WorldWideScience

Sample records for nonlinear prediction error

  1. Prediction and simulation errors in parameter estimation for nonlinear systems

    Science.gov (United States)

    Aguirre, Luis A.; Barbosa, Bruno H. G.; Braga, Antônio P.

    2010-11-01

    This article compares the pros and cons of using prediction error and simulation error to define cost functions for parameter estimation in the context of nonlinear system identification. To avoid being influenced by estimators of the least squares family (e.g. prediction error methods), and in order to be able to solve non-convex optimisation problems (e.g. minimisation of some norm of the free-run simulation error), evolutionary algorithms were used. Simulated examples which include polynomial, rational and neural network models are discussed. Our results—obtained using different model classes—show that, in general the use of simulation error is preferable to prediction error. An interesting exception to this rule seems to be the equation error case when the model structure includes the true model. In the case of error-in-variables, although parameter estimation is biased in both cases, the algorithm based on simulation error is more robust.

  2. Error sensitivity analysis in 10-30-day extended range forecasting by using a nonlinear cross-prediction error model

    Science.gov (United States)

    Xia, Zhiye; Xu, Lisheng; Chen, Hongbin; Wang, Yongqian; Liu, Jinbao; Feng, Wenlan

    2017-06-01

    Extended range forecasting of 10-30 days, which lies between medium-term and climate prediction in terms of timescale, plays a significant role in decision-making processes for the prevention and mitigation of disastrous meteorological events. The sensitivity of initial error, model parameter error, and random error in a nonlinear crossprediction error (NCPE) model, and their stability in the prediction validity period in 10-30-day extended range forecasting, are analyzed quantitatively. The associated sensitivity of precipitable water, temperature, and geopotential height during cases of heavy rain and hurricane is also discussed. The results are summarized as follows. First, the initial error and random error interact. When the ratio of random error to initial error is small (10-6-10-2), minor variation in random error cannot significantly change the dynamic features of a chaotic system, and therefore random error has minimal effect on the prediction. When the ratio is in the range of 10-1-2 (i.e., random error dominates), attention should be paid to the random error instead of only the initial error. When the ratio is around 10-2-10-1, both influences must be considered. Their mutual effects may bring considerable uncertainty to extended range forecasting, and de-noising is therefore necessary. Second, in terms of model parameter error, the embedding dimension m should be determined by the factual nonlinear time series. The dynamic features of a chaotic system cannot be depicted because of the incomplete structure of the attractor when m is small. When m is large, prediction indicators can vanish because of the scarcity of phase points in phase space. A method for overcoming the cut-off effect ( m > 4) is proposed. Third, for heavy rains, precipitable water is more sensitive to the prediction validity period than temperature or geopotential height; however, for hurricanes, geopotential height is most sensitive, followed by precipitable water.

  3. STATISTICAL CHARACTERISTICS INVESTIGATION OF PREDICTION ERRORS FOR INTERFEROMETRIC SIGNAL IN THE ALGORITHM OF NONLINEAR KALMAN FILTERING

    Directory of Open Access Journals (Sweden)

    E. L. Dmitrieva

    2016-05-01

    Full Text Available Basic peculiarities of nonlinear Kalman filtering algorithm applied to processing of interferometric signals are considered. Analytical estimates determining statistical characteristics of signal values prediction errors were obtained and analysis of errors histograms taking into account variations of different parameters of interferometric signal was carried out. Modeling of the signal prediction procedure with known fixed parameters and variable parameters of signal in the algorithm of nonlinear Kalman filtering was performed. Numerical estimates of prediction errors for interferometric signal values were obtained by formation and analysis of the errors histograms under the influence of additive noise and random variations of amplitude and frequency of interferometric signal. Nonlinear Kalman filter is shown to provide processing of signals with randomly variable parameters, however, it does not take into account directly the linearization error of harmonic function representing interferometric signal that is a filtering error source. The main drawback of the linear prediction consists in non-Gaussian statistics of prediction errors including cases of random deviations of signal amplitude and/or frequency. When implementing stochastic filtering of interferometric signals, it is reasonable to use prediction procedures based on local statistics of a signal and its parameters taken into account.

  4. Real time remaining useful life prediction based on nonlinear Wiener based degradation processes with measurement errors

    Institute of Scientific and Technical Information of China (English)

    唐圣金; 郭晓松; 于传强; 周志杰; 周召发; 张邦成

    2014-01-01

    Real time remaining useful life (RUL) prediction based on condition monitoring is an essential part in condition based maintenance (CBM). In the current methods about the real time RUL prediction of the nonlinear degradation process, the measurement error is not considered and forecasting uncertainty is large. Therefore, an approximate analytical RUL distribution in a closed-form of a nonlinear Wiener based degradation process with measurement errors was proposed. The maximum likelihood estimation approach was used to estimate the unknown fixed parameters in the proposed model. When the newly observed data are available, the random parameter is updated by the Bayesian method to make the estimation adapt to the item’s individual characteristic and reduce the uncertainty of the estimation. The simulation results show that considering measurement errors in the degradation process can significantly improve the accuracy of real time RUL prediction.

  5. Recursive prediction error methods for online estimation in nonlinear state-space models

    Directory of Open Access Journals (Sweden)

    Dag Ljungquist

    1994-04-01

    Full Text Available Several recursive algorithms for online, combined state and parameter estimation in nonlinear state-space models are discussed in this paper. Well-known algorithms such as the extended Kalman filter and alternative formulations of the recursive prediction error method are included, as well as a new method based on a line-search strategy. A comparison of the algorithms illustrates that they are very similar although the differences can be important for the online tracking capabilities and robustness. Simulation experiments on a simple nonlinear process show that the performance under certain conditions can be improved by including a line-search strategy.

  6. Identification of Nonlinear Rational Systems Using A Prediction-Error Estimation Algorithm

    OpenAIRE

    1987-01-01

    Identification of discrete-time noninear stochastic systems which can be represented by a rational input-output model is considered. A prediction-error parameter estimation algorithm is developed and a criterion is derived using results from the theory of hypothesis testing to determine the correct model structure. The identification of a simulated system and a heat exchanger are included to illustrate the algorithms.

  7. Complex terrain wind resource estimation with the wind-atlas method: Prediction errors using linearized and nonlinear CFD micro-scale models

    DEFF Research Database (Denmark)

    Troen, Ib; Bechmann, Andreas; Kelly, Mark C.

    2014-01-01

    Using the Wind Atlas methodology to predict the average wind speed at one location from measured climatological wind frequency distributions at another nearby location we analyse the relative prediction errors using a linearized flow model (IBZ) and a more physically correct fully non-linear 3D...

  8. Nonlinear Scale Interaction: A possible mechanism of up-scale error transport attributing to the inadequate predictability of Intra-seasonal Oscillations

    Science.gov (United States)

    De, Saumyendu; Sahai, Atul Kumar; Nath Goswami, Bhupendra

    2013-04-01

    energy and the scale interactions in terms of the wave-wave exchanges among nonlinear triads are formulated and the above hypothesis is tested through a diagnostic analysis of the error energetics in two different model predictions at the lower troposphere (850hPa). It has been revealed that nonlinear triad interactions lead to advection of errors from short and synoptic waves (wave number >10) to long waves (wave numbers 5 - 10) and from long waves to ultra-long waves (wave numbers 1 - 4) and is responsible for the rapid growth of errors in the planetary waves. The continuous generation and then, non-linear propagation of error upto the planetary scales in the course of prediction increase the uncertainty in ultra-long scales which actually inhibit to predict accurately the planetary scale waves in tropics during medium range forecasts. Unraveling this exact mechanism through which upscale transfer of errors take place may help us devising a method to limit the mixing of small scale error with the error in forecast of tropical Intra-seasonal Oscillations and improve the prediction of lower tropospheric ISOs. Keywords: Predictability, Systematic error energetics, Scale interactions, Triads, Intra-seasonal Oscillations. Reference: The YOTC Science Plan (2008) prepared by Duane Waliser and Mitch Moncrieff. A joint WCRP-WWRP/THORPEX International Initiative, WMO/TD-No. 1452, pp. 20. Baumhefner D P and Downey P 1978 Forecast intercomparisons from three numerical weather prediction models; Mon. Weather Rev. 106 1245 - 1279. Krishnamurti T N, Subramanium M, Oosteroff D K, Daughenbaugh G. 1990 Predictability of low frequency modes. Meteorol. Atmos. phys. 44 63 - 83.

  9. A Characterization of Prediction Errors

    OpenAIRE

    Meek, Christopher

    2016-01-01

    Understanding prediction errors and determining how to fix them is critical to building effective predictive systems. In this paper, we delineate four types of prediction errors and demonstrate that these four types characterize all prediction errors. In addition, we describe potential remedies and tools that can be used to reduce the uncertainty when trying to determine the source of a prediction error and when trying to take action to remove a prediction errors.

  10. Improved nonlinear prediction method

    Science.gov (United States)

    Adenan, Nur Hamiza; Md Noorani, Mohd Salmi

    2014-06-01

    The analysis and prediction of time series data have been addressed by researchers. Many techniques have been developed to be applied in various areas, such as weather forecasting, financial markets and hydrological phenomena involving data that are contaminated by noise. Therefore, various techniques to improve the method have been introduced to analyze and predict time series data. In respect of the importance of analysis and the accuracy of the prediction result, a study was undertaken to test the effectiveness of the improved nonlinear prediction method for data that contain noise. The improved nonlinear prediction method involves the formation of composite serial data based on the successive differences of the time series. Then, the phase space reconstruction was performed on the composite data (one-dimensional) to reconstruct a number of space dimensions. Finally the local linear approximation method was employed to make a prediction based on the phase space. This improved method was tested with data series Logistics that contain 0%, 5%, 10%, 20% and 30% of noise. The results show that by using the improved method, the predictions were found to be in close agreement with the observed ones. The correlation coefficient was close to one when the improved method was applied on data with up to 10% noise. Thus, an improvement to analyze data with noise without involving any noise reduction method was introduced to predict the time series data.

  11. NONLINEAR PREDICTIVE CONTROL FOR TERRAIN FOLLOWING

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    A nonlinear continuous predictive control method was used for design of cruise missile terrain-following controller. A performance index which combined the tracking error and rate of tracking error is presented. Then an optimal nonlinear feedback control law is generated to minimize the performance index. The tracking performance and robustness of controller are discussed. The advantage of the control law is demonstrated by successfully designing cruise missile terrain following controllers. The results show that the controller exhibits robustness and excellent tracking performance.

  12. A generalization error estimate for nonlinear systems

    DEFF Research Database (Denmark)

    Larsen, Jan

    1992-01-01

    models of linear and simple neural network systems. Within the linear system GEN is compared to the final prediction error criterion and the leave-one-out cross-validation technique. It was found that the GEN estimate of the true generalization error is less biased on the average. It is concluded...

  13. Nonlinear signal-based control with an error feedback action for nonlinear substructuring control

    Science.gov (United States)

    Enokida, Ryuta; Kajiwara, Koichi

    2017-01-01

    A nonlinear signal-based control (NSBC) method utilises the 'nonlinear signal' that is obtained from the outputs of a controlled system and its linear model under the same input signal. Although this method has been examined in numerical simulations of nonlinear systems, its application in physical experiments has not been studied. In this paper, we study an application of NSBC in physical experiments and incorporate an error feedback action into the method to minimise the error and enhance the feasibility in practice. Focusing on NSBC in substructure testing methods, we propose nonlinear substructuring control (NLSC), that is a more general form of linear substructuring control (LSC) developed for dynamical substructured systems. In this study, we experimentally and numerically verified the proposed NLSC via substructuring tests on a rubber bearing used in base-isolated structures. In the examinations, NLSC succeeded in gaining accurate results despite significant nonlinear hysteresis and unknown parameters in the substructures. The nonlinear signal feedback action in NLSC was found to be notably effective in minimising the error caused by nonlinearity or unknown properties in the controlled system. In addition, the error feedback action in NLSC was found to be essential for maintaining stability. A stability analysis based on the Nyquist criterion, which is used particularly for linear systems, was also found to be efficient for predicting the instability conditions of substructuring tests with NLSC and useful for the error feedback controller design.

  14. Adaptive nonlinear prediction of ocean reverberation

    Institute of Scientific and Technical Information of China (English)

    GAN Weiming; LI Fenghua

    2009-01-01

    An adaptive nonlinear prediction algorithm is proposed to predict ocean reverber-ation based on the phase space reconstruction of nonlinear dynamic system. The prediction algorithm is tested by experimental reverberation data measured in two areas, and the one-step forward prediction results are in good agreement with the experimental data. If the errors between the predicted and experimental data are chosen as the variable to detect the target in the reverberation series, the reverberation is suppressed and the signal-to-reverberation ratio is improved.

  15. Prediction of discretization error using the error transport equation

    Science.gov (United States)

    Celik, Ismail B.; Parsons, Don Roscoe

    2017-06-01

    This study focuses on an approach to quantify the discretization error associated with numerical solutions of partial differential equations by solving an error transport equation (ETE). The goal is to develop a method that can be used to adequately predict the discretization error using the numerical solution on only one grid/mesh. The primary problem associated with solving the ETE is the formulation of the error source term which is required for accurately predicting the transport of the error. In this study, a novel approach is considered which involves fitting the numerical solution with a series of locally smooth curves and then blending them together with a weighted spline approach. The result is a continuously differentiable analytic expression that can be used to determine the error source term. Once the source term has been developed, the ETE can easily be solved using the same solver that is used to obtain the original numerical solution. The new methodology is applied to the two-dimensional Navier-Stokes equations in the laminar flow regime. A simple unsteady flow case is also considered. The discretization error predictions based on the methodology presented in this study are in good agreement with the 'true error'. While in most cases the error predictions are not quite as accurate as those from Richardson extrapolation, the results are reasonable and only require one numerical grid. The current results indicate that there is much promise going forward with the newly developed error source term evaluation technique and the ETE.

  16. Testing and Inference in Nonlinear Cointegrating Vector Error Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbek, Anders

    In this paper, we consider a general class of vector error correction models which allow for asymmetric and non-linear error correction. We provide asymptotic results for (quasi-)maximum likelihood (QML) based estimators and tests. General hypothesis testing is considered, where testing...... symmetric non-linear error correction are considered. A simulation study shows that the finite sample properties of the bootstrapped tests are satisfactory with good size and power properties for reasonable sample sizes....

  17. Predictive simulation of nonlinear ultrasonics

    Science.gov (United States)

    Shen, Yanfeng; Giurgiutiu, Victor

    2012-04-01

    Most of the nonlinear ultrasonic studies to date have been experimental, but few theoretical predictive studies exist, especially for Lamb wave ultrasonic. Compared with nonlinear bulk waves and Rayleigh waves, nonlinear Lamb waves for structural health monitoring become more challenging due to their multi-mode dispersive features. In this paper, predictive study of nonlinear Lamb waves is done with finite element simulation. A pitch-catch method is used to interrogate a plate with a "breathing crack" which opens and closes under tension and compression. Piezoelectric wafer active sensors (PWAS) used as transmitter and receiver are modeled with coupled field elements. The "breathing crack" is simulated via "element birth and death" technique. The ultrasonic waves generated by the transmitter PWAS propagate into the structure, interact with the "breathing crack", acquire nonlinear features, and are picked up by the receiver PWAS. The features of the wave packets at the receiver PWAS are studied and discussed. The received signal is processed with Fast Fourier Transform to show the higher harmonics nonlinear characteristics. A baseline free damage index is introduced to assess the presence and the severity of the crack. The paper finishes with summary, conclusions, and suggestions for future work.

  18. MPC-Relevant Prediction-Error Identification

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp; Jørgensen, Sten Bay

    2007-01-01

    model is realized from a continuous-discrete-time linear stochastic system specified using transfer functions with time-delays. It is argued that the prediction-error criterion should be selected such that it is compatible with the objective function of the predictive controller in which the model......A prediction-error-method tailored for model based predictive control is presented. The prediction-error method studied are based on predictions using the Kalman filter and Kalman predictors for a linear discrete-time stochastic state space model. The linear discrete-time stochastic state space...

  19. Nonlinear Adaptive Filter for MEMS Gyro Error Cancellation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nonlinear adaptive filters (NAF) can learn deterministic gyro errors and cancel the error’s effect from attitude estimates. By completely canceling...

  20. Comparison of Prediction-Error-Modelling Criteria

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp; Jørgensen, Sten Bay

    2007-01-01

    is a realization of a continuous-discrete multivariate stochastic transfer function model. The proposed prediction error-methods are demonstrated for a SISO system parameterized by the transfer functions with time delays of a continuous-discrete-time linear stochastic system. The simulations for this case suggest......Single and multi-step prediction-error-methods based on the maximum likelihood and least squares criteria are compared. The prediction-error methods studied are based on predictions using the Kalman filter and Kalman predictors for a linear discrete-time stochastic state space model, which...... computational resources. The identification method is suitable for predictive control....

  1. Interactions of timing and prediction error learning.

    Science.gov (United States)

    Kirkpatrick, Kimberly

    2014-01-01

    Timing and prediction error learning have historically been treated as independent processes, but growing evidence has indicated that they are not orthogonal. Timing emerges at the earliest time point when conditioned responses are observed, and temporal variables modulate prediction error learning in both simple conditioning and cue competition paradigms. In addition, prediction errors, through changes in reward magnitude or value alter timing of behavior. Thus, there appears to be a bi-directional interaction between timing and prediction error learning. Modern theories have attempted to integrate the two processes with mixed success. A neurocomputational approach to theory development is espoused, which draws on neurobiological evidence to guide and constrain computational model development. Heuristics for future model development are presented with the goal of sparking new approaches to theory development in the timing and prediction error fields.

  2. Extensions of nonlinear error propagation analysis for explicit pseudodynamic testing

    Institute of Scientific and Technical Information of China (English)

    Shuenn-Yih Chang

    2009-01-01

    Two important extensions of a technique to perform a nonlinear error propagation analysis for an explicit pseudodynamic algorithm (Chang, 2003) are presented. One extends the stability study from a given time step to a complete step-by-step integration procedure. It is analytically proven that ensuring stability conditions in each time step leads to a stable computation of the entire step-by-step integration procedure. The other extension shows that the nonlinear error propagation results, which are derived for a nonlinear single degree of freedom (SDOF) system, can be applied to a nonlinear multiple degree of freedom (MDOF) system. This application is dependent upon the determination of the natural frequencies of the system in each time step, since all the numerical properties and error propagation properties in the time step are closely related to these frequencies. The results are derived from the step degree of nonlinearity. An instantaneous degree of nonlinearity is introduced to replace the step degree of nonlinearity and is shown to be easier to use in practice. The extensions can be also applied to the results derived from a SDOF system based on the instantaneous degree of nonlinearity, and hence a time step might be appropriately chosen to perform a pseudodynamic test prior to testing.

  3. Nonclassical measurements errors in nonlinear models

    DEFF Research Database (Denmark)

    Madsen, Edith; Mulalic, Ismir

    Discrete choice models and in particular logit type models play an important role in understanding and quantifying individual or household behavior in relation to transport demand. An example is the choice of travel mode for a given trip under the budget and time restrictions that the individuals...... estimates of the income effect it is of interest to investigate the magnitude of the estimation bias and if possible use estimation techniques that take the measurement error problem into account. We use data from the Danish National Travel Survey (NTS) and merge it with administrative register data...... of a households face. In this case an important policy parameter is the effect of income (reflecting the household budget) on the choice of travel mode. This paper deals with the consequences of measurement error in income (an explanatory variable) in discrete choice models. Since it is likely to give misleading...

  4. Semiparametric maximum likelihood for nonlinear regression with measurement errors.

    Science.gov (United States)

    Suh, Eun-Young; Schafer, Daniel W

    2002-06-01

    This article demonstrates semiparametric maximum likelihood estimation of a nonlinear growth model for fish lengths using imprecisely measured ages. Data on the species corvina reina, found in the Gulf of Nicoya, Costa Rica, consist of lengths and imprecise ages for 168 fish and precise ages for a subset of 16 fish. The statistical problem may therefore be classified as nonlinear errors-in-variables regression with internal validation data. Inferential techniques are based on ideas extracted from several previous works on semiparametric maximum likelihood for errors-in-variables problems. The illustration of the example clarifies practical aspects of the associated computational, inferential, and data analytic techniques.

  5. ERROR ESTIMATES FOR THE TIME DISCRETIZATION FOR NONLINEAR MAXWELL'S EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Marián Slodi(c)ka; Ján Bu(s)a Jr.

    2008-01-01

    This paper is devoted to the study of a nonlinear evolution eddy current model of the type (б)tB(H) +▽×(▽×H) = 0 subject to homogeneous Dirichlet boundary conditions H×v = 0 and a given initial datum. Here, the magnetic properties of a soft ferromagnet are linked by a nonlinear material law described by B(H). We apply the backward Euler method for the time discretization and we derive the error estimates in suitable function spaces. The results depend on the nonlinearity of B(H).

  6. Structure and Asymptotic theory for Nonlinear Models with GARCH Errors

    NARCIS (Netherlands)

    F. Chan (Felix); M.J. McAleer (Michael); M.C. Medeiros (Marcelo)

    2011-01-01

    textabstractNonlinear time series models, especially those with regime-switching and conditionally heteroskedastic errors, have become increasingly popular in the economics and finance literature. However, much of the research has concentrated on the empirical applications of various models, with li

  7. Testing and Inference in Nonlinear Cointegrating Vector Error Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbek, Anders

    In this paper, we consider a general class of vector error correction models which allow for asymmetric and non-linear error correction. We provide asymptotic results for (quasi-)maximum likelihood (QML) based estimators and tests. General hypothesis testing is considered, where testing...... for linearity is of particular interest as parameters of non-linear components vanish under the null. To solve the latter type of testing, we use the so-called sup tests, which here requires development of new (uniform) weak convergence results. These results are potentially useful in general for analysis...... of non-stationary non-linear time series models. Thus the paper provides a full asymptotic theory for estimators as well as standard and non-standard test statistics. The derived asymptotic results prove to be new compared to results found elsewhere in the literature due to the impact of the estimated...

  8. Structure and asymptotic theory for nonlinear models with GARCH errors

    Directory of Open Access Journals (Sweden)

    Felix Chan

    2015-01-01

    Full Text Available Nonlinear time series models, especially those with regime-switching and/or conditionally heteroskedastic errors, have become increasingly popular in the economics and finance literature. However, much of the research has concentrated on the empirical applications of various models, with little theoretical or statistical analysis associated with the structure of the processes or the associated asymptotic theory. In this paper, we derive sufficient conditions for strict stationarity and ergodicity of three different specifications of the first-order smooth transition autoregressions with heteroskedastic errors. This is essential, among other reasons, to establish the conditions under which the traditional LM linearity tests based on Taylor expansions are valid. We also provide sufficient conditions for consistency and asymptotic normality of the Quasi-Maximum Likelihood Estimator for a general nonlinear conditional mean model with first-order GARCH errors.

  9. Nonlinear Simulation of Plasma Response to the NSTX Error Field

    Science.gov (United States)

    Breslau, J. A.; Park, J. K.; Boozer, A. H.; Park, W.

    2008-11-01

    In order to better understand the effects of the time-varying error field in NSTX on rotation braking, which impedes RWM stabilization, we model the plasma response to an applied low-n external field perturbation using the resistive MHD model in the M3D code. As an initial benchmark, we apply an m=2, n=1 perturbation to the flux at the boundary of a non-rotating model equilibrium and compare the resulting steady-state island sizes with those predicted by the ideal linear code IPEC. For sufficiently small perturbations, the codes agree; for larger perturbations, the nonlinear correction yields an upper limit on the island width beyond which stochasticity sets in. We also present results of scaling studies showing the effects of finite resistivity on island size in NSTX, and of time-dependent studies of the interaction between these islands and plasma rotation. The M3D-C1 code is also being evaluated as a tool for this analysis; first results will be shown. J.E. Menard, et al., Nucl. Fus. 47, S645 (2007). W. Park, et al., Phys. Plasmas 6, 1796 (1999). J.K. Park, et al., Phys. Plasmas 14, 052110 (2007). S.C. Jardin, et al., J. Comp. Phys. 226, 2146 (2007).

  10. Likelihood-Based Inference in Nonlinear Error-Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbæk, Anders

    We consider a class of vector nonlinear error correction models where the transfer function (or loadings) of the stationary relation- ships is nonlinear. This includes in particular the smooth transition models. A general representation theorem is given which establishes the dynamic properties...... and a linear trend in general. Gaussian likelihood-based estimators are considered for the long- run cointegration parameters, and the short-run parameters. Asymp- totic theory is provided for these and it is discussed to what extend asymptotic normality and mixed normaity can be found. A simulation study...

  11. Frequency analysis of nonlinear oscillations via the global error minimization

    Science.gov (United States)

    Kalami Yazdi, M.; Hosseini Tehrani, P.

    2016-06-01

    The capacity and effectiveness of a modified variational approach, namely global error minimization (GEM) is illustrated in this study. For this purpose, the free oscillations of a rod rocking on a cylindrical surface and the Duffing-harmonic oscillator are treated. In order to validate and exhibit the merit of the method, the obtained result is compared with both of the exact frequency and the outcome of other well-known analytical methods. The corollary reveals that the first order approximation leads to an acceptable relative error, specially for large initial conditions. The procedure can be promisingly exerted to the conservative nonlinear problems.

  12. Federated nonlinear predictive filtering for the gyroless attitude determination system

    Science.gov (United States)

    Zhang, Lijun; Qian, Shan; Zhang, Shifeng; Cai, Hong

    2016-11-01

    This paper presents a federated nonlinear predictive filter (NPF) for the gyroless attitude determination system with star sensor and Global Positioning System (GPS) sensor. This approach combines the good qualities of both the NPF and federated filter. In order to combine them, the equivalence relationship between the NPF and classical Kalman filter (KF) is demonstrated from algorithm structure and estimation criterion. The main features of this approach include a nonlinear predictive filtering algorithm to estimate uncertain model errors and determine the spacecraft attitude by using attitude kinematics and dynamics, and a federated filtering algorithm to process measurement data from multiple attitude sensors. Moreover, a fault detection and isolation algorithm is applied to the proposed federated NPF to improve the estimation accuracy even when one sensor fails. Numerical examples are given to verify the navigation performance and fault-tolerant performance of the proposed federated nonlinear predictive attitude determination algorithm.

  13. Likelihood-Based Inference in Nonlinear Error-Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbæk, Anders

    We consider a class of vector nonlinear error correction models where the transfer function (or loadings) of the stationary relation- ships is nonlinear. This includes in particular the smooth transition models. A general representation theorem is given which establishes the dynamic properties...... of the process in terms of stochastic and deter- ministic trends as well as stationary components. In particular, the behaviour of the cointegrating relations is described in terms of geo- metric ergodicity. Despite the fact that no deterministic terms are included, the process will have both stochastic trends...... and a linear trend in general. Gaussian likelihood-based estimators are considered for the long- run cointegration parameters, and the short-run parameters. Asymp- totic theory is provided for these and it is discussed to what extend asymptotic normality and mixed normaity can be found. A simulation study...

  14. Spontaneous prediction error generation in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Yuichi Yamashita

    Full Text Available Goal-directed human behavior is enabled by hierarchically-organized neural systems that process executive commands associated with higher brain areas in response to sensory and motor signals from lower brain areas. Psychiatric diseases and psychotic conditions are postulated to involve disturbances in these hierarchical network interactions, but the mechanism for how aberrant disease signals are generated in networks, and a systems-level framework linking disease signals to specific psychiatric symptoms remains undetermined. In this study, we show that neural networks containing schizophrenia-like deficits can spontaneously generate uncompensated error signals with properties that explain psychiatric disease symptoms, including fictive perception, altered sense of self, and unpredictable behavior. To distinguish dysfunction at the behavioral versus network level, we monitored the interactive behavior of a humanoid robot driven by the network. Mild perturbations in network connectivity resulted in the spontaneous appearance of uncompensated prediction errors and altered interactions within the network without external changes in behavior, correlating to the fictive sensations and agency experienced by episodic disease patients. In contrast, more severe deficits resulted in unstable network dynamics resulting in overt changes in behavior similar to those observed in chronic disease patients. These findings demonstrate that prediction error disequilibrium may represent an intrinsic property of schizophrenic brain networks reporting the severity and variability of disease symptoms. Moreover, these results support a systems-level model for psychiatric disease that features the spontaneous generation of maladaptive signals in hierarchical neural networks.

  15. Nonlinear predictive control in the LHC accelerator

    CERN Document Server

    Blanco, E; Cristea, S; Casas, J

    2009-01-01

    This paper describes the application of a nonlinear model-based control strategy in a real challenging process. A predictive controller based on a nonlinear model derived from physical relationships, mainly heat and mass balances, has been developed and commissioned in the inner triplet heat exchanger unit (IT-HXTU) of the large hadron collider (LHC) particle accelerator at European Center for Nuclear Research (CERN). The advanced regulation\\ maintains the magnets temperature at about 1.9 K. The development includes a constrained nonlinear state estimator with a receding horizon estimation procedure to improve the regulator predictions.

  16. Nonlinear local Lyapunov exponent and atmospheric predictability research

    Institute of Scientific and Technical Information of China (English)

    CHEN; Baohua; LI; Jianping; DING; Ruiqiang

    2006-01-01

    Because atmosphere itself is a nonlinear system and there exist some problems using the linearized equations to study the initial error growth, in this paper we try to use the error nonlinear growth theory to discuss its evolution, based on which we first put forward a new concept: nonlinear local Lyapunov exponent. It is quite different from the classic Lyapunov exponent because it may characterize the finite time error local average growth and its value depends on the initial condition,initial error, variables, evolution time, temporal and spatial scales. Based on its definition and the atmospheric features, we provide a reasonable algorithm to the exponent for the experimental data,obtain the atmospheric initial error growth in finite time and gain the maximal prediction time. Lastly,taking 500 hPa height field as example, we discuss the application of the nonlinear local Lyapunov exponent in the study of atmospheric predictability and get some reliable results: atmospheric predictability has a distinct spatial structure. Overall, predictability shows a zonal distribution. Prediction time achieves the maximum over tropics, the second near the regions of Antarctic, it is also longer next to the Arctic and in subtropics and the mid-latitude the predictability is lowest. Particularly speaking, the average prediction time near the equation is 12 days and the maximum is located in the tropical Indian, Indonesia and the neighborhood, tropical eastern Pacific Ocean, on these regions the prediction time is about two weeks. Antarctic has a higher predictability than the neighboring latitudes and the prediction time is about 9 days. This feature is more obvious on Southern Hemispheric summer. In Arctic, the predictability is also higher than the one over mid-high latitudes but it is not pronounced as in Antarctic. Mid-high latitude of both Hemispheres (30°S-60°S, 30°-60°N) have the lowest predictability and the mean prediction time is just 3-4 d. In addition

  17. Working memory load strengthens reward prediction errors.

    Science.gov (United States)

    Collins, Anne G E; Ciullo, Brittany; Frank, Michael J; Badre, David

    2017-03-20

    Reinforcement learning in simple instrumental tasks is usually modeled as a monolithic process in which reward prediction errors are used to update expected values of choice options. This modeling ignores the different contributions of different memory and decision-making systems thought to contribute even to simple learning. In an fMRI experiment, we asked how working memory and incremental reinforcement learning processes interact to guide human learning. Working memory load was manipulated by varying the number of stimuli to be learned across blocks. Behavioral results and computational modeling confirmed that learning was best explained as a mixture of two mechanisms: a fast, capacity-limited, and delay-sensitive working memory process together with slower reinforcement learning. Model-based analysis of fMRI data showed that striatum and lateral prefrontal cortex were sensitive to reward prediction error, as shown previously, but critically, these signals were reduced when the learning problem was within capacity of working memory. The degree of this neural interaction related to individual differences in the use of working memory to guide behavioral learning. These results indicate that the two systems do not process information independently, but rather interact during learning.SIGNIFICANCE STATEMENTReinforcement learning theory has been remarkably productive at improving our understanding of instrumental learning as well as dopaminergic and striatal network function across many mammalian species. However, this neural network is only one contributor to human learning, and other mechanisms such as prefrontal cortex working memory, also play a key role. Our results show in addition that these other players interact with the dopaminergic RL system, interfering with its key computation of reward predictions errors.

  18. Multivariate Nonlinear Analysis and Prediction of Shanghai Stock Market

    Directory of Open Access Journals (Sweden)

    Junhai Ma

    2008-01-01

    Full Text Available This study attempts to characterize and predict stock returns series in Shanghai stock exchange using the concepts of nonlinear dynamical theory. Surrogate data method of multivariate time series shows that all the stock returns time series exhibit nonlinearity. Multivariate nonlinear prediction methods and univariate nonlinear prediction method, all of which use the concept of phase space reconstruction, are considered. The results indicate that multivariate nonlinear prediction model outperforms univariate nonlinear prediction model, local linear prediction method of multivariate time series outperforms local polynomial prediction method, and BP neural network method. Multivariate nonlinear prediction model is a useful tool for stock price prediction in emerging markets.

  19. Nonlinear control of ships minimizing the position tracking errors

    Directory of Open Access Journals (Sweden)

    Svein P. Berge

    1999-07-01

    Full Text Available In this paper, a nonlinear tracking controller with integral action for ships is presented. The controller is based on state feedback linearization. Exponential convergence of the vessel-fixed position and velocity errors are proven by using Lyapunov stability theory. Since we only have two control devices, a rudder and a propeller, we choose to control the longship and the sideship position errors to zero while the heading is stabilized indirectly. A Virtual Reference Point (VRP is defined at the bow or ahead of the ship. The VRP is used for tracking control. It is shown that the distance from the center of rotation to the VRP will influence on the stability of the zero dynamics. By selecting the VRP at the bow or even ahead of the bow, the damping in yaw can be increased and the zero dynamics is stabilized. Hence, the heading angle will be less sensitive to wind, currents and waves. The control law is simulated by using a nonlinear model of the Japanese training ship Shiojimaru with excellent results. Wind forces are added to demonstrate the robustness and performance of the integral controller.

  20. Relationships of Measurement Error and Prediction Error in Observed-Score Regression

    Science.gov (United States)

    Moses, Tim

    2012-01-01

    The focus of this paper is assessing the impact of measurement errors on the prediction error of an observed-score regression. Measures are presented and described for decomposing the linear regression's prediction error variance into parts attributable to the true score variance and the error variances of the dependent variable and the predictor…

  1. Relative Effects of Trajectory Prediction Errors on the AAC Autoresolver

    Science.gov (United States)

    Lauderdale, Todd

    2011-01-01

    Trajectory prediction is fundamental to automated separation assurance. Every missed alert, false alert and loss of separation can be traced to one or more errors in trajectory prediction. These errors are a product of many different sources including wind prediction errors, inferred pilot intent errors, surveillance errors, navigation errors and aircraft weight estimation errors. This study analyzes the impact of six different types of errors on the performance of an automated separation assurance system composed of a geometric conflict detection algorithm and the Advanced Airspace Concept Autoresolver resolution algorithm. Results show that, of the error sources considered in this study, top-of-descent errors were the leading contributor to missed alerts and failed resolution maneuvers. Descent-speed errors were another significant contributor, as were cruise-speed errors in certain situations. The results further suggest that increasing horizontal detection and resolution standards are not effective strategies for mitigating these types of error sources.

  2. Nonlinear chaotic model for predicting storm surges

    NARCIS (Netherlands)

    Siek, M.; Solomatine, D.P.

    This paper addresses the use of the methods of nonlinear dynamics and chaos theory for building a predictive chaotic model from time series. The chaotic model predictions are made by the adaptive local models based on the dynamical neighbors found in the reconstructed phase space of the observables.

  3. Neuro-fuzzy predictive control for nonlinear application

    Institute of Scientific and Technical Information of China (English)

    CHEN Dong-xiang; WANG Gang; LV Shi-xia

    2008-01-01

    Aiming at the unsatisfactory dynamic performances of conventional model predictive control (MPC) in a highly nonlinear process, a scheme employed the fuzzy neural network to realize the nonlinear process is proposed. The neuro-fuzzy predictor has the capability of achieving high predictive accuracy due to its nonlinear mapping and interpolation features, and adaptively updating network parameters by a learning procedure to re-duce the model errors caused by changes of the process under control. To cope with the difficult problem of non-linear optimization, Pepanaqi method was applied to search the optimal or suboptimal solution. Comparisons were made among the objective function values of alternatives in initial space. The search was then confined to shrink the smaller region according to results of comparisons. The convergent point was finally approached to be considered as the optimal or suboptimal solution. Experimental results of the neuro-fuzzy predictive control for drier application reveal that the proposed control scheme has less tracking errors and can smooth control actions, which is applicable to changes of drying condition.

  4. Nonlinear model predictive control theory and algorithms

    CERN Document Server

    Grüne, Lars

    2017-01-01

    This book offers readers a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC schemes with and without stabilizing terminal constraints are detailed, and intuitive examples illustrate the performance of different NMPC variants. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. An introduction to nonlinear optimal control algorithms yields essential insights into how the nonlinear optimization routine—the core of any nonlinear model predictive controller—works. Accompanying software in MATLAB® and C++ (downloadable from extras.springer.com/), together with an explanatory appendix in the book itself, enables readers to perform computer experiments exploring the possibilities and limitations of NMPC. T...

  5. Adaptive Hammerstein Predistorter Using the Recursive Prediction Error Method

    Institute of Scientific and Technical Information of China (English)

    LI Hui; WANG Desheng; CHEN Zhaowu

    2008-01-01

    The digital baseband predistorter is an effective technique to compensate for the nonlinearity of power amplifiers (Pas) with memory effects. However, most available adaptive predistorters based on direct learning architectures suffer from slow convergence speeds. In this paper, the recursive prediction error method is used to construct an adaptive Hammerstein predistorter based on the direct learning architecture,which is used to linearize the Wiener PA model. The effectiveness of the scheme is demonstrated on a digi-tal video broadcasting-terrestrial system. Simulation results show that the predistorter outperforms previous predistorters based on direct learning architectures in terms of convergence speed and linearization. A simi-lar algorithm can be applied to estimate the Wiener PA model, which will achieve high model accuracy.

  6. How prediction errors shape perception, attention and motivation

    Directory of Open Access Journals (Sweden)

    Hanneke EM Den Ouden

    2012-12-01

    Full Text Available Prediction errors are a central notion in theoretical models of reinforcement learning, perceptual inference, decision-making and cognition, and prediction error signals have been reported across a wide range of brain regions and experimental paradigms. Here, we will make an attempt to see the forest for the trees, considering the commonalities and differences of reported prediction errors signals in light of recent suggestions that the computation of prediction errors forms a fundamental mode of brain function. We discuss where different types of prediction errors are encoded, how they are generated, and the different functional roles they fulfil. We suggest that while encoding of prediction errors is a common computation across brain regions, the content and function of these error signals can be very different, and are determined by the afferent and efferent connections within the neural circuitry in which they arise.

  7. Seven common errors in finding exact solutions of nonlinear differential equations

    NARCIS (Netherlands)

    Kudryashov, Nikolai A.

    2009-01-01

    We analyze the common errors of the recent papers in which the solitary wave solutions of nonlinear differential equations are presented. Seven common errors are formulated and classified. These errors are illustrated by using multiple examples of the common errors from the recent publications. We s

  8. Monthly Extended Predicting Experiments with Nonlinear Regional Prediction. Part Ⅱ: Improvement of Wave Component Prediction

    Institute of Scientific and Technical Information of China (English)

    CHEN Bomin; JI Liren; YANG Peicai; ZHANG Daomin

    2006-01-01

    Based on Chen et al. (2006), the scheme of the combination of the pentad-mean zonal height departure nonlinear prediction with the T42L9 model prediction was designed, in which the pentad zonal heights at all the 12-initial-value-input isobar levels from 50 hPa to 1000 hPa except 200, 300, 500, and 700 hPa were derived from nonlinear forecasts of the four levels by means of a good correlation between neighboring levels.Then the above pentad zonal heights at 12 isobar-levels were transformed to the spectrum coefficients of the temperature at each integration step of T42L9 model. At last, the nudging was made. On account of a variety of error accumulation, the pentad zonal components of the monthly height at isobar levels output by T42L9 model were replaced by the corresponding nonlinear results once more when integration was over.Multiple case experiments showed that such combination of two kinds of prediction made an improvement in the wave component as a result of wave-flow nonlinear interaction while reducing the systematical forecast errors. Namely the monthly-mean height anomaly correlation coefficients over the high- and mid-latitudes of the Northern Hemisphere, over the Southern Hemisphere and over the globe increased respectively from 0.249 to 0.347, from 0.286 to 0.387, and from 0.343 to 0.414 (relative changes of 31.5%, 41.0%, and 18.3%).The monthly-mean root-mean-square error (RMSE) of T42L9 model over the three areas was considerably decreased, the relative change over the globe reached 44.2%. The monthly-mean anomaly correlation coefficients of wave 4-9 over the areas were up to 0.392, 0.200, and 0.295, with the relative change of 53.8%, 94.1%,and 61.2%, and correspondingly their RMSEs were decreased respectively with the rate of 8.5%, 6.3%, and 8.1%. At the same time the monthly-mean pattern of parts of cases were presented better.

  9. Detection method of nonlinearity errors by statistical signal analysis in heterodyne Michelson interferometer.

    Science.gov (United States)

    Hu, Juju; Hu, Haijiang; Ji, Yinghua

    2010-03-15

    Periodic nonlinearity that ranges from tens of nanometers to a few nanometers in heterodyne interferometer limits its use in high accuracy measurement. A novel method is studied to detect the nonlinearity errors based on the electrical subdivision and the analysis method of statistical signal in heterodyne Michelson interferometer. Under the movement of micropositioning platform with the uniform velocity, the method can detect the nonlinearity errors by using the regression analysis and Jackknife estimation. Based on the analysis of the simulations, the method can estimate the influence of nonlinearity errors and other noises for the dimensions measurement in heterodyne Michelson interferometer.

  10. Nonlinear chaotic model for predicting storm surges

    Directory of Open Access Journals (Sweden)

    M. Siek

    2010-09-01

    Full Text Available This paper addresses the use of the methods of nonlinear dynamics and chaos theory for building a predictive chaotic model from time series. The chaotic model predictions are made by the adaptive local models based on the dynamical neighbors found in the reconstructed phase space of the observables. We implemented the univariate and multivariate chaotic models with direct and multi-steps prediction techniques and optimized these models using an exhaustive search method. The built models were tested for predicting storm surge dynamics for different stormy conditions in the North Sea, and are compared to neural network models. The results show that the chaotic models can generally provide reliable and accurate short-term storm surge predictions.

  11. A Method on Non-Linear Correction of Broadband LFMCW Signal Utilizing Its Relative Sweep Non-Linear Error

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper presents a method on non-linear correction of broadband LFMCW signal utilizing its relativenonlinear error. The deriving procedure and the results simulated by a computer and tested by a practical system arealso introduced. The method has two obvious advantages compared with the previous methods: (1) Correction has norelation with delay time td and sweep bandwidth B; (2) The inherent non-linear error of VCO has no influence on thecorrection and its last results.

  12. Prediction with measurement errors in finite populations.

    Science.gov (United States)

    Singer, Julio M; Stanek, Edward J; Lencina, Viviana B; González, Luz Mery; Li, Wenjun; Martino, Silvina San

    2012-02-01

    We address the problem of selecting the best linear unbiased predictor (BLUP) of the latent value (e.g., serum glucose fasting level) of sample subjects with heteroskedastic measurement errors. Using a simple example, we compare the usual mixed model BLUP to a similar predictor based on a mixed model framed in a finite population (FPMM) setup with two sources of variability, the first of which corresponds to simple random sampling and the second, to heteroskedastic measurement errors. Under this last approach, we show that when measurement errors are subject-specific, the BLUP shrinkage constants are based on a pooled measurement error variance as opposed to the individual ones generally considered for the usual mixed model BLUP. In contrast, when the heteroskedastic measurement errors are measurement condition-specific, the FPMM BLUP involves different shrinkage constants. We also show that in this setup, when measurement errors are subject-specific, the usual mixed model predictor is biased but has a smaller mean squared error than the FPMM BLUP which point to some difficulties in the interpretation of such predictors.

  13. Critical evidence for the prediction error theory in associative learning.

    Science.gov (United States)

    Terao, Kanta; Matsumoto, Yukihisa; Mizunami, Makoto

    2015-03-10

    In associative learning in mammals, it is widely accepted that the discrepancy, or error, between actual and predicted reward determines whether learning occurs. Complete evidence for the prediction error theory, however, has not been obtained in any learning systems: Prediction error theory stems from the finding of a blocking phenomenon, but blocking can also be accounted for by other theories, such as the attentional theory. We demonstrated blocking in classical conditioning in crickets and obtained evidence to reject the attentional theory. To obtain further evidence supporting the prediction error theory and rejecting alternative theories, we constructed a neural model to match the prediction error theory, by modifying our previous model of learning in crickets, and we tested a prediction from the model: the model predicts that pharmacological intervention of octopaminergic transmission during appetitive conditioning impairs learning but not formation of reward prediction itself, and it thus predicts no learning in subsequent training. We observed such an "auto-blocking", which could be accounted for by the prediction error theory but not by other competitive theories to account for blocking. This study unambiguously demonstrates validity of the prediction error theory in associative learning.

  14. Dopamine neurons share common response function for reward prediction error.

    Science.gov (United States)

    Eshel, Neir; Tian, Ju; Bukwich, Michael; Uchida, Naoshige

    2016-03-01

    Dopamine neurons are thought to signal reward prediction error, or the difference between actual and predicted reward. How dopamine neurons jointly encode this information, however, remains unclear. One possibility is that different neurons specialize in different aspects of prediction error; another is that each neuron calculates prediction error in the same way. We recorded from optogenetically identified dopamine neurons in the lateral ventral tegmental area (VTA) while mice performed classical conditioning tasks. Our tasks allowed us to determine the full prediction error functions of dopamine neurons and compare them to each other. We found marked homogeneity among individual dopamine neurons: their responses to both unexpected and expected rewards followed the same function, just scaled up or down. As a result, we were able to describe both individual and population responses using just two parameters. Such uniformity ensures robust information coding, allowing each dopamine neuron to contribute fully to the prediction error signal.

  15. Homodyne laser interferometer involving minimal quadrature phase error to obtain subnanometer nonlinearity.

    Science.gov (United States)

    Cui, Junning; He, Zhangqiang; Jiu, Yuanwei; Tan, Jiubin; Sun, Tao

    2016-09-01

    The demand for minimal cyclic nonlinearity error in laser interferometry is increasing as a result of advanced scientific research projects. Research shows that the quadrature phase error is the main effect that introduces cyclic nonlinearity error, and polarization-mixing cross talk during beam splitting is the main error source that causes the quadrature phase error. In this paper, a new homodyne quadrature laser interferometer configuration based on nonpolarization beam splitting and balanced interference between two circularly polarized laser beams is proposed. Theoretical modeling indicates that the polarization-mixing cross talk is elaborately avoided through nonpolarizing and Wollaston beam splitting, with a minimum number of quadrature phase error sources involved. Experimental results show that the cyclic nonlinearity error of the interferometer is up to 0.6 nm (peak-to-valley value) without any correction and can be further suppressed to 0.2 nm with a simple gain and offset correction method.

  16. Non-Minimum Phase Nonlinear System Predictive Control Based on Local Recurrent Neural Networks

    Institute of Scientific and Technical Information of China (English)

    张燕; 陈增强; 袁著祉

    2003-01-01

    After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent PID controller is adopted to correct the errors including identified model errors and accumulated errors produced in the recursive process. Characterized by predictive control, this method can achieve a good control accuracy and has good robustness. A simulation study shows that this control algorithm is very effective.

  17. Piecewise compensation for the nonlinear error of fiber-optic gyroscope scale factor

    Science.gov (United States)

    Zhang, Yonggang; Wu, Xunfeng; Yuan, Shun; Wu, Lei

    2013-08-01

    Fiber-Optic Gyroscope (FOG) scale factor nonlinear error will result in errors in Strapdown Inertial Navigation System (SINS). In order to reduce nonlinear error of FOG scale factor in SINS, a compensation method is proposed in this paper based on curve piecewise fitting of FOG output. Firstly, reasons which can result in FOG scale factor error are introduced and the definition of nonlinear degree is provided. Then we introduce the method to divide the output range of FOG into several small pieces, and curve fitting is performed in each output range of FOG to obtain scale factor parameter. Different scale factor parameters of FOG are used in different pieces to improve FOG output precision. These parameters are identified by using three-axis turntable, and nonlinear error of FOG scale factor can be reduced. Finally, three-axis swing experiment of SINS verifies that the proposed method can reduce attitude output errors of SINS by compensating the nonlinear error of FOG scale factor and improve the precision of navigation. The results of experiments also demonstrate that the compensation scheme is easy to implement. It can effectively compensate the nonlinear error of FOG scale factor with slightly increased computation complexity. This method can be used in inertial technology based on FOG to improve precision.

  18. The impact of experimental measurement errors on long-term viscoelastic predictions. [of structural materials

    Science.gov (United States)

    Tuttle, M. E.; Brinson, H. F.

    1986-01-01

    The impact of flight error in measured viscoelastic parameters on subsequent long-term viscoelastic predictions is numerically evaluated using the Schapery nonlinear viscoelastic model. Of the seven Schapery parameters, the results indicated that long-term predictions were most sensitive to errors in the power law parameter n. Although errors in the other parameters were significant as well, errors in n dominated all other factors at long times. The process of selecting an appropriate short-term test cycle so as to insure an accurate long-term prediction was considered, and a short-term test cycle was selected using material properties typical for T300/5208 graphite-epoxy at 149 C. The process of selection is described, and its individual steps are itemized.

  19. Visuomotor adaptation needs a validation of prediction error by feedback error

    Directory of Open Access Journals (Sweden)

    Valérie eGaveau

    2014-11-01

    Full Text Available The processes underlying short-term plasticity induced by visuomotor adaptation to a shifted visual field are still debated. Two main sources of error can induce motor adaptation: reaching feedback errors, which correspond to visually perceived discrepancies between hand and target positions, and errors between predicted and actual visual reafferences of the moving hand. These two sources of error are closely intertwined and difficult to disentangle, as both the target and the reaching limb are simultaneously visible. Accordingly, the goal of the present study was to clarify the relative contributions of these two types of errors during a pointing task under prism-displaced vision. In ‘terminal feedback error’ condition, viewing of their hand by subjects was allowed only at movement end, simultaneously with viewing of the target. In ‘movement prediction error’ condition, viewing of the hand was limited to movement duration, in the absence of any visual target, and error signals arose solely from comparisons between predicted and actual reafferences of the hand. In order to prevent intentional corrections of errors, a subthreshold, progressive stepwise increase in prism deviation was used, so that subjects remained unaware of the visual deviation applied in both conditions. An adaptive aftereffect was observed in the ‘terminal feedback error’ condition only. As far as subjects remained unaware of the optical deviation and self-assigned pointing errors, prediction error alone was insufficient to induce adaptation. These results indicate a critical role of hand-to-target feedback error signals in visuomotor adaptation; consistent with recent neurophysiological findings, they suggest that a combination of feedback and prediction error signals is necessary for eliciting aftereffects. They also suggest that feedback error updates the prediction of reafferences when a visual perturbation is introduced gradually and cognitive factors are

  20. Nonlinear grid error effects on numerical solution of partial differential equations

    Science.gov (United States)

    Dey, S. K.

    1980-01-01

    Finite difference solutions of nonlinear partial differential equations require discretizations and consequently grid errors are generated. These errors strongly affect stability and convergence properties of difference models. Previously such errors were analyzed by linearizing the difference equations for solutions. Properties of mappings of decadence were used to analyze nonlinear instabilities. Such an analysis is directly affected by initial/boundary conditions. An algorithm was developed, applied to nonlinear Burgers equations, and verified computationally. A preliminary test shows that Navier-Stokes equations may be treated similarly.

  1. Adaptive Filters with Error Nonlinearities: Mean-Square Analysis and Optimum Design

    Directory of Open Access Journals (Sweden)

    Ali H. Sayed

    2001-01-01

    Full Text Available This paper develops a unified approach to the analysis and design of adaptive filters with error nonlinearities. In particular, the paper performs stability and steady-state analysis of this class of filters under weaker conditions than what is usually encountered in the literature, and without imposing any restriction on the color or statistics of the input. The analysis results are subsequently used to derive an expression for the optimum nonlinearity, which turns out to be a function of the probability density function of the estimation error. Some common nonlinearities are shown to be approximations to the optimum nonlinearity. The framework pursued here is based on energy conservation arguments.

  2. Predictive error analysis for a water resource management model

    Science.gov (United States)

    Gallagher, Mark; Doherty, John

    2007-02-01

    SummaryIn calibrating a model, a set of parameters is assigned to the model which will be employed for the making of all future predictions. If these parameters are estimated through solution of an inverse problem, formulated to be properly posed through either pre-calibration or mathematical regularisation, then solution of this inverse problem will, of necessity, lead to a simplified parameter set that omits the details of reality, while still fitting historical data acceptably well. Furthermore, estimates of parameters so obtained will be contaminated by measurement noise. Both of these phenomena will lead to errors in predictions made by the model, with the potential for error increasing with the hydraulic property detail on which the prediction depends. Integrity of model usage demands that model predictions be accompanied by some estimate of the possible errors associated with them. The present paper applies theory developed in a previous work to the analysis of predictive error associated with a real world, water resource management model. The analysis offers many challenges, including the fact that the model is a complex one that was partly calibrated by hand. Nevertheless, it is typical of models which are commonly employed as the basis for the making of important decisions, and for which such an analysis must be made. The potential errors associated with point-based and averaged water level and creek inflow predictions are examined, together with the dependence of these errors on the amount of averaging involved. Error variances associated with predictions made by the existing model are compared with "optimized error variances" that could have been obtained had calibration been undertaken in such a way as to minimize predictive error variance. The contributions by different parameter types to the overall error variance of selected predictions are also examined.

  3. NONLINEAR MODEL PREDICTIVE CONTROL OF CHEMICAL PROCESSES

    Directory of Open Access Journals (Sweden)

    R. G. SILVA

    1999-03-01

    Full Text Available A new algorithm for model predictive control is presented. The algorithm utilizes a simultaneous solution and optimization strategy to solve the model's differential equations. The equations are discretized by equidistant collocation, and along with the algebraic model equations are included as constraints in a nonlinear programming (NLP problem. This algorithm is compared with the algorithm that uses orthogonal collocation on finite elements. The equidistant collocation algorithm results in simpler equations, providing a decrease in computation time for the control moves. Simulation results are presented and show a satisfactory performance of this algorithm.

  4. Nonlinear Time Series Prediction Using LS-SVM with Chaotic Mutation Evolutionary Programming for Parameter Optimization

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Nonlinear time series prediction is studied by using an improved least squares support vector machine (LSSVM) regression based on chaotic mutation evolutionary programming (CMEP) approach for parameter optimization.We analyze how the prediction error varies with different parameters (σ, γ) in LS-SVM. In order to select appropriate parameters for the prediction model, we employ CMEP algorithm. Finally, Nasdaq stock data are predicted by using this LS-SVM regression based on CMEP, and satisfactory results are obtained.

  5. Nonlinear Multiscale Transformations: From Synchronization to Error Control

    Science.gov (United States)

    2001-07-01

    Donat Dept. Matematica Aplicada, University of Valencia, Spain. arandiga@uv. es donat uv. es Abstract Data-dependent interpolatory techniques can be used...Numer. Algorith. 23, 175-216, 2000. 5. F. Arhndiga, R. Donat, and A. Harten. Multiresolution based on weighted averages of the hat function II : Nonlinear...transforms for image coding via lifting scheme. submitted to IEEE Trans. on Image Nonlinear multiscale transformations 313 Method II ’ 1 I ŕ, 11蕀 r

  6. A causal link between prediction errors, dopamine neurons and learning.

    Science.gov (United States)

    Steinberg, Elizabeth E; Keiflin, Ronald; Boivin, Josiah R; Witten, Ilana B; Deisseroth, Karl; Janak, Patricia H

    2013-07-01

    Situations in which rewards are unexpectedly obtained or withheld represent opportunities for new learning. Often, this learning includes identifying cues that predict reward availability. Unexpected rewards strongly activate midbrain dopamine neurons. This phasic signal is proposed to support learning about antecedent cues by signaling discrepancies between actual and expected outcomes, termed a reward prediction error. However, it is unknown whether dopamine neuron prediction error signaling and cue-reward learning are causally linked. To test this hypothesis, we manipulated dopamine neuron activity in rats in two behavioral procedures, associative blocking and extinction, that illustrate the essential function of prediction errors in learning. We observed that optogenetic activation of dopamine neurons concurrent with reward delivery, mimicking a prediction error, was sufficient to cause long-lasting increases in cue-elicited reward-seeking behavior. Our findings establish a causal role for temporally precise dopamine neuron signaling in cue-reward learning, bridging a critical gap between experimental evidence and influential theoretical frameworks.

  7. What Kind of Initial Errors Cause the Severest Prediction Uncertainty of EI Nino in Zebiak-Cane Model

    Institute of Scientific and Technical Information of China (English)

    XU Hui; DUAN Wansuo

    2008-01-01

    With the Zebiak-Cane (ZC) model, the initial error that has the largest effect on ENSO prediction is explored by conditional nonlinear optimal perturbation (CNOP). The results demonstrate that CNOP-type errors cause the largest prediction error of ENSO in the ZC model. By analyzing the behavior of CNOP- type errors, we find that for the normal states and the relatively weak EI Nino events in the ZC model, the predictions tend to yield false alarms due to the uncertainties caused by CNOP. For the relatively strong EI Nino events, the ZC model largely underestimates their intensities. Also, our results suggest that the error growth of EI Nino in the ZC model depends on the phases of both the annual cycle and ENSO. The condition during northern spring and summer is most favorable for the error growth. The ENSO prediction bestriding these two seasons may be the most difficult. A linear singular vector (LSV) approach is also used to estimate the error growth of ENSO, but it underestimates the prediction uncertainties of ENSO in the ZC model. This result indicates that the different initial errors cause different amplitudes of prediction errors though they have same magnitudes. CNOP yields the severest prediction uncertainty. That is to say, the prediction skill of ENSO is closely related to the types of initial error. This finding illustrates a theoretical basis of data assimilation. It is expected that a data assimilation method can filter the initial errors related to CNOP and improve the ENSO forecast skill.

  8. Prediction of biodegradation kinetics using a nonlinear group contribution method

    Energy Technology Data Exchange (ETDEWEB)

    Tabak, H.H. (Environmental Protection Agency, Cincinnati, OH (United States)); Govind, R. (Univ. of Cincinnati, OH (United States))

    1993-02-01

    The fate of organic chemicals in the environment depends on their susceptibility to biodegradation. Hence, development of regulations concerning their manufacture and use requires information on the extent and rate of biodegradation. Recent studies have attempted to correlate the kinetics of biodegradation with the molecular structure of the compound. This has led to the development of structure-biodegradation relationships (SBRs) using the group contribution approach. Each defined group present in the chemical structure of the compound is assigned a unique numerical contribution toward the calculation of the biodegradation kinetic constants. In this paper, a nonlinear group contribution method has been developed using neural networks; it is trained using literature data on the first-order biodegradation kinetic rate constant for a number of priority pollutants. The trained neural network is then used to predict the biodegradation kinetic constant for a new list of compounds, and results have been compared with the experimental values and the predictions obtained from a linear group contribution method. It has been shown that the nonlinear group contribution method using neural networks is able to provide a superior fit to the training set data and test data set and produce a lower prediction error than the previous linear method.

  9. Linear and nonlinear dynamic systems in financial time series prediction

    Directory of Open Access Journals (Sweden)

    Salim Lahmiri

    2012-10-01

    Full Text Available Autoregressive moving average (ARMA process and dynamic neural networks namely the nonlinear autoregressive moving average with exogenous inputs (NARX are compared by evaluating their ability to predict financial time series; for instance the S&P500 returns. Two classes of ARMA are considered. The first one is the standard ARMA model which is a linear static system. The second one uses Kalman filter (KF to estimate and predict ARMA coefficients. This model is a linear dynamic system. The forecasting ability of each system is evaluated by means of mean absolute error (MAE and mean absolute deviation (MAD statistics. Simulation results indicate that the ARMA-KF system performs better than the standard ARMA alone. Thus, introducing dynamics into the ARMA process improves the forecasting accuracy. In addition, the ARMA-KF outperformed the NARX. This result may suggest that the linear component found in the S&P500 return series is more dominant than the nonlinear part. In sum, we conclude that introducing dynamics into the ARMA process provides an effective system for S&P500 time series prediction.

  10. Minimization and error estimates for a class of the nonlinear Schrodinger eigenvalue problems

    Institute of Scientific and Technical Information of China (English)

    MurongJIANG; JiachangSUN

    2000-01-01

    It is shown that the nonlinear eigenvaiue problem can be transformed into a constrained functional problem. The corresponding minimal function is a weak solution of this nonlinear problem. In this paper, one type of the energy functional for a class of the nonlinear SchrSdinger eigenvalue problems is proposed, the existence of the minimizing solution is proved and the error estimate is given out.

  11. Temporal prediction errors modulate cingulate-insular coupling.

    Science.gov (United States)

    Limongi, Roberto; Sutherland, Steven C; Zhu, Jian; Young, Michael E; Habib, Reza

    2013-05-01

    Prediction error (i.e., the difference between the expected and the actual event's outcome) mediates adaptive behavior. Activity in the anterior mid-cingulate cortex (aMCC) and in the anterior insula (aINS) is associated with the commission of prediction errors under uncertainty. We propose a dynamic causal model of effective connectivity (i.e., neuronal coupling) between the aMCC, the aINS, and the striatum in which the task context drives activity in the aINS and the temporal prediction errors modulate extrinsic cingulate-insular connections. With functional magnetic resonance imaging, we scanned 15 participants when they performed a temporal prediction task. They observed visual animations and predicted when a stationary ball began moving after being contacted by another moving ball. To induced uncertainty-driven prediction errors, we introduced spatial gaps and temporal delays between the balls. Classical and Bayesian fMRI analyses provided evidence to support that the aMCC-aINS system along with the striatum not only responds when humans predict whether a dynamic event occurs but also when it occurs. Our results reveal that the insula is the entry port of a three-region pathway involved in the processing of temporal predictions. Moreover, prediction errors rather than attentional demands, task difficulty, or task duration exert an influence in the aMCC-aINS system. Prediction errors debilitate the effect of the aMCC on the aINS. Finally, our computational model provides a way forward to characterize the physiological parallel of temporal prediction errors elicited in dynamic tasks.

  12. Standard Errors of Prediction for the Vineland Adaptive Behavior Scales.

    Science.gov (United States)

    Atkinson, Leslie

    1990-01-01

    Offers standard errors of prediction and confidence intervals for Vineland Adaptive Behavior Scales (VABS) that help in deciding whether variation in obtained scores of scale administered to the same person more than once is a result of measurement error or whether it reflects actual change in examinee's functional level. Presented values were…

  13. Detecting determinism with improved sensitivity in time series: Rank-based nonlinear predictability score

    Science.gov (United States)

    Naro, Daniel; Rummel, Christian; Schindler, Kaspar; Andrzejak, Ralph G.

    2014-09-01

    The rank-based nonlinear predictability score was recently introduced as a test for determinism in point processes. We here adapt this measure to time series sampled from time-continuous flows. We use noisy Lorenz signals to compare this approach against a classical amplitude-based nonlinear prediction error. Both measures show an almost identical robustness against Gaussian white noise. In contrast, when the amplitude distribution of the noise has a narrower central peak and heavier tails than the normal distribution, the rank-based nonlinear predictability score outperforms the amplitude-based nonlinear prediction error. For this type of noise, the nonlinear predictability score has a higher sensitivity for deterministic structure in noisy signals. It also yields a higher statistical power in a surrogate test of the null hypothesis of linear stochastic correlated signals. We show the high relevance of this improved performance in an application to electroencephalographic (EEG) recordings from epilepsy patients. Here the nonlinear predictability score again appears of higher sensitivity to nonrandomness. Importantly, it yields an improved contrast between signals recorded from brain areas where the first ictal EEG signal changes were detected (focal EEG signals) versus signals recorded from brain areas that were not involved at seizure onset (nonfocal EEG signals).

  14. Testing and Inference in Nonlinear Cointegrating Vector Error Correction Models

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbæk, Anders

    for linearity is of particular interest as parameters of non-linear components vanish under the null. To solve the latter type of testing, we use the so-called sup tests, which here requires development of new (uniform) weak convergence results. These results are potentially useful in general for analysis...

  15. Testing and inference in nonlinear cointegrating vector error correction models

    DEFF Research Database (Denmark)

    Kristensen, D.; Rahbek, A.

    2013-01-01

    the null of linearity, parameters of nonlinear components vanish, leading to a nonstandard testing problem. We apply so-called sup-tests to resolve this issue, which requires development of new(uniform) functional central limit theory and results for convergence of stochastic integrals. We provide a full...

  16. Direct heuristic dynamic programming for nonlinear tracking control with filtered tracking error.

    Science.gov (United States)

    Yang, Lei; Si, Jennie; Tsakalis, Konstantinos S; Rodriguez, Armando A

    2009-12-01

    This paper makes use of the direct heuristic dynamic programming design in a nonlinear tracking control setting with filtered tracking error. A Lyapunov stability approach is used for the stability analysis of the tracking system. It is shown that the closed-loop tracking error and the approximating neural network weight estimates retain the property of uniformly ultimate boundedness under the presence of neural network approximation error and bounded unknown disturbances under certain conditions.

  17. Estimation of genetic connectedness diagnostics based on prediction errors without the prediction error variance-covariance matrix

    National Research Council Canada - National Science Library

    John B Holmes; Ken G Dodds; Michael A Lee

    2017-01-01

    .... While various measures of connectedness have been proposed in the literature, there is general agreement that the most appropriate measure is some function of the prediction error variance-covariance matrix...

  18. Certainty equivalence in nonlinear output regulation with unmeasured error

    Science.gov (United States)

    Celani, F.

    2010-11-01

    In this article, we consider a nonlinear output regulation problem in which the controlled output and the measured output are not the same. It is assumed that the controlled plant has a single control input, and that it can be transformed into Gauthier-Kupka's observability canonical form. Then, it is shown that a design based on certainty equivalence is effective for determining a controller that solves the given problem.

  19. Predicting nonlinear properties of metamaterials from the linear response.

    Science.gov (United States)

    O'Brien, Kevin; Suchowski, Haim; Rho, Junsuk; Salandrino, Alessandro; Kante, Boubacar; Yin, Xiaobo; Zhang, Xiang

    2015-04-01

    The discovery of optical second harmonic generation in 1961 started modern nonlinear optics. Soon after, R. C. Miller found empirically that the nonlinear susceptibility could be predicted from the linear susceptibilities. This important relation, known as Miller's Rule, allows a rapid determination of nonlinear susceptibilities from linear properties. In recent years, metamaterials, artificial materials that exhibit intriguing linear optical properties not found in natural materials, have shown novel nonlinear properties such as phase-mismatch-free nonlinear generation, new quasi-phase matching capabilities and large nonlinear susceptibilities. However, the understanding of nonlinear metamaterials is still in its infancy, with no general conclusion on the relationship between linear and nonlinear properties. The key question is then whether one can determine the nonlinear behaviour of these artificial materials from their exotic linear behaviour. Here, we show that the nonlinear oscillator model does not apply in general to nonlinear metamaterials. We show, instead, that it is possible to predict the relative nonlinear susceptibility of large classes of metamaterials using a more comprehensive nonlinear scattering theory, which allows efficient design of metamaterials with strong nonlinearity for important applications such as coherent Raman sensing, entangled photon generation and frequency conversion.

  20. The Pupillary Orienting Response Predicts Adaptive Behavioral Adjustment after Errors.

    Directory of Open Access Journals (Sweden)

    Peter R Murphy

    Full Text Available Reaction time (RT is commonly observed to slow down after an error. This post-error slowing (PES has been thought to arise from the strategic adoption of a more cautious response mode following deployment of cognitive control. Recently, an alternative account has suggested that PES results from interference due to an error-evoked orienting response. We investigated whether error-related orienting may in fact be a pre-cursor to adaptive post-error behavioral adjustment when the orienting response resolves before subsequent trial onset. We measured pupil dilation, a prototypical measure of autonomic orienting, during performance of a choice RT task with long inter-stimulus intervals, and found that the trial-by-trial magnitude of the error-evoked pupil response positively predicted both PES magnitude and the likelihood that the following response would be correct. These combined findings suggest that the magnitude of the error-related orienting response predicts an adaptive change of response strategy following errors, and thereby promote a reconciliation of the orienting and adaptive control accounts of PES.

  1. Prediction error, ketamine and psychosis: An updated model.

    Science.gov (United States)

    Corlett, Philip R; Honey, Garry D; Fletcher, Paul C

    2016-11-01

    In 2007, we proposed an explanation of delusion formation as aberrant prediction error-driven associative learning. Further, we argued that the NMDA receptor antagonist ketamine provided a good model for this process. Subsequently, we validated the model in patients with psychosis, relating aberrant prediction error signals to delusion severity. During the ensuing period, we have developed these ideas, drawing on the simple principle that brains build a model of the world and refine it by minimising prediction errors, as well as using it to guide perceptual inferences. While previously we focused on the prediction error signal per se, an updated view takes into account its precision, as well as the precision of prior expectations. With this expanded perspective, we see several possible routes to psychotic symptoms - which may explain the heterogeneity of psychotic illness, as well as the fact that other drugs, with different pharmacological actions, can produce psychotomimetic effects. In this article, we review the basic principles of this model and highlight specific ways in which prediction errors can be perturbed, in particular considering the reliability and uncertainty of predictions. The expanded model explains hallucinations as perturbations of the uncertainty mediated balance between expectation and prediction error. Here, expectations dominate and create perceptions by suppressing or ignoring actual inputs. Negative symptoms may arise due to poor reliability of predictions in service of action. By mapping from biology to belief and perception, the account proffers new explanations of psychosis. However, challenges remain. We attempt to address some of these concerns and suggest future directions, incorporating other symptoms into the model, building towards better understanding of psychosis. © The Author(s) 2016.

  2. Solar cycle full-shape predictions: a global error evaluation for cycle 24

    CERN Document Server

    Sello, Stefano

    2016-01-01

    There are many proposed prediction methods for solar cycles behavior. In a previous paper we updated the full-shape curve prediction of the current solar cycle 24 using a non-linear dynamics method and we compared the results with the predictions collected by the NOAA/SEC prediction panel, using observed data up to October 2010. The aim of the present paper is to give a quantitative evaluation, a posteriori, of the performances of these prediction methods using a specific global error, updated on a monthly basis, which is a measure of the global performance on the predicted shape (both amplitude and phase) of the solar cycle. We suggest also the use of a percent cycle similarity degree, to better evaluate the predicted shape of the solar cycle curve.

  3. Identification and estimation of nonlinear models using two samples with nonclassical measurement errors

    KAUST Repository

    Carroll, Raymond J.

    2010-05-01

    This paper considers identification and estimation of a general nonlinear Errors-in-Variables (EIV) model using two samples. Both samples consist of a dependent variable, some error-free covariates, and an error-prone covariate, for which the measurement error has unknown distribution and could be arbitrarily correlated with the latent true values; and neither sample contains an accurate measurement of the corresponding true variable. We assume that the regression model of interest - the conditional distribution of the dependent variable given the latent true covariate and the error-free covariates - is the same in both samples, but the distributions of the latent true covariates vary with observed error-free discrete covariates. We first show that the general latent nonlinear model is nonparametrically identified using the two samples when both could have nonclassical errors, without either instrumental variables or independence between the two samples. When the two samples are independent and the nonlinear regression model is parameterized, we propose sieve Quasi Maximum Likelihood Estimation (Q-MLE) for the parameter of interest, and establish its root-n consistency and asymptotic normality under possible misspecification, and its semiparametric efficiency under correct specification, with easily estimated standard errors. A Monte Carlo simulation and a data application are presented to show the power of the approach.

  4. Continuous-Discrete Time Prediction-Error Identification Relevant for Linear Model Predictive Control

    DEFF Research Database (Denmark)

    Jørgensen, John Bagterp; Jørgensen, Sten Bay

    2007-01-01

    model is realized from a continuous-discrete-time linear stochastic system specified using transfer functions with time-delays. It is argued that the prediction-error criterion should be selected such that it is compatible with the objective function of the predictive controller in which the model......A Prediction-error-method tailored for model based predictive control is presented. The prediction-error method studied are based on predictions using the Kalman filter and Kalman predictors for a linear discrete-time stochastic state space model. The linear discrete-time stochastic state space...

  5. Fatigue Life Prediction of Metallic Materials Based on the Combined Nonlinear Ultrasonic Parameter

    Science.gov (United States)

    Zhang, Yuhua; Li, Xinxin; Wu, Zhenyong; Huang, Zhenfeng; Mao, Hanling

    2017-07-01

    The fatigue life prediction of metallic materials is always a tough problem that needs to be solved in the mechanical engineering field because it is very important for the secure service of mechanical components. In this paper, a combined nonlinear ultrasonic parameter based on the collinear wave mixing technique is applied for fatigue life prediction of a metallic material. Sweep experiments are first conducted to explore the influence of driving frequency on the interaction of two driving signals and the fatigue damage of specimens, and the amplitudes of sidebands at the difference frequency and sum frequency are tracked when the driving frequency changes. Then, collinear wave mixing tests are carried out on a pair of cylindrically notched specimens with different fatigue damage to explore the relationship between the fatigue damage and the relative nonlinear parameters. The experimental results show when the fatigue degree is below 65% the relative nonlinear parameter increases quickly, and the growth rate is approximately 130%. If the fatigue degree is above 65%, the increase in the relative nonlinear parameter is slow, which has a close relationship with the microstructure evolution of specimens. A combined nonlinear ultrasonic parameter is proposed to highlight the relationship of the relative nonlinear parameter and fatigue degree of specimens; the fatigue life prediction model is built based on the relationship, and the prediction error is below 3%, which is below the prediction error based on the relative nonlinear parameters at the difference and sum frequencies. Therefore, the combined nonlinear ultrasonic parameter using the collinear wave mixing method can effectively estimate the fatigue degree of specimens, which provides a fast and convenient method for fatigue life prediction.

  6. Fatigue Life Prediction of Metallic Materials Based on the Combined Nonlinear Ultrasonic Parameter

    Science.gov (United States)

    Zhang, Yuhua; Li, Xinxin; Wu, Zhenyong; Huang, Zhenfeng; Mao, Hanling

    2017-08-01

    The fatigue life prediction of metallic materials is always a tough problem that needs to be solved in the mechanical engineering field because it is very important for the secure service of mechanical components. In this paper, a combined nonlinear ultrasonic parameter based on the collinear wave mixing technique is applied for fatigue life prediction of a metallic material. Sweep experiments are first conducted to explore the influence of driving frequency on the interaction of two driving signals and the fatigue damage of specimens, and the amplitudes of sidebands at the difference frequency and sum frequency are tracked when the driving frequency changes. Then, collinear wave mixing tests are carried out on a pair of cylindrically notched specimens with different fatigue damage to explore the relationship between the fatigue damage and the relative nonlinear parameters. The experimental results show when the fatigue degree is below 65% the relative nonlinear parameter increases quickly, and the growth rate is approximately 130%. If the fatigue degree is above 65%, the increase in the relative nonlinear parameter is slow, which has a close relationship with the microstructure evolution of specimens. A combined nonlinear ultrasonic parameter is proposed to highlight the relationship of the relative nonlinear parameter and fatigue degree of specimens; the fatigue life prediction model is built based on the relationship, and the prediction error is below 3%, which is below the prediction error based on the relative nonlinear parameters at the difference and sum frequencies. Therefore, the combined nonlinear ultrasonic parameter using the collinear wave mixing method can effectively estimate the fatigue degree of specimens, which provides a fast and convenient method for fatigue life prediction.

  7. A Nonlinear Consensus Protocol of Multiagent Systems Considering Measuring Errors

    Directory of Open Access Journals (Sweden)

    Xiaochu Wang

    2013-01-01

    Full Text Available In order to avoid a potential waste of energy during consensus controls in the case where there exist measurement uncertainties, a nonlinear protocol is proposed for multiagent systems under a fixed connected undirected communication topology and extended to both the cases with full and partial access a reference. Distributed estimators are utilized to help all agents agree on the understandings of the reference, even though there may be some agents which cannot access to the reference directly. An additional condition is also considered, where self-known configuration offsets are desired. Theoretical analyses of stability are given. Finally, simulations are performed, and results show that the proposed protocols can lead agents to achieve loose consensus and work effectively with less energy cost to keep the formation, which have illustrated the theoretical results.

  8. Arithmetic and local circuitry underlying dopamine prediction errors.

    Science.gov (United States)

    Eshel, Neir; Bukwich, Michael; Rao, Vinod; Hemmelder, Vivian; Tian, Ju; Uchida, Naoshige

    2015-09-10

    Dopamine neurons are thought to facilitate learning by comparing actual and expected reward. Despite two decades of investigation, little is known about how this comparison is made. To determine how dopamine neurons calculate prediction error, we combined optogenetic manipulations with extracellular recordings in the ventral tegmental area while mice engaged in classical conditioning. Here we demonstrate, by manipulating the temporal expectation of reward, that dopamine neurons perform subtraction, a computation that is ideal for reinforcement learning but rarely observed in the brain. Furthermore, selectively exciting and inhibiting neighbouring GABA (γ-aminobutyric acid) neurons in the ventral tegmental area reveals that these neurons are a source of subtraction: they inhibit dopamine neurons when reward is expected, causally contributing to prediction-error calculations. Finally, bilaterally stimulating ventral tegmental area GABA neurons dramatically reduces anticipatory licking to conditioned odours, consistent with an important role for these neurons in reinforcement learning. Together, our results uncover the arithmetic and local circuitry underlying dopamine prediction errors.

  9. Supervised local error estimation for nonlinear image registration using convolutional neural networks

    Science.gov (United States)

    Eppenhof, Koen A. J.; Pluim, Josien P. W.

    2017-02-01

    Error estimation in medical image registration is valuable when validating, comparing, or combining registration methods. To validate a nonlinear image registration method, ideally the registration error should be known for the entire image domain. We propose a supervised method for the estimation of a registration error map for nonlinear image registration. The method is based on a convolutional neural network that estimates the norm of the residual deformation from patches around each pixel in two registered images. This norm is interpreted as the registration error, and is defined for every pixel in the image domain. The network is trained using a set of artificially deformed images. Each training example is a pair of images: the original image, and a random deformation of that image. No manually labeled ground truth error is required. At test time, only the two registered images are required as input. We train and validate the network on registrations in a set of 2D digital subtraction angiography sequences, such that errors up to eight pixels can be estimated. We show that for this range of errors the convolutional network is able to learn the registration error in pairs of 2D registered images at subpixel precision. Finally, we present a proof of principle for the extension to 3D registration problems in chest CTs, showing that the method has the potential to estimate errors in 3D registration problems.

  10. Leave-one-out prediction error of systolic arterial pressure time series under paced breathing

    CERN Document Server

    Ancona, N; Marinazzo, D; Nitti, L; Pellicoro, M; Pinna, G D; Stramaglia, S

    2004-01-01

    In this paper we show that different physiological states and pathological conditions may be characterized in terms of predictability of time series signals from the underlying biological system. In particular we consider systolic arterial pressure time series from healthy subjects and Chronic Heart Failure patients, undergoing paced respiration. We model time series by the regularized least squares approach and quantify predictability by the leave-one-out error. We find that the entrainment mechanism connected to paced breath, that renders the arterial blood pressure signal more regular, thus more predictable, is less effective in patients, and this effect correlates with the seriousness of the heart failure. The leave-one-out error separates controls from patients and, when all orders of nonlinearity are taken into account, alive patients from patients for which cardiac death occurred.

  11. Ensemble prediction experiments using conditional nonlinear optimal perturbation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two methods for initialization of ensemble forecasts are compared, namely, singular vector (SV) and conditional nonlinear optimal perturbation (CNOP). The comparison is done for forecast lengths of up to 10 days with a three-level quasi-geostrophic (QG) atmospheric model in a perfect model scenario. Ten cases are randomly selected from 1982/1983 winter to 1993/1994 winter (from December to the following February). Anomaly correlation coefficient (ACC) is adopted as a tool to measure the quality of the predicted ensembles on the Northern Hemisphere 500 hPa geopotential height. The results show that the forecast quality of ensemble samples in which the first SV is replaced by CNOP is higher than that of samples composed of only SVs in the medium range, based on the occurrence of weather re-gime transitions in Northern Hemisphere after about four days. Besides, the reliability of ensemble forecasts is evaluated by the Rank Histograms. The above conclusions confirm and extend those reached earlier by the authors, which stated that the introduction of CNOP improves the forecast skill under the condition that the analysis error belongs to a kind of fast-growing error by using a barotropic QG model.

  12. Ensemble prediction experiments using conditional nonlinear optimal perturbation

    Institute of Scientific and Technical Information of China (English)

    JIANG ZhiNa; MU Mu; WANG DongHai

    2009-01-01

    Two methods for initialization of ensemble forecasts are compared, namely, singular vector (SV) and conditional nonlinear optimal perturbation (CNOP). The comparison is done for forecast lengths of up to 10 days with a three-level quasi-geostrophic (QG) atmospheric model in a perfect model scenario. Ten cases are randomly selected from 1982/1983 winter to 1993/1994 winter (from 12 to the following February). Anomaly correlation coefficient (ACC) is adopted as a tool to measure the quality of the predicted ensembles on the Northern Hemisphere 500 hPa geopotential height. The results show that the forecast quality of ensemble samples in which the first SV is replaced by CNOP is higher than that of samples composed of only SVs in the medium range, based on the occurrence of weather re-gime transitions in Northern Hemisphere after about four days. Besides, the reliability of ensemble forecasts is evaluated by the Rank Histograms. The above conclusions confirm .and extend those reached earlier by the authors, which stated that the introduction of CNOP improves the forecast skill under the condition that the analysis error belongs to a kind of fast-growing error by using a barotropic QG model.

  13. Robust nonlinear generalised predictive control for a class of uncertain nonlinear systems via an integral sliding mode approach

    Science.gov (United States)

    Errouissi, Rachid; Yang, Jun; Chen, Wen-Hua; Al-Durra, Ahmed

    2016-08-01

    In this paper, a robust nonlinear generalised predictive control (GPC) method is proposed by combining an integral sliding mode approach. The composite controller can guarantee zero steady-state error for a class of uncertain nonlinear systems in the presence of both matched and unmatched disturbances. Indeed, it is well known that the traditional GPC based on Taylor series expansion cannot completely reject unknown disturbance and achieve offset-free tracking performance. To deal with this problem, the existing approaches are enhanced by avoiding the use of the disturbance observer and modifying the gain function of the nonlinear integral sliding surface. This modified strategy appears to be more capable of achieving both the disturbance rejection and the nominal prescribed specifications for matched disturbance. Simulation results demonstrate the effectiveness of the proposed approach.

  14. Design of nonlinear PID controller and nonlinear model predictive controller for a continuous stirred tank reactor.

    Science.gov (United States)

    Prakash, J; Srinivasan, K

    2009-07-01

    In this paper, the authors have represented the nonlinear system as a family of local linear state space models, local PID controllers have been designed on the basis of linear models, and the weighted sum of the output from the local PID controllers (Nonlinear PID controller) has been used to control the nonlinear process. Further, Nonlinear Model Predictive Controller using the family of local linear state space models (F-NMPC) has been developed. The effectiveness of the proposed control schemes has been demonstrated on a CSTR process, which exhibits dynamic nonlinearity.

  15. Estimation of genetic connectedness diagnostics based on prediction errors without the prediction error variance-covariance matrix.

    Science.gov (United States)

    Holmes, John B; Dodds, Ken G; Lee, Michael A

    2017-03-02

    An important issue in genetic evaluation is the comparability of random effects (breeding values), particularly between pairs of animals in different contemporary groups. This is usually referred to as genetic connectedness. While various measures of connectedness have been proposed in the literature, there is general agreement that the most appropriate measure is some function of the prediction error variance-covariance matrix. However, obtaining the prediction error variance-covariance matrix is computationally demanding for large-scale genetic evaluations. Many alternative statistics have been proposed that avoid the computational cost of obtaining the prediction error variance-covariance matrix, such as counts of genetic links between contemporary groups, gene flow matrices, and functions of the variance-covariance matrix of estimated contemporary group fixed effects. In this paper, we show that a correction to the variance-covariance matrix of estimated contemporary group fixed effects will produce the exact prediction error variance-covariance matrix averaged by contemporary group for univariate models in the presence of single or multiple fixed effects and one random effect. We demonstrate the correction for a series of models and show that approximations to the prediction error matrix based solely on the variance-covariance matrix of estimated contemporary group fixed effects are inappropriate in certain circumstances. Our method allows for the calculation of a connectedness measure based on the prediction error variance-covariance matrix by calculating only the variance-covariance matrix of estimated fixed effects. Since the number of fixed effects in genetic evaluation is usually orders of magnitudes smaller than the number of random effect levels, the computational requirements for our method should be reduced.

  16. Evaluating Random Forests for Survival Analysis Using Prediction Error Curves

    Directory of Open Access Journals (Sweden)

    Ulla B. Mogensen

    2012-09-01

    Full Text Available Prediction error curves are increasingly used to assess and compare predictions in survival analysis. This article surveys the R package pec which provides a set of functions for efficient computation of prediction error curves. The software implements inverse probability of censoring weights to deal with right censored data and several variants of cross-validation to deal with the apparent error problem. In principle, all kinds of prediction models can be assessed, and the package readily supports most traditional regression modeling strategies, like Cox regression or additive hazard regression, as well as state of the art machine learning methods such as random forests, a nonparametric method which provides promising alternatives to traditional strategies in low and high-dimensional settings. We show how the functionality of pec can be extended to yet unsupported prediction models. As an example, we implement support for random forest prediction models based on the R packages randomSurvivalForest and party. Using data of the Copenhagen Stroke Study we use pec to compare random forests to a Cox regression model derived from stepwise variable selection.

  17. Neural correlates of error prediction in a complex motor task

    Directory of Open Access Journals (Sweden)

    Lisa Katharina Maurer

    2015-08-01

    Full Text Available The goal of the study was to quantify error prediction processes via neural correlates in the Electroencephalogram. Access to such a neural signal will allow to gain insights into functional and temporal aspects of error perception in the course of learning. We focused on the error negativity (Ne or error‐related negativity (ERN as a candidate index for the prediction processes. We have used a virtual goal-oriented throwing task where participants used a lever to throw a virtual ball displayed on a computer monitor with the goal of hitting a virtual target as often as possible. After one day of practice with 400 trials, participants performed another 400 trials on a second day with EEG measurement. After error trials (i.e. when the ball missed the target, we found a sharp negative deflection in the EEG peaking 250 ms after ball release (mean amplitude: t = -2.5, df = 20, p = .02 and another broader negative deflection following the first, reaching from about 300 ms after release until unambiguous visual KR (hitting or passing by the target; mean amplitude: t = -7.5, df = 20, p < .001. According to shape and timing of the two deflections, we assume that the first deflection represents a predictive Ne/ERN (prediction based on efferent commands and proprioceptive feedback while the second deflection might have arisen from action monitoring.

  18. Stability analysis of embedded nonlinear predictor neural generalized predictive controller

    Directory of Open Access Journals (Sweden)

    Hesham F. Abdel Ghaffar

    2014-03-01

    Full Text Available Nonlinear Predictor-Neural Generalized Predictive Controller (NGPC is one of the most advanced control techniques that are used with severe nonlinear processes. In this paper, a hybrid solution from NGPC and Internal Model Principle (IMP is implemented to stabilize nonlinear, non-minimum phase, variable dead time processes under high disturbance values over wide range of operation. Also, the superiority of NGPC over linear predictive controllers, like GPC, is proved for severe nonlinear processes over wide range of operation. The necessary conditions required to stabilize NGPC is derived using Lyapunov stability analysis for nonlinear processes. The NGPC stability conditions and improvement in disturbance suppression are verified by both simulation using Duffing’s nonlinear equation and real-time using continuous stirred tank reactor. Up to our knowledge, the paper offers the first hardware embedded Neural GPC which has been utilized to verify NGPC–IMP improvement in realtime.

  19. Error Modeling, Calibration, and Nonlinear Interpolation Compensation Method of Ring Laser Gyroscope Inertial Navigation System

    Directory of Open Access Journals (Sweden)

    Jianli Li

    2013-01-01

    Full Text Available In order to improve the precision of Strapdown Inertial Navigation System (SINS and reduce the complexity of the traditional calibration method, a novel calibration and compensation scheme is proposed. An optimization calibration method with four-direction rotations is designed to calculate all error coefficients of Ring Laser Gyroscope (RLG SINS in a series of constant temperatures. According to the actual working environment, the temperature errors of RLG SINS are compensated by a nonlinear interpolation compensation algorithm. The experimental results show that the inertial navigation errors of the proposed method are reduced.

  20. Controlling motion prediction errors in radiotherapy with relevance vector machines.

    Science.gov (United States)

    Dürichen, Robert; Wissel, Tobias; Schweikard, Achim

    2015-04-01

    Robotic radiotherapy can precisely ablate moving tumors when time latencies have been compensated. Recently, relevance vector machines (RVM), a probabilistic regression technique, outperformed six other prediction algorithms for respiratory compensation. The method has the distinct advantage that each predicted point is assumed to be drawn from a normal distribution. Second-order statistics, the predicted variance, were used to control RVM prediction error during a treatment and to construct hybrid prediction algorithms. First, the duty cycle and the precision were correlated to the variance by interrupting the treatment if the variance exceeds a threshold. Second, two hybrid algorithms based on the variance were developed, one consisting of multiple RVMs (HYB(RVM)) and the other of a combination between a wavelet-based least mean square algorithm (wLMS) and a RVM (HYB(wLMS-RVM)). The variance for different motion traces was analyzed to reveal a characteristic variance pattern which gives insight in what kind of prediction errors can be controlled by the variance. Limiting the variance by a threshold resulted in an increased precision with a decreased duty cycle. All hybrid algorithms showed an increased prediction accuracy compared to using only their individual algorithms. The best hybrid algorithm, HYB(RVM), can decrease the mean RMSE over all 304 motion traces from 0.18 mm for a linear RVM to 0.17 mm. The predicted variance was shown to be an efficient metric to control prediction errors, resulting in a more robust radiotherapy treatment. The hybrid algorithm HYB(RVM) could be translated to clinical practice. It does not require further parameters, can be completely parallelised and easily further extended.

  1. Three-step Iterations with Errors for Nonlinear Strongly Accretive Operator Equations

    Institute of Scientific and Technical Information of China (English)

    Ke Su

    2005-01-01

    In this paper, we suggest and analyse a three-step iterative scheme with errors for solving nonlinear strongly accretive operator equation Tx = f without the Lipshitz condition. The results presented in this paper improve and extend current results in the more general setting.

  2. A Nonlinear Multiparameters Temperature Error Modeling and Compensation of POS Applied in Airborne Remote Sensing System

    Directory of Open Access Journals (Sweden)

    Jianli Li

    2014-01-01

    Full Text Available The position and orientation system (POS is a key equipment for airborne remote sensing systems, which provides high-precision position, velocity, and attitude information for various imaging payloads. Temperature error is the main source that affects the precision of POS. Traditional temperature error model is single temperature parameter linear function, which is not sufficient for the higher accuracy requirement of POS. The traditional compensation method based on neural network faces great problem in the repeatability error under different temperature conditions. In order to improve the precision and generalization ability of the temperature error compensation for POS, a nonlinear multiparameters temperature error modeling and compensation method based on Bayesian regularization neural network was proposed. The temperature error of POS was analyzed and a nonlinear multiparameters model was established. Bayesian regularization method was used as the evaluation criterion, which further optimized the coefficients of the temperature error. The experimental results show that the proposed method can improve temperature environmental adaptability and precision. The developed POS had been successfully applied in airborne TSMFTIS remote sensing system for the first time, which improved the accuracy of the reconstructed spectrum by 47.99%.

  3. Prediction of municipal solid waste generation using nonlinear autoregressive network.

    Science.gov (United States)

    Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Maulud, K N A

    2015-12-01

    Most of the developing countries have solid waste management problems. Solid waste strategic planning requires accurate prediction of the quality and quantity of the generated waste. In developing countries, such as Malaysia, the solid waste generation rate is increasing rapidly, due to population growth and new consumption trends that characterize society. This paper proposes an artificial neural network (ANN) approach using feedforward nonlinear autoregressive network with exogenous inputs (NARX) to predict annual solid waste generation in relation to demographic and economic variables like population number, gross domestic product, electricity demand per capita and employment and unemployment numbers. In addition, variable selection procedures are also developed to select a significant explanatory variable. The model evaluation was performed using coefficient of determination (R(2)) and mean square error (MSE). The optimum model that produced the lowest testing MSE (2.46) and the highest R(2) (0.97) had three inputs (gross domestic product, population and employment), eight neurons and one lag in the hidden layer, and used Fletcher-Powell's conjugate gradient as the training algorithm.

  4. Estimation of prediction error variances via Monte Carlo sampling methods using different formulations of the prediction error variance

    NARCIS (Netherlands)

    Hickey, J.M.; Veerkamp, R.F.; Calus, M.P.L.; Mulder, H.A.; Thompson, R.

    2009-01-01

    Calculation of the exact prediction error variance covariance matrix is often computationally too demanding, which limits its application in REML algorithms, the calculation of accuracies of estimated breeding values and the control of variance of response to selection. Alternatively Monte Carlo

  5. Estimation of prediction error variances via Monte Carlo sampling methods using different formulations of the prediction error variance

    NARCIS (Netherlands)

    Hickey, J.M.; Veerkamp, R.F.; Calus, M.P.L.; Mulder, H.A.; Thompson, R.

    2009-01-01

    Calculation of the exact prediction error variance covariance matrix is often computationally too demanding, which limits its application in REML algorithms, the calculation of accuracies of estimated breeding values and the control of variance of response to selection. Alternatively Monte Carlo sam

  6. Estimation of prediction error variances via Monte Carlo sampling methods using different formulations of the prediction error variance.

    Science.gov (United States)

    Hickey, John M; Veerkamp, Roel F; Calus, Mario P L; Mulder, Han A; Thompson, Robin

    2009-02-09

    Calculation of the exact prediction error variance covariance matrix is often computationally too demanding, which limits its application in REML algorithms, the calculation of accuracies of estimated breeding values and the control of variance of response to selection. Alternatively Monte Carlo sampling can be used to calculate approximations of the prediction error variance, which converge to the true values if enough samples are used. However, in practical situations the number of samples, which are computationally feasible, is limited. The objective of this study was to compare the convergence rate of different formulations of the prediction error variance calculated using Monte Carlo sampling. Four of these formulations were published, four were corresponding alternative versions, and two were derived as part of this study. The different formulations had different convergence rates and these were shown to depend on the number of samples and on the level of prediction error variance. Four formulations were competitive and these made use of information on either the variance of the estimated breeding value and on the variance of the true breeding value minus the estimated breeding value or on the covariance between the true and estimated breeding values.

  7. Nonlinear Systems Feedback Linearization Optimal Zero-State-Error Control Under Disturbances Compensation

    Directory of Open Access Journals (Sweden)

    Gao Dexin

    2012-10-01

    Full Text Available This paper concentrates on the solution of state feedback exact linearization zero steady-state error optimal control problem for nonlinear systems affected by external disturbances. Firstly, the nonlinear system model with external disturbances is converted to quasi-linear system model by differential homeomorphism. Using Internal Model Optional Control (IMOC, the disturbances compensator is designed, which exactly offset the impact of external disturbances on the system. Taking the  system and the disturbances compensator in series, a new augmented system is obtained. Then the zero steady-state error optimal control problem is transformed into the optimal regulator design problem of an augmented system, and the optimal static error feedback control law is designed according to the different quadratic performance index. At last, the simulation results show the effectiveness of the method.

  8. Prediction of peptide bonding affinity: kernel methods for nonlinear modeling

    CERN Document Server

    Bergeron, Charles; Sundling, C Matthew; Krein, Michael; Katt, Bill; Sukumar, Nagamani; Breneman, Curt M; Bennett, Kristin P

    2011-01-01

    This paper presents regression models obtained from a process of blind prediction of peptide binding affinity from provided descriptors for several distinct datasets as part of the 2006 Comparative Evaluation of Prediction Algorithms (COEPRA) contest. This paper finds that kernel partial least squares, a nonlinear partial least squares (PLS) algorithm, outperforms PLS, and that the incorporation of transferable atom equivalent features improves predictive capability.

  9. Nonlinear analysis and prediction of time series in multiphase reactors

    CERN Document Server

    Liu, Mingyan

    2014-01-01

    This book reports on important nonlinear aspects or deterministic chaos issues in the systems of multi-phase reactors. The reactors treated in the book include gas-liquid bubble columns, gas-liquid-solid fluidized beds and gas-liquid-solid magnetized fluidized beds. The authors take pressure fluctuations in the bubble columns  as time series for nonlinear analysis, modeling and forecasting. They present qualitative and quantitative non-linear analysis tools which include attractor phase plane plot, correlation dimension, Kolmogorov entropy and largest Lyapunov exponent calculations and local non-linear short-term prediction.

  10. Particle Filter with Novel Nonlinear Error Model for Miniature Gyroscope-Based Measurement While Drilling Navigation.

    Science.gov (United States)

    Li, Tao; Yuan, Gannan; Li, Wang

    2016-03-15

    The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD) system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM) can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS) sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM) by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF) and Kalman filter (KF). The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition.

  11. Particle Filter with Novel Nonlinear Error Model for Miniature Gyroscope-Based Measurement While Drilling Navigation

    Directory of Open Access Journals (Sweden)

    Tao Li

    2016-03-01

    Full Text Available The derivation of a conventional error model for the miniature gyroscope-based measurement while drilling (MGWD system is based on the assumption that the errors of attitude are small enough so that the direction cosine matrix (DCM can be approximated or simplified by the errors of small-angle attitude. However, the simplification of the DCM would introduce errors to the navigation solutions of the MGWD system if the initial alignment cannot provide precise attitude, especially for the low-cost microelectromechanical system (MEMS sensors operated in harsh multilateral horizontal downhole drilling environments. This paper proposes a novel nonlinear error model (NNEM by the introduction of the error of DCM, and the NNEM can reduce the propagated errors under large-angle attitude error conditions. The zero velocity and zero position are the reference points and the innovations in the states estimation of particle filter (PF and Kalman filter (KF. The experimental results illustrate that the performance of PF is better than KF and the PF with NNEM can effectively restrain the errors of system states, especially for the azimuth, velocity, and height in the quasi-stationary condition.

  12. How to Avoid Errors in Error Propagation: Prediction Intervals and Confidence Intervals in Forest Biomass

    Science.gov (United States)

    Lilly, P.; Yanai, R. D.; Buckley, H. L.; Case, B. S.; Woollons, R. C.; Holdaway, R. J.; Johnson, J.

    2016-12-01

    Calculations of forest biomass and elemental content require many measurements and models, each contributing uncertainty to the final estimates. While sampling error is commonly reported, based on replicate plots, error due to uncertainty in the regression used to estimate biomass from tree diameter is usually not quantified. Some published estimates of uncertainty due to the regression models have used the uncertainty in the prediction of individuals, ignoring uncertainty in the mean, while others have propagated uncertainty in the mean while ignoring individual variation. Using the simple case of the calcium concentration of sugar maple leaves, we compare the variation among individuals (the standard deviation) to the uncertainty in the mean (the standard error) and illustrate the declining importance in the prediction of individual concentrations as the number of individuals increases. For allometric models, the analogous statistics are the prediction interval (or the residual variation in the model fit) and the confidence interval (describing the uncertainty in the best fit model). The effect of propagating these two sources of error is illustrated using the mass of sugar maple foliage. The uncertainty in individual tree predictions was large for plots with few trees; for plots with 30 trees or more, the uncertainty in individuals was less important than the uncertainty in the mean. Authors of previously published analyses have reanalyzed their data to show the magnitude of these two sources of uncertainty in scales ranging from experimental plots to entire countries. The most correct analysis will take both sources of uncertainty into account, but for practical purposes, country-level reports of uncertainty in carbon stocks, as required by the IPCC, can ignore the uncertainty in individuals. Ignoring the uncertainty in the mean will lead to exaggerated estimates of confidence in estimates of forest biomass and carbon and nutrient contents.

  13. Explicit Nonlinear Model Predictive Control Theory and Applications

    CERN Document Server

    Grancharova, Alexandra

    2012-01-01

    Nonlinear Model Predictive Control (NMPC) has become the accepted methodology to solve complex control problems related to process industries. The main motivation behind explicit NMPC is that an explicit state feedback law avoids the need for executing a numerical optimization algorithm in real time. The benefits of an explicit solution, in addition to the efficient on-line computations, include also verifiability of the implementation and the possibility to design embedded control systems with low software and hardware complexity. This book considers the multi-parametric Nonlinear Programming (mp-NLP) approaches to explicit approximate NMPC of constrained nonlinear systems, developed by the authors, as well as their applications to various NMPC problem formulations and several case studies. The following types of nonlinear systems are considered, resulting in different NMPC problem formulations: Ø  Nonlinear systems described by first-principles models and nonlinear systems described by black-box models; �...

  14. Prediction of nonlinear optical properties of large organic molecules

    Science.gov (United States)

    Cardelino, Beatriz H.

    1992-01-01

    The preparation of materials with large nonlinear responses usually requires involved synthetic processes. Thus, it is very advantageous for materials scientists to have a means of predicting nonlinear optical properties. The prediction of nonlinear optical properties has to be addressed first at the molecular level and then as bulk material. For relatively large molecules, two types of calculations may be used, which are the sum-over-states and the finite-field approach. The finite-field method was selected for this research, because this approach is better suited for larger molecules.

  15. Examining the Error of Mis-Specifying Nonlinear Confounding Effect with Application on Accelerometer-Measured Physical Activity

    Science.gov (United States)

    Lee, Paul H.

    2017-01-01

    Purpose: Some confounders are nonlinearly associated with dependent variables, but they are often adjusted using a linear term. The purpose of this study was to examine the error of mis-specifying the nonlinear confounding effect. Methods: We carried out a simulation study to investigate the effect of adjusting for a nonlinear confounder in the…

  16. PCI-SS: MISO dynamic nonlinear protein secondary structure prediction

    Directory of Open Access Journals (Sweden)

    Aboul-Magd Mohammed O

    2009-07-01

    Full Text Available Abstract Background Since the function of a protein is largely dictated by its three dimensional configuration, determining a protein's structure is of fundamental importance to biology. Here we report on a novel approach to determining the one dimensional secondary structure of proteins (distinguishing α-helices, β-strands, and non-regular structures from primary sequence data which makes use of Parallel Cascade Identification (PCI, a powerful technique from the field of nonlinear system identification. Results Using PSI-BLAST divergent evolutionary profiles as input data, dynamic nonlinear systems are built through a black-box approach to model the process of protein folding. Genetic algorithms (GAs are applied in order to optimize the architectural parameters of the PCI models. The three-state prediction problem is broken down into a combination of three binary sub-problems and protein structure classifiers are built using 2 layers of PCI classifiers. Careful construction of the optimization, training, and test datasets ensures that no homology exists between any training and testing data. A detailed comparison between PCI and 9 contemporary methods is provided over a set of 125 new protein chains guaranteed to be dissimilar to all training data. Unlike other secondary structure prediction methods, here a web service is developed to provide both human- and machine-readable interfaces to PCI-based protein secondary structure prediction. This server, called PCI-SS, is available at http://bioinf.sce.carleton.ca/PCISS. In addition to a dynamic PHP-generated web interface for humans, a Simple Object Access Protocol (SOAP interface is added to permit invocation of the PCI-SS service remotely. This machine-readable interface facilitates incorporation of PCI-SS into multi-faceted systems biology analysis pipelines requiring protein secondary structure information, and greatly simplifies high-throughput analyses. XML is used to represent the input

  17. Likelihood-based inference for cointegration with nonlinear error-correction

    DEFF Research Database (Denmark)

    Kristensen, Dennis; Rahbek, Anders Christian

    2010-01-01

    We consider a class of nonlinear vector error correction models where the transfer function (or loadings) of the stationary relationships is nonlinear. This includes in particular the smooth transition models. A general representation theorem is given which establishes the dynamic properties...... and a linear trend in general. Gaussian likelihood-based estimators are considered for the long-run cointegration parameters, and the short-run parameters. Asymptotic theory is provided for these and it is discussed to what extend asymptotic normality and mixed normality can be found. A simulation study...

  18. Effects of optimal initial errors on predicting the seasonal reduction of the upstream Kuroshio transport

    Science.gov (United States)

    Zhang, Kun; Wang, Qiang; Mu, Mu; Liang, Peng

    2016-10-01

    With the Regional Ocean Modeling System (ROMS), we realistically simulated the transport variations of the upstream Kuroshio (referring to the Kuroshio from its origin to the south of Taiwan), particularly for the seasonal transport reduction. Then, we investigated the effects of the optimal initial errors estimated by the conditional nonlinear optimal perturbation (CNOP) approach on predicting the seasonal transport reduction. Two transport reduction events (denoted as Event 1 and Event 2) were chosen, and CNOP1 and CNOP2 were obtained for each event. By examining the spatial structures of the two types of CNOPs, we found that the dominant amplitudes are located around (128°E, 17°N) horizontally and in the upper 1000 m vertically. For each event, the two CNOPs caused large prediction errors. Specifically, at the prediction time, CNOP1 (CNOP2) develops into an anticyclonic (cyclonic) eddy-like structure centered around 124°E, leading to the increase (decrease) of the upstream Kuroshio transport. By investigating the time evolution of the CNOPs in Event 1, we found that the eddy-like structures originating from east of Luzon gradually grow and simultaneously propagate westward. The eddy-energetic analysis indicated that the errors obtain energy from the background state through barotropic and baroclinic instabilities and that the latter plays a more important role. These results suggest that improving the initial conditions in east of Luzon could lead to better prediction of the upstream Kuroshio transport variation.

  19. Data Quality in Linear Regression Models: Effect of Errors in Test Data and Errors in Training Data on Predictive Accuracy

    Directory of Open Access Journals (Sweden)

    Barbara D. Klein

    1999-01-01

    Full Text Available Although databases used in many organizations have been found to contain errors, little is known about the effect of these errors on predictions made by linear regression models. The paper uses a real-world example, the prediction of the net asset values of mutual funds, to investigate the effect of data quality on linear regression models. The results of two experiments are reported. The first experiment shows that the error rate and magnitude of error in data used in model prediction negatively affect the predictive accuracy of linear regression models. The second experiment shows that the error rate and the magnitude of error in data used to build the model positively affect the predictive accuracy of linear regression models. All findings are statistically significant. The findings have managerial implications for users and builders of linear regression models.

  20. RBFNN Model for Predicting Nonlinear Response of Uniformly Loaded Paddle Cantilever

    Directory of Open Access Journals (Sweden)

    Abdullah H. Abdullah

    2009-01-01

    Full Text Available The Radial basis Function neural network (RBFNN model has been developed for the prediction of nonlinear response for paddle Cantilever with built-in edges and different sizes, thickness and uniform loads. Learning data was performed by using a nonlinear finite element program, incremental stages of the nonlinear finite element analysis were generated by using 25 schemes of built paddle Cantilevers with different thickness and uniform distributed loads. The neural network model has 5 input nodes representing the uniform distributed load and paddle size, length, width and thickness, eight nodes at hidden layer and one output node representing the max. deflection response (1500×1 represent the deflection response of load. Regression analysis between finite element results and values predicted by the neural network model shows the least error.

  1. Heteroscedasticity and/or Autocorrelation Checks in Longitudinal Nonlinear Models with Elliptical and AR(1)Errors

    Institute of Scientific and Technical Information of China (English)

    Chun-Zheng CAO; Jin-Guan LIN

    2012-01-01

    The aim of this paper is to study the tests for variance heterogeneity and/or autocorrelation in nonlinear regression models with elliptical and AR(1) errors.The elliptical class includes several symmetric multivariate distributions such as normal,Student-t,power exponential,among others.Several diagnostic tests using score statistics and their adjustment are constructed.The asymptotic properties,including asymptotic chi-square and approximate powers under local alternatives of the score statistics,are studied.The properties of test statistics are investigated through Monte Carlo simulations.A data set previously analyzed under normal errors is reanalyzed under elliptical models to illustrate our test methods.

  2. Long-term non-linear predictability of ENSO events over the 20th century

    CERN Document Server

    Astudillo, H F; Borotto, F A

    2015-01-01

    We show that the monthly recorded history (1878-2013) of the Southern Oscillation Index (SOI), a descriptor of the El Ni\\~no Southern Oscillation (ENSO) phenomenon, can be well described as a dynamic system that supports an average nonlinear predictability well beyond the spring barrier. The predictability is strongly linked to a detailed knowledge of the topology of the attractor obtained by embedding the SOI index in a wavelets base state space. Using the state orbits on the attractor we show that the information contained in the Southern Oscillation Index (SOI) is sufficient to provide average nonlinear predictions for time periods of 2, 3 and 4 years in advance throughout the 20th century with an acceptable error. The simplicity of implementation and ease of use makes it suitable for studying non linear predictability in any area where observations are similar to those that describe the ENSO phenomenon.

  3. Quantification and prediction of rare events in nonlinear waves

    Science.gov (United States)

    Sapsis, Themistoklis; Cousins, Will; Mohamad, Mustafa

    2014-11-01

    The scope of this work is the quantification and prediction of rare events characterized by extreme intensity, in nonlinear dispersive models that simulate water waves. In particular we are interested for the understanding and the short-term prediction of rogue waves in the ocean and to this end, we consider 1-dimensional nonlinear models of the NLS type. To understand the energy transfers that occur during the development of an extreme event we perform a spatially localized analysis of the energy distribution along different wavenumbers by means of the Gabor transform. A stochastic analysis of the Gabor coefficients reveals i) the low-dimensionality of the intermittent structures, ii) the interplay between non-Gaussian statistical properties and nonlinear energy transfers between modes, as well as iii) the critical scales (or Gabor coefficients) where a critical energy can trigger the formation of an extreme event. The unstable character of these critical localized modes is analysed directly through the system equation and it is shown that it is defined as the result of the system nonlinearity and the wave dissipation (that mimics wave breaking). These unstable modes are randomly triggered through the dispersive ``heat bath'' of random waves that propagate in the nonlinear medium. Using these properties we formulate low-dimensional functionals of these Gabor coefficients that allow for the prediction of extreme event well before the strongly nonlinear interactions begin to occur. The prediction window is further enhanced by the combination of the developed scheme with traditional filtering schemes.

  4. Sensitivity analysis of FBMC-based multi-cellular networks to synchronization errors and HPA nonlinearities

    Science.gov (United States)

    Elmaroud, Brahim; Faqihi, Ahmed; Aboutajdine, Driss

    2017-01-01

    In this paper, we study the performance of asynchronous and nonlinear FBMC-based multi-cellular networks. The considered system includes a reference mobile perfectly synchronized with its reference base station (BS) and K interfering BSs. Both synchronization errors and high-power amplifier (HPA) distortions will be considered and a theoretical analysis of the interference signal will be conducted. On the basis of this analysis, we will derive an accurate expression of signal-to-noise-plus-interference ratio (SINR) and bit error rate (BER) in the presence of a frequency-selective channel. In order to reduce the computational complexity of the BER expression, we applied an interesting lemma based on the moment generating function of the interference power. Finally, the proposed model is evaluated through computer simulations which show a high sensitivity of the asynchronous FBMC-based multi-cellular network to HPA nonlinear distortions.

  5. Relative Efficiency of Maximum Likelihood and Other Estimators in a Nonlinear Regression Model with Small Measurement Errors

    OpenAIRE

    Kukush, Alexander; Schneeweiss, Hans

    2004-01-01

    We compare the asymptotic covariance matrix of the ML estimator in a nonlinear measurement error model to the asymptotic covariance matrices of the CS and SQS estimators studied in Kukush et al (2002). For small measurement error variances they are equal up to the order of the measurement error variance and thus nearly equally efficient.

  6. -Error Estimates of the Extrapolated Crank-Nicolson Discontinuous Galerkin Approximations for Nonlinear Sobolev Equations

    Directory of Open Access Journals (Sweden)

    Lee HyunYoung

    2010-01-01

    Full Text Available We analyze discontinuous Galerkin methods with penalty terms, namely, symmetric interior penalty Galerkin methods, to solve nonlinear Sobolev equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal error estimates of discontinuous Galerkin approximations in both spatial direction and temporal direction.

  7. LÉVY-BASED ERROR PREDICTION IN CIRCULAR SYSTEMATIC SAMPLING

    Directory of Open Access Journals (Sweden)

    Kristjana Ýr Jónsdóttir

    2013-06-01

    Full Text Available In the present paper, Lévy-based error prediction in circular systematic sampling is developed. A model-based statistical setting as in Hobolth and Jensen (2002 is used, but the assumption that the measurement function is Gaussian is relaxed. The measurement function is represented as a periodic stationary stochastic process X obtained by a kernel smoothing of a Lévy basis. The process X may have an arbitrary covariance function. The distribution of the error predictor, based on measurements in n systematic directions is derived. Statistical inference is developed for the model parameters in the case where the covariance function follows the celebrated p-order covariance model.

  8. Prediction Error During Functional and Non-Functional Action Sequences

    DEFF Research Database (Denmark)

    Nielbo, Kristoffer Laigaard; Sørensen, Jesper

    2013-01-01

    error. Non-functionality in this proximal sense is a feature of many socio-cultural practices, such as those found in religious rituals private and social, as well as pathological practices, such as ritualized behavior found among people suffering from Obsessive Compulsory Disorder (OCD). A recent...... behavioral study has shown that human subjects segment non-functional behavior in a more fine-grained way than functional behavior. This increase in segmentation rate implies that non-functionality elicits a stronger error signal. To further explore the implications, two computer simulations using simple......By means of the computational approach the present study investigates the difference between observation of functional behavior (i.e. actions involving necessary integration of subparts) and non-functional behavior (i.e. actions lacking necessary integration of subparts) in terms of prediction...

  9. Higher Order Mean Squared Error of Generalized Method of Moments Estimators for Nonlinear Models

    Directory of Open Access Journals (Sweden)

    Yi Hu

    2014-01-01

    Full Text Available Generalized method of moments (GMM has been widely applied for estimation of nonlinear models in economics and finance. Although generalized method of moments has good asymptotic properties under fairly moderate regularity conditions, its finite sample performance is not very well. In order to improve the finite sample performance of generalized method of moments estimators, this paper studies higher-order mean squared error of two-step efficient generalized method of moments estimators for nonlinear models. Specially, we consider a general nonlinear regression model with endogeneity and derive the higher-order asymptotic mean square error for two-step efficient generalized method of moments estimator for this model using iterative techniques and higher-order asymptotic theories. Our theoretical results allow the number of moments to grow with sample size, and are suitable for general moment restriction models, which contains conditional moment restriction models as special cases. The higher-order mean square error can be used to compare different estimators and to construct the selection criteria for improving estimator’s finite sample performance.

  10. Modeling nonlinear errors in surface electromyography due to baseline noise: a new methodology.

    Science.gov (United States)

    Law, Laura Frey; Krishnan, Chandramouli; Avin, Keith

    2011-01-01

    The surface electromyographic (EMG) signal is often contaminated by some degree of baseline noise. It is customary for scientists to subtract baseline noise from the measured EMG signal prior to further analyses based on the assumption that baseline noise adds linearly to the observed EMG signal. The stochastic nature of both the baseline and EMG signal, however, may invalidate this assumption. Alternately, "true" EMG signals may be either minimally or nonlinearly affected by baseline noise. This information is particularly relevant at low contraction intensities when signal-to-noise ratios (SNR) may be lowest. Thus, the purpose of this simulation study was to investigate the influence of varying levels of baseline noise (approximately 2-40% maximum EMG amplitude) on mean EMG burst amplitude and to assess the best means to account for signal noise. The simulations indicated baseline noise had minimal effects on mean EMG activity for maximum contractions, but increased nonlinearly with increasing noise levels and decreasing signal amplitudes. Thus, the simple baseline noise subtraction resulted in substantial error when estimating mean activity during low intensity EMG bursts. Conversely, correcting EMG signal as a nonlinear function of both baseline and measured signal amplitude provided highly accurate estimates of EMG amplitude. This novel nonlinear error modeling approach has potential implications for EMG signal processing, particularly when assessing co-activation of antagonist muscles or small amplitude contractions where the SNR can be low.

  11. Recent Advances in Explicit Multiparametric Nonlinear Model Predictive Control

    KAUST Repository

    Domínguez, Luis F.

    2011-01-19

    In this paper we present recent advances in multiparametric nonlinear programming (mp-NLP) algorithms for explicit nonlinear model predictive control (mp-NMPC). Three mp-NLP algorithms for NMPC are discussed, based on which novel mp-NMPC controllers are derived. The performance of the explicit controllers are then tested and compared in a simulation example involving the operation of a continuous stirred-tank reactor (CSTR). © 2010 American Chemical Society.

  12. Nonlinear Economic Model Predictive Control Strategy for Active Smart Buildings

    DEFF Research Database (Denmark)

    Santos, Rui Mirra; Zong, Yi; Sousa, Joao M. C.

    2016-01-01

    Nowadays, the development of advanced and innovative intelligent control techniques for energy management in buildings is a key issue within the smart grid topic. A nonlinear economic model predictive control (EMPC) scheme, based on the branch-and-bound tree search used as optimization algorithm...... for solving the nonconvex optimization problem is proposed in this paper. A simulation using the nonlinear model-based controller to control the temperature levels of an intelligent office building (PowerFlexHouse) is addressed. Its performance is compared with a linear model-based controller. The nonlinear...

  13. CREME96 and Related Error Rate Prediction Methods

    Science.gov (United States)

    Adams, James H., Jr.

    2012-01-01

    Predicting the rate of occurrence of single event effects (SEEs) in space requires knowledge of the radiation environment and the response of electronic devices to that environment. Several analytical models have been developed over the past 36 years to predict SEE rates. The first error rate calculations were performed by Binder, Smith and Holman. Bradford and Pickel and Blandford, in their CRIER (Cosmic-Ray-Induced-Error-Rate) analysis code introduced the basic Rectangular ParallelePiped (RPP) method for error rate calculations. For the radiation environment at the part, both made use of the Cosmic Ray LET (Linear Energy Transfer) spectra calculated by Heinrich for various absorber Depths. A more detailed model for the space radiation environment within spacecraft was developed by Adams and co-workers. This model, together with a reformulation of the RPP method published by Pickel and Blandford, was used to create the CR ME (Cosmic Ray Effects on Micro-Electronics) code. About the same time Shapiro wrote the CRUP (Cosmic Ray Upset Program) based on the RPP method published by Bradford. It was the first code to specifically take into account charge collection from outside the depletion region due to deformation of the electric field caused by the incident cosmic ray. Other early rate prediction methods and codes include the Single Event Figure of Merit, NOVICE, the Space Radiation code and the effective flux method of Binder which is the basis of the SEFA (Scott Effective Flux Approximation) model. By the early 1990s it was becoming clear that CREME and the other early models needed Revision. This revision, CREME96, was completed and released as a WWW-based tool, one of the first of its kind. The revisions in CREME96 included improved environmental models and improved models for calculating single event effects. The need for a revision of CREME also stimulated the development of the CHIME (CRRES/SPACERAD Heavy Ion Model of the Environment) and MACREE (Modeling and

  14. Motion Compensation With Prediction Error Using Ezw Wavelet Coefficients

    Directory of Open Access Journals (Sweden)

    Gopinath M (M.Tech

    2016-05-01

    Full Text Available The video compression technique is used to represent any video with minimal distortion. In the compression techniques of image processing, DWT is more significant because of its multi-resolution properties. DCT used in video coding often produces undesirability. The main objective of video coding is reduce spatial and temporal redundancies. In this proposed work a new encoder is designed by exploiting the multi – resolution properties of DWT to get the prediction error, using motion estimation technique to avoid the translation invariance.

  15. Error-rate estimation in discriminant analysis of non-linear longitudinal data: A comparison of resampling methods.

    Science.gov (United States)

    de la Cruz, Rolando; Fuentes, Claudio; Meza, Cristian; Núñez-Antón, Vicente

    2016-07-08

    Consider longitudinal observations across different subjects such that the underlying distribution is determined by a non-linear mixed-effects model. In this context, we look at the misclassification error rate for allocating future subjects using cross-validation, bootstrap algorithms (parametric bootstrap, leave-one-out, .632 and [Formula: see text]), and bootstrap cross-validation (which combines the first two approaches), and conduct a numerical study to compare the performance of the different methods. The simulation and comparisons in this study are motivated by real observations from a pregnancy study in which one of the main objectives is to predict normal versus abnormal pregnancy outcomes based on information gathered at early stages. Since in this type of studies it is not uncommon to have insufficient data to simultaneously solve the classification problem and estimate the misclassification error rate, we put special attention to situations when only a small sample size is available. We discuss how the misclassification error rate estimates may be affected by the sample size in terms of variability and bias, and examine conditions under which the misclassification error rate estimates perform reasonably well.

  16. Estimating Model Prediction Error: Should You Treat Predictions as Fixed or Random?

    Science.gov (United States)

    Wallach, Daniel; Thorburn, Peter; Asseng, Senthold; Challinor, Andrew J.; Ewert, Frank; Jones, James W.; Rotter, Reimund; Ruane, Alexander

    2016-01-01

    Crop models are important tools for impact assessment of climate change, as well as for exploring management options under current climate. It is essential to evaluate the uncertainty associated with predictions of these models. We compare two criteria of prediction error; MSEP fixed, which evaluates mean squared error of prediction for a model with fixed structure, parameters and inputs, and MSEP uncertain( X), which evaluates mean squared error averaged over the distributions of model structure, inputs and parameters. Comparison of model outputs with data can be used to estimate the former. The latter has a squared bias term, which can be estimated using hindcasts, and a model variance term, which can be estimated from a simulation experiment. The separate contributions to MSEP uncertain (X) can be estimated using a random effects ANOVA. It is argued that MSEP uncertain (X) is the more informative uncertainty criterion, because it is specific to each prediction situation.

  17. Nonlinear prediction of the aerodynamic loads on lifting surfaces

    Science.gov (United States)

    Kandil, O. A.; Mook, D. T.; Nayfeh, A. H.

    1974-01-01

    A numerical procedure is used to predict the nonlinear aerodynamic characteristics of lifting surfaces of low aspect ratio at high angles of attack for low subsonic Mach numbers. The procedure utilizes a vortex-lattice method and accounts for separation at sharp tips and leading edges. The shapes of the wakes emanating from the edges are predicted, and hence the nonlinear characteristics are calculated. Parallelogram and delta wings are presented as numerical examples. The numerical results are in good agreement with the experimental data.

  18. An error prediction framework for interferometric SAR data

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Merryman Boncori, John Peter

    2008-01-01

    Three of the major error sources in interferometric synthetic aperture radar measurements of terrain elevation and displacement are baseline errors, atmospheric path length errors, and phase unwrapping errors. In many processing schemes, these errors are calibrated out by using ground control poi...

  19. Chasing probabilities - Signaling negative and positive prediction errors across domains.

    Science.gov (United States)

    Meder, David; Madsen, Kristoffer H; Hulme, Oliver; Siebner, Hartwig R

    2016-07-01

    Adaptive actions build on internal probabilistic models of possible outcomes that are tuned according to the errors of their predictions when experiencing an actual outcome. Prediction errors (PEs) inform choice behavior across a diversity of outcome domains and dimensions, yet neuroimaging studies have so far only investigated such signals in singular experimental contexts. It is thus unclear whether the neuroanatomical distribution of PE encoding reported previously pertains to computational features that are invariant with respect to outcome valence, sensory domain, or some combination of the two. We acquired functional MRI data while volunteers performed four probabilistic reversal learning tasks which differed in terms of outcome valence (reward-seeking versus punishment-avoidance) and domain (abstract symbols versus facial expressions) of outcomes. We found that ventral striatum and frontopolar cortex coded increasingly positive PEs, whereas dorsal anterior cingulate cortex (dACC) traced increasingly negative PEs, irrespectively of the outcome dimension. Individual reversal behavior was unaffected by context manipulations and was predicted by activity in dACC and right inferior frontal gyrus (IFG). The stronger the response to negative PEs in these areas, the lower was the tendency to reverse choice behavior in response to negative events, suggesting that these regions enforce a rule-based strategy across outcome dimensions. Outcome valence influenced PE-related activity in left amygdala, IFG, and dorsomedial prefrontal cortex, where activity selectively scaled with increasingly positive PEs in the reward-seeking but not punishment-avoidance context, irrespective of sensory domain. Left amygdala displayed an additional influence of sensory domain. In the context of avoiding punishment, amygdala activity increased with increasingly negative PEs, but only for facial stimuli, indicating an integration of outcome valence and sensory domain during probabilistic

  20. Sensor fusion and nonlinear prediction for anomalous event detection

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, J.V.; Moore, K.R.; Elphic, R.C.

    1995-03-07

    The authors consider the problem of using the information from various time series, each one characterizing a different physical quantity, to predict the future state of the system and, based on that information, to detect and classify anomalous events. They stress the application of principal components analysis (PCA) to analyze and combine data from different sensors. They construct both linear and nonlinear predictors. In particular, for linear prediction the authors use the least-mean-square (LMS) algorithm and for nonlinear prediction they use both backpropagation (BP) networks and fuzzy predictors (FP). As an application, they consider the prediction of gamma counts from past values of electron and gamma counts recorded by the instruments of a high altitude satellite.

  1. Nonlinear software sensor for monitoring genetic regulation processes with noise and modeling errors

    CERN Document Server

    Ibarra-Junquera, V; Rosu, H C; Arguello, G; Collado-Vides, J

    2004-01-01

    Nonlinear control techniques by means of a software sensor that are commonly used in chemical engineering could be also applied to genetic regulation processes. We provide here a realistic formulation of this procedure by introducing an additive white Gaussian noise, which is usually found in experimental data. Besides, we include model errors, meaning that we assume we do not know the nonlinear regulation function of the process. In order to illustrate this procedure, we employ the Goodwin dynamics of the concentrations (1963) in the simple form recently discussed by De Jong (2002), which involves the dynamics of the mRNA a, given protein A, and metabolite K concentrations. However instead of considering their full dynamics, we use only the data of metabolite K and a designed software sensor. We also show, more generally, that it is possible to rebuild the complete set of n concentrations despite the uncertainties in the regulation function and the perturbation due to the additive white Gaussian noise

  2. Nonlinear-drifted Brownian motion with multiple hidden states for remaining useful life prediction of rechargeable batteries

    Science.gov (United States)

    Wang, Dong; Zhao, Yang; Yang, Fangfang; Tsui, Kwok-Leung

    2017-09-01

    Brownian motion with adaptive drift has attracted much attention in prognostics because its first hitting time is highly relevant to remaining useful life prediction and it follows the inverse Gaussian distribution. Besides linear degradation modeling, nonlinear-drifted Brownian motion has been developed to model nonlinear degradation. Moreover, the first hitting time distribution of the nonlinear-drifted Brownian motion has been approximated by time-space transformation. In the previous studies, the drift coefficient is the only hidden state used in state space modeling of the nonlinear-drifted Brownian motion. Besides the drift coefficient, parameters of a nonlinear function used in the nonlinear-drifted Brownian motion should be treated as additional hidden states of state space modeling to make the nonlinear-drifted Brownian motion more flexible. In this paper, a prognostic method based on nonlinear-drifted Brownian motion with multiple hidden states is proposed and then it is applied to predict remaining useful life of rechargeable batteries. 26 sets of rechargeable battery degradation samples are analyzed to validate the effectiveness of the proposed prognostic method. Moreover, some comparisons with a standard particle filter based prognostic method, a spherical cubature particle filter based prognostic method and two classic Bayesian prognostic methods are conducted to highlight the superiority of the proposed prognostic method. Results show that the proposed prognostic method has lower average prediction errors than the particle filter based prognostic methods and the classic Bayesian prognostic methods for battery remaining useful life prediction.

  3. UAV Formation Flight Based on Nonlinear Model Predictive Control

    Directory of Open Access Journals (Sweden)

    Zhou Chao

    2012-01-01

    Full Text Available We designed a distributed collision-free formation flight control law in the framework of nonlinear model predictive control. Formation configuration is determined in the virtual reference point coordinate system. Obstacle avoidance is guaranteed by cost penalty, and intervehicle collision avoidance is guaranteed by cost penalty combined with a new priority strategy.

  4. Neural Generalized Predictive Control of a non-linear Process

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    qualities. The controller is a non-linear version of the well-known generalized predictive controller developed in linear control theory. It involves minimization of a cost function which in the present case has to be done numerically. Therefore, we develop the numerical algorithms necessary in substantial...

  5. Neural Generalized Predictive Control of a non-linear Process

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability...... detail and discuss the implementation difficulties. The neural generalized predictive controller is tested on a pneumatic servo sys-tem....

  6. Predicting errors from reconfiguration patterns in human brain networks.

    Science.gov (United States)

    Ekman, Matthias; Derrfuss, Jan; Tittgemeyer, Marc; Fiebach, Christian J

    2012-10-09

    Task preparation is a complex cognitive process that implements anticipatory adjustments to facilitate future task performance. Little is known about quantitative network parameters governing this process in humans. Using functional magnetic resonance imaging (fMRI) and functional connectivity measurements, we show that the large-scale topology of the brain network involved in task preparation shows a pattern of dynamic reconfigurations that guides optimal behavior. This network could be decomposed into two distinct topological structures, an error-resilient core acting as a major hub that integrates most of the network's communication and a predominantly sensory periphery showing more flexible network adaptations. During task preparation, core-periphery interactions were dynamically adjusted. Task-relevant visual areas showed a higher topological proximity to the network core and an enhancement in their local centrality and interconnectivity. Failure to reconfigure the network topology was predictive for errors, indicating that anticipatory network reconfigurations are crucial for successful task performance. On the basis of a unique network decoding approach, we also develop a general framework for the identification of characteristic patterns in complex networks, which is applicable to other fields in neuroscience that relate dynamic network properties to behavior.

  7. Fixed-node errors in quantum Monte Carlo: interplay of electron density and node nonlinearities

    CERN Document Server

    Rasch, Kevin M; Mitas, Lubos

    2013-01-01

    We elucidate the origin of large differences (twofold or more) in valence fixed-node errors between the first- vs second-row atom systems for single-configuration trial wave functions. The differences are studied on a set of atoms, molecules, and Si, C solids. These systems are valence isoelectronic and have similar correlation energies, bond patterns, geometries, ground states, and symmetries. We show that the key reasons are the differences between the electron densities combined with the degree of node nonlinearities. The findings reveal how the accuracy of the quantum Monte Carlo varies across a variety of systems and provide new perspectives on the origins of the fixed-node biases.

  8. IMPROVED ERROR ESTIMATES FOR MIXED FINITE ELEMENT FOR NONLINEAR HYPERBOLIC EQUATIONS: THE CONTINUOUS-TIME CASE

    Institute of Scientific and Technical Information of China (English)

    Yan-ping Chen; Yun-qing Huang

    2001-01-01

    Improved L2-error estimates are computed for mixed finite element methods for second order nonlinear hyperbolic equations. Results are given for the continuous-time case. The convergence of the values for both the scalar function and the flux is demonstrated. The technique used here covers the lowest-order Raviart-Thomas spaces, as well as the higherorder spaces. A second paper will present the analysis of a fully discrete scheme (Numer.Math. J. Chinese Univ. vol.9, no.2, 2000, 181-192).

  9. Dopamine restores reward prediction errors in old age.

    Science.gov (United States)

    Chowdhury, Rumana; Guitart-Masip, Marc; Lambert, Christian; Dayan, Peter; Huys, Quentin; Düzel, Emrah; Dolan, Raymond J

    2013-05-01

    Senescence affects the ability to utilize information about the likelihood of rewards for optimal decision-making. Using functional magnetic resonance imaging in humans, we found that healthy older adults had an abnormal signature of expected value, resulting in an incomplete reward prediction error (RPE) signal in the nucleus accumbens, a brain region that receives rich input projections from substantia nigra/ventral tegmental area (SN/VTA) dopaminergic neurons. Structural connectivity between SN/VTA and striatum, measured by diffusion tensor imaging, was tightly coupled to inter-individual differences in the expression of this expected reward value signal. The dopamine precursor levodopa (L-DOPA) increased the task-based learning rate and task performance in some older adults to the level of young adults. This drug effect was linked to restoration of a canonical neural RPE. Our results identify a neurochemical signature underlying abnormal reward processing in older adults and indicate that this can be modulated by L-DOPA.

  10. Nonlinear analysis of cylindrical capacitive sensor used for measuring high precision spindle rotation errors

    Science.gov (United States)

    Xiang, Kui; Wang, Wen; Zhang, Min; Lu, Keqing; Fan, Zongwei; Chen, Zichen

    2015-02-01

    A novel cylindrical capacitive sensor (CCS) with differential, symmetrical and integrated structure was proposed to measure multi-degree-of-freedom rotation errors of high precision spindle simultaneously and to reduce impacts of multiple sensors installation errors on the measurement accuracy. The nonlinear relationship between the output capacitance of CCS and the radial gap was derived using the capacitance formula and was quantitatively analyzed. It was found through analysis that the thickness of curved electrode plates led to the existence of fringe effect. The influence of the fringe effect on the output capacitance was investigated through FEM simulation. It was found through analysis and simulation that the CCS could be optimized to improve the measurement accuracy.

  11. Communication: Fixed-node errors in quantum Monte Carlo: Interplay of electron density and node nonlinearities

    Energy Technology Data Exchange (ETDEWEB)

    Rasch, Kevin M.; Hu, Shuming; Mitas, Lubos [Center for High Performance Simulation and Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-01-28

    We elucidate the origin of large differences (two-fold or more) in the fixed-node errors between the first- vs second-row systems for single-configuration trial wave functions in quantum Monte Carlo calculations. This significant difference in the valence fixed-node biases is studied across a set of atoms, molecules, and also Si, C solid crystals. We show that the key features which affect the fixed-node errors are the differences in electron density and the degree of node nonlinearity. The findings reveal how the accuracy of the quantum Monte Carlo varies across a variety of systems, provide new perspectives on the origins of the fixed-node biases in calculations of molecular and condensed systems, and carry implications for pseudopotential constructions for heavy elements.

  12. Communication: Fixed-node errors in quantum Monte Carlo: Interplay of electron density and node nonlinearities

    Science.gov (United States)

    Rasch, Kevin M.; Hu, Shuming; Mitas, Lubos

    2014-01-01

    We elucidate the origin of large differences (two-fold or more) in the fixed-node errors between the first- vs second-row systems for single-configuration trial wave functions in quantum Monte Carlo calculations. This significant difference in the valence fixed-node biases is studied across a set of atoms, molecules, and also Si, C solid crystals. We show that the key features which affect the fixed-node errors are the differences in electron density and the degree of node nonlinearity. The findings reveal how the accuracy of the quantum Monte Carlo varies across a variety of systems, provide new perspectives on the origins of the fixed-node biases in calculations of molecular and condensed systems, and carry implications for pseudopotential constructions for heavy elements.

  13. Temporal prediction errors modulate task-switching performance

    Directory of Open Access Journals (Sweden)

    Roberto eLimongi

    2015-08-01

    Full Text Available We have previously shown that temporal prediction errors (PEs, the differences between the expected and the actual stimulus’ onset times modulate the effective connectivity between the anterior cingulate cortex and the right anterior insular cortex (rAI, causing the activity of the rAI to decrease. The activity of the rAI is associated with efficient performance under uncertainty (e.g., changing a prepared behavior when a change demand is not expected, which leads to hypothesize that temporal PEs might disrupt behavior-change performance under uncertainty. This hypothesis has not been tested at a behavioral level. In this work, we evaluated this hypothesis within the context of task switching and concurrent temporal predictions. Our participants performed temporal predictions while observing one moving ball striking a stationary ball which bounced off with a variable temporal gap. Simultaneously, they performed a simple color comparison task. In some trials, a change signal made the participants change their behaviors. Performance accuracy decreased as a function of both the temporal PE and the delay. Explaining these results without appealing to ad-hoc concepts such as executive control is a challenge for cognitive neuroscience. We provide a predictive coding explanation. We hypothesize that exteroceptive and proprioceptive minimization of PEs would converge in a fronto-basal ganglia network which would include the rAI. Both temporal gaps (or uncertainty and temporal PEs would drive and modulate this network respectively. Whereas the temporal gaps would drive the activity of the rAI, the temporal PEs would modulate the endogenous excitatory connections of the fronto-striatal network. We conclude that in the context of perceptual uncertainty, the system is not able to minimize perceptual PE, causing the ongoing behavior to finalize and, in consequence, disrupting task switching.

  14. Offline modeling for product quality prediction of mineral processing using modeling error PDF shaping and entropy minimization.

    Science.gov (United States)

    Ding, Jinliang; Chai, Tianyou; Wang, Hong

    2011-03-01

    This paper presents a novel offline modeling for product quality prediction of mineral processing which consists of a number of unit processes in series. The prediction of the product quality of the whole mineral process (i.e., the mixed concentrate grade) plays an important role and the establishment of its predictive model is a key issue for the plantwide optimization. For this purpose, a hybrid modeling approach of the mixed concentrate grade prediction is proposed, which consists of a linear model and a nonlinear model. The least-squares support vector machine is adopted to establish the nonlinear model. The inputs of the predictive model are the performance indices of each unit process, while the output is the mixed concentrate grade. In this paper, the model parameter selection is transformed into the shape control of the probability density function (PDF) of the modeling error. In this context, both the PDF-control-based and minimum-entropy-based model parameter selection approaches are proposed. Indeed, this is the first time that the PDF shape control idea is used to deal with system modeling, where the key idea is to turn model parameters so that either the modeling error PDF is controlled to follow a target PDF or the modeling error entropy is minimized. The experimental results using the real plant data and the comparison of the two approaches are discussed. The results show the effectiveness of the proposed approaches.

  15. Robust Integral of Neural Network and Error Sign Control of MIMO Nonlinear Systems.

    Science.gov (United States)

    Yang, Qinmin; Jagannathan, Sarangapani; Sun, Youxian

    2015-12-01

    This paper presents a novel state-feedback control scheme for the tracking control of a class of multi-input multioutput continuous-time nonlinear systems with unknown dynamics and bounded disturbances. First, the control law consisting of the robust integral of a neural network (NN) output plus sign of the tracking error feedback multiplied with an adaptive gain is introduced. The NN in the control law learns the system dynamics in an online manner, while the NN residual reconstruction errors and the bounded disturbances are overcome by the error sign signal. Since both of the NN output and the error sign signal are included in the integral, the continuity of the control input is ensured. The controller structure and the NN weight update law are novel in contrast with the previous effort, and the semiglobal asymptotic tracking performance is still guaranteed by using the Lyapunov analysis. In addition, the NN weights and all other signals are proved to be bounded simultaneously. The proposed approach also relaxes the need for the upper bounds of certain terms, which are usually required in the previous designs. Finally, the theoretical results are substantiated with simulations.

  16. Nonlinear Predictive Control for PEMFC Stack Operation Temperature

    Institute of Scientific and Technical Information of China (English)

    LI Xi; CAO Guang-yi; ZHU Xin-jian

    2005-01-01

    Operating temperature of proton exchange membrane fuel cell stack should be controlled within a special range. The input-output data and operating experiences were used to establish a PEMFC stack model and operating temperature control system. A nonlinear predictive control algorithm based on fuzzy model was presented for a family of complex system with severe nonlinearity such as PEMFC. Based on the obtained fuzzy model, a discrete optimization of the control action was carried out according to the principle of Branch and Bound method. The test results demonstrate the effectiveness and advantage of this approach.

  17. A nonlinear viscoelastic constitutive equation - Yield predictions in multiaxial deformations

    Science.gov (United States)

    Shay, R. M., Jr.; Caruthers, J. M.

    1987-01-01

    Yield stress predictions of a nonlinear viscoelastic constitutive equation for amorphous polymer solids have been obtained and are compared with the phenomenological von Mises yield criterion. Linear viscoelasticity theory has been extended to include finite strains and a material timescale that depends on the instantaneous temperature, volume, and pressure. Results are presented for yield and the correct temperature and strain-rate dependence in a variety of multiaxial deformations. The present nonlinear viscoelastic constitutive equation can be formulated in terms of either a Cauchy or second Piola-Kirchhoff stress tensor, and in terms of either atmospheric or hydrostatic pressure.

  18. SINR Prediction in Mobile CDMA Systems by Linear and Nonlinear Artificial Neural-Network-Based Predictors

    Directory of Open Access Journals (Sweden)

    Nahid Ardalani

    2011-07-01

    Full Text Available This article describes linear and nonlinear Artificial Neural Network(ANN-based predictors as Autoregressive Moving Average models with Auxiliary input (ARMAX process for Signal to Interference plus Noise Ratio (SINR prediction in Direct Sequence Code Division Multiple Access (DS/CDMA systems. The Multi Layer Perceptron (MLP neural network with nonlinear function is used as nonlinear neural network and Adaptive Linear (Adaline predictor is used as linear predictor. The problem of complexity of the MLP and Adaline structures is solved by using the Minimum Mean Squared Error (MMSE principle to select the optimal numbers of input and hidden nodes by try and error role. Simulation results show that both of MLP and Adaline optimal neural networks can track the effect of deep fading due to using a 1.8 GHZ carrier frequency at the urban mobile speeds of 10 km/h, 50 km/h and 120 km/h with tolerable estimation errors. Therefore, the neural networkbased predictor is well suitable SINR-based predictor in closedloop power control to combat multi path fading in CDMA systems.

  19. Nonlinear model predictive control of a packed distillation column

    Energy Technology Data Exchange (ETDEWEB)

    Patwardhan, A.A.; Edgar, T.F. (Univ. of Texas, Austin, TX (United States). Dept. of Chemical Engineering)

    1993-10-01

    A rigorous dynamic model based on fundamental chemical engineering principles was formulated for a packed distillation column separating a mixture of cyclohexane and n-heptane. This model was simplified to a form suitable for use in on-line model predictive control calculations. A packed distillation column was operated at several operating conditions to estimate two unknown model parameters in the rigorous and simplified models. The actual column response to step changes in the feed rate, distillate rate, and reboiler duty agreed well with dynamic model predictions. One unusual characteristic observed was that the packed column exhibited gain-sign changes, which are very difficult to treat using conventional linear feedback control. Nonlinear model predictive control was used to control the distillation column at an operating condition where the process gain changed sign. An on-line, nonlinear model-based scheme was used to estimate unknown/time-varying model parameters.

  20. Social learning through prediction error in the brain

    Science.gov (United States)

    Joiner, Jessica; Piva, Matthew; Turrin, Courtney; Chang, Steve W. C.

    2017-06-01

    Learning about the world is critical to survival and success. In social animals, learning about others is a necessary component of navigating the social world, ultimately contributing to increasing evolutionary fitness. How humans and nonhuman animals represent the internal states and experiences of others has long been a subject of intense interest in the developmental psychology tradition, and, more recently, in studies of learning and decision making involving self and other. In this review, we explore how psychology conceptualizes the process of representing others, and how neuroscience has uncovered correlates of reinforcement learning signals to explore the neural mechanisms underlying social learning from the perspective of representing reward-related information about self and other. In particular, we discuss self-referenced and other-referenced types of reward prediction errors across multiple brain structures that effectively allow reinforcement learning algorithms to mediate social learning. Prediction-based computational principles in the brain may be strikingly conserved between self-referenced and other-referenced information.

  1. A Comparison of Error Bounds for a Nonlinear Tracking System with Detection Probability Pd < 1

    Science.gov (United States)

    Tong, Huisi; Zhang, Hao; Meng, Huadong; Wang, Xiqin

    2012-01-01

    Error bounds for nonlinear filtering are very important for performance evaluation and sensor management. This paper presents a comparative study of three error bounds for tracking filtering, when the detection probability is less than unity. One of these bounds is the random finite set (RFS) bound, which is deduced within the framework of finite set statistics. The others, which are the information reduction factor (IRF) posterior Cramer-Rao lower bound (PCRLB) and enumeration method (ENUM) PCRLB are introduced within the framework of finite vector statistics. In this paper, we deduce two propositions and prove that the RFS bound is equal to the ENUM PCRLB, while it is tighter than the IRF PCRLB, when the target exists from the beginning to the end. Considering the disappearance of existing targets and the appearance of new targets, the RFS bound is tighter than both IRF PCRLB and ENUM PCRLB with time, by introducing the uncertainty of target existence. The theory is illustrated by two nonlinear tracking applications: ballistic object tracking and bearings-only tracking. The simulation studies confirm the theory and reveal the relationship among the three bounds. PMID:23242274

  2. A Comparison of Error Bounds for a Nonlinear Tracking System with Detection Probability Pd < 1

    Directory of Open Access Journals (Sweden)

    Xiqin Wang

    2012-12-01

    Full Text Available Error bounds for nonlinear filtering are very important for performance evaluation and sensor management. This paper presents a comparative study of three error bounds for tracking filtering, when the detection probability is less than unity. One of these bounds is the random finite set (RFS bound, which is deduced within the framework of finite set statistics. The others, which are the information reduction factor (IRF posterior Cramer-Rao lower bound (PCRLB and enumeration method (ENUM PCRLB are introduced within the framework of finite vector statistics. In this paper, we deduce two propositions and prove that the RFS bound is equal to the ENUM PCRLB, while it is tighter than the IRF PCRLB, when the target exists from the beginning to the end. Considering the disappearance of existing targets and the appearance of new targets, the RFS bound is tighter than both IRF PCRLB and ENUM PCRLB with time, by introducing the uncertainty of target existence. The theory is illustrated by two nonlinear tracking applications: ballistic object tracking and bearings-only tracking. The simulation studies confirm the theory and reveal the relationship among the three bounds.

  3. A comparison of error bounds for a nonlinear tracking system with detection probability Pd < 1.

    Science.gov (United States)

    Tong, Huisi; Zhang, Hao; Meng, Huadong; Wang, Xiqin

    2012-12-14

    Error bounds for nonlinear filtering are very important for performance evaluation and sensor management. This paper presents a comparative study of three error bounds for tracking filtering, when the detection probability is less than unity. One of these bounds is the random finite set (RFS) bound, which is deduced within the framework of finite set statistics. The others, which are the information reduction factor (IRF) posterior Cramer-Rao lower bound (PCRLB) and enumeration method (ENUM) PCRLB are introduced within the framework of finite vector statistics. In this paper, we deduce two propositions and prove that the RFS bound is equal to the ENUM PCRLB, while it is tighter than the IRF PCRLB, when the target exists from the beginning to the end. Considering the disappearance of existing targets and the appearance of new targets, the RFS bound is tighter than both IRF PCRLB and ENUM PCRLB with time, by introducing the uncertainty of target existence. The theory is illustrated by two nonlinear tracking applications: ballistic object tracking and bearings-only tracking. The simulation studies confirm the theory and reveal the relationship among the three bounds.

  4. Online prediction and control in nonlinear stochastic systems

    DEFF Research Database (Denmark)

    Nielsen, Torben Skov

    2002-01-01

    of systems which are inherently non-stationary. The third part concerns the issue of predicting the power production from wind turbines in the presence of Numerical Weather Predictions (NWP) of selected climatical variables. Here the transformation through the wind turbines from (primarily) wind speed....... The papers G , H and J investigate models and methods for predicting wind power from a wind farm on basis of observations and numerical weather predictions. All three papers consider multistep prediction models, but uses di erent estimation methods as well as dierent models for the diurnal variation of wind......The present thesis consists of a summary report and ten research papers. The subject of the thesis is on-line prediction and control of non-linear and non-stationary systems based on stochastic modelling. The thesis consists of three parts where the rst part deals with on-line estimation in linear...

  5. Generalized nonlinear models applied to the prediction of basal area and volume of Eucalyptus sp

    Directory of Open Access Journals (Sweden)

    Samuel de Pádua Chaves e Carvalho

    2011-12-01

    Full Text Available This paper aims to propose the use of generalized nonlinear models for prediction of basal area growth and yield of total volume of the hybrid Eucalyptus urocamaldulensis, in a stand situation in a central region in state of Minas Gerais. The used methodology allows to work with data in its original form without the necessity of transformation of variables, and generate highly accurate models. To evaluate the fitting quality, it was proposed the Bayesian information criterion, of the Akaike, and test the maximum likelihood, beyond the standard error of estimate, and residual graphics. The models were used with a good performance, highly accurate and parsimonious estimates of the variables proposed, with errors reduced to 12% for basal area and 4% for prediction of the volume.

  6. Estimating model error covariances in nonlinear state-space models using Kalman smoothing and the expectation-maximisation algorithm

    KAUST Repository

    Dreano, D.

    2017-04-05

    Specification and tuning of errors from dynamical models are important issues in data assimilation. In this work, we propose an iterative expectation-maximisation (EM) algorithm to estimate the model error covariances using classical extended and ensemble versions of the Kalman smoother. We show that, for additive model errors, the estimate of the error covariance converges. We also investigate other forms of model error, such as parametric or multiplicative errors. We show that additive Gaussian model error is able to compensate for non additive sources of error in the algorithms we propose. We also demonstrate the limitations of the extended version of the algorithm and recommend the use of the more robust and flexible ensemble version. This article is a proof of concept of the methodology with the Lorenz-63 attractor. We developed an open-source Python library to enable future users to apply the algorithm to their own nonlinear dynamical models.

  7. TESTING OF CORRELATION AND HETEROSCEDASTICITY IN NONLINEAR REGRESSION MODELS WITH DBL(p,q,1) RANDOM ERRORS

    Institute of Scientific and Technical Information of China (English)

    Liu Yingan; Wei Bocheng

    2008-01-01

    Chaos theory has taught us that a system which has both nonlinearity and random input will most likely produce irregular data. If random errors are irregular data, then random error process will raise nonlinearity (Kantz and Schreiber (1997)). Tsai (1986) introduced a composite test for autocorrelation and heteroscedasticity in linear models with AR(1) errors. Liu (2003) introduced a composite test for correlation and heteroscedasticity in nonlinear models with DBL(p, 0, 1) errors. Therefore, the important problems in regres- sion model are detections of bilinearity, correlation and heteroscedasticity. In this article, the authors discuss more general case of nonlinear models with DBL(p, q, 1) random errors by score test. Several statistics for the test of bilinearity, correlation, and heteroscedas-ticity are obtained, and expressed in simple matrix formulas. The results of regression models with linear errors are extended to those with bilinear errors. The simulation study is carried out to investigate the powers of the test statistics. All results of this article extend and develop results of Tsai (1986), Wei, et al (1995), and Liu, et al (2003).

  8. A nonlinear regression model-based predictive control algorithm.

    Science.gov (United States)

    Dubay, R; Abu-Ayyad, M; Hernandez, J M

    2009-04-01

    This paper presents a unique approach for designing a nonlinear regression model-based predictive controller (NRPC) for single-input-single-output (SISO) and multi-input-multi-output (MIMO) processes that are common in industrial applications. The innovation of this strategy is that the controller structure allows nonlinear open-loop modeling to be conducted while closed-loop control is executed every sampling instant. Consequently, the system matrix is regenerated every sampling instant using a continuous function providing a more accurate prediction of the plant. Computer simulations are carried out on nonlinear plants, demonstrating that the new approach is easily implemented and provides tight control. Also, the proposed algorithm is implemented on two real time SISO applications; a DC motor, a plastic injection molding machine and a nonlinear MIMO thermal system comprising three temperature zones to be controlled with interacting effects. The experimental closed-loop responses of the proposed algorithm were compared to a multi-model dynamic matrix controller (MPC) with improved results for various set point trajectories. Good disturbance rejection was attained, resulting in improved tracking of multi-set point profiles in comparison to multi-model MPC.

  9. A PREDICT-CORRECT NUMERICAL INTEGRATION SCHEME FOR SOLVING NONLINEAR DYNAMIC EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Fan Jianping; Huang Tao; Tang Chak-yin; Wang Cheng

    2006-01-01

    A new numerical integration scheme incorporating a predict-correct algorithm for solving the nonlinear dynamic systems was proposed in this paper. A nonlinear dynamic system governed by the equaton (v) = F(v, t) was transformed into the form as (v) = Hv+ f(v, t). The nonlinear part f(v, t) was then expanded by Taylor series and only the first-order term retained in the polynomial. Utilizing the theory of linear differential equation and the precise time-integration method, an exact solution for linearizing equation was obtained. In order to find the solution of the original system, a third-order interpolation polynomial of v was used and an equivalent nonlinear ordinary differential equation was regenerated. With a predicted solution as an initial value and an iteration scheme, a corrected result was achieved. Since the error caused by linearization could be eliminated in the correction process, the accuracy of calculation was improved greatly. Three engineering scenarios were used to assess the accuracy and reliability of the proposed method and the results were satisfactory.

  10. Prediction of ventricular fibrillation based on nonlinear multi-parameter

    Institute of Scientific and Technical Information of China (English)

    SI Junfeng; NING Xinbao; ZHOU Lingling; ZHANG Song

    2003-01-01

    Ventricular fibrillation (VF) caused by myocardial ischemia is one of the leading factors of death attributed to cardiovascular diseases. It is particularly significant to predict VF and gain valuable time for clinic therapy. Fivedogs are taken as the research objects and a VF model is introduced. The nonlinear characteristics of the ECGs before and after VF are investigated with nonlinear multi-parame- ter analysis methods, Gaussian kernel (GK) correlation estimation algorithm and Lyapunov exponent estimation algorithm. Correlation entropy h2is also presented. The results indicate that there are three parameters which will change at the same time with the conditions of myocardial ischemia, and any changes of a single parameter may be caused by other factors and mislead the judgment. Multi-parameter analysis is more reliable to reveal the heart conditions,and to predict VF without misjudgments.

  11. Nonlinear predictive energy management of residential buildings with photovoltaics & batteries

    Science.gov (United States)

    Sun, Chao; Sun, Fengchun; Moura, Scott J.

    2016-09-01

    This paper studies a nonlinear predictive energy management strategy for a residential building with a rooftop photovoltaic (PV) system and second-life lithium-ion battery energy storage. A key novelty of this manuscript is closing the gap between building energy management formulations, advanced load forecasting techniques, and nonlinear battery/PV models. Additionally, we focus on the fundamental trade-off between lithium-ion battery aging and economic performance in energy management. The energy management problem is formulated as a model predictive controller (MPC). Simulation results demonstrate that the proposed control scheme achieves 96%-98% of the optimal performance given perfect forecasts over a long-term horizon. Moreover, the rate of battery capacity loss can be reduced by 25% with negligible losses in economic performance, through an appropriate cost function formulation.

  12. Perceptual learning of degraded speech by minimizing prediction error.

    Science.gov (United States)

    Sohoglu, Ediz; Davis, Matthew H

    2016-03-22

    Human perception is shaped by past experience on multiple timescales. Sudden and dramatic changes in perception occur when prior knowledge or expectations match stimulus content. These immediate effects contrast with the longer-term, more gradual improvements that are characteristic of perceptual learning. Despite extensive investigation of these two experience-dependent phenomena, there is considerable debate about whether they result from common or dissociable neural mechanisms. Here we test single- and dual-mechanism accounts of experience-dependent changes in perception using concurrent magnetoencephalographic and EEG recordings of neural responses evoked by degraded speech. When speech clarity was enhanced by prior knowledge obtained from matching text, we observed reduced neural activity in a peri-auditory region of the superior temporal gyrus (STG). Critically, longer-term improvements in the accuracy of speech recognition following perceptual learning resulted in reduced activity in a nearly identical STG region. Moreover, short-term neural changes caused by prior knowledge and longer-term neural changes arising from perceptual learning were correlated across subjects with the magnitude of learning-induced changes in recognition accuracy. These experience-dependent effects on neural processing could be dissociated from the neural effect of hearing physically clearer speech, which similarly enhanced perception but increased rather than decreased STG responses. Hence, the observed neural effects of prior knowledge and perceptual learning cannot be attributed to epiphenomenal changes in listening effort that accompany enhanced perception. Instead, our results support a predictive coding account of speech perception; computational simulations show how a single mechanism, minimization of prediction error, can drive immediate perceptual effects of prior knowledge and longer-term perceptual learning of degraded speech.

  13. The Attraction Effect Modulates Reward Prediction Errors and Intertemporal Choices.

    Science.gov (United States)

    Gluth, Sebastian; Hotaling, Jared M; Rieskamp, Jörg

    2017-01-11

    Classical economic theory contends that the utility of a choice option should be independent of other options. This view is challenged by the attraction effect, in which the relative preference between two options is altered by the addition of a third, asymmetrically dominated option. Here, we leveraged the attraction effect in the context of intertemporal choices to test whether both decisions and reward prediction errors (RPE) in the absence of choice violate the independence of irrelevant alternatives principle. We first demonstrate that intertemporal decision making is prone to the attraction effect in humans. In an independent group of participants, we then investigated how this affects the neural and behavioral valuation of outcomes using a novel intertemporal lottery task and fMRI. Participants' behavioral responses (i.e., satisfaction ratings) were modulated systematically by the attraction effect and this modulation was correlated across participants with the respective change of the RPE signal in the nucleus accumbens. Furthermore, we show that, because exponential and hyperbolic discounting models are unable to account for the attraction effect, recently proposed sequential sampling models might be more appropriate to describe intertemporal choices. Our findings demonstrate for the first time that the attraction effect modulates subjective valuation even in the absence of choice. The findings also challenge the prospect of using neuroscientific methods to measure utility in a context-free manner and have important implications for theories of reinforcement learning and delay discounting.

  14. Hierarchical prediction errors in midbrain and septum during social learning

    Science.gov (United States)

    Mathys, Christoph; Weber, Lilian A. E.; Kasper, Lars; Mauer, Jan; Stephan, Klaas E.

    2017-01-01

    Abstract Social learning is fundamental to human interactions, yet its computational and physiological mechanisms are not well understood. One prominent open question concerns the role of neuromodulatory transmitters. We combined fMRI, computational modelling and genetics to address this question in two separate samples (N = 35, N = 47). Participants played a game requiring inference on an adviser’s intentions whose motivation to help or mislead changed over time. Our analyses suggest that hierarchically structured belief updates about current advice validity and the adviser’s trustworthiness, respectively, depend on different neuromodulatory systems. Low-level prediction errors (PEs) about advice accuracy not only activated regions known to support ‘theory of mind’, but also the dopaminergic midbrain. Furthermore, PE responses in ventral striatum were influenced by the Met/Val polymorphism of the Catechol-O-Methyltransferase (COMT) gene. By contrast, high-level PEs (‘expected uncertainty’) about the adviser’s fidelity activated the cholinergic septum. These findings, replicated in both samples, have important implications: They suggest that social learning rests on hierarchically related PEs encoded by midbrain and septum activity, respectively, in the same manner as other forms of learning under volatility. Furthermore, these hierarchical PEs may be broadcast by dopaminergic and cholinergic projections to induce plasticity specifically in cortical areas known to represent beliefs about others. PMID:28119508

  15. Positioning Errors Predicting Method of Strapdown Inertial Navigation Systems Based on PSO-SVM

    Directory of Open Access Journals (Sweden)

    Xunyuan Yin

    2013-01-01

    Full Text Available The strapdown inertial navigation systems (SINS have been widely used for many vehicles, such as commercial airplanes, Unmanned Aerial Vehicles (UAVs, and other types of aircrafts. In order to evaluate the navigation errors precisely and efficiently, a prediction method based on support vector machine (SVM is proposed for positioning error assessment. Firstly, SINS error models that are used for error calculation are established considering several error resources with respect to inertial units. Secondly, flight paths for simulation are designed. Thirdly, the -SVR based prediction method is proposed to predict the positioning errors of navigation systems, and particle swarm optimization (PSO is used for the SVM parameters optimization. Finally, 600 sets of error parameters of SINS are utilized to train the SVM model, which is used for the performance prediction of new navigation systems. By comparing the predicting results with the real errors, the latitudinal predicting accuracy is 92.73%, while the longitudinal predicting accuracy is 91.64%, and PSO is effective to increase the prediction accuracy compared with traditional SVM with fixed parameters. This method is also demonstrated to be effective for error prediction for an entire flight process. Moreover, the prediction method can save 75% of calculation time compared with analyses based on error models.

  16. Nonlinear Modeling of Azimuth Error for 2D Car Navigation Using Parallel Cascade Identification Augmented with Kalman Filtering

    Directory of Open Access Journals (Sweden)

    Umar Iqbal

    2010-01-01

    Full Text Available Present land vehicle navigation relies mostly on the Global Positioning System (GPS that may be interrupted or deteriorated in urban areas. In order to obtain continuous positioning services in all environments, GPS can be integrated with inertial sensors and vehicle odometer using Kalman filtering (KF. For car navigation, low-cost positioning solutions based on MEMS-based inertial sensors are utilized. To further reduce the cost, a reduced inertial sensor system (RISS consisting of only one gyroscope and speed measurement (obtained from the car odometer is integrated with GPS. The MEMS-based gyroscope measurement deteriorates over time due to different errors like the bias drift. These errors may lead to large azimuth errors and mitigating the azimuth errors requires robust modeling of both linear and nonlinear effects. Therefore, this paper presents a solution based on Parallel Cascade Identification (PCI module that models the azimuth errors and is augmented to KF. The proposed augmented KF-PCI method can handle both linear and nonlinear system errors as the linear parts of the errors are modeled inside the KF and the nonlinear and residual parts of the azimuth errors are modeled by PCI. The performance of this method is examined using road test experiments in a land vehicle.

  17. Predicting catastrophes in nonlinear dynamical systems by compressive sensing.

    Science.gov (United States)

    Wang, Wen-Xu; Yang, Rui; Lai, Ying-Cheng; Kovanis, Vassilios; Grebogi, Celso

    2011-04-15

    An extremely challenging problem of significant interest is to predict catastrophes in advance of their occurrences. We present a general approach to predicting catastrophes in nonlinear dynamical systems under the assumption that the system equations are completely unknown and only time series reflecting the evolution of the dynamical variables of the system are available. Our idea is to expand the vector field or map of the underlying system into a suitable function series and then to use the compressive-sensing technique to accurately estimate the various terms in the expansion. Examples using paradigmatic chaotic systems are provided to demonstrate our idea.

  18. Predicting catastrophes in nonlinear dynamical systems by compressive sensing

    CERN Document Server

    Wang, Wen-Xu; Lai, Ying-Cheng; Kovanis, Vassilios; Grebogi, Celso

    2011-01-01

    An extremely challenging problem of significant interest is to predict catastrophes in advance of their occurrences. We present a general approach to predicting catastrophes in nonlinear dynamical systems under the assumption that the system equations are completely unknown and only time series reflecting the evolution of the dynamical variables of the system are available. Our idea is to expand the vector field or map of the underlying system into a suitable function series and then to use the compressive-sensing technique to accurately estimate the various terms in the expansion. Examples using paradigmatic chaotic systems are provided to demonstrate our idea.

  19. Nonlinear system PID-type multi-step predictive control

    Institute of Scientific and Technical Information of China (English)

    Yan ZHANG; Zengqiang CHEN; Zhuzhi YUAN

    2004-01-01

    A compound neural network was constructed during the process of identification and multi-step prediction. Under the PlD-type long-range predictive cost function, the control signal was calculated based on gradient algorithm. The nonlinear controller' s structure was similar to the conventional PID controller. The parameters of this controller were tuned by using a local recurrent neural network on-line. The controller has a better effect than the conventional PID controller. Simulation study shows the effectiveness and good performance.

  20. Predicting speech intelligibility in conditions with nonlinearly processed noisy speech

    DEFF Research Database (Denmark)

    Jørgensen, Søren; Dau, Torsten

    2013-01-01

    The speech-based envelope power spectrum model (sEPSM; [1]) was proposed in order to overcome the limitations of the classical speech transmission index (STI) and speech intelligibility index (SII). The sEPSM applies the signal-tonoise ratio in the envelope domain (SNRenv), which was demonstrated...... to successfully predict speech intelligibility in conditions with nonlinearly processed noisy speech, such as processing with spectral subtraction. Moreover, a multiresolution version (mr-sEPSM) was demonstrated to account for speech intelligibility in various conditions with stationary and fluctuating...... from computational auditory scene analysis and further support the hypothesis that the SNRenv is a powerful metric for speech intelligibility prediction....

  1. Predicting pilot error: testing a new methodology and a multi-methods and analysts approach.

    Science.gov (United States)

    Stanton, Neville A; Salmon, Paul; Harris, Don; Marshall, Andrew; Demagalski, Jason; Young, Mark S; Waldmann, Thomas; Dekker, Sidney

    2009-05-01

    The Human Error Template (HET) is a recently developed methodology for predicting design-induced pilot error. This article describes a validation study undertaken to compare the performance of HET against three contemporary Human Error Identification (HEI) approaches when used to predict pilot errors for an approach and landing task and also to compare analyst error predictions to an approach to enhancing error prediction sensitivity: the multiple analysts and methods approach, whereby multiple analyst predictions using a range of HEI techniques are pooled. The findings indicate that, of the four methodologies used in isolation, analysts using the HET methodology offered the most accurate error predictions, and also that the multiple analysts and methods approach was more successful overall in terms of error prediction sensitivity than the three other methods but not the HET approach. The results suggest that when predicting design-induced error, it is appropriate to use a toolkit of different HEI approaches and multiple analysts in order to heighten error prediction sensitivity.

  2. Adaptive fuzzy predictive sliding control of uncertain nonlinear systems with bound-known input delay.

    Science.gov (United States)

    Khazaee, Mostafa; Markazi, Amir H D; Omidi, Ehsan

    2015-11-01

    In this paper, a new Adaptive Fuzzy Predictive Sliding Mode Control (AFP-SMC) is presented for nonlinear systems with uncertain dynamics and unknown input delay. The control unit consists of a fuzzy inference system to approximate the ideal linearization control, together with a switching strategy to compensate for the estimation errors. Also, an adaptive fuzzy predictor is used to estimate the future values of the system states to compensate for the time delay. The adaptation laws are used to tune the controller and predictor parameters, which guarantee the stability based on a Lyapunov-Krasovskii functional. To evaluate the method effectiveness, the simulation and experiment on an overhead crane system are presented. According to the obtained results, AFP-SMC can effectively control the uncertain nonlinear systems, subject to input delays of known bound.

  3. Iterated non-linear model predictive control based on tubes and contractive constraints.

    Science.gov (United States)

    Murillo, M; Sánchez, G; Giovanini, L

    2016-05-01

    This paper presents a predictive control algorithm for non-linear systems based on successive linearizations of the non-linear dynamic around a given trajectory. A linear time varying model is obtained and the non-convex constrained optimization problem is transformed into a sequence of locally convex ones. The robustness of the proposed algorithm is addressed adding a convex contractive constraint. To account for linearization errors and to obtain more accurate results an inner iteration loop is added to the algorithm. A simple methodology to obtain an outer bounding-tube for state trajectories is also presented. The convergence of the iterative process and the stability of the closed-loop system are analyzed. The simulation results show the effectiveness of the proposed algorithm in controlling a quadcopter type unmanned aerial vehicle.

  4. A Comparison of the Backpropagation and Recursive Prediction Error Algorithms for Training Neural Networks.

    OpenAIRE

    1990-01-01

    A new recursive prediction error routine is compared with the backpropagation method of training neural networks. Results based on simulated systems, the prediction of Canadian Lynx data and the modelling of an automotive diesel engine indicate that the recursive prediction error algorithm is far superior to backpropagation.

  5. Nonlinear software sensor for monitoring genetic regulation processes with noise and modeling errors

    Science.gov (United States)

    Ibarra-Junquera, V.; Torres, L. A.; Rosu, H. C.; Argüello, G.; Collado-Vides, J.

    2005-07-01

    Nonlinear control techniques by means of a software sensor that are commonly used in chemical engineering could be also applied to genetic regulation processes. We provide here a realistic formulation of this procedure by introducing an additive white Gaussian noise, which is usually found in experimental data. Besides, we include model errors, meaning that we assume we do not know the nonlinear regulation function of the process. In order to illustrate this procedure, we employ the Goodwin dynamics of the concentrations [B. C. Goodwin, Temporal Oscillations in Cells (Academic, New York, 1963)] in the simple form recently applied to single gene systems and some operon cases [H. De Jong, J. Comput. Biol. 9, 67 (2002)], which involves the dynamics of the mRNA, given protein and metabolite concentrations. Further, we present results for a three gene case in coregulated sets of transcription units as they occur in prokaryotes. However, instead of considering their full dynamics, we use only the data of the metabolites and a designed software sensor. We also show, more generally, that it is possible to rebuild the complete set of nonmeasured concentrations despite the uncertainties in the regulation function or, even more, in the case of not knowing the mRNA dynamics. In addition, the rebuilding of concentrations is not affected by the perturbation due to the additive white Gaussian noise and also we managed to filter the noisy output of the biological system.

  6. First measurement and correction of nonlinear errors in the experimental insertions of the CERN Large Hadron Collider

    Science.gov (United States)

    Maclean, E. H.; Tomás, R.; Giovannozzi, M.; Persson, T. H. B.

    2015-12-01

    Nonlinear magnetic errors in low-β insertions can contribute significantly to detuning with amplitude, linear and nonlinear chromaticity, and lead to degradation of dynamic aperture and beam lifetime. As such, the correction of nonlinear errors in the experimental insertions of colliders can be of critical significance for successful operation. This is expected to be of particular relevance to the LHC's second run and its high luminosity upgrade, as well as to future colliders such as the Future Circular Collider. Current correction strategies envisioned for these colliders assume it will be possible to calculate optimized local corrections through the insertions, using a magnetic model of the errors. This paper shows however, that reliance purely upon magnetic measurements of the nonlinear errors of insertion elements is insufficient to guarantee a good correction quality in the relevant low-β* regime. It is possible to perform beam-based examination of nonlinear magnetic errors via the feed-down to readily observed beam properties upon application of closed orbit bumps, and methods based upon feed-down to tune have been utilized at RHIC, SIS18, and SPS. This paper demonstrates the extension of such methodology to include direct observation of feed-down to linear coupling in the LHC. It is further shown that such beam-based studies can be used to complement magnetic measurements performed during LHC construction, in order to validate and refine the magnetic model of the collider. Results from first attempts of the measurement and correction of nonlinear errors in the LHC experimental insertions are presented. Several discrepancies of beam-based studies with respect to the LHC magnetic model are reported.

  7. Modeling Nonlinear Adsorption with a Single Chemical Parameter: Predicting Chemical Median Langmuir Binding Constants.

    Science.gov (United States)

    Davis, Craig Warren; Di Toro, Dominic M

    2015-07-07

    Procedures for accurately predicting linear partition coefficients onto various sorbents (e.g., organic carbon, soils, clay) are reliable and well established. However, similar procedures for the prediction of sorption parameters of nonlinear isotherm models are not. The purpose of this paper is to present a procedure for predicting nonlinear isotherm parameters, specifically the median Langmuir binding constants, K̃L, obtained utilizing the single-chemical parameter log-normal Langmuir isotherm developed in the accompanying work. A reduced poly parameter linear free energy relationship (pp-LFER) is able to predict median Langmuir binding constants for graphite, charcoal, and Darco granular activated carbon (GAC) adsorption data. For the larger F400 GAC data set, a single pp-LFER model was insufficient, as a plateau is observed for the median Langmuir binding constants of larger molecular volume sorbates. This volumetric cutoff occurs in proximity to the median pore diameter for F400 GAC. A log-linear relationship exists between the aqueous solubility of these large compounds and their median Langmuir binding constants. Using this relationship for the chemicals above the volumetric cutoff and the pp-LFER below the cutoff, the median Langmuir binding constants can be predicted with a root-mean square error for graphite (n = 13), charcoal (n = 11), Darco GAC (n = 14), and F400 GAC (n = 44) of 0.129, 0.307, 0.407, and 0.424, respectively.

  8. A convenient look-up-table based method for the compensation of non-linear error in digital fringe projection

    Directory of Open Access Journals (Sweden)

    Chen Xiong

    2016-01-01

    Full Text Available Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this work, we propose a convenient look-up-table-based (LUT-based method to compensate for the non-linear error in captured fringe patterns. Without extra calibration, this LUT-based method completely utilizes the captured fringe pattern by recording the full-field differences. Then, a phase compensation map is established to revise the measured phase. Experimental results demonstrate that this method works effectively.

  9. BANKRUPTCY PREDICTION MODEL WITH ZETAc OPTIMAL CUT-OFF SCORE TO CORRECT TYPE I ERRORS

    Directory of Open Access Journals (Sweden)

    Mohamad Iwan

    2005-06-01

    This research has successfully attained the following results: (1 type I error is in fact 59,83 times more costly compared to type II error, (2 22 ratios distinguish between bankrupt and non-bankrupt groups, (3 2 financial ratios proved to be effective in predicting bankruptcy, (4 prediction using ZETAc optimal cut-off score predicts more companies filing for bankruptcy within one year compared to prediction using Hair et al. optimum cutting score, (5 Although prediction using Hair et al. optimum cutting score is more accurate, prediction using ZETAc optimal cut-off score proved to be able to minimize cost incurred from classification errors.

  10. Applications of Conditional Nonlinear Optimal Perturbation in Predictability Study and Sensitivity Analysis of Weather and Climate

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Considering the limitation of the linear theory of singular vector (SV), the authors and their collaborators proposed conditional nonlinear optimal perturbation (CNOP) and then applied it in the predictability study and the sensitivity analysis of weather and climate system. To celebrate the 20th anniversary of Chinese National Committee for World Climate Research Programme (WCRP), this paper is devoted to reviewing the main results of these studies. First, CNOP represents the initial perturbation that has largest nonlinear evolution at prediction time, which is different from linear singular vector (LSV) for the large magnitude of initial perturbation or/and the long optimization time interval. Second, CNOP,rather than linear singular vector (LSV), represents the initial anomaly that evolves into ENSO events most probably. It is also the CNOP that induces the most prominent seasonal variation of error growth for ENSO predictability; furthermore, CNOP was applied to investigate the decadal variability of ENSO asymmetry. It is demonstrated that the changing nonlinearity causes the change of ENSO asymmetry.Third, in the studies of the sensitivity and stability of ocean's thermohaline circulation (THC), the non-linear asymmetric response of THC to finite amplitude of initial perturbations was revealed by CNOP.Through this approach the passive mechanism of decadal variation of THC was demonstrated; Also the authors studies the instability and sensitivity analysis of grassland ecosystem by using CNOP and show the mechanism of the transitions between the grassland and desert states. Finally, a detailed discussion on the results obtained by CNOP suggests the applicability of CNOP in predictability studies and sensitivity analysis.

  11. Non-linear aeroelastic prediction for aircraft applications

    Science.gov (United States)

    de C. Henshaw, M. J.; Badcock, K. J.; Vio, G. A.; Allen, C. B.; Chamberlain, J.; Kaynes, I.; Dimitriadis, G.; Cooper, J. E.; Woodgate, M. A.; Rampurawala, A. M.; Jones, D.; Fenwick, C.; Gaitonde, A. L.; Taylor, N. V.; Amor, D. S.; Eccles, T. A.; Denley, C. J.

    2007-05-01

    Current industrial practice for the prediction and analysis of flutter relies heavily on linear methods and this has led to overly conservative design and envelope restrictions for aircraft. Although the methods have served the industry well, it is clear that for a number of reasons the inclusion of non-linearity in the mathematical and computational aeroelastic prediction tools is highly desirable. The increase in available and affordable computational resources, together with major advances in algorithms, mean that non-linear aeroelastic tools are now viable within the aircraft design and qualification environment. The Partnership for Unsteady Methods in Aerodynamics (PUMA) Defence and Aerospace Research Partnership (DARP) was sponsored in 2002 to conduct research into non-linear aeroelastic prediction methods and an academic, industry, and government consortium collaborated to address the following objectives: To develop useable methodologies to model and predict non-linear aeroelastic behaviour of complete aircraft. To evaluate the methodologies on real aircraft problems. To investigate the effect of non-linearities on aeroelastic behaviour and to determine which have the greatest effect on the flutter qualification process. These aims have been very effectively met during the course of the programme and the research outputs include: New methods available to industry for use in the flutter prediction process, together with the appropriate coaching of industry engineers. Interesting results in both linear and non-linear aeroelastics, with comprehensive comparison of methods and approaches for challenging problems. Additional embryonic techniques that, with further research, will further improve aeroelastics capability. This paper describes the methods that have been developed and how they are deployable within the industrial environment. We present a thorough review of the PUMA aeroelastics programme together with a comprehensive review of the relevant research

  12. Analysis and Application of Multiple-Precision Computation and Round-off Error for Nonlinear Dynamical Systems

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This research reveals the dependency of floating point computation in nonlinear dynamical systems on machine precision and step-size by applying a multiple-precision approach in the Lorenz nonlinear equations. The paper also demonstrates the procedures for obtaining a real numerical solution in the Lorenz system with long-time integration and a new multiple-precision-based approach used to identify the maximum effective computation time (MECT) and optimal step-size (OS). In addition, the authors introduce how to analyze round-off error in a long-time integration in some typical cases of nonlinear systems and present its approximate estimate expression.

  13. Application of Nonlinear Predictive Control Based on RBF Network Predictive Model in MCFC Plant

    Institute of Scientific and Technical Information of China (English)

    CHEN Yue-hua; CAO Guang-yi; ZHU Xin-jian

    2007-01-01

    This paper described a nonlinear model predictive controller for regulating a molten carbonate fuel cell (MCFC). A detailed mechanism model of output voltage of a MCFC was presented at first. However, this model was too complicated to be used in a control system. Consequently, an off line radial basis function (RBF) network was introduced to build a nonlinear predictive model. And then, the optimal control sequences were obtained by applying golden mean method. The models and controller have been realized in the MATLAB environment. Simulation results indicate the proposed algorithm exhibits satisfying control effect even when the current densities vary largely.

  14. Brief optogenetic inhibition of dopamine neurons mimics endogenous negative reward prediction errors.

    Science.gov (United States)

    Chang, Chun Yun; Esber, Guillem R; Marrero-Garcia, Yasmin; Yau, Hau-Jie; Bonci, Antonello; Schoenbaum, Geoffrey

    2016-01-01

    Correlative studies have strongly linked phasic changes in dopamine activity with reward prediction error signaling. But causal evidence that these brief changes in firing actually serve as error signals to drive associative learning is more tenuous. Although there is direct evidence that brief increases can substitute for positive prediction errors, there is no comparable evidence that similarly brief pauses can substitute for negative prediction errors. In the absence of such evidence, the effect of increases in firing could reflect novelty or salience, variables also correlated with dopamine activity. Here we provide evidence in support of the proposed linkage, showing in a modified Pavlovian over-expectation task that brief pauses in the firing of dopamine neurons in rat ventral tegmental area at the time of reward are sufficient to mimic the effects of endogenous negative prediction errors. These results support the proposal that brief changes in the firing of dopamine neurons serve as full-fledged bidirectional prediction error signals.

  15. Linear and non-linear bias: predictions vs. measurements

    CERN Document Server

    Hoffmann, Kai; Gaztanaga, Enrique

    2016-01-01

    We study the linear and non-linear bias parameters which determine the mapping between the distributions of galaxies and the full matter density fields, comparing different measurements and predictions. Accociating galaxies with dark matter haloes in the MICE Grand Challenge N-body simulation we directly measure the bias parameters by comparing the smoothed density fluctuations of halos and matter in the same region at different positions as a function of smoothing scale. Alternatively we measure the bias parameters by matching the probablility distributions of halo and matter density fluctuations, which can be applied to observations. These direct bias measurements are compared to corresponding measurements from two-point and different third-order correlations, as well as predictions from the peak-background model, which we presented in previous articles using the same data. We find an overall variation of the linear bias measurements and predictions of $\\sim 5 \\%$ with respect to results from two-point corr...

  16. Learning about Expectation Violation from Prediction Error Paradigms – A Meta-Analysis on Brain Processes Following a Prediction Error

    Science.gov (United States)

    D’Astolfo, Lisa; Rief, Winfried

    2017-01-01

    Modifying patients’ expectations by exposing them to expectation violation situations (thus maximizing the difference between the expected and the actual situational outcome) is proposed to be a crucial mechanism for therapeutic success for a variety of different mental disorders. However, clinical observations suggest that patients often maintain their expectations regardless of experiences contradicting their expectations. It remains unclear which information processing mechanisms lead to modification or persistence of patients’ expectations. Insight in the processing could be provided by Neuroimaging studies investigating prediction error (PE, i.e., neuronal reactions to non-expected stimuli). Two methods are often used to investigate the PE: (1) paradigms, in which participants passively observe PEs (”passive” paradigms) and (2) paradigms, which encourage a behavioral adaptation following a PE (“active” paradigms). These paradigms are similar to the methods used to induce expectation violations in clinical settings: (1) the confrontation with an expectation violation situation and (2) an enhanced confrontation in which the patient actively challenges his expectation. We used this similarity to gain insight in the different neuronal processing of the two PE paradigms. We performed a meta-analysis contrasting neuronal activity of PE paradigms encouraging a behavioral adaptation following a PE and paradigms enforcing passiveness following a PE. We found more neuronal activity in the striatum, the insula and the fusiform gyrus in studies encouraging behavioral adaptation following a PE. Due to the involvement of reward assessment and avoidance learning associated with the striatum and the insula we propose that the deliberate execution of action alternatives following a PE is associated with the integration of new information into previously existing expectations, therefore leading to an expectation change. While further research is needed to directly

  17. Learning about Expectation Violation from Prediction Error Paradigms - A Meta-Analysis on Brain Processes Following a Prediction Error.

    Science.gov (United States)

    D'Astolfo, Lisa; Rief, Winfried

    2017-01-01

    Modifying patients' expectations by exposing them to expectation violation situations (thus maximizing the difference between the expected and the actual situational outcome) is proposed to be a crucial mechanism for therapeutic success for a variety of different mental disorders. However, clinical observations suggest that patients often maintain their expectations regardless of experiences contradicting their expectations. It remains unclear which information processing mechanisms lead to modification or persistence of patients' expectations. Insight in the processing could be provided by Neuroimaging studies investigating prediction error (PE, i.e., neuronal reactions to non-expected stimuli). Two methods are often used to investigate the PE: (1) paradigms, in which participants passively observe PEs ("passive" paradigms) and (2) paradigms, which encourage a behavioral adaptation following a PE ("active" paradigms). These paradigms are similar to the methods used to induce expectation violations in clinical settings: (1) the confrontation with an expectation violation situation and (2) an enhanced confrontation in which the patient actively challenges his expectation. We used this similarity to gain insight in the different neuronal processing of the two PE paradigms. We performed a meta-analysis contrasting neuronal activity of PE paradigms encouraging a behavioral adaptation following a PE and paradigms enforcing passiveness following a PE. We found more neuronal activity in the striatum, the insula and the fusiform gyrus in studies encouraging behavioral adaptation following a PE. Due to the involvement of reward assessment and avoidance learning associated with the striatum and the insula we propose that the deliberate execution of action alternatives following a PE is associated with the integration of new information into previously existing expectations, therefore leading to an expectation change. While further research is needed to directly assess

  18. Explicit Nonlinear Model Predictive Control for a Saucer-Shaped Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Zhihui Xing

    2013-01-01

    Full Text Available A lifting body unmanned aerial vehicle (UAV generates lift by its body and shows many significant advantages due to the particular shape, such as huge loading space, small wetted area, high-strength fuselage structure, and large lifting area. However, designing the control law for a lifting body UAV is quite challenging because it has strong nonlinearity and coupling, and usually lacks it rudders. In this paper, an explicit nonlinear model predictive control (ENMPC strategy is employed to design a control law for a saucer-shaped UAV which can be adequately modeled with a rigid 6-degrees-of-freedom (DOF representation. In the ENMPC, control signal is calculated by approximation of the tracking error in the receding horizon by its Taylor-series expansion to any specified order. It enhances the advantages of the nonlinear model predictive control and eliminates the time-consuming online optimization. The simulation results show that ENMPC is a propriety strategy for controlling lifting body UAVs and can compensate the insufficient control surface area.

  19. Predictability of extremes in non-linear hierarchically organized systems

    Science.gov (United States)

    Kossobokov, V. G.; Soloviev, A.

    2011-12-01

    Understanding the complexity of non-linear dynamics of hierarchically organized systems progresses to new approaches in assessing hazard and risk of the extreme catastrophic events. In particular, a series of interrelated step-by-step studies of seismic process along with its non-stationary though self-organized behaviors, has led already to reproducible intermediate-term middle-range earthquake forecast/prediction technique that has passed control in forward real-time applications during the last two decades. The observed seismic dynamics prior to and after many mega, great, major, and strong earthquakes demonstrate common features of predictability and diverse behavior in course durable phase transitions in complex hierarchical non-linear system of blocks-and-faults of the Earth lithosphere. The confirmed fractal nature of earthquakes and their distribution in space and time implies that many traditional estimations of seismic hazard (from term-less to short-term ones) are usually based on erroneous assumptions of easy tractable analytical models, which leads to widespread practice of their deceptive application. The consequences of underestimation of seismic hazard propagate non-linearly into inflicted underestimation of risk and, eventually, into unexpected societal losses due to earthquakes and associated phenomena (i.e., collapse of buildings, landslides, tsunamis, liquefaction, etc.). The studies aimed at forecast/prediction of extreme events (interpreted as critical transitions) in geophysical and socio-economical systems include: (i) large earthquakes in geophysical systems of the lithosphere blocks-and-faults, (ii) starts and ends of economic recessions, (iii) episodes of a sharp increase in the unemployment rate, (iv) surge of the homicides in socio-economic systems. These studies are based on a heuristic search of phenomena preceding critical transitions and application of methodologies of pattern recognition of infrequent events. Any study of rare

  20. Rapid prediction method for nonlinear expansion process of medical vascular stent

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A neural network model with high nonlinear recognition capability was constructed to describe the relationship between the deformation impact factors and the deformation results of vascular stent.Then,using the weighted correction method with the attached momentum term,the network training algorithm was optimized by introducing learning factor η and momentum factor ψ,so the speed of the network training and the system robustness were enhanced.The network was trained by some practi-cal cases,and the statistical hypothesis validation was made for the predictive errors.It was shown that the average difference between the intelligent predictive result of vascular stent deformation neu-ral network and the nonlinear finite element analysis result was less than 0.03%,and the trained net-work could perfectly predict the vascular stent deformation.Further more,the rapid evaluation tool for the vascular stent mechanics performance was established using the Pro/Toolkit and the intelligent neural network predictive model of vascular stent expansion.The proposed tool system with strong practicality and high efficiency can significantly shorten the product development cycle of vascular stent.

  1. The conditions that promote fear learning: prediction error and Pavlovian fear conditioning.

    Science.gov (United States)

    Li, Susan Shi Yuan; McNally, Gavan P

    2014-02-01

    A key insight of associative learning theory is that learning depends on the actions of prediction error: a discrepancy between the actual and expected outcomes of a conditioning trial. When positive, such error causes increments in associative strength and, when negative, such error causes decrements in associative strength. Prediction error can act directly on fear learning by determining the effectiveness of the aversive unconditioned stimulus or indirectly by determining the effectiveness, or associability, of the conditioned stimulus. Evidence from a variety of experimental preparations in human and non-human animals suggest that discrete neural circuits code for these actions of prediction error during fear learning. Here we review the circuits and brain regions contributing to the neural coding of prediction error during fear learning and highlight areas of research (safety learning, extinction, and reconsolidation) that may profit from this approach to understanding learning.

  2. An Optimal Error Estimates of H1-Galerkin Expanded Mixed Finite Element Methods for Nonlinear Viscoelasticity-Type Equation

    Directory of Open Access Journals (Sweden)

    Haitao Che

    2011-01-01

    Full Text Available We investigate a H1-Galerkin mixed finite element method for nonlinear viscoelasticity equations based on H1-Galerkin method and expanded mixed element method. The existence and uniqueness of solutions to the numerical scheme are proved. A priori error estimation is derived for the unknown function, the gradient function, and the flux.

  3. General approach to error prediction in point registration

    Science.gov (United States)

    Danilchenko, Andrei; Fitzpatrick, J. Michael

    2010-02-01

    A method for the first-order analysis of the point registration problem is presented and validated. The method is a unified approach to the problem that allows for inhomogeneous and anisotropic fiducial localization error (FLE) and arbitrary weighting in the registration algorithm. Cross-covariance matrices are derived both for target registration error (TRE) and for weighted fiducial registration error (FRE). Furthermore, it is shown that for ideal weighting, in which the weighting matrix for each fiducial equals the inverse of the square root of the cross covariance of the two-space FLE for that fiducial, fluctuations of FRE and TRE are independent. These results are validated by comparison with previously published expressions for special cases and by simulation and shown to be correct. Furthermore, simulations for randomly generated fiducial positions and FLEs are presented that show that correlation is negligible (correlation coefficient FRE, are unreliable estimators of registration accuracy, i.e., TRE, and should be avoided.

  4. Sieve estimation of constant and time-varying coefficients in nonlinear ordinary differential equation models by considering both numerical error and measurement error

    CERN Document Server

    Xue, Hongqi; Wu, Hulin; 10.1214/09-AOS784

    2010-01-01

    This article considers estimation of constant and time-varying coefficients in nonlinear ordinary differential equation (ODE) models where analytic closed-form solutions are not available. The numerical solution-based nonlinear least squares (NLS) estimator is investigated in this study. A numerical algorithm such as the Runge--Kutta method is used to approximate the ODE solution. The asymptotic properties are established for the proposed estimators considering both numerical error and measurement error. The B-spline is used to approximate the time-varying coefficients, and the corresponding asymptotic theories in this case are investigated under the framework of the sieve approach. Our results show that if the maximum step size of the $p$-order numerical algorithm goes to zero at a rate faster than $n^{-1/(p\\wedge4)}$, the numerical error is negligible compared to the measurement error. This result provides a theoretical guidance in selection of the step size for numerical evaluations of ODEs. Moreover, we h...

  5. Improved prediction error filters for adaptive feedback cancellation in hearing aids

    DEFF Research Database (Denmark)

    Ngo, Kim; van Waterschoot, Toon; Christensen, Mads Græsbøll;

    2013-01-01

    and the loudspeaker signal caused by the closed signal loop, in particular when the near-end signal is spectrally colored as is the case for a speech signal. This paper adopts a prediction-error method (PEM)-based approach to AFC, which is based on the use of decorrelating prediction error filters (PEFs). We propose...

  6. A Case Study of the Error Growth and Predictability of a Meiyu Frontal Heavy Precipitation Event

    Institute of Scientific and Technical Information of China (English)

    罗雨; 张立凤

    2011-01-01

    The Advanced Regional Eta-coordinate Model (AREM) is used to explore the predictability of a heavy rainfall event along the Meiyu front in China during 3-4 July 2003.Based on the sensitivity of precipitation prediction to initial data sources and initial uncertainties in different variables,the evolution of error growth and the associated mechanism are described and discussed in detail in this paper.The results indicate that the smaller-amplitude initial error presents a faster growth rate and its growth is characterized by a transition from localized growth to widespread expansion error.Such modality of the error growth is closely related to the evolvement of the precipitation episode,and consequcntly remarkable forecast divergence is found near the rainband,indicating that the rainfall area is a sensitive region for error growth.The initial error in the rainband contributes significantly to the forecast divergence,and its amplification and propagation are largely determined by the initial moisture distribution.The moisture condition also affects the error growth on smaller scales and the subsequent upscale error cascade.In addition,the error growth defined by an energy norm reveals that large error energy collocates well with the strong latent heating,implying that the occurrence of precipitation and error growth share the same energy source-the latent heat.This may impose an intrinsic predictability limit on the prediction of heavy precipitation.

  7. Curiosity and reward: Valence predicts choice and information prediction errors enhance learning.

    Science.gov (United States)

    Marvin, Caroline B; Shohamy, Daphna

    2016-03-01

    Curiosity drives many of our daily pursuits and interactions; yet, we know surprisingly little about how it works. Here, we harness an idea implied in many conceptualizations of curiosity: that information has value in and of itself. Reframing curiosity as the motivation to obtain reward-where the reward is information-allows one to leverage major advances in theoretical and computational mechanisms of reward-motivated learning. We provide new evidence supporting 2 predictions that emerge from this framework. First, we find an asymmetric effect of positive versus negative information, with positive information enhancing both curiosity and long-term memory for information. Second, we find that it is not the absolute value of information that drives learning but, rather, the gap between the reward expected and reward received, an "information prediction error." These results support the idea that information functions as a reward, much like money or food, guiding choices and driving learning in systematic ways.

  8. Frontal theta links prediction errors to behavioral adaptation in reinforcement learning.

    Science.gov (United States)

    Cavanagh, James F; Frank, Michael J; Klein, Theresa J; Allen, John J B

    2010-02-15

    Investigations into action monitoring have consistently detailed a frontocentral voltage deflection in the event-related potential (ERP) following the presentation of negatively valenced feedback, sometimes termed the feedback-related negativity (FRN). The FRN has been proposed to reflect a neural response to prediction errors during reinforcement learning, yet the single-trial relationship between neural activity and the quanta of expectation violation remains untested. Although ERP methods are not well suited to single-trial analyses, the FRN has been associated with theta band oscillatory perturbations in the medial prefrontal cortex. Mediofrontal theta oscillations have been previously associated with expectation violation and behavioral adaptation and are well suited to single-trial analysis. Here, we recorded EEG activity during a probabilistic reinforcement learning task and fit the performance data to an abstract computational model (Q-learning) for calculation of single-trial reward prediction errors. Single-trial theta oscillatory activities following feedback were investigated within the context of expectation (prediction error) and adaptation (subsequent reaction time change). Results indicate that interactive medial and lateral frontal theta activities reflect the degree of negative and positive reward prediction error in the service of behavioral adaptation. These different brain areas use prediction error calculations for different behavioral adaptations, with medial frontal theta reflecting the utilization of prediction errors for reaction time slowing (specifically following errors), but lateral frontal theta reflecting prediction errors leading to working memory-related reaction time speeding for the correct choice.

  9. Predictive vegetation modeling for conservation: impact of error propagation from digital elevation data.

    Science.gov (United States)

    Van Niel, Kimberly P; Austin, Mike P

    2007-01-01

    The effect of digital elevation model (DEM) error on environmental variables, and subsequently on predictive habitat models, has not been explored. Based on an error analysis of a DEM, multiple error realizations of the DEM were created and used to develop both direct and indirect environmental variables for input to predictive habitat models. The study explores the effects of DEM error and the resultant uncertainty of results on typical steps in the modeling procedure for prediction of vegetation species presence/absence. Results indicate that all of these steps and results, including the statistical significance of environmental variables, shapes of species response curves in generalized additive models (GAMs), stepwise model selection, coefficients and standard errors for generalized linear models (GLMs), prediction accuracy (Cohen's kappa and AUC), and spatial extent of predictions, were greatly affected by this type of error. Error in the DEM can affect the reliability of interpretations of model results and level of accuracy in predictions, as well as the spatial extent of the predictions. We suggest that the sensitivity of DEM-derived environmental variables to error in the DEM should be considered before including them in the modeling processes.

  10. Improving sub-pixel imperviousness change prediction by ensembling heterogeneous non-linear regression models

    Science.gov (United States)

    Drzewiecki, Wojciech

    2016-12-01

    In this work nine non-linear regression models were compared for sub-pixel impervious surface area mapping from Landsat images. The comparison was done in three study areas both for accuracy of imperviousness coverage evaluation in individual points in time and accuracy of imperviousness change assessment. The performance of individual machine learning algorithms (Cubist, Random Forest, stochastic gradient boosting of regression trees, k-nearest neighbors regression, random k-nearest neighbors regression, Multivariate Adaptive Regression Splines, averaged neural networks, and support vector machines with polynomial and radial kernels) was also compared with the performance of heterogeneous model ensembles constructed from the best models trained using particular techniques. The results proved that in case of sub-pixel evaluation the most accurate prediction of change may not necessarily be based on the most accurate individual assessments. When single methods are considered, based on obtained results Cubist algorithm may be advised for Landsat based mapping of imperviousness for single dates. However, Random Forest may be endorsed when the most reliable evaluation of imperviousness change is the primary goal. It gave lower accuracies for individual assessments, but better prediction of change due to more correlated errors of individual predictions. Heterogeneous model ensembles performed for individual time points assessments at least as well as the best individual models. In case of imperviousness change assessment the ensembles always outperformed single model approaches. It means that it is possible to improve the accuracy of sub-pixel imperviousness change assessment using ensembles of heterogeneous non-linear regression models.

  11. Error criteria for cross validation in the context of chaotic time series prediction.

    Science.gov (United States)

    Lim, Teck Por; Puthusserypady, Sadasivan

    2006-03-01

    The prediction of a chaotic time series over a long horizon is commonly done by iterating one-step-ahead prediction. Prediction can be implemented using machine learning methods, such as radial basis function networks. Typically, cross validation is used to select prediction models based on mean squared error. The bias-variance dilemma dictates that there is an inevitable tradeoff between bias and variance. However, invariants of chaotic systems are unchanged by linear transformations; thus, the bias component may be irrelevant to model selection in the context of chaotic time series prediction. Hence, the use of error variance for model selection, instead of mean squared error, is examined. Clipping is introduced, as a simple way to stabilize iterated predictions. It is shown that using the error variance for model selection, in combination with clipping, may result in better models.

  12. Prediction Error Associated with the Perceptual Segmentation of Naturalistic Events

    Science.gov (United States)

    Zacks, Jeffrey M.; Kurby, Christopher A.; Eisenberg, Michelle L.; Haroutunian, Nayiri

    2011-01-01

    Predicting the near future is important for survival and plays a central role in theories of perception, language processing, and learning. Prediction failures may be particularly important for initiating the updating of perceptual and memory systems and, thus, for the subjective experience of events. Here, we asked observers to make predictions…

  13. Surprised at all the entropy: hippocampal, caudate and midbrain contributions to learning from prediction errors.

    Directory of Open Access Journals (Sweden)

    Anne-Marike Schiffer

    Full Text Available Influential concepts in neuroscientific research cast the brain a predictive machine that revises its predictions when they are violated by sensory input. This relates to the predictive coding account of perception, but also to learning. Learning from prediction errors has been suggested for take place in the hippocampal memory system as well as in the basal ganglia. The present fMRI study used an action-observation paradigm to investigate the contributions of the hippocampus, caudate nucleus and midbrain dopaminergic system to different types of learning: learning in the absence of prediction errors, learning from prediction errors, and responding to the accumulation of prediction errors in unpredictable stimulus configurations. We conducted analyses of the regions of interests' BOLD response towards these different types of learning, implementing a bootstrapping procedure to correct for false positives. We found both, caudate nucleus and the hippocampus to be activated by perceptual prediction errors. The hippocampal responses seemed to relate to the associative mismatch between a stored representation and current sensory input. Moreover, its response was significantly influenced by the average information, or Shannon entropy of the stimulus material. In accordance with earlier results, the habenula was activated by perceptual prediction errors. Lastly, we found that the substantia nigra was activated by the novelty of sensory input. In sum, we established that the midbrain dopaminergic system, the hippocampus, and the caudate nucleus were to different degrees significantly involved in the three different types of learning: acquisition of new information, learning from prediction errors and responding to unpredictable stimulus developments. We relate learning from perceptual prediction errors to the concept of predictive coding and related information theoretic accounts.

  14. Fuzzy predictive filtering in nonlinear economic model predictive control for demand response

    DEFF Research Database (Denmark)

    Santos, Rui Mirra; Zong, Yi; Sousa, Joao M. C.;

    2016-01-01

    The performance of a model predictive controller (MPC) is highly correlated with the model's accuracy. This paper introduces an economic model predictive control (EMPC) scheme based on a nonlinear model, which uses a branch-and-bound tree search for solving the inherent non-convex optimization...... problem. Moreover, to reduce the computation time and improve the controller's performance, a fuzzy predictive filter is introduced. With the purpose of testing the developed EMPC, a simulation controlling the temperature levels of an intelligent office building (PowerFlexHouse), with and without fuzzy...

  15. Application of the conditional nonlinear optimal perturbation method to the predictability study of the Kuroshio large meander

    Science.gov (United States)

    Wang, Qiang; Mu, Mu; Dijkstra, Henk A.

    2012-01-01

    A reduced-gravity barotropic shallow-water model was used to simulate the Kuroshio path variations. The results show that the model was able to capture the essential features of these path variations. We used one simulation of the model as the reference state and investigated the effects of errors in model parameters on the prediction of the transition to the Kuroshio large meander (KLM) state using the conditional nonlinear optimal parameter perturbation (CNOP-P) method. Because of their relatively large uncertainties, three model parameters were considered: the interfacial friction coefficient, the wind-stress amplitude, and the lateral friction coefficient. We determined the CNOP-Ps optimized for each of these three parameters independently, and we optimized all three parameters simultaneously using the Spectral Projected Gradient 2 (SPG2) algorithm. Similarly, the impacts caused by errors in initial conditions were examined using the conditional nonlinear optimal initial perturbation (CNOP-I) method. Both the CNOP-I and CNOP-Ps can result in significant prediction errors of the KLM over a lead time of 240 days. But the prediction error caused by CNOP-I is greater than that caused by CNOP-P. The results of this study indicate not only that initial condition errors have greater effects on the prediction of the KLM than errors in model parameters but also that the latter cannot be ignored. Hence, to enhance the forecast skill of the KLM in this model, the initial conditions should first be improved, the model parameters should use the best possible estimates.

  16. Application of the Conditional Nonlinear Optimal Perturbation Method to the Predictability Study of the Kuroshio Large Meander

    Institute of Scientific and Technical Information of China (English)

    WANG Qiang; MU Mu; Henk A. DIJKSTRA

    2012-01-01

    A reduced-gravity barotropic shallow-water model was used to simulate the Kuroshio path variations.The results show that the model was able to capture the essential features of these path variations.We used one simulation of the model as the reference state and investigated the effects of errors in model parameters on the prediction of the transition to the Kuroshio large meander (KLM) state using the conditional nonlinear optimal parameter perturbation (CNOP-P) method.Because of their relatively large uncertainties,three model parameters were considcred:the interfacial friction coefficient,the wind-stress amplitude,and the lateral friction coefficient.We determined the CNOP-Ps optimized for each of these three parameters independently,and we optimized all three parameters simultaneously using the Spectral Projected Gradient 2 (SPG2) algorithm.Similarly,the impacts caused by errors in initial conditions were examined using the conditional nonlinear optimal initial perturbation (CNOP-I) method.Both the CNOP-I and CNOP-Ps can result in significant prediction errors of the KLM over a lead time of 240 days.But the prediction error caused by CNOP-I is greater than that caused by CNOP-P.The results of this study indicate not only that initial condition errors have greater effects on the prediction of the KLM than errors in model parameters but also that the latter cannot be ignored.Hence,to enhance the forecast skill of the KLM in this model,the initial conditions should first be improved,the model parameters should use the best possible estimates.

  17. Nonlinear model predictive control based on collective neurodynamic optimization.

    Science.gov (United States)

    Yan, Zheng; Wang, Jun

    2015-04-01

    In general, nonlinear model predictive control (NMPC) entails solving a sequential global optimization problem with a nonconvex cost function or constraints. This paper presents a novel collective neurodynamic optimization approach to NMPC without linearization. Utilizing a group of recurrent neural networks (RNNs), the proposed collective neurodynamic optimization approach searches for optimal solutions to global optimization problems by emulating brainstorming. Each RNN is guaranteed to converge to a candidate solution by performing constrained local search. By exchanging information and iteratively improving the starting and restarting points of each RNN using the information of local and global best known solutions in a framework of particle swarm optimization, the group of RNNs is able to reach global optimal solutions to global optimization problems. The essence of the proposed collective neurodynamic optimization approach lies in the integration of capabilities of global search and precise local search. The simulation results of many cases are discussed to substantiate the effectiveness and the characteristics of the proposed approach.

  18. Nonlinear Model Predictive Control for Oil Reservoirs Management

    DEFF Research Database (Denmark)

    Capolei, Andrea

    . With this objective function we link the optimization problem in production optimization to the Markowitz portfolio optimization problem in finance or to the the robust design problem in topology optimization. In this study we focus on open-loop configuration, i.e. without measurement feedback. We demonstrate......, the research community is working on improving current feedback model-based optimal control technologies. The topic of this thesis is production optimization for water flooding in the secondary phase of oil recovery. We developed numerical methods for nonlinear model predictive control (NMPC) of an oil field....... Further, we studied the use of robust control strategies in both open-loop, i.e. without measurement feedback, and closed-loop, i.e. with measurement feedback, configurations. This thesis has three main original contributions: The first contribution in this thesis is to improve the computationally...

  19. Stabilizing model predictive control for constrained nonlinear distributed delay systems.

    Science.gov (United States)

    Mahboobi Esfanjani, R; Nikravesh, S K Y

    2011-04-01

    In this paper, a model predictive control scheme with guaranteed closed-loop asymptotic stability is proposed for a class of constrained nonlinear time-delay systems with discrete and distributed delays. A suitable terminal cost functional and also an appropriate terminal region are utilized to achieve asymptotic stability. To determine the terminal cost, a locally asymptotically stabilizing controller is designed and an appropriate Lyapunov-Krasoskii functional of the locally stabilized system is employed as the terminal cost. Furthermore, an invariant set for locally stabilized system which is established by using the Razumikhin Theorem is used as the terminal region. Simple conditions are derived to obtain terminal cost and terminal region in terms of Bilinear Matrix Inequalities. The method is illustrated by a numerical example.

  20. Nonlinear model predictive control of managed pressure drilling.

    Science.gov (United States)

    Nandan, Anirudh; Imtiaz, Syed

    2017-07-01

    A new design of nonlinear model predictive controller (NMPC) is proposed for managed pressure drilling (MPD) system. The NMPC is based on output feedback control architecture and employs offset-free formulation proposed in [1]. NMPC uses active set method for computing control inputs. The controller implements an automatic switching from constant bottom hole pressure (CBHP) regulation to flow control mode in the event of a reservoir kick. In the flow control mode the controller automatically raises the bottom hole pressure setpoint, and thereby keeps the reservoir fluid flow to the surface within a tunable threshold. This is achieved by exploiting constraint handling capability of NMPC. In addition to kick mitigation the controller demonstrated good performance in containing the bottom hole pressure (BHP) during the pipe connection sequence. The controller also delivered satisfactory performance in the presence of measurement noise and uncertainty in the system. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. A Generalized Process Model of Human Action Selection and Error and its Application to Error Prediction

    Science.gov (United States)

    2014-07-01

    Macmillan & Creelman , 2005). This is a quite high degree of discriminability and it means that when the decision model predicts a probability of...ROC analysis. Pattern Recognition Letters, 27(8), 861-874. Retrieved from Google Scholar. Macmillan, N. A., & Creelman , C. D. (2005). Detection

  2. Comparison of Transmission Error Predictions with Noise Measurements for Several Spur and Helical Gears

    Science.gov (United States)

    Houser, Donald R.; Oswald, Fred B.; Valco, Mark J.; Drago, Raymond J.; Lenski, Joseph W., Jr.

    1994-01-01

    Measured sound power data from eight different spur, single and double helical gear designs are compared with predictions of transmission error by the Load Distribution Program. The sound power data was taken from the recent Army-funded Advanced Rotorcraft Transmission project. Tests were conducted in the NASA gear noise rig. Results of both test data and transmission error predictions are made for each harmonic of mesh frequency at several operating conditions. In general, the transmission error predictions compare favorably with the measured noise levels.

  3. Comparison of transmission error predictions with noise measurements for several spur and helical gears

    Science.gov (United States)

    Houser, Donald R.; Oswald, Fred B.; Valco, Mark J.; Drago, Raymond J.; Lenski, Joseph W., Jr.

    1994-06-01

    Measured sound power data from eight different spur, single and double helical gear designs are compared with predictions of transmission error by the Load Distribution Program. The sound power data was taken from the recent Army-funded Advanced Rotorcraft Transmission project. Tests were conducted in the NASA gear noise rig. Results of both test data and transmission error predictions are made for each harmonic of mesh frequency at several operating conditions. In general, the transmission error predictions compare favorably with the measured noise levels.

  4. A wavelet-based approach to assessing timing errors in hydrologic predictions

    Science.gov (United States)

    Liu, Yuqiong; Brown, James; Demargne, Julie; Seo, Dong-Jun

    2011-02-01

    SummaryStreamflow predictions typically contain errors in both the timing and the magnitude of peak flows. These two types of error often originate from different sources (e.g. rainfall-runoff modeling vs. routing) and hence may have different implications and ramifications for both model diagnosis and decision support. Thus, where possible and relevant, they should be distinguished and separated in model evaluation and forecast verification applications. Distinct information on timing errors in hydrologic prediction could lead to more targeted model improvements in a diagnostic evaluation context, as well as better-informed decisions in many practical applications, such as flood prediction, water supply forecasting, river regulation, navigation, and engineering design. However, information on timing errors in hydrologic predictions is rarely evaluated or provided. In this paper, we discuss the importance of assessing and quantifying timing error in hydrologic predictions and present a new approach, which is based on the cross wavelet transform (XWT) technique. The XWT technique transforms the time series of predictions and corresponding observations into a two-dimensional time-scale space and provides information on scale- and time-dependent timing differences between the two time series. The results for synthetic timing errors (both constant and time-varying) indicate that the XWT-based approach can estimate timing errors in streamflow predictions with reasonable reliability. The approach is then employed to analyze the timing errors in real streamflow simulations for a number of headwater basins in the US state of Texas. The resulting timing error estimates were consistent with the physiographic and climatic characteristics of these basins. A simple post-factum timing adjustment based on these estimates led to considerably improved agreement between streamflow observations and simulations, further illustrating the potential for using the XWT-based approach for

  5. Putamen Activation Represents an Intrinsic Positive Prediction Error Signal for Visual Search in Repeated Configurations.

    Science.gov (United States)

    Sommer, Susanne; Pollmann, Stefan

    2016-01-01

    We investigated fMRI responses to visual search targets appearing at locations that were predicted by the search context. Based on previous work in visual category learning we expected an intrinsic reward prediction error signal in the putamen whenever the target appeared at a location that was predicted with some degree of uncertainty. Comparing target appearance at locations predicted with 50% probability to either locations predicted with 100% probability or unpredicted locations, increased activation was observed in left posterior putamen and adjacent left posterior insula. Thus, our hypothesis of an intrinsic prediction error-like signal was confirmed. This extends the observation of intrinsic prediction error-like signals, driven by intrinsic rather than extrinsic reward, to memory-driven visual search.

  6. Putamen Activation Represents an Intrinsic Positive Prediction Error Signal for Visual Search in Repeated Configurations

    Science.gov (United States)

    Sommer, Susanne; Pollmann, Stefan

    2016-01-01

    We investigated fMRI responses to visual search targets appearing at locations that were predicted by the search context. Based on previous work in visual category learning we expected an intrinsic reward prediction error signal in the putamen whenever the target appeared at a location that was predicted with some degree of uncertainty. Comparing target appearance at locations predicted with 50% probability to either locations predicted with 100% probability or unpredicted locations, increased activation was observed in left posterior putamen and adjacent left posterior insula. Thus, our hypothesis of an intrinsic prediction error-like signal was confirmed. This extends the observation of intrinsic prediction error-like signals, driven by intrinsic rather than extrinsic reward, to memory-driven visual search. PMID:27867436

  7. The effect of retrospective sampling on estimates of prediction error for multifactor dimensionality reduction.

    Science.gov (United States)

    Winham, Stacey J; Motsinger-Reif, Alison A

    2011-01-01

    The standard in genetic association studies of complex diseases is replication and validation of positive results, with an emphasis on assessing the predictive value of associations. In response to this need, a number of analytical approaches have been developed to identify predictive models that account for complex genetic etiologies. Multifactor Dimensionality Reduction (MDR) is a commonly used, highly successful method designed to evaluate potential gene-gene interactions. MDR relies on classification error in a cross-validation framework to rank and evaluate potentially predictive models. Previous work has demonstrated the high power of MDR, but has not considered the accuracy and variance of the MDR prediction error estimate. Currently, we evaluate the bias and variance of the MDR error estimate as both a retrospective and prospective estimator and show that MDR can both underestimate and overestimate error. We argue that a prospective error estimate is necessary if MDR models are used for prediction, and propose a bootstrap resampling estimate, integrating population prevalence, to accurately estimate prospective error. We demonstrate that this bootstrap estimate is preferable for prediction to the error estimate currently produced by MDR. While demonstrated with MDR, the proposed estimation is applicable to all data-mining methods that use similar estimates.

  8. Real time simulation of nonlinear generalized predictive control for wind energy conversion system with nonlinear observer.

    Science.gov (United States)

    Ouari, Kamel; Rekioua, Toufik; Ouhrouche, Mohand

    2014-01-01

    In order to make a wind power generation truly cost-effective and reliable, an advanced control techniques must be used. In this paper, we develop a new control strategy, using nonlinear generalized predictive control (NGPC) approach, for DFIG-based wind turbine. The proposed control law is based on two points: NGPC-based torque-current control loop generating the rotor reference voltage and NGPC-based speed control loop that provides the torque reference. In order to enhance the robustness of the controller, a disturbance observer is designed to estimate the aerodynamic torque which is considered as an unknown perturbation. Finally, a real-time simulation is carried out to illustrate the performance of the proposed controller.

  9. Demonstration of leapfrogging for implementing nonlinear model predictive control on a heat exchanger.

    Science.gov (United States)

    Sridhar, Upasana Manimegalai; Govindarajan, Anand; Rhinehart, R Russell

    2016-01-01

    This work reveals the applicability of a relatively new optimization technique, Leapfrogging, for both nonlinear regression modeling and a methodology for nonlinear model-predictive control. Both are relatively simple, yet effective. The application on a nonlinear, pilot-scale, shell-and-tube heat exchanger reveals practicability of the techniques.

  10. Nonlinear quantitative radiation sensitivity prediction model based on NCI-60 cancer cell lines.

    Science.gov (United States)

    Zhang, Chunying; Girard, Luc; Das, Amit; Chen, Sun; Zheng, Guangqiang; Song, Kai

    2014-01-01

    We proposed a nonlinear model to perform a novel quantitative radiation sensitivity prediction. We used the NCI-60 panel, which consists of nine different cancer types, as the platform to train our model. Important radiation therapy (RT) related genes were selected by significance analysis of microarrays (SAM). Orthogonal latent variables (LVs) were then extracted by the partial least squares (PLS) method as the new compressive input variables. Finally, support vector machine (SVM) regression model was trained with these LVs to predict the SF2 (the surviving fraction of cells after a radiation dose of 2 Gy γ-ray) values of the cell lines. Comparison with the published results showed significant improvement of the new method in various ways: (a) reducing the root mean square error (RMSE) of the radiation sensitivity prediction model from 0.20 to 0.011; and (b) improving prediction accuracy from 62% to 91%. To test the predictive performance of the gene signature, three different types of cancer patient datasets were used. Survival analysis across these different types of cancer patients strongly confirmed the clinical potential utility of the signature genes as a general prognosis platform. The gene regulatory network analysis identified six hub genes that are involved in canonical cancer pathways.

  11. Nonlinear Quantitative Radiation Sensitivity Prediction Model Based on NCI-60 Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Chunying Zhang

    2014-01-01

    Full Text Available We proposed a nonlinear model to perform a novel quantitative radiation sensitivity prediction. We used the NCI-60 panel, which consists of nine different cancer types, as the platform to train our model. Important radiation therapy (RT related genes were selected by significance analysis of microarrays (SAM. Orthogonal latent variables (LVs were then extracted by the partial least squares (PLS method as the new compressive input variables. Finally, support vector machine (SVM regression model was trained with these LVs to predict the SF2 (the surviving fraction of cells after a radiation dose of 2 Gy γ-ray values of the cell lines. Comparison with the published results showed significant improvement of the new method in various ways: (a reducing the root mean square error (RMSE of the radiation sensitivity prediction model from 0.20 to 0.011; and (b improving prediction accuracy from 62% to 91%. To test the predictive performance of the gene signature, three different types of cancer patient datasets were used. Survival analysis across these different types of cancer patients strongly confirmed the clinical potential utility of the signature genes as a general prognosis platform. The gene regulatory network analysis identified six hub genes that are involved in canonical cancer pathways.

  12. Error-likelihood prediction in the medial frontal cortex: A critical evaluation

    NARCIS (Netherlands)

    Nieuwenhuis, S.; Scheizer, T.S.; Mars, R.B.; Botvinick, M.M.; Hajcal, G.

    2007-01-01

    A recent study has proposed that posterior regions of the medial frontal cortex (pMFC) learn to predict the likelihood of errors ccurring in a given task context. A key prediction of the errorlZelihood (EL) hypothesis is that the pMFC should exhibit enhanced activity to cues that are predictive of h

  13. A predictive model for dimensional errors in fused deposition modeling

    DEFF Research Database (Denmark)

    Stolfi, A.

    2015-01-01

    This work concerns the effect of deposition angle (a) and layer thickness (L) on the dimensional performance of FDM parts using a predictive model based on the geometrical description of the FDM filament profile. An experimental validation over the whole a range from 0° to 177° at 3° steps and two...

  14. A Foundation for the Accurate Prediction of the Soft Error Vulnerability of Scientific Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bronevetsky, G; de Supinski, B; Schulz, M

    2009-02-13

    Understanding the soft error vulnerability of supercomputer applications is critical as these systems are using ever larger numbers of devices that have decreasing feature sizes and, thus, increasing frequency of soft errors. As many large scale parallel scientific applications use BLAS and LAPACK linear algebra routines, the soft error vulnerability of these methods constitutes a large fraction of the applications overall vulnerability. This paper analyzes the vulnerability of these routines to soft errors by characterizing how their outputs are affected by injected errors and by evaluating several techniques for predicting how errors propagate from the input to the output of each routine. The resulting error profiles can be used to understand the fault vulnerability of full applications that use these routines.

  15. Period, epoch and prediction errors of ephemeris from continuous sets of timing measurements

    CERN Document Server

    Deeg, Hans J

    2015-01-01

    Space missions such as Kepler and CoRoT have led to large numbers of eclipse or transit measurements in nearly continuous time series. This paper shows how to obtain the period error in such measurements from a basic linear least-squares fit, and how to correctly derive the timing error in the prediction of future transit or eclipse events. Assuming strict periodicity, a formula for the period error of such time series is derived: sigma_P = sigma_T (12/( N^3-N))^0.5, where sigma_P is the period error; sigma_T the timing error of a single measurement and N the number of measurements. Relative to the iterative method for period error estimation by Mighell & Plavchan (2013), this much simpler formula leads to smaller period errors, whose correctness has been verified through simulations. For the prediction of times of future periodic events, the usual linear ephemeris where epoch errors are quoted for the first time measurement, are prone to overestimation of the error of that prediction. This may be avoided...

  16. On the prediction of stress relaxation from known creep of nonlinear materials

    Energy Technology Data Exchange (ETDEWEB)

    Touati, D.; Cederbaum, G. [Ben-Gurion Univ. of the Negev, Beer Sheva (Israel)

    1997-04-01

    A method to predict the nonlinear relaxation behavior from creep experiments of nonlinear viscoelastic materials is presented. It is shown that for given nonlinear creep properties, and creep compliance represented by the Prony series, the Schapery creep model can be transformed into a set of first order nonlinear equations. The solution of these equations enables the obtaining of the nonlinear stress relaxation curves. The strain-dependent constitutive equation can then be constructed for a given nonlinear viscoelastic model, as needed for engineering applications. A comparison example of the calculated stress relaxation curves, with test data for polyurethane demonstrates the very good accuracy of the proposed method.

  17. Analysts forecast error : A robust prediction model and its short term trading

    NARCIS (Netherlands)

    Boudt, Kris; de Goeij, Peter; Thewissen, James; Van Campenhout, Geert

    2015-01-01

    We examine the profitability of implementing a short term trading strategy based on predicting the error in analysts' earnings per share forecasts using publicly available information. Since large earnings surprises may lead to extreme values in the forecast error series that disrupt their smooth au

  18. L2-Error Estimates of the Extrapolated Crank-Nicolson Discontinuous Galerkin Approximations for Nonlinear Sobolev Equations

    Directory of Open Access Journals (Sweden)

    Hyun Young Lee

    2010-01-01

    Full Text Available We analyze discontinuous Galerkin methods with penalty terms, namely, symmetric interior penalty Galerkin methods, to solve nonlinear Sobolev equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal ℓ∞(L2 error estimates of discontinuous Galerkin approximations in both spatial direction and temporal direction.

  19. Regions of constrained maximum likelihood parameter identifiability. [of discrete-time nonlinear dynamic systems with white measurement errors

    Science.gov (United States)

    Lee, C.-H.; Herget, C. J.

    1976-01-01

    This short paper considers the parameter-identification problem of general discrete-time, nonlinear, multiple input-multiple output dynamic systems with Gaussian white distributed measurement errors. Knowledge of the system parameterization is assumed to be available. Regions of constrained maximum likelihood (CML) parameter identifiability are established. A computation procedure employing interval arithmetic is proposed for finding explicit regions of parameter identifiability for the case of linear systems.

  20. Nonlinear turbulence models for predicting strong curvature effects

    Institute of Scientific and Technical Information of China (English)

    XU Jing-lei; MA Hui-yang; HUANG Yu-ning

    2008-01-01

    Prediction of the characteristics of turbulent flows with strong streamline curvature, such as flows in turbomachines, curved channel flows, flows around airfoils and buildings, is of great importance in engineering applicatious and poses a very practical challenge for turbulence modeling. In this paper, we analyze qualitatively the curvature effects on the structure of turbulence and conduct numerical simulations of a turbulent U- duct flow with a number of turbulence models in order to assess their overall performance. The models evaluated in this work are some typical linear eddy viscosity turbulence models, nonlinear eddy viscosity turbulence models (NLEVM) (quadratic and cubic), a quadratic explicit algebraic stress model (EASM) and a Reynolds stress model (RSM) developed based on the second-moment closure. Our numerical results show that a cubic NLEVM that performs considerably well in other benchmark turbulent flows, such as the Craft, Launder and Suga model and the Huang and Ma model, is able to capture the major features of the highly curved turbulent U-duct flow, including the damping of turbulence near the convex wall, the enhancement of turbulence near the concave wall, and the subsequent turbulent flow separation. The predictions of the cubic models are quite close to that of the RSM, in relatively good agreement with the experimental data, which suggests that these inodels may be employed to simulate the turbulent curved flows in engineering applications.

  1. Low Frequency Predictive Skill Despite Structural Instability and Model Error

    Science.gov (United States)

    2014-09-30

    suitable coarse-grained variables is a necessary but not sufficient condition for this predictive skill, and 4 elementary examples are given here...issue in contemporary applied mathematics is the development of simpler dynamical models for a reduced subset of variables in complex high...In this article I developed a new practical framework of creating a stochastically parameterized reduced model for slow variables of complex

  2. Artificial neural network implementation of a near-ideal error prediction controller

    Science.gov (United States)

    Mcvey, Eugene S.; Taylor, Lynore Denise

    1992-01-01

    A theory has been developed at the University of Virginia which explains the effects of including an ideal predictor in the forward loop of a linear error-sampled system. It has been shown that the presence of this ideal predictor tends to stabilize the class of systems considered. A prediction controller is merely a system which anticipates a signal or part of a signal before it actually occurs. It is understood that an exact prediction controller is physically unrealizable. However, in systems where the input tends to be repetitive or limited, (i.e., not random) near ideal prediction is possible. In order for the controller to act as a stability compensator, the predictor must be designed in a way that allows it to learn the expected error response of the system. In this way, an unstable system will become stable by including the predicted error in the system transfer function. Previous and current prediction controller include pattern recognition developments and fast-time simulation which are applicable to the analysis of linear sampled data type systems. The use of pattern recognition techniques, along with a template matching scheme, has been proposed as one realizable type of near-ideal prediction. Since many, if not most, systems are repeatedly subjected to similar inputs, it was proposed that an adaptive mechanism be used to 'learn' the correct predicted error response. Once the system has learned the response of all the expected inputs, it is necessary only to recognize the type of input with a template matching mechanism and then to use the correct predicted error to drive the system. Suggested here is an alternate approach to the realization of a near-ideal error prediction controller, one designed using Neural Networks. Neural Networks are good at recognizing patterns such as system responses, and the back-propagation architecture makes use of a template matching scheme. In using this type of error prediction, it is assumed that the system error

  3. Stimulus-dependent adjustment of reward prediction error in the midbrain.

    Directory of Open Access Journals (Sweden)

    Hiromasa Takemura

    Full Text Available Previous reports have described that neural activities in midbrain dopamine areas are sensitive to unexpected reward delivery and omission. These activities are correlated with reward prediction error in reinforcement learning models, the difference between predicted reward values and the obtained reward outcome. These findings suggest that the reward prediction error signal in the brain updates reward prediction through stimulus-reward experiences. It remains unknown, however, how sensory processing of reward-predicting stimuli contributes to the computation of reward prediction error. To elucidate this issue, we examined the relation between stimulus discriminability of the reward-predicting stimuli and the reward prediction error signal in the brain using functional magnetic resonance imaging (fMRI. Before main experiments, subjects learned an association between the orientation of a perceptually salient (high-contrast Gabor patch and a juice reward. The subjects were then presented with lower-contrast Gabor patch stimuli to predict a reward. We calculated the correlation between fMRI signals and reward prediction error in two reinforcement learning models: a model including the modulation of reward prediction by stimulus discriminability and a model excluding this modulation. Results showed that fMRI signals in the midbrain are more highly correlated with reward prediction error in the model that includes stimulus discriminability than in the model that excludes stimulus discriminability. No regions showed higher correlation with the model that excludes stimulus discriminability. Moreover, results show that the difference in correlation between the two models was significant from the first session of the experiment, suggesting that the reward computation in the midbrain was modulated based on stimulus discriminability before learning a new contingency between perceptually ambiguous stimuli and a reward. These results suggest that the human

  4. All That Glitters … Dissociating Attention and Outcome Expectancy From Prediction Errors Signals

    OpenAIRE

    Roesch, Matthew R.; Calu, Donna J; Esber, Guillem R.; Schoenbaum, Geoffrey

    2010-01-01

    Initially reported in dopamine neurons, neural correlates of prediction errors have now been shown in a variety of areas, including orbitofrontal cortex, ventral striatum, and amygdala. Yet changes in neural activity to an outcome or cues that precede it can reflect other processes. We review the recent literature and show that although activity in dopamine neurons appears to signal prediction errors, similar activity in orbitofrontal cortex, basolateral amygdala, and ventral striatum does no...

  5. Dopamine reward prediction-error signalling: a two-component response

    Science.gov (United States)

    Schultz, Wolfram

    2017-01-01

    Environmental stimuli and objects, including rewards, are often processed sequentially in the brain. Recent work suggests that the phasic dopamine reward prediction-error response follows a similar sequential pattern. An initial brief, unselective and highly sensitive increase in activity unspecifically detects a wide range of environmental stimuli, then quickly evolves into the main response component, which reflects subjective reward value and utility. This temporal evolution allows the dopamine reward prediction-error signal to optimally combine speed and accuracy. PMID:26865020

  6. Estimation of Mechanical Signals in Induction Motors using the Recursive Prediction Error Method

    DEFF Research Database (Denmark)

    Børsting, H.; Knudsen, Morten; Rasmussen, Henrik;

    1993-01-01

    Sensor feedback of mechanical quantities for control applications in induction motors is troublesome and relative expensive. In this paper a recursive prediction error (RPE) method has successfully been used to estimate the angular rotor speed ........Sensor feedback of mechanical quantities for control applications in induction motors is troublesome and relative expensive. In this paper a recursive prediction error (RPE) method has successfully been used to estimate the angular rotor speed .....

  7. The Dopamine Prediction Error: Contributions to Associative Models of Reward Learning

    Science.gov (United States)

    Nasser, Helen M.; Calu, Donna J.; Schoenbaum, Geoffrey; Sharpe, Melissa J.

    2017-01-01

    Phasic activity of midbrain dopamine neurons is currently thought to encapsulate the prediction-error signal described in Sutton and Barto’s (1981) model-free reinforcement learning algorithm. This phasic signal is thought to contain information about the quantitative value of reward, which transfers to the reward-predictive cue after learning. This is argued to endow the reward-predictive cue with the value inherent in the reward, motivating behavior toward cues signaling the presence of reward. Yet theoretical and empirical research has implicated prediction-error signaling in learning that extends far beyond a transfer of quantitative value to a reward-predictive cue. Here, we review the research which demonstrates the complexity of how dopaminergic prediction errors facilitate learning. After briefly discussing the literature demonstrating that phasic dopaminergic signals can act in the manner described by Sutton and Barto (1981), we consider how these signals may also influence attentional processing across multiple attentional systems in distinct brain circuits. Then, we discuss how prediction errors encode and promote the development of context-specific associations between cues and rewards. Finally, we consider recent evidence that shows dopaminergic activity contains information about causal relationships between cues and rewards that reflect information garnered from rich associative models of the world that can be adapted in the absence of direct experience. In discussing this research we hope to support the expansion of how dopaminergic prediction errors are thought to contribute to the learning process beyond the traditional concept of transferring quantitative value. PMID:28275359

  8. An MEG signature corresponding to an axiomatic model of reward prediction error.

    Science.gov (United States)

    Talmi, Deborah; Fuentemilla, Lluis; Litvak, Vladimir; Duzel, Emrah; Dolan, Raymond J

    2012-01-01

    Optimal decision-making is guided by evaluating the outcomes of previous decisions. Prediction errors are theoretical teaching signals which integrate two features of an outcome: its inherent value and prior expectation of its occurrence. To uncover the magnetic signature of prediction errors in the human brain we acquired magnetoencephalographic (MEG) data while participants performed a gambling task. Our primary objective was to use formal criteria, based upon an axiomatic model (Caplin and Dean, 2008a), to determine the presence and timing profile of MEG signals that express prediction errors. We report analyses at the sensor level, implemented in SPM8, time locked to outcome onset. We identified, for the first time, a MEG signature of prediction error, which emerged approximately 320 ms after an outcome and expressed as an interaction between outcome valence and probability. This signal followed earlier, separate signals for outcome valence and probability, which emerged approximately 200 ms after an outcome. Strikingly, the time course of the prediction error signal, as well as the early valence signal, resembled the Feedback-Related Negativity (FRN). In simultaneously acquired EEG data we obtained a robust FRN, but the win and loss signals that comprised this difference wave did not comply with the axiomatic model. Our findings motivate an explicit examination of the critical issue of timing embodied in computational models of prediction errors as seen in human electrophysiological data.

  9. Prediction error in reinforcement learning: a meta-analysis of neuroimaging studies.

    Science.gov (United States)

    Garrison, Jane; Erdeniz, Burak; Done, John

    2013-08-01

    Activation likelihood estimation (ALE) meta-analyses were used to examine the neural correlates of prediction error in reinforcement learning. The findings are interpreted in the light of current computational models of learning and action selection. In this context, particular consideration is given to the comparison of activation patterns from studies using instrumental and Pavlovian conditioning, and where reinforcement involved rewarding or punishing feedback. The striatum was the key brain area encoding for prediction error, with activity encompassing dorsal and ventral regions for instrumental and Pavlovian reinforcement alike, a finding which challenges the functional separation of the striatum into a dorsal 'actor' and a ventral 'critic'. Prediction error activity was further observed in diverse areas of predominantly anterior cerebral cortex including medial prefrontal cortex and anterior cingulate cortex. Distinct patterns of prediction error activity were found for studies using rewarding and aversive reinforcers; reward prediction errors were observed primarily in the striatum while aversive prediction errors were found more widely including insula and habenula.

  10. Linear and non-linear bias: predictions versus measurements

    Science.gov (United States)

    Hoffmann, K.; Bel, J.; Gaztañaga, E.

    2017-02-01

    We study the linear and non-linear bias parameters which determine the mapping between the distributions of galaxies and the full matter density fields, comparing different measurements and predictions. Associating galaxies with dark matter haloes in the Marenostrum Institut de Ciències de l'Espai (MICE) Grand Challenge N-body simulation, we directly measure the bias parameters by comparing the smoothed density fluctuations of haloes and matter in the same region at different positions as a function of smoothing scale. Alternatively, we measure the bias parameters by matching the probability distributions of halo and matter density fluctuations, which can be applied to observations. These direct bias measurements are compared to corresponding measurements from two-point and different third-order correlations, as well as predictions from the peak-background model, which we presented in previous papers using the same data. We find an overall variation of the linear bias measurements and predictions of ˜5 per cent with respect to results from two-point correlations for different halo samples with masses between ˜1012and1015 h-1 M⊙ at the redshifts z = 0.0 and 0.5. Variations between the second- and third-order bias parameters from the different methods show larger variations, but with consistent trends in mass and redshift. The various bias measurements reveal a tight relation between the linear and the quadratic bias parameters, which is consistent with results from the literature based on simulations with different cosmologies. Such a universal relation might improve constraints on cosmological models, derived from second-order clustering statistics at small scales or higher order clustering statistics.

  11. One day prediction of nighttime VLF amplitudes using nonlinear autoregression and neural network modeling

    Science.gov (United States)

    Santosa, H.; Hobara, Y.

    2017-01-01

    The electric field amplitude of very low frequency (VLF) transmitter from Hawaii (NPM) has been continuously recorded at Chofu (CHF), Tokyo, Japan. The VLF amplitude variability indicates lower ionospheric perturbation in the D region (60-90 km altitude range) around the NPM-CHF propagation path. We carried out the prediction of daily nighttime mean VLF amplitude by using Nonlinear Autoregressive with Exogenous Input Neural Network (NARX NN). The NARX NN model, which was built based on the daily input variables of various physical parameters such as stratospheric temperature, total column ozone, cosmic rays, Dst, and Kp indices possess good accuracy during the model building. The fitted model was constructed within the training period from 1 January 2011 to 4 February 2013 by using three algorithms, namely, Bayesian Neural Network (BRANN), Levenberg Marquardt Neural Network (LMANN), and Scaled Conjugate Gradient (SCG). The LMANN has the largest Pearson correlation coefficient (r) of 0.94 and smallest root-mean-square error (RMSE) of 1.19 dB. The constructed models by using LMANN were applied to predict the VLF amplitude from 5 February 2013 to 31 December 2013. As a result the one step (1 day) ahead predicted nighttime VLF amplitude has the r of 0.93 and RMSE of 2.25 dB. We conclude that the model built according to the proposed methodology provides good predictions of the electric field amplitude of VLF waves for NPM-CHF (midlatitude) propagation path.

  12. The Chaotic Prediction for Aero-Engine Performance Parameters Based on Nonlinear PLS Regression

    Directory of Open Access Journals (Sweden)

    Chunxiao Zhang

    2012-01-01

    Full Text Available The prediction of the aero-engine performance parameters is very important for aero-engine condition monitoring and fault diagnosis. In this paper, the chaotic phase space of engine exhaust temperature (EGT time series which come from actual air-borne ACARS data is reconstructed through selecting some suitable nearby points. The partial least square (PLS based on the cubic spline function or the kernel function transformation is adopted to obtain chaotic predictive function of EGT series. The experiment results indicate that the proposed PLS chaotic prediction algorithm based on biweight kernel function transformation has significant advantage in overcoming multicollinearity of the independent variables and solve the stability of regression model. Our predictive NMSE is 16.5 percent less than that of the traditional linear least squares (OLS method and 10.38 percent less than that of the linear PLS approach. At the same time, the forecast error is less than that of nonlinear PLS algorithm through bootstrap test screening.

  13. A Fully Bayesian Approach to Improved Calibration and Prediction of Groundwater Models With Structure Error

    Science.gov (United States)

    Xu, T.; Valocchi, A. J.

    2014-12-01

    Effective water resource management typically relies on numerical models to analyse groundwater flow and solute transport processes. These models are usually subject to model structure error due to simplification and/or misrepresentation of the real system. As a result, the model outputs may systematically deviate from measurements, thus violating a key assumption for traditional regression-based calibration and uncertainty analysis. On the other hand, model structure error induced bias can be described statistically in an inductive, data-driven way based on historical model-to-measurement misfit. We adopt a fully Bayesian approach that integrates a Gaussian process error model to account for model structure error to the calibration, prediction and uncertainty analysis of groundwater models. The posterior distributions of parameters of the groundwater model and the Gaussian process error model are jointly inferred using DREAM, an efficient Markov chain Monte Carlo sampler. We test the usefulness of the fully Bayesian approach towards a synthetic case study of surface-ground water interaction under changing pumping conditions. We first illustrate through this example that traditional least squares regression without accounting for model structure error yields biased parameter estimates due to parameter compensation as well as biased predictions. In contrast, the Bayesian approach gives less biased parameter estimates. Moreover, the integration of a Gaussian process error model significantly reduces predictive bias and leads to prediction intervals that are more consistent with observations. The results highlight the importance of explicit treatment of model structure error especially in circumstances where subsequent decision-making and risk analysis require accurate prediction and uncertainty quantification. In addition, the data-driven error modelling approach is capable of extracting more information from observation data than using a groundwater model alone.

  14. Inadvertent interchange of electrocardiogram limb lead connections: analysis of predicted consequences part II: double interconnection errors.

    Science.gov (United States)

    Rowlands, Derek J

    2012-01-01

    Limb lead connection errors are known to be very common in clinical practice. The consequences of all possible single limb lead interconnection errors were analyzed in an earlier publication (J Electrocardiology 2008;41:84-90). With a single limb lead interconnection error, 6 combinations of limb lead connections are possible. Two of these combinations give rise to records in which the limb lead morphology is uninterpretable. Such records show a "flat line" in lead II or III. Three of the errors give rise to records that are fully interpretable once the specific interconnection error has been identified (although one of the errors cannot reliably be recognized in the absence of a previous record for comparison). One of the errors produces no change in the electrocardiogram recording. In all cases, the precordial leads are interpretable, although there are very minor changes in the voltages. This communication predicts the changes in limb lead appearances consequent upon all possible double limb lead interchanges and illustrates these with records electively taken with such double interconnection errors. There are only 3 possible double limb lead interconnection errors. In 2 of the possible combinations, interpretation of the limb leads is impossible, and each of these errors gives rise to a flat line in lead I. In the third combination, the record is fully interpretable once the abnormality has been identified. In all 3 types, the precordial leads are interpretable, although there are very minor changes in the voltages.

  15. Predictive Dynamic Stimulation of Structures with Non-Smooth Nonlinearities

    Science.gov (United States)

    2005-06-30

    bang- bang, dead band, and Duffing type nonlinearity. Nonlinear damping has been considered in the form of Coulomb damping, velocity-squared damping...or 2,000 DOF reduced to 5 or 10 DOF) of simple oscillator systems capture the free oscillation decay and the steady state response to harmonic...smooth or non-smooth), the linear based reduced model tends to overestimate the change in oscillation frequency due to the nonlinearity. Specifically

  16. Nonlinear fastest growing perturbation and the first kind of predictability

    Institute of Scientific and Technical Information of China (English)

    MU; Mu

    2001-01-01

    [1]Jiao Jiujiu, Grey hydrogeologic system analysis and time series model, Survey Science and Technology (in Chinese), 1987,(10): 39-43.[2]Li Shuwen, Wang Baolai, Xiao Guoqiang, A compound model of grey and periodic scrape and its application in groundwater prediction, Journal of Hebei Institute of Architectural Science & Technology (in Chinese), 1992, (3): 246-251.[3]Wang Qingyin, Li Shuwen, Grey distributed parameter model and groundwater analog, Journal of Hebei Institute of Architectural Science & Technology (in Chinese), 1992, (3): 66-70.[4]Guo Chunqing, Xia Riyuan, Liu Zhenglin, Gray Systematic Theory and Methodological Study of Krast Groundwater Resources Evaluation (in Chinese), Beijing: Geological Publishing House, 1993, 3-60.[5]Wang Qingyin, Liu Kaidi, The Mathematical Method of Grey Systematic Theory and Its Application (in Chinese), Chengdu: Publishing House of Southwestern China University of Communication, 1990, 23-27.[6]Wang Qingyin, Wu Heqing, The concept of grey number and its property, in Proceedings of NAFIPS98, USA, 1998,45-49.[7]Givoli, D., Doukhovni, I., Finite element programming approach for contact problems with geometrical nonlinearity, Computers and Structures, 1996, (8): 31-41.[8]Li Shuwen, Wang Zhiqiang, Wu Qiang, The superiority of storage-centered finite element method in solving seepage problem, Coal Geology and Exploration (in Chinese), 1999, (5): 46-49.

  17. Enabling Predictive Simulation and UQ of Complex Multiphysics PDE Systems by the Development of Goal-Oriented Variational Sensitivity Analysis and a-Posteriori Error Estimation Methods

    Energy Technology Data Exchange (ETDEWEB)

    Estep, Donald [Colorado State Univ., Fort Collins, CO (United States)

    2015-11-30

    This project addressed the challenge of predictive computational analysis of strongly coupled, highly nonlinear multiphysics systems characterized by multiple physical phenomena that span a large range of length- and time-scales. Specifically, the project was focused on computational estimation of numerical error and sensitivity analysis of computational solutions with respect to variations in parameters and data. In addition, the project investigated the use of accurate computational estimates to guide efficient adaptive discretization. The project developed, analyzed and evaluated new variational adjoint-based techniques for integration, model, and data error estimation/control and sensitivity analysis, in evolutionary multiphysics multiscale simulations.

  18. Nonlinear calibration transfer based on hierarchical Bayesian models and Lagrange Multipliers: Error bounds of estimates via Monte Carlo - Markov Chain sampling.

    Science.gov (United States)

    Seichter, Felicia; Vogt, Josef; Radermacher, Peter; Mizaikoff, Boris

    2017-01-25

    The calibration of analytical systems is time-consuming and the effort for daily calibration routines should therefore be minimized, while maintaining the analytical accuracy and precision. The 'calibration transfer' approach proposes to combine calibration data already recorded with actual calibrations measurements. However, this strategy was developed for the multivariate, linear analysis of spectroscopic data, and thus, cannot be applied to sensors with a single response channel and/or a non-linear relationship between signal and desired analytical concentration. To fill this gap for a non-linear calibration equation, we assume that the coefficients for the equation, collected over several calibration runs, are normally distributed. Considering that coefficients of an actual calibration are a sample of this distribution, only a few standards are needed for a complete calibration data set. The resulting calibration transfer approach is demonstrated for a fluorescence oxygen sensor and implemented as a hierarchical Bayesian model, combined with a Lagrange Multipliers technique and Monte-Carlo Markov-Chain sampling. The latter provides realistic estimates for coefficients and prediction together with accurate error bounds by simulating known measurement errors and system fluctuations. Performance criteria for validation and optimal selection of a reduced set of calibration samples were developed and lead to a setup which maintains the analytical performance of a full calibration. Strategies for a rapid determination of problems occurring in a daily calibration routine, are proposed, thereby opening the possibility of correcting the problem just in time.

  19. Association of Elevated Reward Prediction Error Response With Weight Gain in Adolescent Anorexia Nervosa.

    Science.gov (United States)

    DeGuzman, Marisa; Shott, Megan E; Yang, Tony T; Riederer, Justin; Frank, Guido K W

    2017-06-01

    Anorexia nervosa is a psychiatric disorder of unknown etiology. Understanding associations between behavior and neurobiology is important in treatment development. Using a novel monetary reward task during functional magnetic resonance brain imaging, the authors tested how brain reward learning in adolescent anorexia nervosa changes with weight restoration. Female adolescents with anorexia nervosa (N=21; mean age, 16.4 years [SD=1.9]) underwent functional MRI (fMRI) before and after treatment; similarly, healthy female control adolescents (N=21; mean age, 15.2 years [SD=2.4]) underwent fMRI on two occasions. Brain function was tested using the reward prediction error construct, a computational model for reward receipt and omission related to motivation and neural dopamine responsiveness. Compared with the control group, the anorexia nervosa group exhibited greater brain response 1) for prediction error regression within the caudate, ventral caudate/nucleus accumbens, and anterior and posterior insula, 2) to unexpected reward receipt in the anterior and posterior insula, and 3) to unexpected reward omission in the caudate body. Prediction error and unexpected reward omission response tended to normalize with treatment, while unexpected reward receipt response remained significantly elevated. Greater caudate prediction error response when underweight was associated with lower weight gain during treatment. Punishment sensitivity correlated positively with ventral caudate prediction error response. Reward system responsiveness is elevated in adolescent anorexia nervosa when underweight and after weight restoration. Heightened prediction error activity in brain reward regions may represent a phenotype of adolescent anorexia nervosa that does not respond well to treatment. Prediction error response could be a neurobiological marker of illness severity that can indicate individual treatment needs.

  20. Cortical delta activity reflects reward prediction error and related behavioral adjustments, but at different times.

    Science.gov (United States)

    Cavanagh, James F

    2015-04-15

    Recent work has suggested that reward prediction errors elicit a positive voltage deflection in the scalp-recorded electroencephalogram (EEG); an event sometimes termed a reward positivity. However, a strong test of this proposed relationship remains to be defined. Other important questions remain unaddressed: such as the role of the reward positivity in predicting future behavioral adjustments that maximize reward. To answer these questions, a three-armed bandit task was used to investigate the role of positive prediction errors during trial-by-trial exploration and task-set based exploitation. The feedback-locked reward positivity was characterized by delta band activities, and these related EEG features scaled with the degree of a computationally derived positive prediction error. However, these phenomena were also dissociated: the computational model predicted exploitative action selection and related response time speeding whereas the feedback-locked EEG features did not. Compellingly, delta band dynamics time-locked to the subsequent bandit (the P3) successfully predicted these behaviors. These bandit-locked findings included an enhanced parietal to motor cortex delta phase lag that correlated with the degree of response time speeding, suggesting a mechanistic role for delta band activities in motivating action selection. This dissociation in feedback vs. bandit locked EEG signals is interpreted as a differentiation in hierarchically distinct types of prediction error, yielding novel predictions about these dissociable delta band phenomena during reinforcement learning and decision making.

  1. Application of Exactly Linearized Error Transport Equations to AIAA CFD Prediction Workshops

    Science.gov (United States)

    Derlaga, Joseph M.; Park, Michael A.; Rallabhandi, Sriram

    2017-01-01

    The computational fluid dynamics (CFD) prediction workshops sponsored by the AIAA have created invaluable opportunities in which to discuss the predictive capabilities of CFD in areas in which it has struggled, e.g., cruise drag, high-lift, and sonic boom pre diction. While there are many factors that contribute to disagreement between simulated and experimental results, such as modeling or discretization error, quantifying the errors contained in a simulation is important for those who make decisions based on the computational results. The linearized error transport equations (ETE) combined with a truncation error estimate is a method to quantify one source of errors. The ETE are implemented with a complex-step method to provide an exact linearization with minimal source code modifications to CFD and multidisciplinary analysis methods. The equivalency of adjoint and linearized ETE functional error correction is demonstrated. Uniformly refined grids from a series of AIAA prediction workshops demonstrate the utility of ETE for multidisciplinary analysis with a connection between estimated discretization error and (resolved or under-resolved) flow features.

  2. WAsP prediction errors due to site orography[Wind Atlas Analysis and Application Program

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, A.J.; Mortensen, N.G.

    2004-12-01

    The influence of rugged terrain on the prediction accuracy of the Wind Atlas Analysis and Application Program (WAsP) is investigated using a case study of field measurements taken in rugged terrain. The parameters that could cause substantial errors in a prediction are identified and discussed. In particular, the effects from extreme orography are investigated. A suitable performance indicator is developed which predicts the sign and approximate magnitude of such errors due to orography. This procedure allows the user to assess the consequences of using WAsP outside its operating envelope and could provide a means of correction for rugged terrain effects. (au)

  3. Drivers of coupled model ENSO error dynamics and the spring predictability barrier

    Science.gov (United States)

    Larson, Sarah M.; Kirtman, Ben P.

    2017-06-01

    Despite recent improvements in ENSO simulations, ENSO predictions ultimately remain limited by error growth and model inadequacies. Determining the accompanying dynamical processes that drive the growth of certain types of errors may help the community better recognize which error sources provide an intrinsic limit to predictability. This study applies a dynamical analysis to previously developed CCSM4 error ensemble experiments that have been used to model noise-driven error growth. Analysis reveals that ENSO-independent error growth is instigated via a coupled instability mechanism. Daily error fields indicate that persistent stochastic zonal wind stress perturbations (τx^' } ) near the equatorial dateline activate the coupled instability, first driving local SST and anomalous zonal current changes that then induce upwelling anomalies and a clear thermocline response. In particular, March presents a window of opportunity for stochastic τx^' } to impose a lasting influence on the evolution of eastern Pacific SST through December, suggesting that stochastic τx^' } is an important contributor to the spring predictability barrier. Stochastic winds occurring in other months only temporarily affect eastern Pacific SST for 2-3 months. Comparison of a control simulation with an ENSO cycle and the ENSO-independent error ensemble experiments reveals that once the instability is initiated, the subsequent error growth is modulated via an ENSO-like mechanism, namely the seasonal strength of the Bjerknes feedback. Furthermore, unlike ENSO events that exhibit growth through the fall, the growth of ENSO-independent SST errors terminates once the seasonal strength of the Bjerknes feedback weakens in fall. Results imply that the heat content supplied by the subsurface precursor preceding the onset of an ENSO event is paramount to maintaining the growth of the instability (or event) through fall.

  4. Drivers of coupled model ENSO error dynamics and the spring predictability barrier

    Science.gov (United States)

    Larson, Sarah M.; Kirtman, Ben P.

    2016-07-01

    Despite recent improvements in ENSO simulations, ENSO predictions ultimately remain limited by error growth and model inadequacies. Determining the accompanying dynamical processes that drive the growth of certain types of errors may help the community better recognize which error sources provide an intrinsic limit to predictability. This study applies a dynamical analysis to previously developed CCSM4 error ensemble experiments that have been used to model noise-driven error growth. Analysis reveals that ENSO-independent error growth is instigated via a coupled instability mechanism. Daily error fields indicate that persistent stochastic zonal wind stress perturbations (τx^' } ) near the equatorial dateline activate the coupled instability, first driving local SST and anomalous zonal current changes that then induce upwelling anomalies and a clear thermocline response. In particular, March presents a window of opportunity for stochastic τx^' } to impose a lasting influence on the evolution of eastern Pacific SST through December, suggesting that stochastic τx^' } is an important contributor to the spring predictability barrier. Stochastic winds occurring in other months only temporarily affect eastern Pacific SST for 2-3 months. Comparison of a control simulation with an ENSO cycle and the ENSO-independent error ensemble experiments reveals that once the instability is initiated, the subsequent error growth is modulated via an ENSO-like mechanism, namely the seasonal strength of the Bjerknes feedback. Furthermore, unlike ENSO events that exhibit growth through the fall, the growth of ENSO-independent SST errors terminates once the seasonal strength of the Bjerknes feedback weakens in fall. Results imply that the heat content supplied by the subsurface precursor preceding the onset of an ENSO event is paramount to maintaining the growth of the instability (or event) through fall.

  5. Applicability of some statistical tools to predict optimum adsorption isotherm after linear and non-linear regression analysis.

    Science.gov (United States)

    Ncibi, Mohamed Chaker

    2008-05-01

    In any single component isotherm study, determining the best-fitting model is a key analysis to mathematically describe the involved sorption system and, therefore, to explore the related theoretical assumptions. Hence, several error calculation functions have been widely used to estimate the error deviations between experimental and theoretically predicted equilibrium adsorption values (Q(e,exp)vs.Q(e,theo) as X- and Y-axis, respectively), including the average relative error deviation, the Marquardt's percent standard error deviation, the hybrid fractional error function, the sum of the squares of the errors, the correlation coefficient and the residuals. In this study, five other statistical functions are analysed to investigate their applicability as suitable tools to evaluate isotherm model fitness, namely the Pearson correlation coefficient, the coefficient of determination, the Chi-square test, the F-test and the Student's T-test, using the commonly-used functions as references. The adsorption of textile dye onto Posidonia oceanica seagrass fibres was carried out, as study case, in batch mode at 20 degrees C. Besides, and in order to get an overall approach of the possible utilization of these statistical functions within the studied item, the examination was realized for both linear and non-linear regression analysis. The related results showed that, among the five studied statistical tools, the chi(2) and Student's T-tests were suitable to determine the best-fitting isotherm model for the case of linear modelling approach. On the other hand, dealing with the non-linear analysis, despite the Student's T-test, all the other functions gave satisfactorily results, by agreeing the commonly-used error functions calculation.

  6. High Capacity Reversible Watermarking for Audio by Histogram Shifting and Predicted Error Expansion

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2014-01-01

    Full Text Available Being reversible, the watermarking information embedded in audio signals can be extracted while the original audio data can achieve lossless recovery. Currently, the few reversible audio watermarking algorithms are confronted with following problems: relatively low SNR (signal-to-noise of embedded audio; a large amount of auxiliary embedded location information; and the absence of accurate capacity control capability. In this paper, we present a novel reversible audio watermarking scheme based on improved prediction error expansion and histogram shifting. First, we use differential evolution algorithm to optimize prediction coefficients and then apply prediction error expansion to output stego data. Second, in order to reduce location map bits length, we introduced histogram shifting scheme. Meanwhile, the prediction error modification threshold according to a given embedding capacity can be computed by our proposed scheme. Experiments show that this algorithm improves the SNR of embedded audio signals and embedding capacity, drastically reduces location map bits length, and enhances capacity control capability.

  7. Temporal Prediction Errors Affect Short-Term Memory Scanning Response Time.

    Science.gov (United States)

    Limongi, Roberto; Silva, Angélica M

    2016-11-01

    The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production - where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.

  8. High capacity reversible watermarking for audio by histogram shifting and predicted error expansion.

    Science.gov (United States)

    Wang, Fei; Xie, Zhaoxin; Chen, Zuo

    2014-01-01

    Being reversible, the watermarking information embedded in audio signals can be extracted while the original audio data can achieve lossless recovery. Currently, the few reversible audio watermarking algorithms are confronted with following problems: relatively low SNR (signal-to-noise) of embedded audio; a large amount of auxiliary embedded location information; and the absence of accurate capacity control capability. In this paper, we present a novel reversible audio watermarking scheme based on improved prediction error expansion and histogram shifting. First, we use differential evolution algorithm to optimize prediction coefficients and then apply prediction error expansion to output stego data. Second, in order to reduce location map bits length, we introduced histogram shifting scheme. Meanwhile, the prediction error modification threshold according to a given embedding capacity can be computed by our proposed scheme. Experiments show that this algorithm improves the SNR of embedded audio signals and embedding capacity, drastically reduces location map bits length, and enhances capacity control capability.

  9. Nonlinear Fuzzy Model Predictive Control for a PWR Nuclear Power Plant

    Directory of Open Access Journals (Sweden)

    Xiangjie Liu

    2014-01-01

    Full Text Available Reliable power and temperature control in pressurized water reactor (PWR nuclear power plant is necessary to guarantee high efficiency and plant safety. Since the nuclear plants are quite nonlinear, the paper presents nonlinear fuzzy model predictive control (MPC, by incorporating the realistic constraints, to realize the plant optimization. T-S fuzzy modeling on nuclear power plant is utilized to approximate the nonlinear plant, based on which the nonlinear MPC controller is devised via parallel distributed compensation (PDC scheme in order to solve the nonlinear constraint optimization problem. Improved performance compared to the traditional PID controller for a TMI-type PWR is obtained in the simulation.

  10. Analogue correction method of errors and its applicatim to numerical weather prediction

    Institute of Scientific and Technical Information of China (English)

    Gao Li; Ren Hong-Li; Li Jian-Ping; Chou Ji-Fan

    2006-01-01

    In this paper,an analogue correction method of errors (ACE) based on a complicated atmospheric model is further developed and applied to numerical weather prediction (NWP).The analysis shows that the ACE can effectively reduce model errors by combining the statistical analogue method with the dynamical model together in order that the information of plenty of historical data is utilized in the current complicated NWP model.Furthermore.in the ACE.the differences of the similarities between different historical analogues and the current initial state are considered as the weights for estimating model errors.The results of daily,decad and monthly prediction experiments On a complicated T63 atmospheric model show that the performance of the ACE by correcting model errors based on the estimation of the errors of 4 historical analogue predictions is not only better than that of the scheme of only introducing the correction of the errors of every single analogue prediction,but is also better than that of the T63 model.

  11. ERROR ESTIMATE FOR INFLUENCE OF MODEL REDUCTION OF NONLINEAR DISSIPATIVE AUTONOMOUS DYNAMICAL SYSTEM ON LONG-TERM BEHAVIOURS

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jia-zhong; LIU Yan; CHEN Dang-min

    2005-01-01

    From viewpoint of nonlinear dynamics, the model reduction and its influence on the long-term behaviours of a class of nonlinear dissipative autonomous dynamical system with higher dimension are investigated theoretically under some assumptions. The system is analyzed in the state space with an introduction of a distance definition which can be used to describe the distance between the full system and the reduced system, and the solution of the full system is then projected onto the complete space spanned by the eigenvectors of the linear operator of the governing equations. As a result, the influence of mode series tnncation on the long-term behaviours and the error estimate are derived, showing that the error is dependent on the first products of frequencies and damping ratios in the subspace spanned by the eigenvectors with higher modal damping. Furthermore, the fundamental understanding for the topological change of the solution due to the application of different model reduction is interpreted in a mathematically precise way, using the qualitative theory of nonlinear dynamics.

  12. Quantifying the Effect of Lidar Turbulence Error on Wind Power Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Newman, Jennifer F.; Clifton, Andrew

    2016-01-01

    Currently, cup anemometers on meteorological towers are used to measure wind speeds and turbulence intensity to make decisions about wind turbine class and site suitability; however, as modern turbine hub heights increase and wind energy expands to complex and remote sites, it becomes more difficult and costly to install meteorological towers at potential sites. As a result, remote-sensing devices (e.g., lidars) are now commonly used by wind farm managers and researchers to estimate the flow field at heights spanned by a turbine. Although lidars can accurately estimate mean wind speeds and wind directions, there is still a large amount of uncertainty surrounding the measurement of turbulence using these devices. Errors in lidar turbulence estimates are caused by a variety of factors, including instrument noise, volume averaging, and variance contamination, in which the magnitude of these factors is highly dependent on measurement height and atmospheric stability. As turbulence has a large impact on wind power production, errors in turbulence measurements will translate into errors in wind power prediction. The impact of using lidars rather than cup anemometers for wind power prediction must be understood if lidars are to be considered a viable alternative to cup anemometers.In this poster, the sensitivity of power prediction error to typical lidar turbulence measurement errors is assessed. Turbulence estimates from a vertically profiling WINDCUBE v2 lidar are compared to high-resolution sonic anemometer measurements at field sites in Oklahoma and Colorado to determine the degree of lidar turbulence error that can be expected under different atmospheric conditions. These errors are then incorporated into a power prediction model to estimate the sensitivity of power prediction error to turbulence measurement error. Power prediction models, including the standard binning method and a random forest method, were developed using data from the aeroelastic simulator FAST

  13. Using lexical variables to predict picture-naming errors in jargon aphasia

    Directory of Open Access Journals (Sweden)

    Catherine Godbold

    2015-04-01

    Full Text Available Introduction Individuals with jargon aphasia produce fluent output which often comprises high proportions of non-word errors (e.g., maf for dog. Research has been devoted to identifying the underlying mechanisms behind such output. Some accounts posit a reduced flow of spreading activation between levels in the lexical network (e.g., Robson et al., 2003. If activation level differences across the lexical network are a cause of non-word outputs, we would predict improved performance when target items reflect an increased flow of activation between levels (e.g. more frequently-used words are often represented by higher resting levels of activation. This research investigates the effect of lexical properties of targets (e.g., frequency, imageability on accuracy, error type (real word vs. non-word and target-error overlap of non-word errors in a picture naming task by individuals with jargon aphasia. Method Participants were 17 individuals with Wernicke’s aphasia, who produced a high proportion of non-word errors (>20% of errors on the Philadelphia Naming Test (PNT; Roach et al., 1996. The data were retrieved from the Moss Aphasic Psycholinguistic Database Project (MAPPD, Mirman et al., 2010. We used a series of mixed models to test whether lexical variables predicted accuracy, error type (real word vs. non-word and target-error overlap for the PNT data. As lexical variables tend to be highly correlated, we performed a principal components analysis to reduce the variables into five components representing variables associated with phonology (length, phonotactic probability, neighbourhood density and neighbourhood frequency, semantics (imageability and concreteness, usage (frequency and age-of-acquisition, name agreement and visual complexity. Results and Discussion Table 1 shows the components that made a significant contribution to each model. Individuals with jargon aphasia produced more correct responses and fewer non-word errors relative to

  14. The application of Nonlinear Local Lyapunov Vectors to the Zebiak-Cane Model and their performance in the Ensemble Prediction

    Science.gov (United States)

    Hou, Zhaolu; Li, Jianping; Ding, Ruiqiang; Feng, Jie

    2017-04-01

    Nonlinear local Lyapunov vectors (NLLVs) have been developed to indicate orthogonal directions in phase space with different error growth rates. Comparing to the breeding vectors (BVs), NLLVs can span the fast-growing perturbation subspace efficiently and may gasp more components in analysis errors than the BVs in the nonlinear dynamical system. Here, NLLVs are employed in the Zebiak-Cane (ZC) atmosphere-ocean coupled model and represent a nonlinear, finite-time extension of the local Lyapunov vectors of the ZC model. The statistical properties of NLLVs is not very sensitive to the choice of the breeding parameter. However, the non-leading NLLVs have some randomness, which increase the diversity of NLLVs. Not only the leading NLLV but also the non-leading NLLVs are flow-dependent and related to the background ENSO evolution of the ZC model in the aspect of spatial structure and error growth rate. the non-leading NLLVs also are the instability direction related to the ENSO process in the ZC model. Due to the non-leading NLLVs, the subspace of the first few NLLVs can describe better the analysis error than that of the same number BVs in the ZC model. NLLVs as initial ensemble perturbations are applied to the ensemble prediction of ENSO and the performance are systematically compared to those of the random perturbation (RP) technique, and the BV method in the prefect environment. The results demonstrate that the RP technique has the worst performance and the NLLVs method is the best in the ensemble forecasts. In particular, the NLLV technique can reduce the "spring barrier" for ENSO prediction further than the other ensemble method.

  15. Predictor-based error correction method in short-term climate prediction

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In terms of the basic idea of combining dynamical and statistical methods in short-term climate prediction, a new prediction method of predictor-based error correction (PREC) is put forward in order to effectively use statistical experiences in dynamical prediction. Analyses show that the PREC can reasonably utilize the significant correlations between predictors and model prediction errors and correct prediction errors by establishing statistical prediction model. Besides, the PREC is further applied to the cross-validation experiments of dynamical seasonal prediction on the operational atmosphere-ocean coupled general circulation model of China Meteorological Administration/National Climate Center by selecting the sea surface temperature index in Ni(n)o3 region as the physical predictor that represents the prevailing ENSO-cycle mode of interannual variability in climate system. It is shown from the prediction results of summer mean circulation and total precipitation that the PREC can improve predictive skills to some extent. Thus the PREC provides a new approach for improving short-term climate prediction.

  16. Min-max model predictive control for constrained nonlinear systems via multiple LPV embeddings

    Institute of Scientific and Technical Information of China (English)

    ZHAO Min; LI Ning; LI ShaoYuan

    2009-01-01

    A min-max model predictive control strategy is proposed for a class of constrained nonlinear system whose trajectories can be embedded within those of a bank of linear parameter varying (LPV) models. The embedding LPV models can yield much better approximation of the nonlinear system dynamics than a single LTV model. For each LPV model, a parameter-dependent Lyapunov function is introduced to obtain poly-quadratically stable control law and to guarantee the feasibility and stability of the original nonlinear system. This approach can greatly reduce computational burden in traditional nonlinear predictive control strategy. Finally a simulation example illustrating the strategy is presented.

  17. Multiscale error analysis, correction, and predictive uncertainty estimation in a flood forecasting system

    Science.gov (United States)

    Bogner, K.; Pappenberger, F.

    2011-07-01

    River discharge predictions often show errors that degrade the quality of forecasts. Three different methods of error correction are compared, namely, an autoregressive model with and without exogenous input (ARX and AR, respectively), and a method based on wavelet transforms. For the wavelet method, a Vector-Autoregressive model with exogenous input (VARX) is simultaneously fitted for the different levels of wavelet decomposition; after predicting the next time steps for each scale, a reconstruction formula is applied to transform the predictions in the wavelet domain back to the original time domain. The error correction methods are combined with the Hydrological Uncertainty Processor (HUP) in order to estimate the predictive conditional distribution. For three stations along the Danube catchment, and using output from the European Flood Alert System (EFAS), we demonstrate that the method based on wavelets outperforms simpler methods and uncorrected predictions with respect to mean absolute error, Nash-Sutcliffe efficiency coefficient (and its decomposed performance criteria), informativeness score, and in particular forecast reliability. The wavelet approach efficiently accounts for forecast errors with scale properties of unknown source and statistical structure.

  18. How we learn to make decisions: rapid propagation of reinforcement learning prediction errors in humans.

    Science.gov (United States)

    Krigolson, Olav E; Hassall, Cameron D; Handy, Todd C

    2014-03-01

    Our ability to make decisions is predicated upon our knowledge of the outcomes of the actions available to us. Reinforcement learning theory posits that actions followed by a reward or punishment acquire value through the computation of prediction errors-discrepancies between the predicted and the actual reward. A multitude of neuroimaging studies have demonstrated that rewards and punishments evoke neural responses that appear to reflect reinforcement learning prediction errors [e.g., Krigolson, O. E., Pierce, L. J., Holroyd, C. B., & Tanaka, J. W. Learning to become an expert: Reinforcement learning and the acquisition of perceptual expertise. Journal of Cognitive Neuroscience, 21, 1833-1840, 2009; Bayer, H. M., & Glimcher, P. W. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 47, 129-141, 2005; O'Doherty, J. P. Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Current Opinion in Neurobiology, 14, 769-776, 2004; Holroyd, C. B., & Coles, M. G. H. The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679-709, 2002]. Here, we used the brain ERP technique to demonstrate that not only do rewards elicit a neural response akin to a prediction error but also that this signal rapidly diminished and propagated to the time of choice presentation with learning. Specifically, in a simple, learnable gambling task, we show that novel rewards elicited a feedback error-related negativity that rapidly decreased in amplitude with learning. Furthermore, we demonstrate the existence of a reward positivity at choice presentation, a previously unreported ERP component that has a similar timing and topography as the feedback error-related negativity that increased in amplitude with learning. The pattern of results we observed mirrored the output of a computational model that we implemented to compute reward

  19. Discussion of Some Problems About Nonlinear Time Series Prediction Using v-Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    GAO Cheng-Feng; CHEN Tian-Lun; NAN Tian-Shi

    2007-01-01

    Some problems in using v-support vector machine (v-SVM) for the prediction of nonlinear time series are discussed. The problems include selection of various net parameters, which affect the performance of prediction, mixture of kernels, and decomposition cooperation linear programming v-SVM regression, which result in improvements of the algorithm. Computer simulations in the prediction of nonlinear time series produced by Mackey-Glass equation and Lorenz equation provide some improved results.

  20. Adaptive dynamic programming for finite-horizon optimal control of discrete-time nonlinear systems with ε-error bound.

    Science.gov (United States)

    Wang, Fei-Yue; Jin, Ning; Liu, Derong; Wei, Qinglai

    2011-01-01

    In this paper, we study the finite-horizon optimal control problem for discrete-time nonlinear systems using the adaptive dynamic programming (ADP) approach. The idea is to use an iterative ADP algorithm to obtain the optimal control law which makes the performance index function close to the greatest lower bound of all performance indices within an ε-error bound. The optimal number of control steps can also be obtained by the proposed ADP algorithms. A convergence analysis of the proposed ADP algorithms in terms of performance index function and control policy is made. In order to facilitate the implementation of the iterative ADP algorithms, neural networks are used for approximating the performance index function, computing the optimal control policy, and modeling the nonlinear system. Finally, two simulation examples are employed to illustrate the applicability of the proposed method.

  1. Model structural uncertainty quantification and hydrologic parameter and prediction error analysis using airborne electromagnetic data

    DEFF Research Database (Denmark)

    Minsley, B. J.; Christensen, Nikolaj Kruse; Christensen, Steen

    Model structure, or the spatial arrangement of subsurface lithological units, is fundamental to the hydrological behavior of Earth systems. Knowledge of geological model structure is critically important in order to make informed hydrological predictions and management decisions. Model structure...... indicator simulation, we produce many realizations of model structure that are consistent with observed datasets and prior knowledge. Given estimates of model structural uncertainty, we incorporate hydrologic observations to evaluate the errors in hydrologic parameter or prediction errors that occur when...... is never perfectly known, however, and incorrect assumptions can be a significant source of error when making model predictions. We describe a systematic approach for quantifying model structural uncertainty that is based on the integration of sparse borehole observations and large-scale airborne...

  2. Lossless compression of hyperspectral images based on the prediction error block

    Science.gov (United States)

    Li, Yongjun; Li, Yunsong; Song, Juan; Liu, Weijia; Li, Jiaojiao

    2016-05-01

    A lossless compression algorithm of hyperspectral image based on distributed source coding is proposed, which is used to compress the spaceborne hyperspectral data effectively. In order to make full use of the intra-frame correlation and inter-frame correlation, the prediction error block scheme are introduced. Compared with the scalar coset based distributed compression method (s-DSC) proposed by E.Magli et al., that is , the bitrate of the whole block is determined by its maximum prediction error, and the s-DSC-classify scheme proposed by Song Juan that is based on classification and coset coding, the prediction error block scheme could reduce the bitrate efficiently. Experimental results on hyperspectral images show that the proposed scheme can offer both high compression performance and low encoder complexity and decoder complexity, which is available for on-board compression of hyperspectral images.

  3. Cognitive strategies regulate fictive, but not reward prediction error signals in a sequential investment task.

    Science.gov (United States)

    Gu, Xiaosi; Kirk, Ulrich; Lohrenz, Terry M; Montague, P Read

    2014-08-01

    Computational models of reward processing suggest that foregone or fictive outcomes serve as important information sources for learning and augment those generated by experienced rewards (e.g. reward prediction errors). An outstanding question is how these learning signals interact with top-down cognitive influences, such as cognitive reappraisal strategies. Using a sequential investment task and functional magnetic resonance imaging, we show that the reappraisal strategy selectively attenuates the influence of fictive, but not reward prediction error signals on investment behavior; such behavioral effect is accompanied by changes in neural activity and connectivity in the anterior insular cortex, a brain region thought to integrate subjective feelings with high-order cognition. Furthermore, individuals differ in the extent to which their behaviors are driven by fictive errors versus reward prediction errors, and the reappraisal strategy interacts with such individual differences; a finding also accompanied by distinct underlying neural mechanisms. These findings suggest that the variable interaction of cognitive strategies with two important classes of computational learning signals (fictive, reward prediction error) represent one contributing substrate for the variable capacity of individuals to control their behavior based on foregone rewards. These findings also expose important possibilities for understanding the lack of control in addiction based on possibly foregone rewarding outcomes.

  4. Choice modulates the neural dynamics of prediction error processing during rewarded learning.

    Science.gov (United States)

    Peterson, David A; Lotz, Daniel T; Halgren, Eric; Sejnowski, Terrence J; Poizner, Howard

    2011-01-15

    Our ability to selectively engage with our environment enables us to guide our learning and to take advantage of its benefits. When facing multiple possible actions, our choices are a critical aspect of learning. In the case of learning from rewarding feedback, there has been substantial theoretical and empirical progress in elucidating the associated behavioral and neural processes, predominantly in terms of a reward prediction error, a measure of the discrepancy between actual versus expected reward. Nevertheless, the distinct influence of choice on prediction error processing and its neural dynamics remains relatively unexplored. In this study we used a novel paradigm to determine how choice influences prediction error processing and to examine whether there are correspondingly distinct neural dynamics. We recorded scalp electroencephalogram while healthy adults were administered a rewarded learning task in which choice trials were intermingled with control trials involving the same stimuli, motor responses, and probabilistic rewards. We used a temporal difference learning model of subjects' trial-by-trial choices to infer subjects' image valuations and corresponding prediction errors. As expected, choices were associated with lower overall prediction error magnitudes, most notably over the course of learning the stimulus-reward contingencies. Choices also induced a higher-amplitude relative positivity in the frontocentral event-related potential about 200 ms after reward signal onset that was negatively correlated with the differential effect of choice on the prediction error. Thus choice influences the neural dynamics associated with how reward signals are processed during learning. Behavioral, computational, and neurobiological models of rewarded learning should therefore accommodate a distinct influence for choice during rewarded learning.

  5. Model Predictive Control of a Nonlinear System with Known Scheduling Variable

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2012-01-01

    the control problem of the nonlinear system is simplied into a quadratic programming. Wind turbine is chosen as the case study and we choose wind speed as the scheduling variable. Wind speed is measurable ahead of the turbine, therefore the scheduling variable is known for the entire prediction horizon.......Model predictive control (MPC) of a class of nonlinear systems is considered in this paper. We will use Linear Parameter Varying (LPV) model of the nonlinear system. By taking the advantage of having future values of the scheduling variable, we will simplify state prediction. Consequently...

  6. Prediction of the nonlinear creep deformation of plastic products

    OpenAIRE

    Spoormaker, Jan; Skrypnyk, Ihor; Heidweiller, Anton

    2015-01-01

    Based on an example of the non-linear creep deformations of an air inlet, thispaper demonstrates modern capabilities in the FEA modeling of complex 3D visco-elastic deformations in relation to the design of plastic products. The importance of such capabilities for designing complex plastic components is discussed. Because commercial FEA packages do not yet render these capabilities "off the shelf", the non-linear visco-elasticity model is incorporated through a user subroutine. The specifics ...

  7. Ensemble prediction of floods – catchment non-linearity and forecast probabilities

    Directory of Open Access Journals (Sweden)

    C. Reszler

    2007-07-01

    Full Text Available Quantifying the uncertainty of flood forecasts by ensemble methods is becoming increasingly important for operational purposes. The aim of this paper is to examine how the ensemble distribution of precipitation forecasts propagates in the catchment system, and to interpret the flood forecast probabilities relative to the forecast errors. We use the 622 km2 Kamp catchment in Austria as an example where a comprehensive data set, including a 500 yr and a 1000 yr flood, is available. A spatially-distributed continuous rainfall-runoff model is used along with ensemble and deterministic precipitation forecasts that combine rain gauge data, radar data and the forecast fields of the ALADIN and ECMWF numerical weather prediction models. The analyses indicate that, for long lead times, the variability of the precipitation ensemble is amplified as it propagates through the catchment system as a result of non-linear catchment response. In contrast, for lead times shorter than the catchment lag time (e.g. 12 h and less, the variability of the precipitation ensemble is decreased as the forecasts are mainly controlled by observed upstream runoff and observed precipitation. Assuming that all ensemble members are equally likely, the statistical analyses for five flood events at the Kamp showed that the ensemble spread of the flood forecasts is always narrower than the distribution of the forecast errors. This is because the ensemble forecasts focus on the uncertainty in forecast precipitation as the dominant source of uncertainty, and other sources of uncertainty are not accounted for. However, a number of analyses, including Relative Operating Characteristic diagrams, indicate that the ensemble spread is a useful indicator to assess potential forecast errors for lead times larger than 12 h.

  8. Predictive error detection in pianists: A combined ERP and motion capture study

    Directory of Open Access Journals (Sweden)

    Clemens eMaidhof

    2013-09-01

    Full Text Available Performing a piece of music involves the interplay of several cognitive and motor processes and requires extensive training to achieve a high skill level. However, even professional musicians commit errors occasionally. Previous event-related potential (ERP studies have investigated the neurophysiological correlates of pitch errors during piano performance, and reported pre-error negativity already occurring approximately 70-100 ms before the error had been committed and audible. It was assumed that this pre-error negativity reflects predictive control processes that compare predicted consequences with actual consequences of one’s own actions. However, in previous investigations, correct and incorrect pitch events were confounded by their different tempi. In addition, no data about the underlying movements were available. In the present study, we exploratively recorded the ERPs and 3D movement data of pianists’ fingers simultaneously while they performed fingering exercises from memory. Results showed a pre-error negativity for incorrect keystrokes when both correct and incorrect keystrokes were performed with comparable tempi. Interestingly, even correct notes immediately preceding erroneous keystrokes elicited a very similar negativity. In addition, we explored the possibility of computing ERPs time-locked to a kinematic landmark in the finger motion trajectories defined by when a finger makes initial contact with the key surface, that is, at the onset of tactile feedback. Results suggest that incorrect notes elicited a small difference after the onset of tactile feedback, whereas correct notes preceding incorrect ones elicited negativity before the onset of tactile feedback. The results tentatively suggest that tactile feedback plays an important role in error-monitoring during piano performance, because the comparison between predicted and actual sensory (tactile feedback may provide the information necessary for the detection of an

  9. Estimating nonlinear models

    Science.gov (United States)

    Billings, S. A.

    1988-03-01

    Time and frequency domain identification methods for nonlinear systems are reviewed. Parametric methods, prediction error methods, structure detection, model validation, and experiment design are discussed. Identification of a liquid level system, a heat exchanger, and a turbocharge automotive diesel engine are illustrated. Rational models are introduced. Spectral analysis for nonlinear systems is treated. Recursive estimation is mentioned.

  10. Neural Activities Underlying the Feedback Express Salience Prediction Errors for Appetitive and Aversive Stimuli

    Science.gov (United States)

    Gu, Yan; Hu, Xueping; Pan, Weigang; Yang, Chun; Wang, Lijun; Li, Yiyuan; Chen, Antao

    2016-01-01

    Feedback information is essential for us to adapt appropriately to the environment. The feedback-related negativity (FRN), a frontocentral negative deflection after the delivery of feedback, has been found to be larger for outcomes that are worse than expected, and it reflects a reward prediction error derived from the midbrain dopaminergic projections to the anterior cingulate cortex (ACC), as stated in reinforcement learning theory. In contrast, the prediction of response-outcome (PRO) model claims that the neural activity in the mediofrontal cortex (mPFC), especially the ACC, is sensitive to the violation of expectancy, irrespective of the valence of feedback. Additionally, increasing evidence has demonstrated significant activities in the striatum, anterior insula and occipital lobe for unexpected outcomes independently of their valence. Thus, the neural mechanism of the feedback remains under dispute. Here, we investigated the feedback with monetary reward and electrical pain shock in one task via functional magnetic resonance imaging. The results revealed significant prediction-error-related activities in the bilateral fusiform gyrus, right middle frontal gyrus and left cingulate gyrus for both money and pain. This implies that some regions underlying the feedback may signal a salience prediction error rather than a reward prediction error. PMID:27694920

  11. SVM with Quadratic Polynomial Kernel Function Based Nonlinear Model One-step-ahead Predictive Control

    Institute of Scientific and Technical Information of China (English)

    钟伟民; 何国龙; 皮道映; 孙优贤

    2005-01-01

    A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identification method. By solving a cubic equation in the feature space, an explicit predictive control law is obtained through the predictive control mechanism. The effect of controller is demonstrated on a recognized benchmark problem and on the control of continuous-stirred tank reactor (CSTR). Simulation results show that SVM with quadratic polynomial kernel function based predictive controller can be well applied to nonlinear systems, with good performance in following reference trajectory as well as in disturbance-rejection.

  12. Lateral habenula neurons signal errors in the prediction of reward information.

    Science.gov (United States)

    Bromberg-Martin, Ethan S; Hikosaka, Okihide

    2011-08-21

    Humans and animals have the ability to predict future events, which they cultivate by continuously searching their environment for sources of predictive information. However, little is known about the neural systems that motivate this behavior. We hypothesized that information-seeking is assigned value by the same circuits that support reward-seeking, such that neural signals encoding reward prediction errors (RPEs) include analogous information prediction errors (IPEs). To test this, we recorded from neurons in the lateral habenula, a nucleus that encodes RPEs, while monkeys chose between cues that provided different chances to view information about upcoming rewards. We found that a subpopulation of lateral habenula neurons transmitted signals resembling IPEs, responding when reward information was unexpectedly cued, delivered or denied. These signals evaluated information sources reliably, even when the monkey's decisions did not. These neurons could provide a common instructive signal for reward-seeking and information-seeking behavior.

  13. Effect of Measurement Errors on Predicted Cosmological Constraints from Shear Peak Statistics with LSST

    CERN Document Server

    Bard, D; Chang, C; May, M; Kahn, S M; AlSayyad, Y; Ahmad, Z; Bankert, J; Connolly, A; Gibson, R R; Gilmore, K; Grace, E; Haiman, Z; Hannel, M; Huffenberger, K M; Jernigan, J G; Jones, L; Krughoff, S; Lorenz, S; Marshall, S; Meert, A; Nagarajan, S; Peng, E; Peterson, J; Rasmussen, A P; Shmakova, M; Sylvestre, N; Todd, N; Young, M

    2013-01-01

    The statistics of peak counts in reconstructed shear maps contain information beyond the power spectrum, and can improve cosmological constraints from measurements of the power spectrum alone if systematic errors can be controlled. We study the effect of galaxy shape measurement errors on predicted cosmological constraints from the statistics of shear peak counts with the Large Synoptic Survey Telescope (LSST). We use the LSST image simulator in combination with cosmological N-body simulations to model realistic shear maps for different cosmological models. We include both galaxy shape noise and, for the first time, measurement errors on galaxy shapes. We find that the measurement errors considered have relatively little impact on the constraining power of shear peak counts for LSST.

  14. Comparisons of Two Ensemble Mean Methods in Measuring the Average Error Growth and the Predictability

    Institute of Scientific and Technical Information of China (English)

    丁瑞强; 李建平

    2011-01-01

    In this paper,taking the Lorenz system as an example,we compare the influences of the arithmetic mean and the geometric mean on measuring the global and local average error growth.The results show that the geometric mean error (GME) has a smoother growth than the arithmetic mean error (AME) for the global average error growth,and the GME is directly related to the maximal Lyapunov exponent,but the AME is not,as already noted by Krishnamurthy in 1993.Besides these,the GME is shown to be more appropriate than the AME in measuring the mean error growth in terms of the probability distribution of errors.The physical meanings of the saturation levels of the AME and the GME are also shown to be different.However,there is no obvious difference between the local average error growth with the arithmetic mean and the geometric mean,indicating that the choices of the AME or the GME have no influence on the measure of local average predictability.

  15. Nonlinear softening as a predictive precursor to climate tipping

    CERN Document Server

    Sieber, Jan

    2011-01-01

    Approaching a dangerous bifurcation, from which a dynamical system such as the Earth's climate will jump (tip) to a different state, the current stable state lies within a shrinking basin of attraction. Persistence of the state becomes increasingly precarious in the presence of noisy disturbances. We consider an underlying potential, as defined theoretically for a saddle-node fold and (via averaging) for a Hopf bifurcation. Close to a stable state, this potential has a parabolic form; but approaching a jump it becomes increasingly dominated by softening nonlinearities. If we have already detected a decrease in the linear decay rate, nonlinear information allows us to estimate the propensity for early tipping due to noise. If there is no discernable trend in the linear analysis, nonlinear softening is even more important in showing the proximity to tipping. After extensive normal form calibration studies, we apply our technique to two geological time series from paleo-climate tipping events. For the ending of ...

  16. Error estimations of mixed finite element methods for nonlinear problems of shallow shell theory

    Science.gov (United States)

    Karchevsky, M.

    2016-11-01

    The variational formulations of problems of equilibrium of a shallow shell in the framework of the geometrically and physically nonlinear theory by boundary conditions of different main types, including non-classical, are considered. Necessary and sufficient conditions for their solvability are derived. Mixed finite element methods for the approximate solutions to these problems based on the use of second derivatives of the bending as auxiliary variables are proposed. Estimations of accuracy of approximate solutions are established.

  17. Correction of Frequency-Dependent Nonlinear Errors in Direct-Conversion Transceivers

    Science.gov (United States)

    2016-03-31

    University of Oklahoma Norman , Oklahoma, USA, 73019 pyraminxrox@ou.edu, fulton@ou.edu Abstract: Correction of nonlinear and frequency dependent...behavior of low -cost integrated transceivers, especially in the area of phased arrays, where many transceivers will be used to comprise the system as...analog RF portion of the receive chain of the low -cost, direct-conversion radar system initially presented in [2]. The spectral distortion seen here

  18. Correction for Measurement Error from Genotyping-by-Sequencing in Genomic Variance and Genomic Prediction Models

    DEFF Research Database (Denmark)

    Ashraf, Bilal; Janss, Luc; Jensen, Just

    Genotyping-by-sequencing (GBSeq) is becoming a cost-effective genotyping platform for species without available SNP arrays. GBSeq considers to sequence short reads from restriction sites covering a limited part of the genome (e.g., 5-10%) with low sequencing depth per individual (e.g., 5-10X per....... In the current work we show how the correction for measurement error in GBSeq can also be applied in whole genome genomic variance and genomic prediction models. Bayesian whole-genome random regression models are proposed to allow implementation of large-scale SNP-based models with a per-SNP correction...... for measurement error. We show correct retrieval of genomic explained variance, and improved genomic prediction when accounting for the measurement error in GBSeq data...

  19. Nonlinear Time Series Prediction Using Chaotic Neural Networks

    Institute of Scientific and Technical Information of China (English)

    LI KePing; CHEN TianLun

    2001-01-01

    A nonlinear feedback term is introduced into the evaluation equation of weights of the backpropagation algorithm for neural network, the network becomes a chaotic one. For the purpose of that we can investigate how the different feedback terms affect the process of learning and forecasting, we use the model to forecast the nonlinear time series which is produced by Makey-Glass equation. By selecting the suitable feedback term, the system can escape from the local minima and converge to the global minimum or its approximate solutions, and the forecasting results are better than those of backpropagation algorithm.``

  20. Efficient Control of Nonlinear Noise-Corrupted Systems Using a Novel Model Predictive Control Framework

    OpenAIRE

    Weissel, Florian; Huber, Marco F.; Hanebeck, Uwe D.

    2007-01-01

    Model identification and measurement acquisition is always to some degree uncertain. Therefore, a framework for Nonlinear Model Predictive Control (NMPC) is proposed that explicitly considers the noise influence on nonlinear dynamic systems with continuous state spaces and a finite set of control inputs in order to significantly increase the control quality. Integral parts of NMPC are the prediction of system states over a finite horizon as well as the problem specific modeling of reward func...

  1. The effect of prediction error correlation on optimal sensor placement in structural dynamics

    Science.gov (United States)

    Papadimitriou, Costas; Lombaert, Geert

    2012-04-01

    The problem of estimating the optimal sensor locations for parameter estimation in structural dynamics is re-visited. The effect of spatially correlated prediction errors on the optimal sensor placement is investigated. The information entropy is used as a performance measure of the sensor configuration. The optimal sensor location is formulated as an optimization problem involving discrete-valued variables, which is solved using computationally efficient sequential sensor placement algorithms. Asymptotic estimates for the information entropy are used to develop useful properties that provide insight into the dependence of the information entropy on the number and location of sensors. A theoretical analysis shows that the spatial correlation length of the prediction errors controls the minimum distance between the sensors and should be taken into account when designing optimal sensor locations with potential sensor distances up to the order of the characteristic length of the dynamic problem considered. Implementation issues for modal identification and structural-related model parameter estimation are addressed. Theoretical and computational developments are illustrated by designing the optimal sensor configurations for a continuous beam model, a discrete chain-like stiffness-mass model and a finite element model of a footbridge in Wetteren (Belgium). Results point out the crucial effect the spatial correlation of the prediction errors have on the design of optimal sensor locations for structural dynamics applications, revealing simultaneously potential inadequacies of spatially uncorrelated prediction errors models.

  2. Principal components analysis of reward prediction errors in a reinforcement learning task.

    Science.gov (United States)

    Sambrook, Thomas D; Goslin, Jeremy

    2016-01-01

    Models of reinforcement learning represent reward and punishment in terms of reward prediction errors (RPEs), quantitative signed terms describing the degree to which outcomes are better than expected (positive RPEs) or worse (negative RPEs). An electrophysiological component known as feedback related negativity (FRN) occurs at frontocentral sites 240-340ms after feedback on whether a reward or punishment is obtained, and has been claimed to neurally encode an RPE. An outstanding question however, is whether the FRN is sensitive to the size of both positive RPEs and negative RPEs. Previous attempts to answer this question have examined the simple effects of RPE size for positive RPEs and negative RPEs separately. However, this methodology can be compromised by overlap from components coding for unsigned prediction error size, or "salience", which are sensitive to the absolute size of a prediction error but not its valence. In our study, positive and negative RPEs were parametrically modulated using both reward likelihood and magnitude, with principal components analysis used to separate out overlying components. This revealed a single RPE encoding component responsive to the size of positive RPEs, peaking at ~330ms, and occupying the delta frequency band. Other components responsive to unsigned prediction error size were shown, but no component sensitive to negative RPE size was found.

  3. Generalized Forecast Error Variance Decomposition for Linear and Nonlinear Multivariate Models

    DEFF Research Database (Denmark)

    Lanne, Markku; Nyberg, Henri

    We propose a new generalized forecast error variance decomposition with the property that the proportions of the impact accounted for by innovations in each variable sum to unity. Our decomposition is based on the well-established concept of the generalized impulse response function. The use...

  4. EEG Error Prediction as a Solution for Combining the Advantages of Retrieval Practice and Errorless Learning.

    Science.gov (United States)

    Riley, Ellyn A; McFarland, Dennis J

    2017-01-01

    Given the frequency of naming errors in aphasia, a common aim of speech and language rehabilitation is the improvement of naming. Based on evidence of significant word recall improvements in patients with memory impairments, errorless learning methods have been successfully applied to naming therapy in aphasia; however, other evidence suggests that although errorless learning can lead to better performance during treatment sessions, retrieval practice may be the key to lasting improvements. Task performance may vary with brain state (e.g., level of arousal, degree of task focus), and changes in brain state can be detected using EEG. With the ultimate goal of designing a system that monitors patient brain state in real time during therapy, we sought to determine whether errors could be predicted using spectral features obtained from an analysis of EEG. Thus, this study aimed to investigate the use of individual EEG responses to predict error production in aphasia. Eight participants with aphasia each completed 900 object-naming trials across three sessions while EEG was recorded and response accuracy scored for each trial. Analysis of the EEG response for seven of the eight participants showed significant correlations between EEG features and response accuracy (correct vs. incorrect) and error correction (correct, self-corrected, incorrect). Furthermore, upon combining the training data for the first two sessions, the model generalized to predict accuracy for performance in the third session for seven participants when accuracy was used as a predictor, and for five participants when error correction category was used as a predictor. With such ability to predict errors during therapy, it may be possible to use this information to intervene with errorless learning strategies only when necessary, thereby allowing patients to benefit from both the high within-session success of errorless learning as well as the longer-term improvements associated with retrieval practice.

  5. Implementation of neural network based non-linear predictive control

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1999-01-01

    of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...

  6. A Novel Method for Prediction of Nonlinear Aeroelastic Responses

    Science.gov (United States)

    2010-01-01

    Brian A. Freno Graduate Student, Texas A&M University Publications Journal articles: 1. Gargoloff, J. I. and Cizmas, P. G. A., “Mesh Generation and...papers: 1. Cizmas, P. G. A., Freno , B. A., Brenner, T. A., Worley, G. D., “A High-Fidelity Nonlinear Aeroelastic Model for Aircraft with Large Wing

  7. Determining the input dimension of a neural network for nonlinear time series prediction

    Institute of Scientific and Technical Information of China (English)

    张胜; 刘红星; 高敦堂; 都思丹

    2003-01-01

    Determining the input dimension of a feed-forward neural network for nonlinear time series prediction plays an important role in the modelling.The paper first summarizes the current methods for determining the input dimension of the neural network.Then inspired by the fact that the correlation dimension of a nonlinear dynamic system is the mostimportant feature of it,the paper presents a new idea that the input dimension of the neural network for nonlinear time series prediction can be taken as an integer just greater than or equal to the correlation dimension.Finally,some wlidation examples and results are given.

  8. Early adversity disrupts the adult use of aversive prediction errors to reduce fear in uncertainty

    Directory of Open Access Journals (Sweden)

    Kristina M Wright

    2015-08-01

    Full Text Available Early life adversity increases anxiety in adult rodents and primates, and increases the risk for developing post-traumatic disorder (PTSD in humans. We hypothesized that early adversity impairs the use of learning signals – negative, aversive prediction errors – to reduce fear in uncertainty. To test this hypothesis, we gave adolescent rats a battery of adverse experiences then assessed adult performance in probabilistic Pavlovian fear conditioning and fear extinction. Rats were confronted with three cues associated with different probabilities of foot shock: one cue never predicted shock, another cue predicted shock with uncertainty, and a final cue always predicted shock. Control rats initially acquired fear to all cues, but rapidly reduced fear to the non-predictive and uncertain cues. Early adversity rats were slower to reduce fear to the non-predictive cue and never fully reduced fear to the uncertain cue. In extinction, all cues were presented in the absence of shock. Fear to the uncertain cue in discrimination, but not early adversity itself, predicted the reduction of fear in extinction. These results demonstrate early adversity impairs the use of negative, aversive prediction errors to reduce fear, especially in situations of uncertainty.

  9. Wavelet based error correction and predictive uncertainty of a hydrological forecasting system

    Science.gov (United States)

    Bogner, Konrad; Pappenberger, Florian; Thielen, Jutta; de Roo, Ad

    2010-05-01

    River discharge predictions most often show errors with scaling properties of unknown source and statistical structure that degrade the quality of forecasts. This is especially true for lead-time ranges greater then a few days. Since the European Flood Alert System (EFAS) provides discharge forecasts up to ten days ahead, it is necessary to take these scaling properties into consideration. For example the range of scales for the error that occurs at the spring time will be caused by long lasting snowmelt processes, and is by far larger then the error, that appears during the summer period and is caused by convective rain fields of short duration. The wavelet decomposition is an excellent way to provide the detailed model error at different levels in order to estimate the (unobserved) state variables more precisely. A Vector-AutoRegressive model with eXogenous input (VARX) is fitted for the different levels of wavelet decomposition simultaneously and after predicting the next time steps ahead for each scale, a reconstruction formula is applied to transform the predictions in the wavelet domain back to the original time domain. The Bayesian Uncertainty Processor (BUP) developed by Krzysztofowicz is an efficient method to estimate the full predictive uncertainty, which is derived by integrating the hydrological model uncertainty and the meteorological input uncertainty. A hydrological uncertainty processor has been applied to the error corrected discharge series at first in order to derive the predictive conditional distribution under the hypothesis that there is no input uncertainty. The uncertainty of the forecasted meteorological input forcing the hydrological model is derived from the combination of deterministic weather forecasts and ensemble predictions systems (EPS) and the Input Processor maps this input uncertainty into the output uncertainty under the hypothesis that there is no hydrological uncertainty. The main objective of this Bayesian forecasting system

  10. Comparison of the initial errors most likely to cause a spring predictability barrier for two types of El Niño events

    Science.gov (United States)

    Tian, Ben; Duan, Wansuo

    2016-08-01

    In this paper, the spring predictability barrier (SPB) problem for two types of El Niño events is investigated. This is enabled by tracing the evolution of a conditional nonlinear optimal perturbation (CNOP) that acts as the initial error with the biggest negative effect on the El Niño predictions. We show that the CNOP-type errors for central Pacific-El Niño (CP-El Niño) events can be classified into two types: the first are CP-type-1 errors possessing a sea surface temperature anomaly (SSTA) pattern with negative anomalies in the equatorial central western Pacific, positive anomalies in the equatorial eastern Pacific, and accompanied by a thermocline depth anomaly pattern with positive anomalies along the equator. The second are, CP-type-2 errors presenting an SSTA pattern in the central eastern equatorial Pacific, with a dipole structure of negative anomalies in the east and positive anomalies in the west, and a thermocline depth anomaly pattern with a slight deepening along the equator. CP-type-1 errors grow in a manner similar to an eastern Pacific-El Niño (EP-El Niño) event and grow significantly during boreal spring, leading to a significant SPB for the CP-El Niño. CP-type-2 errors initially present as a process similar to a La Niña-like decay, prior to transitioning into a growth phase of an EP-El Niño-like event; but they fail to cause a SPB. For the EP-El Niño events, the CNOP-type errors are also classified into two types: EP-type-1 errors and 2 errors. The former is similar to a CP-type-1 error, while the latter presents with an almost opposite pattern. Both EP-type-1 and 2 errors yield a significant SPB for EP-El Niño events. For both CP- and EP-El Niño, their CNOP-type errors that cause a prominent SPB are concentrated in the central and eastern tropical Pacific. This may indicate that the prediction uncertainties of both types of El Niño events are sensitive to the initial errors in this region. The region may represent a common

  11. Working Memory Capacity Predicts Selection and Identification Errors in Visual Search.

    Science.gov (United States)

    Peltier, Chad; Becker, Mark W

    2016-11-17

    As public safety relies on the ability of professionals, such as radiologists and baggage screeners, to detect rare targets, it could be useful to identify predictors of visual search performance. Schwark, Sandry, and Dolgov found that working memory capacity (WMC) predicts hit rate and reaction time in low prevalence searches. This link was attributed to higher WMC individuals exhibiting a higher quitting threshold and increasing the probability of finding the target before terminating search in low prevalence search. These conclusions were limited based on the methods; without eye tracking, the researchers could not differentiate between an increase in accuracy due to fewer identification errors (failing to identify a fixated target), selection errors (failing to fixate a target), or a combination of both. Here, we measure WMC and correlate it with reaction time and accuracy in a visual search task. We replicate the finding that WMC predicts reaction time and hit rate. However, our analysis shows that it does so through both a reduction in selection and identification errors. The correlation between WMC and selection errors is attributable to increased quitting thresholds in those with high WMC. The correlation between WMC and identification errors is less clear, though potentially attributable to increased item inspection times in those with higher WMC. In addition, unlike Schwark and coworkers, we find that these WMC effects are fairly consistent across prevalence rates rather than being specific to low-prevalence searches.

  12. PD plus error-dependent integral nonlinear controllers for robot manipulators with an uncertain Jacobian matrix.

    Science.gov (United States)

    Huang, C Q; Xie, L F; Liu, Y L

    2012-11-01

    In framework of traditional PID controllers, there are only three parameters available to tune, as a result, performance of the resulting system is always limited. As for Cartesian regulation of robot manipulators with uncertain Jacobian matrix, a scheme of PID controllers with error-dependent integral action is proposed. Compare with traditional PID controllers, the error-dependent integration is employed in the proposed PID controller, in which more parameters are available to be tuned. It provides additional flexibility for controller characteristics and tuning as well, and hence makes better transient performance. In addition, asymptotic stability of the resulting closed-loop system is guaranteed. All signals in the system are bounded when exogenous disturbances and measurement noises are bounded. Numerical example demonstrates the superior transient performance of the proposed controller over the traditional one via Cartesian space set-point manipulation of two-link robotic manipulator.

  13. Comparison of two stochastic techniques for reliable urban runoff prediction by modeling systematic errors

    DEFF Research Database (Denmark)

    Del Giudice, Dario; Löwe, Roland; Madsen, Henrik;

    2015-01-01

    provide probabilistic predictions of wastewater discharge in a similarly reliable way, both for periods ranging from a few hours up to more than 1 week ahead of time. The EBD produces more accurate predictions on long horizons but relies on computationally heavy MCMC routines for parameter inferences......In urban rainfall-runoff, commonly applied statistical techniques for uncertainty quantification mostly ignore systematic output errors originating from simplified models and erroneous inputs. Consequently, the resulting predictive uncertainty is often unreliable. Our objective is to present two...

  14. A Model Predictive Algorithm for Active Control of Nonlinear Noise Processes

    Directory of Open Access Journals (Sweden)

    Qi-Zhi Zhang

    2005-01-01

    Full Text Available In this paper, an improved nonlinear Active Noise Control (ANC system is achieved by introducing an appropriate secondary source. For ANC system to be successfully implemented, the nonlinearity of the primary path and time delay of the secondary path must be overcome. A nonlinear Model Predictive Control (MPC strategy is introduced to deal with the time delay in the secondary path and the nonlinearity in the primary path of the ANC system. An overall online modeling technique is utilized for online secondary path and primary path estimation. The secondary path is estimated using an adaptive FIR filter, and the primary path is estimated using a Neural Network (NN. The two models are connected in parallel with the two paths. In this system, the mutual disturbances between the operation of the nonlinear ANC controller and modeling of the secondary can be greatly reduced. The coefficients of the adaptive FIR filter and weight vector of NN are adjusted online. Computer simulations are carried out to compare the proposed nonlinear MPC method with the nonlinear Filter-x Least Mean Square (FXLMS algorithm. The results showed that the convergence speed of the proposed nonlinear MPC algorithm is faster than that of nonlinear FXLMS algorithm. For testing the robust performance of the proposed nonlinear ANC system, the sudden changes in the secondary path and primary path of the ANC system are considered. Results indicated that the proposed nonlinear ANC system can rapidly track the sudden changes in the acoustic paths of the nonlinear ANC system, and ensure the adaptive algorithm stable when the nonlinear ANC system is time variable.

  15. Predicting diagnostic error in radiology via eye-tracking and image analytics: Preliminary investigation in mammography

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, Sophie; Tourassi, Georgia D. [Biomedical Science and Engineering Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Pinto, Frank [School of Engineering, Science, and Technology, Virginia State University, Petersburg, Virginia 23806 (United States); Morin-Ducote, Garnetta; Hudson, Kathleen B. [Department of Radiology, University of Tennessee Medical Center at Knoxville, Knoxville, Tennessee 37920 (United States)

    2013-10-15

    Purpose: The primary aim of the present study was to test the feasibility of predicting diagnostic errors in mammography by merging radiologists’ gaze behavior and image characteristics. A secondary aim was to investigate group-based and personalized predictive models for radiologists of variable experience levels.Methods: The study was performed for the clinical task of assessing the likelihood of malignancy of mammographic masses. Eye-tracking data and diagnostic decisions for 40 cases were acquired from four Radiology residents and two breast imaging experts as part of an IRB-approved pilot study. Gaze behavior features were extracted from the eye-tracking data. Computer-generated and BIRADS images features were extracted from the images. Finally, machine learning algorithms were used to merge gaze and image features for predicting human error. Feature selection was thoroughly explored to determine the relative contribution of the various features. Group-based and personalized user modeling was also investigated.Results: Machine learning can be used to predict diagnostic error by merging gaze behavior characteristics from the radiologist and textural characteristics from the image under review. Leveraging data collected from multiple readers produced a reasonable group model [area under the ROC curve (AUC) = 0.792 ± 0.030]. Personalized user modeling was far more accurate for the more experienced readers (AUC = 0.837 ± 0.029) than for the less experienced ones (AUC = 0.667 ± 0.099). The best performing group-based and personalized predictive models involved combinations of both gaze and image features.Conclusions: Diagnostic errors in mammography can be predicted to a good extent by leveraging the radiologists’ gaze behavior and image content.

  16. Predicting diagnostic error in Radiology via eye-tracking and image analytics: Application in mammography

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, Sophie [ORNL; Pinto, Frank M [ORNL; Morin-Ducote, Garnetta [University of Tennessee, Knoxville (UTK); Hudson, Kathy [University of Tennessee, Knoxville (UTK); Tourassi, Georgia [ORNL

    2013-01-01

    Purpose: The primary aim of the present study was to test the feasibility of predicting diagnostic errors in mammography by merging radiologists gaze behavior and image characteristics. A secondary aim was to investigate group-based and personalized predictive models for radiologists of variable experience levels. Methods: The study was performed for the clinical task of assessing the likelihood of malignancy of mammographic masses. Eye-tracking data and diagnostic decisions for 40 cases were acquired from 4 Radiology residents and 2 breast imaging experts as part of an IRB-approved pilot study. Gaze behavior features were extracted from the eye-tracking data. Computer-generated and BIRADs images features were extracted from the images. Finally, machine learning algorithms were used to merge gaze and image features for predicting human error. Feature selection was thoroughly explored to determine the relative contribution of the various features. Group-based and personalized user modeling was also investigated. Results: Diagnostic error can be predicted reliably by merging gaze behavior characteristics from the radiologist and textural characteristics from the image under review. Leveraging data collected from multiple readers produced a reasonable group model (AUC=0.79). Personalized user modeling was far more accurate for the more experienced readers (average AUC of 0.837 0.029) than for the less experienced ones (average AUC of 0.667 0.099). The best performing group-based and personalized predictive models involved combinations of both gaze and image features. Conclusions: Diagnostic errors in mammography can be predicted reliably by leveraging the radiologists gaze behavior and image content.

  17. A Conceptual Framework for Predicting Error in Complex Human-Machine Environments

    Science.gov (United States)

    Freed, Michael; Remington, Roger; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    We present a Goals, Operators, Methods, and Selection Rules-Model Human Processor (GOMS-MHP) style model-based approach to the problem of predicting human habit capture errors. Habit captures occur when the model fails to allocate limited cognitive resources to retrieve task-relevant information from memory. Lacking the unretrieved information, decision mechanisms act in accordance with implicit default assumptions, resulting in error when relied upon assumptions prove incorrect. The model helps interface designers identify situations in which such failures are especially likely.

  18. Per-beam, planar IMRT QA passing rates do not predict clinically relevant patient dose errors

    Energy Technology Data Exchange (ETDEWEB)

    Nelms, Benjamin E.; Zhen Heming; Tome, Wolfgang A. [Canis Lupus LLC and Department of Human Oncology, University of Wisconsin, Merrimac, Wisconsin 53561 (United States); Department of Medical Physics, University of Wisconsin, Madison, Wisconsin 53705 (United States); Departments of Human Oncology, Medical Physics, and Biomedical Engineering, University of Wisconsin, Madison, Wisconsin 53792 (United States)

    2011-02-15

    Purpose: The purpose of this work is to determine the statistical correlation between per-beam, planar IMRT QA passing rates and several clinically relevant, anatomy-based dose errors for per-patient IMRT QA. The intent is to assess the predictive power of a common conventional IMRT QA performance metric, the Gamma passing rate per beam. Methods: Ninety-six unique data sets were created by inducing four types of dose errors in 24 clinical head and neck IMRT plans, each planned with 6 MV Varian 120-leaf MLC linear accelerators using a commercial treatment planning system and step-and-shoot delivery. The error-free beams/plans were used as ''simulated measurements'' (for generating the IMRT QA dose planes and the anatomy dose metrics) to compare to the corresponding data calculated by the error-induced plans. The degree of the induced errors was tuned to mimic IMRT QA passing rates that are commonly achieved using conventional methods. Results: Analysis of clinical metrics (parotid mean doses, spinal cord max and D1cc, CTV D95, and larynx mean) vs IMRT QA Gamma analysis (3%/3 mm, 2/2, 1/1) showed that in all cases, there were only weak to moderate correlations (range of Pearson's r-values: -0.295 to 0.653). Moreover, the moderate correlations actually had positive Pearson's r-values (i.e., clinically relevant metric differences increased with increasing IMRT QA passing rate), indicating that some of the largest anatomy-based dose differences occurred in the cases of high IMRT QA passing rates, which may be called ''false negatives.'' The results also show numerous instances of false positives or cases where low IMRT QA passing rates do not imply large errors in anatomy dose metrics. In none of the cases was there correlation consistent with high predictive power of planar IMRT passing rates, i.e., in none of the cases did high IMRT QA Gamma passing rates predict low errors in anatomy dose metrics or vice versa

  19. A Component Prediction Method for Flue Gas of Natural Gas Combustion Based on Nonlinear Partial Least Squares Method

    Directory of Open Access Journals (Sweden)

    Hui Cao

    2014-01-01

    Full Text Available Quantitative analysis for the flue gas of natural gas-fired generator is significant for energy conservation and emission reduction. The traditional partial least squares method may not deal with the nonlinear problems effectively. In the paper, a nonlinear partial least squares method with extended input based on radial basis function neural network (RBFNN is used for components prediction of flue gas. For the proposed method, the original independent input matrix is the input of RBFNN and the outputs of hidden layer nodes of RBFNN are the extension term of the original independent input matrix. Then, the partial least squares regression is performed on the extended input matrix and the output matrix to establish the components prediction model of flue gas. A near-infrared spectral dataset of flue gas of natural gas combustion is used for estimating the effectiveness of the proposed method compared with PLS. The experiments results show that the root-mean-square errors of prediction values of the proposed method for methane, carbon monoxide, and carbon dioxide are, respectively, reduced by 4.74%, 21.76%, and 5.32% compared to those of PLS. Hence, the proposed method has higher predictive capabilities and better robustness.

  20. A component prediction method for flue gas of natural gas combustion based on nonlinear partial least squares method.

    Science.gov (United States)

    Cao, Hui; Yan, Xingyu; Li, Yaojiang; Wang, Yanxia; Zhou, Yan; Yang, Sanchun

    2014-01-01

    Quantitative analysis for the flue gas of natural gas-fired generator is significant for energy conservation and emission reduction. The traditional partial least squares method may not deal with the nonlinear problems effectively. In the paper, a nonlinear partial least squares method with extended input based on radial basis function neural network (RBFNN) is used for components prediction of flue gas. For the proposed method, the original independent input matrix is the input of RBFNN and the outputs of hidden layer nodes of RBFNN are the extension term of the original independent input matrix. Then, the partial least squares regression is performed on the extended input matrix and the output matrix to establish the components prediction model of flue gas. A near-infrared spectral dataset of flue gas of natural gas combustion is used for estimating the effectiveness of the proposed method compared with PLS. The experiments results show that the root-mean-square errors of prediction values of the proposed method for methane, carbon monoxide, and carbon dioxide are, respectively, reduced by 4.74%, 21.76%, and 5.32% compared to those of PLS. Hence, the proposed method has higher predictive capabilities and better robustness.

  1. Advanced nonlinear approaches for predicting the ingredient composition in compound feedingstuffs by near-infrared reflection spectroscopy.

    Science.gov (United States)

    Pérez-Marín, D; Garrido-Varo, A; Guerrero, J E; Fearn, T; Davies, A M C

    2008-05-01

    For quantitative applications, the most common usage of near-infrared reflection spectroscopy (NIRS) technology, calibration involves establishing a mathematical relationship between spectral data and data provided by the reference. This model may be fairly complex, since the near-infrared spectrum is highly variable and contains physical/chemical information for the sample that may be redundant, and multivariate calibration is usually required. When the relationship to be modeled is nonlinear, classical regression methods are inadequate, and more complex strategies and algorithms must be sought in order to model this nonlinearity. The development of NIRS calibrations to predict the ingredient composition, i.e., the inclusion percentage of each ingredient, in compound feeds is a complex task, due to the nature of the parameters to be predicted and to the heterogeneous nature of the matrices/formulas in which each ingredient participates. The present paper evaluates the use of least squares support vector machines (LSSVM) and two local calibration methods, CARNAC and locally biased regression, for developing NIRS models to predict two of the most representative ingredients in compound feed formulations, wheat and sunflower meal, using a large spectral library of 7523 commercial compound feed samples. For both ingredients, the best results were obtained using CARNAC, with standard errors of prediction (SEP) of 1.7% and 0.60% for wheat and sunflower meal, respectively, and even better results when the algorithm was allowed to refuse to predict 10% of the unknowns. Meanwhile, LSSVM performed less well on wheat (SEP 2.6%) but comparably on sunflower meal (SEP 0.60%), giving results very similar to those reported previously for artificial neural networks. Locally biased regression was the least successful of the three methods, with SEPs of 3.3% for wheat and 0.72% for sunflower meal. All the nonlinear methods improved on the standard approach using partial least squares

  2. Neurophysiology of Reward-Guided Behavior: Correlates Related to Predictions, Value, Motivation, Errors, Attention, and Action.

    Science.gov (United States)

    Bissonette, Gregory B; Roesch, Matthew R

    2016-01-01

    Many brain areas are activated by the possibility and receipt of reward. Are all of these brain areas reporting the same information about reward? Or are these signals related to other functions that accompany reward-guided learning and decision-making? Through carefully controlled behavioral studies, it has been shown that reward-related activity can represent reward expectations related to future outcomes, errors in those expectations, motivation, and signals related to goal- and habit-driven behaviors. These dissociations have been accomplished by manipulating the predictability of positively and negatively valued events. Here, we review single neuron recordings in behaving animals that have addressed this issue. We describe data showing that several brain areas, including orbitofrontal cortex, anterior cingulate, and basolateral amygdala signal reward prediction. In addition, anterior cingulate, basolateral amygdala, and dopamine neurons also signal errors in reward prediction, but in different ways. For these areas, we will describe how unexpected manipulations of positive and negative value can dissociate signed from unsigned reward prediction errors. All of these signals feed into striatum to modify signals that motivate behavior in ventral striatum and guide responding via associative encoding in dorsolateral striatum.

  3. Neurophysiology of Reward-Guided Behavior: Correlates Related to Predictions, Value, Motivation, Errors, Attention, and Action

    Science.gov (United States)

    Roesch, Matthew R.

    2017-01-01

    Many brain areas are activated by the possibility and receipt of reward. Are all of these brain areas reporting the same information about reward? Or are these signals related to other functions that accompany reward-guided learning and decision-making? Through carefully controlled behavioral studies, it has been shown that reward-related activity can represent reward expectations related to future outcomes, errors in those expectations, motivation, and signals related to goal- and habit-driven behaviors. These dissociations have been accomplished by manipulating the predictability of positively and negatively valued events. Here, we review single neuron recordings in behaving animals that have addressed this issue. We describe data showing that several brain areas, including orbitofrontal cortex, anterior cingulate, and basolateral amygdala signal reward prediction. In addition, anterior cingulate, basolateral amygdala, and dopamine neurons also signal errors in reward prediction, but in different ways. For these areas, we will describe how unexpected manipulations of positive and negative value can dissociate signed from unsigned reward prediction errors. All of these signals feed into striatum to modify signals that motivate behavior in ventral striatum and guide responding via associative encoding in dorsolateral striatum. PMID:26276036

  4. Pupillary response predicts multiple object tracking load, error rate, and conscientiousness, but not inattentional blindness.

    Science.gov (United States)

    Wright, Timothy J; Boot, Walter R; Morgan, Chelsea S

    2013-09-01

    Research on inattentional blindness (IB) has uncovered few individual difference measures that predict failures to detect an unexpected event. Notably, no clear relationship exists between primary task performance and IB. This is perplexing as better task performance is typically associated with increased effort and should result in fewer spare resources to process the unexpected event. We utilized a psychophysiological measure of effort (pupillary response) to explore whether differences in effort devoted to the primary task (multiple object tracking) are related to IB. Pupillary response was sensitive to tracking load and differences in primary task error rates. Furthermore, pupillary response was a better predictor of conscientiousness than primary task errors; errors were uncorrelated with conscientiousness. Despite being sensitive to task load, individual differences in performance and conscientiousness, pupillary response did not distinguish between those who noticed the unexpected event and those who did not. Results provide converging evidence that effort and primary task engagement may be unrelated to IB.

  5. Influence of precision of emission characteristic parameters on model prediction error of VOCs/formaldehyde from dry building material.

    Directory of Open Access Journals (Sweden)

    Wenjuan Wei

    Full Text Available Mass transfer models are useful in predicting the emissions of volatile organic compounds (VOCs and formaldehyde from building materials in indoor environments. They are also useful for human exposure evaluation and in sustainable building design. The measurement errors in the emission characteristic parameters in these mass transfer models, i.e., the initial emittable concentration (C 0, the diffusion coefficient (D, and the partition coefficient (K, can result in errors in predicting indoor VOC and formaldehyde concentrations. These errors have not yet been quantitatively well analyzed in the literature. This paper addresses this by using modelling to assess these errors for some typical building conditions. The error in C 0, as measured in environmental chambers and applied to a reference living room in Beijing, has the largest influence on the model prediction error in indoor VOC and formaldehyde concentration, while the error in K has the least effect. A correlation between the errors in D, K, and C 0 and the error in the indoor VOC and formaldehyde concentration prediction is then derived for engineering applications. In addition, the influence of temperature on the model prediction of emissions is investigated. It shows the impact of temperature fluctuations on the prediction errors in indoor VOC and formaldehyde concentrations to be less than 7% at 23±0.5°C and less than 30% at 23±2°C.

  6. Influence of precision of emission characteristic parameters on model prediction error of VOCs/formaldehyde from dry building material.

    Science.gov (United States)

    Wei, Wenjuan; Xiong, Jianyin; Zhang, Yinping

    2013-01-01

    Mass transfer models are useful in predicting the emissions of volatile organic compounds (VOCs) and formaldehyde from building materials in indoor environments. They are also useful for human exposure evaluation and in sustainable building design. The measurement errors in the emission characteristic parameters in these mass transfer models, i.e., the initial emittable concentration (C 0), the diffusion coefficient (D), and the partition coefficient (K), can result in errors in predicting indoor VOC and formaldehyde concentrations. These errors have not yet been quantitatively well analyzed in the literature. This paper addresses this by using modelling to assess these errors for some typical building conditions. The error in C 0, as measured in environmental chambers and applied to a reference living room in Beijing, has the largest influence on the model prediction error in indoor VOC and formaldehyde concentration, while the error in K has the least effect. A correlation between the errors in D, K, and C 0 and the error in the indoor VOC and formaldehyde concentration prediction is then derived for engineering applications. In addition, the influence of temperature on the model prediction of emissions is investigated. It shows the impact of temperature fluctuations on the prediction errors in indoor VOC and formaldehyde concentrations to be less than 7% at 23±0.5°C and less than 30% at 23±2°C.

  7. A machine learning approach to the accurate prediction of multi-leaf collimator positional errors

    Science.gov (United States)

    Carlson, Joel N. K.; Park, Jong Min; Park, So-Yeon; In Park, Jong; Choi, Yunseok; Ye, Sung-Joon

    2016-03-01

    Discrepancies between planned and delivered movements of multi-leaf collimators (MLCs) are an important source of errors in dose distributions during radiotherapy. In this work we used machine learning techniques to train models to predict these discrepancies, assessed the accuracy of the model predictions, and examined the impact these errors have on quality assurance (QA) procedures and dosimetry. Predictive leaf motion parameters for the models were calculated from the plan files, such as leaf position and velocity, whether the leaf was moving towards or away from the isocenter of the MLC, and many others. Differences in positions between synchronized DICOM-RT planning files and DynaLog files reported during QA delivery were used as a target response for training of the models. The final model is capable of predicting MLC positions during delivery to a high degree of accuracy. For moving MLC leaves, predicted positions were shown to be significantly closer to delivered positions than were planned positions. By incorporating predicted positions into dose calculations in the TPS, increases were shown in gamma passing rates against measured dose distributions recorded during QA delivery. For instance, head and neck plans with 1%/2 mm gamma criteria had an average increase in passing rate of 4.17% (SD  =  1.54%). This indicates that the inclusion of predictions during dose calculation leads to a more realistic representation of plan delivery. To assess impact on the patient, dose volumetric histograms (DVH) using delivered positions were calculated for comparison with planned and predicted DVHs. In all cases, predicted dose volumetric parameters were in closer agreement to the delivered parameters than were the planned parameters, particularly for organs at risk on the periphery of the treatment area. By incorporating the predicted positions into the TPS, the treatment planner is given a more realistic view of the dose distribution as it will truly be

  8. Predicting dissolved oxygen concentration using kernel regression modeling approaches with nonlinear hydro-chemical data.

    Science.gov (United States)

    Singh, Kunwar P; Gupta, Shikha; Rai, Premanjali

    2014-05-01

    Kernel function-based regression models were constructed and applied to a nonlinear hydro-chemical dataset pertaining to surface water for predicting the dissolved oxygen levels. Initial features were selected using nonlinear approach. Nonlinearity in the data was tested using BDS statistics, which revealed the data with nonlinear structure. Kernel ridge regression, kernel principal component regression, kernel partial least squares regression, and support vector regression models were developed using the Gaussian kernel function and their generalization and predictive abilities were compared in terms of several statistical parameters. Model parameters were optimized using the cross-validation procedure. The proposed kernel regression methods successfully captured the nonlinear features of the original data by transforming it to a high dimensional feature space using the kernel function. Performance of all the kernel-based modeling methods used here were comparable both in terms of predictive and generalization abilities. Values of the performance criteria parameters suggested for the adequacy of the constructed models to fit the nonlinear data and their good predictive capabilities.

  9. Mindfulness meditation modulates reward prediction errors in the striatum in a passive conditioning task

    Directory of Open Access Journals (Sweden)

    Ulrich eKirk

    2015-02-01

    Full Text Available Reinforcement learning models have demonstrated that phasic activity of dopamine neurons during reward expectation encodes information about the predictability of rewards and cues that predict reward. Evidence indicates that mindfulness-based approaches reduce reward anticipation signal in the striatum to negative and positive incentives suggesting the hypothesis that such training influence basic reward processing. Using a passive conditioning task and fMRI in a group of experienced mindfulness meditators and age-matched controls, we tested the hypothesis that mindfulness meditation influence reward and reward prediction error signals. We found diminished positive and negative prediction error-related blood-oxygen level-dependent (BOLD responses in the putamen in meditators compared with controls. In the meditators, this decrease in striatal BOLD responses to reward prediction was paralleled by increased activity in posterior insula, a primary interoceptive region. Critically, responses in the putamen during early trials of the conditioning procedure (run 1 were elevated in both meditators and controls. These results provide evidence that experienced mindfulness meditators show attenuated reward prediction signals to valenced stimuli, which may be related to interoceptive processes encoded in the posterior insula.

  10. Nonlinear model predictive control with guaraneed stability based on pesudolinear neural networks

    Institute of Scientific and Technical Information of China (English)

    WANG Yongji; WANG Hong

    2004-01-01

    A nonlinear model predictive control problem based on pseudo-linear neural network (PNN) is discussed, in which the second order on-line optimization method is adopted. The recursive computation of Jacobian matrix is investigated. The stability of the closed loop model predictive control system is analyzed based on Lyapunov theory to obtain the sufficient condition for the asymptotical stability of the neural predictive control system. A simulation was carried out for an exothermic first-order reaction in a continuous stirred tank reactor. It is demonstrated that the proposed control strategy is applicable to some of nonlinear systems.

  11. Robust Model Predictive Control of a Nonlinear System with Known Scheduling Variable and Uncertain Gain

    DEFF Research Database (Denmark)

    Mirzaei, Mahmood; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2012-01-01

    Robust model predictive control (RMPC) of a class of nonlinear systems is considered in this paper. We will use Linear Parameter Varying (LPV) model of the nonlinear system. By taking the advantage of having future values of the scheduling variable, we will simplify state prediction. Because...... of the special structure of the problem, uncertainty is only in the B matrix (gain) of the state space model. Therefore by taking advantage of this structure, we formulate a tractable minimax optimization problem to solve robust model predictive control problem. Wind turbine is chosen as the case study and we...

  12. TF/TA2 trajectory tracking using nonlinear predictive control approach

    Institute of Scientific and Technical Information of China (English)

    Tang Qiang; Zhang Xinguo; Liu Xicheng

    2006-01-01

    The use of a methodology of nonlinear continuous predictive control to design the guidance control law for the aircraft TF/TA2 trajectory tracking problem is emplojed. For the derivation of the predictive control law, by using Taylor series expansion, and based on optimizing a performance index which is a quadratic function of both the predictive value of the state variables and the control inputs, a state variable feedback controller for nonlinear systems is obtained, and it provides a tradeoff between satisfactory tracking performance and the control magnitude requirements. Numerical simulation results for a supersonic fighter aircraft model show the viability of this approach.

  13. Integrating a calibrated groundwater flow model with error-correcting data-driven models to improve predictions

    Science.gov (United States)

    Demissie, Yonas K.; Valocchi, Albert J.; Minsker, Barbara S.; Bailey, Barbara A.

    2009-01-01

    SummaryPhysically-based groundwater models (PBMs), such as MODFLOW, contain numerous parameters which are usually estimated using statistically-based methods, which assume that the underlying error is white noise. However, because of the practical difficulties of representing all the natural subsurface complexity, numerical simulations are often prone to large uncertainties that can result in both random and systematic model error. The systematic errors can be attributed to conceptual, parameter, and measurement uncertainty, and most often it can be difficult to determine their physical cause. In this paper, we have developed a framework to handle systematic error in physically-based groundwater flow model applications that uses error-correcting data-driven models (DDMs) in a complementary fashion. The data-driven models are separately developed to predict the MODFLOW head prediction errors, which were subsequently used to update the head predictions at existing and proposed observation wells. The framework is evaluated using a hypothetical case study developed based on a phytoremediation site at the Argonne National Laboratory. This case study includes structural, parameter, and measurement uncertainties. In terms of bias and prediction uncertainty range, the complementary modeling framework has shown substantial improvements (up to 64% reduction in RMSE and prediction error ranges) over the original MODFLOW model, in both the calibration and the verification periods. Moreover, the spatial and temporal correlations of the prediction errors are significantly reduced, thus resulting in reduced local biases and structures in the model prediction errors.

  14. Prediction of XRF analyzers error for elements on-line assaying using Kalman Filter

    Institute of Scientific and Technical Information of China (English)

    Nakhaei F; Sam A; Mosavi MR; Nakhaei A

    2012-01-01

    Determination of chemical elements assay plays an important role in mineral processing operations.This factor is used to control process accuracy,recovery calculation and plant profitability.The new assaying methods including chemical methods,X-ray fluorescence and atomic absorption spectrometry are advanced and accurate.However,in some applications,such as on-line assaying process,high accuracy is required.In this paper,an algorithm based on Kalman Filter is presented to predict on-line XRF errors.This research has been carried out on the basis of based the industrial real data collection for evaluating the performance of the presented algorithm.The measurements and analysis for this study were conducted at the Sarcheshmeh Copper Concentrator Plant located in Iran.The quality of the obtained results was very satisfied; so that the RMS errors of prediction obtained for Cu and Mo grade assaying errors in rougher feed were less than 0.039 and 0.002 and in final flotation concentration less than 0.58 and 0.074,respectively.The results indicate that the mentioned method is quite accurate to reduce the on-line XRF errors measurement.

  15. Light induced fluorescence for predicting API content in tablets: sampling and error.

    Science.gov (United States)

    Domike, Reuben; Ngai, Samuel; Cooney, Charles L

    2010-05-31

    The use of a light induced fluorescence (LIF) instrument to estimate the total content of fluorescent active pharmaceutical ingredient in a tablet from surface sampling was demonstrated. Different LIF sampling strategies were compared to a total tablet ultraviolet (UV) absorbance test for each tablet. Testing was completed on tablets with triamterene as the active ingredient and on tablets with caffeine as the active ingredient, each with a range of concentrations. The LIF instrument accurately estimated the active ingredient within 10% of total tablet test greater than 95% of the time. The largest error amongst all of the tablets tested was 13%. The RMSEP between the techniques was in the range of 4.4-7.9%. Theory of the error associated with the surface sampling was developed and found to accurately predict the experimental error. This theory uses one empirically determined parameter: the deviation of estimations at different locations on the tablet surface. As this empirical parameter can be found rapidly, correct use of this prediction of error may reduce the effort required for calibration and validation studies of non-destructive surface measurement techniques, and thereby rapidly determine appropriate analytical techniques for estimating content uniformity in tablets.

  16. Neural correlates of error monitoring in adolescents prospectively predict initiation of tobacco use

    Directory of Open Access Journals (Sweden)

    Andrey P. Anokhin

    2015-12-01

    Full Text Available Deficits in self-regulation of behavior can play an important role in the initiation of substance use and progression to regular use and dependence. One of the distinct component processes of self-regulation is error monitoring, i.e. detection of a conflict between the intended and actually executed action. Here we examined whether a neural marker of error monitoring, Error-Related Negativity (ERN, predicts future initiation of tobacco use. ERN was assessed in a prospective longitudinal sample at ages 12, 14, and 16 using a flanker task. ERN amplitude showed a significant increase with age during adolescence. Reduced ERN amplitude at ages 14 and 16, as well as slower rate of its developmental changes significantly predicted initiation of tobacco use by age 18 but not transition to regular tobacco use or initiation of marijuana and alcohol use. The present results suggest that attenuated development of the neural mechanisms of error monitoring during adolescence can increase the risk for initiation of tobacco use. The present results also suggest that the role of distinct neurocognitive component processes involved in behavioral regulation may be limited to specific stages of addiction.

  17. Foundations of Complex Systems Nonlinear Dynamics, Statistical Physics, and Prediction

    CERN Document Server

    Nicolis, Gregoire

    2007-01-01

    Complexity is emerging as a post-Newtonian paradigm for approaching a large body of phenomena of concern at the crossroads of physical, engineering, environmental, life and human sciences from a unifying point of view. This book outlines the foundations of modern complexity research as it arose from the cross-fertilization of ideas and tools from nonlinear science, statistical physics and numerical simulation. It is shown how these developments lead to an understanding, both qualitative and quantitative, of the complex systems encountered in nature and in everyday experience and, conversely, h

  18. Effects of error covariance structure on estimation of model averaging weights and predictive performance

    Science.gov (United States)

    Lu, Dan; Ye, Ming; Meyer, Philip D.; Curtis, Gary P.; Shi, Xiaoqing; Niu, Xu-Feng; Yabusaki, Steve B.

    2013-01-01

    When conducting model averaging for assessing groundwater conceptual model uncertainty, the averaging weights are often evaluated using model selection criteria such as AIC, AICc, BIC, and KIC (Akaike Information Criterion, Corrected Akaike Information Criterion, Bayesian Information Criterion, and Kashyap Information Criterion, respectively). However, this method often leads to an unrealistic situation in which the best model receives overwhelmingly large averaging weight (close to 100%), which cannot be justified by available data and knowledge. It was found in this study that this problem was caused by using the covariance matrix, CE, of measurement errors for estimating the negative log likelihood function common to all the model selection criteria. This problem can be resolved by using the covariance matrix, Cek, of total errors (including model errors and measurement errors) to account for the correlation between the total errors. An iterative two-stage method was developed in the context of maximum likelihood inverse modeling to iteratively infer the unknown Cek from the residuals during model calibration. The inferred Cek was then used in the evaluation of model selection criteria and model averaging weights. While this method was limited to serial data using time series techniques in this study, it can be extended to spatial data using geostatistical techniques. The method was first evaluated in a synthetic study and then applied to an experimental study, in which alternative surface complexation models were developed to simulate column experiments of uranium reactive transport. It was found that the total errors of the alternative models were temporally correlated due to the model errors. The iterative two-stage method using Cekresolved the problem that the best model receives 100% model averaging weight, and the resulting model averaging weights were supported by the calibration results and physical understanding of the alternative models. Using Cek

  19. Effects of error covariance structure on estimation of model averaging weights and predictive performance

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Dan; Ye, Ming; Meyer, Philip D.; Curtis, Gary P.; Shi, Xiaoqing; Niu, Xu-Feng; Yabusaki, Steven B.

    2013-07-23

    When conducting model averaging for assessing groundwater conceptual model uncertainty, the averaging weights are often evaluated using model selection criteria such as AIC, AICc, BIC, and KIC (Akaike Information Criterion, Corrected Akaike Information Criterion, Bayesian Information Criterion, and Kashyap Information Criterion, respectively). However, this method often leads to an unrealistic situation in which the best model receives overwhelmingly large averaging weight (close to 100%), which cannot be justified by available data and knowledge. It was found in this study that this problem was caused by using the covariance matrix, CE, of measurement errors for estimating the negative log likelihood function common to all the model selection criteria. This problem can be resolved by using the covariance matrix, Cek, of total errors (including model errors and measurement errors) to account for the correlation between the total errors. An iterative two-stage method was developed in the context of maximum likelihood inverse modeling to iteratively infer the unknown Cek from the residuals during model calibration. The inferred Cek was then used in the evaluation of model selection criteria and model averaging weights. While this method was limited to serial data using time series techniques in this study, it can be extended to spatial data using geostatistical techniques. The method was first evaluated in a synthetic study and then applied to an experimental study, in which alternative surface complexation models were developed to simulate column experiments of uranium reactive transport. It was found that the total errors of the alternative models were temporally correlated due to the model errors. The iterative two-stage method using Cek resolved the problem that the best model receives 100% model averaging weight, and the resulting model averaging weights were supported by the calibration results and physical understanding of the alternative models. Using Cek

  20. Effects of error covariance structure on estimation of model averaging weights and predictive performance

    Science.gov (United States)

    Lu, Dan; Ye, Ming; Meyer, Philip D.; Curtis, Gary P.; Shi, Xiaoqing; Niu, Xu-Feng; Yabusaki, Steve B.

    2013-09-01

    When conducting model averaging for assessing groundwater conceptual model uncertainty, the averaging weights are often evaluated using model selection criteria such as AIC, AICc, BIC, and KIC (Akaike Information Criterion, Corrected Akaike Information Criterion, Bayesian Information Criterion, and Kashyap Information Criterion, respectively). However, this method often leads to an unrealistic situation in which the best model receives overwhelmingly large averaging weight (close to 100%), which cannot be justified by available data and knowledge. It was found in this study that this problem was caused by using the covariance matrix, Cɛ, of measurement errors for estimating the negative log likelihood function common to all the model selection criteria. This problem can be resolved by using the covariance matrix, Cek, of total errors (including model errors and measurement errors) to account for the correlation between the total errors. An iterative two-stage method was developed in the context of maximum likelihood inverse modeling to iteratively infer the unknown Cek from the residuals during model calibration. The inferred Cek was then used in the evaluation of model selection criteria and model averaging weights. While this method was limited to serial data using time series techniques in this study, it can be extended to spatial data using geostatistical techniques. The method was first evaluated in a synthetic study and then applied to an experimental study, in which alternative surface complexation models were developed to simulate column experiments of uranium reactive transport. It was found that the total errors of the alternative models were temporally correlated due to the model errors. The iterative two-stage method using Cek resolved the problem that the best model receives 100% model averaging weight, and the resulting model averaging weights were supported by the calibration results and physical understanding of the alternative models. Using Cek

  1. Predictive error dependencies when using pilot points and singular value decomposition in groundwater model calibration

    DEFF Research Database (Denmark)

    Christensen, Steen; Doherty, John

    2008-01-01

    over the model area. Singular value decomposition (SVD) of the (possibly weighted) sensitivity matrix of the pilot point based model produces eigenvectors of which we pick a small number corresponding to significant eigenvalues. Super parameters are defined as factors through which parameter...... conditions near an inflow boundary where data is lacking and which exhibit apparent significant nonlinear behavior. It is shown that inclusion of Tikhonov regularization can stabilize and speed up the parameter estimation process. A method of linearized model analysis of predictive uncertainty...... nonlinear functions. Recommendations concerning the use of pilot points and singular value decomposition in real-world groundwater model calibration are finally given. (c) 2008 Elsevier Ltd. All rights reserved....

  2. Mediofrontal event-related potentials in response to positive, negative and unsigned prediction errors.

    Science.gov (United States)

    Sambrook, Thomas D; Goslin, Jeremy

    2014-08-01

    Reinforcement learning models make use of reward prediction errors (RPEs), the difference between an expected and obtained reward. There is evidence that the brain computes RPEs, but an outstanding question is whether positive RPEs ("better than expected") and negative RPEs ("worse than expected") are represented in a single integrated system. An electrophysiological component, feedback related negativity, has been claimed to encode an RPE but its relative sensitivity to the utility of positive and negative RPEs remains unclear. This study explored the question by varying the utility of positive and negative RPEs in a design that controlled for other closely related properties of feedback and could distinguish utility from salience. It revealed a mediofrontal sensitivity to utility, for positive RPEs at 275-310ms and for negative RPEs at 310-390ms. These effects were preceded and succeeded by a response consistent with an unsigned prediction error, or "salience" coding.

  3. Delusions and prediction error: clarifying the roles of behavioural and brain responses.

    Science.gov (United States)

    Corlett, Philip Robert; Fletcher, Paul Charles

    2015-01-01

    Griffiths and colleagues provided a clear and thoughtful review of the prediction error model of delusion formation [Cognitive Neuropsychiatry, 2014 April 4 (Epub ahead of print)]. As well as reviewing the central ideas and concluding that the existing evidence base is broadly supportive of the model, they provide a detailed critique of some of the experiments that we have performed to study it. Though they conclude that the shortcomings that they identify in these experiments do not fundamentally challenge the prediction error model, we nevertheless respond to these criticisms. We begin by providing a more detailed outline of the model itself as there are certain important aspects of it that were not covered in their review. We then respond to their specific criticisms of the empirical evidence. We defend the neuroimaging contrasts that we used to explore this model of psychosis arguing that, while any single contrast entails some ambiguity, our assumptions have been justified by our extensive background work before and since.

  4. The balanced mind: the variability of task-unrelated thoughts predicts error-monitoring

    Directory of Open Access Journals (Sweden)

    Micah eAllen

    2013-11-01

    Full Text Available Self-generated thoughts unrelated to ongoing activities, also known as ‘mind-wandering’, make up a substantial portion of our daily lives. Reports of such task-unrelated thoughts (TUTs predict both poor performance on demanding cognitive tasks and blood-oxygen-level-dependent (BOLD activity in the default mode network (DMN. However, recent findings suggest that TUTs and the DMN can also facilitate metacognitive abilities and related behaviors. To further understand these relationships, we examined the influence of subjective intensity, ruminative quality, and variability of mind-wandering on response inhibition and monitoring, using the Error Awareness Task (EAT. We expected to replicate links between TUT and reduced inhibition, and explored whether variance in TUT would predict improved error monitoring, reflecting a capacity to balance between internal and external cognition. By analyzing BOLD responses to subjective probes and the EAT, we dissociated contributions of the DMN, executive, and salience networks to task performance. While both response inhibition and online TUT ratings modulated BOLD activity in the medial prefrontal cortex (mPFC of the DMN, the former recruited a more dorsal area implying functional segregation. We further found that individual differences in mean TUTs strongly predicted EAT stop accuracy, while TUT variability specifically predicted levels of error awareness. Interestingly, we also observed co-activation of salience and default mode regions during error awareness, supporting a link between monitoring and TUTs. Altogether our results suggest that although TUT is detrimental to task performance, fluctuations in attention between self-generated and external task-related thought is a characteristic of individuals with greater metacognitive monitoring capacity. Achieving a balance between internal and externally oriented thought may thus allow individuals to optimize their task performance.

  5. The balanced mind: the variability of task-unrelated thoughts predicts error monitoring.

    Science.gov (United States)

    Allen, Micah; Smallwood, Jonathan; Christensen, Joanna; Gramm, Daniel; Rasmussen, Beinta; Jensen, Christian Gaden; Roepstorff, Andreas; Lutz, Antoine

    2013-01-01

    Self-generated thoughts unrelated to ongoing activities, also known as "mind-wandering," make up a substantial portion of our daily lives. Reports of such task-unrelated thoughts (TUTs) predict both poor performance on demanding cognitive tasks and blood-oxygen-level-dependent (BOLD) activity in the default mode network (DMN). However, recent findings suggest that TUTs and the DMN can also facilitate metacognitive abilities and related behaviors. To further understand these relationships, we examined the influence of subjective intensity, ruminative quality, and variability of mind-wandering on response inhibition and monitoring, using the Error Awareness Task (EAT). We expected to replicate links between TUT and reduced inhibition, and explored whether variance in TUT would predict improved error monitoring, reflecting a capacity to balance between internal and external cognition. By analyzing BOLD responses to subjective probes and the EAT, we dissociated contributions of the DMN, executive, and salience networks to task performance. While both response inhibition and online TUT ratings modulated BOLD activity in the medial prefrontal cortex (mPFC) of the DMN, the former recruited a more dorsal area implying functional segregation. We further found that individual differences in mean TUTs strongly predicted EAT stop accuracy, while TUT variability specifically predicted levels of error awareness. Interestingly, we also observed co-activation of salience and default mode regions during error awareness, supporting a link between monitoring and TUTs. Altogether our results suggest that although TUT is detrimental to task performance, fluctuations in attention between self-generated and external task-related thought is a characteristic of individuals with greater metacognitive monitoring capacity. Achieving a balance between internally and externally oriented thought may thus aid individuals in optimizing their task performance.

  6. The balanced mind: the variability of task-unrelated thoughts predicts error monitoring

    Science.gov (United States)

    Allen, Micah; Smallwood, Jonathan; Christensen, Joanna; Gramm, Daniel; Rasmussen, Beinta; Jensen, Christian Gaden; Roepstorff, Andreas; Lutz, Antoine

    2013-01-01

    Self-generated thoughts unrelated to ongoing activities, also known as “mind-wandering,” make up a substantial portion of our daily lives. Reports of such task-unrelated thoughts (TUTs) predict both poor performance on demanding cognitive tasks and blood-oxygen-level-dependent (BOLD) activity in the default mode network (DMN). However, recent findings suggest that TUTs and the DMN can also facilitate metacognitive abilities and related behaviors. To further understand these relationships, we examined the influence of subjective intensity, ruminative quality, and variability of mind-wandering on response inhibition and monitoring, using the Error Awareness Task (EAT). We expected to replicate links between TUT and reduced inhibition, and explored whether variance in TUT would predict improved error monitoring, reflecting a capacity to balance between internal and external cognition. By analyzing BOLD responses to subjective probes and the EAT, we dissociated contributions of the DMN, executive, and salience networks to task performance. While both response inhibition and online TUT ratings modulated BOLD activity in the medial prefrontal cortex (mPFC) of the DMN, the former recruited a more dorsal area implying functional segregation. We further found that individual differences in mean TUTs strongly predicted EAT stop accuracy, while TUT variability specifically predicted levels of error awareness. Interestingly, we also observed co-activation of salience and default mode regions during error awareness, supporting a link between monitoring and TUTs. Altogether our results suggest that although TUT is detrimental to task performance, fluctuations in attention between self-generated and external task-related thought is a characteristic of individuals with greater metacognitive monitoring capacity. Achieving a balance between internally and externally oriented thought may thus aid individuals in optimizing their task performance. PMID:24223545

  7. Predicting linear and nonlinear time series with applications in nuclear safeguards and nonproliferation

    Energy Technology Data Exchange (ETDEWEB)

    Burr, T.L.

    1994-04-01

    This report is a primer on the analysis of both linear and nonlinear time series with applications in nuclear safeguards and nonproliferation. We analyze eight simulated and two real time series using both linear and nonlinear modeling techniques. The theoretical treatment is brief but references to pertinent theory are provided. Forecasting is our main goal. However, because our most common approach is to fit models to the data, we also emphasize checking model adequacy by analyzing forecast errors for serial correlation or nonconstant variance.

  8. Predicting linear and nonlinear time series with applications in nuclear safeguards and nonproliferation

    Energy Technology Data Exchange (ETDEWEB)

    Burr, T.L.

    1994-04-01

    This report is a primer on the analysis of both linear and nonlinear time series with applications in nuclear safeguards and nonproliferation. We analyze eight simulated and two real time series using both linear and nonlinear modeling techniques. The theoretical treatment is brief but references to pertinent theory are provided. Forecasting is our main goal. However, because our most common approach is to fit models to the data, we also emphasize checking model adequacy by analyzing forecast errors for serial correlation or nonconstant variance.

  9. A Bayesian joint probability post-processor for reducing errors and quantifying uncertainty in monthly streamflow predictions

    OpenAIRE

    P. Pokhrel; Robertson, D E; Q. J. Wang

    2013-01-01

    Hydrologic model predictions are often biased and subject to heteroscedastic errors originating from various sources including data, model structure and parameter calibration. Statistical post-processors are applied to reduce such errors and quantify uncertainty in the predictions. In this study, we investigate the use of a statistical post-processor based on the Bayesian joint probability (BJP) modelling approach to reduce errors and quantify uncertainty in streamflow predi...

  10. Conditional nonlinear optimal perturbations based on the particle swarm optimization and their applications to the predictability problems

    Science.gov (United States)

    Zheng, Qin; Yang, Zubin; Sha, Jianxin; Yan, Jun

    2017-02-01

    In predictability problem research, the conditional nonlinear optimal perturbation (CNOP) describes the initial perturbation that satisfies a certain constraint condition and causes the largest prediction error at the prediction time. The CNOP has been successfully applied in estimation of the lower bound of maximum predictable time (LBMPT). Generally, CNOPs are calculated by a gradient descent algorithm based on the adjoint model, which is called ADJ-CNOP. This study, through the two-dimensional Ikeda model, investigates the impacts of the nonlinearity on ADJ-CNOP and the corresponding precision problems when using ADJ-CNOP to estimate the LBMPT. Our conclusions are that (1) when the initial perturbation is large or the prediction time is long, the strong nonlinearity of the dynamical model in the prediction variable will lead to failure of the ADJ-CNOP method, and (2) when the objective function has multiple extreme values, ADJ-CNOP has a large probability of producing local CNOPs, hence making a false estimation of the LBMPT. Furthermore, the particle swarm optimization (PSO) algorithm, one kind of intelligent algorithm, is introduced to solve this problem. The method using PSO to compute CNOP is called PSO-CNOP. The results of numerical experiments show that even with a large initial perturbation and long prediction time, or when the objective function has multiple extreme values, PSO-CNOP can always obtain the global CNOP. Since the PSO algorithm is a heuristic search algorithm based on the population, it can overcome the impact of nonlinearity and the disturbance from multiple extremes of the objective function. In addition, to check the estimation accuracy of the LBMPT presented by PSO-CNOP and ADJ-CNOP, we partition the constraint domain of initial perturbations into sufficiently fine grid meshes and take the LBMPT obtained by the filtering method as a benchmark. The result shows that the estimation presented by PSO-CNOP is closer to the true value than the

  11. Efficient sampling techniques for uncertainty quantification in history matching using nonlinear error models and ensemble level upscaling techniques

    KAUST Repository

    Efendiev, Y.

    2009-11-01

    The Markov chain Monte Carlo (MCMC) is a rigorous sampling method to quantify uncertainty in subsurface characterization. However, the MCMC usually requires many flow and transport simulations in evaluating the posterior distribution and can be computationally expensive for fine-scale geological models. We propose a methodology that combines coarse- and fine-scale information to improve the efficiency of MCMC methods. The proposed method employs off-line computations for modeling the relation between coarse- and fine-scale error responses. This relation is modeled using nonlinear functions with prescribed error precisions which are used in efficient sampling within the MCMC framework. We propose a two-stage MCMC where inexpensive coarse-scale simulations are performed to determine whether or not to run the fine-scale (resolved) simulations. The latter is determined on the basis of a statistical model developed off line. The proposed method is an extension of the approaches considered earlier where linear relations are used for modeling the response between coarse-scale and fine-scale models. The approach considered here does not rely on the proximity of approximate and resolved models and can employ much coarser and more inexpensive models to guide the fine-scale simulations. Numerical results for three-phase flow and transport demonstrate the advantages, efficiency, and utility of the method for uncertainty assessment in the history matching. Copyright 2009 by the American Geophysical Union.

  12. The sensorimotor system minimizes prediction error for object lifting when the object's weight is uncertain.

    Science.gov (United States)

    Brooks, Jack; Thaler, Anne

    2017-08-01

    A reliable mechanism to predict the heaviness of an object is important for manipulating an object under environmental uncertainty. Recently, Cashaback et al. (Cashaback JGA, McGregor HR, Pun HCH, Buckingham G, Gribble PL. J Neurophysiol 117: 260-274, 2017) showed that for object lifting the sensorimotor system uses a strategy that minimizes prediction error when the object's weight is uncertain. Previous research demonstrates that visually guided reaching is similarly optimized. Although this suggests a unified strategy of the sensorimotor system for object manipulation, the selected strategy appears to be task dependent and subject to change in response to the degree of environmental uncertainty. Copyright © 2017 the American Physiological Society.

  13. Using a mesoscale ensemble to predict forecast error and perform targeted observation

    Institute of Scientific and Technical Information of China (English)

    DU Jun; YU Rucong; CUI Chunguang; LI Jun

    2014-01-01

    Using NCEP short range ensemble forecast (SREF) system, demonstrated two fundamental on-going evolu-tions in numerical weather prediction (NWP) are through ensemble methodology. One evolution is the shift from traditional single-value deterministic forecast to flow-dependent (not statistical) probabilistic forecast to address forecast uncertainty. Another is from a one-way observation-prediction system shifting to an in-teractive two-way observation-prediction system to increase predictability of a weather system. In the first part, how ensemble spread from NCEP SREF predicting ensemble-mean forecast error was evaluated over a period of about a month. The result shows that the current capability of predicting forecast error by the 21-member NCEP SREF has reached to a similar or even higher level than that of current state-of-the-art NWP models in predicting precipitation, e.g., the spatial correlation between ensemble spread and absolute fore-cast error has reached 0.5 or higher at 87 h (3.5 d) lead time on average for some meteorological variables. This demonstrates that the current operational ensemble system has already had preliminary capability of predicting the forecast error with usable skill, which is a remarkable achievement as of today. Given the good spread-skill relation, the probability derived from the ensemble was also statistically reliable, which is the most important feature a useful probabilistic forecast should have. The second part of this research tested an ensemble-based interactive targeting (E-BIT) method. Unlike other mathematically-calculated objec-tive approaches, this method is subjective or human interactive based on information from an ensemble of forecasts. A numerical simulation study was performed to eight real atmospheric cases with a 10-member, bred vector-based mesoscale ensemble using the NCEP regional spectral model (RSM, a sub-component of NCEP SREF) to prove the concept of this E-BIT method. The method seems to work most

  14. Belief about nicotine selectively modulates value and reward prediction error signals in smokers

    Science.gov (United States)

    Gu, Xiaosi; Lohrenz, Terry; Salas, Ramiro; Baldwin, Philip R.; Soltani, Alireza; Kirk, Ulrich; Cinciripini, Paul M.; Montague, P. Read

    2015-01-01

    Little is known about how prior beliefs impact biophysically described processes in the presence of neuroactive drugs, which presents a profound challenge to the understanding of the mechanisms and treatments of addiction. We engineered smokers’ prior beliefs about the presence of nicotine in a cigarette smoked before a functional magnetic resonance imaging session where subjects carried out a sequential choice task. Using a model-based approach, we show that smokers’ beliefs about nicotine specifically modulated learning signals (value and reward prediction error) defined by a computational model of mesolimbic dopamine systems. Belief of “no nicotine in cigarette” (compared with “nicotine in cigarette”) strongly diminished neural responses in the striatum to value and reward prediction errors and reduced the impact of both on smokers’ choices. These effects of belief could not be explained by global changes in visual attention and were specific to value and reward prediction errors. Thus, by modulating the expression of computationally explicit signals important for valuation and choice, beliefs can override the physical presence of a potent neuroactive compound like nicotine. These selective effects of belief demonstrate that belief can modulate model-based parameters important for learning. The implications of these findings may be far ranging because belief-dependent effects on learning signals could impact a host of other behaviors in addiction as well as in other mental health problems. PMID:25605923

  15. Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection.

    Science.gov (United States)

    Li, Xiaolong; Yang, Bin; Zeng, Tieyong

    2011-12-01

    Prediction-error expansion (PEE) is an important technique of reversible watermarking which can embed large payloads into digital images with low distortion. In this paper, the PEE technique is further investigated and an efficient reversible watermarking scheme is proposed, by incorporating in PEE two new strategies, namely, adaptive embedding and pixel selection. Unlike conventional PEE which embeds data uniformly, we propose to adaptively embed 1 or 2 bits into expandable pixel according to the local complexity. This avoids expanding pixels with large prediction-errors, and thus, it reduces embedding impact by decreasing the maximum modification to pixel values. Meanwhile, adaptive PEE allows very large payload in a single embedding pass, and it improves the capacity limit of conventional PEE. We also propose to select pixels of smooth area for data embedding and leave rough pixels unchanged. In this way, compared with conventional PEE, a more sharply distributed prediction-error histogram is obtained and a better visual quality of watermarked image is observed. With these improvements, our method outperforms conventional PEE. Its superiority over other state-of-the-art methods is also demonstrated experimentally.

  16. Ventral striatal prediction error signaling is associated with dopamine synthesis capacity and fluid intelligence.

    Science.gov (United States)

    Schlagenhauf, Florian; Rapp, Michael A; Huys, Quentin J M; Beck, Anne; Wüstenberg, Torsten; Deserno, Lorenz; Buchholz, Hans-Georg; Kalbitzer, Jan; Buchert, Ralph; Bauer, Michael; Kienast, Thorsten; Cumming, Paul; Plotkin, Michail; Kumakura, Yoshitaka; Grace, Anthony A; Dolan, Raymond J; Heinz, Andreas

    2013-06-01

    Fluid intelligence represents the capacity for flexible problem solving and rapid behavioral adaptation. Rewards drive flexible behavioral adaptation, in part via a teaching signal expressed as reward prediction errors in the ventral striatum, which has been associated with phasic dopamine release in animal studies. We examined a sample of 28 healthy male adults using multimodal imaging and biological parametric mapping with (1) functional magnetic resonance imaging during a reversal learning task and (2) in a subsample of 17 subjects also with positron emission tomography using 6-[(18) F]fluoro-L-DOPA to assess dopamine synthesis capacity. Fluid intelligence was measured using a battery of nine standard neuropsychological tests. Ventral striatal BOLD correlates of reward prediction errors were positively correlated with fluid intelligence and, in the right ventral striatum, also inversely correlated with dopamine synthesis capacity (FDOPA K inapp). When exploring aspects of fluid intelligence, we observed that prediction error signaling correlates with complex attention and reasoning. These findings indicate that individual differences in the capacity for flexible problem solving relate to ventral striatal activation during reward-related learning, which in turn proved to be inversely associated with ventral striatal dopamine synthesis capacity.

  17. Belief about nicotine selectively modulates value and reward prediction error signals in smokers.

    Science.gov (United States)

    Gu, Xiaosi; Lohrenz, Terry; Salas, Ramiro; Baldwin, Philip R; Soltani, Alireza; Kirk, Ulrich; Cinciripini, Paul M; Montague, P Read

    2015-02-24

    Little is known about how prior beliefs impact biophysically described processes in the presence of neuroactive drugs, which presents a profound challenge to the understanding of the mechanisms and treatments of addiction. We engineered smokers' prior beliefs about the presence of nicotine in a cigarette smoked before a functional magnetic resonance imaging session where subjects carried out a sequential choice task. Using a model-based approach, we show that smokers' beliefs about nicotine specifically modulated learning signals (value and reward prediction error) defined by a computational model of mesolimbic dopamine systems. Belief of "no nicotine in cigarette" (compared with "nicotine in cigarette") strongly diminished neural responses in the striatum to value and reward prediction errors and reduced the impact of both on smokers' choices. These effects of belief could not be explained by global changes in visual attention and were specific to value and reward prediction errors. Thus, by modulating the expression of computationally explicit signals important for valuation and choice, beliefs can override the physical presence of a potent neuroactive compound like nicotine. These selective effects of belief demonstrate that belief can modulate model-based parameters important for learning. The implications of these findings may be far ranging because belief-dependent effects on learning signals could impact a host of other behaviors in addiction as well as in other mental health problems.

  18. A new method of determining the optimal embedding dimension based on nonlinear prediction

    Institute of Scientific and Technical Information of China (English)

    Meng Qing-Fang; Peng Yu-Hua; Xue Pei-Jun

    2007-01-01

    A new method is proposed to determine the optimal embedding dimension from a scalar time series in this paper. This method determines the optimal embedding dimension by optimizing the nonlinear autoregressive prediction model parameterized by the embedding dimension and the nonlinear degree. Simulation results show the effectiveness of this method. And this method is applicable to a short time series, stable to noise, computationally efficient, and without any purposely introduced parameters.

  19. Determining the minimum embedding dimension of nonlinear time series based on prediction method

    Institute of Scientific and Technical Information of China (English)

    Bian Chun-Hua; Ning Xin-Bao

    2004-01-01

    Determining the embedding dimension of nonlinear time series plays an important role in the reconstruction of nonlinear dynamics. The paper first summarizes the current methods for determining the embedding dimension.Then, inspired by the fact that the optimum modelling dimension of nonlinear autoregressive (NAR) prediction model can characterize the embedding feature of the dynamics, the paper presents a new idea that the optimum modelling dimension of the NAR model can be taken as the minimum embedding dimension. Some validation examples and results are given and the present method shows its advantage for short data series.

  20. Modelling and prediction of complex non-linear processes by using Pareto multi-objective genetic programming

    Science.gov (United States)

    Jamali, A.; Khaleghi, E.; Gholaminezhad, I.; Nariman-zadeh, N.

    2016-05-01

    In this paper, a new multi-objective genetic programming (GP) with a diversity preserving mechanism and a real number alteration operator is presented and successfully used for Pareto optimal modelling of some complex non-linear systems using some input-output data. In this study, two different input-output data-sets of a non-linear mathematical model and of an explosive cutting process are considered separately in three-objective optimisation processes. The pertinent conflicting objective functions that have been considered for such Pareto optimisations are namely, training error (TE), prediction error (PE), and the length of tree (complexity of the network) (TL) of the GP models. Such three-objective optimisation implementations leads to some non-dominated choices of GP-type models for both cases representing the trade-offs among those objective functions. Therefore, optimal Pareto fronts of such GP models exhibit the trade-off among the corresponding conflicting objectives and, thus, provide different non-dominated optimal choices of GP-type models. Moreover, the results show that no significant optimality in TE and PE may occur when the TL of the corresponding GP model exceeds some values.

  1. Nonlinear model predictive control for chemical looping process

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Abhinaya; Lei, Hao; Lou, Xinsheng

    2017-08-22

    A control system for optimizing a chemical looping ("CL") plant includes a reduced order mathematical model ("ROM") that is designed by eliminating mathematical terms that have minimal effect on the outcome. A non-linear optimizer provides various inputs to the ROM and monitors the outputs to determine the optimum inputs that are then provided to the CL plant. An estimator estimates the values of various internal state variables of the CL plant. The system has one structure adapted to control a CL plant that only provides pressure measurements in the CL loops A and B, a second structure adapted to a CL plant that provides pressure measurements and solid levels in both loops A, and B, and a third structure adapted to control a CL plant that provides full information on internal state variables. A final structure provides a neural network NMPC controller to control operation of loops A and B.

  2. Effects of rapid eye movement sleep deprivation on fear extinction recall and prediction error signaling.

    Science.gov (United States)

    Spoormaker, Victor I; Schröter, Manuel S; Andrade, Kátia C; Dresler, Martin; Kiem, Sara A; Goya-Maldonado, Roberto; Wetter, Thomas C; Holsboer, Florian; Sämann, Philipp G; Czisch, Michael

    2012-10-01

    In a temporal difference learning approach of classical conditioning, a theoretical error signal shifts from outcome deliverance to the onset of the conditioned stimulus. Omission of an expected outcome results in a negative prediction error signal, which is the initial step towards successful extinction and may therefore be relevant for fear extinction recall. As studies in rodents have observed a bidirectional relationship between fear extinction and rapid eye movement (REM) sleep, we aimed to test the hypothesis that REM sleep deprivation impairs recall of fear extinction through prediction error signaling in humans. In a three-day design with polysomnographically controlled REM sleep deprivation, 18 young, healthy subjects performed a fear conditioning, extinction and recall of extinction task with visual stimuli, and mild electrical shocks during combined functional magnetic resonance imaging (fMRI) and skin conductance response (SCR) measurements. Compared to the control group, the REM sleep deprivation group had increased SCR scores to a previously extinguished stimulus at early recall of extinction trials, which was associated with an altered fMRI time-course in the left middle temporal gyrus. Post-hoc contrasts corrected for measures of NREM sleep variability also revealed between-group differences primarily in the temporal lobe. Our results demonstrate altered prediction error signaling during recall of fear extinction after REM sleep deprivation, which may further our understanding of anxiety disorders in which disturbed sleep and impaired fear extinction learning coincide. Moreover, our findings are indicative of REM sleep related plasticity in regions that also show an increase in activity during REM sleep.

  3. Prediction error and somatosensory insula activation in women recovered from anorexia nervosa.

    Science.gov (United States)

    Frank, Guido K W; Collier, Shaleise; Shott, Megan E; O'Reilly, Randall C

    2016-08-01

    Previous research in patients with anorexia nervosa showed heightened brain response during a taste reward conditioning task and heightened sensitivity to rewarding and punishing stimuli. Here we tested the hypothesis that individuals recovered from anorexia nervosa would also experience greater brain activation during this task as well as higher sensitivity to salient stimuli than controls. Women recovered from restricting-type anorexia nervosa and healthy control women underwent fMRI during application of a prediction error taste reward learning paradigm. Twenty-four women recovered from anorexia nervosa (mean age 30.3 ± 8.1 yr) and 24 control women (mean age 27.4 ± 6.3 yr) took part in this study. The recovered anorexia nervosa group showed greater left posterior insula activation for the prediction error model analysis than the control group (family-wise error- and small volume-corrected p anorexia nervosa than controls for unexpected stimulus omission, but not for unexpected receipt. Sensitivity to punishment was elevated in women recovered from anorexia nervosa. This was a cross-sectional study, and the sample size was modest. Anorexia nervosa after recovery is associated with heightened prediction error-related brain response in the posterior insula as well as greater response to unexpected reward stimulus omission. This finding, together with behaviourally increased sensitivity to punishment, could indicate that individuals recovered from anorexia nervosa are particularly responsive to punishment. The posterior insula processes somatosensory stimuli, including unexpected bodily states, and greater response could indicate altered perception or integration of unexpected or maybe unwanted bodily feelings. Whether those findings develop during the ill state or whether they are biological traits requires further study.

  4. Optimization of a nonlinear model for predicting the ground vibration using the combinational particle swarm optimization-genetic algorithm

    Science.gov (United States)

    Samareh, Hossein; Khoshrou, Seyed Hassan; Shahriar, Kourosh; Ebadzadeh, Mohammad Mehdi; Eslami, Mohammad

    2017-09-01

    When particle's wave velocity resulting from mining blasts exceeds a certain level, then the intensity of produced vibrations incur damages to the structures around the blasting regions. Development of mathematical models for predicting the peak particle velocity (PPV) based on the properties of the wave emission environment is an appropriate method for better designing of blasting parameters, since the probability of incurred damages can considerably be mitigated by controlling the intensity of vibrations at the building sites. In this research, first out of 11 blasting and geo-mechanical parameters of rock masses, four parameters which had the greatest influence on the vibrational wave velocities were specified using regression analysis. Thereafter, some models were developed for predicting the PPV by nonlinear regression analysis (NLRA) and artificial neural network (ANN) with correlation coefficients of 0.854 and 0.662, respectively. Afterward, the coefficients associated with the parameters in the NLRA model were optimized using optimization particle swarm-genetic algorithm. The values of PPV were estimated for 18 testing dataset in order to evaluate the accuracy of the prediction and performance of the developed models. By calculating statistical indices for the test recorded maps, it was found that the optimized model can predict the PPV with a lower error than the other two models. Furthermore, considering the correlation coefficient (0.75) between the values of the PPV measured and predicted by the optimized nonlinear model, it was found that this model possesses a more desirable performance for predicting the PPV than the other two models.

  5. Standard error of inverse prediction for dose-response relationship: approximate and exact statistical inference.

    Science.gov (United States)

    Demidenko, Eugene; Williams, Benjamin B; Flood, Ann Barry; Swartz, Harold M

    2013-05-30

    This paper develops a new metric, the standard error of inverse prediction (SEIP), for a dose-response relationship (calibration curve) when dose is estimated from response via inverse regression. SEIP can be viewed as a generalization of the coefficient of variation to regression problem when x is predicted using y-value. We employ nonstandard statistical methods to treat the inverse prediction, which has an infinite mean and variance due to the presence of a normally distributed variable in the denominator. We develop confidence intervals and hypothesis testing for SEIP on the basis of the normal approximation and using the exact statistical inference based on the noncentral t-distribution. We derive the power functions for both approaches and test them via statistical simulations. The theoretical SEIP, as the ratio of the regression standard error to the slope, is viewed as reciprocal of the signal-to-noise ratio, a popular measure of signal processing. The SEIP, as a figure of merit for inverse prediction, can be used for comparison of calibration curves with different dependent variables and slopes. We illustrate our theory with electron paramagnetic resonance tooth dosimetry for a rapid estimation of the radiation dose received in the event of nuclear terrorism.

  6. Nonlinear Dependence of Global Warming Prediction on Ocean State

    Science.gov (United States)

    Liang, M.; Lin, L.; Tung, K. K.; Yung, Y. L.; Sun, S.

    2010-12-01

    Global temperature has increased by 0.8 C since the pre-industrial era, and is likely to increase further if greenhouse gas emission continues unchecked. Various mitigation efforts are being negotiated among nations to keep the increase under 2 C, beyond which the outcome is believed to be catastrophic. Such policy efforts are currently based on predictions by the state-of-the-art coupled atmosphere ocean models (AOGCM). Caution is advised for their use for the purpose of short-term (less than a century) climate prediction as the predicted warming and spatial patterns vary depending on the initial state of the ocean, even in an ensemble mean. The range of uncertainty in such predictions by Intergovernmental Panel on Climate Change (IPCC) models may be underreported when models were run with their oceans at various stages of adjustment with their atmospheres. By comparing a very long run (> 1000 years) of the coupled Goddard Institute for Space Studies (GISS) model with what was reported to IPCC Fourth Assessment Report (AR4), we show that the fully adjusted model transient climate sensitivity should be 30% higher for the same model, and the 2 C warming should occur sooner than previously predicted. Using model archives we further argue that this may be a common problem for the IPCC AR4 models, since few, if any, of the models has a fully adjusted ocean. For all models, multi-decadal climate predictions to 2050 are highly dependent on the initial ocean state (and so are unreliable). Such dependence cannot be removed simply by subtracting the climate drift from control runs.

  7. Nonlinear wind prediction using a fuzzy modular temporal neural network

    Energy Technology Data Exchange (ETDEWEB)

    Wu, G.G. [GeoControl Systems, Inc., Houston, TX (United States); Zhijie Dou [West Texas A& M Univ., Canyon, TX (United States)

    1995-12-31

    This paper introduces a new approach utilizing a fuzzy classifier and a modular temporal neural network to predict wind speed and direction for advanced wind turbine control systems. The fuzzy classifier estimates wind patterns and then assigns weights accordingly to each module of the temporal neural network. A temporal network with the finite-duration impulse response and multiple-layer structure is used to represent the underlying dynamics of physical phenomena. Using previous wind measurements and information given by the classifier, the modular network trained by a standard back-propagation algorithm predicts wind speed and direction effectively. Meanwhile, the feedback from the network helps auto-tuning the classifier.

  8. Efficient thermal error prediction in a machine tool using finite element analysis

    Science.gov (United States)

    Mian, Naeem S.; Fletcher, Simon; Longstaff, Andrew P.; Myers, Alan

    2011-08-01

    Thermally induced errors have a major significance on the positional accuracy of a machine tool. Heat generated during the machining process produces thermal gradients that flow through the machine structure causing linear and nonlinear thermal expansions and distortions of associated complex discrete structures, producing deformations that adversely affect structural stability. The heat passes through structural linkages and mechanical joints where interfacial parameters such as the roughness and form of the contacting surfaces affect the thermal resistance and thus the heat transfer coefficients. This paper presents a novel offline technique using finite element analysis (FEA) to simulate the effects of the major internal heat sources such as bearings, motors and belt drives of a small vertical milling machine (VMC) and the effects of ambient temperature pockets that build up during the machine operation. Simplified models of the machine have been created offline using FEA software and evaluated experimental results applied for offline thermal behaviour simulation of the full machine structure. The FEA simulated results are in close agreement with the experimental results ranging from 65% to 90% for a variety of testing regimes and revealed a maximum error range of 70 µm reduced to less than 10 µm.

  9. Quantifying the predictive consequences of model error with linear subspace analysis

    Science.gov (United States)

    White, Jeremy T.; Doherty, John E.; Hughes, Joseph D.

    2014-01-01

    All computer models are simplified and imperfect simulators of complex natural systems. The discrepancy arising from simplification induces bias in model predictions, which may be amplified by the process of model calibration. This paper presents a new method to identify and quantify the predictive consequences of calibrating a simplified computer model. The method is based on linear theory, and it scales efficiently to the large numbers of parameters and observations characteristic of groundwater and petroleum reservoir models. The method is applied to a range of predictions made with a synthetic integrated surface-water/groundwater model with thousands of parameters. Several different observation processing strategies and parameterization/regularization approaches are examined in detail, including use of the Karhunen-Loève parameter transformation. Predictive bias arising from model error is shown to be prediction specific and often invisible to the modeler. The amount of calibration-induced bias is influenced by several factors, including how expert knowledge is applied in the design of parameterization schemes, the number of parameters adjusted during calibration, how observations and model-generated counterparts are processed, and the level of fit with observations achieved through calibration. Failure to properly implement any of these factors in a prediction-specific manner may increase the potential for predictive bias in ways that are not visible to the calibration and uncertainty analysis process.

  10. Putting Reward in Art: A Tentative Prediction Error Account of Visual Art

    Directory of Open Access Journals (Sweden)

    Sander Van de Cruys

    2011-12-01

    Full Text Available The predictive coding model is increasingly and fruitfully used to explain a wide range of findings in perception. Here we discuss the potential of this model in explaining the mechanisms underlying aesthetic experiences. Traditionally art appreciation has been associated with concepts such as harmony, perceptual fluency, and the so-called good Gestalt. We observe that more often than not great artworks blatantly violate these characteristics. Using the concept of prediction error from the predictive coding approach, we attempt to resolve this contradiction. We argue that artists often destroy predictions that they have first carefully built up in their viewers, and thus highlight the importance of negative affect in aesthetic experience. However, the viewer often succeeds in recovering the predictable pattern, sometimes on a different level. The ensuing rewarding effect is derived from this transition from a state of uncertainty to a state of increased predictability. We illustrate our account with several example paintings and with a discussion of art movements and individual differences in preference. On a more fundamental level, our theorizing leads us to consider the affective implications of prediction confirmation and violation. We compare our proposal to other influential theories on aesthetics and explore its advantages and limitations.

  11. Error consciousness predicts physiological response to an acute psychosocial stressor in men.

    Science.gov (United States)

    Wu, Jianhui; Sun, Xiaofang; Wang, Li; Zhang, Liang; Fernández, Guillén; Yao, Zhuxi

    2017-09-01

    There are substantial individual differences in the response towards acute stressor. The aim of the current study was to examine how the neural activity after an error response during a non-stressful state, prospectively predicts the magnitude of physiological stress response (e.g., cortisol response and heart rate) and negative affect elicited by a laboratory stress induction procedure in nonclinical participants. Thirty-seven healthy young male adults came to the laboratory for the baseline neurocognitive measurement on the first day during which they performed a Go/Nogo task with their electroencephalogram recorded. On the second day, they came again to be tested on their stress response using an acute psychosocial stress procedure (i.e., the Trier Social Stress Test, the TSST). Results showed that the amplitude of error positivity (Pe) significantly predicted both the heart rate and cortisol response towards the TSST. Our results suggested that baseline cognitive neural activity reflecting error consciousness could be used as a biological predictor of physiological response to an acute psychological stressor in men. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Error estimates for density-functional theory predictions of surface energy and work function

    Science.gov (United States)

    De Waele, Sam; Lejaeghere, Kurt; Sluydts, Michael; Cottenier, Stefaan

    2016-12-01

    Density-functional theory (DFT) predictions of materials properties are becoming ever more widespread. With increased use comes the demand for estimates of the accuracy of DFT results. In view of the importance of reliable surface properties, this work calculates surface energies and work functions for a large and diverse test set of crystalline solids. They are compared to experimental values by performing a linear regression, which results in a measure of the predictable and material-specific error of the theoretical result. Two of the most prevalent functionals, the local density approximation (LDA) and the Perdew-Burke-Ernzerhof parametrization of the generalized gradient approximation (PBE-GGA), are evaluated and compared. Both LDA and GGA-PBE are found to yield accurate work functions with error bars below 0.3 eV, rivaling the experimental precision. LDA also provides satisfactory estimates for the surface energy with error bars smaller than 10%, but GGA-PBE significantly underestimates the surface energy for materials with a large correlation energy.

  13. Nonlinear predictive control for the damping of multimachine power system transients using FACTS devices

    Energy Technology Data Exchange (ETDEWEB)

    Rajkumar, V. [ABB Transmission Technology Institute, Raleigh, NC (United States); Mohler, R.R. [Oregon State Univ., Corvallis, OR (United States)

    1994-12-31

    This paper presents a framework for the development of discrete-time, nonlinear predictive controllers using thyristor-controlled-series-capacitors and phasor measurements of bus voltage magnitude and angle, for the stabilization and rapid damping of multimachine power systems which are subjected to large disturbances. When the faults of concern are large, the nonlinear predictive controllers are used to return the power system state to a small region about the post-fault equilibrium. In this region, linear controllers provide local asymptotic stability and rapid damping. Simulation results are provided on a sample four-machine power system.

  14. An Application of Non-Linear Autoregressive Neural Networks to Predict Energy Consumption in Public Buildings

    Directory of Open Access Journals (Sweden)

    Luis Gonzaga Baca Ruiz

    2016-08-01

    Full Text Available This paper addresses the problem of energy consumption prediction using neural networks over a set of public buildings. Since energy consumption in the public sector comprises a substantial share of overall consumption, the prediction of such consumption represents a decisive issue in the achievement of energy savings. In our experiments, we use the data provided by an energy consumption monitoring system in a compound of faculties and research centers at the University of Granada, and provide a methodology to predict future energy consumption using nonlinear autoregressive (NAR and the nonlinear autoregressive neural network with exogenous inputs (NARX, respectively. Results reveal that NAR and NARX neural networks are both suitable for performing energy consumption prediction, but also that exogenous data may help to improve the accuracy of predictions.

  15. Time-varying Combinations of Predictive Densities using Nonlinear Filtering

    NARCIS (Netherlands)

    M. Billio (Monica); R. Casarin (Roberto); F. Ravazzolo (Francesco); H.K. van Dijk (Herman)

    2012-01-01

    textabstractWe propose a Bayesian combination approach for multivariate predictive densities which relies upon a distributional state space representation of the combination weights. Several specifications of multivariate time-varying weights are introduced with a particular focus on weight dynamics

  16. High-Order Volterra Model Predictive Control and Its Application to a Nonlinear Polymerisation Process

    Institute of Scientific and Technical Information of China (English)

    Yun Li; Hiroshi Kashiwagi

    2005-01-01

    Model Predictive Control (MPC) has recently found wide acceptance in the process industry, but existing design and implementation methods are restricted to linear process models. A chemical process, however, involves severe nonlinearity which cannot be ignored in practice. This paper aims to solve this nonlinear control problem by extending MPC to accommodate nonlinear models. It develops an analytical framework for nonlinear model predictive control (NMPC). It also offers a third-order Volterra series based nonparametric nonlinear modelling technique for NMPC design, which relieves practising engineers from the need for deriving a physical-principles based model first. An on-line realisation technique for implementing NMPC is then developed and applied to a Mitsubishi Chemicals polymerisation reaction process. Results show that this nonlinear MPC technique is feasible and very effective. It considerably outperforms linear and low-order Volterra model based methods. The advantages of the developed approach lie not only in control performance superior to existing NMPC methods, but also in eliminating the need for converting an analytical model and then convert it to a Volterra model obtainable only up to the second order.

  17. Predictions by the proper orthogonal decomposition reduced order methodology regarding non-linear BWR stability

    Energy Technology Data Exchange (ETDEWEB)

    Prill, Dennis; Class, Andreas G. [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). AREVA Nuclear Professional School (ANPS)

    2013-07-01

    Unexpected non-linear boiling water reactor (BWR) instability events in various plants, e.g. LaSalle II in 1988 and Oskarshamn II in 1990 amongst others, emphasize the major safety relevance and the existence of parameter regions with unstable behavior. A detailed description of the complete dynamical non-linear behavior is of paramount importance for BWR operation. An extension of state-of-the-art methodology towards a more general stability description, also applicable in the non-linear region, could lead to a deeper understanding of non-linear BWR stability phenomena. With the intention of a full non-linear stability analysis of the two-phase BWR system, the present paper aims at a general non-linear methodology capable to achieve reliable and numerical stable reduced order models (ROMs), representing the dynamical behavior of an original system based on a small number of transients. Model-specific options and aspects of the proposed methodology are focused on and illustrated by means of a strongly non-linear dynamical system showing complex oscillating behavior. Prediction capability of the proposed methodology is also addressed. (orig.)

  18. Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction

    Directory of Open Access Journals (Sweden)

    Geoff Boeing

    2016-11-01

    Full Text Available Nearly all nontrivial real-world systems are nonlinear dynamical systems. Chaos describes certain nonlinear dynamical systems that have a very sensitive dependence on initial conditions. Chaotic systems are always deterministic and may be very simple, yet they produce completely unpredictable and divergent behavior. Systems of nonlinear equations are difficult to solve analytically, and scientists have relied heavily on visual and qualitative approaches to discover and analyze the dynamics of nonlinearity. Indeed, few fields have drawn as heavily from visualization methods for their seminal innovations: from strange attractors, to bifurcation diagrams, to cobweb plots, to phase diagrams and embedding. Although the social sciences are increasingly studying these types of systems, seminal concepts remain murky or loosely adopted. This article has three aims. First, it argues for several visualization methods to critically analyze and understand the behavior of nonlinear dynamical systems. Second, it uses these visualizations to introduce the foundations of nonlinear dynamics, chaos, fractals, self-similarity and the limits of prediction. Finally, it presents Pynamical, an open-source Python package to easily visualize and explore nonlinear dynamical systems’ behavior.

  19. Constrained predictive control based on T-S fuzzy model for nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    Su Baili; Chen Zengqiang; Yuan Zhuzhi

    2007-01-01

    A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonal least square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented.This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems.

  20. Reduced order prediction of rare events in unidirectional nonlinear water waves

    CERN Document Server

    Cousins, Will

    2015-01-01

    We consider the problem of short-term prediction of rare, extreme water waves in unidirectional fields, a critical topic for ocean structures and naval operations. One possible mechanism for the occurrence of such rare, unusually-intense waves is nonlinear wave focusing. Recent results have demonstrated that random localizations of energy, induced by the dispersive mixing of different harmonics, can grow significantly due to localized nonlinear focusing. Here we show how the interplay between i) statistical properties captured through linear information such as the waves power spectrum and ii) nonlinear dynamical properties of focusing localized wave groups defines a critical length scale associated with the formation of extreme events. The energy that is locally concentrated over this length scale acts as the "trigger" of nonlinear focusing for wave groups and the formation of subsequent rare events. We use this property to develop inexpensive, short-term predictors of large water waves. Specifically, we sho...

  1. Reassessing Domain Architecture Evolution of Metazoan Proteins: Major Impact of Gene Prediction Errors

    Directory of Open Access Journals (Sweden)

    László Patthy

    2011-07-01

    Full Text Available In view of the fact that appearance of novel protein domain architectures (DA is closely associated with biological innovations, there is a growing interest in the genome-scale reconstruction of the evolutionary history of the domain architectures of multidomain proteins. In such analyses, however, it is usually ignored that a significant proportion of Metazoan sequences analyzed is mispredicted and that this may seriously affect the validity of the conclusions. To estimate the contribution of errors in gene prediction to differences in DA of predicted proteins, we have used the high quality manually curated UniProtKB/Swiss-Prot database as a reference. For genome-scale analysis of domain architectures of predicted proteins we focused on RefSeq, EnsEMBL and NCBI’s GNOMON predicted sequences of Metazoan species with completely sequenced genomes. Comparison of the DA of UniProtKB/Swiss-Prot sequences of worm, fly, zebrafish, frog, chick, mouse, rat and orangutan with those of human Swiss-Prot entries have identified relatively few cases where orthologs had different DA, although the percentage with different DA increased with evolutionary distance. In contrast with this, comparison of the DA of human, orangutan, rat, mouse, chicken, frog, zebrafish, worm and fly RefSeq, EnsEMBL and NCBI’s GNOMON predicted protein sequences with those of the corresponding/orthologous human Swiss-Prot entries identified a significantly higher proportion of domain architecture differences than in the case of the comparison of Swiss-Prot entries. Analysis of RefSeq, EnsEMBL and NCBI’s GNOMON predicted protein sequences with DAs different from those of their Swiss-Prot orthologs confirmed that the higher rate of domain architecture differences is due to errors in gene prediction, the majority of which could be corrected with our FixPred protocol. We have also demonstrated that contamination of databases with incomplete, abnormal or mispredicted sequences

  2. Curved Displacement Transfer Functions for Geometric Nonlinear Large Deformation Structure Shape Predictions

    Science.gov (United States)

    Ko, William L.; Fleischer, Van Tran; Lung, Shun-Fat

    2017-01-01

    For shape predictions of structures under large geometrically nonlinear deformations, Curved Displacement Transfer Functions were formulated based on a curved displacement, traced by a material point from the undeformed position to deformed position. The embedded beam (depth-wise cross section of a structure along a surface strain-sensing line) was discretized into multiple small domains, with domain junctures matching the strain-sensing stations. Thus, the surface strain distribution could be described with a piecewise linear or a piecewise nonlinear function. The discretization approach enabled piecewise integrations of the embedded-beam curvature equations to yield the Curved Displacement Transfer Functions, expressed in terms of embedded beam geometrical parameters and surface strains. By entering the surface strain data into the Displacement Transfer Functions, deflections along each embedded beam can be calculated at multiple points for mapping the overall structural deformed shapes. Finite-element linear and nonlinear analyses of a tapered cantilever tubular beam were performed to generate linear and nonlinear surface strains and the associated deflections to be used for validation. The shape prediction accuracies were then determined by comparing the theoretical deflections with the finiteelement- generated deflections. The results show that the newly developed Curved Displacement Transfer Functions are very accurate for shape predictions of structures under large geometrically nonlinear deformations.

  3. Modeling workplace contact networks: The effects of organizational structure, architecture, and reporting errors on epidemic predictions.

    Science.gov (United States)

    Potter, Gail E; Smieszek, Timo; Sailer, Kerstin

    2015-09-01

    Face-to-face social contacts are potentially important transmission routes for acute respiratory infections, and understanding the contact network can improve our ability to predict, contain, and control epidemics. Although workplaces are important settings for infectious disease transmission, few studies have collected workplace contact data and estimated workplace contact networks. We use contact diaries, architectural distance measures, and institutional structures to estimate social contact networks within a Swiss research institute. Some contact reports were inconsistent, indicating reporting errors. We adjust for this with a latent variable model, jointly estimating the true (unobserved) network of contacts and duration-specific reporting probabilities. We find that contact probability decreases with distance, and that research group membership, role, and shared projects are strongly predictive of contact patterns. Estimated reporting probabilities were low only for 0-5 min contacts. Adjusting for reporting error changed the estimate of the duration distribution, but did not change the estimates of covariate effects and had little effect on epidemic predictions. Our epidemic simulation study indicates that inclusion of network structure based on architectural and organizational structure data can improve the accuracy of epidemic forecasting models.

  4. Detection of microcalcifications in mammograms using error of prediction and statistical measures

    Science.gov (United States)

    Acha, Begoña; Serrano, Carmen; Rangayyan, Rangaraj M.; Leo Desautels, J. E.

    2009-01-01

    A two-stage method for detecting microcalcifications in mammograms is presented. In the first stage, the determination of the candidates for microcalcifications is performed. For this purpose, a 2-D linear prediction error filter is applied, and for those pixels where the prediction error is larger than a threshold, a statistical measure is calculated to determine whether they are candidates for microcalcifications or not. In the second stage, a feature vector is derived for each candidate, and after a classification step using a support vector machine, the final detection is performed. The algorithm is tested with 40 mammographic images, from Screen Test: The Alberta Program for the Early Detection of Breast Cancer with 50-μm resolution, and the results are evaluated using a free-response receiver operating characteristics curve. Two different analyses are performed: an individual microcalcification detection analysis and a cluster analysis. In the analysis of individual microcalcifications, detection sensitivity values of 0.75 and 0.81 are obtained at 2.6 and 6.2 false positives per image, on the average, respectively. The best performance is characterized by a sensitivity of 0.89, a specificity of 0.99, and a positive predictive value of 0.79. In cluster analysis, a sensitivity value of 0.97 is obtained at 1.77 false positives per image, and a value of 0.90 is achieved at 0.94 false positive per image.

  5. Beyond the effective mass approximation: predictive theory of the nonlinear optical response of conduction electrons

    CERN Document Server

    Yu, Shukai; Talbayev, Diyar

    2016-01-01

    We present an experimental and computational study of the nonlinear optical response of conduction electrons to intense terahertz (THz) electric field. Our observations (saturable absorption and an amplitude-dependent group refractive index) can be understood on the qualitative level as the breakdown of the effective mass approximation. However, a predictive theoretical description of the nonlinearity has been missing. We propose a model based on the semiclassical electron dynamics, a realistic band structure, and the free electron Drude parameters to accurately calculate the experimental observables in InSb. Our results open a path to predictive modeling of the conduction-electron optical nonlinearity in semiconductors, metamaterials, as well as high-field effects in THz plasmonics.

  6. CONTROL OF NONLINEAR PROCESS USING NEURAL NETWORK BASED MODEL PREDICTIVE CONTROL

    Directory of Open Access Journals (Sweden)

    Dr.A.TRIVEDI

    2011-04-01

    Full Text Available This paper presents a Neural Network based Model Predictive Control (NNMPC strategy to control nonlinear process. Multilayer Perceptron Neural Network (MLP is chosen to represent a Nonlinear Auto Regressive with eXogenous signal (NARX model of a nonlinear system. NARX dynamic model is based on feed-forward architecture and offers good approximation capabilities along with robustness and accuracy. Based on the identified neural model, a generalized predictive control (GPC algorithm is implemented to control the composition in acontinuous stirred tank reactor (CSTR, whose parameters are optimally determined by solving quadratic performance index using well known Levenberg-Marquardt and Quasi-Newton algorithm. NNMPC is tuned by selecting few horizon parameters and weighting factor. The tracking performance of the NNMPC is tested using different amplitude function as a reference signal on CSTR application. Also the robustness and performance is tested in the presence of disturbance on random reference signal.

  7. Convergence Guaranteed Nonlinear Constraint Model Predictive Control via I/O Linearization

    Directory of Open Access Journals (Sweden)

    Xiaobing Kong

    2013-01-01

    Full Text Available Constituting reliable optimal solution is a key issue for the nonlinear constrained model predictive control. Input-output feedback linearization is a popular method in nonlinear control. By using an input-output feedback linearizing controller, the original linear input constraints will change to nonlinear constraints and sometimes the constraints are state dependent. This paper presents an iterative quadratic program (IQP routine on the continuous-time system. To guarantee its convergence, another iterative approach is incorporated. The proposed algorithm can reach a feasible solution over the entire prediction horizon. Simulation results on both a numerical example and the continuous stirred tank reactors (CSTR demonstrate the effectiveness of the proposed method.

  8. Nonlinear continuous-time generalized predictive control of solar power plant

    Directory of Open Access Journals (Sweden)

    Khoukhi Billal

    2015-01-01

    Full Text Available This paper presents an application of nonlinear continuous-time generalized predictive control (GPC to the distributed collector field of a solar power plant. The major characteristic of a solar power plant is that the primary energy source, solar radiation, cannot be manipulated. Solar radiation varies throughout the day, causing changes in plant dynamics and strong perturbations in the process. A brief description of the solar power plant and its simulator is given. After that, basic concepts of predictive control and continuous-time generalized predictive control are introduced. A new control strategy, named nonlinear continuous-time generalized predictive control (NCGPC, is then derived to control the process. The simulation results show that the NCGPC gives a greater flexibility to achieve performance goals and better perturbation rejection than classical control.

  9. C code generation applied to nonlinear model predictive control for an artificial pancreas

    DEFF Research Database (Denmark)

    Boiroux, Dimitri; Jørgensen, John Bagterp

    2017-01-01

    This paper presents a method to generate C code from MATLAB code applied to a nonlinear model predictive control (NMPC) algorithm. The C code generation uses the MATLAB Coder Toolbox. It can drastically reduce the time required for development compared to a manual porting of code from MATLAB to C...

  10. A Nonlinear Model Predictive Control Algorithm for Obstacle Avoidance in Autonomous Ground Vehicles within Unknown Environments

    Science.gov (United States)

    2015-04-24

    Allgwer and A. Zheng, Nonlinear model predictive control vol. 26: Springer , 2000. [10] J. M. Park, D. W. Kim, Y. S. Yoon, H. J. Kim, and K. S. Yi...include modeling, simulation, and control of dynamic systems, with applications to energy systems, multibody dynamics, vehicle systems, and biomechanics

  11. MULTISTAGE ADAPTIVE HIGHER-ORDER NONLINEAR FINITE IMPULSE RESPONSE FILTERS FOR CHAOTIC TIME SERIES PREDICTIONS

    Institute of Scientific and Technical Information of China (English)

    ZHANG JIA-SHU; XIAO XIAN-CI

    2001-01-01

    A multistage adaptive higher-order nonlinear finite impulse response (MAHONFIR) filter is proposed to predict chaotic time series. Using this approach, we may readily derive the decoupled parallel algorithm for the adaptation of the coefficients of the MAHONFIR filter, to guarantee a more rapid convergence of the adaptive weights to their optimal values. Numerical simulation results show that the MAHONFIR filters proposed here illustrate a very good performance for making an adaptive prediction of chaotic time series.

  12. Discussion About Nonlinear Time Series Prediction Using Least Squares Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    XU Rui-Rui; BIAN Guo-Xing; GAO Chen-Feng; CHEN Tian-Lun

    2005-01-01

    The least squares support vector machine (LS-SVM) is used to study the nonlinear time series prediction.First, the parameter γ and multi-step prediction capabilities of the LS-SVM network are discussed. Then we employ clustering method in the model to prune the number of the support values. The learning rate and the capabilities of filtering noise for LS-SVM are all greatly improved.

  13. Robust Predictive Functional Control for Flight Vehicles Based on Nonlinear Disturbance Observer

    Directory of Open Access Journals (Sweden)

    Yinhui Zhang

    2015-01-01

    Full Text Available A novel robust predictive functional control based on nonlinear disturbance observer is investigated in order to address the control system design for flight vehicles with significant uncertainties, external disturbances, and measurement noise. Firstly, the nonlinear longitudinal dynamics of the flight vehicle are transformed into linear-like state-space equations with state-dependent coefficient matrices. And then the lumped disturbances are considered in the linear structure predictive model of the predictive functional control to increase the precision of the predictive output and resolve the intractable mismatched disturbance problem. As the lumped disturbances cannot be derived or measured directly, the nonlinear disturbance observer is applied to estimate the lumped disturbances, which are then introduced to the predictive functional control to replace the unknown actual lumped disturbances. Consequently, the robust predictive functional control for the flight vehicle is proposed. Compared with the existing designs, the effectiveness and robustness of the proposed flight control are illustrated and validated in various simulation conditions.

  14. Measured and predicted root-mean-square errors in square and triangular antenna mesh facets

    Science.gov (United States)

    Fichter, W. B.

    1989-01-01

    Deflection shapes of square and equilateral triangular facets of two tricot-knit, gold plated molybdenum wire mesh antenna materials were measured and compared, on the basis of root mean square (rms) differences, with deflection shapes predicted by linear membrane theory, for several cases of biaxial mesh tension. The two mesh materials contained approximately 10 and 16 holes per linear inch, measured diagonally with respect to the course and wale directions. The deflection measurement system employed a non-contact eddy current proximity probe and an electromagnetic distance sensing probe in conjunction with a precision optical level. Despite experimental uncertainties, rms differences between measured and predicted deflection shapes suggest the following conclusions: that replacing flat antenna facets with facets conforming to parabolically curved structural members yields smaller rms surface error; that potential accuracy gains are greater for equilateral triangular facets than for square facets; and that linear membrane theory can be a useful tool in the design of tricot knit wire mesh antennas.

  15. Addressing Conceptual Model Uncertainty in the Evaluation of Model Prediction Errors

    Science.gov (United States)

    Carrera, J.; Pool, M.

    2014-12-01

    Model predictions are uncertain because of errors in model parameters, future forcing terms, and model concepts. The latter remain the largest and most difficult to assess source of uncertainty in long term model predictions. We first review existing methods to evaluate conceptual model uncertainty. We argue that they are highly sensitive to the ingenuity of the modeler, in the sense that they rely on the modeler's ability to propose alternative model concepts. Worse, we find that the standard practice of stochastic methods leads to poor, potentially biased and often too optimistic, estimation of actual model errors. This is bad news because stochastic methods are purported to properly represent uncertainty. We contend that the problem does not lie on the stochastic approach itself, but on the way it is applied. Specifically, stochastic inversion methodologies, which demand quantitative information, tend to ignore geological understanding, which is conceptually rich. We illustrate some of these problems with the application to Mar del Plata aquifer, where extensive data are available for nearly a century. Geologically based models, where spatial variability is handled through zonation, yield calibration fits similar to geostatiscally based models, but much better predictions. In fact, the appearance of the stochastic T fields is similar to the geologically based models only in areas with high density of data. We take this finding to illustrate the ability of stochastic models to accommodate many data, but also, ironically, their inability to address conceptual model uncertainty. In fact, stochastic model realizations tend to be too close to the "most likely" one (i.e., they do not really realize the full conceptualuncertainty). The second part of the presentation is devoted to argue that acknowledging model uncertainty may lead to qualitatively different decisions than just working with "most likely" model predictions. Therefore, efforts should concentrate on

  16. Current error vector based prediction control of the section winding permanent magnet linear synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Hong Junjie, E-mail: hongjjie@mail.sysu.edu.cn [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China); Li Liyi, E-mail: liliyi@hit.edu.cn [Dept. Electrical Engineering, Harbin Institute of Technology, Harbin 150000 (China); Zong Zhijian; Liu Zhongtu [School of Engineering, Sun Yat-Sen University, Guangzhou 510006 (China)

    2011-10-15

    Highlights: {yields} The structure of the permanent magnet linear synchronous motor (SW-PMLSM) is new. {yields} A new current control method CEVPC is employed in this motor. {yields} The sectional power supply method is different to the others and effective. {yields} The performance gets worse with voltage and current limitations. - Abstract: To include features such as greater thrust density, higher efficiency without reducing the thrust stability, this paper proposes a section winding permanent magnet linear synchronous motor (SW-PMLSM), whose iron core is continuous, whereas winding is divided. The discrete system model of the motor is derived. With the definition of the current error vector and selection of the value function, the theory of the current error vector based prediction control (CEVPC) for the motor currents is explained clearly. According to the winding section feature, the motion region of the mover is divided into five zones, in which the implementation of the current predictive control method is proposed. Finally, the experimental platform is constructed and experiments are carried out. The results show: the current control effect has good dynamic response, and the thrust on the mover remains constant basically.

  17. Prediction-error in the context of real social relationships modulates reward system activity

    Directory of Open Access Journals (Sweden)

    Joshua ePoore

    2012-08-01

    Full Text Available The human reward system is sensitive to both social (e.g., validation and non-social rewards (e.g., money and is likely integral for relationship development and reputation building. However, data is sparse on the question of whether implicit social reward processing meaningfully contributes to explicit social representations such as trust and attachment security in pre-existing relationships. This event-related fMRI experiment examined reward system prediction-error activity in response to a potent social reward—social validation—and this activity’s relation to both attachment security and trust in the context of real romantic relationships. During the experiment, participants’ expectations for their romantic partners’ positive regard of them were confirmed (validated or violated, in either positive or negative directions. Primary analyses were conducted using predefined regions of interest, the locations of which were taken from previously published research. Results indicate that activity for mid-brain and striatal reward system regions of interest was modulated by social reward expectation violation in ways consistent with prior research on reward prediction-error. Additionally, activity in the striatum during viewing of disconfirmatory information was associated with both increases in post-scan reports of attachment anxiety and decreases in post-scan trust, a finding that follows directly from representational models of attachment and trust.

  18. A nonlinear modeling approach using weighted piecewise series and its applications to predict unsteady flows

    Science.gov (United States)

    Yao, Weigang; Liou, Meng-Sing

    2016-08-01

    To preserve nonlinearity of a full-order system over a range of parameters of interest, we propose an accurate and robust nonlinear modeling approach by assembling a set of piecewise linear local solutions expanded about some sampling states. The work by Rewienski and White [1] on micromachined devices inspired our use of piecewise linear local solutions to study nonlinear unsteady aerodynamics. These local approximations are assembled via nonlinear weights of radial basis functions. The efficacy of the proposed procedure is validated for a two-dimensional airfoil moving with different pitching motions, specifically AGARD's CT2 and CT5 problems [27], in which the flows exhibit different nonlinear behaviors. Furthermore, application of the developed aerodynamic model to a two-dimensional aero-elastic system proves the approach is capable of predicting limit cycle oscillations (LCOs) by using AGARD's CT6 [28] as a benchmark test. All results, based on inviscid solutions, confirm that our nonlinear model is stable and accurate, against the full model solutions and measurements, and for predicting not only aerodynamic forces but also detailed flowfields. Moreover, the model is robust for inputs that considerably depart from the base trajectory in form and magnitude. This modeling provides a very efficient way for predicting unsteady flowfields with varying parameters because it needs only a tiny fraction of the cost of a full-order modeling for each new condition-the more cases studied, the more savings rendered. Hence, the present approach is especially useful for parametric studies, such as in the case of design optimization and exploration of flow phenomena.

  19. On the Prediction of the Nonlinear Absorption in Reverse Saturable Absorbing Materials

    Science.gov (United States)

    Pachter, Ruth; Nguyen, Kiet A.; Day, Paul N.; Kennel, Joshua C.

    2001-03-01

    In our continuing efforts to design materials that exhibit reverse saturable absorption (RSA), we systematically examine the ability of the time-dependent density functional theory (TDDFT) method using local, nonlocal, and hybrid functionals, to predict the experimental nonlinear absorption for a variety of organic and organometallic molecular systems, including a number of free-base porphyrins, phthalocyanine and their metal complexes. The ground and triplet-triplet excitation energies, as well as the oscillator strengths are calculated, indicating good agreement with experiment. We conclude that the TDDFT approach with a hybrid functional provides good estimates for the nonlinear absorption of RSA materials.

  20. Predicting the dielectric nonlinearity of anisotropic composite materials via tensorial analysis

    Energy Technology Data Exchange (ETDEWEB)

    Giordano, S [Department of Physics, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (Italy); Rocchia, W [NEST CNR-INFM, Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy)

    2006-11-29

    The discovery of new materials with peculiar optical properties as well as the prediction of their behaviour given the microstructure is a matter of remarkable interest in the community of material scientists. A complete theory allowing such a prediction is not yet available. We have formulated a theory able to analytically predict the effective second- and third-order nonlinear electrical behaviour of a dilute dispersion of randomly oriented anisotropic nonlinear spheres in a linear host. The inclusion medium has non-vanishing second- and third-order nonlinear hypersusceptibilities. As a result, the overall composite material is nonlinear but isotropic because of the random orientation of the inclusions. We derive the expressions for the equivalent permittivity and for the Kerr equivalent hypersusceptibility in terms of the characteristic electric tensors describing the electrical behaviour of the spheres. The complete averaging over inclusion positions and orientations led to general results in the dilute limit. We show that these results are consistent with earlier theories and that they provide null second-order hypersusceptibility as expected in a macroscopically isotropic medium. This theory generalizes the well-known Maxwell-Garnett formula and it can be easily specialized to any of the 32 crystallographic symmetry classes. Despite this study assuming static conditions, it can be generalized to the sinusoidal regime, pointing at an interesting way to engineer optically active materials with desired behaviour.

  1. An efficient artificial bee colony algorithm with application to nonlinear predictive control

    Science.gov (United States)

    Ait Sahed, Oussama; Kara, Kamel; Benyoucef, Abousoufyane; Laid Hadjili, Mohamed

    2016-05-01

    In this paper a constrained nonlinear predictive control algorithm, that uses the artificial bee colony (ABC) algorithm to solve the optimization problem, is proposed. The main objective is to derive a simple and efficient control algorithm that can solve the nonlinear constrained optimization problem with minimal computational time. Indeed, a modified version, enhancing the exploring and the exploitation capabilities, of the ABC algorithm is proposed and used to design a nonlinear constrained predictive controller. This version allows addressing the premature and the slow convergence drawbacks of the standard ABC algorithm, using a modified search equation, a well-known organized distribution mechanism for the initial population and a new equation for the limit parameter. A convergence statistical analysis of the proposed algorithm, using some well-known benchmark functions is presented and compared with several other variants of the ABC algorithm. To demonstrate the efficiency of the proposed algorithm in solving engineering problems, the constrained nonlinear predictive control of the model of a Multi-Input Multi-Output industrial boiler is considered. The control performances of the proposed ABC algorithm-based controller are also compared to those obtained using some variants of the ABC algorithms.

  2. Optimal Parameter Tuning in a Predictive Nonlinear Control Method for a Mobile Robot

    Directory of Open Access Journals (Sweden)

    D. Hazry

    2006-01-01

    Full Text Available This study contributes to a new optimal parameter tuning in a predictive nonlinear control method for stable trajectory straight line tracking with a non-holonomic mobile robot. In this method, the focus lies in finding the optimal parameter estimation and to predict the path that the mobile robot will follow for stable trajectory straight line tracking system. The stability control contains three parameters: 1 deflection parameter for the traveling direction of the mobile robot 2 deflection parameter for the distance across traveling direction of the mobile robot and 3 deflection parameter for the steering angle of the mobile robot . Two hundred and seventy three experimental were performed and the results have been analyzed and described herewith. It is found that by using a new optimal parameter tuning in a predictive nonlinear control method derived from the extension of kinematics model, the movement of the mobile robot is stabilized and adhered to the reference posture

  3. STUDY ON PREDICTION METHODS FOR DYNAMIC SYSTEMS OF NONLINEAR CHAOTIC TIME SERIES

    Institute of Scientific and Technical Information of China (English)

    马军海; 陈予恕; 辛宝贵

    2004-01-01

    The prediction methods for nonlinear dynamic systems which are decided by chaotic time series are mainly studied as well as structures of nonlinear self-related chaotic models and their dimensions.By combining neural networks and wavelet theories,the structures of wavelet transform neural networks were studied and also a wavelet neural networks learning method was given.Based on wavelet networks,a new method for parameter identification was suggested,which can be used selectively to extract different scales of frequency and time in time series in order to realize prediction of tendencies or details of original time series.Through pre-treatment and comparison of results before and after the treatment,several useful conclusions are reached:High accurate identification can be guaranteed by applying wavelet networks to identify parameters of self-related chaotic models and more valid prediction of the chaotic time series including noise can be achieved accordingly.

  4. A two-dimensional matrix correction for off-axis portal dose prediction errors

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Daniel W. [Department of Physics, State University of New York at Buffalo, Buffalo, New York 14260 (United States); Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States); Kumaraswamy, Lalith; Bakhtiari, Mohammad [Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States); Podgorsak, Matthew B. [Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 and Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214 (United States)

    2013-05-15

    Purpose: This study presents a follow-up to a modified calibration procedure for portal dosimetry published by Bailey et al. ['An effective correction algorithm for off-axis portal dosimetry errors,' Med. Phys. 36, 4089-4094 (2009)]. A commercial portal dose prediction system exhibits disagreement of up to 15% (calibrated units) between measured and predicted images as off-axis distance increases. The previous modified calibration procedure accounts for these off-axis effects in most regions of the detecting surface, but is limited by the simplistic assumption of radial symmetry. Methods: We find that a two-dimensional (2D) matrix correction, applied to each calibrated image, accounts for off-axis prediction errors in all regions of the detecting surface, including those still problematic after the radial correction is performed. The correction matrix is calculated by quantitative comparison of predicted and measured images that span the entire detecting surface. The correction matrix was verified for dose-linearity, and its effectiveness was verified on a number of test fields. The 2D correction was employed to retrospectively examine 22 off-axis, asymmetric electronic-compensation breast fields, five intensity-modulated brain fields (moderate-high modulation) manipulated for far off-axis delivery, and 29 intensity-modulated clinical fields of varying complexity in the central portion of the detecting surface. Results: Employing the matrix correction to the off-axis test fields and clinical fields, predicted vs measured portal dose agreement improves by up to 15%, producing up to 10% better agreement than the radial correction in some areas of the detecting surface. Gamma evaluation analyses (3 mm, 3% global, 10% dose threshold) of predicted vs measured portal dose images demonstrate pass rate improvement of up to 75% with the matrix correction, producing pass rates that are up to 30% higher than those resulting from the radial correction technique alone

  5. Variable structure control with sliding mode prediction for discrete-time nonlinear systems

    Institute of Scientific and Technical Information of China (English)

    Lingfei XIAO; Hongye SU; Xiaoyu ZHANG; Jian CHU

    2006-01-01

    A new variable structure control algorithm based on sliding mode prediction for a class of discrete-time nonlinear systems is presented. By employing a special model to predict future sliding mode value, and combining feedback correction and receding horizon optimization methods which are extensively applied on predictive control strategy, a discrete-time variable structure control law is constructed. The closed-loop systems are proved to have robustness to uncertainties with unspecified boundaries. Numerical simulation and pendulum experiment results illustrate that the closed-loop systems possess desired performance, such as strong robustness, fast convergence and chattering elimination.

  6. Nonlinear predictive control for the concentrations profile regulation under unknown reaction disturbances in a fuel cell anode gas channel

    Science.gov (United States)

    Luna, Julio; Ocampo-Martinez, Carlos; Serra, Maria

    2015-05-01

    In this work, a nonlinear model predictive control (NMPC) strategy is proposed to regulate the concentrations of the different gas species inside a Proton Exchange Membrane Fuel Cell (PEMFC) anode gas channel. The purpose of the regulation relies on the rejection of the unmeasurable perturbations that affect the system: the hydrogen reaction and water transport terms. The model of the anode channel is derived from the discretisation of the partial differential equations that define the nonlinear dynamics of the system, taking into account spatial variations along the channel. Forward and backward discretisations of the distributed model are employed to take advantage of the boundary conditions of the problem. A linear observer is designed and implemented to perform output-feedback control of the plant. This information is fed to the controller to regulate the states towards their desired values. Simulation results are presented to show the performance of the proposed control method over a given case study. Different cost functions are compared and the one with minimum state-regulation error is identified. Suitable dynamic responses are obtained facing the different considered disturbances.

  7. The feedback-related negativity reflects ‘more or less’ prediction error in appetitive and aversive conditions

    Directory of Open Access Journals (Sweden)

    Rongjun eYu

    2014-05-01

    Full Text Available Humans make predictions and use feedback to update their subsequent predictions. The feedback-related negativity (FRN has been found to be sensitive to negative feedback as well as negative prediction error, such that the FRN is larger for outcomes that are worse than expected. The present study examined prediction errors in both appetitive and aversive conditions. We found that the FRN was more negative for reward omission versus wins and for loss omission versus losses, suggesting that the FRN might classify outcomes in a more-or-less than expected fashion rather than in the better-or-worse than expected dimension. Our findings challenge the previous notion that the FRN only encodes negative feedback and ‘worse than expected’ negative prediction error.

  8. Testing alternative uses of electromagnetic data to reduce the prediction error of groundwater models

    Science.gov (United States)

    Kruse Christensen, Nikolaj; Christensen, Steen; Ferre, Ty Paul A.

    2016-05-01

    In spite of geophysics being used increasingly, it is often unclear how and when the integration of geophysical data and models can best improve the construction and predictive capability of groundwater models. This paper uses a newly developed HYdrogeophysical TEst-Bench (HYTEB) that is a collection of geological, groundwater and geophysical modeling and inversion software to demonstrate alternative uses of electromagnetic (EM) data for groundwater modeling in a hydrogeological environment consisting of various types of glacial deposits with typical hydraulic conductivities and electrical resistivities covering impermeable bedrock with low resistivity (clay). The synthetic 3-D reference system is designed so that there is a perfect relationship between hydraulic conductivity and electrical resistivity. For this system it is investigated to what extent groundwater model calibration and, often more importantly, model predictions can be improved by including in the calibration process electrical resistivity estimates obtained from TEM data. In all calibration cases, the hydraulic conductivity field is highly parameterized and the estimation is stabilized by (in most cases) geophysics-based regularization. For the studied system and inversion approaches it is found that resistivities estimated by sequential hydrogeophysical inversion (SHI) or joint hydrogeophysical inversion (JHI) should be used with caution as estimators of hydraulic conductivity or as regularization means for subsequent hydrological inversion. The limited groundwater model improvement obtained by using the geophysical data probably mainly arises from the way these data are used here: the alternative inversion approaches propagate geophysical estimation errors into the hydrologic model parameters. It was expected that JHI would compensate for this, but the hydrologic data were apparently insufficient to secure such compensation. With respect to reducing model prediction error, it depends on the type

  9. Neural-Fuzzy Digital Strategy of Continuous-Time Nonlinear Systems Using Adaptive Prediction and Random-Local-Optimization Design

    Directory of Open Access Journals (Sweden)

    Zhi-Ren Tsai

    2013-01-01

    Full Text Available A tracking problem, time-delay, uncertainty and stability analysis of a predictive control system are considered. The predictive control design is based on the input and output of neural plant model (NPM, and a recursive fuzzy predictive tracker has scaling factors which limit the value zone of measured data and cause the tuned parameters to converge to obtain a robust control performance. To improve the further control performance, the proposed random-local-optimization design (RLO for a model/controller uses offline initialization to obtain a near global optimal model/controller. Other issues are the considerations of modeling error, input-delay, sampling distortion, cost, greater flexibility, and highly reliable digital products of the model-based controller for the continuous-time (CT nonlinear system. They are solved by a recommended two-stage control design with the first-stage (offline RLO and second-stage (online adaptive steps. A theorizing method is then put forward to replace the sensitivity calculation, which reduces the calculation of Jacobin matrices of the back-propagation (BP method. Finally, the feedforward input of reference signals helps the digital fuzzy controller improve the control performance, and the technique works to control the CT systems precisely.

  10. The design of predictive control with characterized set of initial condition for constrained switched nonlinear system

    Institute of Scientific and Technical Information of China (English)

    SU BaiLi; LI ShaoYuan; ZHU QuanMin

    2009-01-01

    Stabilization of the constrained switched nonlinear systems is an attractive research subject. Predictive control can handle variable constraints well and make the system stable. Its stability is typically based on an assumption of initial feasibility of the optimization problem; however the set of initial conditions, starting from where a given predictive formulation is guaranteed to be feasible, is not explicitly char-acterized. In this paper, a hybrid predictive control method is proposed for a class of switched nonlin-ear systems with input constraints and un-measurable states. The main idea is to design a mixed con-troller using Lyapunov functions and a state observer, which switches appropriately between a bounded feedback controller and a predictive controller, and to give an explicitly characterized set of initial conditions to stabilize each closed-loop subsystem. For the whole switched nonlinear system, a suitable switched law based on the state estimation is designed to orchestrate the transitions between the consistituent modes and their respective controllers, and to ensure the whole closed-loop system's stability. The simulation results for a chemical process show the validity of the controller proposed in this paper.

  11. The design of predictive control with characterized set of initial condition for constrained switched nonlinear system

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Stabilization of the constrained switched nonlinear systems is an attractive research subject. Predictive control can handle variable constraints well and make the system stable. Its stability is typically based on an assumption of initial feasibility of the optimization problem; however the set of initial conditions, starting from where a given predictive formulation is guaranteed to be feasible, is not explicitly characterized. In this paper, a hybrid predictive control method is proposed for a class of switched nonlinear systems with input constraints and un-measurable states. The main idea is to design a mixed controller using Lyapunov functions and a state observer, which switches appropriately between a bounded feedback controller and a predictive controller, and to give an explicitly characterized set of initial conditions to stabilize each closed-loop subsystem. For the whole switched nonlinear system, a suitable switched law based on the state estimation is designed to orchestrate the transitions between the consistituent modes and their respective controllers, and to ensure the whole closed-loop system’s stability. The simulation results for a chemical process show the validity of the controller proposed in this paper.

  12. Triangle network motifs predict complexes by complementing high-error interactomes with structural information

    Directory of Open Access Journals (Sweden)

    Labudde Dirk

    2009-06-01

    Full Text Available Abstract Background A lot of high-throughput studies produce protein-protein interaction networks (PPINs with many errors and missing information. Even for genome-wide approaches, there is often a low overlap between PPINs produced by different studies. Second-level neighbors separated by two protein-protein interactions (PPIs were previously used for predicting protein function and finding complexes in high-error PPINs. We retrieve second level neighbors in PPINs, and complement these with structural domain-domain interactions (SDDIs representing binding evidence on proteins, forming PPI-SDDI-PPI triangles. Results We find low overlap between PPINs, SDDIs and known complexes, all well below 10%. We evaluate the overlap of PPI-SDDI-PPI triangles with known complexes from Munich Information center for Protein Sequences (MIPS. PPI-SDDI-PPI triangles have ~20 times higher overlap with MIPS complexes than using second-level neighbors in PPINs without SDDIs. The biological interpretation for triangles is that a SDDI causes two proteins to be observed with common interaction partners in high-throughput experiments. The relatively few SDDIs overlapping with PPINs are part of highly connected SDDI components, and are more likely to be detected in experimental studies. We demonstrate the utility of PPI-SDDI-PPI triangles by reconstructing myosin-actin processes in the nucleus, cytoplasm, and cytoskeleton, which were not obvious in the original PPIN. Using other complementary datatypes in place of SDDIs to form triangles, such as PubMed co-occurrences or threading information, results in a similar ability to find protein complexes. Conclusion Given high-error PPINs with missing information, triangles of mixed datatypes are a promising direction for finding protein complexes. Integrating PPINs with SDDIs improves finding complexes. Structural SDDIs partially explain the high functional similarity of second-level neighbors in PPINs. We estimate that

  13. When theory and biology differ: The relationship between reward prediction errors and expectancy.

    Science.gov (United States)

    Williams, Chad C; Hassall, Cameron D; Trska, Robert; Holroyd, Clay B; Krigolson, Olave E

    2017-09-18

    Comparisons between expectations and outcomes are critical for learning. Termed prediction errors, the violations of expectancy that occur when outcomes differ from expectations are used to modify value and shape behaviour. In the present study, we examined how a wide range of expectancy violations impacted neural signals associated with feedback processing. Participants performed a time estimation task in which they had to guess the duration of one second while their electroencephalogram was recorded. In a key manipulation, we varied task difficulty across the experiment to create a range of different feedback expectancies - reward feedback was either very expected, expected, 50/50, unexpected, or very unexpected. As predicted, the amplitude of the reward positivity, a component of the human event-related brain potential associated with feedback processing, scaled inversely with expectancy (e.g., unexpected feedback yielded a larger reward positivity than expected feedback). Interestingly, the scaling of the reward positivity to outcome expectancy was not linear as would be predicted by some theoretical models. Specifically, we found that the amplitude of the reward positivity was about equivalent for very expected and expected feedback, and for very unexpected and unexpected feedback. As such, our results demonstrate a sigmoidal relationship between reward expectancy and the amplitude of the reward positivity, with interesting implications for theories of reinforcement learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Harsh parenting and fearfulness in toddlerhood interact to predict amplitudes of preschool error-related negativity

    Directory of Open Access Journals (Sweden)

    Rebecca J. Brooker

    2014-07-01

    Full Text Available Temperamentally fearful children are at increased risk for the development of anxiety problems relative to less-fearful children. This risk is even greater when early environments include high levels of harsh parenting behaviors. However, the mechanisms by which harsh parenting may impact fearful children's risk for anxiety problems are largely unknown. Recent neuroscience work has suggested that punishment is associated with exaggerated error-related negativity (ERN, an event-related potential linked to performance monitoring, even after the threat of punishment is removed. In the current study, we examined the possibility that harsh parenting interacts with fearfulness, impacting anxiety risk via neural processes of performance monitoring. We found that greater fearfulness and harsher parenting at 2 years of age predicted greater fearfulness and greater ERN amplitudes at age 4. Supporting the role of cognitive processes in this association, greater fearfulness and harsher parenting also predicted less efficient neural processing during preschool. This study provides initial evidence that performance monitoring may be a candidate process by which early parenting interacts with fearfulness to predict risk for anxiety problems.

  15. Predicting Nonlinear Behavior and Stress-Strain Relationship of Rectangular Confined Reinforced Concrete Columns with ANSYS

    Directory of Open Access Journals (Sweden)

    A. Tata

    2009-01-01

    Full Text Available This paper presents a nonlinear finite element modeling and analysis of rectangular normal-strength reinforced concrete columns confined with transverse steel under axial compressive loading. In this study, the columns were modeled as discrete elements using ANSYS nonlinear finite element software. Concrete was modeled with 8-noded SOLID65 elements that can translate either in the x-, y-, or z-axis directions from ANSYS element library. Longitudinal and transverse steels were modeled as discrete elements using 3D-LINK8 bar elements available in the ANSYS element library. The nonlinear constitutive law of each material was also implemented in the model. The results indicate that the stress-strain relationships obtained from the analytical model using ANSYS are in good agreement with the experimental data. This has been confirmed with the insignificant difference between the analytical and experimental, i.e. 5.65 and 2.80 percent for the peak stress and the strain at the peak stress, respectively. The comparison shows that the ANSYS nonlinear finite element program is capable of modeling and predicting the actual nonlinear behavior of confined concrete column under axial loading. The actual stress-strain relationship, the strength gain and ductility improvement have also been confirmed to be satisfactorily.

  16. Temporal dynamics of prediction error processing during reward-based decision making.

    Science.gov (United States)

    Philiastides, Marios G; Biele, Guido; Vavatzanidis, Niki; Kazzer, Philipp; Heekeren, Hauke R

    2010-10-15

    Adaptive decision making depends on the accurate representation of rewards associated with potential choices. These representations can be acquired with reinforcement learning (RL) mechanisms, which use the prediction error (PE, the difference between expected and received rewards) as a learning signal to update reward expectations. While EEG experiments have highlighted the role of feedback-related potentials during performance monitoring, important questions about the temporal sequence of feedback processing and the specific function of feedback-related potentials during reward-based decision making remain. Here, we hypothesized that feedback processing starts with a qualitative evaluation of outcome-valence, which is subsequently complemented by a quantitative representation of PE magnitude. Results of a model-based single-trial analysis of EEG data collected during a reversal learning task showed that around 220ms after feedback outcomes are initially evaluated categorically with respect to their valence (positive vs. negative). Around 300ms, and parallel to the maintained valence-evaluation, the brain also represents quantitative information about PE magnitude, thus providing the complete information needed to update reward expectations and to guide adaptive decision making. Importantly, our single-trial EEG analysis based on PEs from an RL model showed that the feedback-related potentials do not merely reflect error awareness, but rather quantitative information crucial for learning reward contingencies.

  17. Advanced Emergency Braking Control Based on a Nonlinear Model Predictive Algorithm for Intelligent Vehicles

    Directory of Open Access Journals (Sweden)

    Ronghui Zhang

    2017-05-01

    Full Text Available Focusing on safety, comfort and with an overall aim of the comprehensive improvement of a vision-based intelligent vehicle, a novel Advanced Emergency Braking System (AEBS is proposed based on Nonlinear Model Predictive Algorithm. Considering the nonlinearities of vehicle dynamics, a vision-based longitudinal vehicle dynamics model is established. On account of the nonlinear coupling characteristics of the driver, surroundings, and vehicle itself, a hierarchical control structure is proposed to decouple and coordinate the system. To avoid or reduce the collision risk between the intelligent vehicle and collision objects, a coordinated cost function of tracking safety, comfort, and fuel economy is formulated. Based on the terminal constraints of stable tracking, a multi-objective optimization controller is proposed using the theory of non-linear model predictive control. To quickly and precisely track control target in a finite time, an electronic brake controller for AEBS is designed based on the Nonsingular Fast Terminal Sliding Mode (NFTSM control theory. To validate the performance and advantages of the proposed algorithm, simulations are implemented. According to the simulation results, the proposed algorithm has better integrated performance in reducing the collision risk and improving the driving comfort and fuel economy of the smart car compared with the existing single AEBS.

  18. Constraining uncertainty in the prediction of pollutant transport in rivers allowing for measurement error.

    Science.gov (United States)

    Smith, P.; Beven, K.; Blazkova, S.; Merta, L.

    2003-04-01

    This poster outlines a methodology for the estimation of parameters in an Aggregated Dead Zone (ADZ) model of pollutant transport, by use of an example reach of the River Elbe. Both tracer and continuous water quality measurements are analysed to investigate the relationship between discharge and advective time delay. This includes a study of the effects of different error distributions being applied to the measurement of both variables using Monte-Carlo Markov Chain (MCMC) techniques. The derived relationships between discharge and advective time delay can then be incorporated into the formulation of the ADZ model to allow prediction of pollutant transport given uncertainty in the parameter values. The calibration is demonstrated in a hierarchical framework, giving the potential for the selection of appropriate model structures for the change in transport characteristics with discharge in the river. The value of different types and numbers of measurements are assessed within this framework.

  19. Prediction and standard error estimation for a finite universe total when a stratum is not sampled

    Energy Technology Data Exchange (ETDEWEB)

    Wright, T.

    1994-01-01

    In the context of a universe of trucks operating in the United States in 1990, this paper presents statistical methodology for estimating a finite universe total on a second occasion when a part of the universe is sampled and the remainder of the universe is not sampled. Prediction is used to compensate for the lack of data from the unsampled portion of the universe. The sample is assumed to be a subsample of an earlier sample where stratification is used on both occasions before sample selection. Accounting for births and deaths in the universe between the two points in time, the detailed sampling plan, estimator, standard error, and optimal sample allocation, are presented with a focus on the second occasion. If prior auxiliary information is available, the methodology is also applicable to a first occasion.

  20. Traffic chaos and its prediction based on a nonlinear car-following model

    Institute of Scientific and Technical Information of China (English)

    Hui FU; Jianmin XU; Lunhui XU

    2005-01-01

    This paper discusses the dynamic behavior and its predictions for a simulated traffic flow based on the nonlinear response of a vehicle to the leading car's movement in a single lane.Traffic chaos is a promising field,and chaos theory has been applied to identify and predict its chaotic movement.A simulated traffic flow is generated using a car-following model(GM model),and the distance between two cars is investigated for its dynamic properties.A positive Lyapunov exponent confirms the existence of chaotic behavior in the GM model.A new algorithm using a RBF NN (radial basis function neural network) is proposed to predict this traffic chaos.The experiment shows that the chaotic degree and predictable degree are determined by the first Lyapunov exponent.The algorithm proposed in this paper can be generalized to recognize and predict the chaos of short-time traffic flow series.

  1. Model predictive control of non-linear systems over networks with data quantization and packet loss.

    Science.gov (United States)

    Yu, Jimin; Nan, Liangsheng; Tang, Xiaoming; Wang, Ping

    2015-11-01

    This paper studies the approach of model predictive control (MPC) for the non-linear systems under networked environment where both data quantization and packet loss may occur. The non-linear controlled plant in the networked control system (NCS) is represented by a Tagaki-Sugeno (T-S) model. The sensed data and control signal are quantized in both links and described as sector bound uncertainties by applying sector bound approach. Then, the quantized data are transmitted in the communication networks and may suffer from the effect of packet losses, which are modeled as Bernoulli process. A fuzzy predictive controller which guarantees the stability of the closed-loop system is obtained by solving a set of linear matrix inequalities (LMIs). A numerical example is given to illustrate the effectiveness of the proposed method.

  2. Neural-network predictive control for nonlinear dynamic systems with time-delay.

    Science.gov (United States)

    Huang, Jin-Quan; Lewis, F L

    2003-01-01

    A new recurrent neural-network predictive feedback control structure for a class of uncertain nonlinear dynamic time-delay systems in canonical form is developed and analyzed. The dynamic system has constant input and feedback time delays due to a communications channel. The proposed control structure consists of a linearized subsystem local to the controlled plant and a remote predictive controller located at the master command station. In the local linearized subsystem, a recurrent neural network with on-line weight tuning algorithm is employed to approximate the dynamics of the time-delay-free nonlinear plant. No linearity in the unknown parameters is required. No preliminary off-line weight learning is needed. The remote controller is a modified Smith predictor that provides prediction and maintains the desired tracking performance; an extra robustifying term is needed to guarantee stability. Rigorous stability proofs are given using Lyapunov analysis. The result is an adaptive neural net compensation scheme for unknown nonlinear systems with time delays. A simulation example is provided to demonstrate the effectiveness of the proposed control strategy.

  3. Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models

    Science.gov (United States)

    Daunizeau, J.; Friston, K. J.; Kiebel, S. J.

    2009-11-01

    In this paper, we describe a general variational Bayesian approach for approximate inference on nonlinear stochastic dynamic models. This scheme extends established approximate inference on hidden-states to cover: (i) nonlinear evolution and observation functions, (ii) unknown parameters and (precision) hyperparameters and (iii) model comparison and prediction under uncertainty. Model identification or inversion entails the estimation of the marginal likelihood or evidence of a model. This difficult integration problem can be finessed by optimising a free-energy bound on the evidence using results from variational calculus. This yields a deterministic update scheme that optimises an approximation to the posterior density on the unknown model variables. We derive such a variational Bayesian scheme in the context of nonlinear stochastic dynamic hierarchical models, for both model identification and time-series prediction. The computational complexity of the scheme is comparable to that of an extended Kalman filter, which is critical when inverting high dimensional models or long time-series. Using Monte-Carlo simulations, we assess the estimation efficiency of this variational Bayesian approach using three stochastic variants of chaotic dynamic systems. We also demonstrate the model comparison capabilities of the method, its self-consistency and its predictive power.

  4. EEG oscillatory patterns are associated with error prediction during music performance and are altered in musician's dystonia.

    Science.gov (United States)

    Ruiz, María Herrojo; Strübing, Felix; Jabusch, Hans-Christian; Altenmüller, Eckart

    2011-04-15

    Skilled performance requires the ability to monitor ongoing behavior, detect errors in advance and modify the performance accordingly. The acquisition of fast predictive mechanisms might be possible due to the extensive training characterizing expertise performance. Recent EEG studies on piano performance reported a negative event-related potential (ERP) triggered in the ACC 70 ms before performance errors (pitch errors due to incorrect keypress). This ERP component, termed pre-error related negativity (pre-ERN), was assumed to reflect processes of error detection in advance. However, some questions remained to be addressed: (i) Does the electrophysiological marker prior to errors reflect an error signal itself or is it related instead to the implementation of control mechanisms? (ii) Does the posterior frontomedial cortex (pFMC, including ACC) interact with other brain regions to implement control adjustments following motor prediction of an upcoming error? (iii) Can we gain insight into the electrophysiological correlates of error prediction and control by assessing the local neuronal synchronization and phase interaction among neuronal populations? (iv) Finally, are error detection and control mechanisms defective in pianists with musician's dystonia (MD), a focal task-specific dystonia resulting from dysfunction of the basal ganglia-thalamic-frontal circuits? Consequently, we investigated the EEG oscillatory and phase synchronization correlates of error detection and control during piano performances in healthy pianists and in a group of pianists with MD. In healthy pianists, the main outcomes were increased pre-error theta and beta band oscillations over the pFMC and 13-15 Hz phase synchronization, between the pFMC and the right lateral prefrontal cortex, which predicted corrective mechanisms. In MD patients, the pattern of phase synchronization appeared in a different frequency band (6-8 Hz) and correlated with the severity of the disorder. The present

  5. Hierarchical prediction errors in midbrain and basal forebrain during sensory learning.

    Science.gov (United States)

    Iglesias, Sandra; Mathys, Christoph; Brodersen, Kay H; Kasper, Lars; Piccirelli, Marco; den Ouden, Hanneke E M; Stephan, Klaas E

    2013-10-16

    In Bayesian brain theories, hierarchically related prediction errors (PEs) play a central role for predicting sensory inputs and inferring their underlying causes, e.g., the probabilistic structure of the environment and its volatility. Notably, PEs at different hierarchical levels may be encoded by different neuromodulatory transmitters. Here, we tested this possibility in computational fMRI studies of audio-visual learning. Using a hierarchical Bayesian model, we found that low-level PEs about visual stimulus outcome were reflected by widespread activity in visual and supramodal areas but also in the midbrain. In contrast, high-level PEs about stimulus probabilities were encoded by the basal forebrain. These findings were replicated in two groups of healthy volunteers. While our fMRI measures do not reveal the exact neuron types activated in midbrain and basal forebrain, they suggest a dichotomy between neuromodulatory systems, linking dopamine to low-level PEs about stimulus outcome and acetylcholine to more abstract PEs about stimulus probabilities.

  6. Economic Optimization of Spray Dryer Operation using Nonlinear Model Predictive Control with State Estimation

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Jørgensen, John Bagterp; Rawlings, James B.

    2015-01-01

    In this paper, we develop an economically optimizing Nonlinear Model Predictive Controller (E-NMPC) for a complete spray drying plant with multiple stages. In the E-NMPC the initial state is estimated by an extended Kalman Filter (EKF) with noise covariances estimated by an autocovariance least...... squares method (ALS). We present a model for the spray drying plant and use this model for simulation as well as for prediction in the E-NMPC. The open-loop optimal control problem in the E-NMPC is solved using the single-shooting method combined with a quasi-Newton Sequential Quadratic programming (SQP...

  7. Comparison of Linear and Nonlinear Model Predictive Control for Optimization of Spray Dryer Operation

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik;

    2015-01-01

    In this paper, we compare the performance of an economically optimizing Nonlinear Model Predictive Controller (E-NMPC) to a linear tracking Model Predictive Controller (MPC) for a spray drying plant. We find in this simulation study, that the economic performance of the two controllers are almost...... equal. We evaluate the economic performance with an industrially recorded disturbance scenario, where unmeasured disturbances and model mismatch are present. The state of the spray dryer, used in the E-NMPC and MPC, is estimated using Kalman Filters with noise covariances estimated by a maximum...

  8. Nonlinear model identification and adaptive model predictive control using neural networks.

    Science.gov (United States)

    Akpan, Vincent A; Hassapis, George D

    2011-04-01

    This paper presents two new adaptive model predictive control algorithms, both consisting of an on-line process identification part and a predictive control part. Both parts are executed at each sampling instant. The predictive control part of the first algorithm is the Nonlinear Model Predictive Control strategy and the control part of the second algorithm is the Generalized Predictive Control strategy. In the identification parts of both algorithms the process model is approximated by a series-parallel neural network structure which is trained by a recursive least squares (ARLS) method. The two control algorithms have been applied to: 1) the temperature control of a fluidized bed furnace reactor (FBFR) of a pilot plant and 2) the auto-pilot control of an F-16 aircraft. The training and validation data of the neural network are obtained from the open-loop simulation of the FBFR and the nonlinear F-16 aircraft models. The identification and control simulation results show that the first algorithm outperforms the second one at the expense of extra computation time.

  9. The Method for Calculating Atmospheric Drag Coefficient Based on the Characteristics of Along-track Error in LEO Orbit Prediction

    Science.gov (United States)

    Wang, H. B.; Zhao, C. Y.; Liu, Z. G.; Zhang, W.

    2016-07-01

    The errors of atmosphere density model and drag coefficient are the major factors to restrain the accuracy of orbit prediction for the LEO (Low Earth Orbit) objects, which would affect unfavorably the space missions that need a high-precision orbit. This paper brings out a new method for calculating the drag coefficient based on the divergence laws of prediction error's along-track component. Firstly, we deduce the expression of along-track error in LEO's orbit prediction, revealing the comprehensive effect of the initial orbit and model's errors in the along-track direction. According to this expression, we work out a suitable drag coefficient adopted in prediction step on the basis of some certain information from orbit determination step, which will limit the increasing rate of along-track error and reduce the largest error in this direction, then achieving the goal of improving the accuracy of orbit prediction. In order to verify the method's accuracy and successful rate in the practice of orbit prediction, we use the full-arcs high precision position data from the GPS receiver on GRACE-A. The result shows that this new method can significantly improve the accuracy of prediction by about 45%, achieving a successful rate of about 71% and an effective rate of about 86%, with respect to classical method which uses the fitted drag coefficient directly from orbit determination step. Furthermore, the new method shows a preferable application value, because it is effective for low, moderate, and high solar radiation levels, as well as some quiet and moderate geomagnetic activity condition.

  10. Neural correlates of sensory prediction errors in monkeys: evidence for internal models of voluntary self-motion in the cerebellum.

    Science.gov (United States)

    Cullen, Kathleen E; Brooks, Jessica X

    2015-02-01

    During self-motion, the vestibular system makes essential contributions to postural stability and self-motion perception. To ensure accurate perception and motor control, it is critical to distinguish between vestibular sensory inputs that are the result of externally applied motion (exafference) and that are the result of our own actions (reafference). Indeed, although the vestibular sensors encode vestibular afference and reafference with equal fidelity, neurons at the first central stage of sensory processing selectively encode vestibular exafference. The mechanism underlying this reafferent suppression compares the brain's motor-based expectation of sensory feedback with the actual sensory consequences of voluntary self-motion, effectively computing the sensory prediction error (i.e., exafference). It is generally thought that sensory prediction errors are computed in the cerebellum, yet it has been challenging to explicitly demonstrate this. We have recently addressed this question and found that deep cerebellar nuclei neurons explicitly encode sensory prediction errors during self-motion. Importantly, in everyday life, sensory prediction errors occur in response to changes in the effector or world (muscle strength, load, etc.), as well as in response to externally applied sensory stimulation. Accordingly, we hypothesize that altering the relationship between motor commands and the actual movement parameters will result in the updating in the cerebellum-based computation of exafference. If our hypothesis is correct, under these conditions, neuronal responses should initially be increased--consistent with a sudden increase in the sensory prediction error. Then, over time, as the internal model is updated, response modulation should decrease in parallel with a reduction in sensory prediction error, until vestibular reafference is again suppressed. The finding that the internal model predicting the sensory consequences of motor commands adapts for new

  11. Prediction of position estimation errors for 3D target trajetories estimated from cone-beam CT projections

    DEFF Research Database (Denmark)

    Poulsen, Per Rugaard; Cho, Byungchul; Keall, Paul

    2010-01-01

    . The mathematical formalism of the method includes an individualized measure of the position estimation error in terms of an estimated 1D Gaussian distribution for the unresolved target position[2]. The present study investigates how well this 1D Gaussian predicts the actual distribution of position estimation....... This finding indicates that individualized root-mean-square errors and 95% confidence intervals can be applied reliably to the estimated target trajectories....

  12. Factors predictive of intravenous fluid administration errors in Australian surgical care wards

    OpenAIRE

    2005-01-01

    Background: Intravenous (IV) fluid administration is an integral component of clinical care. Errors in administration can cause detrimental patient outcomes and increase healthcare costs, although little is known about medication administration errors associated with continuous IV infusions.

  13. Prediction of Human Vertebral Compressive Strength Using Quantitative Computed Tomography Based Nonlinear Finite Element Method

    Directory of Open Access Journals (Sweden)

    Ahad Zeinali

    2007-12-01

    Full Text Available Introduction: Because of the importance of vertebral compressive fracture (VCF role in increasing the patients’ death rate and reducing their quality of life, many studies have been conducted for a noninvasive prediction of vertebral compressive strength based on bone mineral density (BMD determination and recently finite element analysis. In this study, QCT-voxel based nonlinear finite element method is used for predicting vertebral compressive strength. Material and Methods: Four thoracolumbar vertebrae were excised from 3 cadavers with an average age of 42 years. They were then put in a water phantom and were scanned using the QCT. Using a computer program prepared in MATLAB, detailed voxel based geometry and mechanical characteristics of the vertebra were extracted from the CT images. The three dimensional finite element models of the samples were created using ANSYS computer program. The compressive strength of each vertebra body was calculated based on a linearly elastic-linearly plastic model and large deformation analysis in ANSYS and was compared to the value measured experimentally for that sample. Results: Based on the obtained results the QCT-voxel based nonlinear finite element method (FEM can predict vertebral compressive strength more effectively and accurately than the common QCT-voxel based linear FEM. The difference between the predicted strength values using this method and the measured ones was less than 1 kN for all the samples. Discussion and Conclusion: It seems that the QCT-voxel based nonlinear FEM used in this study can predict more effectively and accurately the vertebral strengths based on every vertebrae specification by considering their detailed geometric and densitometric characteristics.

  14. A Hybrid Prediction Method of Thermal Extension Error for Boring Machine Based on PCA and LS-SVM

    Directory of Open Access Journals (Sweden)

    Cheng Qiang

    2017-01-01

    Full Text Available Thermal extension error of boring bar in z-axis is one of the key factors that have a bad influence on the machining accuracy of boring machine, so how to exactly establish the relationship between the thermal extension length and temperature and predict the changing rule of thermal error are the premise of thermal extension error compensation. In this paper, a prediction method of thermal extension length of boring bar in boring machine is proposed based on principal component analysis (PCA and least squares support vector machine (LS-SVM model. In order to avoid the multiple correlation and coupling among the great amount temperature input variables, firstly, PCA is introduced to extract the principal components of temperature data samples. Then, LS-SVM is used to predict the changing tendency of the thermally induced thermal extension error of boring bar. Finally, experiments are conducted on a boring machine, the application results show that Boring bar axial thermal elongation error residual value dropped below 5 μm and minimum residual error is only 0.5 μm. This method not only effectively improve the efficiency of the temperature data acquisition and analysis, and improve the modeling accuracy and robustness.

  15. Improved model predictive control of resistive wall modes by error field estimator in EXTRAP T2R

    Science.gov (United States)

    Setiadi, A. C.; Brunsell, P. R.; Frassinetti, L.

    2016-12-01

    Many implementations of a model-based approach for toroidal plasma have shown better control performance compared to the conventional type of feedback controller. One prerequisite of model-based control is the availability of a control oriented model. This model can be obtained empirically through a systematic procedure called system identification. Such a model is used in this work to design a model predictive controller to stabilize multiple resistive wall modes in EXTRAP T2R reversed-field pinch. Model predictive control is an advanced control method that can optimize the future behaviour of a system. Furthermore, this paper will discuss an additional use of the empirical model which is to estimate the error field in EXTRAP T2R. Two potential methods are discussed that can estimate the error field. The error field estimator is then combined with the model predictive control and yields better radial magnetic field suppression.

  16. A Novel Prediction Algorithm of DR Position Error Based on Bayesian Regularization Back-propagation Neural Network

    Directory of Open Access Journals (Sweden)

    Li Honglian

    2013-07-01

    Full Text Available It is difficult to accurately reckon vehicle position for vehicle navigation system (VNS during GPS outages, a novel prediction algorithm of dead reckon (DR position error is put forward, which based on Bayesian regularization back-propagation (BRBP neural network. DR, GPS position data are first de-noised and compared at different stationary wavelet transformation (SWT decomposition level, and DR position error data are acquired after the SWT coefficients differences are reconstructed. A neural network to mimic position error property is trained with back-propagation algorithm, and the algorithm is improved for improving its generalization by Bayesian regularization theory. During GPS outages, the established prediction algorithm predictes DR position errors, and provides precise position for VNS through DR position error data updating DR position data. The simulation results show the positioning precision of the BRBP algorithm is best among the presented prediction algorithms such as simple DR and adaptive linear network, and a precise mathematical model of navigation sensors isn’t established.

  17. Nonlinear model predictive control using parameter varying BP-ARX combination model

    Science.gov (United States)

    Yang, J.-F.; Xiao, L.-F.; Qian, J.-X.; Li, H.

    2012-03-01

    A novel back-propagation AutoRegressive with eXternal input (BP-ARX) combination model is constructed for model predictive control (MPC) of MIMO nonlinear systems, whose steady-state relation between inputs and outputs can be obtained. The BP neural network represents the steady-state relation, and the ARX model represents the linear dynamic relation between inputs and outputs of the nonlinear systems. The BP-ARX model is a global model and is identified offline, while the parameters of the ARX model are rescaled online according to BP neural network and operating data. Sequential quadratic programming is employed to solve the quadratic objective function online, and a shift coefficient is defined to constrain the effect time of the recursive least-squares algorithm. Thus, a parameter varying nonlinear MPC (PVNMPC) algorithm that responds quickly to large changes in system set-points and shows good dynamic performance when system outputs approach set-points is proposed. Simulation results in a multivariable stirred tank and a multivariable pH neutralisation process illustrate the applicability of the proposed method and comparisons of the control effect between PVNMPC and multivariable recursive generalised predictive controller are also performed.

  18. Nonlinear Model Predictive Control Based on a Self-Organizing Recurrent Neural Network.

    Science.gov (United States)

    Han, Hong-Gui; Zhang, Lu; Hou, Ying; Qiao, Jun-Fei

    2016-02-01

    A nonlinear model predictive control (NMPC) scheme is developed in this paper based on a self-organizing recurrent radial basis function (SR-RBF) neural network, whose structure and parameters are adjusted concurrently in the training process. The proposed SR-RBF neural network is represented in a general nonlinear form for predicting the future dynamic behaviors of nonlinear systems. To improve the modeling accuracy, a spiking-based growing and pruning algorithm and an adaptive learning algorithm are developed to tune the structure and parameters of the SR-RBF neural network, respectively. Meanwhile, for the control problem, an improved gradient method is utilized for the solution of the optimization problem in NMPC. The stability of the resulting control system is proved based on the Lyapunov stability theory. Finally, the proposed SR-RBF neural network-based NMPC (SR-RBF-NMPC) is used to control the dissolved oxygen (DO) concentration in a wastewater treatment process (WWTP). Comparisons with other existing methods demonstrate that the SR-RBF-NMPC can achieve a considerably better model fitting for WWTP and a better control performance for DO concentration.

  19. Boiler-turbine control system design using continuous-time nonlinear model predictive control

    Institute of Scientific and Technical Information of China (English)

    ZHUO Xu-sheng; ZHOU Huai-chun

    2008-01-01

    A continuous-time nonlinear model predictive controller (NMPC) was designed for a boiler-turbine unit. The controller was designed by optimizing a receding-horizon performance index, with the nonlinear system approximated by its Taylor series expansion with a certain order, the magnitude saturation constraints on the inputs satisfied by increasing the predictive time, and the rate saturation conditions on the actuators satisfied by tuning the time constant of the reference trajectories in a reference governor. Simulation results showed that the controller can drive the drum pressure and output power of the nonlinear boiler-turbine unit to follow their respective reference trajectories throughout a varying operation range and keep the water level deviation within tolerances. Comparison of the NMPC scheme with the generic model control (GMC) scheme indicated that the responses are slower and there are more oscillations in the responses of the water level, fuel flow input and feed water flow input in the GMC scheme when the boiler-turbine unit is operating over a wide range.

  20. Progress in the study of nonlinear atmospheric dynamics and predictability of weather and climate in China (2007-2011)

    Science.gov (United States)

    Zhou, Feifan; Ding, Ruiqiang; Feng, Guolin; Fu, Zuntao; Duan, Wansuo

    2012-09-01

    Recent progress in the study of nonlinear atmospheric dynamics and related predictability of weather and climate in China (2007-2011) are briefly introduced in this article. Major achievements in the study of nonlinear atmospheric dynamics have been classified into two types: (1) progress based on the analysis of solutions of simplified control equations, such as the dynamics of NAO, the optimal precursors for blocking onset, and the behavior of nonlinear waves, and (2) progress based on data analyses, such as the nonlinear analyses of fluctuations and recording-breaking temperature events, the long-range correlation of extreme events, and new methods of detecting abrupt dynamical change. Major achievements in the study of predictability include the following: (1) the application of nonlinear local Lyapunov exponents (NLLE) to weather and climate predictability; (2) the application of condition nonlinear optimal perturbation (CNOP) to the studies of El Niño-Southern Oscillation (ENSO) predictions, ensemble forecasting, targeted observation, and sensitivity analysis of the ecosystem; and (3) new strategies proposed for predictability studies. The results of these studies have provided greater understanding of the dynamics and nonlinear mechanisms of atmospheric motion, and they represent new ideas for developing numerical models and improving the forecast skill of weather and climate events.

  1. Progress in the Study of Nonlinear Atmospheric Dynamics and Predictability of Weather and Climate in China (2007-2011)

    Institute of Scientific and Technical Information of China (English)

    ZHOU Feifan; DING Ruiqiang; FENG Guolin; FU Zuntao; DUAN Wansuo

    2012-01-01

    Recent progress in the study of nonlinear atmospheric dynamics and related predictability of weather and climate in China (2007-2011) are briefly introduced in this article.Major achievements in the study of nonlinear atmospheric dynamics have been classified into two types:(1) progress based on the analysis of solutions of simplified control equations,such as the dynamics of NAO,the optimal precursors for blocking onset,and the behavior of nonlinear waves,and (2) progress based on data analyses,such as the nonlinear analyses of fluctuations and recording-breaking temperature events,the long-range correlation of extreme events,and new methods of detecting abrupt dynamical change.Major achievements in the study of predictability include the following:(1) the application of nonlinear local Lyapunov exponents (NLLE) to weather and climate predictability; (2) the application of condition nonlinear optimal perturbation (CNOP) to the studies of El Ni(n)o-Southern Oscillation (ENSO) predictions,ensemble forecasting,targeted observation,and sensitivity analysis of the ecosystem; and (3) new strategies proposed for predictability studies.The results of these studies have provided greater understanding of the dynamics and nonlinear mechanisms of atmospheric motion,and they represent new ideas for developing numerical models and improving the forecast skill of weather and climate events.

  2. The use of machine learning and nonlinear statistical tools for ADME prediction.

    Science.gov (United States)

    Sakiyama, Yojiro

    2009-02-01

    Absorption, distribution, metabolism and excretion (ADME)-related failure of drug candidates is a major issue for the pharmaceutical industry today. Prediction of ADME by in silico tools has now become an inevitable paradigm to reduce cost and enhance efficiency in pharmaceutical research. Recently, machine learning as well as nonlinear statistical tools has been widely applied to predict routine ADME end points. To achieve accurate and reliable predictions, it would be a prerequisite to understand the concepts, mechanisms and limitations of these tools. Here, we have devised a small synthetic nonlinear data set to help understand the mechanism of machine learning by 2D-visualisation. We applied six new machine learning methods to four different data sets. The methods include Naive Bayes classifier, classification and regression tree, random forest, Gaussian process, support vector machine and k nearest neighbour. The results demonstrated that ensemble learning and kernel machine displayed greater accuracy of prediction than classical methods irrespective of the data set size. The importance of interaction with the engineering field is also addressed. The results described here provide insights into the mechanism of machine learning, which will enable appropriate usage in the future.

  3. Toward a better understanding on the role of prediction error on memory processes: From bench to clinic.

    Science.gov (United States)

    Krawczyk, María C; Fernández, Rodrigo S; Pedreira, María E; Boccia, Mariano M

    2017-07-01

    Experimental psychology defines Prediction Error (PE) as a mismatch between expected and current events. It represents a unifier concept within the memory field, as it is the driving force of memory acquisition and updating. Prediction error induces updating of consolidated memories in strength or content by memory reconsolidation. This process has two different neurobiological phases, which involves the destabilization (labilization) of a consolidated memory followed by its restabilization. The aim of this work is to emphasize the functional role of PE on the neurobiology of learning and memory, integrating and discussing different research areas: behavioral, neurobiological, computational and clinical psychiatry. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Integrating real-time and manual monitored data to predict hillslope soil moisture dynamics with high spatio-temporal resolution using linear and non-linear models

    Science.gov (United States)

    Zhu, Qing; Zhou, Zhiwen; Duncan, Emily W.; Lv, Ligang; Liao, Kaihua; Feng, Huihui

    2017-02-01

    Spatio-temporal variability of soil moisture (θ) is a challenge that remains to be better understood. A trade-off exists between spatial coverage and temporal resolution when using the manual and real-time θ monitoring methods. This restricted the comprehensive and intensive examination of θ dynamics. In this study, we integrated the manual and real-time monitored data to depict the hillslope θ dynamics with good spatial coverage and temporal resolution. Linear (stepwise multiple linear regression-SMLR) and non-linear (support vector machines-SVM) models were used to predict θ at 39 manual sites (collected 1-2 times per month) with θ collected at three real-time monitoring sites (collected every 5 mins). By comparing the accuracies of SMLR and SVM for each depth and manual site, an optimal prediction model was then determined at this depth of this site. Results showed that θ at the 39 manual sites can be reliably predicted (root mean square errors model. The subsurface flow dynamics was an important factor that determined whether the relationship was linear or non-linear. Depth to bedrock, elevation, topographic wetness index, profile curvature, and θ temporal stability influenced the selection of prediction model since they were related to the subsurface soil water distribution and movement. Using this approach, hillslope θ spatial distributions at un-sampled times and dates can be predicted. Missing information of hillslope θ dynamics can be acquired successfully.

  5. Nonlinear Reduced-Order Observer-Based Predictive Control for Diving of an Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Xuliang Yao

    2017-01-01

    Full Text Available The attitude control and depth tracking issue of autonomous underwater vehicle (AUV are addressed in this paper. By introducing a nonsingular coordinate transformation, a novel nonlinear reduced-order observer (NROO is presented to achieve an accurate estimation of AUV’s state variables. A discrete-time model predictive control with nonlinear model online linearization (MPC-NMOL is applied to enhance the attitude control and depth tracking performance of AUV considering the wave disturbance near surface. In AUV longitudinal control simulation, the comparisons have been presented between NROO and full-order observer (FOO and also between MPC-NMOL and traditional NMPC. Simulation results show the effectiveness of the proposed method.

  6. Model Predictive Control of Nonlinear Systems: Stability Region and Feasible Initial Control

    Institute of Scientific and Technical Information of China (English)

    Xiao-Bing Hu; Wen-Hua Chen

    2007-01-01

    This paper proposes a new method for model predictive control (MPC) of nonlinear systems to calculate stability region and feasible initial control profile/sequence, which are important to the implementations of MPC. Different from many existing methods,this paper distinguishes stability region from conservative terminal region. With global linearization, linear differential inclusion (LDI)and linear matrix inequality (LMI) techniques, a nonlinear system is transformed into a convex set of linear systems, and then the vertices of the set are used off-line to design the controller, to estimate stability region, and also to determine a feasible initial control profile/sequence. The advantages of the proposed method are demonstrated by simulation study.

  7. A computer program for predicting nonlinear uniaxial material responses using viscoplastic models

    Science.gov (United States)

    Chang, T. Y.; Thompson, R. L.

    1984-01-01

    A computer program was developed for predicting nonlinear uniaxial material responses using viscoplastic constitutive models. Four specific models, i.e., those due to Miller, Walker, Krieg-Swearengen-Rhode, and Robinson, are included. Any other unified model is easily implemented into the program in the form of subroutines. Analysis features include stress-strain cycling, creep response, stress relaxation, thermomechanical fatigue loop, or any combination of these responses. An outline is given on the theoretical background of uniaxial constitutive models, analysis procedure, and numerical integration methods for solving the nonlinear constitutive equations. In addition, a discussion on the computer program implementation is also given. Finally, seven numerical examples are included to demonstrate the versatility of the computer program developed.

  8. Nonlinear filtering techniques for noisy geophysical data: Using big data to predict the future

    Science.gov (United States)

    Moore, J. M.

    2014-12-01

    Chaos is ubiquitous in physical systems. Within the Earth sciences it is readily evident in seismology, groundwater flows and drilling data. Models and workflows have been applied successfully to understand and even to predict chaotic systems in other scientific fields, including electrical engineering, neurology and oceanography. Unfortunately, the high levels of noise characteristic of our planet's chaotic processes often render these frameworks ineffective. This contribution presents techniques for the reduction of noise associated with measurements of nonlinear systems. Our ultimate aim is to develop data assimilation techniques for forward models that describe chaotic observations, such as episodic tremor and slip (ETS) events in fault zones. A series of nonlinear filters are presented and evaluated using classical chaotic systems. To investigate whether the filters can successfully mitigate the effect of noise typical of Earth science, they are applied to sunspot data. The filtered data can be used successfully to forecast sunspot evolution for up to eight years (see figure).

  9. A robust model predictive control algorithm for uncertain nonlinear systems that guarantees resolvability

    Science.gov (United States)

    Acikmese, Ahmet Behcet; Carson, John M., III

    2006-01-01

    A robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems is developed that guarantees resolvability. With resolvability, initial feasibility of the finite-horizon optimal control problem implies future feasibility in a receding-horizon framework. The control consists of two components; (i) feed-forward, and (ii) feedback part. Feed-forward control is obtained by online solution of a finite-horizon optimal control problem for the nominal system dynamics. The feedback control policy is designed off-line based on a bound on the uncertainty in the system model. The entire controller is shown to be robustly stabilizing with a region of attraction composed of initial states for which the finite-horizon optimal control problem is feasible. The controller design for this algorithm is demonstrated on a class of systems with uncertain nonlinear terms that have norm-bounded derivatives and derivatives in polytopes. An illustrative numerical example is also provided.

  10. A LQP BASED INTERIOR PREDICTION-CORRECTION METHOD FOR NONLINEAR COMPLEMENTARITY PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Bing-sheng He; Li-zhi Liao; Xiao-ming Yuan

    2006-01-01

    To solve nonlinear complementarity problems (NCP), at each iteration, the classical proximal point algorithm solves a well-conditioned sub-NCP while the LogarithmicQuadratic Proximal (LQP) method solves a system of nonlinear equations (LQP system). This paper presents a practical LQP method-based prediction-correction method for NCP.The predictor is obtained via solving the LQP system approximately under significantly relaxed restriction, and the new iterate (the corrector) is computed directly by an explicit formula derived from the original LQP method. The implementations are very easy to be carried out. Global convergence of the method is proved under the same mild assumptions as the original LQP method. Finally, numerical results for traffic equilibrium problems are provided to verify that the method is effective for some practical problems.

  11. Inferring reward prediction errors in patients with schizophrenia: a dynamic reward task for reinforcement learning

    Directory of Open Access Journals (Sweden)

    Chia-Tzu eLi

    2014-11-01

    Full Text Available Abnormalities in the dopamine system have long been implicated in explanations of reinforcement learning and psychosis. The updated reward prediction error (RPE—a discrepancy between the predicted and actual rewards—is thought to be encoded by dopaminergic neurons. Dysregulation of dopamine systems could alter the appraisal of stimuli and eventually lead to schizophrenia. Accordingly, the measurement of RPE provides a potential behavioral index for the evaluation of brain dopamine activity and psychotic symptoms. Here, we assess two features potentially crucial to the RPE process, namely belief formation and belief perseveration, via a probability learning task and reinforcement-learning modeling. Forty-five patients with schizophrenia (26 high-psychosis and 19 low-psychosis, based on their p1 and p3 scores in the positive-symptom subscales of the Positive and Negative Syndrome Scale (PANSS and 24 controls were tested in a feedback-based dynamic reward task for their RPE-related decision making. While task scores across the three groups were similar, matching law analysis revealed that the reward sensitivities of both psychosis groups were lower than that of controls. Trial-by-trial data were further fit with a reinforcement learning model using the Bayesian estimation approach. Model fitting results indicated that both psychosis groups tend to update their reward values more rapidly than controls. Moreover, among the three groups, high-psychosis patients had the lowest degree of choice perseveration. Lumping patients’ data together, we also found that patients’ perseveration appears to be negatively correlated (p = .09, trending towards significance with their PANSS p1+p3 scores. Our method provides an alternative for investigating reward-related learning and decision making in basic and clinical settings.

  12. Inferring reward prediction errors in patients with schizophrenia: a dynamic reward task for reinforcement learning.

    Science.gov (United States)

    Li, Chia-Tzu; Lai, Wen-Sung; Liu, Chih-Min; Hsu, Yung-Fong

    2014-01-01

    Abnormalities in the dopamine system have long been implicated in explanations of reinforcement learning and psychosis. The updated reward prediction error (RPE)-a discrepancy between the predicted and actual rewards-is thought to be encoded by dopaminergic neurons. Dysregulation of dopamine systems could alter the appraisal of stimuli and eventually lead to schizophrenia. Accordingly, the measurement of RPE provides a potential behavioral index for the evaluation of brain dopamine activity and psychotic symptoms. Here, we assess two features potentially crucial to the RPE process, namely belief formation and belief perseveration, via a probability learning task and reinforcement-learning modeling. Forty-five patients with schizophrenia [26 high-psychosis and 19 low-psychosis, based on their p1 and p3 scores in the positive-symptom subscales of the Positive and Negative Syndrome Scale (PANSS)] and 24 controls were tested in a feedback-based dynamic reward task for their RPE-related decision making. While task scores across the three groups were similar, matching law analysis revealed that the reward sensitivities of both psychosis groups were lower than that of controls. Trial-by-trial data were further fit with a reinforcement learning model using the Bayesian estimation approach. Model fitting results indicated that both psychosis groups tend to update their reward values more rapidly than controls. Moreover, among the three groups, high-psychosis patients had the lowest degree of choice perseveration. Lumping patients' data together, we also found that patients' perseveration appears to be negatively correlated (p = 0.09, trending toward significance) with their PANSS p1 + p3 scores. Our method provides an alternative for investigating reward-related learning and decision making in basic and clinical settings.

  13. Calculation of error propagation by use of total reflection geometry for evaluating third-order nonlinear optical materials.

    Science.gov (United States)

    Kiguchi, M

    1999-09-20

    The intrinsic error propagation in a technique that uses total reflection geometry for the measurement of chi(3) is calculated. The results show how accurately the parameters should be measured to obtain the chi(3) value with the required precision. The film thickness should be slightly less than the fundamental wavelength to reduce the chi(3) error that propagates from other parameters.

  14. Cognitive reappraisal modulates expected value and prediction error encoding in the ventral striatum.

    Science.gov (United States)

    Staudinger, Markus R; Erk, Susanne; Abler, Birgit; Walter, Henrik

    2009-08-15

    In addiction, loss of prefrontal inhibitory control is believed to contribute to impulsivity. To improve cognitive therapy approaches, it is important to determine whether cognitive control strategies can generally influence reward processing at the neural level. We investigated the effects of one such strategy--namely, reappraisal (distancing from feelings)--on neural reward processing in 16 healthy subjects by utilizing event-related functional magnetic resonance imaging (fMRI). In a monetary incentive delay task, expected reward value (expecting to win 0.50 euro vs. 0.10 euro) and outcome valence (win vs. omission) were varied. An attenuation of expected value and a modulation of prediction error (PE) coding caused by distancing were found in right vs. left ventral striatum (VST) in the expectation vs. outcome period, respectively. Distancing from reward feelings recruited a right hemispheric fronto-parietal network. Moreover, self-reported reappraisal success (decrease of feelings by distancing) showed a trend toward positive correlation with activation in the rostral cingulate zone and the lateral orbitofrontal cortex, both part of the regulation network. Our results expand upon recent findings by showing that cognitive control over reward processing impacts not only the expectation period but also the reward signals in the outcome period. Moreover, increased recruitment of prefrontal reflective subsystems might enhance deliberate control over both reward processing and hedonic experience.

  15. Scaling of Perceptual Errors Can Predict the Shape of Neural Tuning Curves

    Science.gov (United States)

    Shouval, Harel Z.; Agarwal, Animesh; Gavornik, Jeffrey P.

    2014-01-01

    Weber’s law, first characterized in the 19th century, states that errors estimating the magnitude of perceptual stimuli scale linearly with stimulus intensity. This linear relationship is found in most sensory modalities, generalizes to temporal interval estimation, and even applies to some abstract variables. Despite its generality and long experimental history, the neural basis of Weber’s law remains unknown. This work presents a simple theory explaining the conditions under which Weber’s law can result from neural variability and predicts that the tuning curves of neural populations which adhere to Weber’s law will have a log-power form with parameters that depend on spike-count statistics. The prevalence of Weber’s law suggests that it might be optimal in some sense. We examine this possibility, using variational calculus, and show that Weber’s law is optimal only when observed real-world variables exhibit power-law statistics with a specific exponent. Our theory explains how physiology gives rise to the behaviorally characterized Weber’s law and may represent a general governing principle relating perception to neural activity. PMID:23679640

  16. [Prediction of spatial distribution of forest carbon storage in Heilongjiang Province using spatial error model].

    Science.gov (United States)

    Liu, Chang; Li, Feng-Ri; Zhen, Zhen

    2014-10-01

    Abstract: Based on the data from Chinese National Forest Inventory (CNFI) and Key Ecological Benefit Forest Monitoring plots (5075 in total) in Heilongjiang Province in 2010 and concurrent meteorological data coming from 59 meteorological stations located in Heilongjiang, Jilin and Inner Mongolia, this paper established a spatial error model (SEM) by GeoDA using carbon storage as dependent variable and several independent variables, including diameter of living trees (DBH), number of trees per hectare (TPH), elevation (Elev), slope (Slope), and product of precipitation and temperature (Rain_Temp). Global Moran's I was computed for describing overall spatial autocorrelations of model results at different spatial scales. Local Moran's I was calculated at the optimal bandwidth (25 km) to present spatial distribution residuals. Intra-block spatial variances were computed to explain spatial heterogeneity of residuals. Finally, a spatial distribution map of carbon storage in Heilongjiang was visualized based on predictions. The results showed that the distribution of forest carbon storage in Heilongjiang had spatial effect and was significantly influenced by stand, topographic and meteorological factors, especially average DBH. SEM could solve the spatial autocorrelation and heterogeneity well. There were significant spatial differences in distribution of forest carbon storage. The carbon storage was mainly distributed in Zhangguangcai Mountain, Xiao Xing'an Mountain and Da Xing'an Mountain where dense, forests existed, rarely distributed in Songnen Plains, while Wanda Mountain had moderate-level carbon storage.

  17. Altered neural reward and loss processing and prediction error signalling in depression.

    Science.gov (United States)

    Ubl, Bettina; Kuehner, Christine; Kirsch, Peter; Ruttorf, Michaela; Diener, Carsten; Flor, Herta

    2015-08-01

    Dysfunctional processing of reward and punishment may play an important role in depression. However, functional magnetic resonance imaging (fMRI) studies have shown heterogeneous results for reward processing in fronto-striatal regions. We examined neural responsivity associated with the processing of reward and loss during anticipation and receipt of incentives and related prediction error (PE) signalling in depressed individuals. Thirty medication-free depressed persons and 28 healthy controls performed an fMRI reward paradigm. Regions of interest analyses focused on neural responses during anticipation and receipt of gains and losses and related PE-signals. Additionally, we assessed the relationship between neural responsivity during gain/loss processing and hedonic capacity. When compared with healthy controls, depressed individuals showed reduced fronto-striatal activity during anticipation of gains and losses. The groups did not significantly differ in response to reward and loss outcomes. In depressed individuals, activity increases in the orbitofrontal cortex and nucleus accumbens during reward anticipation were associated with hedonic capacity. Depressed individuals showed an absence of reward-related PEs but encoded loss-related PEs in the ventral striatum. Depression seems to be linked to blunted responsivity in fronto-striatal regions associated with limited motivational responses for rewards and losses. Alterations in PE encoding might mirror blunted reward- and enhanced loss-related associative learning in depression. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  18. On the improvement of neural cryptography using erroneous transmitted information with error prediction.

    Science.gov (United States)

    Allam, Ahmed M; Abbas, Hazem M

    2010-12-01

    Neural cryptography deals with the problem of "key exchange" between two neural networks using the mutual learning concept. The two networks exchange their outputs (in bits) and the key between the two communicating parties is eventually represented in the final learned weights, when the two networks are said to be synchronized. Security of neural synchronization is put at risk if an attacker is capable of synchronizing with any of the two parties during the training process. Therefore, diminishing the probability of such a threat improves the reliability of exchanging the output bits through a public channel. The synchronization with feedback algorithm is one of the existing algorithms that enhances the security of neural cryptography. This paper proposes three new algorithms to enhance the mutual learning process. They mainly depend on disrupting the attacker confidence in the exchanged outputs and input patterns during training. The first algorithm is called "Do not Trust My Partner" (DTMP), which relies on one party sending erroneous output bits, with the other party being capable of predicting and correcting this error. The second algorithm is called "Synchronization with Common Secret Feedback" (SCSFB), where inputs are kept partially secret and the attacker has to train its network on input patterns that are different from the training sets used by the communicating parties. The third algorithm is a hybrid technique combining the features of the DTMP and SCSFB. The proposed approaches are shown to outperform the synchronization with feedback algorithm in the time needed for the parties to synchronize.

  19. A Bayesian joint probability post-processor for reducing errors and quantifying uncertainty in monthly streamflow predictions

    Directory of Open Access Journals (Sweden)

    P. Pokhrel

    2012-10-01

    Full Text Available Hydrological post-processors refer here to statistical models that are applied to hydrological model predictions to further reduce prediction errors and to quantify remaining uncertainty. For streamflow predictions, post-processors are generally applied to daily or sub-daily time scales. For many applications such as seasonal streamflow forecasting and water resources assessment, monthly volumes of streamflows are of primary interest. While it is possible to aggregate post-processed daily or sub-daily predictions to monthly time scales, the monthly volumes so produced may not have the least errors achievable and may not be reliable in uncertainty distributions. Post-processing directly at the monthly time scale is likely to be more effective. In this study, we investigate the use of a Bayesian joint probability modelling approach to directly post-process model predictions of monthly streamflow volumes. We apply the BJP post-processor to 18 catchments located in eastern Australia and demonstrate its effectiveness in reducing prediction errors and quantifying prediction uncertainty.

  20. Ecological prediction with nonlinear multivariate time-frequency functional data models

    Science.gov (United States)

    Yang, Wen-Hsi; Wikle, Christopher K.; Holan, Scott H.; Wildhaber, Mark L.

    2013-01-01

    Time-frequency analysis has become a fundamental component of many scientific inquiries. Due to improvements in technology, the amount of high-frequency signals that are collected for ecological and other scientific processes is increasing at a dramatic rate. In order to facilitate the use of these data in ecological prediction, we introduce a class of nonlinear multivariate time-frequency functional models that can identify important features of each signal as well as the interaction of signals corresponding to the response variable of interest. Our methodology is of independent interest and utilizes stochastic search variable selection to improve model selection and performs model averaging to enhance prediction. We illustrate the effectiveness of our approach through simulation and by application to predicting spawning success of shovelnose sturgeon in the Lower Missouri River.

  1. Thermal-Induced Errors Prediction and Compensation for a Coordinate Boring Machine Based on Time Series Analysis

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2014-01-01

    Full Text Available To improve the CNC machine tools precision, a thermal error modeling for the motorized spindle was proposed based on time series analysis, considering the length of cutting tools and thermal declined angles, and the real-time error compensation was implemented. A five-point method was applied to measure radial thermal declinations and axial expansion of the spindle with eddy current sensors, solving the problem that the three-point measurement cannot obtain the radial thermal angle errors. Then the stationarity of the thermal error sequences was determined by the Augmented Dickey-Fuller Test Algorithm, and the autocorrelation/partial autocorrelation function was applied to identify the model pattern. By combining both Yule-Walker equations and information criteria, the order and parameters of the models were solved effectively, which improved the prediction accuracy and generalization ability. The results indicated that the prediction accuracy of the time series model could reach up to 90%. In addition, the axial maximum error decreased from 39.6 μm to 7 μm after error compensation, and the machining accuracy was improved by 89.7%. Moreover, the X/Y-direction accuracy can reach up to 77.4% and 86%, respectively, which demonstrated that the proposed methods of measurement, modeling, and compensation were effective.

  2. Preschool speech error patterns predict articulation and phonological awareness outcomes in children with histories of speech sound disorders.

    Science.gov (United States)

    Preston, Jonathan L; Hull, Margaret; Edwards, Mary Louise

    2013-05-01

    To determine if speech error patterns in preschoolers with speech sound disorders (SSDs) predict articulation and phonological awareness (PA) outcomes almost 4 years later. Twenty-five children with histories of preschool SSDs (and normal receptive language) were tested at an average age of 4;6 (years;months) and were followed up at age 8;3. The frequency of occurrence of preschool distortion errors, typical substitution and syllable structure errors, and atypical substitution and syllable structure errors was used to predict later speech sound production, PA, and literacy outcomes. Group averages revealed below-average school-age articulation scores and low-average PA but age-appropriate reading and spelling. Preschool speech error patterns were related to school-age outcomes. Children for whom >10% of their speech sound errors were atypical had lower PA and literacy scores at school age than children who produced phonological representations, leading to long-term PA weaknesses. Preschoolers' distortions may be resistant to change over time, leading to persisting speech sound production problems.

  3. Estimating Prediction Uncertainty from Geographical Information System Raster Processing: A User's Manual for the Raster Error Propagation Tool (REPTool)

    Science.gov (United States)

    Gurdak, Jason J.; Qi, Sharon L.; Geisler, Michael L.

    2009-01-01

    The U.S. Geological Survey Raster Error Propagation Tool (REPTool) is a custom tool for use with the Environmental System Research Institute (ESRI) ArcGIS Desktop application to estimate error propagation and prediction uncertainty in raster processing operations and geospatial modeling. REPTool is designed to introduce concepts of error and uncertainty in geospatial data and modeling and provide users of ArcGIS Desktop a geoprocessing tool and methodology to consider how error affects geospatial model output. Similar to other geoprocessing tools available in ArcGIS Desktop, REPTool can be run from a dialog window, from the ArcMap command line, or from a Python script. REPTool consists of public-domain, Python-based packages that implement Latin Hypercube Sampling within a probabilistic framework to track error propagation in geospatial models and quantitatively estimate the uncertainty of the model output. Users may specify error for each input raster or model coefficient represented in the geospatial model. The error for the input rasters may be specified as either spatially invariant or spatially variable across the spatial domain. Users may specify model output as a distribution of uncertainty for each raster cell. REPTool uses the Relative Variance Contribution method to quantify the relative error contribution from the two primary components in the geospatial model - errors in the model input data and coefficients of the model variables. REPTool is appropriate for many types of geospatial processing operations, modeling applications, and related research questions, including applications that consider spatially invariant or spatially variable error in geospatial data.

  4. Data based identification and prediction of nonlinear and complex dynamical systems

    Science.gov (United States)

    Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso

    2016-07-01

    The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space reconstruction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, understand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology. To accomplish these goals, especially prediction and control, an accurate reconstruction of the original system is required. Nonlinear and complex systems identification aims at inferring, from data, the mathematical equations that govern the dynamical evolution and the complex interaction patterns, or topology, among the various components of the system. With successful reconstruction of the system equations and the connecting topology, it may be possible to address challenging and significant problems such as identification of causal relations among the interacting components and detection of hidden nodes. The "inverse" problem thus presents a grand challenge, requiring new paradigms beyond the traditional delay-coordinate embedding methodology. The past fifteen years have witnessed rapid development of contemporary complex graph theory with broad applications in interdisciplinary science and engineering. The combination of graph, information, and nonlinear dynamical

  5. Data based identification and prediction of nonlinear and complex dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wen-Xu [School of Systems Science, Beijing Normal University, Beijing, 100875 (China); Business School, University of Shanghai for Science and Technology, Shanghai 200093 (China); Lai, Ying-Cheng, E-mail: Ying-Cheng.Lai@asu.edu [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287 (United States); Department of Physics, Arizona State University, Tempe, AZ 85287 (United States); Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Grebogi, Celso [Institute for Complex Systems and Mathematical Biology, King’s College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom)

    2016-07-12

    The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space reconstruction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, understand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology. To accomplish these goals, especially prediction and control, an accurate reconstruction of the original system is required. Nonlinear and complex systems identification aims at inferring, from data, the mathematical equations that govern the dynamical evolution and the complex interaction patterns, or topology, among the various components of the system. With successful reconstruction of the system equations and the connecting topology, it may be possible to address challenging and significant problems such as identification of causal relations among the interacting components and detection of hidden nodes. The “inverse” problem thus presents a grand challenge, requiring new paradigms beyond the traditional delay-coordinate embedding methodology. The past fifteen years have witnessed rapid development of contemporary complex graph theory with broad applications in interdisciplinary science and engineering. The combination of graph, information, and nonlinear

  6. Effective Prediction of Errors by Non-native Speakers Using Decision Tree for Speech Recognition-Based CALL System

    Science.gov (United States)

    Wang, Hongcui; Kawahara, Tatsuya

    CALL (Computer Assisted Language Learning) systems using ASR (Automatic Speech Recognition) for second language learning have received increasing interest recently. However, it still remains a challenge to achieve high speech recognition performance, including accurate detection of erroneous utterances by non-native speakers. Conventionally, possible error patterns, based on linguistic knowledge, are added to the lexicon and language model, or the ASR grammar network. However, this approach easily falls in the trade-off of coverage of errors and the increase of perplexity. To solve the problem, we propose a method based on a decision tree to learn effective prediction of errors made by non-native speakers. An experimental evaluation with a number of foreign students learning Japanese shows that the proposed method can effectively generate an ASR grammar network, given a target sentence, to achieve both better coverage of errors and smaller perplexity, resulting in significant improvement in ASR accuracy.

  7. Plasticity Tool for Predicting Shear Nonlinearity of Unidirectional Laminates Under Multiaxial Loading

    Science.gov (United States)

    Wang, John T.; Bomarito, Geoffrey F.

    2016-01-01

    This study implements a plasticity tool to predict the nonlinear shear behavior of unidirectional composite laminates under multiaxial loadings, with an intent to further develop the tool for use in composite progressive damage analysis. The steps for developing the plasticity tool include establishing a general quadratic yield function, deriving the incremental elasto-plastic stress-strain relations using the yield function with associated flow rule, and integrating the elasto-plastic stress-strain relations with a modified Euler method and a substepping scheme. Micromechanics analyses are performed to obtain normal and shear stress-strain curves that are used in determining the plasticity parameters of the yield function. By analyzing a micromechanics model, a virtual testing approach is used to replace costly experimental tests for obtaining stress-strain responses of composites under various loadings. The predicted elastic moduli and Poisson's ratios are in good agreement with experimental data. The substepping scheme for integrating the elasto-plastic stress-strain relations is suitable for working with displacement-based finite element codes. An illustration problem is solved to show that the plasticity tool can predict the nonlinear shear behavior for a unidirectional laminate subjected to multiaxial loadings.

  8. Absorbed in the task: Personality measures predict engagement during task performance as tracked by error negativity and asymmetrical frontal activity.

    Science.gov (United States)

    Tops, Mattie; Boksem, Maarten A S

    2010-12-01

    We hypothesized that interactions between traits and context predict task engagement, as measured by the amplitude of the error-related negativity (ERN), performance, and relative frontal activity asymmetry (RFA). In Study 1, we found that drive for reward, absorption, and constraint independently predicted self-reported persistence. We hypothesized that, during a prolonged monotonous task, absorption would predict initial ERN amplitudes, constraint would delay declines in ERN amplitudes and deterioration of performance, and drive for reward would predict left RFA when a reward could be obtained. Study 2, employing EEG recordings, confirmed our predictions. The results showed that most traits that have in previous research been related to ERN amplitudes have a relationship with the motivational trait persistence in common. In addition, trait-context combinations that are likely associated with increased engagement predict larger ERN amplitudes and RFA. Together, these results support the hypothesis that engagement may be a common underlying factor predicting ERN amplitude.

  9. Highly porous thermal protection materials: Modelling and prediction of the methodical experimental errors

    Science.gov (United States)

    Cherepanov, Valery V.; Alifanov, Oleg M.; Morzhukhina, Alena V.; Budnik, Sergey A.

    2016-11-01

    The formation mechanisms and the main factors affecting the systematic error of thermocouples were investigated. According to the results of experimental studies and mathematical modelling it was established that in highly porous heat resistant materials for aerospace application the thermocouple errors are determined by two competing mechanisms provided correlation between the errors and the difference between radiation and conduction heat fluxes. The comparative analysis was carried out and some features of the methodical error formation related to the distances from the heated surface were established.

  10. A variational method for correcting non-systematic errors in numerical weather prediction

    Institute of Scientific and Technical Information of China (English)

    SHAO AiMei; XI Shuang; QIU ChongJian

    2009-01-01

    A variational method based on previous numerical forecasts is developed to estimate and correct non-systematic component of numerical weather forecast error. In the method, it is assumed that the error is linearly dependent on some combination of the forecast fields, and three types of forecast combination are applied to identifying the forecasting error: 1) the forecasts at the ending time, 2) the combination of initial fields and the forecasts at the ending time, and 3) the combination of the fore-casts at the ending time and the tendency of the forecast. The Single Value Decomposition (SVD) of the covariance matrix between the forecast and forecasting error is used to obtain the inverse mapping from flow space to the error space during the training period. The background covariance matrix is hereby reduced to a simple diagonal matrix. The method is tested with a shallow-water equation model by introducing two different model errors. The results of error correction for 6, 24 and 48 h forecasts show that the method is effective for improving the quality of the forecast when the forecasting error obviously exceeds the analysis error and it is optimal when the third type of forecast combinations is applied.

  11. A variational method for correcting non-systematic errors in numerical weather prediction

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A variational method based on previous numerical forecasts is developed to estimate and correct non-systematic component of numerical weather forecast error. In the method, it is assumed that the error is linearly dependent on some combination of the forecast fields, and three types of forecast combination are applied to identifying the forecasting error: 1) the forecasts at the ending time, 2) the combination of initial fields and the forecasts at the ending time, and 3) the combination of the forecasts at the ending time and the tendency of the forecast. The Single Value Decomposition (SVD) of the covariance matrix between the forecast and forecasting error is used to obtain the inverse mapping from flow space to the error space during the training period. The background covariance matrix is hereby reduced to a simple diagonal matrix. The method is tested with a shallow-water equation model by introducing two different model errors. The results of error correction for 6, 24 and 48 h forecasts show that the method is effective for improving the quality of the forecast when the forecasting error obviously exceeds the analysis error and it is optimal when the third type of forecast combinations is applied.

  12. Prediction of Mind-Wandering with Electroencephalogram and Non-linear Regression Modeling.

    Science.gov (United States)

    Kawashima, Issaku; Kumano, Hiroaki

    2017-01-01

    Mind-wandering (MW), task-unrelated thought, has been examined by researchers in an increasing number of articles using models to predict whether subjects are in MW, using numerous physiological variables. However, these models are not applicable in general situations. Moreover, they output only binary classification. The current study suggests that the combination of electroencephalogram (EEG) variables and non-linear regression modeling can be a good indicator of MW intensity. We recorded EEGs of 50 subjects during the performance of a Sustained Attention to Response Task, including a thought sampling probe that inquired the focus of attention. We calculated the power and coherence value and prepared 35 patterns of variable combinations and applied Support Vector machine Regression (SVR) to them. Finally, we chose four SVR models: two of them non-linear models and the others linear models; two of the four models are composed of a limited number of electrodes to satisfy model usefulness. Examination using the held-out data indicated that all models had robust predictive precision and provided significantly better estimations than a linear regression model using single electrode EEG variables. Furthermore, in limited electrode condition, non-linear SVR model showed significantly better precision than linear SVR model. The method proposed in this study helps investigations into MW in various little-examined situations. Further, by measuring MW with a high temporal resolution EEG, unclear aspects of MW, such as time series variation, are expected to be revealed. Furthermore, our suggestion that a few electrodes can also predict MW contributes to the development of neuro-feedback studies.

  13. Prediction of nonlinear optical properties of organic materials. General theoretical considerations

    Science.gov (United States)

    Cardelino, B.; Moore, C.; Zutaut, S.

    1993-01-01

    The prediction of nonlinear optical properties of organic materials is geared to assist materials scientists in the selection of good candidate molecules. A brief summary of the quantum mechanical methods used for estimating hyperpolarizabilities will be presented. The advantages and limitations of each technique will be discussed. Particular attention will be given to the finite-field method for calculating first and second order hyperpolarizabilities, since this method is better suited for large molecules. Corrections for dynamic fields and bulk effects will be discussed in detail, focusing on solvent effects, conformational isomerization, core effects, dispersion, and hydrogen bonding. Several results will be compared with data obtained from third-harmonic-generation (THG) and dc-induced second harmonic generation (EFISH) measurements. These comparisons will demonstrate the qualitative ability of the method to predict the relative strengths of hyperpolarizabilities of a class of compounds. The future application of molecular mechanics, as well as other techniques, in the study of bulk properties and solid state defects will be addressed. The relationship between large values for nonlinear optical properties and large conjugation lengths is well known, and is particularly important for third-order processes. For this reason, the materials with the largest observed nonresonant third-order properties are conjugated polymers. An example of this type of polymer is polydiacetylene. One of the problems in dealing with polydiacetylene is that substituents which may enhance its nonlinear properties may ultimately prevent it from polymerizing. A model which attempts to predict the likelihood of solid-state polymerization is considered, along with the implications of the assumptions that are used. Calculations of the third-order optical properties and their relationship to first-order properties and energy gaps will be discussed. The relationship between monomeric and

  14. Preschool Speech Error Patterns Predict Articulation and Phonological Awareness Outcomes in Children with Histories of Speech Sound Disorders

    Science.gov (United States)

    Preston, Jonathan L.; Hull, Margaret; Edwards, Mary Louise

    2013-01-01

    Purpose: To determine if speech error patterns in preschoolers with speech sound disorders (SSDs) predict articulation and phonological awareness (PA) outcomes almost 4 years later. Method: Twenty-five children with histories of preschool SSDs (and normal receptive language) were tested at an average age of 4;6 (years;months) and were followed up…

  15. Absorbed in the task : Personality measures predict engagement during task performance as tracked by error negativity and asymmetrical frontal activity

    NARCIS (Netherlands)

    Tops, Mattie; Boksem, Maarten A. S.

    2010-01-01

    We hypothesized that interactions between traits and context predict task engagement, as measured by the amplitude of the error-related negativity (ERN), performance, and relative frontal activity asymmetry (RFA). In Study 1, we found that drive for reward, absorption, and constraint independently p

  16. Assessment of the prediction error in a large-scale application of a dynamic soil acidification model

    NARCIS (Netherlands)

    Kros, J.; Mol-Dijkstra, J.P.; Pebesma, E.J.

    2002-01-01

    The prediction error of a relatively simple soil acidification model (SMART2) was assessed before and after calibration, focussing on the aluminium and nitrate concentrations on a block scale. Although SMART2 is especially developed for application ona national to European scale, it still runs at a

  17. A computerized implementation of a non-linear equation to predict barrier shielding requirements.

    Science.gov (United States)

    Chamberlain, A C; Strydom, W J

    1997-04-01

    A non-linear equation to predict barrier shielding thickness from the work function of x- and gamma-ray generators is presented. This equation is incorporated into a model that takes into account primary, scatter, and leakage radiation components to determine the amount of shielding necessary. The case of multiple wall materials is also considered. The equation accurately models the radiation attenuation curves given in NCRP 49 for concrete and lead, thus eliminating the necessity to use graphical or tabular methods to calculate shielding thickness, which can be inaccurate.

  18. Improved Nonlinear Equation Method for Numerical Prediction of Jominy End-Quench Curves

    Institute of Scientific and Technical Information of China (English)

    SONG Yue-peng; LIU Guo-quan; LIU Sheng-xin; LIU Jian-tao; FENG Cheng-ming

    2007-01-01

    Without considering the effects of alloying interaction on the Jominy end-quench curves, the prediction results obtained by YU Bai-hai's nonlinear equation method for multi-alloying steels were different from those experimental ones reported in literature. Some alloying elements have marked influence on Jominy end-quench curves of steels. An improved mathematical model for simulating the Jominy end-quench curves is proposed by introducing a parameter named alloying interactions equivalent (Le). With the improved model, the Jominy end-quench curves of steels so obtained agree very well with the experimental ones.

  19. Economic Optimization of Spray Dryer Operation using Nonlinear Model Predictive Control

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2014-01-01

    In this paper we investigate an economically optimizing Nonlinear Model Predictive Control (E-NMPC) for a spray drying process. By simulation we evaluate the economic potential of this E-NMPC compared to a conventional PID based control strategy. Spray drying is the preferred process to reduce......-shooting method combined with a quasi-Newton Sequential Quadratic Programming (SQP) algorithm and the adjoint method for computation of gradients. The E-NMPC improves the cost of spray drying by 26.7% compared to conventional PI control in our simulations....

  20. Non-linear Model Predictive Control for cooling strings of superconducting magnets using superfluid helium

    CERN Document Server

    AUTHOR|(SzGeCERN)673023; Blanco Viñuela, Enrique

    In each of eight arcs of the 27 km circumference Large Hadron Collider (LHC), 2.5 km long strings of super-conducting magnets are cooled with superfluid Helium II at 1.9 K. The temperature stabilisation is a challenging control problem due to complex non-linear dynamics of the magnets temperature and presence of multiple operational constraints. Strong nonlinearities and variable dead-times of the dynamics originate at strongly heat-flux dependent effective heat conductivity of superfluid that varies three orders of magnitude over the range of possible operational conditions. In order to improve the temperature stabilisation, a proof of concept on-line economic output-feedback Non-linear Model Predictive Controller (NMPC) is presented in this thesis. The controller is based on a novel complex first-principles distributed parameters numerical model of the temperature dynamics over a 214 m long sub-sector of the LHC that is characterized by very low computational cost of simulation needed in real-time optimizat...

  1. Nonlinear predictive control for durability enhancement and efficiency improvement in a fuel cell power system

    Science.gov (United States)

    Luna, Julio; Jemei, Samir; Yousfi-Steiner, Nadia; Husar, Attila; Serra, Maria; Hissel, Daniel

    2016-10-01

    In this work, a nonlinear model predictive control (NMPC) strategy is proposed to improve the efficiency and enhance the durability of a proton exchange membrane fuel cell (PEMFC) power system. The PEMFC controller is based on a distributed parameters model that describes the nonlinear dynamics of the system, considering spatial variations along the gas channels. Parasitic power from different system auxiliaries is considered, including the main parasitic losses which are those of the compressor. A nonlinear observer is implemented, based on the discretised model of the PEMFC, to estimate the internal states. This information is included in the cost function of the controller to enhance the durability of the system by means of avoiding local starvation and inappropriate water vapour concentrations. Simulation results are presented to show the performance of the proposed controller over a given case study in an automotive application (New European Driving Cycle). With the aim of representing the most relevant phenomena that affects the PEMFC voltage, the simulation model includes a two-phase water model and the effects of liquid water on the catalyst active area. The control model is a simplified version that does not consider two-phase water dynamics.

  2. Ability of non-linear mixed models to predict growth in laying hens

    Directory of Open Access Journals (Sweden)

    Luis Fernando Galeano-Vasco

    2014-11-01

    Full Text Available In this study, the Von Bertalanffy, Richards, Gompertz, Brody, and Logistics non-linear mixed regression models were compared for their ability to estimate the growth curve in commercial laying hens. Data were obtained from 100 Lohmann LSL layers. The animals were identified and then weighed weekly from day 20 after hatch until they were 553 days of age. All the nonlinear models used were transformed into mixed models by the inclusion of random parameters. Accuracy of the models was determined by the Akaike and Bayesian information criteria (AIC and BIC, respectively, and the correlation values. According to AIC, BIC, and correlation values, the best fit for modeling the growth curve of the birds was obtained with Gompertz, followed by Richards, and then by Von Bertalanffy models. The Brody and Logistic models did not fit the data. The Gompertz nonlinear mixed model showed the best goodness of fit for the data set, and is considered the model of choice to describe and predict the growth curve of Lohmann LSL commercial layers at the production system of University of Antioquia.

  3. Application of the nonlinear time series prediction method of genetic algorithm for forecasting surface wind of point station in the South China Sea with scatterometer observations

    Science.gov (United States)

    Zhong, Jian; Dong, Gang; Sun, Yimei; Zhang, Zhaoyang; Wu, Yuqin

    2016-11-01

    The present work reports the development of nonlinear time series prediction method of genetic algorithm (GA) with singular spectrum analysis (SSA) for forecasting the surface wind of a point station in the South China Sea (SCS) with scatterometer observations. Before the nonlinear technique GA is used for forecasting the time series of surface wind, the SSA is applied to reduce the noise. The surface wind speed and surface wind components from scatterometer observations at three locations in the SCS have been used to develop and test the technique. The predictions have been compared with persistence forecasts in terms of root mean square error. The predicted surface wind with GA and SSA made up to four days (longer for some point station) in advance have been found to be significantly superior to those made by persistence model. This method can serve as a cost-effective alternate prediction technique for forecasting surface wind of a point station in the SCS basin. Project supported by the National Natural Science Foundation of China (Grant Nos. 41230421 and 41605075) and the National Basic Research Program of China (Grant No. 2013CB430101).

  4. Predicting aquatic toxicities of chemical pesticides in multiple test species using nonlinear QSTR modeling approaches.

    Science.gov (United States)

    Basant, Nikita; Gupta, Shikha; Singh, Kunwar P

    2015-11-01

    In this study, we established nonlinear quantitative-structure toxicity relationship (QSTR) models for predicting the toxicities of chemical pesticides in multiple aquatic test species following the OECD (Organization for Economic Cooperation and Development) guidelines. The decision tree forest (DTF) and decision tree boost (DTB) based QSTR models were constructed using a pesticides toxicity dataset in Selenastrum capricornutum and a set of six descriptors. Other six toxicity data sets were used for external validation of the constructed QSTRs. Global QSTR models were also constructed using the combined dataset of all the seven species. The diversity in chemical structures and nonlinearity in the data were evaluated. Model validation was performed deriving several statistical coefficients for the test data and the prediction and generalization abilities of the QSTRs were evaluated. Both the QSTR models identified WPSA1 (weighted charged partial positive surface area) as the most influential descriptor. The DTF and DTB QSTRs performed relatively better than the single decision tree (SDT) and support vector machines (SVM) models used as a benchmark here and yielded R(2) of 0.886 and 0.964 between the measured and predicted toxicity values in the complete dataset (S. capricornutum). The QSTR models applied to six other aquatic species toxicity data yielded R(2) of >0.92 (DTF) and >0.97 (DTB), respectively. The prediction accuracies of the global models were comparable with those of the S. capricornutum models. The results suggest for the appropriateness of the developed QSTR models to reliably predict the aquatic toxicity of chemicals and can be used for regulatory purpose.

  5. Asymptotic approximations, with error estimates, of the scattering matrix for quantal Coulomb excitation by means of a nonlinear (Riccati) matrix differential equation

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, C.H.; Rawitscher, G.H.

    1977-03-01

    A scattering matrix function is defined, which obeys a nonlinear (Riccati) matrix differential equation, containing two coupling potential matrices U and W, which are slowly vanishing, and which are mildly oscillatory and rapidly oscillatory, respectively. The scattering matrix is the limiting value of this scattering function. The equation is first transformed to separate the effects of U and W, this transformation yielding separate equations in each. The long range effects of U and W are included in approximations for the scattering matrix, errors are assessed, and a prescription is outlined for the numerical computation of these approximations. In the case where the effect of W is entirely neglected beyond a certain point, the approximation obtained by Alder and Pauli (Nucl. Phys. 128, 193 (1969)) is recovered. An assessment of the error in this approximation is obtained.

  6. Prediction of human errors by maladaptive changes in event-related brain networks

    NARCIS (Netherlands)

    Eichele, T.; Debener, S.; Calhoun, V.D.; Specht, K.; Engel, A.K.; Hugdahl, K.; Cramon, D.Y. von; Ullsperger, M.

    2008-01-01

    Humans engaged in monotonous tasks are susceptible to occasional errors that may lead to serious consequences, but little is known about brain activity patterns preceding errors. Using functional Mill and applying independent component analysis followed by deconvolution of hemodynamic responses, we

  7. The Pe of Perfectionism Concern Over Mistakes Predicts the Amplitude of a Late Frontal Error Positivity

    NARCIS (Netherlands)

    Tops, Mattie; Koole, Sander L.; Wijers, Albertus A.

    2013-01-01

    The present research investigates the association between concern over mistakes (CoM), a facet of the personality style of perfectionism, and the error positivity (Pe), a response-locked event-related brain potential that relates to error-awareness. Sixteen healthy right-handed female participants p

  8. Prediction Error Representation in Individuals With Generalized Anxiety Disorder During Passive Avoidance.

    Science.gov (United States)

    White, Stuart F; Geraci, Marilla; Lewis, Elizabeth; Leshin, Joseph; Teng, Cindy; Averbeck, Bruno; Meffert, Harma; Ernst, Monique; Blair, James R; Grillon, Christian; Blair, Karina S

    2017-02-01

    Deficits in reinforcement-based decision making have been reported in generalized anxiety disorder. However, the pathophysiology of these deficits is largely unknown; published studies have mainly examined adolescents, and the integrity of core functional processes underpinning decision making remains undetermined. In particular, it is unclear whether the representation of reinforcement prediction error (PE) (the difference between received and expected reinforcement) is disrupted in generalized anxiety disorder. This study addresses these issues in adults with the disorder. Forty-six unmedicated individuals with generalized anxiety disorder and 32 healthy comparison subjects group-matched on IQ, gender, and age performed a passive avoidance task while undergoing functional MRI. Data analyses were performed using a computational modeling approach. Behaviorally, individuals with generalized anxiety disorder showed impaired reinforcement-based decision making. Imaging results revealed that during feedback, individuals with generalized anxiety disorder relative to healthy subjects showed a reduced correlation between PE and activity within the ventromedial prefrontal cortex, ventral striatum, and other structures implicated in decision making. In addition, individuals with generalized anxiety disorder relative to healthy participants showed a reduced correlation between punishment PEs, but not reward PEs, and activity within the left and right lentiform nucleus/putamen. This is the first study to identify computational impairments during decision making in generalized anxiety disorder. PE signaling is significantly disrupted in individuals with the disorder and may lead to their decision-making deficits and excessive worry about everyday problems by disrupting the online updating ("reality check") of the current relationship between the expected values of current response options and the actual received rewards and punishments.

  9. Prediction of rainfall intensity measurement errors using commercial microwave communication links

    Directory of Open Access Journals (Sweden)

    A. Zinevich

    2010-10-01

    Full Text Available Commercial microwave radio links forming cellular communication networks are known to be a valuable instrument for measuring near-surface rainfall. However, operational communication links are more uncertain relatively to the dedicated installations since their geometry and frequencies are optimized for high communication performance rather than observing rainfall. Quantification of the uncertainties for measurements that are non-optimal in the first place is essential to assure usability of the data.

    In this work we address modeling of instrumental impairments, i.e. signal variability due to antenna wetting, baseline attenuation uncertainty and digital quantization, as well as environmental ones, i.e. variability of drop size distribution along a link affecting accuracy of path-averaged rainfall measurement and spatial variability of rainfall in the link's neighborhood affecting the accuracy of rainfall estimation out of the link path. Expressions for root mean squared error (RMSE for estimates of path-averaged and point rainfall have been derived. To verify the RMSE expressions quantitatively, path-averaged measurements from 21 operational communication links in 12 different locations have been compared to records of five nearby rain gauges over three rainstorm events.

    The experiments show that the prediction accuracy is above 90% for temporal accumulation less than 30 min and lowers for longer accumulation intervals. Spatial variability in the vicinity of the link, baseline attenuation uncertainty and, possibly, suboptimality of wet antenna attenuation model are the major sources of link-gauge discrepancies. In addition, the dependence of the optimal coefficients of a conventional wet antenna attenuation model on spatial rainfall variability and, accordingly, link length has been shown.

    The expressions for RMSE of the path-averaged rainfall estimates can be useful for integration of measurements from multiple

  10. Characterization of mixing errors in a coupled physical biogeochemical model of the North Atlantic: implications for nonlinear estimation using Gaussian anamorphosis

    Directory of Open Access Journals (Sweden)

    D. Béal

    2010-02-01

    Full Text Available In biogeochemical models coupled to ocean circulation models, vertical mixing is an important physical process which governs the nutrient supply and the plankton residence in the euphotic layer. However, vertical mixing is often poorly represented in numerical simulations because of approximate parameterizations of sub-grid scale turbulence, wind forcing errors and other mis-represented processes such as restratification by mesoscale eddies. Getting a sufficient knowledge of the nature and structure of these errors is necessary to implement appropriate data assimilation methods and to evaluate if they can be controlled by a given observation system.

    In this paper, Monte Carlo simulations are conducted to study mixing errors induced by approximate wind forcings in a three-dimensional coupled physical-biogeochemical model of the North Atlantic with a 1/4° horizontal resolution. An ensemble forecast involving 200 members is performed during the 1998 spring bloom, by prescribing perturbations of the wind forcing to generate mixing errors. The biogeochemical response is shown to be rather complex because of nonlinearities and threshold effects in the coupled model. The response of the surface phytoplankton depends on the region of interest and is particularly sensitive to the local stratification. In addition, the statistical relationships computed between the various physical and biogeochemical variables reflect the signature of the non-Gaussian behaviour of the system. It is shown that significant information on the ecosystem can be retrieved from observations of chlorophyll concentration or sea surface temperature if a simple nonlinear change of variables (anamorphosis is performed by mapping separately and locally the ensemble percentiles of the distributions of each state variable on the Gaussian percentiles. The results of idealized observational updates (performed with perfect observations and neglecting horizontal correlations

  11. Method for adaptive compensation of load cell's nonlinear error%称重传感器非线性误差自适应补偿方法

    Institute of Scientific and Technical Information of China (English)

    杨进宝; 汪鲁才

    2011-01-01

    The nonlinear error of load cell is not same in weight range. The character of load cell's nonlinear error is formulated and a method for adaptive compensation is proposed. The nonlinear error compensation network based on Radial Basis Function Neural Network(RBFNN) is used in upper limit of load cell' weighing range, the digital filter is applied in the low limit range,and the load cell is not compensated in the middle range.The adaptive selective network is use to choose the subnet for error compensation.The experimental results show that the maximum relative error of load cell with this method respectively drops from 0.2% in its lower interval scale,0.4% in its middle interval scale, and 1.37% in its upper interval scale without compensation to 0.16%,0.04%,and 0.07% after compensation,and its weighing result is more accurate.%额定量程内称重传感器的非线性误差不同,为此阐述了称重传感器的非线性误差特性,提出了一种非线性误差自适应分.段补偿方法:在额定量程的上限区,采用基于径向基函数神经网络(RBFNN)的补偿网络完成传感器非线性误差补偿;在下限区,采用数字滤波器完成非线性误差补偿;在中间区,传感器不补偿.同时利用自适应选择网络,完成了分段补偿的选择.实验表明,采用这种方法补偿后的称重传感器下限区、中间区与上限区的最大相对误差分别由补偿前的0.2%、0.4%,1.37%下降到0.16%,0.04%、0.07%,补偿效果明显.

  12. Estimation of State of Charge for Two Types of Lithium-Ion Batteries by Nonlinear Predictive Filter for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Yin Hua

    2015-04-01

    Full Text Available Estimation of state of charge (SOC is of great importance for lithium-ion (Li-ion batteries used in electric vehicles. This paper presents a state of charge estimation method using nonlinear predictive filter (NPF and evaluates the proposed method on the lithium-ion batteries with different chemistries. Contrary to most conventional filters which usually assume a zero mean white Gaussian process noise, the advantage of NPF is that the process noise in NPF is treated as an unknown model error and determined as a part of the solution without any prior assumption, and it can take any statistical distribution form, which improves the estimation accuracy. In consideration of the model accuracy and computational complexity, a first-order equivalent circuit model is applied to characterize the battery behavior. The experimental test is conducted on the LiCoO2 and LiFePO4 battery cells to validate the proposed method. The results show that the NPF method is able to accurately estimate the battery SOC and has good robust performance to the different initial states for both cells. Furthermore, the comparison study between NPF and well-established extended Kalman filter for battery SOC estimation indicates that the proposed NPF method has better estimation accuracy and converges faster.

  13. Solving a System of Nonlinear Algebraic Equations You Only Get Error Messages--What to Do Next?

    Science.gov (United States)

    Shacham, Mordechai; Brauner, Neima

    2017-01-01

    Chemical engineering problems often involve the solution of systems of nonlinear algebraic equations (NLE). There are several software packages that can be used for solving NLE systems, but they may occasionally fail, especially in cases where the mathematical model contains discontinuities and/or regions where some of the functions are undefined.…

  14. The application of SHERPA (Systematic Human Error Reduction and Prediction Approach) in the development of compensatory cognitive rehabilitation strategies for stroke patients with left and right brain damage.

    Science.gov (United States)

    Hughes, Charmayne M L; Baber, Chris; Bienkiewicz, Marta; Worthington, Andrew; Hazell, Alexa; Hermsdörfer, Joachim

    2015-01-01

    Approximately 33% of stroke patients have difficulty performing activities of daily living, often committing errors during the planning and execution of such activities. The objective of this study was to evaluate the ability of the human error identification (HEI) technique SHERPA (Systematic Human Error Reduction and Prediction Approach) to predict errors during the performance of daily activities in stroke patients with left and right hemisphere lesions. Using SHERPA we successfully predicted 36 of the 38 observed errors, with analysis indicating that the proportion of predicted and observed errors was similar for all sub-tasks and severity levels. HEI results were used to develop compensatory cognitive strategies that clinicians could employ to reduce or prevent errors from occurring. This study provides evidence for the reliability and validity of SHERPA in the design of cognitive rehabilitation strategies in stroke populations.

  15. Robust model predictive control for discrete uncertain nonlinear systems with time-delay via fuzzy model

    Institute of Scientific and Technical Information of China (English)

    SU Cheng-li; WANG Shu-qing

    2006-01-01

    An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is presented. In this approach, the minimization problem of the "worst-case" objective function is converted into the linear objective minimization problem involving linear matrix inequalities (LMIs) constraints. The state feedback control law is obtained by solving convex optimization of a set of LMIs. Sufficient condition for stability and a new upper bound on robust performance index are given for these kinds of uncertain fuzzy systems with state time-delay. Simulation results of CSTR process show that the proposed robust predictive control approach is effective and feasible.

  16. Nonlinear Predictive Control of Wind Energy Conversion System Using Dfig with Aerodynamic Torque Observer

    Science.gov (United States)

    Kamel, Ouari; Mohand, Ouhrouche; Toufik, Rekioua; Taib, Nabil

    2015-01-01

    In order to improvement of the performances for wind energy conversions systems (WECS), an advanced control techniques must be used. In this paper, as an alternative to conventional PI-type control methods, a nonlinear predictive control (NPC) approach is developed for DFIG-based wind turbine. To enhance the robustness of the controller, a disturbance observer is designed to estimate the aerodynamic torque which is considered as an unknown perturbation. An explicitly analytical form of the optimal predictive controller is given consequently on-line optimization is not necessary The DFIG is fed through the rotor windings by a back-to-back converter controlled by Pulse Width Modulation (PWM), where the stator winding is directly connected to the grid. The presented simulation results show a good performance in trajectory tracking of the proposed strategy and rejection of disturbances is successfully achieved.

  17. Nonlinear Recurrent Neural Network Predictive Control for Energy Distribution of a Fuel Cell Powered Robot

    Directory of Open Access Journals (Sweden)

    Qihong Chen

    2014-01-01

    Full Text Available This paper presents a neural network predictive control strategy to optimize power distribution for a fuel cell/ultracapacitor hybrid power system of a robot. We model the nonlinear power system by employing time variant auto-regressive moving average with exogenous (ARMAX, and using recurrent neural network to represent the complicated coefficients of the ARMAX model. Because the dynamic of the system is viewed as operating- state- dependent time varying local linear behavior in this frame, a linear constrained model predictive control algorithm is developed to optimize the power splitting between the fuel cell and ultracapacitor. The proposed algorithm significantly simplifies implementation of the controller and can handle multiple constraints, such as limiting substantial fluctuation of fuel cell current. Experiment and simulation results demonstrate that the control strategy can optimally split power between the fuel cell and ultracapacitor, limit the change rate of the fuel cell current, and so as to extend the lifetime of the fuel cell.

  18. Nonlinear recurrent neural network predictive control for energy distribution of a fuel cell powered robot.

    Science.gov (United States)

    Chen, Qihong; Long, Rong; Quan, Shuhai; Zhang, Liyan

    2014-01-01

    This paper presents a neural network predictive control strategy to optimize power distribution for a fuel cell/ultracapacitor hybrid power system of a robot. We model the nonlinear power system by employing time variant auto-regressive moving average with exogenous (ARMAX), and using recurrent neural network to represent the complicated coefficients of the ARMAX model. Because the dynamic of the system is viewed as operating- state- dependent time varying local linear behavior in this frame, a linear constrained model predictive control algorithm is developed to optimize the power splitting between the fuel cell and ultracapacitor. The proposed algorithm significantly simplifies implementation of the controller and can handle multiple constraints, such as limiting substantial fluctuation of fuel cell current. Experiment and simulation results demonstrate that the control strategy can optimally split power between the fuel cell and ultracapacitor, limit the change rate of the fuel cell current, and so as to extend the lifetime of the fuel cell.

  19. Nonlinear Prediction As A Tool For Determining Parameters For Phase Space Reconstruction In Meteorology

    Science.gov (United States)

    Miksovsky, J.; Raidl, A.

    Time delays phase space reconstruction represents one of useful tools of nonlinear time series analysis, enabling number of applications. Its utilization requires the value of time delay to be known, as well as the value of embedding dimension. There are sev- eral methods how to estimate both these parameters. Typically, time delay is computed first, followed by embedding dimension. Our presented approach is slightly different - we reconstructed phase space for various combinations of mentioned parameters and used it for prediction by means of the nearest neighbours in the phase space. Then some measure of prediction's success was computed (correlation or RMSE, e.g.). The position of its global maximum (minimum) should indicate the suitable combination of time delay and embedding dimension. Several meteorological (particularly clima- tological) time series were used for the computations. We have also created a MS- Windows based program in order to implement this approach - its basic features will be presented as well.

  20. Using Lyapunov exponents to predict the onset of chaos in nonlinear oscillators.

    Science.gov (United States)

    Ryabov, Vladimir B

    2002-07-01

    An analytic technique for predicting the emergence of chaotic instability in nonlinear nonautonomous dissipative oscillators is proposed. The method is based on the Lyapunov-type stability analysis of an arbitrary phase trajectory and the standard procedure of calculating the Lyapunov characteristic exponents. The concept of temporally local Lyapunov exponents is then utilized for specifying the area in the phase space where any trajectory is asymptotically stable, and, therefore, the existence of chaotic attractors is impossible. The procedure of linear coordinate transform optimizing the linear part of the vector field is developed for the purpose of maximizing the stability area in the vicinity of a stable fixed point. By considering the inverse conditions of asymptotic stability, this approach allows formulating a necessary condition for chaotic motion in a broad class of nonlinear oscillatory systems, including many cases of practical interest. The examples of externally excited one- and two-well Duffing oscillators and a planar pendulum demonstrate efficiency of the proposed method, as well as a good agreement of the theoretical predictions with the results of numerical experiments. The comparison of the proposed method with Melnikov's criterion shows a potential advantage of using the former one at high values of dissipation parameter and/or multifrequency type of excitation in dynamical systems.