NONLINEAR WAVES AND PERIODIC SOLUTION IN FINITE DEFORMATION ELASTIC ROD
Institute of Scientific and Technical Information of China (English)
Liu Zhifang; Zhang Shanyuan
2006-01-01
A nonlinear wave equation of elastic rod taking account of finite deformation, transverse inertia and shearing strain is derived by means of the Hamilton principle in this paper. Nonlinear wave equation and truncated nonlinear wave equation are solved by the Jacobi elliptic sine function expansion and the third kind of Jacobi elliptic function expansion method. The exact periodic solutions of these nonlinear equations are obtained, including the shock wave solution and the solitary wave solution. The necessary condition of exact periodic solutions, shock solution and solitary solution existence is discussed.
Exact periodic wave solutions for some nonlinear partial differential equations
Energy Technology Data Exchange (ETDEWEB)
El-Wakil, S.A. [Theoretical Physics Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt); Elgarayhi, A. [Theoretical Physics Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)]. E-mail: elgarayhi@yahoo.com; Elhanbaly, A. [Theoretical Physics Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)
2006-08-15
The periodic wave solutions for some nonlinear partial differential equations, including generalized Klein-Gordon equation, Kadomtsev-Petviashvili (KP) equation and Boussinesq equations, are obtained by using the solutions of Jacobi elliptic equation. Under limit conditions, exact solitary wave solutions, shock wave solutions and triangular periodic wave solutions have been recovered.
Distribution of the nonlinear random ocean wave period
Institute of Scientific and Technical Information of China (English)
HOU Yijun; LI Mingjie; SONG Guiting; SI Guangcheng; QI Peng; HU Po
2009-01-01
Because of the intrinsic difficulty in determining distributions for wave periods, previous studies on wave period distribution models have not taken nonlinearity into account and have not performed well in terms of describing and statistically analyzing the probability density distribution of ocean waves. In this study, a statistical model of random waves is developed using Stokes wave theory of water wave dynamics. In addition, a new nonlinear probability distribution function for the wave period is presented with the parameters of spectral density width and nonlinear wave steepness, which is more reasonable as a physical mechanism. The magnitude of wave steepness determines the intensity of the nonlinear effect, while the spectral width only changes the energy distribution. The wave steepness is found to be an important parameter in terms of not only dynamics but also statistics. The value of wave steepness reflects the degree that the wave period distribution skews from the Cauchy distribution, and it also describes the variation in the distribution function, which resembles that of the wave surface elevation distribution and wave height distribution. We found that the distribution curves skew leftward and upward as the wave steepness increases. The wave period observations for the SZFII-1 buoy, made off the coast of Weihai (37°27.6′ N, 122°15.1′ E), China, are used to verify the new distribution. The coefficient of the correlation between the new distribution and the buoy data at different spectral widths (υ=0.3-0.5) is within the range of 0.968 6 to 0.991 7. In addition, the Longuet-Higgins (1975) and Sun (1988) distributions and the new distribution presented in this work are compared. The validations and comparisons indicate that the new nonlinear probability density distribution fits the buoy measurements better than the Longuet-Higgins and Sun distributions do. We believe that adoption of the new wave period distribution would improve traditional
The periodic wave solutions for two systems of nonlinear wave equations
Institute of Scientific and Technical Information of China (English)
王明亮; 王跃明; 张金良
2003-01-01
The periodic wave solutions for the Zakharov system of nonlinear wave equations and a long-short-wave interaction system are obtained by using the F-expansion method, which can be regarded as an overall generalization of Jacobi elliptic function expansion proposed recently. In the limit cases, the solitary wave solutions for the systems are also obtained.
Quasi-periodic and Non-periodic Waves in (2+1)-Dimensional Nonlinear Systems
Institute of Scientific and Technical Information of China (English)
TANG Xiao-Yan; LOU Sen-Yue
2005-01-01
New exact quasi-periodic and non-periodic solutions for the (2 + 1)-dimensional nonlinear systems are studied by means of the multi-linear variable separation approach (MLVSA) and the Jacobi elliptic functions with the space-time-dependent modulus. Though the result is valid for all the MLVSA solvable models, it is explicitly shown for the long-wave and short-wave interaction model.
Energy Technology Data Exchange (ETDEWEB)
Zhou Yubin; Wang Mingliang; Miao Tiande
2004-03-15
The periodic wave solutions for a class of nonlinear partial differential equations, including the Davey-Stewartson equations and the generalized Zakharov equations, are obtained by using the F-expansion method, which can be regarded as an overall generalization of the Jacobi elliptic function expansion method recently proposed. In the limit cases the solitary wave solutions of the equations are also obtained.
Periodic Wave Solutions of Generalized Derivative Nonlinear Schr(o)dinger Equation
Institute of Scientific and Technical Information of China (English)
ZHA Qi-Lao; LI Zhi-Bin
2008-01-01
A Darboux transformation of the generalized derivative nonlinear Schr(o)dinger equation is derived. As an application, some new periodic wave solutions of the generalized derivative nonlinear Schr(o)dinger equation are explicitly given.
New Exact Travelling Wave and Periodic Solutions of Discrete Nonlinear Schr(o)dinger Equation
Institute of Scientific and Technical Information of China (English)
YANG Qin; DAI Chao-Qing; ZHANG Jie-Fang
2005-01-01
Some new exact travelling wave and period solutions of discrete nonlinear Schrodinger equation are found by using a hyperbolic tangent function approach, which was usually presented to find exact travelling wave solutions of certain nonlinear partial differential models. Now we can further extend the new algorithm to other nonlinear differentialdifferent models.
A method for generating highly nonlinear periodic waves in physical wave basins
DEFF Research Database (Denmark)
Zhang, Haiwen; Schäffer, Hemming A.; Bingham, Harry B.
2006-01-01
This abstract describes a new method for generating nonlinear waves of constant form in physical wave basins. The idea is to combine fully dispersive linear wavemaker theory with nonlinear shallow water wave generation theory; and use an exact nonlinear theory as the target. We refer to the metho...... as an ad-hoc unified wave generation theory, since there is no rigorous analysis behind the idea which is simply justified by the improved results obtained for the practical generation of steady nonlinear waves....
Exact Solitary Wave and Periodic Wave Solutions of a Class of Higher-Order Nonlinear Wave Equations
Directory of Open Access Journals (Sweden)
Lijun Zhang
2015-01-01
Full Text Available We study the exact traveling wave solutions of a general fifth-order nonlinear wave equation and a generalized sixth-order KdV equation. We find the solvable lower-order subequations of a general related fourth-order ordinary differential equation involving only even order derivatives and polynomial functions of the dependent variable. It is shown that the exact solitary wave and periodic wave solutions of some high-order nonlinear wave equations can be obtained easily by using this algorithm. As examples, we derive some solitary wave and periodic wave solutions of the Lax equation, the Ito equation, and a general sixth-order KdV equation.
Electromagnetic wave diffraction by periodic planar metamaterials with nonlinear constituents
Khardikov, V; Prosvirnin, S; Tuz, V
2014-01-01
We present a theory which explains how to achieve an enhancement of nonlinear effects in a thin layer of nonlinear medium by involving a planar periodic structure specially designed to bear a trapped-mode resonant regime. In particular, the possibility of a nonlinear thin metamaterial to produce the bistable response at a relatively low input intensity due to a large quality factor of the trapped-mode resonance is shown. Also a simple design of an all-dielectric low-loss silicon-based planar metamaterial which can provide an extremely sharp resonant reflection and transmission is proposed. The designed metamaterial is envisioned for aggregating with a pumped active medium to achieve an enhancement of quantum dots luminescence and to produce an all-dielectric analog of a 'lasing spaser'.
EXISTENCE OF TIME PERIODIC SOLUTIONS FOR A DAMPED GENERALIZED COUPLED NONLINEAR WAVE EQUATIONS
Institute of Scientific and Technical Information of China (English)
房少梅; 郭柏灵
2003-01-01
The time periodic solution problem of damped generalized coupled nonlinear wave equations with periodic boundary condition was studied. By using the Galerkin method to construct the approximating sequence of time periodic solutions, a priori estimate and Laray-Schauder fixed point theorem to prove the convergence of the approximate solutions, the existence of time periodic solutions for a damped generalized coupled nonlinear wave equations can be obtained.
Stable one-dimensional periodic waves in Kerr-type saturable and quadratic nonlinear media
Energy Technology Data Exchange (ETDEWEB)
Kartashov, Yaroslav V [ICFO-Institut de Ciencies Fotoniques, and Department of Signal Theory and Communications, Universitat Politecnica de Catalunya, E-08034 Barcelona (Spain); Egorov, Alexey A [Physics Department, M V Lomonosov Moscow State University, 119899, Moscow (Russian Federation); Vysloukh, Victor A [Departamento de Fisica y Matematicas, Universidad de las Americas-Puebla, Santa Catarina Martir, 72820, Puebla, Cholula (Mexico); Torner, Lluis [ICFO-Institut de Ciencies Fotoniques, and Department of Signal Theory and Communications, Universitat Politecnica de Catalunya, E-08034 Barcelona (Spain)
2004-05-01
We review the latest progress and properties of the families of bright and dark one-dimensional periodic waves propagating in saturable Kerr-type and quadratic nonlinear media. We show how saturation of the nonlinear response results in the appearance of stability (instability) bands in a focusing (defocusing) medium, which is in sharp contrast with the properties of periodic waves in Kerr media. One of the key results discovered is the stabilization of multicolour periodic waves in quadratic media. In particular, dark-type waves are shown to be metastable, while bright-type waves are completely stable in a broad range of energy flows and material parameters. This yields the first known example of completely stable periodic wave patterns propagating in conservative uniform media supporting bright solitons. Such results open the way to the experimental observation of the corresponding self-sustained periodic wave patterns.
Highly Nonlinear Wave Propagation in Elastic Woodpile Periodic Structures
2016-08-03
enabled a wide range of proposals for applications. Among others, we note shock and energy absorbing lay- ers [5–7], acoustic lenses [8], acoustic diodes...found in the Supplemental Material [41]. We record the transmit- ted stress waves using a piezoelectric force sensor (PCB C02) placed at the bottom of...the contacts in the presence of internal vibration modes that can store energy in their own right. The effective parameters m1,M and k1 of this DEM
Barker, Blake; Noble, Pascal; Rodrigues, L Miguel; Zumbrun, Kevin
2012-01-01
In this paper we consider the spectral and nonlinear stability of periodic traveling wave solutions of a generalized Kuramoto-Sivashinsky equation. In particular, we resolve the long-standing question of nonlinear modulational stability by demonstrating that spectrally stable waves are nonlinearly stable when subject to small localized (integrable) perturbations. Our analysis is based upon detailed estimates of the linearized solution operator, which are complicated by the fact that the (necessarily essential) spectrum of the associated linearization intersects the imaginary axis at the origin. We carry out a numerical Evans function study of the spectral problem and find bands of spectrally stable periodic traveling waves, in close agreement with previous numerical studies of Frisch-She-Thual, Bar-Nepomnyashchy, Chang-Demekhin-Kopelevich, and others carried out by other techniques. We also compare predictions of the associated Whitham modulation equations, which formally describe the dynamics of weak large s...
Stable One-Dimensional Periodic Wave in Kerr-Type and Quadratic Nonlinear Media
Directory of Open Access Journals (Sweden)
Roxana Savastru
2012-01-01
Full Text Available We present the propagation of optical beams and the properties of one-dimensional (1D spatial solitons (“bright” and “dark” in saturated Kerr-type and quadratic nonlinear media. Special attention is paid to the recent advances of the theory of soliton stability. We show that the stabilization of bright periodic waves occurs above a certain threshold power level and the dark periodic waves can be destabilized by the saturation of the nonlinear response, while the dark quadratic waves turn out to be metastable in the broad range of material parameters. The propagation of (1+1 a dimension-optical field on saturated Kerr media using nonlinear Schrödinger equations is described. A model for the envelope one-dimensional evolution equation is built up using the Laplace transform.
Indian Academy of Sciences (India)
BHARDWAJ S B; SINGH RAM MEHAR; SHARMA KUSHAL; MISHRA S C
2016-06-01
Attempts have been made to explore the exact periodic and solitary wave solutions of nonlinear reaction diffusion (RD) equation involving cubic–quintic nonlinearity along with timedependent convection coefficients. Effect of varying model coefficients on the physical parameters of solitary wave solutions is demonstrated. Depending upon the parametric condition, the periodic,double-kink, bell and antikink-type solutions for cubic–quintic nonlinear reaction-diffusion equation are extracted. Such solutions can be used to explain various biological and physical phenomena.
Explicit Soliton and Periodic Solutions to Three-Wave System with Quadratic and Cubic Nonlinearities
Institute of Scientific and Technical Information of China (English)
LIN Ji; ZHAO Li-Na; LI Hua-Mei
2011-01-01
Lie group theoretical method and the equation of the Jacobi elliptic function are used to study the three wave system that couples two fundamental frequency (FF) and a single second harmonic (SH) one by competing x(2)(quadratic) and x(3) (cubic) nonlinearities and birefringence.This system shares some of the nice properties of soliton system.On the phase-locked condition, we obtain large families of analytical solutions as the soliton, kink and periodic solutions of this system.
Energy Technology Data Exchange (ETDEWEB)
Makarov, V A; Petnikova, V M; Potravkin, N N; Shuvalov, V V [International Laser Center, M. V. Lomonosov Moscow State University, Moscow (Russian Federation)
2014-02-28
Using the linearization method, we obtain approximate solutions to a one-dimensional nonintegrable problem of propagation of elliptically polarised light waves in an isotropic gyrotropic medium with local and nonlocal components of the Kerr nonlinearity and group-velocity dispersion. The consistent evolution of two orthogonal circularly polarised components of the field is described analytically in the case when their phases vary linearly during propagation. The conditions are determined for the excitation of waves with a regular and 'chaotic' change in the polarisation state. The character of the corresponding nonlinear solutions, i.e., periodic analogues of multisoliton complexes, is analysed. (nonlinear optical phenomena)
Institute of Scientific and Technical Information of China (English)
王云虎; 陈勇
2011-01-01
In the present letter, we get the appropriate bilinear forms of （2 ＋ 1）-dimensional KdV equation, extended （2 ＋ 1）-dimensional shallow water wave equation and （2 ＋ 1）-dimensional Sawada -Kotera equation in a quick and natural manner, namely by appling the binary Bell polynomials. Then the Hirota direct method and Riemann theta function are combined to construct the periodic wave solutions of the three types nonlinear evolution equations. And the corresponding figures of the periodic wave solutions are given. Furthermore, the asymptotic properties of the periodic wave solutions indicate that the soliton solutions can be derived from the periodic wave solutions.
Nonlinear elastic waves in materials
Rushchitsky, Jeremiah J
2014-01-01
The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...
Modulational instability in periodic quadratic nonlinear materials
DEFF Research Database (Denmark)
Corney, Joel Frederick; Bang, Ole
2001-01-01
We investigate the modulational instability of plane waves in quadratic nonlinear materials with linear and nonlinear quasi-phase-matching gratings. Exact Floquet calculations, confirmed by numerical simulations, show that the periodicity can drastically alter the gain spectrum but never complete...
2016-01-01
This volume brings together four lecture courses on modern aspects of water waves. The intention, through the lectures, is to present quite a range of mathematical ideas, primarily to show what is possible and what, currently, is of particular interest. Water waves of large amplitude can only be fully understood in terms of nonlinear effects, linear theory being not adequate for their description. Taking advantage of insights from physical observation, experimental evidence and numerical simulations, classical and modern mathematical approaches can be used to gain insight into their dynamics. The book presents several avenues and offers a wide range of material of current interest. Due to the interdisciplinary nature of the subject, the book should be of interest to mathematicians (pure and applied), physicists and engineers. The lectures provide a useful source for those who want to begin to investigate how mathematics can be used to improve our understanding of water wave phenomena. In addition, some of the...
Solving Nonlinear Wave Equations by Elliptic Equation
Institute of Scientific and Technical Information of China (English)
FU Zun-Tao; LIU Shi-Da; LIU Shi-Kuo
2003-01-01
The elliptic equation is taken as a transformation and applied to solve nonlinear wave equations. It is shown that this method is more powerful to give more kinds of solutions, such as rational solutions, solitary wave solutions,periodic wave solutions and so on, so it can be taken as a generalized method.
Supratransmission in a disordered nonlinear periodic structure
Yousefzadeh, B.; Phani, A. Srikantha
2016-10-01
We study the interaction among dispersion, nonlinearity, and disorder effects in the context of wave transmission through a discrete periodic structure, subjected to continuous harmonic excitation in its stop band. We consider a damped nonlinear periodic structure of finite length with disorder. Disorder is introduced throughout the structure by small changes in the stiffness parameters drawn from a uniform statistical distribution. Dispersion effects forbid wave transmission within the stop band of the linear periodic structure. However, nonlinearity leads to supratransmission phenomenon, by which enhanced wave transmission occurs within the stop band of the periodic structure when forced at an amplitude exceeding a certain threshold. The frequency components of the transmitted waves lie within the pass band of the linear structure, where disorder is known to cause Anderson localization. There is therefore a competition between dispersion, nonlinearity, and disorder in the context of supratransmission. We show that supratransmission persists in the presence of disorder. The influence of disorder decreases in general as the forcing frequency moves away from the pass band edge, reminiscent of dispersion effects subsuming disorder effects in linear periodic structures. We compute the dependence of the supratransmission force threshold on nonlinearity and strength of coupling between units. We observe that nonlinear forces are confined to the driven unit for weakly coupled systems. This observation, together with the truncation of higher-order nonlinear terms, permits us to develop closed-form expressions for the supratransmission force threshold. In sum, in the frequency range studied here, disorder does not influence the supratransmission force threshold in the ensemble-average sense, but it does reduce the average transmitted wave energy.
Modulational stability and dark solitons in periodic quadratic nonlinear media
DEFF Research Database (Denmark)
Corney, Joel Frederick; Bang, Ole
2000-01-01
We show that stable dark solitons exist in quadratic nonlinear media with periodic linear and nonlinear susceptibilities. We investigate the modulational stability of plane waves in such systems, a necessary condition for stable dark solitons....
Extremal periodic wave profiles
Directory of Open Access Journals (Sweden)
E. van Groesen
2007-01-01
Full Text Available As a contribution to deterministic investigations into extreme fluid surface waves, in this paper wave profiles of prescribed period that have maximal crest height will be investigated. As constraints the values of the momentum and energy integrals are used in a simplified description with the KdV model. The result is that at the boundary of the feasible region in the momentum-energy plane, the only possible profiles are the well known cnoidal wave profiles. Inside the feasible region the extremal profiles of maximal crest height are "cornered" cnoidal profiles: cnoidal profiles of larger period, cut-off and periodically continued with the prescribed period so that at the maximal crest height a corner results.
On the polarization of nonlinear gravitational waves
Poplawski, Nikodem J.
2011-01-01
We derive a relation between the two polarization modes of a plane, linear gravitational wave in the second-order approximation. Since these two polarizations are not independent, an initially monochromatic gravitational wave loses its periodic character due to the nonlinearity of the Einstein field equations. Accordingly, real gravitational waves may differ from solutions of the linearized field equations, which are being assumed in gravitational-wave detectors.
The Nonlinear Talbot Effect of Rogue Waves
Zhang, Yiqi; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Song, Jianping; Zhang, Yanpeng
2014-01-01
Akhmediev and Kuznetsov-Ma breathers are rogue wave solutions of the nonlinear Schr\\"odinger equation (NLSE). Talbot effect (TE) is an image recurrence phenomenon in the diffraction of light waves. We report the nonlinear TE of rogue waves in a cubic medium. It is different from the linear TE, in that the wave propagates in a NL medium and is an eigenmode of NLSE. Periodic rogue waves impinging on a NL medium exhibit recurrent behavior, but only at the TE length and at the half-TE length with a \\pi-phase shift; the fractional TE is absent. The NL TE is the result of the NL interference of the lobes of rogue wave breathers. This interaction is related to the transverse period and intensity of breathers, in that the bigger the period and the higher the intensity, the shorter the TE length.
Bifurcation methods of dynamical systems for handling nonlinear wave equations
Indian Academy of Sciences (India)
Dahe Feng; Jibin Li
2007-05-01
By using the bifurcation theory and methods of dynamical systems to construct the exact travelling wave solutions for nonlinear wave equations, some new soliton solutions, kink (anti-kink) solutions and periodic solutions with double period are obtained.
Long wave-short wave resonance in nonlinear negative refractive index media.
Chowdhury, Aref; Tataronis, John A
2008-04-18
We show that long wave-short wave resonance can be achieved in a second-order nonlinear negative refractive index medium when the short wave lies on the negative index branch. With the medium exhibiting a second-order nonlinear susceptibility, a number of nonlinear phenomena such as solitary waves, paired solitons, and periodic wave trains are possible or enhanced through the cascaded second-order effect. Potential applications include the generation of terahertz waves from optical pulses.
Nonlinear Waves in Complex Systems
DEFF Research Database (Denmark)
2007-01-01
The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations, it is the ......The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations......, it is the universality and robustness of the main models with respect to perturbations that developped the field. This is true for both continuous and discrete equations. In this volume we keep this broad view and draw new perspectives for nonlinear waves in complex systems. In particular we address energy flow...
Nonlinear hyperbolic waves in multidimensions
Prasad, Phoolan
2001-01-01
The propagation of curved, nonlinear wavefronts and shock fronts are very complex phenomena. Since the 1993 publication of his work Propagation of a Curved Shock and Nonlinear Ray Theory, author Phoolan Prasad and his research group have made significant advances in the underlying theory of these phenomena. This volume presents their results and provides a self-contained account and gradual development of mathematical methods for studying successive positions of these fronts.Nonlinear Hyperbolic Waves in Multidimensions includes all introductory material on nonlinear hyperbolic waves and the theory of shock waves. The author derives the ray theory for a nonlinear wavefront, discusses kink phenomena, and develops a new theory for plane and curved shock propagation. He also derives a full set of conservation laws for a front propagating in two space dimensions, and uses these laws to obtain successive positions of a front with kinks. The treatment includes examples of the theory applied to converging wavefronts...
Dynamics of Nonlinear Waves on Bounded Domains
Maliborski, Maciej
2016-01-01
This thesis is concerned with dynamics of conservative nonlinear waves on bounded domains. In general, there are two scenarios of evolution. Either the solution behaves in an oscillatory, quasiperiodic manner or the nonlinear effects cause the energy to concentrate on smaller scales leading to a turbulent behaviour. Which of these two possibilities occurs depends on a model and the initial conditions. In the quasiperiodic scenario there exist very special time-periodic solutions. They result for a delicate balance between dispersion and nonlinear interaction. The main body of this dissertation is concerned with construction (by means of perturbative and numerical methods) of time-periodic solutions for various nonlinear wave equations on bounded domains. While turbulence is mainly associated with hydrodynamics, recent research in General Relativity has also revealed turbulent phenomena. Numerical studies of a self-gravitating massless scalar field in spherical symmetry gave evidence that anti-de Sitter space ...
Properties of Nonlinear Dynamo Waves
Tobias, S. M.
1997-01-01
Dynamo theory offers the most promising explanation of the generation of the sun's magnetic cycle. Mean field electrodynamics has provided the platform for linear and nonlinear models of solar dynamos. However, the nonlinearities included are (necessarily) arbitrarily imposed in these models. This paper conducts a systematic survey of the role of nonlinearities in the dynamo process, by considering the behaviour of dynamo waves in the nonlinear regime. It is demonstrated that only by considering realistic nonlinearities that are non-local in space and time can modulation of the basic dynamo wave he achieved. Moreover, this modulation is greatest when there is a large separation of timescales provided by including a low magnetic Prandtl number in the equation for the velocity perturbations.
Nonlinear wave-wave interactions and wedge waves
Institute of Scientific and Technical Information of China (English)
Ray Q.Lin; Will Perrie
2005-01-01
A tetrad mechanism for exciting long waves,for example edge waves,is described based on nonlinear resonant wave-wave interactions.In this mechanism,resonant interactions pass energy to an edge wave,from the three participating gravity waves.The estimated action flux into the edge wave can be orders of magnitude greater than the transfer fluxes derived from other competing mechanisms,such as triad interactions.Moreover,the numerical results show that the actual transfer rates into the edge wave from the three participating gravity waves are two-to three- orders of magnitude greater than bottom friction.
Reconstruction of nonlinear wave propagation
Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie
2013-04-23
Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.
Nonlinear Interaction of Waves in Geomaterials
Ostrovsky, L. A.
2009-05-01
Progress of 1990s - 2000s in studying vibroacoustic nonlinearities in geomaterials is largely related to experiments in resonance samples of rock and soils. It is now a common knowledge that many such materials are very strongly nonlinear, and they are characterized by hysteresis in the dependence between the stress and strain tensors, as well as by nonlinear relaxation ("slow time"). Elastic wave propagation in such media has many peculiarities; for example, third harmonic amplitude is a quadratic (not cubic as in classical solids) function of the main harmonic amplitude, and average wave velocity is linearly (not quadratically as usual) dependent on amplitude. The mechanisms of these peculiarities are related to complex structure of a material typically consisting of two phases: a hard matrix and relatively soft inclusions such as microcracks and grain contacts. Although most informative experimental results have been obtained in rock in the form of resonant bars, few theoretical models are yet available to describe and calculate waves interacting in such samples. In this presentation, a brief overview of structural vibroacoustic nonlinearities in rock is given first. Then, a simple but rather general approach to the description of wave interaction in solid resonators is developed based on accounting for resonance nonlinear perturbations which are cumulating from period to period. In particular, the similarity and the differences between traveling waves and counter-propagating waves are analyzed for materials with different stress-strain dependences. These data can be used for solving an inverse problem, i.e. characterizing nonlinear properties of a geomaterial by its measured vibroacoustic parameters. References: 1. L. Ostrovsky and P. Johnson, Riv. Nuovo Chimento, v. 24, 1-46, 2007 (a review); 2. L. Ostrovsky, J. Acoust. Soc. Amer., v. 116, 3348-3353, 2004.
El-Wakil, S A; El-Shewy, E K; Abd-El-Hamid, H M
2010-01-01
A theoretical investigation has been made of electron acoustic wave propagating in unmagnetized collisionless plasma consisting of a cold electron fluid and isothermal ions with two different temperatures obeying Boltzmann type distributions. Based on the pseudo-potential approach, large amplitude potential structures and the existence of Solitary waves are discussed. The reductive perturbation method has been employed to derive the Korteweg-de Vries (KdV) equation for small but finite amplitude electrostatic waves. An algebraic method with computerized symbolic computation, which greatly exceeds the applicability of the existing tanh, extended tanh methods in obtaining a series of exact solutions of the KdV equation, is used here. Numerical studies have been made using plasma parameters close to those values corresponding to Earth's plasma sheet boundary layer region reveals different solutions i.e., bell-shaped solitary pulses and singularity solutions at a finite point which called "blowup" solutions, Jaco...
New approaches to nonlinear waves
2016-01-01
The book details a few of the novel methods developed in the last few years for studying various aspects of nonlinear wave systems. The introductory chapter provides a general overview, thematically linking the objects described in the book. Two chapters are devoted to wave systems possessing resonances with linear frequencies (Chapter 2) and with nonlinear frequencies (Chapter 3). In the next two chapters modulation instability in the KdV-type of equations is studied using rigorous mathematical methods (Chapter 4) and its possible connection to freak waves is investigated (Chapter 5). The book goes on to demonstrate how the choice of the Hamiltonian (Chapter 6) or the Lagrangian (Chapter 7) framework allows us to gain a deeper insight into the properties of a specific wave system. The final chapter discusses problems encountered when attempting to verify the theoretical predictions using numerical or laboratory experiments. All the chapters are illustrated by ample constructive examples demonstrating the app...
Oscillating nonlinear acoustic shock waves
DEFF Research Database (Denmark)
Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth
2016-01-01
We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...... that at resonance a stationary state arise consisting of multiple oscillating shock waves. Off resonance driving leads to a nearly linear oscillating ground state but superimposed by bursts of a fast oscillating shock wave. Based on a travelling wave ansatz for the fluid velocity potential with an added 2'nd order...... polynomial in the space and time variables, we find analytical approximations to the observed single shock waves in an infinitely long tube. Using perturbation theory for the driven acoustic system approximative analytical solutions for the off resonant case are determined....
Nonlinear Waves in Complex Systems
DEFF Research Database (Denmark)
2007-01-01
The study of nonlinear waves has exploded due to the combination of analysis and computations, since the discovery of the famous recurrence phenomenon on a chain of nonlinearly coupled oscillators by Fermi-Pasta-Ulam fifty years ago. More than the discovery of new integrable equations......, it is the universality and robustness of the main models with respect to perturbations that developped the field. This is true for both continuous and discrete equations. In this volume we keep this broad view and draw new perspectives for nonlinear waves in complex systems. In particular we address energy flow...... in Fourier space and equipartition, the role of inhomogeneities and complex geometry and the importance of coupled systems....
Nonlinear random optical waves: Integrable turbulence, rogue waves and intermittency
Randoux, Stéphane; Walczak, Pierre; Onorato, Miguel; Suret, Pierre
2016-10-01
We examine the general question of statistical changes experienced by ensembles of nonlinear random waves propagating in systems ruled by integrable equations. In our study that enters within the framework of integrable turbulence, we specifically focus on optical fiber systems accurately described by the integrable one-dimensional nonlinear Schrödinger equation. We consider random complex fields having a Gaussian statistics and an infinite extension at initial stage. We use numerical simulations with periodic boundary conditions and optical fiber experiments to investigate spectral and statistical changes experienced by nonlinear waves in focusing and in defocusing propagation regimes. As a result of nonlinear propagation, the power spectrum of the random wave broadens and takes exponential wings both in focusing and in defocusing regimes. Heavy-tailed deviations from Gaussian statistics are observed in focusing regime while low-tailed deviations from Gaussian statistics are observed in defocusing regime. After some transient evolution, the wave system is found to exhibit a statistically stationary state in which neither the probability density function of the wave field nor the spectrum changes with the evolution variable. Separating fluctuations of small scale from fluctuations of large scale both in focusing and defocusing regimes, we reveal the phenomenon of intermittency; i.e., small scales are characterized by large heavy-tailed deviations from Gaussian statistics, while the large ones are almost Gaussian.
Nonlinear Stability for the Periodic and Non-Periodic Zakharov System
Angulo, Jaime
2010-01-01
We prove the existence of a smooth curve of periodic traveling wave solutions for the Zakharov system. We also show that this type of solutions are nonlinear stable by the periodic flow generated for the system mentioned before. An improvement of the work of Ya Ping is made, we prove the stability of the solitary wave solutions associated to the Zakharov system.
Nonlinear quasimodes near elliptic periodic geodesics
Albin, Pierre; Marzuola, Jeremy L; Thomann, Laurent
2011-01-01
We consider the nonlinear Schr\\"odinger equation on a compact manifold near an elliptic periodic geodesic. Using a geometric optics construction, we construct quasimodes to a nonlinear stationary problem which are highly localized near the periodic geodesic. We show the nonlinear Schr\\"odinger evolution of such a quasimode remains localized near the geodesic, at least for short times.
Hopf Bifurcation in a Nonlinear Wave System
Institute of Scientific and Technical Information of China (English)
HE Kai-Fen
2004-01-01
@@ Bifurcation behaviour of a nonlinear wave system is studied by utilizing the data in solving the nonlinear wave equation. By shifting to the steady wave frame and taking into account the Doppler effect, the nonlinear wave can be transformed into a set of coupled oscillators with its (stable or unstable) steady wave as the fixed point.It is found that in the chosen parameter regime, both mode amplitudes and phases of the wave can bifurcate to limit cycles attributed to the Hopf instability. It is emphasized that the investigation is carried out in a pure nonlinear wave framework, and the method can be used for the further exploring routes to turbulence.
Wave equation with concentrated nonlinearities
Noja, Diego; Posilicano, Andrea
2004-01-01
In this paper we address the problem of wave dynamics in presence of concentrated nonlinearities. Given a vector field $V$ on an open subset of $\\CO^n$ and a discrete set $Y\\subset\\RE^3$ with $n$ elements, we define a nonlinear operator $\\Delta_{V,Y}$ on $L^2(\\RE^3)$ which coincides with the free Laplacian when restricted to regular functions vanishing at $Y$, and which reduces to the usual Laplacian with point interactions placed at $Y$ when $V$ is linear and is represented by an Hermitean m...
NONLINEAR MHD WAVES IN A PROMINENCE FOOT
Energy Technology Data Exchange (ETDEWEB)
Ofman, L. [Catholic University of America, Washington, DC 20064 (United States); Knizhnik, K.; Kucera, T. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Schmieder, B. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris-Diderot, Sorbonne Paris Cit, 5 place Jules Janssen, F-92195 Meudon (France)
2015-11-10
We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ∼ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5–11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5–14 G. For the typical prominence density the corresponding fast magnetosonic speed is ∼20 km s{sup −1}, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.
Exact solitary wave solutions of nonlinear wave equations
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The hyperbolic function method for nonlinear wave equations ispresented. In support of a computer algebra system, many exact solitary wave solutions of a class of nonlinear wave equations are obtained via the method. The method is based on the fact that the solitary wave solutions are essentially of a localized nature. Writing the solitary wave solutions of a nonlinear wave equation as the polynomials of hyperbolic functions, the nonlinear wave equation can be changed into a nonlinear system of algebraic equations. The system can be solved via Wu Elimination or Grbner base method. The exact solitary wave solutions of the nonlinear wave equation are obtained including many new exact solitary wave solutions.
The Peridic Wave Solutions for Two Nonlinear Evolution Equations
Institute of Scientific and Technical Information of China (English)
ZHANG Jin-Liang; WANG Ming-Liang; CHENG Dong-Ming; FANG Zong-De
2003-01-01
By using the F-expansion method proposed recently, the periodic wave solutions expressed by Jacobielliptic functions for two nonlinear evolution equations are derived. In the limit cases, the solitary wave solutions andthe other type of traveling wave solutions for the system are obtained.
Standing waves for discrete nonlinear Schrodinger equations
Ming Jia
2016-01-01
The discrete nonlinear Schrodinger equation is a nonlinear lattice system that appears in many areas of physics such as nonlinear optics, biomolecular chains and Bose-Einstein condensates. By using critical point theory, we establish some new sufficient conditions on the existence results of standing waves for the discrete nonlinear Schrodinger equations. We give an appropriate example to illustrate the conclusion obtained.
Cantor families of periodic solutions for completely resonant wave equations
Institute of Scientific and Technical Information of China (English)
2008-01-01
We present recent existence results of Cantor families of small amplitude periodic solutions for completely resonant nonlinear wave equations. The proofs rely on the Nash-Moser implicit function theory and variational methods.
Nonlinear Electron Waves in Strongly Magnetized Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans; Juul Rasmussen, Jens
1980-01-01
dynamics in the analysis is also demonstrated. As a particular case the authors investigate nonlinear waves in a strongly magnetized plasma filled wave-guide, where the effects of finite geometry are important. The relevance of this problem to laboratory experiments is discussed.......Weakly nonlinear dispersive electron waves in strongly magnetized plasma are considered. A modified nonlinear Schrodinger equation is derived taking into account the effect of particles resonating with the group velocity of the waves (nonlinear Landau damping). The possibility of including the ion...
TRAVELING WAVE SOLUTIONS FOR A CLASS OF NONLINEAR DISPERSIVE EQUATIONS
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The method of the phase plane is emploied to investigate the solitary and periodic traveling waves for a class of nonlinear dispersive partial differential equations.By using the bifurcation theory of dynamical systems to do qualitative analysis,all possible phase portraits in the parametric space for the traveling wave systems are obtained.It can be shown that the existence of a singular straight line in the traveling wave system is the reason why smooth solitary wave solutions converge to solitary cusp wave solution when parameters are varied.The different parameter conditions for the existence of solitary and periodic wave solutions of different kinds are rigorously determined.
Nonlinear Fourier analysis with cnoidal waves
Energy Technology Data Exchange (ETDEWEB)
Osborne, A.R. [Dipt. di Fisica Generale dell`Universita, Torino (Italy)
1996-12-31
Fourier analysis is one of the most useful tools to the ocean engineer. The approach allows one to analyze wave data and thereby to describe a dynamical motion in terms of a linear superposition of ordinary sine waves. Furthermore, the Fourier technique allows one to compute the response function of a fixed or floating structure: each sine wave in the wave or force spectrum yields a sine wave in the response spectrum. The counting of fatigue cycles is another area where the predictable oscillations of sine waves yield procedures for the estimation of the fatigue life of structures. The ocean environment, however, is a source of a number of nonlinear effects which must also be included in structure design. Nonlinearities in ocean waves deform the sinusoidal shapes into other kinds of waves such as the Stokes wave, cnoidal wave or solitary wave. A key question is: Does there exist a generalization of linear Fourier analysis which uses nonlinear basis functions rather than the familiar sine waves? Herein addresses the dynamics of nonlinear wave motion in shallow water where the basis functions are cnoidal waves and discuss nonlinear Fourier analysis in terms of a linear superposition of cnoidal waves plus their mutual nonlinear interactions. He gives a number of simple examples of nonlinear Fourier wave motion and then analyzes an actual surface-wave time series obtained on an offshore platform in the Adriatic Sea. Finally, he briefly discusses application of the cnoidal wave spectral approach to the computation of the frequency response function of a floating vessel. The results given herein will prove useful in future engineering studies for the design of fixed, floating and complaint offshore structures.
Nonlinear propagation and control of acoustic waves in phononic superlattices
Jiménez, Noé; Picó, Rubén; García-Raffi, Lluís M; Sánchez-Morcillo, Víctor J
2015-01-01
The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such as band-gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g. cubic) nonlinearities, or extremely linear media (where distortion can be cancelled). The presented ideas open a way towards the control of acoustic wave propagation in nonlinear regime.
Nonlinear MHD waves in a Prominence Foot
Ofman, Leon; Kucera, Therese; Schmieder, Brigitte
2015-01-01
We study nonlinear waves in a prominence foot using 2.5D MHD model motivated by recent high-resolution observations with Hinode/SOT in Ca~II emission of a prominence on October 10, 2012 showing highly dynamic small-scale motions in the prominence material. Observations of H$\\alpha$ intensities and of Doppler shifts show similar propagating fluctuations. However the optically thick nature of the emission lines inhibits unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity ($\\delta I/I\\sim \\delta n/n$). The waves are evident as significant density fluctuations that vary with height, and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with typical period in the range of 5-11 minutes, and wavelengths $\\sim <$2000 km. Recent Doppler shift observations show the transverse displacement of the propagating wav...
Periodic solutions of nonlinear vibrating beams
Directory of Open Access Journals (Sweden)
J. Berkovits
2003-01-01
Full Text Available The aim of this paper is to prove new existence and multiplicity results for periodic semilinear beam equation with a nonlinear time-independent perturbation in case the period is not prescribed. Since the spectrum of the linear part varies with the period, the solvability of the equation depends crucially on the period which can be chosen as a free parameter. Since the period of the external forcing is generally unknown a priori, we consider the following natural problem. For a given time-independent nonlinearity, find periods T for which the equation is solvable for any T-periodic forcing. We will also deal with the existence of multiple solutions when the nonlinearity interacts with the spectrum of the linear part. We show that under certain conditions multiple solutions do exist for any small forcing term with suitable period T. The results are obtained via generalized Leray-Schauder degree and reductions to invariant subspaces.
Institute of Scientific and Technical Information of China (English)
WANG Qi; CHEN Yong; ZHANG Hong-Qing
2005-01-01
In this work we devise an algebraic method to uniformly construct rational form solitary wave solutions and Jacobi and Weierstrass doubly periodic wave solutions of physical interest for nonlinear evolution equations. With the aid of symbolic computation, we apply the proposed method to solving the (1+1)-dimensional dispersive long wave equation and explicitly construct a series of exact solutions which include the rational form solitary wave solutions and elliptic doubly periodic wave solutions as special cases.
Nonlinear evolution of whistler wave modulational instability
DEFF Research Database (Denmark)
Karpman, V.I.; Lynov, Jens-Peter; Michelsen, Poul;
1995-01-01
The nonlinear evolution of the modulational instability of whistler waves coupled to fast magnetosonic waves (FMS) and to slow magnetosonic waves (SMS) is investigated. Results from direct numerical solutions in two spatial dimensions agree with simplified results from a set of ordinary different......The nonlinear evolution of the modulational instability of whistler waves coupled to fast magnetosonic waves (FMS) and to slow magnetosonic waves (SMS) is investigated. Results from direct numerical solutions in two spatial dimensions agree with simplified results from a set of ordinary...
BIFURCATIONS OF TRAVELLING WAVE SOLUTIONS TO A COUPLED NONLINEAR WAVE SYSTEM
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
Employ theory of bifurcations of dynamical systems to a system of coupled nonlin-ear equations, the existence of solitary wave solutions, kink wave solutions, anti-kink wave solutions and periodic wave solutions is obtained. Under different parametric conditions, various suffcient conditions to guarantee the existence of the above so-lutions are given. Some exact explicit parametric representations of travelling wave solutions are derived.
Periodic and Chaotic Breathers in the Nonlinear Schr(o)dinger Equation
Institute of Scientific and Technical Information of China (English)
LIU Xue-Shen; QI Yue-Ying; DING Pei-Zhu
2004-01-01
@@ The breathers in the cubic nonlinear Schrodinger equation are investigated numerically by using the symplectic method. We show that the solitonlike wave, the periodic, quasiperiodic and chaotic breathers can be observed with the increase of cubic nonlinear perturbation. Finally, we discuss the breathers in the cubic-quintic nonlinear Schrodinger equation with the increase of quintic nonlinear perturbation.
Nonlinear spin wave coupling in adjacent magnonic crystals
Energy Technology Data Exchange (ETDEWEB)
Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation); Kotel' nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009 (Russian Federation); Beginin, E. N.; Morozova, M. A.; Sharaevskii, Yu. P.; Grishin, S. V.; Sheshukova, S. E. [Laboratory “Metamaterials,” Saratov State University, Saratov 410012 (Russian Federation)
2016-07-25
We have experimentally studied the coupling of spin waves in the adjacent magnonic crystals. Space- and time-resolved Brillouin light-scattering spectroscopy is used to demonstrate the frequency and intensity dependent spin-wave energy exchange between the side-coupled magnonic crystals. The experiments and the numerical simulation of spin wave propagation in the coupled periodic structures show that the nonlinear phase shift of spin wave in the adjacent magnonic crystals leads to the nonlinear switching regime at the frequencies near the forbidden magnonic gap. The proposed side-coupled magnonic crystals represent a significant advance towards the all-magnonic signal processing in the integrated magnonic circuits.
Characterizing Electron Trapping Nonlinearity in Langmuir Waves
Strozzi, D J; Rose, H A; Hinkel, D E; Langdon, A B; Banks, J W
2012-01-01
We assess when electron trapping nonlinearities are expected to be important in Langmuir waves. The basic criterion is that the effective lifetime, t_d, of resonant electrons in the trapping region of velocity space must exceed the period of trapped motion for deeply-trapped electrons, tau_B = (n_e/delta n)^{1/2} 2pi/omega_pe. A unitless figure of merit, the "bounce number" N_B = t_d/tau_B, encapsulates this condition and allows an effective threshold amplitude for which N_B=1 to be defined. The lifetime is found for convective loss (transverse and longitudinal) out of a spatially finite Langmuir wave. Simulations of driven waves with a finite transverse profile, using the 2D-2V Vlasov code Loki, show trapping nonlinearity increases continuously with N_B for side loss, and is significant for N_B ~ 1. The lifetime due to Coulomb collisions (both electron-electron and electron-ion) is also found, with pitch-angle scattering and parallel drag and diffusion treated in a unified way. A simple way to combine convec...
Standing waves for discrete nonlinear Schrodinger equations
Directory of Open Access Journals (Sweden)
Ming Jia
2016-07-01
Full Text Available The discrete nonlinear Schrodinger equation is a nonlinear lattice system that appears in many areas of physics such as nonlinear optics, biomolecular chains and Bose-Einstein condensates. By using critical point theory, we establish some new sufficient conditions on the existence results of standing waves for the discrete nonlinear Schrodinger equations. We give an appropriate example to illustrate the conclusion obtained.
Diffractons: Solitary Waves Created by Diffraction in Periodic Media
Ketcheson, David I.
2015-03-31
A new class of solitary waves arises in the solution of nonlinear wave equations with constant impedance and no dispersive terms. These solitary waves depend on a balance between nonlinearity and a dispersion-like effect due to spatial variation in the sound speed of the medium. A high-order homogenized model confirms this effective dispersive behavior, and its solutions agree well with those obtained by direct simulation of the variable-coefficient system. These waves are observed to be long-time stable, globally attracting solutions that arise in general as solutions to nonlinear wave problems with periodically varying sound speed. They share some properties with known classes of solitary waves but possess important differences as well.
Nonlinear Dispersion Relation in Wave Transformation
Institute of Scientific and Technical Information of China (English)
李瑞杰; 严以新; 曹宏生
2003-01-01
A nonlinear dispersion relation is presented to model the nonlinear dispersion of waves over the whole range of possible water depths. It reduces the phase speed over-prediction of both Hedges′ modified relation and Kirby and Dalrymple′s modified relation in the region of 1＜kh＜1.5 for small wave steepness and maintains the monotonicity in phase speed variation for large wave steepness. And it has a simple form. By use of the new nonlinear dispersion relation along with the mild slope equation taking into account weak nonlinearity, a mathematical model of wave transformation is developed and applied to laboratory data. The results show that the model with the new dispersion relation can predict wave transformation over complicated bathymetry satisfactorily.
Statistical distribution of nonlinear random wave height
Institute of Scientific and Technical Information of China (English)
HOU; Yijun; GUO; Peifang; SONG; Guiting; SONG; Jinbao; YIN; Baoshu; ZHAO; Xixi
2006-01-01
A statistical model of random wave is developed using Stokes wave theory of water wave dynamics. A new nonlinear probability distribution function of wave height is presented. The results indicate that wave steepness not only could be a parameter of the distribution function of wave height but also could reflect the degree of wave height distribution deviation from the Rayleigh distribution. The new wave height distribution overcomes the problem of Rayleigh distribution that the prediction of big wave is overestimated and the general wave is underestimated. The prediction of small probability wave height value of new distribution is also smaller than that of Rayleigh distribution. Wave height data taken from East China Normal University are used to verify the new distribution. The results indicate that the new distribution fits the measurements much better than the Rayleigh distribution.
Energy Technology Data Exchange (ETDEWEB)
Romeo, Francesco [Dipartimento di Ingegneria Strutturale e Geotecnica, Universita di Roma ' La Sapienza' , Via Gramsci 53, 00197 Rome (Italy)] e-mail: francesco.romeo@uniromal.it; Rega, Giuseppe [Dipartimento di Ingegneria Strutturale e Geotecnica, Universita di Roma ' La Sapienza' , Via Gramsci 53, 00197 Rome (Italy)] e-mail: giuseppe.rega@uniromal.it
2006-02-01
Free wave propagation properties in one-dimensional chains of nonlinear oscillators are investigated by means of nonlinear maps. In this realm, the governing difference equations are regarded as symplectic nonlinear transformations relating the amplitudes in adjacent chain sites (n, n + 1) thereby considering a dynamical system where the location index n plays the role of the discrete time. Thus, wave propagation becomes synonymous of stability: finding regions of propagating wave solutions is equivalent to finding regions of linearly stable map solutions. Mechanical models of chains of linearly coupled nonlinear oscillators are investigated. Pass- and stop-band regions of the mono-coupled periodic system are analytically determined for period-q orbits as they are governed by the eigenvalues of the linearized 2D map arising from linear stability analysis of periodic orbits. Then, equivalent chains of nonlinear oscillators in complex domain are tackled. Also in this case, where a 4D real map governs the wave transmission, the nonlinear pass- and stop-bands for periodic orbits are analytically determined by extending the 2D map analysis. The analytical findings concerning the propagation properties are then compared with numerical results obtained through nonlinear map iteration.
Nonlinearities in Periodic Structures and Metamaterials
Denz, Cornelia; Kivshar, Yuri S
2010-01-01
Optical information processing of the future is associated with a new generation of compact nanoscale optical devices operating entirely with light. Moreover, adaptive features such as self-guiding, reconfiguration and switching become more and more important. Nonlinear devices offer an enormous potential for these applications. Consequently, innovative concepts for all-optical communication and information technologies based on nonlinear effects in photonic-crystal physics and nanoscale devices as metamaterials are of high interest. This book focuses on nonlinear optical phenomena in periodic media, such as photonic crystals, optically-induced, adaptive lattices, atomic lattices or metamaterials. The main purpose is to describe and overview new physical phenomena that result from the interplay between nonlinearities and structural periodicities and is a guide to actual and future developments for the expert reader in optical information processing, as well as in the physics of cold atoms in optical lattices.
Control methods for localization of nonlinear waves
Porubov, Alexey; Andrievsky, Boris
2017-03-01
A general form of a distributed feedback control algorithm based on the speed-gradient method is developed. The goal of the control is to achieve nonlinear wave localization. It is shown by example of the sine-Gordon equation that the generation and further stable propagation of a localized wave solution of a single nonlinear partial differential equation may be obtained independently of the initial conditions. The developed algorithm is extended to coupled nonlinear partial differential equations to obtain consistent localized wave solutions at rather arbitrary initial conditions. This article is part of the themed issue 'Horizons of cybernetical physics'.
Nonlinear wave interactions in quantum magnetoplasmas
Shukla, P K; Marklund, M; Stenflo, L
2006-01-01
Nonlinear interactions involving electrostatic upper-hybrid (UH), ion-cyclotron (IC), lower-hybrid (LH), and Alfven waves in quantum magnetoplasmas are considered. For this purpose, the quantum hydrodynamical equations are used to derive the governing equations for nonlinearly coupled UH, IC, LH, and Alfven waves. The equations are then Fourier analyzed to obtain nonlinear dispersion relations, which admit both decay and modulational instabilities of the UH waves at quantum scales. The growth rates of the instabilities are presented. They can be useful in applications of our work to diagnostics in laboratory and astrophysical settings.
Strongly nonlinear steepening of long interfacial waves
Directory of Open Access Journals (Sweden)
N. Zahibo
2007-06-01
Full Text Available The transformation of nonlinear long internal waves in a two-layer fluid is studied in the Boussinesq and rigid-lid approximation. Explicit analytic formulation of the evolution equation in terms of the Riemann invariants allows us to obtain analytical results characterizing strongly nonlinear wave steepening, including the spectral evolution. Effects manifesting the action of high nonlinear corrections of the model are highlighted. It is shown, in particular, that the breaking points on the wave profile may shift from the zero-crossing level. The wave steepening happens in a different way if the density jump is placed near the middle of the water bulk: then the wave deformation is almost symmetrical and two phases appear where the wave breaks.
Nonlinear waves in strongly interacting relativistic fluids
Fogaça, D A; Filho, L G Ferreira
2013-01-01
During the past decades the study of strongly interacting fluids experienced a tremendous progress. In the relativistic heavy ion accelerators, specially the RHIC and LHC colliders, it became possible to study not only fluids made of hadronic matter but also fluids of quarks and gluons. Part of the physics program of these machines is the observation of waves in this strongly interacting medium. From the theoretical point of view, these waves are often treated with li-nearized hydrodynamics. In this text we review the attempts to go beyond linearization. We show how to use the Reductive Perturbation Method to expand the equations of (ideal and viscous) relativistic hydrodynamics to obtain nonlinear wave equations. These nonlinear wave equations govern the evolution of energy density perturbations (in hot quark gluon plasma) or baryon density perturbations (in cold quark gluon plasma and nuclear matter). Different nonlinear wave equations, such as the breaking wave, Korteweg-de Vries and Burgers equations, are...
Dynamics of optical rogue waves in inhomogeneous nonlinear waveguides
Institute of Scientific and Technical Information of China (English)
Zhang Jie-Fang; Jin Mei-Zhen; He Ji-Da; Lou Ji-Hui; Dai Chao-Qing
2013-01-01
We propose a unified theory to construct exact rogue wave solutions of the (2+1)-dimensional nonlinear Schr(o)dinger equation with varying coefficients.And then the dynamics of the first-and the second-order optical rogues are investigated.Finally,the controllability of the optical rogue propagating in inhomogeneous nonlinear waveguides is discussed.By properly choosing the distributed coefficients,we demonstrate analytically that rogue waves can be restrained or even be annihilated,or emerge periodically and sustain forever.We also figure out the center-of-mass motion of the rogue waves.
Evolution Of Nonlinear Waves in Compressing Plasma
Energy Technology Data Exchange (ETDEWEB)
P.F. Schmit, I.Y. Dodin, and N.J. Fisch
2011-05-27
Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size {Delta} during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches {Delta}. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.
Dispersive shock waves with nonlocal nonlinearity
Barsi, Christopher; Sun, Can; Fleischer, Jason W
2007-01-01
We consider dispersive optical shock waves in nonlocal nonlinear media. Experiments are performed using spatial beams in a thermal liquid cell, and results agree with a hydrodynamic theory of propagation.
Dispersive shock waves with nonlocal nonlinearity.
Barsi, Christopher; Wan, Wenjie; Sun, Can; Fleischer, Jason W
2007-10-15
We consider dispersive optical shock waves in nonlocal nonlinear media. Experiments are performed using spatial beams in a thermal liquid cell, and results agree with a hydrodynamic theory of propagation.
Nonlinear surface waves over topography
Janssen, T.T.
2006-01-01
As ocean surface waves radiate into shallow coastal areas and onto beaches, their lengths shorten, wave heights increase, and the wave shape transforms from nearsinusoidal to the characteristic saw-tooth shapes at the onset of breaking; in the ensuing breaking process the wave energy is cascaded to
Nonlinear Electrostatic Wave Equations for Magnetized Plasmas
DEFF Research Database (Denmark)
Dysthe, K.B.; Mjølhus, E.; Pécseli, Hans
1984-01-01
The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed.......The lowest order kinetic effects are included in the equations for nonlinear electrostatic electron waves in a magnetized plasma. The modifications of the authors' previous analysis based on a fluid model are discussed....
A NUMERICAL METHOD FOR NONLINEAR WATER WAVES
Institute of Scientific and Technical Information of China (English)
ZHAO Xi-zeng; SUN Zhao-chen; LIANG Shu-xiu; HU Chang-hong
2009-01-01
This article presents a numerical method for modeling nonlinear water waves based on the High Order Spectral (HOS) method proposed by Dommermuth and Yue and West et al., involving Taylor expansion of the Dirichlet problem and the Fast Fourier Transform (FFT) algorithm. The validation and efficiency of the numerical scheme is illustrated by a number of case studies on wave and wave train configuration including the evolution of fifth-order Stokes waves, wave dispersive focusing and the instability of Stokes wave with finite slope. The results agree well with those obtained by other studies.
Solitons and Weakly Nonlinear Waves in Plasmas
DEFF Research Database (Denmark)
Pécseli, Hans
1985-01-01
Theoretical descriptions of solitons and weakly nonlinear waves propagating in plasma media are reviewed, with particular attention to the Korteweg-de Vries (KDV) equation and the Nonlinear Schrödinger equation (NLS). The modifications of these basic equations due to the effects of resonant...
Nonlinear surface waves in photonic hypercrystals
Ali, Munazza Zulfiqar
2017-08-01
Photonic crystals and hyperbolic metamaterials are merged to give the concept of photonic hypercrystals. It combines the properties of its two constituents to give rise to novel phenomena. Here the propagation of Transverse Magnetic waves at the interface between a nonlinear dielectric material and a photonic hypercrystal is studied and the corresponding dispersion relation is derived using the uniaxial parallel approximation. Both dielectric and metallic photonic hypercrystals are studied and it is found that nonlinearity limits the infinite divergence of wave vectors of the surface waves. These states exist in the frequency region where the linear surface waves do not exist. It is also shown that the nonlinearity can be used to engineer the group velocity of the resulting surface wave.
Nonlinear water waves with soluble surfactant
Lapham, Gary; Dowling, David; Schultz, William
1998-11-01
The hydrodynamic effects of surfactants have fascinated scientists for generations. This presentation describes an experimental investigation into the influence of a soluble surfactant on nonlinear capillary-gravity waves in the frequency range from 12 to 20 Hz. Waves were generated in a plexiglass wave tank (254 cm long, 30.5 cm wide, and 18 cm deep) with a triangular plunger wave maker. The tank was filled with carbon- and particulate-filtered water into which the soluble surfactant Triton-X-100® was added in known amounts. Wave slope was measured nonintrusively with a digital camera running at 225 fps by monitoring the position of light beams which passed up through the bottom of the tank, out through the wavy surface, and onto a white screen. Wave slope data were reduced to determine wave damping and the frequency content of the wave train. Both were influenced by the presence of the surfactant. Interestingly, a subharmonic wave occurring at one-sixth the paddle-driving frequency was found only when surfactant was present and the paddle was driven at amplitudes high enough to produce nonlinear waves in clean water. Although the origins of this subharmonic wave remain unclear, it appears to be a genuine manifestation of the combined effects of the surfactant and nonlinearity.
Longitudinal nonlinear wave propagation through soft tissue.
Valdez, M; Balachandran, B
2013-04-01
In this paper, wave propagation through soft tissue is investigated. A primary aim of this investigation is to gain a fundamental understanding of the influence of soft tissue nonlinear material properties on the propagation characteristics of stress waves generated by transient loadings. Here, for computational modeling purposes, the soft tissue is modeled as a nonlinear visco-hyperelastic material, the geometry is assumed to be one-dimensional rod geometry, and uniaxial propagation of longitudinal waves is considered. By using the linearized model, a basic understanding of the characteristics of wave propagation is developed through the dispersion relation and in terms of the propagation speed and attenuation. In addition, it is illustrated as to how the linear system can be used to predict brain tissue material parameters through the use of available experimental ultrasonic attenuation curves. Furthermore, frequency thresholds for wave propagation along internal structures, such as axons in the white matter of the brain, are obtained through the linear analysis. With the nonlinear material model, the authors analyze cases in which one of the ends of the rods is fixed and the other end is subjected to a loading. Two variants of the nonlinear model are analyzed and the associated predictions are compared with the predictions of the corresponding linear model. The numerical results illustrate that one of the imprints of the nonlinearity on the wave propagation phenomenon is the steepening of the wave front, leading to jump-like variations in the stress wave profiles. This phenomenon is a consequence of the dependence of the local wave speed on the local deformation of the material. As per the predictions of the nonlinear material model, compressive waves in the structure travel faster than tensile waves. Furthermore, it is found that wave pulses with large amplitudes and small elapsed times are attenuated over shorter spans. This feature is due to the elevated
Explicit Traveling Wave Solutions to Nonlinear Evolution Equations
Institute of Scientific and Technical Information of China (English)
Linghai ZHANG
2011-01-01
First of all,some technical tools are developed. Then the author studies explicit traveling wave solutions to nonlinear dispersive wave equations,nonlinear dissipative dispersive wave equations,nonlinear convection equations,nonlinear reaction diffusion equations and nonlinear hyperbolic equations,respectively.
Energy Technology Data Exchange (ETDEWEB)
Huang Dingjiang [Department of Applied Mathematics, Dalian University of Technology, Dalian 116024 (China)]. E-mail: hdj8116@163.com; Zhang Hongqing [Department of Applied Mathematics, Dalian University of Technology, Dalian 116024 (China)
2006-08-15
Many travelling wave solutions of nonlinear evolution equations can be written as a polynomial in several elementary or special functions which satisfy a first order nonlinear ordinary differential equation with a sixth-degree nonlinear term. From that property, we deduce an algebraic method for constructing those solutions by determining only a finite number of coefficients. Being concise and straightforward, the method is applied to three nonlinear evolution equations. As a result, many exact travelling wave solutions are obtained which include new bell and kink profile solitary wave solutions, triangular periodic wave solutions and singular solutions.
Periodic Solutions for Highly Nonlinear Oscillation Systems
DEFF Research Database (Denmark)
Ghadimi, M; Barari, Amin; Kaliji, H.D
2012-01-01
In this paper, Frequency-Amplitude Formulation is used to analyze the periodic behavior of tapered beam as well as two complex nonlinear systems. Many engineering structures, such as offshore foundations, oil platform supports, tower structures and moving arms, are modeled as tapered beams...
Double resonant processes in $\\chi^{(2)}$ nonlinear periodic media
Konotop, V. V.; Kuzmiak, V.
2000-01-01
In a one-dimensional periodic nonlinear $\\chi^{(2)}$ medium, by choosing a proper material and geometrical parameters of the structure, it is possible to obtain two matching conditions for simultaneous generation of second and third harmonics. This leads to new diversity of the processes of the resonant three-wave interactions, which are discussed within the framework of slowly varying envelope approach. In particular, we concentrate on the fractional conversion of the frequency $\\omega \\to (...
Nonlinear Evolution of Alfvenic Wave Packets
Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.
1998-01-01
Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.
EXACT SOLUTIONS TO NONLINEAR WAVE EQUATION
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
In this paper,we use an invariant set to construct exact solutions to a nonlinear wave equation with a variable wave speed. Moreover,we obtain conditions under which the equation admits a nonclassical symmetry. Several different nonclassical symmetries for equations with different diffusion terms are presented.
Solitary waves on nonlinear elastic rods. I
DEFF Research Database (Denmark)
Sørensen, Mads Peter; Christiansen, Peter Leth; Lomdahl, P. S.
1984-01-01
Acoustic waves on elastic rods with circular cross section are governed by improved Boussinesq equations when transverse motion and nonlinearity in the elastic medium are taken into account. Solitary wave solutions to these equations have been found. The present paper treats the interaction between...
Nonlinear ship waves and computational fluid dynamics
National Research Council Canada - National Science Library
MIYATA, Hideaki; ORIHARA, Hideo; SATO, Yohei
2014-01-01
.... Finding of the occurrence of nonlinear waves (named Free-Surface Shock Waves) in the vicinity of a ship advancing at constant speed provided the start-line for the progress of innovative technologies in the ship hull-form design...
Nonlinear dynamics of resistive electrostatic drift waves
DEFF Research Database (Denmark)
Korsholm, Søren Bang; Michelsen, Poul; Pécseli, H.L.
1999-01-01
The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which is pertur......The evolution of weakly nonlinear electrostatic drift waves in an externally imposed strong homogeneous magnetic field is investigated numerically in three spatial dimensions. The analysis is based on a set of coupled, nonlinear equations, which are solved for an initial condition which...... is perturbed by a small amplitude incoherent wave-field. The initial evolution is exponential, following the growth of perturbations predicted by linear stability theory. The fluctuations saturate at relatively high amplitudes, by forming a pair of magnetic field aligned vortex-like structures of opposite...
Nonlinear internal wave penetration via parametric subharmonic instability
Ghaemsaidi, S J; Dauxois, T; Odier, P; Peacock, T
2016-01-01
We present the results of a laboratory experimental study of an internal wave field generated by harmonic, spatially-periodic boundary forcing from above of a density stratification comprising a strongly-stratified, thin upper layer sitting atop a weakly-stratified, deep lower layer. In linear regimes, the energy flux associated with relatively high frequency internal waves excited in the upper layer is prevented from entering the lower layer by virtue of evanescent decay of the wave field. In the experiments, however, we find that the development of parametric subharmonic instability (PSI) in the upper layer transfers energy from the forced primary wave into a pair of subharmonic daughter waves, each capable of penetrating the weakly-stratified lower layer. We find that around $10\\%$ of the primary wave energy flux penetrates into the lower layer via this nonlinear wave-wave interaction for the regime we study.
Nonlinear Landau damping and Alfven wave dissipation
Vinas, Adolfo F.; Miller, James A.
1995-01-01
Nonlinear Landau damping has been often suggested to be the cause of the dissipation of Alfven waves in the solar wind as well as the mechanism for ion heating and selective preacceleration in solar flares. We discuss the viability of these processes in light of our theoretical and numerical results. We present one-dimensional hybrid plasma simulations of the nonlinear Landau damping of parallel Alfven waves. In this scenario, two Alfven waves nonresonantly combine to create second-order magnetic field pressure gradients, which then drive density fluctuations, which in turn drive a second-order longitudinal electric field. Under certain conditions, this electric field strongly interacts with the ambient ions via the Landau resonance which leads to a rapid dissipation of the Alfven wave energy. While there is a net flux of energy from the waves to the ions, one of the Alfven waves will grow if both have the same polarization. We compare damping and growth rates from plasma simulations with those predicted by Lee and Volk (1973), and also discuss the evolution of the ambient ion distribution. We then consider this nonlinear interaction in the presence of a spectrum of Alfven waves, and discuss the spectrum's influence on the growth or damping of a single wave. We also discuss the implications for wave dissipation and ion heating in the solar wind.
Efficient computation method for two-dimensional nonlinear waves
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The theory and simulation of fully-nonlinear waves in a truncated two-dimensional wave tank in time domain are presented. A piston-type wave-maker is used to generate gravity waves into the tank field in finite water depth. A damping zone is added in front of the wave-maker which makes it become one kind of absorbing wave-maker and ensures the prescribed Neumann condition. The efficiency of nmerical tank is further enhanced by installation of a sponge layer beach (SLB) in front of downtank to absorb longer weak waves that leak through the entire wave train front. Assume potential flow, the space- periodic irrotational surface waves can be represented by mixed Euler- Lagrange particles. Solving the integral equation at each time step for new normal velocities, the instantaneous free surface is integrated following time history by use of fourth-order Runge- Kutta method. The double node technique is used to deal with geometric discontinuity at the wave- body intersections. Several precise smoothing methods have been introduced to treat surface point with high curvature. No saw-tooth like instability is observed during the total simulation.The advantage of proposed wave tank has been verified by comparing with linear theoretical solution and other nonlinear results, excellent agreement in the whole range of frequencies of interest has been obtained.
Transversally periodic solitary gravity–capillary waves
Milewski, Paul A.; Wang, Zhan
2014-01-01
When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravity–capillary solitary waves are found to be of either elevation or depression type, tend to plane waves below a critical transverse period and tend to solitary lumps as the transverse period tends to infinity. The waves are found numerically in a Hamiltonian system for water waves simplified by a cubic truncation of the Dirichlet-to-Neumann operator. This approximation has been proved to be very accurate for both two- and three-dimensional computations of fully localized gravity–capillary solitary waves. The stability properties of these waves are then investigated via the time evolution of perturbed wave profiles. PMID:24399922
New traveling wave solutions for nonlinear evolution equations
Energy Technology Data Exchange (ETDEWEB)
El-Wakil, S.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Madkour, M.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt); Abdou, M.A. [Theoretical Research Group, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt)]. E-mail: m_abdou_eg@yahoo.com
2007-06-11
The generalized Jacobi elliptic function expansion method is used with a computerized symbolic computation for constructing the new exact traveling wave solutions. The validity and reliability of the method is tested by its applications on a class of nonlinear evolution equations of special interest in mathematical physics. As a result, many exact traveling wave solutions are obtained which include the kink-shaped solutions, bell-shaped solutions, singular solutions and periodic solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in mathematical physics.
Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report
Energy Technology Data Exchange (ETDEWEB)
Tataronis, J. A.
2004-06-01
This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfvkn continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named “accumulation continuum” and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory.
Quasi-periodic solutions of nonlinear beam equations with quintic quasi-periodic nonlinearities
Directory of Open Access Journals (Sweden)
Qiuju Tuo
2015-01-01
Full Text Available In this article, we consider the one-dimensional nonlinear beam equations with quasi-periodic quintic nonlinearities $$ u_{tt}+u_{xxxx}+(B+ \\varepsilon\\phi(tu^5=0 $$ under periodic boundary conditions, where B is a positive constant, $\\varepsilon$ is a small positive parameter, $\\phi(t$ is a real analytic quasi-periodic function in t with frequency vector $\\omega=(\\omega_1,\\omega_2,\\dots,\\omega_m$. It is proved that the above equation admits many quasi-periodic solutions by KAM theory and partial Birkhoff normal form.
Energy Technology Data Exchange (ETDEWEB)
Artemyev, A. V., E-mail: ante0226@gmail.com; Vasiliev, A. A. [Space Research Institute, RAS, Moscow (Russian Federation); Mourenas, D.; Krasnoselskikh, V. V. [LPC2E/CNRS—University of Orleans, Orleans (France); Agapitov, O. V. [Space Sciences Laboratory, University of California, Berkeley, California 94720 (United States)
2014-10-15
In this paper, we consider high-energy electron scattering and nonlinear trapping by oblique whistler waves via the Landau resonance. We use recent spacecraft observations in the radiation belts to construct the whistler wave model. The main purpose of the paper is to provide an estimate of the critical wave amplitude for which the nonlinear wave-particle resonant interaction becomes more important than particle scattering. To this aim, we derive an analytical expression describing the particle scattering by large amplitude whistler waves and compare the corresponding effect with the nonlinear particle acceleration due to trapping. The latter is much more rare but the corresponding change of energy is substantially larger than energy jumps due to scattering. We show that for reasonable wave amplitudes ∼10–100 mV/m of strong whistlers, the nonlinear effects are more important than the linear and nonlinear scattering for electrons with energies ∼10–50 keV. We test the dependencies of the critical wave amplitude on system parameters (background plasma density, wave frequency, etc.). We discuss the role of obtained results for the theoretical description of the nonlinear wave amplification in radiation belts.
Quasi self-adjoint nonlinear wave equations
Energy Technology Data Exchange (ETDEWEB)
Ibragimov, N H [Department of Mathematics and Science, Blekinge Institute of Technology, SE-371 79 Karlskrona (Sweden); Torrisi, M; Tracina, R, E-mail: nib@bth.s, E-mail: torrisi@dmi.unict.i, E-mail: tracina@dmi.unict.i [Dipartimento di Matematica e Informatica, University of Catania (Italy)
2010-11-05
In this paper we generalize the classification of self-adjoint second-order linear partial differential equation to a family of nonlinear wave equations with two independent variables. We find a class of quasi self-adjoint nonlinear equations which includes the self-adjoint linear equations as a particular case. The property of a differential equation to be quasi self-adjoint is important, e.g. for constructing conservation laws associated with symmetries of the differential equation. (fast track communication)
Explicit solutions of nonlinear wave equation systems
Institute of Scientific and Technical Information of China (English)
Ahmet Bekir; Burcu Ayhan; M.Naci (O)zer
2013-01-01
We apply the (G'/G)-expansion method to solve two systems of nonlinear differential equations and construct traveling wave solutions expressed in terms of hyperbolic functions,trigonometric functions,and rational functions with arbitrary parameters.We highlight the power of the (G'/G)-expansion method in providing generalized solitary wave solutions of different physical structures.It is shown that the (G'/G)-expansion method is very effective and provides a powerful mathematical tool to solve nonlinear differential equation systems in mathematical physics.
Nonlinear dynamics of hydrostatic internal gravity waves
Energy Technology Data Exchange (ETDEWEB)
Stechmann, Samuel N.; Majda, Andrew J. [New York University, Courant Institute of Mathematical Sciences, NY (United States); Khouider, Boualem [University of Victoria, Department of Mathematics and Statistics, Victoria, BC (Canada)
2008-11-15
Stratified hydrostatic fluids have linear internal gravity waves with different phase speeds and vertical profiles. Here a simplified set of partial differential equations (PDE) is derived to represent the nonlinear dynamics of waves with different vertical profiles. The equations are derived by projecting the full nonlinear equations onto the vertical modes of two gravity waves, and the resulting equations are thus referred to here as the two-mode shallow water equations (2MSWE). A key aspect of the nonlinearities of the 2MSWE is that they allow for interactions between a background wind shear and propagating waves. This is important in the tropical atmosphere where horizontally propagating gravity waves interact together with wind shear and have source terms due to convection. It is shown here that the 2MSWE have nonlinear internal bore solutions, and the behavior of the nonlinear waves is investigated for different background wind shears. When a background shear is included, there is an asymmetry between the east- and westward propagating waves. This could be an important effect for the large-scale organization of tropical convection, since the convection is often not isotropic but organized on large scales by waves. An idealized illustration of this asymmetry is given for a background shear from the westerly wind burst phase of the Madden-Julian oscillation; the potential for organized convection is increased to the west of the existing convection by the propagating nonlinear gravity waves, which agrees qualitatively with actual observations. The ideas here should be useful for other physical applications as well. Moreover, the 2MSWE have several interesting mathematical properties: they are a system of nonconservative PDE with a conserved energy, they are conditionally hyperbolic, and they are neither genuinely nonlinear nor linearly degenerate over all of state space. Theory and numerics are developed to illustrate these features, and these features are
Optics in a nonlinear gravitational wave
Harte, Abraham I
2015-01-01
Gravitational waves can act like gravitational lenses, affecting the observed positions, brightnesses, and redshifts of distant objects. Exact expressions for such effects are derived here, allowing for arbitrarily-moving sources and observers in the presence of plane-symmetric gravitational waves. The commonly-used predictions of linear perturbation theory are shown to be generically overshadowed---even for very weak gravitational waves---by nonlinear effects when considering observations of sufficiently distant sources; higher-order perturbative corrections involve secularly-growing terms which cannot necessarily be neglected. Even on more moderate scales where linear effects remain at least marginally dominant, nonlinear corrections are qualitatively different from their linear counterparts. There is a sense in which they can, for example, mimic the existence of a third type of gravitational wave polarization.
Optics in a nonlinear gravitational plane wave
Harte, Abraham I.
2015-09-01
Gravitational waves can act like gravitational lenses, affecting the observed positions, brightnesses, and redshifts of distant objects. Exact expressions for such effects are derived here in general relativity, allowing for arbitrarily-moving sources and observers in the presence of plane-symmetric gravitational waves. At least for freely falling sources and observers, it is shown that the commonly-used predictions of linear perturbation theory can be generically overshadowed by nonlinear effects; even for very weak gravitational waves, higher-order perturbative corrections involve secularly-growing terms which cannot necessarily be neglected when considering observations of sufficiently distant sources. Even on more moderate scales where linear effects remain at least marginally dominant, nonlinear corrections are qualitatively different from their linear counterparts. There is a sense in which they can, for example, mimic the existence of a third type of gravitational wave polarization.
Doppler effect of nonlinear waves and superspirals in oscillatory media.
Brusch, Lutz; Torcini, Alessandro; Bär, Markus
2003-09-01
Nonlinear waves emitted from a moving source are studied. A meandering spiral in a reaction-diffusion medium provides an example in which waves originate from a source exhibiting a back-and-forth movement in a radial direction. The periodic motion of the source induces a Doppler effect that causes a modulation in wavelength and amplitude of the waves ("superspiral"). Using direct simulations as well as numerical nonlinear analysis within the complex Ginzburg-Landau equation, we show that waves subject to a convective Eckhaus instability can exhibit monotonic growth or decay as well as saturation of these modulations depending on the perturbation frequency. Our findings elucidate recent experimental observations concerning superspirals and their decay to spatiotemporal chaos.
On the so called rogue waves in nonlinear Schrodinger equations
Directory of Open Access Journals (Sweden)
Y. Charles Li
2016-04-01
Full Text Available The mechanism of a rogue water wave is still unknown. One popular conjecture is that the Peregrine wave solution of the nonlinear Schrodinger equation (NLS provides a mechanism. A Peregrine wave solution can be obtained by taking the infinite spatial period limit to the homoclinic solutions. In this article, from the perspective of the phase space structure of these homoclinic orbits in the infinite dimensional phase space where the NLS defines a dynamical system, we examine the observability of these homoclinic orbits (and their approximations. Our conclusion is that these approximate homoclinic orbits are the most observable solutions, and they should correspond to the most common deep ocean waves rather than the rare rogue waves. We also discuss other possibilities for the mechanism of a rogue wave: rough dependence on initial data or finite time blow up.
Solitary waves on nonlinear elastic rods. II
DEFF Research Database (Denmark)
Sørensen, Mads Peter; Christiansen, Peter Leth; Lomdahl, P. S.
1987-01-01
In continuation of an earlier study of propagation of solitary waves on nonlinear elastic rods, numerical investigations of blowup, reflection, and fission at continuous and discontinuous variation of the cross section for the rod and reflection at the end of the rod are presented. The results...
Nonlinear Landau damping of Alfven waves.
Hollweg, J. V.
1971-01-01
Demonstration that large-amplitude linearly or elliptically polarized Alfven waves propagating parallel to the average magnetic field can be dissipated by nonlinear Landau damping. The damping is due to the longitudinal electric field associated with the ion sound wave which is driven (in second order) by the Alfven wave. The damping rate can be large even in a cold plasma (beta much less than 1, but not zero), and the mechanism proposed may be the dominant one in many plasmas of astrophysical interest.
Wave envelopes method for description of nonlinear acoustic wave propagation.
Wójcik, J; Nowicki, A; Lewin, P A; Bloomfield, P E; Kujawska, T; Filipczyński, L
2006-07-01
A novel, free from paraxial approximation and computationally efficient numerical algorithm capable of predicting 4D acoustic fields in lossy and nonlinear media from arbitrary shaped sources (relevant to probes used in medical ultrasonic imaging and therapeutic systems) is described. The new WE (wave envelopes) approach to nonlinear propagation modeling is based on the solution of the second order nonlinear differential wave equation reported in [J. Wójcik, J. Acoust. Soc. Am. 104 (1998) 2654-2663; V.P. Kuznetsov, Akust. Zh. 16 (1970) 548-553]. An incremental stepping scheme allows for forward wave propagation. The operator-splitting method accounts independently for the effects of full diffraction, absorption and nonlinear interactions of harmonics. The WE method represents the propagating pulsed acoustic wave as a superposition of wavelet-like sinusoidal pulses with carrier frequencies being the harmonics of the boundary tone burst disturbance. The model is valid for lossy media, arbitrarily shaped plane and focused sources, accounts for the effects of diffraction and can be applied to continuous as well as to pulsed waves. Depending on the source geometry, level of nonlinearity and frequency bandwidth, in comparison with the conventional approach the Time-Averaged Wave Envelopes (TAWE) method shortens computational time of the full 4D nonlinear field calculation by at least an order of magnitude; thus, predictions of nonlinear beam propagation from complex sources (such as phased arrays) can be available within 30-60 min using only a standard PC. The approximate ratio between the computational time costs obtained by using the TAWE method and the conventional approach in calculations of the nonlinear interactions is proportional to 1/N2, and in memory consumption to 1/N where N is the average bandwidth of the individual wavelets. Numerical computations comparing the spatial field distributions obtained by using both the TAWE method and the conventional approach
Inclined periodic homoclinic breather and rogue waves for the (1+1)-dimensional Boussinesq equation
Indian Academy of Sciences (India)
Zhengde Dai; Chuanjian Wang; Jun Liu
2014-10-01
A new method, homoclinic (heteroclinic) breather limit method (HBLM), for seeking rogue wave solution to nonlinear evolution equation (NEE) is proposed. (1+1)-dimensional Boussinesq equation is used as an example to illustrate the effectiveness of the suggested method. Rational homoclinic wave solution, a new family of two-wave solution, is obtained by inclined periodic homoclinic breather wave solution and is just a rogue wave solution. This result shows that rogue wave originates by the extreme behaviour of homoclinic breather wave in (1+1)-dimensional nonlinear wave fields.
Nonlinear dynamics of wave packets in PT-symmetric optical lattices near the phase transition point
Nixon, Sean; Yang, Jianke
2012-01-01
Nonlinear dynamics of wave packets in PT-symmetric optical lattices near the phase-transition point are analytically studied. A nonlinear Klein-Gordon equation is derived for the envelope of these wave packets. A variety of novel phenomena known to exist in this envelope equation are shown to also exist in the full equation including wave blowup, periodic bound states and solitary wave solutions.
Nonlinear interactions between gravity waves and tides
Institute of Scientific and Technical Information of China (English)
LIU Xiao; XU JiYao; MA RuiPing
2007-01-01
In this study, we present the nonlinear interactions between gravity waves (GWs) and tides by using the 2D numerical model for the nonlinear propagation of GWs in the compressible atmosphere. During the propagation in the tidal background, GWs become instable in three regions, that is z = 75-85 km, z =90-110 km and z= 115-130 km. The vertical wavelength firstly varies gradually from the initial 12 km to 27 km. Then the newly generated longer waves are gradually compressed. The longer and shorter waves occur in the regions where GWs propagate in the reverse and the same direction of the horizontal mean wind respectively. In addition, GWs can propagate above the main breaking region (90-110 km). During GWs propagation, not only the mean wind is accelerated, but also the amplitude of tide is amplified. Especially, after GWs become instable, this amplified effect to the tidal amplitude is much obvious.
Nonlinear interactions between gravity waves and tides
Institute of Scientific and Technical Information of China (English)
2007-01-01
In this study, we present the nonlinear interactions between gravity waves (GWs) and tides by using the 2D numerical model for the nonlinear propagation of GWs in the compressible atmosphere. During the propagation in the tidal background, GWs become instable in three regions, that is z = 75―85 km, z = 90―110 km and z = 115―130 km. The vertical wavelength firstly varies gradually from the initial 12 km to 27 km. Then the newly generated longer waves are gradually compressed. The longer and shorter waves occur in the regions where GWs propagate in the reverse and the same direction of the hori-zontal mean wind respectively. In addition, GWs can propagate above the main breaking region (90—110 km). During GWs propagation, not only the mean wind is accelerated, but also the amplitude of tide is amplified. Especially, after GWs become instable, this amplified effect to the tidal amplitude is much obvious.
Internal gravity waves: Analysis using the periodic, inverse scattering transform
Directory of Open Access Journals (Sweden)
W. B. Zimmerman
1999-01-01
Full Text Available The discrete periodic inverse scattering transform (DPIST has been shown to provide the salient features of nonlinear Fourier analysis for surface shallow water waves whose dynamics are governed by the Korteweg-de Vries (KdV equation - (1 linear superposition of components with power spectra that are invariants of the motion of nonlinear dispersive waves and (2 nonlinear filtering. As it is well known that internal gravity waves also approximately satisfy the KdV equation in shallow stratified layers, this paper investigates the degree to which DPIST provides a useful nonlinear spectral analysis of internal waves by application to simulations and wave tank experiments of internal wave propagation from localized dense disturbances. It is found that DPIST analysis is sensitive to the quantity λ = (r/6s * (ε/μ2, where the first factor depends parametrically on the Richardson number and the background shear and density profiles and the second factor is the Ursell number-the ratio of the dimensionless wave amplitude to the dimensionless squared wavenumber. Each separate wave component of the decomposition of the initial disturbance can have a different value, and thus there is usually just one component which is an invariant of the motion found by DPIST analysis. However, as the physical applications, e.g. accidental toxic gas releases, are usually concerned with the propagation of the longest wavenumber disturbance, this is still useful information. In cases where only long, monochromatic solitary waves are triggered or selected by the waveguide, the entire DPIST spectral analysis is useful.
Nonlinear plasma wave in magnetized plasmas
Energy Technology Data Exchange (ETDEWEB)
Bulanov, Sergei V. [Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215 (Japan); Prokhorov Institute of General Physics, Russian Academy of Sciences, Moscow 119991 (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region 141700 (Russian Federation); Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K. [Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215 (Japan); Hosokai, Tomonao; Zhidkov, Alexei G. [Photon Pioneers Center, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Japan Science and Technology Agency, CREST, 2-1, Yamadaoka, Suita, Osaka 565-0871 (Japan); Kodama, Ryosuke [Photon Pioneers Center, Osaka University, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan); Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)
2013-08-15
Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an analytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic “Four-Ray Star” pattern.
Study of Linear and Nonlinear Wave Excitation
Chu, Feng; Berumen, Jorge; Hood, Ryan; Mattingly, Sean; Skiff, Frederick
2013-10-01
We report an experimental study of externally excited low-frequency waves in a cylindrical, magnetized, singly-ionized Argon inductively-coupled gas discharge plasma that is weakly collisional. Wave excitation in the drift wave frequency range is accomplished by low-percentage amplitude modulation of the RF plasma source. Laser-induced fluorescence is adopted to study ion-density fluctuations in phase space. The laser is chopped to separate LIF from collisional fluorescence. A single negatively-biased Langmuir probe is used to detect ion-density fluctuations in the plasma. A ring array of Langmuir probes is also used to analyze the spatial and spectral structure of the excited waves. We apply coherent detection with respect to the wave frequency to obtain the ion distribution function associated with externally generated waves. Higher-order spectra are computed to evaluate the nonlinear coupling between fluctuations at various frequencies produced by the externally generated waves. Parametric decay of the waves is observed. This work is supported by U.S. DOE Grant No. DE-FG02-99ER54543.
Wave-kinetic description of nonlinear photons
Marklund, M; Brodin, G; Stenflo, L
2004-01-01
The nonlinear interaction, due to quantum electrodynamical (QED) effects, between photons is investigated using a wave-kinetic description. Starting from a coherent wave description, we use the Wigner transform technique to obtain a set of wave-kinetic equations, the so called Wigner-Moyal equations. These equations are coupled to a background radiation fluid, whose dynamics is determined by an acoustic wave equation. In the slowly varying acoustic limit, we analyse the resulting system of kinetic equations, and show that they describe instabilities, as well as Landau-like damping. The instabilities may lead to break-up and focusing of ultra-high intensity multi-beam systems, which in conjunction with the damping may result in stationary strong field structures. The results could be of relevance for the next generation of laser-plasma systems.
Nonreciprocal wave scattering on nonlinear string-coupled oscillators
Energy Technology Data Exchange (ETDEWEB)
Lepri, Stefano, E-mail: stefano.lepri@isc.cnr.it [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Pikovsky, Arkady [Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str 24/25, Potsdam (Germany); Department of Control Theory, Nizhni Novgorod State University, Gagarin Av. 23, 606950, Nizhni Novgorod (Russian Federation)
2014-12-01
We study scattering of a periodic wave in a string on two lumped oscillators attached to it. The equations can be represented as a driven (by the incident wave) dissipative (due to radiation losses) system of delay differential equations of neutral type. Nonlinearity of oscillators makes the scattering non-reciprocal: The same wave is transmitted differently in two directions. Periodic regimes of scattering are analyzed approximately, using amplitude equation approach. We show that this setup can act as a nonreciprocal modulator via Hopf bifurcations of the steady solutions. Numerical simulations of the full system reveal nontrivial regimes of quasiperiodic and chaotic scattering. Moreover, a regime of a “chaotic diode,” where transmission is periodic in one direction and chaotic in the opposite one, is reported.
A nonlinear Schroedinger wave equation with linear quantum behavior
Energy Technology Data Exchange (ETDEWEB)
Richardson, Chris D.; Schlagheck, Peter; Martin, John; Vandewalle, Nicolas; Bastin, Thierry [Departement de Physique, University of Liege, 4000 Liege (Belgium)
2014-07-01
We show that a nonlinear Schroedinger wave equation can reproduce all the features of linear quantum mechanics. This nonlinear wave equation is obtained by exploring, in a uniform language, the transition from fully classical theory governed by a nonlinear classical wave equation to quantum theory. The classical wave equation includes a nonlinear classicality enforcing potential which when eliminated transforms the wave equation into the linear Schroedinger equation. We show that it is not necessary to completely cancel this nonlinearity to recover the linear behavior of quantum mechanics. Scaling the classicality enforcing potential is sufficient to have quantum-like features appear and is equivalent to scaling Planck's constant.
Symmetry, phase modulation and nonlinear waves
Bridges, Thomas J
2017-01-01
Nonlinear waves are pervasive in nature, but are often elusive when they are modelled and analysed. This book develops a natural approach to the problem based on phase modulation. It is both an elaboration of the use of phase modulation for the study of nonlinear waves and a compendium of background results in mathematics, such as Hamiltonian systems, symplectic geometry, conservation laws, Noether theory, Lagrangian field theory and analysis, all of which combine to generate the new theory of phase modulation. While the build-up of theory can be intensive, the resulting emergent partial differential equations are relatively simple. A key outcome of the theory is that the coefficients in the emergent modulation equations are universal and easy to calculate. This book gives several examples of the implications in the theory of fluid mechanics and points to a wide range of new applications.
Nonlinear waves in waveguides with stratification
Leble, Sergei B
1991-01-01
S.B. Leble's book deals with nonlinear waves and their propagation in metallic and dielectric waveguides and media with stratification. The underlying nonlinear evolution equations (NEEs) are derived giving also their solutions for specific situations. The reader will find new elements to the traditional approach. Various dispersion and relaxation laws for different guides are considered as well as the explicit form of projection operators, NEEs, quasi-solitons and of Darboux transforms. Special points relate to: 1. the development of a universal asymptotic method of deriving NEEs for guide propagation; 2. applications to the cases of stratified liquids, gases, solids and plasmas with various nonlinearities and dispersion laws; 3. connections between the basic problem and soliton- like solutions of the corresponding NEEs; 4. discussion of details of simple solutions in higher- order nonsingular perturbation theory.
Nonlinear Dispersion Effect on Wave Transformation
Institute of Scientific and Technical Information of China (English)
LI Ruijie; Dong-Young LEE
2000-01-01
A new nonlinear dispersion relation is given in this paper, which can overcome the limitation of the intermediate minimum value in the dispersion relation proposed by Kirby and Dalrymple (1986), and which has a better approximation to Hedges＇ empirical relation than the modilied relations by Hedges (1987). Kirby and Dahymple (1987) for shallow waters. The new dispersion relation is simple in form. thus it can be used easily in practice. Meanwhile. a general explicil approximalion to the new dispersion rela tion and olher nonlinear dispersion relations is given. By use of the explicit approximation to the new dispersion relation along with the mild slope equation taking inlo account weakly nonlinear effect, a mathematical model is obtained, and it is applied to laboratory data. The results show that the model developed vith the new dispersion relation predicts wave translornation over complicated topography quite well.
Variational modelling of nonlinear water waves
Kalogirou, Anna; Bokhove, Onno
2015-11-01
Mathematical modelling of water waves is demonstrated by investigating variational methods. A potential flow water wave model is derived using variational techniques and extented to include explicit time-dependence, leading to non-autonomous dynamics. As a first example, we consider the problem of a soliton splash in a long wave channel with a contraction at its end, resulting after a sluice gate is removed at a finite time. The removal of the sluice gate is included in the variational principle through a time-dependent gravitational potential. A second example involving non-autonomous dynamics concerns the motion of a free surface in a vertical Hele-Shaw cell. Explicit time-dependence now enters the model through a linear damping term due to the effect of wall friction and a term representing the motion of an artificially driven wave pump. In both cases, the model is solved numerically using a Galerkin FEM and the numerical results are compared to wave structures observed in experiments. The water wave model is also adapted to accommodate nonlinear ship dynamics. The novelty is this case is the coupling between the water wave dynamics, the ship dynamics and water line dynamics on the ship. For simplicity, we consider a simple ship structure consisting of V-shaped cross-sections.
Periodicity effects on compound guided waves
Chiadini, Francesco; Fiumara, Vincenzo; Scaglione, Antonio; Lakhtakia, Akhlesh
2016-09-01
Surface waves of different types can be compounded when a homogeneous layer is sandwiched between two half spaces filled with dissimilar periodically non-homogeneous dielectric materials and the intermediate layer is sufficiently thin. We solved the boundary-value problem for compound waves guided by a layer of a homogeneous and isotropic (metal or dielectric) material sandwiched between a structurally chiral material (SCM) and a periodically multi-layered isotropic dielectric material. We found that the periodicity of the SCM is crucial to excite a multiplicity of compound guided waves with strong coupling between the two interfaces.
Non-Linear Excitation of Ion Acoustic Waves
DEFF Research Database (Denmark)
Michelsen, Poul; Hirsfield, J. L.
1974-01-01
The excitation of ion acoustic waves by nonlinear coupling of two transverse magnetic waves generated in a microwave cavity was investigated. Measurements of the wave amplitude showed good agreement with calculations based on the Vlasov equation.......The excitation of ion acoustic waves by nonlinear coupling of two transverse magnetic waves generated in a microwave cavity was investigated. Measurements of the wave amplitude showed good agreement with calculations based on the Vlasov equation....
Spectral and modulational stability of periodic wavetrains for the nonlinear Klein-Gordon equation
Jones, Christopher K. R. T.; Marangell, Robert; Miller, Peter D.; Plaza, Ramón G.
2014-12-01
This paper is a detailed and self-contained study of the stability properties of periodic traveling wave solutions of the nonlinear Klein-Gordon equation utt-uxx+V‧(u)=0, where u is a scalar-valued function of x and t, and the potential V(u) is of class C2 and periodic. Stability is considered both from the point of view of spectral analysis of the linearized problem (spectral stability analysis) and from the point of view of wave modulation theory (the strongly nonlinear theory due to Whitham as well as the weakly nonlinear theory of wave packets). The aim is to develop and present new spectral stability results for periodic traveling waves, and to make a solid connection between these results and predictions of the (formal) modulation theory, which has been developed by others but which we review for completeness.
Kazantseva, E. V.; Maimistov, A. I.
2016-08-01
In a model which describes asymmetric oppositely directed nonlinear waveguide coupler it was observed in the numerical simulation a phenomenon of solitary wave formation from the input constant continuous wave set at the entrance of a waveguide with negative index of refraction. Threshold value of the amplitude of the constant continuous wave, which defines the condition of appearance of the first solitary wave, decreases with increasing of the parameter of nonlinearity. The period of solitary wave formation decreases with increasing of the continuum wave amplitude.
Wave propagation in axially moving periodic strings
Sorokin, Vladislav S.; Thomsen, Jon Juel
2017-04-01
The paper deals with analytically studying transverse waves propagation in an axially moving string with periodically modulated cross section. The structure effectively models various relevant technological systems, e.g. belts, thread lines, band saws, etc., and, in particular, roller chain drives for diesel engines by capturing both their spatial periodicity and axial motion. The Method of Varying Amplitudes is employed in the analysis. It is shown that the compound wave traveling in the axially moving periodic string comprises many components with different frequencies and wavenumbers. This is in contrast to non-moving periodic structures, for which all components of the corresponding compound wave feature the same frequency. Due to this "multi-frequency" character of the wave motion, the conventional notion of frequency band-gaps appears to be not applicable for the moving periodic strings. Thus, for such structures, by frequency band-gaps it is proposed to understand frequency ranges in which the primary component of the compound wave attenuates. Such frequency band-gaps can be present for a moving periodic string, but only if its axial velocity is lower than the transverse wave speed, and, the higher the axial velocity, the narrower the frequency band-gaps. The revealed effects could be of potential importance for applications, e.g. they indicate that due to spatial inhomogeneity, oscillations of axially moving periodic chains always involve a multitude of frequencies.
New Exact Explicit Nonlinear Wave Solutions for the Broer-Kaup Equation
Directory of Open Access Journals (Sweden)
Zhenshu Wen
2014-01-01
Full Text Available We study the nonlinear wave solutions for the Broer-Kaup equation. Many exact explicit expressions of the nonlinear wave solutions for the equation are obtained by exploiting the bifurcation method and qualitative theory of dynamical systems. These solutions contain solitary wave solutions, singular solutions, periodic singular solutions, and kink-shaped solutions, most of which are new. Some previous results are extended.
Boundary control of long waves in nonlinear dispersive systems
DEFF Research Database (Denmark)
Hasan, Agus; Foss, Bjarne; Aamo, Ole Morten
2011-01-01
Unidirectional propagation of long waves in nonlinear dispersive systems may be modeled by the Benjamin-Bona-Mahony-Burgers equation, a third order partial differential equation incorporating linear dissipative and dispersive terms, as well as a term covering nonlinear wave phenomena. For higher...... orders of the nonlinearity, the equation may have unstable solitary wave solutions. Although it is a one dimensional problem, achieving a global result for this equation is not trivial due to the nonlinearity and the mixed partial derivative. In this paper, two sets of nonlinear boundary control laws...... that achieve global exponential stability and semi-global exponential stability are derived for both linear and nonlinear cases....
Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium.
Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying
2015-06-15
A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium.
Analytic descriptions of cylindrical electromagnetic waves in a nonlinear medium
Xiong, Hao; Si, Liu-Gang; Yang, Xiaoxue; Wu, Ying
2015-01-01
A simple but highly efficient approach for dealing with the problem of cylindrical electromagnetic waves propagation in a nonlinear medium is proposed based on an exact solution proposed recently. We derive an analytical explicit formula, which exhibiting rich interesting nonlinear effects, to describe the propagation of any amount of cylindrical electromagnetic waves in a nonlinear medium. The results obtained by using the present method are accurately concordant with the results of using traditional coupled-wave equations. As an example of application, we discuss how a third wave affects the sum- and difference-frequency generation of two waves propagation in the nonlinear medium. PMID:26073066
Soliton solutions to a few fractional nonlinear evolution equations in shallow water wave dynamics
Mirzazadeh, Mohammad; Ekici, Mehmet; Sonmezoglu, Abdullah; Ortakaya, Sami; Eslami, Mostafa; Biswas, Anjan
2016-05-01
This paper studies a few nonlinear evolution equations that appear with fractional temporal evolution and fractional spatial derivatives. These are Benjamin-Bona-Mahoney equation, dispersive long wave equation and Nizhnik-Novikov-Veselov equation. The extended Jacobi's elliptic function expansion method is implemented to obtain soliton and other periodic singular solutions to these equations. In the limiting case, when the modulus of ellipticity approaches zero or unity, these doubly periodic functions approach solitary waves or shock waves or periodic singular solutions emerge.
Nonlinear ion acoustic waves scattered by vortexes
Ohno, Yuji; Yoshida, Zensho
2016-09-01
The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.
Energy Technology Data Exchange (ETDEWEB)
Belmonte-Beitia, Juan [Departamento de Matematicas, E. T. S. de Ingenieros Industriales, Universidad de Castilla-La Mancha 13071, Ciudad Real (Spain); Perez-Garcia, Victor M. [Departamento de Matematicas, E. T. S. de Ingenieros Industriales, Universidad de Castilla-La Mancha 13071, Ciudad Real (Spain); Vekslerchik, Vadym [Departamento de Matematicas, E. T. S. de Ingenieros Industriales, Universidad de Castilla-La Mancha 13071, Ciudad Real (Spain)
2007-05-15
In this paper, we study a system of coupled nonlinear Schroedinger equations modelling a quantum degenerate mixture of bosons and fermions. We analyze the stability of plane waves, give precise conditions for the existence of solitons and write explicit solutions in the form of periodic waves. We also check that the solitons observed previously in numerical simulations of the model correspond exactly to our explicit solutions and see how plane waves destabilize to form periodic waves.
Nonlinear shallow ocean-wave soliton interactions on flat beaches.
Ablowitz, Mark J; Baldwin, Douglas E
2012-09-01
Ocean waves are complex and often turbulent. While most ocean-wave interactions are essentially linear, sometimes two or more waves interact in a nonlinear way. For example, two or more waves can interact and yield waves that are much taller than the sum of the original wave heights. Most of these shallow-water nonlinear interactions look like an X or a Y or two connected Ys; at other times, several lines appear on each side of the interaction region. It was thought that such nonlinear interactions are rare events: they are not. Here we report that such nonlinear interactions occur every day, close to low tide, on two flat beaches that are about 2000 km apart. These interactions are closely related to the analytic, soliton solutions of a widely studied multidimensional nonlinear wave equation. On a much larger scale, tsunami waves can merge in similar ways.
Nonlinear Plasma Wave in Magnetized Plasmas
Bulanov, Sergei V; Kando, Masaki; Koga, James K; Hosokai, Tomonao; Zhidkov, Alexei G; Kodama, Ryosuke
2013-01-01
Nonlinear axisymmetric cylindrical plasma oscillations in magnetized collisionless plasmas are a model for the electron fluid collapse on the axis behind an ultrashort relativisically intense laser pulse exciting a plasma wake wave. We present an analytical description of the strongly nonlinear oscillations showing that the magnetic field prevents closing of the cavity formed behind the laser pulse. This effect is demonstrated with 3D PIC simulations of the laser-plasma interaction. An analysis of the betatron oscillations of fast electrons in the presence of the magnetic field reveals a characteristic "Four-Ray Star" pattern which has been observed in the image of the electron bunch in experiments [T. Hosokai, et al., Phys. Rev. Lett. 97, 075004 (2006)].
Exact Travelling Wave Solutions to a Coupled Nonlinear Evolution Equation[
Institute of Scientific and Technical Information of China (English)
HUANGDing-Jiang; ZHANGHong-Qing
2004-01-01
By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton solutions, envelop solitary wave solutions, and new solitary waves. The method can be applied to other nonlinear evolution equations in mathematical physics.
Exact Travelling Wave Solutions to a Coupled Nonlinear Evolution Equation
Institute of Scientific and Technical Information of China (English)
HUANG Ding-Jiang; ZHANG Hong-Qing
2004-01-01
By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton solutions, envelop solitary wave solutions, and new solitary waves. The method can be applied to other nonlinear evolution equations in mathematical physics.
Nonlocal description of X waves in quadratic nonlinear materials
DEFF Research Database (Denmark)
Larsen, Peter Ulrik Vingaard; Sørensen, Mads Peter; Bang, Ole
2006-01-01
We study localized light bullets and X-waves in quadratic media and show how the notion of nonlocality can provide an alternative simple physical picture of both types of multi-dimensional nonlinear waves. For X-waves we show that a local cascading limit in terms of a nonlinear Schrodinger equation...
Numerical Simulation of Cylindrical Solitary Waves in Periodic Media
Quezada de Luna, Manuel
2013-07-14
We study the behavior of nonlinear waves in a two-dimensional medium with density and stress relation that vary periodically in space. Efficient approximate Riemann solvers are developed for the corresponding variable-coefficient first-order hyperbolic system. We present direct numerical simulations of this multiscale problem, focused on the propagation of a single localized perturbation in media with strongly varying impedance. For the conditions studied, we find little evidence of shock formation. Instead, solutions consist primarily of solitary waves. These solitary waves are observed to be stable over long times and to interact in a manner approximately like solitons. The system considered has no dispersive terms; these solitary waves arise due to the material heterogeneity, which leads to strong reflections and effective dispersion.
Saturn's Quasi-Periodic Magnetohydrodynamic Waves
Yates, J. N.; Dougherty, M. K.; Southwood, D. J.; Sulaiman, A.; Masters, A.; Cowley, S. W. H.; Provan, G.; Chen, C. H. K.; Kivelson, M.; Mitchell, D. G.; Hospodarsky, G. B.; Achilleos, N. A.; Sorba, A. M.; Coates, A. J.
2016-12-01
Quasi-periodic 1 hour fluctuations have been recently observed in numerous instruments on-board the Cassini spacecraft. The source of these fluctuations has remained elusive to date. Here we present a case study of such fluctuations observed using the magnetometer instrument during six days in December 2006. We find that magnetic field observations at high-latitudes have small scale ( 0.4 nT) Alfvénic fluctuations present and these fluctuations are concentrated in wave-packets similar to those observed in Kleindienst et al., 2009. The observed wave-packets recur periodically at the northern magnetic oscillation period. Furthermore, we explore the nature of these fluctuations with regards to the consistency of the 1 h period using a magnetospheric box model. Our model results suggest that the observed magnetic fluctuations are standing second harmonic Alfvén waves within Saturn's outer magnetosphere.
New Doubly Periodic Solutions for the Coupled Nonlinear Klein-Gordon Equations
Institute of Scientific and Technical Information of China (English)
LIU Chun-Ping
2005-01-01
By using the general solutions of a new coupled Riccati equations, a direct algebraic method is described to construct doubly periodic solutions (Jacobi elliptic function solution) for the coupled nonlinear Klein-Gordon equations.It is shown that more doubly periodic solutions and the corresponding solitary wave solutions and trigonometric function solutions can be obtained in a unified way by this method.
Saturation process of nonlinear standing waves
Institute of Scientific and Technical Information of China (English)
马大猷; 刘克
1996-01-01
The sound pressure of the nonlinear standing waves is distorted as expected, but also tends to saturate as being found in standing-wave tube experiments with increasing sinusoidal excitation. Saturation conditions were not actually reached, owing to limited excitation power, but the evidence of tendency to saturation is without question. It is the purpose of this investigation to find the law of saturation from the existing experimental data. The results of curve fitting indicate that negative feedback limits the growth of sound pressure with increasing excitation, the growth of the fundamental and the second harmonic by the negative feedback of their sound pressures, and the growth of the third and higher harmonics, however, by their energies (sound pressures squared). The growth functions of all the harmonics are derived, which are confirmed by the experiments. The saturation pressures and their properties are found.
Gurbatov, S N; Saichev, A I
2012-01-01
"Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is...
Travelling Wave Solutions to a Special Type of Nonlinear Evolution Equation
Institute of Scientific and Technical Information of China (English)
XU Gui-Qiong; LI Zhi-Bin
2003-01-01
A unified approach is presented for finding the travelling wave solutions to one kind of nonlinear evolution equation by introducing a concept of "rank". The key idea of this method is to make use of the arbitrariness of the manifold in Painleve analysis. We selected a new expansion variable and thus obtained a rich variety of travelling wave solutions to nonlinear evolution equation, which covered solitary wave solutions, periodic wave solutions, Weierstrass elliptic function solutions, and rational solutions. Three illustrative equations are investigated by this means, and abundant travelling wave solutions are obtained in a systematic way. In addition, some new solutions are firstly reported here.
The periodic standing-wave approximation: post-Minkowski computation
Beetle, Christopher; Hernández, Napoleón; Price, Richard H
2007-01-01
The periodic standing wave method studies circular orbits of compact objects coupled to helically symmetric standing wave gravitational fields. From this solution an approximation is extracted for the strong field, slowly inspiralling motion of black holes and binary stars. Previous work on this model has dealt with nonlinear scalar models, and with linearized general relativity. Here we present the results of the method for the post-Minkowski (PM) approximation to general relativity, the first step beyond linearized gravity. We compute the PM approximation in two ways: first, via the standard approach of computing linearized gravitational fields and constructing from them quadratic driving sources for second-order fields, and second, by solving the second-order equations as an ``exact'' nonlinear system. The results of these computations have two distinct applications: (i) The computational infrastructure for the ``exact'' PM solution will be directly applicable to full general relativity. (ii) The results w...
Nonlinear ion acoustic waves scattered by vortexes
Ohno, Yuji
2015-01-01
The Kadomtsev--Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes `scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are `ambient' because they do not receive reciprocal reactions from the waves (i.e.,...
Nonlinear wave propagation in constrained solids subjected to thermal loads
Nucera, Claudio; Lanza di Scalea, Francesco
2014-01-01
The classical mathematical treatment governing nonlinear wave propagation in solids relies on finite strain theory. In this scenario, a system of nonlinear partial differential equations can be derived to mathematically describe nonlinear phenomena such as acoustoelasticity (wave speed dependency on quasi-static stress), wave interaction, wave distortion, and higher-harmonic generation. The present work expands the topic of nonlinear wave propagation to the case of a constrained solid subjected to thermal loads. The origin of nonlinear effects in this case is explained on the basis of the anharmonicity of interatomic potentials, and the absorption of the potential energy corresponding to the (prevented) thermal expansion. Such "residual" energy is, at least, cubic as a function of strain, hence leading to a nonlinear wave equation and higher-harmonic generation. Closed-form solutions are given for the longitudinal wave speed and the second-harmonic nonlinear parameter as a function of interatomic potential parameters and temperature increase. The model predicts a decrease in longitudinal wave speed and a corresponding increase in nonlinear parameter with increasing temperature, as a result of the thermal stresses caused by the prevented thermal expansion of the solid. Experimental measurements of the ultrasonic nonlinear parameter on a steel block under constrained thermal expansion confirm this trend. These results suggest the potential of a nonlinear ultrasonic measurement to quantify thermal stresses from prevented thermal expansion. This knowledge can be extremely useful to prevent thermal buckling of various structures, such as continuous-welded rails in hot weather.
Zhang, Xian-tao; Yang, Jian-min; Xiao, Long-fei
2016-07-01
Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter γ affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter γ, which is different from linear converters characteristics of sinusoidal response in regular waves.
Three positive doubly periodic solutions of a nonlinear telegraph system
Institute of Scientific and Technical Information of China (English)
Fang-lei WANG; Yu-kun AN
2009-01-01
This paper studies existence of at least three positive doubly periodic solutions of a coupled nonlinear telegraph system with doubly periodic boundary conditions. First, by using the Green function and maximum principle, existence of solutions of a nonlinear telegraph system is equivalent to existence of fixed points of an operator. By imposing growth conditions on the nonlinearities, existence of at least three fixed points in cone is obtained by using the Leggett-Williams fixed point theorem to cones in ordered Banach spaces. In other words, there exist at least three positive doubly periodic solutions of nonlinear telegraph system.
Nonlinear shear wave in a non Newtonian visco-elastic medium
Energy Technology Data Exchange (ETDEWEB)
Banerjee, D.; Janaki, M. S.; Chakrabarti, N. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064 (India); Chaudhuri, M. [Max-Planck-Institut fuer extraterrestrische Physik, 85741 Garching (Germany)
2012-06-15
An analysis of nonlinear transverse shear wave has been carried out on non-Newtonian viscoelastic liquid using generalized hydrodynamic model. The nonlinear viscoelastic behavior is introduced through velocity shear dependence of viscosity coefficient by well known Carreau-Bird model. The dynamical feature of this shear wave leads to the celebrated Fermi-Pasta-Ulam problem. Numerical solution has been obtained which shows that initial periodic solutions reoccur after passing through several patterns of periodic waves. A possible explanation for this periodic solution is given by constructing modified Korteweg de Vries equation. This model has application from laboratory to astrophysical plasmas as well as in biological systems.
Nonlinear Shear Wave in a Non Newtonian Visco-elastic Medium
Janaki, D Banerjee M S; Chaudhuri, M
2013-01-01
An analysis of nonlinear transverse shear wave has been carried out on non-Newtonian viscoelastic liquid using generalized hydrodynamic(GH) model. The nonlinear viscoelastic behavior is introduced through velocity shear dependence of viscosity coefficient by well known Carreau -Bird model. The dynamical feature of this shear wave leads to the celebrated Fermi-Pasta-Ulam (FPU) problem. Numerical solution has been obtained which shows that initial periodic solutions reoccur after passing through several patterns of periodic waves. A possible explanation for this periodic solution is given by constructing modified Korteweg de Vries (mKdV) equation. This model has application from laboratory to astrophysical plasmas as well as biological systems.
ALMOST PERIODIC SOLUTIONS TO SOME NONLINEAR DELAY DIFFERENTIAL EQUATION
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The existence of an almost periodic solutions to a nonlinear delay diffierential equation is considered in this paper. A set of sufficient conditions for the existence and uniqueness of almost periodic solutions to some delay diffierential equations is obtained.
Nonlinear ion-acoustic cnoidal waves in a dense relativistic degenerate magnetoplasma
El-Shamy, E. F.
2015-03-01
The complex pattern and propagation characteristics of nonlinear periodic ion-acoustic waves, namely, ion-acoustic cnoidal waves, in a dense relativistic degenerate magnetoplasma consisting of relativistic degenerate electrons and nondegenerate cold ions are investigated. By means of the reductive perturbation method and appropriate boundary conditions for nonlinear periodic waves, a nonlinear modified Korteweg-de Vries (KdV) equation is derived and its cnoidal wave is analyzed. The various solutions of nonlinear ion-acoustic cnoidal and solitary waves are presented numerically with the Sagdeev potential approach. The analytical solution and numerical simulation of nonlinear ion-acoustic cnoidal waves of the nonlinear modified KdV equation are studied. Clearly, it is found that the features (amplitude and width) of nonlinear ion-acoustic cnoidal waves are proportional to plasma number density, ion cyclotron frequency, and direction cosines. The numerical results are applied to high density astrophysical situations, such as in superdense white dwarfs. This research will be helpful in understanding the properties of compact astrophysical objects containing cold ions with relativistic degenerate electrons.
Gap solitons in periodic Schrodinger lattice system with nonlinear hopping
Directory of Open Access Journals (Sweden)
Ming Cheng
2016-10-01
Full Text Available This article concerns the periodic discrete Schrodinger equation with nonlinear hopping on the infinite integer lattice. We obtain the existence of gap solitons by the linking theorem and concentration compactness method together with a periodic approximation technique. In addition, the behavior of such solutions is studied as $\\alpha\\to 0$. Notice that the nonlinear hopping can be sign changing.
Positive periodic solutions for third-order nonlinear differential equations
Directory of Open Access Journals (Sweden)
Jingli Ren
2011-05-01
Full Text Available For several classes of third-order constant coefficient linear differential equations we obtain existence and uniqueness of periodic solutions utilizing explicit Green's functions. We discuss an iteration method for constant coefficient nonlinear differential equations and provide new conditions for the existence of periodic positive solutions for third-order time-varying nonlinear and neutral differential equations.
Weakly nonlinear dispersion and stop-band effects for periodic structures
DEFF Research Database (Denmark)
Sorokin, Vladislav; Thomsen, Jon Juel
Continua and structures composed of periodically repeated elements (cells) are used in many fields of science and technology. Examples of continua are composite materials, consisting of alternating volumes of substances with different properties, mechanical filters and wave guides. Examples of en...... suggested. The work is carried out with financial support from the Danish Council for Independent Research and COFUND: DFF – 1337-00026...... of these methods for studying nonlinear problems isimpossible or cumbersome, since Floquet theory is applicable only for linear systems. Thus the nonlinear effects for periodic structures are not yet fully uncovered, while at the same time applications may demand effects of nonlinearity on structural response...
Extended models of nonlinear waves in liquid with gas bubbles
Kudryashov, Nikolay A
2016-01-01
In this work we generalize the models for nonlinear waves in a gas--liquid mixture taking into account an interphase heat transfer, a surface tension and a weak liquid compressibility simultaneously at the derivation of the equations for nonlinear waves. We also take into consideration high order terms with respect to the small parameter. Two new nonlinear differential equations are derived for long weakly nonlinear waves in a liquid with gas bubbles by the reductive perturbation method considering both high order terms with respect to the small parameter and the above mentioned physical properties. One of these equations is the perturbation of the Burgers equation and corresponds to main influence of dissipation on nonlinear waves propagation. The other equation is the perturbation of the Burgers--Korteweg--de Vries equation and corresponds to main influence of dispersion on nonlinear waves propagation.
Quasi-periodic behavior of ion acoustic solitary waves in electron-ion quantum plasma
Energy Technology Data Exchange (ETDEWEB)
Sahu, Biswajit [Department of Mathematics, West Bengal State University Barasat, Kolkata-700126 (India); Poria, Swarup [Department of Applied Mathematics, University of Calcutta Kolkata-700009 (India); Narayan Ghosh, Uday [Department of Mathematics, Siksha Bhavana, Visva Bharati University Santiniketan (India); Roychoudhury, Rajkumar [Physics and Applied Mathematics Unit, Indian Statistical Institute Kolkata-700108 (India)
2012-05-15
The ion acoustic solitary waves are investigated in an unmagnetized electron-ion quantum plasmas. The one dimensional quantum hydrodynamic model is used to study small as well as arbitrary amplitude ion acoustic waves in quantum plasmas. It is shown that ion temperature plays a critical role in the dynamics of quantum electron ion plasma, especially for arbitrary amplitude nonlinear waves. In the small amplitude region Korteweg-de Vries equation describes the solitonic nature of the waves. However, for arbitrary amplitude waves, in the fully nonlinear regime, the system exhibits possible existence of quasi-periodic behavior for small values of ion temperature.
Small amplitude nonlinear electron acoustic solitary waves in weakly magnetized plasma
Energy Technology Data Exchange (ETDEWEB)
Dutta, Manjistha; Khan, Manoranjan [Department of Instrumentation Science, Jadavpur University, Kolkata-700 032 (India); Ghosh, Samiran [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata-700 009 (India); Roychoudhury, Rajkumar [Indian Statistical Institute, Kolkata-700 108 (India); Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar Kolkata-700 064 (India)
2013-01-15
Nonlinear propagation of electron acoustic waves in homogeneous, dispersive plasma medium with two temperature electron species is studied in presence of externally applied magnetic field. The linear dispersion relation is found to be modified by the externally applied magnetic field. Lagrangian transformation technique is applied to carry out nonlinear analysis. For small amplitude limit, a modified KdV equation is obtained, the modification arising due to presence of magnetic field. For weakly magnetized plasma, the modified KdV equation possesses stable solitary solutions with speed and amplitude increasing temporally. The solutions are valid upto some finite time period beyond which the nonlinear wave tends to wave breaking.
Nonlinear Phononic Periodic Structures and Granular Crystals
2012-02-10
of the advanced delay equation (13) and they compared the numerically obtained solutions with those of approximated PDEs. Recently, Starosvetsky... KdV ), a nonlinear partial differential equation , and have been discovered in myriad systems and discrete nonlinear lattices of all the above types...granular chain, and derived the following KdV equation : t 0 0 1/2 2 2 2 2 0 0 0 0 0 0, 2 6 , , . 6 xx x xc uc A R c R c Rc m σξ ξ γξ ξξ ξ δ γ σ δ
The nonlinear standing wave inside the space of liquid
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Based on the basic equations of hydrodynamics, the nonlinear acoustic wave equation is obtained. By taking into account the boundary condition and properties of nonlinear standing wave, the equation is solved through perturbation method, and the stable expressions of fundamental wave and second harmonic are presented. The sound pressures in an ultrasonic cleaner are measured by hydrophones, and the relationship between the received voltages of hydrophones and the output voltages of the ultrasonic generator is researched. The study shows the existence of the nonlinear effect of liquid and analyzes the frequency spectrum of the received signals by hydrophones, by which the fundamental wave, second and high order harmonics are found coexisting in the bounded space filled with liquids. The theory and experimental results testify the existence of the nonlinear standing wave in liquid. Owing to the restricted applicability of perturbation method, the theoretical results of the fundamental wave and second harmonic are good only for the weak nonlinear phenomenon.
Wave propagation in axially moving periodic strings
DEFF Research Database (Denmark)
Sorokin, Vladislav S.; Thomsen, Jon Juel
2017-01-01
The paper deals with analytically studying transverse waves propagation in an axially moving string with periodically modulated cross section. The structure effectively models various relevant technological systems, e.g. belts, thread lines, band saws, etc., and, in particular, roller chain drive...
Periodicity of a class of nonlinear fuzzy systems with delays
Energy Technology Data Exchange (ETDEWEB)
Yu Jiali [Computational Intelligence Laboratory, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054 (China)], E-mail: yujiali@uestc.edu.cn; Yi Zhang [Computational Intelligence Laboratory, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054 (China)], E-mail: zhangyi@uestc.edu.cn; Zhang Lei [Computational Intelligence Laboratory, School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054 (China)], E-mail: leilazhang@uestc.edu.cn
2009-05-15
The well known Takagi-Sugeno (T-S) model gives an effective method to combine some simple local systems with their linguistic description to represent complex nonlinear dynamic systems. By using the T-S method, a class of local nonlinear systems having nice dynamic properties can be employed to represent some global complex nonlinear systems. This paper proposes to study the periodicity of a class of global nonlinear fuzzy systems with delays by using T-S method. Conditions for guaranteeing periodicity are derived. Examples are employed to illustrate the theory.
Nearly linear dynamics of nonlinear dispersive waves
Erdogan, M B; Zharnitsky, V
2010-01-01
Dispersive averaging e?ffects are used to show that KdV equation with periodic boundary conditions possesses high frequency solutions which behave nearly linearly. Numerical simulations are presented which indicate high accuracy of this approximation. Furthermore, this result is applied to shallow water wave dynamics in the limit of KdV approximation, which is obtained by asymptotic analysis in combination with numerical simulations of KdV.
A nonlinear acoustic metamaterial: Realization of a backwards-traveling second-harmonic sound wave.
Quan, Li; Qian, Feng; Liu, Xiaozhou; Gong, Xiufen
2016-06-01
An ordinary waveguide with periodic vibration plates and side holes can realize an acoustic metamaterial that simultaneously possesses a negative bulk modulus and a negative mass density. The study is further extended to a nonlinear case and it is predicted that a backwards-traveling second-harmonic sound wave can be obtained through the nonlinear propagation of a sound wave in such a metamaterial.
Compactification of nonlinear patterns and waves.
Rosenau, Philip; Kashdan, Eugene
2008-12-31
We present a nonlinear mechanism(s) which may be an alternative to a missing wave speed: it induces patterns with a compact support and sharp fronts which propagate with a finite speed. Though such mechanism may emerge in a variety of physical contexts, its mathematical characterization is universal, very simple, and given via a sublinear substrate (site) force. Its utility is shown studying a Klein-Gordon -u(tt) + [phi/(u(x)]x = P'(u) equation, where phi'(sigma) = sigma + beta sigma3 and endowed with a subquadratic site potential P(u) approximately /1-u2/(alpha+1), 0 < or = alpha < 1, and the Schrödinger iZt + inverted delta2 Z = G(/Z/)Z equation in a plane with G(A) = gammaA(-delta) - sigmaA2, 0 < delta < or = 1.
Travelling waves in nonlinear diffusion-convection-reaction
Gilding, B.H.; Kersner, R.
2001-01-01
The study of travelling waves or fronts has become an essential part of the mathematical analysis of nonlinear diffusion-convection-reaction processes. Whether or not a nonlinear second-order scalar reaction-convection-diffusion equation admits a travelling-wave solution can be determined by the stu
Nonlinear propagation of short wavelength drift-Alfven waves
DEFF Research Database (Denmark)
Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens
1986-01-01
Making use of a kinetic ion and a hydrodynamic electron description together with the Maxwell equation, the authors derive a set of nonlinear equations which governs the dynamics of short wavelength ion drift-Alfven waves. It is shown that the nonlinear drift-Alfven waves can propagate as two...
Weakly nonlinear electron plasma waves in collisional plasmas
DEFF Research Database (Denmark)
Pecseli, H. L.; Rasmussen, J. Juul; Tagare, S. G.
1986-01-01
The nonlinear evolution of a high frequency plasma wave in a weakly magnetized, collisional plasma is considered. In addition to the ponderomotive-force-nonlinearity the nonlinearity due to the heating of the electrons is taken into account. A set of nonlinear equations including the effect...... of a constantly maintained pump wave is derived and a general dispersion relation describing the modulation of the high frequency wave due to different low frequency responses is obtained. Particular attention is devoted to a purely growing modulation. The relative importance of the ponderomotive force...
Exact periodic wave solutions to the generalized Nizhnik-Novikov-Veselov equation
Indian Academy of Sciences (India)
Yan-Ze Peng
2005-02-01
The extended mapping method with symbolic computation is developed to obtain exact periodic wave solutions to the generalized Nizhnik{Novikov{Veselov equation. Limit cases are studied and new solitary wave solutions and triangular periodic wave solutions are obtained. The method is applicable to a large variety of non-linear partial differential equations, as long as odd- and even-order derivative terms do not coexist in the equation under consideration.
Cycle slipping in nonlinear circuits under periodic nonlinearities and time delays
Smirnova, Vera; Proskurnikov, Anton; Utina, Natalia V.
2014-01-01
Phase-locked loops (PLL), Costas loops and other synchronizing circuits are featured by the presence of a nonlinear phase detector, described by a periodic nonlinearity. In general, nonlinearities can cause complex behavior of the system such multi-stability and chaos. However, even phase locking ma
Multiple four-wave mixing and Kerr combs in a bichromatically pumped nonlinear fiber ring cavity.
Ceoldo, D; Bendahmane, A; Fatome, J; Millot, G; Hansson, T; Modotto, D; Wabnitz, S; Kibler, B
2016-12-01
We report numerical and experimental studies of multiple four-wave mixing processes emerging from dual-frequency pumping of a passive nonlinear fiber ring cavity. We observe the formation of a periodic train of nearly background-free soliton pulses associated with Kerr frequency combs. The generation of resonant dispersive waves is also reported.
Hamiltonian long wave expansions for internal waves over a periodically varying bottom
Institute of Scientific and Technical Information of China (English)
ZHOU Hong-yan; PIAO Da-xiong
2008-01-01
We derive a Hamiltonian formulation for two-dimensional nonlinear long waves between two bodies of immiscible fluid with a periodic bottom.From the formulation and using the Hamiltonian perturbation theory,we obtain effective Boussinesq equations that describe the motion of bidirectional long waves and unidirectional equations that are similar to the KdV equation for the case in which the bottom possesses short length scale.The computations for these results are performed in the framework of an asymptotic analIysis of multiple scale operators.
Development of a Nonlinear Internal Wave Tactical Decision Aid
2016-06-07
of a Nonlinear Internal Wave Tactical Decision Aid 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...Development of a Nonlinear Internal Wave Tactical Decision Aid Christopher R. Jackson Global Ocean Associates 6220 Jean Louise Way Alexandria...www.internalwaveatlas.com LONG-TERM GOALS The long term goal of the project is to develop a prediction methodology for the occurrence of nonlinear
High-order Boussinesq-type modelling of nonlinear wave phenomena in deep and shallow water
DEFF Research Database (Denmark)
Madsen, Per A.; Fuhrman, David R.
2010-01-01
In this work, we start with a review of the development of Boussinesq theory for water waves covering the period from 1872 to date. Previous reviews have been given by Dingemans,1 Kirby,2,3 and Madsen & Schäffer.4 Next, we present our most recent high-order Boussinesq-type formulation valid...... for fully nonlinear and highly dispersive waves traveling over a rapidly varying bathymetry. Finally, we cover applications of this Boussinesq model, and we study a number of nonlinear wave phenomena in deep and shallow water. These include (1) Kinematics in highly nonlinear progressive deep-water waves; (2......) Kinematics in progressive solitary waves; (3) Reflection of solitary waves from a vertical wall; (4) Reflection and diffraction around a vertical plate; (5) Quartet and quintet interactions and class I and II instabilities; (6) Extreme events from focused directionally spread waveelds; (7) Bragg scattering...
Analytical solitons for Langmuir waves in plasma physics with cubic nonlinearity and perturbations
Energy Technology Data Exchange (ETDEWEB)
Zhou, Qin [Wuhan Donghu Univ. (China). School of Electronics and Information Engineering; Mirzazadeh, M. [Guilan Univ. (Iran, Islamic Republic of). Dept. of Engineering Sciences
2016-07-01
We presented an analytical study on dynamics of solitons for Langmuir waves in plasma physics. The mathematical model is given by the perturbed nonlinear Schroedinger equation with full nonlinearity and Kerr law nonlinearity. There are three techniques of integrability were employed to extract exact solutions along with the integrability conditions. The topological 1-soliton solutions, singular 1-soliton solutions, and plane wave solution were reported by Ricatti equation expansion approach and then the bright 1-soliton solution, singular 1-soliton solution, periodic singular solutions, and plane wave solution were derived with the help of trial solution method. Finally, based on the G'/G-expansion scheme, we obtained the hyperbolic function travelling wave solution, trigonometric function travelling wave solution, and plane wave solution.
Analytical Solitons for Langmuir Waves in Plasma Physics with Cubic Nonlinearity and Perturbations
Zhou, Qin; Mirzazadeh, M.
2016-09-01
We presented an analytical study on dynamics of solitons for Langmuir waves in plasma physics. The mathematical model is given by the perturbed nonlinear Schrödinger equation with full nonlinearity and Kerr law nonlinearity. There are three techniques of integrability were employed to extract exact solutions along with the integrability conditions. The topological 1-soliton solutions, singular 1-soliton solutions, and plane wave solution were reported by Ricatti equation expansion approach and then the bright 1-soliton solution, singular 1-soliton solution, periodic singular solutions, and plane wave solution were derived with the help of trial solution method. Finally, based on the G'/G-expansion scheme, we obtained the hyperbolic function travelling wave solution, trigonometric function travelling wave solution, and plane wave solution.
High-order Boussinesq-type modelling of nonlinear wave phenomena in deep and shallow water
DEFF Research Database (Denmark)
Madsen, Per A.; Fuhrman, David R.
2010-01-01
In this work, we start with a review of the development of Boussinesq theory for water waves covering the period from 1872 to date. Previous reviews have been given by Dingemans,1 Kirby,2,3 and Madsen & Schäffer.4 Next, we present our most recent high-order Boussinesq-type formulation valid...... for fully nonlinear and highly dispersive waves traveling over a rapidly varying bathymetry. Finally, we cover applications of this Boussinesq model, and we study a number of nonlinear wave phenomena in deep and shallow water. These include (1) Kinematics in highly nonlinear progressive deep-water waves; (2......) Kinematics in progressive solitary waves; (3) Reflection of solitary waves from a vertical wall; (4) Reflection and diffraction around a vertical plate; (5) Quartet and quintet interactions and class I and II instabilities; (6) Extreme events from focused directionally spread waveelds; (7) Bragg scattering...
BAND GAP EFFECTS IN PERIODIC CHAIN WITH LOCAL LINEAR OR NON-LINEAR OSCILLATORS
DEFF Research Database (Denmark)
Lazarov, Boyan Stefanov; Jensen, Jakob Søndergaard
2007-01-01
attached linear oscillators. The stop band is located around the resonant frequency of the local oscillators, and thus a stop band can be created in the lower frequency range. In this paper, wave propagation in one-dimensional infinite periodic chains with attached linear and non-linear local oscillators...... within bands of frequencies called stop bands. Stop bands in structures with periodic or random inclusions are located mainly in the high frequency range, as the wave length has to be comparable with the distance between the alternating parts. Wave attenuation is also possible in structures with locally...
Almost Periodic Viscosity Solutions of Nonlinear Parabolic Equations
Directory of Open Access Journals (Sweden)
Zhang Shilin
2009-01-01
Full Text Available We generalize the comparison result 2007 on Hamilton-Jacobi equations to nonlinear parabolic equations, then by using Perron's method to study the existence and uniqueness of time almost periodic viscosity solutions of nonlinear parabolic equations under usual hypotheses.
Nonlinear evolution of the modulational instability of whistler waves
DEFF Research Database (Denmark)
Karpman, V.I.; Hansen, F.R.; Huld, T.
1990-01-01
The nonlinear evolution of the modulational instability of whistler waves coupled to fast magnetosonic waves is investigated in two spatial dimensions by numerical simulations. The long time evolution of the modulational instability shows a quasirecurrent behavior with a slow spreading...... of the energy, originally confined to the lowest wave numbers, to larger and larger wave numbers resulting in an apparently chaotic or random wave field. © 1990 The American Physical Society...
Temperature variation induced by the pulsed-periodic laser pumping under terahertz wave generation
Kitaeva, G. Kh; Moiseenko, E. V.; Shepelev, A. V.
2017-09-01
During nonlinear-optical parametric frequency conversion the heat-related effects occur, considerably influencing the conversion process. We develop versatile methods for analytic and numerical calculations of thermo-optical parameters and the temperature distribution inside a non-linear crystal pumped by periodic laser pulses. As an example, numerical results are presented for a number of laser-based schemes actual for the non-linear optical terahertz wave generation and parametric frequency conversion processes.
Nonlinear physics of shear Alfvén waves
Energy Technology Data Exchange (ETDEWEB)
Zonca, Fulvio [Associazione EURATOM-ENEA sulla Fusione, C.P. 65-00044 Frascati, Italy and Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 31007 (China); Chen, Liu [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 31007, P.R.C. and Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)
2014-02-12
Shear Alfvén waves (SAW) play fundamental roles in thermonuclear plasmas of fusion interest, since they are readily excited by energetic particles in the MeV range as well as by the thermal plasma components. Thus, understanding fluctuation induced transport in burning plasmas requires understanding nonlinear SAW physics. There exist two possible routes to nonlinear SAW physics: (i) wave-wave interactions and the resultant spectral energy transfer; (ii) nonlinear wave-particle interactions of SAW instabilities with energetic particles. Within the first route, it is advantageous to understand and describe nonlinear processes in term of proximity of the system to the Alfvénic state, where wave-wave interactions are minimized due to the cancellation of Reynolds and Maxwell stresses. Here, various wave-wave nonlinear dynamics are elucidated in terms of how they break the Alfvénic state. In particular, we discuss the qualitative and quantitative modification of the SAW parametric decay process due to finite ion compressibility and finite ion Larmor radius. We also show that toroidal geometry plays a crucial role in the nonlinear excitation of zonal structures by Alfvén eigenmodes. Within the second route, the coherent nonlinear dynamics of structures in the energetic particle phase space, by which secular resonant particle transport can occur on meso- and macro-scales, must be addressed and understood. These 'nonlinear equilibria' or 'phase-space zonal structures' dynamically evolve on characteristic (fluctuation induced) turbulent transport time scales, which are generally of the same order of the nonlinear time scale of the underlying fluctuations. In this work, we introduce the general structure of nonlinear Schrödinger equations with complex integro-differential nonlinear terms, which govern these physical processes. To elucidate all these aspects, theoretical analyses are presented together with numerical simulation results.
SPHERICAL NONLINEAR PULSES FOR THE SOLUTIONS OF NONLINEAR WAVE EQUATIONS Ⅱ, NONLINEAR CAUSTIC
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
This article discusses spherical pulse like solutions of the system of semilinear wave equations with the pulses focusing at a point and emerging outgoing in three space variables. In small initial data case, it shows that the nonlinearities have a strong effect at the focal point. Scattering operator is introduced to describe the caustic crossing. With the aid of the L∞ norms, it analyzes the relative errors in approximate solutions.
Nonlinear Whistler Wave Physics in the Radiation Belts
Crabtree, Chris
2016-10-01
Wave particle interactions between electrons and whistler waves are a dominant mechanism for controlling the dynamics of energetic electrons in the radiation belts. They are responsible for loss, via pitch-angle scattering of electrons into the loss cone, and energization to millions of electron volts. It has previously been theorized that large amplitude waves on the whistler branch may scatter their wave-vector nonlinearly via nonlinear Landau damping leading to important consequences for the global distribution of whistler wave energy density and hence the energetic electrons. It can dramatically reduce the lifetime of energetic electrons in the radiation belts by increasing the pitch angle scattering rate. The fundamental building block of this theory has now been confirmed through laboratory experiments. Here we report on in situ observations of wave electro-magnetic fields from the EMFISIS instrument on board NASA's Van Allen Probes that show the signatures of nonlinear scattering of whistler waves in the inner radiation belts. In the outer radiation belts, whistler mode chorus is believed to be responsible for the energization of electrons from 10s of Kev to MeV energies. Chorus is characterized by bursty large amplitude whistler mode waves with frequencies that change as a function of time on timescales corresponding to their growth. Theories explaining the chirping have been developed for decades based on electron trapping dynamics in a coherent wave. New high time resolution wave data from the Van Allen probes and advanced spectral techniques are revealing that the wave dynamics is highly structured, with sub-elements consisting of multiple chirping waves with discrete frequency hops between sub-elements. Laboratory experiments with energetic electron beams are currently reproducing the complex frequency vs time dynamics of whistler waves and in addition revealing signatures of wave-wave and beat-wave nonlinear wave-particle interactions. These new data
Periodic nonlinearity resulting from ghost reflections in heterodyne interferometry
Wu, Chien-ming
2003-01-01
Periodic nonlinearity is a systematic error limiting the accuracy of displacement measurements at the nanometer level. It results from many causes such as frequency mixing, polarization mixing, polarization-frequency mixing, and ghost reflections. The purpose of this paper is to study the periodic nonlinearity resulting from ghost reflections, which has not been investigated before. A generalized scheme of interferometer, which is free of frequency and polarization mixings, is used in the study. This ensures that the residual periodic nonlinearity is from the ghost reflections only. In this paper, a general form of periodic nonlinearity and a model including two kinds of ghost reflections, one with the same frequency and the other with two frequencies, are presented. The model is verified by experimental results.
Nonlinear ultrasound wave propagation in thermoviscous fluids
DEFF Research Database (Denmark)
Sørensen, Mads Peter
coupled nonlinear partial differential equations, which resembles those of optical chi-2 materials. We think this result makes a remarkable link between nonlinear acoustics and nonlinear optics. Finally our analysis reveal an exact kink solution to the nonlinear acoustic problem. This kink solution...
Periodic Structure of Equatorial Envelope Rossby Wave Under Influence of Diabatic Heating
Institute of Scientific and Technical Information of China (English)
FUZun-Tao; CHENZhe; LIUShi-Da; LIUShi-Kuo
2004-01-01
A simple shallow-water model with influence of diabatic heating on a β-plane is applied to investigate the nonlinear equatorial Rossby waves in a shear flow. By the asymptotic method of multiple scales, the cubic nonlinear Schroedinger (NLS for short) equation with an external heating source is derived for large amplitude equatorial envelope Rossby wave in a shear flow. And then various periodic structures for these equatorial envelope Rossby waves are obtained with the help of Jacob/elliptic functions and elliptic equation. It is shown that phase-locked diabatic heating plays an important role in periodic structures of rational form.
Periodic Structure of Equatorial Envelope Rossby Wave Under Influence of Diabatic Heating
Institute of Scientific and Technical Information of China (English)
FU Zun-Tao; CHEN Zhe; LIU Shi-Da; LIU Shi-Kuo
2004-01-01
A simple shallow-water model with influence of diabatic heating on aβ-plane is applied to investigate the nonlinear equatorial Rossby waves in a shear flow. By the asymptotic method of multiple scales, the cubic nonlinear Schrodinger (NLS for short) equation with an external heating source is derived for large amplitude equatorial envelope Rossby wave in a shear flow. And then various periodic structures for these equatorial envelope Rossby waves are obtained with the help of Jacobi elliptic functions and elliptic equation. It is shown that phase-locked diabatic heating plays an important role in periodic structures of rational form.
Approximate Stream Function wavemaker theory for highly non-linear waves in wave flumes
DEFF Research Database (Denmark)
Zhang, H.W.; Schäffer, Hemming Andreas
2007-01-01
An approximate Stream Function wavemaker theory for highly non-linear regular waves in flumes is presented. This theory is based on an ad hoe unified wave-generation method that combines linear fully dispersive wavemaker theory and wave generation for non-linear shallow water waves. This is done...... by applying a dispersion correction to the paddle position obtained for non-linear long waves. The method is validated by a number of wave flume experiments while comparing with results of linear wavemaker theory, second-order wavemaker theory and Cnoidal wavemaker theory within its range of application....
Nonlinear numerical simulation on extreme-wave kinematics
Institute of Scientific and Technical Information of China (English)
NING Dezhi; TENG Bin; LIU Shuxue
2009-01-01
A fully nonlinear numerical model based on a time-domain higher-order boundary element method (HOBEM) is founded to simulate the kinematics of extreme waves. In the model, the fully nonlinear free surface boundary conditions are satisfied and a semi-mixed Euler-Lagrange method is used to track free surface; a fourth-order Runga-Kutta technique is "adopted to refresh the wave elevation and velocity potential on the free surface at each time step; an image Green function is used in the numerical wave tank so that the integrations on the lateral surfaces and bottom are excluded. The extreme waves are generated by the method of wave focusing. The physical experiments are carried out in a wave flume. On the horizontal velocity of the measured point, numerical solutions agree well with experimental results. The characteristics of the nonlinear extreme-wave kinematics and the velocity distribution are studied here.
Extended F-Expansion Method and Periodic Wave Solutions for Klein-Gordon-Schr(o)dinger Equations
Institute of Scientific and Technical Information of China (English)
LI Xiao-Yan; LI Xiang-Zheng; WANG Ming-Liang
2006-01-01
We present an extended F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics. By using extended F-expansion method, many periodic wave solutions expressed by various Jacobi elliptic functions for the Klein-Gordon-Schrodinger equations are obtained. In the limit cases, the solitary wave solutions and trigonometric function solutions for the equations are also obtained.
Nonlinear Alfvén Waves in a Vlasov Plasma
DEFF Research Database (Denmark)
Bell, T.F.
1965-01-01
Stationary solutions to the nonlinear Vlasov—Boltzmann equations are considered which represent one-dimensional electromagnetic waves in a hot magnetoplasma. These solutions appear in arbitrary reference frames as circularly polarized, sinusoidal waves of unlimited amplitude, i.e., as nonlinear...... Alfvén waves. Solutions are found implicitly by deriving a set of integral dispersion relations which link the wave characteristics with the particle distribution functions. A physical discussion is given of the way in which the Alfvén waves can trap particles, and it is shown that the presence...
Orbital stability of periodic waves in the class of reduced Ostrovsky equations
Johnson, Edward R.; Pelinovsky, Dmitry E.
2016-09-01
Periodic travelling waves are considered in the class of reduced Ostrovsky equations that describe low-frequency internal waves in the presence of rotation. The reduced Ostrovsky equations with either quadratic or cubic nonlinearities can be transformed to integrable equations of the Klein-Gordon type by means of a change of coordinates. By using the conserved momentum and energy as well as an additional conserved quantity due to integrability, we prove that small-amplitude periodic waves are orbitally stable with respect to subharmonic perturbations, with period equal to an integer multiple of the period of the wave. The proof is based on construction of a Lyapunov functional, which is convex at the periodic wave and is conserved in the time evolution. We also show numerically that convexity of the Lyapunov functional holds for periodic waves of arbitrary amplitudes.
Experimental characterization of nonlinear processes of whistler branch waves
Tejero, E. M.; Crabtree, C.; Blackwell, D. D.; Amatucci, W. E.; Ganguli, G.; Rudakov, L.
2016-05-01
Experiments in the Space Physics Simulation Chamber at the Naval Research Laboratory isolated and characterized important nonlinear wave-wave and wave-particle interactions that can occur in the Earth's Van Allen radiation belts by launching predominantly electrostatic waves in the intermediate frequency range with wave normal angle greater than 85 ° and measuring the nonlinearly generated electromagnetic scattered waves. The scattered waves have a perpendicular wavelength that is nearly an order of magnitude larger than that of the pump wave. Calculations of scattering efficiency from experimental measurements demonstrate that the scattering efficiency is inversely proportional to the damping rate and trends towards unity as the damping rate approaches zero. Signatures of both wave-wave and wave-particle scatterings are also observed in the triggered emission process in which a launched wave resonant with a counter-propagating electron beam generates a large amplitude chirped whistler wave. The possibility of nonlinear scattering or three wave decay as a saturation mechanism for the triggered emission is suggested. The laboratory experiment has inspired the search for scattering signatures in the in situ data of chorus emission in the radiation belts.
Exact travelling wave solutions for four forms of nonlinear Klein-Gordon equations
Energy Technology Data Exchange (ETDEWEB)
Sirendaoreji [College of Mathematical Science, Inner Mongolia Normal University, Huhhot 010022, Inner Mongolia (China)]. E-mail: siren@imnu.edu.cn
2007-04-09
A variable separated equation and its solutions are used to construct the exact travelling wave solutions for four forms of nonlinear Klein-Gordon equations. The solutions previously obtained by the tanh and sech method are recovered. New and more exact travelling wave solutions including solitons, kink and anti-kink, bell and anti-bell solitary wave solutions, periodic solutions, singular solutions and exponential solutions are found.
Nonlinear time reversal of classical waves: experiment and model.
Frazier, Matthew; Taddese, Biniyam; Xiao, Bo; Antonsen, Thomas; Ott, Edward; Anlage, Steven M
2013-12-01
We consider time reversal of electromagnetic waves in a closed, wave-chaotic system containing a discrete, passive, harmonic-generating nonlinearity. An experimental system is constructed as a time-reversal mirror, in which excitations generated by the nonlinearity are gathered, time-reversed, transmitted, and directed exclusively to the location of the nonlinearity. Here we show that such nonlinear objects can be purely passive (as opposed to the active nonlinearities used in previous work), and we develop a higher data rate exclusive communication system based on nonlinear time reversal. A model of the experimental system is developed, using a star-graph network of transmission lines, with one of the lines terminated by a model diode. The model simulates time reversal of linear and nonlinear signals, demonstrates features seen in the experimental system, and supports our interpretation of the experimental results.
Nonlinear evolution of oblique waves on compressible shear layers
Goldstein, M. E.; Leib, S. J.
1989-01-01
The effects of critical-layer nonlinearity on spatially growing oblique instability waves on compressible shear layers between two parallel streams are considered. The analysis shows that mean temperature nonuniformities cause nonlinearity to occur at much smaller amplitudes than it does when the flow is isothermal. The nonlinear instability wave growth rate effects are described by an integrodifferential equation which bears some resemblance to the Landau equation, in that it involves a cubic-type nonlinearity. The numerical solutions to this equation are worked out and discussed in some detail. Inviscid solutions always end in a singularity at a finite downstream distance, but viscosity can eliminate this singularity for certain parameter ranges.
Nonlinear acoustic waves in micro-inhomogeneous solids
Nazarov, Veniamin
2014-01-01
Nonlinear Acoustic Waves in Micro-inhomogeneous Solids covers the broad and dynamic branch of nonlinear acoustics, presenting a wide variety of different phenomena from both experimental and theoretical perspectives. The introductory chapters, written in the style of graduate-level textbook, present a review of the main achievements of classic nonlinear acoustics of homogeneous media. This enables readers to gain insight into nonlinear wave processes in homogeneous and micro-inhomogeneous solids and compare it within the framework of the book. The subsequent eight chapters covering: Physical m
Rapid energization of radiation belt electrons by nonlinear wave trapping
Directory of Open Access Journals (Sweden)
Y. Katoh
2008-11-01
Full Text Available We show that nonlinear wave trapping plays a significant role in both the generation of whistler-mode chorus emissions and the acceleration of radiation belt electrons to relativistic energies. We have performed particle simulations that successfully reproduce the generation of chorus emissions with rising tones. During this generation process we find that a fraction of resonant electrons are energized very efficiently by special forms of nonlinear wave trapping called relativistic turning acceleration (RTA and ultra-relativistic acceleration (URA. Particle energization by nonlinear wave trapping is a universal acceleration mechanism that can be effective in space and cosmic plasmas that contain a magnetic mirror geometry.
Nonlinear time reversal in a wave chaotic system.
Frazier, Matthew; Taddese, Biniyam; Antonsen, Thomas; Anlage, Steven M
2013-02-01
Exploiting the time-reversal invariance and reciprocal properties of the lossless wave equation enables elegantly simple solutions to complex wave-scattering problems and is embodied in the time-reversal mirror. Here we demonstrate the implementation of an electromagnetic time-reversal mirror in a wave chaotic system containing a discrete nonlinearity. We demonstrate that the time-reversed nonlinear excitations reconstruct exclusively upon the source of the nonlinearity. As an example of its utility, we demonstrate a new form of secure communication and point out other applications.
Analysis of Wave Nonlinear Dispersion Relation
Institute of Scientific and Technical Information of China (English)
LI Rui-jie; TAO Jian-fu
2005-01-01
The nonlinear dispersion relations and modified relations proposed by Kirby and Hedges have the limitation of intermediate minimum value. To overcome the shortcoming, a new nonlinear dispersion relation is proposed. Based on the summarization and comparison of existing nonlinear dispersion relations, it can be found that the new nonlinear dispersion relation not only keeps the advantages of other nonlinear dispersion relations, but also significantly reduces the relative errors of the nonlinear dispersion relations for a range of the relative water depth of 1＜kh＜1.5 and has sufficient accuracy for practical purposes.
Combinatorial Frequency Generation in Quasi-Periodic Stacks of Nonlinear Dielectric Layers
Directory of Open Access Journals (Sweden)
Oksana Shramkova
2014-07-01
Full Text Available Three-wave mixing in quasi-periodic structures (QPSs composed of nonlinear anisotropic dielectric layers, stacked in Fibonacci and Thue-Morse sequences, has been explored at illumination by a pair of pump waves with dissimilar frequencies and incidence angles. A new formulation of the nonlinear scattering problem has enabled the QPS analysis as a perturbed periodic structure with defects. The obtained solutions have revealed the effects of stack composition and constituent layer parameters, including losses, on the properties of combinatorial frequency generation (CFG. The CFG features illustrated by the simulation results are discussed. It is demonstrated that quasi-periodic stacks can achieve a higher efficiency of CFG than regular periodic multilayers.
Solitary Wave and Non-traveling Wave Solutions to Two Nonlinear Evolution Equations
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
By applying the extended homogeneous balance method, we find some new explicit solutions to two nonlinear evolution equations, which include n-resonance plane solitary wave and non-traveling wave solutions.
Rogue and shock waves in nonlinear dispersive media
Resitori, Stefania; Baronio, Fabio
2016-01-01
This self-contained set of lectures addresses a gap in the literature by providing a systematic link between the theoretical foundations of the subject matter and cutting-edge applications in both geophysical fluid dynamics and nonlinear optics. Rogue and shock waves are phenomena that may occur in the propagation of waves in any nonlinear dispersive medium. Accordingly, they have been observed in disparate settings – as ocean waves, in nonlinear optics, in Bose-Einstein condensates, and in plasmas. Rogue and dispersive shock waves are both characterized by the development of extremes: for the former, the wave amplitude becomes unusually large, while for the latter, gradients reach extreme values. Both aspects strongly influence the statistical properties of the wave propagation and are thus considered together here in terms of their underlying theoretical treatment. This book offers a self-contained graduate-level text intended as both an introduction and reference guide for a new generation of scientists ...
Institute of Scientific and Technical Information of China (English)
YAN Zhen-Ya
2004-01-01
A Weierstrass elliptic function expansion method and its algorithm are developed in this paper. The method changes the problem solving nonlinear evolution equations into another one solving the correspondingsystem of nonlinear algebraic equations. With the aid of symbolic computation (e.g. Maple), the method is applied to the combined KdV-mKdV equation and (2+1)-dimensional coupled Davey-Stewartson equation. As a consequence, many new types of doubly periodic solutions are obtained in terms of the Weierstrass elliptic function. Jacobi elliptic function solutions and solitary wave solutions are also given as simple limits of doubly periodic solutions.
Institute of Scientific and Technical Information of China (English)
YANZhen-Ya
2004-01-01
A Weierstrass elliptic function expansion method and its algorithm are developed in this paper. The method changes the problem solving nonlinear evolution equations into another one solving the corresponding system of nonlinear algebraic equations. With the aid of symbolic computation (e.g. Maple), the method is applied to the combined KdV-mKdV equation and (2+1)-dimensional coupled Davey-Stewartson equation. As a consequence, many new types of doubly periodic solutions are obtained in terms of the Weierstrass elliptic function. Jacobi elliptic function solutions and solitary wave solutions are also given as simple limits of doubly periodic solutions.
Magneto-acoustic waves in sunspots: first results from a new 3D nonlinear magnetohydrodynamic code
Felipe, T; Collados, M
2010-01-01
Waves observed in the photosphere and chromosphere of sunspots show complex dynamics and spatial patterns. The interpretation of high-resolution sunspot wave observations requires modeling of three-dimensional non-linear wave propagation and mode transformation in the sunspot upper layers in realistic spot model atmospheres. Here we present the first results of such modeling. We have developed a 3D non-linear numerical code specially designed to calculate the response of magnetic structures in equilibrium to an arbitrary perturbation. The code solves the 3D nonlinear MHD equations for perturbations; it is stabilized by hyper-diffusivity terms and is fully parallelized. The robustness of the code is demonstrated by a number of standard tests. We analyze several simulations of a sunspot perturbed by pulses of different periods at subphotospheric level, from short periods, introduced for academic purposes, to longer and realistic periods of three and five minutes. We present a detailed description of the three-d...
A WEAKLY NONLINEAR WATER WAVE MODEL TAKING INTO ACCOUNT DISPERSION OF WAVE PHASE VELOCITY
Institute of Scientific and Technical Information of China (English)
李瑞杰; 李东永
2002-01-01
This paper presents a weakly nonlinear water wave model using a mild slope equation and a new explicit formulation which takes into account dispersion of wave phase velocity, approximates Hedges' (1987) nonlinear dispersion relationship, and accords well with the original empirical formula. Comparison of the calculating results with those obtained from the experimental data and those obtained from linear wave theory showed that the present water wave model considering the dispersion of phase velocity is rational and in good agreement with experiment data.
Controlling near shore nonlinear surging waves through bottom boundary conditions
Mukherjee, Abhik; Kundu, Anjan
2016-01-01
Instead of taking the usual passive view for warning of near shore surging waves including extreme waves like tsunamis, we aim to study the possibility of intervening and controlling nonlinear surface waves through the feedback boundary effect at the bottom. It has been shown through analytic result that the controlled leakage at the bottom may regulate the surface solitary wave amplitude opposing the hazardous variable depth effect. The theoretical results are applied to a real coastal bathymetry in India.
Construction of a series of travelling wave solutions to nonlinear equations
Energy Technology Data Exchange (ETDEWEB)
Zhao Hong [School of Physics Science and Information Engineering, Liaocheng University, Shandong 252059 (China)], E-mail: ldzhaohong@hotmail.com
2008-06-15
In this paper, based on new auxiliary ordinary differential equation with a sixth-degree nonlinear term, we study the (1 + 1)-dimensional combined KdV-MKdV equation, Hirota equation and (2 + 1)-dimensional Davey-Stewartson equation. Then, a series of new types of travelling wave solutions are obtained which include new bell and kink profile solitary wave solutions, triangular periodic wave solutions and singular solutions. The method used here can be also extended to many other nonlinear partial differential equations.
Nonlinear low-frequency electrostatic wave dynamics in a two-dimensional quantum plasma
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Samiran, E-mail: sran_g@yahoo.com [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata-700 009 (India); Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 (India)
2016-08-15
The problem of two-dimensional arbitrary amplitude low-frequency electrostatic oscillation in a quasi-neutral quantum plasma is solved exactly by elementary means. In such quantum plasmas we have treated electrons quantum mechanically and ions classically. The exact analytical solution of the nonlinear system exhibits the formation of dark and black solitons. Numerical simulation also predicts the possible periodic solution of the nonlinear system. Nonlinear analysis reveals that the system does have a bifurcation at a critical Mach number that depends on the angle of propagation of the wave. The small-amplitude limit leads to the formation of weakly nonlinear Kadomstev–Petviashvili solitons.
Nonlinear Waves in an Inhomogeneous Fluid Filled Elastic Tube
Institute of Scientific and Technical Information of China (English)
DUAN Wen-Shan
2004-01-01
In a thin-walled, homogeneous, straight, long, circular, and incompressible fluid filled elastic tube, small but finite long wavelength nonlinear waves can be describe by a KdV (Korteweg de Vries) equation, while the carrier wave modulations are described by a nonlinear Schrodinger equation (NLSE). However if the elastic tube is slowly inhomogeneous, then it is found, in this paper, that the carrier wave modulations are described by an NLSE-like equation. There are soliton-like solutions for them, but the stability and instability regions for this soliton-like waves will change,depending on what kind of inhomogeneity the tube has.
Variational principle for nonlinear wave propagation in dissipative systems.
Dierckx, Hans; Verschelde, Henri
2016-02-01
The dynamics of many natural systems is dominated by nonlinear waves propagating through the medium. We show that in any extended system that supports nonlinear wave fronts with positive surface tension, the asymptotic wave-front dynamics can be formulated as a gradient system, even when the underlying evolution equations for the field variables cannot be written as a gradient system. The variational potential is simply given by a linear combination of the occupied volume and surface area of the wave front and changes monotonically over time.
Long-living BLOCH oscillations of matter waves in periodic potentials.
Salerno, M; Konotop, V V; Bludov, Yu V
2008-07-18
The dynamics of matter waves in linear and nonlinear optical lattices subject to a spatially uniform linear force is studied both analytically and numerically. It is shown that by properly designing the spatial dependence of the scattering length it is possible to induce long-living Bloch oscillations of gap-soliton matter waves in optical lattices. This occurs when the effective nonlinearity and the effective mass of the soliton have opposite signs for all values of the crystal momentum in the Brillouin zone. The results apply to all systems modeled by the periodic nonlinear Schrödinger equation, including propagation of light in photonic and photorefractive crystals with tilted band structures.
Indian Academy of Sciences (India)
Aiyong Chen; Jibin Li; Chunhai Li; Yuanduo Zhang
2010-01-01
The bifurcation theory of dynamical systems is applied to an integrable non-linear wave equation. As a result, it is pointed out that the solitary waves of this equation evolve from bell-shaped solitary waves to W/M-shaped solitary waves when wave speed passes certain critical wave speed. Under different parameter conditions, all exact explicit parametric representations of solitary wave solutions are obtained.
GLOBAL ATTRACTOR FOR THE NONLINEAR STRAIN WAVES IN ELASTIC WAVEGUIDES
Institute of Scientific and Technical Information of China (English)
戴正德; 杜先云
2001-01-01
In this paper the authors consider the initial boundary value problems of the generalized nonlinear strain waves in elastic waveguides and prove the existence of global attractors and thefiniteness of the Hausdorff and the fractal dimensions of the attractors.
Nonlinear waves in the terrestrial quasi-parallel foreshock
Hnat, B; O'Connell, D; Nakariakov, V M; Rowlands, G
2016-01-01
We study the applicability of the derivative nonlinear Schr\\"{o}dinger (DNLS) equation, for the evolution of high frequency nonlinear waves, observed at the foreshock region of the terrestrial quasi-parallel bow shock. The use of a pseudo-potential is elucidated and, in particular, the importance of canonical representation in the correct interpretation of solutions in this formulation is discussed. Numerical solutions of the DNLS equation are then compared directly with the wave forms observed by Cluster spacecraft. Non harmonic slow variations are filtered out by applying the empirical mode decomposition. We find large amplitude nonlinear wave trains at frequencies above the proton cyclotron frequency, followed in time by nearly harmonic low amplitude fluctuations. The approximate phase speed of these nonlinear waves, indicated by the parameters of numerical solutions, is of the order of the local Alfv\\'{e}n speed.
Numerical method of studying nonlinear interactions between long waves and multiple short waves
Institute of Scientific and Technical Information of China (English)
Xie Tao; Kuang Hai-Lan; William Perrie; Zou Guang-Hui; Nan Cheng-Feng; He Chao; Shen Tao; Chen Wei
2009-01-01
Although the nonlinear interactions between a single short gravity wave and a long wave can be solved analytically,the solution is less tractable in more general cases involving multiple short waves.In this work we present a numerical method of studying nonlinear interactions between a long wave and multiple short harmonic waves in infinitely deep water.Specifically,this method is applied to the calculation of the temporal and spatial evolutions of the surface elevations in which a given long wave interacts with several short harmonic waves.Another important application of our method is to quantitatively analyse the nonlinear interactions between an arbitrary short wave train and another short wave train.From simulation results,we obtain that the mechanism for the nonlinear interactions between one short wave train and another short wave train(expressed as wave train 2)leads to the energy focusing of the other short wave train(expressed as wave train 31.This mechanism Occurs on wave components with a narrow frequency bandwidth,whose frequencies are near that of wave train 3.
Nonlinear Electromagnetic Waves and Spherical Arc-Polarized Waves in Space Plasmas
Tsurutani, B.; Ho, Christian M.; Arballo, John K.; Lakhina, Gurbax S.; Glassmeier, Karl-Heinz; Neubauer, Fritz M.
1997-01-01
We review observations of nonlinear plasma waves detected by interplanetary spacecraft. For this paper we will focus primarily on the phase-steepened properties of such waves. Plasma waves at comet Giacobini-Zinner measured by the International Cometary Explorer (ICE), at comets Halley and Grigg-Skjellerup measured by Giotto, and interplanetary Alfven waves measured by Ulysses, will be discussed and intercompared.
Indian Academy of Sciences (India)
Jalil Manafian; Mehrdad Lakestani
2015-07-01
An application of the (′/)-expansion method to search for exact solutions of nonlinear partial differential equations is analysed. This method is used for Burgers, Fisher, Huxley equations and combined forms of these equations. The (′/)-expansion method was used to construct periodic wave and solitary wave solutions of nonlinear evolution equations. This method is developed for searching exact travelling wave solutions of nonlinear partial differential equations. It is shown that the (′/)-expansion method, with the help of symbolic computation, provides a straightforward and powerful mathematical tool for solving nonlinear partial differential equations.
Optical rogue waves and soliton turbulence in nonlinear fibre optics
DEFF Research Database (Denmark)
Genty, G.; Dudley, J. M.; de Sterke, C. M.
2009-01-01
We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required.......We examine optical rogue wave generation in nonlinear fibre propagation in terms of soliton turbulence. We show that higher-order dispersion is sufficient to generate localized rogue soliton structures, and Raman scattering effects are not required....
NONLINEAR BOUNDARY STABILIZATION OF WAVE EQUATIONS WITH VARIABLE C OEFFICIENTS
Institute of Scientific and Technical Information of China (English)
冯绍继; 冯德兴
2003-01-01
The wave equation with variable coefficients with a nonlinear dissipative boundary feedbackis studied. By the Riemannian geometry method and the multiplier technique, it is shown thatthe closed loop system decays exponentially or asymptotically, and hence the relation betweenthe decay rate of the system energy and the nonlinearity behavior of the feedback function isestablished.
Non-linear wave packet dynamics of coherent states
Indian Academy of Sciences (India)
J Banerji
2001-02-01
We have compared the non-linear wave packet dynamics of coherent states of various symmetry groups and found that certain generic features of non-linear evolution are present in each case. Thus the initial coherent structures are quickly destroyed but are followed by Schrödinger cat formation and revival. We also report important differences in their evolution.
Defocusing regimes of nonlinear waves in media with negative dispersion
DEFF Research Database (Denmark)
Bergé, L.; Kuznetsov, E.A.; Juul Rasmussen, J.
1996-01-01
Defocusing regimes of quasimonochromatic waves governed by a nonlinear Schrodinger equation with mixed-sign dispersion are investigated. For a power-law nonlinearity, we show that localized solutions to this equation defined at the so-called critical dimension cannot collapse in finite time...
New travelling wave solutions for nonlinear stochastic evolution equations
Indian Academy of Sciences (India)
Hyunsoo Kim; Rathinasamy Sakthivel
2013-06-01
The nonlinear stochastic evolution equations have a wide range of applications in physics, chemistry, biology, economics and finance from various points of view. In this paper, the (′/)-expansion method is implemented for obtaining new travelling wave solutions of the nonlinear (2 + 1)-dimensional stochastic Broer–Kaup equation and stochastic coupled Korteweg–de Vries (KdV) equation. The study highlights the significant features of the method employed and its capability of handling nonlinear stochastic problems.
Lamb Wave Technique for Ultrasonic Nonlinear Characterization in Elastic Plates
Energy Technology Data Exchange (ETDEWEB)
Lee, Tae Hun; Kim, Chung Seok; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)
2010-10-15
Since the acoustic nonlinearity is sensitive to the minute variation of material properties, the nonlinear ultrasonic technique(NUT) has been considered as a promising method to evaluate the material degradation or fatigue. However, there are certain limitations to apply the conventional NUT using the bulk wave to thin plates. In case of plates, the use of Lamb wave can be considered, however, the propagation characteristics of Lamb wave are completely different with the bulk wave, and thus the separate study for the nonlinearity of Lamb wave is required. For this work, this paper analyzed first the conditions of mode pair suitable for the practical application as well as for the cumulative propagation of quadratic harmonic frequency and summarized the result in for conditions: phase matching, non-zero power flux, group velocity matching, and non-zero out-of-plane displacement. Experimental results in aluminum plates showed that the amplitude of the secondary Lamb wave and nonlinear parameter grew up with increasing propagation distance at the mode pair satisfying the above all conditions and that the ration of nonlinear parameters measured in Al6061-T6 and Al1100-H15 was closed to the ratio of the absolute nonlinear parameters
Nonlinear spin-wave excitations at low magnetic bias fields
Woltersdorf, Georg
We investigate experimentally and theoretically the nonlinear magnetization dynamics in magnetic films at low magnetic bias fields. Nonlinear magnetization dynamics is essential for the operation of numerous spintronic devices ranging from magnetic memory to spin torque microwave generators. Examples are microwave-assisted switching of magnetic structures and the generation of spin currents at low bias fields by high-amplitude ferromagnetic resonance. In the experiments we use X-ray magnetic circular dichroism to determine the number density of excited magnons in magnetically soft Ni80Fe20 thin films. Our data show that the common Suhl instability model of nonlinear ferromagnetic resonance is not adequate for the description of the nonlinear behavior in the low magnetic field limit. Here we derive a model of parametric spin-wave excitation, which correctly predicts nonlinear threshold amplitudes and decay rates at high and at low magnetic bias fields. In fact, a series of critical spin-wave modes with fast oscillations of the amplitude and phase is found, generalizing the theory of parametric spin-wave excitation to large modulation amplitudes. For these modes, we also find pronounced frequency locking effects that may be used for synchronization purposes in magnonic devices. By using this effect, effective spin-wave sources based on parametric spin-wave excitation may be realized. Our results also show that it is not required to invoke a wave vector-dependent damping parameter in the interpretation of nonlinear magnetic resonance experiments performed at low bias fields.
Nonlinear damping of a finite amplitude whistler wave due to modified two stream instability
Energy Technology Data Exchange (ETDEWEB)
Saito, Shinji, E-mail: saito@stelab.nagoya-u.ac.jp [Graduate School of Science, Nagoya University, Nagoya (Japan); Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya (Japan); Nariyuki, Yasuhiro, E-mail: nariyuki@edu.u-toyama.ac.jp [Faculty of Human Development, University of Toyama, Toyama (Japan); Umeda, Takayuki, E-mail: umeda@stelab.nagoya-u.ac.jp [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya (Japan)
2015-07-15
A two-dimensional, fully kinetic, particle-in-cell simulation is used to investigate the nonlinear development of a parallel propagating finite amplitude whistler wave (parent wave) with a wavelength longer than an ion inertial length. The cross field current of the parent wave generates short-scale whistler waves propagating highly oblique directions to the ambient magnetic field through the modified two-stream instability (MTSI) which scatters electrons and ions parallel and perpendicular to the magnetic field, respectively. The parent wave is largely damped during a time comparable to the wave period. The MTSI-driven damping process is proposed as a cause of nonlinear dissipation of kinetic turbulence in the solar wind.
Nonlinear electron acoustic waves in presence of shear magnetic field
Energy Technology Data Exchange (ETDEWEB)
Dutta, Manjistha; Khan, Manoranjan [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Ghosh, Samiran [Department of Applied Mathematics, University of Calcutta 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)
2013-12-15
Nonlinear electron acoustic waves are studied in a quasineutral plasma in the presence of a variable magnetic field. The fluid model is used to describe the dynamics of two temperature electron species in a stationary positively charged ion background. Linear analysis of the governing equations manifests dispersion relation of electron magneto sonic wave. Whereas, nonlinear wave dynamics is being investigated by introducing Lagrangian variable method in long wavelength limit. It is shown from finite amplitude analysis that the nonlinear wave characteristics are well depicted by KdV equation. The wave dispersion arising in quasineutral plasma is induced by transverse magnetic field component. The results are discussed in the context of plasma of Earth's magnetosphere.
Parametric interaction and intensification of nonlinear Kelvin waves
Novotryasov, Vadim
2008-01-01
Observational evidence is presented for nonlinear interaction between mesoscale internal Kelvin waves at the tidal -- $\\omega_t$ or the inertial -- $\\omega_i$ frequency and oscillations of synoptic -- $\\Omega $ frequency of the background coastal current of Japan/East Sea. Enhanced coastal currents at the sum -- $\\omega_+ $ and dif -- $\\omega_-$ frequencies: $\\omega_\\pm =\\omega_{t,i}\\pm \\Omega$ have properties of propagating Kelvin waves suggesting permanent energy exchange from the synoptic band to the mesoscale $\\omega_\\pm $ band. The interaction may be responsible for the greater than predicted intensification, steepen and break of boundary trapped and equatorially trapped Kelvin waves, which can affect El Ni\\~{n}o. The problem on the parametric interaction of the nonlinear Kelvin wave at the frequency $\\omega $ and the low-frequency narrow-band nose with representative frequency $\\Omega\\ll\\omega $ is investigated with the theory of nonlinear week dispersion waves.
Kim, Kihong; Phung, D K; Rotermund, F; Lim, H
2008-01-21
We develop a generalized version of the invariant imbedding method, which allows us to solve the electromagnetic wave equations in arbitrarily inhomogeneous stratified media where both the dielectric permittivity and magnetic permeability depend on the strengths of the electric and magnetic fields, in a numerically accurate and efficient manner. We apply our method to a uniform nonlinear slab and find that in the presence of strong external radiation, an initially uniform medium of positive refractive index can spontaneously change into a highly inhomogeneous medium where regions of positive or negative refractive index as well as metallic regions appear. We also study the wave transmission properties of periodic nonlinear media and the influence of nonlinearity on the mode conversion phenomena in inhomogeneous plasmas. We argue that our theory is very useful in the study of the optical properties of a variety of nonlinear media including nonlinear negative index media fabricated using wires and split-ring resonators.
Statistical distribution of nonlinear random wave height in shallow water
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Here we present a statistical model of random wave,using Stokes wave theory of water wave dynamics,as well as a new nonlinear probability distribution function of wave height in shallow water.It is more physically logical to use the wave steepness of shallow water and the factor of shallow water as the parameters in the wave height distribution.The results indicate that the two parameters not only could be parameters of the distribution function of wave height but also could reflect the degree of wave height distribution deviation from the Rayleigh distribution.The new wave height distribution overcomes the problem of Rayleigh distribution that the prediction of big wave is overestimated and the general wave is underestimated.The prediction of small probability wave height value of new distribution is also smaller than that of Rayleigh distribution.The effect of wave steepness in shallow water is similar to that in deep water;but the factor of shallow water lowers the wave height distribution of the general wave with the reduced factor of wave steepness.It also makes the wave height distribution of shallow water more centralized.The results indicate that the new distribution fits the in situ measurements much better than other distributions.
Development of A Fully Nonlinear Numerical Wave Tank
Institute of Scientific and Technical Information of China (English)
陈永平; 李志伟; 张长宽
2004-01-01
A fully nonlinear numerical wave tank (NWT) based on the solution of the σ-transformed Navier-Stokes equation is developed in this study. The numerical wave is generated from the inflow boundary, where the surface elevation and/or velocity are specified by use of the analytical solution or the laboratory data. The Sommerfeld/Orlanski radiation condition in conjunction with an artificial damping zone is applied to reduce wave reflection from the outflow boundary. The whole numerical solution procedures are split into three steps, i.e., advection, diffusion and propagation, and a new method,the Lagrange-Euler Method, instead of the MAC or VOF method, is introduced to solve the free surface elevation at the new time step. Several typical wave cases, including solitary waves, regular waves and irregular waves, are simulated in the wave tank. The robustness and accuracy of the NWT are verified by the good agreement between the numerical results and the linear or nonlinear analytical solutions. This research will be further developed by study of wave-wave, wave-current, wave-structure or wave-jet interaction in the future.
A nonlinear RDF model for waves propagating in shallow water
Institute of Scientific and Technical Information of China (English)
王厚杰; 杨作升; 李瑞杰; 张军
2001-01-01
In this paper, a composite explicit nonlinear dispersion relation is presented with reference to Stokes 2nd order dispersion relation and the empirical relation of Hedges. The explicit dispersion relation has such advantages that it can smoothly match the Stokes relation in deep and intermediate water and Hedgs’s relation in shallow water. As an explicit formula, it separates the nonlinear term from the linear dispersion relation. Therefore it is convenient to obtain the numerical solution of nonlinear dispersion relation. The present formula is combined with the modified mild-slope equation including nonlinear effect to make a Refraction-Diffraction (RDF) model for wave propagating in shallow water. This nonlinear model is verified over a complicated topography with two submerged elliptical shoals resting on a slope beach. The computation results compared with those obtained from linear model show that at present the nonlinear RDF model can predict the nonlinear characteristics and the combined refracti
Nonlinear evolution of parallel propagating Alfven waves: Vlasov - MHD simulation
Nariyuki, Y; Kumashiro, T; Hada, T
2009-01-01
Nonlinear evolution of circularly polarized Alfv\\'en waves are discussed by using the recently developed Vlasov-MHD code, which is a generalized Landau-fluid model. The numerical results indicate that as far as the nonlinearity in the system is not so large, the Vlasov-MHD model can validly solve time evolution of the Alfv\\'enic turbulence both in the linear and nonlinear stages. The present Vlasov-MHD model is proper to discuss the solar coronal heating and solar wind acceleration by Alfve\\'n waves propagating from the photosphere.
Nonlinear volume holography for wave-front engineering.
Hong, Xu-Hao; Yang, Bo; Zhang, Chao; Qin, Yi-Qiang; Zhu, Yong-Yuan
2014-10-17
The concept of volume holography is applied to the design of an optical superlattice for the nonlinear harmonic generation. The generated harmonic wave can be considered as a holographic image caused by the incident fundamental wave. Compared with the conventional quasi-phase-matching method, this new method has significant advantages when applied to complicated nonlinear processes such as the nonlinear generation of special beams. As an example, we experimentally realized a second-harmonic Airy beam, and the results are found to agree well with numerical simulations.
Hamiltonian theory of nonlinear waves in planetary rings
Stewart, G. R.
1987-01-01
The derivation of a Hamiltonian field theory for nonlinear density waves in Saturn's rings is discussed. Starting with a Hamiltonian for a discrete system of gravitating streamlines, an averaged Hamiltonian is obtained by successive applications of Lie transforms. The transformation may be carried out to any desired order in q, where q is the nonlinearity parameter defined in the work of Shu, et al (1985) and Borderies et al (1985). Subsequent application of the Wentzel-Kramer-Brillouin Method approximation yields an asymptotic field Hamiltonian. Both the nonlinear dispersion relation and the wave action transport equation are easily derived from the corresponding Lagrangian by the standard variational principle.
Exact travelling wave solutions for some important nonlinear physical models
Indian Academy of Sciences (India)
Jonu Lee; Rathinasamy Sakthivel
2013-05-01
The two-dimensional nonlinear physical models and coupled nonlinear systems such as Maccari equations, Higgs equations and Schrödinger–KdV equations have been widely applied in many branches of physics. So, finding exact travelling wave solutions of such equations are very helpful in the theories and numerical studies. In this paper, the Kudryashov method is used to seek exact travelling wave solutions of such physical models. Further, three-dimensional plots of some of the solutions are also given to visualize the dynamics of the equations. The results reveal that the method is a very effective and powerful tool for solving nonlinear partial differential equations arising in mathematical physics.
Exact Nonlinear Internal Equatorial Waves in the f-plane
Hsu, Hung-Chu
2016-07-01
We present an explicit exact solution of the nonlinear governing equations for internal geophysical water waves propagating westward above the thermocline in the f-plane approximation near the equator. Moreover, the mass transport velocity induced by this internal equatorial wave is eastward and a westward current occurs in the transition zone between the great depth where the water is still and the thermocline.
Experimental observations of nonlinear effects of the Lamb waves
Institute of Scientific and Technical Information of China (English)
DENG Mingxi; D.C. Price; D.A.Scott
2004-01-01
The experimental observations of nonlinear effects of the primary Lamb waves have been reported. Firstly, the brief descriptions have been made for the nonlinear acoustic measurement system developed by Ritec. The detailed considerations for the acoustic experiment system established for observing of the nonlinear effects of the primary Lamb waves have been carried out. Especially, the analysis focuses on the time-domain responses of second harmonics of the primary Lame waves by employing a straightforward model. Based on the existence conditions of strong nonlinearity of the primary Lamb waves, the wedge transducers are designed to generate and detect the primary and secondary waves on the surface of an aluminum sheet. For the different distances between the transmitting and receiving wedge transducers,the amplitudes of the primary waves and the second harmonics on the sheet surface have been measured within a specified frequency range. In the immediate vicinity of the driving frequency,where the primary and the double frequency Lamb waves have the same phase velocities, the quantitative relations of second-harmonic amplitudes with the propagation distance have been analyzed. It is experimentally verified that the second harmonics of the primary Lamb waves do have a cumulative growth effect along with the propagation distance.
Elliptic Equation and New Solutions to Nonlinear Wave Equations
Institute of Scientific and Technical Information of China (English)
FU Zun-Tao; LIU Shi-Kuo; LIU Shi-Da
2004-01-01
The new solutions to elliptic equation are shown, and then the elliptic equation is taken as a transformationand is applied to solve nonlinear wave equations. It is shown that more kinds of solutions are derived, such as periodicsolutions of rational form, solitary wave solutions of rational form, and so on.
Dust-ion acoustic cnoidal waves and associated nonlinear ion flux in a nonthermal dusty plasma
Ur-Rehman, Hafeez; Mahmood, S.
2016-09-01
The dust-ion acoustic nonlinear periodic (cnoidal) waves and solitons are investigated in a dusty plasma containing dynamic cold ions, superthermal kappa distributed electrons and static charged dust particles. The massive dust particles can have positive or negative charge depending on the plasma environment. Using reductive perturbation method (RPM) with appropriate periodic boundary conditions, the evolution equations for the first and second order nonlinear potentials are derived. The first order potential is determined through Korteweg-de Vries (KdV) equation which gives dust-ion acoustic cnoidal waves and solitons structures. The solution of second order nonlinear potential is obtained through an inhomogeneous differential equation derived from collecting higher order terms of dynamic equations, which is linear for second order electrostatic potential. The nonlinear ion flux associated with the cnoidal waves is also found out numerically. The numerical plots of the dust-ion acoustic cnoidal wave and soliton structures for both positively and negatively charged dust particles cases and nonthermal electrons are also presented for illustration. It is found that only compressive nonlinear electrostatic structures are formed in case of positively dust charged particles while both compressive and rarefactive nonlinear structures are obtained in case of negatively charged particles depending on the negatively charged dust density in a nonthermal dusty plasma. The numerical results are obtained using data of the ionospheric region containing dusty plasma exist in the literature.
Quantification and prediction of rare events in nonlinear waves
Sapsis, Themistoklis; Cousins, Will; Mohamad, Mustafa
2014-11-01
The scope of this work is the quantification and prediction of rare events characterized by extreme intensity, in nonlinear dispersive models that simulate water waves. In particular we are interested for the understanding and the short-term prediction of rogue waves in the ocean and to this end, we consider 1-dimensional nonlinear models of the NLS type. To understand the energy transfers that occur during the development of an extreme event we perform a spatially localized analysis of the energy distribution along different wavenumbers by means of the Gabor transform. A stochastic analysis of the Gabor coefficients reveals i) the low-dimensionality of the intermittent structures, ii) the interplay between non-Gaussian statistical properties and nonlinear energy transfers between modes, as well as iii) the critical scales (or Gabor coefficients) where a critical energy can trigger the formation of an extreme event. The unstable character of these critical localized modes is analysed directly through the system equation and it is shown that it is defined as the result of the system nonlinearity and the wave dissipation (that mimics wave breaking). These unstable modes are randomly triggered through the dispersive ``heat bath'' of random waves that propagate in the nonlinear medium. Using these properties we formulate low-dimensional functionals of these Gabor coefficients that allow for the prediction of extreme event well before the strongly nonlinear interactions begin to occur. The prediction window is further enhanced by the combination of the developed scheme with traditional filtering schemes.
Semiclassical methods for high frequency wave propagation in periodic media
Delgadillo, Ricardo A.
We will study high-frequency wave propagation in periodic media. A typical example is given by the Schrodinger equation in the semiclassical regime with a highly oscillatory periodic potential and external smooth potential. This problem presents a numerical challenge when in the semiclassical regime. For example, conventional methods such as finite differences and spectral methods leads to high numerical cost, especially in higher dimensions. For this reason, asymptotic methods like the frozen Gaussian approximation (FGA) was developed to provide an efficient computational tool. Prior to the development of the FGA, the geometric optics and Gaussian beam methods provided an alternative asymptotic approach to solving the Schrodinger equation efficiently. Unlike the geometric optics and Gaussian beam methods, the FGA does not lose accuracy due to caustics or beam spreading. In this thesis, we will briefly review the geometric optics, Gaussian beam, and FGA methods. The mathematical techniques used by these methods will aid us in formulating the Bloch-decomposition based FGA. The Bloch-decomposition FGA generalizes the FGA to wave propagation in periodic media. We will establish the convergence of the Bloch-decomposition based FGA to the true solution for Schrodinger equation and develop a gauge-invariant algorithm for the Bloch-decomposition based FGA. This algorithm will avoid the numerical difficulty of computing the gauge-dependent Berry phase. We will show the numerical performance of our algorithm by several one-dimensional examples. Lastly, we will propose a time-splitting FGA-based artificial boundary conditions for solving the one-dimensional nonlinear Schrodinger equation (NLS) on an unbounded domain. The NLS will be split into two parts, the linear and nonlinear parts. For the linear part we will use the following absorbing boundary strategy: eliminate Gaussian functions whose centers are too distant to a fixed domain.
Linear and nonlinear propagation of water wave groups
Pierson, W. J., Jr.; Donelan, M. A.; Hui, W. H.
1992-01-01
Results are presented from a study of the evolution of waveforms with known analytical group shapes, in the form of both transient wave groups and the cloidal (cn) and dnoidal (dn) wave trains as derived from the nonlinear Schroedinger equation. The waveforms were generated in a long wind-wave tank of the Canada Centre for Inland Waters. It was found that the low-amplitude transients behaved as predicted by the linear theory and that the cn and dn wave trains of moderate steepness behaved almost as predicted by the nonlinear Schroedinger equation. Some of the results did not fit into any of the available theories for waves on water, but they provide important insight on how actual groups of waves propagate and on higher-order effects for a transient waveform.
GEOMETRICAL NONLINEAR WAVES IN FINITE DEFORMATION ELASTIC RODS
Institute of Scientific and Technical Information of China (English)
GUO Jian-gang; ZHOU Li-jun; ZHANG Shan-yuan
2005-01-01
By using Hamilton-type variation principle in non-conservation system, the nonlinear equation of wave motion of a elastic thin rod was derived according to Lagrange description of finite deformation theory. The dissipation caused due to viscous effect and the dispersion introduced by transverse inertia were taken into consideration so that steady traveling wave solution can be obtained. Using multi-scale method the nonlinear equation is reduced to a KdV-Burgers equation which corresponds with saddle-spiral heteroclinic orbit on phase plane. Its solution is called the oscillating-solitary wave or saddle-spiral shock wave.If viscous effect or transverse inertia is neglected, the equation is degraded to classical KdV or Burgers equation. The former implies a propagating solitary wave with homoclinic on phase plane, the latter means shock wave and heteroclinic orbit.
Wave Propagation In Strongly Nonlinear Two-Mass Chains
Wang, Si Yin; Herbold, Eric B.; Nesterenko, Vitali F.
2010-05-01
We developed experimental set up that allowed the investigation of propagation of oscillating waves generated at the entrance of nonlinear and strongly nonlinear two-mass granular chains composed of steel cylinders and steel spheres. The paper represents the first experimental data related to the propagation of these waves in nonlinear and strongly nonlinear chains. The dynamic compressive forces were detected using gauges imbedded inside particles at depths equal to 4 cells and 8 cells from the entrance gauge detecting the input signal. At these relatively short distances we were able to detect practically perfect transparency at low frequencies and cut off effects at higher frequencies for nonlinear and strongly nonlinear signals. We also observed transformation of oscillatory shocks into monotonous shocks. Numerical calculations of signal transformation by non-dissipative granular chains demonstrated transparency of the system at low frequencies and cut off phenomenon at high frequencies in reasonable agreement with experiments. Systems which are able to transform nonlinear and strongly nonlinear waves at small sizes of the system are important for practical applications such as attenuation of high amplitude pulses.
Thermal conductivity of nonlinear waves in disordered chains
Indian Academy of Sciences (India)
Sergej Flach; Mikhail Ivanchenko; Nianbei Li
2011-11-01
We present computational data on the thermal conductivity of nonlinear waves in disordered chains. Disorder induces Anderson localization for linear waves and results in a vanishing conductivity. Cubic nonlinearity restores normal conductivity, but with a strongly temperature-dependent conductivity (). We ﬁnd indications for an asymptotic low-temperature ∼ 4 and intermediate temperature ∼ 2 laws. These ﬁndings are in accord with theoretical studies of wave packet spreading, where a regime of strong chaos is found to be intermediate, followed by an asymptotic regime of weak chaos (Laptyeva et al, Europhys. Lett. 91, 30001 (2010)).
Nonlinear mixing of laser generated narrowband Rayleigh surface waves
Bakre, Chaitanya; Rajagopal, Prabhu; Balasubramaniam, Krishnan
2017-02-01
This research presents the nonlinear mixing technique of two co-directionally travelling Rayleigh surface waves generated and detected using laser ultrasonics. The optical generation of Rayleigh waves on the specimen is obtained by shadow mask method. In conventional nonlinear measurements, the inherently small higher harmonics are greatly influenced by the nonlinearities caused by coupling variabilities and surface roughness between the transducer and specimen interface. The proposed technique is completely contactless and it should be possible to eliminate this problem. Moreover, the nonlinear mixing phenomenon yields not only the second harmonics, but also the sum and difference frequency components, which can be used to measure the acoustic nonlinearity of the specimen. In this paper, we will be addressing the experimental configurations for this technique. The proposed technique is validated experimentally on Aluminum 7075 alloy specimen.
Time-reversed wave mixing in nonlinear optics.
Zheng, Yuanlin; Ren, Huaijin; Wan, Wenjie; Chen, Xianfeng
2013-11-19
Time-reversal symmetry is important to optics. Optical processes can run in a forward or backward direction through time when such symmetry is preserved. In linear optics, a time-reversed process of laser emission can enable total absorption of coherent light fields inside an optical cavity of loss by time-reversing the original gain medium. Nonlinearity, however, can often destroy such symmetry in nonlinear optics, making it difficult to study time-reversal symmetry with nonlinear optical wave mixings. Here we demonstrate time-reversed wave mixings for optical second harmonic generation (SHG) and optical parametric amplification (OPA) by exploring this well-known but underappreciated symmetry in nonlinear optics. This allows us to observe the annihilation of coherent beams. Our study offers new avenues for flexible control in nonlinear optics and has potential applications in efficient wavelength conversion, all-optical computing.
Steady periodic gravity waves with surface tension
Walsh, Samuel
2009-01-01
In this paper we consider two-dimensional, stratified, steady water waves propagating over an impermeable flat bed and with a free surface. The motion is assumed to be driven by capillarity (that is, surface tension) on the surface and a gravitational force acting on the body of the fluid. We prove the existence of global continua of classical solutions that are periodic and traveling. This is accomplished by first constructing a 1-parameter family of laminar flow solutions, $\\mathcal{T}$, then applying bifurcation theory methods to obtain local curves of small amplitude solutions branching from $\\mathcal{T}$ at an eigenvalue of the linearized problem. Each solution curve is then continued globally by means of a degree theoretic theorem in the spirit of Rabinowitz. Finally, we complement the degree theoretic picture by proving an alternate global bifurcation theorem via the analytic continuation method of Dancer.
Nonlinear wave propagation in a rapidly-spun fiber.
McKinstrie, C J; Kogelnik, H
2006-09-04
Multiple-scale analysis is used to study linear wave propagation in a rapidly-spun fiber and its predictions are shown to be consistent with results obtained by other methods. Subsequently, multiple-scale analysis is used to derive a generalized Schroedinger equation for nonlinear wave propagation in a rapidly-spun fiber. The consequences of this equation for pulse propagation and four-wave mixing are discussed briefly.
Nonlinear propagation of planet-generated tidal waves
Rafikov, Roman
2001-01-01
The propagation and evolution of planet-generated density waves in protoplanetary disks is considered. The evolution of waves, leading to the shock formation and wake dissipation, is followed in the weakly nonlinear regime. The local approach of Goodman & Rafikov (2001) is extended to include the effects of surface density and temperature variations in the disk as well as the disk cylindrical geometry and nonuniform shear. Wave damping due to shocks is demonstrated to be a nonlocal process sp...
Focused Wave Properties Based on A High Order Spectral Method with A Non-Periodic Boundary
Institute of Scientific and Technical Information of China (English)
李金宣; 柳淑学
2015-01-01
In this paper, a numerical model is developed based on the High Order Spectral (HOS) method with a non-periodic boundary. A wave maker boundary condition is introduced to simulate wave generation at the incident boundary in the HOS method. Based on the numerical model, the effects of wave parameters, such as the assumed focused amplitude, the central frequency, the frequency bandwidth, the wave amplitude distribution and the directional spreading on the surface elevation of the focused wave, the maximum generated wave crest, and the shifting of the focusing point, are numerically investigated. Especially, the effects of the wave directionality on the focused wave properties are emphasized. The numerical results show that the shifting of the focusing point and the maximum crest of the wave group are dependent on the amplitude of the focused wave, the central frequency, and the wave amplitude distribution type. The wave directionality has a definite effect on multidirectional focused waves. Generally, it can even out the difference between the simulated wave amplitude and the amplitude expected from theory and reduce the shifting of the focusing points, implying that the higher order interaction has an influence on wave focusing, especially for 2D wave. In 3D wave groups, a broader directional spreading weakens the higher nonlinear interactions.
A Spectral Element Method for Nonlinear and Dispersive Water Waves
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Bigoni, Daniele; Eskilsson, Claes
The use of flexible mesh discretisation methods are important for simulation of nonlinear wave-structure interactions in offshore and marine settings such as harbour and coastal areas. For real applications, development of efficient models for wave propagation based on unstructured discretisation...... methods is of key interest. We present a high-order general-purpose three-dimensional numerical model solving fully nonlinear and dispersive potential flow equations with a free surface.......The use of flexible mesh discretisation methods are important for simulation of nonlinear wave-structure interactions in offshore and marine settings such as harbour and coastal areas. For real applications, development of efficient models for wave propagation based on unstructured discretisation...
Nonlinear evolution of oblique whistler waves in radiation belts
Sharma, R. P.; Nandal, P.; Yadav, N.; Sharma, Swati
2017-02-01
Magnetic power spectrum and formation of coherent structures have been investigated in the present work applicable to Van Allen radiation belt. The nonlinear interaction of high frequency oblique whistler wave and low frequency magnetosonic wave has been investigated. Simulation was performed of the coupled equation of these two waves. The nonlinear interaction of these waves leads to the formation of the localized structures. These resulting localized structures are of complex nature. The associated magnetic power spectrum has also been studied. Dispersive nonlinear processes account for the high frequency part of the spectrum. The resulting magnetic power spectrum shows a scaling of k^{ - 4.5}. The energy transfer process from injection scales to smaller scales is explained by the results.
DEFF Research Database (Denmark)
Guo, Hairun; Zeng, Xianglong; Zhou, Binbin
2013-01-01
We interpret the purely spectral forward Maxwell equation with up to third-order induced polarizations for pulse propagation and interactions in quadratic nonlinear crystals. The interpreted equation, also named the nonlinear wave equation in the frequency domain, includes quadratic and cubic...
Energy Technology Data Exchange (ETDEWEB)
Xie, Xi-Yang; Tian, Bo, E-mail: tian_bupt@163.com; Wang, Yu-Feng; Sun, Ya; Jiang, Yan
2015-11-15
In this paper, we investigate a generalized nonautonomous nonlinear equation which describes the ultrashort optical pulse propagating in a nonlinear inhomogeneous fiber. By virtue of the generalized Darboux transformation, the first- and second-order rogue-wave solutions for the generalized nonautonomous nonlinear equation are obtained, under some variable–coefficient constraints. Properties of the first- and second-order rogue waves are graphically presented and analyzed: When the coefficients are all chosen as the constants, we can observe the some functions, the shapes of wave crests and troughs for the first- and second-order rogue waves change. Oscillating behaviors of the first- and second-order rogue waves are observed when the coefficients are the trigonometric functions.
Li, Wan-Tong; Wang, Jia-Bing; Zhang, Li
2016-08-01
This paper is concerned with the new types of entire solutions other than traveling wave solutions of nonlocal dispersal equations with monostable nonlinearity in space periodic habitats. We first establish the existence and properties of spatially periodic solutions connecting two steady states. Then new types of entire solutions are constructed by combining the rightward and leftward pulsating traveling fronts with different speeds and a spatially periodic solution. Finally, for a class of special heterogeneous reaction, we further establish the uniqueness of entire solutions and the continuous dependence of such an entire solution on parameters, such as wave speeds and the shifted variables. In other words, we build a five-dimensional manifold of solutions and the traveling wave solutions are on the boundary of the manifold.
Nonlinear Pressure Wave Analysis by Concentrated Mass Model
Ishikawa, Satoshi; Kondou, Takahiro; Matsuzaki, Kenichiro
A pressure wave propagating in a tube often changes to a shock wave because of the nonlinear effect of fluid. Analyzing this phenomenon by the finite difference method requires high computational cost. To lessen the computational cost, a concentrated mass model is proposed. This model consists of masses, connecting nonlinear springs, connecting dampers, and base support dampers. The characteristic of a connecting nonlinear spring is derived from the adiabatic change of fluid, and the equivalent mass and equivalent damping coefficient of the base support damper are derived from the equation of motion of fluid in a cylindrical tube. Pressure waves generated in a hydraulic oil tube, a sound tube and a plane-wave tube are analyzed numerically by the proposed model to confirm the validity of the model. All numerical computational results agree very well with the experimental results carried out by Okamura, Saenger and Kamakura. Especially, the numerical analysis reproduces the phenomena that a pressure wave with large amplitude propagating in a sound tube or in a plane tube changes to a shock wave. Therefore, it is concluded that the proposed model is valid for the numerical analysis of nonlinear pressure wave problem.
On the nonlinear dynamics of the traveling-wave solutions of the Serre equations
Mitsotakis, Dimitrios; Carter, John D
2014-01-01
In this paper, we study numerically nonlinear phenomena related to the dynamics of the traveling wave solutions of the Serre equations including their stability, their persistence, resolution into solitary waves, and wave breaking. Other forms of solutions such as DSWs, are also considered. Some differences between the solutions of the Serre equations and the full Euler equations are also studied. Euler solitary waves propagate without large variations in shape when they are used as initial conditions in the Serre equations. The nonlinearities seem to play a crucial role in the generation of small-amplitude waves and appear to cause a recurrence phenomenon in linearly unstable solutions. The numerical method used in the paper utilizes a high order FEM with smooth, periodic splines in space and explicit Runge-Kutta methods in time. The solutions of the Serre system are compared with the corresponding ones of the asymptotically-related Euler system whenever is possible.
Nonlinear Propagation of Light in One Dimensional Periodic Structures
Goodman, Roy H.; Weinstein, Michael I.; Philip J Holmes
2000-01-01
We consider the nonlinear propagation of light in an optical fiber waveguide as modeled by the anharmonic Maxwell-Lorentz equations (AMLE). The waveguide is assumed to have an index of refraction which varies periodically along its length. The wavelength of light is selected to be in resonance with the periodic structure (Bragg resonance). The AMLE system considered incorporates the effects non-instantaneous response of the medium to the electromagnetic field (chromatic or material dispersion...
Periodic wavetrains for systems of coupled nonlinear Schrödinger equations
Indian Academy of Sciences (India)
Kwok W Chow; Derek W C Lal
2001-11-01
Exact, periodic wavetrains for systems of coupled nonlinear Schrödinger equations are obtained by the Hirota bilinear method and theta functions identities. Both the bright and dark soliton regimes are treated, and the solutions involve products of elliptic functions. The validity of these solutions is veriﬁed independently by a computer algebra software. The long wave limit is studied. Physical implications will be assessed.
Wave propagation in photonic crystals and metamaterials: Surface waves, nonlinearity and chirality
Energy Technology Data Exchange (ETDEWEB)
Wang, Bingnan [Iowa State Univ., Ames, IA (United States)
2009-01-01
Photonic crystals and metamaterials, both composed of artificial structures, are two interesting areas in electromagnetism and optics. New phenomena in photonic crystals and metamaterials are being discovered, including some not found in natural materials. This thesis presents my research work in the two areas. Photonic crystals are periodically arranged artificial structures, mostly made from dielectric materials, with period on the same order of the wavelength of the working electromagnetic wave. The wave propagation in photonic crystals is determined by the Bragg scattering of the periodic structure. Photonic band-gaps can be present for a properly designed photonic crystal. Electromagnetic waves with frequency within the range of the band-gap are suppressed from propagating in the photonic crystal. With surface defects, a photonic crystal could support surface modes that are localized on the surface of the crystal, with mode frequencies within the band-gap. With line defects, a photonic crystal could allow the propagation of electromagnetic waves along the channels. The study of surface modes and waveguiding properties of a 2D photonic crystal will be presented in Chapter 1. Metamaterials are generally composed of artificial structures with sizes one order smaller than the wavelength and can be approximated as effective media. Effective macroscopic parameters such as electric permittivity ϵ, magnetic permeability μ are used to characterize the wave propagation in metamaterials. The fundamental structures of the metamaterials affect strongly their macroscopic properties. By designing the fundamental structures of the metamaterials, the effective parameters can be tuned and different electromagnetic properties can be achieved. One important aspect of metamaterial research is to get artificial magnetism. Metallic split-ring resonators (SRRs) and variants are widely used to build magnetic metamaterials with effective μ < 1 or even μ < 0. Varactor based
Solitary waves for a coupled nonlinear Schrodinger system with dispersion management
Directory of Open Access Journals (Sweden)
Panayotis Panayotaros
2010-08-01
Full Text Available We consider a system of coupled nonlinear Schrodinger equations with periodically varying dispersion coefficient that arises in the context of fiber-optics communication. We use Lions's Concentration Compactness principle to show the existence of standing waves with prescribed L^2 norm in an averaged equation that approximates the coupled system. We also use the Mountain Pass Lemma to prove the existence of standing waves with prescribed frequencies.
Explosion of limit cycles and chaotic waves in a simple nonlinear chemical system
DEFF Research Database (Denmark)
Brøns, Morten; Sturis, Jeppe
2001-01-01
A model of an autocatalytic chemical reaction was employed to study the explosion of limit cycles and chaotic waves in a nonlinear chemical system. The bifurcation point was determined using asymptotic analysis and perturbations. Scaling laws for amplitude and period were derived. A strong...
Emergent geometries and nonlinear-wave dynamics in photon fluids.
Marino, F; Maitland, C; Vocke, D; Ortolan, A; Faccio, D
2016-03-22
Nonlinear waves in defocusing media are investigated in the framework of the hydrodynamic description of light as a photon fluid. The observations are interpreted in terms of an emergent curved spacetime generated by the waves themselves, which fully determines their dynamics. The spacetime geometry emerges naturally as a result of the nonlinear interaction between the waves and the self-induced background flow. In particular, as observed in real fluids, different points of the wave profile propagate at different velocities leading to the self-steepening of the wave front and to the formation of a shock. This phenomenon can be associated to a curvature singularity of the emergent metric. Our analysis offers an alternative insight into the problem of shock formation and provides a demonstration of an analogue gravity model that goes beyond the kinematic level.
Simulation of Fully Nonlinear 3-D Numerical Wave Tank
Institute of Scientific and Technical Information of China (English)
张晓兔; 滕斌; 宁德志
2004-01-01
A fully nonlinear numerical wave tank (NWT) has been simulated by use of a three-dimensional higher order boundary element method (HOBEM) in the time domain. Within the frame of potential flow and the adoption of simply Rankine source, the resulting boundary integral equation is repeatedly solved at each time step and the fully nonlinear free surface boundary conditions are integrated with time to update its position and boundary values. A smooth technique is also adopted in order to eliminate the possible saw-tooth numerical instabilities. The incident wave at the uptank is given as theoretical wave in this paper. The outgoing waves are absorbed inside a damping zone by spatially varying artificial damping on the free surface at the wave tank end. The numerical results show that the NWT developed by these approaches has a high accuracy and good numerical stability.
Time-Reversal of Nonlinear Waves - Applicability and Limitations
Ducrozet, G; Chabchoub, A
2016-01-01
Time-reversal (TR) refocusing of waves is one of fundamental principles in wave physics. Using the TR approach, "Time-reversal mirrors" can physically create a time-reversed wave that exactly refocus back, in space and time, to its original source regardless of the complexity of the medium as if time were going backwards. Lately, laboratory experiments proved that this approach can be applied not only in acoustics and electromagnetism but also in the field of linear and nonlinear water waves. Studying the range of validity and limitations of the TR approach may determine and quantify its range of applicability in hydrodynamics. In this context, we report a numerical study of hydrodynamic TR using a uni-directional numerical wave tank, implemented by the nonlinear high-order spectral method, known to accurately model the physical processes at play, beyond physical laboratory restrictions. The applicability of the TR approach is assessed over a variety of hydrodynamic localized and pulsating structures' configu...
Nonlinear diffraction of water waves by offshore stuctures
Directory of Open Access Journals (Sweden)
Matiur Rahman
1986-01-01
Full Text Available This paper is concerned with a variational formulation of a nonaxisymmetric water wave problem. The full set of equations of motion for the problem in cylindrical polar coordinates is derived. This is followed by a review of the current knowledge on analytical theories and numerical treatments of nonlinear diffraction of water waves by offshore cylindrical structures. A brief discussion is made on water waves incident on a circular harbor with a narrow gap. Special emphasis is given to the resonance phenomenon associated with this problem. A new theoretical analysis is also presented to estimate the wave forces on large conical structures. Second-order (nonlinear effects are included in the calculation of the wave forces on the conical structures. A list of important references is also given.
A new variable coefficient algebraic method and non-traveling wave solutions of nonlinear equations
Institute of Scientific and Technical Information of China (English)
Lu Bin; Zhang Hong-Qing
2008-01-01
In this paper,a new auxiliary equation method is presented of constructing more new non-travelling wave solutions of nonlinear differential equations in mathematical physics,which is direct and more powerful than projective Riccati equation method.In order to illustrate the validity and the advantages of the method,(2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equation is employed and many new double periodic non-travelling wave solutions are obtained.This algorithm can also be applied to other nonlinear differential equations.
Adaptive Output Regulation for Nonlinear Systems with Unknown Periodic Disturbances
Tsuruoka, Hidenobu; Ohmori, Hiromitsu
Many mechanical systems are subjected to periodic disturbances which may adversely influence control performance. When the plants are nonlinear systems with unknown parameters, this disturbance compensation problem has been considered as adaptive output regulation problem. This paper discusses the problem about adaptive output regulation for nonlinear systems with arbitrary relative degree, which can be transformed into the output feedback form. The nonlinear plant is affected by unknown constant parameters and periodic disturbances with unknown frequencies, magnitudes and phases. The periodic disturbances are considered as signals generated from a linear time invariant exosystem. It is not assumed that the disturbances meet the matching condition for the control input. The design method of the adaptive controller and its parameter update law is based on adaptive backstepping manner for the coordinates-changed extended system, which is generated from the nonlinear plant and the exosystem. Then, it can be achieved that the output asymptotically converges to the output reference and that all signals in the closed-loop system are bounded.
Nonlinear Alfvén wave dynamics in plasmas
Energy Technology Data Exchange (ETDEWEB)
Sarkar, Anwesa; Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Schamel, Hans [Theoretical Physics, University of Bayreuth, D-95440 Bayreuth (Germany)
2015-07-15
Nonlinear Alfvén wave dynamics is presented using Lagrangian fluid approach in a compressible collisional magnetized plasma. In the framework of two fluid dynamics, finite electron inertia is shown to serve as a dispersive effect acting against the convective nonlinearity. In a moving frame, the Alfvén wave can, therefore, form an arbitrarily strong amplitude solitary wave structure due to the balance between nonlinearity and dispersion. Weak amplitude Alfvén waves are shown to be governed by a modified KdV equation, which extends for finite dissipation to a mKdV-Burgers equation. These equations have well known solutions. Next, we have analyzed the fourth order nonlinear Alfvén wave system of equations both numerically and by approximation method. The results indicate a collapse of the density and magnetic field irrespective of the presence of dispersion. The wave magnetic field, however, appears to be less singular showing collapse only when the dispersive effects are negligible. These results may contribute to our understanding of the generation of strongly localized magnetic fields (and currents) in plasmas and are expected to be of special importance in the astrophysical context of magnetic star formation.
Nonlinear Alfvén wave dynamics in plasmas
Sarkar, Anwesa; Chakrabarti, Nikhil; Schamel, Hans
2015-07-01
Nonlinear Alfvén wave dynamics is presented using Lagrangian fluid approach in a compressible collisional magnetized plasma. In the framework of two fluid dynamics, finite electron inertia is shown to serve as a dispersive effect acting against the convective nonlinearity. In a moving frame, the Alfvén wave can, therefore, form an arbitrarily strong amplitude solitary wave structure due to the balance between nonlinearity and dispersion. Weak amplitude Alfvén waves are shown to be governed by a modified KdV equation, which extends for finite dissipation to a mKdV-Burgers equation. These equations have well known solutions. Next, we have analyzed the fourth order nonlinear Alfvén wave system of equations both numerically and by approximation method. The results indicate a collapse of the density and magnetic field irrespective of the presence of dispersion. The wave magnetic field, however, appears to be less singular showing collapse only when the dispersive effects are negligible. These results may contribute to our understanding of the generation of strongly localized magnetic fields (and currents) in plasmas and are expected to be of special importance in the astrophysical context of magnetic star formation.
Directory of Open Access Journals (Sweden)
Shi Jing
2014-01-01
Full Text Available The solving processes of the homogeneous balance method, Jacobi elliptic function expansion method, fixed point method, and modified mapping method are introduced in this paper. By using four different methods, the exact solutions of nonlinear wave equation of a finite deformation elastic circular rod, Boussinesq equations and dispersive long wave equations are studied. In the discussion, the more physical specifications of these nonlinear equations, have been identified and the results indicated that these methods (especially the fixed point method can be used to solve other similar nonlinear wave equations.
Bao, Bin; Guyomar, Daniel; Lallart, Mickaël
2017-01-01
Smart periodic structures covered by periodically distributed piezoelectric patches have drawn more and more attention in recent years for wave propagation attenuation and corresponding structural vibration suppression. Since piezoelectric materials are special type of energy conversion materials that link mechanical characteristics with electrical characteristics, shunt circuits coupled with such materials play a key role in the wave propagation and/or vibration control performance in smart periodic structures. Conventional shunt circuit designs utilize resistive shunt (R-shunt) and resonant shunt (RL-shunt). More recently, semi-passive nonlinear approaches have also been developed for efficiently controlling the vibrations of such structures. In this paper, an innovative smart periodic beam structure with nonlinear interleaved-switched electric networks based on synchronized switching damping on inductor (SSDI) is proposed and investigated for vibration reduction and wave propagation attenuation. Different from locally resonant band gap mechanism forming narrow band gaps around the desired resonant frequencies, the proposed interleaved electrical networks can induce new broadly low-frequency stop bands and broaden primitive Bragg stop bands by virtue of unique interleaved electrical configurations and the SSDI technique which has the unique feature of realizing automatic impedance adaptation with a small inductance. Finite element modeling of a Timoshenko electromechanical beam structure is also presented for validating dispersion properties of the structure. Both theoretical and experimental results demonstrate that the proposed beam structure not only shows better vibration and wave propagation attenuation than the smart beam structure with independent switched networks, but also has technical simplicity of requiring only half of the number of switches than the independent switched network needs.
Exact Periodic Solitary Solutions to the Shallow Water Wave Equation
Institute of Scientific and Technical Information of China (English)
LI Dong-Long; ZHAO Jun-Xiao
2009-01-01
Exact solutions to the shallow wave equation are studied based on the idea of the extended homoclinic test and bilinear method. Some explicit solutions, such as the one soliton solution, the doubly-periodic wave solution and the periodic solitary wave solutions, are obtained. In addition, the properties of the solutions are investigated.
Diffractive optics based four-wave, six-wave, ..., nu-wave nonlinear spectroscopy.
Miller, R J Dwayne; Paarmann, Alexander; Prokhorenko, Valentyn I
2009-09-15
A detailed understanding of chemical processes requires information about both structure and dynamics. By definition, a reaction involves nonstationary states and is a dynamic process. Structure describes the atomic positions at global minima in the nuclear potential energy surface. Dynamics are related to the anharmonicities in this potential that couple different minima and lead to changes in atomic positions (reactions) and correlations. Studies of molecular dynamics can be configured to directly access information on the anharmonic interactions that lead to chemical reactions and are as central to chemistry as structural information. In this regard, nonlinear spectroscopies have distinct advantages over more conventional linear spectroscopies. Because of this potential, nonlinear spectroscopies could eventually attain a comparable level of importance for studying dynamics on the relevant time scales to barrier crossings and reactive processes as NMR has for determining structure. Despite this potential, nonlinear spectroscopy has not attained the same degree of utility as linear spectroscopy largely because nonlinear studies are more technically challenging. For example, unlike the linear spectrometers that exist in almost all chemistry departments, there are no "black box" four-wave mixing spectrometers. This Account describes recent advances in the application of diffractive optics (DOs) to nonlinear spectroscopy, which reduces the complexity level of this technology to be closer to that of linear spectroscopy. The combination of recent advances in femtosecond laser technology and this single optic approach could bring this form of spectroscopy out of the exclusive realm of specialists and into the general user community. However, the real driving force for this research is the pursuit of higher sensitivity limits, which would enable new forms of nonlinear spectroscopy. This Account chronicles the research that has now extended nonlinear spectroscopy to six-wave
Energy Technology Data Exchange (ETDEWEB)
Torello, David [GW Woodruff School of Mechanical Engineering, Georgia Tech (United States); Kim, Jin-Yeon [School of Civil and Environmental Engineering, Georgia Tech (United States); Qu, Jianmin [Department of Civil and Environmental Engineering, Northwestern University (United States); Jacobs, Laurence J. [School of Civil and Environmental Engineering, Georgia Tech and GW Woodruff School of Mechanical Engineering, Georgia Tech (United States)
2015-03-31
This research considers the effects of diffraction, attenuation, and the nonlinearity of generating sources on measurements of nonlinear ultrasonic Rayleigh wave propagation. A new theoretical framework for correcting measurements made with air-coupled and contact piezoelectric receivers for the aforementioned effects is provided based on analytical models and experimental considerations. A method for extracting the nonlinearity parameter β{sub 11} is proposed based on a nonlinear least squares curve-fitting algorithm that is tailored for Rayleigh wave measurements. Quantitative experiments are conducted to confirm the predictions for the nonlinearity of the piezoelectric source and to demonstrate the effectiveness of the curve-fitting procedure. These experiments are conducted on aluminum 2024 and 7075 specimens and a β{sub 11}{sup 7075}/β{sub 11}{sup 2024} measure of 1.363 agrees well with previous literature and earlier work.
Three-dimensional nonlinear theory of travelling wave tubes and simulation
Institute of Scientific and Technical Information of China (English)
李斌; 杨中海
2003-01-01
A three-dimensional (3D) nonlinear theory of travelling wave tubes (TWTs) is developed, which includes a fundamental radio frequency (RF) and harmonics. When the instantaneous bandwidth exceeds an octave, the harmonic is generated and the mutual coupling between the harmonic and the fundamental RF can be observed in TWTs due to nonlinear interaction between the electron beam and the RF. At low frequencies the harmonic has an obvious effect.Based upon Tien's disc model, a plastic 3D super-particle model is proposed to improve the nonlinear analysis of TWTs.Numerical results employing a periodic magnetic focusing field are presented.
Analytical and numerical investigation of nonlinear internal gravity waves
Directory of Open Access Journals (Sweden)
S. P. Kshevetskii
2001-01-01
Full Text Available The propagation of long, weakly nonlinear internal waves in a stratified gas is studied. Hydrodynamic equations for an ideal fluid with the perfect gas law describe the atmospheric gas behaviour. If we neglect the term Ͽ dw/dt (product of the density and vertical acceleration, we come to a so-called quasistatic model, while we name the full hydro-dynamic model as a nonquasistatic one. Both quasistatic and nonquasistatic models are used for wave simulation and the models are compared among themselves. It is shown that a smooth classical solution of a nonlinear quasistatic problem does not exist for all t because a gradient catastrophe of non-linear internal waves occurs. To overcome this difficulty, we search for the solution of the quasistatic problem in terms of a generalised function theory as a limit of special regularised equations containing some additional dissipation term when the dissipation factor vanishes. It is shown that such solutions of the quasistatic problem qualitatively differ from solutions of a nonquasistatic nature. It is explained by the fact that in a nonquasistatic model the vertical acceleration term plays the role of a regularizator with respect to a quasistatic model, while the solution qualitatively depends on the regularizator used. The numerical models are compared with some analytical results. Within the framework of the analytical model, any internal wave is described as a system of wave modes; each wave mode interacts with others due to equation non-linearity. In the principal order of a perturbation theory, each wave mode is described by some equation of a KdV type. The analytical model reveals that, in a nonquasistatic model, an internal wave should disintegrate into solitons. The time of wave disintegration into solitons, the scales and amount of solitons generated are important characteristics of the non-linear process; they are found with the help of analytical and numerical investigations. Satisfactory
Enhanced four-wave mixing with nonlinear plasmonic metasurfaces
Jin, Boyuan
2016-01-01
Plasmonic metasurfaces provide an effective way to increase the efficiency of several nonlinear processes while maintaining nanoscale dimensions. In this work, nonlinear metasurfaces based on film-coupled silver nanostripes loaded with Kerr nonlinear material are proposed to achieve efficient four-wave mixing (FWM). Highly localized plasmon resonances are formed in the nanogap between the metallic film and nanostripes. The local electric field is dramatically enhanced in this subwavelength nanoregion. These properties combined with the relaxed phase matching condition due to the ultrathin area lead to a giant FWM efficiency, which is enhanced by nineteen orders of magnitude compared to a bare silver screen. In addition, efficient visible and low-THz sources can be constructed based on the proposed nonlinear metasurfaces. The FWM generated coherent wave has a directional radiation pattern and its output power is relatively insensitive to the incident angles of the excitation sources. This radiated power can be...
Numerical modelling of nonlinear full-wave acoustic propagation
Energy Technology Data Exchange (ETDEWEB)
Velasco-Segura, Roberto, E-mail: roberto.velasco@ccadet.unam.mx; Rendón, Pablo L., E-mail: pablo.rendon@ccadet.unam.mx [Grupo de Acústica y Vibraciones, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-186, C.P. 04510, México D.F., México (Mexico)
2015-10-28
The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.
Nonlinear scattering of radio waves by metal objects
Shteynshleyger, V. B.
1984-07-01
Nonlinear scattering of radio waves by metal structures with resulting harmonic and intermodulation interference is analyzed from both theoretical and empirical standpoints, disregarding nonlinear effects associated with the nonlinear dependence of the electric or magnetic polarization vector on respectively the electric or magnetic field intensity in the wave propagating medium. Nonlinear characteristics of metal-oxide-metal contacts where the thin oxide film separation two metal surfaces has properties approximately those of a dielectric or a high-resistivity semiconductor are discussed. Tunneling was found to be the principal mechanism of charge carrier transfer through such a contact with a sufficiently thin film, the contact having usually a cubic or sometimes an integral sign current-voltage characteristic at 300 K and usually S-form or sometimes a cubic current-voltage characteristic at 77 K.
Nonlinear surface waves in soft, weakly compressible elastic media.
Zabolotskaya, Evgenia A; Ilinskii, Yurii A; Hamilton, Mark F
2007-04-01
Nonlinear surface waves in soft, weakly compressible elastic media are investigated theoretically, with a focus on propagation in tissue-like media. The model is obtained as a limiting case of the theory developed by Zabolotskaya [J. Acoust. Soc. Am. 91, 2569-2575 (1992)] for nonlinear surface waves in arbitrary isotropic elastic media, and it is consistent with the results obtained by Fu and Devenish [Q. J. Mech. Appl. Math. 49, 65-80 (1996)] for incompressible isotropic elastic media. In particular, the quadratic nonlinearity is found to be independent of the third-order elastic constants of the medium, and it is inversely proportional to the shear modulus. The Gol'dberg number characterizing the degree of waveform distortion due to quadratic nonlinearity is proportional to the square root of the shear modulus and inversely proportional to the shear viscosity. Simulations are presented for propagation in tissue-like media.
Applications of F-expansion to Periodic Wave Solutions for Variant Boussinesq Equations
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
We present an F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics, which can be thought of as a concentration of extended Jacobi elliptic function expansion method proposed recently. By using the F-expansion, without calculating Jacobi elliptic functions, we obtain simultaneously many periodic wave solutions expressed by various Jacobi elliptic functions for the variant Boussinesq equations. When the modulus m approaches 1 and 0, the hyperbolic function solutions (including the solitary wave solutions) and trigonometric solutions are also given respectively.
Kinetic equation for nonlinear resonant wave-particle interaction
Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.
2016-09-01
We investigate the nonlinear resonant wave-particle interactions including the effects of particle (phase) trapping, detrapping, and scattering by high-amplitude coherent waves. After deriving the relationship between probability of trapping and velocity of particle drift induced by nonlinear scattering (phase bunching), we substitute this relation and other characteristic equations of wave-particle interaction into a kinetic equation for the particle distribution function. The final equation has the form of a Fokker-Planck equation with peculiar advection and collision terms. This equation fully describes the evolution of particle momentum distribution due to particle diffusion, nonlinear drift, and fast transport in phase-space via trapping. Solutions of the obtained kinetic equation are compared with results of test particle simulations.
The Gouy phase shift in nonlinear interactions of waves
Lastzka, Nico; Schnabel, Roman
2007-06-01
We theoretically analyze the influence of the Gouy phase shift on the nonlinear interaction between waves of different frequencies. We focus on χ(2)interaction of optical fields, e.g. through birefringent crystals, and show that focussing, stronger than suggested by the Boyd-Kleinman factor, can further improve nonlinear processes. An increased value of 3.32 for the optimal focussing parameter for a single pass process is found. The new value builds on the compensation of the Gouy phase shift by a spatially varying, instead constant, wave vector phase mismatch. We analyze the single-ended, singly resonant standing wave nonlinear cavity and show that in this case the Gouy phase shift leads to an additional phase during backreflection. Our numerical simulations may explain ill-understood experimental observations in such devices.
Nonlinear Alfvén wave propagating in ideal MHD plasmas
Zheng, Jugao; Chen, Yinhua; Yu, Mingyang
2016-01-01
The behavior of nonlinear Alfvén waves propagating in ideal MHD plasmas is investigated numerically. It is found that in a one-dimensional weakly nonlinear system an Alfvén wave train can excite two longitudinal disturbances, namely an acoustic wave and a ponderomotively driven disturbance, which behave differently for β \\gt 1 and β \\lt 1, where β is the ratio of plasma-to-magnetic pressures. In a strongly nonlinear system, the Alfvén wave train is modulated and can steepen to form shocks, leading to significant dissipation due to appearance of current sheets at magnetic-pressure minima. For periodic boundary condition, we find that the Alfvén wave transfers its energy to the plasma and heats it during the shock formation. In two-dimensional systems, fast magneto-acoustic wave generation due to Alfvén wave phase mixing is considered. It is found that the process depends on the amplitude and frequency of the Alfvén waves, as well as their speed gradients and the pressure of the background plasma.
Nonlinear dynamics of DNA - Riccati generalized solitary wave solutions
Energy Technology Data Exchange (ETDEWEB)
Alka, W.; Goyal, Amit [Department of Physics, Panjab University, Chandigarh-160014 (India); Nagaraja Kumar, C., E-mail: cnkumar@pu.ac.i [Department of Physics, Panjab University, Chandigarh-160014 (India)
2011-01-17
We study the nonlinear dynamics of DNA, for longitudinal and transverse motions, in the framework of the microscopic model of Peyrard and Bishop. The coupled nonlinear partial differential equations for dynamics of DNA model, which consists of two long elastic homogeneous strands connected with each other by an elastic membrane, have been solved for solitary wave solution which is further generalized using Riccati parameterized factorization method.
Nonlinear dynamics of DNA - Riccati generalized solitary wave solutions
Alka, W.; Goyal, Amit; Nagaraja Kumar, C.
2011-01-01
We study the nonlinear dynamics of DNA, for longitudinal and transverse motions, in the framework of the microscopic model of Peyrard and Bishop. The coupled nonlinear partial differential equations for dynamics of DNA model, which consists of two long elastic homogeneous strands connected with each other by an elastic membrane, have been solved for solitary wave solution which is further generalized using Riccati parameterized factorization method.
Directory of Open Access Journals (Sweden)
Weiguo Rui
2014-01-01
Full Text Available By using the integral bifurcation method together with factoring technique, we study a water wave model, a high-order nonlinear wave equation of KdV type under some newly solvable conditions. Based on our previous research works, some exact traveling wave solutions such as broken-soliton solutions, periodic wave solutions of blow-up type, smooth solitary wave solutions, and nonsmooth peakon solutions within more extensive parameter ranges are obtained. In particular, a series of smooth solitary wave solutions and nonsmooth peakon solutions are obtained. In order to show the properties of these exact solutions visually, we plot the graphs of some representative traveling wave solutions.
Nonlinear Resonant Excitation of Fast Sausage Waves in Current-Carrying Coronal Loops
Mikhalyaev, B. B.; Bembitov, D. B.
2014-11-01
We consider a model of a coronal loop that is a cylindrical magnetic tube with two surface electric currents. Its principal sausage mode has no cut-off in the long-wavelength limit. For typical coronal conditions, the period of the mode is between one and a few minutes. The sausage mode of flaring loops could cause long-period pulsations observed in microwave and hard X-ray ranges. There are other examples of coronal oscillations: long-period pulsations of active-region quiet loops in the soft X-ray emission are observed. We assume that these can also be caused by sausage waves. The question arises of how the sausage waves are generated in quiet loops. We assume that they can be generated by torsional oscillations. This process can be described in the framework of the nonlinear three-wave interaction formalism. The periods of interacting torsional waves are similar to the periods of torsional oscillations observed in the solar atmosphere. The timescale of the sausage-wave excitation is not much longer than the periods of interacting waves, so that the sausage wave is excited before torsional waves are damped.
Nonlinear Alfv\\'en waves in extended magnetohydrodynamics
Abdelhamid, Hamdi M
2015-01-01
Large-amplitude Alfv\\'en waves are observed in various systems in space and laboratories, demonstrating an interesting property that the wave shapes are stable even in the nonlinear regime. The ideal magnetohydrodynamics (MHD) model predicts that an Alfv\\'en wave keeps an arbitrary shape constant when it propagates on a homogeneous ambient magnetic field. However, such arbitrariness is an artifact of the idealized model that omits the dispersive effects. Only special wave forms, consisting of two component sinusoidal functions, can maintain the shape; we derive fully nonlinear Alfv\\'en waves by an extended MHD model that includes both the Hall and electron inertia effects. Interestingly, these \\small-scale effects" change the picture completely; the large-scale component of the wave cannot be independent of the small scale component, and the coexistence of them forbids the large scale component to have a free wave form. This is a manifestation of the nonlinearity-dispersion interplay, which is somewhat differ...
NONLINEAR APPROXIMATION WITH GENERAL WAVE PACKETS
Institute of Scientific and Technical Information of China (English)
L. Borup; M. Nielsen
2005-01-01
We study nonlinear approximation in the Triebel-Lizorkin spaces with dictionaries formed by dilating and translating one single function g. A general Jackson inequality is derived for best m-term approximation with such dictionaries. In some special cases where g has a special structure, a complete characterization of the approximation spaces is derived.
Nonlinear approximation with general wave packets
DEFF Research Database (Denmark)
Borup, Lasse; Nielsen, Morten
2005-01-01
We study nonlinear approximation in the Triebel-Lizorkin spaces with dictionaries formed by dilating and translating one single function g. A general Jackson inequality is derived for best m-term approximation with such dictionaries. In some special cases where g has a special structure, a complete...... characterization of the approximation spaces is derived....
Exact periodic wave and soliton solutions in two-component Bose-Einstein condensates
Institute of Scientific and Technical Information of China (English)
Li Hua-Mei
2007-01-01
We present several families of exact solutions to a system of coupled nonlinear Schr(o)dinger equations. The model describes a binary mixture of two Bose-Einstein condensates in a magnetic trap potential. Using a mapping deformation method, we find exact periodic wave and soliton solutions, including bright and dark soliton pairs.
Enhanced four-wave mixing with nonlinear plasmonic metasurfaces.
Jin, Boyuan; Argyropoulos, Christos
2016-06-27
Plasmonic metasurfaces provide an effective way to increase the efficiency of several nonlinear processes while maintaining nanoscale dimensions. In this work, nonlinear metasurfaces based on film-coupled silver nanostripes loaded with Kerr nonlinear material are proposed to achieve efficient four-wave mixing (FWM). Highly localized plasmon resonances are formed in the nanogap between the metallic film and nanostripes. The local electric field is dramatically enhanced in this subwavelength nanoregion. These properties combined with the relaxed phase matching condition due to the ultrathin area lead to a giant FWM efficiency, which is enhanced by nineteen orders of magnitude compared to a bare silver screen. In addition, efficient visible and low-THz sources can be constructed based on the proposed nonlinear metasurfaces. The FWM generated coherent wave has a directional radiation pattern and its output power is relatively insensitive to the incident angles of the excitation sources. This radiated power can be further enhanced by increasing the excitation power. The dielectric nonlinear material placed in the nanogap is mainly responsible for the ultrastrong FWM response. Compact and efficient wave mixers and optical sources spanning different frequency ranges are envisioned to be designed based on the proposed nonlinear metasurface designs.
Propagation of Quasi-plane Nonlinear Waves in Tubes
Directory of Open Access Journals (Sweden)
P. Koníček
2002-01-01
Full Text Available This paper deals with possibilities of using the generalized Burgers equation and the KZK equation to describe nonlinear waves in circular ducts. A new method for calculating of diffraction effects taking into account boundary layer effects is described. The results of numerical solutions of the model equations are compared. Finally, the limits of validity of the used model equations are discussed with respect to boundary conditions and the radius of the circular duct. The limits of applicability of the KZK equation and the GBE equation for describing nonlinear waves in tubes are discussed.
Nonlinear fast sausage waves in homogeneous magnetic flux tubes
Mikhalyaev, Badma B.; Ruderman, Michael S.
2015-12-01
> We consider fast sausage waves in straight homogeneous magnetic tubes. The plasma motion is described by the ideal magnetohydrodynamic equations in the cold plasma approximation. We derive the nonlinear Schrödinger equation describing the nonlinear evolution of an envelope of a carrier wave. The coefficients of this equation are expressed in terms Bessel and modified Bessel functions. They are calculated numerically for various values of parameters. In particular, we show that the criterion for the onset of the modulational or Benjamin-Fair instability is satisfied. The implication of the obtained results for solar physics is discussed.
A general theory of two-wave mixing in nonlinear media
DEFF Research Database (Denmark)
Chi, Mingjun; Huignard, Jean-Pierre; Petersen, Paul Michael
2009-01-01
A general theory of two-wave mixing in nonlinear media is presented. Assuming a gain (or absorption) grating and a refractive index grating are generated because of the nonlinear process in a nonlinear medium, the coupled-wave equations of two-wave mixing are derived based on the Maxwell’s wave e...
Dynamical Hamiltonian-Hopf instabilities of periodic traveling waves in Klein-Gordon equations
Marangell, R.; Miller, P. D.
2015-07-01
We study the unstable spectrum close to the imaginary axis for the linearization of the nonlinear Klein-Gordon equation about a periodic traveling wave in a co-moving frame. We define dynamical Hamiltonian-Hopf instabilities as points in the stable spectrum that are accumulation points for unstable spectrum, and show how they can be determined from the knowledge of the discriminant of Hill's equation for an associated periodic potential. This result allows us to give simple criteria for the existence of dynamical Hamiltonian-Hopf instabilities in terms of instability indices previously shown to be useful in stability analysis of periodic traveling waves. We also discuss how these methods can be applied to more general nonlinear wave equations.
Nonlinear waves in a fluid-filled thin viscoelastic tube
Zhang, Shan-Yuan; Zhang, Tao
2010-11-01
In the present paper the propagation property of nonlinear waves in a thin viscoelastic tube filled with incompressible inviscid fluid is studied. The tube is considered to be made of an incompressible isotropic viscoelastic material described by Kelvin—Voigt model. Using the mass conservation and the momentum theorem of the fluid and radial dynamic equilibrium of an element of the tube wall, a set of nonlinear partial differential equations governing the propagation of nonlinear pressure wave in the solid—liquid coupled system is obtained. In the long-wave approximation the nonlinear far-field equations can be derived employing the reductive perturbation technique (RPT). Selecting the exponent α of the perturbation parameter in Gardner—Morikawa transformation according to the order of viscous coefficient η, three kinds of evolution equations with soliton solution, i.e. Korteweg—de Vries (KdV)—Burgers, KdV and Burgers equations are deduced. By means of the method of traveling-wave solution and numerical calculation, the propagation properties of solitary waves corresponding with these evolution equations are analysed in detail. Finally, as a example of practical application, the propagation of pressure pulses in large blood vessels is discussed.
Time-reversal of nonlinear waves: Applicability and limitations
Ducrozet, G.; Fink, M.; Chabchoub, A.
2016-09-01
Time-reversal (TR) refocusing of waves is one of the fundamental principles in wave physics. Using the TR approach, time-reversal mirrors can physically create a time-reversed wave that exactly refocus back, in space and time, to its original source regardless of the complexity of the medium as if time were going backward. Laboratory experiments have proved that this approach can be applied not only in acoustics and electromagnetism, but also in the field of linear and nonlinear water waves. Studying the range of validity and limitations of the TR approach may determine and quantify its range of applicability in hydrodynamics. In this context, we report a numerical study of hydrodynamic time-reversal using a unidirectional numerical wave tank, implemented by the nonlinear high-order spectral method, known to accurately model the physical processes at play, beyond physical laboratory restrictions. The applicability of the TR approach is assessed over a variety of hydrodynamic localized and pulsating structures' configurations, pointing out the importance of high-order dispersive and particularly nonlinear effects in the refocusing of hydrodynamic stationary envelope solitons and breathers. We expect that the results may motivate similar experiments in other nonlinear dispersive media and encourage several applications with particular emphasis on the field of ocean engineering.
Nonlinear waves in a fluid-filled thin viscoelastic tube
Institute of Scientific and Technical Information of China (English)
Zhang Shan-Yuan; Zhang Tao
2010-01-01
In the present paper the propagation property of nonlinear waves in a thin viscoelastic tube filled with incom-pressible inviscid fluid is studied. The tube is considered to be made of an incompressible isotropic viscoelastic material described by Kelvin-Voigt model. Using the mass conservation and the momentum theorem of the fluid and radial dynamic equilibrium of an element of the tube wall, a set of nonlinear partial differential equations governing the prop-agation of nonlinear pressure wave in the solid-liquid coupled system is obtained. In the long-wave approximation the nonlinear far-field equations can be derived employing the reductive perturbation technique (RPT). Selecting the expo-η, three kinds of evolution equations with soliton solution, i.e. Korteweg-de Vries (KdV)-Burgers, KdV and Burgers equations are deduced. By means of the method of traveling-wave solution and numerical calculation, the propagation properties of solitary waves corresponding with these evolution equations are analysed in detail. Finally, as a example of practical application, the propagation of pressure pulses in large blood vessels is discussed.
Properties of GH4169 Superalloy Characterized by Nonlinear Ultrasonic Waves
Directory of Open Access Journals (Sweden)
Hongjuan Yan
2015-01-01
Full Text Available The nonlinear wave motion equation is solved by the perturbation method. The nonlinear ultrasonic coefficients β and δ are related to the fundamental and harmonic amplitudes. The nonlinear ultrasonic testing system is used to detect received signals during tensile testing and bending fatigue testing of GH4169 superalloy. The results show that the curves of nonlinear ultrasonic parameters as a function of tensile stress or fatigue life are approximately saddle. There are two stages in relationship curves of relative nonlinear coefficients β′ and δ′ versus stress and fatigue life. The relative nonlinear coefficients β′ and δ′ increase with tensile stress when tensile stress is lower than 65.8% of the yield strength, and they decrease with tensile stress when tensile stress is higher than 65.8% of the yield strength. The nonlinear coefficients have the extreme values at 53.3% of fatigue life. For the second order relative nonlinear coefficient β′, there is good agreement between the experimental data and the comprehensive model. For the third order relative nonlinear coefficient δ′, however, the experiment data does not accord with the theoretical model.
Mathematical Methods in Wave Propagation: Part 2--Non-Linear Wave Front Analysis
Jeffrey, Alan
1971-01-01
The paper presents applications and methods of analysis for non-linear hyperbolic partial differential equations. The paper is concluded by an account of wave front analysis as applied to the piston problem of gas dynamics. (JG)
Shallow water modal evolution due to nonlinear internal waves
Badiey, Mohsen; Wan, Lin; Luo, Jing
2017-09-01
Acoustic modal behavior is reported for an L-shape hydrophone array during the passage of a strong nonlinear internal wave packet. Acoustic track is nearly parallel to the front of nonlinear internal waves. Through modal decomposition at the vertical array, acoustic modes are identified. Modal evolution along the horizontal array then is examined during a passing internal wave. Strong intensity fluctuations of individual modes are observed before and during the internal waves packet passes the fixed acoustic track showing a detailed evolution of the waveguide modal behavior. Acoustic refraction created either uneven distribution of modal energy over the horizontal array or additional returns observable at the entire L-shape array. Acoustic ray-mode simulations are used to phenomenologically explain the observed modal behavior.
Nonlinear reflection of internal gravity wave onto a slope
Raja, Keshav; Sommeria, Joel; Staquet, Chantal; Leclair, Matthieu; Grisouard, Nicolas; Gostiaux, Louis
2016-04-01
The interaction of internal waves on sloping topography is one of the processes that cause mixing and transport in oceans. The mixing caused by internal waves is considered to be an important source of energy that is needed to bring back deep, dense water from the abyss to the surface of the ocean, across constant density surfaces. Apart from the vertical transport of heat (downwards) and mass (upwards), internal waves are also observed to irreversibly induce a mean horizontal flow. Mixing and wave induced mean flow may be considered as the processes that transfer wave induced energy to smaller and larger scales respectively. The process of mixing has been a subject of intense research lately. However, the process of wave induced mean flow and their dynamic impact await thorough study. The present study involves this wave induced mean flow, its generation and energetics. The nonlinear subcritical reflection of internal waves from a sloping boundary is studied using laboratory experiments carried out on the Coriolis Platform at Grenoble and, 2D and 3D numerical simulations done using a non-hydrostatic code. In the experiment, a plane wave is produced using a wave generator and is made to reflect normally on a sloping bottom in a uniformly stratified fluid. We consider both rotating and non-rotating cases. The numerical simulation mimicks the laboratory setup with an initial condition of an analytical plane wave solution in a vertical plane limited by a smooth envelope to simulate the finite wave generator. The interaction of the incident and reflected waves produce, apart from higher harmonics, an irreversible wave induced mean flow which grows in time and is localised in the interacting region. The finite extent of the wave generator allows the mean flow to recirculate in the horizontal plane, resulting in a dipolar potential vorticity field. Moreover, the generation of mean flow and higher harmonics, along with dissipative effects, diminishes the amplitude of
Nonlinear wave dynamics near phase transition in PT-symmetric localized potentials
Nixon, Sean; Yang, Jianke
2016-09-01
Nonlinear wave propagation in parity-time symmetric localized potentials is investigated analytically near a phase-transition point where a pair of real eigenvalues of the potential coalesce and bifurcate into the complex plane. Necessary conditions for a phase transition to occur are derived based on a generalization of the Krein signature. Using the multi-scale perturbation analysis, a reduced nonlinear ordinary differential equation (ODE) is derived for the amplitude of localized solutions near phase transition. Above the phase transition, this ODE predicts a family of stable solitons not bifurcating from linear (infinitesimal) modes under a certain sign of nonlinearity. In addition, it predicts periodically-oscillating nonlinear modes away from solitons. Under the opposite sign of nonlinearity, it predicts unbounded growth of solutions. Below the phase transition, solution dynamics is predicted as well. All analytical results are compared to direct computations of the full system and good agreement is observed.
Nonlinear wave dynamics near phase transition in $\\mathcal{PT}$-symmetric localized potentials
Nixon, Sean
2015-01-01
Nonlinear wave propagation in parity-time ($\\mathcal{PT}$) symmetric localized potentials is investigated analytically near a phase-transition point where a pair of real eigenvalues of the potential coalesce and bifurcate into the complex plane. Necessary conditions for phase transition to occur are derived based on a generalization of the Krein signature. Using multi-scale perturbation analysis, a reduced nonlinear ODE model is derived for the amplitude of localized solutions near phase transition. Above phase transition, this ODE model predicts a family of stable solitons not bifurcating from linear (infinitesimal) modes under a certain sign of nonlinearity. In addition, it predicts periodically-oscillating nonlinear modes away from solitons. Under the opposite sign of nonlinearity, it predicts unbounded growth of solutions. Below phase transition, solution dynamics is predicted as well. All analytical results are compared to direct computations of the full system and good agreement is observed.
2011-01-01
International audience; We study theoretically, numerically and experimentally the nonlinear propagation of partially incoherent optical waves in single mode optical fibers. We revisit the traditional treatment of the wave turbulence theory to provide a statistical kinetic description of the integrable scalar NLS equation. In spite of the formal reversibility and of the integrability of the NLS equation, the weakly nonlinear dynamics reveals the existence of an irreversible evolution toward a...
Bifurcation and solitary waves of the nonlinear wave equation with quartic polynomial potential
Institute of Scientific and Technical Information of China (English)
化存才; 刘延柱
2002-01-01
For the nonlinear wave equation with quartic polynomial potential, bifurcation and solitary waves are investigated. Based on the bifurcation and the energy integral of the two-dimensional dynamical system satisfied by the travelling waves, it is very interesting to find different sufficient and necessary conditions in terms of the bifurcation parameter for the existence and coexistence of bright, dark solitary waves and shock waves. The method of direct integration is developed to give all types of solitary wave solutions. Our method is simpler than other newly developed ones. Some results are similar to those obtained recently for the combined KdV-mKdV equation.
Non-linear high-frequency waves in the magnetosphere
Indian Academy of Sciences (India)
S Moolla; R Bharuthram; S V Singh; G S Lakhina
2003-12-01
Using ﬂuid theory, a set of equations is derived for non-linear high-frequency waves propagating oblique to an external magnetic ﬁeld in a three-component plasma consisting of hot electrons, cold electrons and cold ions. For parameters typical of the Earth’s magnetosphere, numerical solutions of the governing equations yield sinusoidal, sawtooth or bipolar wave-forms for the electric ﬁeld.
Nonlinear Dynamic Characteristics of Combustion Wave in SHS Process
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The characteristic of combustion wave and its change were analyzed by numerical value calculation and computer simulation,based on the combustion dynamical model of SHS process. It is shown that with the change of condition parameters in SHS process various time-space order combustion waves appear.It is concluded from non-liner dynamical mechanism analysis that the strong coupling of two non-linear dynamical processes is the dynamical mechanism causing the time-space order dissipation structures.
Travelling wave solutions for ( + 1)-dimensional nonlinear evolution equations
Indian Academy of Sciences (India)
Jonu Lee; Rathinasamy Sakthivel
2010-10-01
In this paper, we implement the exp-function method to obtain the exact travelling wave solutions of ( + 1)-dimensional nonlinear evolution equations. Four models, the ( + 1)-dimensional generalized Boussinesq equation, ( + 1)-dimensional sine-cosine-Gordon equation, ( + 1)-double sinh-Gordon equation and ( + 1)-sinh-cosinh-Gordon equation, are used as vehicles to conduct the analysis. New travelling wave solutions are derived.
Wavelet analysis of the slow non-linear dynamics of wave turbulence
Energy Technology Data Exchange (ETDEWEB)
Miquel, Benjamin; Mordant, Nicolas, E-mail: benjamin.miquel@lps.ens.fr [Laboratoire de Physique Statistique, Ecole Normale Superieure (France)
2011-12-22
In wave turbulence, the derivation of solutions in the frame of the Weak Turbulence Theory relies on the existence of a double time-scale separation: first, between the period of the waves and characteristic nonlinear time t{sub NL} corresponding to energy exchange among waves; and secondly, between t{sub NL} and the characteristic dissipation time t{sub d}. Due to the lack of space and time resolved measurement, this hypothesis have remained unverified so far. We study the turbulence of flexion waves in thin elastic plates. t{sub d} is measured using the decline stage of the turbulence whereas a wavelet analysis is performed to measure the characteristic non-linear time t{sub NL}.
NUMERICAL SIMULATION OF TRAVELING WAVE CONVECTION IN A WEAKLY NONLINEAR REGIME
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
This paper presents a simulational result on a blinking traveling wave (BTW) state in binary fluid convection in a rectangular cell. The numerical simulations were made using the two-dimensional perturbation equations of full hydrodynamic equations. We found for the first time that the BTW or sloshing traveling wave state is a type of modulated traveling wave (MTW) generated by the motion of a source defect which originates from the reflection effect at the end walls and depends on the reduced Rayleigh number r. Comparison with the localized traveling wave (LTW) shows that the BTW is convective patterns on a weakly nonlinear branch with a small amplitude and the LTW is those on a full nonlinear branch whth a large amplitude. They have different dynamical behaviour. A discontinuous jump from the BTW branch to the stable LTW branch takes place as the oscillatory period lengthens and the amplitude grows above the upper critical value of the BTW.
Analysis of nonlinear internal waves in the New York Bight
Liu, Antony K.
1988-01-01
An analysis of the nonlinear-internal-wave evolution in the New York Bight was performed on the basis of current meter mooring data obtained in the New York Bight during the SAR Internal Wave Signature Experiment (SARSEX). The solitary wave theory was extended to include dissipation and shoaling effects, and a series of numerical experiments were performed by solving the wave evolution equation, with waveforms observed in the SARSEX area as initial conditions. The results of calculations demonstrate that the relative balance of dissipation and shoaling effects is crucial to the detailed evolution of internal wave packets. From an observed initial wave packet at the upstream mooring, the numerical evolution simulation agreed reasonably well with the measurements at the distant mooring for the leading two large solitons.
Nonlinear dynamics of Airy-Vortex 3D wave packets: Emission of vortex light waves
Driben, Rodislav
2014-01-01
The dynamics of 3D Airy-vortex wave packets is studied under the action of strong self-focusing Kerr nonlinearity. Emissions of nonlinear 3D waves out of the main wave packets with the topological charges were demonstrated. Due to the conservation of the total angular momentum, charges of the emitted waves are equal to those carried by the parental light structure. The rapid collapse imposes a severe limitation on the propagation of multidimensional waves in Kerr media. However, the structure of the Airy beam carrier allows the coupling of light from the leading, most intense peak into neighboring peaks and consequently strongly postpones the collapse. The dependence of the critical input amplitude for the appearance of a fast collapse on the beam width is studied for wave packets with zero and non-zero topological charges. Wave packets carrying angular momentum are found to be much more resistant to the rapid collapse, especially those having small width.
Nonlinear dynamics of Airy-vortex 3D wave packets: emission of vortex light waves.
Driben, Rodislav; Meier, Torsten
2014-10-01
The dynamics of 3D Airy-vortex wave packets is studied under the action of strong self-focusing Kerr nonlinearity. Emissions of nonlinear 3D waves out of the main wave packets with the topological charges were demonstrated. Because of the conservation of the total angular momentum, charges of the emitted waves are equal to those carried by the parental light structure. The rapid collapse imposes a severe limitation on the propagation of multidimensional waves in Kerr media. However, the structure of the Airy beam carrier allows the coupling of light from the leading, most intense peak into neighboring peaks and consequently strongly postpones the collapse. The dependence of the critical input amplitude for the appearance of a fast collapse on the beam width is studied for wave packets with zero and nonzero topological charges. Wave packets carrying angular momentum are found to be much more resistant to the rapid collapse.
Linear and Nonlinear Surface Waves in Electrohydrodynamics
Hunt, Matthew; Vanden-broeck, Jean-Marc; Papageorgiou, Demetrios
2015-01-01
The problem of interest in this article are waves on a layer of finite depth governed by the Euler equations in the presence of gravity, surface tension, and vertical electric fields. Perturbation theory is used to identify canonical scalings and to derive a Kadomtsev-Petviashvili equation withan additional non-local term arising in interfacial electrohydrodynamics.When the Bond number is equal to 1/3, dispersion disappears and shock waves could potentially form. In the additional limit of vanishing electric fields, a new evolution equation is obtained which contains third and fifth-order dispersion as well as a non-local electric field term.
Hafez, M. G.; Talukder, M. R.; Hossain Ali, M.
2017-04-01
The Burgers equation is obtained to study the characteristics of nonlinear propagation of ionacoustic shock, singular kink, and periodic waves in weakly relativistic plasmas containing relativistic thermal ions, nonextensive distributed electrons, Boltzmann distributed positrons, and kinematic viscosity of ions using the well-known reductive perturbation technique. This equation is solved by employing the ( G'/ G)-expansion method taking unperturbed positron-to-electron concentration ratio, electron-to-positron temperature ratio, strength of electrons nonextensivity, ion kinematic viscosity, and weakly relativistic streaming factor. The influences of plasma parameters on nonlinear propagation of ion-acoustic shock, periodic, and singular kink waves are displayed graphically and the relevant physical explanations are described. It is found that these parameters extensively modify the shock structures excitation. The obtained results may be useful in understanding the features of small but finite amplitude localized relativistic ion-acoustic shock waves in an unmagnetized plasma system for some astrophysical compact objects and space plasmas.
Directory of Open Access Journals (Sweden)
V. I. Vlasenko
Full Text Available For many lakes the nonlinear transfer of energy from basin-scale internal waves to short-period motions, such as solitary internal waves (SIW and wave trains, their successive interaction with lake boundaries, as well as over-turning and breaking are important mechanisms for an enhanced mixing of the turbulent benthic boundary layer. In the present paper, the evolution of plane SIWs in a variable depth channel, typical of a lake of variable depth, is considered, with the basis being the Reynolds equations. The vertical fluid stratification, wave amplitudes and bottom parameters are taken close to those observed in Lake Constance, a typical mountain lake. The problem is solved numerically. Three different scenarios of a wave evolution over variable bottom topography are examined. It is found that the basic parameter controlling the mechanism of wave evolution is the ratio of the wave amplitude to the distance from the metalimnion to the bottom d. At sites with a gentle sloping bottom, where d is small, propagating (weak or strong internal waves adjust to the local ambient conditions and preserve their form. No secondary waves or wave trains arise during wave propagation from the deep part to the shallow water. If the amplitude of the propagating waves is comparable with the distance between the metalimnion and the top of the underwater obstacle ( d ~ 1, nonlinear dispersion plays a key role. A wave approaching the bottom feature splits into a sequence of secondary waves (solitary internal waves and an attached oscillating wave tail. The energy of the SIWs above the underwater obstacle is transmitted in parts from the first baroclinic mode, to the higher modes. Most crucially, when the internal wave propagates from the deep part of a basin to the shallow boundary, a breaking event can arise. The cumulative effects of the nonlinearity lead to a steepening and
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Ba Phi [Central University of Construction, Tuy Hoa (Viet Nam); Kim, Ki Hong [Ajou University, Suwon (Korea, Republic of)
2014-02-15
We study numerically the dynamics of an initially localized wave packet in one-dimensional nonlinear Schroedinger lattices with both local and nonlocal nonlinearities. Using the discrete nonlinear Schroedinger equation generalized by including a nonlocal nonlinear term, we calculate four different physical quantities as a function of time, which are the return probability to the initial excitation site, the participation number, the root-mean-square displacement from the excitation site and the spatial probability distribution. We investigate the influence of the nonlocal nonlinearity on the delocalization to self-trapping transition induced by the local nonlinearity. In the non-self-trapping region, we find that the nonlocal nonlinearity compresses the soliton width and slows down the spreading of the wave packet. In the vicinity of the delocalization to self-trapping transition point and inside the self-trapping region, we find that a new kind of self-trapping phenomenon, which we call partial self-trapping, takes place when the nonlocal nonlinearity is sufficiently strong.
A Numerical Wave Tank for Nonlinear Waves with Passive Absorption
Institute of Scientific and Technical Information of China (English)
周宗仁; 尹彰; 石瑞祥
2001-01-01
A numerical wave tank with passive absorption for irregular waves is considered in this paper. Waves with spectralshapes corresponding to that of the Mitsuyasu-Bretschneider type are used as the initial condition at one end of theflume. An absorbing boundary is imposed at the other end of the wave flume to minimize reflection. By use of aLagrangian description for the surface elevation, and finite difference for approximation of the time derivative, the problem is then solved by the boundary element method. The effects of the absorbing boundary are investigated by varyingthe values of the absorption coefficient μ, and studying the time histories of the surface elevations "recorded" on pre-se-lected locations.
Institute of Scientific and Technical Information of China (English)
ZHENGGuizhen; JIANGXiulan; HANShuzong
2004-01-01
The joint distribution of wave heights and periods of individual waves is usually approximated by the joint distribution of apparent wave heights and periods. However there is difference between them. This difference is addressed and the theoretical joint distributions of apparent wave heights and periods due to Longuet-Higgins and Sun are modified to give more reasonable representations of the joint distribution of wave heights and periods of individual waves. The modification has overcome an inherent drawback of these joint PDFs that the mean wave period is infinite. A comparison is made between the modified formulae and the field data of Goda, which shows that the new formulae consist with the measurement better than their original counterparts.
Dimitrova, Zlatinka I
2015-01-01
We investigate flow of incompressible fluid in a cylindrical tube with elastic walls. The radius of the tube may change along its length. The discussed problem is connected to the blood flow in large human arteries and especially to nonlinear wave propagation due to the pulsations of the heart. The long-wave approximation for modeling of waves in blood is applied. The obtained model Korteweg-deVries equation possessing a variable coefficient is reduced to a nonlinear dynamical system of 3 first order differential equations. The low probability of arising of a solitary wave is shown. Periodic wave solutions of the model system of equations are studied and it is shown that the waves that are consequence of the irregular heart pulsations may be modeled by a sequence of parts of such periodic wave solutions.
On the so-called rogue waves in the nonlinear Schr\\"odinger equation
Li, Y Charles
2015-01-01
The mechanism of a rogue water wave is still unknown. One popular conjecture is that the Peregrine wave solution of the nonlinear Schr\\"odinger equation (NLS) provides a mechanism. A Peregrine wave solution can be obtained by taking the infinite spatial period limit to the homoclinic solutions. In this article, from the perspective of the phase space structure of these homoclinic orbits in the infinite dimensional phase space where the NLS defines a dynamical system, we exam the observability of these homoclinic orbits (and their approximations). Our conclusion is that these approximate homoclinic orbits are the most observable solutions,and they should correspond to the most common deep ocean waves rather than the rare rogue waves. We also discuss other possibilities for the mechanism of a rogue wave: rough dependence on initial data or finite time blow up.
A THIRD-ORDER BOUSSINESQ MODEL APPLIED TO NONLINEAR EVOLUTION OF SHALLOW-WATER WAVES
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The conventional Boussinesq model is extended to the third order in dispersion and nonlinearity. The new equations are shown to possess better linear dispersion characteristics. For the evolution of periodic waves over a constant depth, the computed wave envelops are spatially aperiodic and skew. The model is then applied to the study of wave focusing by a topographical lens and the results are compared with Whalin's (1971) experimental data as well as some previous results from the conventional Boussinesq model. Encouragingly, improved agreement with Whalin's experimental data is found.
Simulations of nonlinear continuous wave pressure fields in FOCUS
Zhao, Xiaofeng; Hamilton, Mark F.; McGough, Robert J.
2017-03-01
The Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation is a parabolic approximation to the Westervelt equation that models the effects of diffraction, attenuation, and nonlinearity. Although the KZK equation is only valid in the far field of the paraxial region for mildly focused or unfocused transducers, the KZK equation is widely applied in medical ultrasound simulations. For a continuous wave input, the KZK equation is effectively modeled by the Bergen Code [J. Berntsen, Numerical Calculations of Finite Amplitude Sound Beams, in M. F. Hamilton and D. T. Blackstock, editors, Frontiers of Nonlinear Acoustics: Proceedings of 12th ISNA, Elsevier, 1990], which is a finite difference model that utilizes operator splitting. Similar C++ routines have been developed for FOCUS, the `Fast Object-Oriented C++ Ultrasound Simulator' (http://www.egr.msu.edu/˜fultras-web) to calculate nonlinear pressure fields generated by axisymmetric flat circular and spherically focused ultrasound transducers. This new routine complements an existing FOCUS program that models nonlinear ultrasound propagation with the angular spectrum approach [P. T. Christopher and K. J. Parker, J. Acoust. Soc. Am. 90, 488-499 (1991)]. Results obtained from these two nonlinear ultrasound simulation approaches are evaluated and compared for continuous wave linear simulations. The simulation results match closely in the farfield of the paraxial region, but the results differ in the nearfield. The nonlinear pressure field generated by a spherically focused transducer with a peak surface pressure of 0.2MPa radiating in a lossy medium with β = 3.5 is simulated, and the computation times are also evaluated. The nonlinear simulation results demonstrate acceptable agreement in the focal zone. These two related nonlinear simulation approaches are now included with FOCUS to enable convenient simulations of nonlinear pressure fields on desktop and laptop computers.
NEW EXACT TRAVELLING WAVE SOLUTIONS TO THREE NONLINEAR EVOLUTION EQUATIONS
Institute of Scientific and Technical Information of China (English)
Sirendaoreji
2004-01-01
Based on the computerized symbolic computation, some new exact travelling wave solutions to three nonlinear evolution equations are explicitly obtained by replacing the tanhξ in tanh-function method with the solutions of a new auxiliary ordinary differential equation.
EXACT SOLITARY WAVE SOLUTIONS OF THETWO NONLINEAR EVOLUTION EQUATIONS
Institute of Scientific and Technical Information of China (English)
ZhuYanjuan; ZhangChunhua
2005-01-01
The solitary wave solutions of the combined KdV-mKdV-Burgers equation and the Kolmogorov-Petrovskii-Piskunov equation are obtained by means of the direct algebra method, which can be generalized to deal with high dimensional nonlinear evolution equations.
Nonlinear wave mechanics from classical dynamics and scale covariance
Energy Technology Data Exchange (ETDEWEB)
Hammad, F. [Departement TC-SETI, Universite A.Mira de Bejaia, Route Targa Ouzemmour, 06000 Bejaia (Algeria)], E-mail: fayhammad@yahoo.fr
2007-10-29
Nonlinear Schroedinger equations proposed by Kostin and by Doebner and Goldin are rederived from Nottale's prescription for obtaining quantum mechanics from classical mechanics in nondifferentiable spaces; i.e., from hydrodynamical concepts and scale covariance. Some soliton and plane wave solutions are discussed.
Non-Linear Langmuir Wave Modulation in Collisionless Plasmas
DEFF Research Database (Denmark)
Dysthe, K. B.; Pécseli, Hans
1977-01-01
A non-linear Schrodinger equation for Langmuir waves is presented. The equation is derived by using a fluid model for the electrons, while both a fluid and a Vlasov formulation are considered for the ion dynamics. The two formulations lead to significant differences in the final results, especially...
Nonlinear wave propagation studies, dispersion modeling, and signal parameters correction
Czech Academy of Sciences Publication Activity Database
Převorovský, Zdeněk
..: ..., 2004, 00. [European Workshop on FP6-AERONEWS /1./. Naples (IT), 13.09.2004-16.09.2004] EU Projects: European Commission(XE) 502927 - AERO-NEWS Institutional research plan: CEZ:AV0Z2076919 Keywords : nodestructive testing * nonlinear elastic wave spectroscopy Subject RIV: BI - Acoustics
Generalized dispersive wave emission in nonlinear fiber optics.
Webb, K E; Xu, Y Q; Erkintalo, M; Murdoch, S G
2013-01-15
We show that the emission of dispersive waves in nonlinear fiber optics is not limited to soliton-like pulses propagating in the anomalous dispersion regime. We demonstrate, both numerically and experimentally, that pulses propagating in the normal dispersion regime can excite resonant dispersive radiation across the zero-dispersion wavelength into the anomalous regime.
Exact controllability for a nonlinear stochastic wave equation
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available The exact controllability for a semilinear stochastic wave equation with a boundary control is established. The target and initial spaces are L 2 ( G × H −1 ( G with G being a bounded open subset of R 3 and the nonlinear terms having at most a linear growth.
Stability of planar diffusion wave for nonlinear evolution equation
Institute of Scientific and Technical Information of China (English)
无
2012-01-01
It is known that the one-dimensional nonlinear heat equation ut = f(u)x1x1,f'(u) 0,u(±∞,t) = u±,u+ = u_ has a unique self-similar solution u(x1/1+t).In multi-dimensional space,u(x1/1+t) is called a planar diffusion wave.In the first part of the present paper,it is shown that under some smallness conditions,such a planar diffusion wave is nonlinearly stable for the nonlinear heat equation:ut-△f(u) = 0,x ∈ Rn.The optimal time decay rate is obtained.In the second part of this paper,it is further shown that this planar diffusion wave is still nonlinearly stable for the quasilinear wave equation with damping:utt + utt+ △f(u) = 0,x ∈ Rn.The time decay rate is also obtained.The proofs are given by an elementary energy method.
An inhomogeneous wave equation and non-linear Diophantine approximation
DEFF Research Database (Denmark)
Beresnevich, V.; Dodson, M. M.; Kristensen, S.;
2008-01-01
A non-linear Diophantine condition involving perfect squares and arising from an inhomogeneous wave equation on the torus guarantees the existence of a smooth solution. The exceptional set associated with the failure of the Diophantine condition and hence of the existence of a smooth solution...... is studied. Both the Lebesgue and Hausdorff measures of this set are obtained....
Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele
2016-01-01
). In the present paper we use a single layer of quadratic (in 2D) and prismatic (in 3D) elements. The model has been stabilized through a combination of over-integration of the Galerkin projections and a mild modal filter. We present numerical tests of nonlinear waves serving as a proof-of-concept validation...
NUMERICAL SIMULATIONS OF NONLINEAR WAVE TRANSFORMATION AROUND WAVE-PERMEABLE STRUCTURE
Institute of Scientific and Technical Information of China (English)
Li Xi; YAN Yi-xin
2005-01-01
The problem of wave partial/full reflection and transmission by wave-permeable structure is approached by solving the shape-related function with focus on the understanding of wave attenuation.2D depth-averaged Boussinesq type wave equations are given with new damping item in simulating the nonlinear wave transmission through wave-permeable structure.1D wave equation is examined to give the analytical expression of the absorbing coefficient, and is compared with laboratory data in flume to calibrate the coefficients, and the expression is applied directly in modified Boussinesq type equations.Compared with wave basin data for various incident wave conditions,the accurate predictions of combined diffraction-refraction effects in simulating nonlinear wave going through wave-permeable breakwater in the engineering application can be obtained.It shows that wave-permeable breakwaters with proper absorbing effects can be used as an effective alternative to massive gravity breakwaters in reduction of wave transmission in shallow water.
Periodic folded waves for a (2+1)-dimensional modified dispersive water wave equation
Institute of Scientific and Technical Information of China (English)
Huang Wen-Hua
2009-01-01
A general solution,including three arbitrary functions,is obtained for a (2+1)-dimensional modified dispersive water-wave (MDWW) equation by means of the WTC truncation method.Introducing proper multiple valued functions and Jacobi elliptic functions in the seed solution,special types of periodic folded waves are derived.In the long wave limit these periodic folded wave patterns may degenerate into single localized folded solitary wave excitations.The interactions of the periodic folded waves and the degenerated single folded solitary waves axe investigated graphically and found to be completely elastic.
Decoupling Nonclassical Nonlinear Behavior of Elastic Wave Types
Remillieux, Marcel C.; Guyer, Robert A.; Payan, Cédric; Ulrich, T. J.
2016-03-01
In this Letter, the tensorial nature of the nonequilibrium dynamics in nonlinear mesoscopic elastic materials is evidenced via multimode resonance experiments. In these experiments the dynamic response, including the spatial variations of velocities and strains, is carefully monitored while the sample is vibrated in a purely longitudinal or a purely torsional mode. By analogy with the fact that such experiments can decouple the elements of the linear elastic tensor, we demonstrate that the parameters quantifying the nonequilibrium dynamics of the material differ substantially for a compressional wave and for a shear wave. This result could lead to further understanding of the nonlinear mechanical phenomena that arise in natural systems as well as to the design and engineering of nonlinear acoustic metamaterials.
Nonlinear single Compton scattering of an electron wave-packet
Angioi, A; Di Piazza, A
2016-01-01
In the presence of a sufficiently intense electromagnetic laser field, an electron can absorb on average a large number of photons from the laser and emit a high-energy one (nonlinear single Compton scattering). The case of nonlinear single Compton scattering by an electron with definite initial momentum has been thoroughly investigated in the literature. Here, we consider a more general initial state of the electron and use a wave-packet obtained as a superposition of Volkov wave functions. In particular, we investigate the energy spectrum of the emitted radiation at fixed observation direction and show that in typical experimental situations the sharply peaked structure of nonlinear single Compton scattering spectra of an electron with definite initial energy is almost completely washed out. Moreover, we show that at comparable uncertainties, the one in the momentum of the incoming electron has a larger impact on the photon spectra at a fixed observation direction than the one on the laser frequency, relate...
Nonlinear Acoustic Wave Interactions in Layered Media.
1980-03-06
Generated Components in Dispersive Media. . . . . . . . . . . . . 62 4.4 Dispersion in Medium II . . . . . . . . .. 68 V. CONCLUSIONS...give rise to leaky wave modes which are more thoroughly discussed 17 18 by Kapany and Burke, and by Marcuse . Leaky modes are C.C. Ghizoni, J.M...1977), 843-848. 1 7N.S. Kapany and J.J. Burke, Optical Waveeeuides, (New York: Academic Press, 1972), pp. 24-34. D. Marcuse , Theory of Dielectric Optical
Controlling nonlinear waves in excitable media
Energy Technology Data Exchange (ETDEWEB)
Puebla, Hector [Departamento de Energia, Universidad Autonoma Metropolitana, Av. San Pablo No. 180, Reynosa-Tamaulipas, Azcapotzalco 02200, DF, Mexico (Mexico)], E-mail: hpuebla@correo.azc.uam.mx; Martin, Roland [Laboratoire de Modelisation et d' Imagerie en Geosciences, CNRS UMR and INRIA Futurs Magique-3D, Universite de Pau (France); Alvarez-Ramirez, Jose [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana-Iztapalapa (Mexico); Aguilar-Lopez, Ricardo [Departamento de Biotecnologia y Bioingenieria, CINVESTAV-IPN (Mexico)
2009-01-30
A new feedback control method is proposed to control the spatio-temporal dynamics in excitable media. Applying suitable external forcing to the system's slow variable, successful suppression and control of propagating pulses as well as spiral waves can be obtained. The proposed controller is composed by an observer to infer uncertain terms such as diffusive transport and kinetic rates, and an inverse-dynamics feedback function. Numerical simulations shown the effectiveness of the proposed feedback control approach.
The nonlinear evolution of rogue waves generated by means of wave focusing technique
Hu, HanHong; Ma, Ning
2011-01-01
Generating the rogue waves in offshore engineering is investigated, first of all, to forecast its occurrence to protect the offshore structure from being attacked, to study the mechanism and hydrodynamic properties of rouge wave experimentally as well as the rouge/structure interaction for the structure design. To achieve these purposes demands an accurate wave generation and calculation. In this paper, we establish a spatial domain model of fourth order nonlinear Schrödinger (NLS) equation for describing deep-water wave trains in the moving coordinate system. In order to generate rogue waves in the experimental tank efficiently, we take care that the transient water wave (TWW) determines precisely the concentration of time/place. First we simulate the three-dimensional wave using TWW in the numerical tank and modeling the deepwater basin with a double-side multi-segmented wave-maker in Shanghai Jiao Tong University (SJTU) under the linear superposing theory. To discuss its nonlinearity for guiding the experiment, we set the TWW as the initial condition of the NLS equation. The differences between the linear and nonlinear simulations are presented. Meanwhile, the characteristics of the transient water wave, including water particle velocity and wave slope, are investigated, which are important factors in safeguarding the offshore structures.
Evolution of Nonlinear Internal Waves in China Seas
Liu, Antony K.; Hsu, Ming-K.; Liang, Nai K.
1997-01-01
Synthetic Aperture Radar (SAR) images from ERS-I have been used to study the characteristics of internal waves of Taiwan in the East China Sea, and east of Hainan Island in the South China Sea. Rank-ordered packets of internal solitons propagating shoreward from the edge of the continental shelf were observed in the SAR images. Based on the assumption of a semidiurnal tidal origin, the wave speed can be estimated and is consistent with the internal wave theory. By using the SAR images and hydrographic data, internal waves of elevation have been identified in shallow water due to a thicker mixed layer as compared with the bottom layer on the continental shelf. The generation mechanism includes the influences of the tide and the Kuroshio intrusion across the continental shelf for the formations of elevation internal waves. The effects of water depth on the evolution of solitons and wave packets are modeled by nonlinear Kortweg-deVries (KdV) type equation and linked to satellite image observations. The numerical calculations of internal wave evolution on the continental shelf have been performed and compared with the SAR observations. For a case of depression waves in deep water, the solitons first disintegrate into dispersive wave trains and then evolve to a packet of elevation waves in the shallow water area after they pass through a turning point of approximately equal layer depths has been observed in the SAR image and simulated by numerical model.
Weak bond detection in composites using highly nonlinear solitary waves
Singhal, Taru; Kim, Eunho; Kim, Tae-Yeon; Yang, Jinkyu
2017-05-01
We experimentally investigate a diagnostic technique for identifying a weak bond in composites using highly nonlinear solitary waves (HNSWs). We set up a one-dimensional chain of granular crystals, consisting of spherical particles with nonlinear interactions, to generate HNSWs. These solitary wave packets are transmitted into an inspection area of composites by making a direct contact with the chain. We demonstrate that a strong type of solitary waves injected to the weak bond area can break the weak bond of laminates, thereby causing delamination. Then, to identify the creation of the delamination, we transmit a weak type of solitary waves by employing the same apparatus, and measure the solitary waves reflected from the specimens. By analyzing these reflected solitary waves, we differentiate the weak bond samples with the pristine bond ones in an efficient and fast manner. The diagnostic results based on the proposed method are compared with the strength and energy release rate at bond interfaces, which are measured via standard testing methods such as three point bending and end notched flexure tests. This study shows the potential of solitary wave-based detection of weak bonds for hot spot monitoring of composite-based structures.
Nonlinear wave breaking in self-gravitating viscoelastic quantum fluid
Energy Technology Data Exchange (ETDEWEB)
Mitra, Aniruddha, E-mail: anibabun@gmail.com [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India); Roychoudhury, Rajkumar, E-mail: rajdaju@rediffmail.com [Advanced Centre for Nonlinear and Complex Phenomena, 1175 Survey Park, Kolkata 700075 (India); Department of Mathematics, Bethune College, Kolkata 700006 (India); Bhar, Radhaballav [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India); Khan, Manoranjan, E-mail: mkhan.ju@gmail.com [Center for Plasma Studies, Department of Instrumentation Science, Jadavpur University, Kolkata, 700 032 (India)
2017-02-12
The stability of a viscoelastic self-gravitating quantum fluid has been studied. Symmetry breaking instability of solitary wave has been observed through ‘viscosity modified Ostrovsky equation’ in weak gravity limit. In presence of strong gravitational field, the solitary wave breaks into shock waves. Response to a Gaussian perturbation, the system produces quasi-periodic short waves, which in terns predicts the existence of gravito-acoustic quasi-periodic short waves in lower solar corona region. Stability analysis of this dynamical system predicts gravity has the most prominent effect on the phase portraits, therefore, on the stability of the system. The non-existence of chaotic solution has also been observed at long wavelength perturbation through index value theorem. - Highlights: • In weak gravitational field, viscoelastic quantum fluid exhibits symmetry breaking instability. • Gaussian perturbation produces quasi-periodic gravito-acoustic waves into the system. • There exists no chaotic state of the system against long wavelength perturbations.
Nonlinear interaction of waves in boundary-layer flows
Nayfeh, A. H.; Bozatli, A. N.
1979-01-01
First-order nonlinear interactions of Tollmien-Schlichting waves of different frequencies and initial amplitudes in boundary-layer flows are analyzed by using the method of multiple scales. For the case of two waves, a strong nonlinear interaction exists if one of the frequencies w2 is twice the other frequency w1. Numerical results for flow past a flat plate show that this interaction mechanism is strongly destabilizing even in regions where either the fundamental or its harmonic is damped in the absence of the interaction. For the case of three waves, a strong nonlinear interaction exists when w3 = w2- w1. This combination resonance causes the amplitude of the wave with the difference frequency w3 to multiply many times in magnitude in a short distance even if it is damped in the absence of the interaction. The initial amplitudes play a dominant role in determining the changes in the amplitudes of the waves in both of these mechanisms.
Nonlinear dynamic behaviors of a floating structure in focused waves
Cao, Fei-feng; Zhao, Xi-zeng
2015-12-01
Floating structures are commonly seen in coastal and offshore engineering. They are often subjected to extreme waves and, therefore, their nonlinear dynamic behaviors are of great concern. In this paper, an in-house CFD code is developed to investigate the accurate prediction of nonlinear dynamic behaviors of a two-dimensional (2-D) box-shaped floating structure in focused waves. Computations are performed by an enhanced Constrained Interpolation Profile (CIP)-based Cartesian grid model, in which a more accurate VOF (Volume of Fluid) method, the THINC/SW scheme (THINC: tangent of hyperbola for interface capturing; SW: Slope Weighting), is used for interface capturing. A focusing wave theory is used for the focused wave generation. The wave component of constant steepness is chosen. Comparisons between predictions and physical measurements show good agreement including body motions and free surface profiles. Although the overall agreement is good, some discrepancies are observed for impact pressure on the superstructure due to water on deck. The effect of grid resolution on the results is checked. With a fine grid, no obvious improvement is seen in the global body motions and impact pressures due to water on deck. It is concluded that highly nonlinear phenomena, such as distorted free surface, large-amplitude body motions, and violent impact flow, have been predicted successfully.
On the spectral stability of periodic waves of the coupled Schrödinger equations
Energy Technology Data Exchange (ETDEWEB)
Demirkaya, Aslihan, E-mail: demirkaya@hartford.edu [Mathematics Department, University of Hartford, 200 Bloomfield Avenue, West Hartford, CT 06117 (United States); Hakkaev, Sevdzhan [Faculty of Arts and Sciences, Department of Mathematics and Computer Science, Istanbul Aydin University, Istanbul (Turkey); Faculty of Mathematics and Informatics, Shumen University, Shumen (Bulgaria)
2015-12-04
In this present work we consider the periodic standing wave solutions for the coupled nonlinear Schrödinger equations. We restrict our problem to two cases and construct the solutions explicitly. Then we make the stability analysis for each case. We show that the relevant stationary solutions are spectrally stable for certain parameters. For those parameters, we also present our numerical results in the spectral analysis. - Highlights: • We consider the coupled nonlinear Schrödinger equations. • We study the existence and the stability of the periodic standing waves. • We show that these waves are spectrally stable for certain parameter values. • We use Floquet theory and do some numerical computations.
Alfven waves in the solar atmosphere. III - Nonlinear waves on open flux tubes
Hollweg, J. V.; Jackson, S.; Galloway, D.
1982-01-01
Consideration is given the nonlinear propagation of Alfven waves on solar magnetic flux tubes, where the tubes are taken to be vertical, axisymmetric and initially untwisted and the Alfven waves are time-dependent axisymmetric twists. The propagation of the waves into the chromosphere and corona is investigated through the numerical solution of a set of nonlinear, time-dependent equations coupling the Alfven waves into motions that are parallel to the initial magnetic field. It is concluded that Alfven waves can steepen into fast shocks in the chromosphere, pass through the transition region to produce high-velocity pulses, and then enter the corona, which they heat. The transition region pulses have amplitudes of about 60 km/sec, and durations of a few tens of seconds. In addition, the Alfven waves exhibit a tendency to drive upward flows, with many of the properties of spicules.
2015-09-30
Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves...interaction of surface and internal gravity waves in the South China Sea. We will seek answers to the following questions: 1) How does the wind-wave
Gusev, Vitalyi E; Ni, Chenyin; Lomonosov, Alexey; Shen, Zhonghua
2015-08-01
Theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous material on flexural wave in the plates of continuously varying thickness is developed. For the wedges with thickness increasing as a power law of distance from its edge strong modifications of the wave dynamics with propagation distance are predicted. It is found that nonlinear absorption progressively disappearing with diminishing wave amplitude leads to complete attenuation of acoustic waves in most of the wedges exhibiting black hole phenomenon. It is also demonstrated that black holes exist beyond the geometrical acoustic approximation. Applications include nondestructive evaluation of micro-inhomogeneous materials and vibrations damping. Copyright © 2015 Elsevier B.V. All rights reserved.
Nonlinear interaction of two waves in boundary-layer flows
Nayfeh, A. H.; Bozatli, A. N.
1980-01-01
First-order nonlinear interactions of Tollmien-Schlichting waves of different frequencies and initial amplitudes in boundary-layer flows are analyzed using the method of multiple scales. Numerical results for flow past a flat plate show that the spatial detuning wipes out resonant interactions unless the initial amplitudes are very large. Thus, a wave having a moderate amplitude has little influence on its subharmonic although it has a strong influence on its second harmonic. Moreover, two waves having moderate amplitudes have a strong influence on their difference frequency. The results show that the difference frequency can be very unstable when generated by the nonlinear interaction, even though it may be stable when introduced by itself in the boundary layer.
A Stochastic Nonlinear Water Wave Model for Efficient Uncertainty Quantification
Bigoni, Daniele; Eskilsson, Claes
2014-01-01
A major challenge in next-generation industrial applications is to improve numerical analysis by quantifying uncertainties in predictions. In this work we present a stochastic formulation of a fully nonlinear and dispersive potential flow water wave model for the probabilistic description of the evolution waves. This model is discretized using the Stochastic Collocation Method (SCM), which provides an approximate surrogate of the model. This can be used to accurately and efficiently estimate the probability distribution of the unknown time dependent stochastic solution after the forward propagation of uncertainties. We revisit experimental benchmarks often used for validation of deterministic water wave models. We do this using a fully nonlinear and dispersive model and show how uncertainty in the model input can influence the model output. Based on numerical experiments and assumed uncertainties in boundary data, our analysis reveals that some of the known discrepancies from deterministic simulation in compa...
Weak Nonlinear Matter Waves in a Trapped Spin-1 Condensates
Institute of Scientific and Technical Information of China (English)
CAI Hong-Qiang; YANG Shu-Rong; XUE Ju-Kui
2011-01-01
The dynamics of the weak nonlinear matter solitary waves in a spin-1 condensates with harmonic external potential are investigated analytically by a perturbation method. It is shown that, in the small amplitude limit, the dynamics of the solitary waves are governed by a variable-coefficient Korteweg-de Vries (KdV) equation. The reduction to the (KdV) equation may be useful to understand the dynamics of nonlinear matter waves in spinor BEGs. The analytical expressions for the evolution of soliton show that the small-amplitude vector solitons of the mixed types perform harmonic oscillations in the presence of the trap. Furthermore, the emitted radiation profiles and the soliton oscillation freauencv are also obtained.
Rossby Wave Instability of Thin Accretion Disks - III. Nonlinear Simulations
Li, H; Wendroff, B; Liska, R
2000-01-01
(abridged) We study the nonlinear evolution of the Rossby wave instability in thin disks using global 2D hydrodynamic simulations. The key questions we are addressing in this paper are: (1) What happens when the instability becomes nonlinear? Specifically, does it lead to vortex formation? (2) What is the detailed behavior of a vortex? (3) Can the instability sustain itself and can the vortex last a long time? Among various initial equilibria that we have examined, we generally find that there are three stages of the disk evolution: (1) The exponential growth of the initial small amplitude perturbations. This is in excellent agreement with the linear theory; (2) The production of large scale vortices and their interactions with the background flow, including shocks. Significant accretion is observed due to these vortices. (3) The coupling of Rossby waves/vortices with global spiral waves, which facilitates further accretion throughout the whole disk. Even after more than 20 revolutions at the radius of vortic...
Quasi-periodic Solutions of the General Nonlinear Beam Equations
Institute of Scientific and Technical Information of China (English)
GAO YI-XIAN
2012-01-01
In this paper,one-dimensional (1D) nonlinear beam equations of the form utt - uxx + uxxxx + mu = f(u)with Dirichlet boundary conditions are considered,where the nonlinearity f is an analytic,odd function and f(u) = O(u3).It is proved that for all m ∈ (0,M*] (∈) R(M* is a fixed large number),but a set of small Lebesgue measure,the above equations admit small-amplitude quasi-periodic solutions corresponding to finite dimensional invariant tori for an associated infinite dimensional dynamical system.The proof is based on an infinite dimensional KAM theory and a partial Birkhoff normal form technique.
Viscous Fluid Conduits as a Prototypical Nonlinear Dispersive Wave Platform
Lowman, Nicholas K.
This thesis is devoted to the comprehensive characterization of slowly modulated, nonlinear waves in dispersive media for physically-relevant systems using a threefold approach: analytical, long-time asymptotics, careful numerical simulations, and quantitative laboratory experiments. In particular, we use this interdisciplinary approach to establish a two-fluid, interfacial fluid flow setting known as viscous fluid conduits as an ideal platform for the experimental study of truly one dimensional, unidirectional solitary waves and dispersively regularized shock waves (DSWs). Starting from the full set of fluid equations for mass and linear momentum conservation, we use a multiple-scales, perturbation approach to derive a scalar, nonlinear, dispersive wave equation for the leading order interfacial dynamics of the system. Using a generalized form of the approximate model equation, we use numerical simulations and an analytical, nonlinear wave averaging technique, Whitham-El modulation theory, to derive the key physical features of interacting large amplitude solitary waves and DSWs. We then present the results of quantitative, experimental investigations into large amplitude solitary wave interactions and DSWs. Overtaking interactions of large amplitude solitary waves are shown to exhibit nearly elastic collisions and universal interaction geometries according to the Lax categories for KdV solitons, and to be in excellent agreement with the dynamics described by the approximate asymptotic model. The dispersive shock wave experiments presented here represent the most extensive comparison to date between theory and data of the key wavetrain parameters predicted by modulation theory. We observe strong agreement. Based on the work in this thesis, viscous fluid conduits provide a well-understood, controlled, table-top environment in which to study universal properties of dispersive hydrodynamics. Motivated by the study of wave propagation in the conduit system, we
Nonlinear waves in electromigration dispersion in a capillary
Christov, Ivan C
2016-01-01
We construct exact solutions to an unusual nonlinear advection--diffusion equation arising in the study of Taylor--Aris (also known as shear) dispersion due to electroosmotic flow during electromigration in a capillary. An exact reduction to a Darboux equation is found under a traveling-wave anzats. The equilibria of this ordinary differential equation are analyzed, showing that their stability is determined solely by the (dimensionless) wave speed without regard to any (dimensionless) physical parameters. Integral curves, connecting the appropriate equilibria of the Darboux equation that governs traveling waves, are constructed, which in turn are shown to be asymmetric kink solutions ({\\it i.e.}, non-Taylor shocks). Furthermore, it is shown that the governing Darboux equation exhibits bistability, which leads to two coexisting non-negative kink solutions for (dimensionless) wave speeds greater than unity. Finally, we give some remarks on other types of traveling-wave solutions and a discussion of some approx...
Ganesh, R.; Gonella, S.
2017-02-01
The motive of this work is to understand the complex spatial characteristics of finite-amplitude elastic wave propagation in periodic structures and leverage the unique opportunities offered by nonlinearity to activate complementary functionalities and design adaptive spatial wave manipulators. The underlying assumption is that the magnitude of wave propagation is small with respect to the length scale of the structure under consideration, albeit large enough to elicit the effects of finite deformation. We demonstrate that the interplay of dispersion, nonlinearity and modal complexity involved in the generation and propagation of higher harmonics gives rise to secondary wave packets that feature multiple characteristics, one of which conforms to the dispersion relation of the corresponding linear structure. This provides an opportunity to engineer desired wave characteristics through a geometric and topological design of the unit cell, and results in the ability to activate complementary functionalities, typical of high frequency regimes, while operating at low frequencies of excitation - an effect seldom observed in linear periodic structures. The ability to design adaptive switches is demonstrated here using lattice configurations whose response is characterized by geometric and/or material nonlinearities.
Liu, Chang
2015-01-01
The nonlinear frequency shift is derived in a transparent asymptotic form for intense Langmuir waves in general collisionless plasma. The formula describes both fluid and kinetic effects simultaneously. The fluid nonlinearity is expressed, for the ?first time, through the plasma dielectric function, and the kinetic nonlinearity accounts for both smooth distributions and trapped-particle beams. Various known limiting scalings are reproduced as special cases. The calculation avoids differential equations and can be extended straightforwardly to other nonlinear plasma waves.
On a nonlinear gravitational wave. Geodesics
Culetu, Hristu
2016-01-01
An exact, plane wave solution of the gravitational field equations is investigated. The source stress tensor is represented by an anisotropic null fluid with energy flux to which the energy density $\\rho$ and the pressure $p_{z}$ are negative but finite throughout the spacetime. They depend on a constant length (taken of the order of the Planck length) and acquire Planck values close to the null surface $t - z = 0$, $Oz$ axis being the direction of propagation. The timelike geodesics of a test particle are contained in a plane whose normal has constant direction and the null trajectories are comoving with a plane of fixed direction.
Spiral Waves in Media with Spatial Period-2 Structure
Institute of Scientific and Technical Information of China (English)
YANG Jun-Zhong; ZHANG Mei
2005-01-01
@@ The spiral waves in a system of two-dimensional coupled oscillators with spatial period-2 structure are investigated.We find a sandwiched spiral wave where any adjacent oscillators are in anti-phase. We show that the propagation rate of the sandwiched spiral wave is insensitive to the change of the coupling constant. The influences of the local kinetics on the sandwiched spiral wave are also investigated.
Peaked Periodic Wave Solutions to the Broer–Kaup Equation
Jiang, Bo; Bi, Qin-Sheng
2017-01-01
By qualitative analysis method, a sufficient condition for the existence of peaked periodic wave solutions to the Broer–Kaup equation is given. Some exact explicit expressions of peaked periodic wave solutions are also presented. Supported by National Nature Science Foundation of China under Grant No. 11102076 and Natural Science Fund for Colleges and Universities in Jiangsu Province under Grant No. 15KJB110005
Sensitive Periods in Affective Development: Nonlinear Maturation of Fear Learning
Hartley, Catherine A; Lee, Francis S
2015-01-01
At specific maturational stages, neural circuits enter sensitive periods of heightened plasticity, during which the development of both brain and behavior are highly receptive to particular experiential information. A relatively advanced understanding of the regulatory mechanisms governing the initiation, closure, and reinstatement of sensitive period plasticity has emerged from extensive research examining the development of the visual system. In this article, we discuss a large body of work characterizing the pronounced nonlinear changes in fear learning and extinction that occur from childhood through adulthood, and their underlying neural substrates. We draw upon the model of sensitive period regulation within the visual system, and present burgeoning evidence suggesting that parallel mechanisms may regulate the qualitative changes in fear learning across development. PMID:25035083
Ardhuin, Fabrice
2012-01-01
Oceanic observations, even in very deep water, and atmospheric pressure or seismic records, from anywhere on Earth, contain noise with dominant periods between 3 and 10 seconds, that can be related to surface gravity waves in the oceans. This noise is consistent with a dominant source explained by a nonlinear wave-wave interaction mechanism, and takes the form of surface gravity waves, acoustic or seismic waves. Previous theoretical works on seismic noise focused on surface (Rayleigh) waves, and did not consider finite depth effects on the generating wave kinematics. These finite depth effects are introduced here, which requires the consideration of the direct wave-induced pressure at the ocean bottom, a contribution previously overlooked in the context of seismic noise. That contribution can lead to a considerable reduction of the seismic noise source, which is particularly relevant for noise periods larger than 10 s. The theory is applied to acoustic waves in the atmosphere, extending previous theories that...
Xiao, Jianyuan; Qin, Hong; Yu, Zhi; Xiang, Nong
2015-01-01
In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonlinear mode conversion are investigated. It is illustrated that nonlinear effects significantly modify the physics of the radio-frequency injection in magnetized plasmas. The evolutions of the radio-frequency wave reflectivity and the energy deposition are observed, as well as the self-interaction of the Bernstein waves and mode excitations. Even for waves with small magnitude, nonlinear effects can also become important after continuous wave injections, which are common in the realistic radio-frequency wave heating and cur...
Generation and propagation of nonlinear internal waves in Massachusetts Bay
Scotti, A.; Beardsley, R.C.; Butman, B.
2007-01-01
During the summer, nonlinear internal waves (NLIWs) are commonly observed propagating in Massachusetts Bay. The topography of the area is unique in the sense that the generation area (over Stellwagen Bank) is only 25 km away from the shoaling area, and thus it represents an excellent natural laboratory to study the life cycle of NLIWs. To assist in the interpretation of the data collected during the 1998 Massachusetts Bay Internal Wave Experiment (MBIWE98), a fully nonlinear and nonhydrostatic model covering the generation/shoaling region was developed, to investigate the response of the system to the range of background and driving conditions observed. Simplified models were also used to elucidate the role of nonlinearity and dispersion in shaping the NLIW field. This paper concentrates on the generation process and the subsequent evolution in the basin. The model was found to reproduce well the range of propagation characteristics observed (arrival time, propagation speed, amplitude), and provided a coherent framework to interpret the observations. Comparison with a fully nonlinear hydrostatic model shows that during the generation and initial evolution of the waves as they move away from Stellwagen Bank, dispersive effects play a negligible role. Thus the problem can be well understood considering the geometry of the characteristics along which the Riemann invariants of the hydrostatic problem propagate. Dispersion plays a role only during the evolution of the undular bore in the middle of Stellwagen Basin. The consequences for modeling NLIWs within hydrostatic models are briefly discussed at the end.
Amplitude-dependent contraction/elongation of nonlinear Lamb waves
Packo, Pawel; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.
2016-04-01
Nonlinear elastic guided waves find application in various disciplines of science and engineering, such as non- destructive testing and structural health monitoring. Recent recognition and quantification of their amplitude- dependent changes in spectral properties has contributed to the development of new monitoring concepts for mechanical structures. The focus of this work is to investigate and predict amplitude-dependent shifts in Lamb wave dispersion curves. The theory for frequency/wavenumber shifts for plate waves, based on a Lindstedt-Poincaré perturbation approach, was presented by the authors in previous years. Equivalently, spectral properties changes can be seen as wavelength contraction/elongation. Within the proposed framework, the wavelength of a Lamb wave depends on several factors; e.g., wave amplitude and second-, third- and fourth-order elastic constants, and others. Various types of nonlinear effects are considered in presented studies. Sensitivity studies for model parameters, i.e. higher-order elastic constants, are performed to quantify their influence on Lamb wave frequency/wavenumber shifting, and to identify the key parameters governing wavelength tuning.
Focusing of Spherical Nonlinear Pulses for Nonlinear Wave Equations Ⅲ. Subcritical Case
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
This paper studied spherical pulses of solutions of the system of semilinear wave equations with the pulses focusing at a point in three space variables. It is shown that there is no nonlinear effect at leading terms of pulses, when the initial data is subcritical.
2010-09-30
Hyperfast Modeling of Nonlinear Ocean Waves A. R. Osborne Dipartimento di Fisica Generale, Università di Torino Via Pietro Giuria 1, 10125...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Universit?i Torino,Dipartimento di Fisica Generale,Via Pietro Giuria 1,10125 Torino, Italy, 8. PERFORMING
Geodesic deviation in a nonlinear gravitational wave spacetime
Culetu, Hristu
2016-01-01
The tidal effects generated by a nonlinear gravitational wave are investigated in double-null v - u coordinates, as an exact solution of Einstein's field equations. The components $\\xi^{v}$ and $\\xi^{u}$ of the separation vector behave as in flat space but the transversal components $\\xi^{x}$ and $\\xi^{y}$ depend nonlinearly on $v$ through the Bessel and Neumann functions, far from the null surface $v = 0$. We show that the same results are obtained by means of the tetrad formalism.
Traveling wave solutions for some factorized nonlinear PDEs
Cornejo-Pérez, Octavio
2009-01-01
In this work, some new special traveling wave solutions of the convective Fisher equation, the time-delayed Burgers-Fisher equation, the Burgers-Fisher equation and a nonlinear dispersive-dissipative equation (Kakutani and Kawahara 1970 J. Phys. Soc. Japan 29 1068) are obtained through the factorization technique. All of them share the same type of factorization scheme, which reduces the original equation to a Riccati equation of the same kind, whose general solution is given in terms of Bessel and Neumann functions. In addition, some novel particular solutions of the nonlinear dispersive-dissipative equation are provided.
Detecting nonlinear acoustic waves in liquids with nonlinear dipole optical antennae
Maksymov, Ivan S
2015-01-01
Ultrasound is an important imaging modality for biological systems. High-frequency ultrasound can also (e.g., via acoustical nonlinearities) be used to provide deeply penetrating and high-resolution imaging of vascular structure via catheterisation. The latter is an important diagnostic in vascular health. Typically, ultrasound requires sources and transducers that are greater than, or of order the same size as the wavelength of the acoustic wave. Here we design and theoretically demonstrate that single silver nanorods, acting as optical nonlinear dipole antennae, can be used to detect ultrasound via Brillouin light scattering from linear and nonlinear acoustic waves propagating in bulk water. The nanorods are tuned to operate on high-order plasmon modes in contrast to the usual approach of using fundamental plasmon resonances. The high-order operation also gives rise to enhanced optical third-harmonic generation, which provides an important method for exciting the higher-order Fabry-Perot modes of the dipole...
Energy Technology Data Exchange (ETDEWEB)
Raphaldini, Breno; Raupp, Carlos F. M., E-mail: brenorfs@gmail.com, E-mail: carlos.raupp@iag.usp.br [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Departamento de Geofísica, Rua do Matão, 1226-Cidade Universitária São Paulo-SP 05508-090 (Brazil)
2015-01-20
The solar dynamo is known to be associated with several periodicities, with the nearly 11/22 yr cycle being the most pronounced one. Even though these quasiperiodic variations of solar activity have been attributed to the underlying dynamo action in the Sun's interior, a fundamental theoretical description of these cycles is still elusive. Here, we present a new possible direction in understanding the Sun's cycles based on resonant nonlinear interactions among magnetohydrodynamic (MHD) Rossby waves. The WKB theory for dispersive waves is applied to magnetohydrodynamic shallow-water equations describing the dynamics of the solar tachocline, and the reduced dynamics of a resonant triad composed of MHD Rossby waves embedded in constant toroidal magnetic field is analyzed. In the conservative case, the wave amplitudes evolve periodically in time, with periods on the order of the dominant solar activity timescale (∼11 yr). In addition, the presence of linear forcings representative of either convection or instabilities of meridionally varying background states appears to be crucial in balancing dissipation and thus sustaining the periodic oscillations of wave amplitudes associated with resonant triad interactions. Examination of the linear theory of MHD Rossby waves embedded in a latitudinally varying mean flow demonstrates that MHD Rossby waves propagate toward the equator in a waveguide from –35° to 35° in latitude, showing a remarkable resemblance to the structure of the butterfly diagram of the solar activity. Therefore, we argue that resonant nonlinear magnetohydrodynamic Rossby wave interactions might significantly contribute to the observed cycles of magnetic solar activity.
Sajjadi, Shahrdad G; Drullion, Frederique
2014-01-01
A review of three-dimensional waves on deep-water is presented. Three forms of three dimensionality, namely oblique, forced and spontaneous type, are identified. An alternative formulation for these three-dimensional waves is given through cubic nonlinear Schr\\"odinger equation. The periodic solutions of the cubic nonlinear Schr\\"odinger equation are found using Weierstrass elliptic $\\wp$ functions. It is shown that the classification of solutions depends on the boundary conditions, wavenumber and frequency. For certain parameters, Weierstrass $\\wp$ functions are reduced to periodic, hyperbolic or Jacobi elliptic functions. It is demonstrated that some of these solutions do not have any physical significance. An analytical solution of cubic nonlinear Schr\\"odinger equation with wind forcing is also obtained which results in how groups of waves are generated on the surface of deep water in the ocean. In this case the dependency on the energy-transfer parameter, from wind to waves, make either the groups of wav...
NONLINEAR FARADAY WAVES IN A PARAMETRICALLY EXCITED CIRCULAR CYLINDRICAL CONTAINER
Institute of Scientific and Technical Information of China (English)
菅永军; 鄂学全; 柏威
2003-01-01
In the cylindrical coordinate system, a singular perturbation theory of multiple-scale asymptotic expansions was developed to study single standing water wave mode bysolving potential equations of water waves in a rigid circular cylinder, which is subject to avertical oscillation. It is assumed that the fluid in the circular cylindrical vessel is inviscid ,incompressible and the motion is irrotational, a nonlinear amplitude equation with cubicand vertically excited terms of the vessel was derived by expansion of two-time scales withoutconsidering the effect of surface tension. It is shown by numerical computation that differentfree surface standing wave patterns will be formed in different excited frequencies andamplitudes. The contours of free surface waves are agreed well with the experimental resultswhich were carried out several years ago.
Collapse of Nonlinear Gravitational Waves in Moving-Puncture Coordinates
Hilditch, David; Weyhausen, Andreas; Dietrich, Tim; Bruegmann, Bernd; Montero, Pedro J; Mueller, Ewald
2013-01-01
We study numerical evolutions of nonlinear gravitational waves in moving-puncture coordinates. We adopt two different types of initial data -- Brill and Teukolsky waves -- and evolve them with two independent codes producing consistent results. We find that Brill data fail to produce long-term evolutions for common choices of coordinates and parameters, unless the initial amplitude is small, while Teukolsky wave initial data lead to stable evolutions, at least for amplitudes sufficiently far from criticality. The critical amplitude separates initial data whose evolutions leave behind flat space from those that lead to a black hole. For the latter we follow the interaction of the wave, the formation of a horizon, and the settling down into a time-independent trumpet geometry. We explore the differences between Brill and Teukolsky data and show that for less common choices of the parameters -- in particular negative amplitudes -- Brill data can be evolved with moving-puncture coordinates, and behave similarly t...
Re-study on Recurrence Period of Stokes Wave Train with High Order Spectral Method
Institute of Scientific and Technical Information of China (English)
TAO Ai-feng; ZHENG Jin-hai; MEE Mee Soe; CHEN Bo-tao
2011-01-01
Owing to the Benjamin-Feir instability,the Stokes wave train experiences a modulation-demodulation process,and presents a recurrence characteristics.Stiassnie and Shemer researched the unstable evolution process and provided a theoretical formulation for the recurrence period in 1985 on the basis of the nonlinear cubic Schr(o)dinger equation (NLS).However,NLS has limitations on the narrow band and the weak nonlinearity.The recurrence period is re-investigated in this paper by using a highly efficient High Order Spectral (HOS) method,which can be applied for the direct phaseresolved simulation of the nonlinear wave train evolution.It is found that the Stiassnie and Shemer's formula should be modified in the cases with most unstable initial conditions,which is important for such topics as the generation mechanisms of freak waves.A new recurrence period formula is presented and some new evolution characteristics of the Stokes wave train are also discussed in details.
2-D Composite Model for Numerical Simulations of Nonlinear Waves
Institute of Scientific and Technical Information of China (English)
2000-01-01
－ A composite model, which is the combination of Boussinesq equations and Volume of Fluid (VOF) method, has been developed for 2-D time-domain computations of nonlinear waves in a large region. The whole computational region Ω is divided into two subregions. In the near-field around a structure, Ω2, the flow is governed by 2-D Reynolds Averaged Navier-Stokes equations with a turbulence closure model of k-ε equations and numerically solved by the improved VOF method; whereas in the subregion Ω1 (Ω1 = Ω - Ω2) the flow is governed by one-D Boussinesq equations and numerically solved with the predictor-corrector algorithm. The velocity and the wave surface elevation are matched on the common boundary of the two subregions. Numerical tests have been conducted for the case of wave propagation and interaction with a wave barrier. It is shown that the composite model can help perform efficient computation of nonlinear waves in a large region with the complicated flow fields near structures taken into account.
The Nonlinear Landau Damping Rate of a Driven Plasma Wave
Energy Technology Data Exchange (ETDEWEB)
Benisti, D; Strozzi, D J; Gremillet, L; Morice, O
2009-08-04
In this Letter, we discuss the concept of the nonlinear Landau damping rate, {nu}, of a driven electron plasma wave, and provide a very simple, practical, analytic formula for {nu} which agrees very well with results inferred from Vlasov simulations of stimulated Raman scattering. {nu} actually is more complicated an operator than a plain damping rate, and it may only be seen as such because it assumes almost constant values before abruptly dropping to 0. The decrease of {nu} to 0 is moreover shown to occur later when the wave amplitude varies in the direction transverse to its propagation.
Optimal Control Of Nonlinear Wave Energy Point Converters
DEFF Research Database (Denmark)
Nielsen, Søren R.K.; Zhou, Qiang; Kramer, Morten
2013-01-01
In this paper the optimal control law for a single nonlinear point absorber in irregular sea-states is derived, and proven to be a closed-loop controller with feedback from measured displacement, velocity and acceleration of the floater. However, a non-causal integral control component dependent...... idea behind the control strategy is to enforce the stationary velocity response of the absorber into phase with the wave excitation force at any time. The controller is optimal under monochromatic wave excitation. It is demonstrated that the devised causal controller, in plane irregular sea states......, absorbs almost the same power as the optimal controller....
Nonlinear electrostatic wave equations for magnetized plasmas - II
DEFF Research Database (Denmark)
Dysthe, K. B.; Mjølhus, E.; Pécseli, H. L.
1985-01-01
For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent (electrosta......For pt.I see ibid., vol.26, p.443-7 (1984). The problem of extending the high frequency part of the Zakharov equations for nonlinear electrostatic waves to magnetized plasmas, is considered. Weak electromagnetic and thermal effects are retained on an equal footing. Direction dependent...... (electrostatic) cut-off implies that various cases must be considered separately, leading to equations with rather different properties. Various equations encountered previously in the literature are recovered as limiting cases....
Multisymplectic five-point scheme for the nonlinear wave equation
Institute of Scientific and Technical Information of China (English)
WANG Yushun; WANG Bin; YANG Hongwei; WANG Yunfeng
2003-01-01
In this paper, we introduce the multisymplectic structure of the nonlinear wave equation, and prove that the classical five-point scheme for the equation is multisymplectic. Numerical simulations of this multisymplectic scheme on highly oscillatory waves of the nonlinear Klein-Gordon equation and the collisions between kink and anti-kink solitons of the sine-Gordon equation are also provided. The multisymplectic schemes do not need to discrete PDEs in the space first as the symplectic schemes do and preserve not only the geometric structure of the PDEs accurately, but also their first integrals approximately such as the energy, the momentum and so on. Thus the multisymplectic schemes have better numerical stability and long-time numerical behavior than the energy-conserving scheme and the symplectic scheme.
Collapse of nonlinear electron plasma waves in a plasma layer
Grimalsky, V.; Koshevaya, S.; Rapoport, Yu; Kotsarenko, A.
2016-10-01
The excitation of nonlinear electron plasma waves in the plasma layer is investigated theoretically. This excitation is realized by means of initial oscillatory perturbations of the volume electron concentration or by initial oscillatory distributions of the longitudinal electron velocity. The amplitudes of the initial perturbations are small and the manifestation of the volume nonlinearity is absent. When the amplitudes of the initial perturbations exceed some thresholds, the values of the electron concentration near the plasma boundary increase catastrophically. The maxima of the electron concentration reach extremely high magnitudes, and sharp peaks in the electron concentration occur, which are localized both in the longitudinal and transverse directions. This effect is interpreted as wave collapse near the plasma boundary.
Modulational development of nonlinear gravity-wave groups
Chereskin, T. K.; Mollo-Christensen, E.
1985-01-01
Observations of the development of nonlinear surface gravity-wave groups are presented, and the amplitude and phase modulations are calculated using Hilbert-transform techniques. With increasing propagation distance and wave steepness, the phase modulation develops local phase reversals whose locations correspond to amplitude minima or nodes. The concomitant frequency modulation develops jumps or discontinuities. The observations are compared with recent similar results for wavetrains. The observations are modelled numerically using the cubic nonlinear Schroedinger equation. The motivation is twofold: to examine quantitatively the evolution of phase as well as amplitude modulation, and to test the inviscid predictions for the asymptotic behavior of groups versus long-time observations. Although dissipation rules out the recurrence, there is a long-time coherence of the groups. The phase modulation is found to distinguish between dispersive and soliton behavior.
Adaptive modeling of shallow fully nonlinear gravity waves
Dutykh, Denys; Mitsotakis, Dimitrios
2014-01-01
This paper presents an extended version of the celebrated Serre-Green-Naghdi (SGN) system. This extension is based on the well-known Bona-Smith-Nwogu trick which aims to improve the linear dispersion properties. We show that in the fully nonlinear setting it results in modifying the vertical acceleration. Even if this technique is well-known, the effect of this modification on the nonlinear properties of the model is not clear. The first goal of this study is to shed some light on the properties of solitary waves, as the most important class of nonlinear permanent solutions. Then, we propose a simple adaptive strategy to choose the optimal value of the free parameter at every instance of time. This strategy is validated by comparing the model prediction with the reference solutions of the full Euler equations and its classical counterpart. Numerical simulations show that the new adaptive model provides a much better accuracy for the same computational complexity.
Numerical Simulation of Seabed Response and Liquefaction due to Non-linear Waves
Institute of Scientific and Technical Information of China (English)
ZHANG Jin-feng; ZHANG Qing-he; HAN Tao; QIN Chong-ren
2005-01-01
Based on Biot's consolidation theory, a two-dimensional model for computation of the seabed response to waves is presented with the finite element method. Numerical results for different wave conditions are obtained, and the effects of wave non-linearity on the wave-induced seabed response are examined. Moreover, the wave-induced momentary liquefaction in uniform and inhomogeneous seabeds is investigated. It is shown that the wave non-linearity affects the distribution of the wave-induced pore pressure and effective stresses, while the influence of wave non-linearity on the seabed liquefaction potential is not so significant.
Solitary wave solutions to nonlinear evolution equations in mathematical physics
Indian Academy of Sciences (India)
Anwar Ja’afar Mohamad Jawad; M Mirzazadeh; Anjan Biswas
2014-10-01
This paper obtains solitons as well as other solutions to a few nonlinear evolution equations that appear in various areas of mathematical physics. The two analytical integrators that are applied to extract solutions are tan–cot method and functional variable approaches. The soliton solutions can be used in the further study of shallow water waves in (1+1) as well as (2+1) dimensions.
SINGULAR AND RAREFACTIVE SOLUTIONS TO A NONLINEAR VARIATIONAL WAVE EQUATION
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Following a recent paper of the authors in Communications in Partial Differential Equations, this paper establishes the global existence of weak solutions to a nonlinear variational wave equation under relaxed conditions on the initial data so that the solutions can contain singularities (blow-up). Propagation of local oscillations along one family of characteristics remains under control despite singularity formation in the other family of characteristics.
Energy Technology Data Exchange (ETDEWEB)
Zuo, Peng; Fan, Zheng, E-mail: ZFAN@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Zhou, Yu [Advanced Remanufacturing and Technology Center (ARTC), 3 Clean Tech Loop, CleanTech Two, Singapore 637143 (Singapore)
2016-07-15
Nonlinear guided waves have been investigated widely in simple geometries, such as plates, pipe and shells, where analytical solutions have been developed. This paper extends the application of nonlinear guided waves to waveguides with arbitrary cross sections. The criteria for the existence of nonlinear guided waves were summarized based on the finite deformation theory and nonlinear material properties. Numerical models were developed for the analysis of nonlinear guided waves in complex geometries, including nonlinear Semi-Analytical Finite Element (SAFE) method to identify internal resonant modes in complex waveguides, and Finite Element (FE) models to simulate the nonlinear wave propagation at resonant frequencies. Two examples, an aluminum plate and a steel rectangular bar, were studied using the proposed numerical model, demonstrating the existence of nonlinear guided waves in such structures and the energy transfer from primary to secondary modes.
Nonlinear wave breaking in self-gravitating viscoelastic quantum fluid
Mitra, Aniruddha; Roychoudhury, Rajkumar; Bhar, Radhaballav; Khan, Manoranjan
2017-02-01
The stability of a viscoelastic self-gravitating quantum fluid has been studied. Symmetry breaking instability of solitary wave has been observed through 'viscosity modified Ostrovsky equation' in weak gravity limit. In presence of strong gravitational field, the solitary wave breaks into shock waves. Response to a Gaussian perturbation, the system produces quasi-periodic short waves, which in terns predicts the existence of gravito-acoustic quasi-periodic short waves in lower solar corona region. Stability analysis of this dynamical system predicts gravity has the most prominent effect on the phase portraits, therefore, on the stability of the system. The non-existence of chaotic solution has also been observed at long wavelength perturbation through index value theorem.
Quantum corrections to nonlinear ion acoustic wave with Landau damping
Energy Technology Data Exchange (ETDEWEB)
Mukherjee, Abhik; Janaki, M. S. [Saha Institute of Nuclear Physics, Calcutta (India); Bose, Anirban [Serampore College, West Bengal (India)
2014-07-15
Quantum corrections to nonlinear ion acoustic wave with Landau damping have been computed using Wigner equation approach. The dynamical equation governing the time development of nonlinear ion acoustic wave with semiclassical quantum corrections is shown to have the form of higher KdV equation which has higher order nonlinear terms coming from quantum corrections, with the usual classical and quantum corrected Landau damping integral terms. The conservation of total number of ions is shown from the evolution equation. The decay rate of KdV solitary wave amplitude due to the presence of Landau damping terms has been calculated assuming the Landau damping parameter α{sub 1}=√(m{sub e}/m{sub i}) to be of the same order of the quantum parameter Q=ℏ{sup 2}/(24m{sup 2}c{sub s}{sup 2}L{sup 2}). The amplitude is shown to decay very slowly with time as determined by the quantum factor Q.
Institute of Scientific and Technical Information of China (English)
Li Zi-Liang
2009-01-01
Higher-order Korteweg-de Vries (KdV)-modified KdV (mKdV) equations with a higher-degree of nonlinear terms are derived from a simple incompressible non-hydrostatic Boussinesq equation set in atmosphere and are used to investigate gravity waves in atmosphere. By taking advantage of the auxiliary nonlinear ordinary differential equation, periodic wave and solitary wave solutions of the fifth-order KdV-mKdV models with higher-degree nonlinear terms are obtained under some constraint conditions. The analysis shows that the propagation and the periodic structures of gravity waves depend on the properties of the slope of line of constant phase and atmospheric stability. The Jacobi elliptic function wave and solitary wave solutions with slowly varying amplitude are transformed into triangular waves with the abruptly varying amplitude and breaking gravity waves under the effect of atmospheric instability.
Linear waves in two-layer fluids over periodic bottoms
Yu, J.; Maas, L.R.M.
2016-01-01
A new, exact Floquet theory is presented for linear waves in two-layer fluidsover a periodic bottom of arbitrary shape and amplitude. A method of conformaltransformation is adapted. The solutions are given, in essentially analytical form, forthe dispersion relation between wave frequency and general
Linear waves in two-layer fluids over periodic bottoms
Yu, Jie; Maas, L.R.M.
2016-01-01
A new, exact Floquet theory is presented for linear waves in two-layer fluids over a periodic bottom of arbitrary shape and amplitude. A method of conformal transformation is adapted. The solutions are given, in essentially analytical form, for the dispersion relation between wave frequency and gene
Nonlinear dynamic analysis of traveling wave-type ultrasonic motors.
Nakagawa, Yosuke; Saito, Akira; Maeno, Takashi
2008-03-01
In this paper, nonlinear dynamic response of a traveling wave-type ultrasonic motor was investigated. In particular, understanding the transient dynamics of a bar-type ultrasonic motor, such as starting up and stopping, is of primary interest. First, the transient response of the bar-type ultrasonic motor at starting up and stopping was measured using a laser Doppler velocimeter, and its driving characteristics are discussed in detail. The motor is shown to possess amplitude-dependent nonlinearity that greatly influences the transient dynamics of the motor. Second, a dynamical model of the motor was constructed as a second-order nonlinear oscillator, which represents the dynamics of the piezoelectric ceramic, stator, and rotor. The model features nonlinearities caused by the frictional interface between the stator and the rotor, and cubic nonlinearity in the dynamics of the stator. Coulomb's friction model was employed for the interface model, and a stick-slip phenomenon is considered. Lastly, it was shown that the model is capable of representing the transient dynamics of the motor accurately. The critical parameters in the model were identified from measured results, and numerical simulations were conducted using the model with the identified parameters. Good agreement between the results of measurements and numerical simulations is observed.
WAVE LOCALIZATION IN RANDOMLY DISORDERED PERIODIC PIEZOELECTRIC RODS
Institute of Scientific and Technical Information of China (English)
Li Fengming; Wang Yuesheng; Chen Ali
2006-01-01
The wave propagation in periodic and disordered periodic piezoelectric rods is studied in this paper. The transfer matrix between two consecutive unit cells is obtained according to the continuity conditions. The electromechanical coupling of piezoelectric materials is considered.According to the theory of matrix eigenvalues, the frequency bands in periodic structures are studied. Moreover, by introducing disorder in both the dimensionless length and elastic constants of the piezoelectric ceramics, the wave localization in disordered periodic structures is also studied by using the matrix eigenvalue method and Lyapunov exponent method. It is found that tuned periodic structures have the frequency passbands and stopbands and localization phenomenon can occur in mistuned periodic structures. Furthermore, owing to the effect of piezoelectricity, the frequency regions for waves that cannot propagate through the structures are slightly increased with the increase of the piezoelectric constant.
Identification and determination of solitary wave structures in nonlinear wave propagation
Energy Technology Data Exchange (ETDEWEB)
Newman, W.I.; Campbell, D.K.; Hyman, J.M.
1991-01-01
Nonlinear wave phenomena are characterized by the appearance of solitary wave coherent structures'' traveling at speeds determined by their amplitudes and morphologies. Assuming that these structures are briefly noninteracting, we propose a method for the identification of the number of independent features and their respective speeds. Using data generated from an exact two-soliton solution to the Korteweg-de-Vries equation, we test the method and discuss its strengths and limitations. 41 refs., 2 figs.
Spectrograms of ship wakes: identifying linear and nonlinear wave signals
Pethiyagoda, Ravindra; Moroney, Timothy J
2016-01-01
A spectrogram is a useful way of using short-time discrete Fourier transforms to visualise surface height measurements taken of ship wakes in real world conditions. For a steadily moving ship that leaves behind small-amplitude waves, the spectrogram is known to have two clear linear components, a sliding-frequency mode caused by the divergent waves and a constant-frequency mode for the transverse waves. However, recent observations of high speed ferry data have identified three additional components of the spectrograms that are not yet explained. We use computer simulations of linear and nonlinear ship wave patterns and apply time-frequency analysis to generate spectrograms for an idealised ship. We clarify the role of the linear dispersion relation and ship speed on the two linear components. Further, we show that additional features in the experimental data are caused by nonlinearity. Finally, we explain a discrepancy between the high speed ferry spectrograms and linear theory by accounting for ship acceler...
Nonlinear Propagation of Planet-Generated Tidal Waves
Rafikov, R. R.
2002-01-01
The propagation and evolution of planet-generated density waves in protoplanetary disks is considered. The evolution of waves, leading to shock formation and wake dissipation, is followed in the weakly nonlinear regime. The 2001 local approach of Goodman and Rafikov is extended to include the effects of surface density and temperature variations in the disk as well as the disk cylindrical geometry and nonuniform shear. Wave damping due to shocks is demonstrated to be a nonlocal process spanning a significant fraction of the disk. Torques induced by the planet could be significant drivers of disk evolution on timescales of approx. 10(exp 6)-10(exp 7) yr, even in the absence of strong background viscosity. A global prescription for angular momentum deposition is developed that could be incorporated into the study of gap formation in a gaseous disk around the planet.
Nonlinear propagation of planet-generated tidal waves
Rafikov, R R
2002-01-01
The propagation and evolution of planet-generated density waves in protoplanetary disks is considered. The evolution of waves, leading to the shock formation and wake dissipation, is followed in the weakly nonlinear regime. The local approach of Goodman & Rafikov (2001) is extended to include the effects of surface density and temperature variations in the disk as well as the disk cylindrical geometry and nonuniform shear. Wave damping due to shocks is demonstrated to be a nonlocal process spanning a significant fraction of the disk. Torques induced by the planet could be significant drivers of disk evolution on timescales of the order 1-10 Myr even in the absence of strong background viscosity. A global prescription for angular momentum deposition is developed which could be incorporated into the study of gap formation in a gaseous disk around the planet.
New Relativistic Effects in the Dynamics of Nonlinear Hydrodynamical Waves
Rezzolla, L
2002-01-01
In Newtonian and relativistic hydrodynamics the Riemann problem consists of calculating the evolution of a fluid which is initially characterized by two states having different values of uniform rest-mass density, pressure and velocity. When the fluid is allowed to relax, one of three possible wave-patterns is produced, corresponding to the propagation in opposite directions of two nonlinear hydrodynamical waves. New effects emerge in a special relativistic Riemann problem when velocities tangential to the initial discontinuity surface are present. We show that a smooth transition from one wave-pattern to another can be produced by varying the initial tangential velocities while otherwise maintaining the initial states unmodified. These special relativistic effects are produced by the coupling through the relativistic Lorentz factors and do not have a Newtonian counterpart.
Nonlinear electromagnetic waves in a degenerate electron-positron plasma
Energy Technology Data Exchange (ETDEWEB)
El-Labany, S.K., E-mail: skellabany@hotmail.com [Department of Physics, Faculty of Science, Damietta University, New Damietta (Egypt); El-Taibany, W.F., E-mail: eltaibany@hotmail.com [Department of Physics, College of Science for Girls in Abha, King Khalid University, Abha (Saudi Arabia); El-Samahy, A.E.; Hafez, A.M.; Atteya, A., E-mail: ahmedsamahy@yahoo.com, E-mail: am.hafez@sci.alex.edu.eg, E-mail: ahmed_ateya2002@yahoo.com [Department of Physics, Faculty of Science, Alexandria University, Alexandria (Egypt)
2015-08-15
Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed. (author)
Probabilistic approach to nonlinear wave-particle resonant interaction
Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.
2017-02-01
In this paper we provide a theoretical model describing the evolution of the charged-particle distribution function in a system with nonlinear wave-particle interactions. Considering a system with strong electrostatic waves propagating in an inhomogeneous magnetic field, we demonstrate that individual particle motion can be characterized by the probability of trapping into the resonance with the wave and by the efficiency of scattering at resonance. These characteristics, being derived for a particular plasma system, can be used to construct a kinetic equation (or generalized Fokker-Planck equation) modeling the long-term evolution of the particle distribution. In this equation, effects of charged-particle trapping and transport in phase space are simulated with a nonlocal operator. We demonstrate that solutions of the derived kinetic equations agree with results of test-particle tracing. The applicability of the proposed approach for the description of space and laboratory plasma systems is also discussed.
Analytical description of nonlinear acoustic waves in the solar chromosphere
Litvinenko, Yuri E.; Chae, Jongchul
2017-02-01
Aims: Vertical propagation of acoustic waves of finite amplitude in an isothermal, gravitationally stratified atmosphere is considered. Methods: Methods of nonlinear acoustics are used to derive a dispersive solution, which is valid in a long-wavelength limit, and a non-dispersive solution, which is valid in a short-wavelength limit. The influence of the gravitational field on wave-front breaking and shock formation is described. The generation of a second harmonic at twice the driving wave frequency, previously detected in numerical simulations, is demonstrated analytically. Results: Application of the results to three-minute chromospheric oscillations, driven by velocity perturbations at the base of the solar atmosphere, is discussed. Numerical estimates suggest that the second harmonic signal should be detectable in an upper chromosphere by an instrument such as the Fast Imaging Solar Spectrograph installed at the 1.6-m New Solar Telescope of the Big Bear Observatory.
Nonlinear Electromagnetic Waves in a Degenerate Electron-Positron Plasma
El-Labany, S. K.; El-Taibany, W. F.; El-Samahy, A. E.; Hafez, A. M.; Atteya, A.
2015-08-01
Using the reductive perturbation technique (RPT), the nonlinear propagation of magnetosonic solitary waves in an ultracold, degenerate (extremely dense) electron-positron (EP) plasma (containing ultracold, degenerate electron, and positron fluids) is investigated. The set of basic equations is reduced to a Korteweg-de Vries (KdV) equation for the lowest-order perturbed magnetic field and to a KdV type equation for the higher-order perturbed magnetic field. The solutions of these evolution equations are obtained. For better accuracy and searching on new features, the new solutions are analyzed numerically based on compact objects (white dwarf) parameters. It is found that including the higher-order corrections results as a reduction (increment) of the fast (slow) electromagnetic wave amplitude but the wave width is increased in both cases. The ranges where the RPT can describe adequately the total magnetic field including different conditions are discussed.
Irregular Wave Forces on Monopile Foundations. Effect af Full Nonlinearity and Bed Slope
DEFF Research Database (Denmark)
Schløer, Signe; Bredmose, Henrik; Bingham, Harry B.
2011-01-01
Forces on a monopile from a nonlinear irregular unidirectional wave model are investigated. Two seabed profiles of different slopes are considered. Morison’s equation is used to investigate the forcing from fully nonlinear irregular waves and to compare the results with those obtained from linear...... wave theory and with stream function wave theory. The latter of these theories is only valid on a flat bed. The three predictions of wave forces are compared and the influence of the bed slope is investigated. Force-profiles of two selected waves from the irregular wave train are further compared...... with the corresponding forceprofiles from stream function theory. The results suggest that the nonlinear irregular waves give rise to larger extreme wave forces than those predicted by linear theory and that a steeper bed slope increases the wave forces both for linear and nonlinear waves. It is further found...
Feng, Q S; Wang, Q; Zheng, C Y; Liu, Z J; Cao, L H; He, X T
2016-01-01
The properties of the nonlinear frequency shift (NFS) especially the fluid NFS from the harmonic generation of the ion-acoustic wave (IAW) in multi-ion species plasmas have been researched by Vlasov simulation. The pictures of the nonlinear frequency shift from harmonic generation and particles trapping are shown to explain the mechanism of NFS qualitatively. The theoretical model of the fluid NFS from harmonic generation in multi-ion species plasmas is given and the results of Vlasov simulation are consistent to the theoretical result of multi-ion species plasmas. When the wave number $k\\lambda_{De}$ is small, such as $k\\lambda_{De}=0.1$, the fluid NFS dominates in the total NFS and will reach as large as nearly $15\\%$ when the wave amplitude $|e\\phi/T_e|\\sim0.1$, which indicates that in the condition of small $k\\lambda_{De}$, the fluid NFS dominates in the saturation of stimulated Brillouin scattering especially when the nonlinear IAW amplitude is large.
Nonlinear Wave-Currents interactions in shallow water
Lannes, David
2015-01-01
We study here the propagation of long waves in the presence of vorticity. In the irrotational framework, the Green-Naghdi equations (also called Serre or fully nonlinear Boussinesq equations) are the standard model for the propagation of such waves. These equations couple the surface elevation to the vertically averaged horizontal velocity and are therefore independent of the vertical variable. In the presence of vorticity, the dependence on the vertical variable cannot be removed from the vorticity equation but it was however shown in [?] that the motion of the waves could be described using an extended Green-Naghdi system. In this paper we propose an analysis of these equations, and show that they can be used to get some new insight into wave-current interactions. We show in particular that solitary waves may have a drastically different behavior in the presence of vorticity and show the existence of solitary waves of maximal amplitude with a peak at their crest, whose angle depends on the vorticity. We als...
High-frequency homogenization for travelling waves in periodic media.
Harutyunyan, Davit; Milton, Graeme W; Craster, Richard V
2016-07-01
We consider high-frequency homogenization in periodic media for travelling waves of several different equations: the wave equation for scalar-valued waves such as acoustics; the wave equation for vector-valued waves such as electromagnetism and elasticity; and a system that encompasses the Schrödinger equation. This homogenization applies when the wavelength is of the order of the size of the medium periodicity cell. The travelling wave is assumed to be the sum of two waves: a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω1 plus a modulated Bloch carrier wave having crystal wavevector [Formula: see text] and frequency ω2. We derive effective equations for the modulating functions, and then prove that there is no coupling in the effective equations between the two different waves both in the scalar and the system cases. To be precise, we prove that there is no coupling unless ω1=ω2 and [Formula: see text] where Λ=(λ1λ2…λ d ) is the periodicity cell of the medium and for any two vectors [Formula: see text] the product a⊙b is defined to be the vector (a1b1,a2b2,…,adbd ). This last condition forces the carrier waves to be equivalent Bloch waves meaning that the coupling constants in the system of effective equations vanish. We use two-scale analysis and some new weak-convergence type lemmas. The analysis is not at the same level of rigour as that of Allaire and co-workers who use two-scale convergence theory to treat the problem, but has the advantage of simplicity which will allow it to be easily extended to the case where there is degeneracy of the Bloch eigenvalue.
High-frequency homogenization for travelling waves in periodic media
Harutyunyan, Davit; Milton, Graeme W.; Craster, Richard V.
2016-07-01
We consider high-frequency homogenization in periodic media for travelling waves of several different equations: the wave equation for scalar-valued waves such as acoustics; the wave equation for vector-valued waves such as electromagnetism and elasticity; and a system that encompasses the Schrödinger equation. This homogenization applies when the wavelength is of the order of the size of the medium periodicity cell. The travelling wave is assumed to be the sum of two waves: a modulated Bloch carrier wave having crystal wavevector k and frequency ω1 plus a modulated Bloch carrier wave having crystal wavevector m and frequency ω2. We derive effective equations for the modulating functions, and then prove that there is no coupling in the effective equations between the two different waves both in the scalar and the system cases. To be precise, we prove that there is no coupling unless ω1=ω2 and (k -m )⊙Λ ∈2 π Zd, where Λ=(λ1λ2…λd) is the periodicity cell of the medium and for any two vectors a =(a1,a2,…,ad),b =(b1,b2,…,bd)∈Rd, the product a⊙b is defined to be the vector (a1b1,a2b2,…,adbd). This last condition forces the carrier waves to be equivalent Bloch waves meaning that the coupling constants in the system of effective equations vanish. We use two-scale analysis and some new weak-convergence type lemmas. The analysis is not at the same level of rigour as that of Allaire and co-workers who use two-scale convergence theory to treat the problem, but has the advantage of simplicity which will allow it to be easily extended to the case where there is degeneracy of the Bloch eigenvalue.
Wave localization in randomly disordered periodic layered piezoelectric structures
Institute of Scientific and Technical Information of China (English)
Fengming Li; Yuesheng Wang; Chao Hu; Wenhu Huang
2006-01-01
Considering the mechnoelectrical coupling,the localization of SH-waves in disordered periodic layered piezoelectric structures is studied.The waves propagating in directions normal and tangential to the layers are considered.The transfer matrices between two consecutive unit cells are obtained according to the continuity conditions.The expressions of localization factor and localization length in the disordered periodic structures are presented.For the disordered periodic piezoelectric structures,the numerical results of localization factor and localization length are presented and discussed.It can be seen from the results that the fequency passbands and stopbands appear for the ordered periodic structures and the wave localization phenomenon occurs in the disordered periodic ones,and the larger the coefficient of variation is,the greater the degree of wave localization is.The widths of stopbands in the ordered periodic structures are very narrow when the properties of the consecutive piezoelectric materials are similar and the intervals of stopbands become broader when a certain material parameter has large changes.For the wave propagating in the direction normal to the layers the localization length has less dependence on the frequency,but for the wave propagating in the direction tangential to the layers the localization length is strongly dependent on the frequency.
Zettergren, M. D.; Snively, J. B.; Komjathy, A.; Verkhoglyadova, O. P.
2017-02-01
Numerical models of ionospheric coupling with the neutral atmosphere are used to investigate perturbations of plasma density, vertically integrated total electron content (TEC), neutral velocity, and neutral temperature associated with large-amplitude acoustic waves generated by the initial ocean surface displacements from strong undersea earthquakes. A simplified source model for the 2011 Tohoku earthquake is constructed from estimates of initial ocean surface responses to approximate the vertical motions over realistic spatial and temporal scales. Resulting TEC perturbations from modeling case studies appear consistent with observational data, reproducing pronounced TEC depletions which are shown to be a consequence of the impacts of nonlinear, dissipating acoustic waves. Thermospheric acoustic compressional velocities are ˜±250-300 m/s, superposed with downward flows of similar amplitudes, and temperature perturbations are ˜300 K, while the dominant wave periodicity in the thermosphere is ˜3-4 min. Results capture acoustic wave processes including reflection, onset of resonance, and nonlinear steepening and dissipation—ultimately leading to the formation of ionospheric TEC depletions "holes"—that are consistent with reported observations. Three additional simulations illustrate the dependence of atmospheric acoustic wave and subsequent ionospheric responses on the surface displacement amplitude, which is varied from the Tohoku case study by factors of 1/100, 1/10, and 2. Collectively, results suggest that TEC depletions may only accompany very-large amplitude thermospheric acoustic waves necessary to induce a nonlinear response, here with saturated compressional velocities ˜200-250 m/s generated by sea surface displacements exceeding ˜1 m occurring over a 3 min time period.
Relationship Between Mean Length and Mean Period of Wind Waves
Institute of Scientific and Technical Information of China (English)
PEI Yu-hua; ZHENG Gui-zhen; HE Yun-kai
2006-01-01
The mean wavelength of ocean waves is an important environmental parameter in ocean engineering. Owing to the difficulty in its measurement, it is usually estimated from the mean wave period according to the theoretical relationship between the two wave parameters. However, the relationships that have been proposed are not very satisfactory. In this paper, some suggestions are made for improvement of the data analysis method by which the mean wavelength is estimated from surface elevation records. Laboratory experiments are conducted in a wind-wave flume, and a new relationship between the mean wavelength and mean wave period is obtained by the application of the improved data analysis method. The new relationship deviates from that of Xu et al. (1999) while it is very close to the one proposed by Kinsman (1965), although the last one is theoretically deficient.
Nonlinear Wave Propagation and Solitary Wave Formation in Two-Dimensional Heterogeneous Media
Luna, Manuel
2011-05-01
Solitary wave formation is a well studied nonlinear phenomenon arising in propagation of dispersive nonlinear waves under suitable conditions. In non-homogeneous materials, dispersion may happen due to effective reflections between the material interfaces. This dispersion has been used along with nonlinearities to find solitary wave formation using the one-dimensional p-system. These solitary waves are called stegotons. The main goal in this work is to find two-dimensional stegoton formation. To do so we consider the nonlinear two-dimensional p-system with variable coefficients and solve it using finite volume methods. The second goal is to obtain effective equations that describe the macroscopic behavior of the variable coefficient system by a constant coefficient one. This is done through a homogenization process based on multiple-scale asymptotic expansions. We compare the solution of the effective equations with the finite volume results and find a good agreement. Finally, we study some stability properties of the homogenized equations and find they and one-dimensional versions of them are unstable in general.
A nonlinear analysis of the terahertz serpentine waveguide traveling-wave amplifier
Energy Technology Data Exchange (ETDEWEB)
Li, Ke, E-mail: like.3714@163.com; Cao, Miaomiao, E-mail: mona486@yeah.net [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China); Institute of Electronics, University of Chinese Academy of Sciences, Beijing 100190 (China); Liu, Wenxin, E-mail: lwenxin@mail.ie.ac.cn; Wang, Yong, E-mail: wangyong3845@sina.com [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)
2015-04-15
A nonlinear model for the numerical simulation of terahertz serpentine waveguide traveling-wave tube (SW-TWT) is described. In this model, the electromagnetic wave transmission in the SW is represented as an infinite set of space harmonics to interact with an electron beam. Analytical expressions for axial electric fields in axisymmetric interaction gaps of SW-TWTs are derived and compared with the results from CST simulation. The continuous beam is treated as discrete macro-particles with different initial phases. The beam-tunnel field equations, space-charge field equations, and motion equations are combined to solve the beam-wave interaction. The influence of backward wave and relativistic effect is also considered in the series of equations. The nonlinear model is used to design a 340 GHz SW-TWT. Several favorable comparisons of model predictions with results from a 3-D Particle-in-cell simulation code CHIPIC are presented, in which the output power versus beam voltage and interaction periods are illustrated. The relative error of the predicted output power is less than 15% in the 3 dB bandwidth and the relative error of the saturated length is less than 8%.The results show that the 1-D nonlinear analysis model is appropriate to solve the terahertz SW-TWT operation characteristics.
Nonlinear flexural waves and chaos behavior in finite-deflection Timoshenko beam
Institute of Scientific and Technical Information of China (English)
Shan-yuan ZHANG; Zhi-fang LIU
2010-01-01
Based on the Timoshenko beam theory,the finite-deflection and the axial inertia are taken into account,and the nonlinear partial differential equations for flexural waves in a beam are derived. Using the traveling wave method and integration skills,the nonlinear partial differential equations can be converted into an ordinary differential equation. The qualitative analysis indicates that the corresponding dynamic system has a heteroclinic orbit under a certain condition. An exact periodic solution of the nonlinear wave equation is obtained using the Jacobi elliptic function expansion. When the modulus of the Jacobi elliptic function tends to one in the degenerate case,a shock wave solution is given. The small perturbations are further introduced,arising from the damping and the external load to an original Hamilton system,and the threshold condition of the existence of the transverse heteroclinic point is obtained using Melnikov's method. It is shown that the perturbed system has a chaotic property under the Smale horseshoe transform.
Periodic Homoclinic Wave of (1+1)-Dimensional Long-Short Wave Equation
Institute of Scientific and Technical Information of China (English)
LI Dong-Long; DAI Zheng-De; GUO Yan-Feng
2008-01-01
@@ The exact periodic homoclinic wave of (1+1) D long-short wave equation is obtained using an extended homoclinic test technique.This result shows complexity and variety of dynamical behaviour for a (1+1)-dimensional longshort wave equation.
Periodic Wave Solutions and Their Limits for the Generalized KP-BBM Equation
Ming Song; Zhengrong Liu
2012-01-01
We use the bifurcation method of dynamical systems to study the periodic wave solutions and their limits for the generalized KP-BBM equation. A number of explicit periodic wave solutions are obtained. These solutions contain smooth periodic wave solutions and periodic blow-up solutions. Their limits contain periodic wave solutions, kink wave solutions, unbounded wave solutions, blow-up wave solutions, and solitary wave solutions.
Excitation of nonlinear ion acoustic waves in CH plasmas
Feng, Q S; Liu, Z J; Xiao, C Z; Wang, Q; He, X T
2016-01-01
Excitation of nonlinear ion acoustic wave (IAW) by an external electric field is demonstrated by Vlasov simulation. The frequency calculated by the dispersion relation with no damping is verified much closer to the resonance frequency of the small-amplitude nonlinear IAW than that calculated by the linear dispersion relation. When the wave number $ k\\lambda_{De} $ increases, the linear Landau damping of the fast mode (its phase velocity is greater than any ion's thermal velocity) increases obviously in the region of $ T_i/T_e < 0.2 $ in which the fast mode is weakly damped mode. As a result, the deviation between the frequency calculated by the linear dispersion relation and that by the dispersion relation with no damping becomes larger with $k\\lambda_{De}$ increasing. When $k\\lambda_{De}$ is not large, such as $k\\lambda_{De}=0.1, 0.3, 0.5$, the nonlinear IAW can be excited by the driver with the linear frequency of the modes. However, when $k\\lambda_{De}$ is large, such as $k\\lambda_{De}=0.7$, the linear ...
Wang, Y. Q.; Guo, X. H.; Li, Y. G.; Li, J.
2010-03-01
This is a study of nonlinear traveling wave response of a cantilever circular cylindrical shell subjected to a concentrated harmonic force moving in a concentric circular path at a constant velocity. Donnell's shallow-shell theory is used, so that moderately large vibrations are analyzed. The problem is reduced to a system of ordinary differential equations by means of the Galerkin method. Frequency-responses for six different mode expansions are studied and compared with that for single mode to find the more contracted and accurate mode expansion investigating traveling wave vibration. The method of harmonic balance is applied to study the nonlinear dynamic response in forced oscillations of this system. Results obtained with analytical method are compared with numerical simulation, and the agreement between them bespeaks the validity of the method developed in this paper. The stability of the period solutions is also examined in detail.
Saha, Asit; Chatterjee, Prasanta; Chatterjee
2014-08-01
Ion acoustic solitary waves and periodic waves in an unmagnetized plasma with superthermal (kappa-distributed) electrons and positrons are investigated through a non-perturbative approach. Model equations are transformed to a planar dynamical system. Then by using the bifurcations of phase portraits of this planar dynamical system, we have established that our model has solitary wave and periodic wave solutions. We have obtained two analytical solutions for these solitary and periodic waves depending on the parameters. From these solitary wave and periodic wave solutions, we have shown the combined effects of temperature ratio (σ) of electrons and positrons, spectral index (κ), speed of the traveling wave (v), and density ratio (p) of positrons and electrons on the characteristics of ion acoustic solitary and periodic waves. The spectral index, density ratio, speed of the traveling wave, and temperature ratio significantly affect the characteristics of ion acoustic solitary and periodic structures. The present study might be helpful to understand the salient features of nonlinear ion acoustic solitary and periodic structures in the interstellar medium.
Benoit, Michel; Yates, Marissa L.; Raoult, Cécile
2017-04-01
bathymetric profile also compare well with the measured values. The statistical distributions of the free surface elevation and wave height, calculated from the simulated time series, are compared to those of the measurements, with particular attention paid to the extreme waves. To use this model for realistic cases with complex bathymetric variations and multidirectional wave fields, the model has been extended to two horizontal dimensions (2DH). The spectral approach in the vertical dimension is retained, while the horizontal plane is discretized with scattered nodes to maintain the model's flexibility. The horizontal derivatives are estimated with finite-difference type formulas using Radial Basis Functions (Wright and Fornberg, 2006). The 2DH version of the code is applied to simulate the propagation of regular waves over a semi-circular step, which acts as a focusing lens. The simulation results are compared to the experimental data set of Whalin (1971). The evolution of the higher harmonic amplitudes in the shallow-water zone demonstrates the ability of the model to simulate wave propagation over complex 2DH coastal bathymetries. References: Becq-Girard F., Forget P., Benoit M. (1999) Non-linear propagation of unidirectional wave fields over varying topography. Coastal Eng., 38, 91-113. Tian Y., Sato S. (2008) A numerical model on the interaction between nearshore nonlinear waves and strong currents. Coast. Eng. Journal, 50(4), 369-395. Whalin R.W. (1971) The limit of applicability of linear wave refraction theory in a convergence zone. Technical report, DTIC Documents. Wright G.B., Fornberg B. (2006) Scattered node compact finite difference-type formulas generated from radial basis functions. J. Comp. Phys., 212, 99-123. Yates M.L., Benoit M. (2015) Accuracy and efficiency of two numerical methods of solving the potential flow problem for highly nonlinear and dispersive water waves. Int. J. Numer. Meth. Fluids, 77, 616-640. Zakharov V.E. (1968) Stability of periodic
Nonlinear electrostatic waves in inhomogeneous dense dusty magnetoplasmas
Energy Technology Data Exchange (ETDEWEB)
Mahmood, S., E-mail: shahzad_mahmoodpk@yahoo.co [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); Haque, Q. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)
2010-01-25
The nonlinear electrostatic drift waves are studied using quantum hydrodynamic model in dusty quantum magnetoplasmas. The dissipative effects due to collisions between ions and dust particles have also been taken into account. The Korteweg-de Vries Burgers (KdVB) like equation is derived and analytical solution is obtained using tanh method. The limiting cases of KdV type solitary waves, Burger type monotonic shock waves and oscillatory shock solutions are also presented. It is found that both hump and dip type solitary structures are possible in quantum dusty plasmas. However, amplitude and width of the nonlinear structure depend on the dust charge polarity and its concentration in electron-ion quantum plasmas. The monotonic shock like structure is independent of the quantum parameter. It is found that shock strength is increased in the presence of positively charged particles in comparison with negatively charged dust particles. The oscillatory shock structures are also obtained and it is found that change in dust charge polarity only shifts the phase of the oscillatory shock in plasmas. The numerical results are also presented for illustration.
Rotation-induced nonlinear wavepackets in internal waves
Energy Technology Data Exchange (ETDEWEB)
Whitfield, A. J., E-mail: ashley.whitfield.12@ucl.ac.uk; Johnson, E. R., E-mail: e.johnson@ucl.ac.uk [Department of Mathematics, University College London, London WC1E 6BT (United Kingdom)
2014-05-15
The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets. It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.
Rotation-induced nonlinear wavepackets in internal waves
Whitfield, A. J.; Johnson, E. R.
2014-05-01
The long time effect of weak rotation on an internal solitary wave is the decay into inertia-gravity waves and the eventual formation of a localised wavepacket. Here this initial value problem is considered within the context of the Ostrovsky, or the rotation-modified Korteweg-de Vries (KdV), equation and a numerical method for obtaining accurate wavepacket solutions is presented. The flow evolutions are described in the regimes of relatively-strong and relatively-weak rotational effects. When rotational effects are relatively strong a second-order soliton solution of the nonlinear Schrödinger equation accurately predicts the shape, and phase and group velocities of the numerically determined wavepackets. It is suggested that these solitons may form from a local Benjamin-Feir instability in the inertia-gravity wave-train radiated when a KdV solitary wave rapidly adjusts to the presence of strong rotation. When rotational effects are relatively weak the initial KdV solitary wave remains coherent longer, decaying only slowly due to weak radiation and modulational instability is no longer relevant. Wavepacket solutions in this regime appear to consist of a modulated KdV soliton wavetrain propagating on a slowly varying background of finite extent.
Enhanced continuous-wave four-wave mixing efficiency in nonlinear AlGaAs waveguides.
Apiratikul, Paveen; Wathen, Jeremiah J; Porkolab, Gyorgy A; Wang, Bohan; He, Lei; Murphy, Thomas E; Richardson, Christopher J K
2014-11-03
Enhancements of the continuous-wave four-wave mixing conversion efficiency and bandwidth are accomplished through the application of plasma-assisted photoresist reflow to reduce the sidewall roughness of sub-square-micron-modal area waveguides. Nonlinear AlGaAs optical waveguides with a propagation loss of 0.56 dB/cm demonstrate continuous-wave four-wave mixing conversion efficiency of -7.8 dB. Narrow waveguides that are fabricated with engineered processing produce waveguides with uncoated sidewalls and anti-reflection coatings that show group velocity dispersion of +0.22 ps²/m. Waveguides that are 5-mm long demonstrate broadband four-wave mixing conversion efficiencies with a half-width 3-dB bandwidth of 63.8-nm.
Complete classification of discrete resonant Rossby/drift wave triads on periodic domains
Bustamante, Miguel D
2013-01-01
We consider the set of Diophantine equations that arise in the context of the barotropic vorticity equation on periodic domains, when nonlinear wave interactions are studied to leading order in the amplitudes. The solutions to this set of Diophantine equations are of interest in atmosphere (Rossby waves) and Tokamak plasmas (drift waves), because they provide the values of the spectral wavevectors that interact resonantly via three-wave interactions. These come in "triads", i.e., groups of three wavevectors. We provide the full solution to the Diophantine equations in the case of infinite Rossby deformation radius. The method is completely new, and relies on mapping the unknown variables to rational points on quadratic forms of "Minkowski" type. Classical methods invented centuries ago by Fermat, Euler, Lagrange and Minkowski, are used to classify all solutions to our original Diophantine equations, thus providing a computational method to generate numerically all the resonant triads in the system. Our method...
Stability Analysis of Continuous Waves in Nonlocal Random Nonlinear Media
Directory of Open Access Journals (Sweden)
Maxim A. Molchan
2007-08-01
Full Text Available On the basis of the competing cubic-quintic nonlinearity model, stability (instability of continuous waves in nonlocal random non-Kerr nonlinear media is studied analytically and numerically. Fluctuating media parameters are modeled by the Gaussian white noise. It is shown that for different response functions of a medium nonlocality suppresses, as a rule, both the growth rate peak and bandwidth of instability caused by random parameters. At the same time, for a special form of the response functions there can be an ''anomalous'' subjection of nonlocality to the instability development which leads to further increase of the growth rate. Along with the second-order moments of the modulational amplitude, higher-order moments are taken into account.
Beach steepness effects on nonlinear infragravity-wave interactions : A numerical study
de Bakker, A. T M; Tissier, M. F S; Ruessink, B. G.
2016-01-01
The numerical model SWASH is used to investigate nonlinear energy transfers between waves for a diverse set of beach profiles and wave conditions, with a specific focus on infragravity waves. We use bispectral analysis to study the nonlinear triad interactions, and estimate energy transfers to deter
Nonlinear acoustic waves in a collisional self-gravitating dusty plasma
Institute of Scientific and Technical Information of China (English)
Guo Zhi-Rong; Yang Zeng-Qiang; Yin Bao-Xiang; Sun Mao-Zhu
2010-01-01
Using the reductive perturbation method,we investigate the small amplitude nonlinear acoustic wave in a collisional self-gravitating dusty plasma.The result shows that the small amplitude dust acoustic wave can be expressed by a modified Korteweg-de Vries equation,and the nonlinear wave is instable because of the collisions between the neutral gas molecules and the charged particles.
Waves in Periodic Dissipative Laminate Metamaterial Generated by Plate Impact
Franco Navarro, Pedro; Benson, David; Nesterenko, Vitali
2015-06-01
Waves generated by plate impact loading of Al/W laminates with different size of cell were investigated numerically depending on the impactor/cell mass ratio. The materials model took into account viscoplastic behavior of materials. It was observed that this mass ratio has a direct impact on the structure of stress pulses traveling through the composite. At the small impactor/cell mass ratio travelling waves closely resembling solitary waves were quickly formed near the impacted surface. They propagate as quasistationary weakly attenuating localized pulses. The properties of these pulses were satisfactory described based on a theoretical model using dispersive and nonlinear parameters of the materials similar to solitary solutions for the Korteweg-de Vries equation (KdV). The temperature at given pressure at the maximum is dramatically different then the temperature corresponding to the shock wave at the same pressure reflecting a different paths of loading. Increase of impactor/cell mass ratio results in the train of solitary like pulses which number increased with the increase of the impactor/cell mass ratio. At large impactor/cell mass ratio oscillatory stationary shock waves were formed. The leading front of these stationary shock waves was closely described by a solitary like pulse observed at small impactor/cell mass ratio. One of the authors (PFN) was supported by UCMexus Fellowship
Effect of scalar nonlinearity on zonal flow generation by Rossby waves
Mikhailovskii, A. B.; Lominadze, J. G.; Erokhin, N. N.; Erokhin, N. S.; Smolyakov, A. I.; Tsypin, V. S.
2007-01-01
Effects of scalar nonlinearity on the generation of zonal flow by Rossby waves in shallow rotating fluid are considered. Zonal flows are generated via the action of Reynolds stress due to vector nonlinearity together with the effects of scalar nonlinearity. It is shown that the scalar nonlinearity r
Optical Multi-hysteresises and "Rogue Waves" in Nonlinear Plasma
Kaplan, A E
2010-01-01
An overdense plasma layer irradiated by an intense light can exhibit dramatic nonlinear-optical effects due to a relativistic mass-effect of free electrons: highly-multiple hysteresises of reflection and transition, and emergence of gigantic "rogue waves". Those are trapped quasi-soliton field spikes inside the layer, sustained by an incident radiation with a tiny fraction of their peak intensity once they have been excited by orders of magnitude larger pumping. The phenomenon persists even in the layers with "soft" boundaries, as well as in a semi-infinite plasma with low absorption.
Exact travelling wave solutions of nonlinear partial differential equations
Energy Technology Data Exchange (ETDEWEB)
Soliman, A.A. [Department of Mathematics, Faculty of Education (AL-Arish) Suez Canal University, AL-Arish 45111 (Egypt)]. E-mail: asoliman_99@yahoo.com; Abdou, M.A. [Theoretical Research Group, Department of Physics, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt)]. E-mail: m_abdou_eg@yahoo.com
2007-04-15
An extended Fan-sub equation method is developed for searching exact travelling wave solutions of nonlinear partial differential equations. The key idea of this method is to take full advantage of the general elliptic equation, involving five parameters, which has more new solutions and whose degeneracies can lead to special sub equation involving three parameters. As an illustration of the extended Fan method, more new solutions are obtained for three models namely, generalized KdV, Drinfeld-Sokolov system and RLW equation.
Fourth order wave equations with nonlinear strain and source terms
Liu, Yacheng; Xu, Runzhang
2007-07-01
In this paper we study the initial boundary value problem for fourth order wave equations with nonlinear strain and source terms. First we introduce a family of potential wells and prove the invariance of some sets and vacuum isolating of solutions. Then we obtain a threshold result of global existence and nonexistence. Finally we discuss the global existence of solutions for the problem with critical initial condition I(u0)[greater-or-equal, slanted]0, E(0)=d. So the Esquivel-Avila's results are generalized and improved.
Critical exponent for damped wave equations with nonlinear memory
Fino, Ahmad
2010-01-01
We consider the Cauchy problem in $\\mathbb{R}^n,$ $n\\geq 1,$ for a semilinear damped wave equation with nonlinear memory. Global existence and asymptotic behavior as $t\\to\\infty$ of small data solutions have been established in the case when $1\\leq n\\leq3.$ Moreover, we derive a blow-up result under some positive data for in any dimensional space. It turns out that the critical exponent indeed coincides with the one to the corresponding semilinear heat equation.
High-order finite difference solution for 3D nonlinear wave-structure interaction
DEFF Research Database (Denmark)
Ducrozet, Guillaume; Bingham, Harry B.; Engsig-Karup, Allan Peter;
2010-01-01
This contribution presents our recent progress on developing an efficient fully-nonlinear potential flow model for simulating 3D wave-wave and wave-structure interaction over arbitrary depths (i.e. in coastal and offshore environment). The model is based on a high-order finite difference scheme...... OceanWave3D presented in [1, 2]. A nonlinear decomposition of the solution into incident and scattered fields is used to increase the efficiency of the wave-structure interaction problem resolution. Application of the method to the diffraction of nonlinear waves around a fixed, bottom mounted circular...
Theoretical Study of Wave Breaking for Nonlinear Water Waves Propagating on a Sloping Bottom
Chen, Y. Y.; Hsu, H. C.; Li, M. S.
2012-04-01
In this paper, a third-order asymptotic solution in a Lagrangian framework describing nonlinear water wave propagation on the surface of a uniform sloping bottom is presented. A two-parameter perturbation method is used to develop a new mathematical derivation. The particle trajectories, wave pressure and Lagrangian velocity potential are obtained as a function of the nonlinear wave steepness and the bottom slope perturbed to third order. This theoretical solution in Lagrangian form satisfies state of the normal pressure at the free surface. The condition of the conservation of mass flux is examined in detail for the first time. The two important properties in Lagrangian coordinates, Lagrangian wave frequency and Lagrangian mean level, are included in the third-order solution. The solution can also be used to estimate the mean return current for waves progressing over the sloping bottom. The Lagrangian solution untangle the description of the features of wave shoaling in the direction of wave propagation from deep to shallow water, as well as the process of successive deformation of a wave profile and water particle trajectories leading to wave breaking. A series of experiment was conducted to validate the obtained theoretical solution. The proposed solution will be used to determine the wave shoaling and breaking process and the comparisons between the experimental and theoretical results are excellent. For example, the variations of phase velocity on sloping bottom are obtained by 7 set of two close wave gauges and the theoretical result could accurately predict the measured phase velocity. The theoretical wave breaking index can be derived by use of the kinematic stability parameter (K.P.S). The comparisons between the theory, experiment (present study, Iwagali et al.(1974), Deo et al.(2003) and Tsai et al.(2005)) and empirical formula of Goda (2004) for the breaking index(u/C) versus the relative water depth(d/L) under two different bottom slopes shows that the
On global attraction to stationary states for wave equations with concentrated nonlinearities
Kopylova, E.
2016-01-01
The global attraction to stationary states is established for solutions to 3D wave equations with concentrated nonlinearities: each finite energy solution converges as $t\\to\\pm\\infty$ to stationary states. The attraction is caused by nonlinear energy radiation.
WAVE PROPAGATION IN PIEZOELECTRIC/PIEZOMAGNETIC LAYERED PERIODIC COMPOSITES
Institute of Scientific and Technical Information of China (English)
Yu Pang; Jinxi Liu; Yuesheng Wang; Daining Fang
2008-01-01
This paper is concerned with the dynamic behaviors of wave propagation in layered periodic composites consisting of piezoelectric and piezomagnetic phases. The dispersion relations of Lamb waves are derived. Dispersion curves and displacement fields are calculated with different piezoelectric volume fractions. Numerical results for BaTiOa/CoFe204 composites show that the dispersion curves resemble the symmetric Lamb waves in a plate. Exchange between the longitudinal (i.e. thickness) mode and coupled mode takes place at the crossover point between dispersion curves of the first two branches. With the increase of BaTiO3 volume fraction, the crossover point appears at a lower wave number and wave velocity is higher. These findings are useful for magnetoelectric transducer applications.
Nonlinear dynamics of soliton gas with application to "freak waves"
Shurgalina, Ekaterina
2017-04-01
So-called "integrable soliton turbulence" attracts much attention of scientific community nowadays. We study features of soliton interactions in the following integrable systems: Korteweg - de Vries equation (KdV), modified Korteweg - de Vries equation (mKdV) and Gardner equations. The polarity of interacted solitons dramatically influences on the process of soliton interaction. Thus if solitons have the same polarity the maximum of the wave field decreases during the process of nonlinear interactions as well statistical moments (skewness and kurtosis). In this case there is no abnormally large wave formation and this scenario is possible for all considered equation. Completely different results can be obtained for a soliton gas consisted of solitons with different polarities: such interactions lead to an increase of resulting impulse and kurtosis. Tails of distribution functions can grow significantly. Abnormally large waves (freak waves) appear in such solitonic fields. Such situations are possible just in case of mKdV and Gardner equations which admit the existence of bipolar solitons. New effect of changing a defect's moving direction in soliton lattices and soliton gas is found in the present study. Manifestation of this effect is possible as the result of negative phase shift of small soliton in the moment of nonlinear interaction with large solitons. It is shown that the effect of negative velocity is the same for KdV and mKdV equations and it can be found from the kinematic assumption without applying the kinetic theory. Averaged dynamics of the "smallest" soliton (defect) in a soliton gas, consisting of solitons with random amplitudes is investigated. The averaged criterion of velocity sign change confirmed by numerical simulation is obtained.
Nonlinear interactions of electromagnetic waves with the auroral ionosphere
Wong, Alfred Y.
1999-09-01
The ionosphere provides us with an opportunity to perform plasma experiments in an environment with long confinement times, very large-scale lengths, and no confining walls. The auroral ionosphere with its nearly vertical magnetic field geometry is uniquely endowed with large amount of free energy from electron and ion precipitation along the magnetic field and mega-ampere current across the magnetic field. To take advantage of this giant outdoor laboratory, two facilities HAARP and HIPAS, with frequencies ranging from the radio to optical bands, are now available for active probing of and interaction with this interesting region. The ponderomotive pressures from the self-consistent wave fields have produced significant local perturbations of density and particle distributions at heights where the incident EM frequency matches a plasma resonance. This paper will review theory and experiments covering the nonlinear phenomena of parametric decay instability to wave collapse processes. At HF frequencies plasma lenses can be created by preconditioning pulses to focus what is a normally divergent beam into a high-intensity spot to further enhance nonlinear phenomena. At optical wavelengths a large rotating liquid metal mirror is used to focus laser pulses up to a given height. Such laser pulses are tuned to the same wavelengths of selected atomic and molecular resonances, with resulting large scattering cross sections. Ongoing experiments on dual-site experiments and excitation of ELF waves will be presented. The connection of such basic studies to environmental applications will be discussed. Such applications include the global communication using ELF waves, the ozone depletion and remediation and the control of atmospheric CO2 through the use of ion cyclotron resonant heating.
On Irrotational Flows Beneath Periodic Traveling Equatorial Waves
Quirchmayr, Ronald
2016-08-01
We discuss some aspects of the velocity field and particle trajectories beneath periodic traveling equatorial surface waves over a flat bed in a flow with uniform underlying currents. The system under study consists of the governing equations for equatorial ocean waves within a non-inertial frame of reference, where Euler's equation of motion has to be suitably adjusted, in order to account for the influence of the earth's rotation.
Peakons and compactons on the background of periodic wave
Indian Academy of Sciences (India)
Chao-Qing Dai; Cui-Yun Liu
2013-03-01
In this paper, the extended tanh-function method (ETM) based on the mapping equation is further improved by generalizing the Riccati equation. The new variable separation solutions of the (2+1)-dimensional Broer–Kaup–Kupershmidt (BKK) system are derived. From the periodic wave solution and by selecting appropriate functions, the evolutional behaviours of peakons and compactons on the background of Jacobian elliptic wave are investigated.
Acoustic Bloch Wave Propagation in a Periodic Waveguide
1991-07-24
Distribution of Spherical Cavities," J. Acoust. Soc. Am. 81, 595-598. Arfken , G. (1985). Mathematical Methods for Physicists (Academic Press, Inc., New... mathematical -ystem of governing equations and boundary conditions describing lossy, linear acoustic waves in a periodic wave- guide is, under the...Translational Invariance The aim of this section is to present the mathematical system to be solved and show that it exhibits invariance under a certain
On Irrotational Flows Beneath Periodic Traveling Equatorial Waves
Quirchmayr, Ronald
2017-06-01
We discuss some aspects of the velocity field and particle trajectories beneath periodic traveling equatorial surface waves over a flat bed in a flow with uniform underlying currents. The system under study consists of the governing equations for equatorial ocean waves within a non-inertial frame of reference, where Euler's equation of motion has to be suitably adjusted, in order to account for the influence of the earth's rotation.
DEFF Research Database (Denmark)
Rasmussen, Anders Rønne; Sørensen, Mads Peter; Gaididei, Yuri Borisovich
2011-01-01
A wave equation including nonlinear terms up to the second order for a thermoviscous Newtonian fluid is proposed. In the lossless case this equation results from an expansion to third order of the Lagrangian for the fundamental non-dissipative fluid dynamical equations. Thus it preserves...
Energy Technology Data Exchange (ETDEWEB)
Tsuchiya, T. [Dia Consultants Company, Tokyo (Japan)
1996-10-01
Nonlinear full-wave tomography (FWT) is under investigation to improve the estimation accuracy of Vp/Vs distributions. Full-wave tomography is one of the underground structure exploration methods mainly using Tarantola`s nonlinear local optimization method (LOM). Numerical experiment for FWT was carried out assuming relatively weak nonlinear underground structure. In the case of inversion by local optimization method, adequate preconditioning is important. Utilization of geological information is also effective in estimating low-frequency components of a model. As far as data are obtained under proper observation arrangement, even in actual field, precise estimation of Vp/Vs distributions is possible by FWT using explosion in a hole as wave source. In full-wave tomography, selection of observation arrangement is essential for both Vp and Vs. However, the proper arrangement is different between Vp and Vs. Approach to different analyses for Vp and Vs is also necessary by using only proper data for Vp and Vs among obtained data sets. 4 figs.
2D wave-front shaping in optical superlattices using nonlinear volume holography.
Yang, Bo; Hong, Xu-Hao; Lu, Rong-Er; Yue, Yang-Yang; Zhang, Chao; Qin, Yi-Qiang; Zhu, Yong-Yuan
2016-07-01
Nonlinear volume holography is employed to realize arbitrary wave-front shaping during nonlinear processes with properly designed 2D optical superlattices. The concept of a nonlinear polarization wave in nonlinear volume holography is investigated. The holographic imaging of irregular patterns was performed using 2D LiTaO3 crystals with fundamental wave propagating along the spontaneous polarization direction, and the results agree well with the theoretical predictions. This Letter not only extends the application area of optical superlattices, but also offers an efficient method for wave-front shaping technology.
On the Amplitude Equations for Weakly Nonlinear Surface Waves
Benzoni-Gavage, Sylvie; Coulombel, Jean-François
2012-09-01
Nonlocal generalizations of Burgers' equation were derived in earlier work by Hunter (Contemp Math, vol 100, pp 185-202. AMS, 1989), and more recently by Benzoni-Gavage and Rosini (Comput Math Appl 57(3-4):1463-1484, 2009), as weakly nonlinear amplitude equations for hyperbolic boundary value problems admitting linear surface waves. The local-in-time well-posedness of such equations in Sobolev spaces was proved by Benzoni-Gavage (Differ Integr Equ 22(3-4):303-320, 2009) under an appropriate stability condition originally pointed out by Hunter. The same stability condition has also been shown to be necessary for well-posedness in Sobolev spaces in a previous work of the authors in collaboration with Tzvetkov (Benzoni-Gavage et al. in Adv Math 227(6):2220-2240, 2011). In this article, we show how the verification of Hunter's stability condition follows from natural stability assumptions on the original hyperbolic boundary value problem, thus avoiding lengthy computations in each particular situation. We also show that the resulting amplitude equation has a Hamiltonian structure when the original boundary value problem has a variational origin. Our analysis encompasses previous equations derived for nonlinear Rayleigh waves in elasticity.
Recent progress in nonlinear kinetic Alfvén waves
Directory of Open Access Journals (Sweden)
D. J. Wu
2004-01-01
Full Text Available This paper presents a review of recent progress in nonlinear kinetic Alfvén wave (KAW hereafter. We start with the two-fluid theory of KAWs and show how the difference between the motions of electrons and ions in small-scale fields of KAWs modifies the Alfvén wave properties. Then, we focus on nonlinear solitary structures of KAWs. A general criterion of the existence for solitary KAW (SKAW hereafter and its exact analytical solution in a low-β plasma (βe/mi are presented, where the electron drift velocity along the background magnetic field is larger than the thermal speed within a SKAW, and hence can excite, for instance, ion acoustic turbulence as showed by in situ observations of satellites in space plasmas. In consequence, the turbulence results in kinetic dissipation of the SKAW and dynamical evolution in its structure. We further discuss the structure of the dissipated SKAW (DSKAW hereafter that evolves from the SKAW due to the dissipation. The result shows that the DSKAW has a local shock-like structure in its density profile and a net electric potential drop over the shock-like structure. In particular, the electric potential drop of the DSKAW can be expected to accelerate electrons efficiently to the order of the local Alfvén speed. The application of the DSKAW acceleration mechanism to the auroral electron acceleration is also discussed. Finally, a few perspectives of KAW studies in future are presented.
Matda, Y.; Crawford, F. W.
1974-01-01
An economical low noise plasma simulation model is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation, to establish the low noise features and to verify the theoretical linear dispersion relation at wave energy levels as low as 0.000,001 of the plasma thermal energy. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories. The additional phenomena of sideband instability and satellite growth, stimulated by large amplitude wave propagation and the resulting particle trapping, are described.
Nguyen, Vu A.; Palo, Scott E.; Lieberman, Ruth S.; Forbes, Jeffrey M.; Ortland, David A.; Siskind, David E.
2016-07-01
Theory and past observations have provided evidence that atmospheric tides and other global-scale waves interact nonlinearly to produce additional secondary waves throughout the space-atmosphere interaction region. However, few studies have investigated the generation region of nonlinearly generated secondary waves, and as a result, the manifestation and impacts of these waves are still poorly understood. This study focuses on the nonlinear interaction between the quasi 2 day wave (2dayW3) and the migrating diurnal tide (DW1), two of the largest global-scale waves in the atmosphere. The fundamental goals of this effort are to characterize the forcing region of the secondary waves and to understand how it relates to their manifestation on a global scale. First, the Fast Fourier Synoptic Mapping method is applied to Thermosphere Ionosphere Mesosphere Energetics and Dynamics-Sounding of the Atmosphere using Broadband Emission Radiometry satellite observations to provide new evidence of secondary waves. These results show that secondary waves are only significant above 80 km. The nonlinear forcing for each secondary wave is then computed by extracting short-term primary wave information from a reanalysis model. The estimated nonlinear forcing quantities are used to force a linearized tidal model in order to calculate numerical secondary wave responses. Model results show that the secondary waves are significant from the upper mesosphere to the middle thermosphere, highlighting the implications for the atmosphere-space weather coupling. The study also concludes that the secondary wave response is most sensitive to the nonlinear forcing occurring in the lower and middle mesosphere and not coincident with the regions of strongest nonlinear forcing.
Nonlinear processes in the strong wave-plasma interaction
Pegoraro, Francesco; Califano, Francesco; Attico, Nicola; Bulanov, Sergei
2000-10-01
Nonlinear interactions in hot laboratory and/or astrophysical plasmas are a very efficient mechanism able to transfer the energy from the large to the small spatial scales of the system. As a result, kinetic processes are excited and play a key role in the plasma dynamics since the typical fluid dissipative length scales (where the nonlinear cascade is stopped) are (much) smaller then the kinetic length scales. Then, the key point is the role of the kinetic effects in the global plasma dynamics, i.e. whether the kinetic effects remains confined to the small scales of the system or whether there is a significant feedback on the large scales. Here we will address this problem by discussing the nonlinear kinetic evolution of the electromagnetic beam plasma instability where phase space vortices, as well as large scale vortex like magnetic structures in the physical space, are generated by wave - particle interactions. The role and influence of kinetic effects on the large scale plasma dynamics will be also discussed by addressing the problem of collisionless magnetic reconection.
Periodic Wave of Epidemic Spreading in Community Networks
Institute of Scientific and Technical Information of China (English)
ZHOU Yin-Zuo; LIU Zong-Hua; ZHOU Jie
2007-01-01
It was reported by Cummings et al. [Nature 427 (2004)344] that there are periodic waves in the spatiotemporal data of epidemics. For understanding the mechanism, we study the epidemic spreading on community networks by both the SIS model and the SIRS model. We find that with the increase of infection rate, the number of total infected nodes may be stabilized at a fixed point, oscillatory waves, and periodic cycles. Moreover, the epidemic spreading in the SIS model can be explained by an analytic map.
Period functions for Maass wave forms and cohomology
Bruggeman, R; Zagier, D; Bruggeman, R W; Zagier, D
2015-01-01
The authors construct explicit isomorphisms between spaces of Maass wave forms and cohomology groups for discrete cofinite groups \\Gamma\\subset\\mathrm{PSL}_2({\\mathbb{R}}). In the case that \\Gamma is the modular group \\mathrm{PSL}_2({\\mathbb{Z}}) this gives a cohomological framework for the results in Period functions for Maass wave forms. I, of J. Lewis and D. Zagier in Ann. Math. 153 (2001), 191-258, where a bijection was given between cuspidal Maass forms and period functions. The authors introduce the concepts of mixed parabolic cohomology group and semi-analytic vectors in principal serie
Lp-decay rates to nonlinear diffusion waves for p-system with nonlinear damping
Institute of Scientific and Technical Information of China (English)
ZHU Changjiang; JIANG Mina
2006-01-01
In this paper, we study the Lp (2 ≤ p ≤ +∞) convergence rates of the solutions to the Cauchy problem of the so-called p-system with nonlinear damping. Precisely, we show that the corresponding Cauchy problem admits a unique global solution (v(x,t),u(x,t)) and such a solution tends time-asymptotically to the corresponding nonlinear diffusion wave (-v(x, t), -u(x, t)) governed by the classical Darcy's law provided that the corresponding prescribed initial error function (w0(x), z0(x))lies in (H3 × H2) (R) and |v+ - v-| + ‖w0‖3 + ‖z0‖2 is sufficiently small.Furthermore, the Lp (2 ≤ p ≤ +∞) convergence rates of the solutions are also obtained.
A nonlinear wave equation with a nonlinear integral equation involving the boundary value
Directory of Open Access Journals (Sweden)
Thanh Long Nguyen
2004-09-01
Full Text Available We consider the initial-boundary value problem for the nonlinear wave equation $$displaylines{ u_{tt}-u_{xx}+f(u,u_{t}=0,quad xin Omega =(0,1,; 0
Weak Turbulence in the Magnetosphere: Formation of Whistler Wave Cavity by Nonlinear Scattering
Crabtree, C; Ganguli, G; Mithaiwala, M; Galinsky, V; Shevchenko, V
2011-01-01
We consider the weak turbulence of whistler waves in the in low-\\beta\\ inner magnetosphere of the Earth. Whistler waves with frequencies, originating in the ionosphere, propagate radially outward and can trigger nonlinear induced scattering by thermal electrons provided the wave energy density is large enough. Nonlinear scattering can substantially change the direction of the wave vector of whistler waves and hence the direction of energy flux with only a small change in the frequency. A portion of whistler waves return to the ionosphere with a smaller perpendicular wave vector resulting in diminished linear damping and enhanced ability to pitch-angle scatter trapped electrons. In addition, a portion of the scattered wave packets can be reflected near the ionosphere back into the magnetosphere. Through multiple nonlinear scatterings and ionospheric reflections a long-lived wave cavity containing turbulent whistler waves can be formed with the appropriate properties to efficiently pitch-angle scatter trapped e...
Abbasnia,Arash; Ghiasi,Mahmoud
2014-01-01
Fully nonlinear wave interaction with a fixed breakwater is investigated in a numerical wave tank (NWT). The potential theory and high-order boundary element method are used to solve the boundary value problem. Time domain simulation by a mixed Eulerian-Lagrangian (MEL) formulation and high-order boundary integral method based on non uniform rational B-spline (NURBS) formulation is employed to solve the equations. At each time step, Laplace equation is solved in Eulerian frame and fully non-l...
Rayleigh scattering and nonlinear inversion of elastic waves
Energy Technology Data Exchange (ETDEWEB)
Gritto, R.
1995-12-01
Rayleigh scattering of elastic waves by an inclusion is investigated and the limitations determined. In the near field of the inhomogeneity, the scattered waves are up to a factor of 300 stronger than in the far field, excluding the application of the far field Rayleigh approximation for this range. The investigation of the relative error as a function of parameter perturbation shows a range of applicability broader than previously assumed, with errors of 37% and 17% for perturbations of {minus}100% and +100%, respectively. The validity range for the Rayleigh limit is controlled by large inequalities, and therefore, the exact limit is determined as a function of various parameter configurations, resulting in surprisingly high values of up to k{sub p}R = 0.9. The nonlinear scattering problem can be solved by inverting for equivalent source terms (moments) of the scatterer, before the elastic parameters are determined. The nonlinear dependence between the moments and the elastic parameters reveals a strong asymmetry around the origin, which will produce different results for weak scattering approximations depending on the sign of the anomaly. Numerical modeling of cross hole situations shows that near field terms are important to yield correct estimates of the inhomogeneities in the vicinity of the receivers, while a few well positioned sources and receivers considerably increase the angular coverage, and thus the model resolution of the inversion parameters. The pattern of scattered energy by an inhomogeneity is complicated and varies depending on the object, the wavelength of the incident wave, and the elastic parameters involved. Therefore, it is necessary to investigate the direction of scattered amplitudes to determine the best survey geometry.
Guo, Bang-Xing; Gao, Zhan-Jie; Lin, Ji
2016-12-01
The consistent tanh expansion (CTE) method is applied to the (2+1)-dimensional Boussinesq equation which describes the propagation of ultrashort pulse in quadratic nonlinear medium. The interaction solutions are explicitly given, such as the bright soliton-periodic wave interaction solution, variational amplitude periodic wave solution, and kink-periodic wave interaction solution. We also obtain the bright soliton solution, kind bright soliton solution, double well dark soliton solution and kink-bright soliton interaction solution by using Painlevé truncated expansion method. And we investigate interactive properties of solitons and periodic waves. Supported by the National Natural Science Foundation of Zhejiang Province under Grant No. LZ15A050001 and the National Natural Science Foundation of China under Grant No. 11675164
Testik, Firat Yener
An experimental and theoretical study has been conducted to obtain a fundamental understanding of the dynamics of the sand, water and a solid object interaction as progressive gravity waves impinge on a sloping beach. Aside from obvious scientific interest, this exceedingly complex physical problem is important for naval applications, related to the behavior of disk/cylindrical shaped objects (mines) in the coastal waters. To address this problem, it was divided into a set of simpler basic problems. To begin, nonlinear progressive waves were investigated experimentally in a wave tank for the case of a rigid (impermeable) sloping bottom. Parameterizations for wave characteristics were proposed and compared with the experiments. In parallel, a numerical wave tank model (NWT) was calibrated using experimental data from a single run, and wave field in the wave tank was simulated numerically for the selected experiments. Subsequently, a layer of sand was placed on the slope and bottom topography evolution processes (ripple and sandbar dynamics, bottom topography relaxation under variable wave forcing, etc.) were investigated experimentally. Models for those processes were developed and verified by experimental measurements. Flow over a circular cylinder placed horizontally on a plane wall was also studied. The far-flow field of the cylinder placed in the wave tank was investigated experimentally and numerical results from the NWT simulations were compared with the experimental data. In the mean time, the near-flow velocity/vorticity field around a short cylinder under steady and oscillatory flow was studied in a towing tank. Horseshoe vortex formation and periodic shedding were documented and explained. With the understanding gained through the aforementioned studies, dynamics and burial/scour around the bottom objects in the wave tank were studied. Possible scenarios on the behavior of the disk-shaped objects were identified and explained. Scour around 3D cylindrical
Spatial versus temporal deterministic wave breakup of nonlinearly coupled light waves.
Salerno, D; Minardi, S; Trull, J; Varanavicius, A; Tamosauskas, G; Valiulis, G; Dubietis, A; Caironi, D; Trillo, S; Piskarskas, A; Di Trapani, P
2003-10-01
We investigate experimentally the competition between spatial and temporal breakup due to modulational instability in chi((2)) nonlinear mixing. The modulation of the wave packets caused by the energy exchange between fundamental and second-harmonic components is found to be the prevailing trigger mechanism which, according to the relative weight of diffraction and dispersion, leads to the appearance of a multisoliton pattern in the low-dimensional spatial or temporal domain.
Zhao, Guangyu; Ruan, Shigui
2011-06-01
We study the existence, uniqueness, and asymptotic stability of time periodic traveling wave solutions to a periodic diffusive Lotka-Volterra competition system. Under certain conditions, we prove that there exists a maximal wave speed c(*) such that for each wave speed c ≤ c(*), there is a time periodic traveling wave connecting two semi-trivial periodic solutions of the corresponding kinetic system. It is shown that such a traveling wave is unique modulo translation and is monotone with respect to its co-moving frame coordinate. We also show that the traveling wave solutions with wave speed c c(*).
Zhao, Guangyu; Ruan, Shigui
2011-01-01
We study the existence, uniqueness, and asymptotic stability of time periodic traveling wave solutions to a periodic diffusive Lotka-Volterra competition system. Under certain conditions, we prove that there exists a maximal wave speed c* such that for each wave speed c ≤ c*, there is a time periodic traveling wave connecting two semi-trivial periodic solutions of the corresponding kinetic system. It is shown that such a traveling wave is unique modulo translation and is monotone with respect to its co-moving frame coordinate. We also show that the traveling wave solutions with wave speed c c*. PMID:21572575
Institute of Scientific and Technical Information of China (English)
Wei-guo Zhang; Shao-wei Li; Wei-zhong Tian; Lu Zhang
2008-01-01
By means of the undetermined assumption method, we obtain some new exact solitary-wave solutions with hyperbolic secant function fractional form and periodic wave solutions with cosine function form for the generalized modified Bonssinesq equation. We also discuss the boundedness of these solutions. More over,we study the correlative characteristic of the solitary-wave solutions and the periodic wave solutions along with the travelling wave velocity's variation.
Numerical Simulation of Long-period Surface Wave in Sediments
Li, Yiqiong; Yu, Yanxiang
2016-04-01
Studies have shown that the western Taiwan coastal plain is influenced by long-period ground motion from the 1999 Chi-Chi, Taiwan, earthquake, and engineering structures with natural vibration long-period are damaged by strong surface wave in the western coastal plain. The thick sediments in the western coastal plain are the main cause of the propagation of strong long-period ground motion. The thick sediments similar to in the western coastal plain also exist in northern China. It is necessary to research the effects of thick sediments to long-period ground motion in northern China. The numerical simulation of ground motion based on theoretical seismology is one of important means to study the ground motion. We will carry out the numerical simulation of long-period ground motion in northern China by using the existing tomographic imaging results of northern China to build underground medium model, and adopting finite fault source model for wave input. In the process of simulation, our previous developed structure-preserving algorithm, symplectic discrete singular convolution differentiator (SDSCD), is used to deal with seismic wave field propagation. Our purpose is to reveal the formation and propagation of long-period surface wave in thick sediments and grasp the amplification effect of long-period ground motion due to the thick sediments. It will lay the foundation on providing the reference for the value of the long-period spectrum during determining the ground motion parameters in seismic design. This work has been supported by the National Natural Science Foundation of China (Grant No.41204046, 42574051).
Institute of Scientific and Technical Information of China (English)
WU; Shaoping(吴少平); YI; Fan(易帆)
2002-01-01
By using FICE scheme, a numerical simulation of nonlinear propagation of gravity wave packet in three-dimension compressible atmosphere is presented. The whole nonlinear propagation process of the gravity wave packet is shown; the basic characteristics of nonlinear propagation and the influence of the ambient winds on the propagation are analyzed. The results show that FICE scheme can be extended in three-dimension by which the calculation is steady and kept for a long time; the increase of wave amplitude is faster than the exponential increase according to the linear gravity theory; nonlinear propagation makes the horizontal perturbation velocity increase greatly which can lead to enhancement of the local ambient winds; the propagation path and the propagation velocity of energy are different from the results expected by the linear gravity waves theory, the nonlinearity causes the change in propagation characteristics of gravity wave; the ambient winds alter the propagation path and group velocity of gravity wave.
Study of nonlinear waves in astrophysical quantum plasmas
Energy Technology Data Exchange (ETDEWEB)
Hossen, M.R.; Mamun, A.A., E-mail: rasel.plasma@gmail.com [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)
2015-10-01
The nonlinear propagation of the electron acoustic solitary waves (EASWs) in an unmagnetized, collisionless degenerate quantum plasma system has been investigated theoretically. Our considered model consisting of two distinct groups of electrons (one of inertial non-relativistic cold electrons and other of inertialess ultrarelativistic hot electrons) and positively charged static ions. The Korteweg-de Vries (K-dV) equation has been derived by employing the reductive perturbation method and numerically examined to identify the basic features (speed, amplitude, width, etc.) of EASWs. It is shown that only rarefactive solitary waves can propagate in such a quantum plasma system. It is found that the effect of degenerate pressure and number density of hot and cold electron fluids, and positively charged static ions, significantly modify the basic features of EASWs. It is also noted that the inertial cold electron fluid is the source of dispersion for EA waves and is responsible for the formation of solitary structures. The applications of this investigation in astrophysical compact objects (viz. non-rotating white dwarfs, neutron stars, etc.) are briefly discussed. (author)
A flexible genuinely nonlinear approach for nonlinear wave propagation, breaking and run-up
Filippini, A. G.; Kazolea, M.; Ricchiuto, M.
2016-04-01
In this paper we evaluate hybrid strategies for the solution of the Green-Naghdi system of equations for the simulation of fully nonlinear and weakly dispersive free surface waves. We consider a two step solution procedure composed of: a first step where the non-hydrostatic source term is recovered by inverting the elliptic coercive operator associated to the dispersive effects; a second step which involves the solution of the hyperbolic shallow water system with the source term, computed in the previous phase, which accounts for the non-hydrostatic effects. Appropriate numerical methods, that can be also generalized on arbitrary unstructured meshes, are used to discretize the two stages: the standard C0 Galerkin finite element method for the elliptic phase; either third order Finite Volume or third order stabilized Finite Element method for the hyperbolic phase. The discrete dispersion properties of the fully coupled schemes obtained are studied, showing accuracy close to or better than that of a fourth order finite difference method. The hybrid approach of locally reverting to the nonlinear shallow water equations is used to recover energy dissipation in breaking regions. To this scope we evaluate two strategies: simply neglecting the non-hydrostatic contribution in the hyperbolic phase; imposing a tighter coupling of the two phases, with a wave breaking indicator embedded in the elliptic phase to smoothly turn off the dispersive effects. The discrete models obtained are thoroughly tested on benchmarks involving wave dispersion, breaking and run-up, showing a very promising potential for the simulation of complex near shore wave physics in terms of accuracy and robustness.
Wave Protection Effect of Periodic Row of Bottom-Hinged Flap-Type Wave Energy Converters
Institute of Scientific and Technical Information of China (English)
王冬姣; 邱守强; 叶家玮; 梁富琳
2016-01-01
A flap-type wave energy converter(WEC) is combined with a nearshore breakwater to expand the ap-plication of WECs both economically and environmentally. Based on the linear potential theory, an eigenfunction expansion solution is developed for a periodic row of bottom-hinged flap-type WECs exposed to normal waves. Additionally, the viscous effect is considered using the ship rolling solution method with a viscous damping term included in the equation of motion, and the viscous damping expression is also described. The proposed solution is verified by comparison with published literatures. The results including the wave energy conversion efficiency, the reflected and transmitted proportion of the incident wave energy are presented for a range of wave periods and geometric ratios. It is demonstrated that better wave protection effects can be attained with smaller gaps between the WECs, where the transmitted proportion of the incident wave energy is lower. An optimal geometric ratio thus exists for a given wave power absorption and a specific wave period.
Quasi-periodic oscillations from Rossby Wave Instability
Vincent, F H; Meheut, H; Paumard, T; Torok, G; Wildner, M
2013-01-01
We study the Rossby wave instability model of high-frequency quasi-periodic oscillations (QPO) of microquasars. We show ray-traced light curves of QPO within this model and discuss perspectives of distinguishing alternative QPO models with the future Large Observatory For X-ray Timing (LOFT) observations.
Directional bending wave propagation in periodically perforated plates
DEFF Research Database (Denmark)
Andreassen, Erik; Manktelow, Kevin; Ruzzene, Massimo
2015-01-01
We report on the investigation of wave propagation in a periodically perforated plate. A unit cell with double-C perforations is selected as a test article suitable to investigate two-dimensional dispersion characteristics, group velocities, and internal resonances. A numerical model, formulated ...
Periodicity effects of axial waves in elastic compound rods
DEFF Research Database (Denmark)
Nielsen, R. B.; Sorokin, S. V.
2015-01-01
Floquet analysis is applied to the Bernoulli-Euler model for axial waves in a periodic rod. Explicit asymptotic formulae for the stop band borders are given and the topology of the stop band pattern is explained. Eigenfrequencies of the symmetric unit cell are determined by the Phase-closure Prin...
Computation of nonlinear water waves with a high-order Boussinesq model
DEFF Research Database (Denmark)
Fuhrman, David R.; Madsen, Per A.; Bingham, Harry
2005-01-01
-crested waves in shallow/deep water, resulting in hexagonal/rectangular surface patterns; crescent waves, resulting from unstable perturbations of plane progressive waves; and highly-nonlinear wave-structure interactions. The emphasis is on physically demanding problems, and in eachcase qualitative and (when...
Kink wave determined by parabola solution of a nonlinear ordinary differential equation
Institute of Scientific and Technical Information of China (English)
LI Ji-bin; LI Ming; NA Jing
2007-01-01
By finding a parabola solution connecting two equilibrium points of a planar dynamical system, the existence of the kink wave solution for 6 classes of nonlinear wave equations is shown. Some exact explicit parametric representations of kink wave solutions are given. Explicit parameter conditions to guarantee the existence of kink wave solutions are determined.
Variational space–time (dis)continuous Galerkin method for nonlinear free surface water waves
Gagarina, E.; Ambati, V.R.; Vegt, van der J.J.W.; Bokhove, O.
2014-01-01
A new variational finite element method is developed for nonlinear free surface gravity water waves using the potential flow approximation. This method also handles waves generated by a wave maker. Its formulation stems from Miles’ variational principle for water waves together with a finite element
Variational space-time (dis)continuous Galerkin method for nonlinear free surface waves
Gagarina, E.; Vegt, van der J.J.W.; Ambati, V.R.; Bokhove, O.
2013-01-01
A new variational finite element method is developed for nonlinear free surface gravity water waves. This method also handles waves generated by a wave maker. Its formulation stems from Miles' variational principle for water waves together with a space-time finite element discretization that is cont
The Nonlinear Interaction Process in the Wave Assimilation Model and Its Experiments
Institute of Scientific and Technical Information of China (English)
杨永增; 纪永刚; 袁业立
2003-01-01
This paper presents a composite interaction formula based on the discrete-interactionoperator of wave-wave nonlinear interaction for deriving its adjoint source function in the wave assimilation model. Assimilation experiments were performed using the significant wave heights observed by the TOPES/POSEIDON satellite, and the gradient distribution in the physical space wasalso analyzed preliminarily.
Periodic solutions of fully nonlinear autonomous equations of Benjamin-Ono type
Baldi, Pietro
2012-01-01
We prove the existence of time-periodic, small amplitude solutions of autonomous quasilinear or fully nonlinear completely resonant pseudo-PDEs of Benjamin-Ono type in Sobolev class. The result holds for frequencies in a Cantor set that has asymptotically full measure as the amplitude goes to zero. At the first order of amplitude, the solutions are the superposition of an arbitrarily large number of waves that travel with different velocities (multimodal solutions). The equation can be considered as a Hamiltonian, reversible system plus a non-Hamiltonian (but still reversible) perturbation that contains derivatives of the highest order. The main difficulties of the problem are: an infinite-dimensional bifurcation equation, and small divisors in the linearized operator, where also the highest order derivatives have nonconstant coefficients. The main technical step of the proof is the reduction of the linearized operator to constant coefficients up to a regularizing rest, by means of changes of variables and co...
Nonlinear physics of electrical wave propagation in the heart: a review
Alonso, Sergio; Bär, Markus; Echebarria, Blas
2016-09-01
The beating of the heart is a synchronized contraction of muscle cells (myocytes) that is triggered by a periodic sequence of electrical waves (action potentials) originating in the sino-atrial node and propagating over the atria and the ventricles. Cardiac arrhythmias like atrial and ventricular fibrillation (AF,VF) or ventricular tachycardia (VT) are caused by disruptions and instabilities of these electrical excitations, that lead to the emergence of rotating waves (VT) and turbulent wave patterns (AF,VF). Numerous simulation and experimental studies during the last 20 years have addressed these topics. In this review we focus on the nonlinear dynamics of wave propagation in the heart with an emphasis on the theory of pulses, spirals and scroll waves and their instabilities in excitable media with applications to cardiac modeling. After an introduction into electrophysiological models for action potential propagation, the modeling and analysis of spatiotemporal alternans, spiral and scroll meandering, spiral breakup and scroll wave instabilities like negative line tension and sproing are reviewed in depth and discussed with emphasis on their impact for cardiac arrhythmias.
Wave breaking and shock waves for a periodic shallow water equation.
Escher, Joachim
2007-09-15
This paper is devoted to the study of a recently derived periodic shallow water equation. We discuss in detail the blow-up scenario of strong solutions and present several conditions on the initial profile, which ensure the occurrence of wave breaking. We also present a family of global weak solutions, which may be viewed as global periodic shock waves to the equation under discussion.
Possible signatures of nonlinear MHD waves in the solar wind: UVCS observations and models
Ofman, L.; Romoli, M.; Davila, J. M.; Poletto, G.; Kohl, J.; Noci, G.
1997-01-01
Recent ultraviolet coronagraph spectrometer (UVCS) white light channel observations are discussed. These data indicated quasi-periodic variations in the polarized brightness in the polar coronal holes. The Fourier power spectrum analysis showed significant peaks at about six minutes and possible fluctuations on longer time scales. The observations are consistent with the predictions of the nonlinear solitary-like wave model. The purpose of a planned study on plume and inter-plume regions of coronal holes, motivated by the result of a 2.5 magnetohydrodynamic model (MHD), is explained.
Reduced order prediction of rare events in unidirectional nonlinear water waves
Cousins, Will
2015-01-01
We consider the problem of short-term prediction of rare, extreme water waves in unidirectional fields, a critical topic for ocean structures and naval operations. One possible mechanism for the occurrence of such rare, unusually-intense waves is nonlinear wave focusing. Recent results have demonstrated that random localizations of energy, induced by the dispersive mixing of different harmonics, can grow significantly due to localized nonlinear focusing. Here we show how the interplay between i) statistical properties captured through linear information such as the waves power spectrum and ii) nonlinear dynamical properties of focusing localized wave groups defines a critical length scale associated with the formation of extreme events. The energy that is locally concentrated over this length scale acts as the "trigger" of nonlinear focusing for wave groups and the formation of subsequent rare events. We use this property to develop inexpensive, short-term predictors of large water waves. Specifically, we sho...
An improved wave-vector frequency-domain method for nonlinear wave modeling.
Jing, Yun; Tao, Molei; Cannata, Jonathan
2014-03-01
In this paper, a recently developed wave-vector frequency-domain method for nonlinear wave modeling is improved and verified by numerical simulations and underwater experiments. Higher order numeric schemes are proposed that significantly increase the modeling accuracy, thereby allowing for a larger step size and shorter computation time. The improved algorithms replace the left-point Riemann sum in the original algorithm by the trapezoidal or Simpson's integration. Plane waves and a phased array were first studied to numerically validate the model. It is shown that the left-point Riemann sum, trapezoidal, and Simpson's integration have first-, second-, and third-order global accuracy, respectively. A highly focused therapeutic transducer was then used for experimental verifications. Short high-intensity pulses were generated. 2-D scans were conducted at a prefocal plane, which were later used as the input to the numerical model to predict the acoustic field at other planes. Good agreement is observed between simulations and experiments.
Modeling of Propagation and Transformation of Transient Nonlinear Waves on A Current
Institute of Scientific and Technical Information of China (English)
Wojciech Sulisz; Maciej Paprota
2013-01-01
A novel theoretical approach is applied to predict the propagation and transformation of transient nonlinear waves on a current. The problem was solved by applying an eigenfunction expansion method and the derived semi-analytical solution was employed to study the transformation of wave profile and the evolution of wave spectrum arising from the nonlinear interactions of wave components in a wave train which may lead to the formation of very large waves. The results show that the propagation of wave trains is significantly affected by a current. A relatively small current may substantially affect wave train components and the wave train shape. This is observed for both opposing and following current. The results demonstrate that the application of the nonlinear model has a substantial effect on the shape of a wave spectrum. A train of originally linear and very narrow-banded waves changes its one-peak spectrum to a multi-peak one in a fairly short distance from an initial position. The discrepancies between the wave trains predicted by applying the linear and nonlinear models increase with the increasing wavelength and become significant in shallow water even for waves with low steepness. Laboratory experiments were conducted in a wave flume to verify theoretical results. The free-surface elevations recorded by a system of wave gauges are compared with the results provided by the nonlinear model. Additional verification was achieved by applying a Fourier analysis and comparing wave amplitude spectra obtained from theoretical results with experimental data. A reasonable agreement between theoretical results and experimental data is observed for both amplitudes and phases. The model predicts fairly well multi-peak spectra, including wave spectra with significant nonlinear wave components.