplitudes, spectrum properties, and concomitant particle loss rates. The nonlinear dispersion relation for the classic drift-cone mode, including nonlinear E x B VECTOR convective cells is presently being evaluated to find its self-saturation properties. Large amplitude rf heating mechanisms, localized mode nonlinearities, and propagation and amplification of transverse modes in collisionless inhomogeneous plasmas have also been partially evaluated. (U.S.)

  3. Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic-crystal fibers.

    Science.gov (United States)

    Hu, Ming-Lie; Wang, Ching-Yue; Song, You-Jian; Li, Yan-Feng; Chai, Lu; Serebryannikov, Evgenii; Zheltikov, Aleksei

    2006-02-06

    We demonstrate an experimental technique that allows a mapping of vectorial nonlinear-optical processes in multimode photonic-crystal fibers (PCFs). Spatial and polarization modes of PCFs are selectively excited in this technique by varying the tilt angle of the input beam and rotating the polarization of the input field. Intensity spectra of the PCF output plotted as a function of the input field power and polarization then yield mode-resolved maps of nonlinear-optical interactions in multimode PCFs, facilitating the analysis and control of nonlinear-optical transformations of ultrashort laser pulses in such fibers.

  4. Polarization dependent dispersion and its impact on optical parametric process in high nonlinear microstructure fibre

    International Nuclear Information System (INIS)

    Xiao Li; Zhang Wei; Huang Yidong; Peng Jiangde

    2008-01-01

    High nonlinear microstructure fibre (HNMF) is preferred in nonlinear fibre optics, especially in the applications of optical parametric effects, due to its high optical nonlinear coefficient. However, polarization dependent dispersion will impact the nonlinear optical parametric process in HNMFs. In this paper, modulation instability (MI) method is used to measure the polarization dependent dispersion of a piece of commercial HNMF, including the group velocity dispersion, the dispersion slope, the fourth-order dispersion and group birefringence. It also experimentally demonstrates the impact of the polarization dependent dispersion on the continuous wave supercontinuum (SC) generation. On one axis MI sidebands with symmetric frequency detunings are generated, while on the other axis with larger MI frequency detuning, SC is generated by soliton self-frequency shift

  5. All-optical signal processing in quadratic nonlinear materials

    DEFF Research Database (Denmark)

    Johansen, Steffen Kjær

    2002-01-01

    of materials with a second order nonlinearity, the so-called X(2) materials, is faster and stronger than that of more conventional materials with a cubic nonlinearity. The X(2) materials support spatial solitons consisting of two coupled components, the fundamental wave (FW) and its second harmonic (SH......). During this project the interaction between such spatial solitons has been investigated theoretically through perturbation theory and experimentally via numerical simulations. The outcome of this research isnew theoretical tools for quantitatively predicting the escape angle, i.e. the angle of incidence...... are dedicated to this part of the research. In chapter 4 the generality of the theoretical approach is emphasised with the derivation and verification of equivalent tools for media with a saturable nonlinearity. The strength of the X(2) nonlinearity strongly depends on the phase mismatch between the FW...

  6. Predicting seizures in untreated temporal lobe epilepsy using point-process nonlinear models of heartbeat dynamics.

    Science.gov (United States)

    Valenza, G; Romigi, A; Citi, L; Placidi, F; Izzi, F; Albanese, M; Scilingo, E P; Marciani, M G; Duggento, A; Guerrisi, M; Toschi, N; Barbieri, R

    2016-08-01

    Symptoms of temporal lobe epilepsy (TLE) are frequently associated with autonomic dysregulation, whose underlying biological processes are thought to strongly contribute to sudden unexpected death in epilepsy (SUDEP). While abnormal cardiovascular patterns commonly occur during ictal events, putative patterns of autonomic cardiac effects during pre-ictal (PRE) periods (i.e. periods preceding seizures) are still unknown. In this study, we investigated TLE-related heart rate variability (HRV) through instantaneous, nonlinear estimates of cardiovascular oscillations during inter-ictal (INT) and PRE periods. ECG recordings from 12 patients with TLE were processed to extract standard HRV indices, as well as indices of instantaneous HRV complexity (dominant Lyapunov exponent and entropy) and higher-order statistics (bispectra) obtained through definition of inhomogeneous point-process nonlinear models, employing Volterra-Laguerre expansions of linear, quadratic, and cubic kernels. Experimental results demonstrate that the best INT vs. PRE classification performance (balanced accuracy: 73.91%) was achieved only when retaining the time-varying, nonlinear, and non-stationary structure of heartbeat dynamical features. The proposed approach opens novel important avenues in predicting ictal events using information gathered from cardiovascular signals exclusively.

  7. Nonlinear and turbulent processes in physics. Volume 2. Nonlinear effects in various areas of science

    Energy Technology Data Exchange (ETDEWEB)

    Sagdeev, R Z

    1984-01-01

    The results of theoretical and experimental investigations of nonlinear and turbulent phenomena from a wide range of fields in physics are presented in reviews and reports. Topics examined include localized vortex formations in an ideal fluid, phase transitions in crystals, spatially nonuniform structures in condensed matter, solitons in molecular systems, the migration of quasi-particles in easily deformed crystals, bifurcations and dissipative structures in distributed kinetic systems, and structures in a nonlinear burning medium. Consideration is given to macroscopic motion generation in nonequilibrium media, the interaction of bulk and surface wave trains, near-threshold instabilities in hydrodynamics, solitons in nonlinear elastic rods with variable characteristics, the generation of solitons and vortices from chaos, and nonlinear electromagnetic-wave dissipation in an electron system.

  8. Nonlinear dynamic processes in modified ionospheric plasma

    Science.gov (United States)

    Kochetov, A.; Terina, G.

    Presented work is a contribution to the experimental and theoretical study of nonlinear effects arising on ionospheric plasma under the action of powerful radio emission (G.I. Terina, J. Atm. Terr. Phys., 1995, v.57, p.273; A.V. Kochetov et. al., Advances in Space Research, 2002, in press). The experimental results were obtained by the method of sounding of artificially disturbed ionosphere by short radio pulses. The amplitude and phase characteristics of scattered signal as of "caviton" type (CS) (analogy of narrow-band component of stimulation electromagnetic emission (SEE)) as the main signal (MS) of probing transmitter are considered. The theoretical model is based on numerical solution of driven nonlinear Shrödinger equation (NSE) in inhomogeneous plasma. The simulation allows us to study a self-consistent spatial-temporal dynamics of field and plasma. The observed evolution of phase characteristics of MS and CS qualitatively correspond to the results of numerical simulation and demonstrate the penetration processes of powerful electromagnetic wave in supercritical (in linear approach) plasma regions. The modeling results explain also the periodic generation of CS, the travel CS maximum down to density gradient, the aftereffect of CS. The obtained results show the excitation of strong turbulence and allow us to interpret CS, NC and so far inexplicable phenomena as "spikes" too. The work was supported in part by Russian Foundation for Basic Research (grants Nos. 99-02-16642, 99-02- 16399).

  9. From linear to nonlinear control means: a practical progression.

    Science.gov (United States)

    Gao, Zhiqiang

    2002-04-01

    With the rapid advance of digital control hardware, it is time to take the simple but effective proportional-integral-derivative (PID) control technology to the next level of performance and robustness. For this purpose, a nonlinear PID and active disturbance rejection framework are introduced in this paper. It complements the existing theory in that (1) it actively and systematically explores the use of nonlinear control mechanisms for better performance, even for linear plants; (2) it represents a control strategy that is rather independent of mathematical models of the plants, thus achieving inherent robustness and reducing design complexity. Stability analysis, as well as software/hardware test results, are presented. It is evident that the proposed framework lends itself well in seeking innovative solutions to practical problems while maintaining the simplicity and the intuitiveness of the existing technology.

  10. Green functions and Langevin equations for nonlinear diffusion equations: A comment on ‘Markov processes, Hurst exponents, and nonlinear diffusion equations’ by Bassler et al.

    Science.gov (United States)

    Frank, T. D.

    2008-02-01

    We discuss two central claims made in the study by Bassler et al. [K.E. Bassler, G.H. Gunaratne, J.L. McCauley, Physica A 369 (2006) 343]. Bassler et al. claimed that Green functions and Langevin equations cannot be defined for nonlinear diffusion equations. In addition, they claimed that nonlinear diffusion equations are linear partial differential equations disguised as nonlinear ones. We review bottom-up and top-down approaches that have been used in the literature to derive Green functions for nonlinear diffusion equations and, in doing so, show that the first claim needs to be revised. We show that the second claim as well needs to be revised. To this end, we point out similarities and differences between non-autonomous linear Fokker-Planck equations and autonomous nonlinear Fokker-Planck equations. In this context, we raise the question whether Bassler et al.’s approach to financial markets is physically plausible because it necessitates the introduction of external traders and causes. Such external entities can easily be eliminated when taking self-organization principles and concepts of nonextensive thermostatistics into account and modeling financial processes by means of nonlinear Fokker-Planck equations.

  11. Global solutions of nonlinear Schrödinger equations

    CERN Document Server

    Bourgain, J

    1999-01-01

    This volume presents recent progress in the theory of nonlinear dispersive equations, primarily the nonlinear Schrödinger (NLS) equation. The Cauchy problem for defocusing NLS with critical nonlinearity is discussed. New techniques and results are described on global existence and properties of solutions with large Cauchy data. Current research in harmonic analysis around Strichartz's inequalities and its relevance to nonlinear PDE is presented. Several topics in NLS theory on bounded domains are reviewed. Using the NLS as an example, the book offers comprehensive insight on current research r

  12. Nonlinear dynamics of regenerative cutting processes-Comparison of two models

    International Nuclear Information System (INIS)

    Wang, X.S.; Hu, J.; Gao, J.B.

    2006-01-01

    Understanding the nonlinear dynamics of cutting processes is essential for the improvement of machining technology. We study machine cutting processes by two different models, one has been recently introduced by Litak [Litak G. Chaotic vibrations in a regenerative cutting process. Chaos, Solitons and Fractals 2002;13:1531-5] and the other is the classic delay differential equation model. Although chaotic solutions have been found in both models, well known routes to chaos, such as period-doubling or quasi-periodic motion to chaos are not observed in either model. Careful analysis shows that the chaotic motion from the Litak's model has sharper spectral peaks, a smaller correlation dimension and a smaller value for the largest positive Lyapunov exponent. Implications to the control of chaos in cutting processes are discussed

  13. Nonlinear acoustic/seismic waves in earthquake processes

    International Nuclear Information System (INIS)

    Johnson, Paul A.

    2012-01-01

    Nonlinear dynamics induced by seismic sources and seismic waves are common in Earth. Observations range from seismic strong ground motion (the most damaging aspect of earthquakes), intense near-source effects, and distant nonlinear effects from the source that have important consequences. The distant effects include dynamic earthquake triggering—one of the most fascinating topics in seismology today—which may be elastically nonlinearly driven. Dynamic earthquake triggering is the phenomenon whereby seismic waves generated from one earthquake trigger slip events on a nearby or distant fault. Dynamic triggering may take place at distances thousands of kilometers from the triggering earthquake, and includes triggering of the entire spectrum of slip behaviors currently identified. These include triggered earthquakes and triggered slow, silent-slip during which little seismic energy is radiated. It appears that the elasticity of the fault gouge—the granular material located between the fault blocks—is key to the triggering phenomenon.

  14. Parametric amplification and cascaded-nonlinearity processes in common atomic system.

    Science.gov (United States)

    Zheng, Huaibin; Zhang, Xun; Zhang, Zhaoyang; Tian, Yaling; Chen, Haixia; Li, Changbiao; Zhang, Yanpeng

    2013-01-01

    For the first time, we study the parametric amplification process of multi-wave mixing (PA-MWM) signal and cascaded-nonlinearity process (CNP) in sodium vapors both theoretically and experimentally, based on a conventional phase-conjugate MWM and a self-diffraction four-wave mixing (SD-FWM) processes, which are pumped by laser or amplified spontaneous emission (ASE), respectively. For laser pumping case, SD-FWM process serves as a quantum linear amplifier (a CNP) out (inside) of the resonant absorption region. While for ASE case, only the CNP occurs and the output linewidth is much narrower than that of the MWM signal due to the second selected effect of its electromagnetically induced transparency window. In addition, the phase-sensitive amplifying process seeded by two MWM processes is discussed for the first time. Theoretical fittings agree well with the experiment. The investigations have important potential applications in quantum communication.

  15. Nonlinear dynamics and plasma transport

    International Nuclear Information System (INIS)

    Liu, C.S.; Sagdeev, R.; Antonsen, T.; Drake, J.; Hassma, A.; Guzdar, P.N.

    1995-12-01

    This progress report reports work done on a program in nonlinear dynamical aspects of plasma turbulence and transport funded by DOE from 1992-1995. The purpose of this program has been to promote the utilization of recent pathbreaking developments in nonlinear science in plasma turbulence and transport and to fully utilize the scientific expertise of Russian fusion and plasma community in collaboration with our group to address outstanding fusion theory problems. In the work reported in our progress report, we have studied simple models which are motivated by observation on actual fusion devices. The models focus on the important physical processes without incorporating the complexity of the geometry of real devices. We have also studied linear stability problems which incorporated important physics issues related to geometry involving closed field lines and open field lines. This allows for a deeper analysis and understanding of the system both analytically and numerically. The strong collaboration between the Russian visitors and the US participants has led to a fruitful and strong research program that taps the complementary analytic and numerical capabilities of the two groups. Over the years several distinguished Russian visitors have interacted with various members of the group and set up collaborative work which forms a significant part of proposed research. Dr. Galeev, Director of the Space Research Institute of Moscow and Dr. Novakovskii from the Kurchatov Institute are two such ongoing collaborations. 21 refs

  16. Study of a multivariable nonlinear process by the phase space method

    International Nuclear Information System (INIS)

    Tomei, Alain

    1969-02-01

    This paper concerns the study of the properties of a multivariate nonlinear process using the phase space method. Based on the example of the Rapsodie reactor, a fast sodium reactor, the authors have established the simplified differential equations with the analogical study of partial differential equations (in order to replace them with ordinary differential equations), a mathematical study of dynamic properties and stability of the simplified model by the phase space method, and the verification of the model properties using an analog calculator. The reactor, with all its thermal circuits, has been considered as a nonlinear system with two inputs and one output (reactor power). The great stability of a fast reactor such as Rapsodie, in the normal operating conditions, has been verified. The same method could be applied to any other type of reactor

  17. Recent Progress on Data-Based Optimization for Mineral Processing Plants

    Directory of Open Access Journals (Sweden)

    Jinliang Ding

    2017-04-01

    Full Text Available In the globalized market environment, increasingly significant economic and environmental factors within complex industrial plants impose importance on the optimization of global production indices; such optimization includes improvements in production efficiency, product quality, and yield, along with reductions of energy and resource usage. This paper briefly overviews recent progress in data-driven hybrid intelligence optimization methods and technologies in improving the performance of global production indices in mineral processing. First, we provide the problem description. Next, we summarize recent progress in data-based optimization for mineral processing plants. This optimization consists of four layers: optimization of the target values for monthly global production indices, optimization of the target values for daily global production indices, optimization of the target values for operational indices, and automation systems for unit processes. We briefly overview recent progress in each of the different layers. Finally, we point out opportunities for future works in data-based optimization for mineral processing plants.

  18. Progressing batch hydrolysis process

    Science.gov (United States)

    Wright, J.D.

    1985-01-10

    A progressive batch hydrolysis process is disclosed for producing sugar from a lignocellulosic feedstock. It comprises passing a stream of dilute acid serially through a plurality of percolation hydrolysis reactors charged with feed stock, at a flow rate, temperature and pressure sufficient to substantially convert all the cellulose component of the feed stock to glucose. The cooled dilute acid stream containing glucose, after exiting the last percolation hydrolysis reactor, serially fed through a plurality of pre-hydrolysis percolation reactors, charged with said feedstock, at a flow rate, temperature and pressure sufficient to substantially convert all the hemicellulose component of said feedstock to glucose. The dilute acid stream containing glucose is cooled after it exits the last prehydrolysis reactor.

  19. Data-driven design of fault diagnosis systems nonlinear multimode processes

    CERN Document Server

    Haghani Abandan Sari, Adel

    2014-01-01

    In many industrial applications early detection and diagnosis of abnormal behavior of the plant is of great importance. During the last decades, the complexity of process plants has been drastically increased, which imposes great challenges in development of model-based monitoring approaches and it sometimes becomes unrealistic for modern large-scale processes. The main objective of Adel Haghani Abandan Sari is to study efficient fault diagnosis techniques for complex industrial systems using process historical data and considering the nonlinear behavior of the process. To this end, different methods are presented to solve the fault diagnosis problem based on the overall behavior of the process and its dynamics. Moreover, a novel technique is proposed for fault isolation and determination of the root-cause of the faults in the system, based on the fault impacts on the process measurements. Contents Process monitoring Fault diagnosis and fault-tolerant control Data-driven approaches and decision making Target...

  20. Dynamical processes and epidemic threshold on nonlinear coupled multiplex networks

    Science.gov (United States)

    Gao, Chao; Tang, Shaoting; Li, Weihua; Yang, Yaqian; Zheng, Zhiming

    2018-04-01

    Recently, the interplay between epidemic spreading and awareness diffusion has aroused the interest of many researchers, who have studied models mainly based on linear coupling relations between information and epidemic layers. However, in real-world networks the relation between two layers may be closely correlated with the property of individual nodes and exhibits nonlinear dynamical features. Here we propose a nonlinear coupled information-epidemic model (I-E model) and present a comprehensive analysis in a more generalized scenario where the upload rate differs from node to node, deletion rate varies between susceptible and infected states, and infection rate changes between unaware and aware states. In particular, we develop a theoretical framework of the intra- and inter-layer dynamical processes with a microscopic Markov chain approach (MMCA), and derive an analytic epidemic threshold. Our results suggest that the change of upload and deletion rate has little effect on the diffusion dynamics in the epidemic layer.

  1. Nonlinear digital signal processing in mental health: characterization of major depression using instantaneous entropy measures of heartbeat dynamics.

    Science.gov (United States)

    Valenza, Gaetano; Garcia, Ronald G; Citi, Luca; Scilingo, Enzo P; Tomaz, Carlos A; Barbieri, Riccardo

    2015-01-01

    Nonlinear digital signal processing methods that address system complexity have provided useful computational tools for helping in the diagnosis and treatment of a wide range of pathologies. More specifically, nonlinear measures have been successful in characterizing patients with mental disorders such as Major Depression (MD). In this study, we propose the use of instantaneous measures of entropy, namely the inhomogeneous point-process approximate entropy (ipApEn) and the inhomogeneous point-process sample entropy (ipSampEn), to describe a novel characterization of MD patients undergoing affective elicitation. Because these measures are built within a nonlinear point-process model, they allow for the assessment of complexity in cardiovascular dynamics at each moment in time. Heartbeat dynamics were characterized from 48 healthy controls and 48 patients with MD while emotionally elicited through either neutral or arousing audiovisual stimuli. Experimental results coming from the arousing tasks show that ipApEn measures are able to instantaneously track heartbeat complexity as well as discern between healthy subjects and MD patients. Conversely, standard heart rate variability (HRV) analysis performed in both time and frequency domains did not show any statistical significance. We conclude that measures of entropy based on nonlinear point-process models might contribute to devising useful computational tools for care in mental health.

  2. Mammalian Cell Culture Process for Monoclonal Antibody Production: Nonlinear Modelling and Parameter Estimation

    Directory of Open Access Journals (Sweden)

    Dan Selişteanu

    2015-01-01

    Full Text Available Monoclonal antibodies (mAbs are at present one of the fastest growing products of pharmaceutical industry, with widespread applications in biochemistry, biology, and medicine. The operation of mAbs production processes is predominantly based on empirical knowledge, the improvements being achieved by using trial-and-error experiments and precedent practices. The nonlinearity of these processes and the absence of suitable instrumentation require an enhanced modelling effort and modern kinetic parameter estimation strategies. The present work is dedicated to nonlinear dynamic modelling and parameter estimation for a mammalian cell culture process used for mAb production. By using a dynamical model of such kind of processes, an optimization-based technique for estimation of kinetic parameters in the model of mammalian cell culture process is developed. The estimation is achieved as a result of minimizing an error function by a particle swarm optimization (PSO algorithm. The proposed estimation approach is analyzed in this work by using a particular model of mammalian cell culture, as a case study, but is generic for this class of bioprocesses. The presented case study shows that the proposed parameter estimation technique provides a more accurate simulation of the experimentally observed process behaviour than reported in previous studies.

  3. When high working memory capacity is and is not beneficial for predicting nonlinear processes.

    Science.gov (United States)

    Fischer, Helen; Holt, Daniel V

    2017-04-01

    Predicting the development of dynamic processes is vital in many areas of life. Previous findings are inconclusive as to whether higher working memory capacity (WMC) is always associated with using more accurate prediction strategies, or whether higher WMC can also be associated with using overly complex strategies that do not improve accuracy. In this study, participants predicted a range of systematically varied nonlinear processes based on exponential functions where prediction accuracy could or could not be enhanced using well-calibrated rules. Results indicate that higher WMC participants seem to rely more on well-calibrated strategies, leading to more accurate predictions for processes with highly nonlinear trajectories in the prediction region. Predictions of lower WMC participants, in contrast, point toward an increased use of simple exemplar-based prediction strategies, which perform just as well as more complex strategies when the prediction region is approximately linear. These results imply that with respect to predicting dynamic processes, working memory capacity limits are not generally a strength or a weakness, but that this depends on the process to be predicted.

  4. Chaos, patterns, coherent structures, and turbulence: Reflections on nonlinear science.

    Science.gov (United States)

    Ecke, Robert E

    2015-09-01

    The paradigms of nonlinear science were succinctly articulated over 25 years ago as deterministic chaos, pattern formation, coherent structures, and adaptation/evolution/learning. For chaos, the main unifying concept was universal routes to chaos in general nonlinear dynamical systems, built upon a framework of bifurcation theory. Pattern formation focused on spatially extended nonlinear systems, taking advantage of symmetry properties to develop highly quantitative amplitude equations of the Ginzburg-Landau type to describe early nonlinear phenomena in the vicinity of critical points. Solitons, mathematically precise localized nonlinear wave states, were generalized to a larger and less precise class of coherent structures such as, for example, concentrated regions of vorticity from laboratory wake flows to the Jovian Great Red Spot. The combination of these three ideas was hoped to provide the tools and concepts for the understanding and characterization of the strongly nonlinear problem of fluid turbulence. Although this early promise has been largely unfulfilled, steady progress has been made using the approaches of nonlinear science. I provide a series of examples of bifurcations and chaos, of one-dimensional and two-dimensional pattern formation, and of turbulence to illustrate both the progress and limitations of the nonlinear science approach. As experimental and computational methods continue to improve, the promise of nonlinear science to elucidate fluid turbulence continues to advance in a steady manner, indicative of the grand challenge nature of strongly nonlinear multi-scale dynamical systems.

  5. Nonlinear analysis and control of a continuous fermentation process

    DEFF Research Database (Denmark)

    Szederkényi, G.; Kristensen, Niels Rode; Hangos, K.M

    2002-01-01

    Different types of nonlinear controllers are designed and compared for a simple continuous bioreactor operating near optimal productivity. This operating point is located close to a fold bifurcation point. Nonlinear analysis of stability, controllability and zero dynamics is used to investigate o...... are recommended for the simple fermenter. Passivity based controllers have been found to be globally stable, not very sensitive to the uncertainties in the reaction rate and controller parameter but they require full nonlinear state feedback....

  6. A Model Predictive Algorithm for Active Control of Nonlinear Noise Processes

    Directory of Open Access Journals (Sweden)

    Qi-Zhi Zhang

    2005-01-01

    Full Text Available In this paper, an improved nonlinear Active Noise Control (ANC system is achieved by introducing an appropriate secondary source. For ANC system to be successfully implemented, the nonlinearity of the primary path and time delay of the secondary path must be overcome. A nonlinear Model Predictive Control (MPC strategy is introduced to deal with the time delay in the secondary path and the nonlinearity in the primary path of the ANC system. An overall online modeling technique is utilized for online secondary path and primary path estimation. The secondary path is estimated using an adaptive FIR filter, and the primary path is estimated using a Neural Network (NN. The two models are connected in parallel with the two paths. In this system, the mutual disturbances between the operation of the nonlinear ANC controller and modeling of the secondary can be greatly reduced. The coefficients of the adaptive FIR filter and weight vector of NN are adjusted online. Computer simulations are carried out to compare the proposed nonlinear MPC method with the nonlinear Filter-x Least Mean Square (FXLMS algorithm. The results showed that the convergence speed of the proposed nonlinear MPC algorithm is faster than that of nonlinear FXLMS algorithm. For testing the robust performance of the proposed nonlinear ANC system, the sudden changes in the secondary path and primary path of the ANC system are considered. Results indicated that the proposed nonlinear ANC system can rapidly track the sudden changes in the acoustic paths of the nonlinear ANC system, and ensure the adaptive algorithm stable when the nonlinear ANC system is time variable.

  7. Experimental photonic generation of chirped pulses using nonlinear dispersion-based incoherent processing.

    Science.gov (United States)

    Rius, Manuel; Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José

    2015-05-18

    We experimentally demonstrate, for the first time, a chirped microwave pulses generator based on the processing of an incoherent optical signal by means of a nonlinear dispersive element. Different capabilities have been demonstrated such as the control of the time-bandwidth product and the frequency tuning increasing the flexibility of the generated waveform compared to coherent techniques. Moreover, the use of differential detection improves considerably the limitation over the signal-to-noise ratio related to incoherent processing.

  8. A novel joint-processing adaptive nonlinear equalizer using a modular recurrent neural network for chaotic communication systems.

    Science.gov (United States)

    Zhao, Haiquan; Zeng, Xiangping; Zhang, Jiashu; Liu, Yangguang; Wang, Xiaomin; Li, Tianrui

    2011-01-01

    To eliminate nonlinear channel distortion in chaotic communication systems, a novel joint-processing adaptive nonlinear equalizer based on a pipelined recurrent neural network (JPRNN) is proposed, using a modified real-time recurrent learning (RTRL) algorithm. Furthermore, an adaptive amplitude RTRL algorithm is adopted to overcome the deteriorating effect introduced by the nesting process. Computer simulations illustrate that the proposed equalizer outperforms the pipelined recurrent neural network (PRNN) and recurrent neural network (RNN) equalizers. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Recent progress of nonlinear simulation on the toroidal Alfven eigenmode

    International Nuclear Information System (INIS)

    Todo, Yasushi; Sato, Tetsuya

    1998-01-01

    Linear and nonlinear particle-magnetohydrodynamic (MHD) simulation codes are developed to study interactions between energetic ions and MHD modes. Energetic alpha particles with a slowing-down distribution are considered and the behavior of n=2 toroidal Alfven eigenmodes (TAE modes) is investigated with the parameters pertinent to the present large tokamaks. The linear simulation reveals the resonance condition between alpha particles and TAE mode. In the nonlinear simulation two n=2 TAE modes are destabilized and alpha particle losses induced by these TAE modes take place. Counter-passing particles are lost when they cross the passing-trapped boundary as a result of the interaction with the TAE modes. They are the major part of lost particles, but trapped particles are also lost appreciably. (author)

  10. Nonlinear silicon photonics

    Science.gov (United States)

    Tsia, Kevin K.; Jalali, Bahram

    2010-05-01

    An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.

  11. Bubble nonlinear dynamics and stimulated scattering process

    Science.gov (United States)

    Jie, Shi; De-Sen, Yang; Sheng-Guo, Shi; Bo, Hu; Hao-Yang, Zhang; Shi-Yong, Hu

    2016-02-01

    A complete understanding of the bubble dynamics is deemed necessary in order to achieve their full potential applications in industry and medicine. For this purpose it is first needed to expand our knowledge of a single bubble behavior under different possible conditions including the frequency and pressure variations of the sound field. In addition, stimulated scattering of sound on a bubble is a special effect in sound field, and its characteristics are associated with bubble oscillation mode. A bubble in liquid can be considered as a representative example of nonlinear dynamical system theory with its resonance, and its dynamics characteristics can be described by the Keller-Miksis equation. The nonlinear dynamics of an acoustically excited gas bubble in water is investigated by using theoretical and numerical analysis methods. Our results show its strongly nonlinear behavior with respect to the pressure amplitude and excitation frequency as the control parameters, and give an intuitive insight into stimulated sound scattering on a bubble. It is seen that the stimulated sound scattering is different from common dynamical behaviors, such as bifurcation and chaos, which is the result of the nonlinear resonance of a bubble under the excitation of a high amplitude acoustic sound wave essentially. The numerical analysis results show that the threshold of stimulated sound scattering is smaller than those of bifurcation and chaos in the common condition. Project supported by the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT1228) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 11204050 and 11204049).

  12. Structural optimization for nonlinear dynamic response

    DEFF Research Database (Denmark)

    Dou, Suguang; Strachan, B. Scott; Shaw, Steven W.

    2015-01-01

    by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance......Much is known about the nonlinear resonant response of mechanical systems, but methods for the systematic design of structures that optimize aspects of these responses have received little attention. Progress in this area is particularly important in the area of micro-systems, where nonlinear...... resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described...

  13. Generalized Nonlinear Yule Models

    OpenAIRE

    Lansky, Petr; Polito, Federico; Sacerdote, Laura

    2016-01-01

    With the aim of considering models with persistent memory we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macrovolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth...

  14. Nonlinearities in Drug Release Process from Polymeric Microparticles: Long-Time-Scale Behaviour

    Directory of Open Access Journals (Sweden)

    Elena Simona Bacaita

    2012-01-01

    Full Text Available A theoretical model of the drug release process from polymeric microparticles (a particular type of polymer matrix, through dispersive fractal approximation of motion, is built. As a result, the drug release process takes place through cnoidal oscillations modes of a normalized concentration field. This indicates that, in the case of long-time-scale evolutions, the drug particles assemble in a lattice of nonlinear oscillators occur macroscopically, through variations of drug concentration. The model is validated by experimental results.

  15. NONLINEAR REFLECTION PROCESS OF LINEARLY POLARIZED, BROADBAND ALFVÉN WAVES IN THE FAST SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Shoda, M.; Yokoyama, T., E-mail: shoda@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2016-04-01

    Using one-dimensional numerical simulations, we study the elementary process of Alfvén wave reflection in a uniform medium, including nonlinear effects. In the linear regime, Alfvén wave reflection is triggered only by the inhomogeneity of the medium, whereas in the nonlinear regime, it can occur via nonlinear wave–wave interactions. Such nonlinear reflection (backscattering) is typified by decay instability. In most studies of decay instabilities, the initial condition has been a circularly polarized Alfvén wave. In this study we consider a linearly polarized Alfvén wave, which drives density fluctuations by its magnetic pressure force. For generality, we also assume a broadband wave with a red-noise spectrum. In the data analysis, we decompose the fluctuations into characteristic variables using local eigenvectors, thus revealing the behaviors of the individual modes. Different from the circular-polarization case, we find that the wave steepening produces a new energy channel from the parent Alfvén wave to the backscattered one. Such nonlinear reflection explains the observed increasing energy ratio of the sunward to the anti-sunward Alfvénic fluctuations in the solar wind with distance against the dynamical alignment effect.

  16. Parametric Phase-sensitive and Phase-insensitive All-optical Signal Processing on Multiple Nonlinear Platforms - Invited talk

    DEFF Research Database (Denmark)

    Peucheret, Christophe; Da Ros, Francesco; Vukovic, Dragana

    Parametric processes in materials presenting a second- or third-order nonlinearity have been widely used to demonstrate a wide range of all-optical signal processing functionalities, including amplication, wavelength conversion, regeneration, sampling, switching, modulation format conver- sion, o...

  17. Real-time nonlinear feedback control of pattern formation in (bio)chemical reaction-diffusion processes: a model study.

    Science.gov (United States)

    Brandt-Pollmann, U; Lebiedz, D; Diehl, M; Sager, S; Schlöder, J

    2005-09-01

    Theoretical and experimental studies related to manipulation of pattern formation in self-organizing reaction-diffusion processes by appropriate control stimuli become increasingly important both in chemical engineering and cellular biochemistry. In a model study, we demonstrate here exemplarily the application of an efficient nonlinear model predictive control (NMPC) algorithm to real-time optimal feedback control of pattern formation in a bacterial chemotaxis system modeled by nonlinear partial differential equations. The corresponding drift-diffusion model type is representative for many (bio)chemical systems involving nonlinear reaction dynamics and nonlinear diffusion. We show how the computed optimal feedback control strategy exploits the system inherent physical property of wave propagation to achieve desired control aims. We discuss various applications of our approach to optimal control of spatiotemporal dynamics.

  18. Neurobiologically Inspired Approaches to Nonlinear Process Control and Modeling

    Science.gov (United States)

    1999-12-31

    incorporates second messenger reaction kinetics and calcium dynamics to represent the nonlinear dynamics and the crucial role of neuromodulation in local...reflex). The dynamic neuromodulation as a mechanism for the nonlinear attenuation is the novel result of this study. Ear- lier simulations have shown

  19. Nonlinear resonant ultrasound spectroscopy (NRUS) applied to damage assessment in bone

    Science.gov (United States)

    Muller, Marie; Sutin, Alexander; Guyer, Robert; Talmant, Maryline; Laugier, Pascal; Johnson, Paul A.

    2005-12-01

    Nonlinear resonant ultrasound spectroscopy (NRUS) is a resonance-based technique exploiting the significant nonlinear behavior of damaged materials. In NRUS, the resonant frequency(ies) of an object is studied as a function of the excitation level. As the excitation level increases, the elastic nonlinearity is manifest by a shift in the resonance frequency. This study shows the feasibility of this technique for application to damage assessment in bone. Two samples of bovine cortical bone were subjected to progressive damage induced by application of mechanical cycling. Before cycling commenced, and at each step in the cycling process, NRUS was applied for damage assessment. For independent assessment of damage, high-energy x-ray computed tomography imaging was performed but was only useful in identifying the prominent cracks. As the integral quantity of damage increased, NRUS revealed a corresponding increase in the nonlinear response. The measured change in nonlinear response is much more sensitive than the change in linear modulus. The results suggest that NRUS could be a potential tool for micro-damage assessment in bone. Further work must be carried out for a better understanding of the physical nature of damaged bone and for the ultimate goal of the challenging in vivo implementation of the technique.

  20. Nonlinear water waves: introduction and overview

    Science.gov (United States)

    Constantin, A.

    2017-12-01

    For more than two centuries progress in the study of water waves proved to be interdependent with innovative and deep developments in theoretical and experimental directions of investigation. In recent years, considerable progress has been achieved towards the understanding of waves of large amplitude. Within this setting one cannot rely on linear theory as nonlinearity becomes an essential feature. Various analytic methods have been developed and adapted to come to terms with the challenges encountered in settings where approximations (such as those provided by linear or weakly nonlinear theory) are ineffective. Without relying on simpler models, progress becomes contingent upon the discovery of structural properties, the exploitation of which requires a combination of creative ideas and state-of-the-art technical tools. The successful quest for structure often reveals unexpected patterns and confers aesthetic value on some of these studies. The topics covered in this issue are both multi-disciplinary and interdisciplinary: there is a strong interplay between mathematical analysis, numerical computation and experimental/field data, interacting with each other via mutual stimulation and feedback. This theme issue reflects some of the new important developments that were discussed during the programme `Nonlinear water waves' that took place at the Isaac Newton Institute for Mathematical Sciences (Cambridge, UK) from 31st July to 25th August 2017. A cross-section of the experts in the study of water waves who participated in the programme authored the collected papers. These papers illustrate the diversity, intensity and interconnectivity of the current research activity in this area. They offer new insight, present emerging theoretical methodologies and computational approaches, and describe sophisticated experimental results. This article is part of the theme issue 'Nonlinear water waves'.

  1. Corner-point criterion for assessing nonlinear image processing imagers

    Science.gov (United States)

    Landeau, Stéphane; Pigois, Laurent; Foing, Jean-Paul; Deshors, Gilles; Swiathy, Greggory

    2017-10-01

    Range performance modeling of optronics imagers attempts to characterize the ability to resolve details in the image. Today, digital image processing is systematically used in conjunction with the optoelectronic system to correct its defects or to exploit tiny detection signals to increase performance. In order to characterize these processing having adaptive and non-linear properties, it becomes necessary to stimulate the imagers with test patterns whose properties are similar to the actual scene image ones, in terms of dynamic range, contours, texture and singular points. This paper presents an approach based on a Corner-Point (CP) resolution criterion, derived from the Probability of Correct Resolution (PCR) of binary fractal patterns. The fundamental principle lies in the respectful perception of the CP direction of one pixel minority value among the majority value of a 2×2 pixels block. The evaluation procedure considers the actual image as its multi-resolution CP transformation, taking the role of Ground Truth (GT). After a spatial registration between the degraded image and the original one, the degradation is statistically measured by comparing the GT with the degraded image CP transformation, in terms of localized PCR at the region of interest. The paper defines this CP criterion and presents the developed evaluation techniques, such as the measurement of the number of CP resolved on the target, the transformation CP and its inverse transform that make it possible to reconstruct an image of the perceived CPs. Then, this criterion is compared with the standard Johnson criterion, in the case of a linear blur and noise degradation. The evaluation of an imaging system integrating an image display and a visual perception is considered, by proposing an analysis scheme combining two methods: a CP measurement for the highly non-linear part (imaging) with real signature test target and conventional methods for the more linear part (displaying). The application to

  2. The Havriliak-Negami susceptibility as a nonlinear and nonlocal process

    International Nuclear Information System (INIS)

    Miskinis, Paulius

    2009-01-01

    A theoretical substantiation of the Cole-Cole, Cole-Davidson and Havriliak-Negami types of susceptibilities is presented. These types of susceptibility are shown to be a manifestation of weak nonlocality and nonlinearity. The Debye susceptibility corresponds to linear and local relaxation, the Cole-Cole susceptibility being linear and nonlocal; the Cole-Davidson susceptibility is nonlinear and local and the Havriliak-Negami susceptibility corresponds to nonlinear and nonlocal relaxation.

  3. Non-linear characterisation of the physical model of an ancient masonry bridge

    International Nuclear Information System (INIS)

    Fragonara, L Zanotti; Ceravolo, R; Matta, E; Quattrone, A; De Stefano, A; Pecorelli, M

    2012-01-01

    This paper presents the non-linear investigations carried out on a scaled model of a two-span masonry arch bridge. The model has been built in order to study the effect of the central pile settlement due to riverbank erosion. Progressive damage was induced in several steps by applying increasing settlements at the central pier. For each settlement step, harmonic shaker tests were conducted under different excitation levels, this allowing for the non-linear identification of the progressively damaged system. The shaker tests have been performed at resonance with the modal frequency of the structure, which were determined from a previous linear identification. Estimated non-linearity parameters, which result from the systematic application of restoring force based identification algorithms, can corroborate models to be used in the reassessment of existing structures. The method used for non-linear identification allows monitoring the evolution of non-linear parameters or indicators which can be used in damage and safety assessment.

  4. Nonlinear beam dynamics of accelerators and storage rings. Progress report, June 1985-April 1986

    International Nuclear Information System (INIS)

    Helleman, R.H.G.

    1986-01-01

    Research has concentrated on the stability problems and resonances involved in the two-dimensional beam-beam effect. Of course, the results are applicable also to coupled nonlinear two-dimensional (x,y) accelerator lattices. From a nonlinear dynamics point of view this means that we investigated how to extend existing methods that worked satisfactorily for the one-dimensional beam-beam effect to the higher dimensional world of two-dimensional nonlinear lattices. This requires study of four coupled nonlinear lattice equations (for x, y, p/sub x/,p/sub y/), i.e., study of four-dimensional conservative nonlinear maps. Until our investigation this year, such maps had not yet been studied in nonlinear dynamics. One of the main results is the conclusion that the very successful ''residue'' method to determine stability (of whole regions of orbits) for the one-dimensional beam-beam effect cannot, in its present form, be used for the two- or three-dimensional case. The second main result is that we have been successful in demonstrating and unraveling the complete Period Doubling structure of the resonances in these four-dimensional maps (two-dimensional beam-beam effect), including the most minute resonances. This is essential for an understanding of such maps. In addition, it is the ''self-similarity'' of these resonances which inspires, and guides, most of our efforts in redesigning the residue criterion mentioned above

  5. Dynamics of a photorefractive response and competition of nonlinear processes in self-pumping double phase-conjugate mirrors

    International Nuclear Information System (INIS)

    Mogaddam, Mehran Wahdani; Shuvalov, Vladimir V

    2005-01-01

    The dynamics of formation of a nonlinear response of a double phase-conjugate (PC) BaTiO 3 mirror is calculated. It is shown that because of competition between processes of different types (related to the presence of several PC channels, the local and nonlocal components of the photorefractive nonlinearity), the transient and dynamic lasing regimes for this mirror can be substantially different. It is found that the development of lasing begins with the successive formation and phasing of dynamic holograms of two different types (two PC channels). It is shown that even under optimal conditions, the lasing regime is not stationary due to competition between processes of different types, and the parameters of output fields fluctuate in time in a nontrivial way (due to the presence of the in-phase and out-of-phase components). Several scenarios of transition to the dynamic chaos are described. (nonlinear optical phenomena)

  6. Linear and Nonlinear Impairment Compensation in Coherent Optical Transmission with Digital Signal Processing

    DEFF Research Database (Denmark)

    Porto da Silva, Edson

    Digital signal processing (DSP) has become one of the main enabling technologies for the physical layer of coherent optical communication networks. The DSP subsystems are used to implement several functionalities in the digital domain, from synchronization to channel equalization. Flexibility...... nonlinearity compensation, (II) spectral shaping, and (III) adaptive equalization. For (I), original contributions are presented to the study of the nonlinearity compensation (NLC) with digital backpropagation (DBP). Numerical and experimental performance investigations are shown for different application...... scenarios. Concerning (II), it is demonstrated how optical and electrical (digital) pulse shaping can be allied to improve the spectral confinement of a particular class of optical time-division multiplexing (OTDM) signals that can be used as a building block for fast signaling single-carrier transceivers...

  7. Advances in nonlinear partial differential equations and stochastics

    CERN Document Server

    Kawashima, S

    1998-01-01

    In the past two decades, there has been great progress in the theory of nonlinear partial differential equations. This book describes the progress, focusing on interesting topics in gas dynamics, fluid dynamics, elastodynamics etc. It contains ten articles, each of which discusses a very recent result obtained by the author. Some of these articles review related results.

  8. Embedded algorithms within an FPGA-based system to process nonlinear time series data

    Science.gov (United States)

    Jones, Jonathan D.; Pei, Jin-Song; Tull, Monte P.

    2008-03-01

    This paper presents some preliminary results of an ongoing project. A pattern classification algorithm is being developed and embedded into a Field-Programmable Gate Array (FPGA) and microprocessor-based data processing core in this project. The goal is to enable and optimize the functionality of onboard data processing of nonlinear, nonstationary data for smart wireless sensing in structural health monitoring. Compared with traditional microprocessor-based systems, fast growing FPGA technology offers a more powerful, efficient, and flexible hardware platform including on-site (field-programmable) reconfiguration capability of hardware. An existing nonlinear identification algorithm is used as the baseline in this study. The implementation within a hardware-based system is presented in this paper, detailing the design requirements, validation, tradeoffs, optimization, and challenges in embedding this algorithm. An off-the-shelf high-level abstraction tool along with the Matlab/Simulink environment is utilized to program the FPGA, rather than coding the hardware description language (HDL) manually. The implementation is validated by comparing the simulation results with those from Matlab. In particular, the Hilbert Transform is embedded into the FPGA hardware and applied to the baseline algorithm as the centerpiece in processing nonlinear time histories and extracting instantaneous features of nonstationary dynamic data. The selection of proper numerical methods for the hardware execution of the selected identification algorithm and consideration of the fixed-point representation are elaborated. Other challenges include the issues of the timing in the hardware execution cycle of the design, resource consumption, approximation accuracy, and user flexibility of input data types limited by the simplicity of this preliminary design. Future work includes making an FPGA and microprocessor operate together to embed a further developed algorithm that yields better

  9. Propagation of flexural waves in inhomogeneous plates exhibiting hysteretic nonlinearity: Nonlinear acoustic black holes.

    Science.gov (United States)

    Gusev, Vitalyi E; Ni, Chenyin; Lomonosov, Alexey; Shen, Zhonghua

    2015-08-01

    Theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous material on flexural wave in the plates of continuously varying thickness is developed. For the wedges with thickness increasing as a power law of distance from its edge strong modifications of the wave dynamics with propagation distance are predicted. It is found that nonlinear absorption progressively disappearing with diminishing wave amplitude leads to complete attenuation of acoustic waves in most of the wedges exhibiting black hole phenomenon. It is also demonstrated that black holes exist beyond the geometrical acoustic approximation. Applications include nondestructive evaluation of micro-inhomogeneous materials and vibrations damping. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Hierarchical optimal control of large-scale nonlinear chemical processes.

    Science.gov (United States)

    Ramezani, Mohammad Hossein; Sadati, Nasser

    2009-01-01

    In this paper, a new approach is presented for optimal control of large-scale chemical processes. In this approach, the chemical process is decomposed into smaller sub-systems at the first level, and a coordinator at the second level, for which a two-level hierarchical control strategy is designed. For this purpose, each sub-system in the first level can be solved separately, by using any conventional optimization algorithm. In the second level, the solutions obtained from the first level are coordinated using a new gradient-type strategy, which is updated by the error of the coordination vector. The proposed algorithm is used to solve the optimal control problem of a complex nonlinear chemical stirred tank reactor (CSTR), where its solution is also compared with the ones obtained using the centralized approach. The simulation results show the efficiency and the capability of the proposed hierarchical approach, in finding the optimal solution, over the centralized method.

  11. High serum creatinine nonlinearity: a renal vital sign?

    Science.gov (United States)

    Palant, Carlos E; Chawla, Lakhmir S; Faselis, Charles; Li, Ping; Pallone, Thomas L; Kimmel, Paul L; Amdur, Richard L

    2016-08-01

    Patients with chronic kidney disease (CKD) may have nonlinear serum creatinine concentration (SC) trajectories, especially as CKD progresses. Variability in SC is associated with renal failure and death. However, present methods for measuring SC variability are unsatisfactory because they blend information about SC slope and variance. We propose an improved method for defining and calculating a patient's SC slope and variance so that they are mathematically distinct, and we test these methods in a large sample of US veterans, examining the correlation of SC slope and SC nonlinearity (SCNL) and the association of SCNL with time to stage 4 CKD (CKD4) and death. We found a strong correlation between SCNL and rate of CKD progression, time to CKD4, and time to death, even in patients with normal renal function. We therefore argue that SCNL may be a measure of renal autoregulatory dysfunction that provides an early warning sign for CKD progression. Copyright © 2016 the American Physiological Society.

  12. A thermodynamic approach to nonlinear ultrasonics for material state awareness and prognosis

    Science.gov (United States)

    Chillara, Vamshi Krishna

    2017-11-01

    We develop a thermodynamic framework for modeling nonlinear ultrasonic damage sensing and prognosis in materials undergoing progressive damage. The framework is based on the internal variable approach and relies on the construction of a pseudo-elastic strain energy function that captures the energetics associated with the damage progression. The pseudo-elastic strain energy function is composed of two energy functions—one that describes how a material stores energy in an elastic fashion and the other describes how material dissipates energy or stores it in an inelastic fashion. Experimental motivation for the choice of the above two functionals is discussed and some specific choices pertaining to damage progression during fatigue and creep are presented. The thermodynamic framework is employed to model the nonlinear response of material undergoing stress relaxation and creep-like degradation. For each of the above cases, evolution of the nonlinearity parameter with damage as well as with macroscopic measurables like accumulated plastic strain is obtained.

  13. Multi-order nonlinear diffraction in second harmonic generation

    DEFF Research Database (Denmark)

    Saltiel, S. M.; Neshev, D.; Krolikowski, Wieslaw

    We analyze the emission patterns in the process of second harmonic (SH) generation in χ(2) nonlinear gratings and identify for the first time, to the best of our knowledge, the evidence of Raman-Nath type nonlinear diffraction in frequency doubling processes.......We analyze the emission patterns in the process of second harmonic (SH) generation in χ(2) nonlinear gratings and identify for the first time, to the best of our knowledge, the evidence of Raman-Nath type nonlinear diffraction in frequency doubling processes....

  14. Nonlinear photonic metasurfaces

    Science.gov (United States)

    Li, Guixin; Zhang, Shuang; Zentgraf, Thomas

    2017-03-01

    Compared with conventional optical elements, 2D photonic metasurfaces, consisting of arrays of antennas with subwavelength thickness (the 'meta-atoms'), enable the manipulation of light-matter interactions on more compact platforms. The use of metasurfaces with spatially varying arrangements of meta-atoms that have subwavelength lateral resolution allows control of the polarization, phase and amplitude of light. Many exotic phenomena have been successfully demonstrated in linear optics; however, to meet the growing demand for the integration of more functionalities into a single optoelectronic circuit, the tailorable nonlinear optical properties of metasurfaces will also need to be exploited. In this Review, we discuss the design of nonlinear photonic metasurfaces — in particular, the criteria for choosing the materials and symmetries of the meta-atoms — for the realization of nonlinear optical chirality, nonlinear geometric Berry phase and nonlinear wavefront engineering. Finally, we survey the application of nonlinear photonic metasurfaces in optical switching and modulation, and we conclude with an outlook on their use for terahertz nonlinear optics and quantum information processing.

  15. Real-time progressive hyperspectral image processing endmember finding and anomaly detection

    CERN Document Server

    Chang, Chein-I

    2016-01-01

    The book covers the most crucial parts of real-time hyperspectral image processing: causality and real-time capability. Recently, two new concepts of real time hyperspectral image processing, Progressive Hyperspectral Imaging (PHSI) and Recursive Hyperspectral Imaging (RHSI). Both of these can be used to design algorithms and also form an integral part of real time hyperpsectral image processing. This book focuses on progressive nature in algorithms on their real-time and causal processing implementation in two major applications, endmember finding and anomaly detection, both of which are fundamental tasks in hyperspectral imaging but generally not encountered in multispectral imaging. This book is written to particularly address PHSI in real time processing, while a book, Recursive Hyperspectral Sample and Band Processing: Algorithm Architecture and Implementation (Springer 2016) can be considered as its companion book. Includes preliminary background which is essential to those who work in hyperspectral ima...

  16. Scene matching based on non-linear pre-processing on reference image and sensed image

    Institute of Scientific and Technical Information of China (English)

    Zhong Sheng; Zhang Tianxu; Sang Nong

    2005-01-01

    To solve the heterogeneous image scene matching problem, a non-linear pre-processing method for the original images before intensity-based correlation is proposed. The result shows that the proper matching probability is raised greatly. Especially for the low S/N image pairs, the effect is more remarkable.

  17. Brain signal variability as a window into the bidirectionality between music and language processing: moving from a linear to a nonlinear model.

    Science.gov (United States)

    Hutka, Stefanie; Bidelman, Gavin M; Moreno, Sylvain

    2013-12-30

    There is convincing empirical evidence for bidirectional transfer between music and language, such that experience in either domain can improve mental processes required by the other. This music-language relationship has been studied using linear models (e.g., comparing mean neural activity) that conceptualize brain activity as a static entity. The linear approach limits how we can understand the brain's processing of music and language because the brain is a nonlinear system. Furthermore, there is evidence that the networks supporting music and language processing interact in a nonlinear manner. We therefore posit that the neural processing and transfer between the domains of language and music are best viewed through the lens of a nonlinear framework. Nonlinear analysis of neurophysiological activity may yield new insight into the commonalities, differences, and bidirectionality between these two cognitive domains not measurable in the local output of a cortical patch. We thus propose a novel application of brain signal variability (BSV) analysis, based on mutual information and signal entropy, to better understand the bidirectionality of music-to-language transfer in the context of a nonlinear framework. This approach will extend current methods by offering a nuanced, network-level understanding of the brain complexity involved in music-language transfer.

  18. Brain signal variability as a window into the bidirectionality between music and language processing: Moving from a linear to a nonlinear model

    Directory of Open Access Journals (Sweden)

    Stefanie Andrea Hutka

    2013-12-01

    Full Text Available There is convincing empirical evidence for bidirectional transfer between music and language, such that experience in either domain can improve mental processes required by the other. This music-language relationship has been studied using linear models (e.g., comparing mean neural activity that conceptualize brain activity as a static entity. The linear approach limits how we can understand the brain’s processing of music and language because the brain is a nonlinear system. Furthermore, there is evidence that the networks supporting music and language processing interact in a nonlinear manner. We therefore posit that the neural processing and transfer between the domains of language and music are best viewed through the lens of a nonlinear framework. Nonlinear analysis of neurophysiological activity may yield new insight into the commonalities, differences, and bidirectionality between these two cognitive domains not measurable in the local output of a cortical patch. We thus propose a novel application of brain signal variability (BSV analysis, based on mutual information and signal entropy, to better understand the bidirectionality of music-to-language transfer in the context of a nonlinear framework. This approach will extend current methods by offering a nuanced, network-level understanding of the brain complexity involved in music-language transfer.

  19. Nonlinear dynamics and plasma transport

    International Nuclear Information System (INIS)

    Antonsen, T.M. Jr.; Drake, J.F.; Finn, J.M.; Guzdar, P.N.; Hassam, A.B.; Sagdeev, R.Z.

    1992-01-01

    In this paper we summarize the progress made over the last year in three different areas of research: (a) shear flow generation and reduced transport in fluids and plasma, (b) nonlinear dynamics and visualization of 3D flows, and (c) application of wavelet analysis to the study of fractal dimensions in experimental and numerical data

  20. Dynamic nonlinear interaction of elastic plates on discrete supports

    International Nuclear Information System (INIS)

    Coutinho, A.L.G.A.; Landau, L.; Lima, E.C.P. de; Ebecken, N.F.F.

    1984-01-01

    A study on the dynamic nonlinear interaction of elastic plates using the finite element method is presented. The elastic plate is discretized by 4-node isoparametric Mindlin elements. The constitutive relation of the discrete supports can be any nonlinear curve given by pairs of force-displacement points. The nonlinear behaviour is represented by the overlay approach. This model also allows the simulation of a progressive decrease on the supports stiffnesses during load cycles. The dynamic nonlinear incremental movement equations are integrated by the Newmark implicit operator. Two alternatives for the incremental-iterative formulation are compared. The paper ends with a discussion of the advantages and limitations of the presented numerical models. (Author) [pt

  1. Nonlinear process in the mode transition in typical strut-based and cavity-strut based scramjet combustors

    Science.gov (United States)

    Yan, Li; Liao, Lei; Huang, Wei; Li, Lang-quan

    2018-04-01

    The analysis of nonlinear characteristics and control of mode transition process is the crucial issue to enhance the stability and reliability of the dual-mode scramjet engine. In the current study, the mode transition processes in both strut-based combustor and cavity-strut based combustor are numerically studied, and the influence of the cavity on the transition process is analyzed in detail. The simulations are conducted by means of the Reynolds averaged Navier-Stokes (RANS) equations coupled with the renormalization group (RNG) k-ε turbulence model and the single-step chemical reaction mechanism, and this numerical approach is proved to be valid by comparing the predicted results with the available experimental shadowgraphs in the open literature. During the mode transition process, an obvious nonlinear property is observed, namely the unevenly variations of pressure along the combustor. The hysteresis phenomenon is more obvious upstream of the flow field. For the cavity-strut configuration, the whole flow field is more inclined to the supersonic state during the transition process, and it is uneasy to convert to the ramjet mode. In the scram-to-ram transition process, the process would be more stable, and the hysteresis effect would be reduced in the ram-to-scram transition process.

  2. Nonlinear model of epidemic spreading in a complex social network.

    Science.gov (United States)

    Kosiński, Robert A; Grabowski, A

    2007-10-01

    The epidemic spreading in a human society is a complex process, which can be described on the basis of a nonlinear mathematical model. In such an approach the complex and hierarchical structure of social network (which has implications for the spreading of pathogens and can be treated as a complex network), can be taken into account. In our model each individual has one of the four permitted states: susceptible, infected, infective, unsusceptible or dead. This refers to the SEIR model used in epidemiology. The state of an individual changes in time, depending on the previous state and the interactions with other individuals. The description of the interpersonal contacts is based on the experimental observations of the social relations in the community. It includes spatial localization of the individuals and hierarchical structure of interpersonal interactions. Numerical simulations were performed for different types of epidemics, giving the progress of a spreading process and typical relationships (e.g. range of epidemic in time, the epidemic curve). The spreading process has a complex and spatially chaotic character. The time dependence of the number of infective individuals shows the nonlinear character of the spreading process. We investigate the influence of the preventive vaccinations on the spreading process. In particular, for a critical value of preventively vaccinated individuals the percolation threshold is observed and the epidemic is suppressed.

  3. The forced nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Kaup, D.J.; Hansen, P.J.

    1985-01-01

    The nonlinear Schroedinger equation describes the behaviour of a radio frequency wave in the ionosphere near the reflexion point where nonlinear processes are important. A simple model of this phenomenon leads to the forced nonlinear Schroedinger equation in terms of a nonlinear boundary value problem. A WKB analysis of the time evolution equations for the nonlinear Schroedinger equation in the inverse scattering transform formalism gives a crude order of magnitude estimation of the qualitative behaviour of the solutions. This estimation is compared with the numerical solutions. (D.Gy.)

  4. Modeling human auditory evoked brainstem responses based on nonlinear cochlear processing

    DEFF Research Database (Denmark)

    Harte, James; Rønne, Filip Munch; Dau, Torsten

    2010-01-01

    . To generate AEPs recorded at remote locations, a convolution was made on an empirically obtained elementary unit waveform with the instantaneous discharge rate function for the corresponding AN unit. AEPs to click-trains, as well as to tone pulses at various frequencies, were both modelled and recorded...... at different stimulation levels and repetition rates. The observed nonlinearities in the recorded potential patterns, with respect to ABR wave V latencies and amplitudes, could be largely accounted for by level-dependent BM processing as well as effects of short-term neural adaptation. The present study...

  5. Coherent control of photoabsorption processes and calculation of nonlinear optical processes. Final technical report

    International Nuclear Information System (INIS)

    Lambropoulos, P.

    1998-01-01

    The work on the grant for the entire period of its duration concentrated on two different but related areas, namely coherent control of photoabsorption processes and the calculation of non linear optical processes with short wavelength radiation. On the first topic, the work dealt with the problem of controlling the population transfer from one to another bound state of a system in a route that passes through a continuum. This question is most important in the context of transferring populations between vibrational states of a molecule through a sequence of two pulses taking the system via the dissociation continuum. On the second topic, their work was motivated by the availability of XUV and soft X-ray coherent radiation sources obtained through high order harmonic generation. In addition, a few other techniques based on schemes of photo-pumped X-ray lasers promise to provide in the near-future similarly coherent sources. It is thus important to have an assessment of the possibility of extending non-linear optical processes to this range of wavelengths. This means assessing the relevant magnitude of the susceptibilities for third harmonic generation, stimulated Raman scattering, two-photon absorption, etc

  6. Nonlinear structural damage detection using support vector machines

    Science.gov (United States)

    Xiao, Li; Qu, Wenzhong

    2012-04-01

    An actual structure including connections and interfaces may exist nonlinear. Because of many complicated problems about nonlinear structural health monitoring (SHM), relatively little progress have been made in this aspect. Statistical pattern recognition techniques have been demonstrated to be competitive with other methods when applied to real engineering datasets. When a structure existing 'breathing' cracks that open and close under operational loading may cause a linear structural system to respond to its operational and environmental loads in a nonlinear manner nonlinear. In this paper, a vibration-based structural health monitoring when the structure exists cracks is investigated with autoregressive support vector machine (AR-SVM). Vibration experiments are carried out with a model frame. Time-series data in different cases such as: initial linear structure; linear structure with mass changed; nonlinear structure; nonlinear structure with mass changed are acquired.AR model of acceleration time-series is established, and different kernel function types and corresponding parameters are chosen and compared, which can more accurate, more effectively locate the damage. Different cases damaged states and different damage positions have been recognized successfully. AR-SVM method for the insufficient training samples is proved to be practical and efficient on structure nonlinear damage detection.

  7. Two-stage nonlinear filter for processing of scintigrams

    International Nuclear Information System (INIS)

    Pistor, P.; Hoener, J.; Walch, G.

    1973-01-01

    Linear filters which have been successfully used to process scintigrams can be modified in a meaningful manner by a preceding non-linear point operator, the Anscombe-transform. The advantages are: The scintigraphic noise becomes quasi-stationary and thus independent of the image. By these means the noise can be readily allowed for in the design of the convolutional operators. Transformed images with a stationary signal-to-noise ratio and a non-constant background t correspond to untransformed images with a signal-to-noise ratio that varies in certain limits. The filter chain automatically adapts to these changes. Our filter has the advantage over the majority of space-varying filters of being realizable by Fast Fourier Transform techniques. These advantages have to be paid for by reduced signal amplitude to background ratios. If the background is known, this shortcoming can be easily by-passed by processing trendfree scintigrams. If not, the filter chain should be completed by a third operator which reverses the Anscombe-transform. The Anscombe-transform influences the signal-to-noise ratio of cold spots and of hot spots in a different way. It remains an open question if this fact can be utilized to directly influence the detectability of the different kinds of spots

  8. Collapse of nonlinear Langmuir waves

    International Nuclear Information System (INIS)

    Malkin, V.M.

    1986-01-01

    The dispersion of sufficiently intensive Langmuir waves is determined by intrinsic (electron) nonlinearity. During Langmuir collapse the wave energy density required for the appearance of electron nonlinearity is attained, generally speaking, prior to the development of dissipative processes. Up to now, the effect of electron nonlinearity on the collapse dynamics and spectrum of strong Langmuir turbulence ( which may be very appreciable ) has not been studied extensively because of the difficulty of describing nonlinear Langmuir waves. In the present paper the positive determinacy of the electron nonlinear hamiltonian is proven, the increment of modulation instability of a nonlinear Langmuir wave cluster localized in a cavity is calculated, and the universal law of their collapse is found

  9. Neural Generalized Predictive Control of a non-linear Process

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability qu...... detail and discuss the implementation difficulties. The neural generalized predictive controller is tested on a pneumatic servo sys-tem.......The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability...... qualities. The controller is a non-linear version of the well-known generalized predictive controller developed in linear control theory. It involves minimization of a cost function which in the present case has to be done numerically. Therefore, we develop the numerical algorithms necessary in substantial...

  10. Nonlinear Decoupling Control With ANFIS-Based Unmodeled Dynamics Compensation for a Class of Complex Industrial Processes.

    Science.gov (United States)

    Zhang, Yajun; Chai, Tianyou; Wang, Hong; Wang, Dianhui; Chen, Xinkai

    2018-06-01

    Complex industrial processes are multivariable and generally exhibit strong coupling among their control loops with heavy nonlinear nature. These make it very difficult to obtain an accurate model. As a result, the conventional and data-driven control methods are difficult to apply. Using a twin-tank level control system as an example, a novel multivariable decoupling control algorithm with adaptive neural-fuzzy inference system (ANFIS)-based unmodeled dynamics (UD) compensation is proposed in this paper for a class of complex industrial processes. At first, a nonlinear multivariable decoupling controller with UD compensation is introduced. Different from the existing methods, the decomposition estimation algorithm using ANFIS is employed to estimate the UD, and the desired estimating and decoupling control effects are achieved. Second, the proposed method does not require the complicated switching mechanism which has been commonly used in the literature. This significantly simplifies the obtained decoupling algorithm and its realization. Third, based on some new lemmas and theorems, the conditions on the stability and convergence of the closed-loop system are analyzed to show the uniform boundedness of all the variables. This is then followed by the summary on experimental tests on a heavily coupled nonlinear twin-tank system that demonstrates the effectiveness and the practicability of the proposed method.

  11. Nonlinear optics at interfaces

    International Nuclear Information System (INIS)

    Chen, C.K.

    1980-12-01

    Two aspects of surface nonlinear optics are explored in this thesis. The first part is a theoretical and experimental study of nonlinear intraction of surface plasmons and bulk photons at metal-dielectric interfaces. The second part is a demonstration and study of surface enhanced second harmonic generation at rough metal surfaces. A general formulation for nonlinear interaction of surface plasmons at metal-dielectric interfaces is presented and applied to both second and third order nonlinear processes. Experimental results for coherent second and third harmonic generation by surface plasmons and surface coherent antiStokes Raman spectroscopy (CARS) are shown to be in good agreement with the theory

  12. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  13. Nonlinear interactions of counter-travelling waves

    International Nuclear Information System (INIS)

    Matsuuchi, Kazuo

    1980-01-01

    Nonlinear interactions between two waves travelling in opposite directions are investigated. When a nonlinear Klein-Gordon equation is adopted as a model equation, it is shown that such a wave system is governed by a simple set of equations for their complex amplitudes. Steady progressive waves governed by this set are investigated for various cases classified according to the signs of the coefficients. It is then found that one wave travelling in one direction appears from a certain point and the other travelling in the opposite direction has a constant amplitude from that point. This phenomenon may be regarded as a sort of reflection in spite of no rigid boundary. (author)

  14. A non-linear decision making process for public involvement in environmental management activities

    International Nuclear Information System (INIS)

    Harper, M.R.; Kastenberg, W.

    1995-01-01

    The international industrial and governmental institutions involved in radioactive waste management and environmental remediation are now entering a new era in which they must significantly expand public involvement. Thus the decision making processes formerly utilized to direct and guide these institutions must now be shifted to take into consideration the needs of many more stakeholders than ever before. To meet this challenge, they now have the job of developing and creating a new set of accurate, sufficient and continuous self-regulating and self-correcting information pathways between themselves and the many divergent stakeholder groups in order to establish sustainable, trusting and respectful relationships. In this paper the authors introduce a new set of non-linear, practical and effective strategies for interaction. These self-regulating strategies provide timely feedback to a system, establishing trust and creating a viable vehicle for staying open and responsive to the needs out of which change and balanced adaptation can continually emerge for all stakeholders. The authors present a decision making process for public involvement which is congruent with the non-linear ideas of holographic and fractal relationships -- the mutual influence between related parts of the whole and the self-symmetry of systems at every level of complexity

  15. Non-linear Capital Taxation Without Commitment

    OpenAIRE

    Emmanuel Farhi; Christopher Sleet; Iván Werning; Sevin Yeltekin

    2012-01-01

    We study efficient non-linear taxation of labour and capital in a dynamic Mirrleesian model incorporating political economy constraints. Policies are chosen sequentially over time, without commitment. Our main result is that the marginal tax on capital income is progressive, in the sense that richer agents face higher marginal tax rates. Copyright , Oxford University Press.

  16. Nonlinear diffraction from a virtual beam

    DEFF Research Database (Denmark)

    Saltiel, Solomon M.; Neshev, Dragomir N.; Krolikowski, Wieslaw

    2010-01-01

    We observe experimentally a novel type of nonlinear diffraction in the process of two-wave mixing on a nonlinear quadratic grating.We demonstrate that when the nonlinear grating is illuminated simultaneously by two noncollinear beams, a second-harmonic diffraction pattern is generated by a virtual...... beam propagating along the bisector of the two pump beams. The observed iffraction phenomena is a purely nonlinear effect that has no analogue in linear diffraction...

  17. Nonlinear wave equation in frequency domain: accurate modeling of ultrafast interaction in anisotropic nonlinear media

    DEFF Research Database (Denmark)

    Guo, Hairun; Zeng, Xianglong; Zhou, Binbin

    2013-01-01

    We interpret the purely spectral forward Maxwell equation with up to third-order induced polarizations for pulse propagation and interactions in quadratic nonlinear crystals. The interpreted equation, also named the nonlinear wave equation in the frequency domain, includes quadratic and cubic...... nonlinearities, delayed Raman effects, and anisotropic nonlinearities. The full potential of this wave equation is demonstrated by investigating simulations of solitons generated in the process of ultrafast cascaded second-harmonic generation. We show that a balance in the soliton delay can be achieved due...

  18. Nonlinear Growth Curves in Developmental Research

    Science.gov (United States)

    Grimm, Kevin J.; Ram, Nilam; Hamagami, Fumiaki

    2011-01-01

    Developmentalists are often interested in understanding change processes and growth models are the most common analytic tool for examining such processes. Nonlinear growth curves are especially valuable to developmentalists because the defining characteristics of the growth process such as initial levels, rates of change during growth spurts, and asymptotic levels can be estimated. A variety of growth models are described beginning with the linear growth model and moving to nonlinear models of varying complexity. A detailed discussion of nonlinear models is provided, highlighting the added insights into complex developmental processes associated with their use. A collection of growth models are fit to repeated measures of height from participants of the Berkeley Growth and Guidance Studies from early childhood through adulthood. PMID:21824131

  19. Study of the nonlinear imperfect software debugging model

    International Nuclear Information System (INIS)

    Wang, Jinyong; Wu, Zhibo

    2016-01-01

    In recent years there has been a dramatic proliferation of research on imperfect software debugging phenomena. Software debugging is a complex process and is affected by a variety of factors, including the environment, resources, personnel skills, and personnel psychologies. Therefore, the simple assumption that debugging is perfect is inconsistent with the actual software debugging process, wherein a new fault can be introduced when removing a fault. Furthermore, the fault introduction process is nonlinear, and the cumulative number of nonlinearly introduced faults increases over time. Thus, this paper proposes a nonlinear, NHPP imperfect software debugging model in consideration of the fact that fault introduction is a nonlinear process. The fitting and predictive power of the NHPP-based proposed model are validated through related experiments. Experimental results show that this model displays better fitting and predicting performance than the traditional NHPP-based perfect and imperfect software debugging models. S-confidence bounds are set to analyze the performance of the proposed model. This study also examines and discusses optimal software release-time policy comprehensively. In addition, this research on the nonlinear process of fault introduction is significant given the recent surge of studies on software-intensive products, such as cloud computing and big data. - Highlights: • Fault introduction is a nonlinear changing process during the debugging phase. • The assumption that the process of fault introduction is nonlinear is credible. • Our proposed model can better fit and accurately predict software failure behavior. • Research on fault introduction case is significant to software-intensive products.

  20. Annual progress on DoE Grant for Nonlinear and Nonideal MHD

    International Nuclear Information System (INIS)

    Callen, J. D.

    2002-01-01

    The primary efforts this year have focused on exploring the nonlinear evolution of localized interchange instabilities, some extensions of neoclassical tearing mode theory, and developing a model for the dynamic electrical conductivity in a bumpy cylinder magnetic field. In addition, we have vigorously participated in the computationally-focused NIMROD and CEMM projects

  1. Second-order nonlinearity induced transparency.

    Science.gov (United States)

    Zhou, Y H; Zhang, S S; Shen, H Z; Yi, X X

    2017-04-01

    In analogy to electromagnetically induced transparency, optomechanically induced transparency was proposed recently in [Science330, 1520 (2010)SCIEAS0036-807510.1126/science.1195596]. In this Letter, we demonstrate another form of induced transparency enabled by second-order nonlinearity. A practical application of the second-order nonlinearity induced transparency is to measure the second-order nonlinear coefficient. Our scheme might find applications in quantum optics and quantum information processing.

  2. Nonlinear PI Control with Adaptive Interaction Algorithm for Multivariable Wastewater Treatment Process

    Directory of Open Access Journals (Sweden)

    S. I. Samsudin

    2014-01-01

    Full Text Available The wastewater treatment plant (WWTP is highly known with the nonlinearity of the control parameters, thus it is difficult to be controlled. In this paper, the enhancement of nonlinear PI controller (ENon-PI to compensate the nonlinearity of the activated sludge WWTP is proposed. The ENon-PI controller is designed by cascading a sector-bounded nonlinear gain to linear PI controller. The rate variation of the nonlinear gain kn is automatically updated based on adaptive interaction algorithm. Initiative to simplify the ENon-PI control structure by adapting kn has been proved by significant improvement under various dynamic influents. More than 30% of integral square error and 14% of integral absolute error are reduced compared to benchmark PI for DO control and nitrate in nitrogen removal control. Better average effluent qualities, less number of effluent violations, and lower aeration energy consumption resulted.

  3. Manipulating acoustic wave reflection by a nonlinear elastic metasurface

    Science.gov (United States)

    Guo, Xinxin; Gusev, Vitalyi E.; Bertoldi, Katia; Tournat, Vincent

    2018-03-01

    The acoustic wave reflection properties of a nonlinear elastic metasurface, derived from resonant nonlinear elastic elements, are theoretically and numerically studied. The metasurface is composed of a two degree-of-freedom mass-spring system with quadratic elastic nonlinearity. The possibility of converting, during the reflection process, most of the fundamental incoming wave energy into the second harmonic wave is shown, both theoretically and numerically, by means of a proper design of the nonlinear metasurface. The theoretical results from the harmonic balance method for a monochromatic source are compared with time domain simulations for a wave packet source. This protocol allows analyzing the dynamics of the nonlinear reflection process in the metasurface as well as exploring the limits of the operating frequency bandwidth. The reported methodology can be applied to a wide variety of nonlinear metasurfaces, thus possibly extending the family of exotic nonlinear reflection processes.

  4. An integrated nonlinear optical loop mirror in silicon photonics for all-optical signal processing

    Directory of Open Access Journals (Sweden)

    Zifei Wang

    2018-02-01

    Full Text Available The nonlinear optical loop mirror (NOLM has been studied for several decades and has attracted considerable attention for applications in high data rate optical communications and all-optical signal processing. The majority of NOLM research has focused on silica fiber-based implementations. While various fiber designs have been considered to increase the nonlinearity and manage dispersion, several meters to hundreds of meters of fiber are still required. On the other hand, there is increasing interest in developing photonic integrated circuits for realizing signal processing functions. In this paper, we realize the first-ever passive integrated NOLM in silicon photonics and demonstrate its application for all-optical signal processing. In particular, we show wavelength conversion of 10 Gb/s return-to-zero on-off keying (RZ-OOK signals over a wavelength range of 30 nm with error-free operation and a power penalty of less than 2.5 dB, we achieve error-free nonreturn to zero (NRZ-to-RZ modulation format conversion at 10 Gb/s also with a power penalty of less than 2.8 dB, and we obtain error-free all-optical time-division demultiplexing of a 40 Gb/s RZ-OOK data signal into its 10 Gb/s tributary channels with a maximum power penalty of 3.5 dB.

  5. Results of nonlinear and nonstationary image processing

    International Nuclear Information System (INIS)

    Pizer, S.M.; Correla, J.A.; Chesler, D.A.; Metz, C.E.

    1973-01-01

    A nonstationary method, multiple z-divided filtering, and a nonlinear method, biased smearing have been applied to scintigrams. Biased smearing does not appear to hold much promise. Multiple z-divided filtering, on the other hand, appears to be justified, and initial results at minimum encourage further research into the possibility that this technique may become a method of choice

  6. Fabrication of highly nonlinear germano-silicate glass optical fiber incorporated with PbTe semiconductor quantum dots using atomization doping process and its optical nonlinearity.

    Science.gov (United States)

    Ju, Seongmin; Watekar, Pramod R; Han, Won-Taek

    2011-01-31

    Germano-silicate glass optical fiber incorporated with PbTe semiconductor quantum dots (SQDs) in the core was fabricated by using the atomization process in modified chemical vapor deposition (MCVD) process. The absorption bands attributed to PbTe semiconductor quantum dots in the fiber core were found to appear at around 687 nm and 1055 nm. The nonlinear refractive index measured by the long-period fiber grating (LPG) pair method upon pumping with laser diode at 976.4 nm was estimated to be ~1.5 × 10(-16) m2/W.

  7. Adaptive PI Controller for a Nonlinear System

    Directory of Open Access Journals (Sweden)

    D. Rathikarani

    2009-10-01

    Full Text Available Most of the industrial processes are inherently nonlinear in their behaviour. Designs of controllers for these nonlinear processes are difficult, as they do not follow superposition theorem. Adaptive controller can change its behaviour in response to changes in the dynamics of the process and disturbances. Hence adaptive controller can be used to control nonlinear processes. Direct Model Reference Adaptive Control is a technique, in which a reference model involving the desired performances is specified. In the present work, a DMRAC is designed and implemented to achieve satisfactory control of a nonlinear system in all its local linear operating regions. The closed loop system is made BIBO stable by proper control techniques. The controller is designed through simulation in Matlab platform and is validated in real time by conducting experiments on the laboratory Air Flow Control System using the dSPACE interface.

  8. Full-waveform inversion using a nonlinearly smoothed wavefield

    KAUST Repository

    Li, Yuanyuan

    2017-12-08

    Conventional full-waveform inversion (FWI) based on the least-squares misfit function faces problems in converging to the global minimum when using gradient methods because of the cycle-skipping phenomena. An initial model producing data that are at most a half-cycle away from the observed data is needed for convergence to the global minimum. Low frequencies are helpful in updating low-wavenumber components of the velocity model to avoid cycle skipping. However, low enough frequencies are usually unavailable in field cases. The multiplication of wavefields of slightly different frequencies adds artificial low-frequency components in the data, which can be used for FWI to generate a convergent result and avoid cycle skipping. We generalize this process by multiplying the wavefield with itself and then applying a smoothing operator to the multiplied wavefield or its square to derive the nonlinearly smoothed wavefield, which is rich in low frequencies. The global correlation-norm-based objective function can mitigate the dependence on the amplitude information of the nonlinearly smoothed wavefield. Therefore, we have evaluated the use of this objective function when using the nonlinearly smoothed wavefield. The proposed objective function has much larger convexity than the conventional objective functions. We calculate the gradient of the objective function using the adjoint-state technique, which is similar to that of the conventional FWI except for the adjoint source. We progressively reduce the smoothing width applied to the nonlinear wavefield to naturally adopt the multiscale strategy. Using examples on the Marmousi 2 model, we determine that the proposed FWI helps to generate convergent results without the need for low-frequency information.

  9. Theory of high-energy-collision processes. Technical progress report, January 1-December 31, 1981

    International Nuclear Information System (INIS)

    1982-01-01

    Progress is described in the following areas: (1) several years ago, surprisingly simple expressions were obtained for the differential cross sections of e + e - → μ + μ - γ and e + e - → e + e - γ at high energies. Such simple expressions were generalized to twelve other similar radiative processes in QED and QCD. Afterwards, it was found that these results can be derived easily with the help of helicity amplitudes. This method is being investigated for many other radiative processes; (2) in the two-dimensional Ising model, the horizontal and vertical interaction energies are usually taken to be different. When this idea of different interactions in different directions is applied to the Z 2 lattice gauge theory in four dimensions, a limiting case is found which is exactly solvable. Contrary to numerical calculations at the symmetry point, the phase transition is found to be of second order; (3) on the subject of supersymmetry, general helicity and spin sum rules were obtained for massless and massive supermultiplets, and a functional integral approach was found as a natural setting for Witten's criterion for the occurrence of dynamic symmetry breaking of supersymmetry. A systematic and exhaustive analysis of explicit soft breaking of global supersymmetry has also been carried out using the methods of superfields; (4) the renormalization of the massless Thirring model in the neighborhood of g = -π/2 was studied. The results are consistent with those found previously by placing the model on a lattice; and (5) in studying the effect of laboratory temperature on scattering processes, it was found that transport phenomena play an important role. As a preparation for this study, an exactly solvable case of the nonlinear Boltzmann equation has been found and studied

  10. Femtosecond laser studies of ultrafast intramolecular processes

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, C. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this research is to better understand the detailed mechanisms of chemical reactions by observing, directly in time, the dynamics of fundamental chemical processes. In this work femtosecond laser pulses are used to initiate chemical processes and follow the progress of these processes in time. The authors are currently studying ultrafast internal conversion and subsequent intramolecular relaxation in unsaturated hydrocarbons. In addition, the authors are developing nonlinear optical techniques to prepare and monitor the time evolution of specific vibrational motions in ground electronic state molecules.

  11. Non-linear processes in the Earth atmosphere boundary layer

    Science.gov (United States)

    Grunskaya, Lubov; Valery, Isakevich; Dmitry, Rubay

    2013-04-01

    The work is connected with studying electromagnetic fields in the resonator Earth-Ionosphere. There is studied the interconnection of tide processes of geophysical and astrophysical origin with the Earth electromagnetic fields. On account of non-linear property of the resonator Earth-Ionosphere the tides (moon and astrophysical tides) in the electromagnetic Earth fields are kinds of polyharmonic nature. It is impossible to detect such non-linear processes with the help of the classical spectral analysis. Therefore to extract tide processes in the electromagnetic fields, the method of covariance matrix eigen vectors is used. Experimental investigations of electromagnetic fields in the atmosphere boundary layer are done at the distance spaced stations, situated on Vladimir State University test ground, at Main Geophysical Observatory (St. Petersburg), on Kamchatka pen., on Lake Baikal. In 2012 there was continued to operate the multichannel synchronic monitoring system of electrical and geomagnetic fields at the spaced apart stations: VSU physical experimental proving ground; the station of the Institute of Solar and Terrestrial Physics of Russian Academy of Science (RAS) at Lake Baikal; the station of the Institute of volcanology and seismology of RAS in Paratunka; the station in Obninsk on the base of the scientific and production society "Typhoon". Such investigations turned out to be possible after developing the method of scanning experimental signal of electromagnetic field into non- correlated components. There was used a method of the analysis of the eigen vectors ofthe time series covariance matrix for exposing influence of the moon tides on Ez. The method allows to distribute an experimental signal into non-correlated periodicities. The present method is effective just in the situation when energetical deposit because of possible influence of moon tides upon the electromagnetic fields is little. There have been developed and realized in program components

  12. Nonlinear optics with broad-band lasers: Progress report, July 15, 1987-April 14, 1988

    International Nuclear Information System (INIS)

    Raymer, M.G.

    1988-01-01

    During this reporting period several important results were obtained on the fluctuation dynamics of both continuous-wave (cw) and pulsed dye lasers, as well as their effects in certain nonlinear optical processes: (1) A new method discovered for producing optical pulses with broad bandwidths (5 GHz) and smooth, slowly varying amplitude. The bandwidth is determined purely by phase fluctuations. (2) A theoretical treatment of pulsed dye lasers was developed to explain intensity autocorrelation measurements. (3) The effects of laser bandwidth on the resonance fluorescence spectrum of a two-level atom were calculated. (4) The source of mode intensity fluctuations in a multimode, cw dye laser were shown, both experimentally and theoretically, to be caused by deterministic chaos, rather than quantum noise as had been previously assumed in the literature

  13. Interactive Nonlinear Multiobjective Optimization Methods

    OpenAIRE

    Miettinen, Kaisa; Hakanen, Jussi; Podkopaev, Dmitry

    2016-01-01

    An overview of interactive methods for solving nonlinear multiobjective optimization problems is given. In interactive methods, the decision maker progressively provides preference information so that the most satisfactory Pareto optimal solution can be found for her or his. The basic features of several methods are introduced and some theoretical results are provided. In addition, references to modifications and applications as well as to other methods are indicated. As the...

  14. Elastic Nonlinear Response in Granular Media Under Resonance Conditions

    Science.gov (United States)

    Jia, X.; Johnson, P. A.

    2004-12-01

    beads. The wave signals are detected using a lock-in amplifier, and frequency and amplitude are recorded on computer. Drive frequency is swept from below to above the resonance mode. A typical frequency sweep is 3 kHz in width with a frequency sampling of 6 Hz. Frequency sweeps are applied at progressively increasing drive voltages to test for nonlinear-dynamical induced modulus softening. The resonance frequency at peak amplitude corresponds directly to modulus. We find significant elastic nonlinearity at all effective pressures, manifest by the fundamental-mode resonance curves decreasing progressively, at progressively increasing drive level. This is equivalent to progressive material softening with wave amplitude, meaning the wavespeed and modulus diminish. The wave dissipation simultaneously increases (Johnson and Sutin 2004). For example, at 0.11 Mpa effective pressure the observed change in resonance frequency of about 2.6% corresponds to a material bulk modulus decrease of about 5.2%. Strain amplitudes are 10-7-10-6. Thus, we would predict that surface sediments should have significant elastic nonlinear response beginning at about 10-6 strain amplitude. reference: Johnson, P. and A. Sutin, Slow dynamics in diverse solids, J. Acoust. Soc Am., in press (2004).

  15. Nonlinear plasma waves excited near resonance

    International Nuclear Information System (INIS)

    Cohen, B.I.; Kaufman, A.N.

    1977-01-01

    The nonlinear resonant response of a uniform plasma to an external plane-wave field is formulated in terms of the mismatch Δ/sub n l/ between the driving frequency and the time-dependent, complex, nonlinear normal mode frequency at the driving wavenumber. This formalism is applied to computer simulations of this process, yielding a deduced nonlinear frequency shift. The time dependence of the nonlinear phenomena, at frequency Δ/sub n l/ and at the bounce frequency of the resonant particles, is analyzed. The interdependence of the nonlinear features is described by means of energy and momentum relations

  16. Nonlinear electromagnetic susceptibilities of unmagnetized plasmas

    International Nuclear Information System (INIS)

    Yoon, Peter H.

    2005-01-01

    Fully electromagnetic nonlinear susceptibilities of unmagnetized plasmas are analyzed in detail. Concrete expressions of the second-order nonlinear susceptibility are found in various forms in the literature, usually in connection with the discussions of various three-wave decay processes, but the third-order susceptibilities are rarely discussed. The second-order susceptibility is pertinent to nonlinear wave-wave interactions (i.e., the decay/coalescence), whereas the third-order susceptibilities affect nonlinear wave-particle interactions (i.e., the induced scattering). In the present article useful approximate analytical expressions of these nonlinear susceptibilities that can be readily utilized in various situations are derived

  17. Rapid assessment of nonlinear optical propagation effects in dielectrics

    Science.gov (United States)

    Hoyo, J. Del; de La Cruz, A. Ruiz; Grace, E.; Ferrer, A.; Siegel, J.; Pasquazi, A.; Assanto, G.; Solis, J.

    2015-01-01

    Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process.

  18. Maglev Train Signal Processing Architecture Based on Nonlinear Discrete Tracking Differentiator.

    Science.gov (United States)

    Wang, Zhiqiang; Li, Xiaolong; Xie, Yunde; Long, Zhiqiang

    2018-05-24

    In a maglev train levitation system, signal processing plays an important role for the reason that some sensor signals are prone to be corrupted by noise due to the harsh installation and operation environment of sensors and some signals cannot be acquired directly via sensors. Based on these concerns, an architecture based on a new type of nonlinear second-order discrete tracking differentiator is proposed. The function of this signal processing architecture includes filtering signal noise and acquiring needed signals for levitation purposes. The proposed tracking differentiator possesses the advantages of quick convergence, no fluttering, and simple calculation. Tracking differentiator's frequency characteristics at different parameter values are studied in this paper. The performance of this new type of tracking differentiator is tested in a MATLAB simulation and this tracking-differentiator is implemented in Very-High-Speed Integrated Circuit Hardware Description Language (VHDL). In the end, experiments are conducted separately on a test board and a maglev train model. Simulation and experiment results show that the performance of this novel signal processing architecture can fulfill the real system requirement.

  19. Maglev Train Signal Processing Architecture Based on Nonlinear Discrete Tracking Differentiator

    Directory of Open Access Journals (Sweden)

    Zhiqiang Wang

    2018-05-01

    Full Text Available In a maglev train levitation system, signal processing plays an important role for the reason that some sensor signals are prone to be corrupted by noise due to the harsh installation and operation environment of sensors and some signals cannot be acquired directly via sensors. Based on these concerns, an architecture based on a new type of nonlinear second-order discrete tracking differentiator is proposed. The function of this signal processing architecture includes filtering signal noise and acquiring needed signals for levitation purposes. The proposed tracking differentiator possesses the advantages of quick convergence, no fluttering, and simple calculation. Tracking differentiator’s frequency characteristics at different parameter values are studied in this paper. The performance of this new type of tracking differentiator is tested in a MATLAB simulation and this tracking-differentiator is implemented in Very-High-Speed Integrated Circuit Hardware Description Language (VHDL. In the end, experiments are conducted separately on a test board and a maglev train model. Simulation and experiment results show that the performance of this novel signal processing architecture can fulfill the real system requirement.

  20. The role of technical progress in the process of recalculating oil reserves

    International Nuclear Information System (INIS)

    Boulard, J.N.

    1999-01-01

    Contrary to the concept of resources (which is essentially a geological one), the notion of reserves designates the quantities that are technically and economically recoverable. Beyond the production-related effect, the reserves therefore evolve over time in accordance with numerous technical and economic parameters. Among these parameters, it can be seen that technical progress plays a considerable role throughout the process of converting resources into reserves, including progress in the identification, accessibility and processing of the resources, and improvements in economic viability. After having tackled the problem of measuring the 'technical progress effects' and citing examples, we demonstrate that the evolution in oil reserves is subject to three types of impact. These are a quantitative impact by significantly improving the recovery rates or making it possible to identify hitherto undetectable oil fields, a qualitative impact by widening the resource base thanks to the adoption of new categories of oil (in particular the so-called 'unconventional' oils) and by carrying out the gradual substitution between these resources of differing qualities. There is also a dynamic impact, through the acceleration of resource availability. Through these three approaches, technical progress makes makes it possible to ensure continuity in oil supply and contributes significantly to the recalculation of reserves. It therefore acts as a compensating factor, counterbalancing the progressive depletion of resources. (author)

  1. MSL Progress Report 1981-85

    International Nuclear Information System (INIS)

    Yalsakumar, M.C.; Ananthakrishna, G.; Sahoo, D.; Gopinathan, K.P.

    1987-01-01

    This is the third progress report since the inception of the Materials Science Laboratory in 1974 and covers the period 1981-85. In view of the long period covered by the report, the individual contributions have been kept brief so that the total length of the report is reasonable; however care has been taken to see that brevity has not obscured clarity. Significant contributions include studies of radiation damage and related defect, solid state physics, behaviour of materials under extremely low temperatures on the one hand and under high pressure and high temperatures on the other and light scattering by materials. The Laboratory has played a key role in the indigeneous development and characterisation of superconducting materials. Theoretical studies have concentrated on stochastic processes, nonlinear phenomena and the newly discovered and fascinating quasicrystals. (author)

  2. Definition of distance for nonlinear time series analysis of marked point process data

    Energy Technology Data Exchange (ETDEWEB)

    Iwayama, Koji, E-mail: koji@sat.t.u-tokyo.ac.jp [Research Institute for Food and Agriculture, Ryukoku Univeristy, 1-5 Yokotani, Seta Oe-cho, Otsu-Shi, Shiga 520-2194 (Japan); Hirata, Yoshito; Aihara, Kazuyuki [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2017-01-30

    Marked point process data are time series of discrete events accompanied with some values, such as economic trades, earthquakes, and lightnings. A distance for marked point process data allows us to apply nonlinear time series analysis to such data. We propose a distance for marked point process data which can be calculated much faster than the existing distance when the number of marks is small. Furthermore, under some assumptions, the Kullback–Leibler divergences between posterior distributions for neighbors defined by this distance are small. We performed some numerical simulations showing that analysis based on the proposed distance is effective. - Highlights: • A new distance for marked point process data is proposed. • The distance can be computed fast enough for a small number of marks. • The method to optimize parameter values of the distance is also proposed. • Numerical simulations indicate that the analysis based on the distance is effective.

  3. Ultrafast nonlinear optics

    CERN Document Server

    Leburn, Christopher; Reid, Derryck

    2013-01-01

    The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrasho...

  4. Generalized Nonlinear Yule Models

    Science.gov (United States)

    Lansky, Petr; Polito, Federico; Sacerdote, Laura

    2016-11-01

    With the aim of considering models related to random graphs growth exhibiting persistent memory, we propose a fractional nonlinear modification of the classical Yule model often studied in the context of macroevolution. Here the model is analyzed and interpreted in the framework of the development of networks such as the World Wide Web. Nonlinearity is introduced by replacing the linear birth process governing the growth of the in-links of each specific webpage with a fractional nonlinear birth process with completely general birth rates. Among the main results we derive the explicit distribution of the number of in-links of a webpage chosen uniformly at random recognizing the contribution to the asymptotics and the finite time correction. The mean value of the latter distribution is also calculated explicitly in the most general case. Furthermore, in order to show the usefulness of our results, we particularize them in the case of specific birth rates giving rise to a saturating behaviour, a property that is often observed in nature. The further specialization to the non-fractional case allows us to extend the Yule model accounting for a nonlinear growth.

  5. Stability analysis of embedded nonlinear predictor neural generalized predictive controller

    Directory of Open Access Journals (Sweden)

    Hesham F. Abdel Ghaffar

    2014-03-01

    Full Text Available Nonlinear Predictor-Neural Generalized Predictive Controller (NGPC is one of the most advanced control techniques that are used with severe nonlinear processes. In this paper, a hybrid solution from NGPC and Internal Model Principle (IMP is implemented to stabilize nonlinear, non-minimum phase, variable dead time processes under high disturbance values over wide range of operation. Also, the superiority of NGPC over linear predictive controllers, like GPC, is proved for severe nonlinear processes over wide range of operation. The necessary conditions required to stabilize NGPC is derived using Lyapunov stability analysis for nonlinear processes. The NGPC stability conditions and improvement in disturbance suppression are verified by both simulation using Duffing’s nonlinear equation and real-time using continuous stirred tank reactor. Up to our knowledge, the paper offers the first hardware embedded Neural GPC which has been utilized to verify NGPC–IMP improvement in realtime.

  6. A kernel-based approach to MIMO LPV state-space identification and application to a nonlinear process system

    NARCIS (Netherlands)

    Rizvi, S.Z.; Mohammadpour, J.; Toth, R.; Meskin, N.

    2015-01-01

    This paper first describes the development of a nonparametric identification method for linear parameter-varying (LPV) state-space models and then applies it to a nonlinear process system. The proposed method uses kernel-based least-squares support vector machines (LS-SVM). While parametric

  7. Linear and nonlinear dynamics of heart rate variability in the process of exposure to 3600 m in 10 min.

    Science.gov (United States)

    Zhang, Da; She, Jin; Yang, Jun; Yu, Mengsun

    2015-06-01

    Acute hypoxia activates several autonomic mechanisms, mainly in cardiovascular system and respiratory system. The influence of acute hypoxia on linear and nonlinear heart rate variability (HRV) has been studied, but the parameters in the process of hypoxia are still unclear. Although the changes of HRV in frequency domain are related to autonomic responses, how nonlinear dynamics change with the decrease of ambient atmospheric pressure is unknown either. Eight healthy male subjects were exposed to simulated altitude from sea level to 3600 m in 10 min. HRV parameters in frequency domain were analyzed by wavelet packet transform (Daubechies 4, 4 level) followed by Hilbert transform to assess the spectral power of modified low frequency (0.0625-0.1875 Hz, LFmod), modified high frequency (0.1875-0.4375 Hz, HFmod), and the LFmod/HFmod ratio in every 1 min. Nonlinear parameters were also quantified by sample entropy (SampEn) and short term fractal correlation exponent (α1) in the process. Hypoxia was associated with the depression of both LFmod and HFmod component. They were significantly lower than that at sea level at 3600 m and 2880 m respectively (both p nonlinear HRV parameters continuously in the process of hypoxia would be an effective way to evaluate the different regulatory mechanisms of autonomic nervous system.

  8. Nonlinear Michelson interferometer for improved quantum metrology

    OpenAIRE

    Luis, Alfredo; Rivas, Ángel

    2015-01-01

    We examine quantum detection via a Michelson interferometer embedded in a gas with Kerr nonlinearity. This nonlinear interferometer is illuminated by pulses of classical light. This strategy combines the robustness against practical imperfections of classical light with the improvement provided by nonlinear processes. Regarding ultimate quantum limits, we stress that, as a difference with linear schemes, the nonlinearity introduces pulse duration as a new variable into play along with the ene...

  9. A Comparative Study of Applying Active-Set and Interior Point Methods in MPC for Controlling Nonlinear pH Process

    Directory of Open Access Journals (Sweden)

    Syam Syafiie

    2014-06-01

    Full Text Available A comparative study of Model Predictive Control (MPC using active-set method and interior point methods is proposed as a control technique for highly non-linear pH process. The process is a strong acid-strong base system. A strong acid of hydrochloric acid (HCl and a strong base of sodium hydroxide (NaOH with the presence of buffer solution sodium bicarbonate (NaHCO3 are used in a neutralization process flowing into reactor. The non-linear pH neutralization model governed in this process is presented by multi-linear models. Performance of both controllers is studied by evaluating its ability of set-point tracking and disturbance-rejection. Besides, the optimization time is compared between these two methods; both MPC shows the similar performance with no overshoot, offset, and oscillation. However, the conventional active-set method gives a shorter control action time for small scale optimization problem compared to MPC using IPM method for pH control.

  10. Nonlinear laser-plasma interactions

    Science.gov (United States)

    Kaw, P. K.

    2017-12-01

    Soon after lasers were invented, there was tremendous curiosity on the nonlinear phenomena which would result in their interaction with a fully ionized plasma. Apart from the basic interest, it was realized that it could be used for the achievement of nuclear fusion in the laboratory. This led us to a paper on the propagation of a laser beam into an inhomogeneous fusion plasma, where it was first demonstrated that light would go up to the critical layer (where the frequency matches the plasma frequency) and get reflected from there with a reflection coefficient of order unity. The reflection coefficient was determined by collisional effects. Since the wave was expected to slow down to near zero group speed at the reflection point, the dominant collision frequency determining the reflection coefficient was the collision frequency at the reflection point. It turned out that the absorption of light was rather small for fusion temperatures. This placed a premium on investigation of nonlinear phenomena which might contribute to the absorption and penetration of the light into high-density plasma. An early investigation showed that electron jitter with respect to ions would be responsible for the excitation of decay instabilities which convert light waves into electrostatic plasma waves and ion waves near the critical frequency. These electrostatic waves would then get absorbed into the plasma even in the collisionless case and lead to plasma heating which is nonlinear. Detailed estimates of this heating were made. Similar nonlinear processes which could lead to stimulated scattering of light in the underdense region (ω >ω _p) were investigated together with a number of other workers. All these nonlinear processes need a critical threshold power for excitation. Another important process which was discovered around the same time had to do with filamentation and trapping of light when certain thresholds were exceeded. All of this work has been extensively verified in

  11. Nonlinear optics of liquid crystalline materials

    International Nuclear Information System (INIS)

    Khoo, Iam Choon

    2009-01-01

    Liquid crystals occupy an important niche in nonlinear optics as a result of their unique physical and optical properties. Besides their broadband birefringence and transparency, abilities to self-assemble into various crystalline phases and to conform to various flexible forms and shapes, liquid crystals are compatible with almost all other optoelectronic materials and technology platforms. In both isotropic and ordered phases, liquid crystals possess extraordinarily large optical nonlinearities that stretch over multiple time scales. To date, almost all conceivable nonlinear optical phenomena have been observed in a very broad spectrum spanning the entire visible to infrared and beyond. In this review, we present a self-contained complete discussion of the optical nonlinearities of liquid crystals, and a thorough review of a wide range of nonlinear optical processes and phenomena enabled by these unique properties. Starting with a brief historical account of the development of nonlinear optical studies of the mesophases of liquid crystals, we then review various liquid crystalline materials and structures, and their nonlinear optical properties. Emphasis is placed on the nematic phase, which best exemplifies the dual nature of liquid crystals, although frequent references to other phases are also made. We also delve into recent work on novel structures such as photonic crystals, metamaterials and nanostructures and their special characteristics and emergent properties. The mechanisms and complex nonlocal dynamics of optical nonlinearities associated with laser induced director axis reorientation, thermal, density, and order parameter fluctuations, space charge field formation and photorefractivity are critically reviewed as a foundation for the discussions of various nonlinear optical processes detailed in this paper

  12. Robust variable selection method for nonparametric differential equation models with application to nonlinear dynamic gene regulatory network analysis.

    Science.gov (United States)

    Lu, Tao

    2016-01-01

    The gene regulation network (GRN) evaluates the interactions between genes and look for models to describe the gene expression behavior. These models have many applications; for instance, by characterizing the gene expression mechanisms that cause certain disorders, it would be possible to target those genes to block the progress of the disease. Many biological processes are driven by nonlinear dynamic GRN. In this article, we propose a nonparametric differential equation (ODE) to model the nonlinear dynamic GRN. Specially, we address following questions simultaneously: (i) extract information from noisy time course gene expression data; (ii) model the nonlinear ODE through a nonparametric smoothing function; (iii) identify the important regulatory gene(s) through a group smoothly clipped absolute deviation (SCAD) approach; (iv) test the robustness of the model against possible shortening of experimental duration. We illustrate the usefulness of the model and associated statistical methods through a simulation and a real application examples.

  13. Nonlinear control of a multicomponent distillation process coupled with a binary distillation model as an EKF predictor.

    Science.gov (United States)

    Jana, Amiya Kumar; Ganguly, Saibal; Samanta, Amar Nath

    2006-10-01

    The work is devoted to design the globally linearizing control (GLC) strategy for a multicomponent distillation process. The control system is comprised with a nonlinear transformer, a nonlinear closed-loop state estimator [extended Kalman filter (EKF)], and a linear external controller [conventional proportional integral (PI) controller]. The model of a binary distillation column has been used as a state predictor to avoid huge design complexity of the EKF estimator. The binary components are the light key and the heavy key of the multicomponent system. The proposed GLC-EKF (GLC in conjunction with EKF) control algorithm has been compared with the GLC-ROOLE [GLC coupled with reduced-order open-loop estimator (ROOLE)] and the dual-loop PI controller based on set point tracking and disturbance rejection performance. Despite huge process/predictor mismatch, the superiority of the GLC-EKF has been inspected over the GLC-ROOLE control structure.

  14. Individual differences in boys' and girls' timing and tempo of puberty: modeling development with nonlinear growth models.

    Science.gov (United States)

    Marceau, Kristine; Ram, Nilam; Houts, Renate M; Grimm, Kevin J; Susman, Elizabeth J

    2011-09-01

    Pubertal development is a nonlinear process progressing from prepubescent beginnings through biological, physical, and psychological changes to full sexual maturity. To tether theoretical concepts of puberty with sophisticated longitudinal, analytical models capable of articulating pubertal development more accurately, we used nonlinear mixed-effects models to describe both the timing and tempo of pubertal development in the sample of 364 White boys and 373 White girls measured across 6 years as part of the National Institute of Child Health and Human Development Study of Early Child Care and Youth Development. Individual differences in timing and tempo were extracted with models of logistic growth. Differential relations emerged for how boys' and girls' timing and tempo of development were related to physical characteristics (body mass index, height, and weight) and psychological outcomes (internalizing problems, externalizing problems, and risky sexual behavior). Timing and tempo are associated in boys but not girls. Pubertal timing and tempo are particularly important for predicting psychological outcomes in girls but only sparsely related to boys' psychological outcomes. Results highlight the importance of considering the nonlinear nature of puberty and expand the repertoire of possibilities for examining important aspects of how and when pubertal processes contribute to development.

  15. Naturally stable Sagnac-Michelson nonlinear interferometer.

    Science.gov (United States)

    Lukens, Joseph M; Peters, Nicholas A; Pooser, Raphael C

    2016-12-01

    Interferometers measure a wide variety of dynamic processes by converting a phase change into an intensity change. Nonlinear interferometers, making use of nonlinear media in lieu of beamsplitters, promise substantial improvement in the quest to reach the ultimate sensitivity limits. Here we demonstrate a new nonlinear interferometer utilizing a single parametric amplifier for mode mixing-conceptually, a nonlinear version of the conventional Michelson interferometer with its arms collapsed together. We observe up to 99.9% interference visibility and find evidence for noise reduction based on phase-sensitive gain. Our configuration utilizes fewer components than previous demonstrations and requires no active stabilization, offering new capabilities for practical nonlinear interferometric-based sensors.

  16. Adaptive Critic Nonlinear Robust Control: A Survey.

    Science.gov (United States)

    Wang, Ding; He, Haibo; Liu, Derong

    2017-10-01

    Adaptive dynamic programming (ADP) and reinforcement learning are quite relevant to each other when performing intelligent optimization. They are both regarded as promising methods involving important components of evaluation and improvement, at the background of information technology, such as artificial intelligence, big data, and deep learning. Although great progresses have been achieved and surveyed when addressing nonlinear optimal control problems, the research on robustness of ADP-based control strategies under uncertain environment has not been fully summarized. Hence, this survey reviews the recent main results of adaptive-critic-based robust control design of continuous-time nonlinear systems. The ADP-based nonlinear optimal regulation is reviewed, followed by robust stabilization of nonlinear systems with matched uncertainties, guaranteed cost control design of unmatched plants, and decentralized stabilization of interconnected systems. Additionally, further comprehensive discussions are presented, including event-based robust control design, improvement of the critic learning rule, nonlinear H ∞ control design, and several notes on future perspectives. By applying the ADP-based optimal and robust control methods to a practical power system and an overhead crane plant, two typical examples are provided to verify the effectiveness of theoretical results. Overall, this survey is beneficial to promote the development of adaptive critic control methods with robustness guarantee and the construction of higher level intelligent systems.

  17. Applications of nonlinear fiber optics

    CERN Document Server

    Agrawal, Govind

    2008-01-01

    * The only book describing applications of nonlinear fiber optics * Two new chapters on the latest developments: highly nonlinear fibers and quantum applications* Coverage of biomedical applications* Problems provided at the end of each chapterThe development of new highly nonlinear fibers - referred to as microstructured fibers, holey fibers and photonic crystal fibers - is the next generation technology for all-optical signal processing and biomedical applications. This new edition has been thoroughly updated to incorporate these key technology developments.The bo

  18. Inferring Instantaneous, Multivariate and Nonlinear Sensitivities for the Analysis of Feedback Processes in a Dynamical System: Lorenz Model Case Study

    Science.gov (United States)

    Aires, Filipe; Rossow, William B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    A new approach is presented for the analysis of feedback processes in a nonlinear dynamical system by observing its variations. The new methodology consists of statistical estimates of the sensitivities between all pairs of variables in the system based on a neural network modeling of the dynamical system. The model can then be used to estimate the instantaneous, multivariate and nonlinear sensitivities, which are shown to be essential for the analysis of the feedbacks processes involved in the dynamical system. The method is described and tested on synthetic data from the low-order Lorenz circulation model where the correct sensitivities can be evaluated analytically.

  19. Fault detection for nonlinear systems - A standard problem approach

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    1998-01-01

    The paper describes a general method for designing (nonlinear) fault detection and isolation (FDI) systems for nonlinear processes. For a rich class of nonlinear systems, a nonlinear FDI system can be designed using convex optimization procedures. The proposed method is a natural extension...

  20. A Plastic Design Method for RC Moment Frame Buildings against Progressive Collapse

    Directory of Open Access Journals (Sweden)

    Hadi Faghihmaleki

    2017-04-01

    Full Text Available In this study, progressive collapse potential of generic 3-, 8- and 12-storey RC moment frame buildings designed based on IBC-2006 code was investigated by performing non-linear static and dynamic analyses. It was observed that the model structures had high potential for progressive collapse when the second floor column was suddenly removed. Then, the size of beams required to satisfy the failure criteria for progressive collapse was obtained by using the virtual work method; i.e., using the equilibrium of the external work done by gravity load due to loss of a column and the internal work done by plastic rotation of beams. According to the nonlinear dynamic analysis results, the model structures designed only for normal load turned out to have strong potential for progressive collapse whereas the structures designed by plastic design concept for progressive collapse satisfied the failure criterion recommended by the GSA code. 

  1. Performance of Globally Linearized Controller and Two Region Fuzzy Logic Controller on a Nonlinear Process

    Directory of Open Access Journals (Sweden)

    N. Jaya

    2008-10-01

    Full Text Available In this work, a design and implementation of a Conventional PI controller, single region fuzzy logic controller, two region fuzzy logic controller and Globally Linearized Controller (GLC for a two capacity interacting nonlinear process is carried out. The performance of this process using single region FLC, two region FLC and GLC are compared with the performance of conventional PI controller about an operating point of 50 %. It has been observed that GLC and two region FLC provides better performance. Further, this procedure is also validated by real time experimentation using dSPACE.

  2. Nonlinear dynamics of three-magnon process driven by ferromagnetic resonance in yttrium iron garnet

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, R. O. [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Centro Interdisciplinar de Ciências da Natureza, Universidade Federal da Integração Latino-Americana, 85867-970 Foz do Iguaçu, PR (Brazil); Holanda, J.; Azevedo, A.; Rezende, S. M., E-mail: rezende@df.ufpe.br [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Vilela-Leão, L. H. [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Centro Acadêmico do Agreste, Universidade Federal de Pernambuco, 55002-970 Caruaru, PE (Brazil); Rodríguez-Suárez, R. L. [Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago (Chile)

    2015-05-11

    We report an investigation of the dynamics of the three-magnon splitting process associated with the ferromagnetic resonance (FMR) in films of the insulating ferrimagnet yttrium iron garnet (YIG). The experiments are performed with a 6 μm thick YIG film close to a microstrip line fed by a microwave generator operating in the 2–6 GHz range. The magnetization precession is driven by the microwave rf magnetic field perpendicular to the static magnetic field, and its dynamics is observed by monitoring the amplitude of the FMR absorption peak. The time evolution of the amplitude reveals that if the frequency is lowered below a critical value of 3.3 GHz, the FMR mode pumps two magnons with opposite wave vectors that react back on the FMR, resulting in a nonlinear dynamics of the magnetization. The results are explained by a model with coupled nonlinear equations describing the time evolution of the magnon modes.

  3. A Quasi-Dynamic Optimal Control Strategy for Non-Linear Multivariable Processes Based upon Non-Quadratic Objective Functions

    Directory of Open Access Journals (Sweden)

    Jens G. Balchen

    1984-10-01

    Full Text Available The problem of systematic derivation of a quasi-dynamic optimal control strategy for a non-linear dynamic process based upon a non-quadratic objective function is investigated. The wellknown LQG-control algorithm does not lead to an optimal solution when the process disturbances have non-zero mean. The relationships between the proposed control algorithm and LQG-control are presented. The problem of how to constrain process variables by means of 'penalty' - terms in the objective function is dealt with separately.

  4. International Conference on Applications in Nonlinear Dynamics

    CERN Document Server

    Longhini, Patrick; Palacios, Antonio

    2017-01-01

    This book presents collaborative research works carried out by experimentalists and theorists around the world in the field of nonlinear dynamical systems. It provides a forum for applications of nonlinear systems while solving practical problems in science and engineering. Topics include: Applied Nonlinear Optics, Sensor, Radar & Communication Signal Processing, Nano Devices, Nonlinear Biomedical Applications, Circuits & Systems, Coupled Nonlinear Oscillator, Precision Timing Devices, Networks, and other contemporary topics in the general field of Nonlinear Science. This book provides a comprehensive report of the various research projects presented at the International Conference on Applications in Nonlinear Dynamics (ICAND 2016) held in Denver, Colorado, 2016. It can be a valuable tool for scientists and engineering interested in connecting ideas and methods in nonlinear dynamics with actual design, fabrication and implementation of engineering applications or devices.

  5. Nonlinear physics of shear Alfvén waves

    International Nuclear Information System (INIS)

    Zonca, Fulvio; Chen, Liu

    2014-01-01

    Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These 'nonlinear equilibria' or 'phase-space zonal structures' dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results

  6. Nonlinear physics of shear Alfvén waves

    Science.gov (United States)

    Zonca, Fulvio; Chen, Liu

    2014-02-01

    Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These "nonlinear equilibria" or "phase-space zonal structures" dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results.

  7. Observation and measurement of interaction-induced dispersive optical nonlinearities in an ensemble of cold rydberg atoms

    DEFF Research Database (Denmark)

    Parigi, V.; Bimbard, E.; Stanojevic, J.

    2012-01-01

    We observe and measure dispersive optical nonlinearities in an ensemble of cold Rydberg atoms placed inside an optical cavity. The experimental results are in agreement with a simple model where the optical nonlinearities are due to the progressive appearance of a Rydberg blockaded volume within...

  8. Electropolishing as a decontamination process: progress and applications

    International Nuclear Information System (INIS)

    Allen, R.P.; Arrowsmith, H.W.; Charlot, L.A.; Hooper, J.L.

    1978-04-01

    Research studies demonstrated the ability of electropolishing to reduce the radiation levels of steel tools and stainless steel vacuum system components, which were heavily contaminated with plutonium oxide, from 1 million dis/min x 100 cm 2 to background in less than 10 min. Other examples of objects that have been decontaminated within minutes using electropolishing include hot cell manipulator assemblies, analytical instrument components, laboratory transfer containers, offsite shipping containers, fission product storage capsules, laboratory animal cages, and nuclear reactor process tube components. One of the major activities of this research has been the establishment and intensive operation of a 400-gal immersion electropolishing system. Progress has also been made in developing in situ electropolishing techniques that can be used to decontaminate metallic surfaces that cannot readily be transported to or immersed in a conventional electropolishing tank. Sectioning/pretreatment studies are under way to develop and demonstrate optimum disassembly, sectioning, surface preparation, and gross contamination removal procedures. Arc saw, plasma arc torch, and explosive cutting techniques are being evaluated in terms of the thickness and characteristics of the disturbed metal layer. Some of the pretreatment methods under consideration for removal of paint, grease, corrosion layers, and gross contamination include vibratory finishing, ultrasonics, dry and liquid abrasive blasting, and high-pressure spray systems. Other supporting studies are also in progress to provide a sound technical basis for scale-up and widespread application of this new decontamination process. 44 figures

  9. Nonlinear Optics and Applications

    Science.gov (United States)

    Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)

    2007-01-01

    Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.

  10. Nonlinearities in Periodic Structures and Metamaterials

    CERN Document Server

    Denz, Cornelia; Kivshar, Yuri S

    2010-01-01

    Optical information processing of the future is associated with a new generation of compact nanoscale optical devices operating entirely with light. Moreover, adaptive features such as self-guiding, reconfiguration and switching become more and more important. Nonlinear devices offer an enormous potential for these applications. Consequently, innovative concepts for all-optical communication and information technologies based on nonlinear effects in photonic-crystal physics and nanoscale devices as metamaterials are of high interest. This book focuses on nonlinear optical phenomena in periodic media, such as photonic crystals, optically-induced, adaptive lattices, atomic lattices or metamaterials. The main purpose is to describe and overview new physical phenomena that result from the interplay between nonlinearities and structural periodicities and is a guide to actual and future developments for the expert reader in optical information processing, as well as in the physics of cold atoms in optical lattices.

  11. Nonlinear switching dynamics in a photonic-crystal nanocavity

    International Nuclear Information System (INIS)

    Yu, Yi; Palushani, Evarist; Heuck, Mikkel; Vukovic, Dragana; Peucheret, Christophe; Yvind, Kresten; Mork, Jesper

    2014-01-01

    We report the experimental observation of nonlinear switching dynamics in an InP photonic crystal nanocavity. Usually, the regime of relatively small cavity perturbations is explored, where the signal transmitted through the cavity follows the temporal variation of the cavity resonance. When the cavity is perturbed by strong pulses, we observe several nonlinear effects, i.e., saturation of the switching contrast, broadening of the switching window, and even initial reduction of the transmission. The effects are analyzed by comparison with nonlinear coupled mode theory and explained in terms of large dynamical variations of the cavity resonance in combination with nonlinear losses. The results provide insight into the nonlinear optical processes that govern the dynamics of nanocavities and are important for applications in optical signal processing, where one wants to optimize the switching contrast.

  12. Nonlinear switching dynamics in a photonic-crystal nanocavity

    DEFF Research Database (Denmark)

    Yu, Yi; Palushani, Evarist; Heuck, Mikkel

    2014-01-01

    We report the experimental observation of nonlinear switching dynamics in an InP photonic crystal nanocavity. Usually, the regime of relatively small cavity perturbations is explored, where the signal transmitted through the cavity follows the temporal variation of the cavity resonance. When...... of large dynamical variations of the cavity resonance in combination with nonlinear losses. The results provide insight into the nonlinear optical processes that govern the dynamics of nanocavities and are important for applications in optical signal processing, where one wants to optimize the switching...... the cavity is perturbed by strong pulses, we observe several nonlinear effects, i.e., saturation of the switching contrast, broadening of the switching window, and even initial reduction of the transmission. The effects are analyzed by comparison with nonlinear coupled mode theory and explained in terms...

  13. Nonlinear elliptic equations of the second order

    CERN Document Server

    Han, Qing

    2016-01-01

    Nonlinear elliptic differential equations are a diverse subject with important applications to the physical and social sciences and engineering. They also arise naturally in geometry. In particular, much of the progress in the area in the twentieth century was driven by geometric applications, from the Bernstein problem to the existence of Kähler-Einstein metrics. This book, designed as a textbook, provides a detailed discussion of the Dirichlet problems for quasilinear and fully nonlinear elliptic differential equations of the second order with an emphasis on mean curvature equations and on Monge-Ampère equations. It gives a user-friendly introduction to the theory of nonlinear elliptic equations with special attention given to basic results and the most important techniques. Rather than presenting the topics in their full generality, the book aims at providing self-contained, clear, and "elementary" proofs for results in important special cases. This book will serve as a valuable resource for graduate stu...

  14. Nonlinear quantum electrodynamic and electroweak processes in strong laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Meuren, Sebastian

    2015-06-24

    Various nonlinear electrodynamic and electroweak processes in strong plane-wave laser fields are considered with an emphasis on short-pulse effects. In particular, the momentum distribution of photoproduced electron-positron pairs is calculated numerically and a semiclassical interpretation of its characteristic features is established. By proving the optical theorem, compact double-integral expressions for the total pair-creation probability are obtained and numerically evaluated. The exponential decay of the photon wave function in a plane wave is included by solving the Schwinger-Dyson equations to leading-order in the quasistatic approximation. In this respect, the polarization operator in a plane wave is investigated and its Ward-Takahashi identity verified. A classical analysis indicates that a photoproduced electron-positron pair recollides for certain initial conditions. The contributions of such recollision processes to the polarization operator are identified and calculated both analytically and numerically. Furthermore, the existence of nontrivial electron-spin dynamics induced by quantum fluctuations is verified for ultra-short laser pulses. Finally, the exchange of weak gauge bosons is considered, which is essential for neutrino-photon interactions. In particular, the axial-vector-vector coupling tensor is calculated and the so-called Adler-Bell-Jackiw (ABJ) anomaly investigated.

  15. RESEARCH OF LINEAR AND NONLINEAR PROCESSES AT FEMTOSECOND LASER RADIATION PROPAGATION IN THE MEDIUM SIMULATING THE HUMAN EYE VITREOUS

    Directory of Open Access Journals (Sweden)

    P. Y. Rogov

    2015-09-01

    Full Text Available The paper deals with mathematical model of linear and nonlinear processes occurring at the propagation of femtosecond laser pulses in the vitreous of the human eye. Methods of computing modeling are applied for the nonlinear spectral equation solution describing the dynamics of a two-dimensional TE-polarized radiation in a homogeneous isotropic medium with cubic fast-response nonlinearity without the usage of slowly varying envelope approximation. Environments close to the optical media parameters of the eye were used for the simulation. The model of femtosecond radiation propagation takes into account the process dynamics for dispersion broadening of pulses in time and the occurence of the self-focusing near the retina when passing through the vitreous body of the eye. Dependence between the pulse duration on the retina has been revealed and the duration of the input pulse and the values of power density at which there is self-focusing have been found. It is shown that the main mechanism of radiation damage with the use of titanium-sapphire laser is photoionization. The results coincide with those obtained by the other scientists, and are usable for creation Russian laser safety standards for femtosecond laser systems.

  16. Identification of Nonlinear Dynamic Systems Possessing Some Non-linearities

    Directory of Open Access Journals (Sweden)

    Y. N. Pavlov

    2015-01-01

    system of the second-order with nonlinearity of the type "quadratic friction" in combination with nonlinearity of the type "dry friction", was developed a software to simulate a process for providing pseudo experimental data containing random accuracy and to determine the parameters of the system. A conducted computational experiment enabled an estimate of the accuracy with which the proposed algorithm determines the parameters of the system. The illustrative numerical simulation has demonstrated that with using the proposed nonlinear dynamic system identification algorithm in frequency hodograph the accuracy of determining the coefficient values of the frequency transfer function of the second order system with a dry and quadratic friction is comparable with the range of measurement accuracy of experimental samples of this system hodograph. Well-known publications do not mention this identification method of the nonlinear dynamic systems. The nonlinear dynamical systems identification method the article describes can find application when determining parameters of various kinds of actuators. The using method of harmonic linearization and identification of dynamical systems by hodographs is promising for solving the problem of the identification of nonlinear systems with different types of nonlinearities.

  17. Nonlinear optical microscopy for histology of fresh normal and cancerous pancreatic tissues.

    Directory of Open Access Journals (Sweden)

    Wenyan Hu

    Full Text Available BACKGROUND: Pancreatic cancer is a lethal disease with a 5-year survival rate of only 1-5%. The acceleration of intraoperative histological examination would be beneficial for better management of pancreatic cancer, suggesting an improved survival. Nonlinear optical methods based on two-photon excited fluorescence (TPEF and second harmonic generation (SHG of intrinsic optical biomarkers show the ability to visualize the morphology of fresh tissues associated with histology, which is promising for real-time intraoperative evaluation of pancreatic cancer. METHODOLOGY/PRINCIPAL FINDINGS: In order to investigate whether the nonlinear optical imaging methods have the ability to characterize pancreatic histology at cellular resolution, we studied different types of pancreatic tissues by using label-free TPEF and SHG. Compared with other routine methods for the preparation of specimens, fresh tissues without processing were found to be most suitable for nonlinear optical imaging of pancreatic tissues. The detailed morphology of the normal rat pancreas was observed and related with the standard histological images. Comparatively speaking, the preliminary images of a small number of chemical-induced pancreatic cancer tissues showed visible neoplastic differences in the morphology of cells and extracellular matrix. The subcutaneous pancreatic tumor xenografts were further observed using the nonlinear optical microscopy, showing that most cells are leucocytes at 5 days after implantation, the tumor cells begin to proliferate at 10 days after implantation, and the extracellular collagen fibers become disordered as the xenografts grow. CONCLUSIONS/SIGNIFICANCE: In this study, nonlinear optical imaging was used to characterize the morphological details of fresh pancreatic tissues for the first time. We demonstrate that it is possible to provide real-time histological evaluation of pancreatic cancer by the nonlinear optical methods, which present an

  18. Nonlinear closure relations theory for transport processes in nonequilibrium systems

    International Nuclear Information System (INIS)

    Sonnino, Giorgio

    2009-01-01

    A decade ago, a macroscopic theory for closure relations has been proposed for systems out of Onsager's region. This theory is referred to as the thermodynamic field theory (TFT). The aim of this work was to determine the nonlinear flux-force relations that respect the thermodynamic theorems for systems far from equilibrium. We propose a formulation of the TFT where one of the basic restrictions, namely, the closed-form solution for the skew-symmetric piece of the transport coefficients, has been removed. In addition, the general covariance principle is replaced by the De Donder-Prigogine thermodynamic covariance principle (TCP). The introduction of TCP requires the application of an appropriate mathematical formalism, which is referred to as the entropy-covariant formalism. By geometrical arguments, we prove the validity of the Glansdorff-Prigogine universal criterion of evolution. A new set of closure equations determining the nonlinear corrections to the linear ('Onsager') transport coefficients is also derived. The geometry of the thermodynamic space is non-Riemannian. However, it tends to be Riemannian for high values of the entropy production. In this limit, we recover the transport equations found by the old theory. Applications of our approach to transport in magnetically confined plasmas, materials submitted to temperature, and electric potential gradients or to unimolecular triangular chemical reactions can be found at references cited herein. Transport processes in tokamak plasmas are of particular interest. In this case, even in the absence of turbulence, the state of the plasma remains close to (but, it is not in) a state of local equilibrium. This prevents the transport relations from being linear.

  19. The evolution of a localized nonlinear wave of the Kelvin-Helmholtz instability with gravity

    Science.gov (United States)

    Orazzo, Annagrazia; Hoepffner, Jérôme

    2012-11-01

    At the interface between two fluids of different density and in the presence of gravity, there are well known periodic surface waves which can propagate for long distances with little attenuation, as it is for instance the case at the surface of the sea. If wind is present, these waves progressively accumulate energy as they propagate and grow to large sizes—this is the Kelvin-Helmholtz instability. On the other hand, we show in this paper that for a given wind strength, there is potential for the growth of a localized nonlinear wave. This wave can reach a size such that the hydrostatic pressure drop from top to bottom equals the stagnation pressure of the wind. This process for the disruption of the flat interface is localized and nonlinear. We study the properties of this wave using numerical simulations of the Navier-Stokes equations.

  20. EGS Richardson AGU Chapman NVAG3 Conference: Nonlinear Variability in Geophysics: scaling and multifractal processes

    OpenAIRE

    D. Schertzer; S. Lovejoy; S. Lovejoy

    1994-01-01

    1. The conference The third conference on "Nonlinear VAriability in Geophysics: scaling and multifractal processes" (NVAG 3) was held in Cargese, Corsica, Sept. 10-17, 1993. NVAG3 was joint American Geophysical Union Chapman and European Geophysical Society Richardson Memorial conference, the first specialist conference jointly sponsored by the two organizations. It followed NVAG1 (Montreal, Aug. 1986), NVAG2 (Paris, June 1988; Schertzer and Lovejoy, 1991), five consecutive annual ...

  1. EGS Richardson AGU Chapman NVAG3 Conference: Nonlinear Variability in Geophysics: scaling and multifractal processes

    OpenAIRE

    Schertzer , D; Lovejoy , S.

    1994-01-01

    International audience; 1. The conference The third conference on "Nonlinear VAriability in Geophysics: scaling and multifractal processes" (NVAG 3) was held in Cargese, Corsica, Sept. 10-17, 1993. NVAG3 was joint American Geophysical Union Chapman and European Geophysical Society Richardson Memorial conference, the first specialist conference jointly sponsored by the two organizations. It followed NVAG1 (Montreal, Aug. 1986), NVAG2 (Paris, June 1988; Schertzer and Lovejoy, 1991), five conse...

  2. Recent Progress in Large-Scale Structure

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    I will discuss recent progress in the understanding of how to model galaxy clustering. While recent analyses have focussed on the baryon acoustic oscillations as a probe of cosmology, galaxy redshift surveys contain a lot more information than the acoustic scale. In extracting this additional information three main issues need to be well understood: nonlinear evolution of matter fluctuations, galaxy bias and redshift-space distortions. I will present recent progress in modeling these three effects that pave the way to constraining cosmology and galaxy formation with increased precision.

  3. Nonlinear acoustic waves in micro-inhomogeneous solids

    CERN Document Server

    Nazarov, Veniamin

    2014-01-01

    Nonlinear Acoustic Waves in Micro-inhomogeneous Solids covers the broad and dynamic branch of nonlinear acoustics, presenting a wide variety of different phenomena from both experimental and theoretical perspectives. The introductory chapters, written in the style of graduate-level textbook, present a review of the main achievements of classic nonlinear acoustics of homogeneous media. This enables readers to gain insight into nonlinear wave processes in homogeneous and micro-inhomogeneous solids and compare it within the framework of the book. The subsequent eight chapters covering: Physical m

  4. The periodic structure of the natural record, and nonlinear dynamics.

    Science.gov (United States)

    Shaw, H.R.

    1987-01-01

    This paper addresses how nonlinear dynamics can contribute to interpretations of the geologic record and evolutionary processes. Background is given to explain why nonlinear concepts are important. A resume of personal research is offered to illustrate why I think nonlinear processes fit with observations on geological and cosmological time series data. The fabric of universal periodicity arrays generated by nonlinear processes is illustrated by means of a simple computer mode. I conclude with implications concerning patterns of evolution, stratigraphic boundary events, and close correlations of major geologically instantaneous events (such as impacts or massive volcanic episodes) with any sharply defined boundary in the geologic column. - from Author

  5. PROGRESS IN THE PEELING-BALLOONING MODEL OF ELMS: NUMERICAL STUDIES OF 3D NONLINEAR ELM DYNAMICS

    International Nuclear Information System (INIS)

    SNYDER, P.B.; WILSON, H.R.; XU, X.Q.

    2004-01-01

    Nonlinear simulations with the 3D electromagnetic two-fluid BOUT code are employed to study the dynamics of edge localized modes (ELMs) driven by intermediate wavelength peeling-ballooning modes. It is found that the early behavior of the modes is similar to expectations from linear, ideal peeling-ballooning mode theory, with the modes growing linearly at a fraction of the Alfven frequency. In the nonlinear phase, the modes grow explosively, forming a number of extended filaments which propagate rapidly from the outer closed flux region into the open flux region toward the outboard wall. Similarities to non-linear ballooning theory, as well as additional complexities are observed. Comparison to observations reveals a number of similarities. Implications of the simulations and proposals for the dynamics of the full ELM crash are discussed

  6. A process for developing and revising a learning progression on sea level rise using learners' explanations

    Science.gov (United States)

    McDonald, Robert Christopher

    The purpose of this study was to explore the process of developing a learning progression (LP) on constructing explanations about sea level rise. I used a learning progressions theoretical framework informed by the situated cognition learning theory. During this exploration, I explicitly described my decision-making process as I developed and revised a hypothetical learning progression. Correspondingly, my research question was: What is a process by which a hypothetical learning progression on sea level rise is developed into an empirical learning progression using learners' explanations? To answer this question, I used a qualitative descriptive single case study with multiple embedded cases (Yin, 2014) that employed analytic induction (Denzin, 1970) to analyze data collected on middle school learners (grades 6-8). Data sources included written artifacts, classroom observations, and semi-structured interviews. Additionally, I kept a researcher journal to track my thinking about the learning progression throughout the research study. Using analytic induction to analyze collected data, I developed eight analytic concepts: participant explanation structures varied widely, global warming and ice melt cause sea level rise, participants held alternative conceptions about sea level rise, participants learned about thermal expansion as a fundamental aspect of sea level rise, participants learned to incorporate authentic scientific data, participants' mental models of the ocean varied widely, sea ice melt contributes to sea level rise, and participants held vague and alternative conceptions about how pollution impacts the ocean. I started with a hypothetical learning progression, gathered empirical data via various sources (especially semi-structured interviews), revised the hypothetical learning progression in response to those data, and ended with an empirical learning progression comprising six levels of learner thinking. As a result of developing an empirically based LP

  7. Elementary particle interactions. Progress report, October 1, 1994--September 30, 1995

    International Nuclear Information System (INIS)

    Bugg, W.M.; Condo, G.T.; Handler, T.; Hart, E.L.; Read, K.; Siopsis, G.; Ward, B.F.L.

    1995-10-01

    This year has been a busy and demanding one with completion of a long SLD run, much progress on light quark states from E-687 resulting in strong evidence for two new states, observation in E-144 of non-linear Compton scattering (multiphoton absorption by electrons) up to N-4 and initial evidence for e + e - pair production in Compton process. The authors have also made considerable progress toward preparation for a n-bar n oscillation experiment and have carried out experimental studies of quartz fiber calorimetry for SLD polarimeter and forward calorimeter for CMS and LHC including a thorough set of gamma ray and neutron radiation damage studies on quartz fiber. Two graduate students received their Ph.D.s this year, Kathy Danyo Blackett on data from Fermilab E-687 and Sharon White on SLD radiative Bhabha scattering

  8. Non-linear time reversal ultrasonic pseudo-tomography

    Czech Academy of Sciences Publication Activity Database

    Převorovský, Zdeněk; Vejvodová, Šárka; Krofta, Josef; Převorovský, David

    2011-01-01

    Roč. 6, 3/4 (2011), s. 206-213 ISSN 1741-8410. [NDT in Progress. Praha, 05.11.2007-07.11.2007] R&D Projects: GA MPO(CZ) FR-TI1/274 Institutional research plan: CEZ:AV0Z20760514 Keywords : NDT * nonlinear elastic wave spectroscopy * time reversal mirrors * ultrasonic pseudo-tomography Subject RIV: BI - Acoustics http://www.inderscience.com/offer.php?id=43216

  9. Progresses in the studies of adiabatic splitting of charged particle beams by crossing nonlinear resonances

    Directory of Open Access Journals (Sweden)

    A. Franchi

    2009-01-01

    Full Text Available The multiturn extraction from a circular particle accelerator is performed by trapping the beam inside stable islands of the horizontal phase space. In general, by crossing a resonance of order n, n+1 beamlets are created whenever the resonance is stable, whereas if the resonance is unstable the beam is split in n parts. Islands are generated by nonlinear magnetic fields, whereas the trapping is realized by means of a given tune variation so to cross adiabatically a resonance. Experiments at the CERN Proton Synchrotron carried out in 2007 gave the evidence of protons trapped in stable islands while crossing the one-third and one-fifth resonances. Dedicated experiments were also carried out to study the trapping process and its reversibility properties. The results of these measurement campaigns are presented and discussed in this paper.

  10. Progresses in the Studies of Adiabatic Splitting of Charged Particles Beams by Crossing Nonlinear Resonances

    CERN Document Server

    Franchi, A; Giovannozzi, M; CERN. Geneva. BE Department

    2009-01-01

    The multi-turn extraction from a circular particle accelerator is performed by trapping the beam inside stable islands of the horizontal phase space. In general, by crossing a resonance of order n, n+1 beamlets are created whenever the resonance is stable, whereas if the resonance is unstable the beam is split in n parts. Islands are generated by non-linear magnetic fields, whereas the trapping is realized by means of a given tune variation so to cross adiabatically a resonance. Experiments at the CERN Proton Synchrotron carried out in 2007 gave the evidence of protons trapped in stable islands while crossing the one-third and one-fifth resonances. Dedicated experiments were also carried out to study the trapping process and its reversibility properties. The results of these measurement campaigns are presented and discussed in this paper.

  11. On the Sustainability and Progress of Energy Neutral Mineral Processing

    Directory of Open Access Journals (Sweden)

    Frederik Reitsma

    2018-01-01

    Full Text Available A number of primary ores such as phosphate rock, gold-, copper- and rare earth ores contain considerable amounts of accompanying uranium and other critical materials. Energy neutral mineral processing is the extraction of unconventional uranium during primary ore processing to use it, after enrichment and fuel production, to generate greenhouse gas lean energy in a nuclear reactor. Energy neutrality is reached if the energy produced from the extracted uranium is equal to or larger than the energy required for primary ore processing, uranium extraction, -conversion, -enrichment and -fuel production. This work discusses the sustainability of energy neutral mineral processing and provides an overview of the current progress of a multinational research project on that topic conducted under the umbrella of the International Atomic Energy Agency.

  12. Mobility as Progressivity: Ranking Income Processes According to Equality of Opportunity

    OpenAIRE

    Roland Benabou; Efe A. Ok

    2001-01-01

    Interest in economic mobility stems largely from its perceived role as an equalizer of opportunities, though not necessarily of outcomes. In this paper we show that this view leads very naturally to a methodology for the measurement of social mobility which has strong parallels with the theory of progressive taxation. We characterize opportunity--equalizing mobility processes, and provide simple criteria to determine when one process is more equalizing than another. We then explain how this m...

  13. Qualitative aspects of nonlinear wave motion: Complexity and simplicity

    International Nuclear Information System (INIS)

    Engelbrecht, J.

    1993-01-01

    The nonlinear wave processes possess many qualitative properties which cannot be described by linear theories. In this presentation, an attempt is made to systematize the main aspects of this fascinating area. The sources of nonlinearities are analyzed in order to understand why and how the nonlinear mathematical models are formulated. The technique of evolution equations is discussed then as a main mathematical tool to separate multiwave processes into single waves. The evolution equations give concise but in many cases sufficient description of wave processes in solids permitting to analyze spectral changes, phase changes and velocities, coupling of waves, and interaction of nonlinearities with other physical effects of the same order. Several new problems are listed. Knowing the reasons, the seemingly complex problems can be effectively analyzed. 61 refs

  14. Nonlinear Phononic Periodic Structures and Granular Crystals

    Science.gov (United States)

    2012-02-10

    and boron-nitride nanotubes, and attributed the rectification to nonlinear processes [21]. Based on these studies, several following works have...nonlinear mass-spring lattices by E. Fermi, J. Pasta , and S. Ulam in 1955 [27], there has been a wealth of interest in the dynamics of nonlinear...lattices. Using one of the first modern computers, Fermi, Pasta , and Ulam (FPU) studied a system where the restoring (spring) force between two adjacent

  15. Three contextual frameworks for siblingships: nonlinear thinking, disposition, and phallocentrism.

    Science.gov (United States)

    Lament, Claudia

    2013-01-01

    This discussion of Juliet Mitchell's paper "Siblings: Thinking Theory" places her work within the context of three frameworks: nonlinear thinking, disposition, and phallocentrism. The nonlinear dimension of the developmental process demonstrates how the sibling experience is not static, but rather is subject to a natural transmogrification toward new adaptive forms and meanings that occur over the sequential progress of organizational growth. Secondly, dispositional variables tend to be overlooked in their role in how brothers and sisters engage one another, titrate closeness and separateness, and creatively live out their love, admiration, hate, envy, and rivalry with each other. Sensitivities in dispositional leanings, such as special empathic qualities, may even serve to mitigate sibling turbulence. Lastly, the phallocentricity in Western societies privileges an implicitly male perspective that envisions sibling relationships in terms of threatening competitors, as the common linguistic phrase sibling rivalry suggests. This inflection in culture disregards more-expanding qualities in object relationships and aim-giving strategies that are exchanged in sibling play. These variables are not the sole contributors to the sibling experience, but a sampling of influences both from within and outside the child that affect that experience.

  16. Nonlinear magnetohydrodynamics. Progress report, December 15, 1977--December 14, 1978

    International Nuclear Information System (INIS)

    Vahala, G.

    1978-01-01

    Incompressible MHD turbulence is considered for both 2D and 3D plasmas in cylindrical geometry. It is found that for virtually all initial conditions (including quiescent ones) the plasma is nonlinearly unstable in that mean square turbulent velocity fields develop. However, there is a unique stable state of extremal magnetic helicity/energy ratio for which no turbulent fields develop [in 2D with B/sub z/ = const., it is the state of extremal mean square vector potential/energy]. It is force free and is just the Taylor state. A conjecture can be put forward (based on a dual cascade argument for resistive MHD) to explain Taylor's hypothesis. In spherical geometry, the stable axisymmetric state is the spheromak

  17. Mathematical modeling and applications in nonlinear dynamics

    CERN Document Server

    Merdan, Hüseyin

    2016-01-01

    The book covers nonlinear physical problems and mathematical modeling, including molecular biology, genetics, neurosciences, artificial intelligence with classical problems in mechanics and astronomy and physics. The chapters present nonlinear mathematical modeling in life science and physics through nonlinear differential equations, nonlinear discrete equations and hybrid equations. Such modeling can be effectively applied to the wide spectrum of nonlinear physical problems, including the KAM (Kolmogorov-Arnold-Moser (KAM)) theory, singular differential equations, impulsive dichotomous linear systems, analytical bifurcation trees of periodic motions, and almost or pseudo- almost periodic solutions in nonlinear dynamical systems. Provides methods for mathematical models with switching, thresholds, and impulses, each of particular importance for discontinuous processes Includes qualitative analysis of behaviors on Tumor-Immune Systems and methods of analysis for DNA, neural networks and epidemiology Introduces...

  18. Multi-frequency Defect Selective Imaging via Nonlinear Ultrasound

    Science.gov (United States)

    Solodov, Igor; Busse, Gerd

    The concept of defect-selective ultrasonic nonlinear imaging is based on visualization of strongly nonlinear inclusions in the form of localized cracked defects. For intense excitation, the ultrasonic response of defects is affected by mechanical constraint between their fragments that makes their vibrations extremely nonlinear. The cracked flaws, therefore, efficiently generate multiple new frequencies, which can be used as a nonlinear "tag" to detect and image them. In this paper, the methodologies of nonlinear scanning laser vibrometry (NSLV) and nonlinear air-coupled emission (NACE) are applied for nonlinear imaging of various defects in hi-tech and constructional materials. A broad database obtained demonstrates evident advantages of the nonlinear approach over its linear counterpart. The higher-order nonlinear frequencies provide increase in signal-to-noise ratio and enhance the contrast of imaging. Unlike conventional ultrasonic instruments, the nonlinear approach yields abundant multi-frequency information on defect location. The application of image recognition and processing algorithms is described and shown to improve reliability and quality of ultrasonic imaging.

  19. NONLINEAR MODEL PREDICTIVE CONTROL OF CHEMICAL PROCESSES

    Directory of Open Access Journals (Sweden)

    SILVA R. G.

    1999-01-01

    Full Text Available A new algorithm for model predictive control is presented. The algorithm utilizes a simultaneous solution and optimization strategy to solve the model's differential equations. The equations are discretized by equidistant collocation, and along with the algebraic model equations are included as constraints in a nonlinear programming (NLP problem. This algorithm is compared with the algorithm that uses orthogonal collocation on finite elements. The equidistant collocation algorithm results in simpler equations, providing a decrease in computation time for the control moves. Simulation results are presented and show a satisfactory performance of this algorithm.

  20. Computation of nonlinear water waves with a high-order Boussinesq model

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Madsen, Per A.; Bingham, Harry

    2005-01-01

    Computational highlights from a recently developed high-order Boussinesq model are shown. The model is capable of treating fully nonlinear waves (up to the breaking point) out to dimensionless depths of (wavenumber times depth) kh \\approx 25. Cases considered include the study of short......-crested waves in shallow/deep water, resulting in hexagonal/rectangular surface patterns; crescent waves, resulting from unstable perturbations of plane progressive waves; and highly-nonlinear wave-structure interactions. The emphasis is on physically demanding problems, and in eachcase qualitative and (when...

  1. Nonlinear Multiantenna Detection Methods

    Directory of Open Access Journals (Sweden)

    Chen Sheng

    2004-01-01

    Full Text Available A nonlinear detection technique designed for multiple-antenna assisted receivers employed in space-division multiple-access systems is investigated. We derive the optimal solution of the nonlinear spatial-processing assisted receiver for binary phase shift keying signalling, which we refer to as the Bayesian detector. It is shown that this optimal Bayesian receiver significantly outperforms the standard linear beamforming assisted receiver in terms of a reduced bit error rate, at the expense of an increased complexity, while the achievable system capacity is substantially enhanced with the advent of employing nonlinear detection. Specifically, when the spatial separation expressed in terms of the angle of arrival between the desired and interfering signals is below a certain threshold, a linear beamformer would fail to separate them, while a nonlinear detection assisted receiver is still capable of performing adequately. The adaptive implementation of the optimal Bayesian detector can be realized using a radial basis function network. Two techniques are presented for constructing block-data-based adaptive nonlinear multiple-antenna assisted receivers. One of them is based on the relevance vector machine invoked for classification, while the other on the orthogonal forward selection procedure combined with the Fisher ratio class-separability measure. A recursive sample-by-sample adaptation procedure is also proposed for training nonlinear detectors based on an amalgam of enhanced -means clustering techniques and the recursive least squares algorithm.

  2. Introduction to nonlinear acoustics

    Science.gov (United States)

    Bjørnø, Leif

    2010-01-01

    A brief review of the basic principles of fluid mechanics needed for development of linear and nonlinear ultrasonic concepts will be given. The fundamental equations of nonlinear ultrasonics will be derived and their physical properties explained. It will be shown how an originally monochromatic finite-amplitude ultrasonic wave, due to nonlinear effects, will distort during its propagation in time and space to form higher harmonics to its fundamental frequency. The concepts of shock formation will be presented. The material nonlinearity, described by the nonlinearity parameter B/A of the material, and the convective nonlinearity, described by the ultrasonic Mach Number, will be explained. Two procedures for determination of B/A will briefly be described and some B/A-values characterizing biological materials will be presented. Shock formation, described by use of the Goldberg Number,and Ultrasonic Saturation will be discussed.. An introduction to focused ultrasonic fields will be given and it will be shown how the ultrasonic intensity will vary axially and laterally in and near the focal region and how the field parameters of interest to biomedical applications may be described by use of the KZK-Model. Finally, an introduction will be given to the parametric acoustic array formed by mixing and interaction of two monochromatic, finite-amplitude ultrasonic waves in a liquid and the potentials of this mixing process in biomedical ultrasound will briefly be mentioned.

  3. Coherent Nonlinear Longitudinal Phenomena in Unbunched Synchrotron Beams

    Energy Technology Data Exchange (ETDEWEB)

    Spentzouris, Linda Klamp [Northwestern U.

    1996-12-01

    Coherent nonlinear longitudinal phenomena are studied in proton and antiproton synchrotron beams. Theoretical development done in the eld of plasma physics for resonant wave-wave coupling is applied to the case of a particle beam. Results are given from experiments done to investigate the nature of the weakly nonlinear three-wave coupling processes known as parametric coupling and echoes. Storage ring impedances are shown to amplify the parametric coupling process, underlining the possibility that machine impedances might be extracted from coupling events instigated by external excitation. Echo amplitudes are demonstrated to be sensitive to diusion processes, such as intrabeam scattering, which degrade a beam. The result of a fast diusion rate measurement using echo amplitudes is presented. In addition to the wave-wave interactions, observations of moderately nonlinear waveparticle interactions are also included. The manifestations of these interactions that are documented include nonlinear Landau damping, higher harmonic generation, and signs of the possible formation of solitons.

  4. Conference on High Performance Software for Nonlinear Optimization

    CERN Document Server

    Murli, Almerico; Pardalos, Panos; Toraldo, Gerardo

    1998-01-01

    This book contains a selection of papers presented at the conference on High Performance Software for Nonlinear Optimization (HPSN097) which was held in Ischia, Italy, in June 1997. The rapid progress of computer technologies, including new parallel architec­ tures, has stimulated a large amount of research devoted to building software environments and defining algorithms able to fully exploit this new computa­ tional power. In some sense, numerical analysis has to conform itself to the new tools. The impact of parallel computing in nonlinear optimization, which had a slow start at the beginning, seems now to increase at a fast rate, and it is reasonable to expect an even greater acceleration in the future. As with the first HPSNO conference, the goal of the HPSN097 conference was to supply a broad overview of the more recent developments and trends in nonlinear optimization, emphasizing the algorithmic and high performance software aspects. Bringing together new computational methodologies with theoretical...

  5. All-Optical Control of Linear and Nonlinear Energy Transfer via the Zeno Effect

    Science.gov (United States)

    Guo, Xiang; Zou, Chang-Ling; Jiang, Liang; Tang, Hong X.

    2018-05-01

    Microresonator-based nonlinear processes are fundamental to applications including microcomb generation, parametric frequency conversion, and harmonics generation. While nonlinear processes involving either second- (χ(2 )) or third- (χ(3 )) order nonlinearity have been extensively studied, the interaction between these two basic nonlinear processes has seldom been reported. In this paper we demonstrate a coherent interplay between second- and third- order nonlinear processes. The parametric (χ(2 ) ) coupling to a lossy ancillary mode shortens the lifetime of the target photonic mode and suppresses its density of states, preventing the photon emissions into the target photonic mode via the Zeno effect. Such an effect is then used to control the stimulated four-wave mixing process and realize a suppression ratio of 34.5.

  6. Nonlinear effects in water waves

    International Nuclear Information System (INIS)

    Janssen, P.A.E.M.

    1989-05-01

    This set of lecture notes on nonlinear effects in water waves was written on the occasion of the first ICTP course on Ocean Waves and Tides held from 26 September until 28 October 1988 in Trieste, Italy. It presents a summary and unification of my knowledge on nonlinear effects of gravity waves on an incompressible fluid without vorticity. The starting point of the theory is the Hamiltonian for water waves. The evolution equations of both weakly nonlinear, shallow water and deep water gravity waves are derived by suitable approximation of the energy of the waves, resulting in the Korteweg-de Vries equation and the Zakharov equation, respectively. Next, interesting properties of the KdV equation (solitons) and the Zakharov equation (instability of a finite amplitude wave train) are discussed in some detail. Finally, the evolution of a homogeneous, random wave field due to resonant four wave processes is considered and the importance of this process for ocean wave prediction is pointed out. 38 refs, 21 figs

  7. Nonlinear Elliptic Differential Equations with Multivalued Nonlinearities

    Indian Academy of Sciences (India)

    In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all R R . Assuming the existence of an upper and of a lower ...

  8. A Multiscale, Nonlinear, Modeling Framework Enabling the Design and Analysis of Composite Materials and Structures

    Science.gov (United States)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2012-01-01

    A framework for the multiscale design and analysis of composite materials and structures is presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at the structural scale. Example applications of the multiscale framework are presented for the stochastic progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on the nonlinear response of woven polymer matrix composites.

  9. Nonlinear optics quantum computing with circuit QED.

    Science.gov (United States)

    Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M

    2013-02-08

    One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.

  10. Simulation of an Aspheric Glass Lens Forming Behavior in Progressive GMP Process

    International Nuclear Information System (INIS)

    Chang, Sung Ho; Lee, Young Min; Kang, Jeong Jin; Hong, Seok Kwan; Shin, Gwang Ho; Heo, Young Moo; Jung, Tae Sung

    2007-01-01

    Recently, GMP(Glass Molding Press) process is mainly used to produce aspheric glass lenses. Because glass lens is heated at high temperature above Tg (Transformation Temperature) for forming the glass, the quality of aspheric glass lens is deteriorated by residual stresses which are generated in a aspheric glass lens after forming. In this study, as a fundamental study to develop the mold for progressive GMP process, we conducted a aspheric glass lens forming simulation. Prior to a aspheric glass lens forming simulation, compression and thermal conductivity tests were carried out to obtain mechanical and thermal properties of K-PBK40 which is newly developed material for precision molding, and flow characteristics of K-PBK40 were obtained at high temperature. Then, using the flow characteristics obtained, compression simulation was carried out and compared with the experimental result for the purpose of verifying the obtained flow characteristics. Finally, a glass lens press simulation in progressive GMP process was carried out and we could forecast the shape of deformed glass lenses and residual stresses contribution in the structure of deformed glass lenses after forming

  11. Progress and safety aspects in process heat utilization from nuclear systems

    International Nuclear Information System (INIS)

    Barnert, H.

    1995-01-01

    Report about the Status and the Progress in the Various Programs and Projects in the Federal Republic of Germany in Process Heat Utilization from the High Temperature Reactor and on Recent Changes of the Atomic Law in the Federal Republic of Germany with Big Influence on the Safety of Nuclear Energy Technology. (author)

  12. Progression Analysis and Stage Discovery in Continuous Physiological Processes Using Image Computing

    Directory of Open Access Journals (Sweden)

    Ferrucci Luigi

    2010-01-01

    Full Text Available We propose an image computing-based method for quantitative analysis of continuous physiological processes that can be sensed by medical imaging and demonstrate its application to the analysis of morphological alterations of the bone structure, which correlate with the progression of osteoarthritis (OA. The purpose of the analysis is to quantitatively estimate OA progression in a fashion that can assist in understanding the pathophysiology of the disease. Ultimately, the texture analysis will be able to provide an alternative OA scoring method, which can potentially reflect the progression of the disease in a more direct fashion compared to the existing clinically utilized classification schemes based on radiology. This method can be useful not just for studying the nature of OA, but also for developing and testing the effect of drugs and treatments. While in this paper we demonstrate the application of the method to osteoarthritis, its generality makes it suitable for the analysis of other progressive clinical conditions that can be diagnosed and prognosed by using medical imaging.

  13. An approximation method for nonlinear integral equations of Hammerstein type

    International Nuclear Information System (INIS)

    Chidume, C.E.; Moore, C.

    1989-05-01

    The solution of a nonlinear integral equation of Hammerstein type in Hilbert spaces is approximated by means of a fixed point iteration method. Explicit error estimates are given and, in some cases, convergence is shown to be at least as fast as a geometric progression. (author). 25 refs

  14. Nonlinear radiation generation processes in the auroral acceleration region

    Directory of Open Access Journals (Sweden)

    R. Pottelette

    2017-11-01

    Full Text Available It is known from laboratory plasma experiments that double layers (DLs radiate in the electromagnetic spectrum; but this is only known qualitatively. In these experiments, it was shown that the electron beam created on the high-potential side of a DL generates nonlinear structures which couple to electromagnetic waves and act as a sender antenna. In the Earth auroral region, observations performed by auroral spacecraft have shown that DLs occur naturally in the source region of intense radio emissions called auroral kilometric radiation (AKR. Very high time-, spatial-, and temporal-resolution measurements are needed in order to characterize waves and particle distributions in the vicinity of DLs, which are moving transient structures. We report observations from the FAST satellite of a localized large-amplitude parallel electric field (∼ 300 mV m−1 recorded at the edges of the auroral density cavity. In agreement with laboratory experiments, on the high-potential side of the DL, elementary radiation events are detected. They occur substantially above the local electron gyrofrequency and are associated with the presence of electron holes. The velocity of these nonlinear structures can be derived from the measurement of the Doppler-shifted AKR frequency spectrum above the electron gyrofrequency. The generated electron holes appear as the nonlinear evolution of electrostatic waves generated by the electron–electron two-stream instability because they propagate at about half the beam velocity. It is pointed out that, in the vicinity of a DL, the shape of the electron distribution gives rise to a significant power recorded in the left-hand polarized ordinary (LO mode.

  15. Topological approximation of the nonlinear Anderson model

    Science.gov (United States)

    Milovanov, Alexander V.; Iomin, Alexander

    2014-06-01

    We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrödinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance overlap in phase space, ranging from a fully developed chaos involving Lévy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that the quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on the infinite Cayley tree (Bethe lattice). It is found in the vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t →+∞. The second moment of the associated probability distribution grows with time as a power law ∝ tα, with the exponent α =1/3 exactly. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to the details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of "stripes" propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the

  16. Preisach hysteresis model for non-linear 2D heat diffusion

    International Nuclear Information System (INIS)

    Jancskar, Ildiko; Ivanyi, Amalia

    2006-01-01

    This paper analyzes a non-linear heat diffusion process when the thermal diffusivity behaviour is a hysteretic function of the temperature. Modelling this temperature dependence, the discrete Preisach algorithm as general hysteresis model has been integrated into a non-linear multigrid solver. The hysteretic diffusion shows a heating-cooling asymmetry in character. The presented type of hysteresis speeds up the thermal processes in the modelled systems by a very interesting non-linear way

  17. Progress in the development of the write process

    Energy Technology Data Exchange (ETDEWEB)

    Guffey, F.D.; Fahy, J.; Worman, D.; Lowry, C.; Mones, C. [Western Research Inst., Laramie, WY (United States); Corscadden, T.; Diduch, G. [MEG Energy Corp., Calgary, AB (Canada)

    2009-07-01

    This presentation described the commercialization of a field deployable upgrader developed by the Western Research Institute (WRI). The WRI Thermal Enhancement (WRITE) process was first tested in a 1-bbl/day bench scale unit. Based on the results of the testing program, a 5 bbl/day WRITE Process pilot plant was designed and built. It is currently in operation at WRI's Advanced Technology Center in Laramie, Wyoming. The 5 bbl/day WRITE Process pilot plant includes a 5 bbl/day distillate recovery unit (DRU) and a continuous coker that receives the produced bottoms. The DRU recovers diluent for recycling. The bitumen undergoes thermal conversion in the WRITE reactor to produce a pipeline quality product. The pyrolyzate produced by the coker is blended with the DRU to produce a synthetic crude oil (SCO) that is pipelined to existing refineries. Studies are currently underway at the pilot plant using dilbit produced at EMG's Christina Lake site. This presentation described the experimental program that is in progress. It also discussed the commercial viability of the technology for producing a pipeline quality product. tabs., figs.

  18. Investigation of the spatial distribution of second-order nonlinearity in thermally poled optical fibers.

    Science.gov (United States)

    An, Honglin; Fleming, Simon

    2005-05-02

    The spatial distribution of second-order nonlinearity in thermally poled optical fibers was characterized by second-harmonic microscopy. The second-order nonlinearity was found to be confined to a thin layer close to the anode surface and progressed further into the silica as the poling time increased. Position uncertainty of the anode metal wire was observed to have an effect, as the nonlinear layers were found not always symmetrically located around the nearest points between the anode and cathode. Optical microscopy results were obtained on etched poled fiber cross-sections and compared with those from second-harmonic microscopy.

  19. Progressive sample processing of band selection for hyperspectral imagery

    Science.gov (United States)

    Liu, Keng-Hao; Chien, Hung-Chang; Chen, Shih-Yu

    2017-10-01

    Band selection (BS) is one of the most important topics in hyperspectral image (HSI) processing. The objective of BS is to find a set of representative bands that can represent the whole image with lower inter-band redundancy. Many types of BS algorithms were proposed in the past. However, most of them can be carried on in an off-line manner. It means that they can only be implemented on the pre-collected data. Those off-line based methods are sometime useless for those applications that are timeliness, particular in disaster prevention and target detection. To tackle this issue, a new concept, called progressive sample processing (PSP), was proposed recently. The PSP is an "on-line" framework where the specific type of algorithm can process the currently collected data during the data transmission under band-interleavedby-sample/pixel (BIS/BIP) protocol. This paper proposes an online BS method that integrates a sparse-based BS into PSP framework, called PSP-BS. In PSP-BS, the BS can be carried out by updating BS result recursively pixel by pixel in the same way that a Kalman filter does for updating data information in a recursive fashion. The sparse regression is solved by orthogonal matching pursuit (OMP) algorithm, and the recursive equations of PSP-BS are derived by using matrix decomposition. The experiments conducted on a real hyperspectral image show that the PSP-BS can progressively output the BS status with very low computing time. The convergence of BS results during the transmission can be quickly achieved by using a rearranged pixel transmission sequence. This significant advantage allows BS to be implemented in a real time manner when the HSI data is transmitted pixel by pixel.

  20. Hadron–Quark Combustion as a Nonlinear, Dynamical System

    Science.gov (United States)

    Ouyed, Amir; Ouyed, Rachid; Jaikumar, Prashanth

    2018-03-01

    The hadron-quark combustion front is a system that couples various processes, such as chemical reactions, hydrodynamics, diffusion, and neutrino transport. Previous numerical work has shown that this system is very nonlinear, and can be very sensitive to some of these processes. In these proceedings, we contextualize the hadron-quark combustion as a nonlinear system, subject to dramatic feedback triggered by leptonic weak decays and neutrino transport.

  1. Non-linear multivariable predictive control of an alcoholic fermentation process using functional link networks

    Directory of Open Access Journals (Sweden)

    Luiz Augusto da Cruz Meleiro

    2005-06-01

    Full Text Available In this work a MIMO non-linear predictive controller was developed for an extractive alcoholic fermentation process. The internal model of the controller was represented by two MISO Functional Link Networks (FLNs, identified using simulated data generated from a deterministic mathematical model whose kinetic parameters were determined experimentally. The FLN structure presents as advantages fast training and guaranteed convergence, since the estimation of the weights is a linear optimization problem. Besides, the elimination of non-significant weights generates parsimonious models, which allows for fast execution in an MPC-based algorithm. The proposed algorithm showed good potential in identification and control of non-linear processes.Neste trabalho um controlador preditivo não linear multivariável foi desenvolvido para um processo de fermentação alcoólica extrativa. O modelo interno do controlador foi representado por duas redes do tipo Functional Link (FLN, identificadas usando dados de simulação gerados a partir de um modelo validado experimentalmente. A estrutura FLN apresenta como vantagem o treinamento rápido e convergência garantida, já que a estimação dos seus pesos é um problema de otimização linear. Além disso, a eliminação de pesos não significativos gera modelos parsimoniosos, o que permite a rápida execução em algoritmos de controle preditivo baseado em modelo. Os resultados mostram que o algoritmo proposto tem grande potencial para identificação e controle de processos não lineares.

  2. Differential quadrature method of nonlinear bending of functionally graded beam

    Science.gov (United States)

    Gangnian, Xu; Liansheng, Ma; Wang, Youzhi; Quan, Yuan; Weijie, You

    2018-02-01

    Using the third-order shear deflection beam theory (TBT), nonlinear bending of functionally graded (FG) beams composed with various amounts of ceramic and metal is analyzed utilizing the differential quadrature method (DQM). The properties of beam material are supposed to accord with the power law index along to thickness. First, according to the principle of stationary potential energy, the partial differential control formulae of the FG beams subjected to a distributed lateral force are derived. To obtain numerical results of the nonlinear bending, non-dimensional boundary conditions and control formulae are dispersed by applying the DQM. To verify the present solution, several examples are analyzed for nonlinear bending of homogeneous beams with various edges. A minute parametric research is in progress about the effect of the law index, transverse shear deformation, distributed lateral force and boundary conditions.

  3. Model-free inference of direct network interactions from nonlinear collective dynamics.

    Science.gov (United States)

    Casadiego, Jose; Nitzan, Mor; Hallerberg, Sarah; Timme, Marc

    2017-12-19

    The topology of interactions in network dynamical systems fundamentally underlies their function. Accelerating technological progress creates massively available data about collective nonlinear dynamics in physical, biological, and technological systems. Detecting direct interaction patterns from those dynamics still constitutes a major open problem. In particular, current nonlinear dynamics approaches mostly require to know a priori a model of the (often high dimensional) system dynamics. Here we develop a model-independent framework for inferring direct interactions solely from recording the nonlinear collective dynamics generated. Introducing an explicit dependency matrix in combination with a block-orthogonal regression algorithm, the approach works reliably across many dynamical regimes, including transient dynamics toward steady states, periodic and non-periodic dynamics, and chaos. Together with its capabilities to reveal network (two point) as well as hypernetwork (e.g., three point) interactions, this framework may thus open up nonlinear dynamics options of inferring direct interaction patterns across systems where no model is known.

  4. NONLINEAR EVOLUTION OF BEAM-PLASMA INSTABILITY IN INHOMOGENEOUS MEDIUM

    International Nuclear Information System (INIS)

    Ziebell, L. F.; Pavan, J.; Yoon, P. H.; Gaelzer, R.

    2011-01-01

    The problem of electron-beam propagation in inhomogeneous solar wind is intimately related to the solar type II and/or type III radio bursts. Many scientists have addressed this issue in the past by means of quasi-linear theory, but in order to fully characterize the nonlinear dynamics, one must employ weak-turbulence theory. Available numerical solutions of the weak-turbulence theory either rely on only one nonlinear process (either decay or scattering), or when both nonlinear terms are included, the inhomogeneity effect is generally ignored. The present paper reports the full solution of weak-turbulence theory that includes both decay and scattering processes, and also incorporating the effects of density gradient. It is found that the quasi-linear effect sufficiently accounts for the primary Langmuir waves, but to properly characterize the back-scattered Langmuir wave, which is important for eventual radiation generation, it is found that both nonlinear decay and scattering processes make comparable contributions. Such a finding may be important in the quantitative analysis of the plasma emission process with application to solar type II and/or type III radio bursts.

  5. Real-time nonlinear MPC and MHE for a large-scale mechatronic application

    DEFF Research Database (Denmark)

    Vukov, Milan; Gros, S.; Horn, G.

    2015-01-01

    Progress in optimization algorithms and in computational hardware made deployment of Nonlinear Model Predictive Control (NMPC) and Moving Horizon Estimation (MHE) possible to mechatronic applications. This paper aims to assess the computational performance of NMPC and MHE for rotational start-up ...

  6. Microstructure and nonlinear signatures of yielding in a heterogeneous colloidal gel under large amplitude oscillatory shear

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Juntae; Helgeson, Matthew E., E-mail: helgeson@engineering.ucsb.edu [Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106 (United States); Merger, Dimitri; Wilhelm, Manfred [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany)

    2014-09-01

    We investigate yielding in a colloidal gel that forms a heterogeneous structure, consisting of a two-phase bicontinuous network of colloid-rich domains of fractal clusters and colloid-poor domains. Combining large amplitude oscillatory shear measurements with simultaneous small and ultra-small angle neutron scattering (rheo-SANS/USANS), we characterize both the nonlinear mechanical processes and strain amplitude-dependent microstructure underlying yielding. We observe a broad, three-stage yielding process that evolves over an order of magnitude in strain amplitude between the onset of nonlinearity and flow. Analyzing the intracycle response as a sequence of physical processes reveals a transition from elastic straining to elastoplastic thinning (which dominates in region I) and eventually yielding (which evolves through region II) and flow (which saturates in region III), and allows quantification of instantaneous nonlinear parameters associated with yielding. These measures exhibit significant strain rate amplitude dependence above a characteristic frequency, which we argue is governed by poroelastic effects. Correlating these results with time-averaged rheo-USANS measurements reveals that the material passes through a cascade of structural breakdown from large to progressively smaller length scales. In region I, compression of the fractal domains leads to the formation of large voids. In regions II and III, cluster-cluster correlations become increasingly homogeneous, suggesting breakage and eventually depercolation of intercluster bonds at the yield point. All significant structural changes occur on the micron-scale, suggesting that large-scale rearrangements of hundreds or thousands of particles, rather than the homogeneous rearrangement of particle-particle bonds, dominate the initial yielding of heterogeneous colloidal gels.

  7. Single-step emulation of nonlinear fiber-optic link with gaussian mixture model

    DEFF Research Database (Denmark)

    Borkowski, Robert; Doberstein, Andy; Haisch, Hansjörg

    2015-01-01

    We use a fast and low-complexity statistical signal processing method to emulate nonlinear noise in fiber links. The proposed emulation technique stands in good agreement with the numerical NLSE simulation for 32 Gbaud DP-16QAM nonlinear transmission.......We use a fast and low-complexity statistical signal processing method to emulate nonlinear noise in fiber links. The proposed emulation technique stands in good agreement with the numerical NLSE simulation for 32 Gbaud DP-16QAM nonlinear transmission....

  8. ADI splitting schemes for a fourth-order nonlinear partial differential equation from image processing

    KAUST Repository

    Calatroni, Luca

    2013-08-01

    We present directional operator splitting schemes for the numerical solution of a fourth-order, nonlinear partial differential evolution equation which arises in image processing. This equation constitutes the H -1-gradient flow of the total variation and represents a prototype of higher-order equations of similar type which are popular in imaging for denoising, deblurring and inpainting problems. The efficient numerical solution of this equation is very challenging due to the stiffness of most numerical schemes. We show that the combination of directional splitting schemes with implicit time-stepping provides a stable and computationally cheap numerical realisation of the equation.

  9. ADI splitting schemes for a fourth-order nonlinear partial differential equation from image processing

    KAUST Repository

    Calatroni, Luca; Dü ring, Bertram; Schö nlieb, Carola-Bibiane

    2013-01-01

    We present directional operator splitting schemes for the numerical solution of a fourth-order, nonlinear partial differential evolution equation which arises in image processing. This equation constitutes the H -1-gradient flow of the total variation and represents a prototype of higher-order equations of similar type which are popular in imaging for denoising, deblurring and inpainting problems. The efficient numerical solution of this equation is very challenging due to the stiffness of most numerical schemes. We show that the combination of directional splitting schemes with implicit time-stepping provides a stable and computationally cheap numerical realisation of the equation.

  10. Hadron–Quark Combustion as a Nonlinear, Dynamical System

    Directory of Open Access Journals (Sweden)

    Amir Ouyed

    2018-03-01

    Full Text Available The hadron–quark combustion front is a system that couples various processes, such as chemical reactions, hydrodynamics, diffusion, and neutrino transport. Previous numerical work has shown that this system is very nonlinear, and can be very sensitive to some of these processes. In these proceedings, we contextualize the hadron–quark combustion as a nonlinear system, subject to dramatic feedback triggered by leptonic weak decays and neutrino transport.

  11. Nonlinear model-based control of the Czochralski process III: Proper choice of manipulated variables and controller parameter scheduling

    Science.gov (United States)

    Neubert, M.; Winkler, J.

    2012-12-01

    This contribution continues an article series [1,2] about the nonlinear model-based control of the Czochralski crystal growth process. The key idea of the presented approach is to use a sophisticated combination of nonlinear model-based and conventional (linear) PI controllers for tracking of both, crystal radius and growth rate. Using heater power and pulling speed as manipulated variables several controller structures are possible. The present part tries to systematize the properties of the materials to be grown in order to get unambiguous decision criteria for a most profitable choice of the controller structure. For this purpose a material specific constant M called interface mobility and a more process specific constant S called system response number are introduced. While the first one summarizes important material properties like thermal conductivity and latent heat the latter one characterizes the process by evaluating the average axial thermal gradients at the phase boundary and the actual growth rate at which the crystal is grown. Furthermore these characteristic numbers are useful for establishing a scheduling strategy for the PI controller parameters in order to improve the controller performance. Finally, both numbers give a better understanding of the general thermal system dynamics of the Czochralski technique.

  12. Spatial nonlinearities: Cascading effects in the earth system

    Science.gov (United States)

    Peters, Debra P.C.; Pielke, R.A.; Bestelmeyer, B.T.; Allen, Craig D.; Munson-McGee, Stuart; Havstad, K. M.; Canadell, Josep G.; Pataki, Diane E.; Pitelka, Louis F.

    2006-01-01

    Nonlinear behavior is prevalent in all aspects of the Earth System, including ecological responses to global change (Gallagher and Appenzeller 1999; Steffen et al. 2004). Nonlinear behavior refers to a large, discontinuous change in response to a small change in a driving variable (Rial et al. 2004). In contrast to linear systems where responses are smooth, well-behaved, continuous functions, nonlinear systems often undergo sharp or discontinuous transitions resulting from the crossing of thresholds. These nonlinear responses can result in surprising behavior that makes forecasting difficult (Kaplan and Glass 1995). Given that many system dynamics are nonlinear, it is imperative that conceptual and quantitative tools be developed to increase our understanding of the processes leading to nonlinear behavior in order to determine if forecasting can be improved under future environmental changes (Clark et al. 2001).

  13. Laboratory beam-plasma interactions: linear and nonlinear

    International Nuclear Information System (INIS)

    Christiansen, P.J.; Jain, V.K.; Bond, J.W.

    1982-01-01

    The present investigation is concerned with the configuration of a cool plasma (often magnetized axially) penetrated by an injected electron beam. The attempt is made to demonstrate that despite unavoidable scaling limitations, laboratory experiments can illuminate, in a controlled fashion, details of beam plasma interaction processes in a way which will never be possible in the space plasma physics. In view of the increasing interest in high frequency instabilities in the auroral zone, the possibilities for interesting cross fertilizations of the two fields appear to be extensive. The linear theory is considered along with low frequency couplings and indirect effects. Attention is given to the evidence for the existence of exponentially growing instabilities in beam plasma interactions. The consequences of such instabilities are also explored and some processes of nonlinear processes are discussed, taking into account quasi-linear effects, trapping effects, nonlinear effects, trapping effects, nonlinear wave-wave interactions, and self-modulation and cavitation. 80 references

  14. The 1989 progress report: Mathematics

    International Nuclear Information System (INIS)

    Demazure, M.

    1989-01-01

    The 1989 progress report of the laboratory of Mathematics of the Polytechnic School (France) is presented. The investigations reported were performed in the following fields: analysis of nonlinear partial differential equations, quantum mechanics, scattering, fluid dynamics and homogenization, equations, varieties with negative curvature, elliptical problems on surfaces, Dirac operator, geometry of algorithms and formal calculus, singularities, Lie groups, dynamics systems. The published papers, the conferences and the Laboratory staff are listed [fr

  15. Fault detection and fault-tolerant control for nonlinear systems

    CERN Document Server

    Li, Linlin

    2016-01-01

    Linlin Li addresses the analysis and design issues of observer-based FD and FTC for nonlinear systems. The author analyses the existence conditions for the nonlinear observer-based FD systems to gain a deeper insight into the construction of FD systems. Aided by the T-S fuzzy technique, she recommends different design schemes, among them the L_inf/L_2 type of FD systems. The derived FD and FTC approaches are verified by two benchmark processes. Contents Overview of FD and FTC Technology Configuration of Nonlinear Observer-Based FD Systems Design of L2 nonlinear Observer-Based FD Systems Design of Weighted Fuzzy Observer-Based FD Systems FTC Configurations for Nonlinear Systems< Application to Benchmark Processes Target Groups Researchers and students in the field of engineering with a focus on fault diagnosis and fault-tolerant control fields The Author Dr. Linlin Li completed her dissertation under the supervision of Prof. Steven X. Ding at the Faculty of Engineering, University of Duisburg-Essen, Germany...

  16. Nonlinear Impairment Compensation Using Expectation Maximization for PDM 16-QAM Systems

    DEFF Research Database (Denmark)

    Zibar, Darko; Winther, Ole; Franceschi, Niccolo

    2012-01-01

    We show experimentally that by using non-linear signal processing based algorithm, expectation maximization, nonlinear system tolerance can be increased by 2 dB. Expectation maximization is also effective in combating I/Q modulator nonlinearities and laser linewidth....

  17. Stochastic development regression on non-linear manifolds

    DEFF Research Database (Denmark)

    Kühnel, Line; Sommer, Stefan Horst

    2017-01-01

    We introduce a regression model for data on non-linear manifolds. The model describes the relation between a set of manifold valued observations, such as shapes of anatomical objects, and Euclidean explanatory variables. The approach is based on stochastic development of Euclidean diffusion...... processes to the manifold. Defining the data distribution as the transition distribution of the mapped stochastic process, parameters of the model, the non-linear analogue of design matrix and intercept, are found via maximum likelihood. The model is intrinsically related to the geometry encoded...

  18. Effect of weak nonlinearities on the plane waves in a plasma stream

    International Nuclear Information System (INIS)

    Seshadri, S.R.

    1976-01-01

    The effect of weak nonlinearities on the monochromatic plane waves in a cold infinite plasma stream is investigated for the case in which the waves are progressing parallel to the drift velocity. The fast and the slow space-charge waves undergo amplitude-dependent frequency and wave number shifts. There is a long time slow modulation of the amplitude of the electromagnetic mode which becomes unstable to this nonlinear wave modulation. The importance of using the relativistically correct equation of motion for predicting correctly the modulational stability of the electromagnetic mode is pointed out. (author)

  19. Full Waveform Inversion Using Nonlinearly Smoothed Wavefields

    KAUST Repository

    Li, Y.; Choi, Yun Seok; Alkhalifah, Tariq Ali; Li, Z.

    2017-01-01

    The lack of low frequency information in the acquired data makes full waveform inversion (FWI) conditionally converge to the accurate solution. An initial velocity model that results in data with events within a half cycle of their location in the observed data was required to converge. The multiplication of wavefields with slightly different frequencies generates artificial low frequency components. This can be effectively utilized by multiplying the wavefield with itself, which is nonlinear operation, followed by a smoothing operator to extract the artificially produced low frequency information. We construct the objective function using the nonlinearly smoothed wavefields with a global-correlation norm to properly handle the energy imbalance in the nonlinearly smoothed wavefield. Similar to the multi-scale strategy, we progressively reduce the smoothing width applied to the multiplied wavefield to welcome higher resolution. We calculate the gradient of the objective function using the adjoint-state technique, which is similar to the conventional FWI except for the adjoint source. Examples on the Marmousi 2 model demonstrate the feasibility of the proposed FWI method to mitigate the cycle-skipping problem in the case of a lack of low frequency information.

  20. Full Waveform Inversion Using Nonlinearly Smoothed Wavefields

    KAUST Repository

    Li, Y.

    2017-05-26

    The lack of low frequency information in the acquired data makes full waveform inversion (FWI) conditionally converge to the accurate solution. An initial velocity model that results in data with events within a half cycle of their location in the observed data was required to converge. The multiplication of wavefields with slightly different frequencies generates artificial low frequency components. This can be effectively utilized by multiplying the wavefield with itself, which is nonlinear operation, followed by a smoothing operator to extract the artificially produced low frequency information. We construct the objective function using the nonlinearly smoothed wavefields with a global-correlation norm to properly handle the energy imbalance in the nonlinearly smoothed wavefield. Similar to the multi-scale strategy, we progressively reduce the smoothing width applied to the multiplied wavefield to welcome higher resolution. We calculate the gradient of the objective function using the adjoint-state technique, which is similar to the conventional FWI except for the adjoint source. Examples on the Marmousi 2 model demonstrate the feasibility of the proposed FWI method to mitigate the cycle-skipping problem in the case of a lack of low frequency information.

  1. Combined macroscopic and microscopic approach to the fracture of metals. Technical progress report

    International Nuclear Information System (INIS)

    Asaro, R.J.; Gurland, J.; Needleman, A.; Rice, R.J.

    1979-06-01

    Progress is reported on microscopic fracture mechanisms, including studies of void and crack initiation in steels in the absence and presence of hydrogen, the effects of hydrogen on ductile fracture in medium and high carbon steels; elastic--plastic crack growth including the quasi-stable growth of cracks in ductile solids under increasing load and conditions of instability; and elevated temperature rupture including analysis of the stress field near a crack tip in an elastic-nonlinear viscous material under tensile load as well as the processes of diffusion, and cavitation of grain boundaries in plastically creeping materials

  2. Parametric autoresonant excitation of the nonlinear Schrödinger equation.

    Science.gov (United States)

    Friedland, L; Shagalov, A G

    2016-10-01

    Parametric excitation of autoresonant solutions of the nonlinear Schrodinger (NLS) equation by a chirped frequency traveling wave is discussed. Fully nonlinear theory of the process is developed based on Whitham's averaged variational principle and its predictions verified in numerical simulations. The weakly nonlinear limit of the theory is used to find the threshold on the amplitude of the driving wave for entering the autoresonant regime. It is shown that above the threshold, a flat (spatially independent) NLS solution can be fully converted into a traveling wave. A simplified, few spatial harmonics expansion approach is also developed for studying this nonlinear mode conversion process, allowing interpretation as autoresonant interaction within triads of spatial harmonics.

  3. A general theory of two-wave mixing in nonlinear media

    DEFF Research Database (Denmark)

    Chi, Mingjun; Huignard, Jean-Pierre; Petersen, Paul Michael

    2009-01-01

    A general theory of two-wave mixing in nonlinear media is presented. Assuming a gain (or absorption) grating and a refractive index grating are generated because of the nonlinear process in a nonlinear medium, the coupled-wave equations of two-wave mixing are derived based on the Maxwell’s wave e...

  4. Uncovering molecular relaxation processes with nonlinear spectroscopies in the deep UV

    International Nuclear Information System (INIS)

    West, Brantley A.; Molesky, Brian P.; Giokas, Paul G.; Moran, Andrew M.

    2013-01-01

    Highlights: • We discuss the outlook for multidimensional spectroscopies in the deep UV. • Photophysics are examined in small DNA components at cryogenic temperatures. • Wavepacket motions are detected in ring-opening systems with 2DUV spectroscopy. • Measurements of electronic wavepacket motions in molecules are proposed. - Abstract: Nonlinear laser spectroscopies in the deep UV spectral range are motivated by studies of biological systems and elementary processes in small molecules. This perspective article discusses recent technical advances in this area with a particular emphasis on diffractive optic based approaches to four-wave mixing spectroscopies. Applications to two classes of systems illustrate present experimental capabilities. First, experiments on DNA components at cryogenic temperatures are used to uncover features of excited state potential energy surfaces and vibrational cooling mechanisms. Second, sub-200 fs internal conversion processes and coherent wavepacket motions are investigated in cyclohexadiene and α-terpinene. Finally, we propose new experimental directions that combine methods for producing few-cycle UV laser pulses in noble gases with incoherent detection methods (e.g., photoionization) in experiments with time resolution near a singlefemtosecond. These measurements are motivated by knowledge of extremely fast non-adiabatic dynamics and the resolution of electronic wavepacket motions in molecules

  5. tgp: An R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models

    Directory of Open Access Journals (Sweden)

    Robert B. Gramacy

    2007-06-01

    Full Text Available The tgp package for R is a tool for fully Bayesian nonstationary, semiparametric nonlinear regression and design by treed Gaussian processes with jumps to the limiting linear model. Special cases also implemented include Bayesian linear models, linear CART, stationary separable and isotropic Gaussian processes. In addition to inference and posterior prediction, the package supports the (sequential design of experiments under these models paired with several objective criteria. 1-d and 2-d plotting, with higher dimension projection and slice capabilities, and tree drawing functions (requiring maptree and combinat packages, are also provided for visualization of tgp objects.

  6. Nonlinear predictive control in the LHC accelerator

    CERN Document Server

    Blanco, E; Cristea, S; Casas, J

    2009-01-01

    This paper describes the application of a nonlinear model-based control strategy in a real challenging process. A predictive controller based on a nonlinear model derived from physical relationships, mainly heat and mass balances, has been developed and commissioned in the inner triplet heat exchanger unit (IT-HXTU) of the large hadron collider (LHC) particle accelerator at European Center for Nuclear Research (CERN). The advanced regulation\\ maintains the magnets temperature at about 1.9 K. The development includes a constrained nonlinear state estimator with a receding horizon estimation procedure to improve the regulator predictions.

  7. Nonlinear Growth Curves in Developmental Research

    Science.gov (United States)

    Grimm, Kevin J.; Ram, Nilam; Hamagami, Fumiaki

    2011-01-01

    Developmentalists are often interested in understanding change processes, and growth models are the most common analytic tool for examining such processes. Nonlinear growth curves are especially valuable to developmentalists because the defining characteristics of the growth process such as initial levels, rates of change during growth spurts, and…

  8. Entropy and convexity for nonlinear partial differential equations.

    Science.gov (United States)

    Ball, John M; Chen, Gui-Qiang G

    2013-12-28

    Partial differential equations are ubiquitous in almost all applications of mathematics, where they provide a natural mathematical description of many phenomena involving change in physical, chemical, biological and social processes. The concept of entropy originated in thermodynamics and statistical physics during the nineteenth century to describe the heat exchanges that occur in the thermal processes in a thermodynamic system, while the original notion of convexity is for sets and functions in mathematics. Since then, entropy and convexity have become two of the most important concepts in mathematics. In particular, nonlinear methods via entropy and convexity have been playing an increasingly important role in the analysis of nonlinear partial differential equations in recent decades. This opening article of the Theme Issue is intended to provide an introduction to entropy, convexity and related nonlinear methods for the analysis of nonlinear partial differential equations. We also provide a brief discussion about the content and contributions of the papers that make up this Theme Issue.

  9. Probing hysteretic elasticity in weakly nonlinear materials

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Paul A [Los Alamos National Laboratory; Haupert, Sylvain [UPMC UNIV PARIS; Renaud, Guillaume [UPMC UNIV PARIS; Riviere, Jacques [UPMC UNIV PARIS; Talmant, Maryline [UPMC UNIV PARIS; Laugier, Pascal [UPMC UNIV PARIS

    2010-12-07

    Our work is aimed at assessing the elastic and dissipative hysteretic nonlinear parameters' repeatability (precision) using several classes of materials with weak, intermediate and high nonlinear properties. In this contribution, we describe an optimized Nonlinear Resonant Ultrasound Spectroscopy (NRUS) measuring and data processing protocol applied to small samples. The protocol is used to eliminate the effects of environmental condition changes that take place during an experiment, and that may mask the intrinsic elastic nonlinearity. As an example, in our experiments, we identified external temperature fluctuation as a primary source of material resonance frequency and elastic modulus variation. A variation of 0.1 C produced a frequency variation of 0.01 %, which is similar to the expected nonlinear frequency shift for weakly nonlinear materials. In order to eliminate environmental effects, the variation in f{sub 0} (the elastically linear resonance frequency proportional to modulus) is fit with the appropriate function, and that function is used to correct the NRUS calculation of nonlinear parameters. With our correction procedure, we measured relative resonant frequency shifts of 10{sup -5} , which are below 10{sup -4}, often considered the limit to NRUS sensitivity under common experimental conditions. Our results show that the procedure is an alternative to the stringent control of temperature often applied. Applying the approach, we report nonlinear parameters for several materials, some with very small nonclassical nonlinearity. The approach has broad application to NRUS and other Nonlinear Elastic Wave Spectroscopy approaches.

  10. Nonlinear Control of Heartbeat Models

    Directory of Open Access Journals (Sweden)

    Witt Thanom

    2011-02-01

    Full Text Available This paper presents a novel application of nonlinear control theory to heartbeat models. Existing heartbeat models are investigated and modified by incorporating the control input as a pacemaker to provide the control channel. A nonlinear feedback linearization technique is applied to force the output of the systems to generate artificial electrocardiogram (ECG signal using discrete data as the reference inputs. The synthetic ECG may serve as a flexible signal source to assess the effectiveness of a diagnostic ECG signal-processing device.

  11. Non-linear effects in the Snoek relaxation of Nb-O

    International Nuclear Information System (INIS)

    Hermida, E.B.; Povolo, F.

    1996-01-01

    Internal friction peaks measured as a function of temperature or frequency have been associated to non-linear processes only after studying how the amplitude of the applied stress affects the relaxation process. Here it is demonstrated that the partial derivative of the internal friction with respect to the frequency at constant temperature is a useful tool to determine that non-linear effects are involved. This analysis applied to actual data of the Snoek relaxation in Nb-O, reveals that at high interstitial contents non-linear effects appear. (orig.)

  12. Optimization of Nonlinear Figure-of-Merits of Integrated Power MOSFETs in Partial SOI Process

    DEFF Research Database (Denmark)

    Fan, Lin; Jørgensen, Ivan Harald Holger; Knott, Arnold

    2016-01-01

    State-of-the-art power semiconductor industry uses figure-of-merits (FOMs) for technology-to-technology and/or device-to-device comparisons. However, the existing FOMs are fundamentally nonlinear due to the nonlinearities of the parameters such as the gate charge and the output charge versus...

  13. Real-Time Implementation of Nonlinear Optical Processing Functions.

    Science.gov (United States)

    1986-09-30

    information capacity) with the nonlinear error correction properties of associative neural nets such as the Hopfield model. Analogies between holography...symnolic ma.Ip’:ation Th.e error correcting -apart" :ty of non" ;n-ar associative merTtnies is necessary for s’uch structu-res Experimerta. results... geometrica snapes in contact ’A,.n a c-:’:ser ’Figure 51a’ ., and a spher:cal 4:verg.ng reference -eam Upion :"um’latlon of t -" c-’gram by the object beam

  14. Explicit Nonlinear Model Predictive Control Theory and Applications

    CERN Document Server

    Grancharova, Alexandra

    2012-01-01

    Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity. This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations: Ø  Nonlinear systems described by first-principles models and nonlinear systems described by black-box models; �...

  15. Nonlinear and Nonequilibrium Dynamics in Geomaterials

    OpenAIRE

    TenCate, James A.; Pasqualini, Donatella; Habib, Salman; Heitmann, Katrin; Higdon, David; Johnson, Paul A.

    2004-01-01

    The transition from linear to nonlinear dynamical elasticity in rocks is of considerable interest in seismic wave propagation as well as in understanding the basic dynamical processes in consolidated granular materials. We have carried out a careful experimental investigation of this transition for Berea and Fontainebleau sandstones. Below a well-characterized strain, the materials behave linearly, transitioning beyond that point to a nonlinear behavior which can be accurately captured by a s...

  16. Nonlinear effects on bremsstrahlung emission in dusty plasmas

    International Nuclear Information System (INIS)

    Kim, Young-Woo; Jung, Young-Dae

    2004-01-01

    Nonlinear effects on the bremsstrahlung process due to ion-dust grain collisions are investigated in dusty plasmas. The nonlinear screened interaction potential is applied to obtain the Fourier coefficients of the force acting on the dust grain. The classical trajectory analysis is applied to obtain the differential bremsstrahlung radiation cross section as a function of the scaled impact parameter, projectile energy, photon energy, and Debye length. The result shows that the nonlinear effects suppress the bremsstrahlung radiation cross section due to collisions of ions with positively charged dust grains. These nonlinear effects decrease with increasing Debye length and temperature, and increase with increasing radiation photon energy

  17. High-order finite difference solution for 3D nonlinear wave-structure interaction

    DEFF Research Database (Denmark)

    Ducrozet, Guillaume; Bingham, Harry B.; Engsig-Karup, Allan Peter

    2010-01-01

    This contribution presents our recent progress on developing an efficient fully-nonlinear potential flow model for simulating 3D wave-wave and wave-structure interaction over arbitrary depths (i.e. in coastal and offshore environment). The model is based on a high-order finite difference scheme O...

  18. Nonlinear theory of the free-electron laser

    International Nuclear Information System (INIS)

    Chian, A.C.-L.; Padua Brito Serbeto, A. de.

    1984-01-01

    A theory of Raman free-electron laser using a circularly polarized electromagnetic pump is investigated. Coupled wave equations that describe both linear and nonlinear evolution of stimulated Raman scattering are derived. The dispersion relation and the growth rate for the parametric instability are obtained. Nonlinear processes that may lead to saturation of the free-electron laser are discussed. (Author) [pt

  19. Differential behavior of amino-imino constitutional isomers in nonlinear optical processes.

    Science.gov (United States)

    Latorre, Sonia; Moreira, Ibério de P R; Villacampa, Belén; Julià, Lluís; Velasco, Dolores; Bofill, Josep Maria; López-Calahorra, Francisco

    2010-03-15

    A detailed study of the "blocked" amino-imino tautomers derived from N-acridine-substituted 2-aminobenzothiazole--and their effect on the nonlinear optical response--is presented. The synthesis, characterization, and nonlinear optical properties of these frozen tautomers, namely, N-methyl-N-(2-nitroacridin-6-yl)-2-aminobenzothia-zole and 3-methyl-N-(7-nitroacridin-3-yl)-2-iminobenzothiazole, are reported. A theoretical model based on valence-bond theory is also proposed and used to analyze the effects of the nuclear configuration corresponding to each frozen tautomer structure. In the present case, the aromatic form and the allylic-anion-like system of the -N-C-N- group inherent to each isomer are crucial for understanding and analyzing the different responses of each "blocked" tautomer.

  20. In-Fiber Subpicosecond Pulse Shaping for Nonlinear Optical Telecommunication Data Processing at 640 Gbit/s

    Directory of Open Access Journals (Sweden)

    J. Azaña

    2012-01-01

    Full Text Available We review recent work on all-fiber (long-period fiber grating devices for optical pulse shaping, particularly flat-top pulse generation, down to the subpicosecond range and their application for nonlinear switching (demultiplexing of optical time-division multiplexed (OTDM data signals in fiber-optic telecommunication links operating up to 640 Gbit/s. Experiments are presented demonstrating error-free 640-to-10 Gbit/s demultiplexing of the 64 tributary channels using the generated flat-top pulses for temporal gating in a Kerr-effect-based nonlinear optical loop mirror. The use of flat-top pulses has critical benefits in the demultiplexing process, including a significantly increased timing-jitter tolerance (up to ~500 fs, i.e., 30% of the bit period and the associated improvement in the bit-error-rate performance (e.g., with a sensitivity increase of up to ~13 dB as compared with the use of Gaussian-like gating pulses. Long-period fiber grating pulse shapers with reduced polarization dependence are fabricated and successfully used for polarization-independent 640-to-10 Gbit/s demultiplexing experiments.

  1. Nonlinear robust hierarchical control for nonlinear uncertain systems

    Directory of Open Access Journals (Sweden)

    Leonessa Alexander

    1999-01-01

    Full Text Available A nonlinear robust control-system design framework predicated on a hierarchical switching controller architecture parameterized over a set of moving nominal system equilibria is developed. Specifically, using equilibria-dependent Lyapunov functions, a hierarchical nonlinear robust control strategy is developed that robustly stabilizes a given nonlinear system over a prescribed range of system uncertainty by robustly stabilizing a collection of nonlinear controlled uncertain subsystems. The robust switching nonlinear controller architecture is designed based on a generalized (lower semicontinuous Lyapunov function obtained by minimizing a potential function over a given switching set induced by the parameterized nominal system equilibria. The proposed framework robustly stabilizes a compact positively invariant set of a given nonlinear uncertain dynamical system with structured parametric uncertainty. Finally, the efficacy of the proposed approach is demonstrated on a jet engine propulsion control problem with uncertain pressure-flow map data.

  2. Oscillating patterns in image processing and nonlinear evolution equations the fifteenth Dean Jacqueline B. Lewis memorial lectures

    CERN Document Server

    Meyer, Yves

    2001-01-01

    Image compression, the Navier-Stokes equations, and detection of gravitational waves are three seemingly unrelated scientific problems that, remarkably, can be studied from one perspective. The notion that unifies the three problems is that of "oscillating patterns", which are present in many natural images, help to explain nonlinear equations, and are pivotal in studying chirps and frequency-modulated signals. The first chapter of this book considers image processing, more precisely algorithms of image compression and denoising. This research is motivated in particular by the new standard for compression of still images known as JPEG-2000. The second chapter has new results on the Navier-Stokes and other nonlinear evolution equations. Frequency-modulated signals and their use in the detection of gravitational waves are covered in the final chapter. In the book, the author describes both what the oscillating patterns are and the mathematics necessary for their analysis. It turns out that this mathematics invo...

  3. Experimental implementation of phase locking in a nonlinear interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hailong; Jing, Jietai, E-mail: jtjing@phy.ecnu.edu.cn [State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062 (China); Marino, A. M. [Homer L. Dodge Department of Physics and Astronomy, The University of Oklahoma, 440 West Brooks Street, Norman, Oklahoma 73019 (United States)

    2015-09-21

    Based upon two cascade four-wave mixing processes in two identical hot rubidium vapor cells, a nonlinear interferometer has been experimentally realized [Jing et al., Appl. Phys. Lett. 99, 011110 (2011); Hudelist et al., Nat. Commun. 5, 3049 (2014)]. It has a higher degree of phase sensitivity than a traditional linear interferometer and has many potential applications in quantum metrology. Phase locking of the nonlinear interferometer is needed before it can find its way into applications. In this letter, we investigate the experimental implementation of phase locking of the relative phase between the three beams at different frequencies involved in such a nonlinear interferometer. We have utilized two different methods, namely, beat note locking and coherent modulation locking. We find that coherent modulation locking can achieve much better phase stability than beat note locking in our system. Our results pave the way for real applications of a nonlinear interferometer in precision measurement and quantum manipulation, for example, phase control in phase-sensitive N-wave mixing process, N-port nonlinear interferometer and quantum-enhanced real-time phase tracking.

  4. Nonlinear dynamics of semiconductors in strong THz electric fields

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun

    In this thesis, we investigate nonlinear interactions of an intense terahertz (THz) field with semiconductors, in particular the technologically relevant materials silicon and silicon carbide. We reveal the time-resolved dynamics of the nonlinear processes by pump-probe experiments that involve...

  5. Nonlinear dynamics of the human lumbar intervertebral disc.

    Science.gov (United States)

    Marini, Giacomo; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J

    2015-02-05

    Systems with a quasi-static response similar to the axial response of the intervertebral disc (i.e. progressive stiffening) often present complex dynamics, characterized by peculiar nonlinearities in the frequency response. However, such characteristics have not been reported for the dynamic response of the disc. The accurate understanding of disc dynamics is essential to investigate the unclear correlation between whole body vibration and low back pain. The present study investigated the dynamic response of the disc, including its potential nonlinear response, over a range of loading conditions. Human lumbar discs were tested by applying a static preload to the top and a sinusoidal displacement at the bottom of the disc. The frequency of the stimuli was set to increase linearly from a low frequency to a high frequency limit and back down. In general, the response showed nonlinear and asymmetric characteristics. For each test, the disc had different response in the frequency-increasing compared to the frequency-decreasing sweep. In particular, the system presented abrupt changes of the oscillation amplitude at specific frequencies, which differed between the two sweeps. This behaviour indicates that the system oscillation has a different equilibrium condition depending on the path followed by the stimuli. Preload and amplitude of the oscillation directly influenced the disc response by changing the nonlinear dynamics and frequency of the jump-phenomenon. These results show that the characterization of the dynamic response of physiological systems should be readdressed to determine potential nonlinearities. Their direct effect on the system function should be further investigated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Nonlinear dynamics in flow through unsaturated fractured porous media: Status and perspectives

    International Nuclear Information System (INIS)

    Faybishenko, Boris

    2002-01-01

    The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fractured rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences

  7. Nonlinear dynamics in flow through unsaturated fractured-porous media: Status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, Boris

    2002-11-27

    The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fractured rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences.

  8. Vulnerability Assessment of Building Frames Subjected to Progressive Collapse Caused by Earthquake

    Directory of Open Access Journals (Sweden)

    Mohamed Nazri Fadzli

    2017-01-01

    Full Text Available Progressive collapse is an initial local failure of the structural component and leading to the additional collapse of the building frames. This study investigated the vulnerability of four- and six-storey moment resisting concrete frame (MRCF buildings subjected to progressive collapse. The four- and six-storey MRCF buildings were designed based on British Standard (BS and Eurocode (EC. The differences between these two codes were investigated. Nonlinear static analysis, which is also known as pushover analysis (POA, and nonlinear dynamic analysis or incremental dynamic analysis (IDA, were performed for each model to obtain capacity curve and explore vulnerability measures. IDA was conducted using a sample of ground motion from an earthquake that occurred in Ranau, Sabah in 2015. The four-storey building was more vulnerable than the six-storey building.

  9. Study progression in application of process analytical technologies on film coating

    Directory of Open Access Journals (Sweden)

    Tingting Peng

    2015-06-01

    Full Text Available Film coating is an important unit operation to produce solid dosage forms, thereby, the monitoring of this process is helpful to find problems in time and improve the quality of coated products. Traditional methods adopted to monitor this process include measurement of coating weight gain, performance of disintegration and dissolution test, etc. However, not only do these methods cause destruction to the samples, but also consume time and energy. There have recently emerged the applications of process analytical technologies (PAT on film coating, especially some novel spectroscopic and imaging technologies, which have the potential to real-time track the progress in film coating and optimize production efficiency. This article gives an overview on the application of such technologies for film coating, with the goal to provide a reference for the further researches.

  10. Intrinsic Nonlinearities and Layout Impacts of 100 V Integrated Power MOSFETs in Partial SOI Process

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    Parasitic capacitances of power semiconductors are a part of the key design parameters of state-of-the-art very high frequency (VHF) power supplies. In this poster, four 100 V integrated power MOSFETs with different layout structures are designed, implemented, and analyzed in a 0.18 ȝm partial...... Silicon-on-Insulator (SOI) process with a die area 2.31 mm2.  A small-signal model of power MOSFETs is proposed to systematically analyze the nonlinear parasitic capacitances in different transistor states: off-state, sub-threshold region, and on-state in the linear region. 3D plots are used to summarize...

  11. A new automated assessment method for contrast-detail images by applying support vector machine and its robustness to nonlinear image processing.

    Science.gov (United States)

    Takei, Takaaki; Ikeda, Mitsuru; Imai, Kuniharu; Yamauchi-Kawaura, Chiyo; Kato, Katsuhiko; Isoda, Haruo

    2013-09-01

    The automated contrast-detail (C-D) analysis methods developed so-far cannot be expected to work well on images processed with nonlinear methods, such as noise reduction methods. Therefore, we have devised a new automated C-D analysis method by applying support vector machine (SVM), and tested for its robustness to nonlinear image processing. We acquired the CDRAD (a commercially available C-D test object) images at a tube voltage of 120 kV and a milliampere-second product (mAs) of 0.5-5.0. A partial diffusion equation based technique was used as noise reduction method. Three radiologists and three university students participated in the observer performance study. The training data for our SVM method was the classification data scored by the one radiologist for the CDRAD images acquired at 1.6 and 3.2 mAs and their noise-reduced images. We also compared the performance of our SVM method with the CDRAD Analyser algorithm. The mean C-D diagrams (that is a plot of the mean of the smallest visible hole diameter vs. hole depth) obtained from our devised SVM method agreed well with the ones averaged across the six human observers for both original and noise-reduced CDRAD images, whereas the mean C-D diagrams from the CDRAD Analyser algorithm disagreed with the ones from the human observers for both original and noise-reduced CDRAD images. In conclusion, our proposed SVM method for C-D analysis will work well for the images processed with the non-linear noise reduction method as well as for the original radiographic images.

  12. Four Wave Mixing using Intermodal Nonlinearities

    DEFF Research Database (Denmark)

    Rishøj, Lars Søgaard

    The nonlinear process of four-wave mixing (FWM) enables coupling of energy between wavelengths. This is useful for both optical amplification and wavelength conversion. A crucial prerequisite for the process is phase matching. This PhD project investigates how higher order modes (HOMs) in fibers...

  13. Non-linear aeroelastic prediction for aircraft applications

    Science.gov (United States)

    de C. Henshaw, M. J.; Badcock, K. J.; Vio, G. A.; Allen, C. B.; Chamberlain, J.; Kaynes, I.; Dimitriadis, G.; Cooper, J. E.; Woodgate, M. A.; Rampurawala, A. M.; Jones, D.; Fenwick, C.; Gaitonde, A. L.; Taylor, N. V.; Amor, D. S.; Eccles, T. A.; Denley, C. J.

    2007-05-01

    Current industrial practice for the prediction and analysis of flutter relies heavily on linear methods and this has led to overly conservative design and envelope restrictions for aircraft. Although the methods have served the industry well, it is clear that for a number of reasons the inclusion of non-linearity in the mathematical and computational aeroelastic prediction tools is highly desirable. The increase in available and affordable computational resources, together with major advances in algorithms, mean that non-linear aeroelastic tools are now viable within the aircraft design and qualification environment. The Partnership for Unsteady Methods in Aerodynamics (PUMA) Defence and Aerospace Research Partnership (DARP) was sponsored in 2002 to conduct research into non-linear aeroelastic prediction methods and an academic, industry, and government consortium collaborated to address the following objectives: To develop useable methodologies to model and predict non-linear aeroelastic behaviour of complete aircraft. To evaluate the methodologies on real aircraft problems. To investigate the effect of non-linearities on aeroelastic behaviour and to determine which have the greatest effect on the flutter qualification process. These aims have been very effectively met during the course of the programme and the research outputs include: New methods available to industry for use in the flutter prediction process, together with the appropriate coaching of industry engineers. Interesting results in both linear and non-linear aeroelastics, with comprehensive comparison of methods and approaches for challenging problems. Additional embryonic techniques that, with further research, will further improve aeroelastics capability. This paper describes the methods that have been developed and how they are deployable within the industrial environment. We present a thorough review of the PUMA aeroelastics programme together with a comprehensive review of the relevant research

  14. Label-free and selective nonlinear fiber-optical biosensing

    DEFF Research Database (Denmark)

    Ott, Johan Raunkjær; Heuck, Mikkel; Agger, Christian

    2008-01-01

    We demonstrate that the inherent nonlinearity of a microstructured optical fiber (MOF) may be used to achieve label-free selective biosensing, thereby eliminating the need for post-processing of the fiber. This first nonlinear biosensor utilizes a change in the modulational instability (MI) gain...... for optimizing the sensitivity. The nonlinear sensor shows a sensitivity of around 10.4nm/nm, defined as the shift in resonance wavelength per nm biolayer, which is a factor of 7.5 higher than the hitherto only demonstrated label-free MOF biosensor....

  15. Complex nonlinear dynamics in the limit of weak coupling of a system of microcantilevers connected by a geometrically nonlinear tunable nanomembrane.

    Science.gov (United States)

    Jeong, Bongwon; Cho, Hanna; Keum, Hohyun; Kim, Seok; Michael McFarland, D; Bergman, Lawrence A; King, William P; Vakakis, Alexander F

    2014-11-21

    Intentional utilization of geometric nonlinearity in micro/nanomechanical resonators provides a breakthrough to overcome the narrow bandwidth limitation of linear dynamic systems. In past works, implementation of intentional geometric nonlinearity to an otherwise linear nano/micromechanical resonator has been successfully achieved by local modification of the system through nonlinear attachments of nanoscale size, such as nanotubes and nanowires. However, the conventional fabrication method involving manual integration of nanoscale components produced a low yield rate in these systems. In the present work, we employed a transfer-printing assembly technique to reliably integrate a silicon nanomembrane as a nonlinear coupling component onto a linear dynamic system with two discrete microcantilevers. The dynamics of the developed system was modeled analytically and investigated experimentally as the coupling strength was finely tuned via FIB post-processing. The transition from the linear to the nonlinear dynamic regime with gradual change in the coupling strength was experimentally studied. In addition, we observed for the weakly coupled system that oscillation was asynchronous in the vicinity of the resonance, thus exhibiting a nonlinear complex mode. We conjectured that the emergence of this nonlinear complex mode could be attributed to the nonlinear damping arising from the attached nanomembrane.

  16. Nonlinear processes in laser heating of chemically active media

    Energy Technology Data Exchange (ETDEWEB)

    Bunkin, F V; Kirichenko, N A; Luk' yanchuk, B S

    1984-08-01

    After it had been discovered and in due measure physically comprehended that numerous nontrivial phenomena observed during laser heating of chemically active media are caused primarily by self-stress of laser radiation due to the chemical intertial nonlinearity of the medium, an approach was found for solving problems of laser thermochemistry that is most adequate from the mathematical (and physical) standpoint: the approach of the theory of nonlinear oscillations in point systems and distributed systems. This approach has provided a uniform viewpoint for examination of a variety of phenomena of spatiotemporal self-organization of chemically active media under the effect of laser radiation, qualitative, and in some cases quantitative description of such phenomena as the onset of thermochemical instability, self-oscillations, various spatial structures and the like. Evidently it can be rightly considered that at this juncture a definite stage has been completed in the development of laser thermochemistry marked by the creation of an ideology, method and overall approach to interpretation of the most diverse phenomena under conditions of actual physical experiments. References to the numerous studies that make up the content of this stage of development of laser thermochemistry are to be found in survey papers. 48 references, 10 figures.

  17. Deep Magnetic Diagenesis in Sediments: Progressive and Punctuated Processes.

    Science.gov (United States)

    Musgrave, R. J.; Kars, M. A. C.; Vega, M. E.

    2017-12-01

    Magnetic diagenesis in the tuffaceous muds, mudstones and volcaniclastic rocks cored at IODP Site U1437 is a product of progressive processes that continue throughout the 1800-m-thick sequence, punctuated by superimposed features corresponding to a series of influxes of fluids and concentrations of hydrocarbons. XRD, visual examination and SEM images indicate the presence of both magnetite and the magnetic sulfide greigite. Inferences from high values of saturation isothermal remanence normalised by magnetic susceptibility (SIRM/χ), distribution of hysteresis data near a diagenetic greigite curve on a Day plot, and 'humping' of low-temperature cycles of SIRM suggest that detrital magnetite and diagenetic greigite are both significant contributors to the magnetic assemblage, with greigite constituting a higher proportion in shallower samples. Progressive magnetic diagenesis is expressed as a continuing background decrease in SIRM/χ. FORC curves indicate an initial diagenetic growth of one or more higher-coercivity phases, followed downhole by increasing loss of all but low-coercivity material. The downhole pattern is consistent with progressive loss of fine-grained magnetite, initial authigenesis of greigite, and progressive pyritisation of the greigite. Some coarse-grained samples from the base of the sequence buck the trend, exhibiting SD behavior probably related to surviving magnetite inclusions in silicates. Shipboard fluid analysis revealed a complex profile of interstitial-water geochemistry, marked by several fluid influxes, including inputs of sulfate-rich water at about 275 and 460 meters below seafloor (mbsf). Methane concentrations, mostly low, markedly increase in the interval between 750 and 1460 mbsf, and ethane appears below an inferred fault at 1104 mbsf. Each of these fluid events is marked by offsets in the rock magnetic parameters SIRM/χ, S-0.3T, and DJH, representing repeated phases of late diagenetic growth of greigite in response to

  18. Nonlinear optics

    CERN Document Server

    Bloembergen, Nicolaas

    1996-01-01

    Nicolaas Bloembergen, recipient of the Nobel Prize for Physics (1981), wrote Nonlinear Optics in 1964, when the field of nonlinear optics was only three years old. The available literature has since grown by at least three orders of magnitude.The vitality of Nonlinear Optics is evident from the still-growing number of scientists and engineers engaged in the study of new nonlinear phenomena and in the development of new nonlinear devices in the field of opto-electronics. This monograph should be helpful in providing a historical introduction and a general background of basic ideas both for expe

  19. Linear and non-linear optics of condensed matter

    International Nuclear Information System (INIS)

    McLean, T.P.

    1977-01-01

    Part I - Linear optics: 1. General introduction. 2. Frequency dependence of epsilon(ω, k vector). 3. Wave-vector dependence of epsilon(ω, k vector). 4. Tensor character of epsilon(ω, k vector). Part II - Non-linear optics: 5. Introduction. 6. A classical theory of non-linear response in one dimension. 7. The generalization to three dimensions. 8. General properties of the polarizability tensors. 9. The phase-matching condition. 10. Propagation in a non-linear dielectric. 11. Second harmonic generation. 12. Coupling of three waves. 13. Materials and their non-linearities. 14. Processes involving energy exchange with the medium. 15. Two-photon absorption. 16. Stimulated Raman effect. 17. Electro-optic effects. 18. Limitations of the approach presented here. (author)

  20. Nonlinear dynamic range transformation in visual communication channels.

    Science.gov (United States)

    Alter-Gartenberg, R

    1996-01-01

    The article evaluates nonlinear dynamic range transformation in the context of the end-to-end continuous-input/discrete processing/continuous-display imaging process. Dynamic range transformation is required when we have the following: (i) the wide dynamic range encountered in nature is compressed into the relatively narrow dynamic range of the display, particularly for spatially varying irradiance (e.g., shadow); (ii) coarse quantization is expanded to the wider dynamic range of the display; and (iii) nonlinear tone scale transformation compensates for the correction in the camera amplifier.

  1. Identification of defect distribution at ferroelectric domain walls from evolution of nonlinear dielectric response during the aging process

    Czech Academy of Sciences Publication Activity Database

    Mokrý, Pavel; Sluka, T.

    2016-01-01

    Roč. 93, č. 6 (2016), č. článku 064114. ISSN 2469-9950 R&D Projects: GA ČR(CZ) GA14-32228S Institutional support: RVO:61389021 Keywords : Nonlinear dielectric response * ferroelectric domain walls * aging process * phase field simulations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016 http://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.064114

  2. The Application of Linear and Nonlinear Water Tanks Case Study in Teaching of Process Control

    Science.gov (United States)

    Li, Xiangshun; Li, Zhiang

    2018-02-01

    In the traditional process control teaching, the importance of passing knowledge is emphasized while the development of creative and practical abilities of students is ignored. Traditional teaching methods are not very helpful to breed a good engineer. Case teaching is a very useful way to improve students’ innovative and practical abilities. In the traditional case teaching, knowledge points are taught separately based on different examples or no examples, thus it is very hard to setup the whole knowledge structure. Though all the knowledge is learned, how to use the knowledge to solve engineering problems keeps challenging for students. In this paper, the linear and nonlinear tanks are taken as illustrative examples which involves several knowledge points of process control. The application method of each knowledge point is discussed in detail and simulated. I believe the case-based study will be helpful for students.

  3. Nonlinear dynamics of intense EM pulses in plasma

    International Nuclear Information System (INIS)

    Mahajan, Ranju; Gill, Tarsem Singh; Kaur, Ravinder

    2010-01-01

    The evolution of laser beam in underdense/overdense plasma medium which is key to understanding of several nonlinear processes and underlying physics is governed by nonlinear parabolic equation. The nonlinearity considered here is of relativistic as well as of ponderomotive type. We have set Lagrangian for the problem and reduced Lagrangian problem is solved using appropriate trial function. Equation for the beam width and phase are derived. Further, these equations are used to solve eigenvalue problem for the stability of laser beam evolution and Hurwitz condition is satisfied.

  4. Nonlinear dynamics research in the former Soviet Union

    International Nuclear Information System (INIS)

    McKenney, B.L.; Krafsig, J.; Moon, F.C.; Shlesinger, M.F.

    1992-08-01

    This assessment of nonlinear dynamics research in the former Soviet Union was performed by seven US scientists and engineers active in the fields examined. The topics covered include: solid-state systems and circuits, information theory and signal analysis, chaos in mechanical systems, turbulence and vortex dynamics, ocean processes, image processing, and lasers and nonlinear optics. The field of nonlinear dynamics and chaos blossomed in academic settings in both the West and the former Soviet Union during the 1980s. The field went from mathematical abstraction to interesting engineering application areas. Several generalizations can be drawn from the review of Soviet work: Soviet work generally began earlier than Western work, and, in areas that do not require extensive computational resources, that work has kept up with, and often leads, the West. This is especially true in the mathematical analysis of nonlinear phenomena. Soviet researchers have shown an ability to combine numerical or analytic ideas with laboratory experimentation in a smoother, less erratic fashion than Western researchers. Furthermore, contrary to Western practice, the same researchers often do both theoretical and experimental work. In areas that require numerical verification of ideas in the field, the Western work is leading that of the former Soviet Union. This is especially true in the areas of signal processing, simulations of turbulence, and communications. No evidence was found of any significant penetration of ideas of nonlinear dynamics into technological applications of a military or commercial area in the former Soviet Union. Opportunities abound, but specific applications are not apparent

  5. Transport processes in magnetically confined plasmas in the nonlinear regime.

    Science.gov (United States)

    Sonnino, Giorgio

    2006-06-01

    A field theory approach to transport phenomena in magnetically confined plasmas is presented. The thermodynamic field theory (TFT), previously developed for treating the generic thermodynamic system out of equilibrium, is applied to plasmas physics. Transport phenomena are treated here as the effect of the field linking the thermodynamic forces with their conjugate flows combined with statistical mechanics. In particular, the Classical and the Pfirsch-Schluter regimes are analyzed by solving the thermodynamic field equations of the TFT in the weak-field approximation. We found that, the TFT does not correct the expressions of the ionic heat fluxes evaluated by the neoclassical theory in these two regimes. On the other hand, the fluxes of matter and electronic energy (heat flow) is further enhanced in the nonlinear Classical and Pfirsch-Schluter regimes. These results seem to be in line with the experimental observations. The complete set of the electronic and ionic transport equations in the nonlinear Banana regime, is also reported. A paper showing the comparison between our theoretic results and the experimental observations in the JET machine is currently in preparation.

  6. Nonlinear analysis of pupillary dynamics.

    Science.gov (United States)

    Onorati, Francesco; Mainardi, Luca Tommaso; Sirca, Fabiola; Russo, Vincenzo; Barbieri, Riccardo

    2016-02-01

    Pupil size reflects autonomic response to different environmental and behavioral stimuli, and its dynamics have been linked to other autonomic correlates such as cardiac and respiratory rhythms. The aim of this study is to assess the nonlinear characteristics of pupil size of 25 normal subjects who participated in a psychophysiological experimental protocol with four experimental conditions, namely “baseline”, “anger”, “joy”, and “sadness”. Nonlinear measures, such as sample entropy, correlation dimension, and largest Lyapunov exponent, were computed on reconstructed signals of spontaneous fluctuations of pupil dilation. Nonparametric statistical tests were performed on surrogate data to verify that the nonlinear measures are an intrinsic characteristic of the signals. We then developed and applied a piecewise linear regression model to detrended fluctuation analysis (DFA). Two joinpoints and three scaling intervals were identified: slope α0, at slow time scales, represents a persistent nonstationary long-range correlation, whereas α1 and α2, at middle and fast time scales, respectively, represent long-range power-law correlations, similarly to DFA applied to heart rate variability signals. Of the computed complexity measures, α0 showed statistically significant differences among experimental conditions (pnonlinear dynamics, (b) three well-defined and distinct long-memory processes exist at different time scales, and (c) autonomic stimulation is partially reflected in nonlinear dynamics. (c) autonomic stimulation is partially reflected in nonlinear dynamics.

  7. Nonlinear stochastic dynamics of mesoscopic homogeneous biochemical reaction systems—an analytical theory

    International Nuclear Information System (INIS)

    Qian, Hong

    2011-01-01

    The nonlinear dynamics of biochemical reactions in a small-sized system on the order of a cell are stochastic. Assuming spatial homogeneity, the populations of n molecular species follow a multi-dimensional birth-and-death process on Z n . We introduce the Delbrück–Gillespie process, a continuous-time Markov jump process, whose Kolmogorov forward equation has been known as the chemical master equation, and whose stochastic trajectories can be computed via the Gillespie algorithm. Using simple models, we illustrate that a system of nonlinear ordinary differential equations on R n emerges in the infinite system size limit. For finite system size, transitions among multiple attractors of the nonlinear dynamical system are rare events with exponentially long transit times. There is a separation of time scales between the deterministic ODEs and the stochastic Markov jumps between attractors. No diffusion process can provide a global representation that is accurate on both short and long time scales for the nonlinear, stochastic population dynamics. On the short time scale and near deterministic stable fixed points, Ornstein–Uhlenbeck Gaussian processes give linear stochastic dynamics that exhibit time-irreversible circular motion for open, driven chemical systems. Extending this individual stochastic behaviour-based nonlinear population theory of molecular species to other biological systems is discussed. (invited article)

  8. Bound electron nonlinearity beyond the ionization threshold

    OpenAIRE

    Wahlstrand, J. K.; Zahedpour, S.; Bahl, A.; Kolesik, M.; Milchberg, H. M.

    2018-01-01

    Although high field laser-induced ionization is a fundamental process underlying many applications, there have been no absolute measurements of the nonlinear polarizability of atoms and molecules in the presence of ionization. Such information is crucial, for example, for understanding the propagation of high intensity ultrashort pulses in matter. Here, we present absolute space- and time-resolved measurements of the ultrafast laser-driven nonlinear polarizability in argon, krypton, xenon, ni...

  9. Advances and applications in nonlinear control systems

    CERN Document Server

    Volos, Christos

    2016-01-01

    The book reports on the latest advances and applications of nonlinear control systems. It consists of 30 contributed chapters by subject experts who are specialized in the various topics addressed in this book. The special chapters have been brought out in the broad areas of nonlinear control systems such as robotics, nonlinear circuits, power systems, memristors, underwater vehicles, chemical processes, observer design, output regulation, backstepping control, sliding mode control, time-delayed control, variables structure control, robust adaptive control, fuzzy logic control, chaos, hyperchaos, jerk systems, hyperjerk systems, chaos control, chaos synchronization, etc. Special importance was given to chapters offering practical solutions, modeling and novel control methods for the recent research problems in nonlinear control systems. This book will serve as a reference book for graduate students and researchers with a basic knowledge of electrical and control systems engineering. The resulting design proce...

  10. The Photoplethismographic Signal Processed with Nonlinear Time Series Analysis Tools

    International Nuclear Information System (INIS)

    Hernandez Caceres, Jose Luis; Hong, Rolando; Garcia Lanz, Abel; Garcia Dominguez, Luis; Cabannas, Karelia

    2001-01-01

    Finger photoplethismography (PPG) signals were submitted to nonlinear time series analysis. The applied analytical techniques were: (i) High degree polynomial fitting for baseline estimation; (ii) FFT analysis for estimating power spectra; (iii) fractal dimension estimation via the Higuchi's time-domain method, and (iv) kernel nonparametric estimation for reconstructing noise free-attractors and also for estimating signal's stochastic components

  11. Progress in the application of classical S-matrix theory to inelastic collision processes

    International Nuclear Information System (INIS)

    McCurdy, C.W.; Miller, W.H.

    1980-01-01

    Methods are described which effectively solve two of the technical difficulties associated with applying classical S-matrix theory to inelastic/reactive scattering. Specifically, it is shown that rather standard numerical methods can be used to solve the ''root search'' problem (i.e., the nonlinear boundary value problem necessary to impose semiclassical quantum conditions at the beginning and the end of the classical trajectories) and also how complex classical trajectories, which are necessary to describe classically forbidden (i.e., tunneling) processes, can be computed in a numerically stable way. Application is made to vibrational relaxation of H 2 by collision with He (within the helicity conserving approximation). The only remaining problem with regard to applying classical S-matrix theory to complex collision processes has to do with the availability of multidimensional uniform asymptotic formulas for interpolating the ''primitive'' semiclassical expressions between their various regions of validity

  12. A simple predistortion technique for suppression of nonlinear effects in periodic signals generated by nonlinear transducers

    Science.gov (United States)

    Novak, A.; Simon, L.; Lotton, P.

    2018-04-01

    Mechanical transducers, such as shakers, loudspeakers and compression drivers that are used as excitation devices to excite acoustical or mechanical nonlinear systems under test are imperfect. Due to their nonlinear behaviour, unwanted contributions appear at their output besides the wanted part of the signal. Since these devices are used to study nonlinear systems, it should be required to measure properly the systems under test by overcoming the influence of the nonlinear excitation device. In this paper, a simple method that corrects distorted output signal of the excitation device by means of predistortion of its input signal is presented. A periodic signal is applied to the input of the excitation device and, from analysing the output signal of the device, the input signal is modified in such a way that the undesirable spectral components in the output of the excitation device are cancelled out after few iterations of real-time processing. The experimental results provided on an electrodynamic shaker show that the spectral purity of the generated acceleration output approaches 100 dB after few iterations (1 s). This output signal, applied to the system under test, is thus cleaned from the undesirable components produced by the excitation device; this is an important condition to ensure a correct measurement of the nonlinear system under test.

  13. Nonlinear Waves In A Stenosed Elastic Tube Filled With Viscous Fluid: Forced Perturbed Korteweg-De Vries Equation

    Science.gov (United States)

    Gaik*, Tay Kim; Demiray, Hilmi; Tiong, Ong Chee

    In the present work, treating the artery as a prestressed thin-walled and long circularly cylindrical elastic tube with a mild symmetrical stenosis and the blood as an incompressible Newtonian fluid, we have studied the pro pagation of weakly nonlinear waves in such a composite medium, in the long wave approximation, by use of the reductive perturbation method. By intro ducing a set of stretched coordinates suitable for the boundary value type of problems and expanding the field variables into asymptotic series of the small-ness parameter of nonlinearity and dispersion, we obtained a set of nonlinear differential equations governing the terms at various order. By solving these nonlinear differential equations, we obtained the forced perturbed Korteweg-de Vries equation with variable coefficient as the nonlinear evolution equation. By use of the coordinate transformation, it is shown that this type of nonlinear evolution equation admits a progressive wave solution with variable wave speed.

  14. Process development studies on the bioconversion of cellulose and production of ethanol. Progress report, September 1, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Wilke, C.R.

    1978-09-01

    Progress is reported in studies on the pretreatment of cellulosic materials to facilitate enzymatic hydrolysis, sulfuric acid hydrolysis, investigation of the Purdue processing scheme including an economic analysis, and the fermentability of the enzymatic hydrolyzate. Progress is also reported on enzyme fermentation studies, hydrolysis reactor development, and utilization of hemicellulose sugars. (JSR)

  15. Streamflow disaggregation: a nonlinear deterministic approach

    Directory of Open Access Journals (Sweden)

    B. Sivakumar

    2004-01-01

    Full Text Available This study introduces a nonlinear deterministic approach for streamflow disaggregation. According to this approach, the streamflow transformation process from one scale to another is treated as a nonlinear deterministic process, rather than a stochastic process as generally assumed. The approach follows two important steps: (1 reconstruction of the scalar (streamflow series in a multi-dimensional phase-space for representing the transformation dynamics; and (2 use of a local approximation (nearest neighbor method for disaggregation. The approach is employed for streamflow disaggregation in the Mississippi River basin, USA. Data of successively doubled resolutions between daily and 16 days (i.e. daily, 2-day, 4-day, 8-day, and 16-day are studied, and disaggregations are attempted only between successive resolutions (i.e. 2-day to daily, 4-day to 2-day, 8-day to 4-day, and 16-day to 8-day. Comparisons between the disaggregated values and the actual values reveal excellent agreements for all the cases studied, indicating the suitability of the approach for streamflow disaggregation. A further insight into the results reveals that the best results are, in general, achieved for low embedding dimensions (2 or 3 and small number of neighbors (less than 50, suggesting possible presence of nonlinear determinism in the underlying transformation process. A decrease in accuracy with increasing disaggregation scale is also observed, a possible implication of the existence of a scaling regime in streamflow.

  16. Limitations of Feedback, Feedforward and IMC Controller for a First Order Non-Linear Process with Dead Time

    Directory of Open Access Journals (Sweden)

    Maruthai Suresh

    2010-10-01

    Full Text Available A nonlinear process, the heat exchanger whose parameters vary with respect to the process variable, is considered. The time constant and gain of the chosen process vary as a function of temperature. The limitations of the conventional feedback controller tuned using Ziegler-Nichols settings for the chosen process are brought out. The servo and regulatory responses through simulation and experimentation for various magnitudes of set-point changes and load changes at various operating points with the controller tuned only at a chosen nominal operating point are obtained and analyzed. Regulatory responses for output load changes are studied. The efficiency of feedforward controller and the effects of modeling error have been brought out. An IMC based system is presented to understand clearly how variations of system parameters affect the performance of the controller. The present work illustrates the effectiveness of Feedforward and IMC controller.

  17. Progress in complementary metal–oxide–semiconductor silicon photonics and optoelectronic integrated circuits

    International Nuclear Information System (INIS)

    Chen Hongda; Zhang Zan; Huang Beiju; Mao Luhong; Zhang Zanyun

    2015-01-01

    Silicon photonics is an emerging competitive solution for next-generation scalable data communications in different application areas as high-speed data communication is constrained by electrical interconnects. Optical interconnects based on silicon photonics can be used in intra/inter-chip interconnects, board-to-board interconnects, short-reach communications in datacenters, supercomputers and long-haul optical transmissions. In this paper, we present an overview of recent progress in silicon optoelectronic devices and optoelectronic integrated circuits (OEICs) based on a complementary metal–oxide–semiconductor-compatible process, and focus on our research contributions. The silicon optoelectronic devices and OEICs show good characteristics, which are expected to benefit several application domains, including communication, sensing, computing and nonlinear systems. (review)

  18. Combined algorithms in nonlinear problems of magnetostatics

    International Nuclear Information System (INIS)

    Gregus, M.; Khoromskij, B.N.; Mazurkevich, G.E.; Zhidkov, E.P.

    1988-01-01

    To solve boundary problems of magnetostatics in unbounded two- and three-dimensional regions, we construct combined algorithms based on a combination of the method of boundary integral equations with the grid methods. We study the question of substantiation of the combined method of nonlinear magnetostatic problem without the preliminary discretization of equations and give some results on the convergence of iterative processes that arise in non-linear cases. We also discuss economical iterative processes and algorithms that solve boundary integral equations on certain surfaces. Finally, examples of numerical solutions of magnetostatic problems that arose when modelling the fields of electrophysical installations are given too. 14 refs.; 2 figs.; 1 tab

  19. Dissipative quantum dynamics and nonlinear sigma-model

    International Nuclear Information System (INIS)

    Tarasov, V.E.

    1992-01-01

    Sedov variational principle which is the generalization of the least action principle for the dissipative and irreversible processes and the classical dissipative mechanics in the phase space is considered. Quantum dynamics for the dissipative and irreversible processes is constructed. As an example of the dissipative quantum theory the nonlinear two-dimensional sigma-model is considered. The conformal anomaly of the energy momentum tensor trace for closed bosonic string on the affine-metric manifold is investigated. The two-loop metric beta-function for nonlinear dissipative sigma-model was calculated. The results are compared with the ultraviolet two-loop conterterms for affine-metric sigma model. 71 refs

  20. Non color-saturated cross-sections of non-linear tomography and seismicity

    International Nuclear Information System (INIS)

    Panza, G.F.; Raykova, R.B.

    2007-11-01

    We define the structure and the rheology of the lithosphere in Italy and surrounding, combining the cellular velocity model, derived from the non-linear tomographic inversion, with the distribution versus depth of the hypocenters to assess the brittle properties of the fragile Earth. The mechanical properties, and their uncertainties, of the uppermost 60 km of the Earth crust/mantle and the seismicity, grouping hypocenter's depth with a step of 4 km, are averaged over cells of 1 deg. by 1 deg. For most of the cells the earthquake energy released has a maximum in the depth range, from 5 to 15 km, i.e. mainly in the upper crust. For some regions, where orogenic processes are in progress, the release of seismic energy is shallower and is concentrated in the uppermost 10 km of the crust. (author)

  1. A new automated assessment method for contrast–detail images by applying support vector machine and its robustness to nonlinear image processing

    International Nuclear Information System (INIS)

    Takei, Takaaki; Ikeda, Mitsuru; Imai, Kumiharu; Yamauchi-Kawaura, Chiyo; Kato, Katsuhiko; Isoda, Haruo

    2013-01-01

    The automated contrast–detail (C–D) analysis methods developed so-far cannot be expected to work well on images processed with nonlinear methods, such as noise reduction methods. Therefore, we have devised a new automated C–D analysis method by applying support vector machine (SVM), and tested for its robustness to nonlinear image processing. We acquired the CDRAD (a commercially available C–D test object) images at a tube voltage of 120 kV and a milliampere-second product (mAs) of 0.5–5.0. A partial diffusion equation based technique was used as noise reduction method. Three radiologists and three university students participated in the observer performance study. The training data for our SVM method was the classification data scored by the one radiologist for the CDRAD images acquired at 1.6 and 3.2 mAs and their noise-reduced images. We also compared the performance of our SVM method with the CDRAD Analyser algorithm. The mean C–D diagrams (that is a plot of the mean of the smallest visible hole diameter vs. hole depth) obtained from our devised SVM method agreed well with the ones averaged across the six human observers for both original and noise-reduced CDRAD images, whereas the mean C–D diagrams from the CDRAD Analyser algorithm disagreed with the ones from the human observers for both original and noise-reduced CDRAD images. In conclusion, our proposed SVM method for C–D analysis will work well for the images processed with the non-linear noise reduction method as well as for the original radiographic images.

  2. Are Current Accounts of Asian Economies Mean-reverting?: Nonlinear Unit Root Test Approach

    Directory of Open Access Journals (Sweden)

    Bonghan Kim

    2005-12-01

    Full Text Available This paper tests the mean reverting property of current account in the financial crisis-affected 5 counties of southeast Asia using nonlinear unit root tests of Park and shintani(2004. Our approach is based on the idea that a conventional unit root test has lower power in detecting the nonlinear mean reverting behavior if the current account follows a nonlinear mean reversion process. We obtained following empirical results. First, for the pre-crisis period (1981Q1-1996Q4, the current accounts of Indonesia, Malaysia and Philippines are mean-reverting but those of Korea and Thailand are not mean-reverting. Second, for the full sample period (1981Q1-2003Q4, the ADF test fails to reject the unit root of the current account in all countries except Philippines. However, unit root is rejected in favor of nonlinear mean reversion except Thailand. This nonlinear unit root test result implies that crisis-affected Asian countries except Thailand have sustainable paths of current accounts. Third, when the current accounts of East Asian countries are nonlinear mean-reverting, the mean reverting process can be well described by the ESTAR model, instead of the DTAR or DLSTAR model. The nonlinear unit root test results imply smooth nonlinear mean-reversion behaviors of East Asian current accounts. Finally, the shape of estimated impulse response functions becomes steeper as the size of shock increases, which is the very characteristic of the nonlinear process.

  3. Nonlinear optics

    International Nuclear Information System (INIS)

    Boyd, R.W.

    1992-01-01

    Nonlinear optics is the study of the interaction of intense laser light with matter. This book is a textbook on nonlinear optics at the level of a beginning graduate student. The intent of the book is to provide an introduction to the field of nonlinear optics that stresses fundamental concepts and that enables the student to go on to perform independent research in this field. This book covers the areas of nonlinear optics, quantum optics, quantum electronics, laser physics, electrooptics, and modern optics

  4. Discrete-time nonlinear sliding mode controller

    African Journals Online (AJOL)

    user

    Keywords: Discrete-time delay system, Sliding mode control, nonlinear sliding ... of engineering systems such as chemical process control, delay in the actuator ...... instrumentation from Motilal Nehru National Institute of Technology (MNNIT),.

  5. Optical nonlinearities of excitonic states in atomically thin 2D transition metal dichalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Soh, Daniel Beom Soo [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Proliferation Signatures Discovery and Exploitation Department

    2017-08-01

    We calculated the optical nonlinearities of the atomically thin monolayer transition metal dichalcogenide material (particularly MoS2), particularly for those linear and nonlinear transition processes that utilize the bound exciton states. We adopted the bound and the unbound exciton states as the basis for the Hilbert space, and derived all the dynamical density matrices that provides the induced current density, from which the nonlinear susceptibilities can be drawn order-by-order via perturbative calculations. We provide the nonlinear susceptibilities for the linear, the second-harmonic, the third-harmonic, and the kerr-type two-photon processes.

  6. Nonlinearity and disorder: Classification and stability of nonlinear impurity modes

    DEFF Research Database (Denmark)

    Sukhorukov, Andrey A.; Kivshar, Yuri S.; Bang, Ole

    2001-01-01

    We study the effects produced by competition of two physical mechanisms of energy localization in inhomogeneous nonlinear systems. As an example, we analyze spatially localized modes supported by a nonlinear impurity in the generalized nonlinear Schrödinger equation and describe three types of no...... the case of a power-law nonlinearity in detail. We discuss several scenarios of the instability-induced dynamics of the nonlinear impurity modes, including the mode decay or switching to a new stable state, and collapse at the impurity site....

  7. Some problems on nonlinear hyperbolic equations and applications

    CERN Document Server

    Peng, YueJun

    2010-01-01

    This volume is composed of two parts: Mathematical and Numerical Analysis for Strongly Nonlinear Plasma Models and Exact Controllability and Observability for Quasilinear Hyperbolic Systems and Applications. It presents recent progress and results obtained in the domains related to both subjects without attaching much importance to the details of proofs but rather to difficulties encountered, to open problems and possible ways to be exploited. It will be very useful for promoting further study on some important problems in the future.

  8. Tracking progress towards global drinking water and sanitation targets: A within and among country analysis.

    Science.gov (United States)

    Fuller, James A; Goldstick, Jason; Bartram, Jamie; Eisenberg, Joseph N S

    2016-01-15

    Global access to safe drinking water and sanitation has improved dramatically during the Millennium Development Goal (MDG) period. However, there is substantial heterogeneity in progress between countries and inequality within countries. We assessed countries' temporal patterns in access to drinking water and sanitation using publicly available data. We then classified countries using non-linear modeling techniques as having one of the following trajectories: 100% coverage, linear growth, linear decline, no change, saturation, acceleration, deceleration, negative acceleration, or negative deceleration. We further assessed the degree to which temporal profiles follow a sigmoidal pattern and how these patterns might vary within a given country between rural and urban settings. Among countries with more than 10 data points, between 15% and 38% showed a non-linear trajectory, depending on the indicator. Overall, countries' progress followed a sigmoidal trend, but some countries are making better progress and some worse progress than would be expected. We highlight several countries that are not on track to meet the MDG for water or sanitation, but whose access is accelerating, suggesting better performance during the coming years. Conversely, we also highlight several countries that have made sufficient progress to meet the MDG target, but in which access is decelerating. Patterns were heterogeneous and non-linearity was common. Characterization of these heterogeneous patterns will help policy makers allocate resources more effectively. For example, policy makers can identify countries that could make use of additional resources or might be in need of additional institutional capacity development to properly manage resources; this will be essential to meet the forthcoming Sustainable Development Goals. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Nonlinear frequency conversion in fiber lasers

    DEFF Research Database (Denmark)

    Svane, Ask Sebastian

    The concept of nonlinear frequency conversion entails generating light at new frequencies other than those of the source light. The emission wavelength of typical fiber laser systems, relying on rare-earth dopants, are constrained within specific bands of the infrared region. By exploiting...... nonlinear processes, light from these specific wavelength bands can be used to generate light at new frequencies otherwise not obtainable by rare-earth elements. This thesis describes work covering Raman fiber lasers (RFLs) and amplifiers for nonlinear frequency down-conversion, and also the method...... of fiberoptic Cherenkov radiation (FCR) using ultrafast pulses as a means for generating tunable visible (VIS) light at higher frequencies. Two different polarization maintaining (PM) RFL cavities are studied with an emphasis on stability and spectral broadening. The cavities are formed by inscription of fiber...

  10. A simple nonlinear dynamical computing device

    International Nuclear Information System (INIS)

    Miliotis, Abraham; Murali, K.; Sinha, Sudeshna; Ditto, William L.; Spano, Mark L.

    2009-01-01

    We propose and characterize an iterated map whose nonlinearity has a simple (i.e., minimal) electronic implementation. We then demonstrate explicitly how all the different fundamental logic gates can be implemented and morphed using this nonlinearity. These gates provide the full set of gates necessary to construct a general-purpose, reconfigurable computing device. As an example of how such chaotic computing devices can be exploited, we use an array of these maps to encode data and to process information. Each map can store one of M items, where M is variable and can be large. This nonlinear hardware stores data naturally in different bases or alphabets. We also show how this method of storing information can serve as a preprocessing tool for exact or inexact pattern-matching searches.

  11. Nonlinear Science

    CERN Document Server

    Yoshida, Zensho

    2010-01-01

    This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl

  12. Nonlinear beam mechanics

    NARCIS (Netherlands)

    Westra, H.J.R.

    2012-01-01

    In this Thesis, nonlinear dynamics and nonlinear interactions are studied from a micromechanical point of view. Single and doubly clamped beams are used as model systems where nonlinearity plays an important role. The nonlinearity also gives rise to rich dynamic behavior with phenomena like

  13. Symbolic computation of nonlinear wave interactions on MACSYMA

    International Nuclear Information System (INIS)

    Bers, A.; Kulp, J.L.; Karney, C.F.F.

    1976-01-01

    In this paper the use of a large symbolic computation system - MACSYMA - in determining approximate analytic expressions for the nonlinear coupling of waves in an anisotropic plasma is described. MACSYMA was used to implement the solutions of a fluid plasma model nonlinear partial differential equations by perturbation expansions and subsequent iterative analytic computations. By interacting with the details of the symbolic computation, the physical processes responsible for particular nonlinear wave interactions could be uncovered and appropriate approximations introduced so as to simplify the final analytic result. Details of the MACSYMA system and its use are discussed and illustrated. (Auth.)

  14. Nonlinear Epigenetic Variance: Review and Simulations

    Science.gov (United States)

    Kan, Kees-Jan; Ploeger, Annemie; Raijmakers, Maartje E. J.; Dolan, Conor V.; van Der Maas, Han L. J.

    2010-01-01

    We present a review of empirical evidence that suggests that a substantial portion of phenotypic variance is due to nonlinear (epigenetic) processes during ontogenesis. The role of such processes as a source of phenotypic variance in human behaviour genetic studies is not fully appreciated. In addition to our review, we present simulation studies…

  15. Discretisation of the non-linear heat transfer equation for food freezing processes using orthogonal collocation on finite elements

    Directory of Open Access Journals (Sweden)

    E. D. Resende

    2007-09-01

    Full Text Available The freezing process is considered as a propagation problem and mathematically classified as an "initial value problem." The mathematical formulation involves a complex situation of heat transfer with simultaneous changes of phase and abrupt variation in thermal properties. The objective of the present work is to solve the non-linear heat transfer equation for food freezing processes using orthogonal collocation on finite elements. This technique has not yet been applied to freezing processes and represents an alternative numerical approach in this area. The results obtained confirmed the good capability of the numerical method, which allows the simulation of the freezing process in approximately one minute of computer time, qualifying its application in a mathematical optimising procedure. The influence of the latent heat released during the crystallisation phenomena was identified by the significant increase in heat load in the early stages of the freezing process.

  16. Nonlinear amplitude dynamics in flagellar beating.

    Science.gov (United States)

    Oriola, David; Gadêlha, Hermes; Casademunt, Jaume

    2017-03-01

    The physical basis of flagellar and ciliary beating is a major problem in biology which is still far from completely understood. The fundamental cytoskeleton structure of cilia and flagella is the axoneme, a cylindrical array of microtubule doublets connected by passive cross-linkers and dynein motor proteins. The complex interplay of these elements leads to the generation of self-organized bending waves. Although many mathematical models have been proposed to understand this process, few attempts have been made to assess the role of dyneins on the nonlinear nature of the axoneme. Here, we investigate the nonlinear dynamics of flagella by considering an axonemal sliding control mechanism for dynein activity. This approach unveils the nonlinear selection of the oscillation amplitudes, which are typically either missed or prescribed in mathematical models. The explicit set of nonlinear equations are derived and solved numerically. Our analysis reveals the spatio-temporal dynamics of dynein populations and flagellum shape for different regimes of motor activity, medium viscosity and flagellum elasticity. Unstable modes saturate via the coupling of dynein kinetics and flagellum shape without the need of invoking a nonlinear axonemal response. Hence, our work reveals a novel mechanism for the saturation of unstable modes in axonemal beating.

  17. Correlation between ultrasonic nonlinearity and elastic nonlinearity in heat-treated aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Beom; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)

    2017-04-15

    The nonlinear ultrasonic technique is a potential nondestructive method to evaluate material degradation, in which the ultrasonic nonlinearity parameter is usually measured. The ultrasonic nonlinearity parameter is defined by the elastic nonlinearity coefficients of the nonlinear Hooke’s equation. Therefore, even though the ultrasonic nonlinearity parameter is not equal to the elastic nonlinearity parameter, they have a close relationship. However, there has been no experimental verification of the relationship between the ultrasonic and elastic nonlinearity parameters. In this study, the relationship is experimentally verified for a heat-treated aluminum alloy. Specimens of the aluminum alloy were heat-treated at 300°C for different periods of time (0, 1, 2, 5, 10, 20, and 50 h). The relative ultrasonic nonlinearity parameter of each specimen was then measured, and the elastic nonlinearity parameter was determined by fitting the stress-strain curve obtained from a tensile test to the 5th-order-polynomial nonlinear Hooke’s equation. The results showed that the variations in these parameters were in good agreement with each other.

  18. Improved Student Reasoning About Carbon-Transforming Processes Through Inquiry-Based Learning Activities Derived from an Empirically Validated Learning Progression

    Science.gov (United States)

    JW, Schramm; Jin, H.; Keeling, EG; Johnson, M.; Shin, HJ

    2017-05-01

    This paper reports on our use of a fine-grained learning progression to assess secondary students' reasoning through carbon-transforming processes (photosynthesis, respiration, biosynthesis). Based on previous studies, we developed a learning progression with four progress variables: explaining mass changes, explaining energy transformations, explaining subsystems, and explaining large-scale systems. For this study, we developed a 2-week teaching module integrating these progress variables. Students were assessed before and after instruction, with the learning progression framework driving data analysis. Our work revealed significant overall learning gains for all students, with the mean post-test person proficiency estimates higher by 0.6 logits than the pre-test proficiency estimates. Further, instructional effects were statistically similar across all grades included in the study (7th-12th) with students in the lowest third of initial proficiency evidencing the largest learning gains. Students showed significant gains in explaining the processes of photosynthesis and respiration and in explaining transformations of mass and energy, areas where prior research has shown that student misconceptions are prevalent. Student gains on items about large-scale systems were higher than with other variables (although absolute proficiency was still lower). Gains across each of the biological processes tested were similar, despite the different levels of emphasis each had in the teaching unit. Together, these results indicate that students can benefit from instruction addressing these processes more explicitly. This requires pedagogical design quite different from that usually practiced with students at this level.

  19. Nonlinear metallogeny and the depths of the earth

    Science.gov (United States)

    Shcheglov, A. D.; Govorov, I. N.

    This book is concerned with the basic relations regarding a new approach in the field of knowledge of metallogenesis, taking into account the complex character of the mutual dependence between ore deposits, the structure of the earth's crust, and depth relations. The principles of nonlinear metallogeny are examined, giving attention to the development of the metallogenic science during the past few years, the formation of the concept 'nonlinear metallogeny', the main aspects of nonlinear metallogeny, the origin of the ore deposits and the characteristics of ore formations in the mantle, the parallel manifestation of ore-forming processes in the crust, sedimentary-hydrothermal ore formations and their place in nonlinear metallogeny, and various types of rock and ore formations. The structure, composition, and metalliferous characteristics found at various depth zones of the tectonosphere are discussed along with the geochemical and metallogenic heterogeneity in the mantle. General questions of nonlinear metallogeny are also investigated.

  20. Mamdani-Fuzzy Modeling Approach for Quality Prediction of Non-Linear Laser Lathing Process

    Science.gov (United States)

    Sivaraos; Khalim, A. Z.; Salleh, M. S.; Sivakumar, D.; Kadirgama, K.

    2018-03-01

    Lathing is a process to fashioning stock materials into desired cylindrical shapes which usually performed by traditional lathe machine. But, the recent rapid advancements in engineering materials and precision demand gives a great challenge to the traditional method. The main drawback of conventional lathe is its mechanical contact which brings to the undesirable tool wear, heat affected zone, finishing, and dimensional accuracy especially taper quality in machining of stock with high length to diameter ratio. Therefore, a novel approach has been devised to investigate in transforming a 2D flatbed CO2 laser cutting machine into 3D laser lathing capability as an alternative solution. Three significant design parameters were selected for this experiment, namely cutting speed, spinning speed, and depth of cut. Total of 24 experiments were performed with eight (8) sequential runs where they were then replicated three (3) times. The experimental results were then used to establish Mamdani - Fuzzy predictive model where it yields the accuracy of more than 95%. Thus, the proposed Mamdani - Fuzzy modelling approach is found very much suitable and practical for quality prediction of non-linear laser lathing process for cylindrical stocks of 10mm diameter.

  1. NONLINEAR DYNAMICS OF ORGANIZATION DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Денис Антонович БУШУЕВ

    2016-02-01

    Full Text Available The nonlinear behavior of organizations in development projects is considered. The nonlinear behavior is initiated in the growth of organizations and requires a restructuring of governance in identifying dysfunctions. Such a restructuring is needed in the area of soft components, determining the organizational levels of competence in the management of projects, programs, portfolios and heads of the Project Management Office. An important component of the strategic development of the organization is the proposed concept for formation and management of development programs in the context according to their life cycle. It should take into account the non-linear behavior of the soft components of the system and violation of functional processes of the organization. The specific management syndromes of projects and programs are considered. Such as syndromes time management project linked to the singular points of the project. These syndromes are "shift to the right", "point of no return", "braking at the end of the project" and others.

  2. Transverse effects in nonlinear optics: Toward the photon superfluid

    Science.gov (United States)

    McCormick, Colin Fraser

    Nonlinear optics displays a wealth of transverse effects. These effects are particularly rich in the presence of an optical cavity. Many considerations suggest that in a Kerr nonlinear cavity a new state of light known as a "photon superfluid" can form, with strong analogies to atomic superfluids. The conditions for the formation of the photon superfluid include requirements on the cavity, input light fields and the nonlinear medium as well as various timescales. The most favorable candidate nonlinear medium for observing the photon super-fluid is an atomic vapor. With a strong and fast Kerr effect, atomic vapors also have the advantage of a Kerr coefficient that is tunable in both magnitude and sign. A series of z-scan experiments in far-detuned atomic rubidium vapor is reported, measuring the Kerr coefficient and determining its functional dependence on detuning to be that of a Doppler-broadened two-level model with adiabatic following of the electric field by the atom pseudomoment. Saturation effects are found to be important. Z-scan measurements for detunings within the Doppler profile are shown to agree well with numerical simulations based on the Doppler-broadened model. Agreement between absorptive and refractive non-linear coefficients is evidence of the Kramers-Kronig relations at work, even in this nonlinear system. The formation of the photon superfluid is discussed and the calculation of a new process, nearly collinear four-wave mixing, is presented. This process is essentially an inverse beam filamentation that is likely to be the underlying physical mechanism for transverse cooling and condensation of photons in a nonlinear optical cavity. Nearly collinear four-wave mixing may also be related to phenomena in general nonlinear physics, including modulation instability and Fermi-Pasta-Ulam recurrence.

  3. The Power of Unit Root Tests Against Nonlinear Local Alternatives

    DEFF Research Database (Denmark)

    Demetrescu, Matei; Kruse, Robinson

    of Econometrics 112, 359-379) in comparison to the linear Dickey-Fuller test. To this end, we consider different adjustment schemes for deterministic terms. We provide asymptotic results which imply that the error variance has a severe impact on the behavior of the tests in the nonlinear case; the reason...... for such behavior is the interplay of nonstationarity and nonlinearity. In particular, we show that nonlinearity of the data generating process can be asymptotically negligible when the error variance is moderate or large (compared to the "amount of nonlinearity"), rendering the linear test more powerful than...

  4. Nonlinear interaction of waves in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Istomin, Ya.N.

    1988-01-01

    Nonlinear wave processes in a weakly inhomogeneous plasma are considered. A quasilinear equation is derived which takes into account the effect of the waves on resonance particles, provided that the inhomogeneity appreciably affects the nature of the resonance interaction. Three-wave interaction is investigated under the same conditions. As an example, the nonlinear interaction in a relativistic plasma moving along a strong curvilinear magnetic field is considered

  5. Hofstadter butterflies in nonlinear Harper lattices, and their optical realizations

    International Nuclear Information System (INIS)

    Manela, Ofer; Segev, Mordechai; Christodoulides, Demetrios N; Kip, Detlef

    2010-01-01

    The ubiquitous Hofstadter butterfly describes a variety of systems characterized by incommensurable periodicities, ranging from Bloch electrons in magnetic fields and the quantum Hall effect to cold atoms in optical lattices and more. Here, we introduce nonlinearity into the underlying (Harper) model and study the nonlinear spectra and the corresponding extended eigenmodes of nonlinear quasiperiodic systems. We show that the spectra of the nonlinear eigenmodes form deformed versions of the Hofstadter butterfly and demonstrate that the modes can be classified into two families: nonlinear modes that are a 'continuation' of the linear modes of the system and new nonlinear modes that have no counterparts in the linear spectrum. Finally, we propose an optical realization of the linear and nonlinear Harper models in transversely modulated waveguide arrays, where these Hofstadter butterflies can be observed. This work is relevant to a variety of other branches of physics beyond optics, such as disorder-induced localization in ultracold bosonic gases, localization transition processes in disordered lattices, and more.

  6. Hofstadter butterflies in nonlinear Harper lattices, and their optical realizations

    Energy Technology Data Exchange (ETDEWEB)

    Manela, Ofer; Segev, Mordechai [Department of Physics and Solid State Institute, Technion, Haifa 32000 (Israel); Christodoulides, Demetrios N [College of Optics/CREOL, University of Central Florida, FL 32816-2700 (United States); Kip, Detlef, E-mail: msegev@tx.technion.ac.i [Department of Electrical Engineering, Helmut Schmidt University, 22043 Hamburg (Germany)

    2010-05-15

    The ubiquitous Hofstadter butterfly describes a variety of systems characterized by incommensurable periodicities, ranging from Bloch electrons in magnetic fields and the quantum Hall effect to cold atoms in optical lattices and more. Here, we introduce nonlinearity into the underlying (Harper) model and study the nonlinear spectra and the corresponding extended eigenmodes of nonlinear quasiperiodic systems. We show that the spectra of the nonlinear eigenmodes form deformed versions of the Hofstadter butterfly and demonstrate that the modes can be classified into two families: nonlinear modes that are a 'continuation' of the linear modes of the system and new nonlinear modes that have no counterparts in the linear spectrum. Finally, we propose an optical realization of the linear and nonlinear Harper models in transversely modulated waveguide arrays, where these Hofstadter butterflies can be observed. This work is relevant to a variety of other branches of physics beyond optics, such as disorder-induced localization in ultracold bosonic gases, localization transition processes in disordered lattices, and more.

  7. Nonlinear Cointegration Approach for Condition Monitoring of Wind Turbines

    Directory of Open Access Journals (Sweden)

    Konrad Zolna

    2015-01-01

    Full Text Available Monitoring of trends and removal of undesired trends from operational/process parameters in wind turbines is important for their condition monitoring. This paper presents the homoscedastic nonlinear cointegration for the solution to this problem. The cointegration approach used leads to stable variances in cointegration residuals. The adapted Breusch-Pagan test procedure is developed to test for the presence of heteroscedasticity in cointegration residuals obtained from the nonlinear cointegration analysis. Examples using three different time series data sets—that is, one with a nonlinear quadratic deterministic trend, another with a nonlinear exponential deterministic trend, and experimental data from a wind turbine drivetrain—are used to illustrate the method and demonstrate possible practical applications. The results show that the proposed approach can be used for effective removal of nonlinear trends form various types of data, allowing for possible condition monitoring applications.

  8. Laboratory investigation of nonlinear flow characteristics in rough fractures during shear process

    Science.gov (United States)

    Rong, Guan; Yang, Jie; Cheng, Long; Zhou, Chuangbing

    2016-10-01

    To understand the influence of shear behavior on the transporting properties of fluid through a single fracture, splitting fractures were made in the laboratory and shear flow tests were carried out under constant normal load conditions. The applied normal stress is in the range of 0.5-3.0 MPa. Before the physical test, the fracture's morphology is measured for identification of the roughness. At each shear step, we performed 5-8 high precise hydraulic tests with different hydraulic gradient. The relationship between pressure gradient and volume flow rate demonstrates to be nonlinear and fits very well with Forchheimer's and Izbash's laws. The linear and nonlinear coefficients in Forchheimer's law are quite sensitive to shear deformation (closure or dilation), experienced 1-2 and 1-3 orders of magnitude reduction during shear, respectively. An empirical equation is proposed to quantify the relationship between linear coefficient and nonlinear coefficient based on the experimental observations. The two coefficients in Izbash's law are quantified. The m value is in the range between 1.06 and 1.41 and the λ value experiences a reduction of 1-2 orders of magnitude during shear. In addition, the studied critical Reynolds number exhibits a decreasing and increasing variation corresponding to shear contraction and shear dilation of rock fracture. For all the cases in this study, the critical Reynolds number ranges between 1.5 and 13.0.

  9. Nonlinear system identification of the reduction nickel oxide smelting process in electric arc furnace

    Science.gov (United States)

    Gubin, V.; Firsov, A.

    2018-03-01

    As the title implies the article describes the nonlinear system identification of the reduction smelting process of nickel oxide in electric arc furnaces. It is suggested that for operational control ratio of components of the charge must be solved the problem of determining the qualitative composition of the melt in real time. The use of 0th harmonic of phase voltage AC furnace as an indirect measure of the melt composition is proposed. Brief description of the mechanism of occurrence and nature of the non-zero 0th harmonic of the AC voltage of the arc is given. It is shown that value of 0th harmonic of the arc voltage is not function of electrical parameters but depends of the material composition of the melt. Processed industrial data are given. Hammerstein-Wiener model is used for description of the dependence of 0th harmonic of the furnace voltage from the technical parameters of melting furnace: the melt composition and current. Recommendations are given about the practical use of the model.

  10. Evaluation of nonlinearity and validity of nonlinear modeling for complex time series.

    Science.gov (United States)

    Suzuki, Tomoya; Ikeguchi, Tohru; Suzuki, Masuo

    2007-10-01

    Even if an original time series exhibits nonlinearity, it is not always effective to approximate the time series by a nonlinear model because such nonlinear models have high complexity from the viewpoint of information criteria. Therefore, we propose two measures to evaluate both the nonlinearity of a time series and validity of nonlinear modeling applied to it by nonlinear predictability and information criteria. Through numerical simulations, we confirm that the proposed measures effectively detect the nonlinearity of an observed time series and evaluate the validity of the nonlinear model. The measures are also robust against observational noises. We also analyze some real time series: the difference of the number of chickenpox and measles patients, the number of sunspots, five Japanese vowels, and the chaotic laser. We can confirm that the nonlinear model is effective for the Japanese vowel /a/, the difference of the number of measles patients, and the chaotic laser.

  11. Nonlinear graphene plasmonics

    Science.gov (United States)

    Ooi, Kelvin J. A.; Tan, Dawn T. H.

    2017-10-01

    The rapid development of graphene has opened up exciting new fields in graphene plasmonics and nonlinear optics. Graphene's unique two-dimensional band structure provides extraordinary linear and nonlinear optical properties, which have led to extreme optical confinement in graphene plasmonics and ultrahigh nonlinear optical coefficients, respectively. The synergy between graphene's linear and nonlinear optical properties gave rise to nonlinear graphene plasmonics, which greatly augments graphene-based nonlinear device performance beyond a billion-fold. This nascent field of research will eventually find far-reaching revolutionary technological applications that require device miniaturization, low power consumption and a broad range of operating wavelengths approaching the far-infrared, such as optical computing, medical instrumentation and security applications.

  12. Numerical Investigation of Progressive Collapse Resistance for Seismically Designed RC Buildings

    OpenAIRE

    Marchiş, Adrian G.; Ioani, Adrian M.

    2014-01-01

    In this paper the progressive collapse behavior of a reinforced concrete framed building located in different seismic areas from Romania is investigated. The six-storey structure is designed for low (ag = 0.08 g), moderate (ag = 0.16 g) and high (ag = 0.24 g) seismic zone. Based on the GSA (2003) criteria, a nonlinear static analysis is conducted first in order to estimate the progressive collapse resistance of the models. It was shown that all the structures will collapse when subjected to i...

  13. Physics constrained nonlinear regression models for time series

    International Nuclear Information System (INIS)

    Majda, Andrew J; Harlim, John

    2013-01-01

    A central issue in contemporary science is the development of data driven statistical nonlinear dynamical models for time series of partial observations of nature or a complex physical model. It has been established recently that ad hoc quadratic multi-level regression (MLR) models can have finite-time blow up of statistical solutions and/or pathological behaviour of their invariant measure. Here a new class of physics constrained multi-level quadratic regression models are introduced, analysed and applied to build reduced stochastic models from data of nonlinear systems. These models have the advantages of incorporating memory effects in time as well as the nonlinear noise from energy conserving nonlinear interactions. The mathematical guidelines for the performance and behaviour of these physics constrained MLR models as well as filtering algorithms for their implementation are developed here. Data driven applications of these new multi-level nonlinear regression models are developed for test models involving a nonlinear oscillator with memory effects and the difficult test case of the truncated Burgers–Hopf model. These new physics constrained quadratic MLR models are proposed here as process models for Bayesian estimation through Markov chain Monte Carlo algorithms of low frequency behaviour in complex physical data. (paper)

  14. Lie Symmetries and Solitons in Nonlinear Systems with Spatially Inhomogeneous Nonlinearities

    International Nuclear Information System (INIS)

    Belmonte-Beitia, Juan; Perez-Garcia, Victor M.; Vekslerchik, Vadym; Torres, Pedro J.

    2007-01-01

    Using Lie group theory and canonical transformations, we construct explicit solutions of nonlinear Schroedinger equations with spatially inhomogeneous nonlinearities. We present the general theory, use it to show that localized nonlinearities can support bound states with an arbitrary number solitons, and discuss other applications of interest to the field of nonlinear matter waves

  15. Investigation of mental fatigue through EEG signal processing based on nonlinear analysis: Symbolic dynamics

    International Nuclear Information System (INIS)

    Azarnoosh, Mahdi; Motie Nasrabadi, Ali; Mohammadi, Mohammad Reza; Firoozabadi, Mohammad

    2011-01-01

    Highlights: Mental fatigue indices’ variation discussed during simple long-term attentive task. Symbolic dynamics of reaction time and EEG signal determine mental state variation. Nonlinear quantifiers such as entropy can display chaotic behaviors of the brain. Frontal and central lobes of the brain are effective in attention investigations. Mental fatigue causes a reduction in the complexity of the brain’s activity. Abstract: To investigate nonlinear analysis of attention physiological indices this study used a simple repetitive attentive task in four consecutive trials that resulted in mental fatigue. Traditional performance indices, such as reaction time, error responses, and EEG signals, were simultaneously recorded to evaluate differences between the trials. Performance indices analysis demonstrated that a selected task leads to mental fatigue. In addition, the study aimed to find a method to determine mental fatigue based on nonlinear analysis of EEG signals. Symbolic dynamics was selected as a qualitative method used to extract some quantitative qualifiers such as entropy. This method was executed on the reaction time of responses, and EEG signals to distinguish mental states. The results revealed that nonlinear analysis of reaction time, and EEG signals of the frontal and central lobes of the brain could differentiate between attention, and occurrence of mental fatigue in trials. In addition, the trend of entropy variation displayed a reduction in the complexity of mental activity as fatigue occurred.

  16. Unsteady Solution of Non-Linear Differential Equations Using Walsh Function Series

    Science.gov (United States)

    Gnoffo, Peter A.

    2015-01-01

    Walsh functions form an orthonormal basis set consisting of square waves. The discontinuous nature of square waves make the system well suited for representing functions with discontinuities. The product of any two Walsh functions is another Walsh function - a feature that can radically change an algorithm for solving non-linear partial differential equations (PDEs). The solution algorithm of non-linear differential equations using Walsh function series is unique in that integrals and derivatives may be computed using simple matrix multiplication of series representations of functions. Solutions to PDEs are derived as functions of wave component amplitude. Three sample problems are presented to illustrate the Walsh function series approach to solving unsteady PDEs. These include an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the use of the Walsh function solution algorithms, exploiting Fast Walsh Transforms in multi-dimensions (O(Nlog(N))). Details of a Fast Walsh Reciprocal, defined here for the first time, enable inversion of aWalsh Symmetric Matrix in O(Nlog(N)) operations. Walsh functions have been derived using a fractal recursion algorithm and these fractal patterns are observed in the progression of pairs of wave number amplitudes in the solutions. These patterns are most easily observed in a remapping defined as a fractal fingerprint (FFP). A prolongation of existing solutions to the next highest order exploits these patterns. The algorithms presented here are considered a work in progress that provide new alternatives and new insights into the solution of non-linear PDEs.

  17. Inverse operator theory method mathematics-mechanization for the solutions of nonlinear equations and some typical applications in nonlinear physics

    International Nuclear Information System (INIS)

    Fang Jinqing; Yao Weiguang

    1992-12-01

    Inverse operator theory method (IOTM) has developed rapidly in the last few years. It is an effective and useful procedure for quantitative solution of nonlinear or stochastic continuous dynamical systems. Solutions are obtained in series form for deterministic equations, and in the case of stochastic equation it gives statistic measures of the solution process. A very important advantage of the IOTM is to eliminate a number of restrictive and assumption on the nature of stochastic processes. Therefore, it provides more realistic solutions. The IOTM and its mathematics-mechanization (MM) are briefly introduced. They are used successfully to study the chaotic behaviors of the nonlinear dynamical systems for the first time in the world. As typical examples, the Lorentz equation, generalized Duffing equation, two coupled generalized Duffing equations are investigated by the use of the IOTM and the MM. The results are in good agreement with ones by the Runge-Kutta method (RKM). It has higher accuracy and faster convergence. So the IOTM realized by the MM is of potential application valuable in nonlinear science

  18. Imitation learning of Non-Linear Point-to-Point Robot Motions using Dirichlet Processes

    DEFF Research Database (Denmark)

    Krüger, Volker; Tikhanoff, Vadim; Natale, Lorenzo

    2012-01-01

    In this paper we discuss the use of the infinite Gaussian mixture model and Dirichlet processes for learning robot movements from demonstrations. Starting point of this work is an earlier paper where the authors learn a non-linear dynamic robot movement model from a small number of observations....... The model in that work is learned using a classical finite Gaussian mixture model (FGMM) where the Gaussian mixtures are appropriately constrained. The problem with this approach is that one needs to make a good guess for how many mixtures the FGMM should use. In this work, we generalize this approach...... our algorithm on the same data that was used in [5], where the authors use motion capture devices to record the demonstrations. As further validation we test our approach on novel data acquired on our iCub in a different demonstration scenario in which the robot is physically driven by the human...

  19. Nonlinear systems

    CERN Document Server

    Palmero, Faustino; Lemos, M; Sánchez-Rey, Bernardo; Casado-Pascual, Jesús

    2018-01-01

    This book presents an overview of the most recent advances in nonlinear science. It provides a unified view of nonlinear properties in many different systems and highlights many  new developments. While volume 1 concentrates on mathematical theory and computational techniques and challenges, which are essential for the study of nonlinear science, this second volume deals with nonlinear excitations in several fields. These excitations can be localized and transport energy and matter in the form of breathers, solitons, kinks or quodons with very different characteristics, which are discussed in the book. They can also transport electric charge, in which case they are known as polarobreathers or solectrons. Nonlinear excitations can influence function and structure in biology, as for example, protein folding. In crystals and other condensed matter, they can modify transport properties, reaction kinetics and interact with defects. There are also engineering applications in electric lattices, Josephson junction a...

  20. Ling classification describes endoscopic progressive process of achalasia and successful peroral endoscopy myotomy prevents endoscopic progression of achalasia.

    Science.gov (United States)

    Zhang, Wen-Gang; Linghu, En-Qiang; Chai, Ning-Li; Li, Hui-Kai

    2017-05-14

    To verify the hypothesis that the Ling classification describes the endoscopic progressive process of achalasia and determine the ability of successful peroral endoscopic myotomy (POEM) to prevent endoscopic progression of achalasia. We retrospectively reviewed the endoscopic findings, symptom duration, and manometric data in patients with achalasia. A total of 359 patients (197 women, 162 men) with a mean age of 42.1 years (range, 12-75 years) were evaluated. Symptom duration ranged from 2 to 360 mo, with a median of 36 mo. Patients were classified with Ling type I ( n = 119), IIa ( n = 106), IIb ( n = 60), IIc ( n = 60), or III ( n = 14), according to the Ling classification. Of the 359 patients, 349 underwent POEM, among whom 21 had an endoscopic follow-up for more than 2 years. Pre-treatment and post-treatment Ling classifications of these 21 patients were compared. Symptom duration increased significantly with increasing Ling classification (from I to III) ( P achalasia and may be able to serve as an endoscopic assessment criterion for achalasia. Successful POEM (Eckardt score ≤ 3) seems to have the ability to prevent endoscopic evolvement of achalasia. However, studies with larger populations are warranted to confirm our findings.

  1. Nonlinear processing of a multicomponent communication signal by combination-sensitive neurons in the anuran inferior colliculus.

    Science.gov (United States)

    Lee, Norman; Schrode, Katrina M; Bee, Mark A

    2017-09-01

    Diverse animals communicate using multicomponent signals. How a receiver's central nervous system integrates multiple signal components remains largely unknown. We investigated how female green treefrogs (Hyla cinerea) integrate the multiple spectral components present in male advertisement calls. Typical calls have a bimodal spectrum consisting of formant-like low-frequency (~0.9 kHz) and high-frequency (~2.7 kHz) components that are transduced by different sensory organs in the inner ear. In behavioral experiments, only bimodal calls reliably elicited phonotaxis in no-choice tests, and they were selectively chosen over unimodal calls in two-alternative choice tests. Single neurons in the inferior colliculus of awake, passively listening subjects were classified as combination-insensitive units (27.9%) or combination-sensitive units (72.1%) based on patterns of relative responses to the same bimodal and unimodal calls. Combination-insensitive units responded similarly to the bimodal call and one or both unimodal calls. In contrast, combination-sensitive units exhibited both linear responses (i.e., linear summation) and, more commonly, nonlinear responses (e.g., facilitation, compressive summation, or suppression) to the spectral combination in the bimodal call. These results are consistent with the hypothesis that nonlinearities play potentially critical roles in spectral integration and in the neural processing of multicomponent communication signals.

  2. Nonlinear Maps and their Applications 2011 International Workshop

    CERN Document Server

    Fournier-Prunaret, Daniele; Ueta, Tetsushi; Nishio, Yoshifumi

    2014-01-01

    In the field of Dynamical Systems, nonlinear iterative processes play an important role. Nonlinear mappings can be found as immediate models for many systems from different scientific areas, such as engineering, economics, biology, or can also be obtained via numerical methods permitting to solve non-linear differential equations. In both cases, the understanding of specific dynamical behaviors and phenomena is of the greatest interest for scientists. This volume contains papers that were presented at the International Workshop on Nonlinear Maps and their Applications (NOMA 2011) held in Évora, Portugal, on September 15-16, 2011. This kind of collaborative effort is of paramount importance in promoting communication among the various groups that work in dynamical systems and networks in their research theoretical studies as well as for applications. This volume is suitable for graduate students as well as researchers in the field.

  3. Nonlinear Pricing in Energy and Environmental Markets

    Science.gov (United States)

    Ito, Koichiro

    This dissertation consists of three empirical studies on nonlinear pricing in energy and environmental markets. The first investigates how consumers respond to multi-tier nonlinear price schedules for residential electricity. Chapter 2 asks a similar research question for residential water pricing. Finally, I examine the effect of nonlinear financial rewards for energy conservation by applying a regression discontinuity design to a large-scale electricity rebate program that was implemented in California. Economic theory generally assumes that consumers respond to marginal prices when making economic decisions, but this assumption may not hold for complex price schedules. The chapter "Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity Pricing" provides empirical evidence that consumers respond to average price rather than marginal price when faced with nonlinear electricity price schedules. Nonlinear price schedules, such as progressive income tax rates and multi-tier electricity prices, complicate economic decisions by creating multiple marginal prices for the same good. Evidence from laboratory experiments suggests that consumers facing such price schedules may respond to average price as a heuristic. I empirically test this prediction using field data by exploiting price variation across a spatial discontinuity in electric utility service areas. The territory border of two electric utilities lies within several city boundaries in southern California. As a result, nearly identical households experience substantially different nonlinear electricity price schedules. Using monthly household-level panel data from 1999 to 2008, I find strong evidence that consumers respond to average price rather than marginal or expected marginal price. I show that even though this sub-optimizing behavior has a minimal impact on individual welfare, it can critically alter the policy implications of nonlinear pricing. The second chapter " How Do

  4. Nonlinear Dynamic Models in Advanced Life Support

    Science.gov (United States)

    Jones, Harry

    2002-01-01

    To facilitate analysis, ALS systems are often assumed to be linear and time invariant, but they usually have important nonlinear and dynamic aspects. Nonlinear dynamic behavior can be caused by time varying inputs, changes in system parameters, nonlinear system functions, closed loop feedback delays, and limits on buffer storage or processing rates. Dynamic models are usually cataloged according to the number of state variables. The simplest dynamic models are linear, using only integration, multiplication, addition, and subtraction of the state variables. A general linear model with only two state variables can produce all the possible dynamic behavior of linear systems with many state variables, including stability, oscillation, or exponential growth and decay. Linear systems can be described using mathematical analysis. Nonlinear dynamics can be fully explored only by computer simulations of models. Unexpected behavior is produced by simple models having only two or three state variables with simple mathematical relations between them. Closed loop feedback delays are a major source of system instability. Exceeding limits on buffer storage or processing rates forces systems to change operating mode. Different equilibrium points may be reached from different initial conditions. Instead of one stable equilibrium point, the system may have several equilibrium points, oscillate at different frequencies, or even behave chaotically, depending on the system inputs and initial conditions. The frequency spectrum of an output oscillation may contain harmonics and the sums and differences of input frequencies, but it may also contain a stable limit cycle oscillation not related to input frequencies. We must investigate the nonlinear dynamic aspects of advanced life support systems to understand and counter undesirable behavior.

  5. Prediction of minimum temperatures in an alpine region by linear and non-linear post-processing of meteorological models

    Directory of Open Access Journals (Sweden)

    R. Barbiero

    2007-05-01

    Full Text Available Model Output Statistics (MOS refers to a method of post-processing the direct outputs of numerical weather prediction (NWP models in order to reduce the biases introduced by a coarse horizontal resolution. This technique is especially useful in orographically complex regions, where large differences can be found between the NWP elevation model and the true orography. This study carries out a comparison of linear and non-linear MOS methods, aimed at the prediction of minimum temperatures in a fruit-growing region of the Italian Alps, based on the output of two different NWPs (ECMWF T511–L60 and LAMI-3. Temperature, of course, is a particularly important NWP output; among other roles it drives the local frost forecast, which is of great interest to agriculture. The mechanisms of cold air drainage, a distinctive aspect of mountain environments, are often unsatisfactorily captured by global circulation models. The simplest post-processing technique applied in this work was a correction for the mean bias, assessed at individual model grid points. We also implemented a multivariate linear regression on the output at the grid points surrounding the target area, and two non-linear models based on machine learning techniques: Neural Networks and Random Forest. We compare the performance of all these techniques on four different NWP data sets. Downscaling the temperatures clearly improved the temperature forecasts with respect to the raw NWP output, and also with respect to the basic mean bias correction. Multivariate methods generally yielded better results, but the advantage of using non-linear algorithms was small if not negligible. RF, the best performing method, was implemented on ECMWF prognostic output at 06:00 UTC over the 9 grid points surrounding the target area. Mean absolute errors in the prediction of 2 m temperature at 06:00 UTC were approximately 1.2°C, close to the natural variability inside the area itself.

  6. Strong convergence of modified Ishikawa iterations for nonlinear ...

    Indian Academy of Sciences (India)

    interval [0, 1]. The second iteration process is referred to as Ishikawa's iteration process [11] which is .... Let E be a smooth Banach space with dual E∗ ..... and applications, in: Theory and Applications of Nonlinear Operators of Accretive and.

  7. Exploring lipids with nonlinear optical microscopy in multiple biological systems

    Science.gov (United States)

    Alfonso-Garcia, Alba

    Lipids are crucial biomolecules for the well being of humans. Altered lipid metabolism may give rise to a variety of diseases that affect organs from the cardiovascular to the central nervous system. A deeper understanding of lipid metabolic processes would spur medical research towards developing precise diagnostic tools, treatment methods, and preventive strategies for reducing the impact of lipid diseases. Lipid visualization remains a complex task because of the perturbative effect exerted by traditional biochemical assays and most fluorescence markers. Coherent Raman scattering (CRS) microscopy enables interrogation of biological samples with minimum disturbance, and is particularly well suited for label-free visualization of lipids, providing chemical specificity without compromising on spatial resolution. Hyperspectral imaging yields large datasets that benefit from tailored multivariate analysis. In this thesis, CRS microscopy was combined with Raman spectroscopy and other label-free nonlinear optical techniques to analyze lipid metabolism in multiple biological systems. We used nonlinear Raman techniques to characterize Meibum secretions in the progression of dry eye disease, where the lipid and protein contributions change in ratio and phase segregation. We employed similar tools to examine lipid droplets in mice livers aboard a spaceflight mission, which lose their retinol content contributing to the onset of nonalcoholic fatty-liver disease. We also focused on atherosclerosis, a disease that revolves around lipid-rich plaques in arterial walls. We examined the lipid content of macrophages, whose variable phenotype gives rise to contrasting healing and inflammatory activities. We also proposed new label-free markers, based on lifetime imaging, for macrophage phenotype, and to detect products of lipid oxidation. Cholesterol was also detected in hepatitis C virus infected cells, and in specific strains of age-related macular degeneration diseased cells by

  8. COMBINING LONG MEMORY AND NONLINEAR MODEL OUTPUTS FOR INFLATION FORECAST

    OpenAIRE

    Heri Kuswanto; Irhamah Alimuhajin; Laylia Afidah

    2014-01-01

    Long memory and nonlinearity have been proven as two models that are easily to be mistaken. In other words, nonlinearity is a strong candidate of spurious long memory by introducing a certain degree of fractional integration that lies in the region of long memory. Indeed, nonlinear process belongs to short memory with zero integration order. The idea of the forecast is to obtain the future condition with minimum error. Some researches argued that no matter what the model is, the important thi...

  9. Special discontinuities in nonlinearly elastic media

    Science.gov (United States)

    Chugainova, A. P.

    2017-06-01

    Solutions of a nonlinear hyperbolic system of equations describing weakly nonlinear quasitransverse waves in a weakly anisotropic elastic medium are studied. The influence of small-scale processes of dissipation and dispersion is investigated. The small-scale processes determine the structure of discontinuities (shocks) and a set of discontinuities with a stationary structure. Among the discontinuities with a stationary structure, there are special ones that, in addition to relations following from conservation laws, satisfy additional relations required for the existence of their structure. In the phase plane, the structure of such discontinuities is represented by an integral curve joining two saddles. Special discontinuities lead to nonunique self-similar solutions of the Riemann problem. Asymptotics of non-self-similar problems for equations with dissipation and dispersion are found numerically. These asymptotics correspond to self-similar solutions of the problems.

  10. Nonlinear Dirac Equations

    Directory of Open Access Journals (Sweden)

    Wei Khim Ng

    2009-02-01

    Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.

  11. Improved algorithm for solving nonlinear parabolized stability equations

    International Nuclear Information System (INIS)

    Zhao Lei; Zhang Cun-bo; Liu Jian-xin; Luo Ji-sheng

    2016-01-01

    Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. (paper)

  12. Pseudo-transient Continuation Based Variable Relaxation Solve in Nonlinear Magnetohydrodynamic Simulations

    International Nuclear Information System (INIS)

    Chen, Jin

    2009-01-01

    Efficient and robust Variable Relaxation Solver, based on pseudo-transient continuation, is developed to solve nonlinear anisotropic thermal conduction arising from fusion plasma simulations. By adding first and/or second order artificial time derivatives to the system, this type of method advances the resulting time-dependent nonlinear PDEs to steady state, which is the solution to be sought. In this process, only the stiffness matrix itself is involved so that the numerical complexity and errors can be greatly reduced. In fact, this work is an extension of integrating efficient linear elliptic solvers for fusion simulation on Cray XIE. Two schemes are derived in this work, first and second order Variable Relaxations. Four factors are observed to be critical for efficiency and preservation of solution's symmetric structure arising from periodic boundary condition: refining meshes in different coordinate directions, initializing nonlinear process, varying time steps in both temporal and spatial directions, and accurately generating nonlinear stiffness matrix. First finer mesh scale should be taken in strong transport direction; Next the system is carefully initialized by the solution with linear conductivity; Third, time step and relaxation factor are vertex-based varied and optimized at each time step; Finally, the nonlinear stiffness matrix is updated by just scaling corresponding linear one with the vector generated from nonlinear thermal conductivity.

  13. Nonlinear dynamics of global atmospheric and earth system processes

    Science.gov (United States)

    Zhang, Taiping; Verbitsky, Mikhail; Saltzman, Barry; Mann, Michael E.; Park, Jeffrey; Lall, Upmanu

    1995-01-01

    During the grant period, the authors continued ongoing studies aimed at enhancing their understanding of the operation of the atmosphere as a complex nonlinear system interacting with the hydrosphere, biosphere, and cryosphere in response to external radiative forcing. Five papers were completed with support from the grant, representing contributions in three main areas of study: (1) theoretical studies of the interactive atmospheric response to changed biospheric boundary conditions measurable from satellites; (2) statistical-observational studies of global-scale temperature variability on interannual to century time scales; and (3) dynamics of long-term earth system changes associated with ice sheet surges.

  14. Structural Dynamic Analyses And Test Predictions For Spacecraft Structures With Non-Linearities

    Science.gov (United States)

    Vergniaud, Jean-Baptiste; Soula, Laurent; Newerla, Alfred

    2012-07-01

    The overall objective of the mechanical development and verification process is to ensure that the spacecraft structure is able to sustain the mechanical environments encountered during launch. In general the spacecraft structures are a-priori assumed to behave linear, i.e. the responses to a static load or dynamic excitation, respectively, will increase or decrease proportionally to the amplitude of the load or excitation induced. However, past experiences have shown that various non-linearities might exist in spacecraft structures and the consequences of their dynamic effects can significantly affect the development and verification process. Current processes are mainly adapted to linear spacecraft structure behaviour. No clear rules exist for dealing with major structure non-linearities. They are handled outside the process by individual analysis and margin policy, and analyses after tests to justify the CLA coverage. Non-linearities can primarily affect the current spacecraft development and verification process on two aspects. Prediction of flights loads by launcher/satellite coupled loads analyses (CLA): only linear satellite models are delivered for performing CLA and no well-established rules exist how to properly linearize a model when non- linearities are present. The potential impact of the linearization on the results of the CLA has not yet been properly analyzed. There are thus difficulties to assess that CLA results will cover actual flight levels. Management of satellite verification tests: the CLA results generated with a linear satellite FEM are assumed flight representative. If the internal non- linearities are present in the tested satellite then there might be difficulties to determine which input level must be passed to cover satellite internal loads. The non-linear behaviour can also disturb the shaker control, putting the satellite at risk by potentially imposing too high levels. This paper presents the results of a test campaign performed in

  15. Self-Organized Biological Dynamics and Nonlinear Control

    Science.gov (United States)

    Walleczek, Jan

    2006-04-01

    The frontiers and challenges of biodynamics research Jan Walleczek; Part I. Nonlinear Dynamics in Biology and Response to Stimuli: 1. External signals and internal oscillation dynamics - principal aspects and response of stimulated rhythmic processes Friedemann Kaiser; 2. Nonlinear dynamics in biochemical and biophysical systems: from enzyme kinetics to epilepsy Raima Larter, Robert Worth and Brent Speelman; 3. Fractal mechanisms in neural control: human heartbeat and gait dynamics in health and disease Chung-Kang Peng, Jeffrey M. Hausdorff and Ary L. Goldberger; 4. Self-organising dynamics in human coordination and perception Mingzhou Ding, Yanqing Chen, J. A. Scott Kelso and Betty Tuller; 5. Signal processing in biochemical reaction networks Adam P. Arkin; Part II. Nonlinear Sensitivity of Biological Systems to Electromagnetic Stimuli: 6. Electrical signal detection and noise in systems with long-range coherence Paul C. Gailey; 7. Oscillatory signals in migrating neutrophils: effects of time-varying chemical and electrical fields Howard R. Petty; 8. Enzyme kinetics and nonlinear biochemical amplification in response to static and oscillating magnetic fields Jan Walleczek and Clemens F. Eichwald; 9. Magnetic field sensitivity in the hippocampus Stefan Engström, Suzanne Bawin and W. Ross Adey; Part III. Stochastic Noise-Induced Dynamics and Transport in Biological Systems: 10. Stochastic resonance: looking forward Frank Moss; 11. Stochastic resonance and small-amplitude signal transduction in voltage-gated ion channels Sergey M. Bezrukov and Igor Vodyanoy; 12. Ratchets, rectifiers and demons: the constructive role of noise in free energy and signal transduction R. Dean Astumian; 13. Cellular transduction of periodic and stochastic energy signals by electroconformational coupling Tian Y. Tsong; Part IV. Nonlinear Control of Biological and Other Excitable Systems: 14. Controlling chaos in dynamical systems Kenneth Showalter; 15. Electromagnetic fields and biological

  16. Nonlinear dynamics of tearing modes in the reversed field pinch

    International Nuclear Information System (INIS)

    Holmes, J.A.; Carreras, B.A.; Diamond, P.H.; Lynch, V.E.

    1988-01-01

    The results of investigations of nonlinear tearing-mode dynamics in reversed field pinch plasmas are described. The linear instabilities have poloidal mode number m = 1 and toroidal mode numbers 10approx. < napprox. <20, and the resonant surfaces are therefore in the plasma core. The nonlinear dynamics result in dual cascade processes. The first process is a rapid m = 1 spectral broadening toward high n, with a simultaneous spreading of magnetic turbulence radially outward toward the field-reversal surface. Global m = 0 perturbations, which are driven to large amplitudes by the m = 1 instabilities, in turn trigger the m = 1 spectral broadening by back coupling to the higher n. The second process is a cascade toward large m and is mediated by m = 2 modes. The m = 2 perturbations have the structure of localized, driven current sheets and nonlinearly stabilize the m = 1 modes by transferring m = 1 energy to small-scale dissipation. The calculated spectrum has many of the qualitative features observed in experiments

  17. Measurements of physical properties during transesterification of soybean oil to biodiesel for prediction of reaction progress

    International Nuclear Information System (INIS)

    Moradi, G.R.; Dehghani, S.; Ghanei, R.

    2012-01-01

    Highlights: ► Reaction progress in transesterification of soybean oil predicted using physical properties. ► Transesterification performed at 70 °C with Me/oil ratio 12:1 and 5 wt.% of BaO as catalyst. ► Viscosity and refractive index decreases nonlinearly during the progress of transesterification. ► Pour point increases linearly and cloud point increases nonlinearly during progress of reaction. ► Refractive index and pour point recommended for prediction transesterification progress. - Abstract: Biodiesel is a pure, non-toxic, biodegradable, clean-burning fuel and renewable alternative for fossil diesel fuel. In this work, a new method was introduced to determine reaction progress in transesterification of soybean oil to biodiesel by the use of physical property variation during reaction. Quantitative analysis stage for determination fatty acid methyl ester (FAME) which is expensive and time-consuming can be replaced by this method. To develop the method, in the first stage, transesterification of soybean oil at optimum conditions (70 °C with MeOH to oil molar ratio of 12:1 and 5 wt.% of BaO as catalyst) was carried out to determine how conversion and physical properties change with time. Then appropriate functions were fitted on the extracted data and were evaluated by comparison with GC results. Refractive index was selected as good physical property to predict reaction progress.

  18. Nonlinear functional analysis

    CERN Document Server

    Deimling, Klaus

    1985-01-01

    topics. However, only a modest preliminary knowledge is needed. In the first chapter, where we introduce an important topological concept, the so-called topological degree for continuous maps from subsets ofRn into Rn, you need not know anything about functional analysis. Starting with Chapter 2, where infinite dimensions first appear, one should be familiar with the essential step of consider­ ing a sequence or a function of some sort as a point in the corresponding vector space of all such sequences or functions, whenever this abstraction is worthwhile. One should also work out the things which are proved in § 7 and accept certain basic principles of linear functional analysis quoted there for easier references, until they are applied in later chapters. In other words, even the 'completely linear' sections which we have included for your convenience serve only as a vehicle for progress in nonlinearity. Another point that makes the text introductory is the use of an essentially uniform mathematical languag...

  19. Nonlinear Single Spin Spectrum Analayzer

    Science.gov (United States)

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Ozeri, Roee

    2014-05-01

    Qubits are excellent probes of their environment. When operating in the linear regime, they can be used as linear spectrum analyzers of the noise processes surrounding them. These methods fail for strong non-Gaussian noise where the qubit response is no longer linear. Here we solve the problem of nonlinear spectral analysis, required for strongly coupled environments. Our non-perturbative analytic model shows a nonlinear signal dependence on noise power, resulting in a spectral resolution beyond the Fourier limit as well as frequency mixing. We developed a noise characterization scheme adapted to this non-linearity. We then applied it using a single trapped 88Sr+ ion as the a sensitive probe of strong, non-Gaussian, discrete magnetic field noise. With this method, we attained a ten fold improvement over the standard Fourier limit. Finally, we experimentally compared the performance of equidistant vs. Uhrig modulation schemes for spectral analysis. Phys. Rev. Lett. 110, 110503 (2013), Synopsis at http://physics.aps.org/synopsis-for/10.1103/PhysRevLett.110.110503 Current position: National Institute of Standards and Tehcnology, Boulder, CO.

  20. Quantum Nonlinear Optics

    CERN Document Server

    Hanamura, Eiichi; Yamanaka, Akio

    2007-01-01

    This graduate-level textbook gives an introductory overview of the fundamentals of quantum nonlinear optics. Based on the quantum theory of radiation, Quantum Nonlinear Optics incorporates the exciting developments in novel nonlinear responses of materials (plus laser oscillation and superradiance) developed over the past decade. It deals with the organization of radiation field, interaction between electronic system and radiation field, statistics of light, mutual manipulation of light and matter, laser oscillation, dynamics of light, nonlinear optical response, and nonlinear spectroscopy, as well as ultrashort and ultrastrong laser pulse. Also considered are Q-switching, mode locking and pulse compression. Experimental and theoretical aspects are intertwined throughout.

  1. Some remarks on coherent nonlinear coupling of waves in plasmas

    International Nuclear Information System (INIS)

    Wilhelmsson, H.

    1976-01-01

    The analysis of nonlinear processes in plasma physics has given rise to a basic set of coupled equations. These equations describe the coherent nonlinear evolution of plasma waves. In this paper various possibilities of analysing these equations are discussed and inherent difficulties in the description of nonlinear interactions between different types of waves are pointed out. Specific examples of stimulated excitation of waves are considered. These are the parametric excitation of hybrid resonances in hot magnetized multi-ion component plasma and laser-plasma interactions. (B.D.)

  2. Double-resonant processes in x.sup.20.sup. nonlinear periodic media

    Czech Academy of Sciences Publication Activity Database

    Konotop, V. V.; Kuzmiak, Vladimír

    2000-01-01

    Roč. 17, č. 11 (2000), s. 1874-1883 ISSN 0740-3224 Grant - others:Fundo European de Desenvolvimento Regional and Program PRAXIS XXI(PT) PRAXIS/2/2.1/FIS/176/94 Institutional research plan: CEZ:AV0Z2067918 Keywords : nonlinear media * electromagnetic wave propagation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.943, year: 2000

  3. Gap solitons under competing local and nonlocal nonlinearities

    International Nuclear Information System (INIS)

    Kuo, Kuan-Hsien; Lin Yuanyao; Lee, Ray-Kuang; Malomed, Boris A.

    2011-01-01

    We analyze the existence, bifurcations, and shape transformations of one-dimensional gap solitons (GSs) in the first finite band gap induced by a periodic potential built into materials with local self-focusing and nonlocal self-defocusing nonlinearities. Originally stable on-site GS modes become unstable near the upper edge of the band gap with the introduction of the nonlocal self-defocusing nonlinearity with a small nonlocality radius. Unstable off-site GSs bifurcate into a new branch featuring single-humped, double-humped, and flat-top modes due to the competition between local and nonlocal nonlinearities. The mechanism underlying the complex bifurcation pattern and cutoff effects (termination of some bifurcation branches) is illustrated in terms of the shape transformation under the action of the varying degree of the nonlocality. The results of this work suggest a possibility of optical-signal processing by means of the competing nonlocal and local nonlinearities.

  4. Wave propagation in elastic medium with heterogeneous quadratic nonlinearity

    International Nuclear Information System (INIS)

    Tang Guangxin; Jacobs, Laurence J.; Qu Jianmin

    2011-01-01

    This paper studies the one-dimensional wave propagation in an elastic medium with spatially non-uniform quadratic nonlinearity. Two problems are solved analytically. One is for a time-harmonic wave propagating in a half-space where the displacement is prescribed on the surface of the half-space. It is found that spatial non-uniformity of the material nonlinearity causes backscattering of the second order harmonic, which when combined with the forward propagating waves generates a standing wave in steady-state wave motion. The second problem solved is the reflection from and transmission through a layer of finite thickness embedded in an otherwise linearly elastic medium of infinite extent, where it is assumed that the layer has a spatially non-uniform quadratic nonlinearity. The results show that the transmission coefficient for the second order harmonic is proportional to the spatial average of the nonlinearity across the thickness of the layer, independent of the spatial distribution of the nonlinearity. On the other hand, the coefficient of reflection is proportional to a weighted average of the nonlinearity across the layer thickness. The weight function in this weighted average is related to the propagating phase, thus making the coefficient of reflection dependent on the spatial distribution of the nonlinearity. Finally, the paper concludes with some discussions on how to use the reflected and transmitted second harmonic waves to evaluate the variance and autocorrelation length of nonlinear parameter β when the nonlinearity distribution in the layer is a stochastic process.

  5. Design and implementation of novel nonlinear processes in bulk and waveguide periodic structures

    Science.gov (United States)

    Kajal, Meenu

    The telecommunication networks are facing increasing demand to implement all-optical network infrastructure for enabling the wide deployment of new triple play high-speed services (e.g. IPTV, Video On Demand, Voice over IP). One of the challenges with such video broadcasting applications is that these are much more distributed and multi-point in nature unlike the traditional point-to-point communication networks. Currently deployed high-speed electronic components in the optical networks are incapable of handling the unprecedented bandwidth demand for real-time multimedia based broadcasting. The solution essentially lies in increasing the transparency of networks i.e. by replacing high speed signal processing electronics with all-optical signal processors capable of performing signal manipulations such as wavelength switching, time and wavelength division multiplexing, optical pulse compression etc. all in optical domain. This thesis aims at providing an all-optical solution for broadband wavelength conversion and tunable broadcasting, a crucial optical network component, based on quasi-phase-matched wave mixing in nonlinear materials. The quasi phase matching (QPM) technique allows phase matching in long crystal lengths by employing domain-inverted gratings to periodically reverse the sign of nonlinearity, known as periodic poling. This results into new frequency components with high conversion efficiency and has been successfully implemented towards various processes such as second harmonic generation (SHG), sum- and difference- frequency generation (SFG and DFG). Conventionally, the optical networks has an operation window of ˜35 nm centered at 1.55 mum, known as C-band. The wavelength conversion of a signal channel in C-band to an output channel also in the C-band has been demonstrated in periodically poled lithium niobate (PPLN) waveguides via the process of difference frequency mixing, cascaded SHG/DFG and cascaded SFG/DFG. While a DFG process utilized a

  6. Nonlinear vs. linear biasing in Trp-cage folding simulations

    Energy Technology Data Exchange (ETDEWEB)

    Spiwok, Vojtěch, E-mail: spiwokv@vscht.cz; Oborský, Pavel; Králová, Blanka [Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Technická 3, Prague 6 166 28 (Czech Republic); Pazúriková, Jana [Institute of Computer Science, Masaryk University, Botanická 554/68a, 602 00 Brno (Czech Republic); Křenek, Aleš [Institute of Computer Science, Masaryk University, Botanická 554/68a, 602 00 Brno (Czech Republic); Center CERIT-SC, Masaryk Univerzity, Šumavská 416/15, 602 00 Brno (Czech Republic)

    2015-03-21

    Biased simulations have great potential for the study of slow processes, including protein folding. Atomic motions in molecules are nonlinear, which suggests that simulations with enhanced sampling of collective motions traced by nonlinear dimensionality reduction methods may perform better than linear ones. In this study, we compare an unbiased folding simulation of the Trp-cage miniprotein with metadynamics simulations using both linear (principle component analysis) and nonlinear (Isomap) low dimensional embeddings as collective variables. Folding of the mini-protein was successfully simulated in 200 ns simulation with linear biasing and non-linear motion biasing. The folded state was correctly predicted as the free energy minimum in both simulations. We found that the advantage of linear motion biasing is that it can sample a larger conformational space, whereas the advantage of nonlinear motion biasing lies in slightly better resolution of the resulting free energy surface. In terms of sampling efficiency, both methods are comparable.

  7. Nonlinear Time Series Prediction Using Chaotic Neural Networks

    Science.gov (United States)

    Li, Ke-Ping; Chen, Tian-Lun

    2001-06-01

    A nonlinear feedback term is introduced into the evaluation equation of weights of the backpropagation algorithm for neural network, the network becomes a chaotic one. For the purpose of that we can investigate how the different feedback terms affect the process of learning and forecasting, we use the model to forecast the nonlinear time series which is produced by Makey-Glass equation. By selecting the suitable feedback term, the system can escape from the local minima and converge to the global minimum or its approximate solutions, and the forecasting results are better than those of backpropagation algorithm. The project supported by National Basic Research Project "Nonlinear Science" and National Natural Science Foundation of China under Grant No. 60074020

  8. Studies of nonlinear femtosecond pulse propagation in bulk materials

    Science.gov (United States)

    Eaton, Hilary Kaye

    2000-10-01

    Femtosecond pulse lasers are finding widespread application in a variety of fields including medical research, optical switching and communications, plasma formation, high harmonic generation, and wavepacket formation and control. As the number of applications for femtosecond pulses increases, so does the need to fully understand the linear and nonlinear processes involved in propagating these pulses through materials under various conditions. Recent advances in pulse measurement techniques, such as frequency-resolved optical gating (FROG), allow measurement of the full electric field of the pulse and have made detailed investigations of short- pulse propagation effects feasible. In this thesis, I present detailed experimental studies of my work involving nonlinear propagation of femtosecond pulses in bulk media. Studies of plane-wave propagation in fused silica extend the SHG form of FROG from a simple pulse diagnostic to a useful method of interrogating the nonlinear response of a material. Studies of nonlinear propagation are also performed in a regime where temporal pulse splitting occurs. Experimental results are compared with a three- dimensional nonlinear Schrödinger equation. This comparison fuels the development of a more complete model for pulse splitting. Experiments are also performed at peak input powers above those at which pulse splitting is observed. At these higher intensities, a broadband continuum is generated. This work presents a detailed study of continuum behavior and power loss as well as the first near-field spatial- spectral measurements of the generated continuum light. Nonlinear plane-wave propagation of short pulses in liquids is also investigated, and a non-instantaneous nonlinearity with a surprisingly short response time of 10 fs is observed in methanol. Experiments in water confirm that this effect in methanol is indeed real. Possible explanations for the observed effect are discussed and several are experimentally rejected. This

  9. Distributed nonlinear optical response

    DEFF Research Database (Denmark)

    Nikolov, Nikola Ivanov

    2005-01-01

    of bound states of out of phase bright solitons and dark solitons. Also, the newly introduced analogy between the nonlocal cubic nonlinear and the quadratic nonlinear media, presented in paper B and Chapter 3 is discussed. In particular it supplies intuitive physical meaning of the formation of solitons...... in quadratic nonlinear media. In the second part of the report (Chapter 4), the possibility to obtain light with ultrabroad spectrum due to the interplay of many nonlinear effects based on cubic nonlinearity is investigated thoroughly. The contribution of stimulated Raman scattering, a delayed nonlinear...... a modified nonlinear Schroedinger model equation. Chapter 4 and papers D and E are dedicated to this part of the research....

  10. Nonlinear magnetoacoustic wave propagation with chemical reactions

    Science.gov (United States)

    Margulies, Timothy Scott

    2002-11-01

    The magnetoacoustic problem with an application to sound wave propagation through electrically conducting fluids such as the ocean in the Earth's magnetic field, liquid metals, or plasmas has been addressed taking into account several simultaneous chemical reactions. Using continuum balance equations for the total mass, linear momentum, energy; as well as Maxwell's electrodynamic equations, a nonlinear beam equation has been developed to generalize the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for a fluid with linear viscosity but nonlinear and diffraction effects. Thermodynamic parameters are used and not tailored to only an adiabatic fluid case. The chemical kinetic equations build on a relaxing media approach presented, for example, by K. Naugolnukh and L. Ostrovsky [Nonlinear Wave Processes in Acoustics (Cambridge Univ. Press, Cambridge, 1998)] for a linearized single reaction and thermodynamic pressure equation of state. Approximations for large and small relaxation times and for magnetohydrodynamic parameters [Korsunskii, Sov. Phys. Acoust. 36 (1990)] are examined. Additionally, Cattaneo's equation for heat conduction and its generalization for a memory process rather than a Fourier's law are taken into account. It was introduced for the heat flux depends on the temperature gradient at an earlier time to generate heat pulses of finite speed.

  11. Discovering biological progression underlying microarray samples.

    Directory of Open Access Journals (Sweden)

    Peng Qiu

    2011-04-01

    Full Text Available In biological systems that undergo processes such as differentiation, a clear concept of progression exists. We present a novel computational approach, called Sample Progression Discovery (SPD, to discover patterns of biological progression underlying microarray gene expression data. SPD assumes that individual samples of a microarray dataset are related by an unknown biological process (i.e., differentiation, development, cell cycle, disease progression, and that each sample represents one unknown point along the progression of that process. SPD aims to organize the samples in a manner that reveals the underlying progression and to simultaneously identify subsets of genes that are responsible for that progression. We demonstrate the performance of SPD on a variety of microarray datasets that were generated by sampling a biological process at different points along its progression, without providing SPD any information of the underlying process. When applied to a cell cycle time series microarray dataset, SPD was not provided any prior knowledge of samples' time order or of which genes are cell-cycle regulated, yet SPD recovered the correct time order and identified many genes that have been associated with the cell cycle. When applied to B-cell differentiation data, SPD recovered the correct order of stages of normal B-cell differentiation and the linkage between preB-ALL tumor cells with their cell origin preB. When applied to mouse embryonic stem cell differentiation data, SPD uncovered a landscape of ESC differentiation into various lineages and genes that represent both generic and lineage specific processes. When applied to a prostate cancer microarray dataset, SPD identified gene modules that reflect a progression consistent with disease stages. SPD may be best viewed as a novel tool for synthesizing biological hypotheses because it provides a likely biological progression underlying a microarray dataset and, perhaps more importantly, the

  12. Feedback loop compensates for rectifier nonlinearity

    Science.gov (United States)

    1966-01-01

    Signal processing circuit with two negative feedback loops rectifies two sinusoidal signals which are 180 degrees out of phase and produces a single full-wave rectified output signal. Each feedback loop incorporates a feedback rectifier to compensate for the nonlinearity of the circuit.

  13. Ablation and optical third-order nonlinearities in Ag nanoparticles

    Directory of Open Access Journals (Sweden)

    Carlos Torres-Torres

    2010-11-01

    Full Text Available Carlos Torres-Torres1, Néstor Peréa-López2, Jorge Alejandro Reyes-Esqueda3, Luis Rodríguez-Fernández3, Alejandro Crespo-Sosa3, Juan Carlos Cheang-Wong3, Alicia Oliver31Section of Graduate Studies and Research, School of Mechanical and Electrical Engineering, National Polytechnic Institute, Zacatenco, Distrito Federal, Mexico; 2Laboratory for Nanoscience and Nanotechnology Research and Advanced Materials Department, IPICYT, Camino a la Presa San Jose, San Luis Potosi, Mexico; 3Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, México, D.F. 01000, MéxicoAbstract: The optical damage associated with high intensity laser excitation of silver nanoparticles (NPs was studied. In order to investigate the mechanisms of optical nonlinearity of a nanocomposite and their relation with its ablation threshold, a high-purity silica sample implanted with Ag ions was exposed to different nanosecond and picosecond laser irradiations. The magnitude and sign of picosecond refractive and absorptive nonlinearities were measured near and far from the surface plasmon resonance (SPR of the Ag NPs with a self-diffraction technique. Saturable optical absorption and electronic polarization related to self-focusing were identified. Linear absorption is the main process involved in nanosecond laser ablation, but nonlinearities are important for ultrashort picosecond pulses when the absorptive process become significantly dependent on the irradiance. We estimated that near the resonance, picosecond intraband transitions allow an expanded distribution of energy among the NPs, in comparison to the energy distribution resulting in a case of far from resonance, when the most important absorption takes place in silica. We measured important differences in the ablation threshold and we estimated that the high selectiveness of the SPR of Ag NPs as well as their corresponding optical nonlinearities can be strongly significant for laser

  14. Control and synchronization of chaos in nonlinear systems and prospects for application. Pt.1

    International Nuclear Information System (INIS)

    Fang Jinqing

    1996-01-01

    Main progress in one challenging subject of nonlinear science--control and synchronization of chaos in nonlinear systems are reviewed systematically, including recent advance in controlling and synchronizing hyperchaos. Current methods and principles of schemes of chaos control and synchronization are classified and summarized in detail. Potential prospects for application are commented both in theory and experiment. The whole review is divided into two parts. In the first one, subject on the mechanism and method of chaos control are analyzed and discussed extensively. In the second one, the synchronization of non-chaos, chaos, hyperchaos and their control and application are described. Main trends for development of the subject is mentioned. (101 refs.)

  15. A review of model predictive control: moving from linear to nonlinear design methods

    International Nuclear Information System (INIS)

    Nandong, J.; Samyudia, Y.; Tade, M.O.

    2006-01-01

    Linear model predictive control (LMPC) has now been considered as an industrial control standard in process industry. Its extension to nonlinear cases however has not yet gained wide acceptance due to many reasons, e.g. excessively heavy computational load and effort, thus, preventing its practical implementation in real-time control. The application of nonlinear MPC (NMPC) is advantageous for processes with strong nonlinearity or when the operating points are frequently moved from one set point to another due to, for instance, changes in market demands. Much effort has been dedicated towards improving the computational efficiency of NMPC as well as its stability analysis. This paper provides a review on alternative ways of extending linear MPC to the nonlinear one. We also highlight the critical issues pertinent to the applications of NMPC and discuss possible solutions to address these issues. In addition, we outline the future research trend in the area of model predictive control by emphasizing on the potential applications of multi-scale process model within NMPC

  16. A case of "order insensitivity"? Natural and artificial language processing in a man with primary progressive aphasia.

    OpenAIRE

    Zimmerer, V. C.; Varley, R. A.

    2015-01-01

    Processing of linear word order (linear configuration) is important for virtually all languages and essential to languages such as English which have little functional morphology. Damage to systems underpinning configurational processing may specifically affect word-order reliant sentence structures. We explore order processing in WR, a man with primary progressive aphasia (PPA). In a previous report, we showed how WR showed impaired processing of actives, which rely strongly on word order, b...

  17. Nonlinear Stimulated Raman Exact Passage by Resonance-Locked Inverse Engineering

    Science.gov (United States)

    Dorier, V.; Gevorgyan, M.; Ishkhanyan, A.; Leroy, C.; Jauslin, H. R.; Guérin, S.

    2017-12-01

    We derive an exact and robust stimulated Raman process for nonlinear quantum systems driven by pulsed external fields. The external fields are designed with closed-form expressions from the inverse engineering of a given efficient and stable dynamics. This technique allows one to induce a controlled population inversion which surpasses the usual nonlinear stimulated Raman adiabatic passage efficiency.

  18. Novel approach of wavelet analysis for nonlinear ultrasonic measurements and fatigue assessment of jet engine components

    Science.gov (United States)

    Bunget, Gheorghe; Tilmon, Brevin; Yee, Andrew; Stewart, Dylan; Rogers, James; Webster, Matthew; Farinholt, Kevin; Friedersdorf, Fritz; Pepi, Marc; Ghoshal, Anindya

    2018-04-01

    Widespread damage in aging aircraft is becoming an increasing concern as both civil and military fleet operators are extending the service lifetime of their aircraft. Metallic components undergoing variable cyclic loadings eventually fatigue and form dislocations as precursors to ultimate failure. In order to characterize the progression of fatigue damage precursors (DP), the acoustic nonlinearity parameter is measured as the primary indicator. However, using proven standard ultrasonic technology for nonlinear measurements presents limitations for settings outside of the laboratory environment. This paper presents an approach for ultrasonic inspection through automated immersion scanning of hot section engine components where mature ultrasonic technology is used during periodic inspections. Nonlinear ultrasonic measurements were analyzed using wavelet analysis to extract multiple harmonics from the received signals. Measurements indicated strong correlations of nonlinearity coefficients and levels of fatigue in aluminum and Ni-based superalloys. This novel wavelet cross-correlation (WCC) algorithm is a potential technique to scan for fatigue damage precursors and identify critical locations for remaining life prediction.

  19. Stochastic development regression on non-linear manifolds

    DEFF Research Database (Denmark)

    Kühnel, Line; Sommer, Stefan Horst

    2017-01-01

    We introduce a regression model for data on non-linear manifolds. The model describes the relation between a set of manifold valued observations, such as shapes of anatomical objects, and Euclidean explanatory variables. The approach is based on stochastic development of Euclidean diffusion...... processes to the manifold. Defining the data distribution as the transition distribution of the mapped stochastic process, parameters of the model, the non-linear analogue of design matrix and intercept, are found via maximum likelihood. The model is intrinsically related to the geometry encoded...... in the connection of the manifold. We propose an estimation procedure which applies the Laplace approximation of the likelihood function. A simulation study of the performance of the model is performed and the model is applied to a real dataset of Corpus Callosum shapes....

  20. Unidirectional reflection and invisibility in nonlinear media with an incoherent nonlinearity

    Science.gov (United States)

    Mostafazadeh, Ali; Oflaz, Neslihan

    2017-11-01

    We give explicit criteria for the reflectionlessness, transparency, and invisibility of a finite-range potential in the presence of an incoherent (intensity-dependent) nonlinearity that is confined to the range of the potential. This allows us to conduct a systematic study of the effects of such a nonlinearity on a locally periodic class of finite-range potentials that display perturbative unidirectional invisibility. We use our general results to examine the effects of a weak Kerr nonlinearity on the behavior of these potentials and show that the presence of nonlinearity destroys the unidirectional invisibility of these potentials. If the strength of the Kerr nonlinearity is so weak that the first-order perturbation theory is reliable, the presence of nonlinearity does not affect the unidirectional reflectionlessness and transmission reciprocity of the potential. We show that the expected violation of the latter is a second order perturbative effect.

  1. Pseudorandom numbers: evolutionary models in image processing, biology, and nonlinear dynamic systems

    Science.gov (United States)

    Yaroslavsky, Leonid P.

    1996-11-01

    We show that one can treat pseudo-random generators, evolutionary models of texture images, iterative local adaptive filters for image restoration and enhancement and growth models in biology and material sciences in a unified way as special cases of dynamic systems with a nonlinear feedback.

  2. Discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities

    DEFF Research Database (Denmark)

    Khare, A.; Rasmussen, Kim Ø; Salerno, M.

    2006-01-01

    -Ladik equation. As a common property, these equations possess three kinds of exact analytical stationary solutions for which the Peierls-Nabarro barrier is zero. Several properties of these solutions, including stability, discrete breathers, and moving solutions, are investigated.......A class of discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrodinger equation and the Ablowitz...

  3. Nonlinear GARCH model and 1 / f noise

    Science.gov (United States)

    Kononovicius, A.; Ruseckas, J.

    2015-06-01

    Auto-regressive conditionally heteroskedastic (ARCH) family models are still used, by practitioners in business and economic policy making, as a conditional volatility forecasting models. Furthermore ARCH models still are attracting an interest of the researchers. In this contribution we consider the well known GARCH(1,1) process and its nonlinear modifications, reminiscent of NGARCH model. We investigate the possibility to reproduce power law statistics, probability density function and power spectral density, using ARCH family models. For this purpose we derive stochastic differential equations from the GARCH processes in consideration. We find the obtained equations to be similar to a general class of stochastic differential equations known to reproduce power law statistics. We show that linear GARCH(1,1) process has power law distribution, but its power spectral density is Brownian noise-like. However, the nonlinear modifications exhibit both power law distribution and power spectral density of the 1 /fβ form, including 1 / f noise.

  4. The Quest for the Ultimate Nonlinear Optical Material

    Science.gov (United States)

    Dagenais, M.

    1990-10-01

    The following sections are included: * Introduction * From Infancy to the Real World * Highly Efficient Nonlinear Optical Materials for Switching and Processing * The Era of Pragmatism * Conclusion * References

  5. Design optimization of single mixed refrigerant natural gas liquefaction process using the particle swarm paradigm with nonlinear constraints

    International Nuclear Information System (INIS)

    Khan, Mohd Shariq; Lee, Moonyong

    2013-01-01

    The particle swarm paradigm is employed to optimize single mixed refrigerant natural gas liquefaction process. Liquefaction design involves multivariable problem solving and non-optimal execution of these variables can waste energy and contribute to process irreversibilities. Design optimization requires these variables to be optimized simultaneously; minimizing the compression energy requirement is selected as the optimization objective. Liquefaction is modeled using Honeywell UniSim Design ™ and the resulting rigorous model is connected with the particle swarm paradigm coded in MATLAB. Design constraints are folded into the objective function using the penalty function method. Optimization successfully improved efficiency by reducing the compression energy requirement by ca. 10% compared with the base case. -- Highlights: ► The particle swarm paradigm (PSP) is employed for design optimization of SMR NG liquefaction process. ► Rigorous SMR process model based on UniSim is connected with PSP coded in MATLAB. ► Stochastic features of PSP give more confidence in the optimality of complex nonlinear problems. ► Optimization with PSP notably improves energy efficiency of the SMR process.

  6. Sustainability science: accounting for nonlinear dynamics in policy and social-ecological systems

    Science.gov (United States)

    Resilience is an emergent property of complex systems. Understanding resilience is critical for sustainability science, as linked social-ecological systems and the policy process that governs them are characterized by non-linear dynamics. Non-linear dynamics in these systems mean...

  7. Nonlinear screening of dust grains and structurization of dusty plasma

    International Nuclear Information System (INIS)

    Tsytovich, V. N.; Gusein-zade, N. G.

    2013-01-01

    A review of theoretical ideas on the physics of structurization instability of a homogeneous dusty plasma, i.e., the formation of zones with elevated and depressed density of dust grains and their arrangement into different structures observed in laboratory plasma under microgravity conditions, is presented. Theoretical models of compact dust structures that can form in the nonlinear stage of structurization instability, as well as models of a system of voids (both surrounding a compact structure and formed in the center of the structure), are discussed. Two types of structures with very different dimensions are possible, namely, those smaller or larger than the characteristic mean free path of ions in the plasma flow. Both of them are characterized by relatively regular distributions of dust grains; however, the first ones usually require external confinement, while the structures of the second type can be self-sustained (which is of particular interest). In this review, they are called dust clusters and self-organized dust structures, respectively. Both types of the structures are characterized by new physical processes that take place only in the presence of the dust component. The role of nonlinearities in the screening of highly charged dust grains that are often observed in modern laboratory experiments turns out to be great, but these nonlinearities have not received adequate study as of yet. Although structurization takes place upon both linear and nonlinear screening, it can be substantially different under laboratory and astrophysical conditions. Studies on the nonlinear screening of large charges in plasma began several decades ago; however, up to now, this effect was usually disregarded when interpreting the processes occurring in laboratory dusty plasma. One of the aims of the present review was to demonstrate the possibility of describing the nonlinear screening of individual grains and take it into account with the help of the basic equations for the

  8. Pseudo-transient Continuation Based Variable Relaxation Solve in Nonlinear Magnetohydrodynamic Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jin Chen

    2009-12-07

    Efficient and robust Variable Relaxation Solver, based on pseudo-transient continuation, is developed to solve nonlinear anisotropic thermal conduction arising from fusion plasma simulations. By adding first and/or second order artificial time derivatives to the system, this type of method advances the resulting time-dependent nonlinear PDEs to steady state, which is the solution to be sought. In this process, only the stiffness matrix itself is involved so that the numerical complexity and errors can be greatly reduced. In fact, this work is an extension of integrating efficient linear elliptic solvers for fusion simulation on Cray XIE. Two schemes are derived in this work, first and second order Variable Relaxations. Four factors are observed to be critical for efficiency and preservation of solution's symmetric structure arising from periodic boundary condition: refining meshes in different coordinate directions, initializing nonlinear process, varying time steps in both temporal and spatial directions, and accurately generating nonlinear stiffness matrix. First finer mesh scale should be taken in strong transport direction; Next the system is carefully initialized by the solution with linear conductivity; Third, time step and relaxation factor are vertex-based varied and optimized at each time step; Finally, the nonlinear stiffness matrix is updated by just scaling corresponding linear one with the vector generated from nonlinear thermal conductivity.

  9. Nonlinear evolution equations

    CERN Document Server

    Uraltseva, N N

    1995-01-01

    This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p

  10. Effects of error feedback on a nonlinear bistable system with stochastic resonance

    International Nuclear Information System (INIS)

    Li Jian-Long; Zhou Hui

    2012-01-01

    In this paper, we discuss the effects of error feedback on the output of a nonlinear bistable system with stochastic resonance. The bit error rate is employed to quantify the performance of the system. The theoretical analysis and the numerical simulation are presented. By investigating the performances of the nonlinear systems with different strengths of error feedback, we argue that the presented system may provide guidance for practical nonlinear signal processing

  11. Accelerating regional atrophy rates in the progression from normal aging to Alzheimer's disease

    NARCIS (Netherlands)

    Sluimer, J.D.; van der Flier, W.M.; Karas, G.B.; van Schijndel, R.; Barnes, J.; Boyes, R.G.; Cover, K.S.; Olabarriaga, S.D.; Fox, N.C.; Scheltens, P.; Vrenken, H.; Barkhof, F.

    2009-01-01

    We investigated progression of atrophy in vivo, in Alzheimer's disease (AD), and mild cognitive impairment (MCI). We included 64 patients with AD, 44 with MCI and 34 controls with serial MRI examinations (interval 1.8 +/- 0.7 years). A nonlinear registration algorithm (fluid) was used to calculate

  12. Nonlinear estimation and control of automotive drivetrains

    CERN Document Server

    Chen, Hong

    2014-01-01

    Nonlinear Estimation and Control of Automotive Drivetrains discusses the control problems involved in automotive drivetrains, particularly in hydraulic Automatic Transmission (AT), Dual Clutch Transmission (DCT) and Automated Manual Transmission (AMT). Challenging estimation and control problems, such as driveline torque estimation and gear shift control, are addressed by applying the latest nonlinear control theories, including constructive nonlinear control (Backstepping, Input-to-State Stable) and Model Predictive Control (MPC). The estimation and control performance is improved while the calibration effort is reduced significantly. The book presents many detailed examples of design processes and thus enables the readers to understand how to successfully combine purely theoretical methodologies with actual applications in vehicles. The book is intended for researchers, PhD students, control engineers and automotive engineers. Hong Chen is a professor at the State Key Laboratory of Automotive Simulation and...

  13. Improved algorithm for solving nonlinear parabolized stability equations

    Science.gov (United States)

    Zhao, Lei; Zhang, Cun-bo; Liu, Jian-xin; Luo, Ji-sheng

    2016-08-01

    Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. Project supported by the National Natural Science Foundation of China (Grant Nos. 11332007 and 11402167).

  14. Nonlinear optics

    CERN Document Server

    Boyd, Robert W

    2013-01-01

    Nonlinear Optics is an advanced textbook for courses dealing with nonlinear optics, quantum electronics, laser physics, contemporary and quantum optics, and electrooptics. Its pedagogical emphasis is on fundamentals rather than particular, transitory applications. As a result, this textbook will have lasting appeal to a wide audience of electrical engineering, physics, and optics students, as well as those in related fields such as materials science and chemistry.Key Features* The origin of optical nonlinearities, including dependence on the polarization of light* A detailed treatment of the q

  15. Ultrafast nonlinear dynamics of thin gold films due to an intrinsic delayed nonlinearity

    Science.gov (United States)

    Bache, Morten; Lavrinenko, Andrei V.

    2017-09-01

    Using long-range surface plasmon polaritons light can propagate in metal nano-scale waveguides for ultracompact opto-electronic devices. Gold is an important material for plasmonic waveguides, but although its linear optical properties are fairly well understood, the nonlinear response is still under investigation. We consider the propagation of pulses in ultrathin gold strip waveguides, modeled by the nonlinear Schrödinger equation. The nonlinear response of gold is accounted for by the two-temperature model, revealing it as a delayed nonlinearity intrinsic in gold. The consequence is that the measured nonlinearities are strongly dependent on pulse duration. This issue has so far only been addressed phenomenologically, but we provide an accurate estimate of the quantitative connection as well as a phenomenological theory to understand the enhanced nonlinear response as the gold thickness is reduced. In comparison with previous works, the analytical model for the power-loss equation has been improved, and can be applied now to cases with a high laser peak power. We show new fits to experimental data from the literature and provide updated values for the real and imaginary parts of the nonlinear susceptibility of gold for various pulse durations and gold layer thicknesses. Our simulations show that the nonlinear loss is inhibiting efficient nonlinear interaction with low-power laser pulses. We therefore propose to design waveguides suitable for the mid-IR, where the ponderomotive instantaneous nonlinearity can dominate over the delayed hot-electron nonlinearity and provide a suitable plasmonics platform for efficient ultrafast nonlinear optics.

  16. Few-cycle nonlinear mid-IR pulse generated with cascaded quadratic nonlinearities

    DEFF Research Database (Denmark)

    Bache, Morten; Liu, Xing; Zhou, Binbin

    Generating few-cycle energetic and broadband mid-IR pulses is an urgent current challenge in nonlinear optics. Cascaded second-harmonic generation (SHG) gives access to an ultrafast and octave-spanning self-defocusing nonlinearity: when ΔkL >> 2π the pump experiences a Kerr-like nonlinear index...

  17. Polarization Nonlinear Optics of Quadratically Nonlinear Azopolymers

    International Nuclear Information System (INIS)

    Konorov, S.O.; Akimov, D.A.; Ivanov, A.A.; Petrov, A.N.; Alfimov, M.V.; Yakimanskii, A.V.; Smirnov, N.N.; Ivanova, V.N.; Kudryavtsev, V.V.; Podshivalov, A.A.; Sokolova, I.M.; Zheltikov, A.M.

    2005-01-01

    The polarization properties of second harmonic and sum-frequency signals generated by femtosecond laser pulses in films of polymers containing covalent groups of an azobenzothiazole chromophore polarized by an external electric field are investigated. It is shown that the methods of polarization nonlinear optics make it possible to determine the structure of oriented molecular dipoles and reveal important properties of the motion of collectivized πelectrons in organic molecules with strong optical nonlinearities. The polarization measurements show that the tensor of quadratic nonlinear optical susceptibility of chromophore fragments oriented by an external field in macromolecules of the noted azopolymers has a degenerate form. This is indicative of a predominantly one-dimensional character of motion of collectivized π electrons along an extended group of atoms in such molecules

  18. Nonlinear time series analysis of the human electrocardiogram

    International Nuclear Information System (INIS)

    Perc, Matjaz

    2005-01-01

    We analyse the human electrocardiogram with simple nonlinear time series analysis methods that are appropriate for graduate as well as undergraduate courses. In particular, attention is devoted to the notions of determinism and stationarity in physiological data. We emphasize that methods of nonlinear time series analysis can be successfully applied only if the studied data set originates from a deterministic stationary system. After positively establishing the presence of determinism and stationarity in the studied electrocardiogram, we calculate the maximal Lyapunov exponent, thus providing interesting insights into the dynamics of the human heart. Moreover, to facilitate interest and enable the integration of nonlinear time series analysis methods into the curriculum at an early stage of the educational process, we also provide user-friendly programs for each implemented method

  19. Nonlinear optical studies of surfaces

    International Nuclear Information System (INIS)

    Shen, Y.R.

    1994-07-01

    The possibly of using nonlinear optical processes for surface studies has attracted increasing attention in recent years. Optical second harmonic generation (SHG) and sum frequency generation (SFG), in particular, have been well accepted as viable surface probes. They have many advantages over the conventional techniques. By nature, they are highly surface-specific and has a submonolayer sensitivity. As coherent optical processes, they are capable of in-situ probing of surfaces in hostile environment as well as applicable to all interfaces accessible by light. With ultrafast pump laser pulses, they can be employed to study surface dynamic processes with a subpicosecond time resolution. These advantages have opened the door to many exciting research opportunities in surface science and technology. This paper gives a brief overview of this fast-growing new area of research. Optical SHG from a surface was first studied theoretically and experimentally in the sixties. Even the submonolayer surface sensitivity of the process was noticed fairly early. The success was, however, limited because of difficulties in controlling the experimental conditions. It was not until the early 1980's that the potential of the process for surface analysis was duly recognized. The first surface study by SHG was actually motivated by the then active search for an understanding of the intriguing surface enhanced Raman scattering (SERS). It had been suspected that the enhancement in SERS mainly came from the local-field enhancement due to local plasmon resonances and pointing rod effect on rough metal surfaces. In our view, Raman scattering is a two-photon process and is therefore a nonlinear optical effect

  20. Progress in centralised ethics review processes: Implications for multi-site health evaluations.

    Science.gov (United States)

    Prosser, Brenton; Davey, Rachel; Gibson, Diane

    2015-04-01

    Increasingly, public sector programmes respond to complex social problems that intersect specific fields and individual disciplines. Such responses result in multi-site initiatives that can span nations, jurisdictions, sectors and organisations. The rigorous evaluation of public sector programmes is now a baseline expectation. For evaluations of large and complex multi-site programme initiatives, the processes of ethics review can present a significant challenge. However in recent years, there have been new developments in centralised ethics review processes in many nations. This paper provides the case study of an evaluation of a national, inter-jurisdictional, cross-sector, aged care health initiative and its encounters with Australian centralised ethics review processes. Specifically, the paper considers progress against the key themes of a previous five-year, five nation study (Fitzgerald and Phillips, 2006), which found that centralised ethics review processes would save time, money and effort, as well as contribute to more equitable workloads for researchers and evaluators. The paper concludes with insights for those charged with refining centralised ethics review processes, as well as recommendations for future evaluators of complex multi-site programme initiatives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Nonlinear response of the quantum Hall system to a strong electromagnetic radiation

    International Nuclear Information System (INIS)

    Avetissian, H.K.; Mkrtchian, G.F.

    2016-01-01

    We study nonlinear response of a quantum Hall system in semiconductor-hetero-structures via third harmonic generation process and nonlinear Faraday effect. We demonstrate that Faraday rotation angle and third harmonic radiation intensity have a characteristic Hall plateaus feature. These nonlinear effects remain robust against the significant broadening of Landau levels. We predict realization of an experiment through the observation of the third harmonic signal and Faraday rotation angle, which are within the experimental feasibility. - Highlights: • Nonlinear optical response of a quantum Hall system has specific plateaus feature. • This effect remains robust against the significant broadening of Landau levels. • It can be observed via the third harmonic signal and the nonlinear Faraday effect.

  2. Nonlinear crack mechanics

    International Nuclear Information System (INIS)

    Khoroshun, L.P.

    1995-01-01

    The characteristic features of the deformation and failure of actual materials in the vicinity of a crack tip are due to their physical nonlinearity in the stress-concentration zone, which is a result of plasticity, microfailure, or a nonlinear dependence of the interatomic forces on the distance. Therefore, adequate models of the failure mechanics must be nonlinear, in principle, although linear failure mechanics is applicable if the zone of nonlinear deformation is small in comparison with the crack length. Models of crack mechanics are based on analytical solutions of the problem of the stress-strain state in the vicinity of the crack. On account of the complexity of the problem, nonlinear models are bason on approximate schematic solutions. In the Leonov-Panasyuk-Dugdale nonlinear model, one of the best known, the actual two-dimensional plastic zone (the nonlinearity zone) is replaced by a narrow one-dimensional zone, which is then modeled by extending the crack with a specified normal load equal to the yield point. The condition of finite stress is applied here, and hence the length of the plastic zone is determined. As a result of this approximation, the displacement in the plastic zone at the abscissa is nonzero

  3. Nonlinear analysis of dynamic signature

    Science.gov (United States)

    Rashidi, S.; Fallah, A.; Towhidkhah, F.

    2013-12-01

    Signature is a long trained motor skill resulting in well combination of segments like strokes and loops. It is a physical manifestation of complex motor processes. The problem, generally stated, is that how relative simplicity in behavior emerges from considerable complexity of perception-action system that produces behavior within an infinitely variable biomechanical and environmental context. To solve this problem, we present evidences which indicate that motor control dynamic in signing process is a chaotic process. This chaotic dynamic may explain a richer array of time series behavior in motor skill of signature. Nonlinear analysis is a powerful approach and suitable tool which seeks for characterizing dynamical systems through concepts such as fractal dimension and Lyapunov exponent. As a result, they can be analyzed in both horizontal and vertical for time series of position and velocity. We observed from the results that noninteger values for the correlation dimension indicates low dimensional deterministic dynamics. This result could be confirmed by using surrogate data tests. We have also used time series to calculate the largest Lyapunov exponent and obtain a positive value. These results constitute significant evidence that signature data are outcome of chaos in a nonlinear dynamical system of motor control.

  4. Embedded interruptions and task complexity influence schema-related cognitive load progression in an abstract learning task.

    Science.gov (United States)

    Wirzberger, Maria; Esmaeili Bijarsari, Shirin; Rey, Günter Daniel

    2017-09-01

    Cognitive processes related to schema acquisition comprise an essential source of demands in learning situations. Since the related amount of cognitive load is supposed to change over time, plausible temporal models of load progression based on different theoretical backgrounds are inspected in this study. A total of 116 student participants completed a basal symbol sequence learning task, which provided insights into underlying cognitive dynamics. Two levels of task complexity were determined by the amount of elements within the symbol sequence. In addition, interruptions due to an embedded secondary task occurred at five predefined stages over the task. Within the resulting 2x5-factorial mixed between-within design, the continuous monitoring of efficiency in learning performance enabled assumptions on relevant resource investment. From the obtained results, a nonlinear change of learning efficiency over time seems most plausible in terms of cognitive load progression. Moreover, different effects of the induced interruptions show up in conditions of task complexity, which indicate the activation of distinct cognitive mechanisms related to structural aspects of the task. Findings are discussed in the light of evidence from research on memory and information processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Nonlinear dynamics and complexity

    CERN Document Server

    Luo, Albert; Fu, Xilin

    2014-01-01

    This important collection presents recent advances in nonlinear dynamics including analytical solutions, chaos in Hamiltonian systems, time-delay, uncertainty, and bio-network dynamics. Nonlinear Dynamics and Complexity equips readers to appreciate this increasingly main-stream approach to understanding complex phenomena in nonlinear systems as they are examined in a broad array of disciplines. The book facilitates a better understanding of the mechanisms and phenomena in nonlinear dynamics and develops the corresponding mathematical theory to apply nonlinear design to practical engineering.

  6. Improving the process of progressive preliming in sugar production

    Directory of Open Access Journals (Sweden)

    V. A. Golybin

    2016-01-01

    Full Text Available Tasks progressive preliming are to conduct neutralization, coagulation, deposition of non-sugars, the formation of a precipitate structure. This is the first operation of physical and chemical cleaning of the raw juice in the case of it in optimum conditions enables the coagulation and transferred to precipitate a substantial portion of high-molecular non-sugars, poorly soluble calcium salts that provides the cleaning effect of 14–18%, that is, up to half of the total effect on the whole station lime-carbon dioxide purification. The results preliming felt not only on the properties of the filtration of the carbonated juices, but a lso on the quality of performance of all intermediates and produced of sugar, in particular the color and turbidity of an aqueous solution, the content of the ash. In our investigations using the raw juice from sugar beet low quality found that when a uniform progressi ve change in pH of the juice during warm preliming best results for deposition rate and volume solids of the resulting precipitate are achieved when the length of 7 to 10 minutes. If it increases to 15 minutes and further reduced the deposition rate of the solid phase with a significant increase in turbidity decantate. It found that as a result of excess visit a large part of the raw juice in a progressive preliming at 60 °C increase in color prelimed juice was 30–55%, which is in agreement with the calculated values decay reducing agents in alkaline solution and formation of any additional colorants. The results confirming the feasibility of the use preddefekatsionnoy for processing the raw juice of condensed carbonate refunds.

  7. Waves and Structures in Nonlinear Nondispersive Media General Theory and Applications to Nonlinear Acoustics

    CERN Document Server

    Gurbatov, S N; Saichev, A I

    2012-01-01

    "Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is...

  8. Nonlinear dynamics of tearing modes in the reversed field pinch

    International Nuclear Information System (INIS)

    Holmes, J.A.; Carreras, B.A.; Diamond, P.H.; Lynch, V.E.

    1987-05-01

    The results of investigations of nonlinear tearing-mode dynamics in reversed field pinch plasmas are described. The linear instabilities have poloidal mode number m = 1 and toroidal mode numbers 10 ≤ n ≤ 20, and the resonant surfaces are therefore in the plasma core. The nonlinear dynamics result in dual cascade processes. The first process is a rapid m = 1 spectral broadening toward high n, with a simultaneous spreading of magnetic turbulence radially outward toward the field-reversal surface. Global m = 0 perturbations, which are driven to large amplitudes by the m = 1 instabilities, in turn trigger the m = 1 spectral broadening by back-coupling to the higher n. The second process is a cascade toward large m and is mediated by m = 2 modes. The m = 2 perturbations have the structure of localized, driven current sheets and nonlinearly stabilize the m = 1 modes by transferring m = 1 energy to small-scale dissipation. The calculated spectrum has many of the qualitative features observed in experiments. 13 refs., 21 figs., 1 tab

  9. On some applications of diffusion processes for image processing

    International Nuclear Information System (INIS)

    Morfu, S.

    2009-01-01

    We propose a new algorithm inspired by the properties of diffusion processes for image filtering. We show that purely nonlinear diffusion processes ruled by Fisher equation allows contrast enhancement and noise filtering, but involves a blurry image. By contrast, anisotropic diffusion, described by Perona and Malik algorithm, allows noise filtering and preserves the edges. We show that combining the properties of anisotropic diffusion with those of nonlinear diffusion provides a better processing tool which enables noise filtering, contrast enhancement and edge preserving.

  10. Nonlinear Approaches in Engineering Applications

    CERN Document Server

    Jazar, Reza

    2012-01-01

    Nonlinear Approaches in Engineering Applications focuses on nonlinear phenomena that are common in the engineering field. The nonlinear approaches described in this book provide a sound theoretical base and practical tools to design and analyze engineering systems with high efficiency and accuracy and with less energy and downtime. Presented here are nonlinear approaches in areas such as dynamic systems, optimal control and approaches in nonlinear dynamics and acoustics. Coverage encompasses a wide range of applications and fields including mathematical modeling and nonlinear behavior as applied to microresonators, nanotechnologies, nonlinear behavior in soil erosion,nonlinear population dynamics, and optimization in reducing vibration and noise as well as vibration in triple-walled carbon nanotubes. This book also: Provides a complete introduction to nonlinear behavior of systems and the advantages of nonlinearity as a tool for solving engineering problems Includes applications and examples drawn from the el...

  11. Nonlinear modelling of polymer electrolyte membrane fuel cell stack using nonlinear cancellation technique

    Energy Technology Data Exchange (ETDEWEB)

    Barus, R. P. P., E-mail: rismawan.ppb@gmail.com [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung and Centre for Material and Technical Product, Jalan Sangkuriang No. 14 Bandung (Indonesia); Tjokronegoro, H. A.; Leksono, E. [Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia); Ismunandar [Chemistry Study, Faculty of Mathematics and Science, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung (Indonesia)

    2014-09-25

    Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range.

  12. Nonlinear modelling of polymer electrolyte membrane fuel cell stack using nonlinear cancellation technique

    International Nuclear Information System (INIS)

    Barus, R. P. P.; Tjokronegoro, H. A.; Leksono, E.; Ismunandar

    2014-01-01

    Fuel cells are promising new energy conversion devices that are friendly to the environment. A set of control systems are required in order to operate a fuel cell based power plant system optimally. For the purpose of control system design, an accurate fuel cell stack model in describing the dynamics of the real system is needed. Currently, linear model are widely used for fuel cell stack control purposes, but it has limitations in narrow operation range. While nonlinear models lead to nonlinear control implemnetation whos more complex and hard computing. In this research, nonlinear cancellation technique will be used to transform a nonlinear model into a linear form while maintaining the nonlinear characteristics. The transformation is done by replacing the input of the original model by a certain virtual input that has nonlinear relationship with the original input. Then the equality of the two models is tested by running a series of simulation. Input variation of H2, O2 and H2O as well as disturbance input I (current load) are studied by simulation. The error of comparison between the proposed model and the original nonlinear model are less than 1 %. Thus we can conclude that nonlinear cancellation technique can be used to represent fuel cell nonlinear model in a simple linear form while maintaining the nonlinear characteristics and therefore retain the wide operation range

  13. Digital nonlinearity compensation in high-capacity optical communication systems considering signal spectral broadening effect.

    Science.gov (United States)

    Xu, Tianhua; Karanov, Boris; Shevchenko, Nikita A; Lavery, Domaniç; Liga, Gabriele; Killey, Robert I; Bayvel, Polina

    2017-10-11

    Nyquist-spaced transmission and digital signal processing have proved effective in maximising the spectral efficiency and reach of optical communication systems. In these systems, Kerr nonlinearity determines the performance limits, and leads to spectral broadening of the signals propagating in the fibre. Although digital nonlinearity compensation was validated to be promising for mitigating Kerr nonlinearities, the impact of spectral broadening on nonlinearity compensation has never been quantified. In this paper, the performance of multi-channel digital back-propagation (MC-DBP) for compensating fibre nonlinearities in Nyquist-spaced optical communication systems is investigated, when the effect of signal spectral broadening is considered. It is found that accounting for the spectral broadening effect is crucial for achieving the best performance of DBP in both single-channel and multi-channel communication systems, independent of modulation formats used. For multi-channel systems, the degradation of DBP performance due to neglecting the spectral broadening effect in the compensation is more significant for outer channels. Our work also quantified the minimum bandwidths of optical receivers and signal processing devices to ensure the optimal compensation of deterministic nonlinear distortions.

  14. Nonlinear optical spectroscopy and microscopy of model random and biological media

    Science.gov (United States)

    Guo, Yici

    Nonlinear optical (NLO) spectroscopy and microscopy applied to biomedical science are emerging as new and rapidly growing areas which offer important insight into basic phenomena. Ultrafast NLO processes provide temporal, spectral and spatial sensitivities complementary or superior to those achieved through conventional linear optical approaches. The goal of this thesis is to explore the potential of two fundamental NLO processes to produce noninvasive histological maps of biological tissues. Within the goal of the thesis, steady state intensity, polarization and angular measurements of second- and third-harmonic generations (SHG, THG) have been performed on model random scattering and animal tissue samples. The nonlinear optical effects have been evaluated using models. Conversion efficiencies of SHG and THG from animal tissue interfaces have been determined, ranging from 10-7 to 10-10. The changes in the multiharmonic signals were found to depend on both local and overall histological structures of biological samples. The spectral signatures of two photon excitation induced fluorescence from intrinsic fluorophores have been acquired and used to characterize the physical state and types of tissues. Two dimensional scanning SHG and TPF tomographic images have been obtained from in vitro animal tissues, normal and diseased human breast tissues, and resolved subsurface layers and histo-chemical distributions. By combining consecutive 2D maps, a 3D image can be produced. The structure and morphology dependence of the SH signal has been utilized to image and evaluate subsurface tumor progression depth. Second harmonic microscopy in model random and biological cells has been studied using a CCD camera to obtain direct images from subcellular structures. Finally, near infrared (NIR) NLO spectroscopy and microscopy based on SHG and TPF have demonstrated high spatial resolution, deeper penetration depth, low level photo-damaging and enhanced morphological sensitivity for

  15. Nonlinear model predictive control for chemical looping process

    Science.gov (United States)

    Joshi, Abhinaya; Lei, Hao; Lou, Xinsheng

    2017-08-22

    A control system for optimizing a chemical looping ("CL") plant includes a reduced order mathematical model ("ROM") that is designed by eliminating mathematical terms that have minimal effect on the outcome. A non-linear optimizer provides various inputs to the ROM and monitors the outputs to determine the optimum inputs that are then provided to the CL plant. An estimator estimates the values of various internal state variables of the CL plant. The system has one structure adapted to control a CL plant that only provides pressure measurements in the CL loops A and B, a second structure adapted to a CL plant that provides pressure measurements and solid levels in both loops A, and B, and a third structure adapted to control a CL plant that provides full information on internal state variables. A final structure provides a neural network NMPC controller to control operation of loops A and B.

  16. Higher-order modulation instability in nonlinear fiber optics.

    Science.gov (United States)

    Erkintalo, Miro; Hammani, Kamal; Kibler, Bertrand; Finot, Christophe; Akhmediev, Nail; Dudley, John M; Genty, Goëry

    2011-12-16

    We report theoretical, numerical, and experimental studies of higher-order modulation instability in the focusing nonlinear Schrödinger equation. This higher-order instability arises from the nonlinear superposition of elementary instabilities, associated with initial single breather evolution followed by a regime of complex, yet deterministic, pulse splitting. We analytically describe the process using the Darboux transformation and compare with experiments in optical fiber. We show how a suitably low frequency modulation on a continuous wave field induces higher-order modulation instability splitting with the pulse characteristics at different phases of evolution related by a simple scaling relationship. We anticipate that similar processes are likely to be observed in many other systems including plasmas, Bose-Einstein condensates, and deep water waves. © 2011 American Physical Society

  17. Evaluation of time integration methods for transient response analysis of nonlinear structures

    International Nuclear Information System (INIS)

    Park, K.C.

    1975-01-01

    Recent developments in the evaluation of direct time integration methods for the transient response analysis of nonlinear structures are presented. These developments, which are based on local stability considerations of an integrator, show that the interaction between temporal step size and nonlinearities of structural systems has a pronounced effect on both accuracy and stability of a given time integration method. The resulting evaluation technique is applied to a model nonlinear problem, in order to: 1) demonstrate that it eliminates the present costly process of evaluating time integrator for nonlinear structural systems via extensive numerical experiments; 2) identify the desirable characteristics of time integration methods for nonlinear structural problems; 3) develop improved stiffly-stable methods for application to nonlinear structures. Extension of the methodology for examination of the interaction between a time integrator and the approximate treatment of nonlinearities (such as due to pseudo-force or incremental solution procedures) is also discussed. (Auth.)

  18. Nonlinear control strategy based on using a shape-tunable neural controller

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.; Peng, S. [Feng Chia Univ, Taichung (Taiwan, Province of China). Department of chemical Engineering; Chang, W. [Feng Chia Univ, Taichung (Taiwan, Province of China). Department of Automatic Control

    1997-08-01

    In this paper, a nonlinear control strategy based on using a shape-tunable neural network is developed for adaptive control of nonlinear processes. Based on the steepest descent method, a learning algorithm that enables the neural controller to possess the ability of automatic controller output range adjustment is derived. The novel feature of automatic output range adjustment provides the neural controller more flexibility and capability, and therefore the scaling procedure, which is usually unavoidable for the conventional fixed-shape neural controllers, becomes unnecessary. The advantages and effectiveness of the proposed nonlinear control strategy are demonstrated through the challenge problem of controlling an open-loop unstable nonlinear continuous stirred tank reactor (CSTR). 14 refs., 11 figs.

  19. Role of statistical linearization in the solution of nonlinear stochastic equations

    International Nuclear Information System (INIS)

    Budgor, A.B.

    1977-01-01

    The solution of a generalized Langevin equation is referred to as a stochastic process. If the external forcing function is Gaussian white noise, the forward Kolmogarov equation yields the transition probability density function. Nonlinear problems must be handled by approximation procedures e.g., perturbation theories, eigenfunction expansions, and nonlinear optimization procedures. After some comments on the first two of these, attention is directed to the third, and the method of statistical linearization is used to demonstrate a relation to the former two. Nonlinear stochastic systems exhibiting sustained or forced oscillations and the centered nonlinear Schroedinger equation in the presence of Gaussian white noise excitation are considered as examples. 5 figures, 2 tables

  20. Nonlinearity and fractional integration in the US dollar/euro exchange rate

    Directory of Open Access Journals (Sweden)

    Kiran Burcu

    2012-01-01

    Full Text Available This paper examines the nonlinear behavior and the fractional integration property of the US dollar/euro exchange rate over the period from January 1999 to August 2010 by extending the procedure of Peter M. Robinson (1994 to the case of nonlinearity. First, using the approach developed by Mehmet Caner and Bruce E. Hansen (2001, we investigate the possible presence of nonlinearity in the series through the estimation of a two-regime threshold autoregressive model. After finding nonlinearity, we also allow for disturbances to be fractionally integrated based on the different versions of Robinson (1994 tests. The findings show that the US dollar/euro exchange rate follows a stationary process with a weak evidence for long memory.

  1. A finite element model for nonlinear shells of revolution

    International Nuclear Information System (INIS)

    Cook, W.A.

    1979-01-01

    A shell-of-revolution model was developed to analyze impact problems associated with the safety analysis of nuclear material shipping containers. The nonlinear shell theory presented by Eric Reissner in 1972 was used to develop our model. Reissner's approach includes transverse shear deformation and moments turning about the middle surface normal. With these features, this approach is valid for both thin and thick shells. His theory is formulated in terms of strain and stress resultants that refer to the undeformed geometry. This nonlinear shell model is developed using the virtual work principle associated with Reissner's equilibrium equations. First, the virtual work principle is modified for incremental loading; then it is linearized by assuming that the nonlinear portions of the strains are known. By iteration, equilibrium is then approximated for each increment. A benefit of this approach is that this iteration process makes it possible to use nonlinear material properties. (orig.)

  2. Nonlinear flow model for well production in an underground formation

    Directory of Open Access Journals (Sweden)

    J. C. Guo

    2013-05-01

    Full Text Available Fluid flow in underground formations is a nonlinear process. In this article we modelled the nonlinear transient flow behaviour of well production in an underground formation. Based on Darcy's law and material balance equations, we used quadratic pressure gradients to deduce diffusion equations and discuss the origins of nonlinear flow issues. By introducing an effective-well-radius approach that considers skin factor, we established a nonlinear flow model for both gas and liquid (oil or water. The liquid flow model was solved using a semi-analytical method, while the gas flow model was solved using numerical simulations because the diffusion equation of gas flow is a stealth function of pressure. For liquid flow, a series of standard log-log type curves of pressure transients were plotted and nonlinear transient flow characteristics were analyzed. Qualitative and quantitative analyses were used to compare the solutions of the linear and nonlinear models. The effect of nonlinearity upon pressure transients should not be ignored. For gas flow, pressure transients were simulated and compared with oil flow under the same formation and well conditions, resulting in the conclusion that, under the same volume rate production, oil wells demand larger pressure drops than gas wells. Comparisons between theoretical data and field data show that nonlinear models will describe fluid flow in underground formations realistically and accurately.

  3. Nonlinear behaviour of cantilevered carbon nanotube resonators based on a new nonlinear electrostatic load model

    Science.gov (United States)

    Farokhi, Hamed; Païdoussis, Michael P.; Misra, Arun K.

    2018-04-01

    The present study examines the nonlinear behaviour of a cantilevered carbon nanotube (CNT) resonator and its mass detection sensitivity, employing a new nonlinear electrostatic load model. More specifically, a 3D finite element model is developed in order to obtain the electrostatic load distribution on cantilevered CNT resonators. A new nonlinear electrostatic load model is then proposed accounting for the end effects due to finite length. Additionally, a new nonlinear size-dependent continuum model is developed for the cantilevered CNT resonator, employing the modified couple stress theory (to account for size-effects) together with the Kelvin-Voigt model (to account for nonlinear damping); the size-dependent model takes into account all sources of nonlinearity, i.e. geometrical and inertial nonlinearities as well as nonlinearities associated with damping, small-scale, and electrostatic load. The nonlinear equation of motion of the cantilevered CNT resonator is obtained based on the new models developed for the CNT resonator and the electrostatic load. The Galerkin method is then applied to the nonlinear equation of motion, resulting in a set of nonlinear ordinary differential equations, consisting of geometrical, inertial, electrical, damping, and size-dependent nonlinear terms. This high-dimensional nonlinear discretized model is solved numerically utilizing the pseudo-arclength continuation technique. The nonlinear static and dynamic responses of the system are examined for various cases, investigating the effect of DC and AC voltages, length-scale parameter, nonlinear damping, and electrostatic load. Moreover, the mass detection sensitivity of the system is examined for possible application of the CNT resonator as a nanosensor.

  4. Progress as Compositional Lock-Freedom

    DEFF Research Database (Denmark)

    Carbone, Marco; Dardha, Ornela; Montesi, Fabrizio

    2014-01-01

    A session-based process satisfies the progress property if its sessions never get stuck when it is executed in an adequate context. Previous work studied how to define progress by introducing the notion of catalysers, execution contexts generated from the type of a process. In this paper, we refine...... such definition to capture a more intuitive notion of context adequacy for checking progress. Interestingly, our new catalysers lead to a novel characterisation of progress in terms of the standard notion of lock-freedom. Guided by this discovery, we also develop a conservative extension of catalysers that does...

  5. The Mathematics of Psychotherapy: A Nonlinear Model of Change Dynamics.

    Science.gov (United States)

    Schiepek, Gunter; Aas, Benjamin; Viol, Kathrin

    2016-07-01

    Psychotherapy is a dynamic process produced by a complex system of interacting variables. Even though there are qualitative models of such systems the link between structure and function, between network and network dynamics is still missing. The aim of this study is to realize these links. The proposed model is composed of five state variables (P: problem severity, S: success and therapeutic progress, M: motivation to change, E: emotions, I: insight and new perspectives) interconnected by 16 functions. The shape of each function is modified by four parameters (a: capability to form a trustful working alliance, c: mentalization and emotion regulation, r: behavioral resources and skills, m: self-efficacy and reward expectation). Psychologically, the parameters play the role of competencies or traits, which translate into the concept of control parameters in synergetics. The qualitative model was transferred into five coupled, deterministic, nonlinear difference equations generating the dynamics of each variable as a function of other variables. The mathematical model is able to reproduce important features of psychotherapy processes. Examples of parameter-dependent bifurcation diagrams are given. Beyond the illustrated similarities between simulated and empirical dynamics, the model has to be further developed, systematically tested by simulated experiments, and compared to empirical data.

  6. Progress in heavy ion fusion research

    International Nuclear Information System (INIS)

    Celata, C.M.; Bieniosek, F.M.; Henestroza, E.; Kwan, J.W.; Lee, E.P.; Logan, G.; Prost, L.; Seidl, P.A.; Vay, J.-L.; Waldron, W.L.; Yu, S.S.; Barnard, J.J.; Callahan, D.A.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Lund, S.M.; Molvik, A.; Sharp, W.M.; Westenskow, G.

    2003-01-01

    The U.S. Heavy Ion Fusion program has recently commissioned several new experiments. In the High Current Experiment [P. A. Seidl et al., Laser Part. Beams 20, 435 (2003)], a single low-energy beam with driver-scale charge-per-unit-length and space-charge potential is being used to study the limits to transportable current posed by nonlinear fields and secondary atoms, ions, and electrons. The Neutralized Transport Experiment similarly employs a low-energy beam with driver-scale perveance to study final focus of high perveance beams and neutralization for transport in the target chamber. Other scaled experiments--the University of Maryland Electron Ring [P. G. O'Shea et al., accepted for publication in Laser Part. Beams] and the Paul Trap Simulator Experiment [R. C. Davidson, H. Qin, and G. Shvets, Phys. Plasmas 7, 1020 (2000)]--will provide fundamental physics results on processes with longer scale lengths. An experiment to test a new injector concept is also in the design stage. This paper will describe the goals and status of these experiments, as well as progress in theory and simulation. A proposed future proof-of-principle experiment, the Integrated Beam Experiment, will also be described

  7. The role of nonequilibrium thermo-mechanical statistics in modern technologies and industrial processes: an overview

    OpenAIRE

    Rodrigues, Clóves G.; Silva, Antônio A. P.; Silva, Carlos A. B.; Vasconcellos, Áurea R.; Ramos, J. Galvão; Luzzi, Roberto

    2010-01-01

    The nowadays notable development of all the modern technology, fundamental for the progress and well being of world society, imposes a great deal of stress in the realm of basic Physics, more precisely on Thermo-Statistics. We do face situations in electronics and optoelectronics involving physical-chemical systems far-removed-from equilibrium, where ultrafast (in pico- and femto-second scale) and non-linear processes are present. Further, we need to be aware of the rapid unfolding of nano-te...

  8. Time history nonlinear earthquake response analysis considering materials and geometrical nonlinearity

    International Nuclear Information System (INIS)

    Kobayashi, T.; Yoshikawa, K.; Takaoka, E.; Nakazawa, M.; Shikama, Y.

    2002-01-01

    A time history nonlinear earthquake response analysis method was proposed and applied to earthquake response prediction analysis for a Large Scale Seismic Test (LSST) Program in Hualien, Taiwan, in which a 1/4 scale model of a nuclear reactor containment structure was constructed on sandy gravel layer. In the analysis both of strain-dependent material nonlinearity, and geometrical nonlinearity by base mat uplift, were considered. The 'Lattice Model' for the soil-structure interaction model was employed. An earthquake record on soil surface at the site was used as control motion, and deconvoluted to the input motion of the analysis model at GL-52 m with 300 Gal of maximum acceleration. The following two analyses were considered: (A) time history nonlinear, (B) equivalent linear, and the advantage of time history nonlinear earthquake response analysis method is discussed

  9. Geometrically Nonlinear Transient Response of Laminated Plates with Nonlinear Elastic Restraints

    Directory of Open Access Journals (Sweden)

    Shaochong Yang

    2017-01-01

    Full Text Available To investigate the dynamic behavior of laminated plates with nonlinear elastic restraints, a varied constraint force model and a systematic numerical procedure are presented in this work. Several kinds of typical relationships of force-displacement for spring are established to simulate the nonlinear elastic restraints. In addition, considering the restraining moments of flexible pads, the pads are modeled by translational and rotational springs. The displacement- dependent constraint forces are added to the right-hand side of equations of motion and treated as additional applied loads. These loads can be explicitly defined, via an independent set of nonlinear load functions. The time histories of transverse displacements at typical points of the laminated plate are obtained through the transient analysis. Numerical examples show that the present method can effectively treat the geometrically nonlinear transient response of plates with nonlinear elastic restraints.

  10. Nonlinear optical systems

    CERN Document Server

    Lugiato, Luigi; Brambilla, Massimo

    2015-01-01

    Guiding graduate students and researchers through the complex world of laser physics and nonlinear optics, this book provides an in-depth exploration of the dynamics of lasers and other relevant optical systems, under the umbrella of a unitary spatio-temporal vision. Adopting a balanced approach, the book covers traditional as well as special topics in laser physics, quantum electronics and nonlinear optics, treating them from the viewpoint of nonlinear dynamical systems. These include laser emission, frequency generation, solitons, optically bistable systems, pulsations and chaos and optical pattern formation. It also provides a coherent and up-to-date treatment of the hierarchy of nonlinear optical models and of the rich variety of phenomena they describe, helping readers to understand the limits of validity of each model and the connections among the phenomena. It is ideal for graduate students and researchers in nonlinear optics, quantum electronics, laser physics and photonics.

  11. Tail estimates for stochastic fixed point equations via nonlinear renewal theory

    DEFF Research Database (Denmark)

    Collamore, Jeffrey F.; Vidyashankar, Anand N.

    2013-01-01

    estimate P(V>u)~Cu^{-r} as u tends to infinity, and also present a corresponding Lundberg-type upper bound. To this end, we introduce a novel dual change of measure on a random time interval and analyze the path properties, using nonlinear renewal theory, of the Markov chain resulting from the forward...... iteration of the given stochastic fixed point equation. In the process, we establish several new results in the realm of nonlinear renewal theory for these processes. As a consequence of our techniques, we also establish a new characterization of the extremal index. Finally, we provide some extensions...... of our methods to Markov-driven processes....

  12. Separation of irradiance and reflectance from observed color images by logarithmical nonlinear diffusion process

    Science.gov (United States)

    Saito, Takahiro; Takahashi, Hiromi; Komatsu, Takashi

    2006-02-01

    The Retinex theory was first proposed by Land, and deals with separation of irradiance from reflectance in an observed image. The separation problem is an ill-posed problem. Land and others proposed various Retinex separation algorithms. Recently, Kimmel and others proposed a variational framework that unifies the previous Retinex algorithms such as the Poisson-equation-type Retinex algorithms developed by Horn and others, and presented a Retinex separation algorithm with the time-evolution of a linear diffusion process. However, the Kimmel's separation algorithm cannot achieve physically rational separation, if true irradiance varies among color channels. To cope with this problem, we introduce a nonlinear diffusion process into the time-evolution. Moreover, as to its extension to color images, we present two approaches to treat color channels: the independent approach to treat each color channel separately and the collective approach to treat all color channels collectively. The latter approach outperforms the former. Furthermore, we apply our separation algorithm to a high quality chroma key in which before combining a foreground frame and a background frame into an output image a color of each pixel in the foreground frame are spatially adaptively corrected through transformation of the separated irradiance. Experiments demonstrate superiority of our separation algorithm over the Kimmel's separation algorithm.

  13. Modeling Stochastic Complexity in Complex Adaptive Systems: Non-Kolmogorov Probability and the Process Algebra Approach.

    Science.gov (United States)

    Sulis, William H

    2017-10-01

    Walter Freeman III pioneered the application of nonlinear dynamical systems theories and methodologies in his work on mesoscopic brain dynamics.Sadly, mainstream psychology and psychiatry still cling to linear correlation based data analysis techniques, which threaten to subvert the process of experimentation and theory building. In order to progress, it is necessary to develop tools capable of managing the stochastic complexity of complex biopsychosocial systems, which includes multilevel feedback relationships, nonlinear interactions, chaotic dynamics and adaptability. In addition, however, these systems exhibit intrinsic randomness, non-Gaussian probability distributions, non-stationarity, contextuality, and non-Kolmogorov probabilities, as well as the absence of mean and/or variance and conditional probabilities. These properties and their implications for statistical analysis are discussed. An alternative approach, the Process Algebra approach, is described. It is a generative model, capable of generating non-Kolmogorov probabilities. It has proven useful in addressing fundamental problems in quantum mechanics and in the modeling of developing psychosocial systems.

  14. Nonlinear elastic waves in materials

    CERN Document Server

    Rushchitsky, Jeremiah J

    2014-01-01

    The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...

  15. Recent progress in thin film processing by magnetron sputtering with plasma diagnostics

    International Nuclear Information System (INIS)

    Han, Jeon G

    2009-01-01

    The precise control of the structure and related properties becomes crucial for sophisticated applications of thin films deposited by magnetron sputtering in emerging industries including the flat panel display, digital electronics and nano- and bio-industries. The film structure is closely related to the total energy delivered to the substrate surface for nucleation and growth during all kinds of thin film processes, including magnetron sputtering. Therefore, the energy delivered to the surface for nucleation and growth during magnetron sputtering should be measured and analysed by integrated diagnostics of the plasma parameters which are closely associated with the process parameters and other external process conditions. This paper reviews the background of thin film nucleation and growth, the status of magnetron sputtering technology and the progress of plasma diagnostics for plasma processing. The evolution of the microstructure during magnetron sputtering is then discussed with respect to the change in the process variables in terms of the plasma parameters along with empirical data of the integrated plasma diagnostics for various magnetron sputtering conditions with conventional dc, pulsed dc and high power pulsed dc sputtering modes. Among the major energy terms to be discussed are the temperature change in the top surface region and the energies of ions and neutral species. (topical review)

  16. FRF decoupling of nonlinear systems

    Science.gov (United States)

    Kalaycıoğlu, Taner; Özgüven, H. Nevzat

    2018-03-01

    Structural decoupling problem, i.e. predicting dynamic behavior of a particular substructure from the knowledge of the dynamics of the coupled structure and the other substructure, has been well investigated for three decades and led to several decoupling methods. In spite of the inherent nonlinearities in a structural system in various forms such as clearances, friction and nonlinear stiffness, all decoupling studies are for linear systems. In this study, decoupling problem for nonlinear systems is addressed for the first time. A method, named as FRF Decoupling Method for Nonlinear Systems (FDM-NS), is proposed for calculating FRFs of a substructure decoupled from a coupled nonlinear structure where nonlinearity can be modeled as a single nonlinear element. Depending on where nonlinear element is, i.e., either in the known or unknown subsystem, or at the connection point, the formulation differs. The method requires relative displacement information between two end points of the nonlinear element, in addition to point and transfer FRFs at some points of the known subsystem. However, it is not necessary to excite the system from the unknown subsystem even when the nonlinear element is in that subsystem. The validation of FDM-NS is demonstrated with two different case studies using nonlinear lumped parameter systems. Finally, a nonlinear experimental test structure is used in order to show the real-life application and accuracy of FDM-NS.

  17. Linking structure and activity in nonlinear spiking networks.

    Directory of Open Access Journals (Sweden)

    Gabriel Koch Ocker

    2017-06-01

    Full Text Available Recent experimental advances are producing an avalanche of data on both neural connectivity and neural activity. To take full advantage of these two emerging datasets we need a framework that links them, revealing how collective neural activity arises from the structure of neural connectivity and intrinsic neural dynamics. This problem of structure-driven activity has drawn major interest in computational neuroscience. Existing methods for relating activity and architecture in spiking networks rely on linearizing activity around a central operating point and thus fail to capture the nonlinear responses of individual neurons that are the hallmark of neural information processing. Here, we overcome this limitation and present a new relationship between connectivity and activity in networks of nonlinear spiking neurons by developing a diagrammatic fluctuation expansion based on statistical field theory. We explicitly show how recurrent network structure produces pairwise and higher-order correlated activity, and how nonlinearities impact the networks' spiking activity. Our findings open new avenues to investigating how single-neuron nonlinearities-including those of different cell types-combine with connectivity to shape population activity and function.

  18. Linking structure and activity in nonlinear spiking networks.

    Science.gov (United States)

    Ocker, Gabriel Koch; Josić, Krešimir; Shea-Brown, Eric; Buice, Michael A

    2017-06-01

    Recent experimental advances are producing an avalanche of data on both neural connectivity and neural activity. To take full advantage of these two emerging datasets we need a framework that links them, revealing how collective neural activity arises from the structure of neural connectivity and intrinsic neural dynamics. This problem of structure-driven activity has drawn major interest in computational neuroscience. Existing methods for relating activity and architecture in spiking networks rely on linearizing activity around a central operating point and thus fail to capture the nonlinear responses of individual neurons that are the hallmark of neural information processing. Here, we overcome this limitation and present a new relationship between connectivity and activity in networks of nonlinear spiking neurons by developing a diagrammatic fluctuation expansion based on statistical field theory. We explicitly show how recurrent network structure produces pairwise and higher-order correlated activity, and how nonlinearities impact the networks' spiking activity. Our findings open new avenues to investigating how single-neuron nonlinearities-including those of different cell types-combine with connectivity to shape population activity and function.

  19. Resurrecting the chimera: Progressions in parenting and peer processes.

    Science.gov (United States)

    Forgatch, Marion S; Snyder, James J; Patterson, Gerald R; Pauldine, Michael R; Chaw, Yvonne; Elish, Katie; Harris, Jasmine B; Richardson, Eric B

    2016-08-01

    This report uses 6-year outcomes of the Oregon Divorce Study to examine the processes by which parenting practices affect deviant peer association during two developmental stages: early to middle childhood and late childhood to early adolescence. The participants were 238 newly divorced mothers and their 5- to 8-year-old sons who were randomly assigned to Parent Management Training-Oregon Model (PMTO®) or to a no-treatment control group. Parenting practices, child delinquent behavior, and deviant peer association were repeatedly assessed from baseline to 6 years after baseline using multiple methods and informants. PMTO had a beneficial effect on parenting practices relative to the control group. Two stage models linking changes in parenting generated by PMTO to children's growth in deviant peer association were supported. During the early to middle childhood stage, the relationship of improved parenting practices on deviant peer association was moderated by family socioeconomic status (SES); effective parenting was particularly important in mitigating deviant peer association for lower SES families whose children experience higher densities of deviant peers in schools and neighborhoods. During late childhood and early adolescence, the relationship of improved parenting to youths' growth in deviant peer association was mediated by reductions in the growth of delinquency during childhood; higher levels of early delinquency are likely to promote deviant peer association through processes of selective affiliation and reciprocal deviancy training. The results are discussed in terms of multilevel developmental progressions of diminished parenting, child involvement in deviancy producing processes in peer groups, and increased variety and severity of antisocial behavior, all exacerbated by ecological risks associated with low family SES.

  20. Work safety in the light of technological progress in mining. [Poland, accident and technology assessment for period 1950 to 1972

    Energy Technology Data Exchange (ETDEWEB)

    Stecko, R.

    1976-01-01

    This paper discusses positive and negative aspects of technological progress in black coal mining in Poland in the period from 1950 to 1972 on the basis of statistical data supplied by various institutions. Twenty three indexes characterizing both work safety and technological progress in underground coal mines are used. Equations of linear and non-linear even regression and equations of linear and non-linear multiple regression are derived on the basis of statistical records of 23 years. The equations are used to estimate indexes of work safety on the basis of technical progress indexes. It is suggested that from among 8 indexes characterizing work safety 4 are most useful and important: danger index, absenteeism index, frequency of underground fire index, and frequency of rock burst index. Analysis of the regression equation shows that technological progress in underground coal mines in Poland has caused a decrease in indexes describing: frequency of work accidents, frequency of underground fires, frequency of rock burst, and danger of underground work; and an increase in indexes characterizing: seriousness of work accidents, and absenteeism caused by work accidents. (84 refs.)