WorldWideScience

Sample records for nonlinear physics problems

  1. Variational approach to various nonlinear problems in geometry and physics

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this survey, we will summarize the existence results of nonlinear partial differential equations which arises from geometry or physics by using variational method. We use the method to study Kazdan-Warner problem, Chern-Simons-Higgs model, Toda systems, and the prescribed Q-curvature problem in 4-dimension.

  2. Nonlinear Physics of Plasmas

    CERN Document Server

    Kono, Mitsuo

    2010-01-01

    A nonlinearity is one of the most important notions in modern physics. A plasma is rich in nonlinearities and provides a variety of behaviors inherent to instabilities, coherent wave structures and turbulence. The book covers the basic concepts and mathematical methods, necessary to comprehend nonlinear problems widely encountered in contemporary plasmas, but also in other fields of physics and current research on self-organized structures and magnetized plasma turbulence. The analyses make use of strongly nonlinear models solved by analytical techniques backed by extensive simulations and available experiments. The text is written for senior undergraduates, graduate students, lecturers and researchers in laboratory, space and fusion plasmas.

  3. A Reduced Basis Framework: Application to large scale non-linear multi-physics problems

    Directory of Open Access Journals (Sweden)

    Daversin C.

    2013-12-01

    Full Text Available In this paper we present applications of the reduced basis method (RBM to large-scale non-linear multi-physics problems. We first describe the mathematical framework in place and in particular the Empirical Interpolation Method (EIM to recover an affine decomposition and then we propose an implementation using the open-source library Feel++ which provides both the reduced basis and finite element layers. Large scale numerical examples are shown and are connected to real industrial applications arising from the High Field Resistive Magnets development at the Laboratoire National des Champs Magnétiques Intenses.

  4. Problems in nonlinear resistive MHD

    Energy Technology Data Exchange (ETDEWEB)

    Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L. [General Atomics, San Diego, CA (United States)

    1998-12-31

    Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1.

  5. Eigenfunction Expansions for Coupled Nonlinear Convection-Diffusion Problems in Complex Physical Domains

    Science.gov (United States)

    Cotta, R. M.; Naveira-Cotta, C. P.; Knupp, D. C.; Zotin, J. L. Z.; Pontes, P. C.

    2016-09-01

    This lecture offers an updated review on the Generalized Integral Transform Technique (GITT), with focus on handling complex geometries, coupled problems, and nonlinear convection-diffusion, so as to illustrate some new application paradigms. Special emphasis is given to demonstrating novel developments, such as a single domain reformulation strategy that simplifies the treatment of complex geometries, an integral balance scheme in handling multiscale problems, the adoption of convective eigenvalue problems in dealing with strongly convective formulations, and the direct integral transformation of nonlinear convection-diffusion problems based on nonlinear eigenvalue problems. Representative application examples are then provided that employ recent extensions on the Generalized Integral Transform Technique (GITT), and a few numerical results are reported to illustrate the convergence characteristics of the proposed eigenfunction expansions.

  6. Solvability of boundary value problems in the geometrically and physically nonlinear theory of shallow shells of Timoshenko type

    Science.gov (United States)

    Timergaliev, S. N.

    2009-06-01

    This paper deals with the proof of the existence of solutions of a geometrically and physically nonlinear boundary value problem for shallow Timoshenko shells with the transverse shear strains taken into account. The shell edge is assumed to be partly fixed. It is proposed to study the problem by a variational method based on searching the points of minimum of the total energy functional for the shell-load system in the space of generalized displacements. We show that there exists a generalized solution of the problemon which the total energy functional attains its minimum on a weakly closed subset of the space of generalized displacements.

  7. Differential Transform Method with Complex Transforms to Some Nonlinear Fractional Problems in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    Syed Tauseef Mohyud-Din

    2015-01-01

    Full Text Available This paper witnesses the coupling of an analytical series expansion method which is called reduced differential transform with fractional complex transform. The proposed technique is applied on three mathematical models, namely, fractional Kaup-Kupershmidt equation, generalized fractional Drinfeld-Sokolov equations, and system of coupled fractional Sine-Gordon equations subject to the appropriate initial conditions which arise frequently in mathematical physics. The derivatives are defined in Jumarie’s sense. The accuracy, efficiency, and convergence of the proposed technique are demonstrated through the numerical examples. It is observed that the presented coupling is an alternative approach to overcome the demerit of complex calculation of fractional differential equations. The proposed technique is independent of complexities arising in the calculation of Lagrange multipliers, Adomian’s polynomials, linearization, discretization, perturbation, and unrealistic assumptions and hence gives the solution in the form of convergent power series with elegantly computed components. All the examples show that the proposed combination is a powerful mathematical tool to solve other nonlinear equations also.

  8. An efficient computational method for solving nonlinear stochastic Itô integral equations: Application for stochastic problems in physics

    Energy Technology Data Exchange (ETDEWEB)

    Heydari, M.H., E-mail: heydari@stu.yazd.ac.ir [Faculty of Mathematics, Yazd University, Yazd (Iran, Islamic Republic of); The Laboratory of Quantum Information Processing, Yazd University, Yazd (Iran, Islamic Republic of); Hooshmandasl, M.R., E-mail: hooshmandasl@yazd.ac.ir [Faculty of Mathematics, Yazd University, Yazd (Iran, Islamic Republic of); The Laboratory of Quantum Information Processing, Yazd University, Yazd (Iran, Islamic Republic of); Cattani, C., E-mail: ccattani@unisa.it [Department of Mathematics, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano (Italy); Maalek Ghaini, F.M., E-mail: maalek@yazd.ac.ir [Faculty of Mathematics, Yazd University, Yazd (Iran, Islamic Republic of); The Laboratory of Quantum Information Processing, Yazd University, Yazd (Iran, Islamic Republic of)

    2015-02-15

    Because of the nonlinearity, closed-form solutions of many important stochastic functional equations are virtually impossible to obtain. Thus, numerical solutions are a viable alternative. In this paper, a new computational method based on the generalized hat basis functions together with their stochastic operational matrix of Itô-integration is proposed for solving nonlinear stochastic Itô integral equations in large intervals. In the proposed method, a new technique for computing nonlinear terms in such problems is presented. The main advantage of the proposed method is that it transforms problems under consideration into nonlinear systems of algebraic equations which can be simply solved. Error analysis of the proposed method is investigated and also the efficiency of this method is shown on some concrete examples. The obtained results reveal that the proposed method is very accurate and efficient. As two useful applications, the proposed method is applied to obtain approximate solutions of the stochastic population growth models and stochastic pendulum problem.

  9. Lobachevsky geometry and modern nonlinear problems

    CERN Document Server

    Popov, Andrey

    2014-01-01

    This monograph presents the basic concepts of hyperbolic Lobachevsky geometry and their possible applications to modern nonlinear applied problems in mathematics and physics, summarizing the findings of roughly the last hundred years. The central sections cover the classical building blocks of hyperbolic Lobachevsky geometry, pseudo spherical surfaces theory, net geometrical investigative techniques of nonlinear differential equations in partial derivatives, and their applications to the analysis of the physical models. As the sine-Gordon equation appears to have profound “geometrical roots” and numerous applications to modern nonlinear problems, it is treated as a universal “object” of investigation, connecting many of the problems discussed. The aim of this book is to form a general geometrical view on the different problems of modern mathematics, physics and natural science in general in the context of non-Euclidean hyperbolic geometry.

  10. A NONLINEAR FEASIBILITY PROBLEM HEURISTIC

    Directory of Open Access Journals (Sweden)

    Sergio Drumond Ventura

    2015-04-01

    Full Text Available In this work we consider a region S ⊂ given by a finite number of nonlinear smooth convex inequalities and having nonempty interior. We assume a point x 0 is given, which is close in certain norm to the analytic center of S, and that a new nonlinear smooth convex inequality is added to those defining S (perturbed region. It is constructively shown how to obtain a shift of the right-hand side of this inequality such that the point x 0 is still close (in the same norm to the analytic center of this shifted region. Starting from this point and using the theoretical results shown, we develop a heuristic that allows us to obtain the approximate analytic center of the perturbed region. Then, we present a procedure to solve the problem of nonlinear feasibility. The procedure was implemented and we performed some numerical tests for the quadratic (random case.

  11. On the physical relevance of the dam break problem in the context of nonlinear shallow water equations

    CERN Document Server

    Dutykh, Denys

    2009-01-01

    The classical dam break problem has become the de facto standard in validating the Nonlinear Shallow Water Equations (NSWE) solvers. Moreover, the NSWE are widely used for flooding simulations. While applied mathematics community is essentially focused on developing new numerical schemes, we tried to examine the validity of the mathematical model under consideration. The main purpose of this study is to check the pertinence of the NSWE for flooding processes. From the mathematical point of view, the answer is not obvious since all derivation procedures assumes the total water depth positivity. We performed a comparison between the two-fluid Navier-Stokes simulations and the NSWE solved analytically and numerically. Several conclusions are drawn out and perspectives for future research are outlined.

  12. Nonlinear Least Squares for Inverse Problems

    CERN Document Server

    Chavent, Guy

    2009-01-01

    Presents an introduction into the least squares resolution of nonlinear inverse problems. This title intends to develop a geometrical theory to analyze nonlinear least square (NLS) problems with respect to their quadratic wellposedness, that is, both wellposedness and optimizability

  13. Numerical problems in physics

    CERN Document Server

    Singh, Devraj

    2015-01-01

    Numerical Problems in Physics, Volume 1 is intended to serve the need of the students pursuing graduate and post graduate courses in universities with Physics and Materials Science as subject including those appearing in engineering, medical, and civil services entrance examinations. KEY FEATURES: * 29 chapters on Optics, Wave & Oscillations, Electromagnetic Field Theory, Solid State Physics & Modern Physics * 540 solved numerical problems of various universities and ompetitive examinations * 523 multiple choice questions for quick and clear understanding of subject matter * 567 unsolved numerical problems for grasping concepts of the various topic in Physics * 49 Figures for understanding problems and concept

  14. On some nonlinear potential problems

    Directory of Open Access Journals (Sweden)

    M. A. Efendiev

    1999-05-01

    Full Text Available The degree theory of mappings is applied to a two-dimensional semilinear elliptic problem with the Laplacian as principal part subject to a nonlinear boundary condition of Robin type. Under some growth conditions we obtain existence. The analysis is based on an equivalent coupled system of domain--boundary variational equations whose principal parts are the Dirichlet bilinear form in the domain and the single layer potential bilinear form on the boundary, respectively. This system consists of a monotone and a compact part. Additional monotonicity implies convergence of an appropriate Richardson iteration.

  15. New results on the mathematical problems in nonlinear physics; Nuevos resultados sobre problemas matematicos en fisica no-linear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1980-07-01

    The main topics treated in this report are: I) Existence of generalized Lagrangians. II) Conserved densities for odd-order polynomial evolution equations and linear evolution systems. III ) Conservation laws for Klein-Gordon, Di rae and Maxwell equations. IV) Stability conditions for finite-energy solutions of a non-linear Klein-Gordon equation. V) Hamiltonian approach to non-linear evolution equations and Backlund transformations. VI) Anharmonic vibrations: Status of results and new possible approaches. (Author) 83 refs.

  16. The virial theorem for nonlinear problems

    Energy Technology Data Exchange (ETDEWEB)

    Amore, Paolo [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, Colima (Mexico); Fernandez, Francisco M [INIFTA (UNLP, CCT La Plata-CONICET), Division Quimica Teorica, Blvd 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)], E-mail: paolo.amore@gmail.com, E-mail: fernande@quimica.unlp.edu.ar

    2009-09-15

    We show that the virial theorem provides a useful simple tool for approximating nonlinear problems. In particular, we consider conservative nonlinear oscillators and obtain the same main result derived earlier from the expansion in Chebyshev polynomials. (letters and comments)

  17. Some contributions to non-linear physic: Mathematical problems; Contribuciones a problemas matematicos en fisica no-lineal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-07-01

    The main results contained in this report are the following: i ) Lagrangian universality holds in a precisely defined weak sense. II ) Isolation of 5th order polynomial evolution equations having high order conservation laws. III ) Hamiltonian formulation of a wide class of non-linear evolution equations. IV) Some properties of the symmetries of Gardner-like systems. v) Characterization of the range and Kernel of {zeta}/{zeta} u{sub {alpha}}, |{alpha} | - 1. vi) A generalized variational approach and application to the anharmonic oscillator. v II ) Relativistic correction and quasi-classical approximation to the anechoic oscillator. VII ) Properties of a special class of 6th-order anharmonic oscillators. ix) A new method for constructing conserved densities In PDE. (Author) 97 refs.

  18. Nonlinear physical systems spectral analysis, stability and bifurcations

    CERN Document Server

    Kirillov, Oleg N

    2013-01-01

    Bringing together 18 chapters written by leading experts in dynamical systems, operator theory, partial differential equations, and solid and fluid mechanics, this book presents state-of-the-art approaches to a wide spectrum of new and challenging stability problems.Nonlinear Physical Systems: Spectral Analysis, Stability and Bifurcations focuses on problems of spectral analysis, stability and bifurcations arising in the nonlinear partial differential equations of modern physics. Bifurcations and stability of solitary waves, geometrical optics stability analysis in hydro- and magnetohydrodynam

  19. Studies of Nonlinear Problems. I

    Science.gov (United States)

    Fermi, E.; Pasta, J.; Ulam, S.

    1955-05-01

    A one-dimensional dynamical system of 64 particles with forces between neighbors containing nonlinear terms has been studied on the Los Alamos computer MANIAC I. The nonlinear terms considered are quadratic, cubic, and broken linear types. The results are analyzed into Fourier components and plotted as a function of time. The results show very little, if any, tendency toward equipartition of energy among the degrees of freedom.

  20. The nonlinear fixed gravimetric boundary value problem

    Institute of Scientific and Technical Information of China (English)

    于锦海; 朱灼文

    1995-01-01

    The properly-posedness of the nonlinear fixed gravimetric boundary value problem is shown with the help of nonlinear functional analysis and a new iterative method to solve the problem is also given, where each step of the iterative program is reduced to solving one and the same kind of oblique derivative boundary value problem with the same type. Furthermore, the convergence of the iterative program is proved with Schauder estimate of elliptic differential equation.

  1. Nonlinear Physics Integrability, Chaos and Beyond

    CERN Document Server

    Lakshmanan, M

    1997-01-01

    Integrability and chaos are two of the main concepts associated with nonlinear physical systems which have revolutionized our understanding of them. Highly stable exponentially localized solitons are often associated with many of the important integrable nonlinear systems while motions which are sensitively dependent on initial conditions are associated with chaotic systems. Besides dramatically raising our perception of many natural phenomena, these concepts are opening up new vistas of applications and unfolding technologies: Optical soliton based information technology, magnetoelectronics, controlling and synchronization of chaos and secure communications, to name a few. These developments have raised further new interesting questions and potentialities. We present a particular view of some of the challenging problems and payoffs ahead in the next few decades by tracing the early historical events, summarizing the revolutionary era of 1950-70 when many important new ideas including solitons and chaos were ...

  2. RESEARCH ON NONLINEAR PROBLEMS IN STRUCTURAL DYNAMICS.

    Science.gov (United States)

    Research on nonlinear problems structural dynamics is briefly summarized. Panel flutter was investigated to make a critical comparison between theory...panel flutter in aerospace vehicles, plausible simplifying assumptions are examined in the light of experimental results. Structural dynamics research

  3. The role of nonlinearity in inverse problems

    Science.gov (United States)

    Snieder, Roel

    1998-06-01

    In many practical inverse problems, one aims to retrieve a model that has infinitely many degrees of freedom from a finite amount of data. It follows from a simple variable count that this cannot be done in a unique way. Therefore, inversion entails more than estimating a model: any inversion is not complete without a description of the class of models that is consistent with the data; this is called the appraisal problem. Nonlinearity makes the appraisal problem particularly difficult. The first reason for this is that nonlinear error propagation is a difficult problem. The second reason is that for some nonlinear problems the model parameters affect the way in which the model is being interrogated by the data. Two examples are given of this, and it is shown how the nonlinearity may make the problem more ill-posed. Finally, three attempts are shown to carry out the model appraisal for nonlinear inverse problems that are based on an analytical approach, a numerical approach and a common sense approach.

  4. A Cauchy problem in nonlinear heat conduction

    Energy Technology Data Exchange (ETDEWEB)

    De Lillo, S [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia (Italy); Lupo, G [Dipartimento di Matematica e Informatica, Universita degli Studi di Perugia, Via Vanvitelli, 1, 06123 Perugia (Italy); Sanchini, G [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, Perugia (Italy)

    2006-06-09

    A Cauchy problem on the semiline for a nonlinear diffusion equation is considered, with a boundary condition corresponding to a prescribed thermal conductivity at the origin. The problem is mapped into a moving boundary problem for the linear heat equation with a Robin-type boundary condition. Such a problem is then reduced to a linear integral Volterra equation of II type which admits a unique solution.

  5. Compressed Sensing with Nonlinear Observations and Related Nonlinear Optimisation Problems

    CERN Document Server

    Blumensath, Thomas

    2012-01-01

    Non-convex constraints have recently proven a valuable tool in many optimisation problems. In particular sparsity constraints have had a significant impact on sampling theory, where they are used in Compressed Sensing and allow structured signals to be sampled far below the rate traditionally prescribed. Nearly all of the theory developed for Compressed Sensing signal recovery assumes that samples are taken using linear measurements. In this paper we instead address the Compressed Sensing recovery problem in a setting where the observations are non-linear. We show that, under conditions similar to those required in the linear setting, the Iterative Hard Thresholding algorithm can be used to accurately recover sparse or structured signals from few non-linear observations. Similar ideas can also be developed in a more general non-linear optimisation framework. In the second part of this paper we therefore present related result that show how this can be done under sparsity and union of subspaces constraints, wh...

  6. Combined algorithms in nonlinear problems of magnetostatics

    Energy Technology Data Exchange (ETDEWEB)

    Gregus, M.; Khoromsky, B.N.; Mazurkevich, G.E.; Zhidkov, E.P.

    1988-05-09

    To solve boundary problems of magnetostatics in unbounded two- or three-dimensional regions, we construct combined algorithms based on a combination of the method of boundary integral equations with the grid methods. We study the question of substantiation of the combined method in nonlinear magnetostatic problems without the preliminary discretization of equations and give some results on the convergence of iterative processes that arise in nonlinear cases. We also discuss economical iterative processes and algorithms that solve boundary integral equations on certain surfaces. Finally, examples of numerical solutions of magnetostatic problems that arose when modelling the fields of electrophysical installations are given, too. 14 refs., 2 figs.

  7. Monotone method for nonlinear nonlocal hyperbolic problems

    Directory of Open Access Journals (Sweden)

    Azmy S. Ackleh

    2003-02-01

    Full Text Available We present recent results concerning the application of the monotone method for studying existence and uniqueness of solutions to general first-order nonlinear nonlocal hyperbolic problems. The limitations of comparison principles for such nonlocal problems are discussed. To overcome these limitations, we introduce new definitions for upper and lower solutions.

  8. Studies in nonlinear problems of energy

    Science.gov (United States)

    Matkowsky, B. J.

    1992-07-01

    Emphasis has been on combustion and flame propagation. The research program was on modeling, analysis and computation of combustion phenomena, with emphasis on transition from laminar to turbulent combustion. Nonlinear dynamics and pattern formation were investigated in the transition. Stability of combustion waves, and transitions to complex waves are described. Combustion waves possess large activation energies, so that chemical reactions are significant only in thin layers, or reaction zones. In limit of infinite activation energy, the zones shrink to moving surfaces, termed fronts which must be found during the analysis, so that the problems are moving free boundary problems. The studies are carried out for limiting case with fronts, while the numerical studies are carried out for finite, though large, activation energy. Accurate resolution of the solution in the reaction zones is essential, otherwise false predictions of dynamics are possible. Since the the reaction zones move, adaptive pseudo-spectral methods were developed. The approach is based on a synergism of analytical and computational methods. The numerical computations build on and extend the analytical information. Furthermore, analytical solutions serve as benchmarks for testing the accuracy of the computation. Finally, ideas from analysis (singular perturbation theory) have induced new approaches to computations. The computational results suggest new analysis to be considered. Among the recent interesting results, was spatio-temporal chaos in combustion. One goal is extension of the adaptive pseudo-spectral methods to adaptive domain decomposition methods. Efforts have begun to develop such methods for problems with multiple reaction zones, corresponding to problems with more complex, and more realistic chemistry. Other topics included stochastics, oscillators, Rysteretic Josephson junctions, DC SQUID, Markov jumps, laser with saturable absorber, chemical physics, Brownian movement, combustion

  9. Nonlinear Oscillators in Space Physics

    Science.gov (United States)

    Lester,Daniel; Thronson, Harley

    2011-01-01

    We discuss dynamical systems that produce an oscillation without an external time dependent source. Numerical results are presented for nonlinear oscillators in the Em1h's atmosphere, foremost the quasi-biennial oscillation (QBOl. These fluid dynamical oscillators, like the solar dynamo, have in common that one of the variables in a governing equation is strongly nonlinear and that the nonlinearity, to first order, has particular form. of 3rd or odd power. It is shown that this form of nonlinearity can produce the fundamental li'equency of the internal oscillation. which has a period that is favored by the dynamical condition of the fluid. The fundamental frequency maintains the oscillation, with no energy input to the system at that particular frequency. Nonlinearities of 2nd or even power could not maintain the oscillation.

  10. Nonlinear elliptic-parabolic problems

    CERN Document Server

    Kim, Inwon C

    2012-01-01

    We introduce a notion of viscosity solutions for a general class of elliptic-parabolic phase transition problems. These include the Richards equation, which is a classical model in filtration theory. Existence and uniqueness results are proved via the comparison principle. In particular, we show existence and stability properties of maximal and minimal viscosity solutions for a general class of initial data. These results are new even in the linear case, where we also show that viscosity solutions coincide with the regular weak solutions introduced in [Alt&Luckhaus 1983].

  11. TAXONOMIES OF PHYSICS PROBLEMS IN PHYSICS EDUCATION

    Directory of Open Access Journals (Sweden)

    Monika Hanáková

    2016-09-01

    Full Text Available Taxonomies of physics problems serve as useful tools to define and analyze the requirements of pupils and students in solving physics problems and tasks. The connection between taxonomies of educational objectives is important, and these were considered in selecting taxonomies of physics problems. Different approaches to classification are briefly described in this article, as well as the importance of a balance of physics problems in instruction, according to the selected taxonomy. Two taxonomies of physics problems were chosen according to our criteria and then analyzed and described in detail. A strength, weakness, opportunity, and threat SWOT analysis was performed on the tools as well as an example of the use of the tools on a particular physics problem.

  12. Advanced Research Workshop on Nonlinear Hyperbolic Problems

    CERN Document Server

    Serre, Denis; Raviart, Pierre-Arnaud

    1987-01-01

    The field of nonlinear hyperbolic problems has been expanding very fast over the past few years, and has applications - actual and potential - in aerodynamics, multifluid flows, combustion, detonics amongst other. The difficulties that arise in application are of theoretical as well as numerical nature. In fact, the papers in this volume of proceedings deal to a greater extent with theoretical problems emerging in the resolution of nonlinear hyperbolic systems than with numerical methods. The volume provides an excellent up-to-date review of the current research trends in this area.

  13. Studies in nonlinear problems of energy

    Energy Technology Data Exchange (ETDEWEB)

    Matkowsky, B.J.

    1992-07-01

    Emphasis has been on combustion and flame propagation. The research program was on modeling, analysis and computation of combustion phenomena, with emphasis on transition from laminar to turbulent combustion. Nonlinear dynamics and pattern formation were investigated in the transition. Stability of combustion waves, and transitions to complex waves are described. Combustion waves possess large activation energies, so that chemical reactions are significant only in thin layers, or reaction zones. In limit of infinite activation energy, the zones shrink to moving surfaces, (fronts) which must be found during the analysis, so that (moving free boundary problems). The studies are carried out for limiting case with fronts, while the numerical studies are carried out for finite, though large, activation energy. Accurate resolution of the solution in the reaction zones is essential, otherwise false predictions of dynamics are possible. Since the the reaction zones move, adaptive pseudo-spectral methods were developed. The approach is based on a synergism of analytical and computational methods. The numerical computations build on and extend the analytical information. Furthermore, analytical solutions serve as benchmarks for testing the accuracy of the computation. Finally, ideas from analysis (singular perturbation theory) have induced new approaches to computations. The computational results suggest new analysis to be considered. Among the recent interesting results, was spatio-temporal chaos in combustion. One goal is extension of the adaptive pseudo-spectral methods to adaptive domain decomposition methods. Efforts have begun to develop such methods for problems with multiple reaction zones, corresponding to problems with more complex, and more realistic chemistry. Other topics included stochastics, oscillators, Rysteretic Josephson junctions, DC SQUID, Markov jumps, laser with saturable absorber, chemical physics, Brownian movement, combustion synthesis, etc.

  14. Mechanics problems in undergraduate physics

    CERN Document Server

    Strelkov, S P

    2013-01-01

    Problems in Undergraduate Physics, Volume I: Mechanics focuses on solutions to problems in physics. The book first discusses the fundamental problems in physics. Topics include laws of conservation of momentum and energy; dynamics of a point particle in circular motion; dynamics of a rotating rigid body; hydrostatics and aerostatics; and acoustics. The text also offers information on solutions to problems in physics. Answers to problems in kinematics, statics, gravity, elastic deformations, vibrations, and hydrostatics and aerostatics are discussed. Solutions to problems related to the laws of

  15. Topological invariants in nonlinear boundary value problems

    Energy Technology Data Exchange (ETDEWEB)

    Vinagre, Sandra [Departamento de Matematica, Universidade de Evora, Rua Roma-tilde o Ramalho 59, 7000-671 Evora (Portugal)]. E-mail: smv@uevora.pt; Severino, Ricardo [Departamento de Matematica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)]. E-mail: ricardo@math.uminho.pt; Ramos, J. Sousa [Departamento de Matematica, Instituto Superior Tecnico, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal)]. E-mail: sramos@math.ist.utl.pt

    2005-07-01

    We consider a class of boundary value problems for partial differential equations, whose solutions are, basically, characterized by the iteration of a nonlinear function. We apply methods of symbolic dynamics of discrete bimodal maps in the interval in order to give a topological characterization of its solutions.

  16. Multigrid Methods for Nonlinear Problems: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Henson, V E

    2002-12-23

    Since their early application to elliptic partial differential equations, multigrid methods have been applied successfully to a large and growing class of problems, from elasticity and computational fluid dynamics to geodetics and molecular structures. Classical multigrid begins with a two-grid process. First, iterative relaxation is applied, whose effect is to smooth the error. Then a coarse-grid correction is applied, in which the smooth error is determined on a coarser grid. This error is interpolated to the fine grid and used to correct the fine-grid approximation. Applying this method recursively to solve the coarse-grid problem leads to multigrid. The coarse-grid correction works because the residual equation is linear. But this is not the case for nonlinear problems, and different strategies must be employed. In this presentation we describe how to apply multigrid to nonlinear problems. There are two basic approaches. The first is to apply a linearization scheme, such as the Newton's method, and to employ multigrid for the solution of the Jacobian system in each iteration. The second is to apply multigrid directly to the nonlinear problem by employing the so-called Full Approximation Scheme (FAS). In FAS a nonlinear iteration is applied to smooth the error. The full equation is solved on the coarse grid, after which the coarse-grid error is extracted from the solution. This correction is then interpolated and applied to the fine grid approximation. We describe these methods in detail, and present numerical experiments that indicate the efficacy of them.

  17. Pattern selection as a nonlinear eigenvalue problem

    CERN Document Server

    Büchel, P

    1996-01-01

    A unique pattern selection in the absolutely unstable regime of driven, nonlinear, open-flow systems is reviewed. It has recently been found in numerical simulations of propagating vortex structures occuring in Taylor-Couette and Rayleigh-Benard systems subject to an externally imposed through-flow. Unlike the stationary patterns in systems without through-flow the spatiotemporal structures of propagating vortices are independent of parameter history, initial conditions, and system length. They do, however, depend on the boundary conditions in addition to the driving rate and the through-flow rate. Our analysis of the Ginzburg-Landau amplitude equation elucidates how the pattern selection can be described by a nonlinear eigenvalue problem with the frequency being the eigenvalue. Approaching the border between absolute and convective instability the eigenvalue problem becomes effectively linear and the selection mechanism approaches that of linear front propagation. PACS: 47.54.+r,47.20.Ky,47.32.-y,47.20.Ft

  18. Obstacle problems in mathematical physics

    CERN Document Server

    Rodrigues, J-F

    1987-01-01

    The aim of this research monograph is to present a general account of the applicability of elliptic variational inequalities to the important class of free boundary problems of obstacle type from a unifying point of view of classical Mathematical Physics.The first part of the volume introduces some obstacle type problems which can be reduced to variational inequalities. Part II presents some of the main aspects of the theory of elliptic variational inequalities, from the abstract hilbertian framework to the smoothness of the variational solution, discussing in general the properties of the free boundary and including some results on the obstacle Plateau problem. The last part examines the application to free boundary problems, namely the lubrication-cavitation problem, the elastoplastic problem, the Signorini (or the boundary obstacle) problem, the dam problem, the continuous casting problem, the electrochemical machining problem and the problem of the flow with wake in a channel past a profile.

  19. A Note on Separable Nonlinear Least Squares Problem

    CERN Document Server

    Gharibi, Wajeb

    2011-01-01

    Separable nonlinear least squares (SNLS)problem is a special class of nonlinear least squares (NLS)problems, whose objective function is a mixture of linear and nonlinear functions. It has many applications in many different areas, especially in Operations Research and Computer Sciences. They are difficult to solve with the infinite-norm metric. In this paper, we give a short note on the separable nonlinear least squares problem, unseparated scheme for NLS, and propose an algorithm for solving mixed linear-nonlinear minimization problem, method of which results in solving a series of least squares separable problems.

  20. Progressive problems higher grade physics

    CERN Document Server

    Kennedy, William

    2001-01-01

    This book fully covers all three Units studied in Scotland's Higher Grade Physics course, providing a systematic array of problems (from the simplest to the most difficult) to lead variously abled pupils to examination success.

  1. OPEN PROBLEM: Some nonlinear challenges in biology

    Science.gov (United States)

    Mosconi, Francesco; Julou, Thomas; Desprat, Nicolas; Sinha, Deepak Kumar; Allemand, Jean-François; Croquette, Vincent; Bensimon, David

    2008-08-01

    Driven by a deluge of data, biology is undergoing a transition to a more quantitative science. Making sense of the data, building new models, asking the right questions and designing smart experiments to answer them are becoming ever more relevant. In this endeavour, nonlinear approaches can play a fundamental role. The biochemical reactions that underlie life are very often nonlinear. The functional features exhibited by biological systems at all levels (from the activity of an enzyme to the organization of a colony of ants, via the development of an organism or a functional module like the one responsible for chemotaxis in bacteria) are dynamically robust. They are often unaffected by order of magnitude variations in the dynamical parameters, in the number or concentrations of actors (molecules, cells, organisms) or external inputs (food, temperature, pH, etc). This type of structural robustness is also a common feature of nonlinear systems, exemplified by the fundamental role played by dynamical fixed points and attractors and by the use of generic equations (logistic map, Fisher-Kolmogorov equation, the Stefan problem, etc.) in the study of a plethora of nonlinear phenomena. However, biological systems differ from these examples in two important ways: the intrinsic stochasticity arising from the often very small number of actors and the role played by evolution. On an evolutionary time scale, nothing in biology is frozen. The systems observed today have evolved from solutions adopted in the past and they will have to adapt in response to future conditions. The evolvability of biological system uniquely characterizes them and is central to biology. As the great biologist T Dobzhansky once wrote: 'nothing in biology makes sense except in the light of evolution'.

  2. Some Duality Results for Fuzzy Nonlinear Programming Problem

    OpenAIRE

    Sangeeta Jaiswal; Geetanjali Panda

    2012-01-01

    The concept of duality plays an important role in optimization theory. This paper discusses some relations between primal and dual nonlinear programming problems in fuzzy environment. Here, fuzzy feasible region for a general fuzzy nonlinear programming is formed and the concept of fuzzy feasible solution is defined. First order dual relation for fuzzy nonlinear programming problem is studied.

  3. Bayesian nonlinear regression for large small problems

    KAUST Repository

    Chakraborty, Sounak

    2012-07-01

    Statistical modeling and inference problems with sample sizes substantially smaller than the number of available covariates are challenging. This is known as large p small n problem. Furthermore, the problem is more complicated when we have multiple correlated responses. We develop multivariate nonlinear regression models in this setup for accurate prediction. In this paper, we introduce a full Bayesian support vector regression model with Vapnik\\'s ε-insensitive loss function, based on reproducing kernel Hilbert spaces (RKHS) under the multivariate correlated response setup. This provides a full probabilistic description of support vector machine (SVM) rather than an algorithm for fitting purposes. We have also introduced a multivariate version of the relevance vector machine (RVM). Instead of the original treatment of the RVM relying on the use of type II maximum likelihood estimates of the hyper-parameters, we put a prior on the hyper-parameters and use Markov chain Monte Carlo technique for computation. We have also proposed an empirical Bayes method for our RVM and SVM. Our methods are illustrated with a prediction problem in the near-infrared (NIR) spectroscopy. A simulation study is also undertaken to check the prediction accuracy of our models. © 2012 Elsevier Inc.

  4. An Algorithm to Solve Separable Nonlinear Least Square Problem

    Directory of Open Access Journals (Sweden)

    Wajeb Gharibi

    2013-07-01

    Full Text Available Separable Nonlinear Least Squares (SNLS problem is a special class of Nonlinear Least Squares (NLS problems, whose objective function is a mixture of linear and nonlinear functions. SNLS has many applications in several areas, especially in the field of Operations Research and Computer Science. Problems related to the class of NLS are hard to resolve having infinite-norm metric. This paper gives a brief explanation about SNLS problem and offers a Lagrangian based algorithm for solving mixed linear-nonlinear minimization problem

  5. The fully nonlinear stratified geostrophic adjustment problem

    Science.gov (United States)

    Coutino, Aaron; Stastna, Marek

    2017-01-01

    The study of the adjustment to equilibrium by a stratified fluid in a rotating reference frame is a classical problem in geophysical fluid dynamics. We consider the fully nonlinear, stratified adjustment problem from a numerical point of view. We present results of smoothed dam break simulations based on experiments in the published literature, with a focus on both the wave trains that propagate away from the nascent geostrophic state and the geostrophic state itself. We demonstrate that for Rossby numbers in excess of roughly 2 the wave train cannot be interpreted in terms of linear theory. This wave train consists of a leading solitary-like packet and a trailing tail of dispersive waves. However, it is found that the leading wave packet never completely separates from the trailing tail. Somewhat surprisingly, the inertial oscillations associated with the geostrophic state exhibit evidence of nonlinearity even when the Rossby number falls below 1. We vary the width of the initial disturbance and the rotation rate so as to keep the Rossby number fixed, and find that while the qualitative response remains consistent, the Froude number varies, and these variations are manifested in the form of the emanating wave train. For wider initial disturbances we find clear evidence of a wave train that initially propagates toward the near wall, reflects, and propagates away from the geostrophic state behind the leading wave train. We compare kinetic energy inside and outside of the geostrophic state, finding that for long times a Rossby number of around one-quarter yields an equal split between the two, with lower (higher) Rossby numbers yielding more energy in the geostrophic state (wave train). Finally we compare the energetics of the geostrophic state as the Rossby number varies, finding long-lived inertial oscillations in the majority of the cases and a general agreement with the past literature that employed either hydrostatic, shallow-water equation-based theory or

  6. Quantum Simulations of Physics Problems

    CERN Document Server

    Somma, R D; Knill, E; Gubernatis, J; Somma, Rolando; Ortiz, Gerardo; Knill, Emanuel; Gubernatis, James

    2003-01-01

    If a large Quantum Computer (QC) existed today, what type of physical problems could we efficiently simulate on it that we could not simulate on a classical Turing machine? In this paper we argue that a QC could solve some relevant physical "questions" more efficiently. The existence of one-to-one mappings between different algebras of observables or between different Hilbert spaces allow us to represent and imitate any physical system by any other one (e.g., a bosonic system by a spin-1/2 system). We explain how these mappings can be performed showing quantum networks useful for the efficient evaluation of some physical properties, such as correlation functions and energy spectra.

  7. A Linearization Approach for Rational Nonlinear Models in Mathematical Physics

    Institute of Scientific and Technical Information of China (English)

    Robert A. Van Gorder

    2012-01-01

    In this paper, a novel method for linearization of rational second order nonlinear models is discussed. In particular, we discuss an application of the 5 expansion method (created to deal with problems in Quantum Field Theory) which will enable both the linearization and perturbation expansion of such equations. Such a method allows for one to quickly obtain the order zero perturbation theory in terms of certain special functions which are governed by linear equations. Higher order perturbation theories can then be obtained in terms of such special functions. One benefit to such a method is that it may be applied even to models without small physical parameters, as the perturbation is given in terms of the degree of nonlinearity, rather than any physical parameter. As an application, we discuss a method of linearizing the six Painlev~ equations by an application of the method. In addition to highlighting the benefits of the method, we discuss certain shortcomings of the method.

  8. Analytic approximations to nonlinear boundary value problems modeling beam-type nano-electromechanical systems

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Li [Dalian Univ. of Technology, Dalian City (China). State Key Lab. of Structural Analysis for Industrial Equipment; Liang, Songxin; Li, Yawei [Dalian Univ. of Technology, Dalian City (China). School of Mathematical Sciences; Jeffrey, David J. [Univ. of Western Ontario, London (Canada). Dept. of Applied Mathematics

    2017-06-01

    Nonlinear boundary value problems arise frequently in physical and mechanical sciences. An effective analytic approach with two parameters is first proposed for solving nonlinear boundary value problems. It is demonstrated that solutions given by the two-parameter method are more accurate than solutions given by the Adomian decomposition method (ADM). It is further demonstrated that solutions given by the ADM can also be recovered from the solutions given by the two-parameter method. The effectiveness of this method is demonstrated by solving some nonlinear boundary value problems modeling beam-type nano-electromechanical systems.

  9. Analytic Approximations to Nonlinear Boundary Value Problems Modeling Beam-Type Nano-Electromechanical Systems

    Science.gov (United States)

    Zou, Li; Liang, Songxin; Li, Yawei; Jeffrey, David J.

    2017-03-01

    Nonlinear boundary value problems arise frequently in physical and mechanical sciences. An effective analytic approach with two parameters is first proposed for solving nonlinear boundary value problems. It is demonstrated that solutions given by the two-parameter method are more accurate than solutions given by the Adomian decomposition method (ADM). It is further demonstrated that solutions given by the ADM can also be recovered from the solutions given by the two-parameter method. The effectiveness of this method is demonstrated by solving some nonlinear boundary value problems modeling beam-type nano-electromechanical systems.

  10. A NEW SMOOTHING EQUATIONS APPROACH TO THE NONLINEAR COMPLEMENTARITY PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Chang-feng Ma; Pu-yan Nie; Guo-ping Liang

    2003-01-01

    The nonlinear complementarity problem can be reformulated as a nonsmooth equation. In this paper we propose a new smoothing Newton algorithm for the solution of the nonlinear complementarity problem by constructing a new smoothing approximation function. Global and local superlinear convergence results of the algorithm are obtained under suitable conditions. Numerical experiments confirm the good theoretical properties of the algorithm.

  11. Nonlinear algebraic multigrid for constrained solid mechanics problems using Trilinos

    OpenAIRE

    Gee, M.W.; R. S. Tuminaro

    2012-01-01

    The application of the finite element method to nonlinear solid mechanics problems results in the neccessity to repeatedly solve a large nonlinear set of equations. In this paper we limit ourself to problems arising in constrained solid mechanics problems. It is common to apply some variant of Newton?s method or a Newton? Krylov method to such problems. Often, an analytic Jacobian matrix is formed and used in the above mentioned methods. However, if no analytic Jacobian is given, Newton metho...

  12. Bifurcation of solutions of nonlinear Sturm–Liouville problems

    Directory of Open Access Journals (Sweden)

    Gulgowski Jacek

    2001-01-01

    Full Text Available A global bifurcation theorem for the following nonlinear Sturm–Liouville problem is given Moreover we give various versions of existence theorems for boundary value problems The main idea of these proofs is studying properties of an unbounded connected subset of the set of all nontrivial solutions of the nonlinear spectral problem , associated with the boundary value problem , in such a way that .

  13. Multisplitting for linear, least squares and nonlinear problems

    Energy Technology Data Exchange (ETDEWEB)

    Renaut, R.

    1996-12-31

    In earlier work, presented at the 1994 Iterative Methods meeting, a multisplitting (MS) method of block relaxation type was utilized for the solution of the least squares problem, and nonlinear unconstrained problems. This talk will focus on recent developments of the general approach and represents joint work both with Andreas Frommer, University of Wupertal for the linear problems and with Hans Mittelmann, Arizona State University for the nonlinear problems.

  14. Open problems in mathematical physics

    Science.gov (United States)

    Coley, Alan A.

    2017-09-01

    We present a list of open questions in mathematical physics. After a historical introduction, a number of problems in a variety of different fields are discussed, with the intention of giving an overall impression of the current status of mathematical physics, particularly in the topical fields of classical general relativity, cosmology and the quantum realm. This list is motivated by the recent article proposing 42 fundamental questions (in physics) which must be answered on the road to full enlightenment (Allen and Lidstrom 2017 Phys. Scr. 92 012501). But paraphrasing a famous quote by the British football manager Bill Shankly, in response to the question of whether mathematics can answer the Ultimate Question of Life, the Universe, and Everything, mathematics is, of course, much more important than that.

  15. DBEM crack propagation for nonlinear fracture problems

    Directory of Open Access Journals (Sweden)

    R. Citarella

    2015-10-01

    Full Text Available A three-dimensional crack propagation simulation is performed by the Dual Boundary Element Method (DBEM. The Stress Intensity Factors (SIFs along the front of a semi elliptical crack, initiated from the external surface of a hollow axle, are calculated for bending and press fit loading separately and for a combination of them. In correspondence of the latter loading condition, a crack propagation is also simulated, with the crack growth rates calculated using the NASGRO3 formula, calibrated for the material under analysis (steel ASTM A469. The J-integral and COD approaches are selected for SIFs calculation in DBEM environment, where the crack path is assessed by the minimum strain energy density criterion (MSED. In correspondence of the initial crack scenario, SIFs along the crack front are also calculated by the Finite Element (FE code ZENCRACK, using COD, in order to provide, by a cross comparison with DBEM, an assessment on the level of accuracy obtained. Due to the symmetry of the bending problem a pure mode I crack propagation is realised with no kinking of the propagating crack whereas for press fit loading the crack propagation becomes mixed mode. The crack growth analysis is nonlinear because of normal gap elements used to model the press fit condition with added friction, and is developed in an iterative-incremental procedure. From the analysis of the SIFs results related to the initial cracked configuration, it is possible to assess the impact of the press fit condition when superimposed to the bending load case.

  16. LINEARIZATION AND CORRECTION METHOD FOR NONLINEAR PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    何吉欢

    2002-01-01

    A new perturbation-like technique called linearization and correction method is proposed. Contrary to the traditional perturbation techniques, the present theory does not assume that the solution is expressed in the form of a power series of small parameter. To obtain an asymptotic solution of nonlinear system, the technique first searched for a solution for the linearized system, then a correction was added to the linearized solution. So the obtained results are uniformly valid for both weakly and strongly nonlinear equations.

  17. Reformulation of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics

    Science.gov (United States)

    2015-03-01

    JD. Modeling nonlinear electromechanical behavior of shocked silicon carbide. Journal of Applied Physics . 2010;107:013520. 30. Clayton JD. A... Physics by JD Clayton Approved for public release; distribution unlimited. NOTICES Disclaimers...of Nonlinear Anisotropic Crystal Elastoplasticity for Impact Physics by JD Clayton Weapons and Materials Research Directorate, ARL

  18. On the linear properties of the nonlinear radiative transfer problem

    Science.gov (United States)

    Pikichyan, H. V.

    2016-11-01

    In this report, we further expose the assertions made in nonlinear problem of reflection/transmission of radiation from a scattering/absorbing one-dimensional anisotropic medium of finite geometrical thickness, when both of its boundaries are illuminated by intense monochromatic radiative beams. The new conceptual element of well-defined, so-called, linear images is noteworthy. They admit a probabilistic interpretation. In the framework of nonlinear problem of reflection/transmission of radiation, we derive solution which is similar to linear case. That is, the solution is reduced to the linear combination of linear images. By virtue of the physical meaning, these functions describe the reflectivity and transmittance of the medium for a single photon or their beam of unit intensity, incident on one of the boundaries of the layer. Thereby the medium in real regime is still under the bilateral illumination by external exciting radiation of arbitrary intensity. To determine the linear images, we exploit three well known methods of (i) adding of layers, (ii) its limiting form, described by differential equations of invariant imbedding, and (iii) a transition to the, so-called, functional equations of the "Ambartsumyan's complete invariance".

  19. Remarks on a benchmark nonlinear constrained optimization problem

    Institute of Scientific and Technical Information of China (English)

    Luo Yazhong; Lei Yongjun; Tang Guojin

    2006-01-01

    Remarks on a benchmark nonlinear constrained optimization problem are made. Due to a citation error, two absolutely different results for the benchmark problem are obtained by independent researchers. Parallel simulated annealing using simplex method is employed in our study to solve the benchmark nonlinear constrained problem with mistaken formula and the best-known solution is obtained, whose optimality is testified by the Kuhn-Tucker conditions.

  20. Rooting the biggest problems in physics

    DEFF Research Database (Denmark)

    Javadi, Hossein; Forouzbakhsh, Farshid

    2016-01-01

    In the twentieth century, physics was divided into two major parts; classical physics and modern physics. Modern physics includes relativity and quantum mechanics. In recent decades, physics has encountered numerous problems and unanswered questions. The problems and unanswered questions...... are related to the particle physics and astrophysics. Since particle physics is beyond the classical mechanics and Newton's universal gravitational laws has replaced by general relativity, physicists are trying to solve the physics problems in the context of modern physics or to think the beyond of the modern...... is presented by using of a combination of modern and classical physics....

  1. Nonlinear Psychometric Thresholds for Physics and Mathematics

    CERN Document Server

    Hsu, Stephen D H

    2010-01-01

    We analyze 5 years of student records at the University of Oregon to estimate the probability of success (as defined by superior undergraduate record; sufficient for admission to graduate school) in Physics and Mathematics as a function of SAT-M score. We find evidence of a nonlinear threshold: below SAT-M score of roughly 600, the probability of success is very low. Interestingly, no similar threshold exists in other majors, such as Sociology, History, English or Biology, whether on SAT combined, SAT-R or SAT-M. Our findings have significant implications for the demographic makeup of graduate populations in mathematically intensive subjects, given the current distribution of SAT-M scores.

  2. Nonlinear Second-Order Multivalued Boundary Value Problems

    Indian Academy of Sciences (India)

    Leszek Gasiński; Nikolaos S Papageorgiou

    2003-08-01

    In this paper we study nonlinear second-order differential inclusions involving the ordinary vector -Laplacian, a multivalued maximal monotone operator and nonlinear multivalued boundary conditions. Our framework is general and unifying and incorporates gradient systems, evolutionary variational inequalities and the classical boundary value problems, namely the Dirichlet, the Neumann and the periodic problems. Using notions and techniques from the nonlinear operatory theory and from multivalued analysis, we obtain solutions for both the `convex' and `nonconvex' problems. Finally, we present the cases of special interest, which fit into our framework, illustrating the generality of our results.

  3. Minimax theory for a class of nonlinear statistical inverse problems

    Science.gov (United States)

    Ray, Kolyan; Schmidt-Hieber, Johannes

    2016-06-01

    We study a class of statistical inverse problems with nonlinear pointwise operators motivated by concrete statistical applications. A two-step procedure is proposed, where the first step smoothes the data and inverts the nonlinearity. This reduces the initial nonlinear problem to a linear inverse problem with deterministic noise, which is then solved in a second step. The noise reduction step is based on wavelet thresholding and is shown to be minimax optimal (up to logarithmic factors) in a pointwise function-dependent sense. Our analysis is based on a modified notion of Hölder smoothness scales that are natural in this setting.

  4. A Null Space Approach for Solving Nonlinear Complementarity Problems

    Institute of Scientific and Technical Information of China (English)

    Pu-yan Nie

    2006-01-01

    In this work, null space techniques are employed to tackle nonlinear complementarity problems(NCPs). NCP conditions are transform into a nonlinear programming problem, which is handled by null space algorithms. The NCP conditions are divided into two groups. Some equalities and inequalities in an NCP are treated as constraints. While other equalities and inequalities in an NCP are to be regarded as objective function.Two groups are all updated in every step. Null space approaches are extended to nonlinear complementarity problems. Two different solvers are employed for an NCP in an algorithm.

  5. A Numerical Embedding Method for Solving the Nonlinear Optimization Problem

    Institute of Scientific and Technical Information of China (English)

    田保锋; 戴云仙; 孟泽红; 张建军

    2003-01-01

    A numerical embedding method was proposed for solving the nonlinear optimization problem. By using the nonsmooth theory, the existence and the continuation of the following path for the corresponding homotopy equations were proved. Therefore the basic theory for the algorithm of the numerical embedding method for solving the non-linear optimization problem was established. Based on the theoretical results, a numerical embedding algorithm was designed for solving the nonlinear optimization problem, and prove its convergence carefully. Numerical experiments show that the algorithm is effective.

  6. Robust Monotone Iterates for Nonlinear Singularly Perturbed Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Boglaev Igor

    2009-01-01

    Full Text Available This paper is concerned with solving nonlinear singularly perturbed boundary value problems. Robust monotone iterates for solving nonlinear difference scheme are constructed. Uniform convergence of the monotone methods is investigated, and convergence rates are estimated. Numerical experiments complement the theoretical results.

  7. Analytical Solutions to Non-linear Mechanical Oscillation Problems

    DEFF Research Database (Denmark)

    Kaliji, H. D.; Ghadimi, M.; Barari, Amin

    2011-01-01

    In this paper, the Max-Min Method is utilized for solving the nonlinear oscillation problems. The proposed approach is applied to three systems with complex nonlinear terms in their motion equations. By means of this method, the dynamic behavior of oscillation systems can be easily approximated u...

  8. A Unified Approach for Solving Nonlinear Regular Perturbation Problems

    Science.gov (United States)

    Khuri, S. A.

    2008-01-01

    This article describes a simple alternative unified method of solving nonlinear regular perturbation problems. The procedure is based upon the manipulation of Taylor's approximation for the expansion of the nonlinear term in the perturbed equation. An essential feature of this technique is the relative simplicity used and the associated unified…

  9. Exact Solutions for Nonlinear Differential Difference Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    Khaled A. Gepreel

    2013-01-01

    Full Text Available We modified the truncated expansion method to construct the exact solutions for some nonlinear differential difference equations in mathematical physics via the general lattice equation, the discrete nonlinear Schrodinger with a saturable nonlinearity, the quintic discrete nonlinear Schrodinger equation, and the relativistic Toda lattice system. Also, we put a rational solitary wave function method to find the rational solitary wave solutions for some nonlinear differential difference equations. The proposed methods are more effective and powerful to obtain the exact solutions for nonlinear difference differential equations.

  10. From Hamiltonian chaos to complex systems a nonlinear physics approach

    CERN Document Server

    Leonetti, Marc

    2013-01-01

    From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach collects contributions on recent developments in non-linear dynamics and statistical physics with an emphasis on complex systems. This book provides a wide range of state-of-the-art research in these fields. The unifying aspect of this book is a demonstration of how similar tools coming from dynamical systems, nonlinear physics, and statistical dynamics can lead to a large panorama of  research in various fields of physics and beyond, most notably with the perspective of application in complex systems. This book also: Illustrates the broad research influence of tools coming from dynamical systems, nonlinear physics, and statistical dynamics Adopts a pedagogic approach to facilitate understanding by non-specialists and students Presents applications in complex systems Includes 150 illustrations From Hamiltonian Chaos to Complex Systems: A Nonlinear Physics Approach is an ideal book for graduate students and researchers working in applied...

  11. Finite Element Analysis to Two-Dimensional Nonlinear Sloshing Problems

    Institute of Scientific and Technical Information of China (English)

    严承华; 王赤忠; 程尔升

    2001-01-01

    A two-dimensional nonlinear sloshing problem is analyzed by means of the fully nonlinear theory and time domainsecond order theory of water waves. Liquid sloshing in a rectangular container subjected to a horizontal excitation is sim-ulated by the finite element method. Comparisons between the two theories are made based on their numerical results. Itis found that good agreement is obtained for the case of small amplitude oscillation and obvious differences occur forlarge amplitude excitation. Even though, the second order solution can still exhibit typical nonlinear features ofnonlinear wave and can be used instead of the fully nonlinear theory.

  12. Cross-constrained problems for nonlinear Schrodinger equation with harmonic potential

    Directory of Open Access Journals (Sweden)

    Runzhang Xu

    2012-11-01

    Full Text Available This article studies a nonlinear Schodinger equation with harmonic potential by constructing different cross-constrained problems. By comparing the different cross-constrained problems, we derive different sharp criterion and different invariant manifolds that separate the global solutions and blowup solutions. Moreover, we conclude that some manifolds are empty due to the essence of the cross-constrained problems. Besides, we compare the three cross-constrained problems and the three depths of the potential wells. In this way, we explain the gaps in [J. Shu and J. Zhang, Nonlinear Shrodinger equation with harmonic potential, Journal of Mathematical Physics, 47, 063503 (2006], which was pointed out in [R. Xu and Y. Liu, Remarks on nonlinear Schrodinger equation with harmonic potential, Journal of Mathematical Physics, 49, 043512 (2008].

  13. QUASILINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS WITH DISCONTINUOUS NONLINEARITIES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper we shall consider a discontinuous nonlinear nonmonotone elliptic boundary value problem, i.e. a quasilinear elliptic hemivariational inequality. This kind of problems is strongly motivated by various problems in mechanics. By use of the notion of the generalized gradient of Clarke and the theory of pseudomonotone operators, we will prove the existence of solutions.

  14. Inverse Coefficient Problems for Nonlinear Elliptic Variational Inequalities

    Institute of Scientific and Technical Information of China (English)

    Run-sheng Yang; Yun-hua Ou

    2011-01-01

    This paper is devoted to a class of inverse coefficient problems for nonlinear elliptic variational inequalities. The unknown coefficient of elliptic variational inequalities depends on the gradient of the solution and belongs to a set of admissible coefficients. It is shown that the nonlinear elliptic variational inequalities is unique solvable for the given class of coefficients. The existence of quasisolutions of the inverse problems is obtained.

  15. Modified Filled Function to Solve NonlinearProgramming Problem

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Filled function method is an approach to find the global minimum of nonlinear functions. Many Problems, such as computing,communication control, and management, in real applications naturally result in global optimization formulations in a form ofnonlinear global integer programming. This paper gives a modified filled function method to solve the nonlinear global integerprogramming problem. The properties of the proposed modified filled function are also discussed in this paper. The results ofpreliminary numerical experiments are also reported.

  16. Iterative regularization methods for nonlinear ill-posed problems

    CERN Document Server

    Scherzer, Otmar; Kaltenbacher, Barbara

    2008-01-01

    Nonlinear inverse problems appear in many applications, and typically they lead to mathematical models that are ill-posed, i.e., they are unstable under data perturbations. Those problems require a regularization, i.e., a special numerical treatment. This book presents regularization schemes which are based on iteration methods, e.g., nonlinear Landweber iteration, level set methods, multilevel methods and Newton type methods.

  17. Nonlinear eigenvalue problems with semipositone structure

    Directory of Open Access Journals (Sweden)

    Alfonso Castro

    2000-10-01

    Full Text Available In this paper we summarize the developments of semipositone problems to date, including very recent results on semipositone systems. We also discuss applications and open problems.

  18. Reaction-diffusion problems in the physics of hot plasmas

    CERN Document Server

    Wilhelmsson, H

    2000-01-01

    The physics of hot plasmas is of great importance for describing many phenomena in the universe and is fundamental for the prospect of future fusion energy production on Earth. Nontrivial results of nonlinear electromagnetic effects in plasmas include the self-organization and self-formation in the plasma of structures compact in time and space. These are the consequences of competing processes of nonlinear interactions and can be best described using reaction-diffusion equations. Reaction-Diffusion Problems in the Physics of Hot Plasmas is focused on paradigmatic problems of a reaction-diffusion type met in many branches of science, concerning in particular the nonlinear interaction of electromagnetic fields with plasmas.

  19. Rooting the biggest problems in physics

    DEFF Research Database (Denmark)

    Javadi, Hossein; Forouzbakhsh, Farshid

    2016-01-01

    In the twentieth century, physics was divided into two major parts; classical physics and modern physics. Modern physics includes relativity and quantum mechanics. In recent decades, physics has encountered numerous problems and unanswered questions. The problems and unanswered questions...... physics while they have not cared classical physics. Some physicists believe that by combining general relativity and quantum mechanics, these problems may be resolved and the unanswered questions will be answered. However, in all of these efforts, the classical physic has been ignored, while nature...... to combine these three theories of classical mechanics, quantum mechanics and relativity in order to reach to a unique physics. Eventually, by answering the unanswered questions, the physics problems will be solved. In this paper, the stems of physics problems are expressed and the solution of them...

  20. Inverse Problems for Nonlinear Delay Systems

    Science.gov (United States)

    2011-03-15

    Ba82]. For nonlinear delay systems such as those discussed here, approximation in the context of a linear semigroup framework as presented [BBu1, BBu2...linear part generates a linear semigroup as in [BBu1, BBu2, BKap]. One then uses the linear semigroup in a vari- ation of parameters implicit...BBu2, BKap] (for the linear semigroup ) plus a Gronwall inequality. An alternative (and more general) approach given in [Ba82] eschews use of the Trotter

  1. Nonlinear Preconditioning and its Application in Multicomponent Problems

    KAUST Repository

    Liu, Lulu

    2015-12-07

    The Multiplicative Schwarz Preconditioned Inexact Newton (MSPIN) algorithm is presented as a complement to Additive Schwarz Preconditioned Inexact Newton (ASPIN). At an algebraic level, ASPIN and MSPIN are variants of the same strategy to improve the convergence of systems with unbalanced nonlinearities; however, they have natural complementarity in practice. MSPIN is naturally based on partitioning of degrees of freedom in a nonlinear PDE system by field type rather than by subdomain, where a modest factor of concurrency can be sacrificed for physically motivated convergence robustness. ASPIN, originally introduced for decompositions into subdomains, is natural for high concurrency and reduction of global synchronization. The ASPIN framework, as an option for the outermost solver, successfully handles strong nonlinearities in computational fluid dynamics, but is barely explored for the highly nonlinear models of complex multiphase flow with capillarity, heterogeneity, and complex geometry. In this dissertation, the fully implicit ASPIN method is demonstrated for a finite volume discretization based on incompressible two-phase reservoir simulators in the presence of capillary forces and gravity. Numerical experiments show that the number of global nonlinear iterations is not only scalable with respect to the number of processors, but also significantly reduced compared with the standard inexact Newton method with a backtracking technique. Moreover, the ASPIN method, in contrast with the IMPES method, saves overall execution time because of the savings in timestep size. We consider the additive and multiplicative types of inexact Newton algorithms in the field-split context, and we augment the classical convergence theory of ASPIN for the multiplicative case. Moreover, we provide the convergence analysis of the MSPIN algorithm. Under suitable assumptions, it is shown that MSPIN is locally convergent, and desired superlinear or even quadratic convergence can be

  2. ON TRANSMISSION PROBLEM FOR KIRCHHOFF TYPE WAVE EQUATION WITH A LOCALIZED NONLINEAR DISSIPATION IN BOUNDED DOMAIN

    Institute of Scientific and Technical Information of China (English)

    Jeong Ja Bae

    2012-01-01

    In this article,we consider the global existence and decay rates of solutions for the transmission problem of Kirchhoff type wave equations consisting of two physically different types of materials,one component is a Kirchhoff type wave equation with nonlinear time dependent localized dissipation which is effective only on a neighborhood of certain part of the boundary,while the other is a Kirchhoff type wave equation with nonlinear memory.

  3. Parabolic Perturbation of a Nonlinear Hyperbolic Problem Arising in Physiology

    Science.gov (United States)

    Colli, P.; Grasselli, M.

    We study a transport-diffusion initial value problem where the diffusion codlicient is "small" and the transport coefficient is a time function depending on the solution in a nonlinear and nonlocal way. We show the existence and the uniqueness of a weak solution of this problem. Moreover we discuss its asymptotic behaviour as the diffusion coefficient goes to zero, obtaining a well-posed first-order nonlinear hyperbolic problem. These problems arise from mathematical models of muscle contraction in the framework of the sliding filament theory.

  4. THIRD-ORDER NONLINEAR SINGULARLY PERTURBED BOUNDARY VALUE PROBLEM

    Institute of Scientific and Technical Information of China (English)

    王国灿; 金丽

    2002-01-01

    Third order singulary perturbed boundary value problem by means of differential inequality theories is studied. Based on the given results of second order nonlinear boundary value problem, the upper and lower solutions method of third order nonlinear boundary value problems by making use of Volterra type integral operator was established.Specific upper and lower solutions were constructed, and existence and asymptotic estimates of solutions under suitable conditions were obtained.The result shows that it seems to be new to apply these techniques to solving these kinds of third order singularly perturbed boundary value problem. An example is given to demonstrate the applications.

  5. Higher-order techniques for some problems of nonlinear control

    Directory of Open Access Journals (Sweden)

    Sarychev Andrey V.

    2002-01-01

    Full Text Available A natural first step when dealing with a nonlinear problem is an application of some version of linearization principle. This includes the well known linearization principles for controllability, observability and stability and also first-order optimality conditions such as Lagrange multipliers rule or Pontryagin's maximum principle. In many interesting and important problems of nonlinear control the linearization principle fails to provide a solution. In the present paper we provide some examples of how higher-order methods of differential geometric control theory can be used for the study nonlinear control systems in such cases. The presentation includes: nonlinear systems with impulsive and distribution-like inputs; second-order optimality conditions for bang–bang extremals of optimal control problems; methods of high-order averaging for studying stability and stabilization of time-variant control systems.

  6. Newtonian Nonlinear Dynamics for Complex Linear and Optimization Problems

    CERN Document Server

    Vázquez, Luis

    2013-01-01

    Newtonian Nonlinear Dynamics for Complex Linear and Optimization Problems explores how Newton's equation for the motion of one particle in classical mechanics combined with finite difference methods allows creation of a mechanical scenario to solve basic problems in linear algebra and programming. The authors present a novel, unified numerical and mechanical approach and an important analysis method of optimization. This book also: Presents mechanical method for determining matrix singularity or non-independence of dimension and complexity Illustrates novel mathematical applications of classical Newton’s law Offers a new approach and insight to basic, standard problems Includes numerous examples and applications Newtonian Nonlinear Dynamics for Complex Linear and Optimization Problems is an ideal book for undergraduate and graduate students as well as researchers interested in linear problems and optimization, and nonlinear dynamics.      

  7. Exact travelling wave solutions for some important nonlinear physical models

    Indian Academy of Sciences (India)

    Jonu Lee; Rathinasamy Sakthivel

    2013-05-01

    The two-dimensional nonlinear physical models and coupled nonlinear systems such as Maccari equations, Higgs equations and Schrödinger–KdV equations have been widely applied in many branches of physics. So, finding exact travelling wave solutions of such equations are very helpful in the theories and numerical studies. In this paper, the Kudryashov method is used to seek exact travelling wave solutions of such physical models. Further, three-dimensional plots of some of the solutions are also given to visualize the dynamics of the equations. The results reveal that the method is a very effective and powerful tool for solving nonlinear partial differential equations arising in mathematical physics.

  8. A NONLINEAR TRANSFORMATION AND A BOUNDARY-INITIAL VALUE PROBLEM FOR ACLASS OF NONLINEAR CONVECTION-DIFFUSION EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    With the aid of a nonlinear transformation, a class of nonlinear convectiondiffusion PDE in one space dimension is converted into a linear one, the unique solution of a nonlinear boundary-initial value problem for the nonlinear PDE can be exactly expressed by the nonlinear transformation, and several illustrative examples are given

  9. Studies in nonlinear problems of energy

    Energy Technology Data Exchange (ETDEWEB)

    Matkowsky, B.J.

    1990-11-01

    We carry out a research program with primary emphasis on the applications of Bifurcation and Stability Theory to Problems of energy, with specific emphasis on Problems of Combustion and Flame Propagation. In particular we consider the problem of transition from laminar to turbulent flame propagation. A great deal of progress has been made in our investigations. More than one hundred and thirty papers citing this project have been prepared for publication in technical journals. A list of the papers, including abstracts for each paper, is appended to this report.

  10. Problems and solutions in quantum physics

    CERN Document Server

    Ficek, Zbigniew

    2016-01-01

    This book contains tutorial problems with solutions for the textbook Quantum Physics for Beginners. The reader studying the abstract field of quantum physics needs to solve plenty of practical, especially quantitative, problems. This book places emphasis on basic problems of quantum physics together with some instructive, simulating, and useful applications. A considerable range of complexity is presented by these problems, and not too many of them can be solved using formulas alone.

  11. Nonlinear Preserver Problems on B(H)

    Institute of Scientific and Technical Information of China (English)

    Jian Lian CUI

    2011-01-01

    Let H be a complex Hilbert space of dimension greater than 2, and B(H) denote the Banach algebra of all bounded linear operators on H. For A, B ∈ B(H), define the binary relation A ≤* B by A*A = A*B and AA* = AB*. Then (B(H), "≤*") is a partially ordered set and the relation "≤*" is called the star order on B(H). Denote by Bs(H) the set of all self-adjoint operators in B(H). In this paper, we first characterize nonlinear continuous bijective maps on Bs (H) which preserve the star order in both directions. We characterize also additive maps (or linear maps) on B(H) (or nest algebras) which are multiplicative at some invertible operator.

  12. Mixed Nonlinear Complementarity Problems via Nonlinear Optimization: Numerical Results on Multi-Rigid-Body Contact Problems with Friction

    Science.gov (United States)

    Andreani, Roberto; Friedlander, Ana; Mello, Margarida P.; Santos, Sandra A.

    2005-06-01

    In this work we show that the mixed nonlinear complementarity problem may be formulated as an equivalent nonlinear bound-constrained optimization problem that preserves the smoothness of the original data. One may thus take advantage of existing codes for bound-constrained optimization. This approach is implemented and tested by means of an extensive set of numerical experiments, showing promising results. The mixed nonlinear complementarity problems considered in the tests arise from the discretization of a motion planning problem concerning a set of rigid 3D bodies in contact in the presence of friction. We solve the complementarity problem associated with a single time frame, thus calculating the contact forces and accelerations of the bodies involved.

  13. An Adaptive Neural Network Model for Nonlinear Programming Problems

    Institute of Scientific and Technical Information of China (English)

    Xiang-sun Zhang; Xin-jian Zhuo; Zhu-jun Jing

    2002-01-01

    In this paper a canonical neural network with adaptively changing synaptic weights and activation function parameters is presented to solve general nonlinear programming problems. The basic part of the model is a sub-network used to find a solution of quadratic programming problems with simple upper and lower bounds. By sequentially activating the sub-network under the control of an external computer or a special analog or digital processor that adjusts the weights and parameters, one then solves general nonlinear programming problems. Convergence proof and numerical results are given.

  14. On a Highly Nonlinear Self-Obstacle Optimal Control Problem

    Energy Technology Data Exchange (ETDEWEB)

    Di Donato, Daniela, E-mail: daniela.didonato@unitn.it [University of Trento, Department of Mathematics (Italy); Mugnai, Dimitri, E-mail: dimitri.mugnai@unipg.it [Università di Perugia, Dipartimento di Matematica e Informatica (Italy)

    2015-10-15

    We consider a non-quadratic optimal control problem associated to a nonlinear elliptic variational inequality, where the obstacle is the control itself. We show that, fixed a desired profile, there exists an optimal solution which is not far from it. Detailed characterizations of the optimal solution are given, also in terms of approximating problems.

  15. A Hybrid Method for Nonlinear Least Squares Problems

    Institute of Scientific and Technical Information of China (English)

    Zhongyi Liu; Linping Sun

    2007-01-01

    A negative curvature method is applied to nonlinear least squares problems with indefinite Hessian approximation matrices. With the special structure of the method,a new switch is proposed to form a hybrid method. Numerical experiments show that this method is feasible and effective for zero-residual,small-residual and large-residual problems.

  16. Discontinuity and complexity in nonlinear physical systems

    CERN Document Server

    Baleanu, Dumitru; Luo, Albert

    2014-01-01

    This unique book explores recent developments in experimental research in this broad field, organized in four distinct sections. Part I introduces the reader to the fractional dynamics and Lie group analysis for nonlinear partial differential equations. Part II covers chaos and complexity in nonlinear Hamiltonian systems, important to understand the resonance interactions in nonlinear dynamical systems, such as Tsunami waves and wildfire propagations; as well as Lev flights in chaotic trajectories, dynamical system synchronization and DNA information complexity analysis. Part III examines chaos and periodic motions in discontinuous dynamical systems, extensively present in a range of systems, including piecewise linear systems, vibro-impact systems and drilling systems in engineering. And in Part IV, engineering and financial nonlinearity are discussed. The mechanism of shock wave with saddle-node bifurcation and rotating disk stability will be presented, and the financial nonlinear models will be discussed....

  17. Multigrid Reduction in Time for Nonlinear Parabolic Problems

    Energy Technology Data Exchange (ETDEWEB)

    Falgout, R. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Manteuffel, T. A. [Univ. of Colorado, Boulder, CO (United States); O' Neill, B. [Univ. of Colorado, Boulder, CO (United States); Schroder, J. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-04

    The need for parallel-in-time is being driven by changes in computer architectures, where future speed-ups will be available through greater concurrency, but not faster clock speeds, which are stagnant.This leads to a bottleneck for sequential time marching schemes, because they lack parallelism in the time dimension. Multigrid Reduction in Time (MGRIT) is an iterative procedure that allows for temporal parallelism by utilizing multigrid reduction techniques and a multilevel hierarchy of coarse time grids. MGRIT has been shown to be effective for linear problems, with speedups of up to 50 times. The goal of this work is the efficient solution of nonlinear problems with MGRIT, where efficient is defined as achieving similar performance when compared to a corresponding linear problem. As our benchmark, we use the p-Laplacian, where p = 4 corresponds to a well-known nonlinear diffusion equation and p = 2 corresponds to our benchmark linear diffusion problem. When considering linear problems and implicit methods, the use of optimal spatial solvers such as spatial multigrid imply that the cost of one time step evaluation is fixed across temporal levels, which have a large variation in time step sizes. This is not the case for nonlinear problems, where the work required increases dramatically on coarser time grids, where relatively large time steps lead to worse conditioned nonlinear solves and increased nonlinear iteration counts per time step evaluation. This is the key difficulty explored by this paper. We show that by using a variety of strategies, most importantly, spatial coarsening and an alternate initial guess to the nonlinear time-step solver, we can reduce the work per time step evaluation over all temporal levels to a range similar with the corresponding linear problem. This allows for parallel scaling behavior comparable to the corresponding linear problem.

  18. A reduced order model for nonlinear vibroacoustic problems

    Directory of Open Access Journals (Sweden)

    Ouisse Morvan

    2012-07-01

    Full Text Available This work is related to geometrical nonlinearities applied to thin plates coupled with fluid-filled domain. Model reduction is performed to reduce the computation time. Reduced order model (ROM is issued from the uncoupled linear problem and enriched with residues to describe the nonlinear behavior and coupling effects. To show the efficiency of the proposed method, numerical simulations in the case of an elastic plate closing an acoustic cavity are presented.

  19. Frozen Landweber Iteration for Nonlinear Ill-Posed Problems

    Institute of Scientific and Technical Information of China (English)

    J.Xu; B.Han; L.Li

    2007-01-01

    In this paper we propose a modification of the Landweber iteration termed frozen Landweber iteration for nonlinear ill-posed problems.A convergence analysis for this iteration is presented.The numerical performance of this frozen Landweber iteration for a nonlinear Hammerstein integral equation is compared with that of the Landweber iteration.We obtain a shorter running time of the frozen Landweber iteration based on the same convergence accuracy.

  20. Numerical Simulation of Two-dimensional Nonlinear Sloshing Problems

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Numerical simulation of a two-dimensional nonlinearsloshing problem is preceded by the finite element method. Two theories are used. One is fully nonlinear theory; the other is time domain second order theory. A liquid sloshing in a rectangular container subjected to a horizontal excitation is simulated using these two theories. Numerical results are obtained and comparisons are made. It is found that a good agreement is obtained for the case of small amplitude oscillation. For the situation of large amplitude excitation, although the differences between using the two theories are obvious the second order solution can still exhibit typical nonlinear features of nonlinear wave.

  1. SEACAS Theory Manuals: Part 1. Problem Formulation in Nonlinear Solid Mechancis

    Energy Technology Data Exchange (ETDEWEB)

    Attaway, S.W.; Laursen, T.A.; Zadoks, R.I.

    1998-08-01

    This report gives an introduction to the basic concepts and principles involved in the formulation of nonlinear problems in solid mechanics. By way of motivation, the discussion begins with a survey of some of the important sources of nonlinearity in solid mechanics applications, using wherever possible simple one dimensional idealizations to demonstrate the physical concepts. This discussion is then generalized by presenting generic statements of initial/boundary value problems in solid mechanics, using linear elasticity as a template and encompassing such ideas as strong and weak forms of boundary value problems, boundary and initial conditions, and dynamic and quasistatic idealizations. The notational framework used for the linearized problem is then extended to account for finite deformation of possibly inelastic solids, providing the context for the descriptions of nonlinear continuum mechanics, constitutive modeling, and finite element technology given in three companion reports.

  2. Inverse Coefficient Problems for Nonlinear Parabolic Differential Equations

    Institute of Scientific and Technical Information of China (English)

    Yun Hua OU; Alemdar HASANOV; Zhen Hai LIU

    2008-01-01

    This paper is devoted to a class of inverse problems for a nonlinear parabolic differential equation.The unknown coefficient of the equation depends on the gradient of the solution and belongs to a set of admissible coefficients.It is proved that the convergence of solutions for the corresponding direct problems continuously depends on the coefficient convergence.Based on this result the existence of a quasisolution of the inverse problem is obtained in the appropriate class of admissible coefficients.

  3. Interval Arithmetic for Nonlinear Problem Solving

    OpenAIRE

    2013-01-01

    Implementation of interval arithmetic in complex problems has been hampered by the tedious programming exercise needed to develop a particular implementation. In order to improve productivity, the use of interval mathematics is demonstrated using the computing platform INTLAB that allows for the development of interval-arithmetic-based programs more efficiently than with previous interval-arithmetic libraries. An interval-Newton Generalized-Bisection (IN/GB) method is developed in this platfo...

  4. Solutions of some class of nonlinear PDEs in mathematical physics

    Directory of Open Access Journals (Sweden)

    Shoukry El-Ganaini

    2016-04-01

    As a result, exact traveling wave solutions involving parameters have been obtained for the considered nonlinear equations in a concise manner. When these parameters are chosen as special values, the solitary wave solutions are derived. It is shown that the proposed technique provides a more powerful mathematical tool for constructing exact solutions for a broad variety of nonlinear PDEs in mathematical physics.

  5. Complex and Nonlinear Pedagogy and the Implications for Physical Education

    Science.gov (United States)

    Chow, Jia Yi; Atencio, Matthew

    2014-01-01

    There is increasing support to describe and examine the teaching of game skills in physical education from a complex and nonlinear perspective. The emergence of game behaviours as a consequence of the dynamic interactions of the learner, the game environment and the task constraints within the game context highlights the nonlinear and complex…

  6. Analysis of nonlinear channel friction inverse problem

    Institute of Scientific and Technical Information of China (English)

    CHENG Weiping; LIU Guohua

    2007-01-01

    Based on the Backus-Gilbert inverse theory, the singular value decomposition (SVD) for general inverse matrices and the optimization algorithm are used to solve the channel friction inverse problem. The resolution and covari- ance friction inverse model in matrix form is developed to examine the reliability of solutions. Theoretical analyses demonstrate that the convergence rate of the general Newton optimization algorithm is in the second-order. The Wiggins method is also incorporated into the algorithm. Using the method, noise can be suppressed effectively, and the results are close to accurate solutions with proper control parameters. Also, the numerical stability can be improved.

  7. PREFACE: Physics and Mathematics of Nonlinear Phenomena 2013 (PMNP2013)

    Science.gov (United States)

    Konopelchenko, B. G.; Landolfi, G.; Martina, L.; Vitolo, R.

    2014-03-01

    Modern theory of nonlinear integrable equations is nowdays an important and effective tool of study for numerous nonlinear phenomena in various branches of physics from hydrodynamics and optics to quantum filed theory and gravity. It includes the study of nonlinear partial differential and discrete equations, regular and singular behaviour of their solutions, Hamitonian and bi- Hamitonian structures, their symmetries, associated deformations of algebraic and geometrical structures with applications to various models in physics and mathematics. The PMNP 2013 conference focused on recent advances and developments in Continuous and discrete, classical and quantum integrable systems Hamiltonian, critical and geometric structures of nonlinear integrable equations Integrable systems in quantum field theory and matrix models Models of nonlinear phenomena in physics Applications of nonlinear integrable systems in physics The Scientific Committee of the conference was formed by Francesco Calogero (University of Rome `La Sapienza', Italy) Boris A Dubrovin (SISSA, Italy) Yuji Kodama (Ohio State University, USA) Franco Magri (University of Milan `Bicocca', Italy) Vladimir E Zakharov (University of Arizona, USA, and Landau Institute for Theoretical Physics, Russia) The Organizing Committee: Boris G Konopelchenko, Giulio Landolfi, Luigi Martina, Department of Mathematics and Physics `E De Giorgi' and the Istituto Nazionale di Fisica Nucleare, and Raffaele Vitolo, Department of Mathematics and Physics `E De Giorgi'. A list of sponsors, speakers, talks, participants and the conference photograph are given in the PDF. Conference photograph

  8. A Smoothing Inexact Newton Method for Generalized Nonlinear Complementarity Problem

    Directory of Open Access Journals (Sweden)

    Meixia Li

    2012-01-01

    Full Text Available Based on the smoothing function of penalized Fischer-Burmeister NCP-function, we propose a new smoothing inexact Newton algorithm with non-monotone line search for solving the generalized nonlinear complementarity problem. We view the smoothing parameter as an independent variable. Under suitable conditions, we show that any accumulation point of the generated sequence is a solution of the generalized nonlinear complementarity problem. We also establish the local superlinear (quadratic convergence of the proposed algorithm under the BD-regular assumption. Preliminary numerical experiments indicate the feasibility and efficiency of the proposed algorithm.

  9. Parallel methods in problems of mathematical physics

    OpenAIRE

    Boris Rybakin

    1996-01-01

    The article deals with various methods of parallelization of algorithms of problems of mathematical physics. Parallel methods of solution of these problems on the basis of multiprocessor transputer based systems with distributed memory are considered.

  10. Bonus algorithm for large scale stochastic nonlinear programming problems

    CERN Document Server

    Diwekar, Urmila

    2015-01-01

    This book presents the details of the BONUS algorithm and its real world applications in areas like sensor placement in large scale drinking water networks, sensor placement in advanced power systems, water management in power systems, and capacity expansion of energy systems. A generalized method for stochastic nonlinear programming based on a sampling based approach for uncertainty analysis and statistical reweighting to obtain probability information is demonstrated in this book. Stochastic optimization problems are difficult to solve since they involve dealing with optimization and uncertainty loops. There are two fundamental approaches used to solve such problems. The first being the decomposition techniques and the second method identifies problem specific structures and transforms the problem into a deterministic nonlinear programming problem. These techniques have significant limitations on either the objective function type or the underlying distributions for the uncertain variables. Moreover, these ...

  11. New Approach to Analyzing Physics Problems: A Taxonomy of Introductory Physics Problems

    Science.gov (United States)

    Teodorescu, Raluca E.; Bennhold, Cornelius; Feldman, Gerald; Medsker, Larry

    2013-01-01

    This paper describes research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created in order to design educational objectives, to develop…

  12. New Approach to Analyzing Physics Problems: A Taxonomy of Introductory Physics Problems

    Science.gov (United States)

    Teodorescu, Raluca E.; Bennhold, Cornelius; Feldman, Gerald; Medsker, Larry

    2013-01-01

    This paper describes research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created in order to design educational objectives, to develop…

  13. On the Cauchy problem for a doubly nonlinear degenerate parabolic equation with strongly nonlinear sources

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this article, we consider the existence of local and global solution to the Cauchy problem of a doubly nonlinear equation. By introducing the norms |||f|||h and h, we give the suffcient and necessary conditions on the initial value to the existence of local solution of doubly nonlinear equation. Moreover some results on the global existence and nonexistence of solutions are considered.

  14. Error estimations of mixed finite element methods for nonlinear problems of shallow shell theory

    Science.gov (United States)

    Karchevsky, M.

    2016-11-01

    The variational formulations of problems of equilibrium of a shallow shell in the framework of the geometrically and physically nonlinear theory by boundary conditions of different main types, including non-classical, are considered. Necessary and sufficient conditions for their solvability are derived. Mixed finite element methods for the approximate solutions to these problems based on the use of second derivatives of the bending as auxiliary variables are proposed. Estimations of accuracy of approximate solutions are established.

  15. Galerkin approximations of nonlinear optimal control problems in Hilbert spaces

    Directory of Open Access Journals (Sweden)

    Mickael D. Chekroun

    2017-07-01

    Full Text Available Nonlinear optimal control problems in Hilbert spaces are considered for which we derive approximation theorems for Galerkin approximations. Approximation theorems are available in the literature. The originality of our approach relies on the identification of a set of natural assumptions that allows us to deal with a broad class of nonlinear evolution equations and cost functionals for which we derive convergence of the value functions associated with the optimal control problem of the Galerkin approximations. This convergence result holds for a broad class of nonlinear control strategies as well. In particular, we show that the framework applies to the optimal control of semilinear heat equations posed on a general compact manifold without boundary. The framework is then shown to apply to geoengineering and mitigation of greenhouse gas emissions formulated here in terms of optimal control of energy balance climate models posed on the sphere $\\mathbb{S}^2$.

  16. Collection of solved problems in physics

    Science.gov (United States)

    Koupilová, ZdeÅka; Mandíková, Dana; Snětinová, Marie

    2017-01-01

    To solve physics problems is a key ability which students should reach during their physics education. Ten years ago we started to develop a Collection of fully solved problems. The structure of problems' solutions is specially designed to substitute tutor's help during lesson and encourage students to solve at least some parts of a problem independently. Nowadays the database contains about 770 fully solved problems in physics in Czech, more than 100 problems in Polish and more than 140 problems in English. Other problems are still being translated. Except for physics problems, the Collection has also a mathematical part, which contains more than 300 fully solved problems in mathematics. This paper follows the presentation of the Collection of solved problems from previous years and introduces a new interface of the Collection, its enhanced functionality, new topics, newly created interface for teachers, user feedback and plans for future development. The database is placed at the website of the Department of Physics Education, Faculty of Mathematics and Physics, Charles University in Prague, the links are: http://reseneulohy.cz/fyzika (Czech version); http://www.physicstasks.eu/ (English version).

  17. Nonlinear physics of shear Alfvén waves

    Energy Technology Data Exchange (ETDEWEB)

    Zonca, Fulvio [Associazione EURATOM-ENEA sulla Fusione, C.P. 65-00044 Frascati, Italy and Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 31007 (China); Chen, Liu [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 31007, P.R.C. and Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)

    2014-02-12

    Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These 'nonlinear equilibria' or 'phase-space zonal structures' dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results.

  18. Solution of Contact Problems for Nonlinear Gao Beam and Obstacle

    Directory of Open Access Journals (Sweden)

    J. Machalová

    2015-01-01

    Full Text Available Contact problem for a large deformed beam with an elastic obstacle is formulated, analyzed, and numerically solved. The beam model is governed by a nonlinear fourth-order differential equation developed by Gao, while the obstacle is considered as the elastic foundation of Winkler’s type in some distance under the beam. The problem is static without a friction and modeled either using Signorini conditions or by means of normal compliance contact conditions. The problems are then reformulated as optimal control problems which is useful both for theoretical aspects and for solution methods. Discretization is based on using the mixed finite element method with independent discretization and interpolations for foundation and beam elements. Numerical examples demonstrate usefulness of the presented solution method. Results for the nonlinear Gao beam are compared with results for the classical Euler-Bernoulli beam model.

  19. INITIAL BOUNDARY VALUE PROBLEM FOR A DAMPED NONLINEAR HYPERBOLIC EQUATION

    Institute of Scientific and Technical Information of China (English)

    陈国旺

    2003-01-01

    In the paper, the existence and uniqueness of the generalized global solution and the classical global solution of the initial boundary value problems for the nonlinear hyperbolic equationare proved by Galerkin method and the sufficient conditions of blow-up of solution in finite time are given.

  20. Major open problems in chaos theory and nonlinear dynamics

    CERN Document Server

    Li, Y Charles

    2013-01-01

    Nowadays, chaos theory and nonlinear dynamics lack research focuses. Here we mention a few major open problems: 1. an effective description of chaos and turbulence, 2. rough dependence on initial data, 3. arrow of time, 4. the paradox of enrichment, 5. the paradox of pesticides, 6. the paradox of plankton.

  1. Linear iterative technique for solution of nonlinear thermal network problems

    Energy Technology Data Exchange (ETDEWEB)

    Seabourn, C.M.

    1976-11-01

    A method for rapid and accurate solution of linear and/or nonlinear thermal network problems is described. It is a matrix iterative process that converges for nodal temperatures and variations of thermal conductivity with temperature. The method is computer oriented and can be changed easily for design studies.

  2. A POSITIVE INTERIOR-POINT ALGORITHM FOR NONLINEAR COMPLEMENTARITY PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    马昌凤; 梁国平; 陈新美

    2003-01-01

    A new iterative method, which is called positive interior-point algorithm, is presented for solving the nonlinear complementarity problems. This method is of the desirable feature of robustness. And the convergence theorems of the algorithm is established. In addition, some numerical results are reported.

  3. Multiple solutions for inhomogeneous nonlinear elliptic problems arising in astrophyiscs

    Directory of Open Access Journals (Sweden)

    Marco Calahorrano

    2004-04-01

    Full Text Available Using variational methods we prove the existence and multiplicity of solutions for some nonlinear inhomogeneous elliptic problems on a bounded domain in $mathbb{R}^n$, with $ngeq 2$ and a smooth boundary, and when the domain is $mathbb{R}_+^n$

  4. Some problems on nonlinear hyperbolic equations and applications

    CERN Document Server

    Peng, YueJun

    2010-01-01

    This volume is composed of two parts: Mathematical and Numerical Analysis for Strongly Nonlinear Plasma Models and Exact Controllability and Observability for Quasilinear Hyperbolic Systems and Applications. It presents recent progress and results obtained in the domains related to both subjects without attaching much importance to the details of proofs but rather to difficulties encountered, to open problems and possible ways to be exploited. It will be very useful for promoting further study on some important problems in the future.

  5. Adomian decomposition method for nonlinear Sturm-Liouville problems

    Directory of Open Access Journals (Sweden)

    Sennur Somali

    2007-09-01

    Full Text Available In this paper the Adomian decomposition method is applied to the nonlinear Sturm-Liouville problem-y" + y(tp=λy(t, y(t > 0, t ∈ I = (0, 1, y(0 = y(1 = 0, where p > 1 is a constant and λ > 0 is an eigenvalue parameter. Also, the eigenvalues and the behavior of eigenfuctions of the problem are demonstrated.

  6. Modified constrained differential evolution for solving nonlinear global optimization problems

    OpenAIRE

    2013-01-01

    Nonlinear optimization problems introduce the possibility of multiple local optima. The task of global optimization is to find a point where the objective function obtains its most extreme value while satisfying the constraints. Some methods try to make the solution feasible by using penalty function methods, but the performance is not always satisfactory since the selection of the penalty parameters for the problem at hand is not a straightforward issue. Differential evolut...

  7. Iterative total variation schemes for nonlinear inverse problems

    Science.gov (United States)

    Bachmayr, Markus; Burger, Martin

    2009-10-01

    In this paper we discuss the construction, analysis and implementation of iterative schemes for the solution of inverse problems based on total variation regularization. Via different approximations of the nonlinearity we derive three different schemes resembling three well-known methods for nonlinear inverse problems in Hilbert spaces, namely iterated Tikhonov, Levenberg-Marquardt and Landweber. These methods can be set up such that all arising subproblems are convex optimization problems, analogous to those appearing in image denoising or deblurring. We provide a detailed convergence analysis and appropriate stopping rules in the presence of data noise. Moreover, we discuss the implementation of the schemes and the application to distributed parameter estimation in elliptic partial differential equations.

  8. Microscopic structures from reduction of continuum nonlinear problems

    CERN Document Server

    Lovison, Alberto

    2011-01-01

    We present an application of the Amann-Zehnder exact finite reduction to a class of nonlinear perturbations of elliptic elasto-static problems. We propose the existence of minmax solutions by applying Ljusternik-Schnirelmann theory to a finite dimensional variational formulation of the problem, based on a suitable spectral cut-off. As a by-product, with a choice of fit variables, we establish a variational equivalence between the above spectral finite description and a discrete mechanical model. By doing so, we decrypt the abstract information encoded in the AZ reduction and give rise to a concrete and finite description of the continuous problem.

  9. Numerical solution of control problems governed by nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Heinkenschloss, M. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1994-12-31

    In this presentation the author investigates an iterative method for the solution of optimal control problems. These problems are formulated as constrained optimization problems with constraints arising from the state equation and in the form of bound constraints on the control. The method for the solution of these problems uses the special structure of the problem arising from the bound constraint and the state equation. It is derived from SQP methods and projected Newton methods and combines the advantages of both methods. The bound constraint is satisfied by all iterates using a projection, the nonlinear state equation is satisfied in the limit. Only a linearized state equation has to be solved in every iteration. The solution of the linearized problems are done using multilevel methods and GMRES.

  10. Some improperly posed problems of mathematical physics

    CERN Document Server

    Lavrentiev, M M

    1967-01-01

    This monograph deals with the problems of mathematical physics which are improperly posed in the sense of Hadamard. The first part covers various approaches to the formulation of improperly posed problems. These approaches are illustrated by the example of the classical improperly posed Cauchy problem for the Laplace equation. The second part deals with a number of problems of analytic continuations of analytic and harmonic functions. The third part is concerned with the investigation of the so-called inverse problems for differential equations in which it is required to determine a dif­ ferential equation from a certain family of its solutions. Novosibirsk June, 1967 M. M. LAVRENTIEV Table of Contents Chapter I Formu1ation of some Improperly Posed Problems of Mathematic:al Physics § 1 Improperly Posed Problems in Metric Spaces. . . . . . . . . § 2 A Probability Approach to Improperly Posed Problems. . . 8 Chapter II Analytic Continuation § 1 Analytic Continuation of a Function of One Complex Variable fro...

  11. A monomial chaos approach for efficient uncertainty quantification on nonlinear problems

    NARCIS (Netherlands)

    Witteveen, J.A.S.; Bijl, H.

    2008-01-01

    A monomial chaos approach is presented for efficient uncertainty quantification in nonlinear computational problems. Propagating uncertainty through nonlinear equations can be computationally intensive for existing uncertainty quantification methods. It usually results in a set of nonlinear equation

  12. A monomial chaos approach for efficient uncertainty quantification on nonlinear problems

    NARCIS (Netherlands)

    Witteveen, J.A.S.; Bijl, H.

    2008-01-01

    A monomial chaos approach is presented for efficient uncertainty quantification in nonlinear computational problems. Propagating uncertainty through nonlinear equations can be computationally intensive for existing uncertainty quantification methods. It usually results in a set of nonlinear

  13. Nonlinear physics with Maple for scientists and engineers

    CERN Document Server

    Enns, Richard H

    1997-01-01

    Philosophy of the Text This text has been designed to be an introductory survey of the basic concepts and applied mathematical methods of nonlinear science. Students in engineer­ ing, physics, chemistry, mathematics, computing science, and biology should be able to successfully use this text. In an effort to provide the students with a cutting edge approach to one of the most dynamic, often subtle, complex, and still rapidly evolving, areas of modern research-nonlinear physics-we have made extensive use of the symbolic, numeric, and plotting capabilities of Maple V Release 4 applied to examples from these disciplines. No prior knowledge of Maple or computer programming is assumed, the reader being gently introduced to Maple as an auxiliary tool as the concepts of nonlinear science are developed. The diskette which accompanies the text gives a wide variety of illustrative nonlinear examples solved with Maple. An accompanying laboratory manual of experimental activities keyed to the text allows the student the...

  14. Using Isomorphic Problems to Learn Introductory Physics

    CERN Document Server

    Lin, Shih-Yin

    2016-01-01

    In this study, we examine introductory physics students' ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. Three hundred and sixty two students from a calculus-based and an algebra-based introductory physics course were given a quiz in the recitation in which they had to first learn from a solved problem provided and take advantage of what they learned from it to solve another problem (which we call the quiz problem) which was isomorphic. Previous research suggests that the multiple-concept quiz problem is challenging for introductory students. Students in different recitation classes received different interventions in order to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. We also conducted think-aloud interviews with four introductory students in order to understand in-depth the difficulties they had and explore strategies to provide better sc...

  15. Converting general nonlinear programming problems into separable programming problems with feedforward neural networks.

    Science.gov (United States)

    Lu, Bao-Liang; Ito, Koji

    2003-09-01

    In this paper we present a method for converting general nonlinear programming (NLP) problems into separable programming (SP) problems by using feedforward neural networks (FNNs). The basic idea behind the method is to use two useful features of FNNs: their ability to approximate arbitrary continuous nonlinear functions with a desired degree of accuracy and their ability to express nonlinear functions in terms of parameterized compositions of functions of single variables. According to these two features, any nonseparable objective functions and/or constraints in NLP problems can be approximately expressed as separable functions with FNNs. Therefore, any NLP problems can be converted into SP problems. The proposed method has three prominent features. (a) It is more general than existing transformation techniques; (b) it can be used to formulate optimization problems as SP problems even when their precise analytic objective function and/or constraints are unknown; (c) the SP problems obtained by the proposed method may highly facilitate the selection of grid points for piecewise linear approximation of nonlinear functions. We analyze the computational complexity of the proposed method and compare it with an existing transformation approach. We also present several examples to demonstrate the method and the performance of the simplex method with the restricted basis entry rule for solving SP problems.

  16. An improved iterative technique for solving nonlinear doubly singular two-point boundary value problems

    Science.gov (United States)

    Roul, Pradip

    2016-06-01

    This paper presents a new iterative technique for solving nonlinear singular two-point boundary value problems with Neumann and Robin boundary conditions. The method is based on the homotopy perturbation method and the integral equation formalism in which a recursive scheme is established for the components of the approximate series solution. This method does not involve solution of a sequence of nonlinear algebraic or transcendental equations for the unknown coefficients as in some other iterative techniques developed for singular boundary value problems. The convergence result for the proposed method is established in the paper. The method is illustrated by four numerical examples, two of which have physical significance: The first problem is an application of the reaction-diffusion process in a porous spherical catalyst and the second problem arises in the study of steady-state oxygen-diffusion in a spherical cell with Michaelis-Menten uptake kinetics.

  17. Physical mechanisms of nonlinear conductivity: A model analysis

    Science.gov (United States)

    Heuer, Andreas; Lühning, Lars

    2014-03-01

    Nonlinear effects are omnipresent in thin films of ion conducting materials showing up as a significant increase of the conductivity. For a disordered hopping model general physical mechanisms are identified giving rise to the occurrence of positive or negative nonlinear effects, respectively. Analytical results are obtained in the limit of high but finite dimensions. They are compared with the numerical results for 3D up to 6D systems. A very good agreement can be found, in particular for higher dimensions. The results can also be used to rationalize previous numerical simulations. The implications for the interpretation of nonlinear conductivity experiments on inorganic ion conductors are discussed.

  18. Nonlinear evolution equations associated with the chiral-field spectral problem

    Energy Technology Data Exchange (ETDEWEB)

    Bruschi, M.; Ragnisco, O. (Istituto Nazionale di Fisica Nucleare, Roma (Italy); Dipt. di Fisica, Univ. Rome (Italy))

    1985-08-11

    In this paper we derive and investigate the class of nonlinear evolution equations (NEEs) associated with the linear problem psisub(x) = lambdaApsi. It turns out that many physically interesting NEEs pertain to this class: for instance, the chiral-field equation, the nonlinear Klein-Gordon equations, the Heisenberg and Papanicolau spin chain models, the modified Boussinesq equation, the Wadati-Konno-Ichikawa equations, etc. We display also the Baecklund transformations for such a class and exploit them to derive in a special case the one-soliton solution.

  19. Collection of problems in physical chemistry

    CERN Document Server

    Bareš, Jirí; Fried, Vojtech

    1961-01-01

    Collection of Problems in Physical Chemistry provides illustrations and problems covering the field of physical chemistry. The material has been arranged into illustrations that are solved and supplemented by problems, thus enabling readers to determine the extent to which they have mastered each subject. Most of the illustrations and problems were taken from original papers, to which reference is made. The English edition of this book has been translated from the manuscript of the 2nd Czech edition. It has been changed slightly in some places and enlarged on in others on the basis of further

  20. Physics: Quantum problems solved through games

    Science.gov (United States)

    Maniscalco, Sabrina

    2016-04-01

    Humans are better than computers at performing certain tasks because of their intuition and superior visual processing. Video games are now being used to channel these abilities to solve problems in quantum physics. See Letter p.210

  1. Galerkin approximation for inverse problems for nonautonomous nonlinear distributed systems

    Science.gov (United States)

    Banks, H. T.; Reich, Simeon; Rosen, I. G.

    1988-01-01

    An abstract framework and convergence theory is developed for Galerkin approximation for inverse problems involving the identification of nonautonomous nonlinear distributed parameter systems. A set of relatively easily verified conditions is provided which are sufficient to guarantee the existence of optimal solutions and their approximation by a sequence of solutions to a sequence of approximating finite dimensional identification problems. The approach is based on the theory of monotone operators in Banach spaces and is applicable to a reasonably broad class of nonlinear distributed systems. Operator theoretic and variational techniques are used to establish a fundamental convergence result. An example involving evolution systems with dynamics described by nonstationary quasilinear elliptic operators along with some applications are presented and discussed.

  2. Lectures on nonlinear evolution equations initial value problems

    CERN Document Server

    Racke, Reinhard

    2015-01-01

    This book mainly serves as an elementary, self-contained introduction to several important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The book employs the classical method of continuation of local solutions with the help of a priori estimates obtained for small data. The existence and uniqueness of small, smooth solutions that are defined for all values of the time parameter are investigated. Moreover, the asymptotic behavior of the solutions is described as time tends to infinity. The methods for nonlinear wave equations are discussed in detail. Other examples include the equations of elasticity, heat equations, the equations of thermoelasticity, Schrödinger equations, Klein-Gordon equations, Maxwell equations and plate equations. To emphasize the importance of studying the conditions under which small data problems offer global solutions, some blow-up results are briefly described. Moreover, the prospects for corresponding initial-boundary value p...

  3. Method of guiding functions in problems of nonlinear analysis

    CERN Document Server

    Obukhovskii, Valeri; Van Loi, Nguyen; Kornev, Sergei

    2013-01-01

    This book offers a self-contained introduction to the theory of guiding functions methods, which can be used to study the existence of periodic solutions and their bifurcations in ordinary differential equations, differential inclusions and in control theory. It starts with the basic concepts of nonlinear and multivalued analysis, describes the classical aspects of the method of guiding functions, and then presents recent findings only available in the research literature. It describes essential applications in control theory, the theory of bifurcations, and physics, making it a valuable resource not only for “pure” mathematicians, but also for students and researchers working in applied mathematics, the engineering sciences and physics.

  4. Sparse Variational Bayesian Approximations for Nonlinear Inverse Problems: applications in nonlinear elastography

    CERN Document Server

    Franck, I M

    2014-01-01

    This paper presents an efficient Bayesian framework for solving nonlinear, high-dimensional model calibration problems. It is based on Variational Bayesian formulation that aims at approximating the exact posterior by means of solving an optimization problem in an appropriately selected family of distributions. The goal is two-fold. Firstly, to find lower-dimensional representations of the unknown parameter vector that capture as much as possible of the associated posterior density, and secondly to enable the computation of the approximate posterior density with as few forward calls as possible. We discuss how these objectives can be achieved by using a fully Bayesian argumentation and employing the marginal likelihood or evidence as the ultimate model validation metric for any proposed dimensionality reduction. We demonstrate the performance of the proposed methodology to problems in nonlinear elastography where the identification of the mechanical properties of biological materials can inform non-invasive, ...

  5. On a mixed problem for a coupled nonlinear system

    Directory of Open Access Journals (Sweden)

    Marcondes R. Clark

    1997-03-01

    Full Text Available In this article we prove the existence and uniqueness of solutions to the mixed problem associated with the nonlinear system $$ u_{tt}-M(int_Omega |abla u|^2dxDelta u+|u|^ ho u+heta =f $$ $$ heta _t -Delta heta +u_{t}=g $$ where $M$ is a positive real function, and $f$ and $g$ are known real functions.

  6. On Nonlinear Approximations to Cosmic Problems with Mixed Boundary Conditions

    OpenAIRE

    Mancinelli, Paul J.; Yahil, Amos; Ganon, Galit; Dekel, Avishai

    1993-01-01

    Nonlinear approximations to problems with mixed boundary conditions are useful for predicting large-scale streaming velocities from the density field, or vice-versa. We evaluate the schemes of Bernardeau \\cite{bernardeau92}, Gramann \\cite{gramann93}, and Nusser \\etal \\cite{nusser91}, using smoothed density and velocity fields obtained from $N$-body simulations of a CDM universe. The approximation of Nusser \\etal is overall the most accurate and robust. For Gaussian smoothing of 1000\\kms\\ the ...

  7. Application of homotopy analysis method for solving nonlinear Cauchy problem

    Directory of Open Access Journals (Sweden)

    V.G. Gupta

    2012-11-01

    Full Text Available In this paper, by means of the homotopy analysis method (HAM, the solutions of some nonlinear Cauchy problem of parabolic-hyperbolic type are exactly obtained in the form of convergent Taylor series. The HAM contains the auxiliary parameter \\hbar that provides a convenient way of controlling the convergent region of series solutions. This analytical method is employed to solve linear examples to obtain the exact solutions. The results reveal that the proposed method is very effective and simple.

  8. The Generalized Projective Riccati Equations Method for Solving Nonlinear Evolution Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    E. M. E. Zayed

    2014-01-01

    Full Text Available We apply the generalized projective Riccati equations method to find the exact traveling wave solutions of some nonlinear evolution equations with any-order nonlinear terms, namely, the nonlinear Pochhammer-Chree equation, the nonlinear Burgers equation and the generalized, nonlinear Zakharov-Kuznetsov equation. This method presents wider applicability for handling many other nonlinear evolution equations in mathematical physics.

  9. Fundamentals of Physics, Problem Supplement No. 1

    Science.gov (United States)

    Halliday, David; Resnick, Robert; Walker, Jearl

    2000-05-01

    No other book on the market today can match the success of Halliday, Resnick and Walker's Fundamentals of Physics! In a breezy, easy-to-understand style the book offers a solid understanding of fundamental physics concepts, and helps readers apply this conceptual understanding to quantitative problem solving.

  10. Initial boundary value problems in mathematical physics

    CERN Document Server

    Leis, Rolf

    2013-01-01

    Based on the author's lectures at the University of Bonn in 1983-84, this book introduces classical scattering theory and the time-dependent theory of linear equations in mathematical physics. Topics include proof of the existence of wave operators, some special equations of mathematical physics, exterior boundary value problems, radiation conditions, and limiting absorption principles. 1986 edition.

  11. Selected problems in physics with answers

    CERN Document Server

    Shaskol'skaya, MP; Reynolds, WJF

    2013-01-01

    Intended as supplementary material for undergraduate physics students, this wide-ranging collection of problems in applied mathematics and physics features complete solutions. Topics include kinematics; dynamics of motion in a straight line; statics; laws of conservation; dynamics of motion in a circle; universal theory of gravitation; oscillation, waves, and sound; and more.

  12. A problem in particle physics and its Bayesian analysis

    Science.gov (United States)

    Landon, Joshua

    An up and coming field in contemporary nuclear and particle physics is "Lattice Quantum Chromodynamics", henceforth Lattice QCD. Indeed the 2004 Nobel Prize in Physics went to the developers of equations that describe QCD. In this dissertation, following a layperson's introduction to the structure of matter, we outline the statistical aspects of a problem in Lattice QCD faced by particle physicists, and point out the difficulties encountered by them in trying to address the problem. The difficulties stem from the fact that one is required to estimate a large -- conceptually infinite -- number of parameters based on a finite number of non-linear equations, each of which is a sum of exponential functions. We then present a plausible approach for solving the problem. Our approach is Bayesian and is driven by a computationally intensive Markov Chain Monte Carlo based solution. However, in order to invoke our approach we first look at the underlying anatomy of the problem and synthesize its essentials. These essentials reveal a pattern that can be harnessed via some assumptions, and this in turn enables us to outline a pathway towards a solution. We demonstrate the viability of our approach via simulated data, followed by its validation against real data provided to us by our physicist colleagues. Our approach yields results that in the past were not obtainable via alternate approaches. The contribution of this dissertation is two-fold. The first is a use of computationally intensive statistical technology to produce results in physics that could not be obtained using physics based techniques. Since the statistical architecture of the problem considered here can arise in other contexts as well, the second contribution of this dissertation is to indicate a plausible approach for addressing a generic class of problems wherein the number of parameters to be estimated exceeds the number of constraints, each constraint being a non-linear equation that is the sum of

  13. A convergence theory for a class of nonlinear programming problems.

    Science.gov (United States)

    Rauch, S. W.

    1973-01-01

    A recent convergence theory of Elkin concerning methods for unconstrained minimization is extended to a certain class of nonlinear programming problems. As in Elkin's original approach, the analysis of a variety of step-length algorithms is treated entirely separately from that of several direction algorithms. This allows for their combination into many different methods for solving the constrained problem. These include some of the methods of Rosen and Zoutendijk. We also extend the results of Topkis and Veinott to nonconvex sets and drop their requirement of the uniform feasibility of a subsequence of the search directions.

  14. A New Superlinearly Convergent SQP Algorithm for Nonlinear Minimax Problems

    Institute of Scientific and Technical Information of China (English)

    Jin-bao Jian; Ran Quan; Qing-jie Hu

    2007-01-01

    In this paper, the nonlinear minimax problems are discussed. By means of the Sequential Quadratic Programming (SQP), a new descent algorithm for solving the problems is presented. At each iteration of the proposed algorithm, a main search direction is obtained by solving a Quadratic Programming (QP) which always has a solution. In order to avoid the Maratos effect, a correction direction is obtained by updating the main direction with a simple explicit formula. Under mild conditions without the strict complementarity, the global and superlinear convergence of the algorithm can be obtained. Finally, some numerical experiments are reported.

  15. An Algorithm for Linearly Constrained Nonlinear Programming Programming Problems.

    Science.gov (United States)

    1980-01-01

    ALGORITHM FOR LINEARLY CONSTRAINED NONLINEAR PROGRAMMING PROBLEMS Mokhtar S. Bazaraa and Jamie J. Goode In this paper an algorithm for solving a linearly...distance pro- gramr.ing, as in the works of Bazaraa and Goode 12], and Wolfe [16 can be used for solving this problem. Special methods that take advantage of...34 Pacific Journal of Mathematics, Volume 16, pp. 1-3, 1966. 2. M. S. Bazaraa and J. j. Goode, "An Algorithm for Finding the Shortest Element of a

  16. Properties of positive solutions to a nonlinear parabolic problem

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This paper deals with the properties of positive solutions to a quasilinear parabolic equation with the nonlinear absorption and the boundary flux. The necessary and sufficient conditions on the global existence of solutions are described in terms of different parameters appearing in this problem. Moreover, by a result of Chasseign and Vazquez and the comparison principle, we deduce that the blow-up occurs only on the boundary (?)Ω. In addition, for a bounded Lipschitz domainΩ, we establish the blow-up rate estimates for the positive solution to this problem with a= 0.

  17. Conceptual Problem Solving in High School Physics

    Science.gov (United States)

    Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.

    2015-01-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an…

  18. ON TRANSMISSION PROBLEM FOR VISCOELASTIC WAVE EQUATION WITH A LOCALIZED A NONLINEAR DISSIPATION

    Institute of Scientific and Technical Information of China (English)

    Jeong Ja BAE; Seong Sik KIM

    2013-01-01

    In this article,we consider the global existence and decay rates of solutions for the transmission problem of Kirchhoff type wave equations consisting of two physically different types of materials,one component being a Kirchhoff type wave equation with time dependent localized dissipation which is effective only on a neighborhood of certain part of boundary,while the other being a Kirchhoff type viscoelastic wave equation with nonlinear memory.

  19. Learning Physics by Creating Problems: An Experiment

    CERN Document Server

    Kolarkar, Ameya S

    2016-01-01

    We investigated the effects of student-generated problems on exams. The process was gradual with some training throughout the semester. Initial results were highly positive with the students involved performing significantly better, and showing statistically significant improvement (t = 5.04) compared to the rest of the class, on average. Overall, performance improved when students generated problems. Motivation was a limiting factor. There is significant potential for improving student learning of physics and other problem-based topics.

  20. Extreme physical information and the nonlinear wave equation

    Science.gov (United States)

    Frieden, B. R.

    1995-09-01

    The nonlinear wave equation an be derived from a principle of extreme physical information (EPI) K. This is for a scenario where a probe electron moves through a medium in a weak magnetic field. The field is caused by a probabilistic line current source. Assume that the probability current density S of the electron is approximately constant, and directed parallel to the current source. Both the source probability amplitudes (rho) and the electron probability amplitudes (phi) are unknowns (called 'modes') of the problem. The net physical information K here consists of two components: functional K1[(phi) ] due to modes (phi) and K2[(rho) ] due to modes (rho) , respectively. To form K1[(phi) ], the Fisher information functional I1[(phi) ] for the electron modes is first constructed. This is of a fixed mathematical form. Then, a unitary transformation on (phi) to a physical space is sought that leaves I1 invariant, as form J1. This is, of course, the Fourier transformation, where the transform coordinates are momenta and I1 is essentially the mean-square electron momentum. Information K1[(phi) ] is then defined as (I1 - J1). Information K2 is formed similarly. The total information K is formed as the sum of the two components K1[(phi) ] and K2[(rho) ], by the additivity of Fisher information, and is then extremized in both (phi) and (rho) . Extremizing first in (rho) gives a Taylor series in powers of (phi) n*(phi) n, which is cut off at the quadratic term. Back-substituting this into the total Lagrangian gives one that is quadratic in (phi) n*(phi) n. Now varying (phi) * gives the required cubic wave equation in (phi) .

  1. Princeton problems in physics with solutions

    CERN Document Server

    Newbury, Nathan; Ruhl, John E; Staggs, Suzanne T; Thorsett, Stephen E

    1991-01-01

    Aimed at helping the physics student to develop a solid grasp of basic graduate-level material, this book presents worked solutions to a wide range of informative problems. These problems have been culled from the preliminary and general examinations created by the physics department at Princeton University for its graduate program. The authors, all students who have successfully completed the examinations, selected these problems on the basis of usefulness, interest, and originality, and have provided highly detailed solutions to each one. Their book will be a valuable resource not only to o

  2. Inverse problem for multi-body interaction of nonlinear waves

    CERN Document Server

    Marruzzo, Alessia; Antenucci, Fabrizio; Pagnani, Andrea; Leuzzi, Luca

    2016-01-01

    The inverse problem is studied in multi-body systems with nonlinear dynamics representing, e.g., phase-locked wave systems, standard multimode and random lasers. Using a general model for four-body interacting complex-valued variables we test two methods based on pseudolikelihood, respectively with regularization and with decimation, to determine the coupling constants from sets of measured configurations. We test statistical inference predictions for increasing number of sampled configurations and for an externally tunable {\\em temperature}-like parameter mimicing real data noise and helping minimization procedures. Analyzed models with phasors and rotors are generalizations of problems of real-valued spherical problems (e.g., density fluctuations), discrete spins (Ising and vectorial Potts) or finite number of states (standard Potts): inference methods presented here can, then, be straightforward applied to a large class of inverse problems.

  3. Global Optimization of Nonlinear Blend-Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Pedro A. Castillo Castillo

    2017-04-01

    Full Text Available The scheduling of gasoline-blending operations is an important problem in the oil refining industry. This problem not only exhibits the combinatorial nature that is intrinsic to scheduling problems, but also non-convex nonlinear behavior, due to the blending of various materials with different quality properties. In this work, a global optimization algorithm is proposed to solve a previously published continuous-time mixed-integer nonlinear scheduling model for gasoline blending. The model includes blend recipe optimization, the distribution problem, and several important operational features and constraints. The algorithm employs piecewise McCormick relaxation (PMCR and normalized multiparametric disaggregation technique (NMDT to compute estimates of the global optimum. These techniques partition the domain of one of the variables in a bilinear term and generate convex relaxations for each partition. By increasing the number of partitions and reducing the domain of the variables, the algorithm is able to refine the estimates of the global solution. The algorithm is compared to two commercial global solvers and two heuristic methods by solving four examples from the literature. Results show that the proposed global optimization algorithm performs on par with commercial solvers but is not as fast as heuristic approaches.

  4. Application of Optimization Techniques to a Nonlinear Problem of Communication Network Design With Nonlinear Constraints

    Science.gov (United States)

    2002-06-01

    IEEE TRANSACTIONS ON AUTOMATIC CONTROL , VOL. 47, NO. 6, JUNE 2002 1033 Application of Optimization Techniques to a Nonlinear Problem of Communication... IEEE TRANSACTIONS ON AUTOMATIC CONTROL , VOL. 47, NO. 6, JUNE 2002 We consider J source-destination pairs, each of which is assigned a fixed multihop...blocking probabilities are at the maximum permitted value. IEEE TRANSACTIONS ON AUTOMATIC CONTROL , VOL. 47, NO. 6, JUNE

  5. Using isomorphic problems to learn introductory physics

    Directory of Open Access Journals (Sweden)

    Shih-Yin Lin

    2011-08-01

    Full Text Available In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. Three hundred sixty-two students from a calculus-based and an algebra-based introductory physics course were given a quiz in the recitation in which they had to first learn from a solved problem provided and take advantage of what they learned from it to solve another problem (which we call the quiz problem which was isomorphic. Previous research suggests that the multiple-concept quiz problem is challenging for introductory students. Students in different recitation classes received different interventions in order to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. We also conducted think-aloud interviews with four introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. We found that most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem. However, they were not necessarily able to apply the principles correctly. Research suggests that more scaffolding is needed to help students in applying these principles appropriately. We outline a few possible strategies for future investigation.

  6. The relative degree enhancement problem for MIMO nonlinear systems

    Energy Technology Data Exchange (ETDEWEB)

    Schoenwald, D.A. [Oak Ridge National Lab., TN (United States); Oezguener, Ue. [Ohio State Univ., Columbus, OH (United States). Dept. of Electrical Engineering

    1995-07-01

    The authors present a result for linearizing a nonlinear MIMO system by employing partial feedback - feedback at all but one input-output channel such that the SISO feedback linearization problem is solvable at the remaining input-output channel. The partial feedback effectively enhances the relative degree at the open input-output channel provided the feedback functions are chosen to satisfy relative degree requirements. The method is useful for nonlinear systems that are not feedback linearizable in a MIMO sense. Several examples are presented to show how these feedback functions can be computed. This strategy can be combined with decentralized observers for a completely decentralized feedback linearization result for at least one input-output channel.

  7. Lavrentiev regularization method for nonlinear ill-posed problems

    CERN Document Server

    Kinh, N V

    2002-01-01

    In this paper we shall be concerned with Lavientiev regularization method to reconstruct solutions x sub 0 of non ill-posed problems F(x)=y sub o , where instead of y sub 0 noisy data y subdelta is an element of X with absolut(y subdelta-y sub 0) X is an accretive nonlinear operator from a real reflexive Banach space X into itself. In this regularization method solutions x subalpha supdelta are obtained by solving the singularly perturbed nonlinear operator equation F(x)+alpha(x-x*)=y subdelta with some initial guess x*. Assuming certain conditions concerning the operator F and the smoothness of the element x*-x sub 0 we derive stability estimates which show that the accuracy of the regularized solutions is order optimal provided that the regularization parameter alpha has been chosen properly.

  8. Nonlinear programming for classification problems in machine learning

    Science.gov (United States)

    Astorino, Annabella; Fuduli, Antonio; Gaudioso, Manlio

    2016-10-01

    We survey some nonlinear models for classification problems arising in machine learning. In the last years this field has become more and more relevant due to a lot of practical applications, such as text and web classification, object recognition in machine vision, gene expression profile analysis, DNA and protein analysis, medical diagnosis, customer profiling etc. Classification deals with separation of sets by means of appropriate separation surfaces, which is generally obtained by solving a numerical optimization model. While linear separability is the basis of the most popular approach to classification, the Support Vector Machine (SVM), in the recent years using nonlinear separating surfaces has received some attention. The objective of this work is to recall some of such proposals, mainly in terms of the numerical optimization models. In particular we tackle the polyhedral, ellipsoidal, spherical and conical separation approaches and, for some of them, we also consider the semisupervised versions.

  9. Jacobi elliptic functions: A review of nonlinear oscillatory application problems

    Science.gov (United States)

    Kovacic, Ivana; Cveticanin, Livija; Zukovic, Miodrag; Rakaric, Zvonko

    2016-10-01

    This review paper is concerned with the applications of Jacobi elliptic functions to nonlinear oscillators whose restoring force has a monomial or binomial form that involves cubic and/or quadratic nonlinearity. First, geometric interpretations of three basic Jacobi elliptic functions are given and their characteristics are discussed. It is shown then how their different forms can be utilized to express exact solutions for the response of certain free conservative oscillators. These forms are subsequently used as a starting point for a presentation of different quantitative techniques for obtaining an approximate response for free perturbed nonlinear oscillators. An illustrative example is provided. Further, two types of externally forced nonlinear oscillators are reviewed: (i) those that are excited by elliptic-type excitations with different exact and approximate solutions; (ii) those that are damped and excited by harmonic excitations, but their approximate response is expressed in terms of Jacobi elliptic functions. Characteristics of the steady-state response are discussed and certain qualitative differences with respect to the classical Duffing oscillator excited harmonically are pointed out. Parametric oscillations of the oscillators excited by an elliptic-type forcing are considered as well, and the differences with respect to the stability chart of the classical Mathieu equation are emphasized. The adjustment of the Melnikov method to derive the general condition for the onset of homoclinic bifurcations in a system parametrically excited by an elliptic-type forcing is provided and compared with those corresponding to harmonic excitations. Advantages and disadvantages of the use of Jacobi elliptic functions in nonlinear oscillatory application problems are discussed and some suggestions for future work are given.

  10. Fractal structures in nonlinear plasma physics.

    Science.gov (United States)

    Viana, R L; da Silva, E C; Kroetz, T; Caldas, I L; Roberto, M; Sanjuán, M A F

    2011-01-28

    Fractal structures appear in many situations related to the dynamics of conservative as well as dissipative dynamical systems, being a manifestation of chaotic behaviour. In open area-preserving discrete dynamical systems we can find fractal structures in the form of fractal boundaries, associated to escape basins, and even possessing the more general property of Wada. Such systems appear in certain applications in plasma physics, like the magnetic field line behaviour in tokamaks with ergodic limiters. The main purpose of this paper is to show how such fractal structures have observable consequences in terms of the transport properties in the plasma edge of tokamaks, some of which have been experimentally verified. We emphasize the role of the fractal structures in the understanding of mesoscale phenomena in plasmas, such as electromagnetic turbulence.

  11. Use of Topology in physical problems

    CERN Document Server

    Bhattacharjee, Somendra M

    2016-01-01

    Some of the basic concepts of topology are explored through known physics problems. This helps us in two ways, one, in justifying the definitions and the concepts, and two, in showing that some of the familiar things are actually related to the topological analysis of the problem. The problems discussed are taken from classical mechanics, quantum mechanics, statistical mechanics, solid state physics, and biology (DNA), to emphasize some unity in diverse areas of physics. It is the real Euclidean space, $R^d$, with which we are most familiar. Intuitions can therefore be sharpened by appealing to the relevant features of this known space, and often by falling back on to it. This is what is done in this chapter.

  12. Laser Plasma Physics - Forces and Nonlinear Principle

    CERN Document Server

    Hora, Heinrich

    2014-01-01

    This work is an electronic pre-publication of a book manuscript being under consideration in order to provide information to interested researchers about a review of mechanical forces in plasmas by electro-dynamic fields. Beginning with Kelvin's ponderomotive force of 1845 in electrostatics, the hydrodynamic force in a plasma is linked with quadratic force quantities of electric and magnetic fields. Hydrodynamics is interlinked with single particle motion of plasma particles electric field generation and double layers and sheaths due to properties of inhomogeneous plasmas. Consequences relate to laser driven particle acceleration and fusion energy. Beyond the very broad research field of fusion using nanosecond laser pulses based on thermodynamics, the new picosecond pulses of ultrahigh power opened a categorically different non-thermal interaction finally permitting proton-boron fusion with eliminating problems of nuclear radiation.

  13. Application of genetic algorithms in nonlinear heat conduction problems.

    Science.gov (United States)

    Kadri, Muhammad Bilal; Khan, Waqar A

    2014-01-01

    Genetic algorithms are employed to optimize dimensionless temperature in nonlinear heat conduction problems. Three common geometries are selected for the analysis and the concept of minimum entropy generation is used to determine the optimum temperatures under the same constraints. The thermal conductivity is assumed to vary linearly with temperature while internal heat generation is assumed to be uniform. The dimensionless governing equations are obtained for each selected geometry and the dimensionless temperature distributions are obtained using MATLAB. It is observed that GA gives the minimum dimensionless temperature in each selected geometry.

  14. Nonlinear triple-point problems on time scales

    Directory of Open Access Journals (Sweden)

    Douglas R. Anderson

    2004-04-01

    Full Text Available We establish the existence of multiple positive solutions to the nonlinear second-order triple-point boundary-value problem on time scales, $$displaylines{ u^{Delta abla}(t+h(tf(t,u(t=0, cr u(a=alpha u(b+delta u^Delta(a,quad eta u(c+gamma u^Delta(c=0 }$$ for $tin[a,c]subsetmathbb{T}$, where $mathbb{T}$ is a time scale, $eta, gamma, deltage 0$ with $Beta+gamma>0$, $0

  15. Basis properties of eigenfunctions of nonlinear Sturm-Liouville problems

    OpenAIRE

    Peter E. Zhidkov

    2000-01-01

    We consider three nonlinear eigenvalue problems that consist of $$-y''+f(y^2)y=lambda y$$ with one of the following boundary conditions: $$displaylines{ y(0)=y(1)=0 quad y'(0)=p ,,cr y'(0)=y(1)=0 quad y(0)=p,, cr y'(0)=y'(1)=0 quad y(0)=p,, }$$ where $p$ is a positive constant. Under smoothness and monotonicity conditions on $f$, we show the existence and uniqueness of a sequence of eigenvalues ${lambda _n}$ and corresponding eigenfunctions ${y_n}$ such that $y_n(x)$ has precisely $n$ roots i...

  16. Computer-aided analysis of nonlinear problems in transport phenomena

    Science.gov (United States)

    Brown, R. A.; Scriven, L. E.; Silliman, W. J.

    1980-01-01

    The paper describes algorithms for equilibrium and steady-state problems with coefficients in the expansions derived by the Galerkin weighted residual method and calculated from the resulting sets of nonlinear algebraic equations by the Newton-Raphson method. Initial approximations are obtained from nearby solutions by continuation techniques as parameters are varied. The Newton-Raphson technique is preferred because the Jacobian of the solution is useful for continuation, for analyzing the stability of solutions, for detecting bifurcation of solution families, and for computing asymptotic estimates of the effects on any solution of small changes in parameters, boundary conditions, and boundary shape.

  17. Anharmonic effects in simple physical models: introducing undergraduates to nonlinearity

    Science.gov (United States)

    Christian, J. M.

    2017-09-01

    Given the pervasive character of nonlinearity throughout the physical universe, a case is made for introducing undergraduate students to its consequences and signatures earlier rather than later. The dynamics of two well-known systems—a spring and a pendulum—are reviewed when the standard textbook linearising assumptions are relaxed. Some qualitative effects of nonlinearity can be anticipated from symmetry (e.g., inspection of potential energy functions), and further physical insight gained by applying a simple successive-approximation method that might be taught in parallel with courses on classical mechanics, ordinary differential equations, and computational physics. We conclude with a survey of how these ideas have been deployed on programmes at a UK university.

  18. Separable boundary-value problems in physics

    CERN Document Server

    Willatzen, Morten

    2011-01-01

    Innovative developments in science and technology require a thorough knowledge of applied mathematics, particularly in the field of differential equations and special functions. These are relevant in modeling and computing applications of electromagnetic theory and quantum theory, e.g. in photonics and nanotechnology. The problem of solving partial differential equations remains an important topic that is taught at both the undergraduate and graduate level. Separable Boundary-Value Problems in Physics is an accessible and comprehensive treatment of partial differential equations i

  19. 1000 Solved Problems in Modern Physics

    CERN Document Server

    Kamal, Ahmad A

    2010-01-01

    This book basically caters to the needs of undergraduates and graduates physics students in the area of modern physics, specially particle and nuclear physics. Lecturers/tutors may use it as a resource book. The contents of the book are based on the syllabi currently used in the undergraduate courses in USA, U.K., and other countries. The book is divided into 10 chapters, each chapter beginning with a brief but adequate summary and necessary formulas, tables and line diagrams followed by a variety of typical problems useful for assignments and exams. Detailed solutions are provided at the end of each chapter.

  20. Enhancing Cognitive Development through Physics Problem Solving: A Taxonomy of Introductory Physics Problems

    Science.gov (United States)

    Teodorescu, Raluca; Bennhold, Cornelius; Feldman, Gerald

    2008-10-01

    As part of an ongoing project to reform the introductory algebra-based physics courses at George Washington University, we are developing a taxonomy of introductory physics problems (TIPP) that establishes a connection between the physics problems, the type of physics knowledge they involve and the cognitive processes they develop in students. This taxonomy will provide, besides an algorithm for classifying physics problems, an organized and relatively easy-to-use database of physics problems that contains the majority of already created text-based and research-based types of problems. In addition, this taxonomy will reveal the kinds of physics problems that are still lacking and that are found to be necessary to enhance students' cognitive development. For this reason, we expect it to be a valuable teaching resource for physics instructors which will enable them to select the problems used in their curricular materials based on the specifics of their students' cognition and the learning objectives they want to achieve in their class. This organization scheme will also provide a framework for creating physics-related assessments with a cognitive component.

  1. Basic Health Physics: Problems and Solutions

    Science.gov (United States)

    Bevelacqua, Joseph John

    1999-01-01

    Radiation litigation, the cleanup and decommissioning of nuclear facilities, radon exposure, nuclear medicine, food irradiation, stricter regulatory climate--these are some of the reasons health physics and radiation protection professionals are increasingly called upon to upgrade their skills. Designed to prepare candidates for the American Board of Health Physics Comprehensive examination (Part I) and other certification examinations, Basic Health Physics: Problems and Solutions introduces professionals in the field to radiation protection principles and their practical application in routine and emergency situations. It features more than 650 worked examples illustrating concepts under discussion along with an in-depth coverage of sources of radiation, standards and regulations, biological effects of ionizing radiation, instrumentation, external and internal dosimetry, counting statistics, monitoring and interpretations, operational health physics, transportation and waste, nuclear emergencies, and more. Reflecting for the first time the true scope of health physics at an introductory level, Basic Health Physics: Problems and Solutions gives readers the tools to properly evaluate challenging situations in all areas of radiation protection, including the medical, university, power reactor, fuel cycle, research reactor, environmental, non-ionizing radiation, and accelerator health physics.

  2. Hybrid transfinite element modeling/analysis of nonlinear heat conduction problems involving phase change

    Science.gov (United States)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1988-01-01

    The present paper describes the applicability of hybrid transfinite element modeling/analysis formulations for nonlinear heat conduction problems involving phase change. The methodology is based on application of transform approaches and classical Galerkin schemes with finite element formulations to maintain the modeling versatility and numerical features for computational analysis. In addition, in conjunction with the above, the effects due to latent heat are modeled using enthalpy formulations to enable a physically realistic approximation to be dealt computationally for materials exhibiting phase change within a narrow band of temperatures. Pertinent details of the approach and computational scheme adapted are described in technical detail. Numerical test cases of comparative nature are presented to demonstrate the applicability of the proposed formulations for numerical modeling/analysis of nonlinear heat conduction problems involving phase change.

  3. Modern meta-heuristics based on nonlinear physics processes: A review of models and design procedures

    Science.gov (United States)

    Salcedo-Sanz, S.

    2016-10-01

    Meta-heuristic algorithms are problem-solving methods which try to find good-enough solutions to very hard optimization problems, at a reasonable computation time, where classical approaches fail, or cannot even been applied. Many existing meta-heuristics approaches are nature-inspired techniques, which work by simulating or modeling different natural processes in a computer. Historically, many of the most successful meta-heuristic approaches have had a biological inspiration, such as evolutionary computation or swarm intelligence paradigms, but in the last few years new approaches based on nonlinear physics processes modeling have been proposed and applied with success. Non-linear physics processes, modeled as optimization algorithms, are able to produce completely new search procedures, with extremely effective exploration capabilities in many cases, which are able to outperform existing optimization approaches. In this paper we review the most important optimization algorithms based on nonlinear physics, how they have been constructed from specific modeling of a real phenomena, and also their novelty in terms of comparison with alternative existing algorithms for optimization. We first review important concepts on optimization problems, search spaces and problems' difficulty. Then, the usefulness of heuristics and meta-heuristics approaches to face hard optimization problems is introduced, and some of the main existing classical versions of these algorithms are reviewed. The mathematical framework of different nonlinear physics processes is then introduced as a preparatory step to review in detail the most important meta-heuristics based on them. A discussion on the novelty of these approaches, their main computational implementation and design issues, and the evaluation of a novel meta-heuristic based on Strange Attractors mutation will be carried out to complete the review of these techniques. We also describe some of the most important application areas, in

  4. Conceptual problem solving in high school physics

    Science.gov (United States)

    Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.

    2015-12-01

    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers' implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.

  5. Approximation on computing partial sum of nonlinear differential eigenvalue problems

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In computing the electronic structure and energy band in a system of multi-particles, quite a large number of problems are referred to the acquisition of obtaining the partial sum of densities and energies using the “first principle”. In the conventional method, the so-called self-consistency approach is limited to a small scale because of high computing complexity. In this paper, the problem of computing the partial sum for a class of nonlinear differential eigenvalue equations is changed into the constrained functional minimization. By space decomposition and perturbation method, a secondary approximating formula for the minimal is provided. It is shown that this formula is more precise and its quantity of computation can be reduced significantly

  6. Boundary-Value Problems for Weakly Nonlinear Delay Differential Systems

    Directory of Open Access Journals (Sweden)

    A. Boichuk

    2011-01-01

    Full Text Available Conditions are derived of the existence of solutions of nonlinear boundary-value problems for systems of n ordinary differential equations with constant coefficients and single delay (in the linear part and with a finite number of measurable delays of argument in nonlinearity: ż(t=Az(t-τ+g(t+εZ(z(hi(t,t,ε,  t∈[a,b], assuming that these solutions satisfy the initial and boundary conditions z(s:=ψ(s if s∉[a,b],  lz(⋅=α∈Rm. The use of a delayed matrix exponential and a method of pseudoinverse by Moore-Penrose matrices led to an explicit and analytical form of sufficient conditions for the existence of solutions in a given space and, moreover, to the construction of an iterative process for finding the solutions of such problems in a general case when the number of boundary conditions (defined by a linear vector functional l does not coincide with the number of unknowns in the differential system with a single delay.

  7. Nonlinear quantum mechanics, the superposition principle, and the quantum measurement problem

    Indian Academy of Sciences (India)

    Kinjalk Lochan; T P Singh

    2011-01-01

    There are four reasons why our present knowledge and understanding of quantum mechanics can be regarded as incomplete. (1) The principle of linear superposition has not been experimentally tested for position eigenstates of objects having more than about a thousand atoms. (2) There is no universally agreed upon explanation for the process of quantum measurement. (3) There is no universally agreed upon explanation for the observed fact that macroscopic objects are not found in superposition of position eigenstates. (4) Most importantly, the concept of time is classical and hence external to quantum mechanics: there should exist an equivalent reformulation of the theory which does not refer to an external classical time. In this paper we argue that such a reformulation is the limiting case of a nonlinear quantum theory, with the nonlinearity becoming important at the Planck mass scale. Such a nonlinearity can provide insights into the aforesaid problems. We use a physically motivated model for a nonlinear Schr ¨odinger equation to show that nonlinearity can help in understanding quantum measurement. We also show that while the principle of linear superposition holds to a very high accuracy for atomic systems, the lifetime of a quantum superposition becomes progressively smaller, as one goes from microscopic to macroscopic objects. This can explain the observed absence of position superpositions in macroscopic objects (lifetime is too small). It also suggests that ongoing laboratory experiments may be able to detect the finite superposition lifetime for mesoscopic objects in the near future.

  8. Application of HPEM to investigate the response and stability of nonlinear problems in vibration

    DEFF Research Database (Denmark)

    Mohammadi, M.H.; Mohammadi, A.; Kimiaeifar, A.;

    2010-01-01

    In this work, a powerful analytical method, called He's Parameter Expanding Methods (HPEM) is used to obtain the exact solution of nonlinear problems in nonlinear vibration. In this work, the governing equation is obtained by using Lagrange method, then the nonlinear governing equation is solved...... and convenient for solving these problems....

  9. An inverse problem of determining a nonlinear term in an ordinary differential equation

    OpenAIRE

    Kamimura, Yutaka

    1998-01-01

    An inverse problem for a nonlinear ordinary differential equation is discussed. We prove an existence theorem of a nonlinear term with which a boundary value problem admits a solution. This is an improvement of earlier work by A. Lorenzi. We also prove a uniqueness theorem of the nonlinear term.

  10. Modified Lagrangian and Least Root Approaches for General Nonlinear Optimization Problems

    Institute of Scientific and Technical Information of China (English)

    W. Oettli; X.Q. Yang

    2002-01-01

    In this paper we study nonlinear Lagrangian methods for optimization problems with side constraints.Nonlinear Lagrangian dual problems are introduced and their relations with the original problem are established.Moreover, a least root approach is investigated for these optimization problems.

  11. Solitary wave solutions to nonlinear evolution equations in mathematical physics

    Indian Academy of Sciences (India)

    Anwar Ja’afar Mohamad Jawad; M Mirzazadeh; Anjan Biswas

    2014-10-01

    This paper obtains solitons as well as other solutions to a few nonlinear evolution equations that appear in various areas of mathematical physics. The two analytical integrators that are applied to extract solutions are tan–cot method and functional variable approaches. The soliton solutions can be used in the further study of shallow water waves in (1+1) as well as (2+1) dimensions.

  12. Inverse problem for multi-body interaction of nonlinear waves.

    Science.gov (United States)

    Marruzzo, Alessia; Tyagi, Payal; Antenucci, Fabrizio; Pagnani, Andrea; Leuzzi, Luca

    2017-06-14

    The inverse problem is studied in multi-body systems with nonlinear dynamics representing, e.g., phase-locked wave systems, standard multimode and random lasers. Using a general model for four-body interacting complex-valued variables we test two methods based on pseudolikelihood, respectively with regularization and with decimation, to determine the coupling constants from sets of measured configurations. We test statistical inference predictions for increasing number of sampled configurations and for an externally tunable temperature-like parameter mimicing real data noise and helping minimization procedures. Analyzed models with phasors and rotors are generalizations of problems of real-valued spherical problems (e.g., density fluctuations), discrete spins (Ising and vectorial Potts) or finite number of states (standard Potts): inference methods presented here can, then, be straightforward applied to a large class of inverse problems. The high versatility of the exposed techniques also concerns the number of expected interactions: results are presented for different graph topologies, ranging from sparse to dense graphs.

  13. Fault detection for nonlinear systems - A standard problem approach

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    1998-01-01

    The paper describes a general method for designing (nonlinear) fault detection and isolation (FDI) systems for nonlinear processes. For a rich class of nonlinear systems, a nonlinear FDI system can be designed using convex optimization procedures. The proposed method is a natural extension...

  14. A collection of problems for physics teaching

    Energy Technology Data Exchange (ETDEWEB)

    Groeber, S; Jodl, H-J, E-mail: groeber@rhrk.uni-kl.d [Department of Physics, University of Technology Kaiserslautern, Erwin-Schroedinger-Strasse, D-67663 Kaiserslautern (Germany)

    2010-07-15

    Problems are an important instrument for teachers to mediate physics content and for learners to adopt this content. This collection of problems is not only suited to traditional teaching and learning in lectures or student labs, but also to all kinds of new ways of teaching and learning, such as self-study, long-distance teaching, project-oriented learning and the use of remote labs/web experiments. We focus on Rutherford's scattering experiment, electron diffraction, Millikan's experiment and the use of pendulums to measure the dependence of gravitational acceleration on latitude. The collection contains about 50 problems with 160 subtasks and solutions, altogether 100 pages. Structure, content, range and the added value of the problems are described. The whole collection can be downloaded for free from http://rcl.physik.uni-kl.de.

  15. SINGULAR LIMIT SOLUTIONS FOR TWO-DIMENSIONAL ELLIPTIC PROBLEMS WITH EXPONENTIALLY DOMINATED NONLINEARITY

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The authors consider the existence of singular limit solutions for a family of nonlinear elliptic problems with exponentially dominated nonlinearity and Dirichlet boundary condition and generalize the results of [3].

  16. A Hierarchy of New Nonlinear Evolution Equations Associated with a 3 × 3 Matrix Spectral Problem

    Institute of Scientific and Technical Information of China (English)

    GENG Xian-Guo; LI Fang

    2009-01-01

    A 3 × 3 matrix spectral problem with three potentials and the corresponding hierarchy of new nonlinear evolution equations are proposed. Generalized Hamiltonian structures for the hierarchy of nonlinear evolution equations are derived with the aid of trace identity.

  17. Minimization and error estimates for a class of the nonlinear Schrodinger eigenvalue problems

    Institute of Scientific and Technical Information of China (English)

    MurongJIANG; JiachangSUN

    2000-01-01

    It is shown that the nonlinear eigenvaiue problem can be transformed into a constrained functional problem. The corresponding minimal function is a weak solution of this nonlinear problem. In this paper, one type of the energy functional for a class of the nonlinear SchrSdinger eigenvalue problems is proposed, the existence of the minimizing solution is proved and the error estimate is given out.

  18. Foundations of Complex Systems Nonlinear Dynamics, Statistical Physics, and Prediction

    CERN Document Server

    Nicolis, Gregoire

    2007-01-01

    Complexity is emerging as a post-Newtonian paradigm for approaching a large body of phenomena of concern at the crossroads of physical, engineering, environmental, life and human sciences from a unifying point of view. This book outlines the foundations of modern complexity research as it arose from the cross-fertilization of ideas and tools from nonlinear science, statistical physics and numerical simulation. It is shown how these developments lead to an understanding, both qualitative and quantitative, of the complex systems encountered in nature and in everyday experience and, conversely, h

  19. Boundary and eigenvalue problems in mathematical physics

    CERN Document Server

    Sagan, Hans

    1989-01-01

    This well-known text uses a limited number of basic concepts and techniques - Hamilton's principle, the theory of the first variation and Bernoulli's separation method - to develop complete solutions to linear boundary value problems associated with second order partial differential equations such as the problems of the vibrating string, the vibrating membrane, and heat conduction. It is directed to advanced undergraduate and beginning graduate students in mathematics, applied mathematics, physics, and engineering who have completed a course in advanced calculus. In the first three chapters,

  20. On the sputtering of metals and insulators: A nonlinear evolution problem with nonlinear boundary condition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H. [Univ. of Texas, Austin, TX (United States). Dept. of Mathematics

    1994-10-01

    In this paper the author considers a nonlinear evolution problem denoted in the paper as P. Problem (P) arises in the study of thermal evaporation of atoms and molecules from locally heated surface regions (spikes) invoked as one of several mechanisms of ion-bombardment-induced particle emission (sputtering). Then in the case of particle-induced evaporation, the Stefan-Boltzman law of heat loss by radiation is replaced by some activation law describing the loss of heat by evaporation. The equation in P is the so-called degenerate diffusion problem, which has been extensively studied in recent years. However, when dealing with the nonlinear flux boundary condition, {beta}({center_dot}) is usually assumed to be monotene. The purpose of this paper is to provide a general theory for problem P under a different assumption on {beta}({center_dot}), i.e., Lipschitz continuity instead of monotonicity. The main idea of the proof used here is to choose an appropriate test function from the corresponding linearized dual space of the solution. The similar idea has been used by many authors, e.g., Aronson, Crandall and Peletier, Bertsch and Hilhorst and Friedman. The author follows the proof of Bertsch and Hilhorst. The paper is organized as follows. They begin by stating the precise assumptions on the functions involved in P and by defining a weak solution. Then, in Section 2 they prove the existence of the solution by the method of parabolic regularization. The uniqueness is proved in Section 3. Finally, they study the large time behavior of the solution in Section 4.

  1. Active-Set Reduced-Space Methods with Nonlinear Elimination for Two-Phase Flow Problems in Porous Media

    KAUST Repository

    Yang, Haijian

    2016-07-26

    Fully implicit methods are drawing more attention in scientific and engineering applications due to the allowance of large time steps in extreme-scale simulations. When using a fully implicit method to solve two-phase flow problems in porous media, one major challenge is the solution of the resultant nonlinear system at each time step. To solve such nonlinear systems, traditional nonlinear iterative methods, such as the class of the Newton methods, often fail to achieve the desired convergent rate due to the high nonlinearity of the system and/or the violation of the boundedness requirement of the saturation. In the paper, we reformulate the two-phase model as a variational inequality that naturally ensures the physical feasibility of the saturation variable. The variational inequality is then solved by an active-set reduced-space method with a nonlinear elimination preconditioner to remove the high nonlinear components that often causes the failure of the nonlinear iteration for convergence. To validate the effectiveness of the proposed method, we compare it with the classical implicit pressure-explicit saturation method for two-phase flow problems with strong heterogeneity. The numerical results show that our nonlinear solver overcomes the often severe limits on the time step associated with existing methods, results in superior convergence performance, and achieves reduction in the total computing time by more than one order of magnitude.

  2. About some inverse problems of nuclear physics

    CERN Document Server

    Belashev, B Z

    2002-01-01

    Some inverse problems of high energy physics and NMR spectroscopy are observed. The methods of the Fourier transformation and the maximum entropy technique have been applied for their solutions. The integral images of the experimental distributions are informative for determination of the space-time characteristics of the particles generation domain and for the analysis of blurring spectra. These methods have been tested in comparison with the results which have been obtained independently

  3. Modified Semi-Classical Methods for Nonlinear Quantum Oscillations Problems

    CERN Document Server

    Moncrief, Vincent; Maitra, Rachel

    2012-01-01

    We develop a modified semi-classical approach to the approximate solution of Schrodinger's equation for certain nonlinear quantum oscillations problems. At lowest order, the Hamilton-Jacobi equation of the conventional semi-classical formalism is replaced by an inverted-potential-vanishing-energy variant thereof. Under smoothness, convexity and coercivity hypotheses on its potential energy function, we prove, using the calculus of variations together with the Banach space implicit function theorem, the existence of a global, smooth `fundamental solution'. Higher order quantum corrections, for ground and excited states, are computed through the integration of associated systems of linear transport equations, and formal expansions for the corresponding energy eigenvalues obtained by imposing smoothness on the quantum corrections to the eigenfunctions. For linear oscillators our expansions naturally truncate, reproducing the well-known solutions for the energy eigenfunctions and eigenvalues. As an application, w...

  4. Stability analysis for nonlinear multi-variable delay perturbation problems

    Institute of Scientific and Technical Information of China (English)

    WangHongshan; ZhangChengjian

    2003-01-01

    This paper discusses the stability of theoretical solutions for nonlinear multi-variable delay perturbation problems(MVDPP) of the form x′(t) = f(x(t),x(t - τ1(t)),…,x(t -τm(t)),y(t),y(t - τ1(t)),…,y(t - τm(t))), and gy′(t) = g(x(t),x(t- τ1(t)),…,x(t- τm(t)),y(t),y(t- τ1(t)),…,y(t- τm(t))), where 0 < ε <<1. A sufficient condition of stability for the systems is obtained. Additionally we prove the numerical solutions of the implicit Euler method are stable under this condition.

  5. THREE POINT BOUNDARY VALUE PROBLEMS FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Mujeeb ur Rehman; Rahmat Ali Khan; Naseer Ahmad Asif

    2011-01-01

    In this paper,we study existence and uniqueness of solutions to nonlinear three point boundary value problems for fractional differential equation of the type cDδ0+u(t) =f(t,u(t),cDσ0+u(t)),t ∈[0,T],u(0) =αu(η),u(T) =βu(η),where1 <δ<2,0<σ< 1,α,β∈R,η∈(0,T),αη(1-β)+(1-α)(T-βη) ≠0 and cDoδ+,cDσ0+ are the Caputo fractional derivatives.We use Schauder fixed point theorem and contraction mapping principle to obtain existence and uniqueness results.Examples are also included to show the applicability of our results.

  6. On a shock problem involving a nonlinear viscoelastic bar

    Directory of Open Access Journals (Sweden)

    Tran Ngoc Diem

    2005-11-01

    Full Text Available We treat an initial boundary value problem for a nonlinear wave equation utt−uxx+K|u|αu+λ|ut|βut=f(x,t in the domain 0problem in classical Sobolev spaces. The proof is based on a Galerkin-type approximation, various energy estimates, and compactness arguments. In the case of α=β=0, the regularity of solutions is studied also. Finally, we obtain an asymptotic expansion of the solution (u,P of this problem up to order N+1 in two small parameters K, λ.

  7. An ansatz for solving nonlinear partial differential equations in mathematical physics.

    Science.gov (United States)

    Akbar, M Ali; Ali, Norhashidah Hj Mohd

    2016-01-01

    In this article, we introduce an ansatz involving exact traveling wave solutions to nonlinear partial differential equations. To obtain wave solutions using direct method, the choice of an appropriate ansatz is of great importance. We apply this ansatz to examine new and further general traveling wave solutions to the (1+1)-dimensional modified Benjamin-Bona-Mahony equation. Abundant traveling wave solutions are derived including solitons, singular solitons, periodic solutions and general solitary wave solutions. The solutions emphasize the nobility of this ansatz in providing distinct solutions to various tangible phenomena in nonlinear science and engineering. The ansatz could be more efficient tool to deal with higher dimensional nonlinear evolution equations which frequently arise in many real world physical problems.

  8. A Dual Approach for Solving Nonlinear Infinity-Norm Minimization Problems with Applications in Separable Cases

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, we consider nonlinear infinity-norm minimization problems. We device a reliable Lagrangian dual approach for solving this kind of problems and based on this method we propose an algorithm for the mixed linear and nonlinear infinitynorm minimization problems. Numerical results are presented.

  9. Nonlinear Insolation Forcing: A Physical Mechanism for Climate Change

    Science.gov (United States)

    Liu, H. S.

    1998-01-01

    This paper focuses on recent advances in the understanding of nonlinear insolation forcing for climate change. The amplitude-frequency resonances in the insolation variations induced by the Earth's changing obliquity are emergent and may provide a physical mechanism to drive the glaciation cycles. To establish the criterion that nonlinear insolation forcing is responsible for major climate changes, the cooperative phenomena between the frequency and amplitude of the insolation are defined as insolation pulsation. Coupling of the insolation frequency and amplitude variations has established an especially new and interesting series of insolation pulses. These pulses would modulate the insolation in such a way that the mode of insolation variations could be locked to generate the 100-kyr ice age cycle which is a long-time geophysical puzzle. The nonlinear behavior of insolation forcing is tested by energy balance and ice sheet climate models and the physical mechanism behind this forcing is explained in terms of pulse duration in the incoming solar radiation. Calculations of the solar energy flux at the top of the atmosphere show that the duration of the negative and positive insolation pulses is about 2 thousand years which is long enough to prolong glaciation into deep ice ages and cause rapid melting of large ice sheets in the high latitudes of the northern hemisphere. We have performed numerical simulations of climate response to nonlinear insolation forcing for the past 2 million years. Our calculated results of temperature fluctuations are in good agreement with the climate cycles as seen in the terrestrial biogenic silica (BDP-96-2) data as well as in the marine oxygen isotope (delta(sup 18)O) records.

  10. Renormalization-group symmetries for solutions of nonlinear boundary value problems

    CERN Document Server

    Kovalev, V F

    2008-01-01

    Approximately 10 years ago, the method of renormalization-group symmetries entered the field of boundary value problems of classical mathematical physics, stemming from the concepts of functional self-similarity and of the Bogoliubov renormalization group treated as a Lie group of continuous transformations. Overwhelmingly dominating practical quantum field theory calculations, the renormalization-group method formed the basis for the discovery of the asymptotic freedom of strong nuclear interactions and underlies the Grand Unification scenario. This paper describes the logical framework of a new algorithm based on the modern theory of transformation groups and presents the most interesting results of application of the method to differential and/or integral equation problems and to problems that involve linear functionals of solutions. Examples from nonlinear optics, kinetic theory, and plasma dynamics are given, where new analytical solutions obtained with this algorithm have allowed describing the singular...

  11. Contributions of plasma physics to chaos and nonlinear dynamics

    Science.gov (United States)

    Escande, D. F.

    2016-11-01

    This topical review focusses on the contributions of plasma physics to chaos and nonlinear dynamics bringing new methods which are or can be used in other scientific domains. It starts with the development of the theory of Hamiltonian chaos, and then deals with order or quasi order, for instance adiabatic and soliton theories. It ends with a shorter account of dissipative and high dimensional Hamiltonian dynamics, and of quantum chaos. Most of these contributions are a spin-off of the research on thermonuclear fusion by magnetic confinement, which started in the fifties. Their presentation is both exhaustive and compact. [15 April 2016

  12. Inverse Problems in Classical and Quantum Physics

    CERN Document Server

    Almasy, Andrea A

    2009-01-01

    The subject of this thesis is in the area of Applied Mathematics known as Inverse Problems. Inverse problems are those where a set of measured data is analysed in order to get as much information as possible on a model which is assumed to represent a system in the real world. We study two inverse problems in the fields of classical and quantum physics: QCD condensates from tau-decay data and the inverse conductivity problem. We use a functional method which allows us to extract within rather general assumptions phenomenological parameters of QCD (the condensates) from a comparison of the time-like experimental data with asymptotic space-like results from theory. The price to be paid for the generality of assumptions is relatively large errors in the values of the extracted parameters. Although we do not claim that our method is superior to other approaches, we hope that our results lend additional confidence to the numerical results obtained with the help of methods based on QCD sum rules. In this thesis, als...

  13. UNSYMMETRICAL NONLINEAR BENDING PROBLEM OF CIRCULAR THIN PLATE WITH VARIABLE THICKNESS

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-zhi; ZHAO Yong-gang; JU Xu; ZHAO Yan-ying; YEH Kai-yuan

    2005-01-01

    Firstly, the cross large deflection equation of circular thin plate with variable thickness in rectangular coordinates system was transformed into unsymmetrical large deflection equation of circular thin plate with variable thickness in polar coordinates system.This cross equation in polar coordinates system is united with radical and tangential equations in polar coordinates system, and then three equilibrium equations were obtained. Physical equations and nonlinear deformation equations of strain at central plane are substituted into superior three equilibrium equations, and then three unsymmetrical nonlinear equations with three deformation displacements were obtained. Solution with expression of Fourier series is substituted into fundamental equations; correspondingly fundamental equations with expression of Fourier series were obtained. The problem was solved by modified iteration method under the boundary conditions of clamped edges. As an example, the problem of circular thin plate with variable thickness subjected to loads with cosin form was studied.Characteristic curves of the load varying with the deflection were plotted. The curves vary with the variation of the parameter of variable thickness. Its solution is accordant with physical conception.

  14. Scaling properties of weakly nonlinear coefficients in the Faraday problem.

    Science.gov (United States)

    Skeldon, A C; Porter, J

    2011-07-01

    Interesting and exotic surface wave patterns have regularly been observed in the Faraday experiment. Although symmetry arguments provide a qualitative explanation for the selection of some of these patterns (e.g., superlattices), quantitative analysis is hindered by mathematical difficulties inherent in a time-dependent, free-boundary Navier-Stokes problem. More tractable low viscosity approximations are available, but these do not necessarily capture the moderate viscosity regime of the most interesting experiments. Here we focus on weakly nonlinear behavior and compare the scaling results derived from symmetry arguments in the low viscosity limit with the computed coefficients of appropriate amplitude equations using both the full Navier-Stokes equations and a reduced set of partial differential equations due to Zhang and Vinãls. We find the range of viscosities over which one can expect "low viscosity" theories to hold. We also find that there is an optimal viscosity range for locating superlattice patterns experimentally-large enough that the region of parameters giving stable patterns is not impracticably small, yet not so large that crucial resonance effects are washed out. These results help explain some of the discrepancies between theory and experiment.

  15. On Nonlinear Approximations to Cosmic Problems with Mixed Boundary Conditions

    CERN Document Server

    Mancinelli, P J; Ganon, G; Dekel, A; Mancinelli, Paul J.; Yahil, Amos; Ganon, Galit; Dekel, Avishai

    1993-01-01

    Nonlinear approximations to problems with mixed boundary conditions are useful for predicting large-scale streaming velocities from the density field, or vice-versa. We evaluate the schemes of Bernardeau \\cite{bernardeau92}, Gramann \\cite{gramann93}, and Nusser \\etal \\cite{nusser91}, using smoothed density and velocity fields obtained from $N$-body simulations of a CDM universe. The approximation of Nusser \\etal is overall the most accurate and robust. For Gaussian smoothing of 1000\\kms\\ the mean error in the approximated relative density perturbation, $\\delta$, is smaller than 0.06, and the dispersion is 0.1. The \\rms\\ error in the estimated velocity is smaller than 60\\kms, and the dispersion is 40\\kms. For smoothing of 500\\kms\\ these numbers increase by about a factor $\\sim 2$ for $\\delta < 4-5$, but deteriorate at higher densities. The other approximations are comparable to those of Nusser \\etal for smoothing of 1000\\kms, but are much less successful for the smaller smoothing of 500\\kms.

  16. Basis properties of eigenfunctions of nonlinear Sturm-Liouville problems

    Directory of Open Access Journals (Sweden)

    Peter E. Zhidkov

    2000-04-01

    Full Text Available We consider three nonlinear eigenvalue problems that consist of $$-y''+f(y^2y=lambda y$$ with one of the following boundary conditions: $$displaylines{ y(0=y(1=0 quad y'(0=p ,,cr y'(0=y(1=0 quad y(0=p,, cr y'(0=y'(1=0 quad y(0=p,, }$$ where $p$ is a positive constant. Under smoothness and monotonicity conditions on $f$, we show the existence and uniqueness of a sequence of eigenvalues ${lambda _n}$ and corresponding eigenfunctions ${y_n}$ such that $y_n(x$ has precisely $n$ roots in the interval $(0,1$, where $n=0,1,2,dots$. For the first boundary condition, we show that ${y_n}$ is a basis and that ${y_n/|y_n|}$ is a Riesz basis in the space $L_2(0,1$. For the second and third boundary conditions, we show that ${y_n}$ is a Riesz basis.

  17. On some problems of physical economics

    Energy Technology Data Exchange (ETDEWEB)

    Chernavskii, Dmitrii S; Starkov, Nikolai I [P.N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Shcherbakov, Andrei V [Joint Stock Company Kurs, Moscow (Russian Federation)

    2002-09-30

    Attempts of designing economics along the lines of natural sciences (in particular, physics) with the use of mathematical modeling are reviewed. This area of research has come to be known as physical economics. Some topical questions of market economics are discussed; specifically, whether the market equilibrium is unique, whether transitions between stationary states are possible, and, if so, how these transitions proceed. By analogy with physics, the apparatus of mathematical modeling is widely used in answering these questions. It is shown that, under given external conditions, a self-sufficient country can be in two stationary, stable states - either in a high-productivity (HP) or in a low-productivity (LP) state. Transitions between them appear to be either an 'economical crisis' or an 'economical miracle'. It is shown that, for contemporary Russia, the crisis is already over, and the country is now in a stable LP state. Possible transitions to a HP state are discussed. The distributions of social elements over liquid accumulations and incomes are considered. It is shown that, in present-day Russia, these distributions are bimodal, meaning the coexistence of the poor and the wealthy with virtually no middle layer in between. In the tail of the distribution, a very small number of very wealthy people are present. (reviews of topical problems)

  18. Direct approach for solving nonlinear evolution and two-point boundary value problems

    Indian Academy of Sciences (India)

    Jonu Lee; Rathinasamy Sakthivel

    2013-12-01

    Time-delayed nonlinear evolution equations and boundary value problems have a wide range of applications in science and engineering. In this paper, we implement the differential transform method to solve the nonlinear delay differential equation and boundary value problems. Also, we present some numerical examples including time-delayed nonlinear Burgers equation to illustrate the validity and the great potential of the differential transform method. Numerical experiments demonstrate the use and computational efficiency of the method. This method can easily be applied to many nonlinear problems and is capable of reducing the size of computational work.

  19. A MESHLESS LOCAL PETROV-GALERKIN METHOD FOR GEOMETRICALLY NONLINEAR PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Xiong Yuanbo; Long Shuyao; Hu De'an; Li Guangyao

    2005-01-01

    Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficulties in the large deformation analysis. The essential boundary conditions in the present formulation are imposed by a penalty method. An incremental and iterative solution procedure is used to solve geometrically nonlinear problems. Several examples are presented to demonstrate the effectiveness of the method in geometrically nonlinear problems analysis. Numerical results show that the MLPG method is an effective one and that the values of the unknown variable are quite accurate.

  20. Variational Problem with Complex Coefficient of a Nonlinear Schrödinger Equation

    Indian Academy of Sciences (India)

    Nigar Yildirim Aksoy; Bunyamin Yildiz; Hakan Yetiskin

    2012-08-01

    An optimal control problem governed by a nonlinear Schrödinger equation with complex coefficient is investigated. The paper studies existence, uniqueness and optimality conditions for the control problem.

  1. Nonlinear predator-prey singularly perturbed Robin Problems for reaction diffusion systems

    Institute of Scientific and Technical Information of China (English)

    莫嘉琪; 韩祥临

    2003-01-01

    The nonlinear predator-prey reaction diffusion systems for singularly perturbed Robin Problems are considered. Under suitable conditions, the theory of differential inequalities can be used to study the asymptotic behavior of the solution for initial boundary value problems.

  2. The Nonlinear Predator-Prey Singularly Perturbed Robin Initial Boundary Value Problems for Reaction Diffusion System

    Institute of Scientific and Technical Information of China (English)

    莫嘉琪

    2003-01-01

    The nonlinear predator-prey singularly perturbed Robin initial boundary value problems for reaction diffusion systems were considered. Under suitable conditions, using theory of differential inequalities the existence and asymptotic behavior of solution for initial boundary value problems were studied.

  3. THE CAUCHY PROBLEM FOR A CLASS OF DOUBLY DEGENERATE NONLINEAR PARABOLIC EQUATION

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This article studies the Cauchy problem for a class of doubly nonlinear deauthor considers its regularized problem and establishes some estimates. On the basis of the estimates, the existence and uniqueness of the generalized solutions in BV space are proved.

  4. POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEM FOR A SYSTEM OF NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    LiHongyu; SunJingxian

    2005-01-01

    By using topological method, we study a class of boundary value problem for a system of nonlinear ordinary differential equations. Under suitable conditions,we prove the existence of positive solution of the problem.

  5. Solutions to Boundary Value Problem of Nonlinear Impulsive Differential Equation of Fractional Order*

    Institute of Scientific and Technical Information of China (English)

    SU XIN-WEI

    2011-01-01

    This paper is devoted to study the existence and uniqueness of solutions to a boundary value problem of nonlinear fractional differential equation with impulsive effects. The arguments are based upon Schauder and Banach fixed-point theorems. We improve and generalize the results presented in [B. Ahmad, S. Sivasundaram, Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations, Nonlinear Analysis: Hybrid Systems, 3(2009), 251258].

  6. A Non-smooth Nonlinear Conjugate Gradient Method for Interactive Contact Force Problems

    DEFF Research Database (Denmark)

    Silcowitz, Morten; Niebe, Sarah Maria; Erleben, Kenny

    2010-01-01

    of a nonlinear complementarity problem (NCP), which can be solved using an iterative splitting method, such as the projected Gauss–Seidel (PGS) method. We present a novel method for solving the NCP problem by applying a Fletcher–Reeves type nonlinear nonsmooth conjugate gradient (NNCG) type method. We analyze...

  7. Multisplitting Iteration Schemes for Solving a Class of Nonlinear Complementarity Problems

    Institute of Scientific and Technical Information of China (English)

    Chen-liang Li; Jin-ping Zeng

    2007-01-01

    We consider several synchronous and asynchronous multisplitting iteration schemes for solving a class of nonlinear complementarity problems with the system matrix being an H-matrix. We establish the convergence theorems for the schemes. The numerical experiments show that the schemes are efficient for solving the class of nonlinear complementarity problems.

  8. A Dual Approach for Solving Nonlinear Infinite-Norm Minimization Problems with Applications in Separable Cases

    CERN Document Server

    Gharibi, Wajeb

    2011-01-01

    In this paper, we focus on nonlinear infinite-norm minimization problems that have many applications, especially in computer science and operations research. We set a reliable Lagrangian dual aproach for solving this kind of problems in general, and based on this method, we propose an algorithm for the mixed linear and nonlinear infinite-norm minimization cases with numerical results.

  9. Nonlinear gauge interactions: a possible solution to the "measurement problem" in quantum mechanics

    CERN Document Server

    Hansson, Johan

    2010-01-01

    Two fundamental, and unsolved problems in physics are: i) the resolution of the "measurement problem" in quantum mechanics ii) the quantization of strongly nonlinear (nonabelian) gauge theories. The aim of this paper is to suggest that these two problems might be linked, and that a mutual, simultaneous solution to both might exist. We propose that the mechanism responsible for the "collapse of the wave function" in quantum mechanics is the nonlinearities already present in the theory via nonabelian gauge interactions. Unlike all other models of spontaneous collapse, our proposal is, to the best of our knowledge, the only one which does not introduce any new elements into the theory. A possible experimental test of the model would be to compare the coherence lengths - here defined as the distance over which quantum mechanical superposition is still valid - for, \\textit{e.g}, electrons and photons in a double-slit experiment. The electrons should have a finite coherence length, while photons should have a much ...

  10. Particle Swarm Optimization-Proximal Point Algorithm for Nonlinear Complementarity Problems

    OpenAIRE

    Chai Jun-Feng; Wang Shu-Yan

    2013-01-01

    A new algorithm is presented for solving the nonlinear complementarity problem by combining the particle swarm and proximal point algorithm, which is called the particle swarm optimization-proximal point algorithm. The algorithm mainly transforms nonlinear complementarity problems into unconstrained optimization problems of smooth functions using the maximum entropy function and then optimizes the problem using the proximal point algorithm as the outer algorithm and particle swarm algorithm a...

  11. A Parallel Multi-Domain Solution Methodology Applied to Nonlinear Thermal Transport Problems in Nuclear Fuel Pins

    CERN Document Server

    Philip, Bobby; Allu, Srikanth; Hamilton, Steven P; Sampath, Rahul S; Clarno, Kevin T; Dilts, Gary A

    2014-01-01

    This paper describes an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors is described. Details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstrating the achieved efficiency of the algorithm are presented. Furthermore, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods...

  12. A Course on the Physics of Urban and Environmental Problems

    Science.gov (United States)

    Marston, Edwin H.

    1970-01-01

    Presents a physics course for social scientists. Physics problems are presented within the context of several urban and environmental case studies. The problems considered include transportation, air pollution, thermal pollution of water, and scarcity of resources. (LS)

  13. SEQUENTIAL SYSTEMS OF LINEAR EQUATIONS ALGORITHM FOR NONLINEAR OPTIMIZATION PROBLEMS - INEQUALITY CONSTRAINED PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Zi-you Gao; Tian-de Guo; Guo-ping He; Fang Wu

    2002-01-01

    In this paper, a new superlinearly convergent algorithm of sequential systems of linear equations (SSLE) for nonlinear optimization problems with inequality constraints is proposed. Since the new algorithm only needs to solve several systems of linear equations having a same coefficient matrix per iteration, the computation amount of the algorithm is much less than that of the existing SQP algorithms per iteration. Moreover, for the SQPtype algorithms, there exist so-called inconsistent problems, i.e., quadratic programming subproblems of the SQP algorithms may not have a solution at some iterations, but this phenomenon will not occur with the SSLE algorithms because the related systems of linear equations always have solutions. Some numerical results are reported.

  14. Inverse problems in classical and quantum physics

    Energy Technology Data Exchange (ETDEWEB)

    Almasy, A.A.

    2007-06-29

    The subject of this thesis is in the area of Applied Mathematics known as Inverse Problems. Inverse problems are those where a set of measured data is analysed in order to get as much information as possible on a model which is assumed to represent a system in the real world. We study two inverse problems in the fields of classical and quantum physics: QCD condensates from tau-decay data and the inverse conductivity problem. Despite a concentrated effort by physicists extending over many years, an understanding of QCD from first principles continues to be elusive. Fortunately, data continues to appear which provide a rather direct probe of the inner workings of the strong interactions. We use a functional method which allows us to extract within rather general assumptions phenomenological parameters of QCD (the condensates) from a comparison of the time-like experimental data with asymptotic space-like results from theory. The price to be paid for the generality of assumptions is relatively large errors in the values of the extracted parameters. Although we do not claim that our method is superior to other approaches, we hope that our results lend additional confidence to the numerical results obtained with the help of methods based on QCD sum rules. EIT is a technology developed to image the electrical conductivity distribution of a conductive medium. The technique works by performing simultaneous measurements of direct or alternating electric currents and voltages on the boundary of an object. These are the data used by an image reconstruction algorithm to determine the electrical conductivity distribution within the object. In this thesis, two approaches of EIT image reconstruction are proposed. The first is based on reformulating the inverse problem in terms of integral equations. This method uses only a single set of measurements for the reconstruction. The second approach is an algorithm based on linearisation which uses more then one set of measurements. A

  15. A-optimal encoding weights for nonlinear inverse problems, with application to the Helmholtz inverse problem

    Science.gov (United States)

    Crestel, Benjamin; Alexanderian, Alen; Stadler, Georg; Ghattas, Omar

    2017-07-01

    The computational cost of solving an inverse problem governed by PDEs, using multiple experiments, increases linearly with the number of experiments. A recently proposed method to decrease this cost uses only a small number of random linear combinations of all experiments for solving the inverse problem. This approach applies to inverse problems where the PDE solution depends linearly on the right-hand side function that models the experiment. As this method is stochastic in essence, the quality of the obtained reconstructions can vary, in particular when only a small number of combinations are used. We develop a Bayesian formulation for the definition and computation of encoding weights that lead to a parameter reconstruction with the least uncertainty. We call these weights A-optimal encoding weights. Our framework applies to inverse problems where the governing PDE is nonlinear with respect to the inversion parameter field. We formulate the problem in infinite dimensions and follow the optimize-then-discretize approach, devoting special attention to the discretization and the choice of numerical methods in order to achieve a computational cost that is independent of the parameter discretization. We elaborate our method for a Helmholtz inverse problem, and derive the adjoint-based expressions for the gradient of the objective function of the optimization problem for finding the A-optimal encoding weights. The proposed method is potentially attractive for real-time monitoring applications, where one can invest the effort to compute optimal weights offline, to later solve an inverse problem repeatedly, over time, at a fraction of the initial cost.

  16. A parallel multi-domain solution methodology applied to nonlinear thermal transport problems in nuclear fuel pins

    Science.gov (United States)

    Philip, Bobby; Berrill, Mark A.; Allu, Srikanth; Hamilton, Steven P.; Sampath, Rahul S.; Clarno, Kevin T.; Dilts, Gary A.

    2015-04-01

    This paper describes an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors is described. Details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstrating the achieved efficiency of the algorithm are presented. Furthermore, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.

  17. Multigrid techniques for nonlinear eigenvalue probems: Solutions of a nonlinear Schroedinger eigenvalue problem in 2D and 3D

    Science.gov (United States)

    Costiner, Sorin; Taasan, Shlomo

    1994-01-01

    This paper presents multigrid (MG) techniques for nonlinear eigenvalue problems (EP) and emphasizes an MG algorithm for a nonlinear Schrodinger EP. The algorithm overcomes the mentioned difficulties combining the following techniques: an MG projection coupled with backrotations for separation of solutions and treatment of difficulties related to clusters of close and equal eigenvalues; MG subspace continuation techniques for treatment of the nonlinearity; an MG simultaneous treatment of the eigenvectors at the same time with the nonlinearity and with the global constraints. The simultaneous MG techniques reduce the large number of self consistent iterations to only a few or one MG simultaneous iteration and keep the solutions in a right neighborhood where the algorithm converges fast.

  18. Lossless Convexification of Control Constraints for a Class of Nonlinear Optimal Control Problems

    Science.gov (United States)

    Blackmore, Lars; Acikmese, Behcet; Carson, John M.,III

    2012-01-01

    In this paper we consider a class of optimal control problems that have continuous-time nonlinear dynamics and nonconvex control constraints. We propose a convex relaxation of the nonconvex control constraints, and prove that the optimal solution to the relaxed problem is the globally optimal solution to the original problem with nonconvex control constraints. This lossless convexification enables a computationally simpler problem to be solved instead of the original problem. We demonstrate the approach in simulation with a planetary soft landing problem involving a nonlinear gravity field.

  19. Some physics problems in biological networks

    Science.gov (United States)

    Bialek, William

    2007-03-01

    Most of the interesting things that happen in living organisms require interactions among many components, and it is convenient to think of these as a ``network'' of interactions. We use this language at the level of single molecules (the network of interactions among amino acids that determine protein structure), single cells (the network of protein-DNA interactions responsible for the regulation of gene expression) and complex multicellular organisms (the networks of neurons in our brain). In this talk I'll try to look at two very different kinds of theoretical physics problems that arise in thinking about such networks. The first problems are phenomenological: Given what our experimentalists friends can measure, can we generate a global view of network function and dynamics? I'll argue that maximum entropy methods can be useful here, and show how such methods have been used in very recent work on networks of neurons, enzymes, genes and (in disguise) amino acids. In this line of reasoning there are of course interesting connections to statistical mechanics, and we'll see that natural statistical mechanics questions about the underlying models actually teach us something about how the real biological system works, in ways that will be tested through new experiments. In the second half of the talk I'll ask if there are principles from which we might actually be able to predict the structure and dynamics of biological networks. I'll focus on optimization principles, in particular the optimization of information flow in transcriptional regulation. Even setting up these arguments forces us to think critically about our understanding of the signals, specificity and noise in these systems, all current topics of research. Although we don't know if we have the right principles, trying to work out the consequences of such optimization again suggests new experiments.

  20. Initial-value problem for the Gardner equation applied to nonlinear internal waves

    Science.gov (United States)

    Rouvinskaya, Ekaterina; Kurkina, Oxana; Kurkin, Andrey; Talipova, Tatiana; Pelinovsky, Efim

    2017-04-01

    The Gardner equation is a fundamental mathematical model for the description of weakly nonlinear weakly dispersive internal waves, when cubic nonlinearity cannot be neglected. Within this model coefficients of quadratic and cubic nonlinearity can both be positive as well as negative, depending on background conditions of the medium, where waves propagate (sea water density stratification, shear flow profile) [Rouvinskaya et al., 2014, Kurkina et al., 2011, 2015]. For the investigation of weakly dispersive behavior in the framework of nondimensional Gardner equation with fixed (positive) sign of quadratic nonlinearity and positive or negative cubic nonlinearity {eq1} partial η/partial t+6η( {1± η} )partial η/partial x+partial ^3η/partial x^3=0, } the series of numerical experiments of initial-value problem was carried out for evolution of a bell-shaped impulse of negative polarity (opposite to the sign of quadratic nonlinear coefficient): {eq2} η(x,t=0)=-asech2 ( {x/x0 } ), for which amplitude a and width x0 was varied. Similar initial-value problem was considered in the paper [Trillo et al., 2016] for the Korteweg - de Vries equation. For the Gardner equation with different signs of cubic nonlinearity the initial-value problem for piece-wise constant initial condition was considered in detail in [Grimshaw et al., 2002, 2010]. It is widely known, for example, [Pelinovsky et al., 2007], that the Gardner equation (1) with negative cubic nonlinearity has a family of classic solitary wave solutions with only positive polarity,and with limiting amplitude equal to 1. Therefore evolution of impulses (2) of negative polarity (whose amplitudes a were varied from 0.1 to 3, and widths at the level of a/2 were equal to triple width of solitons with the same amplitude for a 1) was going on a universal scenario with the generation of nonlinear Airy wave. For the Gardner equation (1) with the positive cubic nonlinearity coefficient there exist two one-parametric families of

  1. The methodological problems of particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Unzicker, Alexander [Pestalozzi-Gymnasium Muenchen (Germany)

    2013-07-01

    While the so-called standard model has been the dominating paradigm in particle physics for almost half a century, most researchers working with it would admit that it is an incomplete theory at best. Despite some ordering schemes, the overall number of its free parameters has greatly increased over the years, often accompanied by ad-hoc hypotheses such as 'confinement'. Experimentally, the interpretation of today's collider experiments requires sophisticated modeling of huge backgrounds. Specific problems are here how to remove correctly radiation damping (given that no consistent theory of electrodynamics exists), and postulating lifetimes (top quark) during which the particle cannot even leave the collision region. The standard model is about to develop new concepts, such as additional neutrino flavors and oscillations, while disregarding elementary questions such as to the nature of mass. From a historical perspective, the growing complications are likely to be symptoms of a scientific crisis, a phenomenon which has been described by the philosopher Thomas Kuhn. According to Kuhn however, there is no smooth transition from one paradigm to another. The only reasonable way to go beyond the standard model would be to abandon it completely.

  2. Freeform illumination design: a nonlinear boundary problem for the elliptic Monge-Ampére equation.

    Science.gov (United States)

    Wu, Rengmao; Xu, Liang; Liu, Peng; Zhang, Yaqin; Zheng, Zhenrong; Li, Haifeng; Liu, Xu

    2013-01-15

    We propose an approach to deal with the problem of freeform surface illumination design without assuming any symmetry based on the concept that this problem is similar to the problem of optimal mass transport. With this approach, the freeform design is converted into a nonlinear boundary problem for the elliptic Monge-Ampére equation. The theory and numerical method are given for solving this boundary problem. Experimental results show the feasibility of this approach in tackling this freeform design problem.

  3. Evaluation of a transfinite element numerical solution method for nonlinear heat transfer problems

    Science.gov (United States)

    Cerro, J. A.; Scotti, S. J.

    1991-01-01

    Laplace transform techniques have been widely used to solve linear, transient field problems. A transform-based algorithm enables calculation of the response at selected times of interest without the need for stepping in time as required by conventional time integration schemes. The elimination of time stepping can substantially reduce computer time when transform techniques are implemented in a numerical finite element program. The coupling of transform techniques with spatial discretization techniques such as the finite element method has resulted in what are known as transfinite element methods. Recently attempts have been made to extend the transfinite element method to solve nonlinear, transient field problems. This paper examines the theoretical basis and numerical implementation of one such algorithm, applied to nonlinear heat transfer problems. The problem is linearized and solved by requiring a numerical iteration at selected times of interest. While shown to be acceptable for weakly nonlinear problems, this algorithm is ineffective as a general nonlinear solution method.

  4. An iterative symplectic pseudospectral method to solve nonlinear state-delayed optimal control problems

    Science.gov (United States)

    Peng, Haijun; Wang, Xinwei; Zhang, Sheng; Chen, Biaosong

    2017-07-01

    Nonlinear state-delayed optimal control problems have complex nonlinear characters. To solve this complex nonlinear problem, an iterative symplectic pseudospectral method based on quasilinearization techniques, the dual variational principle and pseudospectral methods is proposed in this paper. First, the proposed method transforms the original nonlinear optimal control problem into a series of linear quadratic optimal control problems. Then, a symplectic pseudospectral method is developed to solve these converted linear quadratic state-delayed optimal control problems. Coefficient matrices in the proposed method are sparse and symmetric since the dual variational principle is used, which makes the proposed method highly efficient. Converged numerical solutions with high precision can be obtained after a few iterations due to the benefit of the local pseudospectral method and quasilinearization techniques. In the numerical simulations, other numerical methods were used for comparisons. The numerical simulation results show that the proposed method is highly accurate, efficient and robust.

  5. Control design for the nonlinear benchmark problem via the output regulation method

    Institute of Scientific and Technical Information of China (English)

    Jie HUANG; Guoqiang HU

    2004-01-01

    The problem of designing a feedback controller to achieve asymptotic disturbance rejection / attenuation while maintaining good transient response in the RTAC system is known as a benchmark nonlinear control problem, which has been an intensive research subject since 1995. In this paper, we will further investigate the solvability of the robust disturbance rejection problem of the RTAC system by the measurement output feedback control based on the robust output regulation method. We have obtained a design by overcoming two major obstacles: find a closed-form solution of the regulator equations; and devise a nonlinear internal model to account for non-polynomial nonlinearities.

  6. A method for generating highly nonlinear periodic waves in physical wave basins

    DEFF Research Database (Denmark)

    Zhang, Haiwen; Schäffer, Hemming A.; Bingham, Harry B.

    2006-01-01

    This abstract describes a new method for generating nonlinear waves of constant form in physical wave basins. The idea is to combine fully dispersive linear wavemaker theory with nonlinear shallow water wave generation theory; and use an exact nonlinear theory as the target. We refer to the metho...... as an ad-hoc unified wave generation theory, since there is no rigorous analysis behind the idea which is simply justified by the improved results obtained for the practical generation of steady nonlinear waves....

  7. Solving Large Scale Nonlinear Eigenvalue Problem in Next-Generation Accelerator Design

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Ben-Shan; Bai, Zhaojun; /UC, Davis; Lee, Lie-Quan; Ko, Kwok; /SLAC

    2006-09-28

    A number of numerical methods, including inverse iteration, method of successive linear problem and nonlinear Arnoldi algorithm, are studied in this paper to solve a large scale nonlinear eigenvalue problem arising from finite element analysis of resonant frequencies and external Q{sub e} values of a waveguide loaded cavity in the next-generation accelerator design. They present a nonlinear Rayleigh-Ritz iterative projection algorithm, NRRIT in short and demonstrate that it is the most promising approach for a model scale cavity design. The NRRIT algorithm is an extension of the nonlinear Arnoldi algorithm due to Voss. Computational challenges of solving such a nonlinear eigenvalue problem for a full scale cavity design are outlined.

  8. Age, Physical Activity, Physical Fitness, Body Composition, and Incidence of Orthopedic Problems.

    Science.gov (United States)

    Research Quarterly for Exercise and Sport, 1989

    1989-01-01

    Effects of age, physical activity, physical fitness, and body mass index (BMI) on the occurrence of orthopedic problems were examined. For men, physical fitness, BMI, and physical activity were associated with orthopedic problems; for women, physical activity was the main predictor. Age was not a factor for either gender. (JD)

  9. Initial-boundary value problems for a class of nonlinear thermoelastic plate equations

    Institute of Scientific and Technical Information of China (English)

    Zhang Jian-Wen; Rong Xiao-Liang; Wu Run-Heng

    2009-01-01

    This paper studies initial-boundary value problems for a class of nonlinear thermoelastic plate equations. Under some certain initial data and boundary conditions,it obtains an existence and uniqueness theorem of global weak solutions of the nonlinear thermoelstic plate equations,by means of the Galerkin method. Moreover,it also proves the existence of strong and classical solutions.

  10. Analytical Solution of Nonlinear Problems in Classical Dynamics by Means of Lagrange-Ham

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Mahdavi, S. H; Rabbani, A.

    2011-01-01

    In this work, a powerful analytical method, called Homotopy Analysis Methods (HAM) is coupled with Lagrange method to obtain the exact solution for nonlinear problems in classic dynamics. In this work, the governing equations are obtained by using Lagrange method, and then the nonlinear governing...

  11. NONLOCAL INITIAL PROBLEM FOR NONLINEAR NONAUTONOMOUS DIFFERENTIAL EQUATIONS IN A BANACH SPACE

    Institute of Scientific and Technical Information of China (English)

    M.I.Gil'

    2004-01-01

    The nonlocal initial problem for nonlinear nonautonomous evolution equations in a Banach space is considered. It is assumed that the nonlinearities have the local Lipschitz properties. The existence and uniqueness of mild solutions are proved. Applications to integro-differential equations are discussed. The main tool in the paper is the normalizing mapping (the generalized norm).

  12. A new analytic method with a convergence-control parameter for solving nonlinear problems

    CERN Document Server

    Zhang, Xiaolong

    2016-01-01

    In this paper, a new analytic method with a convergence-control parameter $c$ is first proposed. The parameter $c$ is used to adjust and control the convergence region and rate of the resulting series solution. It turns out that the convergence region and rate can be greatly enlarged by choosing a proper value of $c$. Furthermore, a numerical approach for finding the optimal value of the convergence-control parameter is given. At the same time, it is found that the traditional Adomian decomposition method is only a special case of the new method. The effectiveness and applicability of the new technique are demonstrated by several physical models including nonlinear heat transfer problems, nano-electromechanical systems, diffusion and dissipation phenomena, and dispersive waves. Moreover, the ideas proposed in this paper may offer us possibilities to greatly improve current analytic and numerical techniques.

  13. Solving nonlinear nonstationary problem of heat-conductivity by finite element method

    Directory of Open Access Journals (Sweden)

    Антон Янович Карвацький

    2016-11-01

    Full Text Available Methodology and effective solving algorithm of non-linear dynamic problems of thermal and electric conductivity with significant temperature dependence of thermal and physical properties are given on the basis of finite element method (FEM and Newton linearization method. Discrete equations system FEM was obtained with the use of Galerkin method, where the main function is the finite element form function. The methodology based on successive solving problems of thermal and electrical conductivity has been examined in the work in order to minimize the requirements for calculating resources (RAM. in particular. Having used Mathcad software original programming code was developed to solve the given problem. After investigation of the received results, comparative analyses of accurate solution data and results of numerical solutions, obtained with the use of Matlab programming products, was held. The geometry of one fourth part of the finite sized cylinder was used to test the given numerical model. The discretization of the calculation part was fulfilled using the open programming software for automated Gmsh nets with tetrahedral units, while ParaView, which is an open programming code as well, was used to visualize the calculation results. It was found out that the maximum value violation of potential and temperature determination doesn`t exceed 0,2-0,83% in the given work according to the problem conditions

  14. Cognitive Variables in Problem Solving: A Nonlinear Approach

    Science.gov (United States)

    Stamovlasis, Dimitrios; Tsaparlis, Georgios

    2005-01-01

    We employ tools of complexity theory to examine the effect of cognitive variables, such as working-memory capacity, degree of field dependence-independence, developmental level and the mobility-fixity dimension. The nonlinear method correlates the subjects' rank-order achievement scores with each cognitive variable. From the achievement scores in…

  15. CLASSIFICATION OF BIFURCATIONS FOR NONLINEAR DYNAMICAL PROBLEMS WITH CONSTRAINTS

    Institute of Scientific and Technical Information of China (English)

    吴志强; 陈予恕

    2002-01-01

    Bifurcation of periodic solutions widely existed in nonlinear dynamical systems isa kind of constrained one in intrinsic quality because its amplitude is always non-negative.Classification of the bifurcations with the type of constraint was discussed. All its six typesof transition sets are derived, in which three types are newly found and a method isproposed for analyzing the constrained bifurcation.

  16. Nonlocal Cauchy problem for nonlinear mixed integrodifferential equations

    Directory of Open Access Journals (Sweden)

    H.L. Tidke

    2010-12-01

    Full Text Available The present paper investigates the existence and uniqueness of mild and strong solutions of a nonlinear mixed Volterra-Fredholm integrodifferential equation with nonlocal condition. The results obtained by using Schauder fixed point theorem and the theory of semigroups.

  17. Analysis of steady-state and dynamical radially-symmetric problems of nonlinear viscoelasticity

    Science.gov (United States)

    Stepanov, Alexey B.

    This thesis treats radially symmetric steady states and radially symmetric motions of nonlinearly elastic and viscoelastic plates and shells subject to dead-load and hydrostatic pressures on their boundaries and with the plate subject to centrifugal force. The plates and shells are described by specializations of the exact (nonlinear) equations of three-dimensional continuum mechanics. The treatment in every case is very general and encompasses large classes of constitutive functions (characterizing the material response). We first treat the radially symmetric steady states of plates and shells and the radially symmetric steady rotations of plates. We show that the existence, multiplicity, and qualitative behavior of solutions for problems accounting for the live loads due to hydrostatic pressure and centrifugal force depend critically on the material properties of the bodies, physically reasonable refined descriptions of which are given and examined here with great care, and on the nature of boundary conditions. he treatment here, giving new and sharp results, employs several different mathematical tools, ranging from phase-plane analysis to the mathematically more sophisticated direct methods of the Calculus of Variations, fixed-point theorems, and global continuation methods, each of which has different strengths and weaknesses for handling intrinsic difficulties in the mechanics. We then treat the initial-boundary-value problems for the radially symmetric motions of annular plates and spherical shells that consist of a nonlinearly viscoelastic material of strain-rate type. We discuss a range of physically natural constitutive equations. We first show that when the material is strong in a suitable sense relative to externally applied loads, solutions exist for all time, depend continuously on the data, and consequently are unique. We study the role of the constitutive restrictions and that of the regularity of the data in ensuring the preclusion of a total

  18. Novel Reduced Order in Time Models for Problems in Nonlinear Aeroelasticity Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Research is proposed for the development and implementation of state of the art, reduced order models for problems in nonlinear aeroelasticity. Highly efficient and...

  19. The Expansion of Dynamic Solving Process About a Class of Non-linear Programming Problems

    Institute of Scientific and Technical Information of China (English)

    ZANG Zhen-chun

    2001-01-01

    In this paper, we research non-linear programming problems which have a given specialstructure, some simple forms of this kind structure have been solved in some papers, here we focus on othercomplex ones.

  20. LEAST-SQUARES MIXED FINITE ELEMENT METHODS FOR NONLINEAR PARABOLIC PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Dan-ping Yang

    2002-01-01

    Two least-squares mixed finite element schemes are formulated to solve the initialboundary value problem of a nonlinear parabolic partial differential equation and the convergence of these schemes are analyzed.

  1. A NUMERICAL EMBEDDING METHOD FOR SOLVING THE NONLINEAR COMPLEMENTARITY PROBLEM (II)-ALGORITHM AND ITS CONVERGENCE

    Institute of Scientific and Technical Information of China (English)

    张建军; 王德人

    2004-01-01

    In this paper, based on the resuls presented in part I of this paper[18],we present a numerical crabeding algorithm for soling the nonlinear complementarity problem, and prove its convergence carefully. Numerical experiments show that the algorithm is successful.

  2. SIMILARITY REDUCTIONS FOR THE NONLINEAR EVOLUTION EQUATION ARISING IN THE FERMI-PASTA-ULAM PROBLEM

    Institute of Scientific and Technical Information of China (English)

    谢福鼎; 闫振亚; 张鸿庆

    2002-01-01

    Four families of similarity reductions are obtained for the nonlinear evolution equation arising in the Fermi-Pasta-Ulam problem via using both the direct method due to Clarkson and Kruskal and the improved direct method due to Lou.

  3. Existence Theorems for Nonlinear Boundary Value Problems for Second Order Differential Inclusions

    Science.gov (United States)

    Kandilakis, Dimitrios A.; Papageorgiou, Nikolaos S.

    1996-11-01

    In this paper we consider a nonlinear two-point boundary value problem for second order differential inclusions. Using the Leray-Schauder principle and its multivalued analog due to Dugundji-Granas, we prove existence theorems for convex and nonconvex problems. Our results are quite general and incorporate as special cases several classes of problems which are of interest in the literature.

  4. A NUMERICAL EMBEDDING METHOD FOR SOLVING THE NONLINEAR COMPLEMENTARITY PROBLEM(Ⅰ)--THEORY

    Institute of Scientific and Technical Information of China (English)

    Jian-jun Zhang; De-ren Wang

    2002-01-01

    In this paper, we extend the numerical embedding method for solving the smooth equations to the nonlinear complementarity problem. By using the nonsmooth theory,we prove the existence and the continuation of the following path for the corresponding homotopy equations. Therefore the basic theory of the numerical embedding method for solving the nonlinear complementarity problem is established. In part Ⅱ of this paper, we will further study the implementation of the method and give some numerical exapmles.

  5. Discussion of Some Problems About Nonlinear Time Series Prediction Using v-Support Vector Machine

    Institute of Scientific and Technical Information of China (English)

    GAO Cheng-Feng; CHEN Tian-Lun; NAN Tian-Shi

    2007-01-01

    Some problems in using v-support vector machine (v-SVM) for the prediction of nonlinear time series are discussed. The problems include selection of various net parameters, which affect the performance of prediction, mixture of kernels, and decomposition cooperation linear programming v-SVM regression, which result in improvements of the algorithm. Computer simulations in the prediction of nonlinear time series produced by Mackey-Glass equation and Lorenz equation provide some improved results.

  6. Optimality Condition and Wolfe Duality for Invex Interval-Valued Nonlinear Programming Problems

    Directory of Open Access Journals (Sweden)

    Jianke Zhang

    2013-01-01

    Full Text Available The concepts of preinvex and invex are extended to the interval-valued functions. Under the assumption of invexity, the Karush-Kuhn-Tucker optimality sufficient and necessary conditions for interval-valued nonlinear programming problems are derived. Based on the concepts of having no duality gap in weak and strong sense, the Wolfe duality theorems for the invex interval-valued nonlinear programming problems are proposed in this paper.

  7. Efficient Realization of the Mixed Finite Element Discretization for nonlinear Problems

    OpenAIRE

    Knabner, Peter; Summ, Gerhard

    2016-01-01

    We consider implementational aspects of the mixed finite element method for a special class of nonlinear problems. We establish the equivalence of the hybridized formulation of the mixed finite element method to a nonconforming finite element method with augmented Crouzeix-Raviart ansatz space. We discuss the reduction of unknowns by static condensation and propose Newton's method for the solution of local and global systems. Finally, we show, how such a nonlinear problem arises from the mixe...

  8. Solving Nonlinear Optimization Problems of Real Functions in Complex Variables by Complex-Valued Iterative Methods.

    Science.gov (United States)

    Zhang, Songchuan; Xia, Youshen

    2016-12-28

    Much research has been devoted to complex-variable optimization problems due to their engineering applications. However, the complex-valued optimization method for solving complex-variable optimization problems is still an active research area. This paper proposes two efficient complex-valued optimization methods for solving constrained nonlinear optimization problems of real functions in complex variables, respectively. One solves the complex-valued nonlinear programming problem with linear equality constraints. Another solves the complex-valued nonlinear programming problem with both linear equality constraints and an ℓ₁-norm constraint. Theoretically, we prove the global convergence of the proposed two complex-valued optimization algorithms under mild conditions. The proposed two algorithms can solve the complex-valued optimization problem completely in the complex domain and significantly extend existing complex-valued optimization algorithms. Numerical results further show that the proposed two algorithms have a faster speed than several conventional real-valued optimization algorithms.

  9. Nonlinear problems of complex natural systems: Sun and climate dynamics.

    Science.gov (United States)

    Bershadskii, A

    2013-01-13

    The universal role of the nonlinear one-third subharmonic resonance mechanism in generation of strong fluctuations in complex natural dynamical systems related to global climate is discussed using wavelet regression detrended data. The role of the oceanic Rossby waves in the year-scale global temperature fluctuations and the nonlinear resonance contribution to the El Niño phenomenon have been discussed in detail. The large fluctuations in the reconstructed temperature on millennial time scales (Antarctic ice core data for the past 400,000 years) are also shown to be dominated by the one-third subharmonic resonance, presumably related to the Earth's precession effect on the energy that the intertropical regions receive from the Sun. The effects of galactic turbulence on the temperature fluctuations are also discussed.

  10. Analytical approximations for a conservative nonlinear singular oscillator in plasma physics

    Directory of Open Access Journals (Sweden)

    A. Mirzabeigy

    2012-10-01

    Full Text Available A modified variational approach and the coupled homotopy perturbation method with variational formulation are exerted to obtain periodic solutions of a conservative nonlinear singular oscillator in plasma physics. The frequency–amplitude relations for the oscillator which the restoring force is inversely proportional to the dependent variable are achieved analytically. The approximate frequency obtained using the coupled method is more accurate than the modified variational approach and ones obtained using other approximate methods and the discrepancy between the approximate frequency using this coupled method and the exact one is lower than 0.31% for the whole range of values of oscillation amplitude. The coupled method provides a very good accuracy and is a promising technique to a lot of practical engineering and physical problems.

  11. Some Problems in Nonlinear Dynamic Instability and Bifurcation Theory for Engineering Structures

    Institute of Scientific and Technical Information of China (English)

    彭妙娟; 程玉民

    2005-01-01

    In civil engineering, the nonlinear dynamic instability of structures occurs at a bifurcation point or a limit point. The instability at a bifurcation point can be analyzed with the theory of nonlinear dynamics, and that at a limit point can be discussed with the theory of elastoplasticity. In this paper, the nonlinear dynamic instability of structures was treated with mathematical and mechanical theories. The research methods for the problems of structural nonlinear dynamic stability were discussed first, and then the criterion of stability or instability of structures, the method to obtain the bifurcation point and the limit point, and the formulae of the directions of the branch solutions at a bifurcation point were elucidated. These methods can be applied to the problems of nonlinear dynamic instability of structures such as reticulated shells, space grid structures, and so on.

  12. Phenomenographic study of students’ problem solving approaches in physics

    Directory of Open Access Journals (Sweden)

    Laura N. Walsh

    2007-12-01

    Full Text Available This paper describes ongoing research investigating student approaches to quantitative and qualitative problem solving in physics. This empirical study was conducted using a phenomenographic approach to analyze data from individual semistructured problem solving interviews with 22 introductory college physics students. The main result of the study is a hierarchical set of categories that describe the students’ problem solving approaches in the context of introductory physics.

  13. The construction of the representation in solving a physics problem

    Directory of Open Access Journals (Sweden)

    Enrique A. Coleoni

    2001-09-01

    Full Text Available Written solutions of a physics problem provided by high school students in a physics olympiad are analysed. The study was done on the basis of theoretical developments which take into account peculiarities of the understanding of scientific problems. Some errors are typefied according to failures at different levels of the representation process. A categorization is proposed suggesting the possibility of reinterpreting some mistakes made by physics students in problem solving.

  14. Lie and Conditional Symmetries of a Class of Nonlinear (1 + 2-Dimensional Boundary Value Problems

    Directory of Open Access Journals (Sweden)

    Roman Cherniha

    2015-08-01

    Full Text Available A new definition of conditional invariance for boundary value problems involving a wide range of boundary conditions (including initial value problems as a special case is proposed. It is shown that other definitions worked out in order to find Lie symmetries of boundary value problems with standard boundary conditions, followed as particular cases from our definition. Simple examples of direct applicability to the nonlinear problems arising in applications are demonstrated. Moreover, the successful application of the definition for the Lie and conditional symmetry classification of a class of (1 + 2-dimensional nonlinear boundary value problems governed by the nonlinear diffusion equation in a semi-infinite domain is realised. In particular, it is proven that there is a special exponent, k ≠ —2, for the power diffusivity uk when the problem in question with non-vanishing flux on the boundary admits additional Lie symmetry operators compared to the case k ≠ —2. In order to demonstrate the applicability of the symmetries derived, they are used for reducing the nonlinear problems with power diffusivity uk and a constant non-zero flux on the boundary (such problems are common in applications and describing a wide range of phenomena to (1 + 1-dimensional problems. The structure and properties of the problems obtained are briefly analysed. Finally, some results demonstrating how Lie invariance of the boundary value problem in question depends on the geometry of the domain are presented.

  15. A NUMERICAL CALCULATION METHOD FOR EIGENVALUE PROBLEMS OF NONLINEAR INTERNAL WAVES

    Institute of Scientific and Technical Information of China (English)

    SHI Xin-gang; FAN Zhi-song; LIU Hai-long

    2009-01-01

    Generally speaking, the background shear current U(z)must be taken into account in eigenvalue problems of nonlinear internal waves in ocean, as is different from those of linear internal waves. A numerical calculation method for eigenvalue problems of nonlinear internal waves is presented in this paper on the basis of the Thompson-Haskell's calculation method. As an application of this method, at a station (21°N, 117°15′E) in the South China Sea, a modal structure and parameters of nonlinear internal waves are calculated, and the results closely agree with the calculated results based on observation by Yang et al..

  16. Study on high order perturbation-based nonlinear stochastic finite element method for dynamic problems

    Science.gov (United States)

    Wang, Qing; Yao, Jing-Zheng

    2010-12-01

    Several algorithms were proposed relating to the development of a framework of the perturbation-based stochastic finite element method (PSFEM) for large variation nonlinear dynamic problems. For this purpose, algorithms and a framework related to SFEM based on the stochastic virtual work principle were studied. To prove the validity and practicality of the algorithms and framework, numerical examples for nonlinear dynamic problems with large variations were calculated and compared with the Monte-Carlo Simulation method. This comparison shows that the proposed approaches are accurate and effective for the nonlinear dynamic analysis of structures with random parameters.

  17. A MONOTONE DOMAIN DECOMPOSITION ALGORITHM FOR SOLVING WEIGHTED AVERAGE APPROXIMATIONS TO NONLINEAR SINGULARLY PERTURBED PARABOLIC PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Igor Boglaev; Matthew Hardy

    2008-01-01

    This paper presents and analyzes a monotone domain decomposition algorithm for solving nonlinear singularly perturbed reaction-diffusion problems of parabolic type.To solve the nonlinear weighted average finite difference scheme for the partial differential equation,we construct a monotone domain decomposition algorithm based on a Schwarz alternating method and a box-domain decomposition.This algorithm needs only to solve linear discrete systems at each iterative step and converges monotonically to the exact solution of the nonlinear discrete problem. The rate of convergence of the monotone domain decomposition algorithm is estimated.Numerical experiments are presented.

  18. Assessment of Two Analytical Methods in Solving the Linear and Nonlinear Elastic Beam Deformation Problems

    DEFF Research Database (Denmark)

    Barari, Amin; Ganjavi, B.; Jeloudar, M. Ghanbari

    2010-01-01

    Purpose – In the last two decades with the rapid development of nonlinear science, there has appeared ever-increasing interest of scientists and engineers in the analytical techniques for nonlinear problems. This paper considers linear and nonlinear systems that are not only regarded as general...... and fluid mechanics. Design/methodology/approach – Two new but powerful analytical methods, namely, He's VIM and HPM, are introduced to solve some boundary value problems in structural engineering and fluid mechanics. Findings – Analytical solutions often fit under classical perturbation methods. However...

  19. The problems of students’ physical training individualization

    Directory of Open Access Journals (Sweden)

    Druz V.A.

    2017-04-01

    Full Text Available Purpose: to assess physical health and biological age of 1st 2nd year girl students, depending on their physical activity, as well as to work out system of control over students’ health. Material: in the research 1st and 2nd year girl students (n=120 participated. Results: students’ busy in their working day was analyzed as well as student’s understanding of healthy life style during working day. We also paid attention to reasons of sharp weakening of students’ physical fitness and determined integral indicator of healthy life style conception as well as significance of every its component. The following concepts are introduced: physical health, including individual level of physical condition; physical fitness and physical state. We found normal level for every component of physical health and correlation between population, regional and individual norms. Conclusions: For students’ healthy life style formation it is necessary to observe norm requirements to all its components. Violation of any component’s norm results in worsening general final result.

  20. Physics in 1975--New Problems and Insights

    Science.gov (United States)

    Panofsky, Wolfgang K. H.

    1975-01-01

    Describes the decline in available physics positions in the academic areas. Indicates that the future need for physicists is unclear and states that the present federal funding patterns are not consistent with good practices of research and development. Summarizes new information in the field of elementary-particle physics. (GS)

  1. An Efficient Collocation Method for a Class of Boundary Value Problems Arising in Mathematical Physics and Geometry

    Directory of Open Access Journals (Sweden)

    A. H. Bhrawy

    2014-01-01

    Full Text Available We present a numerical method for a class of boundary value problems on the unit interval which feature a type of power-law nonlinearity. In order to numerically solve this type of nonlinear boundary value problems, we construct a kind of spectral collocation method. The spatial approximation is based on shifted Jacobi polynomials Jn(α,β(r with α,β∈(-1,∞, r∈(0,1 and n the polynomial degree. The shifted Jacobi-Gauss points are used as collocation nodes for the spectral method. After deriving the method for a rather general class of equations, we apply it to several specific examples. One natural example is a nonlinear boundary value problem related to the Yamabe problem which arises in mathematical physics and geometry. A number of specific numerical experiments demonstrate the accuracy and the efficiency of the spectral method. We discuss the extension of the method to account for more complicated forms of nonlinearity.

  2. The initial value problem, scattering and inverse scattering, for Schroedinger equations with a potential and a non-local nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Romero, MarIa de los Angeles Sandoval; Weder, Ricardo [Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-726, Mexico DF 01000 (Mexico)

    2006-09-15

    We consider nonlinear Schroedinger equations with a potential, and non-local nonlinearities, that are models in mesoscopic physics, for example of a quantum capacitor, and that are also models of molecular structure. We study in detail the initial value problem for these equations, in particular, existence and uniqueness of local and global solutions, continuous dependence on the initial data and regularity. We allow for a large class of unbounded potentials. We have no restriction on the growth at infinity of the positive part of the potential. We also construct the scattering operator in the case of potentials that go to zero at infinity. Furthermore, we give a method for the unique reconstruction of the potential from the small amplitude limit of the scattering operator. In the case of the quantum capacitor, our method allows us to uniquely reconstruct all the physical parameters from the small amplitude limit of the scattering operator.

  3. Jacobi Elliptic Solutions for Nonlinear Differential Difference Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    Khaled A. Gepreel

    2012-01-01

    Full Text Available We put a direct new method to construct the rational Jacobi elliptic solutions for nonlinear differential difference equations which may be called the rational Jacobi elliptic functions method. We use the rational Jacobi elliptic function method to construct many new exact solutions for some nonlinear differential difference equations in mathematical physics via the lattice equation and the discrete nonlinear Schrodinger equation with a saturable nonlinearity. The proposed method is more effective and powerful to obtain the exact solutions for nonlinear differential difference equations.

  4. Skill Levels of Prospective Physics Teachers on Problem Posing

    Science.gov (United States)

    Cildir, Sema; Sezen, Nazan

    2011-01-01

    Problem posing is one of the topics which the educators thoroughly accentuate. Problem posing skill is defined as an introvert activity of a student's learning. In this study, skill levels of prospective physics teachers on problem posing were determined and their views on problem posing were evaluated. To this end, prospective teachers were given…

  5. Existence of solutions of nonlinear two-point boundary value problems for 4nth-order nonlinear differential equation

    Institute of Scientific and Technical Information of China (English)

    高永馨

    2002-01-01

    Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equation y(4n)= f( t,y,y' ,y",… ,y(4n-1) ) (a) with the boundary conditions g2i(y(2i) (a) ,y(2i+1) (a)) = 0,h2i(y(2i) (c) ,y(2i+1) (c)) = 0, (I= 0,1,…,2n - 1 ) (b) where the functions f, gi and hi are continuous with certain monotone properties. For the boundary value problems of nonlinear nth order differential equation y(n) = f(t,y,y',y",… ,y(n-1)) many results have been given at the present time. But the existence of solutions of boundary value problem (a), (b) studied in this paper has not been covered by the above researches. Moreover, the corollary of the important theorem in this paper, I.e. Existence of solutions of the boundary value problem. Y(4n) = f(t,y,y',y",… ,y(4n-1) ) a2iy(2i) (at) + a2i+1y(2i+1) (a) = b2i ,c2iy(2O ( c ) + c2i+1y(2i+1) ( c ) = d2i, ( I = 0,1 ,…2n - 1) has not been dealt with in previous works.

  6. Application of the R-Functions Theory to Problems of Nonlinear Dynamics of Laminated Composite Shallow Shells and Plates: Review

    OpenAIRE

    2016-01-01

    A review of studies performed using the R-functions theory to solve problems of nonlinear dynamics of plates and shallow shells is presented. The systematization of results and studies for the problems of free and parametric vibrations and for problems of static and dynamic stability is fulfilled. Expansion of the developed original method of discretization for nonlinear movement equations on new classes of nonlinear problems is shown. These problems include researches of vibratio...

  7. A nonlinear signal-based control method and its applications to input identification for nonlinear SIMO problems

    Science.gov (United States)

    Enokida, Ryuta; Takewaki, Izuru; Stoten, David

    2014-12-01

    The problem of control system design can be conceptualised as identifying an input signal to a plant (the system to be controlled) so that the corresponding output matches that of a pre-defined reference signal. Primarily, this problem is solved via well-known techniques based upon the principle of feedback design, an essential component for ensuring stability and robustness of the controlled system. However, feedforward design techniques also have a large part to play, whereby (in the absence of feedback control and assuming that the plant is stable) a model of the plant dynamics can be used to modify the reference signal so that the resultant feedforward input signal generates a plant output signal that is sufficiently close to the original reference signal. The principal objective of this paper is to introduce a new nonlinear control method, called nonlinear signal-based control (NSBC) that can be executed as an on-line technique of feedforward compensation (used synonymously here with the phrase 'input identification') and an off-line technique of feedback compensation. NSBC determines the feedforward input signal to the plant by using an error signal, determined from the difference between the output signals from a linear model of the plant and from the nonlinear plant, under the same input signal. The efficacy of NSBC is examined via numerical examples using Matlab/Simulink and compared with alternative well-known methods based upon inverse transfer function compensation and also the method of high gain feedback control. NSBC was found to provide the most accurate input identification in all the examined cases of linear or nonlinear single-input, single-output and single-input, multi-output (SIMO) systems. Furthermore, in problems of structural and earthquake engineering, NSBC was also found to be particularly effective in estimating the original ground motion from a nonlinear SIMO system and its response.

  8. Methodical Instructions For Solutions of Problems in Nuclear Physics

    CERN Document Server

    Troitskaya, N I

    2005-01-01

    This is a set of methodical instructions for solutions of problems in Nuclear Physics. It is written on the basis of seminars to the course of lectures on``Nuclear Physics'' delivered at the Physical and Mechanical Faculty of the St. Petersburg State Polytechnic University for the students of the 4th Course in ``Technical Physics'' and ``Medical Physics''. The main aim of these methodical instructions is to develop the experience of students in scientific approaches to solutions of practical problems in Nuclear Physics.

  9. DOUBLE TRIALS METHOD FOR NONLINEAR PROBLEMS ARISING IN HEAT TRANSFER

    Directory of Open Access Journals (Sweden)

    Chun-Hui He

    2011-01-01

    Full Text Available According to an ancient Chinese algorithm, the Ying Buzu Shu, in about second century BC, known as the rule of double false position in West after 1202 AD, two trial roots are assumed to solve algebraic equations. The solution procedure can be extended to solve nonlinear differential equations by constructing an approximate solution with an unknown parameter, and the unknown parameter can be easily determined using the Ying Buzu Shu. An example in heat transfer is given to elucidate the solution procedure.

  10. Characterization of the shape stability for nonlinear elliptic problems

    Science.gov (United States)

    Bucur, Dorin

    We characterize all geometric perturbations of an open set, for which the solution of a nonlinear elliptic PDE of p-Laplacian type with Dirichlet boundary condition is stable in the L-norm. The necessary and sufficient conditions are jointly expressed by a geometric property associated to the γ-convergence. If the dimension N of the space satisfies N-1

  11. Dynamics of parabolic problems with memory. Subcritical and critical nonlinearities

    Science.gov (United States)

    Li, Xiaojun

    2016-08-01

    In this paper, we study the long-time behavior of the solutions of non-autonomous parabolic equations with memory in cases when the nonlinear term satisfies subcritical and critical growth conditions. In order to do this, we show that the family of processes associated to original systems with heat source f(x, t) being translation bounded in Lloc 2 ( R ; L 2 ( Ω ) ) is dissipative in higher energy space M α , 0 < α ≤ 1, and possesses a compact uniform attractor in M 0 .

  12. Efficient implementation to numerically solve the nonlinear time fractional parabolic problems on unbounded spatial domain

    Science.gov (United States)

    Li, Dongfang; Zhang, Jiwei

    2016-10-01

    Anomalous diffusion behavior in many practical problems can be described by the nonlinear time-fractional parabolic problems on unbounded domain. The numerical simulation is a challenging problem due to the dependence of global information from time fractional operators, the nonlinearity of the problem and the unboundedness of the spacial domain. To overcome the unboundedness, conventional computational methods lead to extremely expensive costs, especially in high dimensions with a simple treatment of boundary conditions by making the computational domain large enough. In this paper, based on unified approach proposed in [25], we derive the efficient nonlinear absorbing boundary conditions (ABCs), which reformulates the problem on unbounded domain to an initial boundary value problem on bounded domain. To overcome nonlinearity, we construct a linearized finite difference scheme to solve the reduced nonlinear problem such that iterative methods become dispensable. And the stability and convergence of our linearized scheme are proved. Most important, we prove that the numerical solutions are bounded by the initial values with a constant coefficient, i.e., the constant coefficient is independent of the time. Overall, the computational cost can be significantly reduced comparing with the usual implicit schemes and a simple treatment of boundary conditions. Finally, numerical examples are given to demonstrate the efficiency of the artificial boundary conditions and theoretical results of the schemes.

  13. REVIEWS OF TOPICAL PROBLEMS: On some problems of physical economics

    Science.gov (United States)

    Chernavskiĭ, Dmitrii S.; Starkov, Nikolai I.; Shcherbakov, Andrei V.

    2002-09-01

    Attempts of designing economics along the lines of natural sciences (in particular, physics) with the use of mathematical modeling are reviewed. This area of research has come to be known as physical economics. Some topical questions of market economics are discussed; specifically, whether the market equilibrium is unique, whether transitions between stationary states are possible, and, if so, how these transitions proceed. By analogy with physics, the apparatus of mathematical modeling is widely used in answering these questions. It is shown that, under given external conditions, a self-sufficient country can be in two stationary, stable states — either in a high-productivity (HP) or in a low-productivity (LP) state. Transitions between them appear to be either an 'economical crisis' or an 'economical miracle'. It is shown that, for contemporary Russia, the crisis is already over, and the country is now in a stable LP state. Possible transitions to a HP state are discussed. The distributions of social elements over liquid accumulations and incomes are considered. It is shown that, in present-day Russia, these distributions are bimodal, meaning the coexistence of the poor and the wealthy with virtually no middle layer in between. In the tail of the distribution, a very small number of very wealthy people are present.

  14. Using Analogy to Solve a Three-Step Physics Problem

    CERN Document Server

    Lin, Shih-Yin

    2016-01-01

    In a companion paper, we discuss students' ability to take advantage of what they learn from a solved problem and transfer their learning to solve a quiz problem that has different surface features but the same underlying physics principles. Here, we discuss students' ability to perform analogical reasoning between another pair of problems. Both the problems can be solved using the same physics principles. However, the solved problem provided was a two- step problem (which can be solved by decomposing it into two sub-problems) while the quiz problem was a three-step problem. We find that it is challenging for students to extend what they learned from a two-step problem to solve a three-step problem.

  15. Nonlinear boundary value problem for biregular functions in Clifford analysis

    Institute of Scientific and Technical Information of China (English)

    黄沙

    1996-01-01

    The biregular function in Clifford analysis is discussed. Plemelj’s formula is obtained andnonlinear boundary value problem: is considered. Applying the methodof integral equations and Schauder fixed-point theorem, the existence of solution for the above problem is proved.

  16. A Class of Dynamic Nonlinear Resource Allocation Problems

    Science.gov (United States)

    1989-10-01

    algorithm and presents some numerical results in [5]. Matlin [6] provides a review of the literature on weapon-target allocation problems. Several...weapon, multi-target assignment problem," Working Paper 26957, MITRE, Feb. 1986. [6] S. M. Matlin , "A review of the literature on the missile

  17. Nonlinear problems of complex natural systems: Sun and climate dynamics

    CERN Document Server

    Bershadskii, A

    2012-01-01

    Universal role of the nonlinear one-third subharmonic resonance mechanism in generation of the strong fluctuations in such complex natural dynamical systems as global climate and global solar activity is discussed using wavelet regression detrended data. Role of the oceanic Rossby waves in the year-scale global temperature fluctuations and the nonlinear resonance contribution to the El Nino phenomenon have been discussed in detail. The large fluctuations of the reconstructed temperature on the millennial time-scales (Antarctic ice cores data for the past 400,000 years) are also shown to be dominated by the one-third subharmonic resonance, presumably related to Earth precession effect on the energy that the intertropical regions receive from the Sun. Effects of Galactic turbulence on the temperature fluctuations are discussed in this content. It is also shown that the one-third subharmonic resonance can be considered as a background for the 11-years solar cycle, and again the global (solar) rotation and chaoti...

  18. Phenomenographic Study of Students' Problem Solving Approaches in Physics

    Science.gov (United States)

    Walsh, Laura N.; Howard, Robert G.; Bowe, Brian

    2007-01-01

    This paper describes ongoing research investigating student approaches to quantitative and qualitative problem solving in physics. This empirical study was conducted using a phenomenographic approach to analyze data from individual semistructured problem solving interviews with 22 introductory college physics students. The main result of the study…

  19. Methods of nonlinear control theory in problems of mathematical physics

    OpenAIRE

    Rodrigues, Sérgio da Silva

    2008-01-01

    Consideramos a equação de Navier-Stokes num domínio bidimensional e estudamos a sua controlabilidade aproximada e a sua controlabilidade nas projecções em subespaços de campos vectoriais de dimensão finita. Consideramos controlos internos que tomam valores num espaço de dimensão finita. Mais concretamente, procuramos um subespaço de campos vectoriais de divergência nula de dimensão finita de tal modo que seja possível controlar aproximadamente a equação, através de controlos...

  20. Key problems in black hole physics today

    CERN Document Server

    Joshi, Pankaj S

    2011-01-01

    We review here some of the major open issues and challenges in black hole physics today, and the current progress on the same. It is pointed out that to secure a concrete foundation for the basic theory as well as astrophysical applications for black hole physics, it is essential to gain a suitable insight into these questions. In particular, we discuss the recent results investigating the final fate of a massive star within the framework of the Einstein gravity, and the stability and genericity aspects of the gravitational collapse outcomes in terms of black holes and naked singularities. Recent developments such as spinning up a black hole by throwing matter into it, and physical effects near naked singularities are considered. It is pointed out that some of the new results obtained in recent years in the theory of gravitational collapse imply interesting possibilities and understanding for the theoretical advances in gravity as well as towards new astrophysical applications.

  1. Computational physics problem solving with Python

    CERN Document Server

    Landau, Rubin H; Bordeianu, Cristian C

    2015-01-01

    The use of computation and simulation has become an essential part of the scientific process. Being able to transform a theory into an algorithm requires significant theoretical insight, detailed physical and mathematical understanding, and a working level of competency in programming. This upper-division text provides an unusually broad survey of the topics of modern computational physics from a multidisciplinary, computational science point of view. Its philosophy is rooted in learning by doing (assisted by many model programs), with new scientific materials as well as with the Python progr

  2. Multiple optimal solutions to a sort of nonlinear optimization problem

    Institute of Scientific and Technical Information of China (English)

    Xue Shengjia

    2007-01-01

    The optimization problem is considered in which the objective function is pseudolinear(both pseudoconvex and pseudoconcave) and the constraints are linear. The general expression for the optimal solutions to the problem is derived with the representation theorem of polyhedral sets, and the uniqueness condition of the optimal solution and the computational procedures to determine all optimal solutions ( ifthe uniqueness condition is not satisfied ) are provided. Finally, an illustrative example is also given.

  3. Nonlinear Multidimensional Assignment Problems Efficient Conic Optimization Methods and Applications

    Science.gov (United States)

    2015-06-24

    CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0153 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Mittelmann, Hans D 5d. PROJECT NUMBER 5e. TASK NUMBER 5f...problems. The size 16 three-dimensional quadratic assignment problem Q3AP from wireless communications was solved using a sophisticated approach...placement of the sensors. However, available MINLP solvers are not sufficiently effective, even in the convex case, and a hybrid Benders

  4. 200 more puzzling physics problems with hints and solutions

    CERN Document Server

    Gnädig, Péter; Vigh, Máté

    2016-01-01

    Like its predecessor, 200 Puzzling Physics Problems, this book is aimed at strengthening students' grasp of the laws of physics by applying them to situations that are practical, and to problems that yield more easily to intuitive insight than to brute-force methods and complex mathematics. The problems are chosen almost exclusively from classical, non-quantum physics, but are no easier for that. They are intriguingly posed in accessible non-technical language, and require readers to select an appropriate analysis framework and decide which branches of physics are involved. The general level of sophistication needed is that of the exceptional school student, the good undergraduate, or the competent graduate student; some physics professors may find some of the more difficult questions challenging. By contrast, the mathematical demands are relatively minimal, and seldom go beyond elementary calculus. This further book of physics problems is not only instructive and challenging, but also enjoyable.

  5. Advances in chemical physics modern nonlinear optics, pt.1

    CERN Document Server

    Rice, Stuart A

    2009-01-01

    Partial table of contents: Hyper-Rayleigh and Hyper-Raman Rotational and Vibrational Spectroscopy (T. Bancewicz & Z. Ożgo). Polarization Properties of Hyper-Rayleigh and Hyper-Raman Scatterings (M. Kozierowski). Fast Molecular Reorientation in Liquid Crystals Probed by Nonlinear Optics (J. Lalanne, et al.). Nonlinear Propagation of Laser Light of Different Polarizations (G. Rivoire). Nonlinear Magneto-Optics of Magnetically Ordered Crystals (R. Zawodny). Dynamical Questions in Quantum Optics (A. Shumovsky). Quantum Resonance Fluorescence from Mutually Correlated Atoms (Z. Fi

  6. A new SQP algorithm and numerical experiments for nonlinear inequality constrained optimization problem

    Directory of Open Access Journals (Sweden)

    Mahdi Sohrabi-Haghighat

    2014-06-01

    Full Text Available In this paper, a new algorithm based on SQP method is presented to solve the nonlinear inequality constrained optimization problem. As compared with the other existing SQP methods, per single iteration, the basic feasible descent direction is computed by solving at most two equality constrained quadratic programming. Furthermore, there is no need for any auxiliary problem to obtain the coefficients and update the parameters. Under some suitable conditions, the global and superlinear convergence are shown. Keywords: Global convergence, Inequality constrained optimization, Nonlinear programming problem, SQP method, Superlinear convergence rate.

  7. CONVERGENCE OF THE CRANK-NICOLSON/NEWTON SCHEME FOR NONLINEAR PARABOLIC PROBLEM

    Institute of Scientific and Technical Information of China (English)

    Xinlong FENG; Yinnian HE

    2016-01-01

    In this paper, the Crank-Nicolson/Newton scheme for solving numerically second-order nonlinear parabolic problem is proposed. The standard Galerkin finite element method based on P2 conforming elements is used to the spatial discretization of the problem and the Crank-Nicolson/Newton scheme is applied to the time discretization of the resulted finite element equations. Moreover, assuming the appropriate regularity of the exact solution and the finite element solution, we obtain optimal error estimates of the fully discrete Crank-Nicolson/Newton scheme of nonlinear parabolic problem. Finally, numerical experiments are presented to show the effcient performance of the proposed scheme.

  8. Asymptotic solution for a class of weakly nonlinear singularly perturbed reaction diffusion problem

    Institute of Scientific and Technical Information of China (English)

    TANG Rong-rong

    2009-01-01

    Under appropriate conditions, with the perturbation method and the theory of differential inequalities, a class of weakly nonlinear singularly perturbed reaction diffusion problem is considered. The existence of solution of the original problem is proved by constructing the auxiliary functions. The uniformly valid asymptotic expansions of the solution for arbitrary mth order approximation are obtained through constructing the formal solutions of the original problem, expanding the nonlinear terms to the power in small parameter e and comparing the coefficient for the same powers of ε. Finally, an example is provided, resulting in the error of O(ε2).

  9. SINGULARLY PERTURBED NONLINEAR BOUNDARY VALUE PROBLEM FOR A KIND OF VOLTERRA TYPE FUNCTIONAL DIFFERENTIAL EQUATION

    Institute of Scientific and Technical Information of China (English)

    鲁世平

    2003-01-01

    By employing the theory of differential inequality and some analysis methods, a nonlinear boundary value problem subject to a general kind of second-order Volterra functional differential equation was considered first. Then, by constructing the right-side layer function and the outer solution, a nonlinear boundary value problem subject to a kind of second- order Volterra functional differential equation with a small parameter was studied further. By using the differential mean value theorem and the technique of upper and lower solution, a new result on the existence of the solutions to the boundary value problem is obtained, and a uniformly valid asymptotic expansions of the solution is given as well.

  10. A Symmetric Characteristic Finite Volume Element Scheme for Nonlinear Convection-Diffusion Problems

    Institute of Scientific and Technical Information of China (English)

    Min Yang; Yi-rang Yuan

    2008-01-01

    In this paper, we implement alternating direction strategy and construct a symmetric FVE scheme for nonlinear convection-diffusion problems. Comparing to general FVE methods, our method has two advantages. First, the coefficient matrices of the discrete schemes will be symmetric even for nonlinear problems.Second, since the solution of the algebraic equations at each time step can be inverted into the solution of several one-dimensional problems, the amount of computation work is smaller. We prove the optimal H1-norm error estimates of order O(△t2 + h) and present some numerical examples at the end of the paper.

  11. The Riccati Equation Mapping Method for Solving Nonlinear Partial Differential Equations in Mathematical Physics

    Directory of Open Access Journals (Sweden)

    Elsayed Mohamed Elsayed ZAYED

    2014-07-01

    Full Text Available In this article, many new exact solutions of the (2+1-dimensional nonlinear Boussinesq-Kadomtsev-Petviashvili equation and the (1+1-dimensional nonlinear heat conduction equation are constructed using the Riccati equation mapping method. By means of this method, many new exact solutions are successfully obtained. This method can be applied to many other nonlinear evolution equations in mathematical physics.doi:10.14456/WJST.2014.14

  12. Generalized Extended tanh-function Metho d for Traveling Wave Solutions of Nonlinear Physical Equations

    Institute of Scientific and Technical Information of China (English)

    Chang Jing; Gao Yi-xian; Cai Hua

    2014-01-01

    In this paper, the generalized extended tanh-function method is used for constructing the traveling wave solutions of nonlinear evolution equations. We choose Fisher’s equation, the nonlinear schr¨odinger equation to illustrate the validity and ad-vantages of the method. Many new and more general traveling wave solutions are obtained. Furthermore, this method can also be applied to other nonlinear equations in physics.

  13. Existence of solutions for quasistatic problems of unilateral contact with nonlocal friction for nonlinear elastic materials

    Directory of Open Access Journals (Sweden)

    Alain Mignot

    2005-09-01

    Full Text Available This paper shows the existence of a solution of the quasi-static unilateral contact problem with nonlocal friction law for nonlinear elastic materials. We set up a variational incremental problem which admits a solution, when the friction coefficient is small enough, and then by passing to the limit with respect to time we obtain a solution.

  14. Regularization method with two parameters for nonlinear ill-posed problems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper is devoted to the regularization of a class of nonlinear ill-posed problems in Banach spaces. The operators involved are multi-valued and the data are assumed to be known approximately. Under the assumption that the original problem is solvable, a strongly convergent approximation procedure is designed by means of the Tikhonov regularization method with two pa- rameters.

  15. A Smooth Newton Method for Nonlinear Programming Problems with Inequality Constraints

    Directory of Open Access Journals (Sweden)

    Vasile Moraru

    2012-02-01

    Full Text Available The paper presents a reformulation of the Karush-Kuhn-Tucker (KKT system associated nonlinear programming problem into an equivalent system of smooth equations. Classical Newton method is applied to solve the system of equations. The superlinear convergence of the primal sequence, generated by proposed method, is proved. The preliminary numerical results with a problems test set are presented.

  16. Multipoint Singular Boundary-Value Problem for Systems of Nonlinear Differential Equations

    Directory of Open Access Journals (Sweden)

    Zdeněk Šmarda

    2009-01-01

    Full Text Available A singular Cauchy-Nicoletti problem for a system of nonlinear ordinary differential equations is considered. With the aid of combination of Ważewski's topological method and Schauder's principle, the theorem concerning the existence of a solution of this problem (having the graph in a prescribed domain is proved.

  17. COYOTE: a finite-element computer program for nonlinear heat-conduction problems

    Energy Technology Data Exchange (ETDEWEB)

    Gartling, D.K.

    1982-10-01

    COYOTE is a finite element computer program designed for the solution of two-dimensional, nonlinear heat conduction problems. The theoretical and mathematical basis used to develop the code is described. Program capabilities and complete user instructions are presented. Several example problems are described in detail to demonstrate the use of the program.

  18. Existence of Solutions for Nonlinear Four-Point -Laplacian Boundary Value Problems on Time Scales

    Directory of Open Access Journals (Sweden)

    Topal SGulsan

    2009-01-01

    Full Text Available We are concerned with proving the existence of positive solutions of a nonlinear second-order four-point boundary value problem with a -Laplacian operator on time scales. The proofs are based on the fixed point theorems concerning cones in a Banach space. Existence result for -Laplacian boundary value problem is also given by the monotone method.

  19. The Cauchy problem for non-autonomous nonlinear Schr(o)dinger equations

    Institute of Scientific and Technical Information of China (English)

    Peter Y. H. Pang; TANG Hongyan; WANG Youde

    2005-01-01

    In this paper we study the Cauchy problem for cubic nonlinear Schr(o)dinger equation with space-and time-dependent coefficients on Rm and Tm. By an approximation argument we prove that for suitable initial values, the Cauchy problem admits unique local solutions. Global existence is discussed in the cases of m=1,2.

  20. On high-continuity transfinite element formulations for linear-nonlinear transient thermal problems

    Science.gov (United States)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1987-01-01

    This paper describes recent developments in the applicability of a hybrid transfinite element methodology with emphasis on high-continuity formulations for linear/nonlinear transient thermal problems. The proposed concepts furnish accurate temperature distributions and temperature gradients making use of a relatively smaller number of degrees of freedom; and the methodology is applicable to linear/nonlinear thermal problems. Characteristic features of the formulations are described in technical detail as the proposed hybrid approach combines the major advantages and modeling features of high-continuity thermal finite elements in conjunction with transform methods and classical Galerkin schemes. Several numerical test problems are evaluated and the results obtained validate the proposed concepts for linear/nonlinear thermal problems.

  1. Cauchy problem for a class of nonlinear dispersive wave equations arising in elasto-plastic flow

    Science.gov (United States)

    Zhijian, Yang

    2006-01-01

    The paper studies the existence, both locally and globally in time, stability, decay estimates and blowup of solutions to the Cauchy problem for a class of nonlinear dispersive wave equations arising in elasto-plastic flow. Under the assumption that the nonlinear term of the equations is of polynomial growth order, say [alpha], it proves that when [alpha]>1, the Cauchy problem admits a unique local solution, which is stable and can be continued to a global solution under rather mild conditions; when [alpha][greater-or-equal, slanted]5 and the initial data is small enough, the Cauchy problem admits a unique global solution and its norm in L1,p(R) decays at the rate for 2nonlinear term, the local solutions of the Cauchy problem blow up in finite time.

  2. A NUMERICAL METHOD FOR SIMULATING NONLINEAR FLUID-RIGID STRUCTURE INTERACTION PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    XingJ.T; PriceW.G; ChenY.G

    2005-01-01

    A numerical method for simulating nonlinear fluid-rigid structure interaction problems is developed. The structure is assumed to undergo large rigid body motions and the fluid flow is governed by nonlinear, viscous or non-viscous, field equations with nonlinear boundary conditions applied to the free surface and fluid-solid interaction interfaces. An Arbitrary-Lagrangian-Eulerian (ALE) mesh system is used to construct the numerical model. A multi-block numerical scheme of study is adopted allowing for the relative motion between moving overset grids, which are independent of one another. This provides a convenient method to overcome the difficulties in matching fluid meshes with large solid motions. Nonlinear numerical equations describing nonlinear fluid-solid interaction dynamics are derived through a numerical discretization scheme of study. A coupling iteration process is used to solve these numerical equations. Numerical examples are presented to demonstrate applications of the model developed.

  3. Contemporary health physics problems and solutions

    CERN Document Server

    Bevelacqua, Joseph John

    2008-01-01

    A comprehensive and practical reference on radiation protection. Describes radiation basics, external and internal dosimetry and biological effects of ionizing radiation. Demonstrates the fundamentals and calculations as they are applied to various health physics fields. Over 375 worked examples, presented within the context of diverse scenarios, aid readers in testing their knowledge as well as applying the concepts to actual situations.

  4. SOME PROBLEMS CONCERNING FREE NON-LINEAR VIBRATIONS OF BEAM STRUCTURES

    Directory of Open Access Journals (Sweden)

    S. V. Bosakov

    2008-01-01

    Full Text Available The paper analyzes an influence of physical non-linearity material account on vibrations of single beams with various support fixing. The authors also analyze power criteria for existing stable periodic vibrations and dependence of vibration period on initial power is determined in the paper. Accurate values of an amplitude and non-linear bending vibration period of beams have been also determined as a conservative system with due account of initial conditions. A number of examples are given that clearly illustrate the obtained solutions and show an influence rate of the mentioned effects on amplitude-frequency characteristics of non-linear systems. 

  5. Physical rehabilitation of congenital heart disease as a social problem

    OpenAIRE

    Іrina Kulchenko

    2015-01-01

    Purpose: to attract the attention to the problem of physical rehabilitation of congenital heart diseases. Material and Methods: analyzed the domestic and foreign scientific and methodological literature on the problems of the physical rehabilitation of congenital heart disease. Results: in the domestic literature lacks modern works on the subject. Foreign literature sources indicate the positive impact of the programs of physical rehabilitation on exercise tolerance, health and quality of lif...

  6. Problem Solving and the Use of Math in Physics Courses

    Science.gov (United States)

    Redish, Edward F.

    2006-01-01

    Mathematics is an essential element of physics problem solving, but experts often fail to appreciate exactly how they use it. Math may be the language of science, but math-in-physics is a distinct dialect of that language. Physicists tend to blend conceptual physics with mathematical symbolism in a way that profoundly affects the way equations are…

  7. Optimal experimental design for nonlinear ill-posed problems applied to gravity dams

    Science.gov (United States)

    Lahmer, Tom

    2011-12-01

    The safe operation of gravity dams requires continuous monitoring in order to detect any changes concerning the stability of these constructions. Damage which may result from cyclic loading, variation in temperature, aging, chemical reactions, etc needs to be identified as fast and as reliable as possible. Generally, existing dams are well monitored by several types of measurement devices which log different physical quantities. The monitoring practice is according to official guidelines and the engineer’s experience. The aim of this paper is to perform a simulation-based optimal design for the monitoring of existing dams. Therefore, a design criterion which is based on average mean-squared reconstruction errors is derived. The reconstructions are obtained as regularized solutions of the nonlinear, inverse and ill-posed problem of damage identification. The basis for these investigations is a hydro-mechanically coupled model applied to gravity dams. Damaged zones in the dams are described by a smeared crack model, i.e. by spatially varying material properties. The inherent correlation of changes in the dominating parameters is explicitly considered during the inverse analysis. For the solution and regularization of the inverse problem, the iteratively regularized Gauss-Newton method is applied. Numerical results of the inverse analysis and the design process allow assessments of the applicability of the strategies proposed here.

  8. Accelerated solution of non-linear flow problems using Chebyshev iteration polynomial based RK recursions

    Energy Technology Data Exchange (ETDEWEB)

    Lorber, A.A.; Carey, G.F.; Bova, S.W.; Harle, C.H. [Univ. of Texas, Austin, TX (United States)

    1996-12-31

    The connection between the solution of linear systems of equations by iterative methods and explicit time stepping techniques is used to accelerate to steady state the solution of ODE systems arising from discretized PDEs which may involve either physical or artificial transient terms. Specifically, a class of Runge-Kutta (RK) time integration schemes with extended stability domains has been used to develop recursion formulas which lead to accelerated iterative performance. The coefficients for the RK schemes are chosen based on the theory of Chebyshev iteration polynomials in conjunction with a local linear stability analysis. We refer to these schemes as Chebyshev Parameterized Runge Kutta (CPRK) methods. CPRK methods of one to four stages are derived as functions of the parameters which describe an ellipse {Epsilon} which the stability domain of the methods is known to contain. Of particular interest are two-stage, first-order CPRK and four-stage, first-order methods. It is found that the former method can be identified with any two-stage RK method through the correct choice of parameters. The latter method is found to have a wide range of stability domains, with a maximum extension of 32 along the real axis. Recursion performance results are presented below for a model linear convection-diffusion problem as well as non-linear fluid flow problems discretized by both finite-difference and finite-element methods.

  9. A Weak Solution of a Stochastic Nonlinear Problem

    Directory of Open Access Journals (Sweden)

    M. L. Hadji

    2015-01-01

    Full Text Available We consider a problem modeling a porous medium with a random perturbation. This model occurs in many applications such as biology, medical sciences, oil exploitation, and chemical engineering. Many authors focused their study mostly on the deterministic case. The more classical one was due to Biot in the 50s, where he suggested to ignore everything that happens at the microscopic level, to apply the principles of the continuum mechanics at the macroscopic level. Here we consider a stochastic problem, that is, a problem with a random perturbation. First we prove a result on the existence and uniqueness of the solution, by making use of the weak formulation. Furthermore, we use a numerical scheme based on finite differences to present numerical results.

  10. An Efficient Pseudospectral Method for Solving a Class of Nonlinear Optimal Control Problems

    OpenAIRE

    Emran Tohidi; Atena Pasban; Kilicman, A.; S. Lotfi Noghabi

    2013-01-01

    This paper gives a robust pseudospectral scheme for solving a class of nonlinear optimal control problems (OCPs) governed by differential inclusions. The basic idea includes two major stages. At the first stage, we linearize the nonlinear dynamical system by an interesting technique which is called linear combination property of intervals. After this stage, the linearized dynamical system is transformed into a multi domain dynamical system via computational interval partitioning. Moreover,...

  11. Unknown parameter's variance-covariance propagation and calculation in generalized nonlinear least squares problem

    Institute of Scientific and Technical Information of China (English)

    TAO Hua-xue; GUO Jin-yun

    2005-01-01

    The unknown parameter's variance-covariance propagation and calculation in the generalized nonlinear least squares remain to be studied now,which didn't appear in the internal and external referencing documents. The unknown parameter's variance-covariance propagation formula, considering the two-power terms, was concluded used to evaluate the accuracy of unknown parameter estimators in the generalized nonlinear least squares problem. It is a new variance-covariance formula and opens up a new way to evaluate the accuracy when processing data which have the multi-source,multi-dimensional, multi-type, multi-time-state, different accuracy and nonlinearity.

  12. Application of HPEM to investigate the response and stability of nonlinear problems in vibration

    DEFF Research Database (Denmark)

    Mohammadi, M.H.; Mohammadi, A.; Kimiaeifar, A.

    2010-01-01

    In this work, a powerful analytical method, called He's Parameter Expanding Methods (HPEM) is used to obtain the exact solution of nonlinear problems in nonlinear vibration. In this work, the governing equation is obtained by using Lagrange method, then the nonlinear governing equation is solved...... analytically by He's Parameter Expanding Methods. It is shown that one term in series expansions is sufficient to obtain a highly accurate solution which is valid for the whole domain. Comparison of the obtained solutions with those obtained using numerical method shows that this method is effective...

  13. Concrete Physics Method for Solving NP hard Problem

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    With a NP hard problem given, we may find a equivalent physicalworld. The rule of the changing of the physical states is simply the algorithm for sol ving the original NP hard problem .It is the most natural algorithm for solving NP hard problems. In this paper we deal with a famous example , the well known NP hard problem--Circles Packing. It shows that our algorithm is dramatically very efficient. We are inspired that, the concrete physics algorithm will alway s be very efficient for NP hard problem.

  14. SOME BOUNDARY VALUE PROBLEMS FOR NONLINEAR DEGENERATE ELLIPTIC EQUATIONS OF SECOND ORDER

    Institute of Scientific and Technical Information of China (English)

    Wen Guochun

    2007-01-01

    The present article deals with some boundary value problems for nonlinear elliptic equations with degenerate rank 0 including the oblique derivative problem. Firstly the formulation and estimates of solutions of the oblique derivative problem are given, and then by the above estimates and the method of parameter extension, the existence of solutions of the above problem is proved. In this article, the complex analytic method is used, namely the corresponding problem for degenerate elliptic complex equations of first order is firstly discussed, afterwards the above problem for the degenerate elliptic equations of second order is solved.

  15. OBLIQUE DERIVATIVE PROBLEMS FOR SECOND ORDER NONLINEAR MIXED EQUATIONS WITH DEGENERATE LINE

    Institute of Scientific and Technical Information of China (English)

    Wen Guochun

    2008-01-01

    The present article deals with oblique derivative problems for some nonlin-ear mixed equations with parabolic degeneracy, which include the Tricomi problem as a special case. First, the formulation of the problems for the equations is given; next, the representation and estimates of solutions for the above problems are obtained; finally, the existence of solutions for the problems is proved by the successive iteration and the com-pactness principle of solutions of the problems. In this article, the author uses the complex method, namely, the complex functions in the elliptic domain and the hyperbolic complex functions in hyperbolic domain are used.

  16. Nonconservative stability problems of modern physics

    CERN Document Server

    Kirillov, Oleg N

    2013-01-01

    This work gives a complete overview on the subject of nonconservative stability from the modern point of view. Relevant mathematical concepts are presented, as well as rigorous stability results and numerous classical and contemporary examples from mechanics and physics.The book shall serve to present and prospective specialists providing the current state of knowledge in this actively developing field. The understanding of this theory is vital for many areas of technology, as dissipative effects in rotor dynamics orcelestial mechanics.

  17. A Descriptive Study of Cooperative Problem Solving Introductory Physics Labs

    Science.gov (United States)

    Knutson, Paul Aanond

    2011-01-01

    The purpose of this study was to determine the ways in which cooperative problem solving in physics instructional laboratories influenced the students' ability to provide qualitative responses to problems. The literature shows that problem solving involves both qualitative and quantitative skills. Qualitative skills are important because those…

  18. Harmony Theory: Problem Solving, Parallel Cognitive Models, and Thermal Physics.

    Science.gov (United States)

    Smolensky, Paul; Riley, Mary S.

    This document consists of three papers. The first, "A Parallel Model of (Sequential) Problem Solving," describes a parallel model designed to solve a class of relatively simple problems from elementary physics and discusses implications for models of problem-solving in general. It is shown that one of the most salient features of problem…

  19. A monotonic method for solving nonlinear optimal control problems

    CERN Document Server

    Salomon, Julien

    2009-01-01

    Initially introduced in the framework of quantum control, the so-called monotonic algorithms have shown excellent numerical results when dealing with various bilinear optimal control problems. This paper aims at presenting a unified formulation of such procedures and the intrinsic assumptions they require. In this framework, we prove the feasibility of the general algorithm. Finally, we explain how these assumptions can be relaxed.

  20. Optimal Control Problems for Nonlinear Variational Evolution Inequalities

    Directory of Open Access Journals (Sweden)

    Eun-Young Ju

    2013-01-01

    Full Text Available We deal with optimal control problems governed by semilinear parabolic type equations and in particular described by variational inequalities. We will also characterize the optimal controls by giving necessary conditions for optimality by proving the Gâteaux differentiability of solution mapping on control variables.

  1. A-monotonicity and applications to nonlinear variational inclusion problems

    Directory of Open Access Journals (Sweden)

    Ram U. Verma

    2004-01-01

    Full Text Available A new notion of the A-monotonicity is introduced, which generalizes the H-monotonicity. Since the A-monotonicity originates from hemivariational inequalities, and hemivariational inequalities are connected with nonconvex energy functions, it turns out to be a useful tool proving the existence of solutions of nonconvex constrained problems as well.

  2. Mathematical models of physics problems (physics research and technology)

    CERN Document Server

    Anchordoqui, Luis Alfredo

    2013-01-01

    This textbook is intended to provide a foundation for a one-semester introductory course on the advanced mathematical methods that form the cornerstones of the hard sciences and engineering. The work is suitable for first year graduate or advanced undergraduate students in the fields of Physics, Astronomy and Engineering. This text therefore employs a condensed narrative sufficient to prepare graduate and advanced undergraduate students for the level of mathematics expected in more advanced graduate physics courses, without too much exposition on related but non-essential material. In contrast to the two semesters traditionally devoted to mathematical methods for physicists, the material in this book has been quite distilled, making it a suitable guide for a one-semester course. The assumption is that the student, once versed in the fundamentals, can master more esoteric aspects of these topics on his or her own if and when the need arises during the course of conducting research. The book focuses on two cor...

  3. Contemporary health physics problems and solutions

    CERN Document Server

    Bevelacqua, Joseph John

    2009-01-01

    This is the first text specifically designed to train potential health physicists to think and respond like professionals. Written by a former chairman of the American Board of Health Physics Comprehensive Panel of Examiners with more than 20 years of professional and academic experience in the field, it offers a balanced presentation of all the theoretical and practical issues essential for a full working knowledge of radiation exposure assessments. As the only book to cover the entire radiation protection field, it includes detailed coverage of the medical, university, reactor, fuel cycle, e

  4. Some comparison of restarted GMRES and QMR for linear and nonlinear problems

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, R. [Baylor Univ., Waco, TX (United States); Joubert, W. [Los Alamos National Lab., NM (United States)

    1994-12-31

    Comparisons are made between the following methods: QMR including its transpose-free version, restarted GMRES, and a modified restarted GMRES that uses approximate eigenvectors to improve convergence, For some problems, the modified GMRES is competitive with or better than QMR in terms of the number of matrix-vector products. Also, the GMRES methods can be much better when several similar systems of linear equations must be solved, as in the case of nonlinear problems and ODE problems.

  5. Problem solving in the borderland between mathematics and physics

    DEFF Research Database (Denmark)

    Jensen, Jens Højgaard; Niss, Martin; Jankvist, Uffe Thomas

    2017-01-01

    , if it focuses on solving so-called unformalized problems, where a major challenge is to formalize the problems in mathematics and physics terms. We analyse four concrete examples of unformalized problems for which the formalization involves different order of mathematization and applying physics to the problem......The article addresses the problématique of where mathematization is taught in the educational system, and who teaches it. Mathematization is usually not a part of mathematics programs at the upper secondary level, but we argue that physics teaching has something to offer in this respect......, but all require mathematization. The analysis leads to the formulation of a model by which we attempt to capture the important steps of the process of solving unformalized problems by means of mathematization and physicalization....

  6. A NONLOCAL NONLINEAR BOUNDARY VALUE PROBLEM FOR THE HEAT EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    YANJINHAI

    1996-01-01

    The existenoe and limit hehaviour of the solution for a kind of nonloeal noulinear boundary value condition on a part of the boundary is studied for the heat equation, which physicallymeans that the potential is the function of the total flux. When this part of boundary shrinks to a point in a certain way, this condition either results in a Dirac measure or simply disappears in the corresponding problem.

  7. Nodal Solutions for a Nonlinear Fourth-Order Eigenvalue Problem

    Institute of Scientific and Technical Information of China (English)

    Ru Yun MA; Bevan THOMPSON

    2008-01-01

    We are concerned with determining the values of λ, for which there exist nodal solutions of the fourth-order boundary value problem y =λa(x)f(y),00 for all u ≠0. We give conditions on the ratio f (s)/s,at infinity and zero, that guarantee the existence of nodal solutions.The proof of our main results is based upon bifurcation techniques.

  8. Fast Inverse Nonlinear Fourier Transforms for Fiber Bragg Grating Design and Related Problems

    CERN Document Server

    Wahls, Sander

    2016-01-01

    The problem of constructing a fiber Bragg grating profile numerically such that the reflection coefficient of the grating matches a given specification is considered. The well-known analytic solution to this problem is given by a suitable inverse nonlinear Fourier transform (also known as inverse scattering transform) of the specificed reflection coefficient. Many different algorithms have been proposed to compute this inverse nonlinear Fourier transform numerically. The most efficient ones require $\\mathcal{O}(D^{2})$ floating point operations (flops) to generate $D$ samples of the grating profile. In this paper, two new fast inverse nonlinear Fourier transform algorithms that require only $\\mathcal{O}(D\\log^{2}D)$ flops are proposed. The merits of our algorithms are demonstrated in numerical examples, in which they are compared to a conventional layer peeling method, the Toeplitz inner bordering method and integral layer peeling. One of our two algorithms also extends to the design problem for fiber-assiste...

  9. Application of a new method of nonlinear dynamical system identification to biochemical problems.

    Science.gov (United States)

    Karnaukhov, A V; Karnaukhova, E V

    2003-03-01

    The system identification method for a variety of nonlinear dynamic models is elaborated. The problem of identification of an original nonlinear model presented as a system of ordinary differential equations in the Cauchy explicit form with a polynomial right part reduces to the solution of the system of linear equations for the constants of the dynamical model. In other words, to construct an integral model of the complex system (phenomenon), it is enough to collect some data array characterizing the time-course of dynamical parameters of the system. Collection of such a data array has always been a problem. However difficulties emerging are, as a rule, not principal and may be overcome almost without exception. The potentialities of the method under discussion are demonstrated by the example of the test problem of multiparametric nonlinear oscillator identification. The identification method proposed may be applied to the study of different biological systems and in particular the enzyme kinetics of complex biochemical reactions.

  10. SOME OPTIMALITY AND DUALITY RESULTS FOR AN EFFICIENT SOLUTION OF MULTIOBJECTIVE NONLINEAR FRACTIONAL PROGRAMMING PROBLEM

    Directory of Open Access Journals (Sweden)

    Paras Bhatnagar

    2012-10-01

    Full Text Available Kaul and Kaur [7] obtained necessary optimality conditions for a non-linear programming problem by taking the objective and constraint functions to be semilocally convex and their right differentials at a point to be lower semi-continuous. Suneja and Gupta [12] established the necessary optimality conditions without assuming the semilocal convexity of the objective and constraint functions but their right differentials at the optimal point to be convex. Suneja and Gupta [13] established necessary optimality conditions for an efficient solution of a multiobjective non-linear programming problem by taking the right differentials of the objective functions and constraintfunctions at the efficient point to be convex. In this paper we obtain some results for a properly efficient solution of a multiobjective non-linear fractional programming problem involving semilocally convex and related functions by assuming generalized Slater type constraint qualification.

  11. Analysis of a Beam Made of Physical Nonlinear Material on Nonlinear Elastic Foundation under a Moving Concentrated Load

    Directory of Open Access Journals (Sweden)

    E. Mardani

    2008-01-01

    Full Text Available A prismatic beam made of a behaviorally nonlinear material was analyzed under a concentrated load moving with a known velocity on a nonlinear elastic foundation with a reaction the vibration equation of motion was derived using Hamilton principle and Euler Lagrange equation. The amplitude of vibration, circular frequency, bending moment, stress and deflection of the beam can be calculated by the presented solution. Considering the response of the beam, in the sense of its resonance, it was found that there is no critical velocity when the behavior of the beam and foundation material is assumed to be physically nonlinear and there are finite values for the deflection, stress and bending moment of the beam when

  12. Solitary waves for the nonlinear Schrödinger problem with the probability distribution function in the stochastic input case

    Science.gov (United States)

    Abdelrahman, Mahmoud A. E.; Sohaly, M. A.

    2017-08-01

    This work deals with the construction of the exact traveling wave solutions for the nonlinear Schrödinger equation by the new Riccati-Bernoulli Sub-ODE method. Additionally, we apply this method in order to study the random solutions by finding the probability distribution function when the coefficient in our problem is a random variable. The travelling wave solutions of many equations physically or mathematically are expressed by hyperbolic functions, trigonometric functions and rational functions. We discuss our method in the deterministic case and also in a random case, by studying the beta distribution for the random input.

  13. A Nonlinear Lagrange Algorithm for Stochastic Minimax Problems Based on Sample Average Approximation Method

    Directory of Open Access Journals (Sweden)

    Suxiang He

    2014-01-01

    Full Text Available An implementable nonlinear Lagrange algorithm for stochastic minimax problems is presented based on sample average approximation method in this paper, in which the second step minimizes a nonlinear Lagrange function with sample average approximation functions of original functions and the sample average approximation of the Lagrange multiplier is adopted. Under a set of mild assumptions, it is proven that the sequences of solution and multiplier obtained by the proposed algorithm converge to the Kuhn-Tucker pair of the original problem with probability one as the sample size increases. At last, the numerical experiments for five test examples are performed and the numerical results indicate that the algorithm is promising.

  14. On a nonlinear elliptic problem with critical potential in R2

    Institute of Scientific and Technical Information of China (English)

    SHEN; Yaotian; YAO; Yangxin; HEN; Zhihui

    2004-01-01

    Consider the existence of nontrivial solutions of homogeneous Dirichlet problem for a nonlinear elliptic equation with the critical potential in R2. By establishing a weighted inequality with the best constant, determine the critical potential in R2, and study the eigenvalues of Laplace equation with the critical potential. By the Pohozaev identity of a solution with a singular point and the Cauchy-Kovalevskaya theorem, obtain the nonexistence result of solutions with singular points to the nonlinear elliptic equation. Moreover, for the same problem, the existence results of multiple solutions are proved by the mountain pass theorem.

  15. The Modified Adomian Decomposition Method for Nonlinear Fractional Boundary Value Problems

    Institute of Scientific and Technical Information of China (English)

    WANG Jie

    2012-01-01

    We use the modified Adomian decomposition method(ADM) for solving the nonlinear fractional boundary value problem Dα0+u(x)=f(x,u(x)), 0<x<1, 3<α≤4u(0) =α0, u″(0) =α2 (1)u(1) =β0, u″(1) =β2where Dα0+u is Caputo fractional derivative and α0,α2,β0,β2 is not zero at all,and f:[0,1] x R → R is continuous.The calculated numerical results show reliability and efficiency of the algorithm given.The numerical procedure is tested on linear and nonlinear problems.

  16. ASYMPTOTIC THEORY OF INITIAL VALUE PROBLEMS FOR NONLINEAR PERTURBED KLEIN-GORDON EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    GAN Zai-hui; ZHANG Jian

    2005-01-01

    The asymptotic theory of initial value problems for a class of nonlinear perturbed Klein-Gordon equations in two space dimensions is considered. Firstly, using the contraction mapping principle, combining some priori estimates and the convergence of Bessel function, the well-posedness of solutions of the initial value problem in twice continuous differentiable space was obtained according to the equivalent integral equation of initial value problem for the Klein-Gordon equations. Next, formal approximations of initial value problem was constructed by perturbation method and the asymptotic validity of the formal approximation is got. Finally, an application of the asymptotic theory was given, the asymptotic approximation degree of solutions for the initial value problem of a specific nonlinear Klein-Gordon equation was analyzed by using the asymptotic approximation theorem.

  17. Solutions to selected problems from the physics of radiology

    CERN Document Server

    Johns, Harold

    1991-01-01

    This book serves as a practical guide to solving problems presented in THE PHYSICS OF RADIOLOGY, Fourth Edition. The authors contend that one does not really understand physics unless one can use it to solve problems and they have encouraged classroom problem-solving and discussion of solutions. This volume enhances that process. Approximately half of the problems found at the end of each chapter in the text have been selected with reasonable solutions provided. Solutions include, where appropriate, discussion of assumptions that may have to be made, and where the relevant formulae and data ar

  18. Studies in nonlinear problems of energy. Progress report, January 1, 1992--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Matkowsky, B.J.

    1992-07-01

    Emphasis has been on combustion and flame propagation. The research program was on modeling, analysis and computation of combustion phenomena, with emphasis on transition from laminar to turbulent combustion. Nonlinear dynamics and pattern formation were investigated in the transition. Stability of combustion waves, and transitions to complex waves are described. Combustion waves possess large activation energies, so that chemical reactions are significant only in thin layers, or reaction zones. In limit of infinite activation energy, the zones shrink to moving surfaces, (fronts) which must be found during the analysis, so that (moving free boundary problems). The studies are carried out for limiting case with fronts, while the numerical studies are carried out for finite, though large, activation energy. Accurate resolution of the solution in the reaction zones is essential, otherwise false predictions of dynamics are possible. Since the the reaction zones move, adaptive pseudo-spectral methods were developed. The approach is based on a synergism of analytical and computational methods. The numerical computations build on and extend the analytical information. Furthermore, analytical solutions serve as benchmarks for testing the accuracy of the computation. Finally, ideas from analysis (singular perturbation theory) have induced new approaches to computations. The computational results suggest new analysis to be considered. Among the recent interesting results, was spatio-temporal chaos in combustion. One goal is extension of the adaptive pseudo-spectral methods to adaptive domain decomposition methods. Efforts have begun to develop such methods for problems with multiple reaction zones, corresponding to problems with more complex, and more realistic chemistry. Other topics included stochastics, oscillators, Rysteretic Josephson junctions, DC SQUID, Markov jumps, laser with saturable absorber, chemical physics, Brownian movement, combustion synthesis, etc.

  19. Effect of Physical Nonlinearity on Local Buckling in Sandwich Beams

    NARCIS (Netherlands)

    Koissin, Vitaly; Shipsha, Andrey; Skvortsov, Vitaly

    2010-01-01

    This article deals with experimental, theoretical, and FE characterization of the local buckling in foam-core sandwich beams. In the theoretical approach, this phenomena is considered in a periodic formulation (unbounded wrinkle wave); a nonlinear stress—strain response of the face material is accou

  20. Effect of Physical Nonlinearity on Local Buckling in Sandwich Beams

    NARCIS (Netherlands)

    Koysin, V.; Shipsha, Andrey; Skvortsov, Vitaly

    2010-01-01

    This article deals with experimental, theoretical, and FE characterization of the local buckling in foam-core sandwich beams. In the theoretical approach, this phenomena is considered in a periodic formulation (unbounded wrinkle wave); a nonlinear stress—strain response of the face material is accou

  1. Common Problems and Solutions for Being Physically Active

    Science.gov (United States)

    ... Problems & Solutions for Being Active - FAQs About Physical Activity Managing Your Medicines - Introduction - Taking Control of Your Medicines - Medicine Assistance Programs - Medicine Checklist - Medication Tracker Communicating with Professionals - Introduction - Preparing for Medical Visits - ...

  2. International School and Workshop on Nonlinear Mathematical Physics and Natural Hazards

    CERN Document Server

    Kouteva-Guentcheva, Mihaela

    2015-01-01

    This book is devoted to current advances in the field of nonlinear mathematical physics and modeling of critical phenomena that can lead to catastrophic events. Pursuing a multidisciplinary approach, it gathers the work of scientists who are developing mathematical and computational methods for the study and analysis of nonlinear phenomena and who are working actively to apply these tools and create conditions to mitigate and reduce the negative consequences of natural and socio-economic disaster risk. This book summarizes the contributions of the International School and Workshop on Nonlinear Mathematical Physics and Natural Hazards, organized within the framework of the South East Europe Network in Mathematical and Theoretical Physics (SEENET MTP) and supported by UNESCO. It was held at the Bulgarian Academy of Sciences from November 28 to December 2, 2013. The contributions are divided into two major parts in keeping with the scientific program of the meeting. Among the topics covered in Part I (Nonlinear...

  3. Influence of geometric and physical nonlinearities on the internal resonances of a finite continuous rod with a microstructure

    Science.gov (United States)

    Andrianov, Igor V.; Awrejcewicz, Jan; Danishevskyy, Vladyslav V.; Markert, Bernd

    2017-01-01

    In this work, nonlinear longitudinal vibrations of a finite composite rod are studied including geometric and physical nonlinearities. An original boundary value problem for a heterogeneous rod yielded by the macroscopic approximation obtained earlier by the higher-order asymptotic homogenization method is used. The effects of internal resonances and modes coupling are predicted, validated and analyzed. The defined novel continuous problem governed by PDEs is solved using space-discretization and the method of multiple time scales. We are aimed at understanding and analyzing how the presence of the microstructure influences the processes of mode interaction. It is shown that, depending on a scaling relation between the amplitude of the vibrations and the size of the unit cell, different scenarios of the modes coupling can be realized. Additionally to the asymptotic solution, numerical simulation of the modes coupling is performed by means of the Runge-Kutta fourth-order method. The obtained numerical and analytical results demonstrate good qualitative agreement.

  4. Nonlinear Whistler Wave Physics in the Radiation Belts

    Science.gov (United States)

    Crabtree, Chris

    2016-10-01

    Wave particle interactions between electrons and whistler waves are a dominant mechanism for controlling the dynamics of energetic electrons in the radiation belts. They are responsible for loss, via pitch-angle scattering of electrons into the loss cone, and energization to millions of electron volts. It has previously been theorized that large amplitude waves on the whistler branch may scatter their wave-vector nonlinearly via nonlinear Landau damping leading to important consequences for the global distribution of whistler wave energy density and hence the energetic electrons. It can dramatically reduce the lifetime of energetic electrons in the radiation belts by increasing the pitch angle scattering rate. The fundamental building block of this theory has now been confirmed through laboratory experiments. Here we report on in situ observations of wave electro-magnetic fields from the EMFISIS instrument on board NASA's Van Allen Probes that show the signatures of nonlinear scattering of whistler waves in the inner radiation belts. In the outer radiation belts, whistler mode chorus is believed to be responsible for the energization of electrons from 10s of Kev to MeV energies. Chorus is characterized by bursty large amplitude whistler mode waves with frequencies that change as a function of time on timescales corresponding to their growth. Theories explaining the chirping have been developed for decades based on electron trapping dynamics in a coherent wave. New high time resolution wave data from the Van Allen probes and advanced spectral techniques are revealing that the wave dynamics is highly structured, with sub-elements consisting of multiple chirping waves with discrete frequency hops between sub-elements. Laboratory experiments with energetic electron beams are currently reproducing the complex frequency vs time dynamics of whistler waves and in addition revealing signatures of wave-wave and beat-wave nonlinear wave-particle interactions. These new data

  5. Solving Some Special Cases of Monomial Ratio Equations Appearing Frequently in Physical and Engineering Problems

    Directory of Open Access Journals (Sweden)

    Enrique Castillo

    2016-01-01

    Full Text Available We first show that monomial ratio equations are not only very common in Physics and Engineering, but the natural type of equations in many practical problems. More precisely, in the case of models involving scale variables if the used formulas are not of this type they are not physically valid. The consequence is that when estimating the model parameters we are faced with systems of monomial ratio equations that are nonlinear and difficult to solve. In this paper, we provide an original algorithm to obtain the unique solutions of systems of equations made of linear combinations of monomial ratios whose coefficient matrix has a proper null space with low dimension that permits solving the problem in a simple way. Finally, we illustrate the proposed methods by their application to two practical problems from the hydraulic and structural fields.

  6. A boundary control problem with a nonlinear reaction term

    Directory of Open Access Journals (Sweden)

    John R. Cannon

    2009-04-01

    Full Text Available The authors study the problem $u_t=u_{xx}-au$, $00$; $u(x,0=0$, and $-u_x(0,t=u_x(1,t=phi(t$, where $a=a(x,t,u$, and $phi(t=1$ for $t_{2k} < t

  7. Nonlinear dynamics and neo-piagetian theories in problem solving: perspectives on a new epistemology and theory development.

    Science.gov (United States)

    Stamovlasis, Dimitrios

    2011-04-01

    In this study, an attempt is made to integrate Nonlinear Dynamical Systems theory and neo-Piagetian theories applied to creative mental processes, such as problem solving. A catastrophe theory model is proposed, which implements three neo-Piagetian constructs as controls: the functional M-capacity as asymmetry and logical thinking and the degree of field dependence independence as bifurcation. Data from achievement scores of students in tenth grade physics were analyzed using dynamic difference equations and statistical regression techniques. The cusp catastrophe model proved superior comparing to the pre-post linear counterpart and demonstrated nonlinearity at the behavioral level. The nonlinear phenomenology, such as hysteresis effects and bifurcation, is explained by an analysis, which provides a causal interpretation via the mathematical theory of self-organization and thus building bridges between NDS-theory concepts and neo-Piagetian theories. The contribution to theory building is made, by also addressing the emerging philosophical, - ontological and epistemological- questions about the processes of problem solving and creativity.

  8. Nonlinear approaches in engineering applications 2

    CERN Document Server

    Jazar, Reza N

    2013-01-01

    Provides updated principles and applications of the nonlinear approaches in solving engineering and physics problems Demonstrates how nonlinear approaches may open avenues to better, safer, cheaper systems with less energy consumption Has a strong emphasis on the application, physical meaning, and methodologies of nonlinear approaches in different engineering and science problems

  9. MAUVE: A New Strategy for Solving and Grading Physics Problems

    Science.gov (United States)

    Hill, Nicole Breanne

    2016-05-01

    MAUVE (magnitude, answer, units, variables, and equations) is a framework and rubric to help students and teachers through the process of clearly solving and assessing solutions to introductory physics problems. Success in introductory physics often derives from an understanding of units, a command over dimensional analysis, and good bookkeeping. I developed MAUVE for an introductory-level environmental physics course as an easy-to-remember checklist to help students construct organized and thoughtful solutions to physics problems. Environmental physics is a core physics course for environmental and sustainability science (ESS) majors that teaches principles of radiation, thermodynamics, and mechanics within the context of the environment and sustainable energy systems. ESS student concentrations include environmental biology, applied ecology, biogeochemistry, and natural resources. The MAUVE rubric, inspired by nature, has encouraged my students to produce legible and tactical work, and has significantly clarified the grading process.

  10. Why students still can't solve physics problems after solving over 2000 problems

    Science.gov (United States)

    Byun, Taejin; Lee, Gyoungho

    2014-09-01

    This study investigates the belief that solving a large number of physics problems helps students better learn physics. We investigated the number of problems solved, student confidence in solving these problems, academic achievement, and the level of conceptual understanding of 49 science high school students enrolled in upper-level physics classes from Spring 2010 to Summer 2011. The participants solved an average of 2200 physics problems before entering high school. Despite having solved so many problems, no statistically significant correlation was found between the number of problems solved and academic achievement on either a mid-term or physics competition examination. In addition, no significant correlation was found between the number of physics problems solved and performance on the Force Concept Inventory (FCI). Lastly, four students were selected from the 49 participants with varying levels of experience and FCI scores for a case study. We determined that their problem solving and learning strategies was more influential in their success than the number of problems they had solved.

  11. An efficient and simple approximate technique for solving nonlinear initial and boundary-value problems

    Science.gov (United States)

    Kounadis, A. N.

    1992-05-01

    An efficient and easily applicable, approximate analytic technique for the solution of nonlinear initial and boundary-value problems associated with nonlinear ordinary differential equations (O.D.E.) of any order and variable coefficients, is presented. Convergence, uniqueness and upper bound error estimates of solutions, obtained by the successive approximations scheme of the proposed technique, are thoroughly established. Important conclusions regarding the improvement of convergence for large time and large displacement solutions in case of nonlinear initial-value problems are also assessed. The proposed technique is much more efficient than the perturbations schemes for establishing the large postbuckling response of structural systems. The efficiency, simplicity and reliability of the proposed technique is demonstrated by two illustrative examples for which available numerical results exist.

  12. Mathematical modeling of materially nonlinear problems in structural analyses, Part II: Application in contemporary software

    Directory of Open Access Journals (Sweden)

    Bonić Zoran

    2010-01-01

    Full Text Available The paper presents application of nonlinear material models in the software package Ansys. The development of the model theory is presented in the paper of the mathematical modeling of material nonlinear problems in structural analysis (part I - theoretical foundations, and here is described incremental-iterative procedure for solving problems of nonlinear material used by this package and an example of modeling of spread footing by using Bilinear-kinematics and Drucker-Prager mode was given. A comparative analysis of the results obtained by these modeling and experimental research of the author was made. Occurrence of the load level that corresponds to plastic deformation was noted, development of deformations with increasing load, as well as the distribution of dilatation in the footing was observed. Comparison of calculated and measured values of reinforcement dilatation shows their very good agreement.

  13. Analysis of search-extension method for finding multiple solutions of nonlinear problem

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    For numerical computations of multiple solutions of the nonlinear elliptic problemΔu+ f(u)=0 inΩ, u=0 onΓ, a search-extension method (SEM) was proposed and systematically studied by the authors. This paper shall complete its theoretical analysis. It is assumed that the nonlinearity is non-convex and its solution is isolated, under some conditions the corresponding linearized problem has a unique solution. By use of the compactness of the solution family and the contradiction argument, in general conditions, the high order regularity of the solution u∈H1+α,α>0 is proved. Assume that some initial value searched by suitably many eigenbases is already fallen into the neighborhood of the isolated solution, then the optimal error estimates of its nonlinear finite element approximation are shown by the duality argument and continuation method.

  14. Physics, Nonlinear Time Series Analysis, Data Assimilation and Hyperfast Modeling of Nonlinear Ocean Waves

    Science.gov (United States)

    2010-09-30

    Hyperfast Modeling of Nonlinear Ocean Waves A. R. Osborne Dipartimento di Fisica Generale, Università di Torino Via Pietro Giuria 1, 10125...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Universit?i Torino,Dipartimento di Fisica Generale,Via Pietro Giuria 1,10125 Torino, Italy, 8. PERFORMING

  15. MAUVE: A New Strategy for Solving and Grading Physics Problems

    Science.gov (United States)

    Hill, Nicole Breanne

    2016-01-01

    MAUVE (magnitude, answer, units, variables, and equations) is a framework and rubric to help students and teachers through the process of clearly solving and assessing solutions to introductory physics problems. Success in introductory physics often derives from an understanding of units, a command over dimensional analysis, and good bookkeeping.…

  16. How some infinities cause problems in classical physical theories

    NARCIS (Netherlands)

    Atkinson, David; Peijnenburg, Jeanne; Allo, P.; van Kerhove, B.

    2014-01-01

    In this paper we review a 1992 excursion of Jean Paul Van Bendegem into physics, ‘How Infinities Cause Problems in Classical Physical Theories’, in the light of two later models concerning colliding balls, of Pérez Laraudogoitia and of Alper and Bridger, respectively. We show that Van Bendegem antic

  17. Systems of general nonlinear set-valued mixed variational inequalities problems in Hilbert spaces

    Directory of Open Access Journals (Sweden)

    Cho Yeol

    2011-01-01

    Full Text Available Abstract In this paper, the existing theorems and methods for finding solutions of systems of general nonlinear set-valued mixed variational inequalities problems in Hilbert spaces are studied. To overcome the difficulties, due to the presence of a proper convex lower semi-continuous function, φ and a mapping g, which appeared in the considered problem, we have used some applications of the resolvent operator technique. We would like to point out that although many authors have proved results for finding solutions of the systems of nonlinear set-valued (mixed variational inequalities problems, it is clear that it cannot be directly applied to the problems that we have considered in this paper because of φ and g. 2000 AMS Subject Classification: 47H05; 47H09; 47J25; 65J15.

  18. A high-performance feedback neural network for solving convex nonlinear programming problems.

    Science.gov (United States)

    Leung, Yee; Chen, Kai-Zhou; Gao, Xing-Bao

    2003-01-01

    Based on a new idea of successive approximation, this paper proposes a high-performance feedback neural network model for solving convex nonlinear programming problems. Differing from existing neural network optimization models, no dual variables, penalty parameters, or Lagrange multipliers are involved in the proposed network. It has the least number of state variables and is very simple in structure. In particular, the proposed network has better asymptotic stability. For an arbitrarily given initial point, the trajectory of the network converges to an optimal solution of the convex nonlinear programming problem under no more than the standard assumptions. In addition, the network can also solve linear programming and convex quadratic programming problems, and the new idea of a feedback network may be used to solve other optimization problems. Feasibility and efficiency are also substantiated by simulation examples.

  19. The Importance of Monitoring Skills in Physics Problem Solving

    Science.gov (United States)

    Ali, Marlina; Talib, Corrienna-Abd; Hasniza Ibrahim, Nor; Surif, Johari; Halim Abdullah, Abdul

    2016-01-01

    The purpose of this paper is to show how important "monitoring" is as metacognitive skills in solving physics problems in the field mechanics. Based on test scores, twenty one students were divided into two groups: more successful (MS) and less successful (LS) problem solvers. Students were allowed to think-aloud while they worked on…

  20. Physical health problems in adults with Prader-Willi syndrome

    NARCIS (Netherlands)

    Sinnema, M.; Maaskant, M.A.; Schrojenstein Lantman-de Valk, H.M.J. van; Nieuwpoort, I.C. van; Drent, M.L.; Curfs, L.M.G; Schrander-Stumpel, C.T.R.M.

    2011-01-01

    Prader-Willi syndrome (PWS) is a genetic disorder which is characterized by severe hypotonia and feeding problems in early infancy. In later childhood and adolescence, this is followed by hyperphagia and extreme obesity if the diet is not strictly controlled. Data on physical health problems in adul

  1. Unfolding in particle physics: a window on solving inverse problems

    Directory of Open Access Journals (Sweden)

    Spanò Francesco

    2013-07-01

    Full Text Available Unfolding is the ensemble of techniques aimed at resolving inverse, ill-posed problems. A pedagogical introduction to the origin and main problems related to unfolding is presented and used as the the stepping stone towards the illustration of some of the most common techniques that are currently used in particle physics experiments.

  2. Structured collaboration versus individual learning in solving physics problems

    NARCIS (Netherlands)

    Harskamp, Egbert; Ding, Ning

    2006-01-01

    The research issue in this study is how to structure collaborative learning so that it improves solving physics problems more than individual learning. Structured collaborative learning has been compared with individual learning environments with Schoenfeld's problem-solving episodes. Students took

  3. The Cosmological Constant Problem, an Inspiration for New Physics

    NARCIS (Netherlands)

    Nobbenhuis, Stefanus Johannes Bernardus

    2006-01-01

    We have critically compared different approaches to the cosmological constant problem, which is at the edge of elementary particle physics and cosmology. This problem is deeply connected with the difficulties formulating a theory of quantum gravity. After the 1998 discovery that our universe's

  4. The solution of singular optimal control problems using direct collocation and nonlinear programming

    Science.gov (United States)

    Downey, James R.; Conway, Bruce A.

    1992-08-01

    This paper describes work on the determination of optimal rocket trajectories which may include singular arcs. In recent years direct collocation and nonlinear programming has proven to be a powerful method for solving optimal control problems. Difficulties in the application of this method can occur if the problem is singular. Techniques exist for solving singular problems indirectly using the associated adjoint formulation. Unfortunately, the adjoints are not a part of the direct formulation. It is shown how adjoint information can be obtained from the direct method to allow the solution of singular problems.

  5. Long step homogeneous interior point algorithm for the p* nonlinear complementarity problems

    Directory of Open Access Journals (Sweden)

    Lešaja Goran

    2002-01-01

    Full Text Available A P*-Nonlinear Complementarity Problem as a generalization of the P*-Linear Complementarity Problem is considered. We show that the long-step version of the homogeneous self-dual interior-point algorithm could be used to solve such a problem. The algorithm achieves linear global convergence and quadratic local convergence under the following assumptions: the function satisfies a modified scaled Lipschitz condition, the problem has a strictly complementary solution, and certain submatrix of the Jacobian is nonsingular on some compact set.

  6. THE NONLINEAR NONLOCAL SINGULARLY PERTURBED PROBLEMS FOR REACTION DIFFUSION EQUATIONS WITH A BOUNDARY PERTURBATION

    Institute of Scientific and Technical Information of China (English)

    Jingsun Yao; Jiaqi Mo

    2005-01-01

    The nonlinear nonlocal singularly perturbed initial boundary value problems for reaction diffusion equations with a boundary perturbation is considered. Under suitable conditions, the outer solution of the original problem is obtained. Using the stretched variable, the composing expansion method and the expanding theory of power series the initial layer is constructed. And then using the theory of differential inequalities the asymptotic behavior of solution for the initial boundary value problems is studied. Finally the existence and uniqueness of solution for the original problem and the uniformly valid asymptotic estimation are discussed.

  7. A smart nonstandard finite difference scheme for second order nonlinear boundary value problems

    NARCIS (Netherlands)

    Erdogan, Utku; Ozis, Turgut

    2011-01-01

    A new kind of finite difference scheme is presented for special second order nonlinear two point boundary value problems. An artificial parameter is introduced in the scheme. Symbolic computation is proposed for the construction of the scheme. Local truncation error of the method is discussed. Numer

  8. ON THE NONLINEAR RIEMANN PROBLEMS FOR GENERAL FIRST ELLIPTIC SYSTEMS IN THE PLANE

    Institute of Scientific and Technical Information of China (English)

    李明忠; 宋洁

    2005-01-01

    The nonlinear Riemann problem for general systems of the first-order linear and quasi-linear equations in the plane are considered. It translates them to singular integral equations and proves the existence of the solution by means of contract principle or. general contract principle. The known results are generalized.

  9. On the solvability of initial-value problems for nonlinear implicit difference equations

    Directory of Open Access Journals (Sweden)

    Yen Ha Thi Ngoc

    2004-01-01

    Full Text Available Our aim is twofold. First, we propose a natural definition of index for linear nonautonomous implicit difference equations, which is similar to that of linear differential-algebraic equations. Then we extend this index notion to a class of nonlinear implicit difference equations and prove some existence theorems for their initial-value problems.

  10. THE CAUCHY PROBLEM OF NONLINEAR SCHR(O)DINGER-BOUSSINESQ EQUATIONS IN Hs(Rd)

    Institute of Scientific and Technical Information of China (English)

    Han Yongqian

    2005-01-01

    In this paper, the local well posedness and global well posedness of solutions for the initial value problem (IVP) of nonlinear Schrodinger-Boussinesq equations is considered in Hs(Rd) by resorting Besov spaces, where real number s ≥ 0.

  11. On the solvability of initial-value problems for nonlinear implicit difference equations

    Directory of Open Access Journals (Sweden)

    Ha Thi Ngoc Yen

    2004-07-01

    Full Text Available Our aim is twofold. First, we propose a natural definition of index for linear nonautonomous implicit difference equations, which is similar to that of linear differential-algebraic equations. Then we extend this index notion to a class of nonlinear implicit difference equations and prove some existence theorems for their initial-value problems.

  12. A smart nonstandard finite difference scheme for second order nonlinear boundary value problems

    NARCIS (Netherlands)

    Erdogan, Utku; Ozis, Turgut

    2011-01-01

    A new kind of finite difference scheme is presented for special second order nonlinear two point boundary value problems. An artificial parameter is introduced in the scheme. Symbolic computation is proposed for the construction of the scheme. Local truncation error of the method is discussed.

  13. Solutions of Multi Objective Fuzzy Transportation Problems with Non-Linear Membership Functions

    Directory of Open Access Journals (Sweden)

    Dr. M. S. Annie Christi

    2016-11-01

    Full Text Available Multi-objective transportation problem with fuzzy interval numbers are considered. The solution of linear MOTP is obtained by using non-linear membership functions. The optimal compromise solution obtained is compared with the solution got by using a linear membership function. Some numerical examples are presented to illustrate this.

  14. Nonlinear quarter-plane problem for the Korteweg-de Vries equation

    Directory of Open Access Journals (Sweden)

    Nikolai A. Larkin

    2011-08-01

    Full Text Available This article concerns an initial-boundary value problem in a quarter-plane for the Korteweg-de Vries (KdV equation. For general nonlinear boundary conditions we prove the existence and uniqueness of a global regular solution.

  15. PERIODIC BOUNDARY VALUE PROBLEM FOR NONLINEAR INTEGRO-DIFFERENTIAL EQUATION OF MIXED TYPE ON TIME SCALES

    Institute of Scientific and Technical Information of China (English)

    Yepeng Xing; Qiong Wang; Valery G. Romanovski

    2009-01-01

    We prove several new comparison results and develop the monotone iterative tech-nique to show the existence of extremal solutions to a kind of periodic boundary value problem (PBVP) for nonlinear integro-differential equation of mixed type on time scales.

  16. Positive Solutions of a Nonlinear Fourth-order Integral Boundary Value Problem

    Directory of Open Access Journals (Sweden)

    Benaicha Slimane

    2016-07-01

    Full Text Available In this paper, the existence of positive solutions for a nonlinear fourth-order two-point boundary value problem with integral condition is investigated. By using Krasnoselskii’s fixed point theorem on cones, sufficient conditions for the existence of at least one positive solutions are obtained.

  17. THE NONLINEAR BOUNDARY VALUE PROBLEM FOR A CLASS OF INTEGRO-DIFFERENTIAL SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Rongrong Tang

    2006-01-01

    In this paper, using the theory of differential inequalities, we study the nonlinear boundary value problem for a class of integro-differential system. Under appropriate assumptions, the existence of solution is proved and the uniformly valid asymptotic expansions for arbitrary n-th order approximation and the estimation of remainder term are obtained simply and conveniently.

  18. Scenarios for solving a non-linear transportation problem in multi-agent systems

    DEFF Research Database (Denmark)

    Brehm, Robert; Top, Søren; Mátéfi-Tempfli, Stefan

    2017-01-01

    We introduce and provide an evaluation on two scenarios and related algorithms for implementation of a multi-agent system to solve a type of non-linear transportation problem using distributed optimization algorithms based on dual decomposition and consensus. The underlying fundamental optimization...

  19. EXISTENCE AND UNIQUENESS RESULTS FOR NONLINEAR THIRD-ORDER BOUNDARY VALUE PROBLEM

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper,we investigate a nonlinear third-order three-point boundary value problem. By several well-known fixed point theorems,the existence of positive solutions is discussed. Besides,the uniqueness results are obtained by imposing growth restrictions on f.

  20. Multiple Positive Solutions of Boundary Value Problems for Systems of Nonlinear Third-Order Differential Equations

    Institute of Scientific and Technical Information of China (English)

    Yaohong LI; Xiaoyan ZHANG

    2013-01-01

    In this paper,we consider boundary value problems for systems of nonlinear thirdorder differential equations.By applying the fixed point theorems of cone expansion and compression of norm type and Leggett-Williams fixed point theorem,the existence of multiple positive solutions is obtained.As application,we give some examples to demonstrate our results.

  1. Existence of three solutions for impulsive nonlinear fractional boundary value problems

    Directory of Open Access Journals (Sweden)

    Shapour Heidarkhani

    2017-01-01

    Full Text Available In this work we present new criteria on the existence of three solutions for a class of impulsive nonlinear fractional boundary-value problems depending on two parameters. We use variational methods for smooth functionals defined on reflexive Banach spaces in order to achieve our results.

  2. Existence of Two Solutions of Nonlinear m-Point Boundary Value Problems

    Institute of Scientific and Technical Information of China (English)

    任景莉; 葛渭高

    2003-01-01

    Sufficient conditions for the existence of at least two positive solutions of a nonlinear m-points boundary value problems are established. The results are obtained by using a new fixed point theorem in cones. An example is provided to illustrate the theory.

  3. The Application of the Fixed—point Theory in Jacketed Solution of Singularly Perturbed Nonlinear Problem

    Institute of Scientific and Technical Information of China (English)

    CHENGYan

    2003-01-01

    In this paper,the fixed-point theorem is used to estimated an asymptotic solution of intial val-ue problems for a class of third nonlinear differential equations which has double initial-layer properties.We obtain the uniformly valid asymptotic expansion of any orders including boundary layers.

  4. A two-phase free boundary problem for a nonlinear diffusion-convection equation

    Energy Technology Data Exchange (ETDEWEB)

    De Lillo, S; Lupo, G [Dipartimento di Matematica e Informatica, Universita degli Studi di Perugia, Via Vanvitelli 1, 06123 Perugia (Italy)], E-mail: silvana.delillo@pg.infn.it

    2008-04-11

    A two-phase free boundary problem associated with a diffusion-convection equation is considered. The problem is reduced to a system of nonlinear integral equations, which admits a unique solution for small times. The system admits an explicit two-component solution corresponding to a two-component shock wave of the Burgers equation. The stability of such a solution is also discussed.

  5. Existence results for boundary problems for uniformly elliptic and parabolic fully nonlinear equations

    Directory of Open Access Journals (Sweden)

    M. G. Crandall

    1999-07-01

    Full Text Available We study existence of continuous weak (viscosity solutions of Dirichlet and Cauchy-Dirichlet problems for fully nonlinear uniformly elliptic and parabolic equations. Two types of results are obtained in contexts where uniqueness of solutions fails or is unknown. For equations with merely measurable coefficients we prove solvability of the problem, while in the continuous case we construct maximal and minimal solutions. Necessary barriers on external cones are also constructed.

  6. Nonlinear boundary value problems for first order impulsive integro-differential equations

    Directory of Open Access Journals (Sweden)

    Xinzhi Liu

    1989-01-01

    Full Text Available In this paper, we investigate a class of first order impulsive integro-differential equations subject to certain nonlinear boundary conditions and prove, with the help of upper and lower solutions, that the problem has a solution lying between the upper and lower solutions. We also develop monotone iterative technique and show the existence of multiple solutions of a class of periodic boundary value problems.

  7. On the System of Nonlinear Mixed Implicit Equilibrium Problems in Hilbert Spaces

    Directory of Open Access Journals (Sweden)

    Yeol Je Cho

    2010-01-01

    Full Text Available We use the Wiener-Hopf equations and the Yosida approximation notions to prove the existence theorem of a system of nonlinear mixed implicit equilibrium problems (SMIE in Hilbert spaces. The algorithm for finding a solution of the problem (SMIE is suggested; the convergence criteria and stability of the iterative algorithm are discussed. The results presented in this paper are more general and are viewed as an extension, refinement, and improvement of the previously known results in the literature.

  8. Multiple positive solutions for Kirchhoff type problems involving concave and convex nonlinearities in R^3

    Directory of Open Access Journals (Sweden)

    Xiaofei Cao

    2016-11-01

    Full Text Available In this article, we consider the multiplicity of positive solutions for a class of Kirchhoff type problems with concave and convex nonlinearities. Under appropriate assumptions, we prove that the problem has at least two positive solutions, moreover, one of which is a positive ground state solution. Our approach is mainly based on the Nehari manifold, Ekeland variational principle and the theory of Lagrange multipliers.

  9. Initial value problem for a class of fourth-order nonlinear wave equations

    Institute of Scientific and Technical Information of China (English)

    Guo-wang CHEN; Chang-shun HOU

    2009-01-01

    In this paper, existence and uniqueness of the generalized global solution and the classical global solution to the initial value problem for a class of fourth-order nonlinear wave equations are studied in the fractional order Sobolev space using the contraction mapping principle and the extension theorem. The sufficient conditions for the blow up of the solution to the initial value problem are given.

  10. On a Mixed Nonlinear One Point Boundary Value Problem for an Integrodifferential Equation

    Directory of Open Access Journals (Sweden)

    Said Mesloub

    2008-03-01

    Full Text Available This paper is devoted to the study of a mixed problem for a nonlinear parabolic integro-differential equation which mainly arise from a one dimensional quasistatic contact problem. We prove the existence and uniqueness of solutions in a weighted Sobolev space. Proofs are based on some a priori estimates and on the Schauder fixed point theorem. we also give a result which helps to establish the regularity of a solution.

  11. On a Mixed Nonlinear One Point Boundary Value Problem for an Integrodifferential Equation

    Directory of Open Access Journals (Sweden)

    Mesloub Said

    2008-01-01

    Full Text Available This paper is devoted to the study of a mixed problem for a nonlinear parabolic integro-differential equation which mainly arise from a one dimensional quasistatic contact problem. We prove the existence and uniqueness of solutions in a weighted Sobolev space. Proofs are based on some a priori estimates and on the Schauder fixed point theorem. we also give a result which helps to establish the regularity of a solution.

  12. Doing physics with scientific notebook a problem solving approach

    CERN Document Server

    Gallant, Joseph

    2012-01-01

    The goal of this book is to teach undergraduate students how to use Scientific Notebook (SNB) to solve physics problems. SNB software combines word processing and mathematics in standard notation with the power of symbolic computation. As its name implies, SNB can be used as a notebook in which students set up a math or science problem, write and solve equations, and analyze and discuss their results. Written by a physics teacher with over 20 years experience, this text includes topics that have educational value, fit within the typical physics curriculum, and show the benefits of using SNB.

  13. Transport processes in space physics and astrophysics problems and solutions

    CERN Document Server

    Dosch, Alexander

    2016-01-01

     This is the problems and solution manual for the graduate text with the same title and published as Lecture Notes in Physics Vol 877 which provides the necessary mathematical and physics background to understand the transport of gases, charged particle gases, energetic charged particles, turbulence, and radiation in an astrophysical and space physics context. The very detailed and self-contained problems and solutions will be an essential part of the training of any graduate student wishing to enter and pursuing research in this field. .

  14. THE IMPORTANCE OF MONITORING SKILLS IN PHYSICS PROBLEM SOLVING

    OpenAIRE

    Marlina; Corrienna; Nor; Johari; Abdul

    2016-01-01

    The purpose of this paper is to show how important “monitoring” is as metacognitive skills in solving physics problems in the field mechanics. Based on test scores, twenty one students were divided into two groups: more successful (MS) and less successful (LS) problem solvers. Students were allowed to think-aloud while they worked on their problems. Each of the students was videotaped, and interviewed right after the task. A schema was used to grade the written answers. As a concl...

  15. Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons

    OpenAIRE

    Kröger, H.

    2003-01-01

    We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.

  16. Nonlinear Dynamics In Quantum Physics -- Quantum Chaos and Quantum Instantons

    OpenAIRE

    Kröger, H.

    2003-01-01

    We discuss the recently proposed quantum action - its interpretation, its motivation, its mathematical properties and its use in physics: quantum mechanical tunneling, quantum instantons and quantum chaos.

  17. Julius Edgar Lilienfeld Prize Talk: The Fermi Pasta Ulam (FPU) Problem and The Birth of Nonlinear Science

    Science.gov (United States)

    Campbell, David K.

    2010-03-01

    In 1953, Enrico Fermi, John Pasta, and Stan Ulam initiated a series of computer studies aimed at exploring how simple, multi-degree of freedom nonlinear mechanical systems obeying reversible deterministic dynamics evolve in time to an equilibrium state describable by statistical mechanics. Their expectation was that this would occur by mixing behavior among the many linear modes. Their intention was then to study more complex nonlinear systems, with the hope of modeling turbulence computationally. The results of this first study of the so-called Fermi-Pasta-Ulam (FPU) problem, which were published in 1955 and characterized by Fermi as a ``little discovery,'' showed instead of the expected mixing of linear modes a striking series of (near) recurrences of the initial state and no evidence of equipartition. This work heralded the beginning of both computational physics and (modern) nonlinear science. In particular, the work marked the first systematic study of a nonlinear system by digital computers (``experimental mathematics'') and led directly to the discovery of ``solitons,'' as well as to deep insights into deterministic chaos and statistical mechanics. In this talk, I will review the original FPU studies and show how they led to the understanding of two key paradigms of nonlinear science. Specifically, I will show how a continuum approximation to the original discrete system led to the discovery of ``solitions'' whereas a low-mode approximation led to an early example of ``deterministic chaos.'' I will close with a brief indication of how the recurrence phenomenon observed by behavior by FPU can be reconciled with mixing, equipartition, and statistical mechanics.

  18. Mental, physical and social health problems of call centre workers

    Directory of Open Access Journals (Sweden)

    P Bhuyar

    2008-01-01

    Full Text Available Background: Call centre workers in BPO face unique occupational hazards - mental, physical and psychosocial. Material & Method: A sample 100 call centre workers of both sexes and from two cities Pune and Mumbai were surveyed by both qualitative and quantitative methods for the above health problems. Results: A high proportion of workers faced sleep disturbances and associated mental stress and anxiety. Sleep disturbance and anxiety was significantly more in international call centres compared to domestic. There was also disturbance in circadian rhythms due to night shift. Physical problems such as musculoskeletal disorders, obesity, eye, and hearing problems were also present. Psychosocial problems included disruption in family life, use of tobacco and alcohol, and faulty eating habits. Conclusion: Better personal management, health education and more research is indicated to study the health problems in this emerging occupation.

  19. A URI 4-NODE QUADRILATERAL ELEMENT BY ASSUMED STRAIN METHOD FOR NONLINEAR PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    WANG Jinyan; CHEN Jun; LI Minghui

    2004-01-01

    In this paper one-point quadrature "assumed strain" mixed element formulation based on the Hu-Washizu variational principle is presented. Special care is taken to avoid hourglass modes and volumetric locking as well as shear locking. The assumed strain fields are constructed so that those portions of the fields which lead to volumetric and shear locking phenomena are eliminated by projection, while the implementation of the proposed URI scheme is straightforward to suppress hourglass modes. In order to treat geometric nonlinearities simply and efficiently, a corotational coordinate system is used. Several numerical examples are given to demonstrate the performance of the suggested formulation, including nonlinear static/dynamic mechanical problems.

  20. Local-instantaneous filtering in the integral transform solution of nonlinear diffusion problems

    Science.gov (United States)

    Macêdo, E. N.; Cotta, R. M.; Orlande, H. R. B.

    A novel filtering strategy is proposed to be utilized in conjunction with the Generalized Integral Transform Technique (GITT), in the solution of nonlinear diffusion problems. The aim is to optimize convergence enhancement, yielding computationally efficient eigenfunction expansions. The proposed filters include space and time dependence, extracted from linearized versions of the original partial differential system. The scheme automatically updates the filter along the time integration march, as the required truncation orders for the user requested accuracy begin to exceed a prescribed maximum system size. A fully nonlinear heat conduction example is selected to illustrate the computational performance of the filtering strategy, against the classical single-filter solution behavior.

  1. Solution of transient optimization problems by using an algorithm based on nonlinear programming

    Science.gov (United States)

    Teren, F.

    1977-01-01

    A new algorithm is presented for solution of dynamic optimization problems which are nonlinear in the state variables and linear in the control variables. It is shown that the optimal control is bang-bang. A nominal bang-bang solution is found which satisfies the system equations and constraints, and influence functions are generated which check the optimality of the solution. Nonlinear optimization (gradient search) techniques are used to find the optimal solution. The algorithm is used to find a minimum time acceleration for a turbofan engine.

  2. An iterative regularization method for nonlinear problems based on Bregman projections

    Science.gov (United States)

    Maaß, Peter; Strehlow, Robin

    2016-11-01

    In this paper, we present an iterative method for the regularization of ill-posed, nonlinear problems. The approach is based on the Bregman projection onto stripes the width of which is controlled by both the noise level and the structure of the operator. In our investigations, we follow (Lorenz et al 2014 SIAM J. Imaging Sci. 7 1237-62) and extend the respective method to the setting of nonlinear operators. Furthermore, we present a proof for the regularizing properties of the method.

  3. On the Cauchy problem for nonlinear Schrödinger equations with rotation

    KAUST Repository

    Antonelli, Paolo

    2011-10-01

    We consider the Cauchy problem for (energy-subcritical) nonlinear Schrödinger equations with sub-quadratic external potentials and an additional angular momentum rotation term. This equation is a well-known model for superuid quantum gases in rotating traps. We prove global existence (in the energy space) for defocusing nonlinearities without any restriction on the rotation frequency, generalizing earlier results given in [11, 12]. Moreover, we find that the rotation term has a considerable in fiuence in proving finite time blow-up in the focusing case.

  4. The Scattering Problem for a Noncommutative Nonlinear Schrödinger Equation

    Directory of Open Access Journals (Sweden)

    Bergfinnur Durhuus

    2010-06-01

    Full Text Available We investigate scattering properties of a Moyal deformed version of the nonlinear Schrödinger equation in an even number of space dimensions. With rather weak conditions on the degree of nonlinearity, the Cauchy problem for general initial data has a unique globally defined solution, and also has solitary wave solutions if the interaction potential is suitably chosen. We demonstrate how to set up a scattering framework for equations of this type, including appropriate decay estimates of the free time evolution and the construction of wave operators defined for small scattering data in the general case and for arbitrary scattering data in the rotationally symmetric case.

  5. Solution of transient optimization problems by using an algorithm based on nonlinear programming

    Science.gov (United States)

    Teren, F.

    1977-01-01

    A new algorithm is presented for solution of dynamic optimization problems which are nonlinear in the state variables and linear in the control variables. It is shown that the optimal control is bang-bang. A nominal bang-bang solution is found which satisfies the system equations and constraints, and influence functions are generated which check the optimality of the solution. Nonlinear optimization (gradient search) techniques are used to find the optimal solution. The algorithm is used to find a minimum time acceleration for a turbofan engine.

  6. Domain decomposition based iterative methods for nonlinear elliptic finite element problems

    Energy Technology Data Exchange (ETDEWEB)

    Cai, X.C. [Univ. of Colorado, Boulder, CO (United States)

    1994-12-31

    The class of overlapping Schwarz algorithms has been extensively studied for linear elliptic finite element problems. In this presentation, the author considers the solution of systems of nonlinear algebraic equations arising from the finite element discretization of some nonlinear elliptic equations. Several overlapping Schwarz algorithms, including the additive and multiplicative versions, with inexact Newton acceleration will be discussed. The author shows that the convergence rate of the Newton`s method is independent of the mesh size used in the finite element discretization, and also independent of the number of subdomains into which the original domain in decomposed. Numerical examples will be presented.

  7. Multilevel adaptive solution procedure for material nonlinear problems in visual programming environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.; Ghanem, R. [State Univ. of New York, Buffalo, NY (United States)

    1994-12-31

    Multigrid solution technique to solve a material nonlinear problem in a visual programming environment using the finite element method is discussed. The nonlinear equation of equilibrium is linearized to incremental form using Newton-Rapson technique, then multigrid solution technique is used to solve linear equations at each Newton-Rapson step. In the process, adaptive mesh refinement, which is based on the bisection of a pair of triangles, is used to form grid hierarchy for multigrid iteration. The solution process is implemented in a visual programming environment with distributed computing capability, which enables more intuitive understanding of solution process, and more effective use of resources.

  8. Local and Global Existence of Solutions to Initial Value Problems of Modified Nonlinear Kawahara Equations

    Institute of Scientific and Technical Information of China (English)

    Shuang Ping TAO; Shang Bin CUI

    2005-01-01

    This paper is devoted to studying the initial value problem of the modified nonlinear Kawahara equation ()u/()t+ a u2()u/()m + β()3u/()x3 + γ()5u-()x5 = 0, (x, t) ∈ We first establish several Strichartz type estimates for the fundamental solution of the corresponding linear problem. Then we apply such estimates to prove local and global existence of solutions for the initial value problem of the modified nonlinear Karahara equation. The results show that a local solution exists if the initial function u0(x) ∈ Hs(R) with s ≥ 1/4, and a global solution exists if s ≥ 2.

  9. A LQP BASED INTERIOR PREDICTION-CORRECTION METHOD FOR NONLINEAR COMPLEMENTARITY PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Bing-sheng He; Li-zhi Liao; Xiao-ming Yuan

    2006-01-01

    To solve nonlinear complementarity problems (NCP), at each iteration, the classical proximal point algorithm solves a well-conditioned sub-NCP while the LogarithmicQuadratic Proximal (LQP) method solves a system of nonlinear equations (LQP system). This paper presents a practical LQP method-based prediction-correction method for NCP.The predictor is obtained via solving the LQP system approximately under significantly relaxed restriction, and the new iterate (the corrector) is computed directly by an explicit formula derived from the original LQP method. The implementations are very easy to be carried out. Global convergence of the method is proved under the same mild assumptions as the original LQP method. Finally, numerical results for traffic equilibrium problems are provided to verify that the method is effective for some practical problems.

  10. Designing and using multiple-possibility physics problems in physics courses

    Science.gov (United States)

    Shekoyan, Vazgen

    2012-02-01

    One important aspect of physics instruction is helping students develop better problem solving expertise. Besides enhancing the content knowledge, problems help students develop different cognitive abilities and skills. This presentation focuses on multiple-possibility problems (alternatively called ill-structured problems). These problems are different from traditional ``end of chapter'' single-possibility problems. They do not have one right answer and thus the student has to examine different possibilities, assumptions and evaluate the outcomes. To solve such problems one has to engage in a cognitive monitoring called epistemic cognition. It is an important part of thinking in real life. Physicists routinely use epistemic cognition when they solve problems. I have explored the instructional value of using such problems in introductory physics courses.

  11. An Algorithm for Efficient Maximum Likelihood Estimation and Confidence Interval Determination in Nonlinear Estimation Problems

    Science.gov (United States)

    Murphy, Patrick Charles

    1985-01-01

    An algorithm for maximum likelihood (ML) estimation is developed with an efficient method for approximating the sensitivities. The algorithm was developed for airplane parameter estimation problems but is well suited for most nonlinear, multivariable, dynamic systems. The ML algorithm relies on a new optimization method referred to as a modified Newton-Raphson with estimated sensitivities (MNRES). MNRES determines sensitivities by using slope information from local surface approximations of each output variable in parameter space. The fitted surface allows sensitivity information to be updated at each iteration with a significant reduction in computational effort. MNRES determines the sensitivities with less computational effort than using either a finite-difference method or integrating the analytically determined sensitivity equations. MNRES eliminates the need to derive sensitivity equations for each new model, thus eliminating algorithm reformulation with each new model and providing flexibility to use model equations in any format that is convenient. A random search technique for determining the confidence limits of ML parameter estimates is applied to nonlinear estimation problems for airplanes. The confidence intervals obtained by the search are compared with Cramer-Rao (CR) bounds at the same confidence level. It is observed that the degree of nonlinearity in the estimation problem is an important factor in the relationship between CR bounds and the error bounds determined by the search technique. The CR bounds were found to be close to the bounds determined by the search when the degree of nonlinearity was small. Beale's measure of nonlinearity is developed in this study for airplane identification problems; it is used to empirically correct confidence levels for the parameter confidence limits. The primary utility of the measure, however, was found to be in predicting the degree of agreement between Cramer-Rao bounds and search estimates.

  12. A Comparative Study of the Harmonic and Arithmetic Averaging of Diffusion Coefficients for Non-linear Heat Conduction Problems

    Energy Technology Data Exchange (ETDEWEB)

    Samet Y. Kadioglu; Robert R. Nourgaliev; Vincent A. Mousseau

    2008-03-01

    We perform a comparative study for the harmonic versus arithmetic averaging of the heat conduction coefficient when solving non-linear heat transfer problems. In literature, the harmonic average is the method of choice, because it is widely believed that the harmonic average is more accurate model. However, our analysis reveals that this is not necessarily true. For instance, we show a case in which the harmonic average is less accurate when a coarser mesh is used. More importantly, we demonstrated that if the boundary layers are finely resolved, then the harmonic and arithmetic averaging techniques are identical in the truncation error sense. Our analysis further reveals that the accuracy of these two techniques depends on how the physical problem is modeled.

  13. A GLOBALLY DERIVATIVE-FREE DESCENT METHOD FOR NONLINEAR COMPLEMENTARITY PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Hou-duo Qi; Yu-zhong Zhang

    2000-01-01

    Based on a class of functions. which generalize the squared Fischer-Burmeister NCP function and have many desirable properties as the latter function has, we reformulate nonlinear complementarity problem (NCP for short) as an equivalent unconstrained optimization problem, for which we propose a derivative-free descent method in monotone case. We show its global convergence under some mild conditions. If F, the function involved in NCP, is Ro-function, the optimization problem has bounded level sets. A local property of the merit function is discussed. Finally, we report some numerical results.

  14. GLOBAL CONVERGENCE AND IMPLEMENTATION OF NGTN METHOD FOR SOLVING LARGE-SCALE SPARSE NONLINEAR PROGRAMMING PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    Qin Ni

    2001-01-01

    An NGTN method was proposed for solving large-scale sparse nonlinear programming (NLP) problems. This is a hybrid method of a truncated Newton direction and a modified negative gradient direction, which is suitable for handling sparse data structure and possesses Q-quadratic convergence rate. The global convergence of this new method is proved,the convergence rate is further analysed, and the detailed implementation is discussed in this paper. Some numerical tests for solving truss optimization and large sparse problems are reported. The theoretical and numerical results show that the new method is efficient for solving large-scale sparse NLP problems.

  15. Consensus Problem Over High-Order Multiagent Systems With Uncertain Nonlinearities Under Deterministic and Stochastic Topologies.

    Science.gov (United States)

    Rezaee, Hamed; Abdollahi, Farzaneh

    2016-12-06

    The leaderless consensus problem over a class of high-order nonlinear multiagent systems (MASs) is studied. A robust protocol is proposed which guarantees achieving consensus in the network in the presences of uncertainties in agents models. Achieving consensus in the case of stochastic links failure is studied as well. Based on the concept super-martingales, it is shown that if the probability of the network connectivity is not zero, under some conditions, achieving almost sure consensus in the network can be guaranteed. Despite existing consensus protocols for high-order stochastic networks, the proposed consensus protocol in this paper is robust to uncertain nonlinearities in the agents models, and it can be designed independent of knowledge on the set of feasible topologies (topologies with nonzero probabilities). Numerical examples for a team of single-link flexible joint manipulators with fourth-order models verify the accuracy of the proposed strategy for consensus control of high-order MASs with uncertain nonlinearities.

  16. An iterative HAM approach for nonlinear boundary value problems in a semi-infinite domain

    Science.gov (United States)

    Zhao, Yinlong; Lin, Zhiliang; Liao, Shijun

    2013-09-01

    In this paper, we propose an iterative approach to increase the computation efficiency of the homotopy analysis method (HAM), a analytic technique for highly nonlinear problems. By means of the Schmidt-Gram process (Arfken et al., 1985) [15], we approximate the right-hand side terms of high-order linear sub-equations by a finite set of orthonormal bases. Based on this truncation technique, we introduce the Mth-order iterative HAM by using each Mth-order approximation as a new initial guess. It is found that the iterative HAM is much more efficient than the standard HAM without truncation, as illustrated by three nonlinear differential equations defined in an infinite domain as examples. This work might greatly improve the computational efficiency of the HAM and also the Mathematica package BVPh for nonlinear BVPs.

  17. Efficient Output Solution for Nonlinear Stochastic Optimal Control Problem with Model-Reality Differences

    Directory of Open Access Journals (Sweden)

    Sie Long Kek

    2015-01-01

    Full Text Available A computational approach is proposed for solving the discrete time nonlinear stochastic optimal control problem. Our aim is to obtain the optimal output solution of the original optimal control problem through solving the simplified model-based optimal control problem iteratively. In our approach, the adjusted parameters are introduced into the model used such that the differences between the real system and the model used can be computed. Particularly, system optimization and parameter estimation are integrated interactively. On the other hand, the output is measured from the real plant and is fed back into the parameter estimation problem to establish a matching scheme. During the calculation procedure, the iterative solution is updated in order to approximate the true optimal solution of the original optimal control problem despite model-reality differences. For illustration, a wastewater treatment problem is studied and the results show the efficiency of the approach proposed.

  18. EXACT AUGMENTED LAGRANGIAN FUNCTION FOR NONLINEAR PROGRAMMING PROBLEMS WITH INEQUALITY CONSTRAINTS

    Institute of Scientific and Technical Information of China (English)

    DU Xue-wu; ZHANG Lian-sheng; SHANG You-lin; LI Ming-ming

    2005-01-01

    An exact augmented Lagrangian function for the nonlinear nonconvex programming problems with inequality constraints was discussed. Under suitable hypotheses, the relationship was established between the local unconstrained minimizers of the augmented Lagrangian function on the space of problem variables and the local minimizers of the original constrained problem. Furthermore, under some assumptions,the relationship was also established between the global solutions of the augmented Lagrangian function on some compact subset of the space of problem variables and the global solutions of the constrained problem. Therefore, from the theoretical point of view, a solution of the inequality constrained problem and the corresponding values of the Lagrange multipliers can be found by the well-known method of multipliers which resort to the unconstrained minimization of the augmented Lagrangian function presented.

  19. Reflection on problem solving in introductory and advanced physics

    Science.gov (United States)

    Mason, Andrew J.

    Reflection is essential in order to learn from problem solving. This thesis explores issues related to how reflective students are and how we can improve their capacity for reflection on problem solving. We investigate how students naturally reflect in their physics courses about problem solving and evaluate strategies that may teach them reflection as an integral component of problem-solving. Problem categorization based upon similarity of solution is a strategy to help them reflect about the deep features of the problems related to the physics principles involved. We find that there is a large overlap between the introductory and graduate students in their ability to categorize. Moreover, introductory students in the calculus-based courses performed better categorization than those in the algebra-based courses even though the categorization task is conceptual. Other investigations involved exploring if reflection could be taught as a skill on individual and group levels. Explicit self-diagnosis in recitation investigated how effectively students could diagnose their own errors on difficult problems, how much scaffolding was necessary for this purpose, and how effective transfer was to other problems employing similar principles. Difficulty in applying physical principles and difference between the self-diagnosed and transfer problems affected performance. We concluded that a sustained intervention is required to learn effective problem-solving strategies. Another study involving reflection on problem solving with peers suggests that those who reflected with peers drew more diagrams and had a larger gain from the midterm to final exam. Another study in quantum mechanics involved giving common problems in midterm and final exams and suggested that advanced students do not automatically reflect on their mistakes. Interviews revealed that even advanced students often focus mostly on exams rather than learning and building a robust knowledge structure. A survey was

  20. Microstructure induced nonlinearity of unconsolidated rocks as related to seismic diagnostic problems

    Directory of Open Access Journals (Sweden)

    I. Yu. Belyaeva

    1997-01-01

    Full Text Available Manifestations of the so-called structure induced nonlinearity are considered for the case of a granular medium, the latter being a generally accepted model of nonconsolidated rocks in seismics. The consideration is carried out using the medium model in the form of the 'ideal' random packing of spherical elastic granules in which the interparticle space can be filled with a fluid. A physical equation of such a medium is derived; the dependencies of nonlinear parameters on the grain material elastic moduli, the fluid compressibility and the initial medium strain are analyzed. The influence of defects in nonideal grain packings (that is, the presence of a fraction of unloaded intergranular contacts upon the nonlinear properties of the medium is investigated. It is shown that the packing nonideality has the stronger effect on higher-order nonlinear properties. It is demonstrated that the nonlinear parameters may be used in exploration seismology as a much more sensitive and informative characteristic compared with conventionally used linear moduli.

  1. The role of representation when solving physics problems

    Science.gov (United States)

    Kohl, Patrick; Finkelstein, Noah

    2007-03-01

    Physics problems can be represented in a number of different ways, including mathematical, graphical, pictorial, or verbal formats. In a series of studies of large-lecture introductory physics courses at the University of Colorado, we have investigated the effect of problem representation on student performance and what factors influence how students use and learn to use representations appropriately. We have found that student performance can vary strongly with representation, that giving students a choice in representational format of their physics problems can have strong effects on performance, both positive and negative, and that students in a PER-informed course may develop a broader set of representational skills than those in a traditional course.

  2. How to make university students solve physics problems requiring mathematical skills: The "Adventurous Problem Solving" approach

    NARCIS (Netherlands)

    de Mul, F.F.M.; Martin Batlle, C.; Martin i Batlle, Cristina; de Bruijn, Imme; Rinzema, K.; Rinzema, Kees

    2003-01-01

    Teaching physics to first-year university students (in the USA: junior/senior level) is often hampered by their lack of skills in the underlying mathematics, and that in turn may block their understanding of the physics and their ability to solve problems. Examples are vector algebra, differential

  3. Variational ansatz for the nonlinear Landau-Zener problem for cold atom association

    Energy Technology Data Exchange (ETDEWEB)

    Ishkhanyan, A [Institute for Physical Research NAS of Armenia, 0203 Ashtarak-2 (Armenia); Joulakian, B [LPMC, Universite Paul Verlaine-Metz, 1 Bld Arago, 57078 Metz Cedex 3 (France); Suominen, K-A [Department of Physics and Astronomy, University of Turku, 20014 Turun yliopisto (Finland)

    2009-11-28

    We present a rigorous analysis of the Landau-Zener linear-in-time term crossing problem for quadratic-nonlinear systems relevant to the coherent association of ultracold atoms in degenerate quantum gases. Our treatment is based on an exact third-order nonlinear differential equation for the molecular state probability. Applying a variational two-term ansatz, we construct a simple approximation that accurately describes the whole-time dynamics of the coupled atom-molecular system for any set of involved parameters. Ensuring an absolute error of less than 10{sup -5} for the final transition probability, the resultant solution improves by several orders of magnitude the accuracy of the previous approximations by A Ishkhanyan et al developed separately for the weak coupling (2005 J. Phys. A: Math. Gen. 38 3505) and strong interaction (2006 J. Phys. A: Math. Gen. 39 14887) limits. In addition, the constructed approximation covers the whole moderate-coupling regime, providing this intermediate regime with the same accuracy as the two mentioned limits. The obtained results reveal the remarkable observation, that for the strong-coupling limit the resonance crossing is mostly governed by the nonlinearity, while the coherent atom-molecular oscillations arising soon after the resonance has been crossed are basically of a linear nature. This observation is supposed to be of a general character, due to the basic attributes of the resonance-crossing processes in the nonlinear quantum systems of the discussed type of involved quadratic nonlinearity. (fast track communication)

  4. Tarzan's Dilemma: A Challenging Problem for Introductory Physics Students

    Science.gov (United States)

    Rave, Matthew; Sayers, Marcus

    2013-11-01

    The following kinematics problem was given to several students as a project in conjunction with a first-semester calculus-based physics course. The students were asked to keep a journal of all their work and were encouraged to keep even their scrap paper. The goal of the project was to expose the students to the process of doing theoretical physics, by tackling a project that is easy to pose conceptually yet surprisingly challenging in its solution.

  5. Nonlinear optical and atomic systems at the interface of physics and mathematics

    CERN Document Server

    Garreau, Jean-Claude

    2015-01-01

    Focusing on the interface between mathematics and physics, this book offers an introduction to the physics, the mathematics, and the numerical simulation of nonlinear systems in optics and atomic physics. The text covers a wide spectrum of current research on the subject, which is  an extremely active field in physics and mathematical physics, with a very broad range of implications, both for fundamental science and technological applications: light propagation in microstructured optical fibers, Bose-Einstein condensates, disordered systems, and the newly emerging field of nonlinear quantum mechanics.   Accessible to PhD students, this book will also be of interest to post-doctoral researchers and seasoned academics.

  6. Finite element solution of nonlinear eddy current problems with periodic excitation and its industrial applications.

    Science.gov (United States)

    Bíró, Oszkár; Koczka, Gergely; Preis, Kurt

    2014-05-01

    An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer.

  7. Prevalence of physical health problems among youth entering residential treatment.

    Science.gov (United States)

    Nelson, Timothy D; Smith, Tori R; Thompson, Ronald W; Epstein, Michael H; Griffith, Annette K; Hurley, Kristin Duppong; Tonniges, Thomas F

    2011-11-01

    To examine the prevalence of physical health problems among youth entering residential treatment. The sample included 1744 youth (mean age: 14.6 ± 1.8 years) entering a large residential treatment program between 2000 and 2010. Youth received an intake medical evaluation, including a review of available records, detailed medical history, and physical examination. Medical conditions present at the time of the evaluation were recorded by the examining physician and later coded by the research team. Only diagnoses recognized by the International Classification of Diseases, 10th Revision, were included in the analyses. To maintain the focus on physical health problems, behavioral and emotional disorders listed in the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision were excluded. Obesity, acne, and allergies were also excluded. Approximately one-third (33.7%) of youth had a physical health diagnosis at the time of intake. Asthma was the most prevalent condition diagnosed (15.3% of the sample). Girls were significantly more likely to have a diagnosis than were boys (37.1% vs 31.5%). Age was not associated with diagnostic status. Rates of physical health conditions differed significantly by ethnicity: black (36.4%) and white (35.4%) youth had the highest rates, and Hispanic youth (23.2%) had the lowest. Youth who enter residential treatment have high rates of physical health conditions. These problems could complicate mental health treatment and should be considered in multidisciplinary treatment planning.

  8. Internet computer coaches for introductory physics problem solving

    Science.gov (United States)

    Xu Ryan, Qing

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the educational system, national studies have shown that the majority of students emerge from such courses having made little progress toward developing good problem-solving skills. The Physics Education Research Group at the University of Minnesota has been developing Internet computer coaches to help students become more expert-like problem solvers. During the Fall 2011 and Spring 2013 semesters, the coaches were introduced into large sections (200+ students) of the calculus based introductory mechanics course at the University of Minnesota. This dissertation, will address the research background of the project, including the pedagogical design of the coaches and the assessment of problem solving. The methodological framework of conducting experiments will be explained. The data collected from the large-scale experimental studies will be discussed from the following aspects: the usage and usability of these coaches; the usefulness perceived by students; and the usefulness measured by final exam and problem solving rubric. It will also address the implications drawn from this study, including using this data to direct future coach design and difficulties in conducting authentic assessment of problem-solving.

  9. Fundamentals of Physics, Extended, Chapters 1 - 45 , Enhanced Problems Version

    Science.gov (United States)

    Halliday, David; Resnick, Robert; Walker, Jearl

    2002-04-01

    No other book on the market today can match the success of Halliday, Resnick and Walker's Fundamentals of Physics! In a breezy, easy-to-understand style the book offers a solid understanding of fundamental physics concepts, and helps readers apply this conceptual understanding to quantitative problem solving. The extended edition provides coverage of developments in Physics in the last 100 years, including: Einstein and Relativity, Bohr and others and Quantum Theory, and the more recent theoretical developments like String Theory. This book offers a unique combination of authoritative content and stimulating applications.

  10. Estimation of Physical Parameters in Linear and Nonlinear Dynamic Systems

    DEFF Research Database (Denmark)

    Knudsen, Morten

    and estimation of physical parameters in particular. 2. To apply the new methods for modelling of specific objects, such as loudspeakers, ac- and dc-motors wind turbines and beat exchangers. A reliable quality measure of an obtained parameter estimate is a prerequisite for any reasonable use of the result...

  11. Analytical vs. Simulation Solution Techniques for Pulse Problems in Non-linear Stochastic Dynamics

    DEFF Research Database (Denmark)

    Iwankiewicz, R.; Nielsen, Søren R. K.

    -numerical techniques suitable for Markov response problems such as moments equation, Petrov-Galerkin and cell-to-cell mapping techniques are briefly discussed. Usefulness of these techniques is limited by the fact that effectiveness of each of them depends on the mean rate of impulses. Another limitation is the size...... of the problem, i.e. the number of state variables of the dynamical systems. In contrast, the application of the simulation techniques is not limited to Markov problems, nor is it dependent on the mean rate of impulses. Moreover their use is straightforward for a large class of point processes, at least......Advantages and disadvantages of available analytical and simulation techniques for pulse problems in non-linear stochastic dynamics are discussed. First, random pulse problems, both those which do and do not lead to Markov theory, are presented. Next, the analytical and analytically...

  12. Hybrid numerical scheme for nonlinear two-dimensional phase-change problems with the irregular geometry

    Energy Technology Data Exchange (ETDEWEB)

    Lin Jaeyuh [Chang Jung Univ., Tainan (Taiwan, Province of China); Chen Hantaw [National Cheng Kung Univ., Tainan (Taiwan, Province of China). Dept. of Mechanical Engineering

    1997-09-01

    A hybrid numerical scheme combining the Laplace transform and control-volume methods is presented to solve nonlinear two-dimensional phase-change problems with the irregular geometry. The Laplace transform method is applied to deal with the time domain, and then the control-volume method is used to discretize the transformed system in the space domain. Nonlinear terms induced by the temperature-dependent thermal properties are linearized by using the Taylor series approximation. Control-volume meshes in the solid and liquid regions during simulations are generated by using the discrete transfinite mapping method. The location of the phase-change interface and the isothermal distributions are determined. Comparison of these results with previous results shows that the present numerical scheme has good accuracy for two-dimensional phase-change problems. (orig.). With 10 figs.

  13. Homotopy deform method for reproducing kernel space for nonlinear boundary value problems

    Indian Academy of Sciences (India)

    MIN-QIANG XU; YING-ZHEN LIN

    2016-10-01

    In this paper, the combination of homotopy deform method (HDM) and simplified reproducing kernel method (SRKM) is introduced for solving the boundary value problems (BVPs) of nonlinear differential equations. The solution methodology is based on Adomian decomposition and reproducing kernel method (RKM). By the HDM, the nonlinear equations can be converted into a series of linear BVPs. After that, the simplified reproducing kernel method, which not only facilitates the reproducing kernel but also avoids the time-consuming Schmidt orthogonalization process, is proposed to solve linear equations. Some numerical test problems including ordinary differential equations and partial differential equations are analysed to illustrate the procedure and confirm the performance of the proposed method. The results faithfully reveal that our algorithm is considerably accurate and effective as expected.

  14. Numerical solution of a nonlinear least squares problem in digital breast tomosynthesis

    Science.gov (United States)

    Landi, G.; Loli Piccolomini, E.; Nagy, J. G.

    2015-11-01

    In digital tomosynthesis imaging, multiple projections of an object are obtained along a small range of different incident angles in order to reconstruct a pseudo-3D representation (i.e., a set of 2D slices) of the object. In this paper we describe some mathematical models for polyenergetic digital breast tomosynthesis image reconstruction that explicitly takes into account various materials composing the object and the polyenergetic nature of the x-ray beam. A polyenergetic model helps to reduce beam hardening artifacts, but the disadvantage is that it requires solving a large-scale nonlinear ill-posed inverse problem. We formulate the image reconstruction process (i.e., the method to solve the ill-posed inverse problem) in a nonlinear least squares framework, and use a Levenberg-Marquardt scheme to solve it. Some implementation details are discussed, and numerical experiments are provided to illustrate the performance of the methods.

  15. Numerical techniques for solving nonlinear instability problems in smokeless tactical solid rocket motors. [finite difference technique

    Science.gov (United States)

    Baum, J. D.; Levine, J. N.

    1980-01-01

    The selection of a satisfactory numerical method for calculating the propagation of steep fronted shock life waveforms in a solid rocket motor combustion chamber is discussed. A number of different numerical schemes were evaluated by comparing the results obtained for three problems: the shock tube problems; the linear wave equation, and nonlinear wave propagation in a closed tube. The most promising method--a combination of the Lax-Wendroff, Hybrid and Artificial Compression techniques, was incorporated into an existing nonlinear instability program. The capability of the modified program to treat steep fronted wave instabilities in low smoke tactical motors was verified by solving a number of motor test cases with disturbance amplitudes as high as 80% of the mean pressure.

  16. A New Spectral Local Linearization Method for Nonlinear Boundary Layer Flow Problems

    Directory of Open Access Journals (Sweden)

    S. S. Motsa

    2013-01-01

    Full Text Available We propose a simple and efficient method for solving highly nonlinear systems of boundary layer flow problems with exponentially decaying profiles. The algorithm of the proposed method is based on an innovative idea of linearizing and decoupling the governing systems of equations and reducing them into a sequence of subsystems of differential equations which are solved using spectral collocation methods. The applicability of the proposed method, hereinafter referred to as the spectral local linearization method (SLLM, is tested on some well-known boundary layer flow equations. The numerical results presented in this investigation indicate that the proposed method, despite being easy to develop and numerically implement, is very robust in that it converges rapidly to yield accurate results and is more efficient in solving very large systems of nonlinear boundary value problems of the similarity variable boundary layer type. The accuracy and numerical stability of the SLLM can further be improved by using successive overrelaxation techniques.

  17. Determination of an Unknown Radiation Term in a Nonlinear Inverse Problem using Simulation of Markov Chains

    Directory of Open Access Journals (Sweden)

    Morteza Ebrahimi

    2012-01-01

    Full Text Available The purpose of the present study is to provide a fast and accurate algorithm for identifying the medium temperature and the unknown radiation term from an overspecified condition on the boundary in an inverse problem of linear heat equation with nonlinear boundary condition. The design of the paper is to employ Taylor’s series expansion for linearize nonlinear term and then finite-difference approximation to discretize the problem domain. Owing to the application of the finite difference scheme, a large sparse system of linear algebraic equations is obtained. An approach of Monte Carlo method is employed to solve the linear system and estimate unknown radiation term. The Monte Carlo optimization is adopted to modify the estimated values. Results show that a good estimation on the radiation term can be obtained within a couple of minutes CPU time at pentium IV-2.4 GHz PC.

  18. Numerical identification of boundary conditions on nonlinearly radiating inverse heat conduction problems

    Science.gov (United States)

    Murio, Diego A.

    1991-01-01

    An explicit and unconditionally stable finite difference method for the solution of the transient inverse heat conduction problem in a semi-infinite or finite slab mediums subject to nonlinear radiation boundary conditions is presented. After measuring two interior temperature histories, the mollification method is used to determine the surface transient heat source if the energy radiation law is known. Alternatively, if the active surface is heated by a source at a rate proportional to a given function, the nonlinear surface radiation law is then recovered as a function of the interface temperature when the problem is feasible. Two typical examples corresponding to Newton cooling law and Stefan-Boltzmann radiation law respectively are illustrated. In all cases, the method predicts the surface conditions with an accuracy suitable for many practical purposes.

  19. A MODIFIED DECOMPOSITION METHOD FOR SOLVING NONLINEAR PROBLEM OF FLOW IN CONVERGING- DIVERGING CHANNEL

    Directory of Open Access Journals (Sweden)

    MOHAMED KEZZAR

    2015-08-01

    Full Text Available In this research, an efficient technique of computation considered as a modified decomposition method was proposed and then successfully applied for solving the nonlinear problem of the two dimensional flow of an incompressible viscous fluid between nonparallel plane walls. In fact this method gives the nonlinear term Nu and the solution of the studied problem as a power series. The proposed iterative procedure gives on the one hand a computationally efficient formulation with an acceleration of convergence rate and on the other hand finds the solution without any discretization, linearization or restrictive assumptions. The comparison of our results with those of numerical treatment and other earlier works shows clearly the higher accuracy and efficiency of the used Modified Decomposition Method.

  20. Solution of the nonlinear inverse scattering problem by T -matrix completion. II. Simulations

    Science.gov (United States)

    Levinson, Howard W.; Markel, Vadim A.

    2016-10-01

    This is Part II of the paper series on data-compatible T -matrix completion (DCTMC), which is a method for solving nonlinear inverse problems. Part I of the series [H. W. Levinson and V. A. Markel, Phys. Rev. E 94, 043317 (2016), 10.1103/PhysRevE.94.043317] contains theory and here we present simulations for inverse scattering of scalar waves. The underlying mathematical model is the scalar wave equation and the object function that is reconstructed is the medium susceptibility. The simulations are relevant to ultrasound tomographic imaging and seismic tomography. It is shown that DCTMC is a viable method for solving strongly nonlinear inverse problems with large data sets. It provides not only the overall shape of the object, but the quantitative contrast, which can correspond, for instance, to the variable speed of sound in the imaged medium.

  1. Mathematical mechanic using physical reasoning to solve problems

    CERN Document Server

    Levi, Mark

    2009-01-01

    Everybody knows that mathematics is indispensable to physics--imagine where we'd be today if Einstein and Newton didn't have the math to back up their ideas. But how many people realize that physics can be used to produce many astonishing and strikingly elegant solutions in mathematics? Mark Levi shows how in this delightful book, treating readers to a host of entertaining problems and mind-bending puzzlers that will amuse and inspire their inner physicist. Levi turns math and physics upside down, revealing how physics can simplify proofs and lead to quicker solutions and new theorems, and how physical solutions can illustrate why results are true in ways lengthy mathematical calculations never can

  2. Compressed modes for variational problems in mathematics and physics.

    Science.gov (United States)

    Ozolins, Vidvuds; Lai, Rongjie; Caflisch, Russel; Osher, Stanley

    2013-11-12

    This article describes a general formalism for obtaining spatially localized ("sparse") solutions to a class of problems in mathematical physics, which can be recast as variational optimization problems, such as the important case of Schrödinger's equation in quantum mechanics. Sparsity is achieved by adding an regularization term to the variational principle, which is shown to yield solutions with compact support ("compressed modes"). Linear combinations of these modes approximate the eigenvalue spectrum and eigenfunctions in a systematically improvable manner, and the localization properties of compressed modes make them an attractive choice for use with efficient numerical algorithms that scale linearly with the problem size.

  3. EXISTENCE OF SOLUTIONS OF A FAMILY OF NONLINEAR BOUNDARY VALUE PROBLEMS IN L2-SPACES

    Institute of Scientific and Technical Information of China (English)

    WeiLi; ZhouHaiyun

    2005-01-01

    By using the perturbation results of sums of ranges of accretive mappings of Calvert and Gupta (1978),the abstract results on the existence of solutions of a family of nonlinear boundary value problems in L2 (Ω) are studied. The equation discussed in this paper and the methods used here are extension and complement to the corresponding results of Wei Li and He Zhen's previous papers. Especially,some new techniques are used in this paper.

  4. Analytical Approximation Method for the Center Manifold in the Nonlinear Output Regulation Problem

    Science.gov (United States)

    Suzuki, Hidetoshi; Sakamoto, Noboru; Celikovský, Sergej

    In nonlinear output regulation problems, it is necessary to solve the so-called regulator equations consisting of a partial differential equation and an algebraic equation. It is known that, for the hyperbolic zero dynamics case, solving the regulator equations is equivalent to calculating a center manifold for zero dynamics of the system. The present paper proposes a successive approximation method for obtaining center manifolds and shows its effectiveness by applying it for an inverted pendulum example.

  5. C-L METHOD AND ITS APPLICATION TO ENGINEERING NONLINEAR DYNAMICAL PROBLEMS

    Institute of Scientific and Technical Information of China (English)

    陈予恕; 丁千

    2001-01-01

    The C-L method was generalized from Liapunov-Schmidt reduction method,combined with theory of singularities, for study of non-autonomous dynamical systems to obtain the typical bifurcating response curves in the system parameter spaces. This method has been used , as an example, to analyze the engineering nonlinear dynamical problems by obtaining the bifurcation programs and response curves which are useful in developing tech niques of control to subharmonic instability of large rotating machinery.

  6. Numerical method for nonlinear two-phase displacement problem and its application

    Institute of Scientific and Technical Information of China (English)

    YUAN Yi-rang; LIANG Dong; RUI Hong-xing; DU Ning; WANG Wen-qia

    2008-01-01

    For the three-dimensional nonlinear two-phase displacement problem, the modified upwind finite difference fractional steps schemes were put forward. Some techniques, such as calculus of variations, induction hypothesis, decomposition of high order difference operators, the theory of prior estimates and techniques were used. Optimal order estimates were derived for the error in the approximation solution. These methods have been successfully used to predict the consequences of seawater intrusion and protection projects.

  7. Solvability of a three-point nonlinear boundary-value problem

    Directory of Open Access Journals (Sweden)

    Assia Guezane-Lakoud

    2010-09-01

    Full Text Available Using the Leray Schauder nonlinear alternative, we prove the existence of a nontrivial solution for the three-point boundary-value problem $$displaylines{ u''+f(t,u= 0,quad 0

  8. Positive solutions for a nonlinear periodic boundary-value problem with a parameter

    Directory of Open Access Journals (Sweden)

    Jingliang Qiu

    2012-08-01

    Full Text Available Using topological degree theory with a partially ordered structure of space, sufficient conditions for the existence and multiplicity of positive solutions for a second-order nonlinear periodic boundary-value problem are established. Inspired by ideas in Guo and Lakshmikantham [6], we study the dependence of positive periodic solutions as a parameter approaches infinity, $$ lim_{lambdao +infty}|x_{lambda}|=+infty,quadhbox{or}quad lim_{lambdao+infty}|x_{lambda}|=0. $$

  9. A New Subspace Correction Method for Nonlinear Unconstrained Convex Optimization Problems

    Institute of Scientific and Technical Information of China (English)

    Rong-liang CHEN; Jin-ping ZENG

    2012-01-01

    This paper gives a new subspace correction algorithm for nonlinear unconstrained convex optimization problems based on the multigrid approach proposed by S.Nash in 2000 and the subspace correction algorithm proposed by X.Tai and J.Xu in 2001.Under some reasonable assumptions,we obtain the convergence as well as a convergence rate estimate for the algorithm.Numerical results show that the algorithm is effective.

  10. Validation of Finite Element Solutions of Nonlinear, Periodic Eddy Current Problems

    Directory of Open Access Journals (Sweden)

    Plasser René

    2014-12-01

    Full Text Available An industrial application is presented to validate a finite element analysis of 3-dimensional, nonlinear eddy-current problems with periodic excitation. The harmonic- balance method and the fixed-point technique are applied to get the steady state solution using the finite element method. The losses occurring in steel reinforcements underneath a reactor due to induced eddy-currents are computed and compared to measurements.

  11. Exact travelling solutions for some nonlinear physical models by (′/)-expansion method

    Indian Academy of Sciences (India)

    B Salim Bahrami; H Abdollahzadeh; I M Berijani; D D Ganji; M Abdollahzadeh

    2011-08-01

    In this paper, we establish exact solutions for some special nonlinear partial differential equations. The (′/)-expansion method is used to construct travelling wave solutions of the twodimensional sine-Gordon equation, Dodd–Bullough–Mikhailov and Schrödinger–KdV equations, which appear in many fields such as, solid-state physics, nonlinear optics, fluid dynamics, fluid flow, quantum field theory, electromagnetic waves and so on. In this method we take the advantage of general solutions of second-order linear ordinary differential equation (LODE) to solve many nonlinear evolution equations effectively. The (′/)-expansion method is direct, concise and elementary and can be used with a wider applicability for handling many nonlinear wave equations.

  12. Understanding Student Use of Differentials in Physics Integration Problems

    Science.gov (United States)

    Hu, Dehui; Rebello, N. Sanjay

    2013-01-01

    This study focuses on students' use of the mathematical concept of differentials in physics problem solving. For instance, in electrostatics, students need to set up an integral to find the electric field due to a charged bar, an activity that involves the application of mathematical differentials (e.g., "dr," "dq"). In…

  13. Understanding Student Use of Differentials in Physics Integration Problems

    Science.gov (United States)

    Hu, Dehui; Rebello, N. Sanjay

    2013-01-01

    This study focuses on students' use of the mathematical concept of differentials in physics problem solving. For instance, in electrostatics, students need to set up an integral to find the electric field due to a charged bar, an activity that involves the application of mathematical differentials (e.g., "dr," "dq"). In this…

  14. Fundamentals of Physics, 6th Edition Enhanced Problems Version

    Science.gov (United States)

    Halliday, David; Resnick, Robert; Walker, Jearl

    2002-04-01

    No other text on the market today can match the success of Halliday, Resnick and Walker's Fundamentals of Physics. This text continues to outperform the competition year after year, and the new edition will be no exception. Intended for Calculus-based Physics courses, the 6th edition of this extraordinary text is a major redesign of the best-selling 5th edition, which still maintains many of the elements that led to its enormous success. Jearl Walker adds his unique style to this edition with the addition of new problems designed to capture, and keep, students' attention. Nearly all changes are based on suggestions from instructors and students using the 5th edition, from reviewer comments, and from research done on the process of learning. The primary goal of this text is to provide students with a solid understanding of fundamental physics concepts, and to help them apply this conceptual understanding to quantitative problem solving. The principal goal of Halliday-Resnick-Walker is to provide instructors with a tool by which they can teach students how to effectively read scientific material and successfully reason through scientific questions. To sharpen this tool, the Enhanced Problems Version of the sixth edition of Fundamentals of Physics contains over 1000 new, high-quality problems that require thought and reasoning rather than simplistic plugging of data into formulas.

  15. Problem Solving in the Borderland between Mathematics and Physics

    Science.gov (United States)

    Jensen, Jens Højgaard; Niss, Martin; Jankvist, Uffe Thomas

    2017-01-01

    The article addresses the problématique of where mathematization is taught in the educational system, and who teaches it. Mathematization is usually not a part of mathematics programs at the upper secondary level, but we argue that physics teaching has something to offer in this respect, if it focuses on solving so-called unformalized problems,…

  16. Morozov-type discrepancy principle for nonlinear ill-posed problems under -condition

    Indian Academy of Sciences (India)

    M Thamban Nair

    2015-05-01

    For proving the existence of a regularization parameter under a Morozov-type discrepancy principle for Tikhonov regularization of nonlinear ill-posed problems, it is required to impose additional nonlinearity assumptions on the forward operator. Lipschitz continuity of the Freéchet derivative and requirement of the Lipschitz constant to depend on a source condition is one such restriction (Ramlau P, Numer. Funct. Anal. Optim. 23(1&22) (2003) 147–172). Another nonlinearity condition considered by Scherzer (Computing, 51 (1993) 45–60) was by requiring the forward operator to be close to a linear operator in a restricted sense. A seemingly natural nonlinear assumption which appears in many applications which attracted attention in various contexts of the study of nonlinear problems is the so-called -condition. However, a Morozov-type discrepancy principle together with -condition does not seem to have been studied, except in a recent paper by the author (Bull. Aust. Math. Soc. 79 (2009) 337–342), where error estimates under a general source condition is derived, by assuming the existence of the parameter. In this paper, the existence of the parameter satisfying a Morozov-type discrepancy principle is proved under the -condition on the forward operator, by assuming the source condition as in the papers of Scherzer (Computing, 51 (1993) 45–60) and Ramlau (Numer. Funct. Anal. Optim. 23(1&22) (2003) 147–172). This source condition is, in fact, a special case of the source condition in the author’s paper (Bull. Aust. Math. Soc. 79 (2009) 337–342).

  17. The viscous surface-internal wave problem: nonlinear Rayleigh-Taylor instability

    CERN Document Server

    Wang, Yanjin

    2011-01-01

    We consider the free boundary problem for two layers of immiscible, viscous, incompressible fluid in a uniform gravitational field, lying above a rigid bottom in a three-dimensional horizontally periodic setting. The effect of surface tension is either taken into account at both free boundaries or neglected at both. We are concerned with the Rayleigh-Taylor instability, so we assume that the upper fluid is heavier than the lower fluid. When the surface tension at the free internal interface is below a critical value, which we identify, we establish that the problem under consideration is nonlinearly unstable.

  18. Multiple positive solutions for singular semipositone nonlinear integral boundary-value problems on infinite intervals

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2015-03-01

    Full Text Available In this article, we study the existence of multiple positive solutions for singular semipositone boundary-value problem (BVP with integral boundary conditions on infinite intervals. By using the properties of the Green's function and the Guo-Krasnosel'skii fixed point theorem, we obtain the existence of multiple positive solutions under conditions concerning the nonlinear functions. The method in this article can be used for a large number of problems. We illustrate the validity of our results with an example in the last section.

  19. POSITIVE SOLUTIONS OF A NONLINEAR THREE-POINT EIGENVALUE PROBLEM WITH INTEGRAL BOUNDARY CONDITIONS

    Directory of Open Access Journals (Sweden)

    FAOUZI HADDOUCHI

    2015-11-01

    Full Text Available In this paper, we study the existence of positive solutions of a three-point integral boundary value problem (BVP for the following second-order differential equation u''(t + \\lambda a(tf(u(t = 0; 0 0 is a parameter, 0 <\\eta < 1, 0 <\\alpha < 1/{\\eta}. . By using the properties of the Green's function and Krasnoselskii's fixed point theorem on cones, the eigenvalue intervals of the nonlinear boundary value problem are considered, some sufficient conditions for the existence of at least one positive solutions are established.

  20. Verified solutions of two-point boundary value problems for nonlinear oscillators

    Science.gov (United States)

    Bünger, Florian

    Using techniques introduced by Nakao [4], Oishi [5, 6] and applied by Takayasu, Oishi, Kubo [11, 12] to certain nonlinear two-point boundary value problems (see also Rump [7], Chapter 15), we provide a numerical method for verifying the existence of weak solutions of two-point boundary value problems of the form -u″ = a(x, u) + b(x, u)u‧, 0 b are functions that fulfill some regularity properties. The numerical approximation is done by cubic spline interpolation. Finally, the method is applied to the Duffing, the van der Pol and the Toda oscillator. The rigorous numerical computations were done with INTLAB [8].

  1. Nonlinear systems of differential inequalities and solvability of certain boundary value problems

    Directory of Open Access Journals (Sweden)

    Tvrdý Milan

    2001-01-01

    Full Text Available In the paper we present some new existence results for nonlinear second order generalized periodic boundary value problems of the form These results are based on the method of lower and upper functions defined as solutions of the system of differential inequalities associated with the problem and their relation to the Leray–Schauder topological degree of the corresponding operator. Our main goal consists in a fairly general definition of these functions as couples from . Some conditions ensuring their existence are indicated, as well.

  2. A mixed Newton-Tikhonov method for nonlinear ill-posed problems

    Institute of Scientific and Technical Information of China (English)

    Chuan-gang KANG; Guo-qiang HE

    2009-01-01

    Newton type methods are one kind of the efficient methods to solve nonlinear ill-posed problems,which have attracted extensive attention.However,computational cost of Newton type methods is high because practical problems are complicated.We propose a mixed Newton-Tikhonov method,i.e.,one step Newton-Tikhonov method with several other steps of simplified Newton-Tikhonov method.Convergence and stability of this method are proved under some conditions.Numerical experiments show that the proposed method has obvious advantages over the classical Newton method in terms of computational costs.

  3. An NE/SQP method for the bounded nonlinear complementarity problem

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, S.A. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.

    1995-05-30

    NE/SQP is a recent algorithm that has proven quite effective for solving the pure and mixed forms of the nonlinear complementarity problem (NCP). NE/SQP is robust in the sense that its direction-finding subproblems are always solvable; in addition, the convergence rate of this method is Q-quadratic. In this paper the author considers a generalized version of NE/SQP proposed by Pang and Qi, that is suitable for the bounded NCP. The author extends their work by demonstrating a stronger convergence result and then tests a proposed method on several numerical problems.

  4. Inverse problems and nonlinear evolution equations solutions, Darboux matrices and Weyl-Titchmarsh functions

    CERN Document Server

    Sakhnovich, Lev A; Roitberg, Inna Ya

    2013-01-01

    This monograph fits theclearlyneed for books with a rigorous treatment of theinverse problems for non-classical systems and that of initial-boundary-value problems for integrable nonlinear equations. The authorsdevelop a unified treatment of explicit and global solutions via the transfer matrix function in a form due to Lev A. Sakhnovich. The book primarily addresses specialists in the field. However, it is self-contained andstarts with preliminaries and examples, and hencealso serves as an introduction for advanced graduate students in the field.

  5. Applied problems of physical education students of economic specialties

    Directory of Open Access Journals (Sweden)

    Dubinskaya O.Y.

    2014-03-01

    Full Text Available Purpose : to analyze the problems of physical education students of economics in the context of professionally applied physical training. Material : analysis of Ukrainian and foreign publications on species means of improving professional-applied physical training of students in higher education. Results : It was found that the state system of physical education students is ineffective. It does not provide psychophysical and professional readiness of graduates for productive activities and later life. The system also needs constant improvement. A new approach to solving the problem of training to learn the adoption of practical importance of physical education. Also the formation of motivation by demonstrating a real need and usefulness of the proposed exercise. Such exercises should be differentiated, taking into account the health status and subsequent career expectations. Conclusion: it is proved that for an efficient system of training is necessary to use popular among students sports. It is also necessary to take into account the interests of students when choosing tools professionally applied physical training.

  6. SECONDARY PHYSICAL EDUCATION AVOIDANCE AND GENDER: PROBLEMS AND ANTIDOTES

    Directory of Open Access Journals (Sweden)

    Thomas Ryan

    2012-07-01

    Full Text Available Our goal was to locate and evaluate the barriers that impact and cause females to avoid secondary elective physical education courses. We sought to find answers to stop the further decline of female enrolment in secondary physical education by looking into curricula, program and instructional variables. Anecdotal evidence informed this study which was very much exploratory, building upon several key facts. First, Ontario (Canada secondary students are only required to take one credit (course in physical education in order to graduate and second, most students take the required physical education course in grade nine which is their first year of high school. Following this there is an average of 10% fewer females in every physical education class in the province of Ontario and only an average of 12% are enrolled in physical education each year. Several issues were identified and explored including self-confidence; motivation; perceived value of physical activity; opportunities for physical activity; marking scheme; competition; co-ed classes; teaching approach; and peers as possible problems and solutions.

  7. Improved simple optimization (SOPT algorithm for unconstrained non-linear optimization problems

    Directory of Open Access Journals (Sweden)

    J. Thomas

    2016-09-01

    Full Text Available In the recent years, population based meta-heuristic are developed to solve non-linear optimization problems. These problems are difficult to solve using traditional methods. Simple optimization (SOPT algorithm is one of the simple and efficient meta-heuristic techniques to solve the non-linear optimization problems. In this paper, SOPT is compared with some of the well-known meta-heuristic techniques viz. Artificial Bee Colony algorithm (ABC, Particle Swarm Optimization (PSO, Genetic Algorithm (GA and Differential Evolutions (DE. For comparison, SOPT algorithm is coded in MATLAB and 25 standard test functions for unconstrained optimization having different characteristics are run for 30 times each. The results of experiments are compared with previously reported results of other algorithms. Promising and comparable results are obtained for most of the test problems. To improve the performance of SOPT, an improvement in the algorithm is proposed which helps it to come out of local optima when algorithm gets trapped in it. In almost all the test problems, improved SOPT is able to get the actual solution at least once in 30 runs.

  8. Travelling wave solutions to nonlinear physical models by means of the first integral method

    Indian Academy of Sciences (India)

    İsmail Aslan Aslan

    2011-04-01

    This paper presents the first integral method to carry out the integration of nonlinear partial differential equations in terms of travelling wave solutions. For illustration, three important equations of mathematical physics are analytically investigated. Through the established first integrals, exact solutions are successfully constructed for the equations considered.

  9. Problem roulette: Studying introductory physics in the cloud

    Science.gov (United States)

    Evrard, August E.; Mills, Michael; Winn, David; Jones, Kathryn; Tritz, Jared; McKay, Timothy A.

    2015-01-01

    We introduce Problem Roulette (PR), a web-based study service at the University of Michigan that offers random-within-topic access to a large library of past exam problems in introductory physics courses. Built on public-private cloud infrastructure, PR served nearly 1000 students during Fall 2012 term, delivering more than 60,000 problem pages. The service complements that of commercial publishing houses by offering problems authored by local professors and by explicitly aligning topics with exam content. We describe the service architecture, including reporting and analytical capabilities, and present an initial evaluation of the impact of its use. Among roughly 500 students studying electromagnetism, we find that the 229 students who worked fifty or more problems over the term outperformed their complement by 0.40 grade points (on a 4.0 scale). This improvement partly reflects a selection bias that academically stronger students used the service more frequently. Adjusting for this selection bias, we find a grade point improvement of 0.22, significantly above the random noise level of 0.04. The simple message to students is that working five or more additional problems per week can lead to a quarter-letter grade improvement in introductory physics. Student comments emphasize the importance of randomness in helping them to synthesize concepts. The PR source code is publicly available.

  10. A high performance neural network for solving nonlinear programming problems with hybrid constraints

    Science.gov (United States)

    Tao, Qing; Cao, Jinde; Xue, Meisheng; Qiao, Hong

    2001-09-01

    A continuous neural network is proposed in this Letter for solving optimization problems. It not only can solve nonlinear programming problems with the constraints of equality and inequality, but also has a higher performance. The main advantage of the network is that it is an extension of Newton's gradient method for constrained problems, the dynamic behavior of the network under special constraints and the convergence rate can be investigated. Furthermore, the proposed network is simpler than the existing networks even for solving positive definite quadratic programming problems. The network considered is constrained by a projection operator on a convex set. The advanced performance of the proposed network is demonstrated by means of simulation of several numerical examples.

  11. A Semismooth Newton Method for Nonlinear Parameter Identification Problems with Impulsive Noise

    KAUST Repository

    Clason, Christian

    2012-01-01

    This work is concerned with nonlinear parameter identification in partial differential equations subject to impulsive noise. To cope with the non-Gaussian nature of the noise, we consider a model with L 1 fitting. However, the nonsmoothness of the problem makes its efficient numerical solution challenging. By approximating this problem using a family of smoothed functionals, a semismooth Newton method becomes applicable. In particular, its superlinear convergence is proved under a second-order condition. The convergence of the solution to the approximating problem as the smoothing parameter goes to zero is shown. A strategy for adaptively selecting the regularization parameter based on a balancing principle is suggested. The efficiency of the method is illustrated on several benchmark inverse problems of recovering coefficients in elliptic differential equations, for which one- and two-dimensional numerical examples are presented. © by SIAM.

  12. Assessing student written problem solutions: A problem-solving rubric with application to introductory physics

    Science.gov (United States)

    Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie

    2016-06-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of a simple rubric to assess written solutions to problems given in undergraduate introductory physics courses. In particular, we present evidence for the validity, reliability, and utility of the instrument. The rubric identifies five general problem-solving processes and defines the criteria to attain a score in each: organizing problem information into a Useful Description, selecting appropriate principles (Physics Approach), applying those principles to the specific conditions in the problem (Specific Application of Physics), using Mathematical Procedures appropriately, and displaying evidence of an organized reasoning pattern (Logical Progression).

  13. Computer Based Collaborative Problem Solving for Introductory Courses in Physics

    Science.gov (United States)

    Ilie, Carolina; Lee, Kevin

    2010-03-01

    We discuss collaborative problem solving computer-based recitation style. The course is designed by Lee [1], and the idea was proposed before by Christian, Belloni and Titus [2,3]. The students find the problems on a web-page containing simulations (physlets) and they write the solutions on an accompanying worksheet after discussing it with a classmate. Physlets have the advantage of being much more like real-world problems than textbook problems. We also compare two protocols for web-based instruction using simulations in an introductory physics class [1]. The inquiry protocol allowed students to control input parameters while the worked example protocol did not. We will discuss which of the two methods is more efficient in relation to Scientific Discovery Learning and Cognitive Load Theory. 1. Lee, Kevin M., Nicoll, Gayle and Brooks, Dave W. (2004). ``A Comparison of Inquiry and Worked Example Web-Based Instruction Using Physlets'', Journal of Science Education and Technology 13, No. 1: 81-88. 2. Christian, W., and Belloni, M. (2001). Physlets: Teaching Physics With Interactive Curricular Material, Prentice Hall, Englewood Cliffs, NJ. 3. Christian,W., and Titus,A. (1998). ``Developing web-based curricula using Java Physlets.'' Computers in Physics 12: 227--232.

  14. Ensemble Kalman Filtering with Residual Nudging: An Extension to State Estimation Problems with Nonlinear Observation Operators

    KAUST Repository

    Luo, Xiaodong

    2014-10-01

    The ensemble Kalman filter (EnKF) is an efficient algorithm for many data assimilation problems. In certain circumstances, however, divergence of the EnKF might be spotted. In previous studies, the authors proposed an observation-space-based strategy, called residual nudging, to improve the stability of the EnKF when dealing with linear observation operators. The main idea behind residual nudging is to monitor and, if necessary, adjust the distances (misfits) between the real observations and the simulated ones of the state estimates, in the hope that by doing so one may be able to obtain better estimation accuracy. In the present study, residual nudging is extended and modified in order to handle nonlinear observation operators. Such extension and modification result in an iterative filtering framework that, under suitable conditions, is able to achieve the objective of residual nudging for data assimilation problems with nonlinear observation operators. The 40-dimensional Lorenz-96 model is used to illustrate the performance of the iterative filter. Numerical results show that, while a normal EnKF may diverge with nonlinear observation operators, the proposed iterative filter remains stable and leads to reasonable estimation accuracy under various experimental settings.

  15. SUCCESSIVELY ITERATIVE TECHNIQUE OF SIGN-CHANGING SOLUTION TO A NONLINEAR THIRD-ORDER BOUNDARY VALUE PROBLEM

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The iterative technique of sign-changing solution is studied for a nonlinear third-order two-point boundary value problem, where the nonlinear term has the time sin-gularity. By applying the monotonically iterative technique, an existence theorem is established and two useful iterative schemes are obtained.

  16. On large-scale nonlinear programming techniques for solving optimal control problems

    Energy Technology Data Exchange (ETDEWEB)

    Faco, J.L.D.

    1994-12-31

    The formulation of decision problems by Optimal Control Theory allows the consideration of their dynamic structure and parameters estimation. This paper deals with techniques for choosing directions in the iterative solution of discrete-time optimal control problems. A unified formulation incorporates nonlinear performance criteria and dynamic equations, time delays, bounded state and control variables, free planning horizon and variable initial state vector. In general they are characterized by a large number of variables, mostly when arising from discretization of continuous-time optimal control or calculus of variations problems. In a GRG context the staircase structure of the jacobian matrix of the dynamic equations is exploited in the choice of basic and super basic variables and when changes of basis occur along the process. The search directions of the bound constrained nonlinear programming problem in the reduced space of the super basic variables are computed by large-scale NLP techniques. A modified Polak-Ribiere conjugate gradient method and a limited storage quasi-Newton BFGS method are analyzed and modifications to deal with the bounds on the variables are suggested based on projected gradient devices with specific linesearches. Some practical models are presented for electric generation planning and fishery management, and the application of the code GRECO - Gradient REduit pour la Commande Optimale - is discussed.

  17. Coherence vs. decoherence in (some) problems of condensed matter physics

    Indian Academy of Sciences (India)

    Sushanta Dattagupta

    2002-08-01

    We present an `overview’ of coherence-to-decoherence transition in certain selected problems of condensed matter physics. Our treatment is based on a subsystem-plus-environment approach. All the examples chosen in this paper have one thing in common – the environmental degrees of freedom are taken to be bosonic and their spectral density of excitations is assumed to be `ohmic’. The examples are drawn from a variety of phenomena in condensed matter physics involving, for instance, quantum diffusion of hydrogen in metals, Landau diamagnetism and -axis transport in high c superconductors.

  18. 1000 Solved Problems in Classical Physics An Exercise Book

    CERN Document Server

    Kamal, Ahmad A

    2011-01-01

    This book basically caters to the needs of undergraduate and graduate physics students in classical physics, especially Classical Mechanics and Electricity and Electromagnetism. Lecturers/Tutors may use it as a resource book. The contents of the book are based on the syllabi currently used in the undergraduate courses in the USA, U.K., and other countries. The book consists of 15 chapters, each one beginning with a brief but adequate summary and necessary formulas and Line diagrams followed by a variety of typical problems useful for assignments and exams. Detailed solutions are provided at the end of each chapter.

  19. Two-point boundary value problems and exact controllability for several kinds of linear and nonlinear wave equations

    Energy Technology Data Exchange (ETDEWEB)

    Kong Dexing [Department of Mathematics, Zhejiang University, Hangzhou 310027 (China); Sun Qingyou, E-mail: qysun@cms.zju.edu.cn [Center of Mathematical Sciences, Zhejiang University, Hangzhou 310027 (China)

    2011-04-01

    All articles must In this paper we introduce some new concepts for second-order hyperbolic equations: two-point boundary value problem, global exact controllability and exact controllability. For several kinds of important linear and nonlinear wave equations arising from physics and geometry, we prove the existence of smooth solutions of the two-point boundary value problems and show the global exact controllability of these wave equations. In particular, we investigate the two-point boundary value problem for one-dimensional wave equation defined on a closed curve and prove the existence of smooth solution which implies the exact controllability of this kind of wave equation. Furthermore, based on this, we study the two-point boundary value problems for the wave equation defined on a strip with Dirichlet or Neumann boundary conditions and show that the equation still possesses the exact controllability in these cases. Finally, as an application, we introduce the hyperbolic curvature flow and obtain a result analogous to the well-known theorem of Gage and Hamilton for the curvature flow of plane curves.

  20. Analyticity of solutions of analytic non-linear general elliptic boundary value problems,and some results about linear problems

    Institute of Scientific and Technical Information of China (English)

    WANG Rouhuai

    2006-01-01

    The main aim of this paper is to discuss the problem concerning the analyticity of the solutions of analytic non-linear elliptic boundary value problems.It is proved that if the corresponding first variation is regular in Lopatinski(i) sense,then the solution is analytic up to the boundary.The method of proof really covers the case that the corresponding first variation is regularly elliptic in the sense of Douglis-Nirenberg-Volevich,and hence completely generalize the previous result of C.B.Morrey.The author also discusses linear elliptic boundary value problems for systems of ellip tic partial differential equations where the boundary operators are allowed to have singular integral operators as their coefficients.Combining the standard Fourier transform technique with analytic continuation argument,the author constructs the Poisson and Green's kernel matrices related to the problems discussed and hence obtain some representation formulae to the solutions.Some a priori estimates of Schauder type and Lp type are obtained.