WorldWideScience

Sample records for nonlinear photonic crystal

  1. Spatial solitons in nonlinear photonic crystals

    DEFF Research Database (Denmark)

    Corney, Joel Frederick; Bang, Ole

    2000-01-01

    We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero.......We study solitons in one-dimensional quadratic nonlinear photonic crystals with periodic linear and nonlinear susceptibilities. We show that such crystals support stable bright and dark solitons, even when the effective quadratic nonlinearity is zero....

  2. On-chip steering of entangled photons in nonlinear photonic crystals.

    Science.gov (United States)

    Leng, H Y; Yu, X Q; Gong, Y X; Xu, P; Xie, Z D; Jin, H; Zhang, C; Zhu, S N

    2011-08-16

    One promising technique for working toward practical photonic quantum technologies is to implement multiple operations on a monolithic chip, thereby improving stability, scalability and miniaturization. The on-chip spatial control of entangled photons will certainly benefit numerous applications, including quantum imaging, quantum lithography, quantum metrology and quantum computation. However, external optical elements are usually required to spatially control the entangled photons. Here we present the first experimental demonstration of on-chip spatial control of entangled photons, based on a domain-engineered nonlinear photonic crystal. We manipulate the entangled photons using the inherent properties of the crystal during the parametric downconversion, demonstrating two-photon focusing and beam-splitting from a periodically poled lithium tantalate crystal with a parabolic phase profile. These experimental results indicate that versatile and precise spatial control of entangled photons is achievable. Because they may be operated independent of any bulk optical elements, domain-engineered nonlinear photonic crystals may prove to be a valuable ingredient in on-chip integrated quantum optics.

  3. Unidirectional transmission in 1D nonlinear photonic crystal based on topological phase reversal by optical nonlinearity

    OpenAIRE

    Chong Li; Xiaoyong Hu; Hong Yang; Qihuang Gong

    2017-01-01

    We propose a scheme of unidirectional transmission in a 1D nonlinear topological photonic crystal based on the topological edge state and three order optical nonlinearity. The 1D photonic crystals consists of a nonlinear photonic crystal L and a linear photonic crystal R. In the backward direction, light is totally reflected for the photons transmission prohibited by the bandgap. While in the forward direction, light interacts with the nonlinear photonic crystal L by optical Kerr effect, brin...

  4. Unidirectional transmission in 1D nonlinear photonic crystal based on topological phase reversal by optical nonlinearity

    Directory of Open Access Journals (Sweden)

    Chong Li

    2017-02-01

    Full Text Available We propose a scheme of unidirectional transmission in a 1D nonlinear topological photonic crystal based on the topological edge state and three order optical nonlinearity. The 1D photonic crystals consists of a nonlinear photonic crystal L and a linear photonic crystal R. In the backward direction, light is totally reflected for the photons transmission prohibited by the bandgap. While in the forward direction, light interacts with the nonlinear photonic crystal L by optical Kerr effect, bringing a topological phase reversal and results the topological edge mode arising at the interface which could transmit photons through the bandgaps both of the photonic crystal L and R. When the signal power intensity larger than a moderate low threshold value of 10.0 MW/cm2, the transmission contrast ratio could remain at 30 steadily.

  5. Optical switching in nonlinear photonic crystals lightly doped with nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada); Lipson, R H [Department of Chemistry, University of Western Ontario, London, ON N6A 5B7 (Canada)

    2008-01-14

    A possible switching mechanism has been investigated for nonlinear photonic crystals doped with an ensemble of non-interacting three-level nanoparticles. In this scheme, an intense pump laser field is used to change the refractive index of the nonlinear photonic crystal while a weaker probe field monitors an absorption transition in the nanoparticles. In the absence of the strong laser field the system transmits the probe field when the resonance energy of the nanoparticles lies near the edge of the photonic band gap due to strong coupling between the photonic crystal and the nanoparticles. However, upon application of an intense pump laser field the system becomes absorbing due to a band edge frequency shift that arises due to a nonlinear Kerr effect which changes the refractive index of the crystal. It is anticipated that the optical switching mechanism described in this work can be used to make new types of photonic devices.

  6. Nonlinear Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Hansen, Kim Per

    2004-01-01

    Despite the general recession in the global economy and the collapse of the optical telecommunication market, research within specialty fibers is thriving. This is, more than anything else, due to the technology transition from standard all-glass fibers to photonic crystal fibers, which, instead....... The freedom to design the dispersion profile of the fibers is much larger and it is possible to create fibers, which support only a single spatial mode, regardless of wavelength. In comparison, the standard dispersion-shifted fibers are limited by a much lower index-contrast between the core and the cladding...... in 1996, and are today on their way to become the dominating technology within the specialty fiber field. Whether they will replace the standard fiber in the more traditional areas like telecommunication transmission, is not yet clear, but the nonlinear photonic crystal fibers are here to stay....

  7. Solitons in quadratic nonlinear photonic crystals

    DEFF Research Database (Denmark)

    Corney, Joel Frederick; Bang, Ole

    2001-01-01

    We study solitons in one-dimensional quadratic nonlinear photonic crystals with modulation of both the linear and nonlinear susceptibilities. We derive averaged equations that include induced cubic nonlinearities, which can be defocusing, and we numerically find previously unknown soliton families....... Because of these induced cubic terms, solitons still exist even when the effective quadratic nonlinearity vanishes and conventional theory predicts that there can be no soliton. We demonstrate that both bright and dark forms of these solitons can propagate stably....

  8. Tailoring nonlinearity and dispersion of photonic crystal fibers using hybrid cladding

    International Nuclear Information System (INIS)

    Zhao-lun, Liu; Lan-tian, Hou; Wei, Wang

    2009-01-01

    We present a hybrid cladding photonic crystal fiber for shaping high nonlinear and flattened dispersion in a wide range of wavelengths. The new structure adopts hybrid cladding with different pitches, air-holes diameters and air-holes arrayed fashions. The full-vector finite element method with perfectly matched layer is used to investigate the characteristics of the hybrid cladding photonic crystal fiber such as nonlinearity and dispersion properties. The influence of the cladding structure parameters on the nonlinear coefficient and geometric dispersion is analyzed. High nonlinear coefficient and the dispersion properties of fibers are tailored by adjusting the cladding structure parameters. A novel hybrid cladding photonic crystal fiber with high nonlinear coefficient and dispersion flattened which is suited for super continuum generation is designed. (author)

  9. Photonic Crystal Nanocavity Devices for Nonlinear Signal Processing

    DEFF Research Database (Denmark)

    Yu, Yi

    , membranization of InP/InGaAs structure and wet etching. Experimental investigation of the switching dynamics of InP photonic crystal nanocavity structures are carried out using short-pulse homodyne pump-probe techniques, both in the linear and nonlinear region where the cavity is perturbed by a relatively small......This thesis deals with the investigation of InP material based photonic crystal cavity membrane structures, both experimentally and theoretically. The work emphasizes on the understanding of the physics underlying the structures’ nonlinear properties and their applications for all-optical signal...... processing. Based on the previous fabrication recipe developed in our III-V platform, several processing techniques are developed and optimized for the fabrication of InP photonic crystal membrane structures. Several key issues are identified to ensure a good device quality such as air hole size control...

  10. Nonlinear Gain Saturation in Active Slow Light Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Chen, Yaohui; Mørk, Jesper

    2013-01-01

    We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated.......We present a quantitative three-dimensional analysis of slow-light enhanced traveling wave amplification in an active semiconductor photonic crystal waveguides. The impact of slow-light propagation on the nonlinear gain saturation of the device is investigated....

  11. Study of nonlinear effects in photonic crystals doped with nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London, N6A 3K7 Ontario (Canada)

    2008-07-14

    A theory of nonlinear phenomena has been developed for a photonic crystal in the presence of a pump and a coupling laser field. The crystal is doped with an ensemble of four-level nanoparticle impurities. It is considered that the impurity particles are not only interacting with the photonic crystal but also with each other via dipole-dipole interaction. An expression for the susceptibility has been obtained using the density matrix method. The nonlinear effects due to the coupling and the pump fields have been included in the formulation. The absorption spectrum has been calculated in the presence of the strong coupling and pump fields for an isotropic photonic crystal made from dielectric spheres. The photonic crystal has a gap to midgap ratio of about 21%. It is predicted that the absorption spectrum in the photonic crystal can have zero, one, two or three absorptionless states by tuning one of the transition energies within the bands. This is an interesting phenomenon which can be used to make photonic switching devices. We have also calculated the absorption spectrum in the presence of the dipole-dipole interaction. It is found that a symmetric absorption spectrum changes to an asymmetric one due to this interaction. It is also found that there is a large enhancement in the absorption and the dispersion simultaneously for certain values of the detuning and concentration.

  12. Study of nonlinear effects in photonic crystals doped with nanoparticles

    International Nuclear Information System (INIS)

    Singh, Mahi R

    2008-01-01

    A theory of nonlinear phenomena has been developed for a photonic crystal in the presence of a pump and a coupling laser field. The crystal is doped with an ensemble of four-level nanoparticle impurities. It is considered that the impurity particles are not only interacting with the photonic crystal but also with each other via dipole-dipole interaction. An expression for the susceptibility has been obtained using the density matrix method. The nonlinear effects due to the coupling and the pump fields have been included in the formulation. The absorption spectrum has been calculated in the presence of the strong coupling and pump fields for an isotropic photonic crystal made from dielectric spheres. The photonic crystal has a gap to midgap ratio of about 21%. It is predicted that the absorption spectrum in the photonic crystal can have zero, one, two or three absorptionless states by tuning one of the transition energies within the bands. This is an interesting phenomenon which can be used to make photonic switching devices. We have also calculated the absorption spectrum in the presence of the dipole-dipole interaction. It is found that a symmetric absorption spectrum changes to an asymmetric one due to this interaction. It is also found that there is a large enhancement in the absorption and the dispersion simultaneously for certain values of the detuning and concentration

  13. The study of nonlinear two-photon phenomenon in photonic crystals doped with nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R [Department of Physics and Astronomy, University of Western Ontario, London, N6A 3K7 (Canada)

    2007-02-28

    A theory of the nonlinear two-photon absorption has been developed in a photonic crystal doped with an ensemble of four-level nanoparticles. We have considered that the nanoparticles are interacting with the photonic crystal. An expression of two-photon absorption has been obtained by using the density matrix method. The effect of the dipole-dipole interaction has also been included in the formulation. Interesting new phenomena have been predicted. For example, it is found that the inhibition of two-photon absorption can be turned on and off when the decay resonance energies of the four-level nanoparticles are moved within the energy band.

  14. Temporal nonlinear beam dynamics in infiltrated photonic crystal fibers

    DEFF Research Database (Denmark)

    Bennet, Francis; Rosberg, Christian Romer; Neshev, Dragomir N.

    Liquid-infiltrated photonic crystal fibers (PCFs) offer a new way of studying light propagation in periodic and discrete systems. A wide range of available fiber structures combined with the ease of infiltration opens up a range of novel experimental opportunities for optical detection and bio...... the evolution of the fiber output beam in the few micro or milliseconds after the beam is turned on. The characterization of the temporal behavior of the thermal nonlinear response provides important information about the nonlocality associated with heat diffusion inside the fiber, thus enabling studies of long...... and technological potential of liquid-infiltrated PCFs it is important to understand the temporal dynamics of nonlinear beam propagation in such structures. In this work we consider thermally induced spatial nonlinear effects in infiltrated photonic crystal fibers. We experimentally study the temporal dynamics...

  15. Saturation and stability of nonlinear photonic crystals

    International Nuclear Information System (INIS)

    Franco-Ortiz, M; Corella-Madueño, A; Rosas-Burgos, R A; Adrian Reyes, J; Avendaño, Carlos G

    2017-01-01

    We consider a one-dimensional photonic crystal made by an infinite set of nonlinear nematic films immersed in a linear dielectric medium. The thickness of each equidistant film is negligible and its refraction index depends continuously on the electric field intensity, giving rise to all the involved nonlinear terms, which joints from a starting linear index for negligible amplitudes to a final saturation index for extremely large field intensities. We show that the nonlinear exact solutions of this system form an intensity-dependent band structure which we calculate and analyze. Next, we ponder a finite version of this system; that is, we take a finite array of linear dielectric stacks of the same size separated by the same nonlinear extremely thin nematic slabs and find the reflection coefficients for this arrangement and obtain the dependence on the wave number and intensity of the incident wave. As a final step we analyze the stability of the analytical solutions of the nonlinear crystal by following the evolution of an additive amplitude to the analytical nonlinear solution we have found here. We discuss our results and state our conclusions. (paper)

  16. Nonlinear switching dynamics in a photonic-crystal nanocavity

    International Nuclear Information System (INIS)

    Yu, Yi; Palushani, Evarist; Heuck, Mikkel; Vukovic, Dragana; Peucheret, Christophe; Yvind, Kresten; Mork, Jesper

    2014-01-01

    We report the experimental observation of nonlinear switching dynamics in an InP photonic crystal nanocavity. Usually, the regime of relatively small cavity perturbations is explored, where the signal transmitted through the cavity follows the temporal variation of the cavity resonance. When the cavity is perturbed by strong pulses, we observe several nonlinear effects, i.e., saturation of the switching contrast, broadening of the switching window, and even initial reduction of the transmission. The effects are analyzed by comparison with nonlinear coupled mode theory and explained in terms of large dynamical variations of the cavity resonance in combination with nonlinear losses. The results provide insight into the nonlinear optical processes that govern the dynamics of nanocavities and are important for applications in optical signal processing, where one wants to optimize the switching contrast.

  17. Nonlinear switching dynamics in a photonic-crystal nanocavity

    DEFF Research Database (Denmark)

    Yu, Yi; Palushani, Evarist; Heuck, Mikkel

    2014-01-01

    We report the experimental observation of nonlinear switching dynamics in an InP photonic crystal nanocavity. Usually, the regime of relatively small cavity perturbations is explored, where the signal transmitted through the cavity follows the temporal variation of the cavity resonance. When...... of large dynamical variations of the cavity resonance in combination with nonlinear losses. The results provide insight into the nonlinear optical processes that govern the dynamics of nanocavities and are important for applications in optical signal processing, where one wants to optimize the switching...... the cavity is perturbed by strong pulses, we observe several nonlinear effects, i.e., saturation of the switching contrast, broadening of the switching window, and even initial reduction of the transmission. The effects are analyzed by comparison with nonlinear coupled mode theory and explained in terms...

  18. Pulse carving using nanocavity-enhanced nonlinear effects in photonic crystal Fano structures

    DEFF Research Database (Denmark)

    Bekele, Dagmawi Alemayehu; Yu, Yi; Hu, Hao

    2018-01-01

    We experimentally demonstrate the use of a photonic crystal Fano resonance for carving-out short pulses from long-duration input pulses. This is achieved by exploiting an asymmetric Fano resonance combined with carrier-induced nonlinear effects in a photonic crystal membrane structure. The use...... of a nanocavity concentrates the input field to a very small volume leading to an efficient nonlinear resonance shift that carves a short pulse out of the input pulse. Here, we demonstrate shortening of ∼500  ps and ∼100  ps long pulses to ∼30  ps and ∼20  ps pulses, respectively. Furthermore, we demonstrate...

  19. Wave propagation in photonic crystals and metamaterials: Surface waves, nonlinearity and chirality

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingnan [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    Photonic crystals and metamaterials, both composed of artificial structures, are two interesting areas in electromagnetism and optics. New phenomena in photonic crystals and metamaterials are being discovered, including some not found in natural materials. This thesis presents my research work in the two areas. Photonic crystals are periodically arranged artificial structures, mostly made from dielectric materials, with period on the same order of the wavelength of the working electromagnetic wave. The wave propagation in photonic crystals is determined by the Bragg scattering of the periodic structure. Photonic band-gaps can be present for a properly designed photonic crystal. Electromagnetic waves with frequency within the range of the band-gap are suppressed from propagating in the photonic crystal. With surface defects, a photonic crystal could support surface modes that are localized on the surface of the crystal, with mode frequencies within the band-gap. With line defects, a photonic crystal could allow the propagation of electromagnetic waves along the channels. The study of surface modes and waveguiding properties of a 2D photonic crystal will be presented in Chapter 1. Metamaterials are generally composed of artificial structures with sizes one order smaller than the wavelength and can be approximated as effective media. Effective macroscopic parameters such as electric permittivity ϵ, magnetic permeability μ are used to characterize the wave propagation in metamaterials. The fundamental structures of the metamaterials affect strongly their macroscopic properties. By designing the fundamental structures of the metamaterials, the effective parameters can be tuned and different electromagnetic properties can be achieved. One important aspect of metamaterial research is to get artificial magnetism. Metallic split-ring resonators (SRRs) and variants are widely used to build magnetic metamaterials with effective μ < 1 or even μ < 0. Varactor based

  20. The band structures of three-dimensional nonlinear plasma photonic crystals

    Directory of Open Access Journals (Sweden)

    Hai-Feng Zhang

    2018-01-01

    Full Text Available In this paper, the properties of the photonic band gaps (PBGs for three-dimensional (3D nonlinear plasma photonic crystals (PPCs are theoretically investigated by the plane wave expansion method, whose equations for calculations also are deduced. The configuration of 3D nonlinear PPCs is the Kerr nonlinear dielectric spheres (Kerr effect is considered inserted in the plasma background with simple-cubic lattices. The inserted dielectric spheres are Kerr nonlinear dielectrics whose relative permittivities are the functions of the external light intensity. Three different Kerr nonlinear dielectrics are considered, which can be expressed as the functions of space coordinates. The influences of the parameters for the Kerr nonlinear dielectrics on the PBGs also are discussed. The calculated results demonstrate that the locations, bandwidths and number of PBGs can be manipulated with the different Kerr nonlinear dielectrics. Compared with the conventional 3D dielectric PCs and PPCs with simple-cubic lattices, the more PBGs or larger PBG can be achieved in the 3D nonlinear PPCs. Those results provide a new way to design the novel devices based on the PPCs.

  1. Applications of Random Nonlinear Photonic Crystals Based on Strontium Tetraborate

    Directory of Open Access Journals (Sweden)

    Alexandre I. Zaitsev

    2012-10-01

    Full Text Available Properties of strontium tetraborate (SBO and features of as-grown anti-parallel domains are summarized. From the point of view of nonlinear optics, these domains form nonlinear photonic crystals (NPC. Applications of NPC to the deep ultraviolet generation and fs pulse diagnostics are described. NPC and SBO are prospective media for the creation of a widely tunable source of fs pulses in the vacuum ultraviolet and for autocorrelation diagnostics of broadly tunable sources.

  2. Highly Nonlinear and Birefringent Spiral Photonic Crystal Fiber

    Directory of Open Access Journals (Sweden)

    S. Revathi

    2014-01-01

    Full Text Available We propose and design a spiral photonic crystal fiber with elliptical air holes for achieving high birefringence, large nonlinearity, and negative dispersion. The structure is designed using chalcogenide glass (As2S3 for different ellipticity ratios of air holes in the cladding and the effect on various properties is observed. The proposed structure has birefringence of the order 10−2, nonlinearity of 26739.42 W−1 m−1, and dispersion of −1136.69 at 0.85 μm. An accurate numerical approach based on finite element method is used for the design and simulation of the structure. Due to high birefringence and negative dispersion, the proposed structure can be used for polarization control and dispersion compensation, respectively.

  3. Nonlinear silicon photonics

    Science.gov (United States)

    Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L.

    2017-09-01

    Silicon photonics is a technology based on fabricating integrated optical circuits by using the same paradigms as the dominant electronics industry. After twenty years of fervid development, silicon photonics is entering the market with low cost, high performance and mass-manufacturable optical devices. Until now, most silicon photonic devices have been based on linear optical effects, despite the many phenomenologies associated with nonlinear optics in both bulk materials and integrated waveguides. Silicon and silicon-based materials have strong optical nonlinearities which are enhanced in integrated devices by the small cross-section of the high-index contrast silicon waveguides or photonic crystals. Here the photons are made to strongly interact with the medium where they propagate. This is the central argument of nonlinear silicon photonics. It is the aim of this review to describe the state-of-the-art in the field. Starting from the basic nonlinearities in a silicon waveguide or in optical resonator geometries, many phenomena and applications are described—including frequency generation, frequency conversion, frequency-comb generation, supercontinuum generation, soliton formation, temporal imaging and time lensing, Raman lasing, and comb spectroscopy. Emerging quantum photonics applications, such as entangled photon sources, heralded single-photon sources and integrated quantum photonic circuits are also addressed at the end of this review.

  4. Thermal optical nonlinearity in photonic crystal fibers filled with nematic liquid crystals doped with gold nanoparticles

    Science.gov (United States)

    Lesiak, Piotr; Budaszewski, Daniel; Bednarska, Karolina; Wójcik, Michał; Sobotka, Piotr; Chychłowski, Miłosz; Woliński, Tomasz R.

    2017-05-01

    In this work we studied a newly reported class of nonlinear effects observed in 5CB liquid crystals doped with gold nanoparticles (GNPs). The size of the GNP was determined by direct TEM imaging and by X-ray scattering of the diluted NP solution. GNPs was coated by thiols with the ratio of mesogenic to n-alkyl thiols varying from 1:2 to 1:1. The research involved comparing properties of both undoped and doped 5CB (nematic LC) by infiltrating LC cell and microholes of the photonic crystal fiber (PCF) separately. In our experiment the PCF fiber type LMA-10 made by NKT Photonics as host material has been used.

  5. Nonlinear spatial mode imaging of hybrid photonic crystal fibers

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas Tanggaard; Laurila, Marko

    2013-01-01

    Degenerate spontaneous four wave mixing is studied for the rst time in a large mode area hybrid photonic crystal ber, where light con nement is achieved by combined index- and bandgap guiding. Four wave mixing products are generated on the edges of the bandgaps, which is veri ed by numerical and ...... and experimental results. Since the core mode is in resonance with cladding modes near the bandedges an unconventional measurement technique is used, in this work named nonlinear spatial mode imaging....

  6. Controllable optical bistability in photonic-crystal one-atom laser

    International Nuclear Information System (INIS)

    Guo Xiaoyong; Lue Shuchen

    2009-01-01

    We investigate the property of optical bistability in a photonic-crystal one-atom laser when nonlinear microcavity is present. The physical system consists of a coherently driven two-level light emitter strongly coupled to a high-quality microcavity which is embedded within a photonic crystal and another coherent probing field which has incident into the microcavity. In our case, the microcavity is fabricated by nonlinear material and placed as an impurity in photonic crystal. This study reveals that such a system can exhibit optical bistability. The dependence of threshold value and hysteresis loop on the photonic band gap of the photonic crystal, driving field Rabi frequency and dephasing processes, are studied. Our results clearly illustrate the ability to control optical bistability through suitable photonic-crystal architectures and external coherent driving field, and this study suggests that in a photonic-crystal nonlinear microcavity, the one-atom laser acts as an effective controllable bistable device in the design of all-light digital computing systems in the near future.

  7. Experimental demonstration of non-reciprocal transmission in a nonlinear photonic-crystal Fano structure

    DEFF Research Database (Denmark)

    Yu, Yi; Chen, Yaohui; Hu, Hao

    2015-01-01

    We suggest and experimentally demonstrate a photonic-crystal structure with more than 30 dB difference between forward and backward transmission levels. The non-reciprocity relies on the combination of ultrafast carrier nonlinearities and spatial symmetry breaking in a Fano structure employing...

  8. All-optical switching based on a tunable Fano-like resonance in nonlinear ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    Chai, Zhen; Hu, Xiaoyong; Gong, Qihuang

    2013-01-01

    A low-power all-optical switching is presented based on the all-optical tunable Fano-like resonance in a two-dimensional nonlinear ferroelectric photonic crystal made of polycrystalline lithium niobate. An asymmetric Fano-like line shape is achieved in the transmission spectrum by using two cascaded and uncoupled photonic crystal microcavities. The physical mechanism underlying the all-optical switching is attributed to the dynamic shift of the Fano-like resonance peak caused by variations in the dispersion relations of the photonic crystal structure induced by pump light. A large switching efficiency of 61% is reached under excitation of a weak pump light with an intensity as low as 1 MW cm −2 . (paper)

  9. Linear and nonlinear modeling of light propagation in hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Roberts, John; Lægsgaard, Jesper

    2009-01-01

    Hollow core photonic crystal fibers (HC-PCFs) find applications which include quantum and non-linear optics, gas detection and short high-intensity laser pulse delivery. Central to most applications is an understanding of the linear and nonlinear optical properties. These require careful modeling....... The intricacies of modeling various forms of HC-PCF are reviewed. An example of linear dispersion engineering, aimed at reducing and flattening the group velocity dispersion, is then presented. Finally, a study of short high intensity pulse delivery using HC-PCF in both dispersive and nonlinear (solitonic...

  10. Slow light enhanced optical nonlinearity in a silicon photonic crystal coupled-resonator optical waveguide.

    Science.gov (United States)

    Matsuda, Nobuyuki; Kato, Takumi; Harada, Ken-Ichi; Takesue, Hiroki; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya

    2011-10-10

    We demonstrate highly enhanced optical nonlinearity in a coupled-resonator optical waveguide (CROW) in a four-wave mixing experiment. Using a CROW consisting of 200 coupled resonators based on width-modulated photonic crystal nanocavities in a line defect, we obtained an effective nonlinear constant exceeding 10,000 /W/m, thanks to slow light propagation combined with a strong spatial confinement of light achieved by the wavelength-sized cavities.

  11. Engineering quadratic nonlinear photonic crystals for frequency conversion of lasers

    Science.gov (United States)

    Chen, Baoqin; Hong, Lihong; Hu, Chenyang; Zhang, Chao; Liu, Rongjuan; Li, Zhiyuan

    2018-03-01

    Nonlinear frequency conversion offers an effective way to extend the laser wavelength range. Quadratic nonlinear photonic crystals (NPCs) are artificial materials composed of domain-inversion structures whose sign of nonlinear coefficients are modulated with desire to implement quasi-phase matching (QPM) required for nonlinear frequency conversion. These structures can offer various reciprocal lattice vectors (RLVs) to compensate the phase-mismatching during the quadratic nonlinear optical processes, including second-harmonic generation (SHG), sum-frequency generation and the cascaded third-harmonic generation (THG). The modulation pattern of the nonlinear coefficients is flexible, which can be one-dimensional or two-dimensional (2D), be periodic, quasi-periodic, aperiodic, chirped, or super-periodic. As a result, these NPCs offer very flexible QPM scheme to satisfy various nonlinear optics and laser frequency conversion problems via design of the modulation patterns and RLV spectra. In particular, we introduce the electric poling technique for fabricating QPM structures, a simple effective nonlinear coefficient model for efficiently and precisely evaluating the performance of QPM structures, the concept of super-QPM and super-periodically poled lithium niobate for finely tuning nonlinear optical interactions, the design of 2D ellipse QPM NPC structures enabling continuous tunability of SHG in a broad bandwidth by simply changing the transport direction of pump light, and chirped QPM structures that exhibit broadband RLVs and allow for simultaneous radiation of broadband SHG, THG, HHG and thus coherent white laser from a single crystal. All these technical, theoretical, and physical studies on QPM NPCs can help to gain a deeper insight on the mechanisms, approaches, and routes for flexibly controlling the interaction of lasers with various QPM NPCs for high-efficiency frequency conversion and creation of novel lasers.

  12. Spectral transformations in the regime of pulse self-trapping in a nonlinear photonic crystal

    International Nuclear Information System (INIS)

    Novitsky, Denis V.

    2011-01-01

    We consider the interaction of a femtosecond light pulse with a one-dimensional photonic crystal with relaxing cubic nonlinearity in the regime of self-trapping. By use of numerical simulations, it is shown that, under certain conditions, the spectra of reflected and transmitted light possess the properties of narrowband (quasimonochromatic) or wideband (continuumlike) radiation. It is remarkable that these spectral features appear due to a significant frequency shift and occur inside a photonic band gap of the structure under investigation.

  13. Resonant Photonic States in Coupled Heterostructure Photonic Crystal Waveguides

    Directory of Open Access Journals (Sweden)

    Sabarinathan J

    2010-01-01

    Full Text Available Abstract In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.

  14. Investigation on nonlinear optical and dielectric properties of L-arginine doped ZTC crystal to explore photonic device applications

    Directory of Open Access Journals (Sweden)

    Anis Mohd

    2016-09-01

    Full Text Available The present study is focused to explore the photonic device applications of L-arginine doped ZTC (LA-ZTC crystals using nonlinear optical (NLO and dielectric studies. The LA-ZTC crystals have been grown by slow evaporation solution technique. The chemical composition and surface of LA-ZTC crystal have been analyzed by means of energy dispersive spectroscopy (EDS and surface scanning electron microscopy (SEM techniques. The Vicker’s microhardness study has been carried out to determine the hardness, work hardening index, yield strength and elastic stiffness of LA-ZTC crystal. The enhanced SHG efficiency of LA-ZTC crystal has been ascertained using the Kurtz-Perry powder SHG test. The closed-and-open aperture Z-scan technique has been employed to confirm the third order nonlinear optical nature of LA-ZTC crystal. The Z-scan transmittance data has been utilized to calculate the superior cubic susceptibility, nonlinear refractive index, nonlinear absorption coefficient and figure of merit of LA-ZTC crystal. The behavior of dielectric constant and dielectric loss of LA-ZTC crystal at different temperatures has been investigated using the dielectric analysis.

  15. Soliton-based ultrafast multi-wavelength nonlinear switching in dual-core photonic crystal fibre

    International Nuclear Information System (INIS)

    Stajanca, P; Pysz, D; Michalka, M; Bugar, I; Andriukaitis, G; Balciunas, T; Fan, G; Baltuska, A

    2014-01-01

    Systematic experimental study of ultrafast multi-wavelength all-optical switching performance in a dual-core photonic crystal fibre is presented. The focus is on nonlinearly induced switching between the two output ports at non-excitation wavelengths, which are generated during nonlinear propagation of femtosecond pulses in the anomalous dispersion region of a dual-core photonic crystal fibre made of multicomponent glass. Spatial and spectral characteristics of the fibre output radiation were measured separately for both fibre cores under various polarization and intensity conditions upon selective, individual excitation of each fibre core. Polarization-controlled nonlinear switching performance at multiple non-excitation wavelengths was demonstrated in the long-wavelength optical communication bands and beyond. Depending on the input pulse polarization, narrowband switching operation at 1560 nm and 1730 nm takes place with double core extinction ratio contrasts of 9 dB and 14.5 dB, respectively. Moreover, our approach allows switching with simultaneous wavelength shift from 1650 to 1775 nm with extinction ratio contrast larger than 18 dB. In addition, non-reciprocal behaviour of the soliton fission process under different fibre core excitations was observed and its effect on the multi-wavelength nonlinear switching performance was explained, taking into account the slight dual-core structure asymmetry. The obtained results represent ultrafast all-optical switching with an extended dimension of wavelength shift, controllable with both the input radiation intensity and the polarization by simple propagation along a 14 mm long fibre. (paper)

  16. Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic-crystal fibers.

    Science.gov (United States)

    Hu, Ming-Lie; Wang, Ching-Yue; Song, You-Jian; Li, Yan-Feng; Chai, Lu; Serebryannikov, Evgenii; Zheltikov, Aleksei

    2006-02-06

    We demonstrate an experimental technique that allows a mapping of vectorial nonlinear-optical processes in multimode photonic-crystal fibers (PCFs). Spatial and polarization modes of PCFs are selectively excited in this technique by varying the tilt angle of the input beam and rotating the polarization of the input field. Intensity spectra of the PCF output plotted as a function of the input field power and polarization then yield mode-resolved maps of nonlinear-optical interactions in multimode PCFs, facilitating the analysis and control of nonlinear-optical transformations of ultrashort laser pulses in such fibers.

  17. Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H.; Neshev, Dragomir N.

    2007-01-01

    We suggest and demonstrate a novel platform for the study of tunable nonlinear light propagation in two-dimensional discrete systems, based on photonic crystal fibers filled with high index nonlinear liquids. Using the infiltrated cladding region of a photonic crystal fiber as a nonlinear waveguide...... array, we experimentally demonstrate highly tunable beam diffraction and thermal self-defocusing, and realize a compact all-optical power limiter based on a tunable nonlinear response....

  18. Nonlinear and quantum optics with liquid crystals

    International Nuclear Information System (INIS)

    Lukishova, Svetlana G

    2014-01-01

    Thermotropic liquid crystals' usual application is display technology. This paper describes experiments on light interaction with pure and doped liquid crystals under for these materials unconventional incident light powers: (1) under high-power laser irradiation, and (2) at the single-photon level. In (1), I will outline several nonlinear optical effects under high-power, nanosecond laser irradiation which should be taken into account in the design of lasers with liquid crystal components and in fabrication of optical power limiters based on liquid crystals: (1.1) athermal helical pitch dilation and unwinding of cholesteric mirrors (both in free space and inside laser resonators); (1.2) some pitfalls in measurements of refractive nonlinearity using z-scan technique under two-photon or linear absorption of liquids; (1.3) the first observation of thermal lens effects in liquid crystals under several-nanosecond, low-pulse-repetition rate (2-10 Hz) laser irradiation in the presence of two-photon absorption; (1.4) feedback-free kaleidoscope of patterns (hexagons, stripes, etc.) in dye-doped liquid crystals. In (2), at the single-photon level, it will be shown that with a proper selection of liquid crystals and a single-emitter dopant spectral range, liquid crystal structures can be used to control emitted single photons (both polarization and count rate). The application of the latter research is absolutely secure quantum communication with polarization coding of information. In particular, in (2.1), definite handedness, circular polarized cholesteric microcavity resonance in quantum dot fluorescence is reported. In (2.2), definite linear polarization of single (antibunched) photons from single-dye-molecules in planar-aligned nematic host is discussed. In (2.3), some results on photon antibunching from NV-color center in nanodiamond in liquid crystal host and circularly polarized fluorescence of definite handedness from nanocrystals doped with trivalent ions of

  19. Nonlinear optical crystals a complete survey

    CERN Document Server

    Nikogosyan, David N

    2005-01-01

    Nonlinear optical crystals are widely used in modern optical science and technology for frequency conversion of laser light, i.e. to generate laser radiation at any specific wavelength in visible, UV or IR spectral regions. This unrivalled reference book contains the most complete and up-to-date information on properties of nonlinear optical crystals. It includes: * Database of 63 common and novel nonlinear optical crystals * Periodically-poled and self-frequency-doubling materials * Full description of linear and nonlinear optical properties * Significant amount of crystallophysical, thermophysical, spectroscopic, electro-optic and magneto-optic information * 7 mini-reviews on novel applications, such as deep-UV light generation, terahertz-wave generation, ultrashort laser pulse compression, photonic band-gap crystals, x3 nonlinearity, etc. * More than 1500 different references with full titles It is a vital source of information for scientists and engineers dealing with modern applications of nonlinear opti...

  20. Strongly-Refractive One-Dimensional Photonic Crystal Prisms

    Science.gov (United States)

    Ting, David Z. (Inventor)

    2004-01-01

    One-dimensional (1D) photonic crystal prisms can separate a beam of polychromatic electromagnetic waves into constituent wavelength components and can utilize unconventional refraction properties for wavelength dispersion over significant portions of an entire photonic band rather than just near the band edges outside the photonic band gaps. Using a ID photonic crystal simplifies the design and fabrication process and allows the use of larger feature sizes. The prism geometry broadens the useful wavelength range, enables better optical transmission, and exhibits angular dependence on wavelength with reduced non-linearity. The properties of the 1 D photonic crystal prism can be tuned by varying design parameters such as incidence angle, exit surface angle, and layer widths. The ID photonic crystal prism can be fabricated in a planar process, and can be used as optical integrated circuit elements.

  1. Characterization of the bistable wideband optical filter on the basis of nonlinear 2D photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Guryev, I. V., E-mail: guryev@ieee.org; Sukhoivanov, I. A., E-mail: guryev@ieee.org; Andrade Lucio, J. A., E-mail: guryev@ieee.org; Manzano, O. Ibarra, E-mail: guryev@ieee.org; Rodriguez, E. Vargaz, E-mail: guryev@ieee.org; Gonzales, D. Claudio, E-mail: guryev@ieee.org; Chavez, R. I. Mata, E-mail: guryev@ieee.org; Gurieva, N. S., E-mail: guryev@ieee.org [University of Guanajuato, Engineering division (Mexico)

    2014-05-15

    In our work, we investigated the wideband optical filter on the basis of nonlinear photonic crystal. The all-optical flip-flop using ultra-short pulses with duration lower than 200 fs is obtained in such filters. Here we pay special attention to the stability problem of the nonlinear element. To investigate this problem, the temporal response demonstrating the flip-flop have been computed within the certain range of the wavelengths as well as at different input power.

  2. Unidirectional Wave Propagation in Low-Symmetric Colloidal Photonic-Crystal Heterostructures

    OpenAIRE

    Yannopapas, Vassilios

    2015-01-01

    We show theoretically that photonic crystals consisting of colloidal spheres exhibit unidirectional wave propagation and one-way frequency band gaps without breaking time-reversal symmetry via, e.g., the application of an external magnetic field or the use of nonlinear materials. Namely, photonic crystals with low symmetry such as the monoclinic crystal type considered here as well as with unit cells formed by the heterostructure of different photonic crystals show significant unidirectional ...

  3. Wave Propagation in Linear and Nonlinear Photonic Band-Gap Materials

    National Research Council Canada - National Science Library

    Venakides, Stephanos

    2003-01-01

    .... Development of 3D boundary element code for EM scattering off photonic crystal slabs. Development of 2D FDTD code that includes nonlinearities and use in studying resonant phenomena. Nonlinear Effects...

  4. Photonic time crystals.

    Science.gov (United States)

    Zeng, Lunwu; Xu, Jin; Wang, Chengen; Zhang, Jianhua; Zhao, Yuting; Zeng, Jing; Song, Runxia

    2017-12-07

    When space (time) translation symmetry is spontaneously broken, the space crystal (time crystal) forms; when permittivity and permeability periodically vary with space (time), the photonic crystal (photonic time crystal) forms. We proposed the concept of photonic time crystal and rewritten the Maxwell's equations. Utilizing Finite Difference Time Domain (FDTD) method, we simulated electromagnetic wave propagation in photonic time crystal and photonic space-time crystal, the simulation results show that more intensive scatter fields can obtained in photonic time crystal and photonic space-time crystal.

  5. Zero-velocity solitons in high-index photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper

    2011-01-01

    Nonlinear propagation in slow-light states of high-index photonic crystal fibers (PCFs) is studied numerically. To avoid divergencies in dispersion and nonlinear parameters around the zero-velocity mode, a time-propagating generalized nonlinear Schrödinger equation is formulated. Calculated slow-...

  6. Photonic Crystals: Physics and Technology

    CERN Document Server

    Sibilia, Concita; Marciniak, Marian; Szoplik, Tomasz

    2008-01-01

    The aim of the work is give an overview of the activity in the field of Photonic Crystal developed in the frame of COST P11 action . The main objective of the COST P11 action was to unify and coordinate national efforts aimed at studying linear and nonlinear optical interactions with Photonic Crystals (PCs), without neglecting an important aspect related to the material research as idea and methods of realizations of 3D PC, together with the development and implementation of measurement techniques for the experimental evaluation of their potential applications in different area, as for example telecommunication with novel optical fibers, lasers, nonlinear multi-functionality, display devices , opto-electronics, sensors. The book contain contributions from authors who gave their lecture at the Cost P11 Training School. Training School was held at the Warsaw University (2007) and National Institute of Telecommunications (May 23), Warsaw. It was attended by 23 students. The focus of the School was on the work of...

  7. Time evolution of absorption process in nonlinear metallic photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahi R.; Hatef, Ali [Department of Physics and Astronomy, University of Western Ontario, London (Canada)

    2009-05-15

    The time evolution of the absorption coefficient in metallic photonic crystals has been studied numerically. These crystals are made from metallic spheres which are arranged periodically in air. The refractive index of the metallic spheres depends on the plasma frequency. Probe and pump fields are applied to monitor the absorption process. Ensembles of three-level particles are embedded in the crystal. Nanoparticles are interacting with the metallic crystals via the electron-photon interaction. It is found that when the resonance states lie away from the band edges system goes to transparent state. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Organic nonlinear crystals and high power frequency conversion

    International Nuclear Information System (INIS)

    Velsko, S.P.; Davis, L.; Wang, F.; Monaco, S.; Eimerl, D.

    1987-01-01

    The authors are searching for new second and third harmonic generators among the salts of organic acids and bases. They discuss the relevant properties of crystals from this group of compounds, including their nonlinear and phasematching characteristics, linear absorption, damage threshold and crystal growth. In addition, they summarize what is known concerning other nonlinear optical properties of these crystals, such as two-photon absorption, nonlinear refractive index, and stimulated Raman thresholds. A preliminary assessment is made of the potential of these materials for use in future high power, large aperture lasers such as those used for inertial confinement fusion experiments

  9. Self-similar photonic crystal cavity with ultrasmall mode volume for single-photon nonlinearities

    DEFF Research Database (Denmark)

    Choi, Hyeongrak; Heuck, Mikkel; Englund, Dirk

    2017-01-01

    We propose a photonic crystal cavity design with self-similar structure to achieve ultrasmall mode volume. We describe the concept with a silicon-air nanobeam cavity at λ ∼ 1550nm, reaching a mode volume of ∼ 7.01 × 10∼5λ3.......We propose a photonic crystal cavity design with self-similar structure to achieve ultrasmall mode volume. We describe the concept with a silicon-air nanobeam cavity at λ ∼ 1550nm, reaching a mode volume of ∼ 7.01 × 10∼5λ3....

  10. Organic nonlinear crystals and high power frequency conversion

    International Nuclear Information System (INIS)

    Velsko, S.P.; Davis, L.; Wang, F.; Monaco, S.; Eimerl, D.

    1987-12-01

    We are searching for a new second- and third-harmonic generators among the salts of chiral organic acids and bases. We discuss the relevant properties of crystals from this group of compounds, including their nonlinear and phasematching characteristics, linear absorption, damage threshold and crystal growth. In addition, we summarize what is known concerning other nonlinear optical properties of these crystals, such as two-photon absorption, nonlinear refractive index, and stimulated Raman thresholds. A preliminary assessment is made of the potential of these materials for use in future high power, large aperture lasers such as those used for inertial confinement fusion experiments. 14 refs., 1 fig., 3 tabs

  11. Optical properties of mesoporous photonic crystals, filled with dielectrics, ferroelectrics and piezoelectrics

    Directory of Open Access Journals (Sweden)

    V. S. Gorelik

    2017-12-01

    Full Text Available At present, it is very important to create new types of mirrors, nonlinear light frequency transformers and optical filters with controlled optical properties. In this connection, it is of great interest to study photonic crystals. Their dielectric permittivity varies periodically in space with a period permitting Bragg diffraction of light. In this paper, we have investigated the optical properties of mesoporous three-dimensional (3D opal-type and one-dimensional (1D anodic alumina photonic crystals, filled with different dielectrics, ferroelectrics and piezoelectrics. We have compared the optical properties of initial mesoporous photonic crystals and filled with different substances. The possibility of mesoporous photonic crystals using selective narrow-band light filters in Raman scattering experiments and nonlinear mirrors has been analyzed. The electromagnetic field enhancing in the case of exciting light frequency close to the stop band edges has been established. The optical harmonics and subharmonics generation in mesoporous crystals, filled with ferroelectrics and piezoelectrics was proposed.

  12. Unidirectional Wave Propagation in Low-Symmetric Colloidal Photonic-Crystal Heterostructures

    Directory of Open Access Journals (Sweden)

    Vassilios Yannopapas

    2015-03-01

    Full Text Available We show theoretically that photonic crystals consisting of colloidal spheres exhibit unidirectional wave propagation and one-way frequency band gaps without breaking time-reversal symmetry via, e.g., the application of an external magnetic field or the use of nonlinear materials. Namely, photonic crystals with low symmetry such as the monoclinic crystal type considered here as well as with unit cells formed by the heterostructure of different photonic crystals show significant unidirectional electromagnetic response. In particular, we show that the use of scatterers with low refractive-index contrast favors the formation of unidirectional frequency gaps which is the optimal route for achieving unidirectional wave propagation.

  13. Unidirectional Wave Propagation in Low-Symmetric Colloidal Photonic-Crystal Heterostructures.

    Science.gov (United States)

    Yannopapas, Vassilios

    2015-03-19

    We show theoretically that photonic crystals consisting of colloidal spheres exhibit unidirectional wave propagation and one-way frequency band gaps without breaking time-reversal symmetry via, e.g., the application of an external magnetic field or the use of nonlinear materials. Namely, photonic crystals with low symmetry such as the monoclinic crystal type considered here as well as with unit cells formed by the heterostructure of different photonic crystals show significant unidirectional electromagnetic response. In particular, we show that the use of scatterers with low refractive-index contrast favors the formation of unidirectional frequency gaps which is the optimal route for achieving unidirectional wave propagation.

  14. Extraordinary wavelength reduction in terahertz graphene-cladded photonic crystal slabs

    Science.gov (United States)

    Williamson, Ian A. D.; Mousavi, S. Hossein; Wang, Zheng

    2016-01-01

    Photonic crystal slabs have been widely used in nanophotonics for light confinement, dispersion engineering, nonlinearity enhancement, and other unusual effects arising from their structural periodicity. Sub-micron device sizes and mode volumes are routine for silicon-based photonic crystal slabs, however spectrally they are limited to operate in the near infrared. Here, we show that two single-layer graphene sheets allow silicon photonic crystal slabs with submicron periodicity to operate in the terahertz regime, with an extreme 100× wavelength reduction from graphene’s large kinetic inductance. The atomically thin graphene further leads to excellent out-of-plane confinement, and consequently photonic-crystal-slab band structures that closely resemble those of ideal two-dimensional photonic crystals, with broad band gaps even when the slab thickness approaches zero. The overall photonic band structure not only scales with the graphene Fermi level, but more importantly scales to lower frequencies with reduced slab thickness. Just like ideal 2D photonic crystals, graphene-cladded photonic crystal slabs confine light along line defects, forming waveguides with the propagation lengths on the order of tens of lattice constants. The proposed structure opens up the possibility to dramatically reduce the size of terahertz photonic systems by orders of magnitude. PMID:27143314

  15. Extended-Range Ultrarefractive 1D Photonic Crystal Prisms

    Science.gov (United States)

    Ting, David Z.

    2007-01-01

    A proposal has been made to exploit the special wavelength-dispersive characteristics of devices of the type described in One-Dimensional Photonic Crystal Superprisms (NPO-30232) NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 10a. A photonic crystal is an optical component that has a periodic structure comprising two dielectric materials with high dielectric contrast (e.g., a semiconductor and air), with geometrical feature sizes comparable to or smaller than light wavelengths of interest. Experimental superprisms have been realized as photonic crystals having three-dimensional (3D) structures comprising regions of amorphous Si alternating with regions of SiO2, fabricated in a complex process that included sputtering. A photonic crystal of the type to be exploited according to the present proposal is said to be one-dimensional (1D) because its contrasting dielectric materials would be stacked in parallel planar layers; in other words, there would be spatial periodicity in one dimension only. The processes of designing and fabricating 1D photonic crystal superprisms would be simpler and, hence, would cost less than do those for 3D photonic crystal superprisms. As in 3D structures, 1D photonic crystals may be used in applications such as wavelength-division multiplexing. In the extended-range configuration, it is also suitable for spectrometry applications. As an engineered structure or artificially engineered material, a photonic crystal can exhibit optical properties not commonly found in natural substances. Prior research had revealed several classes of photonic crystal structures for which the propagation of electromagnetic radiation is forbidden in certain frequency ranges, denoted photonic bandgaps. It had also been found that in narrow frequency bands just outside the photonic bandgaps, the angular wavelength dispersion of electromagnetic waves propagating in photonic crystal superprisms is much stronger than is the angular wavelength dispersion obtained

  16. Observation of soliton compression in silicon photonic crystals

    Science.gov (United States)

    Blanco-Redondo, A.; Husko, C.; Eades, D.; Zhang, Y.; Li, J.; Krauss, T.F.; Eggleton, B.J.

    2014-01-01

    Solitons are nonlinear waves present in diverse physical systems including plasmas, water surfaces and optics. In silicon, the presence of two photon absorption and accompanying free carriers strongly perturb the canonical dynamics of optical solitons. Here we report the first experimental demonstration of soliton-effect pulse compression of picosecond pulses in silicon, despite two photon absorption and free carriers. Here we achieve compression of 3.7 ps pulses to 1.6 ps with photonic crystal waveguide and an ultra-sensitive frequency-resolved electrical gating technique to detect the ultralow energies in the nanostructured device. Strong agreement with a nonlinear Schrödinger model confirms the measurements. These results further our understanding of nonlinear waves in silicon and open the way to soliton-based functionalities in complementary metal-oxide-semiconductor-compatible platforms. PMID:24423977

  17. A novel method for polarization squeezing with Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Milanovic, Josip; Lassen, Mikael Østergaard; Andersen, Ulrik Lund

    2010-01-01

    Photonic Crystal Fibers can be tailored to increase the effective Kerr nonlinearity, while producing smaller amounts of excess noise compared to standard silicon fibers. Using these features of Photonic Crystal Fibers we create polarization squeezed states with increased purity compared to standa...... Stokes parameter squeezing of −3.9 ±0.3dB and anti-squeezing of 16.2 ±0.3dB....

  18. Electro-optical modulator in a polymerinfiltrated silicon slotted photonic crystal waveguide heterostructure resonator.

    Science.gov (United States)

    Wülbern, Jan Hendrik; Petrov, Alexander; Eich, Manfred

    2009-01-05

    We present a novel concept of a compact, ultra fast electro-optic modulator, based on photonic crystal resonator structures that can be realized in two dimensional photonic crystal slabs of silicon as core material employing a nonlinear optical polymer as infiltration and cladding material. The novel concept is to combine a photonic crystal heterostructure cavity with a slotted defect waveguide. The photonic crystal lattice can be used as a distributed electrode for the application of a modulation signal. An electrical contact is hence provided while the optical wave is kept isolated from the lossy metal electrodes. Thereby, well known disadvantages of segmented electrode designs such as excessive scattering are avoided. The optical field enhancement in the slotted region increases the nonlinear interaction with an external electric field resulting in an envisaged switching voltage of approximately 1 V at modulation speeds up to 100 GHz.

  19. Supercontinuum noise in tapered photonic crystal fibers

    DEFF Research Database (Denmark)

    Møller, Uffe; Sørensen, Simon Toft; Moselund, Peter Morten

    Supercontinuum generation (SCG) in highly nonlinear photonic crystal fibers (PCF) has drawn a lot of attention for the last decade. Pumping such PCFs with high-power picosecond laser pulses enables the creation of broadband and intense light. Picosecond SCG is initiated by modulation instability ...

  20. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexei; Pagnoux, Dominique

    2008-01-01

    Just like the periodical crystalline potential in solid state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as cages for storing, filtering or guiding light at the wavelength scale paves the way to the realization of optical and optoelectronic devices with ultimate properties and dimensions. This will contribute towards meeting the demands for greater miniaturization imposed by the processing of an ever increasing number of data. Photonic Crystals will provide students and researchers from different fields with the theoretical background required for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, ranging from optics to microwaves, where photonic crystals have found application. As such, it aims at building bridges between...

  1. Photonic Crystals Towards Nanoscale Photonic Devices

    CERN Document Server

    Lourtioz, Jean-Michel; Berger, Vincent; Gérard, Jean-Michel; Maystre, Daniel; Tchelnokov, Alexis

    2005-01-01

    Just like the periodical crystalline potential in solid-state crystals determines their properties for the conduction of electrons, the periodical structuring of photonic crystals leads to envisioning the possibility of achieving a control of the photon flux in dielectric and metallic materials. The use of photonic crystals as a cage for storing, filtering or guiding light at the wavelength scale thus paves the way to the realisation of optical and optoelectronic devices with ultimate properties and dimensions. This should contribute toward meeting the demands for a greater miniaturisation that the processing of an ever increasing number of data requires. Photonic Crystals intends at providing students and researchers from different fields with the theoretical background needed for modelling photonic crystals and their optical properties, while at the same time presenting the large variety of devices, from optics to microwaves, where photonic crystals have found applications. As such, it aims at building brid...

  2. 16-channel DWDM based on 1D defect mode nonlinear photonic crystal

    Science.gov (United States)

    Kalhan, Abhishek; Sharma, Sanjeev; Kumar, Arun

    2018-05-01

    We propose a sixteen-channel Dense Wavelength Division Multiplexer (DWDM), using the 1-D defect mode nonlinear photonic crystal which is a function of intensity as well as wavelength. Here, we consider an alternate layer of two semiconductor materials in which we found the bandgap of materials when defect layer is introduced then 16-channel dense wavelength division multiplexer is obtained within bandgap. From the theoretical analysis, we can achieve average quality factor of 7800.4, the uniform spectral line-width of 0.2 nm, crosstalk of -31.4 dB, central wavelength changes 0.07 nm/(1GW/cm2) and 100% transmission efficiency. Thus, Sixteen-channel DWDM has very high quality factor, low crosstalk, near 100% power transmission efficiency and small channel spacing (1.44 nm).

  3. Nonlinear coupled mode approach for modeling counterpropagating solitons in the presence of disorder-induced multiple scattering in photonic crystal waveguides

    Science.gov (United States)

    Mann, Nishan; Hughes, Stephen

    2018-02-01

    We present the analytical and numerical details behind our recently published article [Phys. Rev. Lett. 118, 253901 (2017), 10.1103/PhysRevLett.118.253901], describing the impact of disorder-induced multiple scattering on counterpropagating solitons in photonic crystal waveguides. Unlike current nonlinear approaches using the coupled mode formalism, we account for the effects of intraunit cell multiple scattering. To solve the resulting system of coupled semilinear partial differential equations, we introduce a modified Crank-Nicolson-type norm-preserving implicit finite difference scheme inspired by the transfer matrix method. We provide estimates of the numerical dispersion characteristics of our scheme so that optimal step sizes can be chosen to either minimize numerical dispersion or to mimic the exact dispersion. We then show numerical results of a fundamental soliton propagating in the presence of multiple scattering to demonstrate that choosing a subunit cell spatial step size is critical in accurately capturing the effects of multiple scattering, and illustrate the stochastic nature of disorder by simulating soliton propagation in various instances of disordered photonic crystal waveguides. Our approach is easily extended to include a wide range of optical nonlinearities and is applicable to various photonic nanostructures where power propagation is bidirectional, either by choice, or as a result of multiple scattering.

  4. Ultra-flattened nearly-zero dispersion and ultrahigh nonlinear slot silicon photonic crystal fibers with ultrahigh birefringence

    Science.gov (United States)

    Liao, Jianfei; Xie, Yingmao; Wang, Xinghua; Li, Dongbo; Huang, Tianye

    2017-07-01

    A slot silicon photonic crystal fiber (PCF) is proposed to simultaneously achieve ultrahigh birefringence, large nonlinearity and ultra-flattened nearly-zero dispersion over a wide wavelength range. By taking advantage on the slot effect, ultrahigh birefringence up to 0.0736 and ultrahigh nonlinear coefficient up to 211.48 W-1 m-1 for quasi-TE mode can be obtained at the wavelength of 1.55 μm. Moreover, ultra-flattened dispersion of 0.49 ps/(nm km) for quasi-TE mode can be achieved over a 180 nm wavelength range with low dispersion slope of 1.85 × 10-3 ps/(nm2 km) at 1.55 μm. Leveraging on these advantages, the proposed slot PCF has great potential for efficient all-optical signal processing applications.

  5. Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon

    Directory of Open Access Journals (Sweden)

    Mohamed Sabry Mohamed

    2017-03-01

    Full Text Available We report on nonlinear frequency conversion from the telecom range via second harmonic generation (SHG and third harmonic generation (THG in suspended gallium nitride slab photonic crystal (PhC cavities on silicon, under continuous-wave resonant excitation. Optimized two-dimensional PhC cavities with augmented far-field coupling have been characterized with quality factors as high as 4.4 × 104, approaching the computed theoretical values. The strong enhancement in light confinement has enabled efficient SHG, achieving a normalized conversion efficiency of 2.4 × 10−3 W−1, as well as simultaneous THG. SHG emission power of up to 0.74 nW has been detected without saturation. The results herein validate the suitability of gallium nitride for integrated nonlinear optical processing.

  6. Nonlinear photonic metasurfaces

    Science.gov (United States)

    Li, Guixin; Zhang, Shuang; Zentgraf, Thomas

    2017-03-01

    Compared with conventional optical elements, 2D photonic metasurfaces, consisting of arrays of antennas with subwavelength thickness (the 'meta-atoms'), enable the manipulation of light-matter interactions on more compact platforms. The use of metasurfaces with spatially varying arrangements of meta-atoms that have subwavelength lateral resolution allows control of the polarization, phase and amplitude of light. Many exotic phenomena have been successfully demonstrated in linear optics; however, to meet the growing demand for the integration of more functionalities into a single optoelectronic circuit, the tailorable nonlinear optical properties of metasurfaces will also need to be exploited. In this Review, we discuss the design of nonlinear photonic metasurfaces — in particular, the criteria for choosing the materials and symmetries of the meta-atoms — for the realization of nonlinear optical chirality, nonlinear geometric Berry phase and nonlinear wavefront engineering. Finally, we survey the application of nonlinear photonic metasurfaces in optical switching and modulation, and we conclude with an outlook on their use for terahertz nonlinear optics and quantum information processing.

  7. Photonic crystal light source

    Science.gov (United States)

    Fleming, James G [Albuquerque, NM; Lin, Shawn-Yu [Albuquerque, NM; Bur, James A [Corrales, NM

    2004-07-27

    A light source is provided by a photonic crystal having an enhanced photonic density-of-states over a band of frequencies and wherein at least one of the dielectric materials of the photonic crystal has a complex dielectric constant, thereby producing enhanced light emission at the band of frequencies when the photonic crystal is heated. The dielectric material can be a metal, such as tungsten. The spectral properties of the light source can be easily tuned by modification of the photonic crystal structure and materials. The photonic crystal light source can be heated electrically or other heating means. The light source can further include additional photonic crystals that exhibit enhanced light emission at a different band of frequencies to provide for color mixing. The photonic crystal light source may have applications in optical telecommunications, information displays, energy conversion, sensors, and other optical applications.

  8. Entangled photon pair generation by spontaneous parametric down-conversion in finite-length one-dimensional photonic crystals

    International Nuclear Information System (INIS)

    Centini, M.; Sciscione, L.; Sibilia, C.; Bertolotti, M.; Perina, J. Jr.; Scalora, M.; Bloemer, M.J.

    2005-01-01

    A description of spontaneous parametric down-conversion in finite-length one-dimensional nonlinear photonic crystals is developed using semiclassical and quantum approaches. It is shown that if a suitable averaging is added to the semiclassical model, its results are in very good agreement with the quantum approach. We propose two structures made with GaN/AlN that generate both degenerate and nondegenerate entangled photon pairs. Both structures are designed so as to achieve a high efficiency of the nonlinear process

  9. Photonic surfaces for designable nonlinear power shaping

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Roshni, E-mail: rbiswas@usc.edu; Povinelli, Michelle L. [Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089 (United States)

    2015-02-09

    We propose a method for designing nonlinear input-output power response based on absorptive resonances of nanostructured surfaces. We show that various power transmission trends can be obtained by placing a photonic resonance mode at the appropriate detuning from the laser wavelength. We demonstrate our results in a silicon photonic crystal slab at a laser wavelength of 808 nm. We quantify the overall spectral red shift as a function of laser power. The shift results from absorptive heating and the thermo-optic effect. We then demonstrate devices with increasing, decreasing, and non-monotonic transmission as a function of laser power. The transmission changes are up to 7.5 times larger than in unpatterned silicon. The strong nonlinear transmission is due to a combination of resonantly enhanced absorption, reduced thermal conductivity, and the resonant transmission lineshape. Our results illustrate the possibility of designing different nonlinear power trends within a single materials platform at a given wavelength of interest.

  10. Photonic surfaces for designable nonlinear power shaping

    International Nuclear Information System (INIS)

    Biswas, Roshni; Povinelli, Michelle L.

    2015-01-01

    We propose a method for designing nonlinear input-output power response based on absorptive resonances of nanostructured surfaces. We show that various power transmission trends can be obtained by placing a photonic resonance mode at the appropriate detuning from the laser wavelength. We demonstrate our results in a silicon photonic crystal slab at a laser wavelength of 808 nm. We quantify the overall spectral red shift as a function of laser power. The shift results from absorptive heating and the thermo-optic effect. We then demonstrate devices with increasing, decreasing, and non-monotonic transmission as a function of laser power. The transmission changes are up to 7.5 times larger than in unpatterned silicon. The strong nonlinear transmission is due to a combination of resonantly enhanced absorption, reduced thermal conductivity, and the resonant transmission lineshape. Our results illustrate the possibility of designing different nonlinear power trends within a single materials platform at a given wavelength of interest

  11. Nonlinear silicon photonics

    Science.gov (United States)

    Tsia, Kevin K.; Jalali, Bahram

    2010-05-01

    An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.

  12. Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals

    International Nuclear Information System (INIS)

    Jiang, Ping; Ding, Chengyuan; Hu, Xiaoyong; Gong, Qihuang

    2007-01-01

    A tunable double-channel filter is presented, which is based on a two-dimensional nonlinear ferroelectric photonic crystal made of cerium doped barium titanate. The filtering properties of the photonic crystal filter can be tuned by adjusting the defect structure or by a pump light. The influences of the structure disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed

  13. Tunable double-channel filter based on two-dimensional ferroelectric photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ping [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Ding, Chengyuan [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Hu, Xiaoyong [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)]. E-mail: xiaoyonghu@pku.edu.cn; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)]. E-mail: qhgong@pku.edu.cn

    2007-04-02

    A tunable double-channel filter is presented, which is based on a two-dimensional nonlinear ferroelectric photonic crystal made of cerium doped barium titanate. The filtering properties of the photonic crystal filter can be tuned by adjusting the defect structure or by a pump light. The influences of the structure disorders caused by the perturbations in the radius or the position of air holes on the filtering properties are also analyzed.

  14. Graphene-based photonic crystal

    International Nuclear Information System (INIS)

    Berman, Oleg L.; Boyko, Vladimir S.; Kezerashvili, Roman Ya.; Kolesnikov, Anton A.; Lozovik, Yurii E.

    2010-01-01

    A novel type of photonic crystal formed by embedding a periodic array of constituent stacks of alternating graphene and dielectric discs into a background dielectric medium is proposed. The photonic band structure and transmittance of such photonic crystal are calculated. The graphene-based photonic crystals can be used effectively as the frequency filters and waveguides for the far infrared region of electromagnetic spectrum. Due to substantial suppression of absorption of low-frequency radiation in doped graphene the damping and skin effect in the photonic crystal are also suppressed. The advantages of the graphene-based photonic crystal are discussed.

  15. Active Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara

    This thesis deals with the fabrication and characterization of active photonic crystal waveguides, realized in III-V semiconductor material with embedded active layers. The platform offering active photonic crystal waveguides has many potential applications. One of these is a compact photonic...... due to photonic crystal dispersion. The observations are explained by the enhancement of net gain by light slow down. Another application based on active photonic crystal waveguides is micro lasers. Measurements on quantum dot micro laser cavities with different mirror configurations and photonic...

  16. Switching dynamics in InP photonic-crystal nanocavity

    DEFF Research Database (Denmark)

    Yu, Yi; Palushani, Evarist; Heuck, Mikkel

    2016-01-01

    In this paper, we presented switching dynamic investigations on an InP photonic-crystal (PhC) nanocavity structure using homodyne pump-probe measurements. The measurements were compared with simulations based on temporal nonlinear coupled mode theory and carrier rate equations for the dynamics of...

  17. Soliton fission and supercontinuum generation in photonic crystal

    Indian Academy of Sciences (India)

    2015-10-17

    Oct 17, 2015 ... We present a practical design of novel photonic crystal fibre (PCF) to investigate the nonlinear propagation of femtosecond pulses for the application of optical coherence tomography (OCT) based on supercontinuum generation (SCG) process. In addition, this paper contains a brief introduction of the ...

  18. Hybrid photonic-crystal fiber

    DEFF Research Database (Denmark)

    Markos, Christos; Travers, John C.; Abdolvand, Amir

    2017-01-01

    This article offers an extensive survey of results obtained using hybrid photonic-crystal fibers (PCFs) which constitute one of the most active research fields in contemporary fiber optics. The ability to integrate novel and functional materials in solid- and hollow-core PCFs through various...... is reviewed from scientific and technological perspectives, focusing on how different fluids, solids, and gases can significantly extend the functionality of PCFs. The first part of this review discusses the efforts to develop tunable linear and nonlinear fiber-optic devices using PCFs infiltrated...... with various liquids, glasses, semiconductors, and metals. The second part concentrates on recent and state-of-the-art advances in the field of gas-filled hollow-core PCFs. Extreme ultrafast gas-based nonlinear optics toward light generation in the extreme wavelength regions of vacuum ultraviolet, pulse...

  19. Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source

    DEFF Research Database (Denmark)

    Paulsen, H.N.; Hilligsøe, Karen Marie; Thøgersen, J.

    2003-01-01

    A coherent anti-Stokes Raman scattering microscope based on a Ti:sapphire femtosecond oscillator and a photonic crystal fiber is demonstrated. The nonlinear response of the fiber is used to generate the additional wavelength needed in the Raman process. The applicability of the setup is demonstra......A coherent anti-Stokes Raman scattering microscope based on a Ti:sapphire femtosecond oscillator and a photonic crystal fiber is demonstrated. The nonlinear response of the fiber is used to generate the additional wavelength needed in the Raman process. The applicability of the setup...

  20. Optics of globular photonic crystals

    International Nuclear Information System (INIS)

    Gorelik, V S

    2007-01-01

    The results of experimental and theoretical studies of the optical properties of globular photonic crystals - new physical objects having a crystal structure with the lattice period exceeding considerably the atomic size, are presented. As globular photonic crystals, artificial opal matrices consisting of close-packed silica globules of diameter ∼200 nm were used. The reflection spectra of these objects characterising the parameters of photonic bands existing in these crystals in the visible spectral region are presented. The idealised models of the energy band structure of photonic crystals investigated in the review give analytic dispersion dependences for the group velocity and the effective photon mass in a globular photonic crystal. The characteristics of secondary emission excited in globular photonic crystals by monochromatic and broadband radiation are presented. The results of investigations of single-photon-excited delayed scattering of light observed in globular photonic crystals exposed to cw UV radiation and radiation from a repetitively pulsed copper vapour laser are presented. The possibilities of using globular photonic crystals as active media for lasing in different spectral regions are considered. It is proposed to use globular photonic crystals as sensitive sensors in optoelectronic devices for molecular analysis of organic and inorganic materials by the modern methods of laser spectroscopy. The results of experimental studies of spontaneous and stimulated globular scattering of light are discussed. The conditions for observing resonance and two-photon-excited delayed scattering of light are found. The possibility of accumulation and localisation of the laser radiation energy inside a globular photonic crystal is reported. (review)

  1. High-Q silicon-on-insulator slot photonic crystal cavity infiltrated by a liquid

    International Nuclear Information System (INIS)

    Caër, Charles; Le Roux, Xavier; Cassan, Eric

    2013-01-01

    We report the experimental realization of a high-Q slot photonic crystal cavity in Silicon-On-Insulator (SOI) configuration infiltrated by a liquid. Loaded Q-factor of 23 000 is measured at telecom wavelength. The intrinsic quality factor inferred from the transmission spectrum is higher than 200 000, which represents a record value for slot photonic crystal cavities on SOI, whereas the maximum of intensity of the cavity is roughly equal to 20% of the light transmitted in the waveguide. This result makes filled slot photonic crystal cavities very promising for silicon-based light emission and ultrafast nonlinear optics

  2. Photonic crystal pioneer

    Science.gov (United States)

    Anscombe, Nadya

    2011-08-01

    Over the past ten years, Crystal Fiber, now part of NKT Photonics, has been busy commercializing photonic crystal fibre. Nadya Anscombe finds out about the evolution of the technology and its applications.

  3. Photonic crystal fibers

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Hansen, K P; Nielsen, M D

    2003-01-01

    Photonic crystal fibers having a complex microstructure in the transverse plane constitute a new and promising class of optical fibers. Such fibers can either guide light through total internal reflection or the photonic bandgap effect, In this paper, we review the different types and applications...... of photonic crystal fibers with particular emphasis on recent advances in the field....

  4. Highly-nonlinear polarization-maintaining As2Se3-based photonic quasi-crystal fiber for supercontinuum generation

    Science.gov (United States)

    Zhao, Tongtong; Lian, Zhenggang; Benson, Trevor; Wang, Xin; Zhang, Wan; Lou, Shuqin

    2017-11-01

    We propose an As2Se3-based photonic quasi-crystal fiber (PQF) with high nonlinearity and birefringence. By optimizing the structure parameters, a nonlinear coefficient up to 2079 W-1km-1 can be achieved at the wavelength of 2 μm; the birefringence reaches up to the order of 10-2 due to the introduction of large circular air holes in the cladding. Using an optical pulse with a peak power of 6 kW, a pulse width of 150 fs, and a central wavelength of 2.94 μm as the pump pulse, a mid-infrared polarized supercontinuum is obtained by using a 15 mm long PQF. The spectral width for x- and y-polarizations covers 1 μm-10.2 μm and 1 μm-12.5 μm, respectively. The polarization state can be well maintained when the incident angle of the input pulse changes within ±2°. The proposed PQF, with high nonlinear coefficient and birefringence, has potential applications in mid-infrared polarization-maintaining supercontinuum generation.

  5. Theoretical and computational studies of disorder-induced scattering and nonlinear optical interactions in slow-light photonic crystal waveguides

    Science.gov (United States)

    Mann, Nishan Singh

    Photonic crystal waveguides (PCWs) are nano-scale devices offering an exciting platform for exploring and exploiting enhanced linear and nonlinear light-matter interactions, aided in-part by slowing down the group velocity (vg) of on-chip photons. However, with potential applications in telecommunications, bio-sensing and quantum computing, the road to commercialization and practical devices is hindered by our limited understanding of the influence of structural disorder on linear and nonlinear light propagation. This thesis refines and develops state-of-the-art mathematical and numerical models for understanding the important role of disorder-related optical phenomena for PCWs in the linear and optical nonlinear regime. The importance of Bloch modes is demonstrated by computing the power loss caused by disorder-induced scattering for various dispersion engineered PCWs. The theoretical results are found to be in very good agreement with related experiments and it is shown how dispersion engineered designs can minimize the Bloch fields around spatial imperfections resulting in a radical departure from the usual assumed scaling vg. -2 of backscatteringlosses. We also conduct a systematic investigation of the influence of intra-hole correlation length, a parameter characterizing disorder on backscattering losses and find the loss behaviour to be qualitatively dependent on waveguide design and frequency. We then model disorder-induced resonance shifts to compute the ensemble averaged disordered density of states, accounting for important local field effects which are crucial in achieving good qualitative agreement with experiments. Lastly, motivated by emerging experiments examining enhanced nonlinear interactions, we develop an intuitive time dependent coupled mode formalism to derive propagation equations describing nonlinear pulse propagation in the presence of disorder-induced multiple scattering. The framework establishes a natural length scale for each physical

  6. Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure.

    Science.gov (United States)

    Mehdizadeh, Farhad; Soroosh, Mohammad; Alipour-Banaei, Hamed; Farshidi, Ebrahim

    2017-03-01

    In this paper, we propose what we believe is a novel all-optical analog-to-digital converter (ADC) based on photonic crystals. The proposed structure is composed of a nonlinear triplexer and an optical coder. The nonlinear triplexer is for creating discrete levels in the continuous optical input signal, and the optical coder is for generating a 2-bit standard binary code out of the discrete levels coming from the nonlinear triplexer. Controlling the resonant mode of the resonant rings through optical intensity is the main objective and working mechanism of the proposed structure. The maximum delay time obtained for the proposed structure was about 5 ps and the total footprint is about 1520  μm2.

  7. Hybrid colloidal plasmonic-photonic crystals.

    Science.gov (United States)

    Romanov, Sergei G; Korovin, Alexander V; Regensburger, Alois; Peschel, Ulf

    2011-06-17

    We review the recently emerged class of hybrid metal-dielectric colloidal photonic crystals. The hybrid approach is understood as the combination of a dielectric photonic crystal with a continuous metal film. It allows to achieve a strong modification of the optical properties of photonic crystals by involving the light scattering at electronic excitations in the metal component into moulding of the light flow in series to the diffraction resonances occurring in the body of the photonic crystal. We consider different realizations of hybrid plasmonic-photonic crystals based on two- and three-dimensional colloidal photonic crystals in association with flat and corrugated metal films. In agreement with model calculations, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tuneable functionality of these crystals. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Photonic crystal fibers used in a multi-wavelength source and as transmission fiber in a WDM system

    DEFF Research Database (Denmark)

    Andersen, Peter Andreas; Zsigri, Beata; Peucheret, Christophe

    2004-01-01

    We present a WDM system based entirely on photonic crystal fibers. It includes a novel dispersion flattened highly nonlinear PCF to generate supercontinuum used in a multiwavelength pulse source and a 5.6 km transmission PCF.......We present a WDM system based entirely on photonic crystal fibers. It includes a novel dispersion flattened highly nonlinear PCF to generate supercontinuum used in a multiwavelength pulse source and a 5.6 km transmission PCF....

  9. Supercontinuum Generation in Uniform and Tapered Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Sørensen, Simon Toft; Møller, Uffe Visbech; Larsen, Casper

    Supercontinuum generation (SCG) is a striking phenomenon of extreme spectral broadening involving a wealth of beautiful nonlinear physics. The study of SCG and development of today’s commercial sources really took off with the invention of the photonic crystal fiber (PCF), in which light can be m...

  10. Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber : toward a practical coherent fiber supercontinuum laser

    DEFF Research Database (Denmark)

    Tu, Haohua; Liu, Yuan; Liu, Xiaomin

    2012-01-01

    Dispersion-flattened dispersion-decreased all-normal dispersion (DFDD-ANDi) photonic crystal fibers have been identified as promising candidates for high-spectral-power coherent supercontinuum (SC) generation. However, the effects of the unintentional birefringence of the fibers on the SC generat...... of polarization-maintaining DFDD-ANDi fibers to avoid these adverse effects in pursuing a practical coherent fiber SC laser.......Dispersion-flattened dispersion-decreased all-normal dispersion (DFDD-ANDi) photonic crystal fibers have been identified as promising candidates for high-spectral-power coherent supercontinuum (SC) generation. However, the effects of the unintentional birefringence of the fibers on the SC...... generation have been ignored. This birefringence is widely present in nonlinear non-polarization maintaining fibers with a typical core size of 2 µm, presumably due to the structural symmetry breaks introduced in the fiber drawing process. We find that an intrinsic form-birefringence on the order of 10...

  11. Nonlinear Photonics and Novel Optical Phenomena

    CERN Document Server

    Morandotti, Roberto

    2012-01-01

    Nonlinear Photonics and Novel Optical Phenomena contains contributed chapters from leading experts in nonlinear optics and photonics, and provides a comprehensive survey of fundamental concepts as well as hot topics in current research on nonlinear optical waves and related novel phenomena. The book covers self-accelerating airy beams, integrated photonics based on high index doped-silica glass, linear and nonlinear spatial beam dynamics in photonic lattices and waveguide arrays, polariton solitons and localized structures in semiconductor microcavities, terahertz waves, and other novel phenomena in different nanophotonic and optical systems.

  12. Nonlinear Photonics 2014: introduction.

    Science.gov (United States)

    Akhmediev, N; Kartashov, Yaroslav

    2015-01-12

    International Conference "Nonlinear Photonics-2014" took place in Barcelona, Spain on July 27-31, 2014. It was a part of the "Advanced Photonics Congress" which is becoming a traditional notable event in the world of photonics. The current focus issue of Optics Express contains contributions from the participants of the Conference and the Congress. The articles in this focus issue by no means represent the total number of the congress contributions (around 400). However, it demonstrates wide range of topics covered at the event. The next conference of this series is to be held in 2016 in Australia, which is the home of many researchers working in the field of photonics in general and nonlinear photonics in particular.

  13. Wavelength conversion of a 40 Gb/s RZ-DPSK signal using four-wave mixing in a dispersion-flattened highly nonlinear photonic crystal fiber

    DEFF Research Database (Denmark)

    Andersen, Peter Andreas; Tokle, Torger; Geng, Yan

    2005-01-01

    Wavelength conversion of a 40-Gb/s return-to-zero differential phase-shift keying signal is demonstrated in a highly nonlinear photonic crystal fiber (HNL-PCF) for the first time. A conversion efficiency of -20 dB for a pump power of 23 dBm and a conversion bandwidth of 31 nm, essentially limited...

  14. Photonic Crystal Fibres for Dispersion and Sensor Applications

    DEFF Research Database (Denmark)

    Sørensen, Thorkild

    2005-01-01

    of the involved nonlinear processes. A hollow-core photonic crystal fibre (HC-PCF) is used as a sensor for gas. It is filled with two gasses, 12C2H2 acetylene, and H13CN hydrogen cyanide, and the transmission spectra are subject for a discussion. A model for infusion speed of fluids to a capillary presented...

  15. Self-assembled tunable photonic hyper-crystals.

    Science.gov (United States)

    Smolyaninova, Vera N; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E; Smolyaninov, Igor I

    2014-07-16

    We demonstrate a novel artificial optical material, the "photonic hyper-crystal", which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing.

  16. REVIEW: Optics of globular photonic crystals

    Science.gov (United States)

    Gorelik, V. S.

    2007-05-01

    The results of experimental and theoretical studies of the optical properties of globular photonic crystals - new physical objects having a crystal structure with the lattice period exceeding considerably the atomic size, are presented. As globular photonic crystals, artificial opal matrices consisting of close-packed silica globules of diameter ~200 nm were used. The reflection spectra of these objects characterising the parameters of photonic bands existing in these crystals in the visible spectral region are presented. The idealised models of the energy band structure of photonic crystals investigated in the review give analytic dispersion dependences for the group velocity and the effective photon mass in a globular photonic crystal. The characteristics of secondary emission excited in globular photonic crystals by monochromatic and broadband radiation are presented. The results of investigations of single-photon-excited delayed scattering of light observed in globular photonic crystals exposed to cw UV radiation and radiation from a repetitively pulsed copper vapour laser are presented. The possibilities of using globular photonic crystals as active media for lasing in different spectral regions are considered. It is proposed to use globular photonic crystals as sensitive sensors in optoelectronic devices for molecular analysis of organic and inorganic materials by the modern methods of laser spectroscopy. The results of experimental studies of spontaneous and stimulated globular scattering of light are discussed. The conditions for observing resonance and two-photon-excited delayed scattering of light are found. The possibility of accumulation and localisation of the laser radiation energy inside a globular photonic crystal is reported.

  17. Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities

    DEFF Research Database (Denmark)

    Choi, Hyeongrak; Heuck, Mikkel; Englund, Dirk R.

    2017-01-01

    We propose a photonic crystal nanocavity design with self-similar electromagnetic boundary conditions, achieving ultrasmall mode volume (V-eff). The electric energy density of a cavity mode can be maximized in the air or dielectric region, depending on the choice of boundary conditions. We illust...... at the single-photon level. These features open new directions in cavity quantum electrodynamics, spectroscopy, and quantum nonlinear optics....

  18. FDTD simulation for plasma photonic crystals

    International Nuclear Information System (INIS)

    Liu Shaobin; Zhu Chuanxi; Yuan Naichang

    2005-01-01

    Plasma photonic crystals are artificially periodic structures, which are composed of plasmas and dielectric structures (or vacuum). In this paper, the piecewise linear current density recursive convolution (PLCDRC) finite-difference time-domain (FDTD) method is applied to study the plasma photonic crystals and those containing defects. In time-domain, the electromagnetic (EM) propagation process and reflection/transmission electric field of Gauss pulses passing through the plasma photonic crystals are investigated. In frequency-domain, the reflection and transmission coefficients of the pulses through the two kinds of crystals are computed. The results illustrate that the plasma photonic crystals mostly reflect for the EM wave of frequencies less than the plasma frequency, and mostly transmit for EM wave of frequencies higher than the plasma frequency. In high frequency domain, the plasma photonic crystals have photonic band gaps, which is analogous to the conventional photonic crystals. (authors)

  19. Properties of entangled proton pairs generated in periodically poled nonlinear crystals

    Czech Academy of Sciences Publication Activity Database

    Svozilík, Jiří; Peřina ml., Jan

    2009-01-01

    Roč. 80, č. 2 (2009), 023819/1-023819/9 ISSN 1050-2947 R&D Projects: GA MŠk(CZ) OC09026; GA AV ČR IAA100100713; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : photon pairs * nonlinear crystals * nonlinear optics * quantum optics Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.866, year: 2009

  20. Photonic crystals: towards nanoscale photonic devices

    National Research Council Canada - National Science Library

    Lourtioz, J.-M

    2005-01-01

    .... From this point of view, the emergence of photonic bandgap materials and photonic crystals at the end of the 1980s can be seen as a revenge to the benefit this time of optics and electromagnetism. In the same way as the periodicity of solid state crystals determines the energy bands and the conduction properties of electrons, the periodical structur...

  1. Optimization of photonic crystal cavities

    DEFF Research Database (Denmark)

    Wang, Fengwen; Sigmund, Ole

    2017-01-01

    We present optimization of photonic crystal cavities. The optimization problem is formulated to maximize the Purcell factor of a photonic crystal cavity. Both topology optimization and air-hole-based shape optimization are utilized for the design process. Numerical results demonstrate...... that the Purcell factor of the photonic crystal cavity can be significantly improved through optimization....

  2. Spatial filtering with photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Maigyte, Lina [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222 (Spain); Staliunas, Kestutis [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222 (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona 08010 (Spain)

    2015-03-15

    Photonic crystals are well known for their celebrated photonic band-gaps—the forbidden frequency ranges, for which the light waves cannot propagate through the structure. The frequency (or chromatic) band-gaps of photonic crystals can be utilized for frequency filtering. In analogy to the chromatic band-gaps and the frequency filtering, the angular band-gaps and the angular (spatial) filtering are also possible in photonic crystals. In this article, we review the recent advances of the spatial filtering using the photonic crystals in different propagation regimes and for different geometries. We review the most evident configuration of filtering in Bragg regime (with the back-reflection—i.e., in the configuration with band-gaps) as well as in Laue regime (with forward deflection—i.e., in the configuration without band-gaps). We explore the spatial filtering in crystals with different symmetries, including axisymmetric crystals; we discuss the role of chirping, i.e., the dependence of the longitudinal period along the structure. We also review the experimental techniques to fabricate the photonic crystals and numerical techniques to explore the spatial filtering. Finally, we discuss several implementations of such filters for intracavity spatial filtering.

  3. ALICE photon spectrometer crystals

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    Members of the mechanical assembly team insert the last few crystals into the first module of ALICE's photon spectrometer. These crystals are made from lead-tungstate, a crystal as clear as glass but with nearly four times the density. When a high-energy particle passes through one of these crystals it will scintillate, emitting a flash of light allowing the energy of photons, electrons and positrons to be measured.

  4. Measuring of nonlinearity of dye doped liquid crystals using of self phase modulation effect

    International Nuclear Information System (INIS)

    Abedi, M.; Jafari, A.; Tajalli, H.

    2007-01-01

    Self phase modulation in dye doped liquid crystals has investigated and the nonlinearity of dye doped liquid crystals is measured by this effect. The Self phase modulation effect can be used for producing optical micro rings that have many applications in photonics and laser industries.

  5. Photonic Crystal Fibers

    National Research Council Canada - National Science Library

    Kristiansen, Rene E

    2005-01-01

    This report results from a contract tasking Crystal Fibre A/S as follows: Crystal Fibre will conduct research and development of large mode area, dual clad multi-core Yb-doped photonic crystal fiber...

  6. Giant anomalous self-steepening in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Husko, Chad; Colman, Pierre

    2015-01-01

    CWGs) is largely determined by the geometrical parameters of the structure and is consequently tunable over a wide range. Here we show group-velocity (group-index) modulation leads to a previously unexplored physical mechanism for generating self-steepening. Further, we demonstrate that periodic media such as Ph......Self-steepening of optical pulses arises due to the dispersive contribution of the effective Kerr nonlinearity. In typical structures this response is on the order of a few femtoseconds with a fixed frequency response. In contrast, the effective Kerr nonlinearity in photonic crystal waveguides (Ph......CWGs can exhibit self-steepening coefficients two orders of magnitude larger than typical systems. At these magnitudes the self-steepening strongly affects the nonlinear pulse dynamics even for picosecond pulses. Due to interaction with additional higher-order nonlinearities in the semiconductor materials...

  7. Design of integrated all optical digital to analog converter (DAC) using 2D photonic crystals

    Science.gov (United States)

    Moniem, Tamer A.; El-Din, Eman S.

    2017-11-01

    A novel design of all optical 3 bit digital to analog (DAC) converter will be presented in this paper based on 2 Dimension photonic crystals (PhC). The proposed structure is based on the photonic crystal ring resonators (PCRR) with combining the nonlinear Kerr effect on the PCRR. The total size of the proposed optical 3 bit DAC is equal to 44 μm × 37 μm of 2D square lattice photonic crystals of silicon rods with refractive index equal to 3.4. The finite different time domain (FDTD) and Plane Wave Expansion (PWE) methods are used to back the overall operation of the proposed optical DAC.

  8. Manipulation of photons at the surface of three-dimensional photonic crystals.

    Science.gov (United States)

    Ishizaki, Kenji; Noda, Susumu

    2009-07-16

    In three-dimensional (3D) photonic crystals, refractive-index variations with a periodicity comparable to the wavelength of the light passing through the crystal give rise to so-called photonic bandgaps, which are analogous to electronic bandgaps for electrons moving in the periodic electrostatic potential of a material's crystal structure. Such 3D photonic bandgap crystals are envisioned to become fundamental building blocks for the control and manipulation of photons in optical circuits. So far, such schemes have been pursued by embedding artificial defects and light emitters inside the crystals, making use of 3D bandgap directional effects. Here we show experimentally that photons can be controlled and manipulated even at the 'surface' of 3D photonic crystals, where 3D periodicity is terminated, establishing a new and versatile route for photon manipulation. By making use of an evanescent-mode coupling technique, we demonstrate that 3D photonic crystals possess two-dimensional surface states, and we map their band structure. We show that photons can be confined and propagate through these two-dimensional surface states, and we realize their localization at arbitrary surface points by designing artificial surface-defect structures through the formation of a surface-mode gap. Surprisingly, the quality factors of the surface-defect mode are the largest reported for 3D photonic crystal nanocavities (Q up to approximately 9,000). In addition to providing a new approach for photon manipulation by photonic crystals, our findings are relevant for the generation and control of plasmon-polaritons in metals and the related surface photon physics. The absorption-free nature of the 3D photonic crystal surface may enable new sensing applications and provide routes for the realization of efficient light-matter interactions.

  9. All-optical control of group velocity dispersion in tellurite photonic crystal fibers.

    Science.gov (United States)

    Liu, Lai; Tian, Qijun; Liao, Meisong; Zhao, Dan; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2012-12-15

    We demonstrate all-optical control of group velocity dispersion (GVD) via optical Kerr effect in highly nonlinear tellurite photonic crystal fibers. The redshift of the zero-dispersion wavelength is over 307 nm, measured by soliton self-frequency shift cancellation, when the pump peak power of a 1.56 μm femtosecond fiber laser is increased to 11.6 kW. The all-optical control of GVD not only offers a new platform for constructing all-optical-control photonic devices but also promises a new class of experiments in nonlinear fiber optics and light-matter interactions.

  10. Anomalous transparency in photonic crystals and its application to point-by-point grating inscription in photonic crystal fibers.

    Science.gov (United States)

    Baghdasaryan, Tigran; Geernaert, Thomas; Chah, Karima; Caucheteur, Christophe; Schuster, Kay; Kobelke, Jens; Thienpont, Hugo; Berghmans, Francis

    2018-04-03

    It is common belief that photonic crystals behave similarly to isotropic and transparent media only when their feature sizes are much smaller than the wavelength of light. Here, we counter that belief and we report on photonic crystals that are transparent for anomalously high normalized frequencies up to 0.9, where the crystal's feature sizes are comparable with the free space wavelength. Using traditional photonic band theory, we demonstrate that the isofrequency curves can be circular in the region above the first stop band for triangular lattice photonic crystals. In addition, by simulating how efficiently a tightly focused Gaussian beam propagates through the photonic crystal slab, we judge on the photonic crystal's transparency rather than on isotropy only. Using this approach, we identified a wide range of photonic crystal parameters that provide anomalous transparency. Our findings indicate the possibility to scale up the features of photonic crystals and to extend their operational wavelength range for applications including optical cloaking and graded index guiding. We applied our result in the domain of femtosecond laser micromachining, by demonstrating what we believe to be the first point-by-point grating inscribed in a multi-ring photonic crystal fiber.

  11. Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap

    Energy Technology Data Exchange (ETDEWEB)

    Povinelli, M. L.; Johnson, Steven G.; Fan, Shanhui; Joannopoulos, J. D.

    2001-08-15

    Using numerical simulations, we demonstrate the construction of two-dimensional- (2D-) like defect modes in a recently proposed 3D photonic crystal structure. These modes, which are confined in all three dimensions by a complete photonic band gap, bear a striking similarity to those in 2D photonic crystals in terms of polarization, field profile, and projected band structures. It is expected that these results will greatly facilitate the observation of widely studied 2D photonic-crystal phenomena in a realistic, 3D physical system.

  12. Emulation of two-dimensional photonic crystal defect modes in a photonic crystal with a three-dimensional photonic band gap

    International Nuclear Information System (INIS)

    Povinelli, M. L.; Johnson, Steven G.; Fan, Shanhui; Joannopoulos, J. D.

    2001-01-01

    Using numerical simulations, we demonstrate the construction of two-dimensional- (2D-) like defect modes in a recently proposed 3D photonic crystal structure. These modes, which are confined in all three dimensions by a complete photonic band gap, bear a striking similarity to those in 2D photonic crystals in terms of polarization, field profile, and projected band structures. It is expected that these results will greatly facilitate the observation of widely studied 2D photonic-crystal phenomena in a realistic, 3D physical system

  13. Nonlinear performance of asymmetric coupler based on dual-core photonic crystal fiber: Towards sub-nanojoule solitonic ultrafast all-optical switching

    Science.gov (United States)

    Curilla, L.; Astrauskas, I.; Pugzlys, A.; Stajanca, P.; Pysz, D.; Uherek, F.; Baltuska, A.; Bugar, I.

    2018-05-01

    We demonstrate ultrafast soliton-based nonlinear balancing of dual-core asymmetry in highly nonlinear photonic crystal fiber at sub-nanojoule pulse energy level. The effect of fiber asymmetry was studied experimentally by selective excitation and monitoring of individual fiber cores at different wavelengths between 1500 nm and 1800 nm. Higher energy transfer rate to non-excited core was observed in the case of fast core excitation due to nonlinear asymmetry balancing of temporal solitons, which was confirmed by the dedicated numerical simulations based on the coupled generalized nonlinear Schrödinger equations. Moreover, the simulation results correspond qualitatively with the experimentally acquired dependences of the output dual-core extinction ratio on excitation energy and wavelength. In the case of 1800 nm fast core excitation, narrow band spectral intensity switching between the output channels was registered with contrast of 23 dB. The switching was achieved by the change of the excitation pulse energy in sub-nanojoule region. The performed detailed analysis of the nonlinear balancing of dual-core asymmetry in solitonic propagation regime opens new perspectives for the development of ultrafast nonlinear all-optical switching devices.

  14. Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Sanchez Bjarklev, Araceli

    Photonic crystal fibres represent one of the most active research areas today in the field of optics. The diversity of applications that may be addressed by these fibres and their fundamental appeal, by opening up the possibility of guiding light in a radically new way compared to conventional...... optical fibres, have spun an interest from almost all areas of optics and photonics. The aim of this book is to provide an understanding of the different types of photonic crystal fibres and to outline some of the many new and exciting applications that these fibres offer. The book is intended for both...

  15. Photonic crystals physics, fabrication and applications

    CERN Document Server

    Ohtaka, Kazuo

    2004-01-01

    "Photonic Crystals" details recent progress in the study of photonic crystals, ranging from fundamental aspects to up-to-date applications, in one unified treatment It covers most of the worldwide frontier fields in photonic crystals, including up-to-date fabrication techniques, recent and future technological applications, and our basic understanding of the various optical properties of photonic crystals Brand-new theoretical and experimental data are also presented The book is intended for graduate course students and specialists actively working in this field, but it will also be useful for newcomers, especially the extensive chapter dealing with fundamental aspects of photonic crystals, which paves the way to a full appreciation of the other topics addressed

  16. Elliptical As2Se3 filled core ultra-high-nonlinearity and polarization-maintaining photonic crystal fiber with double hexagonal lattice cladding

    Science.gov (United States)

    Li, Feng; He, Menghui; Zhang, Xuedian; Chang, Min; Wu, Zhizheng; Liu, Zheng; Chen, Hua

    2018-05-01

    A high birefringence and ultra-high nonlinearity photonic crystal fiber (PCF) is proposed, which is composed of an elliptical As2Se3-doped core and an inner cladding with hexagonal lattice. Optical properties of the PCF are simulated by the full-vector finite element method. The simulation results show that the high birefringence of ∼0.33, ultra-high-nonlinearity coefficient of 300757 W-1km-1 and the low confinement loss can be achieved in the proposed PCF simultaneously at the wavelength of 1.55 μm. Furthermore, by comparison with the other two materials (80PbO•20Ga2O3, As2S3) filled in the core, the As2Se3-doped PCF is found to have the highest birefringence and nonlinearity due to its higher refractive index and nonlinear refractive index. The flattened dispersion feature, as well as the low confinement loss of the proposed PCF structure make it suitable as a wide range of applications, such as the coherent optical communications, polarization-maintaining and nonlinear optics, etc.

  17. Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Qiu, M.

    2007-01-01

    Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor is gr...... is gradually enhanced and the resonant frequency converges to that of the corresponding surface mode in the photonic crystals. These structures have potential applications such as sensing.......Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor...

  18. Hybrid photonic-crystal fiber

    Science.gov (United States)

    Markos, Christos; Travers, John C.; Abdolvand, Amir; Eggleton, Benjamin J.; Bang, Ole

    2017-10-01

    This article offers an extensive survey of results obtained using hybrid photonic-crystal fibers (PCFs) which constitute one of the most active research fields in contemporary fiber optics. The ability to integrate novel and functional materials in solid- and hollow-core PCFs through various postprocessing methods has enabled new directions toward understanding fundamental linear and nonlinear phenomena as well as novel application aspects, within the fields of optoelectronics, material and laser science, remote sensing, and spectroscopy. Here the recent progress in the field of hybrid PCFs is reviewed from scientific and technological perspectives, focusing on how different fluids, solids, and gases can significantly extend the functionality of PCFs. The first part of this review discusses the efforts to develop tunable linear and nonlinear fiber-optic devices using PCFs infiltrated with various liquids, glasses, semiconductors, and metals. The second part concentrates on recent and state-of-the-art advances in the field of gas-filled hollow-core PCFs. Extreme ultrafast gas-based nonlinear optics toward light generation in the extreme wavelength regions of vacuum ultraviolet, pulse propagation, and compression dynamics in both atomic and molecular gases, and novel soliton-plasma interactions are reviewed. A discussion of future prospects and directions is also included.

  19. Large-bandwidth planar photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Lavrinenko, Andrei

    2002-01-01

    A general design principle is presented for making finite-height photonic crystal waveguides that support leakage-free guidance of light over large frequency intervals. The large bandwidth waveguides are designed by introducing line defects in photonic crystal slabs, where the material in the line...... defect has appropriate dispersion properties relative to the photonic crystal slab material surrounding the line defect. A three-dimensional theoretical analysis is given for large-bandwidth waveguide designs based on a silicon-air photonic crystal slab suspended in air. In one example, the leakage......-free single-mode guidance is found for a large frequency interval covering 60% of the photonic band-gap....

  20. Applications of photonic crystal fibers in optical communications - What is in the future?

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Lin, Chinlon

    2005-01-01

    Superior control of guiding properties in photonic-crystal fibers led to several interesting applications in optical communications ranging from nonlinear optical signal processing to high-power fiber amplifiers. This paper will review recent developments and discuss the future possibilities....

  1. Theory of fluorescence in photonic crystals

    International Nuclear Information System (INIS)

    Vats, Nipun; John, Sajeev; Busch, Kurt

    2002-01-01

    We present a formalism for the description of fluorescence from optically active materials embedded in a photonic crystal structure possessing a photonic band gap or pseudogap. An electromagnetic field expansion in terms of Bloch modes of the crystal is used to develop the equations for fluorescence in terms of the local density of photon modes available to the emitting atoms in either the high or low dielectric regions of the crystal. We then obtain expressions for fluorescence spectra and emission dynamics for luminescent materials in photonic crystals. The validity of our formalism is demonstrated through the calculation of relevant quantities for model photon densities of states. The connection of our calculations to the description of realistic systems is discussed. We also describe the consequences of these analyses on the accurate description of the interaction between radiative systems and the electromagnetic reservoir within photonic crystals

  2. Photon-phonon interaction in photonic crystals

    International Nuclear Information System (INIS)

    Ueta, T

    2010-01-01

    Photon-phonon interaction on the analogy of electron-phonon interaction is considered in one-dimensional photonic crystal. When lattice vibration is artificially introduced to the photonic crystal, a governing equation of electromagnetic field is derived. A simple model is numerically analysed and the following novel phenomena are found out. The lattice vibration generates the light of frequency which added the integral multiple of the vibration frequency to that of the incident wave and also amplifies the incident wave resonantly. On a resonance, the amplification factor increases very rapidly with the number of layers increases. Resonance frequencies change with the phases of lattice vibration. The amplification phenomenon is analytically discussed for low frequency of the lattice vibration.

  3. Photonic-crystal fibers gyroscope

    Directory of Open Access Journals (Sweden)

    Ali Muse Haider

    2015-01-01

    Full Text Available In this paper we proposed to use of a photonic crystal fiber with an inner hollow defect. The use of such fibers is not affected by a material medium on the propagation of optical radiation. Photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications

  4. Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic-crystal fibers

    DEFF Research Database (Denmark)

    Andresen, Esben Ravn; Paulsen, Henrik Nørgaard; Birkedal, Victoria

    2006-01-01

    We demonstrate spectral multiplex coherent anti-Stokes Raman scattering (CARS) spectroscopy and microscopy based on a single Ti:sapphire oscillator and a nonlinear photonic-crystal fiber (PCF). The Stokes pulse is generated by spectral conversion of the laser pulse in a PCF. The pump pulse is eit...

  5. Pulse reshaping in photonic crystal waveguides and microcavities with Kerr nonlinearity: Critical issues for all-optical switching

    International Nuclear Information System (INIS)

    Vujic, Dragan; John, Sajeev

    2005-01-01

    We delineate critical issues for 'controlling light with light' in photonic crystal (PC) waveguides coupled to Kerr-nonlinear microresonators. These arise from (a) fundamental trade-off between switching speed and switching intensity threshold inherent in high-quality Q-factor cavities and (b) the dynamical nonlinear oscillation of such cavities in response to incident light pulses. Using finite-difference time-domain simulations of electromagnetic pulse propagation, we consider both (i) a nonlinear Fabry-Perot microresonator (embedded within a PC waveguide) exhibiting a narrow transmission resonance and (ii) a nonlinear point defect (side-coupled to a PC waveguide) exhibiting a narrow reflection spectrum. We describe self-induced switching from transmission to reflection induced by pulse intensity tuning as well as control of pulse transmission induced by the secondary, continuous (cw) laser field propagating through the same PC waveguide. For the Fabry-Perot microresonator, a well-defined self-switching threshold is obtained. However, this is accompanied by considerable temporal and spectral distortion of the pulse caused by the oscillatory nonlinear response of the microresonator. When the quality factor of the microresonator is increased, the switching intensity threshold can be lowered but the pulse transit (switching) time and the pulse distortion are increased. For the side-coupled microresonator, a gradual (not sharp) self-switching behavior as a function of incident intensity is obtained. For both the Fabry-Perot and side-coupled nonlinear microresonators, control of pulse transmission can be achieved by means of a secondary cw laser field. The cw power required for switching with realistic Kerr nonlinearities is in excess of 1 W/μm 2 and may cause optical damage to the semiconducting PC backbone. Both instantaneous and noninstantaneous Kerr-response models are considered. Our results underscore the limitations and trade-offs inherent in the possible

  6. Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery

    Science.gov (United States)

    Lanin, Aleksandr A.; Fedotov, Il'ya V.; Sidorov-Biryukov, Dmitrii A.; Doronina-Amitonova, Lyubov V.; Ivashkina, Olga I.; Zots, Marina A.; Sun, Chi-Kuang; Ömer Ilday, F.; Fedotov, Andrei B.; Anokhin, Konstantin V.; Zheltikov, Aleksei M.

    2012-03-01

    Large-core hollow photonic-crystal fibers (PCFs) are shown to enable a fiber-format air-guided delivery of ultrashort infrared laser pulses for neurosurgery and nonlinear-optical imaging. With an appropriate dispersion precompensation, an anomalously dispersive 15-μm-core hollow PCF compresses 510-fs, 1070-nm light pulses to a pulse width of about 110 fs, providing a peak power in excess of 5 MW. The compressed PCF output is employed to induce a local photodisruption of corpus callosum tissues in mouse brain and is used to generate the third harmonic in brain tissues, which is captured by the PCF and delivered to a detector through the PCF cladding.

  7. Coupled Photonic Crystal Cavity Array Laser

    DEFF Research Database (Denmark)

    Schubert, Martin

    in the quadratic lattice. Processing techniques are developed and optimized in order fabricate photonic crystals membranes in gallium arsenide with quantum dots as gain medium and in indium gallium arsenide phosphide with quantum wells as gain medium. Several key issues in process to ensure good quality....... The results are in good agreement with standard coupled mode theory. Also a novel type of photonic crystal structure is proposed called lambda shifted cavity which is a twodimensional photonic crystal laser analog of a VCSEL laser. Detailed measurements of the coupled modes in the photonic crystals...... with quantum dots are carried out. In agreement with a simple gain model the structures do not show stimulated emission. The spectral splitting due to the coupling between single cavities as well as arrays of cavities is studied theoretically and experimentally. Lasing is observed for photonic crystal cavity...

  8. Non-linear mixing in coupled photonic crystal nanobeam cavities due to cross-coupling opto-mechanical mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Daniel, E-mail: daniel.ramos@csic.es; Frank, Ian W.; Deotare, Parag B.; Bulu, Irfan; Lončar, Marko [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2014-11-03

    We investigate the coupling between mechanical and optical modes supported by coupled, freestanding, photonic crystal nanobeam cavities. We show that localized cavity modes for a given gap between the nanobeams provide weak optomechanical coupling with out-of-plane mechanical modes. However, we show that the coupling can be significantly increased, more than an order of magnitude for the symmetric mechanical mode, due to optical resonances that arise from the interaction of the localized cavity modes with standing waves formed by the reflection from thesubstrate. Finally, amplification of motion for the symmetric mode has been observed and attributed to the strong optomechanical interaction of our hybrid system. The amplitude of these self-sustained oscillations is large enough to put the system into a non-linear oscillation regime where a mixing between the mechanical modes is experimentally observed and theoretically explained.

  9. Random photonic crystal optical memory

    International Nuclear Information System (INIS)

    Wirth Lima Jr, A; Sombra, A S B

    2012-01-01

    Currently, optical cross-connects working on wavelength division multiplexing systems are based on optical fiber delay lines buffering. We designed and analyzed a novel photonic crystal optical memory, which replaces the fiber delay lines of the current optical cross-connect buffer. Optical buffering systems based on random photonic crystal optical memory have similar behavior to the electronic buffering systems based on electronic RAM memory. In this paper, we show that OXCs working with optical buffering based on random photonic crystal optical memories provides better performance than the current optical cross-connects. (paper)

  10. Wave Propagation From Electrons to Photonic Crystals and Left-Handed Materials

    CERN Document Server

    Markos, Peter

    2010-01-01

    This textbook offers the first unified treatment of wave propagation in electronic and electromagnetic systems and introduces readers to the essentials of the transfer matrix method, a powerful analytical tool that can be used to model and study an array of problems pertaining to wave propagation in electrons and photons. It is aimed at graduate and advanced undergraduate students in physics, materials science, electrical and computer engineering, and mathematics, and is ideal for researchers in photonic crystals, negative index materials, left-handed materials, plasmonics, nonlinear effects,

  11. Photonic quasi-crystal terahertz lasers

    Science.gov (United States)

    Vitiello, Miriam Serena; Nobile, Michele; Ronzani, Alberto; Tredicucci, Alessandro; Castellano, Fabrizio; Talora, Valerio; Li, Lianhe; Linfield, Edmund H.; Davies, A. Giles

    2014-12-01

    Quasi-crystal structures do not present a full spatial periodicity but are nevertheless constructed starting from deterministic generation rules. When made of different dielectric materials, they often possess fascinating optical properties, which lie between those of periodic photonic crystals and those of a random arrangement of scatterers. Indeed, they can support extended band-like states with pseudogaps in the energy spectrum, but lacking translational invariance, they also intrinsically feature a pattern of ‘defects’, which can give rise to critically localized modes confined in space, similar to Anderson modes in random structures. If used as laser resonators, photonic quasi-crystals open up design possibilities that are simply not possible in a conventional periodic photonic crystal. In this letter, we exploit the concept of a 2D photonic quasi crystal in an electrically injected laser; specifically, we pattern the top surface of a terahertz quantum-cascade laser with a Penrose tiling of pentagonal rotational symmetry, reaching 0.1-0.2% wall-plug efficiencies and 65 mW peak output powers with characteristic surface-emitting conical beam profiles, result of the rich quasi-crystal Fourier spectrum.

  12. Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre

    DEFF Research Database (Denmark)

    Chow, K.K.; Takushima, Y.; Lin, C.

    2006-01-01

    Flat super-continuum generation spanning over the whole telecommunication band using a passively modelocked fibre laser source at 1550 nm together with a dispersion-flattened nonlinear photoinc crystal fibre is demonstrated. Since the pulses propagate in the normal dispersion regime of the fibre...

  13. Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Combrié, S.; Lehoucq, G.

    2013-01-01

    Using a sensitive two-color heterodyne pump-probe technique, we investigate the carrier dynamics of an InP photonic crystal nanocavity. The heterodyne technique provides unambiguous results for all wavelength configurations, including the degenerate case, which cannot be investigated with the wid......Using a sensitive two-color heterodyne pump-probe technique, we investigate the carrier dynamics of an InP photonic crystal nanocavity. The heterodyne technique provides unambiguous results for all wavelength configurations, including the degenerate case, which cannot be investigated...... with the widely used homodyne technique. A model based on coupled mode theory including two carrier distributions is introduced to account for the relaxation dynamics, which is assumed to be governed by both diffusion and recombination....

  14. Agile Photonic Crystals

    Science.gov (United States)

    2011-01-03

    75, pp. 3253-3256, Oct. 1995. [24] F. Benabid, J. C. Knight, and P. S. J. Russell, “Particle levitation and guidance in hollow-core photonic crystal...B. Mizaikoff, “Midinfrared sensors meet nanotechnology: Trace gas sensing with quantum cascade lasers inside photonic band-gap hollow waveguides

  15. Progress Toward Single-Photon-Level Nonlinear Optics in Crystalline Microcavities

    Science.gov (United States)

    Kowligy, Abijith S.

    excess of 500 ns for all the three waves in the interaction, provided a cavity of radius R 100 mum, whereas for the smaller disks, additional rigorous polishing may be required. We also fabricated resonators as small as R ˜ 40 mum via this method. In a millimeter-sized resonator, we experimentally demonstrated triply resonant sum-frequency generation, which allowed for an observation of the classical manifestation of the quantum Zeno effect, wherein line-splitting occurs due to the high efficiency intracavity frequency conversion. For the sub-100 mum resonators, we present phase-matching calculations and dispersion-management techniques using analytical approximations and rigorous finite-element-method simulations. Experimentally, Q -factor measurements are shown, and we identify the specific short-comings of the fabrication procedure that may have led to the lower, surface-roughness-limited Q-factors. Finally, we identify pathways toward achieving the single-photon-level nonlinear optics using off-resonant nonlinear optics, which requires the simultaneous realization of phase-matching, large cavity lifetimes, and small mode volumes. We believe this would be feasible in the near future as more advanced fabrication and processing methods are developed for crystalline materials and novel nonlinear crystals are synthesized.

  16. Radio frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities

    International Nuclear Information System (INIS)

    Yang, Jinghui; Gu, Tingyi; Zheng, Jiangjun; Wei Wong, Chee; Yu, Mingbin; Lo, Guo-Qiang; Kwong, Dim-Lee

    2014-01-01

    We report temporal and spectral domain observation of regenerative oscillation in monolithic silicon heterostructured photonic crystals cavities with high quality factor to mode volume ratios (Q/V). The results are interpreted by nonlinear coupled mode theory (CMT) tracking the dynamics of photon, free carrier population, and temperature variations. We experimentally demonstrate effective tuning of the radio frequency tones by laser-cavity detuning and laser power levels, confirmed by the CMT simulations with sensitive input parameters

  17. Plasmonic and Photonic Modes Excitation in Graphene on Silicon Photonic Crystal Membrane

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Gu, Tingyi; Hao, Yufeng

    . Being deposited on a silicon photonic crystal membrane graphene serves as a highly promising system for modern optoelectronics with rich variety of possible regimes. Depending on the relation between the photonic crystal lattice constant and wavelengths (plasmonic, photonic and free-space) we identify...... characterization. Measured data are well correlated with the numerical analysis. Combined graphene – silicon photonic crystal membranes can find applications for infrared absorbers, modulators, filters, sensors and photodetectors....... four different interaction schemes. We refer to them as metamaterial, plasmonic, photonic and diffraction grating regimes based on the principle character of light interactions with the graphene deposited on the Si photonic crystal membrane. The optimal configurations for resonant excitation of modes...

  18. Efficient terahertz wave generation from GaP crystals pumped by chirp-controlled pulses from femtosecond photonic crystal fiber amplifier

    International Nuclear Information System (INIS)

    Li, Jiang; Shi, Junkai; Xu, Baozhong; Xing, Qirong; Wang, Chingyue; Chai, Lu; Liu, Bowen; Hu, Minglie; Li, Yanfeng; Fedotov, Andrey B.; Zheltikov, Aleksei M.

    2014-01-01

    A chirp-tunable femtosecond 10 W, 42 MHz photonic-crystal-fiber oscillator-amplifier system that is capable of delivering sub-60 fs light pulses at 1040 nm is used to demonstrate high-efficiency terahertz radiation generation via optical rectification in GaP crystals only a few millimeters in length. The optimization of the chirp of the fiber-laser pulses is shown to radically enhance the terahertz output, indicating one possible way to more efficiently use these extended nonlinear crystals in compact fiber-pumped terahertz radiation sources

  19. Photonic crystals, amorphous materials, and quasicrystals.

    Science.gov (United States)

    Edagawa, Keiichi

    2014-06-01

    Photonic crystals consist of artificial periodic structures of dielectrics, which have attracted much attention because of their wide range of potential applications in the field of optics. We may also fabricate artificial amorphous or quasicrystalline structures of dielectrics, i.e. photonic amorphous materials or photonic quasicrystals. So far, both theoretical and experimental studies have been conducted to reveal the characteristic features of their optical properties, as compared with those of conventional photonic crystals. In this article, we review these studies and discuss various aspects of photonic amorphous materials and photonic quasicrystals, including photonic band gap formation, light propagation properties, and characteristic photonic states.

  20. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases.

    Science.gov (United States)

    Chen, Chun-Wei; Hou, Chien-Tsung; Li, Cheng-Chang; Jau, Hung-Chang; Wang, Chun-Ta; Hong, Ching-Lang; Guo, Duan-Yi; Wang, Cheng-Yu; Chiang, Sheng-Ping; Bunning, Timothy J; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2017-09-28

    Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 μm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties.

  1. VO{sub 2}-like thermo-optical switching effect in one-dimensional nonlinear defective photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Juan, E-mail: juanzhang@staff.shu.edu.cn, E-mail: ywang@siom.ac.cn; Zhang, Rongjun [Key Laboratory of Specialty Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai 200072 (China); Wang, Yang, E-mail: juanzhang@staff.shu.edu.cn, E-mail: ywang@siom.ac.cn [Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-06-07

    A new approach to achieve VO{sub 2}-like thermo-optical switching in a one-dimensional photonic crystal by the combination of thermo-optical and optical Kerr effects was proposed and numerically demonstrated in this study. The switching temperature and the hysteresis width can be tuned in a wide temperature range. Steep transition, high optical contrast, and low pumping power can be achieved at the same time. This kind of one-dimensional photonic crystal-based bistable switch will be low-cost, easy-to-fabricate, and versatile in practical applications compared with traditional VO{sub 2}-type one.

  2. Photonic guiding structures in lithium niobate crystals produced by energetic ion beams

    Science.gov (United States)

    Chen, Feng

    2009-10-01

    A range of ion beam techniques have been used to fabricate a variety of photonic guiding structures in the well-known lithium niobate (LiNbO3 or LN) crystals that are of great importance in integrated photonics/optics. This paper reviews the up-to-date research progress of ion-beam-processed LiNbO3 photonic structures and reports on their fabrication, characterization, and applications. Ion beams are being used with this material in a wide range of techniques, as exemplified by the following examples. Ion beam milling/etching can remove the selected surface regions of LiNbO3 crystals via the sputtering effects. Ion implantation and swift ion irradiation can form optical waveguide structures by modifying the surface refractive indices of the LiNbO3 wafers. Crystal ion slicing has been used to obtain bulk-quality LiNbO3 single-crystalline thin films or membranes by exfoliating the implanted layer from the original substrate. Focused ion beams can either generate small structures of micron or submicron dimensions, to realize photonic bandgap crystals in LiNbO3, or directly write surface waveguides or other guiding devices in the crystal. Ion beam-enhanced etching has been extensively applied for micro- or nanostructuring of LiNbO3 surfaces. Methods developed to fabricate a range of photonic guiding structures in LiNbO3 are introduced. Modifications of LiNbO3 through the use of various energetic ion beams, including changes in refractive index and properties related to the photonic guiding structures as well as to the materials (i.e., electro-optic, nonlinear optic, luminescent, and photorefractive features), are overviewed in detail. The application of these LiNbO3 photonic guiding structures in both micro- and nanophotonics are briefly summarized.

  3. Photonic Paint Developed with Metallic Three-Dimensional Photonic Crystals

    Science.gov (United States)

    Sun, Po; Williams, John D.

    2012-01-01

    This work details the design and simulation of an inconspicuous photonic paint that can be applied onto an object for anticounterfeit and tag, track, and locate (TTL) applications. The paint consists of three-dimensional metallic tilted woodpile photonic crystals embedded into a visible and infrared transparent polymer film, which can be applied to almost any surface. The tilted woodpile photonic crystals are designed with a specific pass band detectable at nearly all incident angles of light. When painted onto a surface, these crystals provide a unique reflective infra-red optical signature that can be easily observed and recorded to verify the location or contents of a package.

  4. Liquid Crystal photonic Bandgap Fiber Devices

    DEFF Research Database (Denmark)

    Wei, Lei

    In this Ph.D. thesis, an experimental investigation of liquid crystal photonic bandgap (LCPBG) fiber devices and applications is presented. Photonic crystal fibers (PCFs) consist of a cladding microstructure with periodic index variations and a core defined by a defect of the structure. The prese......In this Ph.D. thesis, an experimental investigation of liquid crystal photonic bandgap (LCPBG) fiber devices and applications is presented. Photonic crystal fibers (PCFs) consist of a cladding microstructure with periodic index variations and a core defined by a defect of the structure...... of each LCPBG fiber. Finally, the applications for LCPBG fiber devices based on the on-chip platform design have been demonstrated in realizing microwave true-time delay and creating an electrically tunable fiber laser. Referatet mailes...

  5. Photonic and Plasmonic Guided Modes in Graphene-Silicon Photonic Crystals

    DEFF Research Database (Denmark)

    Gu, Tingyi; Andryieuski, Andrei; Hao, Yufeng

    2015-01-01

    We report the results of systematic studies of plasmonic and photonic guided modes in large-area single-layer graphene integrated into a nanostructured silicon substrate. The interaction of light with graphene and substrate photonic crystals can be classified in distinct regimes depending......, filters, sensors, and photodetectors utilizing silicon photonic platforms....... on the relation of the photonic crystal lattice constant and the relevant modal wavelengths, that is, plasmonic, photonic, and free-space. By optimizing the design of the substrate, these resonant modes can increase the absorption of graphene in the infrared, facilitating enhanced performance of modulators...

  6. Ultra compact spectrometer apparatus and method using photonic crystals

    Science.gov (United States)

    Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Bandara, Sumith V. (Inventor); Gunapala, Sarath D. (Inventor)

    2009-01-01

    The present invention is directed to methods of photonic crystal formation, and to methods and apparatus for using such photonic crystals, particularly in conjunction with detector arrays. Photonic crystal parameters and detector array parameters are compared to optimize the selection and orientation of a photonic crystal shape. A photonic crystal is operatively positioned relative to a plurality of light sensors. The light sensors can be separated by a pitch distance and positioned within one half of the pitch distance of an exit surface of the photonic crystals.

  7. Photonic Crystal Nanocavity Arrays

    National Research Council Canada - National Science Library

    Altug, Hatice; Vuckovic, Jelena

    2006-01-01

    We recently proposed two-dimensional coupled photonic crystal nanocavity arrays as a route to achieve a slow-group velocity of light in all crystal directions, thereby enabling numerous applications...

  8. PCBM : P3HT polymer composites for photonic crystal all-optical switching applications

    International Nuclear Information System (INIS)

    Li Zhiqiang; Hu Xiaoyong; Zhang Jiaxiang; Yang Hong; Gong Qihuang

    2010-01-01

    An all-optical switching with an operating pump intensity of 1 MW cm -2 is realized in a one-dimensional nonlinear organic photonic crystal made of poly(3-hexylthiophene) doped with 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)C 61 , fabricated by focused ion-beam etching. The femtosecond pump and probe method is adopted to measure the transmittance changes of the probe laser based on the photonic bandgap shift induced by the pump laser. Under resonant excitation, a large nonlinear refractive index of the order of 10 -9 cm 2 W -1 is obtained for the polymer composite. A switching time of 58.9 ps is maintained due to intermolecular charge transfer and exciton-exciton annihilation.

  9. Massive photon properties in 3D photonic crystals, filled by dielectrics or metals

    International Nuclear Information System (INIS)

    Gorelik, V S

    2009-01-01

    The optical properties of 3D photonic crystals-artificial opals, consisting of monosized silica globules-have been investigated. The volume between globules was filled by various dielectrics or metals. The dispersion law of electromagnetic waves of this type of crystal has been obtained. It was shown that the sign of photonic mass in globular photonic crystals may be positive or negative for different points on dispersion curves. The value of the effective mass of photons depends on the refractive index of the substance infiltrated into the globular photonic crystal.

  10. Realization of a complementary medium using dielectric photonic crystals.

    Science.gov (United States)

    Xu, Tao; Fang, Anan; Jia, Ziyuan; Ji, Liyu; Hang, Zhi Hong

    2017-12-01

    By exploiting the scaling invariance of photonic band diagrams, a complementary photonic crystal slab structure is realized by stacking two uniformly scaled double-zero-index dielectric photonic crystal slabs together. The space cancellation effect in complementary photonic crystals is demonstrated in both numerical simulations and microwave experiments. The refractive index dispersion of double-zero-index dielectric photonic crystal is experimentally measured. Using pure dielectrics, our photonic crystal structure will be an ideal platform to explore various intriguing properties related to a complementary medium.

  11. Photonic Crystal Laser-Driven Accelerator Structures

    International Nuclear Information System (INIS)

    Cowan, B

    2004-01-01

    The authors discuss simulated photonic crystal structure designs for laser-driven particle acceleration. They focus on three-dimensional planar structures based on the so-called ''woodpile'' lattice, demonstrating guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice. They introduce a candidate geometry and discuss the properties of the accelerating mode. They also discuss the linear beam dynamics in the structure present a novelmethod for focusing the beam. In addition they describe ongoing investigations of photonic crystal fiber-based structures

  12. Two-photon excited UV fluorescence for protein crystal detection

    International Nuclear Information System (INIS)

    Madden, Jeremy T.; DeWalt, Emma L.; Simpson, Garth J.

    2011-01-01

    Complementary measurements using SONICC and TPE-UVF allow the sensitive and selective detection of protein crystals. Two-photon excited ultraviolet fluorescence (TPE-UVF) microscopy is explored for sensitive protein-crystal detection as a complement to second-order nonlinear optical imaging of chiral crystals (SONICC). Like conventional ultraviolet fluorescence (UVF), TPE-UVF generates image contrast based on the intrinsic fluorescence of aromatic residues, generally producing higher fluorescence emission within crystals than the mother liquor by nature of the higher local protein concentration. However, TPE-UVF has several advantages over conventional UVF, including (i) insensitivity to optical scattering, allowing imaging in turbid matrices, (ii) direct compatibility with conventional optical plates and windows by using visible light for excitation, (iii) elimination of potentially damaging out-of-plane UV excitation, (iv) improved signal to noise through background reduction from out-of-plane excitation and (v) relatively simple integration into instrumentation developed for SONICC

  13. High-contrast controllable switching based on polystyrene nonlinear cavities in 2D hole-type photonic crystals

    Science.gov (United States)

    Paghousi, Roohollah; Fasihi, Kiazand

    2018-05-01

    We present a new high-contrast controllable switch, which is based on a polystyrene nonlinear cavity, and is implemented in a two dimensional (2D) hole-type photonic crystal (PC). We show that by applying a control signal, the input power can be transmitted to the output waveguide with a high contrast ratio. The operation of the proposed device is investigated through the use of coupled-mode theory (CMT) and finite-difference time-domain (FDTD) method. The contrast ratio of the proposed device varies between 18 and 23, which is higher than the corresponding value in the previous investigations. Based on the simulation results, with increasing the control power the range of operating power will be increased, while the contrast ratio will be decreased. It has been shown that in a modified structure, at the expense of the range of operating power and the contrast ratio, the control power can be decreased, considerably.

  14. Third-order nonlinear optical properties of ADP crystal

    Science.gov (United States)

    Wang, Mengxia; Wang, Zhengping; Chai, Xiangxu; Sun, Yuxiang; Sui, Tingting; Sun, Xun; Xu, Xinguang

    2018-05-01

    By using the Z-scan method, we investigated the third-order nonlinear optical (NLO) properties of ADP crystal at different wavelengths (355, 532, and 1064 nm) and different orientations ([001], [100], [110], I and II). The experimental data were fitted by NLO theory, to give out the two photon absorption (TPA) coefficient β 2 and the nonlinear refractive index n 2. When the light source changed from a 40 ps, 1064 nm fundamental laser to a 30 ps, 355 nm third-harmonic-generation (THG) laser, the β 2 value increased about 5 times (0.2 × 10‑2 → 1 × 10‑2 cm GW‑1), and the n 2 value increased about 1.5 times (1.5 × 10‑16 → 2.2 × 10‑16 cm2 W‑1). Among all of the orientations, the [110] sample exhibits the smallest β 2, and the second smallest n 2. It indicates that this orientation and its surroundings will be the preferred directions for high-power laser applications of ADP crystal.

  15. Quasimetallic silicon micromachined photonic crystals

    International Nuclear Information System (INIS)

    Temelkuran, B.; Bayindir, Mehmet; Ozbay, E.; Kavanaugh, J. P.; Sigalas, M. M.; Tuttle, G.

    2001-01-01

    We report on fabrication of a layer-by-layer photonic crystal using highly doped silicon wafers processed by semiconductor micromachining techniques. The crystals, built using (100) silicon wafers, resulted in an upper stop band edge at 100 GHz. The transmission and defect characteristics of these structures were found to be analogous to metallic photonic crystals. We also investigated the effect of doping concentration on the defect characteristics. The experimental results agree well with predictions of the transfer matrix method simulations

  16. Photonic band structure calculations using nonlinear eigenvalue techniques

    International Nuclear Information System (INIS)

    Spence, Alastair; Poulton, Chris

    2005-01-01

    This paper considers the numerical computation of the photonic band structure of periodic materials such as photonic crystals. This calculation involves the solution of a Hermitian nonlinear eigenvalue problem. Numerical methods for nonlinear eigenvalue problems are usually based on Newton's method or are extensions of techniques for the standard eigenvalue problem. We present a new variation on existing methods which has its derivation in methods for bifurcation problems, where bordered matrices are used to compute critical points in singular systems. This new approach has several advantages over the current methods. First, in our numerical calculations the new variation is more robust than existing techniques, having a larger domain of convergence. Second, the linear systems remain Hermitian and are nonsingular as the method converges. Third, the approach provides an elegant and efficient way of both thinking about the problem and organising the computer solution so that only one linear system needs to be factorised at each stage in the solution process. Finally, first- and higher-order derivatives are calculated as a natural extension of the basic method, and this has advantages in the electromagnetic problem discussed here, where the band structure is plotted as a set of paths in the (ω,k) plane

  17. Amorphous photonic crystals with only short-range order.

    Science.gov (United States)

    Shi, Lei; Zhang, Yafeng; Dong, Biqin; Zhan, Tianrong; Liu, Xiaohan; Zi, Jian

    2013-10-04

    Distinct from conventional photonic crystals with both short- and long-range order, amorphous photonic crystals that possess only short-range order show interesting optical responses owing to their unique structural features. Amorphous photonic crystals exhibit unique light scattering and transport, which lead to a variety of interesting phenomena such as isotropic photonic bandgaps or pseudogaps, noniridescent structural colors, and light localization. Recent experimental and theoretical advances in the study of amorphous photonic crystals are summarized, focusing on their unique optical properties, artificial fabrication, bionspiration, and potential applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. PCBM : P3HT polymer composites for photonic crystal all-optical switching applications

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhiqiang; Hu Xiaoyong; Zhang Jiaxiang; Yang Hong; Gong Qihuang, E-mail: xiaoyonghu@pku.edu.c, E-mail: qhgong@pku.edu.c [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China)

    2010-09-29

    An all-optical switching with an operating pump intensity of 1 MW cm{sup -2} is realized in a one-dimensional nonlinear organic photonic crystal made of poly(3-hexylthiophene) doped with 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)C{sub 61}, fabricated by focused ion-beam etching. The femtosecond pump and probe method is adopted to measure the transmittance changes of the probe laser based on the photonic bandgap shift induced by the pump laser. Under resonant excitation, a large nonlinear refractive index of the order of 10{sup -9} cm{sup 2} W{sup -1} is obtained for the polymer composite. A switching time of 58.9 ps is maintained due to intermolecular charge transfer and exciton-exciton annihilation.

  19. Photonic crystal fiber based antibody detection

    DEFF Research Database (Denmark)

    Duval, A; Lhoutellier, M; Jensen, J B

    2004-01-01

    An original approach for detecting labeled antibodies based on strong penetration photonic crystal fibers is introduced. The target antibody is immobilized inside the air-holes of a photonic crystal fiber and the detection is realized by the means of evanescent-wave fluorescence spectroscopy...

  20. Electrically tunable liquid crystal photonic bandgap fiber laser

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an al...

  1. Gold Nanoparticles in Photonic Crystals Applications: A Review.

    Science.gov (United States)

    Venditti, Iole

    2017-01-24

    This review concerns the recently emerged class of composite colloidal photonic crystals (PCs), in which gold nanoparticles (AuNPs) are included in the photonic structure. The use of composites allows achieving a strong modification of the optical properties of photonic crystals by involving the light scattering with electronic excitations of the gold component (surface plasmon resonance, SPR) realizing a combination of absorption bands with the diffraction resonances occurring in the body of the photonic crystals. Considering different preparations of composite plasmonic-photonic crystals, based on 3D-PCs in presence of AuNPs, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tunable functionality of these crystals. Several chemical methods for fabrication of opals and inverse opals are presented together with preparations of composites plasmonic-photonic crystals: the influence of SPR on the optical properties of PCs is also discussed. Main applications of this new class of composite materials are illustrated with the aim to offer the reader an overview of the recent advances in this field.

  2. Gold Nanoparticles in Photonic Crystals Applications: A Review

    Directory of Open Access Journals (Sweden)

    Iole Venditti

    2017-01-01

    Full Text Available This review concerns the recently emerged class of composite colloidal photonic crystals (PCs, in which gold nanoparticles (AuNPs are included in the photonic structure. The use of composites allows achieving a strong modification of the optical properties of photonic crystals by involving the light scattering with electronic excitations of the gold component (surface plasmon resonance, SPR realizing a combination of absorption bands with the diffraction resonances occurring in the body of the photonic crystals. Considering different preparations of composite plasmonic-photonic crystals, based on 3D-PCs in presence of AuNPs, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tunable functionality of these crystals. Several chemical methods for fabrication of opals and inverse opals are presented together with preparations of composites plasmonic-photonic crystals: the influence of SPR on the optical properties of PCs is also discussed. Main applications of this new class of composite materials are illustrated with the aim to offer the reader an overview of the recent advances in this field.

  3. Robust photonic differentiator employing slow light effect in photonic crystal waveguide

    DEFF Research Database (Denmark)

    Yan, Siqi; Cheng, Ziwei; Frandsen, Lars Hagedorn

    2017-01-01

    A robust photonic DIFF exploiting the slow light effect in a photonic crystal waveguide is proposed and experimentally demonstrated. Input Gaussian pulses with full-width halfmaximums ranging from 2.7 ps to 81.4 ps can be accurately differentiated.......A robust photonic DIFF exploiting the slow light effect in a photonic crystal waveguide is proposed and experimentally demonstrated. Input Gaussian pulses with full-width halfmaximums ranging from 2.7 ps to 81.4 ps can be accurately differentiated....

  4. Nanoimprinted polymer photonic crystal dye lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Smith, Cameron; Buss, Thomas

    2010-01-01

    Optically pumped polymer photonic crystal band-edge dye lasers are presented. The photonic crystal is a rectangular lattice providing laser feedback as well as an optical resonance for the pump light. The lasers are defined in a thin film of photodefinable Ormocore hybrid polymer, doped...

  5. Photonic Crystal Fibers for Sensing Applications

    Directory of Open Access Journals (Sweden)

    Ana M. R. Pinto

    2012-01-01

    Full Text Available Photonic crystal fibers are a kind of fiber optics that present a diversity of new and improved features beyond what conventional optical fibers can offer. Due to their unique geometric structure, photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications. A review of photonic crystal fiber sensors is presented. Two different groups of sensors are detailed separately: physical and biochemical sensors, based on the sensor measured parameter. Several sensors have been reported until the date, and more are expected to be developed due to the remarkable characteristics such fibers can offer.

  6. AlGaAs-On-Insulator nonlinear photonics

    DEFF Research Database (Denmark)

    Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta

    We present an AlGaAs-on-insulator platform for integrated nonlinear photonics. We demonstrate the highest reported conversion efficiency and ultra-broadband four-wave mixing for an integrated platform around 1550nm......We present an AlGaAs-on-insulator platform for integrated nonlinear photonics. We demonstrate the highest reported conversion efficiency and ultra-broadband four-wave mixing for an integrated platform around 1550nm...

  7. Two-Dimentional Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Dridi, Kim

    1999-01-01

    possible a novel class of optical microcavities, whereas line defects make possible a novel class of waveguides. In this paper we will analyze two-dimensional photonic crystal waveguides based on photonic crystals with rods arranged on a triangular and a square lattice using a plane-wave expansion method......In the recent years a new class of periodic high-index contrast dielectric structures, known as photonic bandgap structures, has been discovered. In these structures frequency intervals, known as photonic bandgaps, where propagation of electromagnetic waves is not allowed, exist due to the periodic...... dielectric function. This is analogous to semiconductors, where electronic bandgaps exist due to the periodic arrangement of atoms. As is also the case for semiconductor structures, photonic bandgap structures may become of even greater value when defects are introduced. In particular, point defects make...

  8. Controlling spontaneous emission of light by photonic crystals

    DEFF Research Database (Denmark)

    Lodahl, Peter

    2005-01-01

    Photonic bandgap crystals were proposed almost two decades ago as a unique tool for controlling propagation and emission of light. Since then the research field of photonic crystals has exploded and many beautiful demonstrations of the use of photonic crystals and fibers for molding light...... propagation have appeared that hold great promises for integrated optics. These major achievements solidly demonstrate the ability to control propagation of light. In contrast, an experimental demonstration of the use of photonic crystals for timing the emission of light has so far lacked. In a recent...... publication in Nature, we have demonstrated experimentally that both the direction and time of spontaneous emission can be controlled, thereby confirming the original proposal by Eli Yablonovich that founded the field of photonic crystals. We believe that this work opens new opportunities for solid...

  9. Selective filling of Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Noordegraaf, Danny; Sørensen, Thorkild

    2005-01-01

    A model for calculating the time necessary for filling one or more specific holes in a photonic crystal fibre is made. This model is verified for water, and its enabling potential is illustrated by a polymer application. Selective filling of the core in an air-guide photonic crystal fibre...

  10. Transient Plasma Photonic Crystals for High-Power Lasers.

    Science.gov (United States)

    Lehmann, G; Spatschek, K H

    2016-06-03

    A new type of transient photonic crystals for high-power lasers is presented. The crystal is produced by counterpropagating laser beams in plasma. Trapped electrons and electrically forced ions generate a strong density grating. The lifetime of the transient photonic crystal is determined by the ballistic motion of ions. The robustness of the photonic crystal allows one to manipulate high-intensity laser pulses. The scheme of the crystal is analyzed here by 1D Vlasov simulations. Reflection or transmission of high-power laser pulses are predicted by particle-in-cell simulations. It is shown that a transient plasma photonic crystal may act as a tunable mirror for intense laser pulses. Generalizations to 2D and 3D configurations are possible.

  11. Multifunctional Bi2ZnOB2O6 single crystals for second and third order nonlinear optical applications

    International Nuclear Information System (INIS)

    Iliopoulos, K.; Kasprowicz, D.; Majchrowski, A.; Michalski, E.; Gindre, D.; Sahraoui, B.

    2013-01-01

    Bi 2 ZnOB 2 O 6 nonlinear optical single crystals were grown by means of the Kyropoulos method from stoichiometric melt. The second and third harmonic generation (SHG/THG) of Bi 2 ZnOB 2 O 6 crystals were investigated by the SHG/THG Maker fringes technique. Moreover, SHG microscopy studies were carried out providing two-dimensional SHG images as a function of the incident laser polarization. The high nonlinear optical efficiency combined with the possibility to grow high quality crystals make Bi 2 ZnOB 2 O 6 an excellent candidate for photonic applications

  12. On-demand single-photon state generation via nonlinear absorption

    International Nuclear Information System (INIS)

    Hong Tao; Jack, Michael W.; Yamashita, Makoto

    2004-01-01

    We propose a method for producing on-demand single-photon states based on collision-induced exchanges of photons and unbalanced linear absorption between two single-mode light fields. These two effects result in an effective nonlinear absorption of photons in one of the modes, which can lead to single-photon states. A quantum nonlinear attenuator based on such a mechanism can absorb photons in a normal input light pulse and terminate the absorption at a single-photon state. Because the output light pulses containing single photons preserve the properties of the input pulses, we expect this method to be a means for building a highly controllable single-photon source

  13. Breakdown of Bose-Einstein distribution in photonic crystals.

    Science.gov (United States)

    Lo, Ping-Yuan; Xiong, Heng-Na; Zhang, Wei-Min

    2015-03-30

    In the last two decades, considerable advances have been made in the investigation of nano-photonics in photonic crystals. Previous theoretical investigations of photon dynamics were carried out at zero temperature. Here, we investigate micro/nano cavity photonics in photonic crystals at finite temperature. Due to photonic-band-gap-induced localized long-lived photon dynamics, we discover that cavity photons in photonic crystals do not obey Bose-Einstein statistical distribution. Within the photonic band gap and in the vicinity of the band edge, cavity photons combine the long-lived non-Markovain dynamics with thermal fluctuations together to form photon states that memorize the initial cavity state information. As a result, Bose-Einstein distribution is completely broken down in these regimes, even if the thermal energy is larger or much larger than the cavity detuning energy. In this investigation, a crossover phenomenon from equilibrium to nonequilibrium steady states is also revealed.

  14. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides

    DEFF Research Database (Denmark)

    Yan, Siqi; Zhu, Xiaolong; Frandsen, Lars Hagedorn

    2017-01-01

    Slow light has been widely utilized to obtain enhanced nonlinearities, enhanced spontaneous emissions and increased phase shifts owing to its ability to promote light-matter interactions. By incorporating a graphene on a slow-light silicon photonic crystal waveguide, here we experimentally...... in silicon photonics. The corresponding figure of merit of the device is 2.543 nW s, one order of magnitude better than results reported in previous studies. The influence of the length and shape of the graphene heater to the tuning efficiency is further investigated, providing valuable guidelines...

  15. Optimization of planar self-collimating photonic crystals.

    Science.gov (United States)

    Rumpf, Raymond C; Pazos, Javier J

    2013-07-01

    Self-collimation in photonic crystals has received a lot of attention in the literature, partly due to recent interest in silicon photonics, yet no performance metrics have been proposed. This paper proposes a figure of merit (FOM) for self-collimation and outlines a methodical approach for calculating it. Performance metrics include bandwidth, angular acceptance, strength, and an overall FOM. Two key contributions of this work include the performance metrics and identifying that the optimum frequency for self-collimation is not at the inflection point. The FOM is used to optimize a planar photonic crystal composed of a square array of cylinders. Conclusions are drawn about how the refractive indices and fill fraction of the lattice impact each of the performance metrics. The optimization is demonstrated by simulating two spatially variant self-collimating photonic crystals, where one has a high FOM and the other has a low FOM. This work gives optical designers tremendous insight into how to design and optimize robust self-collimating photonic crystals, which promises many applications in silicon photonics and integrated optics.

  16. Manipulating light with strongly modulated photonic crystals

    International Nuclear Information System (INIS)

    Notomi, Masaya

    2010-01-01

    Recently, strongly modulated photonic crystals, fabricated by the state-of-the-art semiconductor nanofabrication process, have realized various novel optical properties. This paper describes the way in which they differ from other optical media, and clarifies what they can do. In particular, three important issues are considered: light confinement, frequency dispersion and spatial dispersion. First, I describe the latest status and impact of ultra-strong light confinement in a wavelength-cubic volume achieved in photonic crystals. Second, the extreme reduction in the speed of light is reported, which was achieved as a result of frequency dispersion management. Third, strange negative refraction in photonic crystals is introduced, which results from their unique spatial dispersion, and it is clarified how this leads to perfect imaging. The last two sections are devoted to applications of these novel properties. First, I report the fact that strong light confinement and huge light-matter interaction enhancement make strongly modulated photonic crystals promising for on-chip all-optical processing, and present several examples including all-optical switches/memories and optical logics. As a second application, it is shown that the strong light confinement and slow light in strongly modulated photonic crystals enable the adiabatic tuning of light, which leads to various novel ways of controlling light, such as adiabatic frequency conversion, efficient optomechanics systems, photon memories and photons pinning.

  17. Strained Silicon Photonics

    Directory of Open Access Journals (Sweden)

    Ralf B. Wehrspohn

    2012-05-01

    Full Text Available A review of recent progress in the field of strained silicon photonics is presented. The application of strain to waveguide and photonic crystal structures can be used to alter the linear and nonlinear optical properties of these devices. Here, methods for the fabrication of strained devices are summarized and recent examples of linear and nonlinear optical devices are discussed. Furthermore, the relation between strain and the enhancement of the second order nonlinear susceptibility is investigated, which may enable the construction of optically active photonic devices made of silicon.

  18. Modeling of photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Barkou, Stig Eigil

    1999-01-01

    Diferent theoretical models for analysis of photonic crystal fibres are reviewed and compaired. The methods span from simple scalar approaches to full-vectorial models using different mode-field decompositions. The specific advantages of the methods are evaluated.......Diferent theoretical models for analysis of photonic crystal fibres are reviewed and compaired. The methods span from simple scalar approaches to full-vectorial models using different mode-field decompositions. The specific advantages of the methods are evaluated....

  19. High-birefringent photonic crystal fiber

    DEFF Research Database (Denmark)

    Libori, Stig E. Barkou; Broeng, Jes; Knudsen, Erik

    2001-01-01

    A highly birefringent photonic crystal fiber design is analysed. Birefringence up to 10-3 is found. Random fluctuations in the cladding design are analysed, and the fiber is found to be a feasible polarization maintaining fiber.......A highly birefringent photonic crystal fiber design is analysed. Birefringence up to 10-3 is found. Random fluctuations in the cladding design are analysed, and the fiber is found to be a feasible polarization maintaining fiber....

  20. Two-dimensional plasma photonic crystals in dielectric barrier discharge

    International Nuclear Information System (INIS)

    Fan Weili; Dong Lifang; Zhang Xinchun

    2010-01-01

    A series of two-dimensional plasma photonic crystals have been obtained by filaments' self-organization in atmospheric dielectric barrier discharge with two water electrodes, which undergo the transition from square to square superlattice and finally to the hexagon. The spatio-temporal behaviors of the plasma photonic crystals in nanosecond scale have been studied by optical method, which show that the plasma photonic crystal is actually an integration of different transient sublattices. The photonic band diagrams of the transverse electric (TE) mode and transverse magnetic mode for each sublattice of these plasma photonic crystals have been investigated theoretically. A wide complete band gap is formed in the hexagonal plasma photonic crystal with the TE mode. The changes of the band edge frequencies and the band gap widths in the evolvement of different structures are studied. A kind of tunable plasma photonic crystal which can be controlled both in space and time is suggested.

  1. Switchable Photonic Crystals Using One-Dimensional Confined Liquid Crystals for Photonic Device Application.

    Science.gov (United States)

    Ryu, Seong Ho; Gim, Min-Jun; Lee, Wonsuk; Choi, Suk-Won; Yoon, Dong Ki

    2017-01-25

    Photonic crystals (PCs) have recently attracted considerable attention, with much effort devoted to photonic bandgap (PBG) control for varying the reflected color. Here, fabrication of a modulated one-dimensional (1D) anodic aluminum oxide (AAO) PC with a periodic porous structure is reported. The PBG of the fabricated PC can be reversibly changed by switching the ultraviolet (UV) light on/off. The AAO nanopores contain a mixture of photoresponsive liquid crystals (LCs) with irradiation-activated cis/trans photoisomerizable azobenzene. The resultant mixture of LCs in the porous AAO film exhibits a reversible PBG, depending on the cis/trans configuration of azobenzene molecules. The PBG switching is reliable over many cycles, suggesting that the fabricated device can be used in optical and photonic applications such as light modulators, smart windows, and sensors.

  2. Photonic band gap engineering in 2D photonic crystals

    Indian Academy of Sciences (India)

    Department of Applied Physics, Delhi College of Engineering, Faculty of Technology. (University of ... Photonic crystal; photonic band gap; plane-wave expansion method. PACS Nos 71.20 .... Numerical analysis and results. To obtain the ...

  3. Zak phase induced multiband waveguide by two-dimensional photonic crystals.

    Science.gov (United States)

    Yang, Yuting; Xu, Tao; Xu, Yun Fei; Hang, Zhi Hong

    2017-08-15

    Interface states in photonic crystals provide efficient approaches to control the flow of light. Photonic Zak phase determines the bulk band properties of photonic crystals, and, by assembling two photonic crystals with different bulk band properties together, deterministic interface states can be realized. By translating each unit cell of a photonic crystal by half the lattice constant, another photonic crystal with identical common gaps but a different Zak phase at each photonic band can be created. By assembling these two photonic crystals together, multiband waveguide can thus be easily created and then experimentally characterized. Our experimental results have good agreement with numerical simulations, and the propagation properties of these measured interface states indicate that this new type of interface state will be a good candidate for future applications of optical communications.

  4. Nonlinear photonic quasicrystals

    International Nuclear Information System (INIS)

    Freedman, B.; Bartal, G.; Segev, M.; Lifshitz, R.; Christodoulides, D.; Fleischer, J.

    2005-01-01

    Full Text:Quasicrystals are structures with long-range order and no periodicity, whose unique structural and physical properties have intrigued scientists ever since their discovery and initial theoretical analysis more than two decades ago. The lack of periodicity excludes the use of well-established theoretical and experimental tools for the analysis of quasicrystals, including such notions as the Brillouin zone and Bloch theorem. Instead, the quasiperiodic atomic arrangement gives rise to unique properties such as a hierarchy of effective Brillouin (or Jones) zones, yielding a fractal-like band structure, and the existence of unique phason degrees of freedom. Generally, in atomic quasicrystals it is very difficult to directly observe the evolution of electronic wave-packets propagating through the structure, or the dynamics of the structure itself. Photonic quasicrystals, on the other hand, are macroscopic objects and hence their internal wave dynamics can be locally excited and directly imaged. Here, we employ optical induction to create 2D photonic quasicrystals, and explore wave transport phenomena in quasicrystals in ways that were impossible until now. We demonstrate linear tunneling-transport of light initiated at different crystal sites, and observe the formation of lattice solitons when the light is made sufficiently intense. We experiment with dynamical photonic quasicrystals, in which crystal sites interact with one another, and directly observe dislocation dynamics: creation, healing, and local structural rearrangement due to phason flips. Our experiments show that photonic quasicrystals are an excellent model system through which one can study the universal features of wave dynamics in quasiperiodic structures, that should apply not only to photonics, but also to other systems such as matter waves in quasiperiodic traps, generic pattern-forming systems as in parametrically-excited surface waves, liquid quasicrystals, as well as the more familiar

  5. Heteroplasmon hybridization in stacked complementary plasmo-photonic crystals.

    Science.gov (United States)

    Iwanaga, Masanobu; Choi, Bongseok

    2015-03-11

    We constructed plasmo-photonic crystals in which efficient light-trapping, plasmonic resonances couple with photonic guided resonances of large density of states and high-quality factor. We have numerically and experimentally shown that heteroplasmon hybrid modes emerge in stacked complementary (SC) plasmo-photonic crystals. The resonant electromagnetic-field distributions evidence that the two hybrid modes originate from two different heteroplasmons, exhibiting a large energy splitting of 300 meV. We further revealed a series of plasmo-photonic modes in the SC crystals.

  6. Focus issue introduction: nonlinear photonics.

    Science.gov (United States)

    Akhmediev, Nail; Rottwitt, Karsten

    2012-11-19

    It is now 23 years since the first Topical Meeting "Nonlinear Guided Wave Phenomena" (Houston, TX, February 2-4, 1989) has been organised by George Stegeman and Allan Boardman with support of the Optical Society of America. These series of the OSA conferences known as NLGW, continued under the name "Nonlinear Photonics" starting from 2007. The latest one, in Colorado Springs in June 17-21, 2012 has been a great success despite the fierce fires advancing around the city at the time of the conference. This Focus issue is a collection of several papers presented at the conference with extended content submitted to Optics Express. Although this collection is small in comparison to the total number of papers presented at the conference, it gives a flavor of the topics considered at the meeting. It is also worthy to mention here that the next meeting "Nonlinear Photonics" is planned to be held in Barcelona - one of the main European centers on this subject.

  7. Liquid filling of photonic crystal fibres for grating writing

    DEFF Research Database (Denmark)

    Sørensen, Henrik Rokkjær; Canning, John; Lægsgaard, Jesper

    2007-01-01

    liquid filling of photonic crystal fibres reduces the scattering from air–glass interfaces during Bragg grating writing in many layered photonic crystal fibres. Within experimental uncertainty, the grating index modulation of a grating written in germanium-doped photonic crystal fibre with 10 rings...

  8. Laser guiding of cold atoms in photonic crystals

    International Nuclear Information System (INIS)

    Tarasishin, A V; Magnitskiy, Sergey A; Shuvaev, V A; Zheltikov, Aleksei M

    2000-01-01

    The possibility of using photonic crystals with a lattice defect for the laser guiding of cold atoms is analysed. We have found a configuration of a photonic-crystal lattice and a defect ensuring the distribution of a potential in the defect mode of the photonic crystal allowing the guiding of cold atoms along the defect due to the dipole force acting on atoms. Based on quantitative estimates, we have demonstrated that photonic crystals with a lattice defect permit the guiding of atoms with much higher transverse temperatures and a much higher transverse localisation degree than in the case of hollow-core fibres. (laser applications and other topics in quantum electronics)

  9. One-Dimensional Photonic Crystal Superprisms

    Science.gov (United States)

    Ting, David

    2005-01-01

    Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.

  10. Temperature-modified photonic bandgap in colloidal photonic crystals fabricated by vinyl functionalized silica spheres

    International Nuclear Information System (INIS)

    Deng Tiansong; Zhang Junyan; Zhu Kongtao; Zhang Qifeng; Wu Jinlei

    2011-01-01

    Graphical abstract: A thermal annealing procedure was described for fine modifying the photonic bandgap properties of colloidal photonic crystals, which were self-assembled from vinyl-functionalized silica spheres by a gravity sedimentation process. Highlights: → We described a thermal annealing procedure for fine modifying the photonic bandgap properties of colloidal photonic crystals. → The position of its stop band had more than 25% blue shift by annealing the sample from 60 to 600 deg. C. → The annealing temperature and the Bragg peak values have a linear relationship in the 120-440 deg. C range. → The effects provide a simple and controllable method for modifying the photonic bandgap properties of colloidal photonic crystals. - Abstract: A thermal annealing procedure for fine modifying the photonic bandgap properties of colloidal photonic crystals was described. The colloidal photonic crystals were assembled from monodisperse vinyl functionalized silica spheres by a gravity sedimentation process. The samples diffract light following Bragg's law combined with Snell's law. By annealing the sample at temperatures in the range of 60-600 deg. C, the position of its stop band shifted from 943 to 706 nm. It had more than 25% blue shift. In addition, the annealing temperature and the Bragg peak values have a linear relationship in the 120-440 deg. C range. Fourier transform infrared (FT-IR) spectra and thermo-gravimetric analysis (TGA) curves of vinyl functionalized silica spheres confirmed the above results. The effects provide a simple and controllable method for modifying the photonic bandgap properties of colloidal photonic crystals.

  11. Multi-photon absorption limits to heralded single photon sources

    Science.gov (United States)

    Husko, Chad A.; Clark, Alex S.; Collins, Matthew J.; De Rossi, Alfredo; Combrié, Sylvain; Lehoucq, Gaëlle; Rey, Isabella H.; Krauss, Thomas F.; Xiong, Chunle; Eggleton, Benjamin J.

    2013-01-01

    Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous four-wave mixing (SFWM) sources in the presence of multi-photon processes. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We build on these observations to devise a new metric, the quantum utility (QMU), enabling further optimisation of single photon sources. PMID:24186400

  12. Transverse angular momentum in topological photonic crystals

    Science.gov (United States)

    Deng, Wei-Min; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen

    2018-01-01

    Engineering local angular momentum of structured light fields in real space enables applications in many fields, in particular, the realization of unidirectional robust transport in topological photonic crystals with a non-trivial Berry vortex in momentum space. Here, we show transverse angular momentum modes in silicon topological photonic crystals when considering transverse electric polarization. Excited by a chiral external source with either transverse spin angular momentum or transverse phase vortex, robust light flow propagating along opposite directions is observed in several kinds of sharp-turn interfaces between two topologically-distinct silicon photonic crystals. A transverse orbital angular momentum mode with alternating phase vortex exists at the boundary of two such photonic crystals. In addition, unidirectional transport is robust to the working frequency even when the ring size or location of the pseudo-spin source varies in a certain range, leading to the superiority of the broadband photonic device. These findings enable one to make use of transverse angular momentum, a kind of degree of freedom, to achieve unidirectional robust transport in the telecom region and other potential applications in integrated photonic circuits, such as on-chip robust delay lines.

  13. Fabrication and Measurements on Coupled Photonic Crystal Cavities

    DEFF Research Database (Denmark)

    Schubert, Martin

    Quasi-three dimensional photonic crystals can be realized by fabricating thin membranes of high index material hanging in air patterned with sub-micron holes to create a photonic band gap for optical confinement in plane and total internal reflection for out of plane confinement. Introducing...... defects into the photonic crystal gives rise to defect states in the form of small confined modes. By embedding an active gain medium like quantum dots into the membrane makes it possible to realize lasers with ultra-small mode volumes and low thresholds. Unfortunately single cavity photonic crystal...

  14. Dispersion properties of photonic crystal fibres

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes; Dridi, Kim

    1998-01-01

    Approximate dispersion and bending properties of all-silica two-dimensional photonic crystal fibres are characterised by the combination of an effective-index model and classical analysis tools for optical fibres. We believe for the first time to have predicted the dispersion properties of photonic...... crystal fibres. The results strongly indicate that these fibres have potential applications as dispersion managing components...

  15. Photonic band gap engineering in 2D photonic crystals

    Indian Academy of Sciences (India)

    -dimensional photonic crystals with square lattices composed of air holes in dielectric and vice versa i.e., dielectric rods in air, using the plane-wave expansion method are investigated. We then study, how the photonic band gap size is ...

  16. Photonic and plasmonic guided modes in graphene-silicon photonic crystals

    DEFF Research Database (Denmark)

    Gu, Tingyi; Andryieuski, Andrei; Hao, Yufeng

    2016-01-01

    We report the results of systematic studies of plasmonic and photonic guided modes in large-area single-layer graphene integrated into a nanostructured silicon substrate. The interaction of light with graphene and substrate photonic crystals can be classified in distinct regimes of plasmonic...... and photonic modes....

  17. Optical characterisation of photonic wire and photonic crystal waveguides fabricated using nanoimprint lithography

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Frandsen, Lars Hagedorn; Lavrinenko, Andrei

    2006-01-01

    We have characterised photonic-crystal and photonic-wire waveguides fabricated by thermal nanoimprint lithography. The structures, with feature sizes down below 20 nm, are benchmarked against similar structures defined by direct electron beam lithography.......We have characterised photonic-crystal and photonic-wire waveguides fabricated by thermal nanoimprint lithography. The structures, with feature sizes down below 20 nm, are benchmarked against similar structures defined by direct electron beam lithography....

  18. Nonlinear coherent structures in granular crystals

    Science.gov (United States)

    Chong, C.; Porter, Mason A.; Kevrekidis, P. G.; Daraio, C.

    2017-10-01

    The study of granular crystals, which are nonlinear metamaterials that consist of closely packed arrays of particles that interact elastically, is a vibrant area of research that combines ideas from disciplines such as materials science, nonlinear dynamics, and condensed-matter physics. Granular crystals exploit geometrical nonlinearities in their constitutive microstructure to produce properties (such as tunability and energy localization) that are not conventional to engineering materials and linear devices. In this topical review, we focus on recent experimental, computational, and theoretical results on nonlinear coherent structures in granular crystals. Such structures—which include traveling solitary waves, dispersive shock waves, and discrete breathers—have fascinating dynamics, including a diversity of both transient features and robust, long-lived patterns that emerge from broad classes of initial data. In our review, we primarily discuss phenomena in one-dimensional crystals, as most research to date has focused on such scenarios, but we also present some extensions to two-dimensional settings. Throughout the review, we highlight open problems and discuss a variety of potential engineering applications that arise from the rich dynamic response of granular crystals.

  19. Nonlinear optical and electroabsorption spectra of polydiacetylene crystals and films

    Science.gov (United States)

    Mukhopadhyay, D.; Soos, Z. G.

    1996-01-01

    Vibronic structure of nonlinear optical (NLO) coefficients is developed within the Condon approximation, displaced harmonic oscillators, and crude adiabatic states. The displacements of backbone modes of conjugated polymers are taken from vibrational data on the ground and 1B excited state. NLO resonances are modeled by three excitations and transition moments taken from Pariser-Parr-Pople (PPP) theory and optimized to polydiacetylene (PDA) spectra in crystals and films, with blue-shifted 1B exciton. The joint analysis of third-harmonic-generation, two-photon absorption, and nondegenerate four-wave-mixing spectra of PDA crystals and films shows weak two-photon absorption to 2A below 1B, leading to overlapping resonances in the THG spectrum, strong two-photon absorption to an nA state some 35% above 1B, and weak Raman resonances in nondegenerate FWM spectra. The full π-π* spectrum contributes to Stark shifts and field-induced transitions, as shown by PPP results for PDA oligomers. The Stark shift dominates high-resolution electroabsorption (EA) spectra of PDA crystals below 10 K. The close correspondence between EA and the first-derivative I'(ω) of the linear absorption above the 1B exciton in PDA crystals provides an experimental separation of vibrational and electronic contributions that limits any even-parity state in this 0.5 eV interval. An oscillator-strength sum rule is applied to the convergence of PDA oligomers with increasing length, N, and the crystal oscillator strengths are obtained without adjustable parameters. The sum rule for the 1B exciton implies large transition moments to higher-energy Ag states, whose locations in recent models are contrasted to PPP results. Joint analysis of NLO and EA spectra clarifies when a few electronic excitations are sufficient, distinguishes between vibrational and electronic contributions, and supports similar π-electron interactions in conjugated molecules and polymers.

  20. Sidewall roughness measurement of photonic wires and photonic crystals

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Frandsen, Lars Hagedorn; Garnæs, Jørgen

    2007-01-01

    The performance of nanophotonic building blocks such as photonic wires and photonic crystals are rapidly improving, with very low propagation loss and very high cavity Q-factors being reported. In order to facilitate further improvements in performance the ability to quantitatively measure...

  1. Broadband slow light in one-dimensional logically combined photonic crystals.

    Science.gov (United States)

    Alagappan, G; Png, C E

    2015-01-28

    Here, we demonstrate the broadband slow light effects in a new family of one dimensional photonic crystals, which are obtained by logically combining two photonic crystals of slightly different periods. The logical combination slowly destroys the original translational symmetries of the individual photonic crystals. Consequently, the Bloch modes of the individual photonic crystals with different wavevectors couple with each other, creating a vast number of slow modes. Specifically, we describe a photonic crystal architecture that results from a logical "OR" mixture of two one dimensional photonic crystals with a periods ratio of r = R/(R - 1), where R > 2 is an integer. Such a logically combined architecture, exhibits a broad region of frequencies in which a dense number of slow modes with varnishing group velocities, appear naturally as Bloch modes.

  2. Rare-Earth Doped Photonic Crystal Fibre Lasers and Amplifiers

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.

    2005-01-01

    In this thesis, a theoretical and numerical study of the use of rare-earthdoped photonic crystal fibres as optical amplifiers and lasers, has been performed. Photonic crystal fibres or microstructured optical fibres is a new kind of optical fibre in which the cladding region typically consist....... Their novel properties allow for design of optical fibre amplifiers and fibre lasers with superior performance, compared to solutions based on conventional fibres. The primary applications considered are high efficiency fibre amplifiers based on index guiding photonic crystal fibres, and cladding pumped....... The thesis also presents the basic properties of optical amplification, and describes the numerical model developed to model the behaviour of lasers and amplifiers based on photonic crystal fibres. The developed numerical tools are then used to investigate specific applications of photonic crystal fibres...

  3. Quarter-lambda-shifted photonic crystal lasers

    DEFF Research Database (Denmark)

    Schubert, Martin; Skovgård, Troels Suhr; Ek, Sara

    A new design for photonic crystal lasers is proposed and realised. It allows an intuitive design for ultralow mode volume and high Q cavities which can be realized in a connected membrane structure.......A new design for photonic crystal lasers is proposed and realised. It allows an intuitive design for ultralow mode volume and high Q cavities which can be realized in a connected membrane structure....

  4. Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals.

    Science.gov (United States)

    Ding, Haibo; Zhu, Cun; Tian, Lei; Liu, Cihui; Fu, Guangbin; Shang, Luoran; Gu, Zhongze

    2017-04-05

    In this work, we demonstrate the fabrication of photonic crystal patterns with controllable morphologies and structural colors utilizing electrohydrodynamic jet (E-jet) printing with colloidal crystal inks. The final shape of photonic crystal units is controlled by the applied voltage signal and wettability of the substrate. Optical properties of the structural color patterns are tuned by the self-assembly of the silica nanoparticle building blocks. Using this direct printing technique, it is feasible to print customized functional patterns composed of photonic crystal dots or photonic crystal lines according to relevant printing mode and predesigned tracks. This is the first report for E-jet printing with colloidal crystal inks. Our results exhibit promising applications in displays, biosensors, and other functional devices.

  5. Modelling of photonic crystal fibres

    DEFF Research Database (Denmark)

    Knudsen, Erik

    2003-01-01

    , as well as a honeycomb bandgap fibre and the first analysis of semi-periodic layered air-hole fibres. Using the modelling framework established as a basis, we provide an analysis of microbend loss, by regarding displacement of a fibre core as a stationary stochastic process, inducing mismatch between......In the presenta ph.d. work a theoretical study of aspects of modelling photonic crystal fibres was carried out. Photonic crystal fibres form a class of optical waveguides where guidance is no longer provided by a difference in refractive index between core and cladding. Instead, guidance...... is provided by an arrangement of air-holes running along the length of the fibre. Depending on the geometry of the fibre, the guiding mechanism may be either arising from the formation of a photonic bandgap in the cladding structure (photonic bandgap fibre), or by an effect resembling total internal...

  6. Photonic crystal fibers for supercontinuum generation pumped by a gain-switched CW fiber laser

    DEFF Research Database (Denmark)

    Larsen, Casper; Noordegraaf, Danny; Hansen, Kim P.

    2012-01-01

    Supercontinuum generation in photonics crystal fibers (PCFs) pumped by CW lasers yields high spectral power density and average power. However, such systems require very high pump power and long nonlinear fibers. By on/off modulating the pump diodes of the fiber laser, the relaxation oscillations...... of the laser can be exploited to enhance the broadening process. The physics behind the supercontinuum generation is investigated by sweeping the fiber length, the zero dispersion wavelength, and the fiber nonlinearity. We show that by applying gain-switching a high average output power of up to 30 W can...

  7. The study of thermal tunable coupling between a Superconducting photonic crystal waveguide and semi-circular photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Oskooi, Somayeh; Barvestani, Jamal, E-mail: barvestani@tabrizu.ac.ir

    2016-08-15

    Highlights: • The light coupling between superconducting photonic crystal waveguide and a semi-circular photonic crystal has been studied. • We utilized the finite difference time domain and plane wave expansion methods in the calculations. • The effect of the size of the nearest neighbor rods of waveguide on the coupling efficiency has been investigated. • The coupling efficiencies are reported versus the temperature of the superconducting waveguide. - Abstract: Through the present study, we investigated the light coupling between superconducting photonic crystal waveguide and a semi-circular photonic crystal. By using the finite difference time domain method, we evaluated the coupling efficiency between the mentioned structures at the various temperatures for different waveguide sizes. Calculation demonstrated that the coupling efficiency strongly depended on the temperature of the superconductor. The peak value of the coupling efficiency was influenced by the size of the nearest neighbor rods of waveguide. The results have shown that it is possible to obtain high efficiency at the desired temperature with proper selection of physical parameters in far-infrared frequency region. This structure has great potential in the optical integration and other areas.

  8. Experimental demonstration of a Fano laser based on photonic crystals

    DEFF Research Database (Denmark)

    Yu, Yi; Semenova, Elizaveta; Yvind, Kresten

    2017-01-01

    Conventional semiconductor laser mirrors are based on Fresnel reflection [1], Bragg reflection [2, 3] or total internal reflection [4]. Here we demonstrate a new laser concept using photonic crystals (PhC), with a mirror based on Fano interference between a waveguide continuum and a discrete...... resonance of a nanocavity [5]. We show that the very narrowband feature of the Fano resonance [6] can lead to single mode lasing. In addition, when combined with optical nonlinearity, the highly dispersive feature of the Fano resonance can promote self-pulsations at gigahertz frequencies [7], which...

  9. Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms

    DEFF Research Database (Denmark)

    Markos, Christos; Kubat, Irnis; Bang, Ole

    2014-01-01

    The combination of chalcogenide glasses with polymer photonic crystal fibers (PCFs) is a difficult and challenging task due to their different thermo-mechanical material properties. Here we report the first experimental realization of a hybrid polymer-chalcogenide PCF with integrated As2S3 glass...... nanofilms at the inner surface of the air-channels of a poly-methyl-methacrylate (PMMA) PCF. The integrated high refractive index glass films introduce distinct antiresonant transmission bands in the 480-900 nm wavelength region. We demonstrate that the ultra-high Kerr nonlinearity of the chalcogenide glass...

  10. Optimized dipole antennas on photonic band gap crystals

    International Nuclear Information System (INIS)

    Cheng, S.D.; Biswas, R.; Ozbay, E.; McCalmont, S.; Tuttle, G.; Ho, K.

    1995-01-01

    Photonic band gap crystals have been used as a perfectly reflecting substrate for planar dipole antennas in the 12--15 GHz regime. The position, orientation, and driving frequency of the dipole antenna on the photonic band gap crystal surface, have been optimized for antenna performance and directionality. Virtually no radiated power is lost to the photonic crystal resulting in gains and radiation efficiencies larger than antennas on other conventional dielectric substrates. copyright 1995 American Institute of Physics

  11. Precursors in photonic crystals - art. no. 618218

    NARCIS (Netherlands)

    Uitham, R.; Hoenders, B. J.; DeLaRue, RM; Viktorovitch, P; Lopez, C; Midrio, M

    2006-01-01

    We derive the Sommerfeld precursor and present the first calculations for the Brillouin precursor that result from the transmission of a pulse through a photonic crystal. The photonic crystal is modelled by a one-dimensional N-layer medium and the pulse is a generic electromagnetic plane wave packet

  12. Photon-pair generation in nonlinear metal-dielectric one-dimensional photonic structures

    Czech Academy of Sciences Publication Activity Database

    Javůrek, D.; Svozilík, J.; Peřina ml., Jan

    2014-01-01

    Roč. 90, č. 5 (2014), "053813-1"-"053813-14" ISSN 1050-2947 R&D Projects: GA ČR GAP205/12/0382 Institutional support: RVO:68378271 Keywords : photon pairs * nonlinear metal-dielectric * one-dimensional photonic structures Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.808, year: 2014

  13. Slotted Photonic Crystal Sensors

    Science.gov (United States)

    Scullion, Mark G.; Krauss, Thomas F.; Di Falco, Andrea

    2013-01-01

    Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study. PMID:23503295

  14. Slotted Photonic Crystal Sensors

    Directory of Open Access Journals (Sweden)

    Andrea Di Falco

    2013-03-01

    Full Text Available Optical biosensors are increasingly being considered for lab-on-a-chip applications due to their benefits such as small size, biocompatibility, passive behaviour and lack of the need for fluorescent labels. The light guiding mechanisms used by many of them results in poor overlap of the optical field with the target molecules, reducing the maximum sensitivity achievable. This review article presents a new platform for optical biosensors, namely slotted photonic crystals, which provide higher sensitivities due to their ability to confine, spatially and temporally, the optical mode peak within the analyte itself. Loss measurements showed values comparable to standard photonic crystals, confirming their ability to be used in real devices. A novel resonant coupler was designed, simulated, and experimentally tested, and was found to perform better than other solutions within the literature. Combining with cavities, microfluidics and biological functionalization allowed proof-of-principle demonstrations of protein binding to be carried out. Higher sensitivities were observed in smaller structures than possible with most competing devices reported in the literature. This body of work presents slotted photonic crystals as a realistic platform for complete on-chip biosensing; addressing key design, performance and application issues, whilst also opening up exciting new ideas for future study.

  15. Dirac directional emission in anisotropic zero refractive index photonic crystals.

    Science.gov (United States)

    He, Xin-Tao; Zhong, Yao-Nan; Zhou, You; Zhong, Zhi-Chao; Dong, Jian-Wen

    2015-08-14

    A certain class of photonic crystals with conical dispersion is known to behave as isotropic zero-refractive-index medium. However, the discrete building blocks in such photonic crystals are limited to construct multidirectional devices, even for high-symmetric photonic crystals. Here, we show multidirectional emission from low-symmetric photonic crystals with semi-Dirac dispersion at the zone center. We demonstrate that such low-symmetric photonic crystal can be considered as an effective anisotropic zero-refractive-index medium, as long as there is only one propagation mode near Dirac frequency. Four kinds of Dirac multidirectional emitters are achieved with the channel numbers of five, seven, eleven, and thirteen, respectively. Spatial power combination for such kind of Dirac directional emitter is also verified even when multiple sources are randomly placed in the anisotropic zero-refractive-index photonic crystal.

  16. Photonic crystals: features and applications (physics research and technology)

    CERN Document Server

    2013-01-01

    The present book is focused on the study of unprecedented control and manipulation of light by photonic crystals (PCs) and their applications. These are micro- or usually nano-structures composed of periodic indexes of refraction of dielectrics with high refractive index contrast. They exhibit optical frequency band gaps in analogy to electronic bands for a periodic potential of a semiconductor crystal lattice. The gemstone opal and butterflys feathers colours are already referred to as natural examples of photonic crystals. The characteristics of such supper-lattices were first reported by Yablonovitch in 1987. The exploitation of photonic crystals is a promising tool in communication, sensors, optical computing, and nanophotonics. Discussed are the various features of one-dimensional (1D) and two-dimensional (2D) photonic crystals, photonic quasi crystals, heterostuctures and PC fibres under a variety of conditions using several materials, and metamaterials. It also focuses on the applications of PCs in opt...

  17. Valley photonic crystals for control of spin and topology.

    Science.gov (United States)

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang

    2017-03-01

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley-spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

  18. Transverse effects in nonlinear optics: Toward the photon superfluid

    Science.gov (United States)

    McCormick, Colin Fraser

    Nonlinear optics displays a wealth of transverse effects. These effects are particularly rich in the presence of an optical cavity. Many considerations suggest that in a Kerr nonlinear cavity a new state of light known as a "photon superfluid" can form, with strong analogies to atomic superfluids. The conditions for the formation of the photon superfluid include requirements on the cavity, input light fields and the nonlinear medium as well as various timescales. The most favorable candidate nonlinear medium for observing the photon super-fluid is an atomic vapor. With a strong and fast Kerr effect, atomic vapors also have the advantage of a Kerr coefficient that is tunable in both magnitude and sign. A series of z-scan experiments in far-detuned atomic rubidium vapor is reported, measuring the Kerr coefficient and determining its functional dependence on detuning to be that of a Doppler-broadened two-level model with adiabatic following of the electric field by the atom pseudomoment. Saturation effects are found to be important. Z-scan measurements for detunings within the Doppler profile are shown to agree well with numerical simulations based on the Doppler-broadened model. Agreement between absorptive and refractive non-linear coefficients is evidence of the Kramers-Kronig relations at work, even in this nonlinear system. The formation of the photon superfluid is discussed and the calculation of a new process, nearly collinear four-wave mixing, is presented. This process is essentially an inverse beam filamentation that is likely to be the underlying physical mechanism for transverse cooling and condensation of photons in a nonlinear optical cavity. Nearly collinear four-wave mixing may also be related to phenomena in general nonlinear physics, including modulation instability and Fermi-Pasta-Ulam recurrence.

  19. Computational Modeling of Photonic Crystal Microcavity Single-Photon Emitters

    Science.gov (United States)

    Saulnier, Nicole A.

    Conventional cryptography is based on algorithms that are mathematically complex and difficult to solve, such as factoring large numbers. The advent of a quantum computer would render these schemes useless. As scientists work to develop a quantum computer, cryptographers are developing new schemes for unconditionally secure cryptography. Quantum key distribution has emerged as one of the potential replacements of classical cryptography. It relics on the fact that measurement of a quantum bit changes the state of the bit and undetected eavesdropping is impossible. Single polarized photons can be used as the quantum bits, such that a quantum system would in some ways mirror the classical communication scheme. The quantum key distribution system would include components that create, transmit and detect single polarized photons. The focus of this work is on the development of an efficient single-photon source. This source is comprised of a single quantum dot inside of a photonic crystal microcavity. To better understand the physics behind the device, a computational model is developed. The model uses Finite-Difference Time-Domain methods to analyze the electromagnetic field distribution in photonic crystal microcavities. It uses an 8-band k · p perturbation theory to compute the energy band structure of the epitaxially grown quantum dots. We discuss a method that combines the results of these two calculations for determining the spontaneous emission lifetime of a quantum dot in bulk material or in a microcavity. The computational models developed in this thesis are used to identify and characterize microcavities for potential use in a single-photon source. The computational tools developed are also used to investigate novel photonic crystal microcavities that incorporate 1D distributed Bragg reflectors for vertical confinement. It is found that the spontaneous emission enhancement in the quasi-3D cavities can be significantly greater than in traditional suspended slab

  20. Nonlinear surface elastic modes in crystals

    Science.gov (United States)

    Gorentsveig, V. I.; Kivshar, Yu. S.; Kosevich, A. M.; Syrkin, E. S.

    1990-03-01

    The influence of nonlinearity on shear horizontal surface elastic waves in crystals is described on the basis of the effective nonlinear Schrödinger equation. It is shown that the corresponding solutions form a set of surface modes and the simplest mode coincides with the solution proposed by Mozhaev. The higher order modes have internal frequencies caused by the nonlinearity. All these modes decay in the crystal as uoexp(- z/ zo) atz≫ zo- u o-1 ( z is the distance from the crystal surface, uo the wave amplitude at the surface). The creation of the modes from a localized surface excitation has a threshold. The stability of the modes is discussed.

  1. Butterfly wing color: A photonic crystal demonstration

    Science.gov (United States)

    Proietti Zaccaria, Remo

    2016-01-01

    We have theoretically modeled the optical behavior of a natural occurring photonic crystal, as defined by the geometrical characteristics of the Teinopalpus Imperialis butterfly. In particular, following a genetic algorithm approach, we demonstrate how its wings follow a triclinic crystal geometry with a tetrahedron unit base. By performing both photonic band analysis and transmission/reflection simulations, we are able to explain the characteristic colors emerging by the butterfly wings, thus confirming their crystal form.

  2. Metallic dielectric photonic crystals and methods of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2016-12-20

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  3. Metallic dielectric photonic crystals and methods of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Jeffrey Brian; Kim, Sang-Gook

    2017-12-05

    A metallic-dielectric photonic crystal is formed with a periodic structure defining a plurality of resonant cavities to selectively absorb incident radiation. A metal layer is deposited on the inner surfaces of the resonant cavities and a dielectric material fills inside the resonant cavities. This photonic crystal can be used to selectively absorb broadband solar radiation and then reemit absorbed radiation in a wavelength band that matches the absorption band of a photovoltaic cell. The photonic crystal can be fabricated by patterning a sacrificial layer with a plurality of holes, into which is deposited a supporting material. Removing the rest of the sacrificial layer creates a supporting structure, on which a layer of metal is deposited to define resonant cavities. A dielectric material then fills the cavities to form the photonic crystal.

  4. Optical nonreciprocal transmission in an asymmetric silicon photonic crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zheng; Chen, Juguang; Ji, Mengxi; Huang, Qingzhong; Xia, Jinsong; Wang, Yi, E-mail: yingwu2@126.com, E-mail: ywangwnlo@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wu, Ying, E-mail: yingwu2@126.com, E-mail: ywangwnlo@mail.hust.edu.cn [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2015-11-30

    An optical nonreciprocal transmission (ONT) is realized by employing the nonlinear effects in a compact asymmetric direct-coupled nanocavity-waveguide silicon photonic crystal structure with a high loaded quality factor (Q{sub L}) of 42 360 and large extinction ratio exceeding 30 dB. Applying a single step lithography and successive etching, the device can realize the ONT in an individual nanocavity, alleviating the requirement to accurately control the resonance of the cavities. A maximum nonreciprocal transmission ratio of 21.1 dB as well as a working bandwidth of 280 pm in the telecommunication band are obtained at a low input power of 76.7 μW. The calculated results by employing a nonlinear coupled-mode model are in good agreement with the experiment.

  5. Nonlinear Photonic Systems for V- and W-Band Antenna Remoting Applications

    Science.gov (United States)

    2016-10-22

    AFRL-AFOSR-JP-TR-2016-0088 Nonlinear Photonic Systems for V- and W-Band Antenna Remoting Applications Sheng-Kwang Hwang NATIONAL CHENG KUNG...2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) 26 May 2015 to 25 May 2016 4. TITLE AND SUBTITLE Nonlinear Photonic Systems for V- and W-Band...TERMS nonlinear, photonic , antenna, remote, microwave, amplification, bandwith, modulation 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR

  6. Photonic Crystal Polarizing and Non-Polarizing Beam Splitters

    International Nuclear Information System (INIS)

    Chun-Ying, Guan; Jin-Hui, Shi; Li-Boo, Yuan

    2008-01-01

    A polarizing beam splitter (PBS) and a non-polarizing beam splitter (NPBS) based on a photonic crystal (PC) directional coupler are demonstrated. The photonic crystal directional coupler consists of a hexagonal lattice of dielectric pillars in air and has a complete photonic band gap. The photonic band structure and the band gap map are calculated using the plane wave expansion (PWE) method. The splitting properties of the splitter are investigated numerically using the finite difference time domain (FDTD) method

  7. Photonic Crystal Sensors Based on Porous Silicon

    Directory of Open Access Journals (Sweden)

    Claudia Pacholski

    2013-04-01

    Full Text Available Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential.

  8. Photonic Crystal Sensors Based on Porous Silicon

    Science.gov (United States)

    Pacholski, Claudia

    2013-01-01

    Porous silicon has been established as an excellent sensing platform for the optical detection of hazardous chemicals and biomolecular interactions such as DNA hybridization, antigen/antibody binding, and enzymatic reactions. Its porous nature provides a high surface area within a small volume, which can be easily controlled by changing the pore sizes. As the porosity and consequently the refractive index of an etched porous silicon layer depends on the electrochemial etching conditions photonic crystals composed of multilayered porous silicon films with well-resolved and narrow optical reflectivity features can easily be obtained. The prominent optical response of the photonic crystal decreases the detection limit and therefore increases the sensitivity of porous silicon sensors in comparison to sensors utilizing Fabry-Pérot based optical transduction. Development of porous silicon photonic crystal sensors which allow for the detection of analytes by the naked eye using a simple color change or the fabrication of stacked porous silicon photonic crystals showing two distinct optical features which can be utilized for the discrimination of analytes emphasize its high application potential. PMID:23571671

  9. Valley photonic crystals for control of spin and topology

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang

    2016-11-28

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing1,2,3,4. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points5,6,7,8,9,10. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials11,12,13,14,15. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley–spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

  10. Active Photonic crystal fibers for high power applications

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin

    The photonic crystal ber technology provides means to realize bers optimized for high power operation, due to the large single-mode cores and the unique design exibility of the microstructure. The work presented in this thesis focuses on improving the properties of active photonic crystal bers...... contributed to the compounding of new and improved material compositions. The second part is an investigation of pump absorption in photonic crystal bers, demonstrating that the microstructure in photonic crystal bers improves the pump absorption by up to a factor of two compared to step-index bers....... This plays an important role in high power lasers and ampliers with respect to efficiency, packaging, and thermal handling. The third part of the work has involved developing tools for characterizing the mode quality and stability of large core bers. Stable, single-mode bers with larger cores are essential...

  11. Absorption in one-dimensional metallic-dielectric photonic crystals

    International Nuclear Information System (INIS)

    Yu Junfei; Shen Yifeng; Liu Xiaohan; Fu Rongtang; Zi Jian; Zhu Zhiqiang

    2004-01-01

    We show theoretically that the absorption of one-dimensional metallic-dielectric photonic crystals can be enhanced considerably over the corresponding constituent metal. By properly choosing the structural and material parameters, the absorption of one-dimensional metallic-dielectric photonic crystals can be enhanced by one order of magnitude in the visible and in the near infrared regions. It is found that the absorptance of such photonic crystals increases with increasing number of periods. Rules on how to obtain a absorption enhancement in a certain frequency range are discussed. (letter to the editor)

  12. Analysis of thin-film photonic crystal microstructures

    International Nuclear Information System (INIS)

    Pottage, John Mark

    2003-01-01

    Optical-scale microstructures containing thin-film photonic crystals (TFPCs) are modelled by transfer/scattering matrix methods, based on Fourier-series expansion of the optical Bloch eigenmodes. The majority of the TFPCs considered consist of 2D arrays of holes arranged in a triangular lattice, etched into high-index Al x Ga 1-x As and placed on a low-index oxidised substrate. These TFPCs can be easily fabricated by standard electron-beam lithography techniques. Unlike most photonic crystal devices that have been proposed, our 'intra-pass-band' TFPCs would work by exploiting the somewhat surprising properties of propagating optical Bloch waves rather than directly relying on photonic bandgaps. By numerical modelling, it is demonstrated that 2D-patterned TFPCs can support highly dispersive high-Q quasi-guided and truly-guided resonant modes, and the unusual properties of these modes are explained in terms of their Bloch-wave compositions. Modal dispersion diagrams of TFPCs, showing the loci of the resonant modes in in-plane wavevector space at fixed frequency, are calculated. These so-called 'resonance diagrams' and variants thereof, are shown to be a useful design tool for TFPC-based integrated optical components. It is suggested that TFPCs may be a viable alternative to distributed Bragg reflectors in semiconductor vertical cavity surface-emitting lasers, possessing potential advantages in terms of compactness and ease of fabrication. The high angular and spectral dispersion of the resonant modes implies that TFPCs could form the basis of a new family of compact devices for performing such functions as wavelength-division multiplexing/demultiplexing, beam-steering and frequency-selective filtering. Enhancement of nonlinear effects could also be achieved in TFPC resonators, because in them a high cavity Q-factor and a low in-plane group-velocity can be attained simultaneously. (author)

  13. Photonic crystal scintillators and methods of manufacture

    Science.gov (United States)

    Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose

    2015-08-11

    Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.

  14. Graphene-based one-dimensional photonic crystal

    OpenAIRE

    Berman, Oleg L.; Kezerashvili, Roman Ya.

    2011-01-01

    A novel type of one-dimensional (1D) photonic crystal formed by the array of periodically located stacks of alternating graphene and dielectric stripes embedded into a background dielectric medium is proposed. The wave equation for the electromagnetic wave propagating in such structure solved in the framework of the Kronig-Penney model. The frequency band structure of 1D graphene-based photonic crystal is obtained analytically as a function of the filling factor and the thickness of the diele...

  15. Tunable bandpass filter based on photonic crystal fiber filled with multiple liquid crystals

    DEFF Research Database (Denmark)

    Scolari, Lara; Tartarini, G.; Borelli, E.

    2007-01-01

    A tunable bandpass filter based on a photonic crystal fiber filled with two different liquid crystals is demonstrated. 130 nm bandwidth tunability is achieved by tuning the temperature from 30degC to 90degC.......A tunable bandpass filter based on a photonic crystal fiber filled with two different liquid crystals is demonstrated. 130 nm bandwidth tunability is achieved by tuning the temperature from 30degC to 90degC....

  16. Quartz substrate infrared photonic crystal

    Science.gov (United States)

    Ghadiri, Khosrow; Rejeb, Jalel; Vitchev, Vladimir N.

    2003-01-01

    This paper presents the fabrication of a planar photonic crystal (p2c) made of a square array of dielectric rods embedded in air, operating in the infrared spectrum. A quartz substrate is employed instead of the commonly used silicon or column III-V substrate. Our square structure has a normalized cylinder radius-to-pitch ratio of r/a = 0.248 and dielectric material contrast ɛr of 4.5. We choose a Z-cut synthetic quartz for its cut (geometry), and etching properties. Then a particular Z-axis etching process is employed in order to ensure the sharp-edged verticality of the rods and fast etching speed. We also present the computer simulations that allowed the establishment of the photonic band gaps (PBG) of our photonic crystal, as well as the actual measurements. An experimental measurement have been carried out and compared with different simulations. It was found that experimental results are in good agreement with different simulation results. Finally, a frequency selective device for optical communication based on the introduction of impurity sites in the photonic crystal is presented. With our proposed structure Optical System on a Chip (OsoC) with micro-cavity based active devices such as lasers, diodes, modulators, couplers, frequency selective emitters, add-drop filters, detectors, mux/demuxes and polarizers connected by passive waveguide links can be realized.

  17. Graded photonic crystals by optical interference holography

    International Nuclear Information System (INIS)

    Han, Chunrui; Tam, Wing Yim

    2012-01-01

    We report on the fabrication of graded photonic crystals in dye doped dichromate gelatin emulsions using an optical interference holographic technique. The gradedness is achieved by imposing a gradient form factor in the interference intensity resulting from the absorption of the dye in the dichromate gelatin. Wider and deeper photonic bandgaps are observed for the dyed samples as compared to the un-dyed samples. Our method could open up a new direction in fabricating graded photonic crystals which cannot be achieved easily using other techniques. (paper)

  18. Fano resonance control in a photonic crystal structure and its application to ultrafast switching

    DEFF Research Database (Denmark)

    Yu, Yi; Heuck, Mikkel; Hu, Hao

    2014-01-01

    We experimentally demonstrate a photonic crystal structure that allows easy and robust control of the Fano spectrum. Its operation relies on controlling the amplitude of light propagating along one of the light paths in the structure from which the Fano resonance is obtained. Short-pulse dynamic ...... reshaping effect of the nonlinear Fano transfer function. As an example, we present a system application of a Fano structure, demonstrating its advantages by the experimental realiza- tion of 10 Gbit/s all-optical modulation with optical control power less than 1mW.......We experimentally demonstrate a photonic crystal structure that allows easy and robust control of the Fano spectrum. Its operation relies on controlling the amplitude of light propagating along one of the light paths in the structure from which the Fano resonance is obtained. Short-pulse dynamic...

  19. Reconfigurable topological photonic crystal

    Science.gov (United States)

    Shalaev, Mikhail I.; Desnavi, Sameerah; Walasik, Wiktor; Litchinitser, Natalia M.

    2018-02-01

    Topological insulators are materials that conduct on the surface and insulate in their interior due to non-trivial topology of the band structure. The edge states on the interface between topological (non-trivial) and conventional (trivial) insulators are topologically protected from scattering due to structural defects and disorders. Recently, it was shown that photonic crystals (PCs) can serve as a platform for realizing a scatter-free propagation of light waves. In conventional PCs, imperfections, structural disorders, and surface roughness lead to significant losses. The breakthrough in overcoming these problems is likely to come from the synergy of the topological PCs and silicon-based photonics technology that enables high integration density, lossless propagation, and immunity to fabrication imperfections. For many applications, reconfigurability and capability to control the propagation of these non-trivial photonic edge states is essential. One way to facilitate such dynamic control is to use liquid crystals (LCs), which allow to modify the refractive index with external electric field. Here, we demonstrate dynamic control of topological edge states by modifying the refractive index of a LC background medium. Background index is changed depending on the orientation of a LC, while preserving the topology of the system. This results in a change of the spectral position of the photonic bandgap and the topological edge states. The proposed concept might be implemented using conventional semiconductor technology, and can be used for robust energy transport in integrated photonic devices, all-optical circuity, and optical communication systems.

  20. Multiple soliton self-frequency shift cancellations in a temporally tailored photonic crystal fiber

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lai; Kang, Zhe; Li, Qing; Gao, Xuejian; Qin, Guanshi, E-mail: qings@jlu.edu.cn, E-mail: wpqin@jlu.edu.cn; Qin, Weiping, E-mail: qings@jlu.edu.cn, E-mail: wpqin@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Liao, Meisong; Hu, Lili [Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Ohishi, Yasutake [Research Center for Advanced Photon Technology, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan)

    2014-11-03

    We report the generation of multiple soliton self-frequency shift cancellations in a temporally tailored tellurite photonic crystal fiber (PCF). The temporally regulated group velocity dispersion (GVD) is generated in the fiber by soliton induced optical Kerr effect. Two red-shifted dispersive waves spring up when two Raman solitons meet their own second zero-dispersion-wavelengths in the PCF. These results show how, through temporally tailored GVD, nonlinearities can be harnessed to generate unexpected effects.

  1. Nonlinear Bloch waves in metallic photonic band-gap filaments

    International Nuclear Information System (INIS)

    Kaso, Artan; John, Sajeev

    2007-01-01

    We demonstrate the occurrence of nonlinear Bloch waves in metallic photonic crystals (PCs). These periodically structured filaments are characterized by an isolated optical pass band below an effective plasma gap. The pass band occurs in a frequency range where the metallic filament exhibits a negative, frequency-dependent dielectric function and absorption loss. The metallic losses are counterbalanced by gain in two models of inhomogeneously broadened nonlinear oscillators. In the first model, we consider close-packed quantum dots that fill the void regions of a two-dimensional (2D) metallic PC, and whose inhomogeneously broadened emission spectrum spans the original optical pass band of the bare filament. In the second model, we consider thin (10-50 nm) layers of inhomogeneously broadened two-level resonators, with large dipole oscillator strength, that cover the interior surfaces of 2D metallic (silver and tungsten) PCs. These may arise from localized surface plasmon resonances due to small metal particles or an otherwise rough metal surface. For simplicity, we treat electromagnetic modes with electric field perpendicular to the plane of metal periodicity. In both models, a pumping threshold of the resonators is found, above which periodic nonlinear solutions of Maxwell's equations with purely real frequency within the optical pass band emerge. These nonlinear Bloch waves exhibit a laserlike input pumping to output amplitude characteristic. For strong surface resonances, these nonlinear waves may play a role in light emission from a hot tungsten (suitably microstructured) filament

  2. Nonlinear Bloch waves in metallic photonic band-gap filaments

    Science.gov (United States)

    Kaso, Artan; John, Sajeev

    2007-11-01

    We demonstrate the occurrence of nonlinear Bloch waves in metallic photonic crystals (PCs). These periodically structured filaments are characterized by an isolated optical pass band below an effective plasma gap. The pass band occurs in a frequency range where the metallic filament exhibits a negative, frequency-dependent dielectric function and absorption loss. The metallic losses are counterbalanced by gain in two models of inhomogeneously broadened nonlinear oscillators. In the first model, we consider close-packed quantum dots that fill the void regions of a two-dimensional (2D) metallic PC, and whose inhomogeneously broadened emission spectrum spans the original optical pass band of the bare filament. In the second model, we consider thin (10 50 nm) layers of inhomogeneously broadened two-level resonators, with large dipole oscillator strength, that cover the interior surfaces of 2D metallic (silver and tungsten) PCs. These may arise from localized surface plasmon resonances due to small metal particles or an otherwise rough metal surface. For simplicity, we treat electromagnetic modes with electric field perpendicular to the plane of metal periodicity. In both models, a pumping threshold of the resonators is found, above which periodic nonlinear solutions of Maxwell’s equations with purely real frequency within the optical pass band emerge. These nonlinear Bloch waves exhibit a laserlike input pumping to output amplitude characteristic. For strong surface resonances, these nonlinear waves may play a role in light emission from a hot tungsten (suitably microstructured) filament.

  3. Quantum Dots in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Sollner, Immo Nathanael

    This Thesis is focused on the study of quantum electrodynamics in photonic crystal waveguides. We investigate the interplay between a single quantum dot and the fundamental mode of the photonic crystal waveguide. We demonstrate experimental coupling eciencies for the spontaneous emission...... into the mode exceeding 98% for emitters spectrally close to the band-edge of the waveguide mode. In addition we illustrate the broadband nature of the underlying eects, by obtaining coupling eciencies above 90% for quantum dots detuned from the band edge by as far as 20nm. These values are in good agreement...... with numerical simulations. Such a high coupling eciency implies that the system can be considered an articial 1D-atom, and we theoretically show that this system can generate strong photon-photon interaction, which is an essential functionality for deterministic optical quantum information processing. We...

  4. Fractional decay of quantum dots in real photonic crystals

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Koenderink, A. Femius; Lodahl, Peter

    2008-01-01

    We show that fractional decay may be observable in experiments using quantum dots and photonic crystals with parameters that are currently achievable. We focus on the case of inverse opal photonic crystals and locate the position in the crystal where the effect is most pronounced. Furthermore, we...

  5. Thermo-, photo-, and mechano-responsive liquid crystal networks enable tunable photonic crystals.

    Science.gov (United States)

    Akamatsu, N; Hisano, K; Tatsumi, R; Aizawa, M; Barrett, C J; Shishido, A

    2017-10-25

    Tunable photonic crystals exhibiting optical properties that respond reversibly to external stimuli have been developed using liquid crystal networks (LCNs) and liquid crystal elastomers (LCEs). These tunable photonic crystals possess an inverse opal structure and are photo-responsive, but circumvent the usual requirement to contain dye molecules in the structure that often limit their applicability and cause optical degradation. Herein, we report tunable photonic crystal films that reversibly tune the reflection peak wavelength under thermo-, photo- and mechano-stimuli, through bilayering a stimuli-responsive LCN including azobenzene units with a colourless inverse opal film composed of non-responsive, flexible durable polymers. By mechanically deforming the azobenzene containing LCN via various stimuli, the reflection peak wavelength from the bilayered film assembly could be shifted on demand. We confirm that the reflection peak shift occurs due to the deformation of the stimuli-responsive layer propagating towards and into the inverse opal layer to change its shape in response, and this shift behaviour is repeatable without optical degradation.

  6. Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer.

    Science.gov (United States)

    Xing, Huihui; Li, Jun; Shi, Yang; Guo, Jinbao; Wei, Jie

    2016-04-13

    We have developed a novel thermoresponsive photonic actuator based on three-dimensional SiO2 opal photonic crystals (PCs) together with liquid crystal elastomers (LCEs). In the process of fabrication of such a photonic actuator, the LCE precursor is infiltrated into the SiO2 opal PC followed by UV light-induced photopolymerization, thereby forming the SiO2 opal PC/LCE composite film with a bilayer structure. We find that this bilayer composite film simultaneously exhibits actuation behavior as well as the photonic band gap (PBG) response to external temperature variation. When the SiO2 opal PC/LCE composite film is heated, it exhibits a considerable bending deformation, and its PBG shifts to a shorter wavelength at the same time. In addition, this actuation is quite fast, reversible, and highly repeatable. The thermoresponsive behavior of the SiO2 opal PC/LCE composite films mainly derives from the thermal-driven change of nematic order of the LCE layer which leads to the asymmetric shrinkage/expansion of the bilayer structure. These results will be of interest in designing optical actuator systems for environment-temperature detection.

  7. Photonic crystal fiber design for broadband directional coupling

    DEFF Research Database (Denmark)

    Lægsgaard, Jesper; Bang, Ole; Bjarklev, Anders Overgaard

    2004-01-01

    A novel design for a broadband directional coupler based on a photonic crystal fiber is investigated numerically. It is shown that suitable index-depressing doping of the core regions in an index-guiding twin-core photonic crystal fiber can stabilize the coupling coefficient between the cores over...

  8. Functional possibilities of nonlinear crystals for frequency conversion: uniaxial crystals

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, Yu M [Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch of the Russian Academy of Sciences, Tomsk (Russian Federation); Arapov, Yu D; Kasyanov, I V [E.I. Zababakhin All-Russian Scientific-Research Institute of Technical Physics, Russian Federal Nuclear Centre, Snezhinsk, Chelyabinsk region (Russian Federation); Grechin, S G; Nikolaev, P P [N.E. Bauman Moscow State Technical University, Moscow (Russian Federation)

    2016-01-31

    The method and results of the analysis of phase-matching and nonlinear properties for all point groups of symmetry of uniaxial crystals that determine their functional possibilities for solving various problems of nonlinear frequency conversion of laser radiation are presented. (nonlinear optical phenomena)

  9. Fano resonance in anodic aluminum oxide based photonic crystals.

    Science.gov (United States)

    Shang, Guo Liang; Fei, Guang Tao; Zhang, Yao; Yan, Peng; Xu, Shao Hui; Ouyang, Hao Miao; Zhang, Li De

    2014-01-08

    Anodic aluminum oxide based photonic crystals with periodic porous structure have been prepared using voltage compensation method. The as-prepared sample showed an ultra-narrow photonic bandgap. Asymmetric line-shape profiles of the photonic bandgaps have been observed, which is attributed to Fano resonance between the photonic bandgap state of photonic crystal and continuum scattering state of porous structure. And the exhibited Fano resonance shows more clearly when the sample is saturated ethanol gas than air-filled. Further theoretical analysis by transfer matrix method verified these results. These findings provide a better understanding on the nature of photonic bandgaps of photonic crystals made up of porous materials, in which the porous structures not only exist as layers of effective-refractive-index material providing Bragg scattering, but also provide a continuum light scattering state to interact with Bragg scattering state to show an asymmetric line-shape profile.

  10. Two-Photon Absorption in Organometallic Bromide Perovskites

    KAUST Repository

    Walters, Grant

    2015-07-21

    Organometallic trihalide perovskites are solution processed semiconductors that have made great strides in third generation thin film light harvesting and light emitting optoelectronic devices. Recently it has been demonstrated that large, high purity single crystals of these perovskites can be synthesized from the solution phase. These crystals’ large dimensions, clean bandgap, and solid-state order, have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW-1 at 800 nm, comparable to epitaxial single crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  11. Two-Photon Absorption in Organometallic Bromide Perovskites

    KAUST Repository

    Walters, Grant; Sutherland, Brandon R; Hoogland, Sjoerd; Shi, Dong; Comin, Riccardo; Sellan, Daniel P.; Bakr, Osman; Sargent, Edward H.

    2015-01-01

    Organometallic trihalide perovskites are solution processed semiconductors that have made great strides in third generation thin film light harvesting and light emitting optoelectronic devices. Recently it has been demonstrated that large, high purity single crystals of these perovskites can be synthesized from the solution phase. These crystals’ large dimensions, clean bandgap, and solid-state order, have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW-1 at 800 nm, comparable to epitaxial single crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics.

  12. Fabrication of Refractive Index Tunable Polydimethylsiloxane Photonic Crystal for Biosensor Application

    Science.gov (United States)

    Raman, Karthik; Murthy, T. R. Srinivasa; Hegde, G. M.

    Photonic crystal based nanostructures are expected to play a significant role in next generation nanophotonic devices. Recent developments in two-dimensional (2D) photonic crystal based devices have created widespread interest as such planar photonic structures are compatible with conventional microelectronic and photonic devices. Various optical components such as waveguides, resonators, modulators and demultiplexers have been designed and fabricated based on 2D photonic crystal geometry. This paper presents the fabrication of refractive index tunable Polydimethylsiloxane (PDMS) polymer based photonic crystals. The advantages of using PDMS are mainly its chemical stability, bio-compatibility and the stack reduces sidewall roughness scattering. The PDMS structure with square lattice was fabricated by using silicon substrate patterned with SU8-2002 resist. The 600 nm period grating of PDMS is then fabricated using Nano-imprinting. In addition, the refractive index of PDMS is modified using certain additive materials. The resulting photonic crystals are suitable for application in photonic integrated circuits and biological applications such as filters, cavities or microlaser waveguides.

  13. Electrothermally Driven Fluorescence Switching by Liquid Crystal Elastomers Based On Dimensional Photonic Crystals.

    Science.gov (United States)

    Lin, Changxu; Jiang, Yin; Tao, Cheng-An; Yin, Xianpeng; Lan, Yue; Wang, Chen; Wang, Shiqiang; Liu, Xiangyang; Li, Guangtao

    2017-04-05

    In this article, the fabrication of an active organic-inorganic one-dimensional photonic crystal structure to offer electrothermal fluorescence switching is described. The film is obtained by spin-coating of liquid crystal elastomers (LCEs) and TiO 2 nanoparticles alternatively. By utilizing the property of LCEs that can change their size and shape reversibly under external thermal stimulations, the λ max of the photonic band gap of these films is tuned by voltage through electrothermal conversion. The shifted photonic band gap further changes the matching degree between the photonic band gap of the film and the emission spectrum of organic dye mounting on the film. With rhodamine B as an example, the enhancement factor of its fluorescence emission is controlled by varying the matching degree. Thus, the fluorescence intensity is actively switched by voltage applied on the system, in a fast, adjustable, and reversible manner. The control chain of using the electrothermal stimulus to adjust fluorescence intensity via controlling the photonic band gap is proved by a scanning electron microscope (SEM) and UV-vis reflectance. This mechanism also corresponded to the results from the finite-difference time-domain (FDTD) simulation. The comprehensive usage of photonic crystals and liquid crystal elastomers opened a new possibility for active optical devices.

  14. Spatial filters on demand based on aperiodic Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Gailevicius, Darius; Purlys, Vytautas; Peckus, Martynas; Gadonas, Roaldas [Laser Research Center, Department of Quantum Electronics, Vilnius University (Lithuania); Staliunas, Kestutis [DONLL, Departament de Fisica, Universitat Politecnica de Catalunya (UPC), Terrassa (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain)

    2017-08-15

    Photonic Crystal spatial filters, apart from stand-alone spatial filtering function, can also suppress multi-transverse-mode operation in laser resonators. Here it is shown that such photonic crystals can be designed by solving the inverse problem: for a given spatial filtering profile. Optimized Photonic Crystal filters were fabricated in photosensitive glass. Experiments have shown that such filters provide a more pronounced filtering effect for total and partial transmissivity conditions. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Numerical demonstration of neuromorphic computing with photonic crystal cavities.

    Science.gov (United States)

    Laporte, Floris; Katumba, Andrew; Dambre, Joni; Bienstman, Peter

    2018-04-02

    We propose a new design for a passive photonic reservoir computer on a silicon photonics chip which can be used in the context of optical communication applications, and study it through detailed numerical simulations. The design consists of a photonic crystal cavity with a quarter-stadium shape, which is known to foster interesting mixing dynamics. These mixing properties turn out to be very useful for memory-dependent optical signal processing tasks, such as header recognition. The proposed, ultra-compact photonic crystal cavity exhibits a memory of up to 6 bits, while simultaneously accepting bitrates in a wide region of operation. Moreover, because of the inherent low losses in a high-Q photonic crystal cavity, the proposed design is very power efficient.

  16. Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides

    International Nuclear Information System (INIS)

    Zhou, Hao; Gu, Tingyi; McMillan, James F.; Wong, Chee Wei; Petrone, Nicholas; Zande, Arend van der; Hone, James C.; Yu, Mingbin; Lo, Guoqiang; Kwong, Dim-Lee; Feng, Guoying; Zhou, Shouhuan

    2014-01-01

    We demonstrate the enhanced four-wave mixing of monolayer graphene on slow-light silicon photonic crystal waveguides. 200-μm interaction length, a four-wave mixing conversion efficiency of −23 dB is achieved in the graphene-silicon slow-light hybrid, with an enhanced 3-dB conversion bandwidth of about 17 nm. Our measurements match well with nonlinear coupled-mode theory simulations based on the measured waveguide dispersion, and provide an effective way for all-optical signal processing in chip-scale integrated optics.

  17. Band Gap Optimization Design of Photonic Crystals Material

    Science.gov (United States)

    Yu, Y.; Yu, B.; Gao, X.

    2017-12-01

    The photonic crystal has a fundamental characteristic - photonic band gap, which can prevent light to spread in the crystals. This paper studies the width variation of band gaps of two-dimension square lattice photonic crystals by changing the geometrical shape of the unit cells’ inner medium column. Using the finite element method, we conduct numerical experiments on MATLAB 2012a and COMSOL 3.5. By shortening the radius in vertical axis and rotating the medium column, we design a new unit cell, with a 0.3*3.85e-7 vertical radius and a 15 degree deviation to the horizontal axis. The new cell has a gap 1.51 percent wider than the circle medium structure in TE gap and creates a 0.0124 wide TM gap. Besides, the experiment shows the first TM gap is partially overlapped by the second TE gap in gap pictures. This is helpful to format the absolute photonic band gaps and provides favorable theoretical basis for designing photonic communication material.

  18. Two-dimensional photonic crystal accelerator structures

    Directory of Open Access Journals (Sweden)

    Benjamin M. Cowan

    2003-10-01

    Full Text Available Photonic crystals provide a method of confining a synchronous speed-of-light mode in an all-dielectric structure, likely a necessary feature in any optical accelerator. We explore computationally a class of photonic crystal structures with translational symmetry in a direction transverse to the electron beam. We demonstrate synchronous waveguide modes and discuss relevant parameters of such modes. We then explore how accelerator parameters vary as the geometry of the structure is changed and consider trade-offs inherent in the design of an accelerator of this type.

  19. Giant Lamb shift in photonic crystals

    International Nuclear Information System (INIS)

    Wang Xuehua; Kivshar, Yuri S.; Gu Benyuan

    2004-01-01

    We obtain a general result for the Lamb shift of excited states of multilevel atoms in inhomogeneous electromagnetic structures and apply it to study atomic hydrogen in inverse-opal photonic crystals. We find that the photonic-crystal environment can lead to very large values of the Lamb shift, as compared to the case of vacuum. We also suggest that the position-dependent Lamb shift should extend from a single level to a miniband for an assembly of atoms with random distribution in space, similar to the velocity-dependent Doppler effect in atomic/molecular gases

  20. Photonic crystal fibres and effective index approaches

    DEFF Research Database (Denmark)

    Riishede, Jesper; Libori, Stig E. Barkou; Bjarklev, Anders Overgaard

    2001-01-01

    Photonic crystal fibres are investigated with an effective index approach. The effective index of both core and cladding is found to be wavelength dependent. Accurate modelling must respect the rich topology of these fibres.......Photonic crystal fibres are investigated with an effective index approach. The effective index of both core and cladding is found to be wavelength dependent. Accurate modelling must respect the rich topology of these fibres....

  1. Photonic crystals: role of architecture and disorder on spectral properties.

    Science.gov (United States)

    Verma, Rupesh; Audhkhasi, Romil; Thyagarajan, Krishna; Banerjee, Varsha

    2018-03-01

    Many of the present-day optical devices use photonic crystals. These are multilayers of dielectric media that control the reflection and transmission of light falling on them. In this paper, we study the optical properties of periodic, fractal, and aperiodic photonic crystals and compare them based on their attributes. Our calculations of the band reflectivity and degree of robustness reveal novel features, e.g., fractal photonic crystals are found to reflect the maximum amount of incident light. On the other hand, aperiodic photonic crystals have the largest immunity to disorder. We believe that such properties will be useful in a variety of applications in the field of optical communication.

  2. Micro-/nanoscale multi-field coupling in nonlinear photonic devices

    Science.gov (United States)

    Yang, Qing; Wang, Yubo; Tang, Mingwei; Xu, Pengfei; Xu, Yingke; Liu, Xu

    2017-08-01

    The coupling of mechanics/electronics/photonics may improve the performance of nanophotonic devices not only in the linear region but also in the nonlinear region. This review letter mainly presents the recent advances on multi-field coupling in nonlinear photonic devices. The nonlinear piezoelectric effect and piezo-phototronic effects in quantum wells and fibers show that large second-order nonlinear susceptibilities can be achieved, and second harmonic generation and electro-optic modulation can be enhanced and modulated. Strain engineering can tune the lattice structures and induce second order susceptibilities in central symmetry semiconductors. By combining the absorption-based photoacoustic effect and intensity-dependent photobleaching effect, subdiffraction imaging can be achieved. This review will also discuss possible future applications of these novel effects and the perspective of their research. The review can help us develop a deeper knowledge of the substance of photon-electron-phonon interaction in a micro-/nano- system. Moreover, it can benefit the design of nonlinear optical sensors and imaging devices with a faster response rate, higher efficiency, more sensitivity and higher spatial resolution which could be applied in environmental detection, bio-sensors, medical imaging and so on.

  3. Control of exceptional points in photonic crystal slabs

    DEFF Research Database (Denmark)

    Kaminski, Piotr Marek; Taghizadeh, Alireza; Breinbjerg, Olav

    2017-01-01

    Various ways of controlling the extent of the ring of exceptional points in photonic crystal slabs are investigated. The extent of the ring in photonic crystal slabs is found to vary with the thickness of the slab. This enables recovery of Dirac cones in open, non-Hermitian systems, such as a pho...

  4. The analysis of photon pair source at telecom wavelength based on the BBO crystal (Conference Presentation)

    Science.gov (United States)

    Gajewski, Andrzej; Kolenderski, Piotr L.

    2016-10-01

    There are several problems that must be solved in order to increase the distance of quantum communication protocols based on photons as an information carriers. One of them is the dispersion, whose effects can be minimized by engineering spectral properties of transmitted photons. In particular, it is expected that positively correlated photon pairs can be very useful. We present the full characterization of a source of single photon pairs at a telecom wavelength based on type II spontaneous parametric down conversion (SPDC) process in a beta-barium borate (BBO) crystal. In the type II process, a pump photon, which is polarized extraordinarily, splits in a nonlinear medium into signal and idler photons, which are polarized perpendicularly to each other. In order for the process to be efficient a phase matching condition must be fulfilled. These conditions originate from momentum and energy conservation rules and put severe restrictions on source parameters. Seemingly, these conditions force the photon pair to be negatively correlated in their spectral domain. However, it is possible to achieve positive correlation for pulsed pumping. The experimentally available degrees of freedom of a source are the width of the pumping beam, the collected modes' widths, the length of the nonlinear crystal and the duration of the pumping pulse. In our numerical model we use the following figures of merit: the pair production rate, the efficiency of photon coupling into a single mode fiber, the spectral correlation of the coupled photon pair. The last one is defined as the Pearson correlation parameter for a joint spectral distribution. The aim here is to find the largest positive spectral correlation and the highest coupling efficiency. By resorting to the numerical model Ref. [1] we showed in Ref. [2], that by careful adjustment of the pump's and the collected modes' characteristics, one can optimize any of the source's parameters. Our numerical outcomes conform to the

  5. Magnetic assembly of nonmagnetic particles into photonic crystal structures.

    Science.gov (United States)

    He, Le; Hu, Yongxing; Kim, Hyoki; Ge, Jianping; Kwon, Sunghoon; Yin, Yadong

    2010-11-10

    We report the rapid formation of photonic crystal structures by assembly of uniform nonmagnetic colloidal particles in ferrofluids using external magnetic fields. Magnetic manipulation of nonmagnetic particles with size down to a few hundred nanometers, suitable building blocks for producing photonic crystals with band gaps located in the visible regime, has been difficult due to their weak magnetic dipole moment. Increasing the dipole moment of magnetic holes has been limited by the instability of ferrofluids toward aggregation at high concentration or under strong magnetic field. By taking advantage of the superior stability of highly surface-charged magnetite nanocrystal-based ferrofluids, in this paper we have been able to successfully assemble 185 nm nonmagnetic polymer beads into photonic crystal structures, from 1D chains to 3D assemblies as determined by the interplay of magnetic dipole force and packing force. In a strong magnetic field with large field gradient, 3D photonic crystals with high reflectance (83%) in the visible range can be rapidly produced within several minutes, making this general strategy promising for fast creation of large-area photonic crystals using nonmagnetic particles as building blocks.

  6. Plasmonic photonic crystals realized through DNA-programmable assembly.

    Science.gov (United States)

    Park, Daniel J; Zhang, Chuan; Ku, Jessie C; Zhou, Yu; Schatz, George C; Mirkin, Chad A

    2015-01-27

    Three-dimensional dielectric photonic crystals have well-established enhanced light-matter interactions via high Q factors. Their plasmonic counterparts based on arrays of nanoparticles, however, have not been experimentally well explored owing to a lack of available synthetic routes for preparing them. However, such structures should facilitate these interactions based on the small mode volumes associated with plasmonic polarization. Herein we report strong light-plasmon interactions within 3D plasmonic photonic crystals that have lattice constants and nanoparticle diameters that can be independently controlled in the deep subwavelength size regime by using a DNA-programmable assembly technique. The strong coupling within such crystals is probed with backscattering spectra, and the mode splitting (0.10 and 0.24 eV) is defined based on dispersion diagrams. Numerical simulations predict that the crystal photonic modes (Fabry-Perot modes) can be enhanced by coating the crystals with a silver layer, achieving moderate Q factors (∼10(2)) over the visible and near-infrared spectrum.

  7. Plasmonic-photonic crystal coupled nanolaser

    International Nuclear Information System (INIS)

    Zhang, Taiping; Callard, Ségolène; Jamois, Cécile; Chevalier, Céline; Feng, Di; Belarouci, Ali

    2014-01-01

    We propose and demonstrate a hybrid photonic-plasmonic nanolaser that combines the light harvesting features of a dielectric photonic crystal cavity with the extraordinary confining properties of an optical nano-antenna. For this purpose, we developed a novel fabrication method based on multi-step electron-beam lithography. We show that it enables the robust and reproducible production of hybrid structures, using a fully top-down approach to accurately position the antenna. Coherent coupling of the photonic and plasmonic modes is highlighted and opens up a broad range of new hybrid nanophotonic devices. (paper)

  8. Few-photon Non-linearities in Nanophotonic Devices for Quantum Information Technology

    DEFF Research Database (Denmark)

    Nysteen, Anders

    In this thesis we investigate few-photon non-linearities in all-optical, on-chip circuits, and we discuss their possible applications in devices of interest for quantum information technology, such as conditional two-photon gates and single-photon sources. In order to propose efficient devices...... the scattered photons. Even though the non-linearity also alters the pulse spectrum due to a four-wave mixing process, we demonstrate that input pulses with a Gaussian spectrum can be mapped to the output with up to 80 % fidelity. Using two identical two-level emitters, we propose a setup for a deterministic...... by the capturing process. Semiconductor quantum dots (QDs) are promising for realizing few-photon non-linearities in solid-state implementations, although coupling to phonon modes in the surrounding lattice have significant influence on the dynamics. By accounting for the commonly neglected asymmetry between...

  9. Generation of green frequency comb from chirped χ{sup (2)} nonlinear photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lai, C.-M. [Department of Electronic Engineering, Ming Chuan University, Taoyuan, Taiwan (China); Chang, K.-H.; Yang, Z.-Y.; Fu, S.-H.; Tsai, S.-T.; Hsu, C.-W.; Peng, L.-H. [Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan (China); Yu, N. E. [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Boudrioua, A. [LPL, CNRS - UMR 7538, Université Paris 13, Sorbone Paris Cité (France); Kung, A. H. [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan (China); Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan (China)

    2014-12-01

    Spectrally broad frequency comb generation over 510–555 nm range was reported on chirped quasi-phase-matching (QPM) χ{sup (2)} nonlinear photonic crystals of 12 mm length with periodicity stepwise increased from 5.9 μm to 7.1 μm. When pumped with nanosecond infrared (IR) frequency comb derived from a QPM optical parametric oscillator (OPO) and spanned over 1040 nm to 1090 nm wavelength range, the 520 nm to 545 nm up-converted green spectra were shown to consist of contributions from (a) second-harmonic generation among the signal or the idler modes, and (b) sum-frequency generation (SFG) from the neighboring pairs of the signal or the idler modes. These mechanisms led the up-converted green frequency comb to have the same mode spacing of 450 GHz as that in the IR-OPO pump comb. As the pump was further detuned from the aforementioned near-degeneracy point and moved toward the signal (1020–1040 nm) and the idler (1090–1110 nm) spectral range, the above QPM parametric processes were preserved in the chirped QPM devices to support up-converted green generation in the 510–520 nm and the 545–555 nm spectral regime. Additional 530–535 nm green spectral generation was also observed due to concurrence of multi-wavelength SFG processes between the (signal, idler) mode pairs. These mechanisms facilitate the chirped QPM device to support a single-pass up-conversion efficiency ∼10% when subject to an IR-OPO pump comb with 200 mW average power operated near- or off- the degeneracy point.

  10. Selective gas sensing for photonic crystal lasers

    DEFF Research Database (Denmark)

    Smith, Cameron; Christiansen, Mads Brøkner; Buss, Thomas

    2011-01-01

    We facilitate photonic crystal lasers to sense gases via an additional swelling polymer film. We describe the transduction transfer function and experimentally demonstrate an enhanced ethanol vapor sensitivity over 15 dB with low humidity crosstalk.......We facilitate photonic crystal lasers to sense gases via an additional swelling polymer film. We describe the transduction transfer function and experimentally demonstrate an enhanced ethanol vapor sensitivity over 15 dB with low humidity crosstalk....

  11. Geometric properties of optimal photonic crystals

    DEFF Research Database (Denmark)

    Sigmund, Ole; Hougaard, Kristian G.

    2008-01-01

    Photonic crystals can be designed to control and confine light. Since the introduction of the concept by Yablonovitch and John two decades ago, there has been a quest for the optimal structure, i.e., the periodic arrangement of dielectric and air that maximizes the photonic band gap. Based...

  12. Numerical study on characteristic of two-dimensional metal/dielectric photonic crystals

    International Nuclear Information System (INIS)

    Zong Yi-Xin; Xia Jian-Bai; Wu Hai-Bin

    2017-01-01

    An improved plan-wave expansion method is adopted to theoretically study the photonic band diagrams of two-dimensional (2D) metal/dielectric photonic crystals. Based on the photonic band structures, the dependence of flat bands and photonic bandgaps on two parameters (dielectric constant and filling factor) are investigated for two types of 2D metal/dielectric (M/D) photonic crystals, hole and cylinder photonic crystals. The simulation results show that band structures are affected greatly by these two parameters. Flat bands and bandgaps can be easily obtained by tuning these parameters and the bandgap width may reach to the maximum at certain parameters. It is worth noting that the hole-type photonic crystals show more bandgaps than the corresponding cylinder ones, and the frequency ranges of bandgaps also depend strongly on these parameters. Besides, the photonic crystals containing metallic medium can obtain more modulation of photonic bands, band gaps, and large effective refractive index, etc. than the dielectric/dielectric ones. According to the numerical results, the needs of optical devices for flat bands and bandgaps can be met by selecting the suitable geometry and material parameters. (paper)

  13. Dual curved photonic crystal ring resonator based channel drop filter using two-dimensional photonic crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com [Deptt. of Electronics and Communication Engineering, Government Engineering College Ajmer Rajasthan INDIA (India); Dusad, Lalit Kumar [Rajasthan Technical University Kota, Rajasthan (India)

    2016-05-06

    In this paper channel drop filter (CDF) is designed using dual curved photonic crystal ring resonator (PCRR). The photonic band gap (PBG) is calculated by plane wave expansion (PWE) method and the photonic crystal (PhC) based on two dimensional (2D) square lattice periodic arrays of silicon (Si) rods in air structure have been investigated using finite difference time domain (FDTD) method. The number of rods in Z and X directions is 21 and 20 respectively with lattice constant 0.540 nm and rod radius r = 0.1 µm. The channel drop filter has been optimized for telecommunication wavelengths λ = 1.591 µm with refractive indices 3.533. In the designed structure further analysis is also done by changing whole rods refractive index and it has been observed that this filter may be used for filtering several other channels also. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm{sup 2}.

  14. Lasing cavities and ultra-fast switch based on self-collimation of photonic crystal

    International Nuclear Information System (INIS)

    Zhao Deyin; Zhou Chuanhong; Gong Qian; Jiang Xunya

    2008-01-01

    The lasing cavities and ultra-fast switch based on the self-collimation (SC) of photonic crystal have been studied in this work. Some special properties of these devices are demonstrated, such as the higher quality factors and concise integration of the lasing cavities, the tolerance of the non-parallel reflectors in Fabry-Perot cavities. With nonlinearity, the ultra-fast switch can also be realized around the SC frequency. All these functional devices are designed based on the strong beam confinement of SC

  15. Lasing cavities and ultra-fast switch based on self-collimation of photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Deyin; Zhou Chuanhong; Gong Qian; Jiang Xunya [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China)], E-mail: xyjiang@mit.edu

    2008-06-07

    The lasing cavities and ultra-fast switch based on the self-collimation (SC) of photonic crystal have been studied in this work. Some special properties of these devices are demonstrated, such as the higher quality factors and concise integration of the lasing cavities, the tolerance of the non-parallel reflectors in Fabry-Perot cavities. With nonlinearity, the ultra-fast switch can also be realized around the SC frequency. All these functional devices are designed based on the strong beam confinement of SC.

  16. Growth, spectral, linear and nonlinear optical characteristics of an efficient semiorganic acentric crystal: L-valinium L-valine chloride

    Energy Technology Data Exchange (ETDEWEB)

    Nageshwari, M.; Jayaprakash, P.; Kumari, C. Rathika Thaya [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604407, Tamil Nadu (India); Vinitha, G. [Department of Physics, School of Advanced Sciences, VIT Chennai, 600127 Tamil Nadu (India); Caroline, M. Lydia, E-mail: lydiacaroline2006@yahoo.co.in [PG & Research Department of Physics, Arignar Anna Govt. Arts College, Cheyyar 604407, Tamil Nadu (India)

    2017-04-15

    An efficient nonlinear optical semiorganic material L-valinium L-valine chloride (LVVCl) was synthesized and grown-up by means of slow evaporation process. Single crystal XRD evince that LVVCl corresponds to monoclinic system having acentric space group P2{sub 1}. The diverse functional groups existing in LVVCl were discovered with FTIR spectral investigation. The UV-Visible and photoluminescence spectrum discloses the optical and electronic properties respectively for the grown crystal. Several optical properties specifically extinction coefficient, reflectance, linear refractive index, electrical and optical conductivity were also determined. The SEM analysis was also carried out and it portrayed the surface morphology of LVVCl. The calculated value of laser damage threshold was 2.59 GW/cm{sup 2}. The mechanical and dielectric property of LVVCl was investigated employing microhardness and dielectric studies. The second and third order nonlinear optical characteristics of LVVCl was characterized utilizing Kurtz Perry and Z scan technique respectively clearly suggest its suitability in the domain of optics and photonics. - Graphical abstract: Good quality transparent single crystals of L-valinium L-valine chloride single crystal was grown by slow evaporation technique. The grown crystals were analyzed using different instrumentation methods to check its usefulness for the device fabrication. The determination of nonlinear refractive index (n{sub 2}), absorption coefficient (β) and third order nonlinear susceptibility was determined by Z scan technique, highlighted that LVVCl can serve as a promising candidate for opto electronic and nonlinear optical applications.

  17. Fractional decay of quantum dots in photonic crystals

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Koenderink, Femius; Lodahl, Peter

    2008-01-01

    We define a practical measure for the degree of fractional decay and establish conditions for the effect to be observable for quantum dots in photonic crystals exhibiting absorptive losses.......We define a practical measure for the degree of fractional decay and establish conditions for the effect to be observable for quantum dots in photonic crystals exhibiting absorptive losses....

  18. A thermally tunable inverse opal photonic crystal for monitoring glass transition.

    Science.gov (United States)

    Sun, Liguo; Xie, Zhuoying; Xu, Hua; Xu, Ming; Han, Guozhi; Wang, Cheng; Bai, Xuduo; Gu, ZhongZe

    2012-03-01

    An optical method was developed to monitor the glass transition of the polymer by taking advantage of reflection spectrum change of the thermally tunable inverse opal photonic crystal. The thermally tunable photonic bands of the polymer inverse opal photonic crystal were traceable to the segmental motion of macromolecules, and the segmental motion was temperature dependent. By observing the reflection spectrum change of the polystyrene inverse opal photonic crystal during thermal treatment, the glass transition temperature of polystyrene was gotten. Both changes of the position and intensity of the reflection peak were observed during the glass transition process of the polystyrene inverse opal photonic crystal. The optical change of inverse opal photonic crystal was so large that the glass transition temperature could even be estimated by naked eyes. The glass transition temperature derived from this method was consistent with the values measured by differential scanning calorimeter.

  19. Laser generation in opal-like single-crystal and heterostructure photonic crystals

    Science.gov (United States)

    Kuchyanov, A. S.; Plekhanov, A. I.

    2016-11-01

    This study describes the laser generation of a 6Zh rhodamine in artificial opals representing single-crystal and heterostructure films. The spectral and angular properties of emission and the threshold characteristics of generation are investigated. In the case where the 6Zh rhodamine was in a bulk opal, the so-called random laser generation was observed. In contrast to this, the laser generation caused by a distributed feedback inside the structure of the photonic bandgap was observed in photonic-crystal opal films.

  20. Natural photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vigneron, Jean Pol, E-mail: jean-pol.vigneron@fundp.ac.be [Research Center in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), rue de Bruxelles, 61, B-5000 Namur (Belgium); Simonis, Priscilla [Research Center in Physics of Matter and Radiation (PMR), University of Namur (FUNDP), rue de Bruxelles, 61, B-5000 Namur (Belgium)

    2012-10-15

    Photonic structures appeared in nature several hundred millions years ago. In the living world, color is used for communication and this important function strongly impacts the individual chances of survival as well as the chances to reproduce. This has a statistical influence on species populations. Therefore, because they are involved in evolution, natural color-generating structures are - from some point of view - highly optimized. In this short review, a survey is presented of the development of natural photonic crystal-type structures occurring in insects, spiders, birds, fishes and other marine animals, in plants and more, from the standpoint of light-waves propagation. One-, two-, and three-dimensional structures will be reviewed with selected examples.

  1. Natural photonic crystals

    International Nuclear Information System (INIS)

    Vigneron, Jean Pol; Simonis, Priscilla

    2012-01-01

    Photonic structures appeared in nature several hundred millions years ago. In the living world, color is used for communication and this important function strongly impacts the individual chances of survival as well as the chances to reproduce. This has a statistical influence on species populations. Therefore, because they are involved in evolution, natural color-generating structures are - from some point of view - highly optimized. In this short review, a survey is presented of the development of natural photonic crystal-type structures occurring in insects, spiders, birds, fishes and other marine animals, in plants and more, from the standpoint of light-waves propagation. One-, two-, and three-dimensional structures will be reviewed with selected examples.

  2. Opal-based photonic crystal with double photonic bandgap structure

    Science.gov (United States)

    Romanov, S. G.; Yates, H. M.; Pemble, M. E.; DeLa Rue, R. M.

    2000-09-01

    The interior surfaces of one part of a piece of artificial opal have been coated with GaP so that the remaining part of the opal crystal remains empty, thus forming a photonic heterostructure. Two Bragg resonances have been observed in the optical transmission and reflectance spectra. These two resonances were found to behave differently with changes in the polarization of the incident light and the angle of propagation of the light with respect to the (111) planes of opal. Depolarization of the light was observed to occur most effectively at frequencies within the stop-bands, apparently due to the re-coupling of the propagating electromagnetic wave to a different system of eigenmodes when it crosses the interface separating two parts of the double photonic crystal.

  3. Dispersive photonic crystals from the plane wave method

    Energy Technology Data Exchange (ETDEWEB)

    Guevara-Cabrera, E.; Palomino-Ovando, M.A. [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Flores-Desirena, B., E-mail: bflores@fcfm.buap.mx [Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Apdo. Post. 165, Puebla, Pue. 72000, México (Mexico); Gaspar-Armenta, J.A. [Departamento de Investigación en Física de la Universidad de Sonora Apdo, Post 5-088, Hermosillo Sonora 83190, México (Mexico)

    2016-03-01

    Nowadays photonic crystals are widely used in many different applications. One of the most used methods to compute their band structure is the plane wave method (PWM). However, it can only be applied directly to non-dispersive media and be extended to systems with a few model dielectric functions. We explore an extension of the PWM to photonic crystals containing dispersive materials, that solves an eigenvalue equation for the Bloch wave vectors. First we compare our calculation with analytical results for one dimensional photonic crystals containing Si using experimental values of its optical parameters, and obtainig very well agreement, even for the spectrum region with strong absorption. Then, using the same method, we computed the band structure for a two dimensional photonic crystal without absorption, formed by an square array of MgO cylinders in air. The optical parameters for MgO were modeled with the Lorentz dielectric function. Finally, we studied an array of MgO cylinders in a metal, using Drude model without absorption, for the metal dielectric function. For this last case, we study the gap–midgap ratio as a function of the filling fraction for both the square and triangular lattice. The gap–midgap ratio is larger for the triangular lattice, with a maximum value of 10% for a filling fraction of 0.6. Our results show that the method can be applied to dispersive materials, and then to a wide range of applications where photonic crystals can be used.

  4. Experimental Study of Electronic Quantum Interference, Photonic Crystal Cavity, Photonic Band Edge Effects for Optical Amplification

    Science.gov (United States)

    2016-01-26

    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0003 TR-2016-0003 EXPERIMENTAL STUDY OF ELECTRONIC QUANTUM INTERFERENCE , PHOTONIC CRYSTAL CAVITY, PHOTONIC BAND...EDGE EFFECTS FOR OPTICAL AMPLIFICATION Shawn-Yu Lin Rensselaer Polytechnic Institute 110 8th Street Troy, New York 12180 26 Jan 2016 Final Report...2014 – 11 Jan 2016 4. TITLE AND SUBTITLE Experimental Study of Electronic Quantum Interference , Photonic Crystal Cavity, Photonic Band Edge Effects

  5. Transition of lasing modes in polymeric opal photonic crystal resonating cavity.

    Science.gov (United States)

    Shi, Lan-Ting; Zheng, Mei-Ling; Jin, Feng; Dong, Xian-Zi; Chen, Wei-Qiang; Zhao, Zhen-Sheng; Duan, Xuan-Ming

    2016-06-10

    We demonstrate the transition of lasing modes in the resonating cavity constructed by polystyrene opal photonic crystals and 7 wt. % tert-butyl Rhodamine B doped polymer film. Both single mode and multiple mode lasing emission are observed from the resonating cavity. The lasing threshold is determined to be 0.81  μJ/pulse for single mode lasing emission and 2.25  μJ/pulse for multiple mode lasing emission. The single mode lasing emission is attributed to photonic lasing resulting from the photonic bandgap effect of the opal photonic crystals, while the multiple mode lasing emission is assigned to random lasing due to the defects in the photonic crystals. The result would benefit the development of low threshold polymeric solid state photonic crystal lasers.

  6. Alignment of crystal orientations of the multi-domain photonic crystals in Parides sesostris wing scales

    Science.gov (United States)

    Yoshioka, S.; Fujita, H.; Kinoshita, S.; Matsuhana, B.

    2014-01-01

    It is known that the wing scales of the emerald-patched cattleheart butterfly, Parides sesostris, contain gyroid-type photonic crystals, which produce a green structural colour. However, the photonic crystal is not a single crystal that spreads over the entire scale, but it is separated into many small domains with different crystal orientations. As a photonic crystal generally has band gaps at different frequencies depending on the direction of light propagation, it seems mysterious that the scale is observed to be uniformly green under an optical microscope despite the multi-domain structure. In this study, we have carefully investigated the structure of the wing scale and discovered that the crystal orientations of different domains are not perfectly random, but there is a preferred crystal orientation that is aligned along the surface normal of the scale. This finding suggests that there is an additional factor during the developmental process of the microstructure that regulates the crystal orientation. PMID:24352678

  7. Absolute photonic band gap in 2D honeycomb annular photonic crystals

    International Nuclear Information System (INIS)

    Liu, Dan; Gao, Yihua; Tong, Aihong; Hu, Sen

    2015-01-01

    Highlights: • A two-dimensional honeycomb annular photonic crystal (PC) is proposed. • The absolute photonic band gap (PBG) is studied. • Annular PCs show larger PBGs than usual air-hole PCs for high refractive index. • Annular PCs with anisotropic rods show large PBGs for low refractive index. • There exist optimal parameters to open largest band gaps. - Abstract: Using the plane wave expansion method, we investigate the effects of structural parameters on absolute photonic band gap (PBG) in two-dimensional honeycomb annular photonic crystals (PCs). The results reveal that the annular PCs possess absolute PBGs that are larger than those of the conventional air-hole PCs only when the refractive index of the material from which the PC is made is equal to 4.5 or larger. If the refractive index is smaller than 4.5, utilization of anisotropic inner rods in honeycomb annular PCs can lead to the formation of larger PBGs. The optimal structural parameters that yield the largest absolute PBGs are obtained

  8. Photonic-crystal waveguide biosensor

    DEFF Research Database (Denmark)

    Skivesen, Nina; Têtu, Amélie; Kristensen, Martin

    2007-01-01

    A photonic-crystal waveguide sensor is presented for biosensing. The sensor is applied for refractive index measurements and detection of protein-concentrations. Concentrations around 10 μg/ml (0.15μMolar) are measured with excellent signal to noise ratio, and a broad, dynamic refractive index se...

  9. Azimuthal asymmetry in processes of nonlinear QED for linearly polarized photon

    International Nuclear Information System (INIS)

    Bajer, V.N.; Mil'shtejn, A.I.

    1994-01-01

    Cross sections of nonlinear QED processes (photon-photon scattering, photon splitting in a Coulomb field, and Delbrueck scattering) are considered for linearly polarized initial photon. The cross sections have sizeable azimuthal asymmetry. 15 refs.; 3 figs

  10. Cascaded two-photon nonlinearity in a one-dimensional waveguide with multiple two-level emitters

    Science.gov (United States)

    Roy, Dibyendu

    2013-01-01

    We propose and theoretically investigate a model to realize cascaded optical nonlinearity with few atoms and photons in one-dimension (1D). The optical nonlinearity in our system is mediated by resonant interactions of photons with two-level emitters, such as atoms or quantum dots in a 1D photonic waveguide. Multi-photon transmission in the waveguide is nonreciprocal when the emitters have different transition energies. Our theory provides a clear physical understanding of the origin of nonreciprocity in the presence of cascaded nonlinearity. We show how various two-photon nonlinear effects including spatial attraction and repulsion between photons, background fluorescence can be tuned by changing the number of emitters and the coupling between emitters (controlled by the separation). PMID:23948782

  11. Topological Valley Transport in Two-dimensional Honeycomb Photonic Crystals.

    Science.gov (United States)

    Yang, Yuting; Jiang, Hua; Hang, Zhi Hong

    2018-01-25

    Two-dimensional photonic crystals, in analogy to AB/BA stacking bilayer graphene in electronic system, are studied. Inequivalent valleys in the momentum space for photons can be manipulated by simply engineering diameters of cylinders in a honeycomb lattice. The inequivalent valleys in photonic crystal are selectively excited by a designed optical chiral source and bulk valley polarizations are visualized. Unidirectional valley interface states are proved to exist on a domain wall connecting two photonic crystals with different valley Chern numbers. With the similar optical vortex index, interface states can couple with bulk valley polarizations and thus valley filter and valley coupler can be designed. Our simple dielectric PC scheme can help to exploit the valley degree of freedom for future optical devices.

  12. A new approach to low loss photonic crystal waveguides

    DEFF Research Database (Denmark)

    Krüger, Asger Christian; Zhang, Min; Groothoff, Nathaniel

    Photonic crystal waveguides allow ultra-compact realization of integrated optical components because they have high group index. However, they also induce significant losses in effect reducing the scope of their applications. We find that by increasing the photonic crystal hole to pitch ratio r...

  13. Two-dimensionally confined topological edge states in photonic crystals

    International Nuclear Information System (INIS)

    Barik, Sabyasachi; Miyake, Hirokazu; DeGottardi, Wade; Waks, Edo; Hafezi, Mohammad

    2016-01-01

    We present an all-dielectric photonic crystal structure that supports two-dimensionally confined helical topological edge states. The topological properties of the system are controlled by the crystal parameters. An interface between two regions of differing band topologies gives rise to topological edge states confined in a dielectric slab that propagate around sharp corners without backscattering. Three-dimensional finite-difference time-domain calculations show these edges to be confined in the out-of-plane direction by total internal reflection. Such nanoscale photonic crystal architectures could enable strong interactions between photonic edge states and quantum emitters. (paper)

  14. Silicon Photonics: All-Optical Devices for Linear and Nonlinear Applications

    Science.gov (United States)

    Driscoll, Jeffrey B.

    are shown to contribute no time-averaged momentum. Furthermore, the vectoral modal components, in conjunction with the tensoral nature of the third-order susceptibility of Si, lead to nonlinear properties which are dependent on waveguide orientation with respect to the Si parent crystal and the construction of the modal electric field components. This consideration is used to maximize effective nonlinearity and realize nonlinear Kerr gratings along specific waveguide trajectories. Tight optical confinement leads to a natural enhancement of the intrinsically large effective nonlinearty of Si waveguides, and in fact, the effective nonlinearty can be made to be almost 106 times greater in Si waveguides than that of standard single-mode fiber. Such a large nonlinearity motivates chip-scale all-optical signal processing techniques. Wavelength conversion by both four-wave-mixing (FWM) and cross-phase-modulation (XPM) will be discussed, including a technique that allows for enhanced broadband discrete FWM over arbitrary spectral spans by modulating both the linear and nonlinear waveguide properties through periodic changes in waveguide geometry. This quasi-phase-matching approach has very real applications towards connecting mature telecom sources detectors and components to other spectral regimes, including the mid-IR. Other signal processing techniques such as all-optical modulation format conversion via XPM will also be discussed. This thesis will conclude by looking at ways to extend the bandwidth capacity of Si waveguide interconnects on chip. As the number of processing cores continues to scale as a means for computational performance gains, on-chip link capacity will become an increasingly important issue. Metallic traces have severe limitations and are envisioned to eventually bow to integrated photonic links. The aggregate bandwidth supported by a single waveguide link will therefore become a crucial consideration as integrated photonics approaches the CPU. One way

  15. Negative Refraction Angular Characterization in One-Dimensional Photonic Crystals

    OpenAIRE

    Lugo, Jesus Eduardo; Doti, Rafael; Faubert, Jocelyn

    2011-01-01

    Background Photonic crystals are artificial structures that have periodic dielectric components with different refractive indices. Under certain conditions, they abnormally refract the light, a phenomenon called negative refraction. Here we experimentally characterize negative refraction in a one dimensional photonic crystal structure; near the low frequency edge of the fourth photonic bandgap. We compare the experimental results with current theory and a theory based on the group velocity de...

  16. Chromatic dispersion of liquid crystal infiltrated capillary tubes and photonic crystal fibers

    DEFF Research Database (Denmark)

    Rasmussen, Per Dalgaard; Lægsgaard, Jesper; Bang, Ole

    2006-01-01

    We consider chromatic dispersion of capillary tubes and photonic crystal fibers infiltrated with liquid crystals. A perturbative scheme for inclusion of material dispersion of both liquid crystal and the surrounding waveguide material is derived. The method is used to calculate the chromatic...

  17. Tunable photonic crystals with partial bandgaps from blue phase colloidal crystals and dielectric-doped blue phases.

    Science.gov (United States)

    Stimulak, Mitja; Ravnik, Miha

    2014-09-07

    Blue phase colloidal crystals and dielectric nanoparticle/polymer doped blue phases are demonstrated to combine multiple components with different symmetries in one photonic material, creating a photonic crystal with variable and micro-controllable photonic band structure. In this composite photonic material, one contribution to the band structure is determined by the 3D periodic birefringent orientational profile of the blue phases, whereas the second contribution emerges from the regular array of the colloidal particles or from the dielectric/nanoparticle-doped defect network. Using the planewave expansion method, optical photonic bands of the blue phase I and II colloidal crystals and related nanoparticle/polymer doped blue phases are calculated, and then compared to blue phases with no particles and to face-centred-cubic and body-centred-cubic colloidal crystals in isotropic background. We find opening of local band gaps at particular points of Brillouin zone for blue phase colloidal crystals, where there were none in blue phases without particles or dopants. Particle size and filling fraction of the blue phase defect network are demonstrated as parameters that can directly tune the optical bands and local band gaps. In the blue phase I colloidal crystal with an additionally doped defect network, interestingly, we find an indirect total band gap (with the exception of one point) at the entire edge of SC irreducible zone. Finally, this work demonstrates the role of combining multiple - by symmetry - differently organised components in one photonic crystal material, which offers a novel approach towards tunable soft matter photonic materials.

  18. Numerical study on characteristic of two-dimensional metal/dielectric photonic crystals

    Science.gov (United States)

    Zong, Yi-Xin; Xia, Jian-Bai; Wu, Hai-Bin

    2017-04-01

    An improved plan-wave expansion method is adopted to theoretically study the photonic band diagrams of two-dimensional (2D) metal/dielectric photonic crystals. Based on the photonic band structures, the dependence of flat bands and photonic bandgaps on two parameters (dielectric constant and filling factor) are investigated for two types of 2D metal/dielectric (M/D) photonic crystals, hole and cylinder photonic crystals. The simulation results show that band structures are affected greatly by these two parameters. Flat bands and bandgaps can be easily obtained by tuning these parameters and the bandgap width may reach to the maximum at certain parameters. It is worth noting that the hole-type photonic crystals show more bandgaps than the corresponding cylinder ones, and the frequency ranges of bandgaps also depend strongly on these parameters. Besides, the photonic crystals containing metallic medium can obtain more modulation of photonic bands, band gaps, and large effective refractive index, etc. than the dielectric/dielectric ones. According to the numerical results, the needs of optical devices for flat bands and bandgaps can be met by selecting the suitable geometry and material parameters. Project supported by the National Basic Research Program of China (Grant No. 2011CB922200) and the National Natural Science Foundation of China (Grant No. 605210010).

  19. Light propagation in gas-filled kagomé hollow core photonic crystal fibres

    Science.gov (United States)

    Rodrigues, Sílvia M. G.; Facão, Margarida; Ferreira, Mário F. S.

    2018-04-01

    We study the propagation of light in kagomé hollow core photonic crystal fibres (HC-PCFs) filled with three different noble gases, namely, helium, xenon and argon. Various properties, including the guided modes, the group-velocity dispersion, and the nonlinear parameter were determined. The zero dispersion wavelength and the nonlinear parameter vary with the gas pressure which may be used to tune the generation of new frequencies using the same pump laser and the same fibre. In the case of the kagomé HC-PCF filled with xenon, the zero dispersion wavelength shifts from 693 to 1973 nm when the pressure is increased from 1 to 150bar, while the effective Kerr nonlinearity becomes comparable to that of silica. We have simulated the propagation of femtosecond pulses launched at 790 nm in order to study the generation of supercontinuum and UV light in kagomé HC-PCFs filled with the noble gases.

  20. All-optical analog-to-digital converter based on Kerr effect in photonic crystal

    Science.gov (United States)

    Jafari, Dariush; Nurmohammadi, Tofiq; Asadi, Mohammad Javad; Abbasian, Karim

    2018-05-01

    In this paper, a novel all-optical analog-to-digital converter (AOADC) is proposed and simulated for proof of principle. This AOADC is designed to operate in the range of telecom wavelength (1550 nm). A cavity made of nonlinear Kerr material in photonic crystal (PhC), is designed to achieve an optical analog-to-digital conversion with 1 Tera sample per second (TS/s) and the total footprint of 42 μm2 . The simulation is done using finite-difference time domain (FDTD) method.

  1. A study on new types of metallic photonic crystals

    International Nuclear Information System (INIS)

    Ahmed, M.I.

    2013-01-01

    In this thesis, I tried to synthesize a one dimension dielectric photonic crystal. I have succeeded in depositing single layers of zinc oxide and magnesium oxide on glass substrates. Each single layer was characterized by a scanning electron microscope, X-ray diffraction, A Mirue interferometer, and a spectrophotometer. The refractive indices, extinction coefficients, and absorption coefficients of each single layer were calculated from the measured transmittance, reflectance, and thickness data. Using the calculated parameters (refractive indices) and measured parameters (thicknesses) the transmission spectrum of the one dimension photonic crystal composed of zinc oxide and magnesium oxide was modelled. Using the transfer matrix method, a comparative study of the one dimension-dielectric and metallic photonic crystals was done. Effect of the refractive index difference, filling factor, number of periods, Plasmon frequency, damping coefficient, and incidence angle on the transmittance of the dielectric and metallic photonic crystal was carried out. A multilayered structure composed of Silver and Gallium Nitride was designed to transmit in the visible region, block UV frequencies, and reflect the IR and microwave frequencies. Using a combination of MaxwellGarnett Approximation and the transfer matrix method; the properties of a nanocomposite photonic crystal consisting of Cryolite and spherical nanoparticles of silver distributed in a dielectric matrix of titanium dioxide was studied. Effect of the nanoparticle concentration, lattice constant and incidence angle on the polaritonic and structure photonic band gap were studied.

  2. Observation of higher-order diffraction features in self-assembled photonic crystals

    International Nuclear Information System (INIS)

    Nair, Rajesh V.; Vijaya, R.

    2007-01-01

    The optical response of high quality three dimensionally (3D) ordered photonic crystals is analyzed in the high energy region. By tuning the reflectance with the angle of incidence of light, the peaks in the reflection spectrum that correspond to the first, second, and third order photonic stop bands and the van Hove singular point in the photon density of states are clearly distinguished. The high energy features have been observed for photonic crystals made from colloids of different diameters, having different index contrast and fabricated by two different self-assembly routes. The observation of van Hove singularity at near-normal incidence of light and its presence even in low index-contrast photonic crystals provide conclusive evidence that these high energy features are due to the perfect periodic ordering present in the photonic crystals with less defects and disorder

  3. Terahertz spectroscopy of three-dimensional photonic band-gap crystals

    International Nuclear Information System (INIS)

    Oezbay, E.; Michel, E.; Tuttle, G.; Biswas, R.; Ho, K.M.; Bostak, J.; Bloom, D.M.

    1994-01-01

    We have fabricated and built three-dimensional photonic band-gap crystals with band-gap frequencies larger than 500 GHz. We built the crystals by stacking micromachined (110) silicon wafers. The transmission and dispersion characteristics of the structures were measured by an all-electronic terahertz spectroscopy setup. The experimental results were in good agreement with theoretical calculations. To our knowledge, our new crystal has the highest reported photonic band-gap frequency

  4. Preparation of Three-Dimensional Photonic Crystals of Zirconia by Electrodeposition in a Colloidal Crystals Template

    Directory of Open Access Journals (Sweden)

    Lei Pan

    2016-07-01

    Full Text Available Three-dimensional photonic crystals of zirconia were prepared by electrodeposition in a colloidal crystals template following calcination at 500 °C. Scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, and reflectance spectroscopy were employed to characterize the photonic crystals of zirconia. It was found that hydrated zirconium ions could penetrate the colloidal crystals template and reach the substrate easily by electrodeposition, which resulted in stronger bonding between the substrate and the as-deposited membrane. Moreover, the electrodeposited membrane had low water content, leading to a low amount of shrinkage during calcination. Both these properties could suppress detachment from the substrate upon removal of the colloidal crystals template. Therefore, the three-dimensional photonic crystals of zirconia synthesized in this study exhibited very good preservation of the ordered structures of the colloidal crystals template with a high density. A peak of reflection higher than 70% was formed in the reflectance spectrum because of the strong diffraction of the ordered structures.

  5. High-Q microwave resonators with a photonic crystal structure

    International Nuclear Information System (INIS)

    Schuster, M.

    2001-08-01

    The localisation of electromagnetic energy at a defect in a photonic crystal is similar to a well known effect employed to construct high-Q microwave resonators: In a whispering gallery (WHG-) mode resonator the high Q-factor is achieved by localisation of the electromagnetic field energy by total reflection inside a disk made of dielectric material. The topic of this work is to demonstrate, that WHG-like modes can exist in an air defect in a photonic crystal that extends over several lattice periods; and that a high-Q microwave resonator can be made, utilizing these resonant modes. In numerical simulations, the transmission properties of a photonic crystal structure with hexagonal lattice symmetry have been investigated with a transfer-matrix-method. The eigenmodes of a defect structure in a photonic crystal have been calculated with a quasi-3d finite element integration technique. Experimental results confirm the simulated transmission properties and show the existence of modes inside the band gap, when a defect is introduced in the crystal. Resonator measurements show that a microwave resonator can be operated with those defect modes. It was found out that the main losses of the resonator were caused by bad microwave properties of the used dielectric material and by metal losses on the top and bottom resonator walls. Furthermore, it turned out that the detection of the photonic crystal defect mode was difficult because of a lack of simulation possibilities and high housing mode density in the resonator. (orig.)

  6. Second-order polarization-mode dispersion in photonic crystal fibers

    DEFF Research Database (Denmark)

    Larsen, T; Bjarklev, Anders Overgaard; Peterson, A

    2003-01-01

    We report the first experimental measurements of second-order polarization-mode dispersion in two successive 900 meter pulls of a silica photonic crystal fiber.......We report the first experimental measurements of second-order polarization-mode dispersion in two successive 900 meter pulls of a silica photonic crystal fiber....

  7. One-dimensional photonic crystal design

    International Nuclear Information System (INIS)

    Mee, Cornelis van der; Contu, Pietro; Pintus, Paolo

    2010-01-01

    In this article we present a method to determine the band spectrum, band gaps, and discrete energy levels, of a one-dimensional photonic crystal with localized impurities. For one-dimensional crystals with piecewise constant refractive indices we develop an algorithm to recover the refractive index distribution from the period map. Finally, we derive the relationship between the period map and the scattering matrix containing the information on the localized modes.

  8. Fabrication and properties of gallium metallic photonic crystals

    International Nuclear Information System (INIS)

    Kozhevnikov, V.F.; Diwekar, M.; Kamaev, V.P.; Shi, J.; Vardeny, Z.V.

    2003-01-01

    Gallium metallic photonic crystals with 100% filling factor have been fabricated via infiltration of liquid gallium into opals of 300-nm silica spheres using a novel high pressure-high temperature technique. The electrical resistance of the Ga-opal crystals was measured at temperatures from 10 to 280 K. The data obtained show that Ga-opal crystals are metallic network with slightly smaller temperature coefficient of resistivity than that for bulk gallium. Optical reflectivity of bulk gallium, plain opal and several Ga-opal crystals were measured at photon energies from 0.3 to 6 eV. A pronounced photonic stop band in the visible spectral range was found in both the plain and Ga infiltrated opals. The reflectivity spectra also show increase in reflectivity below 0.6 eV; which we interpret as a significantly lower effective plasma frequency of the metallic mesh in the infiltrated opal compare to the plasma frequency in the pure metal

  9. Reflectance properties of one-dimensional metal-dielectric ternary photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, G. N., E-mail: gnpandey2009@gmail.com [Department of Physics, Amity Institute of Applied Sciences, AmityUniversity, Noida (U.P.) (India); Kumar, Narendra [Department of Physics (CASH), Modi University of Science and Technology, Lakshmangarh, Sikar, Rajsthan (India); Thapa, Khem B. [Department of Physics, U I E T, ChhatrapatiShahu Ji Maharaj University, Kanpur- (UP) (India); Ojha, S. P. [Department of Physics IIT, Banaras Hindu University (India)

    2016-05-06

    Metallic photonic crystal has a very important application in absorption enhancement in solar cells. It has been found that an ultra-thin metallic layer becomes transparent due to internal scattering of light through the each interface of the dielectric and metal surfaces. The metal has absorption due to their surface plasmon and the plasmon has important parameters for changing optical properties of the metal. We consider ternary metallic-dielectric photonic crystal (MDPC) for having large probabilities to change the optical properties of the MDPC and the photonic crystals may be changed by changing dimensionality, symmetry, lattice parameters, Filling fraction and effective refractive index refractive index contrast. In this present communication, we try to show that the photonic band gap in ternary metal-dielectric photonic crystal can be significantly enlarged when air dielectric constant is considered. All the theoretical analyses are made based on the transfer matrix method together with the Drude model of metal.

  10. Maximizing the Optical Band Gap in 2D Photonic Crystals

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.; Sigmund, Ole

    Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid.......Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid....

  11. Progress on photonic crystals

    CERN Document Server

    Lecoq, P; Gundacker, S; Hillemanns, H; Jarron, P; Knapitsch, A; Leclercq, J L; Letartre, X; Meyer, T; Pauwels, K; Powolny, F; Seassal, C

    2010-01-01

    The renewal of interest for Time of Flight Positron Emission Tomography (TOF PET) has highlighted the need for increasing the light output of scintillating crystals and in particular for improving the light extraction from materials with a high index of refraction. One possible solution to overcome the problem of total internal reflection and light losses resulting from multiple bouncing within the crystal is to improve the light extraction efficiency at the crystal/photodetector interface by means of photonic crystals, i.e. media with a periodic modulation of the dielectric constant at the wavelength scale. After a short reminder of the underlying principles this contribution proposes to present the very encouraging results we have recently obtained on LYSO pixels and the perspectives on other crystals such as BGO, LuYAP and LuAG. These results confirm the impressive predictions from our previously published Monte Carlo simulations. A detailed description of the sample preparation procedure is given as well ...

  12. Nonlinear properties of a graded-index photonic heterostructure

    Indian Academy of Sciences (India)

    Photonic crystals (PCs), which exhibit photonic band structures due to ... because of their small lattice constant, which must be comparable to the wavelength [6]. ... This type of structure can create a defect mode with frequency ω0 = 2πc/λ0.

  13. Tamm-plasmon polaritons in one-dimensional photonic quasi-crystals.

    Science.gov (United States)

    Shukla, Mukesh Kumar; Das, Ritwick

    2018-02-01

    We present an investigation to ascertain the existence of Tamm-plasmon-polariton-like modes in one-dimensional (1D) quasi-periodic photonic systems. Photonic bandgap formation in quasi-crystals is essentially a consequence of long-range periodicity exhibited by multilayers and, thus, it can be explained using the dispersion relation in the Brillouin zone. Defining a "Zak"-like topological phase in 1D quasi-crystals, we propose a recipe to ascertain the existence of Tamm-like photonic surface modes in a metal-terminated quasi-crystal lattice. Additionally, we also explore the conditions of efficient excitation of such surface modes along with their dispersion characteristics.

  14. Tunable multichannel filter in photonic crystal heterostructure containing permeability-negative materials

    International Nuclear Information System (INIS)

    Hu Xiaoyong; Liu Zheng; Gong Qihuang

    2008-01-01

    A tunable multichannel filter is demonstrated theoretically based on a one-dimensional photonic crystal heterostructure containing permeability-negative material. The filtering properties of the photonic crystal filter, including the channel number and frequency, can be tuned by adjusting the structure parameters or by a pump laser. The angular response of the photonic crystal filter and the influences of the losses on the filtering properties are also analyzed

  15. Tunable multichannel filter in photonic crystal heterostructure containing permeability-negative materials

    Energy Technology Data Exchange (ETDEWEB)

    Hu Xiaoyong [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)], E-mail: xiaoyonghu@pku.edu.cn; Liu Zheng [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Gong Qihuang [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China)], E-mail: qhgong@pku.edu.cn

    2008-01-14

    A tunable multichannel filter is demonstrated theoretically based on a one-dimensional photonic crystal heterostructure containing permeability-negative material. The filtering properties of the photonic crystal filter, including the channel number and frequency, can be tuned by adjusting the structure parameters or by a pump laser. The angular response of the photonic crystal filter and the influences of the losses on the filtering properties are also analyzed.

  16. Tunable microwave signal generation based on an Opto-DMD processor and a photonic crystal fiber

    International Nuclear Information System (INIS)

    Wang Tao; Sang Xin-Zhu; Yan Bin-Bin; Li Yan; Song Fei-Jun; Zhang Xia; Wang Kui-Ru; Yuan Jin-Hui; Yu Chong-Xiu; Ai Qi; Chen Xiao; Zhang Ying; Chen Gen-Xiang; Xiao Feng; Kamal Alameh

    2014-01-01

    Frequency-tunable microwave signal generation is proposed and experimentally demonstrated with a dual-wavelength single-longitudinal-mode (SLM) erbium-doped fiber ring laser based on a digital Opto-DMD processor and four-wave mixing (FWM) in a high-nonlinear photonic crystal fiber (PCF). The high-nonlinear PCF is employed for the generation of the FWM to obtain stable and uniform dual-wavelength oscillation. Two different short passive sub-ring cavities in the main ring cavity serve as mode filters to make SLM lasing. The two lasing wavelengths are electronically selected by loading different gratings on the Opto-DMD processor controlled with a computer. The wavelength spacing can be smartly adjusted from 0.165 nm to 1.08 nm within a tuning accuracy of 0.055 nm. Two microwave signals at 17.23 GHz and 27.47 GHz are achieved. The stability of the microwave signal is discussed. The system has the ability to generate a 137.36-GHz photonic millimeter signal at room temperature

  17. Study on sensing property of one-dimensional ring mirror-defect photonic crystal

    Science.gov (United States)

    Chen, Ying; Luo, Pei; Cao, Huiying; Zhao, Zhiyong; Zhu, Qiguang

    2018-02-01

    Based on the photon localization and the photonic bandgap characteristics of photonic crystals (PCs), one-dimensional (1D) ring mirror-defect photonic crystal structure is proposed. Due to the introduction of mirror structure, a defect cavity is formed in the center of the photonic crystal, and then the resonant transmission peak can be obtained in the bandgap of transmission spectrum. The transfer matrix method is used to establish the relationship model between the resonant transmission peak and the structure parameters of the photonic crystals. Using the rectangular air gate photonic crystal structure, the dynamic monitoring of the detected gas sample parameters can be achieved from the shift of the resonant transmission peak. The simulation results show that the Q-value can attain to 1739.48 and the sensitivity can attain to 1642 nm ṡ RIU-1, which demonstrates the effectiveness of the sensing structure. The structure can provide certain theoretical reference for air pollution monitoring and gas component analysis.

  18. Spectrum of a one-atom laser in photonic crystals

    International Nuclear Information System (INIS)

    Florescu, Lucia

    2006-01-01

    The emission spectrum of a single-emitter laser in a photonic crystal is presented. We consider a coherently pumped two-level emitter strongly coupled to a high-quality microcavity engineered within a photonic crystal. We show that the cavity spectrum consists of both elastic and inelastic components, for which we derive analytical expressions. Our study reveals enhanced, spectrally narrower emission resulting from the radiation reservoir of the photonic crystal. The cavity field spectral characteristics are fundamentally distinct from those of a corresponding microcavity in ordinary vacuum. At high pump intensities and for large discontinuities in the photon density of states between Mollow spectral components of atomic resonance fluorescence, the emitted intensity originating from the elastic spectral component increases with the intensity of the pump and the elastic component dominates the spectrum. In the case of a vanishing photon density of states in the spectral range surrounding the lower Mollow sideband and no dipolar dephasing, the cavity spectrum is elastic

  19. Photonic crystal waveguides in artificial opals

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Kiyan, Roman; Neumeister, Andrei

    2008-01-01

    3D photonic crystals based on Si inverted-opals are numerically explored as hosts for effective air-channel waveguides, which can serve as parts of photonic circuits. Two basic shapes of straight waveguides are considered: cylindrical and a chain of spheres. Modelling shows that transmission...... is heavily dependent on the lattice position of the waveguide and its direction. Our experiments of defect inscription by 2-photon polymerization for the production of straight and bent waveguides in opal templates are reported....

  20. Slow-light enhanced optical detection in liquid-infiltrated photonic crystals

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Rishøj, Lars Søgaard; Steffensen, Henrik

    2007-01-01

    Slow-light enhanced optical detection in liquid-infiltrated photonic crystals is theoretically studied. Using a scattering-matrix approach and the Wigner–Smith delay time concept, we show that optical absorbance benefits both from slow-light phenomena as well as a high filling factor of the energy...... residing in the liquid. Utilizing strongly dispersive photonic crystal structures, we numerically demonstrate how liquid-infiltrated photonic crystals facilitate enhanced light–matter interactions, by potentially up to an order of magnitude. The proposed concept provides strong opportunities for improving...

  1. Full 3D FDTD analysis of Electromagnetic Field in Photonic Crystal VCSEL

    International Nuclear Information System (INIS)

    Liu Fa; Xu Chen; Xie Yiyang; Zhao Zhenbo; Zhou Kang; Wang Baoqiang; Liu Yingming; Shen Guangdi

    2011-01-01

    The effect of etch damage to the mode characteristics of photonic crystal vertical cavity surface emitting lasers was simulated in this paper. The devices simulated in this paper are 850-nm GaAs-based VCSELs with photonic crystal. And the devices were simulated by using finite difference time domain (FDTD) method. Limited to the computer resource, the top DBR was simulated only, and the traverse size was smaller than the real size. In order to highlight the impact of the etch damage, several kinds of light sources and photonic crystal structures were simulated separately, and each situation is calculated in the condition of ideal photonic crystal and photonic crystal with etch damage respectively. All parameters of device and light feature are referred to the real condition.

  2. Full 3D FDTD analysis of Electromagnetic Field in Photonic Crystal VCSEL

    Energy Technology Data Exchange (ETDEWEB)

    Liu Fa; Xu Chen; Xie Yiyang; Zhao Zhenbo; Zhou Kang; Wang Baoqiang; Liu Yingming; Shen Guangdi, E-mail: liufa20719@126.com [Key Laboratory of Opto-electronics Technology (Beijing University of Technology), Ministry of Education, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124 (China)

    2011-02-01

    The effect of etch damage to the mode characteristics of photonic crystal vertical cavity surface emitting lasers was simulated in this paper. The devices simulated in this paper are 850-nm GaAs-based VCSELs with photonic crystal. And the devices were simulated by using finite difference time domain (FDTD) method. Limited to the computer resource, the top DBR was simulated only, and the traverse size was smaller than the real size. In order to highlight the impact of the etch damage, several kinds of light sources and photonic crystal structures were simulated separately, and each situation is calculated in the condition of ideal photonic crystal and photonic crystal with etch damage respectively. All parameters of device and light feature are referred to the real condition.

  3. Double symmetry breaking of solitons in one-dimensional virtual photonic crystals

    International Nuclear Information System (INIS)

    Li Yongyao; Malomed, Boris A.; Feng Mingneng; Zhou Jianying

    2011-01-01

    We demonstrate that spatial solitons undergo two consecutive spontaneous symmetry breakings (SSBs), with the increase of the total power, in nonlinear photonic crystals (PhCs) built as arrays of alternating linear and nonlinear stripes, in the case when the maxima of the effective refractive index coincide with the minima of the self-focusing coefficient and vice versa (i.e., the corresponding linear and nonlinear periodic potentials are in competition). This setting may be induced, as a virtual PhC, by means of the electromagnetically induced-transparency (EIT) technique, in a uniform optical medium. It may also be realized as a Bose-Einstein condensate (BEC) subject to the action of the combined periodic optical potential and periodically modulated Feshbach resonance. The first SSB happens at the center of a linear stripe, pushing a broad low-power soliton into an adjacent nonlinear stripe and gradually suppressing side peaks in the soliton's shape. Then the soliton restores its symmetry, being pinned to the midpoint of the nonlinear stripe. The second SSB occurs at higher powers, pushing the narrow soliton off the center of the nonlinear channel, while the soliton keeps its internal symmetry. The results are obtained by means of numerical and analytical methods. They may be employed to control switching of light beams by means of the varying power.

  4. Ultrasmall-angle X-ray scattering analysis of photonic crystal structure

    International Nuclear Information System (INIS)

    Abramova, V. V.; Sinitskii, A. S.; Grigor'eva, N. A.; Grigor'ev, S. V.; Belov, D. V.; Petukhov, A. V.; Mistonov, A. A.; Vasil'eva, A. V.; Tret'yakov, Yu. D.

    2009-01-01

    The results of an ultrasmall-angle X-ray scattering study of iron(III) oxide inverse opal thin films are presented. The photonic crystals examined are shown to have fcc structure with amount of stacking faults varying among the samples. The method used in this study makes it possible to easily distinguish between samples with predominantly twinned fcc structure and nearly perfect fcc stacking. The difference observed between samples fabricated under identical conditions is attributed to random layer stacking in the self-assembled colloidal crystals used as templates for fabricating the inverse opals. The present method provides a versatile tool for analyzing photonic crystal structure in studies of inverse opals made of various materials, colloidal crystals, and three-dimensional photonic crystals of other types.

  5. Direct measurements of multi-photon induced nonlinear lattice dynamics in semiconductors via time-resolved x-ray scattering.

    Science.gov (United States)

    Williams, G Jackson; Lee, Sooheyong; Walko, Donald A; Watson, Michael A; Jo, Wonhuyk; Lee, Dong Ryeol; Landahl, Eric C

    2016-12-22

    Nonlinear optical phenomena in semiconductors present several fundamental problems in modern optics that are of great importance for the development of optoelectronic devices. In particular, the details of photo-induced lattice dynamics at early time-scales prior to carrier recombination remain poorly understood. We demonstrate the first integrated measurements of both optical and structural, material-dependent quantities while also inferring the bulk impulsive strain profile by using high spatial-resolution time-resolved x-ray scattering (TRXS) on bulk crystalline gallium arsenide. Our findings reveal distinctive laser-fluence dependent crystal lattice responses, which are not described by previous TRXS experiments or models. The initial linear expansion of the crystal upon laser excitation stagnates at a laser fluence corresponding to the saturation of the free carrier density before resuming expansion in a third regime at higher fluences where two-photon absorption becomes dominant. Our interpretations of the lattice dynamics as nonlinear optical effects are confirmed by numerical simulations and by additional measurements in an n-type semiconductor that allows higher-order nonlinear optical processes to be directly observed as modulations of x-ray diffraction lineshapes.

  6. Slow-light effects in photonic crystal membrane lasers

    DEFF Research Database (Denmark)

    Xue, Weiqi; Yu, Yi; Ottaviano, Luisa

    2015-01-01

    In this paper, we present a systematic investigation of photonic crystal cavity laser operating in the slow-light regime. The dependence of lasing threshold on the effect of slow-light will be particularly highlighted.......In this paper, we present a systematic investigation of photonic crystal cavity laser operating in the slow-light regime. The dependence of lasing threshold on the effect of slow-light will be particularly highlighted....

  7. Black phosphorus-based one-dimensional photonic crystals and microcavities.

    Science.gov (United States)

    Kriegel, Ilka; Toffanin, Stefano; Scotognella, Francesco

    2016-11-10

    The latest achievements in the fabrication of thin layers of black phosphorus (BP), toward the technological breakthrough of a phosphorene atomically thin layer, are paving the way for their use in electronics, optics, and optoelectronics. In this work, we have simulated the optical properties of one-dimensional photonic structures, i.e., photonic crystals and microcavities, in which few-layer BP is one of the components. The insertion of the 5-nm black phosphorous layers leads to a photonic band gap in the photonic crystals and a cavity mode in the microcavity that is interesting for light manipulation and emission enhancement.

  8. Wavelength conversion, time demultiplexing and multicasting based on cross-phase modulation and four-wave mixing in dispersion-flattened highly nonlinear photonic crystal fiber

    International Nuclear Information System (INIS)

    Hui, Zhan-Qiang; Zhang, Jian-Guo

    2012-01-01

    We propose the use of cross-phase modulation (XPM) and four-wave mixing (FWM) in dispersion-flattened highly nonlinear photonic crystal fibers (HNL-PCFs) to implement the functionalities of wavelength conversion, simultaneous time demultiplexing and wavelength multicasting in optical time-division multiplexing (OTDM) systems. The experiments on wavelength conversion at 80 Gbit s −1 and OTDM demultiplexing from 80 to 10 Gbit s −1 with wavelength multicasting of two channels are successfully demonstrated to validate the proposed scheme, which are carried out by using two segments of dispersion-flattened HNL-PCFs with lengths of 100 and 50 m, respectively. Moreover, the bit error rate (BER) performance is also measured. The results show that our designed system can achieve a power penalty of less than 4.6 dB for two multicasting channels with a 24 nm wavelength span at the BER of 10 −9 when compared with the 10 Gbit/s back-to-back measurement. The proposed system is transparent to bit rate since only an ultrafast third-order nonlinear effect is used. The resulting configuration is compact, robust and reliable, benefiting from the use of dispersion-flattened HNL-PCFs with short lengths. This also makes the proposed system more flexible in the operational wavelengths than those based on dispersion-shifted fibers and traditional highly nonlinear fibers. (paper)

  9. Dynamically tunable interface states in 1D graphene-embedded photonic crystal heterostructure

    Science.gov (United States)

    Huang, Zhao; Li, Shuaifeng; Liu, Xin; Zhao, Degang; Ye, Lei; Zhu, Xuefeng; Zang, Jianfeng

    2018-03-01

    Optical interface states exhibit promising applications in nonlinear photonics, low-threshold lasing, and surface-wave assisted sensing. However, the further application of interface states in configurable optics is hindered by their limited tunability. Here, we demonstrate a new approach to generate dynamically tunable and angle-resolved interface states using graphene-embedded photonic crystal (GPC) heterostructure device. By combining the GPC structure design with in situ electric doping of graphene, a continuously tunable interface state can be obtained and its tuning range is as wide as the full bandgap. Moreover, the exhibited tunable interface states offer a possibility to study the correspondence between space and time characteristics of light, which is beyond normal incident conditions. Our strategy provides a new way to design configurable devices with tunable optical states for various advanced optical applications such as beam splitter and dynamically tunable laser.

  10. Photonic crystal fiber sensing characteristics research based on alcohol asymmetry filling

    Science.gov (United States)

    Shi, Fu-quan; Luo, Yan; Li, Hai-tao; Peng, Bao-jin

    2018-02-01

    A new type of Sagnac fiber temperature sensor based on alcohol asymmetric filling photonic crystal fiber is proposed. First, the corrosion of photonic crystal fiber and the treatment of air hole collapse are carried out. Then, the asymmetric structure of photonic crystal fiber is filled with alcohol, and then the structure is connected to the Sagnac interference ring. When the temperature changes, the thermal expansion effect of filling alcohol will lead to the change of birefringence of photonic crystal fiber, so that the interference spectrum of the sensor will drift along with the change of temperature. The experimental results show that the interference red shift will occur with the increase of temperature, and the temperature sensitivity is 0.1864nm/ °C. The sensor has high sensitivity to temperature. At the same time, the structure has the advantages of high stability, anti electromagnetic interference and easy to build. It provides a new method for obtaining birefringence in ordinary photonic crystal fibers.

  11. Photorefractive lithium niobate crystals for applications in photonics

    International Nuclear Information System (INIS)

    Hartwig, U.

    2006-12-01

    Lithium niobate crystals (LiNbO 3 ) generally show a photorefractive response, i.e., light-induced refractive index changes. Crystals are investigated at room temperature and at elevated temperatures. As a result 'classical' photorefractive holographic volume-phase gratings, originating from space charge fields and the electro-optic effect, and 'non-classical' photorefractive volume-phase gratings, which can be traced back to strong absorption gratings, emerge. Single domain and periodically poled crystals (PPLN) are investigated. PPLN is typically used in non-linear optics for frequency conversion. The crystals also show non-linear photorefractive response during holographic recording with isotropically polarized light beams of equal intensity and, in the case of PPLN, by mixing of domain and holographic gratings. The results are important for applications combining the photorefractive and non-linear optical properties of LiNbO 3 . (orig.)

  12. Investigation of 2D photonic crystal structure based channel drop filter using quad shaped photonic crystal ring resonator for CWDM system

    Energy Technology Data Exchange (ETDEWEB)

    Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com; Dusad, Lalit Kumar [Government Engineering College Ajmer, Rajasthan (India); Rajasthan Technical University, Kota, Rajasthan (India)

    2016-05-06

    In this paper, the design & performance of two dimensional (2-D) photonic crystal structure based channel drop filter is investigated using quad shaped photonic crystal ring resonator. In this paper, Photonic Crystal (PhC) based on square lattice periodic arrays of Gallium Indium Phosphide (GaInP) rods in air structure have been investigated using Finite Difference Time Domain (FDTD) method and photonic band gap is being calculated using Plane Wave Expansion (PWE) method. The PhC designs have been optimized for telecommunication wavelength λ= 1571 nm by varying the rods lattice constant. The number of rods in Z and X directions is 21 and 20, with lattice constant 0.540 nm it illustrates that the arrangement of Gallium Indium Phosphide (GaInP) rods in the structure which gives the overall size of the device around 11.4 µm × 10.8 µm. The designed filter gives good dropping efficiency using 3.298, refractive index. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm{sup 2}.

  13. Photonic-crystal diplexers for terahertz-wave applications.

    Science.gov (United States)

    Yata, Masahiro; Fujita, Masayuki; Nagatsuma, Tadao

    2016-04-04

    A compact diplexer is designed using a silicon photonic-crystal directional coupler of length comparable to the incident wavelength. The diplexer theoretically and experimentally exhibits a cross state bandwidth as broad as 2% of the operation frequency, with over 40-dB isolation between the cross and bar ports. We also demonstrate 1.5-Gbit/s frequency-division communication in the 0.32- and 0.33-THz bands using a single-wavelength-sized diplexer, and discuss the transmission bandwidth. Our study demonstrates the potential for application of photonic crystals as terahertz-wave integration platforms.

  14. Optical tuning of photonic bandgaps in dye-doped nematic liquid crystal photonic crystal fibers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Bjarklev, Anders Overgaard; Hermann, David Sparre

    2005-01-01

    An all-optical modulator is demonstrated, which utilizes a pulsed 532 nm laser to modulate the spectral position of the bandgaps in a photonic crystal fiber infiltrated with a dye-doped nematic liquid crystal. In order to investigate the time response of the LCPBG fiber device, a low-power CW probe...... laser was coupled into the fiber together with the pulsed pump laser of 2.3 mW and we have demonstrated a modulation frequency of up to 2 kHz....

  15. Slow-light-enhanced gain in active photonic crystal waveguides

    DEFF Research Database (Denmark)

    Ek, Sara; Hansen, Per Lunnemann; Chen, Yaohui

    2014-01-01

    Passive photonic crystals have been shown to exhibit a multitude of interesting phenomena, including slow-light propagation in line-defect waveguides. It was suggested that by incorporating an active material in the waveguide, slow light could be used to enhance the effective gain of the material......, which would have interesting application prospects, for example enabling ultra-compact optical amplifiers for integration in photonic chips. Here we experi- mentally investigate the gain of a photonic crystal membrane structure with embedded quantum wells. We find that by solely changing the photonic...... crystal structural parameters, the maximum value of the gain coefficient can be increased compared with a ridge waveguide structure and at the same time the spectral position of the peak gain be controlled. The experimental results are in qualitative agreement with theory and show that gain values similar...

  16. Ultra-refractive and extended-range one-dimensional photonic crystal superprisms

    Science.gov (United States)

    Ting, D. Z. Y.

    2003-01-01

    We describe theoretical analysis and design of one-dimensional photonic crystal prisms. We found that inside the photonic crystal, for frequencies near the band edges, light propagation direction is extremely sensitive to the variations in wavelength and incident angle.

  17. Inverse opal photonic crystal of chalcogenide glass by solution processing.

    Science.gov (United States)

    Kohoutek, Tomas; Orava, Jiri; Sawada, Tsutomu; Fudouzi, Hiroshi

    2011-01-15

    Chalcogenide opal and inverse opal photonic crystals were successfully fabricated by low-cost and low-temperature solution-based process, which is well developed in polymer films processing. Highly ordered silica colloidal crystal films were successfully infilled with nano-colloidal solution of the high refractive index As(30)S(70) chalcogenide glass by using spin-coating method. The silica/As-S opal film was etched in HF acid to dissolve the silica opal template and fabricate the inverse opal As-S photonic crystal. Both, the infilled silica/As-S opal film (Δn ~ 0.84 near λ=770 nm) and the inverse opal As-S photonic structure (Δn ~ 1.26 near λ=660 nm) had significantly enhanced reflectivity values and wider photonic bandgaps in comparison with the silica opal film template (Δn ~ 0.434 near λ=600 nm). The key aspects of opal film preparation by spin-coating of nano-colloidal chalcogenide glass solution are discussed. The solution fabricated "inorganic polymer" opal and the inverse opal structures exceed photonic properties of silica or any organic polymer opal film. The fabricated photonic structures are proposed for designing novel flexible colloidal crystal laser devices, photonic waveguides and chemical sensors. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Electrically tunable zero dispersion wavelengths in photonic crystal fibers filled with a dual frequency addressable liquid crystal

    International Nuclear Information System (INIS)

    Wahle, Markus; Kitzerow, Heinz-Siegfried

    2015-01-01

    We present a liquid crystal (LC) infiltrated photonic crystal fiber, which enables the electrical tuning of the position of zero dispersion wavelengths (ZDWs). A dual frequency addressable liquid crystal is aligned perpendicular on the inclusion walls of a photonic crystal fiber, which results in an escaped radial director field. The orientation of the LC is controlled by applying an external electric field. Due to the high index of the liquid crystal the fiber guides light by the photonic band gap effect. Multiple ZDWs exist in the visible and near infrared. The positions of the ZDWs can be either blue or red shifted depending on the frequency of the applied voltage

  19. Measurement of infrared optical constants with visible photons

    Science.gov (United States)

    Paterova, Anna; Yang, Hongzhi; An, Chengwu; Kalashnikov, Dmitry; Krivitsky, Leonid

    2018-04-01

    We demonstrate a new scheme for infrared spectroscopy with visible light sources and detectors. The technique relies on the nonlinear interference of correlated photons, produced via spontaneous parametric down conversion in a nonlinear crystal. Visible and infrared photons are split into two paths and the infrared photons interact with the sample under study. The photons are reflected back to the crystal, resembling a conventional Michelson interferometer. Interference of the visible photons is observed and it is dependent on the phases of all three interacting photons: pump, visible and infrared. The transmission coefficient and the refractive index of the sample in the infrared range can be inferred from the interference pattern of visible photons. The method does not require the use of potentially expensive and inefficient infrared detectors and sources, it can be applied to a broad variety of samples, and it does not require a priori knowledge of sample properties in the visible range.

  20. Spectroscopy of photonic band gaps in mesoporous one-dimensional photonic crystals based on aluminum oxide

    International Nuclear Information System (INIS)

    Gorelik, V.S.; Voinov, Yu.P.; Shchavlev, V.V.; Bi, Dongxue; Shang, Guo Liang; Fei, Guang Tao

    2017-01-01

    Mesoporous one-dimensional photonic crystals based on aluminum oxide have been synthesized by electrochemical etching method. Reflection spectra of the obtained mesoporous samples in a wide spectral range that covers several band gaps are presented. Microscopic parameters of photonic crystals are calculated and corresponding reflection spectra for the first six band gaps are presented.

  1. Entangled, guided photon generation in (1+1)-dimensional photonic crystals

    International Nuclear Information System (INIS)

    Sciscione, L.; Centini, M.; Sibilia, C.; Bertolotti, M.; Scalora, M.

    2006-01-01

    A scheme based on photonic crystal technology is proposed as an ultrabright source of entangled photons on a miniaturized scale. The geometry consists of a multilayer microcavity, excited by a resonant pump frequency, such that the emitted photons are guided transversally to the direction of the incident pump. The entanglement occurs in direction, frequency, and polarization, and the bandwidth of the emitted photons is of the order of 1 nm. We propose a feasible design based on Al 0.3 Ga 0.7 As/Al 2 O 3 structures and predict an emission rate 10 5 pairs per second with 100 mW pump power. These results are promising for realization of chip and future quantum computer applications

  2. Quasiperiodic one-dimensional photonic crystals with adjustable multiple photonic bandgaps.

    Science.gov (United States)

    Vyunishev, Andrey M; Pankin, Pavel S; Svyakhovskiy, Sergey E; Timofeev, Ivan V; Vetrov, Stepan Ya

    2017-09-15

    We propose an elegant approach to produce photonic bandgap (PBG) structures with multiple photonic bandgaps by constructing quasiperiodic photonic crystals (QPPCs) composed of a superposition of photonic lattices with different periods. Generally, QPPC structures exhibit both aperiodicity and multiple PBGs due to their long-range order. They are described by a simple analytical expression, instead of quasiperiodic tiling approaches based on substitution rules. Here we describe the optical properties of QPPCs exhibiting two PBGs that can be tuned independently. PBG interband spacing and its depth can be varied by choosing appropriate reciprocal lattice vectors and their amplitudes. These effects are confirmed by the proof-of-concept measurements made for the porous silicon-based QPPC of the appropriate design.

  3. Energy flow in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Søndergaard, Thomas; Dridi, Kim

    2000-01-01

    Theoretical and numerical investigations of energy flow in photonic crystal waveguides made of line defects and branching points are presented. It is shown that vortices of energy flow may occur, and the net energy flow along: the line defect is described via the effective propagation velocity....... Single-mode and multimode operations are studied, and dispersion relations are computed for different waveguide widths. Both strong positive, strong negative, and zero dispersion an possible. It is shown that geometric parameters such as the nature of the lattice, the line defect orientation, the defect...... width, and the branching-point geometry have a significant influence on the electrodynamics. These are important issues for the fabrication of photonic crystal structures....

  4. Density of states functions for photonic crystals

    International Nuclear Information System (INIS)

    McPhedran, R.C.; McOrist, J.; Sterke, C.M. de; Nicorovici, N.A.; Botten, L.C.; Asatryan, A.A.

    2004-01-01

    We discuss density of states functions for photonic crystals, in the context of the two-dimensional problem for arrays of cylinders of arbitrary cross section. We introduce the mutual density of states (MDOS), and show that this function can be used to calculate both the local density of states (LDOS), which gives position information for emission of radiation from photonic crystals, and the spectral density of states (SDOS), which gives angular information. We establish the connection between MDOS, LDOS, SDOS and the conventional density of states, which depends only on frequency. We relate all four functions to the band structure and propagating states within the crystal, and give numerical examples of the relation between band structure and density of states functions

  5. Waveguide photonic crystals with characteristics controlled with p-i-n diodes

    International Nuclear Information System (INIS)

    Usanov, D. A.; Skripal, A. V.; Abramov, A. V.; Bogolyubov, A. S.; Skvortsov, V. S.; Merdanov, M. K.

    2010-01-01

    A one-dimensional waveguide photonic structure-specifically, a photonic crystal with a controllable frequency characteristic-is designed. The central frequency of the spectral window of the photonic crystal can be tuned by choosing the parameters of disturbance of periodicity in the photonic crystal, whereas the transmission coefficient at a particular frequency can be controlled by varying the voltage at a p-i-n diode. It is shown that the possibility exists of using the waveguide photonic crystal to design a microwave device operating in the 3-cm-wavelength region, with a transmission band of 70 MHz at a level 3 dB and the transmission coefficient controllable in the range from -1.5 to -25 dB under variations in the forward voltage bias at the p-i-n diode from zero to 700 mV.

  6. Dynamics of Spontaneous Emission Controlled by Local Density of States in Photonic Crystals

    DEFF Research Database (Denmark)

    Lodahl, Peter; Nikolaev, Ivan S.; van Driel, A. Floris

    2006-01-01

    We have measured time-resolved spontaneous emission from quantum dots in 3D photonic crystals. Due to the spatially dependent local density of states, the distribution of decay rates varies strongly with the photonic crystal lattice parameter.......We have measured time-resolved spontaneous emission from quantum dots in 3D photonic crystals. Due to the spatially dependent local density of states, the distribution of decay rates varies strongly with the photonic crystal lattice parameter....

  7. Negative refraction at infrared wavelengths in a two-dimensional photonic crystal

    International Nuclear Information System (INIS)

    Berrier, A.; Mulot, M.; Swillo, M.; Qiu, M.; Thylen, L.; Anand, S.; Talneau, A.

    2004-01-01

    We report on the first experimental evidence of negative refraction at telecommunication wavelengths by a two-dimensional photonic crystal field. Samples were fabricated by chemically assisted ion beam etching in the InP-based low-index constrast system. Experiments of beam imaging and light collection show light focusing by the photonic crystal field. Finite-difference time-domain simulations confirm that the observed focusing is due to negative refraction in the photonic crystal area

  8. Creation of tunable absolute bandgaps in a two-dimensional anisotropic photonic crystal modulated by a nematic liquid crystal

    International Nuclear Information System (INIS)

    Liu Chenyang

    2008-01-01

    Photonic crystals (PCs) have many potential applications because of their ability to control light-wave propagation. We have investigated the tunable absolute bandgap in a two-dimensional anisotropic photonic crystal structures modulated by a nematic liquid crystal. The PC structure composed of an anisotropic-dielectric cylinder in the liquid crystal medium is studied by solving Maxwell's equations using the plane wave expansion method. The photonic band structures are found to exhibit absolute bandgaps for the square and triangular lattices. Numerical simulations show that the absolute bandgaps can be continuously tuned in the square and triangular lattices consisting of anisotropic-dielectric cylinders by infiltrating nematic liquid crystals. Such a mechanism of bandgap adjustment should open up a new application for designing components in photonic integrated circuits

  9. Numerical characterization of nanopillar photonic crystal waveguides and directional couplers

    DEFF Research Database (Denmark)

    Chigrin, Dmitry N.; Lavrinenko, Andrei; Sotomayor Torres, Clivia M.

    2005-01-01

    We numerically characterize a novel type of a photonic crystal waveguide, which consists of several rows of periodically arranged dielectric cylinders. In such a nanopillar photonic crystal waveguide, light confinement is due to the total internal reflection. A nanopillar waveguide is a multimode...

  10. Axion-photon conversion in space and in low symmetrical dielectric crystals

    International Nuclear Information System (INIS)

    Gorelik, V S

    2016-01-01

    The opportunities of axions detection as the result of axion-photon conversion processes in the space and in low symmetrical dielectric crystals are discussed. In accordance with the modern theory predictions, axions are pseudoscalar vacuum particles having very small (0.001-1.0 meV) rest energy. The possibility of axions conversion into photons and vice-versa processes in vacuum at the presence of outer magnetic field has been analyzed before. Pseudoscalar (axion type) modes are existing in some types of crystals. Polar pseudoscalar lattice and exciton modes in low symmetrical crystals are strongly interacted with axions. In this work, optical excitation of axion-type modes in low symmetrical crystals is proposed for observation of axion - photon conversion processes. Instead of outer magnetic field, the crystalline field of such crystals may be used. The experimental schemes for axion-photon conversion processes observation with recording the secondary emission of luminescence, infrared or Stimulated Raman Scattering in some dielectric crystals are discussed. (paper)

  11. Two mechanisms of disorder-induced localization in photonic-crystal waveguides

    Science.gov (United States)

    García, P. D.; KiršanskÄ--, G.; Javadi, A.; Stobbe, S.; Lodahl, P.

    2017-10-01

    Unintentional but unavoidable fabrication imperfections in state-of-the-art photonic-crystal waveguides lead to the spontaneous formation of Anderson-localized modes thereby limiting slow-light propagation and its potential applications. On the other hand, disorder-induced cavities offer an approach to cavity-quantum electrodynamics and random lasing at the nanoscale. The key statistical parameter governing the disorder effects is the localization length, which together with the waveguide length determines the statistical transport of light through the waveguide. In a disordered photonic-crystal waveguide, the localization length is highly dispersive, and therefore, by controlling the underlying lattice parameters, it is possible to tune the localization of the mode. In the present work, we study the localization length in a disordered photonic-crystal waveguide using numerical simulations. We demonstrate two different localization regimes in the dispersion diagram where the localization length is linked to the density of states and the photon effective mass, respectively. The two different localization regimes are identified in experiments by recording the photoluminescence from quantum dots embedded in photonic-crystal waveguides.

  12. Capsize of polarization in dilute photonic crystals.

    Science.gov (United States)

    Gevorkian, Zhyrair; Hakhoumian, Arsen; Gasparian, Vladimir; Cuevas, Emilio

    2017-11-29

    We investigate, experimentally and theoretically, polarization rotation effects in dilute photonic crystals with transverse permittivity inhomogeneity perpendicular to the traveling direction of waves. A capsize, namely a drastic change of polarization to the perpendicular direction is observed in a one-dimensional photonic crystal in the frequency range 10 ÷ 140 GHz. To gain more insights into the rotational mechanism, we have developed a theoretical model of dilute photonic crystal, based on Maxwell's equations with a spatially dependent two dimensional inhomogeneous dielectric permittivity. We show that the polarization's rotation can be explained by an optical splitting parameter appearing naturally in Maxwell's equations for magnetic or electric fields components. This parameter is an optical analogous of Rashba like spin-orbit interaction parameter present in quantum waves, introduces a correction to the band structure of the two-dimensional Bloch states, creates the dynamical phase shift between the waves propagating in the orthogonal directions and finally leads to capsizing of the initial polarization. Excellent agreement between theory and experiment is found.

  13. 3D holographic polymer photonic crystal for superprism application

    Science.gov (United States)

    Chen, Jiaqi; Jiang, Wei; Chen, Xiaonan; Wang, Li; Zhang, Sasa; Chen, Ray T.

    2007-02-01

    Photonic crystal based superprism offers a new way to design new optical components for beam steering and DWDM application. 3D photonic crystals are especially attractive as they could offer more control of the light beam based on the needs. A polygonal prism based holographic fabrication method has been demonstrated for a three-dimensional face-centered-cubic (FCC)-type submicron polymer photonic crystal using SU8 as the photo-sensitive material. Therefore antivibration equipment and complicated optical alignment system are not needed and the requirement for the coherence of the laser source is relaxed compared with the traditional holographic setup. By changing the top-cut prism structure, the polarization of the laser beam, the exposure and development conditions we can achieve different kinds of triclinic or orthorhombic photonic crystals on demand. Special fabrication treatments have been introduced to ensure the survivability of the fabricated large area (cm2) nano-structures. Scanning electron microscopy and diffraction results proved the good uniformity of the fabricated structures. With the proper design of the refraction prism we have achieved a partial bandgap for S+C band (1460-1565nm) in the [111] direction. The transmission and reflection spectra obtained by Fourier transform infrared spectroscopy (FTIR) are in good agreement with simulated band structure. The superprism effects around 1550nm wavelength for the fabricated 3D polymer photonic crystal have been theoretically calculated and such effects can be used for beam steering purpose.

  14. Analysis of photonic band gap in novel piezoelectric photonic crystal

    Science.gov (United States)

    Malar Kodi, A.; Doni Pon, V.; Joseph Wilson, K. S.

    2018-03-01

    The transmission properties of one-dimensional novel photonic crystal having silver-doped novel piezoelectric superlattice and air as the two constituent layers have been investigated by means of transfer matrix method. By changing the appropriate thickness of the layers and filling factor of nanocomposite system, the variation in the photonic band gap can be studied. It is found that the photonic band gap increases with the filling factor of the metal nanocomposite and with the thickness of the layer. These structures possess unique characteristics enabling one to operate as optical waveguides, selective filters, optical switches, integrated piezoelectric microactuators, etc.

  15. A dark hollow beam from a selectively liquid-filled photonic crystal fibre

    International Nuclear Information System (INIS)

    Mei-Yan, Zhang; Shu-Guang, Li; Yan-Yan, Yao; Bo, Fu; Lei, Zhang

    2010-01-01

    This paper reports that, based on the electromagnetic scattering theory of the multipole method, a high-quality hollow beam is produced through a selectively liquid-filled photonic crystal fibre. Instead of a doughnut shape, a typical hollow beam is produced by other methods; the mode-field images of the hollow-beam photonic crystal fibre satisfy sixth-order rotation symmetry, according to the symmetry of the photonic crystal fibre (PCF) structure. A dark spot size of the liquid-filled photonic crystal fibre-generated hollow beam can be tuned by inserting liquid into the cladding region and varying the photonic crystal fibre structure parameters. The liquid-filled PCF makes a convenient and flexible tool for the guiding and trapping of atoms and the creation of all-fibre optical tweezers. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  16. Passive integrated circuits utilizing slow light in photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Têtu, Amélie; Yang, Lirong

    2006-01-01

    We report thorough investigations of photonic crystal waveguide properties in the slow light regime. The transmission and the group index near the cutoff wavelengths oscillate in phase in close analogy with the ID photonic crystal behavior. The influence of having a finite number of periods...

  17. Group-velocity matched nonlinear photonic crystal fibers

    DEFF Research Database (Denmark)

    Bache, Morten; Lægsgaard, Jesper; Bang, Ole

    2006-01-01

    A quadratic nonlinear index-guiding silica PCF is optimized for efficient second-harmonic generation through dispersion calculations. Zero group-velocity mismatch is possible for any pump wavelength above 780 nm. Very high conversion efficiencies and bandwidths are found....

  18. Photon blockade in optomechanical systems with a position-modulated Kerr-type nonlinear coupling

    Science.gov (United States)

    Zhang, X. Y.; Zhou, Y. H.; Guo, Y. Q.; Yi, X. X.

    2018-03-01

    We explore the photon blockade in optomechanical systems with a position-modulated Kerr-type nonlinear coupling, i.e. H_int˜\\hat{a}\\dagger2\\hat{a}^2(\\hat{b}_1^\\dagger+\\hat{b}_1) . We find that the Kerr-type nonlinear coupling can enhance the photon blockade greatly. We evaluate the equal-time second-order correlation function of the cavity photons and find that the optimal photon blockade does not happen at the single photon resonance. By working within the few-photon subspace, we get an approximate analytical expression for the correlation function and the condition for the optimal photon blockade. We also find that the photon blockade effect is not always enhanced as the Kerr-type nonlinear coupling strength g 2 increases. At some values of g 2, the photon blockade is even weakened. For the system we considered here, the second-order correlation function can be smaller than 1 even in the unresolved sideband regime. By numerically simulating the master equation of the system, we also find that the thermal noise of the mechanical environment can enhance the photon blockade. We give out an explanation for this counter-intuitive phenomenon qualitatively.

  19. Structuring β-Ga2O3 photonic crystal photocatalyst for efficient degradation of organic pollutants.

    Science.gov (United States)

    Li, Xiaofang; Zhen, Xiuzheng; Meng, Sugang; Xian, Jiangjun; Shao, Yu; Fu, Xianzhi; Li, Danzhen

    2013-09-03

    Coupling photocatalysts with photonic crystals structure is based on the unique property of photonic crystals in confining, controlling, and manipulating the incident photons. This combination enhances the light absorption in photocatalysts and thus greatly improves their photocatalytic performance. In this study, Ga2O3 photonic crystals with well-arranged skeleton structures were prepared via a dip-coating infiltration method. The positions of the electronic band absorption for Ga2O3 photonic crystals could be made to locate on the red edge, on the blue edge, and away from the edge of their photonic band gaps by changing the pore sizes of the samples, respectively. Particularly, the electronic band absorption of the Ga2O3 photonic crystal with a pore size of 135 nm was enhanced more than other samples by making it locate on the red edge of its photonic band gap, which was confirmed by the higher instantaneous photocurrent and photocatalytic activity for the degradation of various organic pollutants under ultraviolet light irradiation. Furthermore, the degradation mechanism over Ga2O3 photonic crystals was discussed. The design of Ga2O3 photonic crystals presents a prospective application of photonic crystals in photocatalysis to address light harvesting and quantum efficiency problems through manipulating photons or constructing photonic crystal structure as groundwork.

  20. Photonics of liquid-crystal structures: A review

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P., E-mail: palto@online.ru; Blinov, L M; Barnik, M I; Lazarev, V V; Umanskii, B A; Shtykov, N M [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2011-07-15

    The original results of studies of the electro-optical and laser effects which have been performed at the Laboratory of Liquid Crystals of the Institute of Crystallography, Russian Academy of Sciences, over the last few years are reviewed. Cholesteric liquid crystals as vivid representatives of photonic structures and their behavior in an electric field are considered in detail. The formation of higher harmonics in the periodic distribution of the director field in a helical liquid crystal structure and, correspondingly, the new (anharmonic) mode of electro-optical effects are discussed. Another group of studies is devoted to bistable light switching by an electric field in chiral nematics. Polarization diffraction gratings controlled by an electric field are also considered. The results of studies devoted to microlasers on various photonic structures with cholesteric and nematic liquid crystals are considered in detail. Particular attention is given to the new regime: leaky-mode lasing. Designs of liquid crystal light amplifiers and their polarization, field, and spectral characteristics are considered in the last section.

  1. Amplified Photon Upconversion by Photonic Shell of Cholesteric Liquid Crystals.

    Science.gov (United States)

    Kang, Ji-Hwan; Kim, Shin-Hyun; Fernandez-Nieves, Alberto; Reichmanis, Elsa

    2017-04-26

    As an effective platform to exploit triplet-triplet-annihilation-based photon upconversion (TTA-UC), microcapsules composed of a fluidic UC core and photonic shell are microfluidically prepared using a triple emulsion as the template. The photonic shell consists of cholesteric liquid crystals (CLCs) with a periodic helical structure, exhibiting a photonic band gap. Combined with planar anchoring at the boundaries, the shell serves as a resonance cavity for TTA-UC emission and enables spectral tuning of the UC under low-power-density excitation. The CLC shell can be stabilized by introducing a polymerizable mesogen in the LC host. Because of the microcapsule spherical symmetry, spontaneous emission of the delayed fluorescence is omnidirectionally amplified at the edge of the stop band. These results demonstrate the range of opportunities provided by TTA-UC systems for the future design of low-threshold photonic devices.

  2. Growth of dopamine crystals

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Vidya, E-mail: vidya.patil@ruparel.edu; Patki, Mugdha, E-mail: mugdha.patki@ruparel.edu [D. G. Ruparel College, Senapati Bapat Marg, Mahim, Mumbai – 400 016 (India)

    2016-05-06

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  3. Hemispherical Brillouin zone imaging of a diamond-type biological photonic crystal

    Science.gov (United States)

    Wilts, Bodo D.; Michielsen, Kristel; De Raedt, Hans; Stavenga, Doekele G.

    2012-01-01

    The brilliant structural body colours of many animals are created by three-dimensional biological photonic crystals that act as wavelength-specific reflectors. Here, we report a study on the vividly coloured scales of the diamond weevil, Entimus imperialis. Electron microscopy identified the chitin and air assemblies inside the scales as domains of a single-network diamond (Fd3m) photonic crystal. We visualized the topology of the first Brillouin zone (FBZ) by imaging scatterometry, and we reconstructed the complete photonic band structure diagram (PBSD) of the chitinous photonic crystal from reflectance spectra. Comparison with calculated PBSDs indeed showed a perfect overlap. The unique method of non-invasive hemispherical imaging of the FBZ provides key insights for the investigation of photonic crystals in the visible wavelength range. The characterized extremely large biophotonic nanostructures of E. imperialis are structurally optimized for high reflectance and may thus be well suited for use as a template for producing novel photonic devices, e.g. through biomimicry or direct infiltration from dielectric material. PMID:22188768

  4. Acoustic and photon emissions during mechanical deformation of coloured alkali halide crystals

    International Nuclear Information System (INIS)

    Chandra, B.P.

    1984-01-01

    Acoustic and photon emissions take place in the elastic and plastic as well as the fracture region of x-irradiated KBr, KCl and NaCl crystals. The rate of photon emission is linear with the strain rate: however, the RMS value of the acoustic emission is proportional to the square root of the strain rate. The acoustic emission is maximum for x-irradiated NaCl crystals; however, the photon emission is maximum for x-irradiated KBr crystals. From the similarity between the acoustic emission and the photon emission, it seems that mobile dislocations are responsible for the acoustic emission in coloured alkali halide crystals. (author)

  5. Nonlinearities in Periodic Structures and Metamaterials

    CERN Document Server

    Denz, Cornelia; Kivshar, Yuri S

    2010-01-01

    Optical information processing of the future is associated with a new generation of compact nanoscale optical devices operating entirely with light. Moreover, adaptive features such as self-guiding, reconfiguration and switching become more and more important. Nonlinear devices offer an enormous potential for these applications. Consequently, innovative concepts for all-optical communication and information technologies based on nonlinear effects in photonic-crystal physics and nanoscale devices as metamaterials are of high interest. This book focuses on nonlinear optical phenomena in periodic media, such as photonic crystals, optically-induced, adaptive lattices, atomic lattices or metamaterials. The main purpose is to describe and overview new physical phenomena that result from the interplay between nonlinearities and structural periodicities and is a guide to actual and future developments for the expert reader in optical information processing, as well as in the physics of cold atoms in optical lattices.

  6. Modal gain and confinement factors in top- and bottom-emitting photonic-crystal VCSEL

    International Nuclear Information System (INIS)

    Czyszanowski, T; Thienpont, H; Panajotov, K; Dems, M

    2008-01-01

    We investigate the modal characteristics of a phosphide photonic-crystal vertical-cavity surface-emitting diode laser (VCSEL) by using the three-dimensional, full vectorial plane wave admittance method. A single-defect, photonic crystal is defined as a regular, hexagonal net of holes with varying depths. The modal gain and confinement factors are compared for two VCSEL structures: with emission either through the DBR with the photonic crystal or through the DBR free of photonic crystal. Significant improvement in the beam quality is demonstrated for the second design

  7. Topological photonic crystals with zero Berry curvature

    Science.gov (United States)

    Liu, Feng; Deng, Hai-Yao; Wakabayashi, Katsunori

    2018-02-01

    Topological photonic crystals are designed based on the concept of Zak's phase rather than the topological invariants such as the Chern number and spin Chern number, which rely on the existence of a nonvanishing Berry curvature. Our photonic crystals (PCs) are made of pure dielectrics and sit on a square lattice obeying the C4 v point-group symmetry. Two varieties of PCs are considered: one closely resembles the electronic two-dimensional Su-Schrieffer-Heeger model, and the other continues as an extension of this analogy. In both cases, the topological transitions are induced by adjusting the lattice constants. Topological edge modes (TEMs) are shown to exist within the nontrivial photonic band gaps on the termination of those PCs. The high efficiency of these TEMs transferring electromagnetic energy against several types of disorders has been demonstrated using the finite-element method.

  8. ARROW-based silicon-on-insulator photonic crystal waveguides with reduced losses

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Novitsky, A.; Zhilko, V.V.

    2006-01-01

    We employ an antiresonant reflecting layers arrangement with silicon-on-insulator based photonic crystal waveguides. The 3D FDTD numerical modelling reveals improved transmission in such structures with a promising potential for their application in photonic circuits.......We employ an antiresonant reflecting layers arrangement with silicon-on-insulator based photonic crystal waveguides. The 3D FDTD numerical modelling reveals improved transmission in such structures with a promising potential for their application in photonic circuits....

  9. Magnetophotonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, M [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Fujikawa, R [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Baryshev, A [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Khanikaev, A [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Lim, P B [CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan (Japan); Uchida, H [Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Aktsipetrov, O [Lomonosov Moscow State University, Leninskie Gory, Moscow, 119992 (Russian Federation); Fedyanin, A [Lomonosov Moscow State University, Leninskie Gory, Moscow, 119992 (Russian Federation); Murzina, T [Lomonosov Moscow State University, Leninskie Gory, Moscow, 119992 (Russian Federation); Granovsky, A [Lomonosov Moscow State University, Leninskie Gory, Moscow, 119992 (Russian Federation)

    2006-04-21

    When the constitutive materials of photonic crystals (PCs) are magnetic, or even only a defect introduced in PCs is magnetic, the resultant PCs exhibit very unique optical and magneto-optical properties. The strong photon confinement in the vicinity of magnetic defects results in large enhancement in linear and nonlinear magneto-optical responses of the media. Novel functions, such as band Faraday effect, magnetic super-prism effect and non-reciprocal or magnetically controllable photonic band structure, are predicted to occur theoretically. All the unique features of the media arise from the existence of magnetization in media, and hence they are called magnetophotonic crystals providing the spin-dependent nature in PCs. (topical review)

  10. Magnetophotonic crystals

    International Nuclear Information System (INIS)

    Inoue, M; Fujikawa, R; Baryshev, A; Khanikaev, A; Lim, P B; Uchida, H; Aktsipetrov, O; Fedyanin, A; Murzina, T; Granovsky, A

    2006-01-01

    When the constitutive materials of photonic crystals (PCs) are magnetic, or even only a defect introduced in PCs is magnetic, the resultant PCs exhibit very unique optical and magneto-optical properties. The strong photon confinement in the vicinity of magnetic defects results in large enhancement in linear and nonlinear magneto-optical responses of the media. Novel functions, such as band Faraday effect, magnetic super-prism effect and non-reciprocal or magnetically controllable photonic band structure, are predicted to occur theoretically. All the unique features of the media arise from the existence of magnetization in media, and hence they are called magnetophotonic crystals providing the spin-dependent nature in PCs. (topical review)

  11. Nonlinear spin wave coupling in adjacent magnonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009 (Russian Federation); Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Grishin, S. V.; Sheshukova, S. E. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation)

    2016-07-25

    We have experimentally studied the coupling of spin waves in the adjacent magnonic crystals. Space- and time-resolved Brillouin light-scattering spectroscopy is used to demonstrate the frequency and intensity dependent spin-wave energy exchange between the side-coupled magnonic crystals. The experiments and the numerical simulation of spin wave propagation in the coupled periodic structures show that the nonlinear phase shift of spin wave in the adjacent magnonic crystals leads to the nonlinear switching regime at the frequencies near the forbidden magnonic gap. The proposed side-coupled magnonic crystals represent a significant advance towards the all-magnonic signal processing in the integrated magnonic circuits.

  12. Nonlinear spin wave coupling in adjacent magnonic crystals

    International Nuclear Information System (INIS)

    Sadovnikov, A. V.; Nikitov, S. A.; Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Grishin, S. V.; Sheshukova, S. E.

    2016-01-01

    We have experimentally studied the coupling of spin waves in the adjacent magnonic crystals. Space- and time-resolved Brillouin light-scattering spectroscopy is used to demonstrate the frequency and intensity dependent spin-wave energy exchange between the side-coupled magnonic crystals. The experiments and the numerical simulation of spin wave propagation in the coupled periodic structures show that the nonlinear phase shift of spin wave in the adjacent magnonic crystals leads to the nonlinear switching regime at the frequencies near the forbidden magnonic gap. The proposed side-coupled magnonic crystals represent a significant advance towards the all-magnonic signal processing in the integrated magnonic circuits.

  13. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide

    DEFF Research Database (Denmark)

    Daveau, Raphaël S.; Balram, Krishna C.; Pregnolato, Tommaso

    2017-01-01

    Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide (PCWG) singlephoton source relying on evanescent coupling of the light field from a tapered...

  14. Excitation enhancement and extraction enhancement with photonic crystals

    Science.gov (United States)

    Shapira, Ofer; Soljacic, Marin; Zhen, Bo; Chua, Song-Liang; Lee, Jeongwon; Joannopoulos, John

    2015-03-03

    Disclosed herein is a system for stimulating emission from at least one an emitter, such as a quantum dot or organic molecule, on the surface of a photonic crystal comprising a patterned dielectric substrate. Embodiments of this system include a laser or other source that illuminates the emitter and the photonic crystal, which is characterized by an energy band structure exhibiting a Fano resonance, from a first angle so as to stimulate the emission from the emitter at a second angle. The coupling between the photonic crystal and the emitter may result in spectral and angular enhancement of the emission through excitation and extraction enhancement. These enhancement mechanisms also reduce the emitter's lasing threshold. For instance, these enhancement mechanisms enable lasing of a 100 nm thick layer of diluted organic molecules solution with reduced threshold intensity. This reduction in lasing threshold enables more efficient organic light emitting devices and more sensitive molecular sensing.

  15. Electromagnetic Wave Propagation in Two-Dimensional Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Foteinopoulou, Stavroula [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    In this dissertation, they have undertaken the challenge to understand the unusual propagation properties of the photonic crystal (PC). The photonic crystal is a medium where the dielectric function is periodically modulated. These types of structures are characterized by bands and gaps. In other words, they are characterized by frequency regions where propagation is prohibited (gaps) and regions where propagation is allowed (bands). In this study they focus on two-dimensional photonic crystals, i.e., structures with periodic dielectric patterns on a plane and translational symmetry in the perpendicular direction. They start by studying a two-dimensional photonic crystal system for frequencies inside the band gap. The inclusion of a line defect introduces allowed states in the otherwise prohibited frequency spectrum. The dependence of the defect resonance state on different parameters such as size of the structure, profile of incoming source, etc., is investigated in detail. For this study, they used two popular computational methods in photonic crystal research, the Finite Difference Time Domain method (FDTD) and the Transfer Matrix Method (TMM). The results for the one-dimensional defect system are analyzed, and the two methods, FDTD and TMM, are compared. Then, they shift their attention only to periodic two-dimensional crystals, concentrate on their band properties, and study their unusual refractive behavior. Anomalous refractive phenomena in photonic crystals included cases where the beam refracts on the ''wrong'' side of the surface normal. The latter phenomenon, is known as negative refraction and was previously observed in materials where the wave vector, the electric field, and the magnetic field form a left-handed set of vectors. These materials are generally called left-handed materials (LHM) or negative index materials (NIM). They investigated the possibility that the photonic crystal behaves as a LHM, and how this behavior relates

  16. Optical Properties and Wave Propagation in Semiconductor-Based Two-Dimensional Photonic Crystals

    International Nuclear Information System (INIS)

    Mario Agio

    2002-01-01

    This work is a theoretical investigation on the physical properties of semiconductor-based two-dimensional photonic crystals, in particular for what concerns systems embedded in planar dielectric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-crystal slabs is numerically computed and the associated light-line problem is discussed, which points to the issue of intrinsic out-of-lane diffraction losses for the photonic bands lying above the light line. The photonic states are then classified by the group theory formalism: each mode is related to an irreducible representation of the corresponding small point group. The optical properties are investigated by means of the scattering matrix method, which numerically implements a variable-angle-reflectance experiment; comparison with experiments is also provided. The analysis of surface reflectance proves the existence of selection rules for coupling an external wave to a certain photonic mode. Such rules can be directly derived from symmetry considerations. Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled in view of designing building blocks for photonic integrated circuits. The proposed designs are found to comply with the major requirements of low-loss propagation, high and single-mode transmission. These notions are then collected to model a photonic-crystal combiner for an integrated multi-wavelength-source laser

  17. Optical Properties and Wave Propagation in Semiconductor-Based Two-Dimensional Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Agio, Mario [Iowa State Univ., Ames, IA (United States)

    2002-12-31

    This work is a theoretical investigation on the physical properties of semiconductor-based two-dimensional photonic crystals, in particular for what concerns systems embedded in planar dielectric waveguides (GaAs/AlGaAs, GaInAsP/InP heterostructures, and self-standing membranes) or based on macro-porous silicon. The photonic-band structure of photonic crystals and photonic-crystal slabs is numerically computed and the associated light-line problem is discussed, which points to the issue of intrinsic out-of-lane diffraction losses for the photonic bands lying above the light line. The photonic states are then classified by the group theory formalism: each mode is related to an irreducible representation of the corresponding small point group. The optical properties are investigated by means of the scattering matrix method, which numerically implements a variable-angle-reflectance experiment; comparison with experiments is also provided. The analysis of surface reflectance proves the existence of selection rules for coupling an external wave to a certain photonic mode. Such rules can be directly derived from symmetry considerations. Lastly, the control of wave propagation in weak-index contrast photonic-crystal slabs is tackled in view of designing building blocks for photonic integrated circuits. The proposed designs are found to comply with the major requirements of low-loss propagation, high and single-mode transmission. These notions are then collected to model a photonic-crystal combiner for an integrated multi-wavelength-source laser.

  18. Micromachined millimeter-wave photonic band-gap crystals

    International Nuclear Information System (INIS)

    Oezbay, E.; Michel, E.; Tuttle, G.; Biswas, R.; Sigalas, M.; Ho, K.

    1994-01-01

    We have developed a new technique for fabricating three-dimensional photonic band-gap crystals. Our method utilizes an orderly stacking of micromachined (110) silicon wafers to build the periodic structure. A structure with a full three-dimensional photonic band gap centered near 100 GHz was measured, with experimental results in good agreement with theoretical predictions. This basic approach described should be extendable to build structures with photonic band-gap frequencies ranging from 30 GHz to 3 THz

  19. Fabrication of Ceramic Layer-by-Layer Infrared Wavelength Photonic Band Gap Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Henry Hao-Chuan [Iowa State Univ., Ames, IA (United States)

    2004-12-19

    Photonic band gap (PBG) crystals, also known as photonic crystals, are periodic dielectric structures which form a photonic band gap that prohibit the propagation of electromagnetic (EM) waves of certain frequencies at any incident angles. Photonic crystals have several potential applications including zero-threshold semiconductor lasers, the inhibition of spontaneous emission, dielectric mirrors, and wavelength filters. If defect states are introduced in the crystals, light can be guided from one location to another or even a sharp bending of light in micron scale can be achieved. This generates the potential for optical waveguide and optical circuits, which will contribute to the improvement in the fiber-optic communications and the development of high-speed computers.

  20. Hierarchically structured photonic crystals for integrated chemical separation and colorimetric detection.

    Science.gov (United States)

    Fu, Qianqian; Zhu, Biting; Ge, Jianping

    2017-02-16

    A SiO 2 colloidal photonic crystal film with a hierarchical porous structure is fabricated to demonstrate an integrated separation and colorimetric detection of chemical species for the first time. This new photonic crystal based thin layer chromatography process requires no dyeing, developing and UV irradiation compared to the traditional TLC. The assembling of mesoporous SiO 2 particles via a supersaturation-induced-precipitation process forms uniform and hierarchical photonic crystals with micron-scale cracks and mesopores, which accelerate the diffusion of developers and intensify the adsorption/desorption between the analytes and silica for efficient separation. Meanwhile, the chemical substances infiltrated to the voids of photonic crystals cause an increase of the refractive index and a large contrast of structural colors towards the unloaded part, so that the sample spots can be directly recognized with the naked eye before and after separation.

  1. Silicon photonic crystal all-optical logic gates

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yulan [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Hu, Xiaoyong, E-mail: xiaoyonghu@pku.edu.cn [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Gong, Qihuang, E-mail: qhgong@pku.edu.cn [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China)

    2013-01-03

    All-optical logic gates, including OR, XOR, NOT, XNOR, and NAND gates, are realized theoretically in a two-dimensional silicon photonic crystal using the light beam interference effect. The ingenious photonic crystal waveguide component design, the precisely controlled optical path difference, and the elaborate device configuration ensure the simultaneous realization of five types of logic gate with low-power and a contrast ratio between the logic states of “1” and “0” as high as 20 dB. High power is not necessary for operation of these logic gate devices. This offers a simple and effective approach for the realization of integrated all-optical logic devices.

  2. A novel method of rapidly modeling optical properties of actual photonic crystal fibres

    International Nuclear Information System (INIS)

    Li-Wen, Wang; Shu-Qin, Lou; Wei-Guo, Chen; Hong-Lei, Li

    2010-01-01

    The flexible structure of photonic crystal fibre not only offers novel optical properties but also brings some difficulties in keeping the fibre structure in the fabrication process which inevitably cause the optical properties of the resulting fibre to deviate from the designed properties. Therefore, a method of evaluating the optical properties of the actual fibre is necessary for the purpose of application. Up to now, the methods employed to measure the properties of the actual photonic crystal fibre often require long fibre samples or complex expensive equipments. To our knowledge, there are few studies of modeling an actual photonic crystal fibre and evaluating its properties rapidly. In this paper, a novel method, based on the combination model of digital image processing and the finite element method, is proposed to rapidly model the optical properties of the actual photonic crystal fibre. Two kinds of photonic crystal fibres made by Crystal Fiber A/S are modeled. It is confirmed from numerical results that the proposed method is simple, rapid and accurate for evaluating the optical properties of the actual photonic crystal fibre without requiring complex equipment. (rapid communication)

  3. Far-Field Focus and Dispersionless Anticrossing Bands in Two-Dimensional Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Xiaoshuang Chen

    2007-01-01

    Full Text Available We review the simulation work for the far-field focus and dispersionless anticrossing bands in two-dimensional (2D photonic crystals. In a two-dimensional photonic-crystal-based concave lens, the far-field focus of a plane wave is given by the distance between the focusing point and the lens. Strong and good-quality far-field focusing of a transmitted wave, explicitly following the well-known wave-beam negative refraction law, can be achieved. The spatial frequency information of the Bloch mode in multiple Brillouin zones (BZs is investigated in order to indicate the wave propagation in two different regions. When considering the photonic transmission in a 2D photonic crystal composed of a negative phase-velocity medium (NPVM, it is shown that the dispersionless anticrossing bands are generated by the couplings among the localized surface polaritons of the NPVM rods. The photonic band structures of the NPVM photonic crystals are characterized by a topographical continuous dispersion relationship accompanied by many anticrossing bands.

  4. Quantum Dot/Liquid Crystal Nanocomposites in Photonic Devices

    Directory of Open Access Journals (Sweden)

    Andrea L. Rodarte

    2015-07-01

    Full Text Available Quantum dot/liquid crystal nano-composites are promising new materials for a variety of applications in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however, we need to control and stabilize nano-particle dispersion in different liquid crystal host phases and understand how the particles behave in an anisotropic fluid. An ideal system will allow for the controlled assembly of either well-defined nano-particle clusters or a uniform particle distribution. In this paper, we investigate mesogen-functionalized quantum dots for dispersion in cholesteric liquid crystal. These nanoparticles are known to assemble into dense stable packings in the nematic phase, and such structures, when localized in the liquid crystal defects, can potentially enhance the coupling between particles and a cholesteric cavity. Controlling the dispersion and assembly of quantum dots using mesogenic surface ligands, we demonstrate how resonant fluid photonic cavities can result from the co-assembly of luminescent nanoparticles in the presence of cholesteric liquid crystalline ordering.

  5. Cavity quantum electrodynamics with three-dimensional photonic bandgap crystals

    NARCIS (Netherlands)

    Vos, Willem L.; Woldering, L.A.; Ghulinyan, M.; Pavesi, L.

    2015-01-01

    This paper is Chapter 8 of the book "Light Localisation and Lasing: Random and Pseudorandom Photonic Structures", edited by Mher Ghulinyan and Lorenzo Pavesi (Cambridge University Press, Cambridge, 2015). It provides an overview of much recent work on 3D photonic crystals with a complete photonic

  6. Sub-threshold investigation of two coupled photonic crystal cavities

    DEFF Research Database (Denmark)

    Schubert, Martin; Frandsen, Lars Hagedorn; Skovgård, Troels Suhr

    2009-01-01

    The behavior of two coupled photonic crystal membrane cavities with quantum dots separated by different number of holes is investigated. The measured spectral splitting with increased coupling is verified by 3D calculations and discussed.......The behavior of two coupled photonic crystal membrane cavities with quantum dots separated by different number of holes is investigated. The measured spectral splitting with increased coupling is verified by 3D calculations and discussed....

  7. Universal continuous-variable quantum computation: Requirement of optical nonlinearity for photon counting

    International Nuclear Information System (INIS)

    Bartlett, Stephen D.; Sanders, Barry C.

    2002-01-01

    Although universal continuous-variable quantum computation cannot be achieved via linear optics (including squeezing), homodyne detection, and feed-forward, inclusion of ideal photon-counting measurements overcomes this obstacle. These measurements are sometimes described by arrays of beam splitters to distribute the photons across several modes. We show that such a scheme cannot be used to implement ideal photon counting and that such measurements necessarily involve nonlinear evolution. However, this requirement of nonlinearity can be moved ''off-line,'' thereby permitting universal continuous-variable quantum computation with linear optics

  8. Magnetic activity at infrared frequencies in structured metallic photonic crystals

    International Nuclear Information System (INIS)

    O'Brien, S.; Pendry, J.P.

    2002-01-01

    We derive the effective permeability and permittivity of a nanostructured metallic photonic crystal by analysing the complex reflection and transmission coefficients for slabs of various thicknesses. These quantities were calculated using the transfer matrix method. Our results indicate that these structures could be used to realize a negative effective permeability, at least up to infrared frequencies. The origin of the negative permeability is a resonance due to the internal inductance and capacitance of the structure. We also present an analytic model for the effective permeability of the crystal. The model reveals the importance of the inertial inductance due to the finite mass of the electrons in the metal. We find that this contribution to the inductance has implications for the design of metallic magnetic structures in the optical region of the spectrum. We show that the magnetic activity in the structure is accompanied by the concentration of the incident field energy into very small volumes within the structure. This property will allow us to considerably enhance non-linear effects with minute quantities of material. (author)

  9. Structural coloration of chitosan-cationized cotton fabric using photonic crystals

    Science.gov (United States)

    Yavuz, G.; Zille, A.; Seventekin, N.; Souto, A. P.

    2017-10-01

    In this work, poly (styrene-methyl methacrylate-acrylic acid) P(St-MMA-AA) composite nanospheres were deposited onto chitosan-cationized woven cotton fabrics followed by a second layer of chitosan. The deposited photonic crystals (PCs) on the fabrics were evaluated for coating efficiency and resistance, chemical analysis and color variation by optical and SEM microscopy, ATR-FTIR, diffuse reflectance spectroscopy and washing fastness. Chitosan deposition on cotton fabric provided cationic groups on the fiber surface promoting electrostatic interaction with photonic crystals. SEM images of the washed samples indicate that the PCs are firmly coated on the cotton surface only in the chitosan treated sample. The photonic nanospheres show an average diameter of 280 nm and display a face-centered cubic closepacking structure with an average thickness of 10 μm. A further chitosan post-treatment enhances color yield of the samples due to the chitosan transparent covering layer that induce bright reflections where the angles of incidence and reflection are the same. After washing, no photonic crystal can be detected on control fabric surface. However, the sample that received a chitosan post-treatment showed a good washing fastness maintaining a reasonable degree of iridescence. Chitosan fills the spaces between the polymer spheres in the matrix stabilizing the photonic structure. Sizeable variations in lattice spacing will allow color variations using more flexible non-close-packed photonic crystal arrays in chitosan hydrogels matrices.

  10. Advances in nonlinear polymers and inorganic crystals, liquid crystals, and laser media

    International Nuclear Information System (INIS)

    Musikant, S.

    1987-01-01

    These proceedings collect papers on laser materials. Topics include: solid state lasers, fracture mechanics in laser materials, optical second harmonic generation, nonlinear optics, molecular crystals, crystal-phase transformation, and materials for laser fusion reactors

  11. Band structure and optical properties of opal photonic crystals

    Science.gov (United States)

    Pavarini, E.; Andreani, L. C.; Soci, C.; Galli, M.; Marabelli, F.; Comoretto, D.

    2005-07-01

    A theoretical approach for the interpretation of reflectance spectra of opal photonic crystals with fcc structure and (111) surface orientation is presented. It is based on the calculation of photonic bands and density of states corresponding to a specified angle of incidence in air. The results yield a clear distinction between diffraction in the direction of light propagation by (111) family planes (leading to the formation of a stop band) and diffraction in other directions by higher-order planes (corresponding to the excitation of photonic modes in the crystal). Reflectance measurements on artificial opals made of self-assembled polystyrene spheres are analyzed according to the theoretical scheme and give evidence of diffraction by higher-order crystalline planes in the photonic structure.

  12. Study of deformed quasi-periodic Fibonacci two dimensional photonic crystals

    International Nuclear Information System (INIS)

    Abdelaziz, K Ben; Bouazzi, Y; Kanzari, M

    2015-01-01

    Quasi-periodic photonic crystals are not periodic structures. These structures are generally obtained by the arrangement of layers according to a recursive rule. Properties of these structures make more attention the researchers especially in the case when applying defects. So, photonic crystals with defects present localized modes in the band gap leading to many potential applications such light localization.The objective of this work is to study by simulation the effect of the global deformation introduced in 2D quasiperiodic photonic crystals. Deformation was introduced by applying a power law, so that the coordinates y of the deformed object were determined through the coordinates x of the non-deformed structure in accordance with the following rule: y = x 1+k . Here k is the coefficient defining the deformation. Therefore, the objective is to study the effect of this deformation on the optical properties of 2D quasiperiodic photonic crystals, constructed by Fibonacci generation. An omnidirectional mirror was obtained for optimization Fibonacci iteration in a part of visible spectra. (paper)

  13. Strong nonlinearity-induced correlations for counterpropagating photons scattering on a two-level emitter

    DEFF Research Database (Denmark)

    Nysteen, Anders; McCutcheon, Dara; Mørk, Jesper

    2015-01-01

    We analytically treat the scattering of two counterpropagating photons on a two-level emitter embedded in an optical waveguide. We find that the nonlinearity of the emitter can give rise to significant pulse-dependent directional correlations in the scattered photonic state, which could be quanti......We analytically treat the scattering of two counterpropagating photons on a two-level emitter embedded in an optical waveguide. We find that the nonlinearity of the emitter can give rise to significant pulse-dependent directional correlations in the scattered photonic state, which could...

  14. Lead-Tungstate Crystal of the ALICE Photon Spectrometer (PHOS)

    CERN Multimedia

    2003-01-01

    The photon spectrometer (PHOS) is designed to measure the temperature of collisions by detecting photons emerging from them. It will be made of lead tungstate crystals like these. When high-energy photons strike lead tungstate, they make it glow, or scintillate, and this glow can be measured. Lead tungstate is extremely dense (denser than iron), stopping most photons that reach it.

  15. Fabrication of photonic crystals on several kinds of semiconductor materials by using focused-ion beam method

    International Nuclear Information System (INIS)

    Xu Xingsheng; Chen Hongda; Xiong Zhigang; Jin Aizi; Gu Changzhi; Cheng Bingying; Zhang Daozhong

    2007-01-01

    In this paper, we introduced the fabrication of photonic crystals on several kinds of semiconductor materials by using focused-ion beam machine, it shows that the method of focused-ion beam can fabricate two-dimensional photonic crystal and photonic crystal device efficiently, and the quality of the fabricated photonic crystal is high. Using the focused-ion beam method, we fabricate photonic crystal wavelength division multiplexer, and its characteristics are analyzed

  16. Few photon switching with slow light in hollow fiber

    DEFF Research Database (Denmark)

    Bajcsy, Michal; Hofferberth, S.; Balic, Vlatko

    2009-01-01

    Cold atoms confined inside a hollow-core photonic-crystal fiber with core diameters of a few photon wavelengths are a promising medium for studying nonlinear optical interactions at extremely low light levels. The high electric field intensity per photon and interaction lengths not limited...... by diffraction are some of the unique features of this system. Here, we present the results of our first nonlinear optics experiments in this system including a demonstration of an all-optical switch that is activated at energies corresponding to few hundred optical photons per pulse....

  17. Omnidirectional reflection in one-dimensional ternary photonic crystals and photonic heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shiqi [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China); Yang, Xiangbo, E-mail: 20001038@m.scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China); School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006 (China); Liu, Chengyi Timon [School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006 (China)

    2014-03-01

    Designing dielectric systems to create omnidirectional band gaps (OBGs) is an attractive topic in the field of photonic band gap (PBG) structures. In this Letter, we propose a new approach to create OBGs by ternary photonic heterostructures (TPHs) composed of three kinds of materials with different refractive indices and obtain the formulae of the structures of TPHs, i.e., those of the thicknesses of materials and the number of sub-ternary photonic crystals. It may provide a powerful technique for designing the structures being able to produce OBGs by use of usual materials, lowcost materials, and materials with low refractive indices, etc.

  18. Omnidirectional reflection in one-dimensional ternary photonic crystals and photonic heterostructures

    International Nuclear Information System (INIS)

    Wang, Shiqi; Yang, Xiangbo; Liu, Chengyi Timon

    2014-01-01

    Designing dielectric systems to create omnidirectional band gaps (OBGs) is an attractive topic in the field of photonic band gap (PBG) structures. In this Letter, we propose a new approach to create OBGs by ternary photonic heterostructures (TPHs) composed of three kinds of materials with different refractive indices and obtain the formulae of the structures of TPHs, i.e., those of the thicknesses of materials and the number of sub-ternary photonic crystals. It may provide a powerful technique for designing the structures being able to produce OBGs by use of usual materials, lowcost materials, and materials with low refractive indices, etc.

  19. The dynamics of a photonic band gap in 2D Si-based photonic crystals

    International Nuclear Information System (INIS)

    Glushko, O.Je.; Karachevtseva, L.A.

    2006-01-01

    The theoretical investigations of the photonic band structure of two-dimensional photonic crystals for the off-plane propagation of electromagnetic waves and the influence of a surface layer on the position and width of photonic band gaps are carried out. The experimentally measured width of a photonic band gap and the dispersion for two-dimensional silicon structures at the off-plane propagation of an electromagnetic wave correlate with the theoretical band gap position and width

  20. Suspended HfO2 photonic crystal slab on III-nitride/Si platform

    International Nuclear Information System (INIS)

    Wang, Yongjin; Feng, Jiao; Cao, Ziping; Zhu, Hongbo

    2014-01-01

    We present here the fabrication of suspended hafnium oxide (HfO 2 ) photonic crystal slab on a III-nitride/Si platform. The calculations are performed to model the suspended HfO 2 photonic crystal slab. Aluminum nitride (AlN) film is employed as the sacrificial layer to form air gap. Photonic crystal patterns are defined by electron beam lithography and transferred into HfO 2 film, and suspended HfO 2 photonic crystal slab is achieved on a III-nitride/Si platform through wet-etching of AlN layer in the alkaline solution. The method is promising for the fabrication of suspended HfO 2 nanostructures incorporating into a III-nitride/Si platform, or acting as the template for epitaxial growth of III-nitride materials. (orig.)

  1. Temperature dependence of photonic crystals based on thermoresponsive magnetic fluids

    International Nuclear Information System (INIS)

    Pu Shengli; Bai Xuekun; Wang Lunwei

    2011-01-01

    The influence mechanisms of temperature on the band gap properties of the magnetic fluids based photonic crystals are elaborated. A method has been developed to obtain the temperature-dependent structure information (A sol /A) from the existing experimental data and then two critical parameters, i.e. the structure ratio (d/a) and the refractive index contrast (Δn) of the magnetic fluids photonic crystals are deduced for band diagram calculations. The temperature-dependent band gaps are gained for z-even and z-odd modes. Band diagram calculations display that the mid frequencies and positions of the existing forbidden bands are not very sensitive to the temperature, while the number of the forbidden bands at certain strengths of magnetic field may change with the temperature variation. The results presented in this work give a guideline for designing the potential photonic devices based on the temperature characteristics of the magnetic fluids based photonic crystals and are helpful for improving their quality. - Highlights: → Mechanisms of temperature dependence of magnetic fluids based photonic crystals are elaborated. → Properties of existing forbidden bands have relatively fine temperature stability. → Disappearance of existing forbidden band is found for some magnetic fields. → Emergence of new forbidden band with temperature is found for some magnetic fields.

  2. Control of Dispersion in Hollow Core Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Roberts, John

    2007-01-01

    The dispersion of hollow core photonic crystal fibers can be tailored by modifying a single ring of holes in the cladding. The dispersion can be lowered and flattened, or alternatively greatly increased, in a controlled manner.......The dispersion of hollow core photonic crystal fibers can be tailored by modifying a single ring of holes in the cladding. The dispersion can be lowered and flattened, or alternatively greatly increased, in a controlled manner....

  3. Nonlinear optical sub-bandgap excitation of ZnO-based photonic resonators

    Energy Technology Data Exchange (ETDEWEB)

    Bader, Christina A.; Zeuner, Franziska; Bader, Manuel H. W.; Zentgraf, Thomas; Meier, Cedrik [Department of Physics and Center for Optoelectronics and Photonics Paderborn (CeOPP), Universität Paderborn, Warburger Str. 100, 33098 Paderborn (Germany)

    2015-12-07

    Zinc oxide (ZnO) is a versatile candidate for photonic devices due to its highly efficient optical emission. However, for pumping of ZnO photonic devices UV-sources are required. Here, we investigate the alternative usage of widely available pulsed near-infrared (NIR)-sources and compare the efficiency of linear and nonlinear excitation processes. We found that bulk ZnO, ZnO thin films grown by molecular beam epitaxy, and ZnO/SiO{sub 2} microdisk devices exhibit strong nonlinear response when excited with NIR pulses (λ ≈ 1060 nm). In addition, we show that the ZnO/SiO{sub 2} microdisks exhibit sharp whispering gallery modes over the blue-yellow part of the visible spectrum for both excitation conditions and high Q-factors up to Q = 4700. The results demonstrate that nonlinear excitation is an efficient way to pump ZnO photonic devices.

  4. Three-dimensional photonic crystals created by single-step multi-directional plasma etching.

    Science.gov (United States)

    Suzuki, Katsuyoshi; Kitano, Keisuke; Ishizaki, Kenji; Noda, Susumu

    2014-07-14

    We fabricate 3D photonic nanostructures by simultaneous multi-directional plasma etching. This simple and flexible method is enabled by controlling the ion-sheath in reactive-ion-etching equipment. We realize 3D photonic crystals on single-crystalline silicon wafers and show high reflectance (>95%) and low transmittance (photonic bandgap. Moreover, our method simply demonstrates Si-based 3D photonic crystals that show the photonic bandgap effect in a shorter wavelength range around 0.6 μm, where further fine structures are required.

  5. Photonic crystal geometry for organic solar cells.

    Science.gov (United States)

    Ko, Doo-Hyun; Tumbleston, John R; Zhang, Lei; Williams, Stuart; DeSimone, Joseph M; Lopez, Rene; Samulski, Edward T

    2009-07-01

    We report organic solar cells with a photonic crystal nanostructure embossed in the photoactive bulk heterojunction layer, a topography that exhibits a 3-fold enhancement of the absorption in specific regions of the solar spectrum in part through multiple excitation resonances. The photonic crystal geometry is fabricated using a materials-agnostic process called PRINT wherein highly ordered arrays of nanoscale features are readily made in a single processing step over wide areas (approximately 4 cm(2)) that is scalable. We show efficiency improvements of approximately 70% that result not only from greater absorption, but also from electrical enhancements. The methodology is generally applicable to organic solar cells and the experimental findings reported in our manuscript corroborate theoretical expectations.

  6. Synthesis, growth, crystal structure, optical and third order nonlinear optical properties of quinolinium derivative single crystal: PNQI

    Science.gov (United States)

    Karthigha, S.; Krishnamoorthi, C.

    2018-03-01

    An organic quinolinium derivative nonlinear optical (NLO) crystal, 1-ethyl-2-[2-(4-nitro-phenyl)-vinyl]-quinolinium iodide (PNQI) was synthesized and successfully grown by slow evaporation solution growth technique. Formation of a crystalline compound was confirmed by single crystal X-ray diffraction. The quinolinium compound PNQI crystallizes in the triclinic crystal system with a centrosymmetric space group of P-1 symmetry. The molecular structure of PNQI was confirmed by 1H NMR and 13C NMR spectral studies. The thermal properties of the crystal have been investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) studies. The optical characteristics obtained from UV-Vis-NIR spectral data were described and the cut-off wavelength observed at 506 nm. The etching study was performed to analyse the growth features of PNQI single crystal. The third order NLO properties such as nonlinear refractive index (n2), nonlinear absorption coefficient (β) and nonlinear susceptibility (χ (3)) of the crystal were investigated using Z-scan technique at 632.8 nm of Hesbnd Ne laser.

  7. The Kerr nonlinearity of the beta-barium borate crystal

    DEFF Research Database (Denmark)

    Bache, Morten; Guo, Hairun; Zhou, Binbin

    2013-01-01

    A popular crystal for ultrafast cascading experiments is beta-barium-borate (β-BaB2O4, BBO). It has a decent quadratic nonlinear coefficient, and because the crystal is anisotropie it can be birefringence phase-matched for type I (oo → e) second-harmonic generation (SHG). For femtosecond experime......A popular crystal for ultrafast cascading experiments is beta-barium-borate (β-BaB2O4, BBO). It has a decent quadratic nonlinear coefficient, and because the crystal is anisotropie it can be birefringence phase-matched for type I (oo → e) second-harmonic generation (SHG). For femtosecond...

  8. Light exiting from real photonic band gap crystals is diffuse and strongly directional

    NARCIS (Netherlands)

    Koenderink, A.F.; Vos, Willem L.

    2003-01-01

    Any photonic crystal is in practice periodic with some inevitable fabricational imperfections. We have measured angle-resolved transmission of photons that are multiply scattered by this disorder in strongly photonic crystals. Peculiar non-Lambertian distributions occur as a function of frequency:

  9. Intravitreal properties of porous silicon photonic crystals

    Science.gov (United States)

    Cheng, L; Anglin, E; Cunin, F; Kim, D; Sailor, M J; Falkenstein, I; Tammewar, A; Freeman, W R

    2009-01-01

    Aim To determine the suitability of porous silicon photonic crystals for intraocular drug-delivery. Methods A rugate structure was electrochemically etched into a highly doped p-type silicon substrate to create a porous silicon film that was subsequently removed and ultrasonically fractured into particles. To stabilise the particles in aqueous media, the silicon particles were modified by surface alkylation (using thermal hydrosilylation) or by thermal oxidation. Unmodified particles, hydrosilylated particles and oxidised particles were injected into rabbit vitreous. The stability and toxicity of each type of particle were studied by indirect ophthalmoscopy, biomicroscopy, tonometry, electroretinography (ERG) and histology. Results No toxicity was observed with any type of the particles during a period of >4 months. Surface alkylation led to dramatically increased intravitreal stability and slow degradation. The estimated vitreous half-life increased from 1 week (fresh particles) to 5 weeks (oxidised particles) and to 16 weeks (hydrosilylated particles). Conclusion The porous silicon photonic crystals showed good biocompatibility and may be used as an intraocular drug-delivery system. The intravitreal injectable porous silicon photonic crystals may be engineered to host a variety of therapeutics and achieve controlled drug release over long periods of time to treat chronic vitreoretinal diseases. PMID:18441177

  10. The effect of magnetic field on bistability in 1D photonic crystal doped by magnetized plasma and coupled nonlinear defects

    International Nuclear Information System (INIS)

    Mehdian, H.; Mohammadzahery, Z.; Hasanbeigi, A.

    2014-01-01

    In this work, we study the defect mode and bistability behavior of 1-D photonic band gap structure with magnetized plasma and coupled nonlinear defects. The transfer matrix method has been employed to investigate the magnetic field effect on defect mode frequency and bistability threshold. The obtained results show that the frequency of defect mode and bistability threshold can be altered, without changing the structure of the photonic multilayer. Therefore, the bistability behavior of the subjected structure in the presence of magnetized plasma can be utilized in manufacturing wide frequency range devices

  11. Image transfer by cascaded stack of photonic crystal and air layers

    NARCIS (Netherlands)

    Shen, C.; Michielsen, K.; Raedt, H. De

    2006-01-01

    We demonstrate image transfer by a cascaded stack consisting of two and three triangular-lattice photonic crystal slabs separated by air. The quality of the image transfered by the stack is sensitive to the air/photonic crystal interface termination and the frequency. Depending on the frequency and

  12. Method to map individual electromagnetic field components inside a photonic crystal

    NARCIS (Netherlands)

    Denis, T.; Reijnders, B.; Lee, J.H.H.; van der Slot, Petrus J.M.; Vos, Willem L.; Boller, Klaus J.

    2012-01-01

    We present a method to map the absolute electromagnetic field strength inside photonic crystals. We apply the method to map the dominant electric field component Ez of a two-dimensional photonic crystal slab at microwave frequencies. The slab is placed between two mirrors to select Bloch standing

  13. Investigations on the parity of Fano resonances in photonic crystals

    DEFF Research Database (Denmark)

    Østerkryger, Andreas Dyhl; de Lasson, Jakob Rosenkrantz; Yu, Yi

    We investigate the relation between the parity of Fano resonances and field distribution in a photonic crystal structure using Fourier modal method, establishing a correlation between Fano parity and field profile.......We investigate the relation between the parity of Fano resonances and field distribution in a photonic crystal structure using Fourier modal method, establishing a correlation between Fano parity and field profile....

  14. Defect modes in silver-doped photonic crystals made by holography using dichromated gelatin

    Science.gov (United States)

    Dai, Rui; Chen, Shujing; Ren, Zhi; Wang, Zhaona; Liu, Dahe

    2012-10-01

    The defect mode in silver-doped photonic crystals is investigated. 1D and 3D photonic crystals were made by holography using dichromated gelatin mixed with silver nitrate. By controlling the concentration of the silver nitrate, the defect mode was observed in the bandgaps of the holographic photonic crystals. The numerical simulations were made, and the results showed the consistency with the experimental observations.

  15. A Tunable Eight-Wavelength Terahertz Modulator Based on Photonic Crystals

    Science.gov (United States)

    Ji, K.; Chen, H.; Zhou, W.; Zhuang, Y.; Wang, J.

    2017-11-01

    We propose a tunable eight-wavelength terahertz modulator based on a structure of triple triangular lattice photonic crystals by using photonic crystals in the terahertz regime. The triple triangular lattice was formed by nesting circular, square, and triangular dielectric cylinders. Three square point defects were introduced into the perfect photonic crystal to produce eight defect modes. GaAs was used as the point defects to realize tunability. We used a structure with a reflecting barrier to achieve modulation at high transmission rate. The insertion loss and extinction ratio were 0.122 and 38.54 dB, respectively. The modulation rate was 0.788 dB. The performance of the eightwavelength terahertz modulator showed great potential for use in future terahertz communication systems.

  16. Hybrid inorganic/organic photonic crystal biochips for cancer biomarkers detection

    Science.gov (United States)

    Sinibaldi, Alberto; Danz, Norbert; Munzert, Peter; Michelotti, Francesco

    2018-06-01

    We report on hybrid inorganic/organic one-dimensional photonic crystal biochips sustaining Bloch surface waves. The biochips were used, together with an optical platform operating in a label-free and fluorescence configuration simultaneously, to detect the cancer biomarker Angiopoietin 2 in a protein base buffer. The hybrid photonic crystals embed in their geometry a thin functionalization poly-acrylic acid layer deposited by plasma polymerization, which is used to immobilize a monoclonal antibody for highly specific biological recognition. The fluorescence operation mode is described in detail, putting into evidence the role of field enhancement and localization at the photonic crystal surface in the shaping and intensification of the angular fluorescence pattern. In the fluorescence operation mode, the hybrid biochips can attain the limit of detection 6 ng/ml.

  17. Time-resolved Femtosecond Photon Echo Probes Bimodal Solvent Dynamics

    NARCIS (Netherlands)

    Pshenichnikov, M.S; Duppen, K.; Wiersma, D. A.

    1995-01-01

    We report on time-resolved femtosecond photon echo experiments of a dye molecule in a polar solution. The photon echo is time resolved by mixing the echo with a femtosecond gate pulse in a nonlinear crystal. It is shown that the temporal profile of the photon echo allows separation of the

  18. Highly-stable monolithic femtosecond Yb-fiber laser system based on photonic crystal fibers

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2010-01-01

    in the oscillator cavity for dispersion balancing and nonlinear optical limiting, and another one is used for low nonlinearity final pulse recompression. The chirped-pulse amplification and recompression of the 232-fs, 45-pJ/pulse oscillator output yields a final direct fiber-end delivery of 7.3-nJ energy pulses......A self-starting, passively stabilized, monolithic all polarizationmaintaining femtosecond Yb-fiber master oscillator / power amplifier with very high operational and environmental stability is demonstrated. The system is based on the use of two different photonic crystal fibers. One is used...... of around 297 fs duration. Our laser shows exceptional stability. No Q-switched modelocking events were detected during 4-days long observation. An average fluctuation of only 7.85 · 10−4 over the mean output power was determined as a result of more than 6-hours long measurement. The laser is stable towards...

  19. Studying The Effect of Various Parameters on The Characteristics of The Dielectric and Metallic Photonic Crystals

    International Nuclear Information System (INIS)

    Ismail, M.; Badawy, Z.M.; Abdel-Rahman, E.

    2015-01-01

    Transmittance characteristics of two types of photonic crystals have been analysed using the transfer matrix method. The first one is the dielectric photonic crystal (DPC), and the second is the metallic photonic crystal (MPC). The effect of the most parameters on the transmission spectra of the dielectric and metallic photonic crystals has been studied

  20. Enhanced light extraction from GaN-based LEDs with a bottom-up assembled photonic crystal

    International Nuclear Information System (INIS)

    Gong Haibo; Hao Xiaopeng; Wu Yongzhong; Cao Bingqiang; Xia Wei; Xu Xiangang

    2011-01-01

    Highlights: → Polystyrene (PS) microspheres were employed as a template. → A noninvasive photonic crystal was fabricated on the surface of GaN-based LED. → Periodic arrangement of bowl-like holes served as a photonic crystal with gradually changed fill factors. → The electroluminescence intensity of LED with a photonic crystal was significantly enhanced. - Abstract: Photonic crystal (PhC) structure is an efficient tool for light extraction from light-emitting diodes (LEDs). The fabrication of a large area PhC structure on the light output surface of LEDs often involves sophisticated equipments such as nanoimprint lithography machine. In this study a monolayer of polystyrene (PS) microspheres was employed as a template to fabricate a noninvasive photonic crystal of indium tin oxide (ITO) on the surface of GaN-based LED. PS spheres can help to form periodic arrangement of bowl-like holes, a photonic crystal with gradually changed fill factors. Importantly, the electroluminescence intensity of LED with a photonic crystal was significantly enhanced by 1.5 times compared to that of the conventional one under various forward injection currents.

  1. Enhanced light extraction from GaN-based LEDs with a bottom-up assembled photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Gong Haibo [State Key Lab of Crystal Materials, Shandong University, Jinan, 250100 (China); School of Materials Science and Engineering, University of Jinan, Jinan, 250022 (China); Hao Xiaopeng, E-mail: xphao@sdu.edu.cn [State Key Lab of Crystal Materials, Shandong University, Jinan, 250100 (China); Wu Yongzhong [State Key Lab of Crystal Materials, Shandong University, Jinan, 250100 (China); Cao Bingqiang [School of Materials Science and Engineering, University of Jinan, Jinan, 250022 (China); Xia Wei [Shandong Huaguang Optoelectronics Company, Ltd., Jinan, 250101 (China); Xu Xiangang [State Key Lab of Crystal Materials, Shandong University, Jinan, 250100 (China); Shandong Huaguang Optoelectronics Company, Ltd., Jinan, 250101 (China)

    2011-08-15

    Highlights: > Polystyrene (PS) microspheres were employed as a template. > A noninvasive photonic crystal was fabricated on the surface of GaN-based LED. > Periodic arrangement of bowl-like holes served as a photonic crystal with gradually changed fill factors. > The electroluminescence intensity of LED with a photonic crystal was significantly enhanced. - Abstract: Photonic crystal (PhC) structure is an efficient tool for light extraction from light-emitting diodes (LEDs). The fabrication of a large area PhC structure on the light output surface of LEDs often involves sophisticated equipments such as nanoimprint lithography machine. In this study a monolayer of polystyrene (PS) microspheres was employed as a template to fabricate a noninvasive photonic crystal of indium tin oxide (ITO) on the surface of GaN-based LED. PS spheres can help to form periodic arrangement of bowl-like holes, a photonic crystal with gradually changed fill factors. Importantly, the electroluminescence intensity of LED with a photonic crystal was significantly enhanced by 1.5 times compared to that of the conventional one under various forward injection currents.

  2. Properties of entangled photon pairs generated in one-dimensional nonlinear photonic-band-gap structures

    International Nuclear Information System (INIS)

    Perina, Jan Jr.; Centini, Marco; Sibilia, Concita; Bertolotti, Mario; Scalora, Michael

    2006-01-01

    We have developed a rigorous quantum model of spontaneous parametric down-conversion in a nonlinear 1D photonic-band-gap structure based upon expansion of the field into monochromatic plane waves. The model provides a two-photon amplitude of a created photon pair. The spectra of the signal and idler fields, their intensity profiles in the time domain, as well as the coincidence-count interference pattern in a Hong-Ou-Mandel interferometer are determined both for cw and pulsed pumping regimes in terms of the two-photon amplitude. A broad range of parameters characterizing the emitted down-converted fields can be used. As an example, a structure composed of 49 layers of GaN/AlN is analyzed as a suitable source of photon pairs having high efficiency

  3. Resonance fluorescence spectrum in a two-band photonic bandgap crystal

    Science.gov (United States)

    Lee, Ray-Kuang; Lai, Yinchieh

    2003-05-01

    Steady state resonance fluorescence spectra from a two-level atom embedded in a photonic bandgap crystal and resonantly driven by a classical pump light are calculated. The photonic crystal is considered to be with a small bandgap which is in the order of magnitude of the Rabi frequency and is modeled by the anisotropic two-band dispersion relation. Non-Markovian noises caused by the non-uniform distribution of photon density states near the photonic bandgap are taken into account by a new approach which linearizes the optical Bloch equations by using the Liouville operator expansion. Fluorescence spectra that only exhibit sidebands of the Mollow triplet are found, indicating that there is no coherent Rayleigh scattering process.

  4. Tight control of light trapping in surface addressable photonic crystal membranes: application to spectrally and spatially selective optical devices (Conference Presentation)

    Science.gov (United States)

    Letartre, Xavier; Blanchard, Cédric; Grillet, Christian; Jamois, Cécile; Leclercq, Jean-Louis; Viktorovitch, Pierre

    2016-04-01

    Surface addressable Photonic Crystal Membranes (PCM) are 1D or 2D photonic crystals formed in a slab waveguides where Bloch modes located above the light line are exploited. These modes are responsible for resonances in the reflection spectrum whose bandwidth can be adjusted at will. These resonances result from the coupling between a guided mode of the membrane and a free-space mode through the pattern of the photonic crystal. If broadband, these structures represent an ideal mirror to form compact vertical microcavity with 3D confinement of photons and polarization selectivity. Among numerous devices, low threshold VCSELs with remarkable and tunable modal properties have been demonstrated. Narrow band PCMs (or high Q resonators) have also been extensively used for surface addressable optoelectronic devices where an active material is embedded into the membrane, leading to the demonstration of low threshold surface emitting lasers, nonlinear bistables, optical traps... In this presentation, we will describe the main physical rules which govern the lifetime of photons in these resonant modes. More specifically, it will be emphasized that the Q factor of the PCM is determined, to the first order, by the integral overlap between the electromagnetic field distributions of the guided and free space modes and of the dielectric periodic perturbation which is applied to the homogeneous membrane to get the photonic crystal. It turns out that the symmetries of these distributions are of prime importance for the strength of the resonance. It will be shown that, by molding in-plane or vertical symmetries of Bloch modes, spectrally and spatially selective light absorbers or emitters can be designed. First proof of concept devices will be also presented.

  5. Disorders influences on the focusing effect of all-dielectric photonic crystal slab superlens

    Energy Technology Data Exchange (ETDEWEB)

    Hu Xiaoyong; Xin Cheng [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Gong Qihuang [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China)], E-mail: qhgong@pku.edu.cn

    2009-04-13

    The influences of structure disorders on the subwavelength focusing properties of an all-dielectric photonic crystal slab superlens are theoretically studied. The structure disorders are considered as randomly perturbing the position or diameter of air holes of the photonic crystal slab. The results show that the photonic crystal slab superlens can tolerate within 10% degree of positional disorder or 15% degree of diameter disorder without destroying the focusing function.

  6. Disorders influences on the focusing effect of all-dielectric photonic crystal slab superlens

    International Nuclear Information System (INIS)

    Hu Xiaoyong; Xin Cheng; Gong Qihuang

    2009-01-01

    The influences of structure disorders on the subwavelength focusing properties of an all-dielectric photonic crystal slab superlens are theoretically studied. The structure disorders are considered as randomly perturbing the position or diameter of air holes of the photonic crystal slab. The results show that the photonic crystal slab superlens can tolerate within 10% degree of positional disorder or 15% degree of diameter disorder without destroying the focusing function.

  7. Magnetoresponsive discoidal photonic crystals toward active color pigments.

    Science.gov (United States)

    Lee, Hye Soo; Kim, Ju Hyeon; Lee, Joon-Seok; Sim, Jae Young; Seo, Jung Yoon; Oh, You-Kwan; Yang, Seung-Man; Kim, Shin-Hyun

    2014-09-03

    Photonic microdisks with a multilayered structure are designed from photocurable suspensions by step-by-step photolithography. In each step of photolithography, either a colloidal photonic crystal or a magnetic-particle-laden layer is stacked over the windows of a photomask. Sequential photolithography enables the creation of multilayered photonic microdisks that have brilliant structural colors that can be switched by an external magnetic field. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Systematic and robust design of photonic crystal waveguides by topology optimization

    DEFF Research Database (Denmark)

    Wang, Fengwen; Jensen, Jakob Søndergaard; Sigmund, Ole

    2010-01-01

    on a threshold projection. The objective is formulated to minimize the maximum error between actual group indices and a prescribed group index among these three designs. Novel photonic crystal waveguide facilitating slow light with a group index of n(g) = 40 is achieved by the robust optimization approach......A robust topology optimization method is presented to consider manufacturing uncertainties in tailoring dispersion properties of photonic crystal waveguides. The under, normal and over-etching scenarios in manufacturing process are represented by dilated, intermediate and eroded designs based....... The numerical result illustrates that the robust topology optimization provides a systematic and robust design methodology for photonic crystal waveguide design....

  9. Multi-Periodic Photonic Crystal Out-Coupling Layers for Flexible OLEDs

    DEFF Research Database (Denmark)

    Kluge, Christian; Pradana, Arfat; Adam, Jost

    2014-01-01

    Waveguide mode extraction with multi-periodic photonic crystals is studied in experiment and finite-difference time-domain (FDTD) simulations. Flexible nanostructured organic light-emitting diodes (OLEDs) are fabricated by UV nanoimprint lithography.......Waveguide mode extraction with multi-periodic photonic crystals is studied in experiment and finite-difference time-domain (FDTD) simulations. Flexible nanostructured organic light-emitting diodes (OLEDs) are fabricated by UV nanoimprint lithography....

  10. Hydrogenated TiO2 nanotube photonic crystals for enhanced photoelectrochemical water splitting.

    Science.gov (United States)

    Meng, Ming; Zhou, Sihua; Yang, Lun; Gan, Zhixing; Liu, Kuili; Tian, Fengshou; Zhu, Yu; Li, ChunYang; Liu, Weifeng; Yuan, Honglei; Zhang, Yan

    2018-04-02

    We report the design, fabrication and characterization of novel TiO 2 nanotube photonic crystals with a crystalline core/disordered shell structure as well as substantial oxygen vacancies for photoelectrochemical (PEC) water splitting. The novel TiO 2 nanotube photonic crystals are fabricated by annealing of anodized TiO 2 nanotube photonic crystals in hydrogen atmosphere at various temperatures. The optimized novel TiO 2 nanotube photonic crystals produce a maximal photocurrent density of 2.2 mA cm -2 at 0.22 V versus Ag/AgCl, which is two times higher that of the TiO 2 nanotube photonic crystals annealed in air. Such significant PEC performance improvement can be ascribed to synergistic effects of the disordered surface layer and oxygen vacancies. The reduced band gap owing to the disordered surface layer and localized states induced by oxygen vacancies can enhance the efficient utilization of visible light. In addition, the disordered surface layer and substantial oxygen vacancies can promote the efficiency for separation and transport of the photogenerated carriers. This work may open up new opportunities for the design and construction of the high efficient and low-cost PEC water splitting system.

  11. Liquid crystal parameter analysis for tunable photonic bandgap fiber devices

    DEFF Research Database (Denmark)

    Weirich, Johannes; Lægsgaard, Jesper; Wei, Lei

    2010-01-01

    We investigate the tunability of splay-aligned liquid crystals for the use in solid core photonic crystal fibers. Finite element simulations are used to obtain the alignment of the liquid crystals subject to an external electric field. By means of the liquid crystal director field the optical...

  12. Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells

    DEFF Research Database (Denmark)

    Benabid, F.; Roberts, John; Couny, F.

    2009-01-01

    guides via a photonic bandgap and the other guides by virtue of an inhibited coupling between core and cladding mode constituents. For the former fibre type, we explore how the bandgap is formed using a photonic analogue of the tight-binding model and how it is related to the anti-resonant reflection...... on electromagnetically induced transparency in a rubidium filled hollow-core photonic crystal fibre, the CW-pumped hydrogen Raman laser and the generation of multi-octave spanning stimulated Raman scattering spectral combs....

  13. Quantitative analysis of directional spontaneous emission spectra from light sources in photonic crystals

    International Nuclear Information System (INIS)

    Nikolaev, Ivan S.; Lodahl, Peter; Vos, Willem L.

    2005-01-01

    We have performed angle-resolved measurements of spontaneous-emission spectra from laser dyes and quantum dots in opal and inverse opal photonic crystals. Pronounced directional dependencies of the emission spectra are observed: angular ranges of strongly reduced emission adjoin with angular ranges of enhanced emission. It appears that emission from embedded light sources is affected both by the periodicity and by the structural imperfections of the crystals: the photons are Bragg diffracted by lattice planes and scattered by unavoidable structural disorder. Using a model comprising diffuse light transport and photonic band structure, we quantitatively explain the directional emission spectra. This work provides detailed understanding of the transport of spontaneously emitted light in real photonic crystals, which is essential in the interpretation of quantum optics in photonic-band-gap crystals and for applications wherein directional emission and total emission power are controlled

  14. Non-critically phase-matched second harmonic generation and third order nonlinearity in organic crystal glucuronic acid γ-lactone

    Science.gov (United States)

    Saripalli, Ravi Kiran; Katturi, Naga Krishnakanth; Soma, Venugopal Rao; Bhat, H. L.; Elizabeth, Suja

    2017-12-01

    The linear, second order, and third order nonlinear optical properties of glucuronic acid γ-lactone single crystals were investigated. The optic axes and principal dielectric axes were identified through optical conoscopy and the principal refractive indices were obtained using the Brewster's angle method. Conic sections were observed which is perceived to be due to spontaneous non-collinear phase matching. The direction of collinear phase matching was determined and the deff evaluated in this direction was 0.71 pm/V. Open and closed aperture Z-scan measurements with femtosecond pulses revealed high third order nonlinearity in the form of self-defocusing, two-photon absorption, as well as saturable absorption.

  15. Control of ultrafast pulses in a hydrogen-filled hollow-core photonic-crystal fiber by Raman coherence

    Science.gov (United States)

    Belli, F.; Abdolvand, A.; Travers, J. C.; Russell, P. St. J.

    2018-01-01

    We present the results of an experimental and numerical investigation into temporally nonlocal coherent interactions between ultrashort pulses, mediated by Raman coherence, in a gas-filled kagome-style hollow-core photonic-crystal fiber. A pump pulse first sets up the Raman coherence, creating a refractive index spatiotemporal grating in the gas that travels at the group velocity of the pump pulse. Varying the arrival time of a second, probe, pulse allows a high degree of control over its evolution as it propagates along the fiber through the grating. Of particular interest are soliton-driven effects such as self-compression and dispersive wave (DW) emission. In the experiments reported, a DW is emitted at ˜300 nm and exhibits a wiggling effect, with its central frequency oscillating periodically with pump-probe delay. The results demonstrate that a strong Raman coherence, created in a broadband guiding gas-filled kagome photonic-crystal fiber, can be used to control the nonlinear dynamics of ultrashort probe pulses, even in difficult-to-access spectral regions such as the deep and vacuum ultraviolet.

  16. Experimental and numerical investigations of Si-based photonic crystals with ordered Ge quantum dots emitters

    International Nuclear Information System (INIS)

    Jannesari, R.

    2014-01-01

    In recent years quasi-two-dimensional (2D) photonic crystals, also known as photonic crystal slabs, have been the subject of extensive research. The present work is based on photonic crystals where a hexagonal 2D lattice of air holes is etched through a silicon-on-insulator (SOI) slab. Light is guided in the horizontal plane using photonic band-gap properties, and index guiding provides the optical confinement in the third dimension. This work discusses photonic crystal slabs with Ge quantum dots (QDs) as internal sources. Ge quantum dots have luminescence around 1500nm, which is well suited for optical fiber communication in a way that is fully compatible with standard silicon technology. QD emission can be controlled by epitaxial growth on a pre-patterned SOI substrate. In this way the position of the QDs is controlled, as well as their homogeneity and spectral emission range. During this thesis, photonic crystal fabrication techniques together with techniques for the alignment of the photonic crystal holes with the QDs positions were developed. The employed techniques involve electron beam lithography (EBL) and inductively-coupled-plasma reactive ion etching (ICP-RIE). Perfect ordering of the QDs position was achieved by employing these techniques for pit patterning and the subsequent growth of Ge dots using molecular beam epitaxy (MBE). A second EBL step was then used for photonic crystal writing, which needed to be aligned with respect to the pit pattern with a precision of about ± 30nm. Micro-photoluminescence spectroscopy was used for the optical characterization of the photonic crystal. The emission from ordered quantum dots in different symmetry positions within a unit cell of photonic crystal was theoretically and experimentally investigated and compared with randomly distributed ones. Besides, different geometrical parameters of photonic crystals were studied. The theoretical investigations were mainly based on the rigorous coupled wave analysis (RCWA

  17. Nonlinear optics at the single-photon level inside a hollow core fiber

    DEFF Research Database (Denmark)

    Hofferberth, Sebastian; Peyronel, Thibault; Liang, Qiyu

    2011-01-01

    Cold atoms inside a hollow core fiber provide an unique system for studying optical nonlinearities at the few-photon level. Confinement of both atoms and photons inside the fiber core to a diameter of just a few wavelengths results in high electric field intensity per photon and large optical...

  18. All-optical tunable photonic crystal cavity

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan

    2010-01-01

    We demonstrate an ultra-small photonic crystal cavity with two resonant modes. An all-optical tuning operation based on the free-carrier plasma effect is, for the first time, realized utilizing a continuous wave light source. The termo-optical effect is minimized by isoproponal infiltration...

  19. The Sommerfeld precursor in photonic crystals

    NARCIS (Netherlands)

    Uitham, R; Hoenders, BJ

    2006-01-01

    We calculate the Sommerfeld precursor that results after transmission of a generic electromagnetic plane wave pulse with transverse electric polarization, through a one-dimensional rectangular N-layer photonic crystal with two slabs per layer. The shape of this precursor equals the shape of the

  20. Engineering a light-emitting planar defect within three-dimensional photonic crystals

    Directory of Open Access Journals (Sweden)

    Guiqiang Liu, Yan Chen and Zhiqing Ye

    2009-01-01

    Full Text Available Sandwich structures, constructed from a planar defect of rhodamine-B (RhB-doped titania (TiO2 and two photonic crystals, were synthesized via the self-assembly method combined with spin-coating. The modification of the spontaneous emission of RhB molecules in such structures was investigated experimentally. The spontaneous emission of RhB-doped TiO2 film with photonic crystals was reduced by a factor of 5.5 over a large bandwidth of 13% of the first-order Bragg diffraction frequency when compared with that of RhB-doped TiO2 film without photonic crystals. The angular dependence of the modification and the photoluminescence lifetime of RhB molecules demonstrate that the strong and wide suppression of the spontaneous emission of the RhB molecules is due to the presence of the photonic band gap.

  1. Engineering a light-emitting planar defect within three-dimensional photonic crystals

    Science.gov (United States)

    Liu, Guiqiang; Chen, Yan; Ye, Zhiqing

    2009-01-01

    Sandwich structures, constructed from a planar defect of rhodamine-B (RhB)-doped titania (TiO2) and two photonic crystals, were synthesized via the self-assembly method combined with spin-coating. The modification of the spontaneous emission of RhB molecules in such structures was investigated experimentally. The spontaneous emission of RhB-doped TiO2 film with photonic crystals was reduced by a factor of 5.5 over a large bandwidth of 13% of the first-order Bragg diffraction frequency when compared with that of RhB-doped TiO2 film without photonic crystals. The angular dependence of the modification and the photoluminescence lifetime of RhB molecules demonstrate that the strong and wide suppression of the spontaneous emission of the RhB molecules is due to the presence of the photonic band gap. PMID:27877309

  2. Enhancement of Raman scattering from monolayer graphene by photonic crystal nanocavities

    Science.gov (United States)

    Kimura, Issei; Yoshida, Masahiro; Sota, Masaki; Inoue, Taiki; Chiashi, Shohei; Maruyama, Shigeo; Kato, Yuichiro K.

    Monolayer graphene is an atomically thin two-dimensional material that shows strong Raman scattering, while photonic crystal nanocavities with small mode volumes allow for efficient optical coupling at the nanoscale. Here we demonstrate resonant enhancement of graphene Raman G' band by coupling to photonic crystal cavity modes. Hexagonal-lattice photonic crystal L3 cavities are fabricated from silicon-on-insulator substrates. and monolayer graphene sheets grown by chemical vapor deposition are transferred onto the nanocavities. Excitation wavelength dependence of Raman spectra show that the Raman intensity is enhanced when the G' peak is in resonance with the cavity mode. By performing imaging measurements, we confirm that such an enhancement is only observed at the cavity position. Work supported by JSPS KAKENHI Grant Numbers JP16K13613, JP25107002 and MEXT (Photon Frontier Network Program, Nanotechnology Platform).

  3. Photonic structures based on hybrid nanocomposites

    Science.gov (United States)

    Husaini, Saima

    In this thesis, photonic structures embedded with two types of nanomaterials, (i) quantum dots and (ii) metal nanoparticles are studied. Both of these exhibit optical and electronic properties different from their bulk counterpart due to their nanoscale physical structure. By integrating these nanomaterials into photonic structures, in which the electromagnetic field can be confined and controlled via modification of geometry and composition, we can enhance their linear and nonlinear optical properties to realize functional photonic structures. Before embedding quantum dots into photonic structures, we study the effect of various host matrices and fabrication techniques on the optical properties of the colloidal quantum dots. The two host matrices of interest are SU8 and PMMA. It is shown that the emission properties of the quantum dots are significantly altered in these host matrices (especially SU8) and this is attributed to a high rate of nonradiative quenching of the dots. Furthermore, the effects of fabrication techniques on the optical properties of quantum dots are also investigated. Finally a microdisk resonator embedded with quantum dots is fabricated using soft lithography and luminescence from the quantum dots in the disk is observed. We investigate the absorption and effective index properties of silver nanocomposite films. It is shown that by varying the fill factor of the metal nanoparticles and fabrication parameters such as heating time, we can manipulate the optical properties of the metal nanocomposite. Optimizing these parameters, a silver nanocomposite film with a 7% fill factor is prepared. A one-dimensional photonic crystal consisting of alternating layers of the silver nanocomposite and a polymer (Polymethyl methacrylate) is fabricated using spin coating and its linear and nonlinear optical properties are investigated. Using reflectivity measurements we demonstrate that the one-dimensional silver-nanocomposite-dielectric photonic crystal

  4. Results on the Coherent Interaction of High Energy Electrons and Photons in Oriented Single Crystals

    CERN Document Server

    Apyan, A.; Badelek, B.; Ballestrero, S.; Biino, C.; Birol, I.; Cenci, P.; Connell, S.H.; Eichblatt, S.; Fonseca, T.; Freund, A.; Gorini, B.; Groess, R.; Ispirian, K.; Ketel, T.J.; Kononets, Yu.V.; Lopez, A.; Mangiarotti, A.; van Rens, B.; Sellschop, J.P.F.; Shieh, M.; Sona, P.; Strakhovenko, V.; Uggerhoj, E.; Uggerhj, Ulrik Ingerslev; Unel, G.; Velasco, M.; Vilakazi, Z.Z.; Wessely, O.; Kononets, Yu.V.

    2005-01-01

    The CERN-NA-59 experiment examined a wide range of electromagnetic processes for multi-GeV electrons and photons interacting with oriented single crystals. The various types of crystals and their orientations were used for producing photon beams and for converting and measuring their polarisation. The radiation emitted by 178 GeV unpolarised electrons incident on a 1.5 cm thick Si crystal oriented in the Coherent Bremsstrahlung (CB) and the String-of-Strings (SOS) modes was used to obtain multi-GeV linearly polarised photon beams. A new crystal polarimetry technique was established for measuring the linear polarisation of the photon beam. The polarimeter is based on the dependence of the Coherent Pair Production (CPP) cross section in oriented single crystals on the direction of the photon polarisation with respect to the crystal plane. Both a 1 mm thick single crystal of Germanium and a 4 mm thick multi-tile set of synthetic Diamond crystals were used as analyzers of the linear polarisation. A birefringence ...

  5. Highly efficient single-pass sum frequency generation by cascaded nonlinear crystals

    DEFF Research Database (Denmark)

    Hansen, Anders Kragh; Andersen, Peter E.; Jensen, Ole Bjarlin

    2015-01-01

    , despite differences in the phase relations of the involved fields. An unprecedented 5.5 W of continuous-wave diffraction-limited green light is generated from the single-pass sum frequency mixing of two diode lasers in two periodically poled nonlinear crystals (conversion efficiency 50%). The technique......The cascading of nonlinear crystals has been established as a simple method to greatly increase the conversion efficiency of single-pass second-harmonic generation compared to a single-crystal scheme. Here, we show for the first time that the technique can be extended to sum frequency generation...... is generally applicable and can be applied to any combination of fundamental wavelengths and nonlinear crystals....

  6. Highly efficient fluorescence sensing with hollow core photonic crystal fibers

    DEFF Research Database (Denmark)

    Smolka, Stephan; Barth, Michael; Benson, Oliver

    2008-01-01

    We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes.......We investigate hollow core photonic crystal fibers for ultra-sensitive fluorescence detection by selectively infiltrating the central hole with fluorophores. Dye concentrations down to 10(-9) M can be detected using only nanoliter sample volumes....

  7. Photonic crystal waveguides in PECVD glass

    DEFF Research Database (Denmark)

    Liu, Haoling; Frandsen, Lars Hagedorn; Têtu, Amélie

    Silicon oxynitride (SiON) on silicon has found wide use as a robust and versatileplatform for integrated, optical devices. With plasma-enhanced chemical vapourdeposition (PECVD) the refractive index can be varied all the way from 1.5 (pure silica,SiO2) to 2.0 (pure silicon nitride, Si3N4). We have...... fabricated glasses with refractive indexup to approximately 1.75, with which value it is possible to fabricate photonic crystalwaveguides. These structures have the advantage of being transparent in the whole of thevisible region, which makes them different from photonic crystals made...

  8. Far-field coupling in nanobeam photonic crystal cavities

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, Ian, E-mail: ian.rousseau@epfl.ch; Sánchez-Arribas, Irene; Carlin, Jean-François; Butté, Raphaël; Grandjean, Nicolas [Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2016-05-16

    We optimized the far-field emission pattern of one-dimensional photonic crystal nanobeams by modulating the nanobeam width, forming a sidewall Bragg cross-grating far-field coupler. By setting the period of the cross-grating to twice the photonic crystal period, we showed using three-dimensional finite-difference time-domain simulations that the intensity extracted to the far-field could be improved by more than three orders of magnitude compared to the unmodified ideal cavity geometry. We then experimentally studied the evolution of the quality factor and far-field intensity as a function of cross-grating coupler amplitude. High quality factor (>4000) blue (λ = 455 nm) nanobeam photonic crystals were fabricated out of GaN thin films on silicon incorporating a single InGaN quantum well gain medium. Micro-photoluminescence spectroscopy of sets of twelve identical nanobeams revealed a nine-fold average increase in integrated far-field emission intensity and no change in average quality factor for the optimized structure compared to the unmodulated reference. These results are useful for research environments and future nanophotonic light-emitting applications where vertical in- and out-coupling of light to nanocavities is required.

  9. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides

    Science.gov (United States)

    Yan, Siqi; Zhu, Xiaolong; Frandsen, Lars Hagedorn; Xiao, Sanshui; Mortensen, N. Asger; Dong, Jianji; Ding, Yunhong

    2017-01-01

    Slow light has been widely utilized to obtain enhanced nonlinearities, enhanced spontaneous emissions and increased phase shifts owing to its ability to promote light–matter interactions. By incorporating a graphene on a slow-light silicon photonic crystal waveguide, here we experimentally demonstrate an energy-efficient graphene microheater with a tuning efficiency of 1.07 nmmW−1 and power consumption per free spectral range of 3.99 mW. The rise and decay times (10–90%) are only 750 and 525 ns, which, to the best of our knowledge, are the fastest reported response times for microheaters in silicon photonics. The corresponding figure of merit of the device is 2.543 nW s, one order of magnitude better than results reported in previous studies. The influence of the length and shape of the graphene heater to the tuning efficiency is further investigated, providing valuable guidelines for enhancing the tuning efficiency of the graphene microheater. PMID:28181531

  10. Modeling photonic crystal waveguides with noncircular geometry using green function method

    International Nuclear Information System (INIS)

    Uvarovaa, I.; Tsyganok, B.; Bashkatov, Y.; Khomenko, V.

    2012-01-01

    Currently in the field of photonics is an acute problem fast and accurate simulation photonic crystal waveguides with complex geometry. This paper describes an improved method of Green's functions for non-circular geometries. Based on comparison of selected efficient numerical method for finding the eigenvalues for the Green's function method for non-circular holes chosen effective method for our purposes. Simulation is realized in Maple environment. The simulation results confirmed experimentally. Key words: photonic crystal, waveguide, modeling, Green function, complex geometry

  11. FIBER LASER CONSTRUCTION AND THEORY INCLUDING FIBER BRAGG GRATINGS Photonic Crystal Fibers (PCFs) and applications of gas filled PCFs

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, Jacob O. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-08

    The principles used in fiber lasers have been around for a while but it is only within the past few years that fiber lasers have become commercially available and used in high power laser applications. This paper will focus on the basic design principles of fiber lasers, including fiber Bragg gratings, principles of operation, and forms of non-linear effects. It will describe the type and associated doping of the fiber used and difficult designs used to guide energy from the pump to the active medium. Topics covered include fiber laser design, fiber Bragg gratings, materials used, differences in quantum energy loss, thermo-optical effects, stimulated Raman scattering, Brillouin scattering, photonic crystal fibers and applications of gas filled Photonic Crystal Fibers (PCFs). Thanks to fiber lasers, the energy required to produce high power lasers has greatly dropped and as such we can now produce kW power using a standard 120V 15A circuit. High power laser applications are always requiring more power. The fiber laser can now deliver the greater power that these applications demand. Future applications requiring more power than can be combined using standard materials or configurations will need to be developed to overcome the high energy density and high non-linear optical scattering effects present during high power operations.

  12. Photonic crystal ring resonator based optical filters for photonic integrated circuits

    International Nuclear Information System (INIS)

    Robinson, S.

    2014-01-01

    In this paper, a two Dimensional (2D) Photonic Crystal Ring Resonator (PCRR) based optical Filters namely Add Drop Filter, Bandpass Filter, and Bandstop Filter are designed for Photonic Integrated Circuits (PICs). The normalized output response of the filters is obtained using 2D Finite Difference Time Domain (FDTD) method and the band diagram of periodic and non-periodic structure is attained by Plane Wave Expansion (PWE) method. The size of the device is minimized from a scale of few tens of millimeters to the order of micrometers. The overall size of the filters is around 11.4 μm × 11.4 μm which is highly suitable of photonic integrated circuits

  13. Hollow-Core Photonic Crystal Fibers for Surface-Enhanced Raman Scattering Probes

    Directory of Open Access Journals (Sweden)

    Xuan Yang

    2011-01-01

    Full Text Available Photonic crystal fiber (PCF sensors based on surface-enhanced Raman scattering (SERS have become increasingly attractive in chemical and biological detections due to the molecular specificity, high sensitivity, and flexibility. In this paper, we review the development of PCF SERS sensors with emphasis on our recent work on SERS sensors utilizing hollow-core photonic crystal fibers (HCPCFs. Specifically, we discuss and compare various HCPCF SERS sensors, including the liquid-filled HCPCF and liquid-core photonic crystal fibers (LCPCFs. We experimentally demonstrate and theoretically analyze the high sensitivity of the HCPCF SERS sensors. Various molecules including Rhodamine B, Rhodamine 6G, human insulin, and tryptophan have been tested to show the excellent performance of these fiber sensors.

  14. One-dimensional modulation instability in biased two-photon photorefractive-photovoltaic crystals

    International Nuclear Information System (INIS)

    Zhan Kaiyun; Hou Chunfeng; Li Xin

    2010-01-01

    The one-dimensional modulation instability of broad optical beams in biased two-photon photorefractive-photovoltaic crystals is investigated under steady-state conditions. Our analysis indicates that the modulation instability growth rate depends on the external bias field, the bulk photovoltaic effect and the ratio of the intensity of the incident beam to that of the dark irradiance. Moreover, our results show that this modulation instability growth rate is the same as that in two-photon photorefractive-photovoltaic crystals under open circuit conditions in the absence of an external bias field, and the modulation instability growth rate in two-photon biased photorefractive-nonphotovoltaic crystals can be predicted when the bulk photovoltaic effect is neglected.

  15. [Research on increasing X-ray protection capability based on photonic crystal technology].

    Science.gov (United States)

    Li, Ping; Zhao, Peng; Zhang, Rui

    2014-06-01

    Light cannot be propagated within the range of photonic crystal band gaps. Based on this unique property, we proposed a method to improve anti-radiation capability through one-dimensional photonic crystal coating. Using transmission matrix method, we determined the appropriate dielectric materials, thickness and periodic numbers of photonic crystals through Matlab programming simulation. Then, compound one-dimensional photonic crystal coating was designed which was of high anti-radiation rate within the range of X-ray. As is shown through simulation experiments, the reflection rate against X-ray was higher than 90 percent, and the desired anti-radiation effect was achieved. Thus, this method is able to help solve the technical problems facing the inorganic lead glass such as thickness, weightiness, costliness, high lead equivalent, low transparency and high cost. This method has won China's national invention patent approval, and the patent number is 201220228549.2.

  16. Fabrication and Analysis of Photonic Crystals

    Science.gov (United States)

    Campbell, Dean J.; Korte, Kylee E.; Xia, Younan

    2007-01-01

    These laboratory experiments are designed to explore aspects of nanoscale chemistry by constructing and spectroscopically analyzing thin films of photonic crystals. Films comprised of colloidal spheres and polydimethylsiloxane exhibit diffraction-based stop bands that shift reversibly upon exposure to some common solvents. Topics covered in these…

  17. Transverse magnetic field impact on waveguide modes of photonic crystals.

    Science.gov (United States)

    Sylgacheva, Daria; Khokhlov, Nikolai; Kalish, Andrey; Dagesyan, Sarkis; Prokopov, Anatoly; Shaposhnikov, Alexandr; Berzhansky, Vladimir; Nur-E-Alam, Mohammad; Vasiliev, Mikhail; Alameh, Kamal; Belotelov, Vladimir

    2016-08-15

    This Letter presents a theoretical and experimental study of waveguide modes of one-dimensional magneto-photonic crystals magnetized in the in-plane direction. It is shown that the propagation constants of the TM waveguide modes are sensitive to the transverse magnetization and the spectrum of the transverse magneto-optical Kerr effect has resonant features at mode excitation frequencies. Two types of structures are considered: a non-magnetic photonic crystal with an additional magnetic layer on top and a magneto-photonic crystal with a magnetic layer within each period. We found that the magneto-optical non-reciprocity effect is greater in the first case: it has a magnitude of δ∼10-4, while the second structure type demonstrates δ∼10-5 only, due to the higher asymmetry of the claddings of the magnetic layer. Experimental observations show resonant features in the optical and magneto-optical Kerr effect spectra. The measured dispersion properties are in good agreement with the theoretical predictions. An amplitude of light intensity modulation of up to 2.5% was observed for waveguide mode excitation within the magnetic top layer of the non-magnetic photonic crystal structure. The presented theoretical approach may be utilized for the design of magneto-optical sensors and modulators requiring pre-determined spectral features.

  18. Passive Temperature Stabilization of Silicon Photonic Devices Using Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Joanna Ptasinski

    2014-03-01

    Full Text Available In this work we explore the negative thermo-optic properties of liquid crystal claddings for passive temperature stabilization of silicon photonic integrated circuits. Photonic circuits are playing an increasing role in communications and computing, but they suffer from temperature dependent performance variation. Most existing techniques aimed at compensation of thermal effects rely on power hungry Joule heating. We show that integrating a liquid crystal cladding helps to minimize the effects of a temperature dependent drift. The advantage of liquid crystals lies in their high negative thermo-optic coefficients in addition to low absorption at the infrared wavelengths.

  19. Thermal properties photonic crystal fiber transducers with ferromagnetic nanoparticles

    Science.gov (United States)

    Przybysz, N.; Marć, P.; Kisielewska, A.; Jaroszewicz, L. R.

    2015-12-01

    The main aim of the research is to design new types of fiber optic transducers based on filled photonic crystal fibers for sensor applications. In our research we propose to use as a filling material nanoparticles' ferrofluids (Fe3O4 NPs). Optical properties of such transducers are studied by measurements of spectral characteristics' changes when transducers are exposed to temperature and magnetic field changes. From synthesized ferrofluid several mixtures with different NPs' concentrations were prepared. Partially filled commercially available photonic crystal fiber LMA 10 (NKT Photonics) was used to design PCF transducers. Their thermo-optic properties were tested in a temperature chamber. Taking into account magnetic properties of synthetized NPs the patch cords based on a partially filled PM 1550 PCF were measured.

  20. Novel fluorescence adjustable photonic crystal materials

    Science.gov (United States)

    Zhu, Cheng; Liu, Xiaoxia; Ni, Yaru; Fang, Jiaojiao; Fang, Liang; Lu, Chunhua; Xu, Zhongzi

    2017-11-01

    Novel photonic crystal materials (PCMs) with adjustable fluorescence were fabricated by distributing organic fluorescent powders of Yb0.2Er0.4Tm0.4(TTA)3Phen into the opal structures of self-assembled silica photonic crystals (PCs). Via removing the silica solution in a constant speed, PCs with controllable thicknesses and different periodic sizes were obtained on glass slides. Yb0.2Er0.4Tm0.4(TTA)3Phen powders were subsequently distributed into the opal structures. The structures and optical properties of the prepared PCMs were investigated. Finite-difference-time-domain (FDTD) calculation was used to further analyze the electric field distributions in PCs with different periodic sizes while the relation between periodic sizes and fluorescent spectra of PCMs was discussed. The results showed that the emission color of the PCMs under irradiation of 980 nm laser can be easily adjusted from green to blue by increasing the periodic size from 250 to 450 nm.

  1. NONLINEAR OPTICAL MOLECULAR CRYSTAL BASED ON 2,6-DIAMINOPYRIDINE: SYNTHESIS AND CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    I. M. Pavlovetc

    2014-05-01

    Full Text Available The paper deals with investigation of a new nonlinear optical material based on nonlinear optical chromophore (4-Nitrophenol and aminopyridine (2,6-Diaminopyridine. Calculation results are presented for molecular packing in the crystalline compound, based on the given components. According to these results the finite material must have a noncentrosymmetric lattice, which determines the presence of the second order nonlinear optical response. Investigations carried out in this work confirm these calculations. Results of experiments are given describing the co-crystallization of these components and the following re-crystallization of the obtained material. In order to get a monocrystal form, the optimal conditions for the synthesis of molecular crystals based on these components are determined. Sufficiently large homogeneous crystals are obtained, that gave the possibility to record their spectra in the visible and near infrared parts of the spectrum, to determine their nonlinear optical properties and the level of homogeneity. Their optical (optical transmission and optical laser damage threshold and nonlinear optical properties are presented. For observation and measurement of the nonlinear optical properties an installation was built which implements the comparative method for measurements of nonlinear optical properties. A potassium titanyl oxide phosphate crystal was used as a sample for comparison. Results are given for the conversion efficiency of the primary laser radiation in the second optical harmonic relative to the signal obtained on the potassium titanyl oxide phosphate crystal. Obtained results show that the molecular co-crystal based on 2,6-Diaminopyridine is a promising nonlinear optical material for generating the second optical harmonic on the Nd: YAG laser (532 nm.

  2. Illusion optics via one-dimensional ultratransparent photonic crystals with shifted spatial dispersions.

    Science.gov (United States)

    Yao, Zhongqi; Luo, Jie; Lai, Yun

    2017-12-11

    In this work, we propose that one-dimensional ultratransparent dielectric photonic crystals with wide-angle impedance matching and shifted elliptical equal frequency contours are promising candidate materials for illusion optics. The shift of the equal frequency contour does not affect the refractive behaviors, but enables a new degree of freedom in phase modulation. With such ultratransparent photonic crystals, we demonstrate some applications in illusion optics, including creating illusions of a different-sized scatterer and a shifted source with opposite phase. Such ultratransparent dielectric photonic crystals may establish a feasible platform for illusion optics devices at optical frequencies.

  3. Lateral stress-induced propagation characteristics in photonic crystal fibres

    Institute of Scientific and Technical Information of China (English)

    Tian Hong-Da; Yu Zhong-Yuan; Han Li-Hong; Liu Yu-Min

    2009-01-01

    Using the finite element method, this paper investigates lateral stress-induced propagation characteristics in a pho-tonic crystal fibre of hexagonal symmetry. The results of simulation show the strong stress dependence of effective index of the fundamental guided mode, phase modal birefringence and confinement loss. It also finds that the contribution of the geometrical effect that is related only to deformation of the photonic crystal fibre and the stress-related contribution to phase modal birefringence and confinement loss are entirely different. Furthermore, polarization-dependent stress sensitivity of confinement loss is proposed in this paper.

  4. Absorption and emission properties of photonic crystals and metamaterials

    International Nuclear Information System (INIS)

    Peng, Lili

    2007-01-01

    We study the emission and absorption properties of photonic crystals and metamaterials using Comsol Multiphysics and Ansoft HFSS as simulation tools. We calculate the emission properties of metallic designs using drude model and the results illustrate that an appropriate termination of the surface of the metallic structure can significantly increase the absorption and therefore the thermal emissivity. We investigate the spontaneous emission rate modifications that occur for emitters inside two-dimensional photonic crystals and find the isotropic and directional emissions with respect to different frequencies as we have expected.

  5. Enhancement of polymer dye lasers by multifunctional photonic crystal lattice

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Xiao, Sanshui; Mortensen, Asger

    2009-01-01

    The light output of dye doped hybrid polymer band-edge lasers is increased more than 100 times by using a rectangular lattice photonic crystal, which provides both feedback and couples more pump light into the laser.......The light output of dye doped hybrid polymer band-edge lasers is increased more than 100 times by using a rectangular lattice photonic crystal, which provides both feedback and couples more pump light into the laser....

  6. Omnidirectional photonic band gap enlarged by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Haifeng [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China); Liu Shaobin [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); State Key Laboratory of Millimeter Waves of Southeast University, Nanjing Jiangsu 210096 (China); Kong Xiangkun; Bian Borui; Dai Yi [College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China)

    2012-11-15

    In this paper, an omnidirectional photonic band gap realized by one-dimensional ternary unmagnetized plasma photonic crystals based on a new Fibonacci quasiperiodic structure, which is composed of homogeneous unmagnetized plasma and two kinds of isotropic dielectric, is theoretically studied by the transfer matrix method. It has been shown that such an omnidirectional photonic band gap originates from Bragg gap in contrast to zero-n gap or single negative (negative permittivity or negative permeability) gap, and it is insensitive to the incidence angle and the polarization of electromagnetic wave. From the numerical results, the frequency range and central frequency of omnidirectional photonic band gap can be tuned by the thickness and density of the plasma but cease to change with increasing Fibonacci order. The bandwidth of omnidirectional photonic band gap can be notably enlarged. Moreover, the plasma collision frequency has no effect on the bandwidth of omnidirectional photonic band gap. It is shown that such new structure Fibonacci quasiperiodic one-dimensional ternary plasma photonic crystals have a superior feature in the enhancement of frequency range of omnidirectional photonic band gap compared with the conventional ternary and conventional Fibonacci quasiperiodic ternary plasma photonic crystals.

  7. Tunable Channel Drop Filter in a Two-Dimensional Photonic Crystal Modulated by a Nematic Liquid Crystal

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Photonic crystals (PCs have many potential applications because of their ability to control light-wave propagation and because PC-based waveguides may be integrated into optical circuits. We propose a novel tunable PC channel drop filter based on nematic liquid crystals and investigate its properties numerically by using the finite-difference time-domain (FDTD method. The refractive indices of liquid crystals can be actively modulated after infiltrating nematic liquid crystals into the microcavity in PC waveguides with square lattices. Then we can control light propagation in a PC waveguide. We analyze the Q -factors and resonance frequencies of a tunable PC channel drop filter by considering various indices modulation of liquid crystals. The novel component can be used as wavelength division multiplexing in photonic integrated circuits.

  8. Silicon-based photonic crystals fabricated using proton beam writing combined with electrochemical etching method.

    Science.gov (United States)

    Dang, Zhiya; Breese, Mark Bh; Recio-Sánchez, Gonzalo; Azimi, Sara; Song, Jiao; Liang, Haidong; Banas, Agnieszka; Torres-Costa, Vicente; Martín-Palma, Raúl José

    2012-07-23

    A method for fabrication of three-dimensional (3D) silicon nanostructures based on selective formation of porous silicon using ion beam irradiation of bulk p-type silicon followed by electrochemical etching is shown. It opens a route towards the fabrication of two-dimensional (2D) and 3D silicon-based photonic crystals with high flexibility and industrial compatibility. In this work, we present the fabrication of 2D photonic lattice and photonic slab structures and propose a process for the fabrication of 3D woodpile photonic crystals based on this approach. Simulated results of photonic band structures for the fabricated 2D photonic crystals show the presence of TE or TM gap in mid-infrared range.

  9. Packaging consideration of two-dimensional polymer-based photonic crystals for laser beam steering

    Science.gov (United States)

    Dou, Xinyuan; Chen, Xiaonan; Chen, Maggie Yihong; Wang, Alan Xiaolong; Jiang, Wei; Chen, Ray T.

    2009-02-01

    In this paper, we report the theoretical study of polymer-based photonic crystals for laser beam steering which is based on the superprism effect as well as the experiment fabrication of the two dimensional photonic crystals for the laser beam steering. Superprism effect, the principle for beam steering, was separately studied in details through EFC (Equifrequency Contour) analysis. Polymer based photonic crystals were fabricated through double exposure holographic interference method using SU8-2007. The experiment results were also reported.

  10. Enhancement of broadband optical absorption in photovoltaic devices by band-edge effect of photonic crystals.

    Science.gov (United States)

    Tanaka, Yoshinori; Kawamoto, Yosuke; Fujita, Masayuki; Noda, Susumu

    2013-08-26

    We numerically investigate broadband optical absorption enhancement in thin, 400-nm thick microcrystalline silicon (µc-Si) photovoltaic devices by photonic crystals (PCs). We realize absorption enhancement by coupling the light from the free space to the large area resonant modes at the photonic band-edge induced by the photonic crystals. We show that multiple photonic band-edge modes can be produced by higher order modes in the vertical direction of the Si photovoltaic layer, which can enhance the absorption on multiple wavelengths. Moreover, we reveal that the photonic superlattice structure can produce more photonic band-edge modes that lead to further optical absorption. The absorption average in wavelengths of 500-1000 nm weighted to the solar spectrum (AM 1.5) increases almost twice: from 33% without photonic crystal to 58% with a 4 × 4 period superlattice photonic crystal; our result outperforms the Lambertian textured structure.

  11. New generation of one-dimensional photonic crystal cavities as robust high-efficient frequency converter

    Science.gov (United States)

    Parvini, T. S.; Tehranchi, M. M.; Hamidi, S. M.

    2017-07-01

    An effective method is proposed to design finite one-dimensional photonic crystal cavities (PhCCs) as robust high-efficient frequency converter. For this purpose, we consider two groups of PhCCs which are constructed by stacking m nonlinear (LiNbO3) and n linear (air) layers with variable thicknesses. In the first group, the number of linear layers is less than the nonlinear layers by one and in the second group by two. The conversion efficiency is calculated as a function of the arrangement and thicknesses of the linear and nonlinear layers by benefiting from nonlinear transfer matrix method. Our numerical simulations show that for each group of PhCCs, there is a structural formula by which the configurations with the highest efficiency can be constructed for any values of m and n (i.e. any number of layers). The efficient configurations are equivalent to Fabry-Pérot cavities that depend on the relationship between m and n and the mirrors in two sides of these cavities can be periodic or nonperiodic. The conversion efficiencies of these designed PhCCs are more than 5 orders of magnitude higher than the perfect ones which satisfy photonic bandgap edge and quasi-phase matching. Moreover, the results reveal that conversion efficiencies of Fabry-Pérot cavities with non-periodic mirrors are one order of magnitude higher than those with periodic mirrors. The major physical mechanisms of the enhancement are quasi-phase matching effect, cavity effect induced by dispersive mirrors, and double resonance for the pump and the harmonic fields in defect state. We believe that this method is very beneficial to the design of high-efficient compact optical frequency converters.

  12. Computational Study and Analysis of Structural Imperfections in 1D and 2D Photonic Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Maskaly, Karlene Rosera [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2005-06-01

    Dielectric reflectors that are periodic in one or two dimensions, also known as 1D and 2D photonic crystals, have been widely studied for many potential applications due to the presence of wavelength-tunable photonic bandgaps. However, the unique optical behavior of photonic crystals is based on theoretical models of perfect analogues. Little is known about the practical effects of dielectric imperfections on their technologically useful optical properties. In order to address this issue, a finite-difference time-domain (FDTD) code is employed to study the effect of three specific dielectric imperfections in 1D and 2D photonic crystals. The first imperfection investigated is dielectric interfacial roughness in quarter-wave tuned 1D photonic crystals at normal incidence. This study reveals that the reflectivity of some roughened photonic crystal configurations can change up to 50% at the center of the bandgap for RMS roughness values around 20% of the characteristic periodicity of the crystal. However, this reflectivity change can be mitigated by increasing the index contrast and/or the number of bilayers in the crystal. In order to explain these results, the homogenization approximation, which is usually applied to single rough surfaces, is applied to the quarter-wave stacks. The results of the homogenization approximation match the FDTD results extremely well, suggesting that the main role of the roughness features is to grade the refractive index profile of the interfaces in the photonic crystal rather than diffusely scatter the incoming light. This result also implies that the amount of incoherent reflection from the roughened quarterwave stacks is extremely small. This is confirmed through direct extraction of the amount of incoherent power from the FDTD calculations. Further FDTD studies are done on the entire normal incidence bandgap of roughened 1D photonic crystals. These results reveal a narrowing and red-shifting of the normal incidence bandgap with

  13. Photonic crystals, light manipulation, and imaging in complex nematic structures

    Science.gov (United States)

    Ravnik, Miha; Å timulak, Mitja; Mur, Urban; Čančula, Miha; Čopar, Simon; Žumer, Slobodan

    2016-03-01

    Three selected approaches for manipulation of light by complex nematic colloidal and non-colloidal structures are presented using different own custom developed theoretical and modelling approaches. Photonic crystals bands of distorted cholesteric liquid crystal helix and of nematic colloidal opals are presented, also revealing distinct photonic modes and density of states. Light propagation along half-integer nematic disclinations is shown with changes in the light polarization of various winding numbers. As third, simulated light transmission polarization micrographs of nematic torons are shown, offering a new insight into the complex structure characterization. Finally, this work is a contribution towards using complex soft matter in optics and photonics for advanced light manipulation.

  14. Ultrafast all-optical order-to-chaos transition in silicon photonic crystal chips

    KAUST Repository

    Bruck, Roman

    2016-06-08

    The interaction of light with nanostructured materials provides exciting new opportunities for investigating classical wave analogies of quantum phenomena. A topic of particular interest forms the interplay between wave physics and chaos in systems where a small perturbation can drive the behavior from the classical to chaotic regime. Here, we report an all-optical laser-driven transition from order to chaos in integrated chips on a silicon photonics platform. A square photonic crystal microcavity at telecom wavelengths is tuned from an ordered into a chaotic regime through a perturbation induced by ultrafast laser pulses in the ultraviolet range. The chaotic dynamics of weak probe pulses in the near infrared is characterized for different pump-probe delay times and at various positions in the cavity, with high spatial accuracy. Our experimental analysis, confirmed by numerical modelling based on random matrices, demonstrates that nonlinear optics can be used to control reversibly the chaotic behavior of light in optical resonators. (Figure presented.) . © 2016 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  15. Nonlinear optics of liquid crystalline materials

    International Nuclear Information System (INIS)

    Khoo, Iam Choon

    2009-01-01

    Liquid crystals occupy an important niche in nonlinear optics as a result of their unique physical and optical properties. Besides their broadband birefringence and transparency, abilities to self-assemble into various crystalline phases and to conform to various flexible forms and shapes, liquid crystals are compatible with almost all other optoelectronic materials and technology platforms. In both isotropic and ordered phases, liquid crystals possess extraordinarily large optical nonlinearities that stretch over multiple time scales. To date, almost all conceivable nonlinear optical phenomena have been observed in a very broad spectrum spanning the entire visible to infrared and beyond. In this review, we present a self-contained complete discussion of the optical nonlinearities of liquid crystals, and a thorough review of a wide range of nonlinear optical processes and phenomena enabled by these unique properties. Starting with a brief historical account of the development of nonlinear optical studies of the mesophases of liquid crystals, we then review various liquid crystalline materials and structures, and their nonlinear optical properties. Emphasis is placed on the nematic phase, which best exemplifies the dual nature of liquid crystals, although frequent references to other phases are also made. We also delve into recent work on novel structures such as photonic crystals, metamaterials and nanostructures and their special characteristics and emergent properties. The mechanisms and complex nonlocal dynamics of optical nonlinearities associated with laser induced director axis reorientation, thermal, density, and order parameter fluctuations, space charge field formation and photorefractivity are critically reviewed as a foundation for the discussions of various nonlinear optical processes detailed in this paper

  16. Numerical Methods for the Design and Analysis of Photonic Crystal Fibres

    DEFF Research Database (Denmark)

    Roberts, John

    2008-01-01

    The numerical methods available for calculating the electromagnetic mode properties of photonic crystal fibres are reviewed. The preferred schemes for analyzing TIR guiding and band gap guiding fibres are contrasted.......The numerical methods available for calculating the electromagnetic mode properties of photonic crystal fibres are reviewed. The preferred schemes for analyzing TIR guiding and band gap guiding fibres are contrasted....

  17. Two-Dimensional Photonic Crystals for Sensitive Microscale Chemical and Biochemical Sensing

    Science.gov (United States)

    Miller, Benjamin L.

    2015-01-01

    Photonic crystals – optical devices able to respond to changes in the refractive index of a small volume of space – are an emerging class of label-free chemical-and bio-sensors. This review focuses on one class of photonic crystal, in which light is confined to a patterned planar material layer of sub-wavelength thickness. These devices are small (on the order of tens to 100s of microns square), suitable for incorporation into lab-on-a-chip systems, and in theory can provide exceptional sensitivity. We introduce the defining characteristics and basic operation of two-dimensional photonic crystal sensors, describe variations of their basic design geometry, and summarize reported detection results from chemical and biological sensing experiments. PMID:25563402

  18. Broadband one-dimensional photonic crystal wave plate containing single-negative materials.

    Science.gov (United States)

    Chen, Yihang

    2010-09-13

    The properties of the phase shift of wave reflected from one-dimensional photonic crystals consisting of periodic layers of single-negative (permittivity- or permeability-negative) materials are demonstrated. As the incident angle increases, the reflection phase shift of TE wave decreases, while that of TM wave increases. The phase shifts of both polarized waves vary smoothly as the frequency changes across the photonic crystal stop band. Consequently, the difference between the phase shift of TE and that of TM wave could remain constant in a rather wide frequency range inside the stop band. These properties are useful to design wave plate or retarder which can be used in wide spectral band. In addition, a broadband photonic crystal quarter-wave plate is proposed.

  19. Manipulating Light and Matter with Photonic Structures: Numerical Investigations on Photonic Crystals and Optical Forces

    Science.gov (United States)

    Zhang, Peng

    The highly developed nano-fabrication techniques allow light to be modulated with photonic structures in a more intensive way. These photonic structures involve photonic crystals, metals supporting surface plasmon polaritons, metamaterials, etc. In this thesis work, three different ways for light manipulation are numerically investigated. First, the light propagation is modulated using a photonic crystal with Dirac cones. It is demonstrated that the zero-index behavior of this photonic crystal which happens for normal incident waves, is lost at oblique incidence. A new method combining complex-k band calculations and absorbing boundary conditions for Bloch modes is developed to analyze the Bloch mode interaction in details. Second, the mechanic states of graphene are modulated through the optical gradient force. This force is induced by the coupled surface plasmons on the double graphene sheets and is greatly enhanced in comparison to the regular waveguides. By applying different strengths of forces in accordance to the input power, the mechanic state transition is made possible, accompanied by an abrupt change in the transmission and reflection spectra. Third, the helicity/chirality of light is studied to modulate the lateral force on a small particle. A left-hand material slab which supports coherent TE ad TM plasmons simultaneously is introduced. By mixing the TE and TM surface plasmons with different relative phases, the lateral force on a chiral particle can be changed, which will be beneficial for chiral particle sorting.

  20. Single-Photon Source for Quantum Information Based on Single Dye Molecule Fluorescence in Liquid Crystal Host

    International Nuclear Information System (INIS)

    Lukishova, S.G.; Knox, R.P.; Freivald, P.; McNamara, A.; Boyd, R.W.; Stroud, Jr. C.R.; Schmid, A.W.; Marshall, K.L.

    2006-01-01

    This paper describes a new application for liquid crystals: quantum information technology. A deterministically polarized single-photon source that efficiently produces photons exhibiting antibunching is a pivotal hardware element in absolutely secure quantum communication. Planar-aligned nematic liquid crystal hosts deterministically align the single dye molecules which produce deterministically polarized single (antibunched) photons. In addition, 1-D photonic bandgap cholesteric liquid crystals will increase single-photon source efficiency. The experiments and challenges in the observation of deterministically polarized fluorescence from single dye molecules in planar-aligned glassy nematic-liquid-crystal oligomer as well as photon antibunching in glassy cholesteric oligomer are described for the first time

  1. Giant nonlinear interaction between two optical beams via a quantum dot embedded in a photonic wire

    Science.gov (United States)

    Nguyen, H. A.; Grange, T.; Reznychenko, B.; Yeo, I.; de Assis, P.-L.; Tumanov, D.; Fratini, F.; Malik, N. S.; Dupuy, E.; Gregersen, N.; Auffèves, A.; Gérard, J.-M.; Claudon, J.; Poizat, J.-Ph.

    2018-05-01

    Optical nonlinearities usually appear for large intensities, but discrete transitions allow for giant nonlinearities operating at the single-photon level. This has been demonstrated in the last decade for a single optical mode with cold atomic gases, or single two-level systems coupled to light via a tailored photonic environment. Here, we demonstrate a two-mode giant nonlinearity with a single semiconductor quantum dot (QD) embedded in a photonic wire antenna. We exploit two detuned optical transitions associated with the exciton-biexciton QD level scheme. Owing to the broadband waveguide antenna, the two transitions are efficiently interfaced with two free-space laser beams. The reflection of one laser beam is then controlled by the other beam, with a threshold power as low as 10 photons per exciton lifetime (1.6 nW ). Such a two-color nonlinearity opens appealing perspectives for the realization of ultralow-power logical gates and optical quantum gates, and could also be implemented in an integrated photonic circuit based on planar waveguides.

  2. Low Loss and Highly Birefringent Hollow-Core Photonic Crystal Fiber

    DEFF Research Database (Denmark)

    Roberts, P. John; Williams, D.P.; Mangan, Brian J.

    2006-01-01

    A hollow-core photonic crystal fiber design is proposed which enables both low-loss and polarization-maintained signal propagation. The design relies on an arrangement of antiresonant features positioned on the glass ring that surrounds the air core.......A hollow-core photonic crystal fiber design is proposed which enables both low-loss and polarization-maintained signal propagation. The design relies on an arrangement of antiresonant features positioned on the glass ring that surrounds the air core....

  3. Numerical modeling in photonic crystals integrated technology: the COPERNICUS Project

    DEFF Research Database (Denmark)

    Malaguti, Stefania; Armaroli, Andrea; Bellanca, Gaetano

    2011-01-01

    Photonic crystals will play a fundamental role in the future of optical communications. The relevance of the numerical modeling for the success of this technology is assessed by using some examples concerning the experience of the COPERNICUS Project.......Photonic crystals will play a fundamental role in the future of optical communications. The relevance of the numerical modeling for the success of this technology is assessed by using some examples concerning the experience of the COPERNICUS Project....

  4. Omnidirectional photonic band gap in magnetron sputtered TiO{sub 2}/SiO{sub 2} one dimensional photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Jena, S., E-mail: shuvendujena9@gmail.com [Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Tokas, R.B.; Sarkar, P. [Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Misal, J.S.; Maidul Haque, S.; Rao, K.D. [Photonics & Nanotechnology Section, BARC-Vizag, Autonagar, Atomic & Molecular Physics Division, Bhabha Atomic Research Centre facility, Visakhapatnam 530 012 (India); Thakur, S.; Sahoo, N.K. [Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-01-29

    One dimensional photonic crystal (1DPC) of TiO{sub 2}/SiO{sub 2} multilayer has been fabricated by sequential asymmetric bipolar pulsed dc magnetron sputtering of TiO{sub 2} and radio frequency magnetron sputtering of SiO{sub 2} to achieve wide omnidirectional photonic band in the visible region. The microstructure and optical response of the TiO{sub 2}/SiO{sub 2} photonic crystal have been characterized by atomic force microscopy, scanning electron microscopy and spectrophotometry respectively. The surface of the photonic crystal is very smooth having surface roughness of 2.6 nm. Reflection and transmission spectra have been measured in the wavelength range 300 to 1000 nm for both transverse electric and transverse magnetic waves. Wide high reflection photonic band gap (∆ λ = 245 nm) in the visible and near infrared regions (592–837 nm) at normal incidence has been achieved. The measured photonic band gap (PBG) is found well matching with the calculated photonic band gap of an infinite 1DPC. The experimentally observed omnidirectional photonic band 592–668 nm (∆ λ = 76 nm) in the visible region with band to mid-band ratio ∆ λ/λ = 12% for reflectivity R > 99% over the incident angle range of 0°–70° is found almost matching with the calculated omnidirectional PBG. The omnidirectional reflection band is found much wider as compared to the values reported in literature so far in the visible region for TiO{sub 2}/SiO{sub 2} periodic photonic crystal. - Highlights: • TiO{sub 2}/SiO{sub 2} 1DPC has been fabricated using magnetron sputtering technique. • Experimental optical response is found good agreement with simulation results. • Wide omnidirectional photonic band in the visible spectrum has been achieved.

  5. Enhancement of the fluorescence intensity of DNA intercalators using nano-imprinted 2-dimensional photonic crystal

    International Nuclear Information System (INIS)

    Endo, Tatsuro; Ueda, China; Hisamoto, Hideaki; Kajita, Hiroshi; Okuda, Norimichi; Tanaka, Satoru

    2013-01-01

    We have fabricated polymer-based 2-dimensional photonic crystals that play a key role in enhancing the fluorescence of DNA intercalators. Highly ordered 2-dimensional photonic crystals possessing triangle-shaped and nm-sized hole arrays were fabricated on a 100 μm thick polymer film using nano-imprint lithography. Samples of double-stranded DNAs (sizes: 4361 and 48502 bp; concentration: 1 pM to 10 nM) were adsorbed on the surface of the 2-dimensional photonic crystal by electrostatic interactions and then treated with intercalators. It is found that the fluorescence intensity of the intercalator is enhanced by a factor of up to 10 compared to the enhancement in the absence of the 2-dimensional photonic crystal. Fluorescence intensity increases with increasing length and concentration of the DNAs. If the 2-dimensional photonic crystal is used as a Bragg reflection mirror, the enhancement of fluorescence intensity can be easily observed using a conventional spectrofluorometer. These results suggest that the printed photonic crystal offers a great potential for highly sensitive intercalator-based fluorescent detection of DNAs. (author)

  6. Photonic crystal fibre enables short-wavelength two-photon laser scanning fluorescence microscopy with fura-2

    International Nuclear Information System (INIS)

    McConnell, Gail; Riis, Erling

    2004-01-01

    We report on a novel and compact reliable laser source capable of short-wavelength two-photon laser scanning fluorescence microscopy based on soliton self-frequency shift effects in photonic crystal fibre. We demonstrate the function of the system by performing two-photon microscopy of smooth muscle cells and cardiac myocytes from the rat pulmonary vein and Chinese hamster ovary cells loaded with the fluorescent calcium indicator fura-2/AM

  7. Application of Bottlebrush Block Copolymers as Photonic Crystals.

    Science.gov (United States)

    Liberman-Martin, Allegra L; Chu, Crystal K; Grubbs, Robert H

    2017-07-01

    Brush block copolymers are a class of comb polymers that feature polymeric side chains densely grafted to a linear backbone. These polymers display interesting properties due to their dense functionality, low entanglement, and ability to rapidly self-assemble to highly ordered nanostructures. The ability to prepare brush polymers with precise structures has been enabled by advancements in controlled polymerization techniques. This Feature Article highlights the development of brush block copolymers as photonic crystals that can reflect visible to near-infrared wavelengths of light. Fabrication of these materials relies on polymer self-assembly processes to achieve nanoscale ordering, which allows for the rapid preparation of photonic crystals from common organic chemical feedstocks. The characteristic physical properties of brush block copolymers are discussed, along with methods for their preparation. Strategies to induce self-assembly at ambient temperatures and the use of blending techniques to tune photonic properties are emphasized. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Plasmonic enhancement in BiVO4 photonic crystals for efficient water splitting.

    Science.gov (United States)

    Zhang, Liwu; Lin, Chia-Yu; Valev, Ventsislav K; Reisner, Erwin; Steiner, Ullrich; Baumberg, Jeremy J

    2014-10-15

    Photo-electrochemical water splitting is a very promising and environmentally friendly route for the conversion of solar energy into hydrogen. However, the solar-to-H2 conversion efficiency is still very low due to rapid bulk recombination of charge carriers. Here, a photonic nano-architecture is developed to improve charge carrier generation and separation by manipulating and confining light absorption in a visible-light-active photoanode constructed from BiVO4 photonic crystal and plasmonic nanostructures. Synergistic effects of photonic crystal stop bands and plasmonic absorption are observed to operate in this photonic nanostructure. Within the scaffold of an inverse opal photonic crystal, the surface plasmon resonance is significantly enhanced by the photonic Bragg resonance. Nanophotonic photoanodes show AM 1.5 photocurrent densities of 3.1 ± 0.1 mA cm(-2) at 1.23 V versus RHE, which is among the highest for oxide-based photoanodes and over 4 times higher than the unstructured planar photoanode. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Degeneracy analysis for a supercell of a photonic crystal and its application to the creation of band gaps

    International Nuclear Information System (INIS)

    Wu Liang; Zhuang Fie; He Sailing

    2003-01-01

    A method is introduced to analyze the degeneracy properties of the band structure of a photonic crystal by making use of supercells. The band structure associated with a supercell of a photonic crystal has degeneracies at the edge of the Brillouin zone if the photonic crystal has some kind of point group symmetry. The E-polarization and H-polarization cases have the same degeneracies for a two-dimensional (2D) photonic crystal. Two theorems on degeneracies in the band structure associated with the supercell are given and proved. These degeneracies can be lifted to create photonic band gaps by changing the translation group symmetry of the photonic crystal (the point group symmetry of the photonic crystal may remain unchanged), which consequently changes the transform matrix between the supercell and the smallest unit cell. The existence of photonic band gaps for many known 2D photonic crystals is explained through the degeneracy analysis. Some structures with large band gaps are also found through the present degeneracy analysis

  10. Fresnel Lenses fabricated by femtosecond laser micromachining on Polymer 1D Photonic Crystal

    Directory of Open Access Journals (Sweden)

    Guduru Surya S.K.

    2013-11-01

    Full Text Available We report the fabrication of micro Fresnel lenses by femtosecond laser surface ablation on polymer 1D photonic crystals. This device is designed to focus the transmitted wavelength of the photonic crystal and filter the wavelengths corresponding to the photonic band gap region. Integration of such devices in a wavelength selective light harvesting and filtering microchip can be achieved.

  11. Limits of slow light in photonic crystals

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Xiao, Sanshui; Mortensen, N. Asger

    2008-01-01

    in the group velocity acquiring a finite value above zero at the band-gap edges while attaining uperluminal values within the band gap. Simple scalings of the minimum and maximum group velocities with the imaginary part of the dielectric function or, equivalently, the linewidth of the broadened states......While ideal photonic crystals would support modes with a vanishing group velocity, state-of-the-art structures have still only provided a slow down by roughly two orders of magnitude. We find that the induced density of states caused by lifetime broadening of the electromagnetic modes results...... are presented. The results obtained are entirely general and may be applied to any effect which results in a broadening of the electromagnetic states, such as loss, disorder, and finite-size effects. This significantly limits the reduction in group velocity attainable via photonic crystals....

  12. Photonic crystal and photonic quasicrystal patterned in PDMS surfaces and their effect on LED radiation properties

    Energy Technology Data Exchange (ETDEWEB)

    Suslik, Lubos [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Pudis, Dusan, E-mail: pudis@fyzika.uniza.sk [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Goraus, Matej [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Nolte, Rainer [Fakultät für Maschinenbau FG Lichttechnik Ilmenau University of Technology, Ilmenau (Germany); Kovac, Jaroslav [Inst. of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, 812 19, Bratislava (Slovakia); Durisova, Jana; Gaso, Peter [Dept. of Physics, Faculty of Electrical Engineering, University of Zilina, Univerzitna 1, 010 26, Zilina (Slovakia); Hronec, Pavol [Inst. of Electronics and Photonics, Slovak University of Technology, Ilkovicova 3, 812 19, Bratislava (Slovakia); Schaaf, Peter [Chair Materials for Electronics, Institute of Materials Engineering and Institute of Micro- and Nanotechnologies MacroNano, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693 Ilmenau (Germany)

    2017-02-15

    Graphical abstract: Photonic quasicrystal patterned in the surface of polydimethylsiloxane membrane (left) and radiation pattern of light emitting diode with patterned membrane applied in the surface (right). - Highlights: • We presented fabrication technique of PDMS membranes with patterned surface by photonic crystal (PhC) and photonic quasi-crystal (PQC). • Presented technique is effective for preparation PhC and PQC PDMS membranes easily implementing in the LED chip. • From the goniophotometer measurements, the membranes document effective angular emission due to the diffraction on patterned surfaces. • 12 fold symmetry PQC structure shows homogeneous radiation pattern, while the 2 fold symmetry of square PhC shows evident diffraction lobes. - Abstract: We present results of fabrication and implementation of thin polydimethylsiloxane (PDMS) membranes with patterned surface for the light emitting diode (LED). PDMS membranes were patterned by using the interference lithography in combination with embossing technique. Two-dimensional photonic crystal and photonic quasicrystal structures with different period were patterned in the surface of thin PDMS membranes with depth up to 550 nm. Patterned PDMS membranes placed on the LED chip effectively diffracted light and increased angular emission of LED radiation pattern. We presented effective technique for fabrication of patterned PDMS membranes, which could modify the emission properties of optoelectronic devices and can be applied directly on surface LEDs and small optical devices.

  13. The method of impedance transformation for electromagnetic waves propagating in one-dimension plasma photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jingfeng; Yuan, Chengxun, E-mail: yuancx@hit.edu.cn, E-mail: zhouzx@hit.edu.cn; Gao, Ruilin; Jia, Jieshu; Wang, Ying; Zhou, Zhongxiang, E-mail: yuancx@hit.edu.cn, E-mail: zhouzx@hit.edu.cn; Wang, Xiaoou [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Wu, Jian [National Key Laboratory of Electromagnetic Environment (LEME), China Research Institute of Radio Wave Propagation, Beijing 102206 (China); Li, Hui [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); National Key Laboratory of Electromagnetic Environment (LEME), China Research Institute of Radio Wave Propagation, Beijing 102206 (China)

    2016-08-15

    This study focuses on the transmission of normal-incidence electromagnetic waves in one-dimensional plasma photonic crystals. Using the Maxwell's equations in a medium, a method that is based on the concept of impendence is employed to perform the simulation. The accuracy of the method was evaluated by simulating a one-layer plasma and conventional photonic crystal. In frequency-domain, the transmission and reflection coefficients in the unmagnetized plasma photonic crystal were calculated, and the influence factors on plasma photonic crystals including dielectric constants of dielectric, spatial period, filling factor, plasma frequency, and collision frequency were studied.

  14. Ultra-compact laser beam steering device using holographically formed two dimensional photonic crystal.

    Science.gov (United States)

    Dou, Xinyuan; Chen, Xiaonan; Chen, Maggie Yihong; Wang, Alan Xiaolong; Jiang, Wei; Chen, Ray T

    2010-03-01

    In this paper, we report the theoretical study of polymer-based photonic crystals for laser beam steering which is based on the superprism effect as well as the experiment fabrication of the two dimensional photonic crystals for the laser beam steering. Superprism effect, the principle for beam steering, was separately studied in details through EFC (Equifrequency Contour) analysis. Polymer based photonic crystals were fabricated through double exposure holographic interference method using SU8-2007. The experiment results showed a beam steering angle of 10 degree for 30 nm wavelength variation.

  15. Single-photon blockade in a hybrid cavity-optomechanical system via third-order nonlinearity

    Science.gov (United States)

    Sarma, Bijita; Sarma, Amarendra K.

    2018-04-01

    Photon statistics in a weakly driven optomechanical cavity, with Kerr-type nonlinearity, are analyzed both analytically and numerically. The single-photon blockade effect is demonstrated via calculations of the zero-time-delay second-order correlation function g (2)(0). The analytical results obtained by solving the Schrödinger equation are in complete conformity with the results obtained through numerical solution of the quantum master equation. A systematic study on the parameter regime for observing photon blockade in the weak coupling regime is reported. The parameter regime where the photon blockade is not realizable due to the combined effect of nonlinearities owing to the optomechanical coupling and the Kerr-effect is demonstrated. The experimental feasibility with state-of-the-art device parameters is discussed and it is observed that photon blockade could be generated at the telecommunication wavelength. An elaborate analysis of the thermal effects on photon antibunching is presented. The system is found to be robust against pure dephasing-induced decoherences and thermal phonon number fluctuations.

  16. Chaotic behaviour of photonic crystals resonators

    KAUST Repository

    Di Falco, A.; Liu, C.; Krauss, T. F.; Fratalocchi, Andrea

    2015-01-01

    We show here theoretically and experimentally how chaotic Photonic Crystal resonators can be used for en- ergy harvesting applications and the demonstration of fundamental theories, like the onset of superradiance in quantum systems. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  17. Chaotic behaviour of photonic crystals resonators

    KAUST Repository

    Di Falco, A.

    2015-02-08

    We show here theoretically and experimentally how chaotic Photonic Crystal resonators can be used for en- ergy harvesting applications and the demonstration of fundamental theories, like the onset of superradiance in quantum systems. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  18. An integrated microcombustor and photonic crystal emitter for thermophotovoltaics

    Science.gov (United States)

    Chan, Walker R.; Stelmakh, Veronika; Allmon, William R.; Waits, Christopher M.; Soljacic, Marin; Joannopoulos, John D.; Celanovic, Ivan

    2016-11-01

    Thermophotovoltaic (TPV) energy conversion is appealing for portable millimeter- scale generators because of its simplicity, but it relies on a high temperatures. The performance and reliability of the high-temperature components, a microcombustor and a photonic crystal emitter, has proven challenging because they are subjected to 1000-1200°C and stresses arising from thermal expansion mismatches. In this paper, we adopt the industrial process of diffusion brazing to fabricate an integrated microcombustor and photonic crystal by bonding stacked metal layers. Diffusion brazing is simpler and faster than previous approaches of silicon MEMS and welded metal, and the end result is more robust.

  19. Tuning of InGaAsP planar photonic crystal nanocavities by local liquid crystal infiltration

    NARCIS (Netherlands)

    Kicken, H.H.J.E.

    2009-01-01

    Future data-processing will increasingly employ photonic circuits in addition to conventional electronics. Photonic crystals (PC), a periodic arrangement of dielectrics, can influence the flow of light on the smallest scale, i.e. at or below the optical wavelength. Therefore PCs are a necessary tool

  20. Recent trends in computational photonics

    CERN Document Server

    Benson, Trevor; Rue, Richard; Wurtz, Gregory

    2017-01-01

    This book brings together the recent cutting-edge work on computational methods in photonics and their applications. The latest advances in techniques such as the Discontinuous Galerkin Time Domain method, Finite Element Time Domain method, Finite Difference Time Domain method as well as their applications are presented. Key aspects such as modelling of non-linear effects (Second Harmonic Generation, lasing in fibers, including gain nonlinearity in metamaterials), the acousto-optic effect, and the hydrodynamic model to explain electron response in nanoplasmonic structures are included. The application areas covered include plasmonics, metamaterials, photonic crystals, dielectric waveguides, fiber lasers. The chapters give a representative survey of the corresponding area. .